

IET TELECOMMUNICATIONS SERIES 54

Standard Codecs

Other volumes in this series:

Volume 9 Phase noise in signal sources W.P. Robins
Volume 12 Spread spectrum in communications R. Skaug and J.F. Hjelmstad
Volume 13 Advanced signal processing D.J. Creasey (Editor)
Volume 19 Telecommunications traffic, tariffs and costs R.E. Farr
Volume 20 An introduction to satellite communications D.I. Dalgleish
Volume 25 Personal and mobile radio systems R.C.V. Macario (Editor)
Volume 26 Common-channel signalling R.J. Manterfield
Volume 28 Very small aperture terminals (VSATs) J.L. Everett (Editor)
Volume 29 ATM: the broadband telecommunications solution L.G. Cuthbert and

J.C. Sapanel
Volume 31 Data communications and networks, 3rd edition R.L. Brewster (Editor)
Volume 32 Analogue optical fibre communications B. Wilson, Z. Ghassemlooy and

I.Z. Darwazeh (Editors)
Volume 33 Modern personal radio systems R.C.V. Macario (Editor)
Volume 34 Digital broadcasting P. Dambacher
Volume 35 Principles of performance engineering for telecommunication and

information systems M. Ghanbari, C.J. Hughes, M.C. Sinclair and J.P. Eade
Volume 36 Telecommunication networks, 2nd edition J.E. Flood (Editor)
Volume 37 Optical communication receiver design S.B. Alexander
Volume 38 Satellite communication systems, 3rd edition B.G. Evans (Editor)
Volume 40 Spread spectrum in mobile communication O. Berg, T. Berg, J.F. Hjelmstad,

S. Haavik and R. Skaug
Volume 41 World telecommunications economics J.J. Wheatley
Volume 42 Video coding: an introduction to standard codecs M. Ghanbari
Volume 43 Telecommunications signalling R.J. Manterfield
Volume 44 Digital signal filtering, analysis and restoration J. Jan
Volume 45 Radio spectrum management, 2nd edition D.J. Withers
Volume 46 Intelligent networks: principles and applications J.R. Anderson
Volume 47 Local access network technologies P. France
Volume 48 Telecommunications quality of service management A.P. Oodan (Editor)
Volume 49 Standard codecs: image compression to advanced video coding,

2nd edition M. Ghanbari
Volume 50 Telecommunications regulation J. Buckley
Volume 51 Security for mobility C. Mitchell (Editor)
Volume 52 Understanding telecommunications networks A. Valdar
Volume 53 Video compression systems: from first principles to concatenated codecs

A. Bock
Volume 904 Optical fibre sensing and signal processing B. Culshaw
Volume 905 ISDN applications in education and training R. Mason and P.D. Bacsich

Standard Codecs
Image compression to

advanced video coding
3rd Edition

Mohammed Ghanbari

The Institution of Engineering and Technology

Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England &
Wales (no. 211014) and Scotland (no. SC038698).

† 1999, 2003 The Institution of Electrical Engineers
† 2011 The Institution of Engineering and Technology

First published 1999 as Video Coding: An introduction to standard codecs
(0 85296 762 4)
Second edition published 2003 as Standard Codecs: Image compression to advanced
video coding (0 85296 710 1)
Third edition 2011

This publication is copyright under the Berne Convention and the Universal Copyright
Convention. All rights reserved. Apart from any fair dealing for the purposes of research
or private study, or criticism or review, as permitted under the Copyright, Designs and
Patents Act 1988, this publication may be reproduced, stored or transmitted, in any
form or by any means, only with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those
terms should be sent to the publisher at the undermentioned address:

The Institution of Engineering and Technology
Michael Faraday House
Six Hills Way, Stevenage
Herts, SG1 2AY, United Kingdom

www.theiet.org

While the author and publisher believe that the information and guidance given in
this work are correct, all parties must rely upon their own skill and judgement when
making use of them. Neither the author nor publisher assumes any liability to
anyone for any loss or damage caused by any error or omission in the work, whether
such an error or omission is the result of negligence or any other cause. Any and all
such liability is disclaimed.

The moral rights of the author to be identified as author of this work have been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A catalogue record for this product is available from the British Library

ISBN 978-0-86341-964-5 (paperback)
ISBN 978-1-84919-113-5 (PDF)

Typeset in India by MPS Ltd, a Macmillan Company
Printed in the UK by CPI Antony Rowe, Chippenham

To Sorour, Shirin and Soroush

Contents

Preface to first edition xix

Preface to second edition xxi

Preface to third edition xxii

1 History of video coding 1

2 Video basics 9
2.1 Analogue video 9

2.1.1 Scanning 9
2.1.2 Colour components 10

2.2 Digital video 11
2.3 Image format 12

2.3.1 SIF images 12
2.3.2 Conversion from SIF to CCIR-601 format 15
2.3.3 CIF image format 16
2.3.4 Sub-QCIF, QSIF, QCIF 18
2.3.5 HDTV 18
2.3.6 Conversion from film 19
2.3.7 Temporal resampling 19

2.4 Picture quality assessment 19
2.5 Problems 22
References 23

3 Principles of video compression 25
3.1 Spatial redundancy reduction 25

3.1.1 Predictive coding 25
3.1.2 Transform coding 26
3.1.3 Mismatch control 30
3.1.4 Fast DCT transform 30

3.2 Quantisation of DCT coefficients 31
3.3 Temporal redundancy reduction 34

3.3.1 Motion estimation 35
3.3.2 Fast motion estimation 37
3.3.3 Hierarchical motion estimation 39

3.4 Variable length coding 40
3.4.1 Huffman coding 41

3.4.2 Arithmetic coding 42
3.4.2.1 Principles of arithmetic coding 43
3.4.2.2 Binary arithmetic coding 46
3.4.2.3 An example of binary arithmetic coding 50
3.4.2.4 Adaptive arithmetic coding 53
3.4.2.5 Context-based arithmetic coding 53

3.5 A generic interframe video codec 54
3.5.1 Interframe loop 54
3.5.2 Motion estimator 54
3.5.3 Inter/intra switch 55
3.5.4 DCT 55
3.5.5 Quantiser 55
3.5.6 Variable length coding 55
3.5.7 IQ and IDCT 55
3.5.8 Buffer 55
3.5.9 Decoder 56

3.6 Constant and variable bit rates 56
3.7 Problems 56
References 59

4 Subband and wavelet 61
4.1 Why wavelet transform? 61
4.2 Subband coding 62
4.3 Wavelet Transform 67

4.3.1 Discrete wavelet transform 69
4.3.2 Multiresolution representation 69
4.3.3 Wavelet transform and filter banks 72
4.3.4 Higher-order systems 74
4.3.5 Wavelet filter design 74

4.4 Coding of the wavelet subimages 78
4.4.1 Quantisation by successive approximation 78
4.4.2 Similarities among the bands 79

4.5 EZW algorithm 80
4.5.1 Analysis of the algorithm 82

4.6 Set partitioning in hierarchical trees (SPIHT) 82
4.6.1 Coding algorithm 85

4.7 Embedded block coding with optimised truncation (EBCOT) 87
4.7.1 Bit plane quantisation 88
4.7.2 Conditional arithmetic coding of bit planes (tier 1 coding) 88
4.7.3 Fractional bit plane coding 90

4.7.3.1 Significance propagation pass 92
4.7.3.2 Magnitude refinement pass 93
4.7.3.3 Clean-up pass 93

4.7.4 Layer formation and bitstream organisation (tier 2 coding) 96
4.7.5 Rate control 97

viii Standard codecs: image compression to advanced video coding

4.8 Problems 98
References 99

5 Coding of still pictures (JPEG and JPEG2000) 101
5.1 Lossless compression 102
5.2 Lossy compression 103

5.2.1 Baseline sequential mode compression 103
5.2.2 Run length coding 106

5.2.2.1 Coding of DC coefficients 106
5.2.2.2 Coding of AC coefficients 107
5.2.2.3 Entropy coding 108

5.2.3 Extended DCT-based process 109
5.2.4 Hierarchical mode 111
5.2.5 Extra features 113

5.3 JPEG2000 113
5.4 JPEG2000 encoder 115

5.4.1 Preprocessor 115
5.4.1.1 Tiling 116
5.4.1.2 DC-level shifting 116
5.4.1.3 Colour transformation 116

5.4.2 Core encoder 117
5.4.2.1 Discrete wavelet transform 118
5.4.2.2 Quantisation 119
5.4.2.3 Entropy coding 119

5.4.3 Postprocessing 120
5.5 Some interesting features of JPEG2000 121

5.5.1 Region of interest 122
5.5.2 Scalability 123

5.5.2.1 Spatial scalability 123
5.5.2.2 SNR scalability 124

5.5.3 Resilience 124
5.6 Problems 126
References 127

6 Coding for videoconferencing (H.261) 129
6.1 Video format and structure 129
6.2 Video source coding algorithm 131

6.2.1 Prediction 132
6.2.2 MC/NO_MC decision 133
6.2.3 Inter/intra decision 134
6.2.4 Forced updating 135

6.3 Other types of macroblocks 135
6.3.1 Addressing of macroblocks 135
6.3.2 Addressing of blocks 136
6.3.3 Addressing of motion vectors 137

Contents ix

6.4 Quantisation and coding 138
6.4.1 Two-dimensional variable length coding 139

6.5 Loop filter 141
6.6 Rate control 144
6.7 Problems 145
References 146

7 Coding of moving pictures for digital storage media (MPEG-1) 149
7.1 Systems coding outline 150

7.1.1 Multiplexing elementary streams 151
7.1.2 Synchronisation 151

7.2 Preprocessing 151
7.2.1 Picture reordering 152

7.3 Video structure 154
7.3.1 Group of pictures 154
7.3.2 Picture 154
7.3.3 Slice 154
7.3.4 Macroblock 156
7.3.5 Block 157

7.4 Encoder 158
7.5 Quantisation weighting matrix 159
7.6 Motion estimation 160

7.6.1 Larger search range 161
7.6.2 Motion estimation with half-pixel precision 162
7.6.3 Bidirectional motion estimation 163
7.6.4 Motion range 164

7.7 Coding of pictures 165
7.7.1 I-pictures 165
7.7.2 P-pictures 166
7.7.3 B-pictures 167
7.7.4 D-pictures 168

7.8 Video buffer verifier 169
7.8.1 Buffer size and delay 170
7.8.2 Rate control and adaptive quantisation 171

7.9 Decoder 173
7.9.1 Decoding for fast play 174
7.9.2 Decoding for pause and step mode 175
7.9.3 Decoding for reverse play 175

7.10 Postprocessing 175
7.10.1 Editing 175
7.10.2 Resampling and upconversion 177

7.11 Problems 177
References 178

x Standard codecs: image compression to advanced video coding

8 Coding of high-quality moving pictures (MPEG-2) 179
8.1 MPEG-2 systems 180
8.2 Profiles and levels 183
8.3 How does the MPEG-2 video encoder differ from MPEG-1? 185

8.3.1 Major differences 185
8.3.2 Minor differences 185
8.3.3 MPEG-1 and MPEG-2 syntax differences 186

8.4 MPEG-2 nonscalable coding modes 187
8.4.1 Frame prediction for frame pictures 187
8.4.2 Field prediction for field pictures 187
8.4.3 Field prediction for frame pictures 188
8.4.4 Dual prime for P-pictures 189
8.4.5 16 � 8 motion compensation for field pictures 191
8.4.6 Restrictions on field pictures 191
8.4.7 Motion vectors for chrominance components 191
8.4.8 Concealment motion vectors 192

8.5 Scalability 192
8.5.1 Layering versus scalability 193
8.5.2 Data partitioning 194
8.5.3 SNR scalability 196
8.5.4 Spatial scalability 203
8.5.5 Temporal scalability 205
8.5.6 Hybrid scalability 208

8.5.6.1 Spatial and temporal hybrid scalability 208
8.5.6.2 SNR and spatial hybrid scalability 209
8.5.6.3 SNR and temporal hybrid scalability 209
8.5.6.4 SNR, spatial and temporal hybrid scalability 209

8.5.7 Overhead due to scalability 211
8.5.8 Applications of scalability 213

8.6 Video broadcasting 215
8.7 Digital versatile disc 216
8.8 Video over ATM networks 217
8.9 Problems 221
References 222

9 Video coding for low bit rate communications (H.263) 225
9.1 How does H.263 differ from H.261 and MPEG-1? 226

9.1.1 Coding of H.263 coefficients 226
9.1.2 Coding of motion vectors 227
9.1.3 Source pictures 228
9.1.4 Picture layer 229

9.2 Switched multipoint 229
9.2.1 Freeze picture request 230
9.2.2 Fast update request 230
9.2.3 Freeze picture release 230
9.2.4 Continuous presence multipoint 230

Contents xi

9.3 Extensions of H.263 231
9.3.1 Scope and goals of H.263þ 231
9.3.2 Scopes and goals of H.26L 232
9.3.3 Optional modes of H.263 232

9.4 Advanced motion estimation/compensation 233
9.4.1 Unrestricted motion vector 233
9.4.2 Advanced prediction 234

9.4.2.1 Four motion vectors per macroblock 234
9.4.2.2 Overlapped motion compensation 235

9.4.3 Importance of motion estimation 237
9.4.4 Deblocking filter 238
9.4.5 Motion estimation/compensation with spatial transforms 240

9.5 Treatment of B-pictures 245
9.5.1 PB frames mode 245

9.5.1.1 Macroblock type 246
9.5.1.2 Motion vectors for B-pictures in PB frames 246
9.5.1.3 Prediction for a B-block in PB frames 247

9.5.2 Improved PB frames 248
9.5.3 Quantisation of B-pictures 249

9.6 Advanced variable length coding 249
9.6.1 Syntax-based arithmetic coding 250
9.6.2 Reversible variable length coding 250
9.6.3 Resynchronisation markers 251
9.6.4 Advanced intra/inter VLC 252

9.6.4.1 Advanced intra coding 253
9.6.4.2 Advanced inter coding with switching between

two VLC tables 255
9.7 Protection against error 256

9.7.1 Forward error correction 256
9.7.2 Back channel 257
9.7.3 Data partitioning 259
9.7.4 Error detection by postprocessing 262
9.7.5 Error concealment 265

9.7.5.1 Intraframe error concealment 265
9.7.5.2 Interframe error concealment 266
9.7.5.3 Loss concealment 270
9.7.5.4 Selection of best-estimated motion vector 271

9.8 Scalability 271
9.8.1 Temporal scalability 272
9.8.2 SNR scalability 272
9.8.3 Spatial scalability 273
9.8.4 Multilayer scalability 274
9.8.5 Transmission order of pictures 274

9.9 Buffer regulation 276
9.10 Problems 278
References 279

xii Standard codecs: image compression to advanced video coding

10 Content-based video coding (MPEG-4 visual) 283
10.1 Profiles and levels 284
10.2 Video object plane 285

10.2.1 Coding of objects 287
10.2.2 Encoding of VOPs 287
10.2.3 Formation of VOP 287

10.3 Image segmentation 289
10.3.1 Semiautomatic segmentation 290
10.3.2 Automatic segmentation 290
10.3.3 Image gradient 291

10.3.3.1 Nonlinear diffusion 291
10.3.3.2 Colour edge detection 292

10.3.4 Watershed transform 293
10.3.4.1 Immersion watershed flooding 294
10.3.4.2 Topological distance watershed 294

10.3.5 Colour similarity merging 295
10.3.6 Region motion estimation 295
10.3.7 Object mask creation 295

10.4 Shape coding 297
10.4.1 Coding of binary alpha planes 297
10.4.2 Chain code 298
10.4.3 Quad tree coding 299
10.4.4 Modified modified Reed 302
10.4.5 Context-based arithmetic coding 304

10.4.5.1 Size conversion 305
10.4.5.2 Generation of context index 306

10.4.6 Greyscale shape coding 308
10.5 Motion estimation and compensation 309
10.6 Texture coding 310

10.6.1 Shape-adaptive DCT 310
10.7 Coding of the background 312
10.8 Coding of synthetic objects 314
10.9 Coding of still images 315

10.9.1 Coding of the lowest band 316
10.9.2 Coding of higher bands 316
10.9.3 Shape-adaptive wavelet transform 318

10.10 Video coding with the wavelet transform 319
10.10.1 Virtual zero tree algorithm 320
10.10.2 Coding of high-resolution video 322
10.10.3 Coding of low-resolution video 323

10.11 Scalability 326
10.11.1 Fine granularity scalability 326
10.11.2 Object-based scalability 327

10.12 MPEG-4 versus H.263 328
10.13 Problems 330
References 332

Contents xiii

11 Advanced video coding (H.264) 335
11.1 Picture format 337

11.1.1 Slicing 337
11.1.2 Slice types 339
11.1.3 An overview of the encoder 339
11.1.4 Progressive and interlaced coding 340
11.1.5 Macroblock syntax elements 341

11.2 Intra prediction 341
11.2.1 Intra 4 � 4 342
11.2.2 Intra 16 � 16 343
11.2.3 Chroma prediction 343
11.2.4 I_PCM 344

11.3 Inter prediction 344
11.3.1 Variable block size motion estimation 344
11.3.2 Motion estimation 346

11.3.2.1 Fast motion estimation in H.264 346
11.3.2.2 Prediction selection 347
11.3.2.3 Early termination 348
11.3.2.4 Motion vector refinement 348

11.3.3 Fractional precision of motion vectors 349
11.3.3.1 Chroma interpolation 351

11.3.4 Motion compensation and slice type 352
11.3.4.1 P-skip 352
11.3.4.2 Motion compensation in B-slices 352
11.3.4.3 Multiple reference picture motion compensation 353
11.3.4.4 Multiple reference picture weighted prediction 354

11.4 Transformation and quantisation 355
11.4.1 Transformation 355
11.4.2 Quantisation 358

11.5 Deblocking filter 359
11.5.1 Boundary strength 360
11.5.2 Filtering decision 360
11.5.3 Filter implementation 361

11.6 Entropy coding 362
11.6.1 Exp-Golomb 363
11.6.2 CAVLC encoding for residual data 364

11.6.2.1 Encode number of coefficients and
trailing 1s (T1s) 364

11.6.2.2 Encode sign of each T1 365
11.6.2.3 Encode levels of nonzero coefficients 365
11.6.2.4 Encode each run of zeros 365

11.6.3 CABAC: Context-adaptive binary arithmetic coding 365
11.6.3.1 Binarisation 366
11.6.3.2 Context modelling 367
11.6.3.3 Binary arithmetic coding 369

xiv Standard codecs: image compression to advanced video coding

11.7 Rate distortion optimisation 370
11.7.1 Lagrangian optimisation technique 370
11.7.2 Optimisation process 370
11.7.3 Selection of l 371

11.8 Error resilient encoding 372
11.8.1 Error detection 373
11.8.2 Flexible macroblock ordering (FMO) 373
11.8.3 Data partitioning 375
11.8.4 Intra-MB/IDR 377
11.8.5 Multiple reference pictures 379
11.8.6 Redundant slices 380
11.8.7 Stream switching 381

11.8.7.1 PSP-picture 381
11.8.7.2 SSP-picture 381
11.8.7.3 SI-picture 382
11.8.7.4 Switching between two streams 382
11.8.7.5 Error recovery 383
11.8.7.6 Encoding of switching pictures 383

11.9 Error concealment 385
11.9.1 Weighted pixel value averaging 385
11.9.2 Boundary matching based motion vectors 385

11.10 Profiles and levels 387
11.11 Compression gain and complexity of H.264 390

11.11.1 Compression gain 390
11.11.2 Complexity 393

11.12 Scalable video coding 394
11.12.1 Temporal scalability 394
11.12.2 Spatial scalability 396

11.12.2.1 Prediction of macroblock modes 397
11.12.2.2 Prediction of residuals 397

11.12.3 Quality (SNR) scalability 398
11.12.4 Combined scalability 401
11.12.5 SVC profiles 402

11.12.5.1 Scalable baseline profile 402
11.12.5.2 Scalable high profile 403
11.12.5.3 Scalable high intra profile 403

11.13 Network abstraction layer 403
11.13.1 NAL header format 404
11.13.2 Parameter sets 405
11.13.3 Access unit 406
11.13.4 NAL type 407

11.13.4.1 NAL for SVC 408
11.14 Problems 409
References 410

Contents xv

12 Content description, search and delivery (MPEG-7 and MPEG-21) 413
12.1 MPEG-7: multimedia content description interface 414

12.1.1 Description levels 415
12.1.2 Application area 416
12.1.3 Indexing and query 417
12.1.4 Colour descriptors 418

12.1.4.1 Colour space 418
12.1.4.2 Colour quantisation 418
12.1.4.3 Dominant colour(s) 418
12.1.4.4 Scalable colour 419
12.1.4.5 Colour structure 419
12.1.4.6 Colour layout 419
12.1.4.7 GOP colour 419

12.1.5 Texture descriptors 420
12.1.5.1 Homogeneous texture 420
12.1.5.2 Texture browsing 420
12.1.5.3 Edge histogram 420

12.1.6 Shape descriptors 421
12.1.6.1 Region-based shapes 421
12.1.6.2 Contour-based shape 421
12.1.6.3 Three-dimensional shape 421

12.1.7 Motion descriptors 422
12.1.7.1 Camera motion 422
12.1.7.2 Motion trajectory 422
12.1.7.3 Parametric motion 423
12.1.7.4 Motion activity 423

12.1.8 Localisation 423
12.1.8.1 Region locator 423
12.1.8.2 Spatio-temporal locator 423

12.1.9 Others 424
12.1.9.1 Face recognition 424

12.2 Practical examples of image retrieval 424
12.2.1 Texture-based image retrieval 424
12.2.2 Shape-based retrieval 426
12.2.3 Sketch-based retrieval 428

12.3 MPEG-21: multimedia framework 430
12.3.1 Digital item declaration 430
12.3.2 Digital item identification and description 431
12.3.3 Content handling and usage 431
12.3.4 Intellectual property and management 431
12.3.5 Terminal and networks 432
12.3.6 Content representation 432
12.3.7 Event reporting 433

References 433

xvi Standard codecs: image compression to advanced video coding

Appendix A A ‘C’ program for the fast discrete cosine transform 435

Appendix B Huffman tables for the DC and AC coefficients
of the JPEG baseline encoder 439

Appendix C Huffman tables for quad tree shape coding 443

Appendix D Frequency tables for the CAE encoding of binary shapes 445

Appendix E Channel error/packet loss model 449

Appendix F Solutions to the problems 453

Appendix G Glossary of acronyms 465

Index 469

Contents xvii

Preface to first edition

Television is an important part of our lives. In developing countries, where the TV
sets can outnumber telephones by more than 50, its impact can be even greater.
Advances in the multimedia industry and advent of digital TV and other services
will only increase its influence in global terms.

There is a considerable and growing will to support these developments
through global standards. As an example, the call for videoconferencing proposals
in the 1980s, which led to the H.261 audiovisual codec, attracted 15 proposals; in
February 1999, 650 research proposals on MPEG-7 were submitted to the MPEG
committee meeting in Lancaster, UK.

This book aims to address some of these exciting developments by looking at
the fundamentals behind them. The intention is to provide material that is useful to
a wide range of readers, from researchers in video coding to managers in the
multimedia industry.

In writing this book, I have made use of invaluable documents prepared by the
working parties of the ISO/IEC and ITU. I am also in debt to the work of my former
and current research students and assistants. In particular, I would like to ack-
nowledge the work by Pedro Assuancao, Soroush Ghanbari, Ebroul Izquierdo,
Fernando Lopes, Antonio Pinheiro, Eva Rosdiana, Vassilis Seferidis, Tamer
Shanableh, Eduardo da Silva, Kuan Hui Tan, Kwee Teck Tan, Qi Wang, David
Wilson and John Woods, who have directly or indirectly contributed to the rea-
lisation of this book.

Finally, I would like to express my deepest gratitude to my mentor Professor
Charles Hughes, who with his great vision and tireless effort taught me how to be a
competitive researcher. He encouraged me to write this book and very patiently
read every chapter of it and made numerous valuable comments. Charles, thanks
for everything.

Mohammed Ghanbari
June 1999

Author (left) receiving the Rayleigh prize for the first edition of this book
that was awarded by IEE as the best book of the year 2000.

xx Standard codecs: image compression to advanced video coding

Preface to second edition

The first edition of the book was published in August 1999. It was received with an
overwhelming worldwide support, such that it had to be reprinted in less than 18
months. The book was reviewed by distinguished video coding experts across the
globe, from the United States to Australia, and the comments were published in
numerous prestigious international journals, such as IEEE Signal Processing, IEE
Review and EBU Review. Because of these successes, the book was recognised as
the best book of the year 2000 by IEE and was awarded the Rayleigh prize.

Video coding is a dynamic field, and many changes have happened since the
first edition. At that time, JPEG2000 was under development, but now it is mature
enough to be reported. In 1999, work on MPEG-7 had just started, but today we
have more information on how video databases can be searched, and the work has
progressed into MPEG-21. At the turn of the millennium, particular emphasis was
put on mobile communications and video streaming over IP networks. Conse-
quently, the joint work of ISO/IEC and ITU on very low bit rate video coding has
lead to the development of the H.26L standard. In the second edition, the important
and fundamental aspects of all these new and exciting events are explained. Of
course, the remaining parts of the book have also undergone some amendments,
either to clarify certain subjects or to explain new ideas in video coding. On the
basis of the comments of my colleagues at various universities round the world
(who have used the book as a textbook), I have designed a few problems at the end
of each chapter. The model answers are given at the end of the book.

In addition to the material used in the first edition, I would like to acknowledge
the work of several of my research associates, assistants and students, in particular
Randa Atta, Soroush Ghanbari, Mislav Grgic, Hiroshi Gunji, Ekram Khan,
Fernando Lopes, Mike Nilsson, Antonio Pinheiro, Kai Sun and C.K. Tan.

Finally, my deepest gratitude goes to Professor Charles Hughes, who has very
passionately read all parts of the manuscript and has made numerous valuable
comments. Charles, once more, thank you very much.

Mohammed Ghanbari
February 2003

Preface to third edition

It is more than seven years since the revised version of the book was published in
2003. At that time, advanced video coding (AVC), now known as H.264/AVC, was
under development. Information about this codec was, at that time, very limited,
and what was available then was reported under H.26L. Now the standard is
complete, and the codec is one of the most successful joint products of the ITU and
ISO/IEC. Numerous variants of this codec by several manufacturers have already
been marketed. These codecs can serve a variety of applications, ranging from
digital HDTV broadcasting, IPTV, video storage, videoconferencing, video streaming,
etc. Today, interested readers of video coding technology are more eager to find out
about H.264/AVC than any other codecs. In fact, no book on video coding is complete
without H.264.

As is the speciality of this book, each standard codec is described in a chapter,
but design and explanations of material in chapters are evolutionary. Description of
standards is made dependent on each other, and where necessary, similarities and
dissimilarities between them are explained. It is not the intention of the book to
explain in details how a specific coding tool is implemented, since interested readers
can always refer to the draft recommendation of the standard. Rather, it is aimed to
explain the philosophy behind the introduction of a specific coding tool and how it
can improve the compression gain. I believe, this not only helps the readers to better
understand the specification manual of a standard codec but also helps them to open
up their imagination to improve the codec’s performance. It should not be forgotten
that standards are all about the semantics for decoders and encoders are flexible to
generate the required bitstream syntax the best way they can.

In the new edition, in addition to adding a complete description of H.264/AVC
in Chapter 11, other chapters have also been refined. In particular, Chapter 9 on
H.263, which is the nuclei of H.264, has been revised, and all its optional tools,
which have been imported into H.264, are highlighted.

In revising the book, as before, I owe much of the credits to my current and
former students, particularly to Ismail Ali, Mohammad Altaf, Randa Atta, Shirin
Ghanbari, Mahdi Ghandi, Ekram Khan. Sandro Moiron and Hoang Nguyen, who
assisted in running tests, checking my arguments against the source codes and the
manuals of the H.264/AVC standard and, of course, drawing several diagrams. I am
also grateful to Mike Nilsson for his critical comments on the new chapter on
H.264. Many thanks to all.

Mohammed Ghanbari
November 2010

Chapter 1

History of video coding

Digital video compression techniques have played an important role in the world of
telecommunication and multimedia systems where bandwidth is still a valuable
commodity. Hence, video coding techniques are of prime importance for reducing
the amount of information needed for a picture sequence without losing much of its
quality, judged by the human viewers. Modern compression techniques involve
very complex electronic circuits, and the cost of these can only be kept to an
acceptable level by high-volume production of large-scale integration (LSI) chips.
Standardisation of the video compression techniques is therefore essential.

Straightforward pulse code modulation (PCM) coding of TV signals at
140 Mbit/s was introduced in the 1970s. It conformed to the digital hierarchy used
mainly for multichannel telephony, but the high bit rate restricted its application to
TV programme distribution and studio editing. Digital TV operation for satellites
became attractive since the signals were compatible with the time-division multiple
access systems then coming into use. Experimental systems in 1980 used bit rates
of about 45 Mbit/s for National Television System Committee (NTSC) signals and
60 Mbit/s for the phase alternate line (PAL) standard.

An analogue videophone system tried out in the 1960s had not proved viable,
but by the 1970s it was realised that visual speaker identification could sub-
stantially improve a multiparty discussion, and videoconference services were
considered. This provided the impetus for the development of low bit rate video
coding. With the available technology in the 1980s, COST211 video codec, based
on differential pulse code modulation (DPCM), was standardised by International
Telegraph and Telephone Consultative Committee, from the French name ‘‘Comité
Consultatif International Téléphonique et Télégraphique’’ (CCITT), under the
H.120 standard. The codecs target bit rate was at 2 Mbit/s for Europe and
1.544 Mbit/s for North America, suitable for their respective first levels of digital
hierarchy. However, the image quality, although having very good spatial resolu-
tion (due to the nature of DPCM working on pixel-by-pixel bases), had a very poor
temporal quality. It was soon realised that in order to improve the image quality,
without exceeding the target bit rate, less than 1 bit should be used to code each
pixel. This was only possible if a group of pixels were coded together, such that the
bit per pixel is fractional. This led to the design of so-called block-based codecs.

During the late 1980s study period, of the 15 block-based videoconferencing
proposals submitted to the telecommunication standardisation sector of the

International Telecommunication Union (ITU-T formerly CCITT), 14 were based
on the discrete cosine transform (DCT) and only one on vector quantisation (VQ).
The subjective quality of video sequences presented to the panel showed hardly any
significant differences between the two coding techniques. In parallel to ITU-T’s
investigation during 1984–88, the Joint Photographic Experts Group (JPEG) was
also interested in compression of static images. They chose the DCT as the main
unit of compression, mainly because of the possibility of progressive image trans-
mission. JPEG’s decision undoubtedly influenced the ITU-T in favouring DCT
over VQ. By now there was worldwide activity in implementing the DCT in chips
and on digital signal processors (DSPs).

By the late 1980s, it was clear that the recommended ITU-T videoconferencing
codec would use a combination of interframe DPCM for minimum coding delay and
the DCT. The codec showed greatly improved picture quality over H.120. In fact, the
image quality for videoconferencing applications was found reasonable at 384 kbit/s
or higher, and good quality was possible at significantly higher bit rates of around
1 Mbit/s. This effort, although originally directed at video coding at 384 kbit/s, was
later extended to systems based on multiples of 64 kbit/s (p � 64 kbits, where p
can take values from 1 to 30). The standard definition was completed in late 1989
and is officially called the H.261 standard (the coding method is often referred to
as ‘p � 64’).

The success of H.261 was a milestone for low bit rate coding of video at rea-
sonable quality. In the early 1990s, the Motion Picture Experts Group (MPEG)
started investigating coding techniques for storage of video, such as CD-ROMs. The
aim was to develop a video codec capable of compressing highly active video such
as movies, on hard discs, with a performance comparable to that of video home
systems (VHS) and video cassette recorders (VCRs). In fact, the basic framework of
the H.261 standard was used as a starting point in the design of the codec. The first
generation of MPEG, called the MPEG-1 standard, was capable of accomplishing
this task at 1.5 Mbit/s. Since for storage of video, encoding and decoding delays are
not a major constraint, one can trade delay for compression efficiency. For example,
in the temporal domain, a DCT might be used rather than a DPCM, or DPCM used
but with much improved motion estimation, such that the motion compensation
removes temporal correlation. This latter option was adopted within MPEG-1.

It is ironic that in the development of H.261, motion compensation was thought
to be optional, since it was believed that after motion compensation little was left to
be decorrelated by the DCT. However, later research showed that efficient motion
compensation can reduce the bit rate. For example, it is difficult to compensate for
the uncovered background, unless one looks ahead at the movement of the objects.
This was the main principle in MPEG-1, where the motion in most picture frames is
looked at from past and future, and this proved to be very effective.

Soon after the development of MPEG-1 in 1991, MPEG-1 decoders/players
became commonplace for multimedia on computers. MPEG-1 decoder plug-in
hardware boards (e.g. MPEG magic cards) became very popular, and software
MPEG-1 decoders were available with the release of new operating systems or
multimedia extensions for PC and Mac platforms. Because in all standard video

2 Standard codecs: image compression to advanced video coding

codecs only the decoders have to comply with proper syntax, software-based
encoding has added extra flexibility that improved the performance of MPEG-1 later.

Although MPEG-1 was optimised for typical applications using noninterlaced
video of 25 frames/s (in European format) or 30 frames/s (in North America) at bit
rates in the range of 1.2–1.5 Mbit/s (for image quality comparable to home VCRs),
it can certainly be used at higher bit rates and resolutions. Early versions of
MPEG-1 for interlaced video, such as those used in broadcast, were called MPEG-1þ.
Broadcasters, who were initially reluctant to use any compression on video, fairly soon
adopted a new generation of MPEG, called MPEG-2, for coding of interlaced video at
bit rates of 4–9 Mbit/s. MPEG-2 has made a significant impact in a range of applica-
tions such as digital terrestrial broadcasting, digital satellite TV, digital cable TV,
digital versatile disc (DVD) and many others. In November 1998, OnDigital of the
United Kingdom started terrestrial broadcasting of BBC and ITV programmes in
MPEG-2, and almost at the same time several satellite operators such as Sky-Digital
launched MPEG-2-coded television pictures direct to homes. In fact, digital video
owes much of its success to MPEG-2.

Since in MPEG-2 the number of bidirectionally predicted pictures is at the
discretion of the encoder, this number may be chosen for an acceptable coding
delay. This technique may then be used for telecommunication systems. For this
reason, the ITU-T has also adopted MPEG-2 under the generic name of H.262 for
telecommunications. H.262/MPEG-2 apart from coding high-resolution and
higher bit rate video also has the interesting property of scalability, such that from a
single MPEG-2 bitstream two or more videos at various spatial, temporal or
quality resolutions can be extracted. This scalability is very important for video
networking applications. For example, in applications such as video on demand and
multicasting the client may wish to receive videos of their own quality choice, or in
networking applications during network congestion, less essential parts of the bit-
stream can be discarded without significantly impairing the received video pictures.

Following the MPEG-2 standard, coding of high definition television (HDTV)
was seen to be the next requirement. This became known as MPEG-3. However, the
versatility of MPEG-2, being able to code video of any resolution, left no place for
MPEG-3, and hence it was abandoned. Although Europe was slow in deciding whether
to use HDTV, broadcast of HDTV with the MPEG-2 compression in the United States
started at the beginning of new millennium. It is foreseen that in the United States by
the year 2014, the existing transmission of analogue NTSC video will cease to exist,
and HDTV/MPEG-2 will be the only terrestrial broadcasting format. A few years later,
Europe chose H.264/AVC for its terrestrial and satellite broadcast of HDTV.

After so much development on MPEG-1 and -2, one might wonder what is
next. Certainly we have not yet addressed the question of sending video at very low
bit rates, such as of 64 kbit/s or less. This of course depends on the demand for such
services. However, there are signs that in the very near future such demands may
arise. For example, currently, owing to a new generation of modems allowing bit
rates of 56 kbit/s or so over public switched telephone networks (PSTN), video-
phones at such low bit rates are needed. Currently, there are demands for sending
video over mobile networks, where the channel capacity is very scarce. In fact, the

History of video coding 3

wireless industry is the main driving force behind the low bit rate image/video
compression. For instance, during the two months of June and July, in 2002, about
two millions of picture-phone sets were sold in Japan alone. A picture-phone is a
digital photo camera that grabs still pictures, compresses and sends them as a text
file over the mobile network. On the video front, in October 2002, the Japanese
company NTT DoCoMo announced the launch of its first hand-held mobile video
codec. The codec had the size of mobile phones, at the price of almost US$350.

To fulfil this goal, MPEG group started working on a very low bit rate video
codec, under the name of MPEG-4. Before achieving acceptable image quality at
such bit rates, new demands arose. These were mainly caused by the requirements
of multimedia, where there was a considerable demand for coding of multi-
viewpoint scenes, graphics and synthetic, as well as natural scenes. Applications
such as virtual studio and interactive video were the main driving forces. Ironically,
critics say that since MPEG-4 could not deliver the very low bit rate codec that it
had promised, the goal posts have been moved.

Work on very low bit rate systems, because of the requirement of PSTN and
mobile applications, was carried out by the ITU-T and a new video codec named
H.263 was devised to fulfil the goal of MPEG-4. This codec, which is an extension
of H.261, but uses lessons learned from MPEG developments, is sophisticated
enough to code small dimensioned video pictures at low frame rates within
10–64 kbit/s. Over the years, the compression efficiency of this codec has been
improved steadily through several iterations and amendments. Throughout its
evolution, the codec has then been renamed H.263þ and H.263þþ to indicate the
improvements. Because of a very effective coding strategy used in this codec, the
recommendation even defines the application of this codec to very high resolution
images such as HDTV, albeit at higher bit rates.

Before leaving the subject of MPEG-4, I should add that the main effort on MPEG-4
was on functionality, since this is what makes MPEG-4 distinct from other coders. In
MPEG-4, images are coded as objects, and the generated bitstream is scalable. This
provides the possibility of interacting with video, choosing the parts that are of interest.
Moreover, natural images can be mixed with synthetic video, in what is called virtual
studio. MPEG-4 defines a new coding method based on models of objects for coding
synthetic objects. It also uses the wavelet transform for coding of still images. How-
ever, MPEG-4, as part of its functionality for coding of natural images, uses a technique
similar to H.263; hence, it is equally capable of coding video at very low bit rates.

The fruitful outcome of the MPEG-2/H.262 video codec product under the joint
effort of the MPEG and ITU encouraged the two standard bodies to further colla-
boration. In 1997, the video coding experts group of the ITU-T started the advanced
video coding (AVC) project, under the name of H.26L, with L standing for the long-
term objectives. In 2001, the ISO/IEC MPEG joined the project and formed a joint
video team (JVT). The objective of JVT was to create a single video coding standard to
outperform the most optimised H.263 and MPEG-4 video codecs. The first version of
H.26L standard was technically finalised in year 2002, and was officially ratified at the
end of year 2003. In the end, the H.26L codec was called H.264 by the ITU-U com-
munity and MPEG-4 part 10 by the ISO/IEC MPEG group.

4 Standard codecs: image compression to advanced video coding

Now, in 2010, H.264/MPEG-4 v10 has become a de facto video codec for all
applications. Both terrestrial and satellite HDTV are mainly broadcasted in H.264.
New storage devices such as high-capacity Blu-ray for increased quality and storage
efficiency use H.264 family codecs. New video services launched by telcos, such as
Internet Protocol television (IPTV), video over Internet, catch up TV and video
streaming in general use H.264 family. A variant of this codec has been manu-
factured under various brand names, like Microsoft VC1, Chinese ASV, DivXþ,
Sorenson, etc., which are based on H.264. Now, in 2010, we can only say H.264 is a
codec for all video communication, distribution, storage and networking applications.

As we see, the video coding standards have evolved under two brand names,
H.26x and MPEG-x. The H.26x codecs are recommended by the telecommunica-
tion standardisation sector of the ITU-T. The ITU-T recommendations have been
designed for telecommunications applications, such as video conferencing and
video telephony. The MPEG-x products are the work of International Standardi-
sation Organisation and the International Electrotechnical Commission, Joint
Technical Committee number 1 (ISO/IEC JTC1). The MPEG standards have been
designed mostly to address the needs of video storage (e.g. CD-ROM, DVD),
broadcast TV and video streaming (e.g. video over Internet). For the most parts, the
two standardisation committees have worked independently on different standards.
However, there were exceptions, where their joint work resulted in standards such
as H.262/MPEG-2 and H.264/MPEG-4 part 10 (v10). Figure 1.1 summarises the
evolution of video coding standards by the two organisations and their joint effort
from the beginning in 1984 till now (2010). The Figure also shows the evolution of
still image coding under the joint work of ITU and ISO/IEC, which is best known
as the JPEG group.

H.262/
MPEG-2

H.264
(MPEG-4 v10)

H.264/
SVC

H.261 H.263 H.263++H.263+

JPEG JPEG
2000

MPEG-4
(visual)

MPEG-1

ITU/MPEG
standards

ITU
standards

JPEG
standards

MPEG
standards

1984 1986 1994 2004 2006 2008 20102000 20021988 1990 1992 1996 1998

Figure 1.1 Evolution of video coding standards by the ITU-T and ISO/IEC
committees

It should be noted that video coding is an ongoing worldwide activity, and new
standards now and then are introduced. This of course is in response to the market
demand. For instance, in July 2009, ISO/IEC has initiated a new project for coding of

History of video coding 5

super high quality video, which is known as 4K video (4000� 2000) pixels. The main
application for such a very high resolution video is digital cinema, and work is also
ongoing for 8K video (8000 � 4000) in film industry. Unfortunately, at the time of
revising the book not much new information is known about these new directions to be
reported, but surely as we will see in this book, all the codecs have evolved from each
other. No doubt, the future video codecs will have their roots in these codecs, espe-
cially on H.264. It appears ITU and MPEG will be working jointly again, and the new
activity is currently called Joint Collaborative Team on Video Coding (JCT-VC).

It should be noted that MPEG activity is not just confined to the compression of
audio-visual contents. The MPEG committee has also been active in the other aspects
of audio-visual information. For example, work on object- or content-based coding of
MPEG-4 has brought new requirements, in particular searching for content in image
databases. In early 2000, a working group under MPEG-7 undertook to study these
requirements. The MPEG-7 standard builds on the other standards, such as MPEG-1,
-2 and -4. Its main function is to define a set of descriptors for multimedia databases
to look for specific image/video clips, using image characteristics such as colour,
texture and information about the shape of objects. These pictures may be coded by
either of the standard video codecs, or even in analogue forms.

The advances made on content description in MPEG-7 and coding and com-
pression of contents under MPEG-4 provided the customers with an efficient access
to these contents. There was a need to produce specifications of standardised
interfaces and protocols that allow customers to access the wide variety of content
providers. This is the task undertaken by the MPEG-21, under the name of multi-
media framework.

In this book, we start by reviewing briefly the basics of video, including scan-
ning, formation of colour components at various video formats and quality evaluation
of video. At the end of each chapter, a few problems have been designed, either to
cover some specific parts of the book in greater depth or for a better appreciation of
those parts. Principles of video compression techniques used in the standard codecs
are given in Chapter 3. These include the three fundamental elements of com-
pression: spatial, temporal and intersymbol redundancy reductions. The DCT, as
the core element of all the standard codecs, and its fast implementation is pre-
sented. Quantisation of the DCT coefficients for bit rate reduction is given. The
most important element of temporal redundancy reduction, namely motion com-
pensation, is discussed in this chapter. Two variable length coding techniques for
reduction of the entropy of the symbols, namely, Huffman and arithmetic coding,
are described. Special attention is paid on the arithmetic coding, because of its role
and importance in recent video codecs. The chapter ends with an overview of a
generic interframe video codec, which is used as a generic codec in the following
chapters to describe various standard codecs.

Because of the importance of wavelet coding in the new generation of standard
codecs, Chapter 4 is specifically devoted to the description of the basic principles
of wavelet-based image coding. The three well-known techniques for compression of
wavelet-based image coding (embedded zero-tree wavelet, EZW; set partitioning
in hierarchical trees, SPIHT and embedded block coding with optimised truncation,

6 Standard codecs: image compression to advanced video coding

EBCOT) are presented. Their relative compression efficiencies are compared with
each other.

Coding of still pictures, under the Joint Photographic Experts Group (JPEG), is
presented in Chapter 5. Lossless and lossy compression versions of JPEG, as well
as baseline JPEG and its extension with sequential and progressive modes, are
described. The chapter also includes a new standard for still image coding under
JPEG2000. Potential for improving the picture quality under this new codec and its
new functionalities are described.

Chapter 6 describes the H.261 video codec for teleconferencing applications.
The structure of picture blocks and the concept of the macroblock as the basic unit
of coding are defined. Selection of the best macroblock type for efficient coding is
presented. The chapter examines the efficiency of zigzag scanning of the DCT
coefficients for coding. The efficiency of two-dimensional variable length coding
of zigzag-scanned DCT coefficients is compared with one-dimensional variable
length codes.

Chapter 7 explains MPEG-1 video coding technique for storage applications.
The concept of group of pictures (GOP) for flexible access to compressed video is
explained. Differences between MPEG-1 and H.261, as well as the similarities, are
highlighted. These include the nature of motion compensation and various forms of
coding of picture types used in this codec. Editing, pause, fast forward and fast
reverse picture tricks are discussed.

Chapter 8 is devoted to coding of high-quality moving pictures with the
MPEG-2 standard. The concepts of profile and level with their applications
are defined. The two main concepts of interlacing and scalability, which dis-
criminate this codec from MPEG-1, are given. The best predictions for the non-
scalable codecs from the fields, frames and/or their combinations are discussed. On
the scalability, the three fundamental scalable codecs, spatial, signal-to-noise ratio
and temporal scalable codecs are analysed, and the quality of some coded pictures
with these methods is contrasted. Layered coding is contrasted against scalability
and the additional overhead due to scalability/layering is also compared with the
nonscalable encoder. The chapter ends with transmission of MPEG-2-coded video
for broadcast applications and video over ATM networks, as well as its storage on
the DVD.

Chapter 9 discusses H.263 video coding for very low bit rate applications. The
fundamental differences and similarities between this codec and H.261 and
MPEG-1/2 are highlighted. Special interest is paid to the importance of motion
compensation in this codec. Methods of improving the compression efficiency of
this codec under various optional modes are discussed. Rather than describing all
the annexes (optional modes) one by one, the important optional tools that had the
potential to be extended to other codecs are described. Most of these optional
modes became the core elements of H.264. Where necessary, how and in what form
they have been implemented in H.264 are also indicated. In fact Chapter 9 is
feeding into H.264 in Chapter 11, and it is recommended to be read before moving
into Chapter 11. Since H.263 is an attractive video coding tool for mobile appli-
cations, special interest is paid on the transmission of H.263 coded video over

History of video coding 7

unreliable channels. In this regard, error correction for transmission of video over
mobile networks is discussed. Methods of improving the robustness of the codecs
against channel errors are given, as well as postprocessing and concealment of
erroneous video are explained. The chapter ends with introduction of scalable
coding of H.263 video.

In Chapter 10, a new method of video coding based on the image content is
presented. The profile and level set out for this codec are outlined. The concept of
image plane that enables users to interact with the individual objects and change
their characteristics is introduced. Methods for segmenting video frames into
objects and their extractions are explained. Coding of arbitrary shaped objects with
a particular emphasis on coding of their shapes is studied. The shape-adaptive DCT
as a natural coding scheme for these objects is analysed.

Coding of synthetic objects with model-based coding and still images with
the wavelet transform is introduced. It is shown how video can be coded with the
wavelet transform, and its quality is compared with that of H.263. Performance of
frame-based MPEG-4 is also compared with that of H.263 for some channel error
rates using mobile and fixed network environments. The chapter ends with the
scalability defined for content-based coding.

Chapter 11 deals with the H.264 standard. Most of the optional modes of H.263
in Chapter 9 have been implemented in a more efficient way in H.264. These
include deblocking filter, data partitioning, multiple reference frame, etc. However,
some new features unique to H.264, like intra prediction, hierarchical B-pictures,
switching pictures, as well as some new error resiliency like flexible macroblock
ordering and redundant slices, are explained. H.264 also uses two sets of context-
adaptive Huffman and arithmetic coding, which are explained in great details.
Extension of H.264 towards scalable video coding is also studied. Finally, a unique
feature of this standard in isolating the video coding layer from its transport over
the network, under the name of network abstraction layer (NAL), is studied. Var-
ious packetisation strategies and external signalling for robust video transmission
are discussed too.

The book ends with a chapter on content description, search and video
browsing under the name MPEG-7. Various content search methods exploiting the
visual information such as colour, texture, shape and motion are described. Some
practical examples for video search by textures and shapes are given. The chapter
ends with a brief look at the multimedia framework under MPEG-21 to define
standards for easy and efficient use of contents by the customers.

8 Standard codecs: image compression to advanced video coding

Chapter 2

Video basics

Before discussing the fundamentals of video compression, let us look at how video
signals are generated. Their characteristics will help us to understand how they can
be exploited for bandwidth reduction without actually introducing perceptual dis-
tortions. In this regard, we first look at image formation and colour video. Inter-
laced/progressive video is explained, and its impact on the signal bandwidth and
display units is discussed. Representation of video in digital form and the need for
bit rate reductions are addressed. Finally, the image formats to be coded for various
applications and their quality assessments are analysed.

2.1 Analogue video

2.1.1 Scanning
Video signals are normally generated at the output of a camera by scanning a two-
dimensional moving scene and converting it into a one-dimensional electric signal.
A moving scene is a collection of individual pictures or images, where each scan-
ned picture generates a frame of the picture. Scanning starts at the top left corner of
the picture and ends at the bottom right.

The choice of number of scanned lines per picture is a trade-off between the
bandwidth, flicker and resolution. Increasing the number of scanning lines per
picture increases the spatial resolution. Similarly, increasing the number of pictures
per second will increase the temporal resolution. There is a lower limit to the
number of pictures per second, below which flicker becomes perceptible. Hence,
flicker-free, high-resolution video requires larger bandwidth.

If a frame is formed by the single scanning of a picture, it is called progressive
scanning. Alternatively, two pictures may be scanned at two different times, with
the lines interleaved, such that two consecutive lines of a frame belong to alternate
fields to form a frame. In this case, each scanned picture is called a field, and the
scanning is called interlaced. Figure 2.1 shows progressive and interlaced frames.

The concept behind interlaced scanning is to trade-off vertical–spatial resolution
with that of the temporal. For instance, slow-moving objects can be perceived with
higher vertical resolution, since there are not many changes between the successive
fields. At the same time, the human eye does not perceive flicker since the objects are
displayed at field rates. For fast-moving objects, although vertical resolution is
reduced, the human eye is not sensitive to spatial resolutions at high display rates.

Therefore, the bandwidth of television signals is halved without significant loss of
picture resolution. Usually, in interlaced video, the number of lines per field is half
the number of lines per frame, or the number of fields per second is twice the number
of frames per second. Hence, the number of lines per second remains fixed.

It should be noted that if high spatio-temporal video is required, for example,
in high definition television (HDTV), then the progressive mode should be used.
Although interlaced video is a good trade-off in television, it may not be suitable
for computer displays, owing to the closeness of the screen to the viewer and the
type of material normally displayed, such as text and graphs. If television pictures
were to be used with computers, the result would be an annoying interlines flicker,
line crawling, etc. To avoid these problems, computers use noninterlaced (also called
progressive or sequential) displays with refresh rates higher than 50/60 frames/s,
typically 72 frames/s.

2.1.2 Colour components
During the scanning, a camera generates three primary colour signals called red,
green and blue, the so-called RGB signals. These signals may be further processed
for transmission and storage. For compatibility with the black and white video and
because the three colour signals are highly correlated, a new set of signals at dif-
ferent colour space are generated. These are called colour systems, and the three
standards are National Television System Committee (NTSC), phase alternate line
(PAL) and sequential couleur avec memoire (SECAM) [1]. We will concentrate on
the PAL system as an example, although the basic principles involved in the other
systems are very similar.

The colour space in PAL is represented by YUV, where Y represents the
luminance and U and V represent the two colour components. The basis YUV colour
space can be generated from gamma-corrected RGB (referred to in equations as
R0G0B0) components as follows:

Y ¼ 0:299R0 þ 0:587G0 þ 0:114B0

U ¼ �0:147R0 � 0:289G0 þ 0:436B0 ¼ 0:492ðB0 � Y Þ
V ¼ 0:615R0 � 0:515G0 � 0:100B0 ¼ 0:877ðR0 � Y Þ

ð2:1Þ

progressive frame interlaced frame

field 1 field 2

Figure 2.1 Progressive and interlaced frames

10 Standard codecs: image compression to advanced video coding

In the PAL system, the luminance bandwidth is normally 5 MHz, though in PAL
system-I, used in the United Kingdom, it is 5.5 MHz. The bandwidth of each colour
component is only 1.5 MHz, because the human eye is less sensitive to colour
resolution. For this reason, in most image processing applications, such as motion
estimation, decisions on the type of blocks to be coded or not coded (see Chapter 6)
are made on the luminance component only. The decision is then extended to the
corresponding colour components. Note that for higher-quality video, such as
HDTV, the luminance and chrominance components may have the same band-
width, but nevertheless all the decisions are made on the luminance components. In
some applications, the chrominance bandwidth may be reduced much further than
the ratio of 1.5 MHz/5 MHz.

2.2 Digital video

The process of digitising analogue video involves the three basic operations of
filtering, sampling and quantisation. The filtering operation is employed to avoid
the aliasing artefacts of the follow-up sampling process. The filtering applied to the
luminance can be different from those of chrominance, owing to different band-
width requirements.

Filtered luminance and chrominance signals are sampled to generate a discrete
time signal. The minimum rate at which each component can be sampled is its
Nyquist rate and corresponds to twice the signal bandwidth. For a PAL system, this
is in the range of 10–11 MHz. However, due to the requirement to make the
sampling frequency a harmonic of the analogue signal line frequency, the sampling
rate for broadcast quality signals has been recommended by CCIR (International
Radio Consultative Committee; now called International Telecommunication
Union, ITU) to be 13.5 MHz, under CCIR-601 recommendation [2]. This is close to
three times the PAL subcarrier frequency. The chrominance sampling frequency
has also been defined to be half the luminance sampling frequency. Finally,
sampled signals are quantised to 8-bit resolution, suitable for video broadcasting
applications.

It should be noted that colour space recommended by CCIR-601 is very close
to the PAL system. The precise luminance and chrominance equations under this
recommendation are as follows:

Y ¼ 0:257R0 þ 0:504G0 þ 0:098B0 þ 16

Cb ¼ �0:148R0 � 0:291G0 þ 0:439B0 þ 128

Cr ¼ 0:439R0 � 0:368G0 � 0:071B0 þ 128

ð2:2Þ

The slight departure from the PAL parameters is due to the requirement that
in the digital range, Y should take values in the range of 16–235 quantum levels.
Also, the normally AC chrominance components of U and V are centred on the

Video basics 11

grey level 128, and the range is defined from 16 to 240. The reasons for these
modifications are

● to reduce the granular noise of all three signals in later stages of processing and
● to make chrominance values positive to ease processing operations (e.g.

storage).

Note that despite a unique definition for Y, Cb and Cr, the CCIR-601 standard for
European broadcasting is different from that for North America and the Far East. In
the former, the number of lines per frame is 625 and the number of frames per
second is 25. In the latter, these values are 525 and 30, respectively. The number of
samples per active line, called picture elements (pixels), is 720 for both systems. In
the 625-line system, the total number of pixels per line, including the horizontal
blanking, is 13.5 MHz times 64 ms, equal to 864 pixels. Note also that despite the
differences in the number of lines and frames rates, the number of pixels generated
per second under both CCIR-601/625 and CCIR-601/525 is the same. This is
because in digital television we are interested in the active parts of the picture, and
the number of active television lines per frame in CCIR-601/625 is 576 and the
total number of pixels per second becomes equal to 720 � 576 � 25 ¼ 10 368 000.
In CCIR-601/525, the number of active lines is 480, and the total number of pixels
per second is 720 � 480 � 30 ¼ 10 368 000.

The total bit rate is then calculated by considering that there are half the lumi-
nance pixels for each of the chrominance pixels, and with 8 bit/pixel, the total bit rate
becomes 10 368 000 � 2 � 8 ¼ 165 888 000 bit/s. Had we included all the horizontal
and vertical blanking, then the total bandwidth would be 13.5 � 106 � 2 � 8 ¼ 216
Mbit/s. Either of these values is much greater than the equivalent analogue band-
width; hence, the video compression to reduce the digital bit rate is very demanding.
In the following chapters, we will show how such a huge bit rate can be compressed
down to less than 10 Mbit/s, without noticeable effect on picture quality.

2.3 Image format

CCIR-601 is based on an image format for studio quality. For broadcast applica-
tions, this is mostly known as standard television (SDTV). For other applications,
images with various degrees of resolutions and dimensions might be preferred. For
example, in video conferencing or video telephony, small image sizes with lower
resolutions require much less bandwidth than the studio or broadcast video, and at
the same time the resultant image quality is quite acceptable for the application. On
the other hand, for HDTV, larger image sizes with improved luminance and chro-
minance resolutions are preferred.

2.3.1 SIF images
In most cases, the video sources to be coded by standard video codecs are produced
by CCIR-601 digitised video signals direct from the camera. It is then logical
to relate picture resolutions and dimensions of various applications to those of

12 Standard codecs: image compression to advanced video coding

CCIR-601. The first sets of images related to CCIR-601 are the lower resolution
images for storage applications.

A lower resolution to CCIR-601 would be an image sequence with half the
CCIR-601 resolutions in each direction. That is, in each CCIR-601 standard, active
parts of the image in the horizontal, vertical and temporal dimensions are halved.
For this reason, it is called source input format (SIF) [3]. The resultant picture is
noninterlaced (progressive). The positions of the chrominance samples share the
same block boundaries with those of the luminance samples, as shown in Figure 2.2.
For every four luminance samples, Y, there will be one pair of chrominance com-
ponents, Cb and Cr.

luminance

chrominance

Figure 2.2 Positioning of luminance and chrominance samples (dashed lines
indicate macroblock boundaries)

Thus, for the European standard, the SIF picture resolution becomes 360 pixels/
line, 288 lines/picture and 25 pictures/s. For North America and the Far East, these
values are 360, 240 and 30, respectively.

One way of converting the source video rate (temporal resolution) is to use
only odd or even fields. Another method is to take the average values of the two
fields. Discarding one field normally introduces aliasing artefacts, but simple
averaging blurs the picture. For better SIF picture quality more sophisticated
methods of rate conversion are required, which inevitably demand more processing
power. The horizontal and vertical resolutions are halved after filtering and sub-
sampling of the video source.

Considering that in CCIR-601 the chrominance bandwidth is half of the lumi-
nance, then the number of each chrominance pixel per line is half of the luminance
pixels, but their frame rates and the number of lines per frame are equal. This is
normally referred to as 4:2:2 image format. Figure 2.3 shows the luminance and
chrominance components for the 4:2:2 image format. As the figure shows, in the
scanning direction (horizontal), there is a pair of chrominance samples for every

Video basics 13

alternate luminance sample, but the chrominance components are present in every
line. For SIF pictures, there is a pair of chrominance samples for every four lumi-
nance pixels as shown in the figure.

Thus, in SIF, the horizontal and vertical resolutions of luminance will be half
of the source resolutions, but for the chrominance, while horizontal resolution is
halved, the vertical resolution has to be one quarter. This is called 4:2:0 format.

The low-pass filters used for filtering the source video are different for lumi-
nance and chrominance coefficients. The luminance filter coefficient is a seven-tap
filter with the following characteristics:

½�29 0 88 138 88 0 �29�==256 ð2:3Þ

Use of a power of two for the devisor allows a simple hardware implementation.
For the chrominance, the filter characteristic is a four-tap filter of the type

½1 3 3 1�==8 ð2:4Þ

Hence, the chrominance samples have to be placed at a horizontal position in the
middle of the luminance samples, with a phase shift of half a sample. These filters
are not part of the international standard, and other filters may be used. Figure 2.4
illustrates the subsampling and low-pass filtering of the CCIR-601 format video
into SIF format.

Note that the number of luminance pixels per line of CCIR-601 is 720. Hence,
the horizontal resolutions of SIF luminance and chrominance should be 360 and
180, respectively. Since in the standard codecs the coding unit is based on mac-
roblocks of 16 � 16 pixels, 360 is not divisible by 16. Therefore, from each of the
leftmost and rightmost sides of SIF, four pixels are removed.

The preprocessing into SIF format is not normative. Other preprocessing steps
and other resolutions may be used. The picture size need not even be a multiple of
16. In this case, a video coder adds padding pixels to the right or bottom edges of
the picture. For example, a horizontal resolution of 360 pixels could be coded by
adding eight pixels to the right edge of each horizontal row, bringing the total to 368.

4 : 2 : 2 4 : 2 : 0

Cr blockCb blockY block

Figure 2.3 Sampling pattern for 4:2:2 (CCIR-601) and 4:2:0 SIF

14 Standard codecs: image compression to advanced video coding

Now 23 macroblocks would be coded in each row. The decoder would discard
the extra padding pixels after decoding, giving the final decoded resolution of
360 pixels.

The sampling format of 4:2:0 should not be confused with that of the 4:1:1
format used in some digital VCRs. In this format, chrominance has the same ver-
tical resolution as luminance, but horizontal resolution is one quarter. This can be
represented with a sampling pattern shown in Figure 2.5. Note that 4:1:1 has the
same number of pixels as 4:2:0!

4 : 1 : 1

Cr block Cb blockY block

Figure 2.5 Sampling pattern of 4:1:1 image format

2.3.2 Conversion from SIF to CCIR-601 format
An SIF is converted to its corresponding CCIR-601 format by spatial upsampling as
shown in Figure 2.6. A linear-phase finite impulse response (FIR) is applied after

720

CCIR-601 Y
480/576

select
1 field

720

odd field SIF

360
240/
288

conversion of luminance (Y)

conversion of chrominance

360

select
1 field

360
240/288

horizontal
filter and
subsample

240/288

vertical
filter and
subsample

180
120/
144

CCIR-
601
Cb, Cr

odd
field

180

SIF

240/288

horizontal
filter and
subsample

480/576

Figure 2.4 Conversion of CCIR-601 to SIF

Video basics 15

the insertion of zeros between samples [3]. A filter that can be used for upsampling
the luminance is a seven-tap FIR filter with the impulse response of

½�12 0 140 256 140 0 �12�==256 ð2:5Þ

At the end of the lines, some special techniques such as replicating the last pixel
must be used. Note that the DC response of this filter has a gain of 2. This is due to
the inserted alternate zeros in the upsampled samples, such that the upsampled
values retain their maximum nominal value of 255.

According to CCIR recommendation 601, the chrominance samples need to be
co-sited with the luminance samples 1, 3, 5 . . . To achieve the proper location, the
upsampling filter should have an even number of taps, as given by

½1 3 3 1�==4 ð2:6Þ
Note again, the filter has a gain of 2.

The SIF may be reconstructed by inserting four black pixels to each end of the
horizontal luminance line in the decoded bitmap, and two grey pixels (value of 128)
to each of the horizontal chrominance lines. The luminance SIF may then be
upsampled horizontally and vertically. The chrominance SIF should be upsampled
once horizontally and twice vertically, as shown in Figure 2.6b.

720

CCIR-601 Y

720
240/288

horizontal
upsampling
filter

SIF

360
240/
288

480/
576

(a)

(b)

360

240/288
360

240/288120/144180
120/
144

CCIR-
601
Cb, Cr

180
480/
576

240/288
vertical
upsampling
filter

SIF
horizontal
upsampling
filter

vertical
upsampling
filter

vertical
upsampling
filter

Figure 2.6 Upsampling and filtering of (a) luminance and (b) chrominance
signals from SIF to CCIR-601 format

2.3.3 CIF image format
For a worldwide videoconferencing, a video codec has to cope with the CCIR-601
of both European (625 line, 50 Hz) and North America and Far East (525 line,
60 Hz) video formats. Hence, CCIR-601 video sources from these two different
formats had to be converted to a common format. The picture resolutions also
needed to be reduced to be able to code them at lower bit rates.

16 Standard codecs: image compression to advanced video coding

Considering that in CCIR-601 the number of pixels per line in both 625/50
and 525/60 standards is 720 pixels/line, half of this value, 360 pixels/line, was
chosen as the horizontal resolution. For the vertical and temporal resolutions, a
value intermediate between the two standards was chosen such that the combined
vertical � temporal resolutions were one quarter of that of CCIR-601. The 625/50
system has the greater vertical resolution. Since the active picture area is 576 lines,
half of this value is 288 lines. On the other hand, the 525/60 system has the greater
temporal resolution, so that the half rate is 30 Hz. The combination of 288 lines
and 30 Hz gives the required vertical � temporal resolution. This is illustrated in
Figure 2.7.

625/50

525/60

temporal resolution (picture/s)
30 6050

ve
rt

ic
al

 r
es

ol
ut

io
n

(l
in

es
/p

ic
tu

re
)

576

480

288

Figure 2.7 Spatio-temporal relation in CIF format

Such an intermediate selection of vertical resolution from one standard and
temporal from the other leads to the adopted name common intermediate format
(CIF). Therefore, a CIF picture has a luminance with 360 pixels/lines, 288 lines/
picture and 30 (precisely 29.97) pictures/s [4]. The colour components are at half
the spatial resolution of luminance, with 180 pixels/line and 144 lines/picture.
Temporal resolutions of colour components are the same as for the luminance at
29.97 Hz.

In CIF format, like SIF, pictures are progressive (noninterlaced), and the
positions of the chrominance samples share the same block boundaries with that of
the luminance samples, as shown in Figure 2.2. Also like SIF, the image format is
also 4:2:0 and similar down-conversion and up-conversion filters to those shown in
Figures 2.4 and 2.6 can also be applied to CIF images. Note the difference between
SIF-625 and CIF and SIF-525 and CIF. In the former, the only difference is in the
number of pictures per second, while in the latter they differ in the number of lines
per picture.

Video basics 17

2.3.4 Sub-QCIF, QSIF, QCIF
For certain applications such as video over mobile networks or video telephony it is
possible to reduce the frame rate. Known reduced frame rates for CIF and SIF-525
are 15, 10 and 7.5 frames/s. These rates for SIF-625 are 12.5 and 8.3 frames/s. To
balance the spatio-temporal resolutions, the spatial resolutions of the images are
normally reduced, nominally by halving in each direction. These are called quarter-
SIF (QSIF) and quarter-CIF (QCIF) for SIF and CIF formats, respectively. Con-
version of SIF or CIF to QSIF and QCIF (or vice versa) can be carried out with a
similar method of converting CCIR-601 to SIF and CIF, respectively, using the
same filter banks shown in Figures 2.4 and 2.6. Lower frame rate QSIF and QCIF
images are normally used for very low bit rate video.

Certain applications, such as video over mobile networks, even demand
smaller image sizes. Sub-QCIF is the smallest standard image size, with the hor-
izontal and vertical picture resolutions of 128 pixels by 96 pixels, respectively. The
frame rate can be very low (e.g. 5 frames/s) to suit the channel rate. The image
format in this case is 4:2:0, and hence the chrominance resolution is half the
luminance resolution in each direction.

2.3.5 HDTV
Currently HDTV has a nominal resolution of twice the 525 line CCIR-601 format.
Hence, the filter banks of Figures 2.4 and 2.6 can also be used for the image size
conversion. Also, since in HDTV higher chrominance bandwidth is desired, 4:2:2
format is a favourite format but still 4:2:0 format is used at the distribution
(broadcast and transmission). However, for higher-quality video the chrominance
bandwidth can even be made equal to the luminance. Hence, there will be a pair of
chrominance pixels for every luminance pixel, and the image format is called 4:4:4.
In some cases, HDTV is progressive to improve vertical resolution.

It is common practice to define image format in terms of relations between
8 � 8 pixel blocks and a macroblock of 16 � 16 pixels. The concept of macroblock
and block is explained in Chapter 6. Figure 2.8 shows how blocks of luminance and
chrominance in various 4:2:0, 4:2:2 and 4:4:4 image formats are defined.

1

2
4

3
5

0

Cr YY Cb

1

2 3 7

54

6

0

CrCb

1

2

4

3 7

5

6

8 9

10 11

0

Y CrCb

(a)

(c)

(b)4:2:0 macroblock structure

4:4:4 macroblock structure

4:2:2 macroblock structure

Figure 2.8 Macroblock structures in 4:2:0, 4:2:2 and 4:4:4 image formats

18 Standard codecs: image compression to advanced video coding

For a more detail representation of image formats, especially discriminating
4:2:0 from 4:1:1, one can relate the horizontal and vertical resolutions of the chro-
minance components to those of luminance as shown in Table 2.1. Note that the
luminance resolution is the same as the number of pixels in each scanning direction.

2.3.6 Conversion from film
Sometimes sources available for compression consist of film material, which has a
nominal frame rate of 24 pictures/s. This rate can be converted to 30 pictures/s by
the pull-down technique [3]. In this mode, digitised pictures are displayed alter-
nately for 3 and 2 television field times, generating 60 fields/s. This alteration may
not be exact, since the actual frame rate in the 525/60 system is 29.97 frames/s.
Editing and splicing of compressed video after the conversion might also have
changed the pull-down timing. A sophisticated encoder might detect the duplicated
fields, average them to reduce digitisation noise and code the result at the original
24 pictures/s rate. This should give a significant improvement in quality over
coding at 30 pictures/s. This is because, first of all, when coding at 24 pictures/s,
the bit rate budget per frame is larger than that for 30 pictures/s. Second, direct
coding of 30 pictures/s destroys the 3:2 pull-down timing and gives a jerky
appearance to the final decoded video.

2.3.7 Temporal resampling
Since the picture rates are limited to those commonly used in the television
industry, the same techniques may be applied. For example, conversion from
24 pictures/s to 60 fields can be achieved by the technique of 3:2 pull-down. Video
coded at 25 pictures/s can be converted to 50 fields/s by displaying the original
decoded lines in the odd CCIR-601 fields, and the interpolated lines in the even
fields. Video coded at 29.97 or 30 pictures/s may be converted to a field rate twice
as large as using the same method.

2.4 Picture quality assessment

Conversion of digital pictures from one format to another, as well as their com-
pression for bit rate reduction, introduces some distortions. It is of great importance

Table 2.1 Percentage of each chrominance component
resolution with respect to luminance in the
horizontal and vertical directions

Image format Horizontal (%) Vertical (%)

4:4:4 100 100
4:2:2 50 100
4:2:0 50 50
4:1:1 25 100

Video basics 19

to know whether the introduced distortion is acceptable to the viewers. Tradition-
ally, this has been done by subjective assessments, where the degraded pictures are
shown to a group of subjects, and their views on the perceived quality or distortions
are sought.

Over the years, many subjective assessment methodologies have been devel-
oped and validated. Among them are the double-stimulus impairment scale (DSIS),
where the subjects are asked to rate the impairment of the processed picture with
respect to the reference unimpaired picture, and the double-stimulus continuous
quality scale (DSCQS), where the order of the presentation of the reference and
processed pictures is unknown to the subjects. The subjects will then give a score
between 1 and 100 containing adjectival guidelines placed at 20-point intervals
(1–20 ¼ bad, 21–40 ¼ poor, 41–60 ¼ fair, 61–80 ¼ good and 81–100 ¼ excellent)
for each picture, and their difference is an indication of the quality [5]. Pictures are
presented to the viewers for about 10 s, and the average of the viewers’ scores,
defined as the mean opinion score (MOS), is a measure of video quality. At least
20–25 nonexpert viewers are required to give a reliable MOS, excluding the
outliers.

These methods are usually used in assessment of still images. For video eva-
luation, single-stimulus continuous quality evaluation (SSCQE) is preferred, where
the time-varying picture quality of the processed video without reference is eval-
uated by the subjects [5]. In this method, subjects are asked to continuously eval-
uate the video quality of a set of video scenes. The judgement criteria are the five
scales used in the DSCQS above. Since video sequences are long, they are seg-
mented into 10 s shots, and for each video segment an MOS is calculated.

Although these methods give reliable indications of the perceived image
quality, they are unfortunately time consuming and expensive. An alternative is the
objective measurements, or video quality metrics, which employ some mathema-
tical models to mimic the human visual systems behaviour.

In 1997, the Video Quality Experts Group (VQEG) formed from experts of
ITU-T study group 6 and ITU-T study group 9 undertook this task [6]. They are
considering three methods for the development of the video quality metric. In
the first method, called the full reference (FR-TV) model, both the processed and
the reference video segments are fed to the model and the outcome is a quantitative
indicator of the video quality. In the second method, called reduced reference
(RR-TV) model, some features extracted from the spatio-temporal regions of
the reference picture (e.g. mean and variance of pixels, colour histograms) are
made available to the model. The processed video is then required to generate a
similar statistics in those regions. In the third model, called no reference (NR-TV),
or single ended, the processed video without any information from the reference
picture excites the model. All these models should be validated with the SSCQE
methods for various video segments. Early results indicate that these methods
compared with the SSCQE perform satisfactorily, with a correlation coefficient
between 0.8 and 0.9 [7].

Until any of these quality metrics become standards, it is customary to use the
simplest form of objective measurement, which is the ratio of the peak-to-peak

20 Standard codecs: image compression to advanced video coding

signal to the root mean squared processing noise. This is referred to as peak-to-peak
signal-to-noise ratio (PSNR) and defined as

PSNR ¼ 10log10
2552

1
N

X
i

X
j

ðY ref ði; jÞ � Y prcði; jÞÞ2

2
64

3
75 ð2:7Þ

where Yref (i, j) and Yprc(i, j) are the pixel values of the reference and processed
images, respectively, and N is the total number of pixels in the image. In this
equation, the peak signal with an 8-bit resolution is 255, and the noise is the square
of the pixel-to-pixel difference (error) between the reference image and the image
under study. Although it has been claimed that in some cases PSNR’s accuracy is
doubtful, its relative simplicity makes it a very popular choice.

Perhaps the main criticism against the PSNR is that the human interpretation of
the distortions at different parts of the video can be different. Although it is hoped
that the variety of interpretations can be included in the objective models, there are
still some issues that not only the simple PSNR but also more sophisticated
objective models may fail to address. For example, if a small part of a picture in a
video is severely degraded, this hardly affects the PSNR or any objective model
parameters (depending on the area of distortion), but this distortion attracts the
observers attention, and the video looks as bad as if a larger part of the picture was
distorted. This type of distortion is very common in video, where due to a single bit
error, blocks of 16 � 16 pixels might be erroneously decoded. This has almost no
significant effect on PSNR but can be viewed as an annoying artefact. In this case,
there will be a large discrepancy between the objective and subjective test results.

On the other hand, one may argue that under similar conditions if one system
has a better PSNR than the other, then the subjective quality can be better but not
worse. This is the main reason that PSNR is still used in comparing the perfor-
mance of various video codecs. However, in comparing codecs, PSNR or any
objective measure should be used with great care to ensure that the types of coding
distortions are not significantly different from each other. For instance, objective
results from the blockiness distortion produced by the block-based video codecs
can be different from the picture smearing distortion introduced by the filter-based
codecs. The fact is that even the subjects may interpret these distortions differently.
It appears that expert viewers prefer blockiness distortion to the smearing, and
nonexperts’ views are opposite!

In addition to the above-mentioned problems of subjective and objective
measurements of video quality, the impact of people’s expectation from video
quality cannot be ignored. As technology progresses and viewers’ become more
familiar with digital video, their level of expectation from video quality can grow.
Hence, a quality that today might be regarded ‘good’ may be rated as ‘fair’ or
‘poor’ tomorrow. For instance, watching a head-and-shoulders video coded at
64 kbit/s by the early prototypes of the video codecs in the mid-1980s was very
fascinating. This was despite the fact that pictures were coded at 1 or 2 frames/s,

Video basics 21

and waiving the hands in front of the camera would freeze the picture for a few
seconds, or cause a complete picture break-up. But today, even 64-kbit/s coded
video at 4–5 frames/s, without picture freeze, does not look attractive. As another
example, most people might be quite satisfied with the quality of the broadcast TV
at home, both analogue and digital, but if they watch football spectators on a
broadcast TV side by side to an HDTV video, they then realise how much infor-
mation they are missing. These are all indications that people’s expectation from
video quality in the future will be higher. Thus, video codecs either have to be more
sophisticated or be assigned with more channel bandwidth. Fortunately, with the
advances in digital technology and growth in networks bandwidth, both are fea-
sible, and in the future we will witness better-quality video services.

2.5 Problems

1. In a PAL system, determine the values of the three colour primaries R, G and B
for the following colours: red, green, blue, yellow, cyan, magenta and white.

2. Calculate the luminance and chrominance values of the colours in problem 1, if
they are digitised into 8 bits, according to CCIR-601 specification.

3. Calculate the horizontal scanning line frequency for CCIR-601/625 and CCIR-
601/525 line systems and hence their periods.

4. CCIR-601/625 video is normally digitised at 13.5 MHz sampling rate. Find the
number of pixels per scanning line. If there are 720 pixels in the active part of
the horizontal scanning, find the duration of horizontal scanning fly-back
(i.e. horizontal blanking interval).

5. Repeat problem 4 for CCIR-601/525.

6. Find the bit rate per second of the following video formats (only active pixels
are considered):
a. CCIR-601/625; 4:2:2
b. CCIR-601/525; 4:2:2
c. SIF/625; 4:2:0
d. SIF/525; 4:2:0
e. CIF
f. SIF/625; 4:1:1
g. SIF/525; 4:1:1
h. QCIF (15 Hz)
i. Sub-QCIF (10 Hz)

7. The luminance values of a set of pixels in a CCIR-601 video are as follows:
128; 128; 128; 120; 60; 50; 180; 154; 198; 205; 105; 61; 93; 208; 250; 190;
128; 128; 128.

They are filtered and downsampled by 2:1 into SIF format. Find the lumi-
nance values of seven SIF samples, starting from the fourth pixel of CCIR-601.

22 Standard codecs: image compression to advanced video coding

8. The luminance values of the SIF pixels in problem 7 are upsampled and fil-
tered into CCIR-601 format. Find the reconstructed CCIR-601 format pixel
values. Calculate the PSNR of the reconstructed samples.

9. A pure sinusoid is linearly quantised into n bits.
a. Show that the signal-to-quantisation noise ratio (SNR) in dB is given by

SNR ¼ 6n þ 1.78.
b. Find such an expression for PSNR.
c. Calculate the minimum bit per pixel required for quantising video, such

that PSNR is better than 58 dB.

(Hint: the mean-squared quantisation error of a uniformly quantised waveform with
step size D is D2/12)

References

1. NETRAVALI, A.N. and HASKELL, B.G.: Digital Pictures, Representation
and Compression and Standards, 2nd edn, Plenum Press, New York, 1995

2. CCIR Recommendation 601: ‘Digital methods of transmitting television
information’, Recommendation 601, encoding parameters of digital television
for studios

3. MPEG-1: ‘Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s’, ISO/IEC 11172-2: video, November 1991

4. OKUBO, S.: Video codec standardisation in CCITT study group XV. Signal
Process. Image Commun., 1989, 1, pp. 45–54

5. Recommendation ITU-R BT.500 (revised): ‘Methodology for the subjective
assessment of the quality of television pictures’

6. VQEG: The video quality Experts Group, RRNR-TV Group Test Plan, draft
version 1.4, 2000

7. TAN, K.T., GHANBARI, M. and PEARSON D.E.: ‘An objective measure-
ment tool for MPEG video quality’. Signal Process., 1998, 7, pp. 279–294

Video basics 23

Chapter 3

Principles of video compression

The statistical analysis of video signals indicates that there is a strong correlation
both between successive picture frames and within the picture elements them-
selves. Theoretically, decorrelation of these signals can lead to bandwidth compre-
ssion without significantly affecting image resolution. Moreover, the insensitivity of
the human visual system to loss of certain spatio-temporal visual information can be
exploited for further reduction. Hence, subjectively lossy compression techniques
can be used to reduce video bit rates while maintaining an acceptable image quality.

For coding still images, only the spatial correlation is exploited. Such a coding
technique is called intraframe coding and is the basis for Joint Photographic
Experts Group (JPEG) coding. If temporal correlation is exploited as well, then it is
called interframe coding. Interframe predictive coding is the main coding principle
that is used in all standard video codecs, such as H.261, H.263, H.264 and Motion
Picture Experts Group (MPEG)-1, -2 and -4. It is based on the following three
fundamental redundancy reduction principles:

1. Spatial redundancy reduction: to reduce spatial redundancy among the pixels
within a picture (similarity of pixels, within the frames) by employing some
data compressors, such as transform coding.

2. Temporal redundancy reduction: to remove similarities between the successive
pictures by coding their differences.

3. Entropy coding: to reduce the redundancy between the compressed data sym-
bols, using variable length coding (VLC) techniques.

A detailed description of these redundancy reduction techniques is given in the
following sections.

3.1 Spatial redundancy reduction

3.1.1 Predictive coding
In the early days of image compression, both signal processing tools and storage
devices were scarce resources. At the time, a simple method for redundancy reduc-
tion was to predict the value of pixels based on the values previously coded, and code
the prediction error. This method is called differential pulse code modulation
(DPCM). Figure 3.1 shows a block diagram of a DPCM codec, where the differences
between the incoming pixels from the predictions in the predictor are quantised and

coded for transmission. At the decoder, the received error signal is added to the
prediction to reconstruct the signal. If the quantiser is not used, it is called lossless
coding, and the compression relies on the entropy coder, which is explained later.

Best predictions are those from the neighbouring pixels, either from the same
frame or pixels from the previous frame, or their combinations. The former is called
intraframe predictive coding and the latter interframe predictive coding. Their
combination is called hybrid predictive coding.

It should be noted that no matter what prediction is used, every pixel is pre-
dictively coded. The minimum number of bits that can be assigned to each pre-
diction error is 1 bit. Hence, this type of coding is not suitable for low bit rate video
coding. Lower bit rates can be achieved if a group of pixels is coded together, such
that the average bit per pixel can be less than 1 bit. Block transform coding is most
suitable for this purpose. Despite this, DPCM is still used in video compression. For
example, interframe DPCM has lower coding latency than interframe block coding.
Also, DPCM might be used in coding of motion vectors or block addresses. If
motion vectors in a moving object move in the same direction, coding of their
differences will reduce the motion vector information. Of course, the coding would
be lossless.

3.1.2 Transform coding
Transform domain coding is mainly used to remove the spatial redundancies
in images by mapping the pixels into a transform domain prior to data reduction.

quantiser entropy
coder

predictor

+

+
–

binary codes
to channel

+

entropy
decoder

predictor

+

+

decoded
output

binary codes
from channel

DECODER

incoming
PCM

ENCODER

Figure 3.1 Block diagram of a DPCM codec

26 Standard codecs: image compression to advanced video coding

The strength of transform coding in achieving data compression is that the image
energy of most natural scenes is mainly concentrated in the low-frequency region,
and hence into a few transform coefficients. These coefficients can then be quan-
tised with the aim of discarding insignificant coefficients, without significantly
affecting the reconstructed image quality. This quantisation process is, however,
lossy in that the original values cannot be retained.

To see how transform coding can lead to data compression, consider joint
occurrences of 2 pixels as shown in Figure 3.2.

y2

x2

x1

y1

Figure 3.2 Joint occurrences of a pair of pixels

Although each pixel x1 or x2 may take any value uniformly between 0 (black)
and its maximum value 255 (white), since there is a high correlation (similarity)
between them, then it is most likely that their joint occurrences lie mainly on a
45-degree line, as shown in the figure. Now if we rotate the x1x2 coordinates by
45 degrees, to a new position y1y2, then the joint occurrences on the new coordi-
nates have a uniform distribution along the y1 axis, but are highly peaked around
zero on the y2 axis. Certainly, the bits required to represent the new parameter y1

can be as large as any of x1 or x2, but those for the other parameter y2 are much less.
Hence, on average, y1 and y2 can be represented at a lower bit rate than x1 and x2.

Rotation of x1x2 coordinates by 45 degrees is a transformation of vector [x1, x2]
by a transformation matrix T, shown as follows:

T ¼ cos45 sin45
sin45 �cos45

� �
¼ 1ffiffiffi

2
p 1 1

1 �1

� �
ð3:1Þ

Principles of video compression 27

Thus, in this example, the transform coefficients [y1, y2] become

½y1, y2� ¼
1ffiffiffi
2

p 1 1

1 �1

� �
x1

x2

� �
or

y1 ¼ 1ffiffiffi
2

p ðx1 þ x2Þ and y2 ¼ 1ffiffiffi
2

p ðx1 � x2Þ
ð3:2Þ

where y1 is called the average or DC value of x1 and x2, and y2 represents their
residual differences. The normalisation factor of 1=

ffiffiffi
2

p
makes sure that the signal

energy due to transformation is not changed (Parseval theorem). This means that
the signal energy in the pixel domain, x2

1 þ x2
2, is equal to the signal energy in the

transform domain, y2
1 þ y2

2. Hence, the transformation matrix is orthonormal.
Now if instead of 2 pixels, we take N correlated pixels, and then transform the

coordinates such that y1 lies on the main diagonal of the sphere, then only y1

coefficient becomes significant, and the remaining N � 1 coefficients, y2, y3, . . . ,
yN, only carry the residual information. Thus, compared to 2-pixel case, larger
dimensions of transformation can lead to higher compression. Exactly how large
the dimensions should be depends on how far pixels can still be correlated to each
other. Also, the elements of the transformation matrix, called the basis vectors,
have an important role in the compression efficiency. They should be such that only
one of the transform coefficients, or at most a few of them, becomes significant,
and the remaining ones are small.

An ideal choice for the transformation matrix is the one that completely dec-
orrelates the transform coefficients. Thus, if Rxx is the covariance matrix of the
input source (pixels), x, then the elements of the transformation matrix T are cal-
culated such that the covariance of the coefficients Ryy ¼ TRxxT

T is a diagonal
matrix (zero off-diagonal elements). A transform that is derived on this basis is the
well-known Karhunen–Loève transform (KLT) [1]. However, although this trans-
form is optimum, and hence it can give the maximum compression efficiency, it is
not suitable for image compression. This is because, as the image statistics change,
the elements of the transform need to be recalculated. Thus, in addition to extra
computational complexity, these elements need to be transmitted to the decoder.
The extra overhead involved in the transmission significantly restricts the overall
compression efficiency. Despite this, KLT is still useful and can be used as a
benchmark for evaluating the compression efficiency of other transforms.

A better choice for the transformation matrix is that of the discrete cosine
transform (DCT). The reason for this is that it has well-defined (fixed) and
smoothly varying basis vectors that resemble the intensity variations of most nat-
ural images, such that image energy is matched to a few coefficients. For this
reason, its rate distortion performance closely follows that of the KLT, and results
in almost identical compression gain [1]. Equally important is the availability of
efficient fast DCT transformation algorithms that can be used, especially in software-
based image coding applications [2].

28 Standard codecs: image compression to advanced video coding

Since in natural image sequences, pixels are correlated in the horizontal and
vertical directions as well as in the temporal direction of the image sequence, a
natural choice for DCT is a three-dimensional one. However, any transformation in
the temporal domain requires storage of several picture frames, introducing a long
delay, which restricts application of transform coding in telecommunications.
Hence, transformation is confined to two dimensions.

A two-dimensional DCT is a separable process that is implemented using two
one-dimensional DCTs: one in the horizontal direction followed by one in the
vertical. For a block of MN pixels, the forward one-dimensional transform of
N pixels is given by

FðuÞ ¼
ffiffiffiffi
2
N

r
CðuÞ

XN�1

x¼0

f ðxÞcos
pð2x þ 1Þu

2N

� �
, u ¼ 0, 1, . . . , N � 1 ð3:3Þ

where

CðuÞ ¼
ffiffiffi
1
2

r
, for u ¼ 0

CðuÞ ¼ 1, otherwise

f(x) represents the intensity of the xth pixel, and F(u) represents the N one-
dimensional transform coefficients. The inverse one-dimensional transform is thus
defined as

f ðxÞ ¼
ffiffiffiffi
2
N

r XN�1

u¼0

CðuÞFðuÞcos
pð2x þ 1Þu

2N

� �
, x ¼ 0, 1, . . . , N � 1 ð3:4Þ

Note that the
ffiffiffiffiffiffiffiffiffi
1=N

p
normalisation factor is used to make transformation ortho-

normal. That is, the energy in both pixel and transform domains is to be equal. In
the standard codecs, the normalisation factor for the two-dimensional DCT is
defined as 1/2. This gives the DCT coefficients in the range of �2047 to þ2047.
The normalisation factor in the pixel domain is then adjusted accordingly (e.g. it
becomes 2/N).

To derive the final two-dimensional transform coefficients, N sets of one-
dimensional transforms of length M are taken over the one-dimensional transform
coefficients of similar frequency in the vertical direction:

Fðu,vÞ ¼
ffiffiffiffiffi
2
M

r
CðvÞ

XM�1

y¼0

Fðu,yÞcos
pð2yþ1Þv

2M

� �
, v¼ 0,1, . . . ,M � 1 ð3:5Þ

where C(v) is defined similarly to C(u).
Thus, a block of MN pixels is transformed into MN coefficients. The F(0, 0)

coefficient represents the DC value of the block. Coefficient F(0, 1), which is the
DC value of all the first one-dimensional AC coefficients, represents the first

Principles of video compression 29

AC coefficient in the horizontal direction of the block. Similarly, F(1, 0), which
is the first AC coefficient of all one-dimensional DC values, represents the first
AC coefficient in the vertical direction, and so on.

In practice, M ¼ N ¼ 8, such that a two-dimensional transform of 8 � 8 ¼ 64
pixels results in 64 transform coefficients. The choice of such a block size is a
compromise between the compression efficiency and the blocking artefacts of
coarsely quantised coefficients. Although larger block sizes have good compression
efficiency, the blocking artefacts are subjectively very annoying. At the early stage
of standardisation of video codecs, the block sizes were made optional at 4 � 4,
8 � 8 and 16 � 16. Now the block size in all standard codecs is 8 � 8, except in
H.264, in which it is 4 � 4.

3.1.3 Mismatch control
Implementation of both forward and inverse transforms (e.g. eqns 3.3 and 3.4)
requires the cos elements to be approximated with finite numbers. Because of this
approximation, the reconstructed signal, even without any quantisation, cannot be
an exact replica of the input signal to the forward transform. For image and video
coding applications, this mismatch needs to be controlled; otherwise, the accumu-
lated error due to approximation can grow out of control resulting in an annoying
picture artefact.

One way of preventing error accumulation is to let the error to oscillate
between two small levels. This guarantees that the accumulated error never
exceeds its limit. The approach taken in the standard codecs is to say (e.g.
MPEG-2) that the sum of all the values of the 8 � 8 ¼ 64 transform coefficients
should be an odd number (no matter whether they are quantised or not), at the
decoder. In case the sum is an even number, the value of the highest frequency
coefficient, F(7, 7), is either incremented or decremented by 1, depending on
whether its value itself is odd or even, respectively. This, of course, introduces a
very small error, but it cannot be noticed on images, for two reasons. First, at
the inverse transform, the reconstructed pixels are divided by a large value in the
order of N2. Second, since error is introduced by the highest frequency coeffi-
cient, it appears as a very high frequency, small amplitude dither-like noise,
which is not perceivable at all (the human eye is very tolerant to high-frequency
noise).

3.1.4 Fast DCT transform
To calculate transform coefficients, every one-dimensional forward or inverse
transformation requires eight multiplications and seven additions. This process is
repeated for 64 coefficients in both the horizontal and vertical directions. Since
software-based video compression is highly desirable, methods of reducing such a
huge computational burden are highly desirable.

30 Standard codecs: image compression to advanced video coding

p[0]

p[1]

S[0]

p[7]

p[6]

p[5]

p[4]

p[3]

p[2]

S[1]

S[3]

S[5]

b[0]t[0]

S[7]

S[6]

S[4]

S[2]

r[5] sin 5p /16

r[4] sin p /16

t[7]

t[6]

t[5]

t[4]

t[3]

t[2]

t[1]

r[6]

r[7]

b[2]

b[7]

b[3]

b[5]

b[1]

b[6]

b[4]–cos p /4

–cos p /4

sin p /8

cos 3p /8
–sin 3p /8

cos 3p /16

cos 7p /16

cos p /16

cos p /4

cos p /8

cos p /4
cos p /4

–sin 3p /16

–sin 7p /16

cos 5p /16 cos p /4
cos p /4

cos p /4

Figure 3.3 A fast DCT flow chart

The fact that DCT is a type of discrete Fourier transform, with the advantage of
all real coefficients, enables one to use a fast transform, similar to the fast Fourier
transform, to calculate transform coefficients with complexity proportional to
N log2N , rather than N2. Figure 3.3 shows a butterfly representation of the fast
DCT [2]. Intermediate nodes share some of the computational burden, hence
reducing the overall complexity. In the figure, p[0]–p[7] are the inputs to the for-
ward DCT, and b[0]–b[7] are the transform coefficients. The inputs can be either
the 8 pixels for the source image or eight transform coefficients of the first stage
of the one-dimensional transform. Similarly, for inverse transformation, b[0]–b[7]
are the inputs to the inverse DCT (IDCT), and p[0]–p[7] are the outputs. A C lan-
guage program for fast forward DCT is given in Appendix A. In this program, some
modifications to the butterfly matrices are made to trade off the number of additions
for multiplications, since multiplications are more computationally intensive than
additions. A similar program can be written for the inverse transform.

3.2 Quantisation of DCT coefficients

The domain transformation of the pixels does not actually yield any compression.
A block of 64 pixels is transformed into 64 coefficients. Because of the ortho-
normality of transformation, the energies in both the pixel and the transform
domains are equal; hence, no compression is achieved. However, transformation
causes the significant part of the image energy to be concentrated at the lower
frequency components, with the majority of the coefficients having little energy. It
is the quantisation and VLC of the DCT coefficients that lead to bit rate reduction.
Moreover, by exploiting the human eye’s characteristics, which are less sensitive to
picture distortions at higher frequencies, one can apply even coarser quantisation at
these frequencies, to give greater compression. Coarser quantisation step sizes
force more coefficients to zero, and as a result, more compression is gained, but, of
course, the picture quality deteriorates accordingly.

Principles of video compression 31

th th + q th + 2q

th + 5q/2

th + 3q/2

th + q/2

Reconstruction levels

Decision levels

–th – 5q/2

–th – 3q/2

–th – q/2

–th–th – 2q –th – q

Figure 3.4 Quantisation characteristics

The class of quantiser that has been used in all standard video codecs is based
around the so-called uniform threshold quantiser (UTQ). It has equal step sizes with
reconstruction values pegged to the centroid of the steps. This is illustrated in
Figure 3.4.

The two key parameters that define a UTQ are the threshold value, th, and the
step size, q. The centroid value is typically defined midway between quantisation
intervals. Note that although AC transform coefficients have nonuniform char-
acteristics, and hence can be better quantised with nonuniform quantiser step sizes
(the DC coefficient has a fairly uniform distribution), bit rate control would be
easier if they were quantised linearly. Hence, a key property of UTQ is that the step
sizes can be easily adapted to facilitate rate control.

A further two subclasses of UTQ can be identified within the standard codecs,
namely those with and without a dead zone. They are illustrated in Figure 3.5 and
are hereafter abbreviated as UTQ-DZ and UTQ, respectively. The term dead zone
commonly refers to the central region of the quantiser, whereby the coefficients are
quantised to zero.

Typically, UTQ is used for quantising intraframe DC, F(0, 0), coefficients,
while UTQ-DZ is used for the AC and the DC coefficients of interframe prediction
error. This is intended primarily to cause more nonsignificant AC coefficients to
become zero, thus increasing the compression. Both quantisers are derived from the
generic quantiser of Figure 3.4, where in UTQ, th is set to zero, but in UTQ-DZ, it
is set to q/2, and in the most inner region it is allowed to vary between q/2 to q, just
to increase the number of zero-valued outputs, as shown in Figure 3.5. Thus, the
dead zone length can be from q to 2q. In some implementations (e.g. H.263 or
MPEG-4), the decision and/or the reconstruction levels of the UTQ-DZ quantiser
might be shifted by q/4 or q/2.

32 Standard codecs: image compression to advanced video coding

3q

2q

q

Output

InputDead zone

3q/2 5q/2q/2

–5q/2 –3q/2 –q/2

–3q

–2q

–q

(a)

(b)

Output

q 2q 3q

–2q–3q –q Input

–7q/2

–5q/2

–3q/2

–q/2

5q/2

3q/2

q/2

7q/2

Figure 3.5 Uniform quantisers (a) with and (b) without dead zone

In practice, rather than transmitting a quantised coefficient to the decoder, its
ratio to the quantiser step size, called quantisation index, I, is transmitted:

Iðu, vÞ ¼ Fðu, vÞ
q

� �
ð3:6Þ

(In eqn. 3.6 the symbol b�c stands for rounding to the nearest integer.) The reason
for defining the quantisation index is that it has a much smaller entropy than the

Principles of video compression 33

quantised coefficient. At the decoder, the reconstructed coefficients, Fq(u, v), after
inverse quantisation, are given by

Fqðu, vÞ ¼ Iðu, vÞ � 1
2

	

� q ð3:7Þ

If required, depending on the polarity of the index, an addition or subtraction of half
the quantisation step is required to deliver the centroid representation, reflecting the
quantisation characteristics of Figure 3.5.

It is worth noting that for the standard codecs, the quantiser step size q is fixed
at 8 for UTQ, but varies from 2 to 62, in even step sizes, for the UTQ-DZ. Hence,
the entire quantiser range, or the quantiser parameter Qp (half the quantiser step
size), can be defined with 5 bits (1–31).

Uniform quantisers with and without dead zone can also be used in DPCM
coding of pixels (section 3.1). Here, threshold is set to zero, th ¼ 0, and the
quantisers are usually identified with even and odd number of levels, respectively.

One of the main problems of linear quantisers in DPCM is that for lower bit rates,
the number of quantisation levels is limited and hence the quantiser step size is large. In
coding of plain areas of the picture, if a quantiser with even number of levels is used,
then the reconstructed pixels oscillate between �q/2 and q/2. This type of noise at
these areas, in particular at low luminance levels, is visible and is called granular noise.

Larger quantiser step sizes with the odd number of levels (dead zone) reduce
the granular noise, but cause loss of pixel resolution at the plain areas. This type of
noise when the quantiser step size is relatively large is annoying and is called the
contouring noise.

To reduce granular and contouring noises, the quantiser step size should be
reduced. This, of course, for a limited number of quantisation levels (low bit rate)
reduces the outmost reconstruction level. In this case, large pixel transitions such as
sharp edges cannot be coded with good fidelity. It might take several cycles for the
encoder to code one large sharp edge. Hence, edges appear smeared, and this type
of noise is known as slope overload noise.

To reduce the slope overload noise without increasing the granular or con-
touring noises, the quantiser step size can change adaptively. For example, a lower
step size quantiser is used at the plain areas, and a larger step size is employed at
the edges and high-texture areas. Note that the overhead of adaptation can be very
costly (e.g. 1 bit/pixel).

The other method is to use a nonlinear quantiser with small step sizes at the
inner levels and larger step sizes at the outer levels. This suits DPCM video better
than the linear quantiser. Nonlinear quantisers reduce the entropy of the data more
than linear quantisers. Hence, data are less dependent on the VLC, increasing the
robustness of the DPCM video to channel errors.

3.3 Temporal redundancy reduction

By using the differences between successive images, temporal redundancy is
reduced. This is called interframe coding. For static parts of the image sequence,

34 Standard codecs: image compression to advanced video coding

temporal differences will be close to zero, and hence are not coded. Those parts that
change between the frames, due to either illumination variation or motion of the
objects, result in significant image error, which needs to be coded. Image changes
due to motion can be significantly reduced if the motion of the object can be
estimated, and the difference is taken on the motion-compensated image.

Figure 3.6 shows the interframe error between successive frames of the Claire
test image sequence and its motion-compensated counterpart. It is clear that motion
compensation can substantially reduce the interframe error.

(a) (b)

Figure 3.6 (a) Interframe and (b) motion-compensated interframe pictures

3.3.1 Motion estimation
To carry out motion compensation, the motion of the moving objects has to be
estimated first. This is called motion estimation (ME). The commonly used ME
technique in all the standard video codecs is the block matching algorithm (BMA).
In a typical BMA, a frame is divided into blocks of MN pixels or, more usually,
square blocks of N2 pixels [3]. Then, for a maximum motion displacement of w
pixels/frame, the current block of pixels is matched against a corresponding block
at the same coordinates but in the previous frame, within the square window of
width N þ 2w (Figure 3.7). The best match on the basis of a matching criterion
yields the displacement.

Various measures such as the cross-correlation function (CCF), mean-squared
error (MSE) and mean absolute error (MAE) can be used in the matching criterion
[4–6]. For the best match, in the CCF the correlation has to be maximised, whereas
in the latter two the distortion must be minimised. In practical coders, both MSE
and MAE are used, since it is believed that CCF would not give good motion
tracking, especially when the displacement is not large [6]. The matching functions
of the type MSE and MAE are defined as, for MSE:

Mði, jÞ ¼ 1

N2

XN

m¼1

XN

n¼1

ðf ðm, nÞ � gðm þ i, n þ jÞÞ2, �w � i, j � w ð3:8Þ

Principles of video compression 35

and for MAE:

Mði, jÞ ¼ 1

N2

XN

m¼1

XN

n¼1

j f ðm, nÞ � gðm þ i, n þ jÞj, �w � i, j � w ð3:9Þ

where ƒ(m, n) represents the current block of N2 pixels at coordinates (m, n) and
g(m þ i, n þ j) represents the corresponding block in the previous frame at new
coordinates (m þ i, n þ j). At the best-matched position of i ¼ a and j ¼ b, the
motion vector, MV(a, b), represents the displacement of all the pixels within the
block.

To locate the best match by full search, (2w þ 1)2 evaluations of the matching
criterion are required. To reduce processing cost, MAE is preferred to MSE, and
hence is used in all the video codecs. However, for each block of N2 pixels, we still
need to carry out (2w þ 1)2 tests, each with almost 2N2 additions and subtractions.
This is still far from being suitable for implementation of BMA in software-based
codecs. Measurements of the video encoders’ complexity show that ME comprises
almost 50–70 per cent of the overall encoder’s complexity [7]. This, of course,
depends on the motion activity in the scene and whether a fast DCT is used in
deriving the transform coefficients. For example, the percentage of the processing
time required to calculate the motion vectors of Mobile and Claire test image
sequences in an MPEG-1 software-based encoder is given in Table 3.1. Note that
although more processing time is required for ME in B-pictures than P-pictures,
since the search range in P-pictures is much larger than that for B-pictures,
the overall processing time for ME in P-pictures can be larger than that of the
B-pictures, as shown in the table. The reason for these is dealt with in Chapter 7,

N + 2w

N + 2w

(m + i, n + j)

w

w

i

j

(N × N) block
in the current
frame

search window
in the previous
frame

(N × N) block under the search
in the previous frame, shifted by i, j

(m, n)

Figure 3.7 The current and previous frames in a search window

36 Standard codecs: image compression to advanced video coding

when we talk about different picture types in the MPEG-1 encoder. In any case, as
ME is a costly process, fast ME techniques are highly desirable.

3.3.2 Fast motion estimation
In the past two decades, a number of fast search methods for ME have been
introduced to reduce the computational complexity of BMA. The basic principle of
these methods is that the number of search points can be reduced by selectively
checking only a small number of specific points, assuming that the distortion
measure monotonically decreases towards the best-matched point. Jain and Jain [6]
were the first to use a two-dimensional logarithmic (TDL) search method to track
the direction of a minimum MSE distortion measure. In their method, the distortion
for the five initial positions, one at the centre of the coordinate and four at coor-
dinates (�w/2, �w/2) of the search window, is computed first. In the next step,
three more positions with the same step size in the direction of the previous mini-
mum position are searched. The step size is then halved, and the above procedure is
continued until the step size becomes unity. Finally, all the nine positions are
searched. With this method, for w ¼ 5 pixels/frame, 21 positions are searched as
opposed to 121 positions required in the full search method (FSM).

Koga et al. [8] use a three-step search (TSS) method to compute motion dis-
placements up to 6 pixels/frame. In their method, all eight positions surrounding the
coordinate with a step size of w/2 are searched first. At each minimum position, the
search step size is halved, and the next eight new positions are searched. This
method, for w ¼ 6 pixels/frame, searches 25 positions to locate the best match. The
technique is the recommended method for the test of software-based H.261 [9] for
videophone applications.

In Kappagantula and Rao’s [4] modified motion estimation algorithm
(MMEA), prior to halving the step sizes, two more positions are also searched.
With this method, for w ¼ 7 pixels/frame, only 19 MAE computations are required.
In Srinivasan and Rao’s [10] conjugate direction search (CDS) method, at every
iteration of the direction search, two conjugate directions with a step size of 1 pixel,
centred at the minimum position, are searched. Thus, for w ¼ 5 pixels/frame, there
will be only 13 searches at most.

Another method of fast BMA is the cross-search algorithm (CSA) [11]. In this
method, the basic idea is still a logarithmic step search, which has also been

Table 3.1 Percentage of processing time required to
carry out motion estimation in an MPEG-1
encoder

Category Fast DCT Brute force DCT

Picture type Mobile Claire Mobile Claire

P-frame ME 66.1% 68.4% 53.3% 56.1%
B-frame ME 58.2% 60.9% 46.2% 48.7%

Principles of video compression 37

exploited in [4], [6] and [8], but with some differences, which lead to fewer
computational search points. The main difference is that at each iteration there are
four search locations, which are the end points of a cross (�) rather than (þ). Also, at
the final stage, the search points can be either the end points of (�) or (þ) crosses, as
shown in Figure 3.8. For a maximum motion displacement of w pixels/frame, the
total number of computations becomes 5 þ 4log2w.

p(i, j)

n(i, j)

j

i
4

–4

4

(0, 0)1

2

2

1

3
2

×

�

3

3

1

3
2

2

+

+

+
+

1

1

–4 ×

Figure 3.8 An example of the CSA search for w ¼ 8 pixels/frame

Puri et al. [12] have introduced the orthogonal search algorithm (OSA) in
which, with a logarithmic step size, at each iteration four new locations are sear-
ched. This is the fastest method of all known fast MBAs. In this method, at every
step, two positions are searched alternately in the vertical and horizontal directions.
The total number of test points is 1 þ 4log2w.

Table 3.2 shows the computational complexity of various fast search methods,
for a range of motion speed from 4 to 16 pixels/frame. The motion compensation
efficiencies of these algorithms for a motion speed of w ¼ 8 pixels/frame for two
test image sequences are tabulated in Table 3.3.

Table 3.2 Computational complexity

Algorithm Maximum number of
search points

w

4 8 16

FSM (2w þ 1)2 81 289 1089
TDL 2 þ 7 log2 w 16 23 30
TSS 1 þ 8 log2 w 17 25 33
MMEA 1 þ 6 log2 w 13 19 25
CDS 3 þ 2w 11 19 35
OSA 1 þ 4 log2 w 9 13 17
CSA 5 þ 4 log2 w 13 17 21

38 Standard codecs: image compression to advanced video coding

It can be seen that although fast search methods reduce the computational
complexity of the FSM significantly, their ME accuracy (compensation efficiency)
has not been degraded noticeably.

3.3.3 Hierarchical motion estimation
The assumption of monotonic variation of image intensity employed in the fast
BMAs often causes false estimations, especially for larger picture displacements.
These methods perform well for slow moving objects, such as those in video
conferencing. However, for higher motion speeds, due to the intrinsic selective
nature of these methods, they often converge to a local minimum of distortion.

One method of alleviating this problem is to subsample the image to smaller
sizes, such that the motion speed is reduced by the sampling ratio. The process is
done on a multilevel image pyramid, known as the hierarchical block matching
algorithm (HBMA) [13]. In this technique, pyramids of the image frames are
reconstructed by successive two-dimensional filtering and subsampling of the
current and past image frames. Figure 3.9 shows a three-level pyramid, where for
simplicity each level of the upper level of the pyramid is taken as the average of
4 adjacent pixels of one level below. Effectively this is a form of low-pass
filtering.

Conventional block matching with a block size of 16 pixels, either full search
or any fast method, is first applied to the highest level of the pyramid (level 2 in
Figure 3.9). This motion vector is then doubled in size, and further refinement
within 1-pixel search is carried out in the following level. The process is repeated to
the lowest level. Therefore, with an n-level pyramid, the maximum motion speed of
w at the highest level is reduced to w/2n�1.

For example, a maximum motion speed of 32 pixels/frame with a three-
level pyramid is reduced to 8 pixels/frame, which is quite manageable by any
fast search method. Note that this method can also be regarded as another type
of fast search, with a performance very close to the full search, irrespective of
the motion speed, but the computational complexity can be very close to the fast
logarithmic methods.

Table 3.3 Compensation efficiency

Algorithm Split screen Trevor white

Entropy
(bits/pel)

Standard
deviation

Entropy
(bits/pel)

Standard
deviation

FSM 4.57 7.39 4.41 6.07
TDL 4.74 8.23 4.60 6.92
TSS 4.74 8.19 4.58 6.86
MMEA 4.81 8.56 4.69 7.46
CDS 4.84 8.86 4.74 7.54
OSA 4.85 8.81 4.72 7.51
CSA 4.82 8.65 4.68 7.42

Principles of video compression 39

As an example, for a maximum motion speed of 32 pixels/frame, which is very
common in high-definition video or most TV sports programmes (particularly in
the P-pictures of the standard codecs, which can be several frames apart from each
other), although the nonhierarchical full-search BMA requires (2 � 32 þ 1)2 ¼
4225 operations, a four-level hierarchy, where the motion speed at the top level is
32/24�1 ¼ 4 pixels/frame, only requires (2 � 4 þ 1)2 þ 3 � 9 ¼ 108 operations.
Here with the FSM, 81 operations are carried out at the top level, and at each lower
level nine new positions are searched.

3.4 Variable length coding

For further bit rate reduction, the transform coefficients and the coordinates of the
motion vectors are variable length coded. In VLC, short code words are assigned to
the highly probable values and long code words to the less probable ones. The
lengths of the codes should vary inversely with the probability of occurrences of the
various symbols in VLC. The bit rate required to code these symbols is the inverse
of the logarithm of probability, p, at base 2 (bits), that is, log2 p. Hence, the entropy
of the symbols, which is the minimum average bits required to code the symbols,
can be calculated as

HðxÞ ¼ �
Xn

i¼1

pi log2 pi ð3:10Þ

There are two types of VLC, which are employed in the standard video codecs.
They are Huffman coding and arithmetic coding. It is noted that Huffman coding is

level 0

level 1

level 2

384

256

V2

2V2

V1

2V1
b

a

V0

Figure 3.9 A three-level image pyramid

40 Standard codecs: image compression to advanced video coding

a simple VLC, but its compression can never reach as low as the entropy due to the
constraint that the assigned symbols must have an integral number of bits. How-
ever, the arithmetic coding can approach the entropy since the symbols are not
coded individually [14]. Huffman coding is employed in all standard codecs to
encode the quantised DCT coefficients as well as motion vectors. Arithmetic
coding is used, for example, in JPEG, JPEG2000, H.263, H.264 and shape and still
image coding of MPEG-4 [15–17], where extra compression is demanded.

3.4.1 Huffman coding
Huffman coding is the most commonly known VLC method based on probability
statistics. It assigns an output code to each symbol with the output codes being as
short as 1 bit, or considerably longer than the input symbols, depending on their
probability. The optimal number of bits to be used for each symbol is �log2 p,
where p is the probability of a given symbol.

However, since the assigned code words have to consist of an integral number of
bits, this makes Huffman coding suboptimum. For example, if the probability of a
symbol is 0.33, the optimum number of bits to code that symbol is around 1.6 bits,
but the Huffman coding scheme has to assign either 1 or 2 bits to the code. In either
case, on average, it will lead to more bits compared to its entropy. As the probability
of a symbol becomes very high, Huffman coding becomes very nonoptimal. For
example, for a symbol with a probability of 0.9, the optimal code size should be 0.15
bits, but Huffman coding assigns a minimum value of 1 bit code to the symbol, which
is six times larger than necessary. Hence, it can be seen that resources are wasted.

To generate the Huffman code for symbols with a known probability of
occurrence, the following steps are carried out:

● Rank all the symbols in the order of their probability of occurrence.
● Successively merge every two symbols with the least probability to form a new

composite symbol, and rerank order them: this will generate a tree, where each
node is the probability of all nodes beneath it.

● Trace a path to each leaf, noting the direction at each node.

Figure 3.10 shows an example of Huffman coding of seven symbols, A–G. Their
probabilities in descending order are shown in the third column. In the next column,
the two smallest probabilities are added, and the combined probability is included
in the new order. The procedure continues to the last column, where a single
probability of 1 is reached. Starting from the last column, for every branch of
probability a 0 is assigned on the top and 1 in the bottom, shown in bold digits in
the figure. The corresponding code word (shown in the first column) is read off by
following the sequence from right to left. Although with fixed word length each
sample is represented by 3 bits, it is represented in VLC from 2 to 4 bits.

The average bit per symbol is then

0:25� 2þ 0:20 � 2 þ 0:18 � 3þ 0:15 � 3 þ 0:12 � 3 þ 0:06� 4þ 0:04 � 4

¼ 2:65 bits

Principles of video compression 41

which is very close to the entropy, given by

�ð0:25 log2 0:25 þ 0:2 log2 0:2 þ 0:18 log2 0:18 þ 0:15 log2 0:15
þ 0:12 log2 0:12 þ 0:06 log2 0:06 þ 0:04 log2 0:04Þ

¼ 2:62 bits

It should be noted that for a large number of symbols, such as the values of DCT
coefficients, such a method can lead to a long string of bits for the very rarely
occurring values, and is impractical. In such cases, normally a group of symbols is
represented by the symbols’ aggregate probabilities, and the combined probabilities
are Huffman coded, the so-called modified Huffman code. This method is used in
JPEG. Another method, which is used in H.261 and MPEG, is two-dimensional
Huffman, or three-dimensional Huffman in H.263 [9,16].

3.4.2 Arithmetic coding
Huffman coding can be optimum if the symbol probability is an integer power of
1/2, which is usually not the case. Arithmetic coding is a data compression tech-
nique that encodes data by creating a code string, which represents a fractional
value on the number line between 0 and 1 [14]. It encourages clear separation
between the model for representing data and the encoding of information with
respect to that model. Another advantage of arithmetic coding is that it dispenses
with the restriction that each symbol must translate into an integral number of bits,
thereby coding more efficiently. It actually achieves the theoretical entropy bound
to compression efficiency for any source. In other words, arithmetic coding is a
practical way of implementing entropy coding.

01

11

000

001

100

1010

1011

0.25

0.20

0.15

0.18

0.12

0.06

0.04

0.25

0.2

0.15

0.18

0.12

0.10

0.25

0.2

0.15

0.18

0.22 0.25

0.22

0.33

0.20

0.25

0.42

0.33 0.42

0.58 1.0A

B

C

D

E

F

G

Code Symbol Probability

(1)

(0)

(1)

(0)

(1)

(1)

(0)

(0)

(1)

(0) (1)

(0)

Figure 3.10 An example of Huffman code for seven symbols

42 Standard codecs: image compression to advanced video coding

There are two types of modelling used in arithmetic coding: the fixed model
and adaptive model. Modelling is a way of calculating, in any given context, the
distribution of probabilities for the next symbol to be coded. It must be possible for
the decoder to produce exactly the same probability distribution in the same con-
text. Note that probabilities in the model are represented as integer frequency
counts. Unlike the Huffman type, arithmetic coding accommodates adaptive mod-
els easily and is computationally efficient. The reason why data compression
requires adaptive coding is that the input data source may change during encoding,
due to motion and texture.

In the fixed model, both encoder and decoder know the assigned probability to
each symbol. These probabilities can be determined by measuring frequencies in
representative samples to be coded, and the symbol frequencies remain fixed. Fixed
models are effective when the characteristics of the data source are close to the
model and have little fluctuation.

In the adaptive model, the assigned probabilities may change as each symbol is
coded, based on the symbol frequencies seen so far. Each symbol is treated as an
individual unit, and hence there is no need for a representative sample of text.
Initially all the counts might be the same, but they update, as each symbol is seen,
to approximate the observed frequencies. The model updates the inherent dis-
tribution, so the prediction of the next symbol should be close to the real dis-
tribution mean, making the path from the symbol to the root shorter.

Because of the important role of arithmetic coding in the advanced video
coding techniques, a more detailed description of this coding technique is given in
the following sections.

3.4.2.1 Principles of arithmetic coding
The fundamental idea of arithmetic coding is to use a scale in which the coding
intervals of real numbers between 0 and 1 are represented. This is in fact the
cumulative probability density function of all the symbols that add up to 1. The
interval needed to represent the message becomes smaller as the message becomes
longer, and the number of bits needed to specify that interval is increased. According
to the symbol probabilities generated by the model, the size of the interval is reduced
by successive symbols of the message. The more likely symbols reduce the range
less than the less likely ones, and hence they contribute fewer bits to the message.

To explain how arithmetic coding works, a fixed-model arithmetic code is used
in the example for easy illustration. Suppose the alphabet is {a, e, i, o, u, !}, and the
fixed model is used with the probabilities shown in Table 3.4.

Once the symbol probability is known, each individual symbol needs to be
assigned a portion of the [0, 1) range that corresponds to its probability of
appearance in the cumulative density function. Note also that the character with a
range of [lower, upper) owns everything from lower value up to, but not including,
the upper value. So, the alphabet u with probability 0.1, defined in the cumulative
range of [0.8, 0.9), can take any value from 0.8 to 0.8999

The most significant portion of an arithmetic coded message is the first symbol
to be encoded. Using an example that a message eaii! is to be coded, the first

Principles of video compression 43

symbol to be coded is e. Hence, the final coded message has to be a number greater
than or equal to 0.2 and less than 0.5. After the first character is encoded, we know
that the lower number and the upper number now bind our range for the output.
Each new symbol to be encoded will further restrict the possible range of the output
number during the rest of the encoding process.

The next character to be encoded, a, is in the range of 0–0.2 in the new
interval. It is not the first number to be encoded, so it belongs to the range corre-
sponding to 0–0.2, but in the new subrange of [0.2, 0.5). This means that the
number is now restricted to the range of [0.2, 0.26), since the previous range was
0.3 (0.5 � 0.2 ¼ 0.3) units long and one-fifth of that is 0.06. The next symbol to be
encoded, i, is in the range of [0.5, 0.6), which corresponds to 0.5–0.6 in the new
subrange of [0.2, 0.26) and gives the smaller range [0.23, 0.236). Applying this rule
for coding of successive characters, Table 3.5 shows the successive build-up of the
range of the message coded so far.

Figure 3.11 shows another representation of the encoding process. The range is
expanded to fill the whole range at every stage and marked with a scale that gives
the end points as a number. The final range, [0.23354, 0.2336), represents the
message eaii!. This means that if we transmit any number in the range of 0.23354 �
x < 0.2336, that number represents the whole message of eaii!.

Given this encoding scheme, it is relatively easy to see how during the
decoding the individual elements of the eaii! message are decoded. To verify this,
suppose a number x ¼ 0.23355 in the range of 0.23354 � x < 0.2336 is transmitted.
The decoder, using the same probability intervals as the encoder, performs a similar
procedure. Starting with the initial interval [0, 1), only the interval [0.2, 0.5) of e

Table 3.4 Example: fixed model for alphabet {a, e, i, o, u, !}

Symbol Probability Range

a 0.2 [0.0, 0.2)
e 0.3 [0.2, 0.5)
i 0.1 [0.5, 0.6)
o 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
! 0.1 [0.9, 1.0)

Table 3.5 Representation of arithmetic coding process

New character Range

Initially [0, 1)
After seeing a symbol e [0.2, 0.5)

a [0.2, 0.26)
i [0.23, 0.236)
i [0.233, 0.2336)
! [0.23354, 0.2336)

44 Standard codecs: image compression to advanced video coding

envelops the transmitted code of 0.23355. So the first symbol can only be e. Similar
to the encoding process, the symbol intervals are then defined in the new interval
[0.2, 0.5). This is equivalent to defining the code within the initial range [0, 1), but
offsetting the code by the lower value and then scaling up within its original range.
That is, the new code will be (0.23355 � 0.2)/(0.5 � 0.2) ¼ 0.11185, which is
enveloped by the interval [0.0, 0.2) of symbol a. Thus, the second decoded symbol
is a. To find the third symbol, a new code within the range of a should be found,
that is, (0.11185 � 0.0)/(0.2 � 0.0) ¼ 0.55925. This code is enveloped by the range
of [0.5, 0.6) of symbol i, and the resulting new code after decoding the third symbol
will be (0.55925 � 0.5)/(0.6 � 0.5) ¼ 0.5925, which is again enveloped by [0.5,
0.6). Hence, the fourth symbol will be i. Repeating this procedure will yield a new
code of (0.5925 � 0.5)/(0.6 � 0.5) ¼ 0.925. This code is enveloped by [0.9, 1),
which decodes symbol !, the end of decoding symbol, and the decoding process is
terminated. Table 3.6 shows the whole decoding process of the message eaii!. In
general, the decoding process can be formulated as

Rnþ1 ¼ Rn � Ln

Un � Ln
ð3:11Þ

Nothing e a i i !

!

u

o

i

e

a

!

u

o

i

e

a

!

u

o

i

e

a

!

u

o

i

e

a

!

u

o

i

e

a

!

u

o

i

e

a

0.5

0.2

0.26

0.2

0.236

0.23

0.2336

0.233

0.2336

0.23354

1.0

0.0

Figure 3.11 Representation of arithmetic coding process with the interval scaled
up at each stage for the message eaii!

Table 3.6 Representation of decoding process of arithmetic coding

Encoded number Output symbol Range

0.23354 e [0.2, 0.5)
0.233 a [0.0, 0.2)
0.23 i [0.5, 0.6)
0.23 i [0.5, 0.6)
0.2 ! [0.9, 1.0)

Principles of video compression 45

where Rn is a code within the range of lower value Ln and upper value Un of the nth
symbol and Rnþ1 is the code for the next symbol.

3.4.2.2 Binary arithmetic coding
In the preceding section, we saw that as the number of symbols in the message
increases, the range of the message becomes smaller. If we continue coding more
symbols, then the final range may even become smaller than the precision of any
computer to define such a range. To resolve this problem, we can work with binary
arithmetic coding.

In Figure 3.11, we see that after each stage of coding, if we expand the range to
its full range of [0, 1), the apparent range is increased. However, the values of the
lower and upper numbers are still small. Therefore, if the initial range of [0, 1) is
replaced by a larger range of [0, MAX_VAL), where MAX_VAL is the largest integer
number that a computer can handle, then the precision problem is resolved. If we
use 16-bit integer numbers, then MAX_VAL ¼ 216�1. Hence, rather than defining
the cumulative probability in the range of [0, 1), we define their cumulative fre-
quencies scaled up within the range of [0, 216�1).

At the start, the coding interval [lower, upper) is initialised to the whole scale
[0, MAX_VAL). The model’s frequencies, representing the probability of each
symbol in this range, are also set to their initial values in the range. To encode a
new symbol element ek assuming that symbols e1���ek�1 have already been coded,
we project the model scale to interval resulting from the sequence of events. The
new interval [lower0, upper0) for the sequence e1���ek is calculated from the old
interval [lower, upper) of the sequence e1���ek�1 as follows:

lower0 ¼ lower þ width 	 low=maxfreq
width0 ¼ width 	 symb width=maxfreq
upper0 ¼ lower0 þ width0

¼ lower þ width 	 ðlow þ symb widthÞ=maxfreq
¼ lower þ width 	 up=maxfreq

where

width ¼ upper � lower ðold intervalÞ
width0 ¼ upper0 � lower0ðnew intervalÞ

symb width ¼ up � low ðmodel’s f requencyÞ

At this stage of the coding process, we do not need to keep the previous interval
[lower, upper) in the memory, so we allocate the new values [lower0, upper0).
We then compare the new interval with the scale [0, MAX_VAL) to determine
whether there is any bit for transmission down the channel. These bits are due to
the redundancy in the binary representation of lower and upper values. For
example, if values of both lower and upper levels are less than half the [0,
MAX_VAL) range, then their most significant number in binary form is 0. Similarly,

46 Standard codecs: image compression to advanced video coding

if both belong to the upper half range, their most significant number is 1. Hence, we
can make a general rule:

● If lower and upper levels belong to the first half of the scale, the most sig-
nificant bit for both will be 0.

● If lower and upper levels belong to the second half of the scale, their most
significant bit will be 1.

● Otherwise, when lower and upper levels belong to the different halves of the
scale, their most significant bits will be different (0 and 1).

Thus, for the cases where lower and upper values have the same most significant bit,
we send this bit down the channel and calculate the new interval as follows:

● Sending a 0 corresponds to removal of the second half of the scale and keeping
its first half only; the new scale is expanded by a factor 2 to obtain its
representation in the whole scale of [0, MAX_VAL) again, as shown in
Figure 3.12.

● Sending a 1 corresponds to the shift of the second half of the scale to its first
half, that is, subtracting half of the scale value and multiplying the result by
a factor 2 to obtain its representation in the whole scale again, as shown in
Figure 3.13.

0 1
If lower and upper
belong to the first
half of the scale,
their higher bits will
both be 0

Figure 3.12 Both lower and upper values in the first half

If the interval always remains in either half of the scale after a bit has been
sent, the operation is repeated as many times as necessary to obtain an interval
occupying both halves of the scale. The complete procedure is called the interval
testing loop.

Now we go back to the case where both of the lower and upper values are not
in either of the half intervals. Here we identify two cases: first, the lower value is in
the second quarter of the scale and the upper value is in the third quarter. Hence, the
range of frequency is less than 0.5. In this case, in the binary representation, the two
most significant bits are different, 01 for lower and 10 for the upper, but we can
deduce some information from them. That is, in both cases, the second bit is the
complementary bit to the first. Hence, if we can find out the second bit, the pre-
vious bit is its complement. Therefore, if the second bit is 1, then the previous value

Principles of video compression 47

should be 0, and we are in the second quarter, meaning the lower value. Similar
conclusions can be drawn for the upper value.

Thus, we need to divide the interval within the scale of [0, MAX_VAL) into four
segments instead of two. Then the scaling and shifting for this case will be done only on
the portion of the scale containing second and third quarters, as shown in Figure 3.14.

Thus, the general rule for this case is as follows:

● If the interval belongs to the second and third quarters of the scale: an unknown
bit ? is sent to a waiting buffer for later definition and the interval transformed
as shown in Figure 3.14.
Finally,

● If the interval belongs to more than two different quarters of the scale (the
interval occupies parts of three or four different quarters), there is no need to
transform the coding interval. The process exits from this loop and goes to the
next step in the execution of the program; this means that if the probability in
that interval is greater than 0.5, no bits are transmitted; this is the most
important part of arithmetic coding that leads to low bit rate.

00
If lower and upper
belong to the second
and third quarters of the
scale, an unknown
bit is sent to a waiting
buffer for later
transmission, and the
interval shifted by
quarter

01 10 11

Figure 3.14 Lower and upper levels in the second and third quarters, respectively

If lower and upper
belong to the second
half of the scale,
their higher bits will
both be 1

0 1

Figure 3.13 Both lower and upper values in the second half

48 Standard codecs: image compression to advanced video coding

A flow chart of the interval testing loop is shown in Figure 3.15, and a detailed
example of coding a message is given in Figure 3.16. For every symbol to be coded,
we invoke the flow chart of Figure 3.15, except where the symbol is the end of file
symbol, where the program stops. After each testing loop, the model can be
updated (frequencies modified if the adaptive option has been chosen).

A C program of binary arithmetic coding is given in Figure 3.16.
The values of low and high are initialised to 0 and top, respectively.

PSC_FIFO is a first-in, first-out (FIFO) for buffering the output bits from the
arithmetic encoder. The model is specified through cumul_freq[], and the
symbol is specified using its index in the model.

begin

interval
?

in the first
half

in the second
half

between the
second and third

quarters
any other

case

bit_transmit
(0)

bit_transmit
(1)

unknown
bit ?

EOF
?

end

N

Y
interval shift

left (1/2)
interval shift

left (1/4)

interval
expansion

(�2)

Figure 3.15 A flow chart for binary arithmetic coding

Principles of video compression 49

3.4.2.3 An example of binary arithmetic coding
Because of the complexity of the arithmetic algorithm, a simple example is given
in this section. To simplify the operations further, we use a fixed model with
four symbols a, b, c and d, where their fixed probabilities and cumulative
probabilities are given in Table 3.7, and the message sequence of events to be
encoded is bbacd.

Considering what we saw earlier, we start by initialising the whole range to
[0, 1). In sending b, which has a range of [0.3, 0.8), since lower ¼ 0.3 is in the
second quarter and upper ¼ 0.8 in the fourth quarter (occupying more than two
quarters), nothing is sent, and no scaling is required, as shown in Table 3.8.

To send the next b, that is, bb, since the previous width ¼ 0.8 � 0.3 ¼ 0.5, the
new interval becomes [0.3 þ 0.3 � 0.5, 0.3 þ 0.8 � 0.5) ¼ [0.45, 0.7). This time
lower ¼ 0.45 is in the second quarter but upper ¼ 0.7 is in the third quarter, so the
unknown bit ? is sent to the buffer, such that its value is to be determined later.

#defineq1 16384
#defineq2 32768
#defineq3 49152
#definetop 65535

static long low, high, opposite_bits, length;
void encode_a_symbol (int index, int cumul_freq[])
{

length = high – low +1;
high = low –1 + (length * cumul_freq[index]) / cumul_freq[0];
low += (length * cumul_freq[index+1])/ cumul_freq[0];
for(; ;){
if(high <q2){
send out a bit “0” to PSC_FIFO;
while (opposite_bits > 0) {

send out a bit “1” to PSC_FIFO;
opposite_bits--;

}
}
else if (low >= q2) {
send out a bit “1” to PSC_FIFO;
while (opposite_bits > 0) {
send out a bit “0” to PSC_FIFO;
opposite_bits--;

}
low -= q2;

high -= q2;
}
else if (low >= q1 && high < q3) {
opposite_bits += 1;
low -= q1;
high -= q1;

}
else break;
low *= 2;
high = 2 * high + 1;
}

}

Figure 3.16 A C program of binary arithmetic coding

50 Standard codecs: image compression to advanced video coding

Note that since range [0.45, 0.7) covers second and third quarters, according
to Figure 3.14, we have to shift both of them by a quarter (0.25) and then magnify
by a factor of 2, that is, the new interval is [(0.45 � 0.25) � 2, (0.7 � 0.25) � 2) ¼
[0.4, 0.9), which has a width of 0.5. To code the next symbol a, the range becomes
[0.4 þ 0 � 0.5, 0.4 þ 0.3 � 0.5) ¼ [0.4, 0.55). Again since lower and upper
levels are at the second and third quarters, the unknown ? is stored. According to
Figure 3.14, both quarters are shifted by 0.25 and magnified by 2, [(0.4 � 0.25) �
2, (0.55 � 0.25) � 2) ¼ [0.3, 0.6).

Again [0.3, 0.6) is in the second and third intervals, so another ? is stored. If we
shift and magnify again [(0.3 � 0.25) � 2, (0.6 � 0.25) � 2) ¼ [0.1, 0.7), which now
lies in the first and third quarters, nothing is sent and not scaled. Now if we code c,
that is, bbac, the interval becomes [0.1 þ 0.8 � 0.6, 0.1 þ 0.9 � 0.6) ¼ [0.58, 0.64).

Now since [0.58, 0.64) is in the second half, we send 1. We now go back and
convert all ? to 000 complementary to 1. Thus, we have sent 1000 so far. Note that

Table 3.7 Probability and cumulative probability
of four symbols as an example

Symbol pdf cdf

a 0.3 [0.0, 0.3)
b 0.5 [0.3, 0.8)
c 0.1 [0.8, 0.9)
d 0.1 [0.9, 1.0)

Table 3.8 Generated binary bits of coding bbacd message

Encoding Coding interval Width Bit

Initialisation [0, 1) 1
After b [0.3, 0.8) 0.5
After bb [0.45, 0.7) 0.25
After interval test [0.4, 0.9) 0.5 ?
After bba [0.40, 0.55) 0.15
After interval test [0.3, 0.6) 0.3 ?
After interval test [0.1, 0.7) 0.6 ?
After bbac [0.58, 0.64) 0.06
After interval test [0.16, 0.28) 0.12 1000
After interval test [0.32, 0.56) 0.24 0
After interval test [0.14, 0.62) 0.48 ?
After bbacd [0.572, 0.620) 0.048
After interval test [0.144, 0.240) 0.096 10
After interval test [0.288, 0.480) 0.192 0
After interval test [0.576, 0.960) 0.384 0
After interval test [0.152, 0.920) 0.768 1

Principles of video compression 51

bits belonging to ? are transmitted after finding a 1 or 0. Similarly, the subsequent
symbols are coded, and the final generated bit sequence becomes 1000010001.
Table 3.8 shows this example in a tabular representation. A graphical representa-
tion is given in Figure 3.17.

b

bb

bba

bbac

bbacd

00 01 10 11

00 01 10 11

010 011 100 101

010 011 100 101

0110 0111 1000 1001

01110 01111 10000 10001

01110 01111 10000 10001

100000 100001 100010 100011

1000000 1000001 1000010 1000011

10000010 10000011 10000100 10000101

10000010 10000011 10000100 10000101

100001000 100001001 100001010 100001011

1000010000 1000010001 1000010010 1000010011

1000010001 1000010010

?

1

0

?

1

?

?

1000→

1 10→

0

0

Figure 3.17 Derivation of the binary bits for the given example

52 Standard codecs: image compression to advanced video coding

3.4.2.4 Adaptive arithmetic coding
In adaptive arithmetic coding, the assigned probability to the symbols changes as
each symbol is coded [18]. For binary (integer) coding, this is accomplished by
assigning a frequency of 1 to each symbol at the start of the coding (initialisation).
As a symbol is coded, the frequency of that symbol is incremented by one. Hence,
the frequencies of symbols are adapted to their number of appearances so far. The
decoder follows a similar procedure. At every stage of coding, a test is done to see if
the cumulative frequency (sum of the frequencies of all symbols) exceeds the
MAX_VAL. If this is the case, all frequencies are halved (minimum 1), and encoding
continues. For a better adaptation, the frequencies of the symbols may be initialised
to a predefined distribution that matches the overall statistics of the symbols better.
For better results, the frequencies are updated from only N most recently coded
symbols. It has been shown that this method of adaptation with a limited past history
can reduce the bit rate by more than 30 per cent below the first-order entropy of the
symbols [19]. The reason for this is that if some rare events that normally have high
entropy could occur in clusters, then, within the only N most recent events, they now
become the more frequent events, and hence require lower bit rates.

3.4.2.5 Context-based arithmetic coding
A popular method for adaptive arithmetic coding is to adapt the assigned prob-
ability to a symbol, according to the context of its neighbours. This is called con-
text-based arithmetic coding, and forms an essential element of some image/video
coding standards, such as JPEG2000, H.264/AVc and MPEG-4. It is more efficient
when it is applied to binary data, like the bit plane or the sign bits in JPEG2000 or
binary shapes in MPEG-4. We now explain this method with a simple example.
Assume binary symbols of a, b and c, which may take values of 0 or 1, are the three
immediate neighbours of a binary symbol x, as shown in Figure 3.18.

x

cb

a

Figure 3.18 Three immediate neighbouring symbols to x

Because of high correlation between the symbols in the image data, if the
neighbouring symbols of a, b and c are mainly 1, then it is logical to assign a high
probability for coding symbol x when its value is 1. Conversely, if the neighbouring
symbols are mainly 0, the assigned probability of x ¼ 1 should be reduced. Thus,
we can define the context for coding a 1 symbol as

Context ¼ 22c þ 21b þ 20a ¼ 4c þ 2b þ a ð3:12Þ

For the binary values of a, b and c, the context has a value between 0 and 7. Higher
values of the context indicate that a higher probability should be assigned for
coding of 1, and a complementary probability when the value of x is 0.

Principles of video compression 53

3.5 A generic interframe video codec

Figure 3.19 shows a generic interframe encoder that is used in all the standard video
codecs, such as H.261, H.263, H.264, MPEG-1, MPEG-2 and MPEG-4 [16,17,
20–22]. In the following sections, each element of this codec is described in a general
sense. The specific aspects of these codecs are addressed in more detail in the rele-
vant chapters.

DCT

frame
store

quantiser

motion
estimator

+

–

input
video

bitstream
inverse
Q&DCT

inter/intra

motion vectors

VLC buffer

Figure 3.19 A generic interframe predictive coder

3.5.1 Interframe loop
In interframe predictive coding, the difference between pixels in the current frame
and their prediction values from the previous frame is coded and transmitted. At
the receiver, after decoding the error signal of each pixel, it is added to a similar
prediction value to reconstruct the picture. The better the predictor, the smaller the
error signal, and hence the transmission bit rate. If the scene is still, a good pre-
diction for the current pixel is the same pixel in the previous frame. However,
when there is a motion, assuming that movement in the picture is only a shift of
object position, then a pixel in the previous frame, displaced by a motion vector, is
used.

3.5.2 Motion estimator
Assigning a motion vector to each pixel is very costly. Instead, a group of pixels is
motion compensated, such that the motion vector overhead per pixel can be very
small. In standard codecs, a block of 16 � 16 pixels, known as a macroblock (MB)
(to be differentiated from 8 � 8 DCT blocks), is motion estimated and compen-
sated. It should be noted that ME is only carried out on the luminance parts of the
pictures. A scaled version of the same motion vector is used for compensation of
chrominance blocks, depending on the picture format.

54 Standard codecs: image compression to advanced video coding

3.5.3 Inter/intra switch
Every MB is either interframe or intraframe coded, called inter/intra MBs. The
decision on the type of MB depends on the coding technique, which is explained in
greater detail in the relevant chapters. For example, in JPEG, all MBs are intra-
frame coded, as JPEG is mainly used for coding of still pictures.

3.5.4 DCT
Every MB is divided into 8 � 8 luminance and chrominance pixel blocks. Each
block is then transformed via the DCT. There are four luminance blocks in each
MB, but the number of chrominance blocks depends on the colour resolutions
(image format).

3.5.5 Quantiser
As mentioned in section 3.2, there are two types of quantisers. One with a dead
zone for the AC coefficients and the DC coefficient of inter MB, the other without
the dead zone is used for the DC coefficient of intra MB. The range of quantised
coefficients can be from �2047 to þ2047. With a dead zone quantiser, if the
modulus (absolute value) of a coefficient is less than the quantiser step size q, it is
set to zero; otherwise, it is quantised according to eqn. 3.6, to generate quantiser
indices.

3.5.6 Variable length coding
The quantiser indices are variable length coded, according to the type of VLC used.
Motion vectors, as well as the address of coded MBs, are also variable length
coded.

3.5.7 IQ and IDCT
To generate a prediction for interframe coding, the quantised DCT coefficients are
first inverse quantised and inverse DCT coded. These are added to their previous
picture values (after a frame delay by the frame store) to generate a replica of
decoded picture. The picture is then used as a prediction for coding of the next
picture in the sequence.

3.5.8 Buffer
The bit rate generated by an interframe coder is variable. This is because the bit rate
is primarily a function of picture activity (motion of objects and their details).
Therefore, to transmit coded video into fixed rate channels (e.g. 2 Mbit/s links), the
bit rate has to be regulated. Storing the coded data in a buffer and then emptying
the buffer at the channel rate does this. However, if the picture activity is such that
the buffer may overflow (violent motion), then a feedback from the buffer to the
quantiser can regulate the bit rate. Here, as the buffer occupancy increases, the
feedback forces the quantiser step size to be increased to reduce the bit rate.

Principles of video compression 55

Similarly, if the picture activity is less (coding mainly slow motion parts of frames),
then the quantiser step size is reduced to improve the picture quality.

3.5.9 Decoder
The compressed bitstream, after demultiplexing and variable length decoding
(VLD), separates the motion vectors and the DCT coefficients. Motion vectors
are used by motion compensation and the DCT coefficients after the inverse
quantisation and IDCT are converted to error data. They are then added to the
motion-compensated previous frame to reconstruct the decoded picture, as shown
in Figure 3.20.

VLD IQ IDCT

frame store

+

compressed
bitstream

decoded
picture

Figure 3.20 Block diagram of a decoder

3.6 Constant and variable bit rates

The bit rate generated by the encoder of Figure 3.19 is called constant bit rate
(CBR), requiring a fixed channel bandwidth. An alternative solution is to use a
transmission system that can adapt to the variable bit rate (VBR). For VBR coding,
the feedback and the smoothing buffer are no longer needed. The quantiser step
size in this case is fixed.

In an asynchronous transfer mode (ATM) system [23], the information is
transmitted in the form of fixed-length packets or cells, and when a cell is full, it is
transmitted. This can happen at any time, so that the transmission system has a bit
rate capability that matches the encoder. The advantage is realised only when
several video channels are multiplexed together. When one channel is generating
cells in rapid succession, corresponding to high picture activity, it is probable that
the other channels will generate cells at a lower rate. Only rarely will the total bit
rate of the multiplex be exceeded and freeze-out occur.

3.7 Problems

1. In the linear quantiser of Figure 3.4, derive the quantisation characteristics in
terms of inputs and outputs, for each of the following conditions:
a. th ¼ q ¼ 16
b. th ¼ 0, q ¼ 16

56 Standard codecs: image compression to advanced video coding

2. The following 8-bit resolution luminance samples are DPCM encoded with the
prediction of previous sample:

10, 14, 25, 240, 195, 32

If the quantisation is uniform with th ¼ 0 and q ¼ 8,
a. find the reconstructed samples (assume predictor is initialised to zero);
b. calculate the PSNR of the decoded samples.

3. A 3-bit nonuniform quantiser is defined as:

Input Output

if |x| � 4 y ¼ �2
4 < |x| �10 y ¼ �6
10 < |x| �25 y ¼ �15
else y ¼ �50

If the DPCM data of problem 2 are quantised with this quantiser, find the
reconstructed samples and the resulting PSNR value.

4. A step function signal with the following 8-bit digitised values:

20; 20; 20; 20; 20; 231; 231; 231; 231; 231; 231; 231; 231; 231

is DPCM coded with the nonuniform quantiser of problem 3. Plot the recon-
structed samples, and identify the positions where slope overload and granular
noise occur.

5. Determine the elements of the 8 � 8 orthonormal forward and IDCT trans-
formation matrices.

6. Use the DCT matrix of problem 5 to code the following 8 pixels:

35; 81; 190; 250; 200; 150; 100; 21

a. Find the transform coefficients.
b. Why is only one AC coefficient significant?
c. Reconstruct the pixels without any quantisation; comment on the recon-

structed pixel values.

7. The DCT coefficients of problem 6 are linearly quantised with a linear and
dead zone quantiser with a step size of th ¼ q ¼ 16. Find the PSNR of the
reconstructed pixels.

8. Find the PSNR of the reconstructed pixels if in problem 7 the following coeffi-
cients are retained for quantisation and the remaining coefficients are set to zero:
a. DC coefficient
b. DC and the second AC coefficient

9. A 2 � 2 block of pixels in the current frame is matched against a similar size
block in the previous frame, as shown in Figure 3.21, within a search window

Principles of video compression 57

of �2 pixels horizontally and �1 pixel vertically. Find the best-matched
motion vector of the block, if distortion criterion is based on:
a. MSE
b. MAE

10. For a maximum motion speed of 6 pixels/frame:
a. Calculate the number of operations required by the FSM.
b. If each block contains 16 � 16 pixels, calculate the number of multi-

plications and additions, if the cost function was:
i. MSE

ii. MAE

11. Repeat problem 10 for the following fast search methods:
a. TDL
b. TSS
c. CSA
d. OSA

12. Four symbols of a, b, c and d with probabilities p(a) ¼ 0.2, p(b) ¼ 0.45, p(c) ¼
0.3 and p(d) ¼ 0.05 are Huffman coded. Derive the Huffman codes for these
symbols, and compare the average bit rate with that of the entropy.

13. In problem 12, a message comprising of five symbols cbdad is Huffman
coded.
a. Write down the generated bitstream for this message.
b. If there is a single error in:

(i) first bit
(ii) third bit

(iii) fifth bit
what is the decoded message in each case?

14. If the intervals of [0.0, 0.2), [0.2, 0.7), [0.7, 0.95) and [0.95, 1) are assigned for
arithmetic coding of strings of a, b, c and d, respectively, find the lower and
upper values of the arithmetic coded string of cbcab.

15. With the interval of strings of a, b and c defined in problem 14, suppose the
arithmetic decoder receives 0.83955:
a. Decode the first three symbols of the message.
b. Decode the first five symbols of the message.

18 24 31 15 16
11 20 23 41
23 21 18 17
15 31 24 21 13

25 32

1911

previous frame current frame

11
4

18
9

18
9

Figure 3.21 A block of 2 � 2 pixels in the current frame and its corresponding
block in the previous frame shown in the shaded area

58 Standard codecs: image compression to advanced video coding

16. In arithmetic coding, symbols can be decoded using the following equation:

Rnþ1 ¼ Rn � Ln

Un � Ln

where R0 is the received number and [Ln, Un) is the interval of nth symbol in
the stream. Use this equation to decode symbols in problem 15.

17. Find the binary arithmetic coding of string cbcab of problem 14.

18. Decimal numbers can be represented in binary form by their expansions in
powers of 2�1. Derive the first 11 binary digits of the decimal number
0.83955. Compare your results with that of problem 17.

19. The binary digits of arithmetic coded string cbcab are corrupted at:
a. first bit
b. third bit
c. fifth bit
Decode the first five symbols of the string in each case.

References

1. JAIN, A.K.: Fundamentals of Digital Image Processing, Prentice Hall, Upper
Saddle River, 1989

2. CHEN, W., SMITH, C. and FRALICK, S.: ‘A fast computational algorithm for
the discrete cosine transform’, IEEE Trans. Commun., 1979, COM-25,
pp. 1004–1009

3. ISHIGURO, T. and IINUMA, K.: ‘Television bandwidth compression trans-
mission by motion-compensated interframe coding’, IEEE Commun. Mag.,
1982, 10, pp. 24–30

4. KAPPAGANTULA, S. and RAO, K.R.: ‘Motion compensated predictive
coding’, Proceedings of International Technical Symposium, SPIE, San Diego,
CA, August 1983

5. BERGMANN, H.C.: ‘Displacement estimation based on the correlation of
image segments’, IRE Conference on the Electronic Image Processing, York,
UK, July 1982

6. JAIN, J.R. and JAIN, A.K.: ‘Displacement measurement and its application
in interframe image coding’, IEEE Trans. Commun., 1981, COM-29,
pp. 1799–1808

7. SHANABLEH, T. and GHANBARI, M.: ‘Heterogeneous video transcoding to
lower spatio-temporal resolutions and different encoding formats’, IEEE
Trans. Multimedia, 2002, 2:2, pp. 101–110

8. KOGA, T., IINUMA, K., HIRANO, A., IIJIMA, Y. and ISHIGURO, T.:
‘Motion compensated interframe coding for video conferencing’, Proceedings
of National Telecommunication Conference, New Orleans, LA, 29 November–
3 December 1981, pp. G5.3.1–G5.3.5

9. CCITT Working Party XV/4: ‘Description of reference model 8 (RM8)’,
Specialists Group on Coding for Visual Telephony, doc. 525, June 1989

Principles of video compression 59

10. SRINIVASAN, R. and RAO, K.R.: ‘Predictive coding based on efficient
motion estimation’, IEEE International Conference on Communications,
Amsterdam, 14–17 May, 1984, pp. 521–526

11. GHANBARI, M.: ‘The cross search algorithm for motion estimation’, IEEE
Trans. Commun., 1990, 38:7, pp. 950–953

12. PURI, A., HANG, H.M. and SCHILLING, D.L.: ‘An efficient block-
matching algorithm for motion compensated coding’, Proceedings of IEEE
ICASSP’87, 1987, pp. 25.4.1–25.4.4

13. BIERLING, M.: ‘Displacement estimation by hierarchical block matching’,
Proc. SPIE Vis. Commun. Image Process., 1988, 1001, pp. 942–951

14. LANGDON, G.G.: ‘An introduction to arithmetic coding’, IBM J. Res. Dev.,
1984, 28:2, pp. 135–149

15. PENNEBAKER, W.B. and MITCHELL, J.L.: JPEG: Still Image Compres-
sion Standard, Van Nostrand Reinhold, New York, 1993

16. H.263: ‘Draft ITU-T Recommendation H.263, video coding for low bit rate
communication’, September 1997

17. MPEG-4: ‘Testing and evaluation procedures document’, ISO/IEC JTC1/
SC29/WG11, N999, July 1995

18. WITTEN, I.H., NEAL, R.M. and CLEARY, J.G.: ‘Arithmetic coding for data
compression’, Commun. ACM, 1987, 30:6, pp. 520–540

19. GHANBARI, M.: ‘Arithmetic coding with limited past history’, Electron.
Lett., 1991, 27:13, pp. 1157–1159

20. H.261: ‘ITU-T Recommendation H.261, video codec for audiovisual services
at p�64 kbit/s’, Geneva, 1990

21. MPEG-1: ‘Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s’, ISO/IEC 1117-2: video, November 1991

22. MPEG-2: ‘Generic coding of moving pictures and associated audio infor-
mation’, ISO/IEC 13818-2: video, Draft International Standard, November
1994

23. CUTHBURT, A.C. and SAPANEL, J.C.: ATM: The Broadband Tele-
communications Solution, IEE Publishing, London, 1993

60 Standard codecs: image compression to advanced video coding

Chapter 4

Subband and wavelet

Coding of still images under MPEG-4 [1] and the decision by the JPEG committee
to recommend a new standard under JPEG2000 [2] have brought up a new image
compression technique. The committee have decided to recommend a new way of
coding of still images based on the wavelet transform, in sharp contrast to the
discrete cosine transform (DCT) used in the other standard codecs, as well as the
original JPEG. In this chapter, we introduce this wavelet transform and show how it
can be used for image compression.

4.1 Why wavelet transform?

Before describing the wavelet transform and its usage in image compression, it is
essential to answer two fundamental questions:

1. What is wrong with the DCT and why should we use wavelet?
2. If wavelet is superior to DCT, why did not original JPEG use it?

The answer to the first part is as follows. The DCT and the other block-based
transforms partition an image into nonoverlapping blocks and process each block
separately. At very low bit rates, the transform coefficients need to be coarsely
quantised and so there will be a significant reconstruction error after the decoding.
This error is more visible at the block boundaries by causing a discontinuity in the
image and is best known as the blocking artefact. One way of reducing this artefact
is to allow the basis functions to decay towards zero at these points or to overlap
over the adjacent blocks. The latter technique is called the lapped orthogonal
transform [3]. The wavelet transform is a special type of such transform and hence
it is expected to eliminate blocking artefacts.

The answer to the second part relates to the state of the art in image coding in
the mid-1980s, the time when the original JPEG was under development. At that time
although wavelet transform and its predecessor, subband coding, were known,
there was no efficient method of coding the wavelet transform coefficients to be
comparable with the DCT. In fact, the proposals submitted to the JPEG committee
were all DCT-based codecs, none on the wavelet. Also almost at the same time, out of
the 15 proposals to the H.61 committee, there were 14 DCT-based codecs and 1 vector
quantisation method and none on the wavelet. Thus, in the mid-1980s, the compression
performance coupled with the considerable momentum already behind the DCT led
the JPEG committee to adopt DCT-based coding as the foundation of JPEG.

However, the state of the wavelet transform–based image compression tech-
niques has significantly improved since the introduction of the original JPEG.
Much of the credit should go to Jussef Shapiro who by the introduction of the
embedded zero tree wavelet (EZW) made a significant breakthrough in coding
of the wavelet coefficients [4]. At the end of this chapter, this method, and the
other similar methods that exploit the multiresolution properties of the wavelet
transform to give a computationally simple but efficient compression algorithm,
is introduced.

4.2 Subband coding

Before describing the wavelet transform, let us look at its predecessor, subband
coding, which sometimes is called the early wavelet transform [5]. As we will see
later, in terms of image coding they are similar. However, subband coding is a
product designed by engineers [6], while wavelet transform was introduced by
mathematicians [7]. Therefore, before proceeding to mathematics, which some-
times is cumbersome to follow, an engineering view to the multiresolution signal
processing may help to understand it better.

Subband coding was first introduced by Crochiere et al. in 1976 [6], and has
since proved to be a simple and powerful technique for speech and image com-
pression. The basic principle is the partitioning of the signal spectrum into several
frequency bands, then coding and transmitting each band separately. This is parti-
cularly suited to image coding. First, natural images tend to have a nonuniform
frequency spectrum, with most of the energy being concentrated in the lower-
frequency band. Second, the human perception of noise tends to fall off at both high
and low frequencies, and this enables the designer to adjust the compression dis-
tortion according to perceptual criteria. Third, since images are processed in their
entirety, and not in artificial blocks, there is no block structure distortion in the
coded picture, as occurs in the block transform–based image encoders, such
as DCT.

Thus, subband, like the Fourier transform, is based on the frequency domain
analysis of the image, but its filter banks have a better decorrelation property that
suits natural images better. This can be explained as follows: Fourier basis func-
tions are very exact in frequency, but are spatially not precise. In other words, the
signal energy of the Fourier basis functions is not concentrated at one frequency,
but spread over all space. This would not be a problem if image pixels were always
correlated. However, in reality, pixels in images of interest generally have low
correlation, especially across the image discontinuities such as edges. In contrast to
Fourier basis functions, the subband bases not only have fairly good frequency
concentration but also are spatially compact. If image edges are not too closely
packed, most of the subband basis elements will not intersect with them, thus
performing a better decorrelation on average.

In subband coding, the band splitting is done by passing the image data
through a bank of band-pass analysis filters, as shown in Figure 4.1. To adapt the

62 Standard codecs: image compression to advanced video coding

frequency response of the decomposed pictures to the characteristics of the human
visual system, filters are arranged into octave bands.

Since the bandwidth of each filtered version of the image is reduced, they can
now in theory be downsampled at a lower rate, according to the Nyquist criteria,
giving a series of reduced size subimages. The subimages are then quantised, coded
and transmitted. The received subimages are restored to their original sizes and
passed through a bank of synthesis filters, where they are interpolated and added to
reconstruct the image.

In the absence of quantisation error, it is required that the reconstructed
picture be an exact replica of the input picture. This can only be achieved if
the spatial frequency response of the analysis filters tiles the spectrum without
overlapping, which requires infinitely sharp transition regions and cannot be rea-
lised practically. Instead, the analysis filter responses have finite transition
regions and do overlap, as shown in Figure 4.1, which means that the down-
sampling/upsampling processes introduce aliasing distortion into the reconstructed
picture.

To eliminate the aliasing distortion, the synthesis and analysis filters have to
have certain relationships such that the aliased components in the transition regions
cancel each other out. To see how such a relation can make alias-free subband
coding possible, consider a two-band subband, as shown in Figure 4.2.

frequency

amplitude

W/2

low band high band

W0

Figure 4.2 A two-band analysis filter

W/2W/4W/8
W/16 W0

frequency

amplitude

Figure 4.1 A bank of band-pass filters

Subband and wavelet 63

The corresponding two-band subband encoder/decoder is shown in Figure 4.3.
In this diagram, filters H0(z) and H1(z) represent the z-transform transfer functions
of the respective low-pass and high-pass analysis filters. Filters G0(z) and G1(z) are
the corresponding synthesis filters. The downsampling and upsampling factors
are 2.

22

X(z) Y(z)

H0(z)

H1(z) G1(z)

G0(z)2 2

downsample by a factor of 2

upsample
coding and

transmission

Y0(z)

Y1(z)

Σ

Figure 4.3 A two-band subband encoder/decoder

At the encoder, downsampling by 2 is carried out by discarding alternate
samples, the remainder being compressed into half the distance occupied by the
original sequence. This is equivalent to compressing the source image by a factor
of 2, which doubles all the frequency components present. The frequency domain
effect of this downsampling/compression is thus to double the width of all com-
ponents in the sampled spectrum.

At the decoder, the upsampling is a complementary procedure: it is achieved
by inserting a zero-valued sample between each input sample and is equi-
valent to a spatial expansion of the input sequence. In the frequency domain, the
effect is as usual the reverse and all components are compressed towards zero
frequency.

The problem with these operations is the impossibility of constructing ideal,
sharp-cut analysis filters. This is illustrated in Figure 4.4a. Spectrum A shows the
original sampled signal that has been low-pass filtered so that some energy remains
above Fs/4, the cut-off of the ideal filter for the task. Downsampling compresses the
signal and expands to give B, and C is the picture after expansion or upsampling.
As well as those at multiples of Fs, this process generates additional spectrum
components at odd multiples of Fs/2. These cause aliasing when the final subband
recovery takes place as at D.

In the high-pass case, Figure 4.4b, the same phenomena occur, so that on
recovery there is aliased energy in the region of Fs/4. The final output image is
generated by adding the low-pass and high-pass subbands regenerated by the
upsamplers and associated filters. The aliased energy would normally be expected
to cause interference. However, if the phases of the aliased components from the
high- and low-pass subbands can be made to differ by p, then cancellation occurs
and the recovered signal is alias free.

64 Standard codecs: image compression to advanced video coding

Fs
2
Fs

4
Fs

2
Fs Fs

4
Fs

–Fs

–Fs

low-pass filtered
spectrum

expanded/upsampled

after low-pass recovery
filter

frequency

etc.

aliasing

aliasing

A

B

C

D

frequency

etc.

high-pass filtered
spectrum

A

B

C

D

expanded/upsampled

compressed/downsampled

after high-pass recovery

(a)

(b)

compressed/downsampled

Figure 4.4 (a) Low-pass subband generation and recovery; (b) high-pass
subband generation and recovery

Subband and wavelet 65

How this can be arranged is best analysed by reference to z-transforms. Refer-
ring to Figure 4.3, after the synthesis filters, the reconstructed output in z-transform
notation can be written as

Y ðzÞ ¼ G0ðzÞ � Y 0ðzÞ þ G1ðzÞ � Y 1ðzÞ ð4:1Þ
where Y0(z) and Y1(z) are inputs to the synthesis filters after upsampling. Assuming
there are no quantisation and transmission errors, the reconstructed samples are
given by

Y 0ðzÞ ¼ 1
2
½H0ðzÞ � X ðzÞ þ H0ð�zÞ � X ð�zÞ�

Y 1ðzÞ ¼ 1
2
½H1ðzÞ � X ðzÞ þ H1ð�zÞ � X ð�zÞ�

ð4:2Þ

where the aliasing components from the downsampling of the lower and higher
bands are given by H0(–z)X(–z) and H1(–z)X(–z), respectively. By substituting these
two equations in the previous one, we get

Y ðzÞ ¼ 1
2
½H0ðzÞ � G0ðzÞ þ H1ðzÞ � G1ðzÞ�X ðzÞ

þ 1
2
½H0ð�zÞ � G0ðzÞ þ H1ð�zÞ � G1ðzÞ�X ð�zÞ

ð4:3Þ

The first term is the desired reconstructed signal, while the second term is aliased
components. The aliased components can be eliminated regardless of the amount of
overlap in the analysis filters by defining the synthesis filters as

G0ðzÞ ¼ H1ð�zÞ and G1ðzÞ ¼ �H0ð�zÞ ð4:4Þ
With such a relation between the synthesis and analysis filters, the reconstructed
signal now becomes

Y ðzÞ ¼ 1
2
½H0ðzÞ � H1ð�zÞ � H0ð�zÞ � H1ðzÞ�X ðzÞ ð4:5Þ

If we define P(z) ¼ H0(z)H1(–z), then the reconstructed signal can be written as

Y ðzÞ ¼ 1
2
½PðzÞ � Pð�zÞ�X ðzÞ ð4:6Þ

Now the reconstructed signal can be a perfect but an m-sample delayed replica of
the input signal, if

PðzÞ � Pð�zÞ ¼ 2z�m ð4:7Þ
Thus, the z-transform input/output signals are given by

Y ðzÞ ¼ z�mX ðzÞ ð4:8Þ

66 Standard codecs: image compression to advanced video coding

This relation in the pixel domain implies that the reconstructed pixel sequence
{y(n)} is an exact replica of the input sequence but delayed by m pixels, that is,
{x(n � m)}.

In these equations, P(z) is called the product filter and m the delay intro-
duced by the filter banks. The design of analysis/synthesis filters is based on
factorisation of the product filter P(z) into linear phase components H0(z) and
H1(–z), with the constraint that the difference between the product filter and its
image should be a simple delay, then the product filter must have an odd number
of coefficients. LeGall and Tabatabai [8] have used a product filter P(z) of
the kind:

PðzÞ ¼ 1
16

ð�1 þ 9z�2 þ 16z�3 þ 9z�4 � z�6Þ ð4:9Þ

and by factorising have obtained several solutions for each pair of the analysis and
synthesis filters:

H0ðzÞ ¼ 1
4
ð�1þ 3z�1 þ 3z�2 � z�3Þ, H1ð�zÞ ¼ 1

4
ð1þ 3z�1 þ 3z�2 þ z�3Þ

or

H0ðzÞ ¼ 1
4
ð1þ 3z�1 þ 3z�2 þ z�3Þ, H1ð�zÞ ¼ 1

4
ð�1þ 3z�1 þ 3z�2 � z�3Þ

or

H0ðzÞ ¼ 1
8
ð�1þ 2z�1 þ 6z�2 þ 2z�3 � z�4Þ, H1ð�zÞ ¼ 1

2
ð1þ 2z�1 þ z�2Þ

ð4:10Þ

The synthesis filters G0(z) and G1(z) are then derived using their relations with the
analysis filters, according to eqn. 4.4. Each of the above equation pairs gives the
results P(z) � P(�z) ¼ 2z–3, which implies that the reconstruction is perfect with a
delay of three samples.

4.3 Wavelet transform

The wavelet transform is a special case of subband coding and is becoming very
popular for image and video coding. While subband coding of images is based on
frequency analysis, the wavelet transform is based on the approximation theory.
However, for natural images that are locally smooth and can be modelled as pie-
cewise polynomials, a properly chosen polynomial function can lead to frequency
domain analysis, like that of subband. In fact, wavelets provide an efficient
means for approximating such functions with a small number of basis elements.
Mathematically, a wavelet transform of a square-integrable function x(t) is its
decomposition into a set of basis functions, such as

Subband and wavelet 67

X wða, bÞ ¼
ð1

�1
xðtÞYa, bðtÞdt ð4:11Þ

where Ya, bðtÞ is known as the basis function, which is a time dilation and trans-
lation version of a band-pass signal Y(t), called the mother wavelet and defined as

Ya, b ¼ 1ffiffiffi
a

p Y
t � b

a

� �
ð4:12Þ

where a and b are time dilation and translation parameters, respectively. The effects
of these parameters are shown in Figure 4.5.

b

(a)

(c)

(b)

(d)

Figure 4.5 Effect of time dilation and translation on the mother wavelet
(a) mother wavelet Y(t) ¼ Y1,0 (t), a ¼ 1, b ¼ 0; (b) wavelet Y1,b

(t) a ¼ 1, b = 0; (c) wavelet Y2,0 (t) at scale a ¼ 2, b ¼ 0; and
(d) wavelet Y0.5,0(t) at scale a ¼ 1/2, b ¼ 0

The width of the basis function varies with the dilation factor (or scale) a. The
larger is a, the wider becomes the basis function in the time domain and hence
narrower in the frequency domain. Thus, it allows varying time and frequency
resolutions (with trade-off between both) in the wavelet transform. It is this prop-
erty of the wavelet transform that makes it suitable for analysing signals having
features of different sizes as present in the natural images. For each feature size,
there is a basis function Ya, bðtÞ in which it will be best analysed. For example, in a
picture of a house with a person looking through a window, the basis function with
larger a will analyse conveniently the house as a whole. The person by the window

68 Standard codecs: image compression to advanced video coding

will be best analysed at a smaller scale and the eyes of the person at even smaller
scale. So the wavelet transform is analogous to the analysis of a signal in the
frequency domain using band-pass filters of variable central frequency (which
depends on parameter a) but with a constant quality factor. Note that in filters the
quality factor is the ratio of the centre frequency to the bandwidth of the filter.

4.3.1 Discrete wavelet transform
As wavelet transform defined in eqn. 4.11 maps a one-dimensional signal x(t) into a
two-dimensional function Xw(a, b), this increase in dimensionality makes it extremely
redundant, and the original signal can be recovered from the wavelet transform com-
puted on the discrete values of a and b [9]. The a can be made discrete by choosing
a ¼ am

0 , with a0 > 1 and m an integer. As a increases, the bandwidth of the basis
function (or frequency resolution) decreases, and hence more resolution cells are
needed to cover the region. Similarly, making b discrete corresponds to sampling in
time (sampling frequency depends on the bandwidth of the signal to be sampled, which
in turn is inversely proportional to a), it can be chosen as b ¼ nb0am

0 . For a0 ¼ 2 and
b0 ¼ 1 there are choices of Y(t) such that the function Ym, nðtÞ forms an orthonormal
basis of space of square-integrable functions. This implies that any square-integrable
function x(t) can be represented as linear combination of basis functions as

xðtÞ ¼
X1

m¼�1

X1
n¼�1

am;nYm;nðtÞ ð4:13Þ

where am,n are known as the wavelet transform coefficients of x(t) and are obtained
from eqn. 4.11 by

am, n ¼
ð1

�1
xðtÞYm, nðtÞ ð4:14Þ

It is interesting to note that for every increment in m, the value of a doubles. This
implies doubling the width in the time domain and halving the width in the fre-
quency domain. This is equivalent to signal analysis with octave band decom-
position and corresponds to dyadic wavelet transform similar to that shown in
Figure 4.1, used to describe the basic principles of subband coding, and hence the
wavelet transform is a type of subband coding.

4.3.2 Multiresolution representation
Application of the wavelet transform to image coding can be better understood with
the notion of multiresolution signal analysis. Suppose there is a function F(t) such
that the set F(t � n), n [Z is orthonormal. Also suppose F(t) is the solution of a
two-scale difference equation

FðtÞ ¼
X1

n¼�1
cn

ffiffiffi
2

p
Fð2t � nÞ ð4:15Þ

Subband and wavelet 69

where cn ¼
ð1

�1
FðtÞ

ffiffiffi
2

p
Fð2t � nÞdt ð4:16Þ

Let x(t) be a square-integrable function, which can be represented as a linear
combination of F(t � n) as

xðtÞ ¼
X1

n¼�1
cnFðt � nÞ ð4:17Þ

where cn is the expansion coefficient and is the projection of x(t) onto F(t � n).
Since dilation of a function varies its resolution, it is possible to represent x(t) at
various resolutions by dilating and contracting the function F(t). Thus, x(t) at any
resolution m can be represented as

xmðtÞ ¼ 2�m=2
X

n

cn
mFð2�mt � nÞ ð4:18Þ

If Vm is the space generated by 2�m=2Fð2�mt � nÞ, then from eqn. 4.15, F(t) is such
that for any i > j, the function that generates space Vi is also in Vj, that is, V i
 V j

(i > j). Thus, spaces at successive scales can be nested such that Vm for increasing
m can be viewed as the space of decreasing resolution. Therefore, a space at a
coarser resolution Vj�1 can be decomposed into two subspaces: a space at a finer
resolution Vj and an orthogonal complement of Vj, represented by Wj such that
V j þ W j ¼ V j�1, where W j?V j. The space Wj is the space of differences between
the coarser and the finer scale resolutions, which can be seen as the amount of
detail added when going from smaller resolution Vj to a larger resolution Vj�1. The
hierarchy of spaces is depicted in Figure 4.6.

V–1
V0
V1

V2

V3

W0

W1
W2

W3

Figure 4.6 Multiresolution spaces

70 Standard codecs: image compression to advanced video coding

Mallat [10] has shown that, in general, the basis for Wj consists in translations
and dilations of a single prototype function YðtÞ, called a wavelet. Thus, Wm is the
space generated by Ym, nðtÞ ¼ 2�m=2Yð2�mt � nÞ. The wavelet YðtÞ 2 V�1 can be
obtained from F(t) as

YðtÞ ¼
X1

n¼�1
ð�1Þnc1�n

ffiffiffi
2

p
Fð2t � nÞ ð4:19Þ

The function F(t) is called the scaling function of the multiresolution repre-
sentation. Thus, the wavelet transform coefficients of eqn. 4.14 correspond to the
projection of x(t) onto a detail space of resolution m, Wm. Hence, a wavelet trans-
form basically decomposes a signal into spaces of different resolutions. In the lit-
erature, these kinds of decomposition are, in general, referred to as multiresolution
decomposition. Here is an example of calculating the Haar wavelet through this
technique.

Example (Haar wavelet)
The scaling function of the Haar wavelet is the well-known rectangular (rect)
function:

FðtÞ ¼ 1 0 � t � 1
0 otherwise

	

As the rect function satisfies eqn. 4.15 with cn calculated from eqn. 4.16 as

cn ¼
1ffiffiffi
2

p n ¼ 0,1

0 otherwise

8<
:

Thus, using eqn. 4.19, the Haar wavelet can be found as

YðtÞ ¼ Fð2tÞ �Fð2t � 1Þ

YðtÞ ¼
1 0 � t <

1
2

�1
1
2
� t < 1

8><
>:

The scaling function F(t) (a rect function) and the corresponding Haar wavelet
Y(t) for this example are shown in Figure 4.7a and b, respectively. In terms
of approximation perspective, the multiresolution decomposition can be explained
as follows. Let x(t) be approximated at resolution j by function Ajx(t) through the
expansion series of the orthogonal basis functions. While Wj represents the space of

Subband and wavelet 71

difference between a coarser scale Vj�1 and a finer scale Vj, Djx(t) [Wj represents
the difference of approximation of x(t) at (j � 1)th and jth resolution
(i.e. DjxðtÞ ¼ Aj�1xðtÞ � AjxðtÞ).

Thus, signal x(t) can be split as xðtÞ ¼ A�1xðtÞ ¼ A0xðtÞ þ D0xðtÞ.
Figure 4.7c and d show the approximations of a continuous function at the two

successive resolutions using rectangular scaling function. The coarser approxima-
tion A0x(t) is shown in Figure 4.7c, and at higher resolution, approximation A1x(t)
in Figure 4.7d, where scaling function is a dilated version of the rectangular
function. For a smooth function x(t), most of the variation (signal energy) is con-
tained in A0x(t), and D0x(t) is nearly zero. By repeating this splitting procedure and
partitioning A0xðtÞ ¼ A1xðtÞ þ D1xðtÞ, the wavelet transform of signal x(t) can be
obtained, and hence the original function x(t) can be represented in terms of its
wavelets as

xðtÞ ¼ D0xðtÞ þ D1xðtÞ þ D2xðtÞ þ � � � þ DnxðtÞ þ AnxðtÞ ð4:20Þ

where n represents the number of decompositions. Since the dynamic ranges of the
detail signals DjxðtÞ are much smaller than the original function x(t), they are easier
to code than the coefficients in the series expansion of eqn. 4.13.

4.3.3 Wavelet transform and filter banks
For the repeated splitting procedure described above to be practical, there should be
an efficient algorithm for obtaining DjxðtÞ from the original expansion coefficient of
x(t). One of the consequences of multiresolution space partitioning is that the scaling
function F(t) possesses self-similarity property. If F(t) and FðtÞ are the analysis and

1
�(t)

1

1

–1

�(t)

(b)

(d)

(a)

(c)

Figure 4.7 (a) Haar scaling function; (b) Haar wavelet; (c) approximation of a
continuous function, x(t), at coarser resolution A0x(t) and (d) higher
resolution approximation A1x(t)

72 Standard codecs: image compression to advanced video coding

synthesis scaling functions, and YðtÞ and YðtÞ are analysis and synthesis wavelets,
then, since V j
 V j�1, these functions can be recursively defined as

FðtÞ ¼
X1

n¼�1
cn

ffiffiffi
2

p
Fð2t � nÞ

FðtÞ ¼
X1

n¼�1
cn

ffiffiffi
2

p
Fð2t � nÞ

YðtÞ ¼
X1

n¼�1
dn

ffiffiffi
2

p
Fð2t � nÞ

and YðtÞ ¼
X1

n¼�1
dn

ffiffiffi
2

p
Fð2t � nÞ

These recurrence relations provide the ways to calculate the coefficients of
approximation of x(t) at resolution j, Ajx(t) and coefficients of detail signal DjxðtÞ
from the coefficients of approximation of x(t) at a higher resolution Aj�1x(t). In
fact, simple mathematical manipulations can reveal that both the coefficients of
approximation at a finer resolution and detail coefficients can be obtained by
convolving the coefficient of approximation at a coarser resolution with a filter and
downsampling it by a factor of 2. For a lower resolution approximation coefficient,
the filter is a low-pass filter with taps hk ¼ c�k and for the details the filter is a
high-pass filter with taps gk ¼ d�k . Inversely, the signal at a higher resolution can
be recovered from its approximation at a lower resolution and coefficients of the
corresponding detail signal. It can be accomplished by upsampling the coefficients
of approximation at a lower resolution and detail coefficients by a factor of 2,
convolving them with the synthesis filters of taps hk ¼ ck and gk ¼ dk , respec-
tively, and adding them together. One step of splitting and inverse process is shown
in Figure 4.8, which is in fact the same as Figure 4.3 for subband. Thus, the filtering
process splits the signals into low-pass and high-pass frequency components and
hence increases frequency resolution by a factor of 2, but by downsampling reduces
the temporal resolution by the same factor. Hence, at each successive step, better
frequency resolution at the expense of temporal resolution is achieved.

hk

gk

hk

Aj–1 x(t)

Dj x(t)

Aj x(t) Aj x(t)

Dj x(t)
gk

(a) (b)

↓2

↓2

↑2

↑2

Aj–1 x(t)

Figure 4.8 One-stage wavelet transform (a) analysis and (b) synthesis

(4.21)

Subband and wavelet 73

4.3.4 Higher-order systems
The multidimensional wavelet transform can be obtained by extending the concept
of the two-band filter structure of Figure 4.8 in each dimension. For example,
decomposition of a two-dimensional image can be performed by carrying out one-
dimensional decomposition in the horizontal and then in the vertical directions.

H

L H

L

H

L

H

L
H

L

H

L

input

band 7

band 6

band 5

band 3

band 2

band 1

band 4

horizontal horizontalvertical vertical

(HH1)

(HL1)

(LH1)
(HH2)

(HL2)

(LH2)

(LL2)

Figure 4.9 Multiband wavelet transform coding using repeated two-band splits

A seven-band wavelet transform coding of this type is illustrated in Figure 4.9,
where band splitting is carried out alternately in the horizontal and vertical direc-
tions. In the figure, L and H represent the low-pass and high-pass analysis filters,
respectively, with a 2:1 downsampling. At the first stage of dyadic decomposition,
three subimages with high-frequency contents are generated. The subimage LH1
has mainly low horizontal but high vertical frequency image details. This is
reversed in the HL1 subimage. The HH1 subimage has high horizontal and high
vertical image details. These image details at a lower frequency are represented by
the LH2, HL2 and HH2 bands, respectively. The LL2 band is a low-pass sub-
sampled image, which is a replica of the original image, but at a smaller size.

4.3.5 Wavelet filter design
As we saw in section 4.3.3, in practice, wavelet transform can be realised by a set of
filter banks, similar to those of subband. Relations between the analysis and
synthesis of the scaling and wavelet functions also follow those of the synthesis and
analysis filters of the subband. Hence, we can use the concept of the product filter,
defined in eqn. 4.7, to design wavelet filters. However, if we use the product filter
as was used for subband, we do not achieve anything new. But if we add some
constraints on the product filter, such that the property of the wavelet transform is
maintained, then a set of wavelet filters can be designed.

One of the constraints required to be imposed on the product filter P(z) is that
the resultant filters H0(z) and H1(z) be continuous, as required by the wavelet
definition. Moreover, it is sometimes desirable to have wavelets with the largest

74 Standard codecs: image compression to advanced video coding

possible number of continuous derivatives. This property in terms of z-transform
means that the wavelet filters and consequently the product filter should have zeros
at z ¼ �1. A measure of the number of derivatives or number of zeros at z ¼ �1 is
given by the regularity of the wavelets and also called the number of vanishing
moments [11]. This means in order to have regular filters, filters must have suffi-
cient number of zeros at z ¼ �1, the larger the number of zeros, the more regular
the filter is.

Also, since in images, phase carries important information, it is necessary that
filters must have linear phase responses. On the other hand, although the orthogonal
filters have energy preserving property but most of the orthogonal filters do not
have phase linearity. A particular class of filters that have linear phase in their both
analysis and synthesis, and are very close to orthogonal are known as the biortho-
gonal filters. In biorthogonal filters, the low-pass analysis and the high-pass
synthesis filters are orthogonal to each other, and similarly the high-pass analysis
and the low-pass synthesis are orthogonal to each other, hence the name biortho-
gonal. Note that, in the biorthogonal filters, since the low pass and the high pass of
either analysis or synthesis filter can be of different lengths, they are not themselves
orthogonal to each other.

Thus, for a wavelet filter to have at least n zeros at z ¼ �1, we chose the
product filter to be [12]

PðzÞ ¼ ð1 þ z�1Þ2nQðzÞ ð4:22Þ

where Q(z) has n unknown coefficients. Depending on the choice of Q(z) and the
regularity of the desired wavelets, one can design a set of wavelets as desired. For
example, with

n ¼ 2 and QðzÞ ¼ �1 þ 4z�1 � z�2

the product filter becomes

PðzÞ ¼ ð1 þ z�1Þ4ð�1 þ 4z�1 � z�2Þ ð4:23Þ

and with a proper weighting for orthonormality and then factorisation, it leads to
two sets of (5,3) and (4,4) filter banks of eqn. 4.10. The weighting factor is deter-
mined from eqn. 4.7. These filters were originally derived for subbands, but as we
see they can also be used for wavelets. Filter pair (5,3) is the recommended filter
for the lossless image coding in JPEG2000 [13]. The coefficients of its analysis
filters are tabulated in Table 4.1.

As another example with

n ¼ 3 and QðzÞ ¼ 1 � 6z�1 þ 38
3

z�2 � 6z�3 þ z�4

PðzÞ ¼ ð1 þ z�1)6 ð1 � 6z�1 þ 38
3

z�2 � 6z�3 þ z�4Þ
ð4:24Þ

Subband and wavelet 75

the (9,3) pair of Daubechies filters [9] can be derived, which are given in Table 4.2.
These filter banks are recommended for still image coding in MPEG-4 [14].

Another popular biorthogonal filter is the Daubechies (9,7) filter bank,
recommended for lossy image coding in the JPEG2000 standard [13]. The coeffi-
cients of its low-pass and high-pass analysis filters are tabulated in Table 4.3. These
filters are known to have the highest compression efficiency.

The corresponding low-pass and high-pass synthesis filters can be derived
from the above analysis filters, using the relationship between the synthesis and
analysis filters given by eqn. 4.4. That is, G0(z) ¼ H1(�z) and G1(z) ¼ �H0(�z).

Example
As an example of wavelet transform, Figure 4.10 shows all the seven subimages
generated by the encoder of Figure 4.9 for a single frame of the flower garden test

Table 4.1 Low-pass and high-pass analysis filters of
integer (5,3) biorthogonal filter

n Low pass High pass

0 6/8 +1
�1 2/8 �1/2
�2 �1/8

Table 4.2 Low-pass and high-pass analysis filters of
Daubechies (9,3) biorthogonal filter

n Low pass High pass

0 0.99436891104360 0.70710678118655
�1 0.41984465132952 �0.35355339059327
�2 �0.17677669529665
�3 �0.06629126073624
�4 0.03314563036812

Table 4.3 Low-pass and high-pass analysis filters of
Daubechies (9,7) biorthogonal filter

n Low pass High pass

0 0.85269865321930 �0.7884848720618
�1 0.37740268810913 0.41809244072573
�2 �0.11062402748951 0.04068975261660
�3 �0.02384929751586 �0.06453905013246
�4 0.03782879857992

76 Standard codecs: image compression to advanced video coding

sequence, with a nine-tap low-pass and three-tap high-pass analysis Daubechies
filter pairs, (9,3), given in Table 4.2. These filters have been recommended for
coding of still images in MPEG-4 [14], which has been shown to achieve good
compression efficiency.

The original image (not shown) dimensions were 352 pixels by 240 lines.
Bands 1–4, at two levels of subdivision, are 88 by 60, while bands 5–7 are 176 by
120 pixels. All bands but band 1 (LL2) have been amplified by a factor of 4 and an
offset of þ128 to enhance visibility of the low level details they contain. The scope
for bandwidth compression arises mainly from the low-energy levels that appear in
the high-pass subimages.

Since at image borders all the input pixels are not available, a symmetric
extension of the input texture is performed before applying the wavelet transform at
each level [14]. The type of symmetric extension can vary. For example, in MPEG-4,
to satisfy the perfect reconstruction conditions with the Daubechies (9,3) tap analysis
filter pairs, two types of symmetric extensions are used.

Type A is only used at the synthesis stage. It is used at the trailing edge of low-
pass filtering and the leading edge of high-pass filtering stages. If the pixels at the
boundary of the objects are represented by abcde, then the type A extension
becomes edcba|abcde, where the letters in bold type are the original pixels and
those in plain are the extended pixels. Note that for a (9,3) analysis filter pair of
Table 4.2, the synthesis filter pair will be (3,9) with G0(z) ¼ H1(–z) and G1(z) ¼
–H0(–z), as was shown in eqn. 4.4.

Type B extension is used for both leading and trailing edges of the low- and
high-pass analysis filters. For the synthesis filters, it is used at the leading edge of
the low pass but at the trailing edge of the high pass. With this type of extension,
the extended pixels at the leading and trailing edges become edcb|abcde and abcde|
dcba, respectively.

1 2

3 4 5

6 7
LH1

HL1

HH2

HL2LL2

LH2

HH1

(a) (b)

Figure 4.10 (a) The seven subimages generated by the encoder of Figure 4.9 and
(b) layout of individual bands

Subband and wavelet 77

4.4 Coding of the wavelet subimages

The lowest band of the wavelet subimages is a replica of the original image, but at
much reduced size, depending on the number of decomposition levels, as can be
seen from Figure 4.10. For example, if the number of wavelet decomposition levels
is too high, then there is not much correlation between the pixels of the lowest
band. In this case, pixel-by-pixel coding, as used in the JPEG2000 standard, is good
enough. On the other hand, for MPEG-4, where not as many decomposition levels
as JPEG2000 are used, there are some residual correlations between them. These
can be reduced by differential pulse code modulation (DPCM) coding. Also,
depending on whether wavelet transform is applied to still images or video, this
band can be coded accordingly. However, in the relevant chapters, coding of
this band for appropriate application is described.

For efficient compression of higher bands as well as for a wide range of
scalability, the higher-order wavelet coefficients are coded with a zero tree (ZT)
structure like the EZW algorithm first introduced by Shapiro [4]. This method and
its variants are based on two concepts: quantisation by successive approximation
and exploitation of the similarities of the bands of the same orientation.

4.4.1 Quantisation by successive approximation
Quantisation by successive approximation is the representation of a wavelet coef-
ficient value in terms of progressively smaller quantisation step sizes. The number
of passes of the approximation depends on the desired quantisation distortions. To
see how successive approximation can lead to quantisation, consider Figure 4.11,
where a coefficient of length L is successively refined to its final quantised value
of L̂.

L

l

l/2

l/8
l/4

l/16

L̂

l/32

Figure 4.11 Principles of successive approximation

The process begins by choosing an initial yardstick length l. The value of l is
set to half the largest coefficient in the image. If the coefficient is larger than the
yardstick, it is represented with the yardstick value; otherwise, its value is set to

78 Standard codecs: image compression to advanced video coding

zero. After each pass, the yardstick length is halved and the error magnitude, which
is the difference between the original value of the coefficient and its reconstructed
value, is compared with the new yardstick. The process is continued, such that the
final error is acceptable. Hence, increasing the number of passes, the error in the
representation of L by L̂ can be made arbitrarily small.

With regard to Figure 4.11, the quantised length L can be expressed as

L̂ ¼ 0� lþ1� l

2
þ0� l

4
þ0� l

8
þ1� l

16
þ1� l

32
� � � ¼ l

2
þ l

16
þ l

32
ð4:25Þ

where only yardstick lengths smaller than quantisation error are considered.
Therefore, given an initial yardstick length l, a length L can be represented as a
string of 1 and 0 symbols. As each symbol 1 or 0 is added, the precision in the
representation of L increases, and thus the distortion level decreases. This process is
in fact equivalent to the binary representation of real numbers, called bit plane
representation, where each number is represented by a string of 0s and 1s. By
increasing the number of digits, the error in the representation can be made arbi-
trarily small.

Bit plane quantisation is another form of successive approximation that has
been used in some standard codecs such as the JPEG2000. Here, the wavelet
coefficients are first represented by their maximum possible precision. This
depends on the input pixel resolution (e.g. 8 bits) and the dynamic range of the
wavelet filters coefficients. The symbols that represent the quantised coefficients
are encoded 1 bit at a time, starting with the most significant bit (MSB) and pre-
ceding to the least significant bit (LSB). Thus, for an M-bit plane quantisation with
the finest quantiser step size of D, the yardstick is D2M�1, where D is the basic
quantiser step size.

4.4.2 Similarities among the bands
A two-stage wavelet transform (seven bands) of the flower garden image sequence
with the position of the bands was shown in Figure 4.10. It can be seen that the
vertical bands look like scaled versions of each other, as do the horizontal and
diagonal bands. Of particular interest in these subimages is that the nonsignificant
coefficients from bands of the same orientation tend to be in the same corre-
sponding locations. Also, the edges are approximately at the same corresponding
positions. Considering that subimages of lower bands (higher stages of decom-
position) have half the dimensions of their higher bands, one can make a quad tree
representation of the bands of the same orientation, as shown in Figure 4.12 for a
ten band (three-stage wavelet transform).

In this figure, a coefficient in the lowest vertical band, LH3, corresponds to
four coefficients of its immediately higher band LH2, which relates to 16 coeffi-
cients in LH1. Thus, if a coefficient in LH3 is zero, it is likely that its children in the
higher bands of LH2 and LH1 are zero. The same is true for the other horizontal and
diagonal bands. This tree of zeros, called ZT, is an efficient way of representing a
large group of zeros of the wavelet coefficients. Here, the root of the ZT is required

Subband and wavelet 79

to be identified and then the descendant children in the higher bands can be
ignored.

4.5 EZW algorithm

The combination of the ZT roots with successive approximation has opened up a
very interesting coding tool for not only efficient compression of wavelet coeffi-
cients but also as a means for spatial and signal-to-noise ratio (SNR) scalability [4].

The encoding algorithm with slight modification on the successive approx-
imation, for efficient coding, according to EZW [4] is described as follows:

1. The image mean is computed and extracted from the image. This depends on
how the lowest band LL is coded. If it is coded independently of other bands,
such as with DPCM in MPEG-4, then this stage can be ignored.

2. An R-stage (3R þ 1 band) wavelet transform is applied to the (zero mean)
image.

3. The initial yardstick length l is set to half of the maximum absolute value of the
wavelet coefficients.

4. A list of the coordinates of the coefficients, called the dominant list, is gen-
erated. This list determines the order in which the coefficients are scanned. It
must be such that coefficients from a lower-frequency band (higher scale) are
always scanned before the ones from a higher-frequency band. Two empty lists
of coefficient coordinates, called the subordinate list and the temporary list, are
also created.

5. The wavelet transform of the image is scanned, and if a wavelet coefficient is
smaller than the current yardstick length l, it is reconstructed to zero. Other-
wise, it is reconstructed as �3l=2, according to its sign.

6. Dominant pass: the reconstructed coefficients are scanned again, according to
the order in the dominant list, generating a string of symbols as follows: if a
reconstructed coefficient is positive or negative, a þ or � symbol is added to

HL1

LH1 HH1

LL

LH2

LH3
HH2

HH3

HL3 HL2

Figure 4.12 Quad tree representation of the bands of the same orientation

80 Standard codecs: image compression to advanced video coding

the string and the coordinates of this coefficient are appended to the
subordinate list. If a reconstructed coefficient is zero, its coordinates are
appended to the temporary list. In the case of a zero-valued reconstructed
coefficient, two different symbols can be appended to the string; if all its
corresponding coefficients in bands of the same orientation and higher fre-
quencies are zero, a ZT root is added to the string, and its corresponding
coefficients are removed from the dominant list and added to the temporary
list (since they are already known to be zero, they do not need to be scanned
again). Otherwise, an isolated zero (Z) is added to the string. The strings
generated from the four-symbol alphabet of þ, –, ZT and Z are encoded with
an adaptive arithmetic encoder [15], whose model is updated to four symbols
at the beginning of this pass. However, during the scanning of the highest
horizontal, vertical and diagonal frequency bands (HL1, LH1 and HH1 of
Figure 4.12), no ZT roots can be generated. Therefore, just before the scan-
ning of the first coefficient of these bands, the model of the arithmetic coder
is updated to three symbols of þ, – and Z.

7. The yardstick length l is halved.
8. Subordinate pass: the coefficients that previously have not been recon-

structed as zero are scanned again according to their order in the subordinate
list, and each one has added to it either þl/2 or –l/2 in order to minimise the
magnitude of its reconstruction error. If l/2 is added, a þ symbol is appended
to the string, and if l/2 is subtracted, a – symbol is appended. At the end of the
subordinate pass, the subordinate list is reordered so that the coefficients
whose reconstructed values have higher magnitudes come first. The þ and –
symbols of this pass are encoded with the arithmetic coder, which had its
model updated to two symbols (þ and –) at the beginning of this pass.

9. The dominant list is replaced by the temporary list, and the temporary list is
emptied.

10. The whole process is repeated from step 5. It stops at any point when the size
of the bitstream exceeds the desired bit rate budget.

An observation has to be made on the dominant pass (step 6). In this pass, only the
reconstructed values of the coefficients that are still in the dominant list can be
affected. Therefore, in order to increase the number of ZT roots, the coefficients not
in the dominant list can be considered zero for determining if a zero-valued coef-
ficient is either a ZT root or an isolated zero.

The bitstream includes a header giving extra information to the decoder. The
header contains the number of wavelet transform stages, the image dimensions,
the initial value of the yardstick length and the image mean. Both the encoder and
decoder initially have identical dominant lists. As the bitstream is decoded, the
decoder updates the reconstructed image, as well as its subordinate and tem-
porary lists. In this way, it can exactly track the stages of the encoder and can
therefore properly decode the bitstream. It is important to observe that the ordering
of the subordinate list in step 8 is carried out based only on the reconstructed
coefficient values, which are available to the decoder. If it was not so, the decoder

Subband and wavelet 81

would not be able to track the encoder, and thus the bitstream would not be prop-
erly decoded.

4.5.1 Analysis of the algorithm
The above algorithm has many interesting features, which make it especially sig-
nificant to note. Among them are the following:

a. The use of ZTs, which exploits similarities among the bands of the same
orientation and reduces the number of symbols to be coded.

b. The use of a very small alphabet to represent an image (maximum number of
four symbols) makes adaptive arithmetic coding very efficient, because it
adapts itself very quickly to any changes in the statistics of the symbols.

c. Since the maximum distortion level of a coefficient at any stage is bounded by
the current yardstick length, the average distortion level in each pass is also
given by the current yardstick, being the same for all bands.

d. At any given pass, only the coefficients with magnitudes larger than the current
yardstick length are encoded nonzero. Therefore, the coefficients with higher
magnitudes tend to be encoded before the ones with smaller magnitudes. This
implies that the EZW algorithm tends to give priority to the most important
information in the encoding process. This is aided by the ordering of the sub-
ordinate in step 8. Thus, for the given bit rate, the bits are spent where they are
needed most.

e. Since the EZW algorithm employs a successive approximation process, the
addition of a new symbol (þ, –, ZT and Z) to the string just further refines
the reconstructed image. Furthermore, while each symbol is being added to the
string, it is encoded into the bitstream; hence, the encoding and decoding can
stop at any point, and an image with a level of refinement corresponding to the
symbols encoded/decoded so far can be recovered. Therefore, the encoding and
decoding of an image can stop when the bit rate budget is exhausted, which
makes possible an extremely precise bit rate control. In addition, because of the
prioritisation of the more important information mentioned in item (d), no
matter where in the bitstream the decoding is stopped, the best possible image
quality for that bit rate is achieved.

f. Spatial/SNR scalability: to achieve spatial or SNR scalability, two different
scanning methods are employed in this scheme. For spatial scalability, the
wavelet coefficients are scanned in the subband-by-subband fashion, from the
lowest to the highest frequency subbands. For SNR scalability, the wavelet
coefficients are scanned in each tree from the top to the bottom. The scanning
method is defined in the bitstream.

4.6 Set partitioning in hierarchical trees (SPIHT)

The compression efficiency of EZW is, to some extent, due to the use of arithmetic
coding. Said and Pearlman [16] have introduced a variant of coding of wavelet

82 Standard codecs: image compression to advanced video coding

coefficients by successive approximation, which even without arithmetic coding
outperforms EZW (see Figure 4.20). They call it set partitioning in hierarchical
trees (SPIHT). Both EZW and SPIHT are spatial tree-based encoding techniques
that exploit magnitude correlation across bands of the decomposition. Each
generates a fidelity progressive bitstream by encoding, in turn, each bit plane
of a quantised dyadic subband decomposition. Both use significance test on sets
of coefficients to efficiently isolate and encode high-magnitude coefficients.
However, the crucial parts in the SPIHT coding process are the way the subsets
of the wavelet coefficients are partitioned and the significant information is
conveyed.

One of the main features of this scheme in transmitting the ordering data is that
it is based on the fact that the execution path of an algorithm is defined by the
results of the comparisons of its branching points. So, if the encoder and decoder
have the same sorting algorithm, then the decoder can duplicate the encoder’s
execution path if it receives the results of the magnitude comparisons. The ordering
information can be recovered from the execution path.

The sorting algorithm divides the set of wavelet coefficients, fCi, jg, into par-
titioning subsets Tm and performs the magnitude test:

max
ði, jÞ
ði, jÞ2T m

fjCi, jjg � 2n?
ð4:26Þ

If the decoder receives a no to that answer (the subset is insignificant), then it
knows that all coefficients in Tm are insignificant. If the answer is yes (the subset is
significant), then a certain rule shared by the encoder and decoder is used to par-
tition Tm into new subset Tm,l and the significant test is then applied to the new
subsets. This set division process continues until the magnitude test is done to
all single-coordinate significant subsets in order to identify each significant
coefficient.

To reduce the number of magnitude comparisons (message bits), a set parti-
tioning rule that uses an expected ordering in the hierarchy defined by the subband
pyramid is defined (similar to Figure 4.12, used in ZT coding). In section 4.4.2, we
saw how the similarities among the subimages of the same orientation can be
exploited to create a spatial orientation tree (SOT). The objective is to create new
partitions such that subsets expected to be insignificant contain a huge number of
elements and subsets expected to be significant contain only one element.

To make clear the relationship between magnitude comparisons and message
bits, the following function is used:

SnðTÞ ¼ 1, if max
ði, jÞ
ði, jÞ2T

jCi, jjg � 2n
� ð4:27Þ

¼ 0, otherwise

Subband and wavelet 83

to indicate the significance of a set of coordinates T. To simplify the notation of
single pixel sets, Sn(fði, jÞg) is represented by Snði, jÞ.

To see how SPHIT can be implemented, let us assume O(i, j) to represent a set
of coordinates of all offsprings of node (i, j). For instance, except the highest and
lowest pyramid levels, O(i, j) is defined in terms of its offsprings as

Oði, jÞ ¼ fð2i, 2jÞ, ð2i, 2j þ 1Þ, ð2i þ 1, 2jÞ, ð2i þ 1, 2j þ 1Þg ð4:28Þ

We also define D(i, j) as a set of coordinates of all descendants of the node (i, j),
and H, a set of coordinates of all SOT roots (nodes in the highest pyramid level).
Finally, L(i, j) is defined as

Lði, jÞ ¼ Dði, jÞ � Oði, jÞ ð4:29Þ

The O(i, j), D(i, j) and L(i, j) in an SOT are shown in Figure 4.13.

O(i, j)

(i, j)

L(i, j)D(i, j)

Figure 4.13 SOT and set partitioning in SPIHT

With the use of parts of the SOTs as the partitioning subsets in the sorting
algorithm, the set partitioning rules are defined as follows:

● The initial partition is formed with the sets {(i, j)} and D(i, j), for all (i, j) [H.
● If D(i, j) is significant, then it is partitioned into L(i, j) plus the four single-

element sets with (k, l) [O(i, j).
● If L(i, j) is significant, then it is partitioned into the four sets D(k, l), with (k, l) [

O(i, j).
● Each of the four sets now has the format of the original set, and the same

partitioning can be used recursively.

84 Standard codecs: image compression to advanced video coding

4.6.1 Coding algorithm
Since the order in which the subsets are tested for significance is important, the
significance information in a practical implementation is stored in three ordered
lists, called the list of insignificant sets (LIS), list of insignificant pixels (LIP) and
list of significant pixels (LSP). In all lists, each entry is identified by a coordinate
(i, j), which in the LIP and LSP represents individual pixels, and in the LIS represents
either the set D(i, j) or L(i, j). To differentiate between them, it is said that an LIS
entry is of type A if it represents D(i, j) and of type B if it represents L(i, j) [16].

During the sorting pass, the pixels in the LIP, which were insignificant in the
previous pass, are tested, and those that become significant are moved to the LSP.
Similarly, sets are sequentially evaluated following the LIS order, and when a set is
found to be significant, it is removed from the list and partitioned. The new subsets
with more than one element are added back to the LIS, while the single-coordinate
sets are added to the end of the LIP or the LSP depending on whether they are
insignificant or significant, respectively. The LSP contain the coordinates of the
pixels that are visited in the refinement pass.

Thus, the algorithm can be summarised as follows:

1. Initialisation: let the initial yardstick, n, be n ¼ blog2(max
ði, jÞ

fjCi, jjg)c. Set the

LSP as an empty set list, and add the coordinates (i, j) [H to the LIP, and only
those with descendants also to the LIS, as the type A entries.

2. Sorting pass:
2.1. for each entry (i, j) in the LIP do:

2.1.1. output Sn(i, j)
2.1.2. if Sn(i, j) ¼ 1, then move (i, j) to the LSP and output the sign

of Ci,j

2.2. for each entry (i, j) in the LIS do:
2.2.1. if the entry is of type A then

2.2.1.1. output Sn(D(i, j))
2.2.1.2. if Sn(D(i, j)) ¼ 1 then

2.2.1.2.1. for each (k, l) [O(i, j) do:
2.2.1.2.1.1. output Sn(k, l)
2.2.1.2.1.2. if Sn(k, l) ¼ 1, then add (k, l)

to the LSP and output the
sign of Ck,l

2.2.1.2.1.3. if Sn(k, l) ¼ 0, then add (k, l)
to the end of the LIP

2.2.1.2.2. if L(i, j) =F, then move (i, j) to the end of
the LIS as an entry of type B, and go to step
2.2.2; otherwise, remove entry (i, j) from
the LIS

2.2.2. if the entry is of type B then
2.2.2.1. output Sn(L(i, j))
2.2.2.2. if Sn(L(i, j)) ¼ 1 then

Subband and wavelet 85

2.2.2.2.1. add each (k, l) [O(i, j) to the end of the
LIS as an entry of type A

2.2.2.2.2. remove (i, j) from the LIS.
3. Refinement pass: for each entry (i, j) in the LSP, except those included in the

last sorting pass (i.e. with same n), output the nth MSB of jCi, jj.
4. Quantisation step update: decrement n by 1 and go to step 2.

One important characteristics of the algorithm is that the entries added to the end of
the LIS above are evaluated before the same sorting pass ends. So, when it is said
for each entry in the LIS, it is meant those that are being added to its end. Also
similar to EZW, the rate can be precisely controlled because the transmitted
information is formed of single bits. The encoder can estimate the progressive
distortion reduction and stop at a desired distortion value.

Note that, in this algorithm, the encoder outputs all branching conditions based
on the outcome of the wavelet coefficients. Thus, to obtain the desired decoder’s
algorithm, which duplicates the encoder’s execution path as it sorts the significant
coefficients, we simply replace the words output with input. The ordering infor-
mation is recovered when the coordinate of the significant coefficients is added to
the end of the LSP. But note that whenever the decoder inputs data, its three control
lists (LIS, LIP and LSP) are identical to the ones used by the encoder at the moment
it outputs that data, which means that the decoder indeed recovers the ordering
from the execution path.

An additional task done by the decoder is to update the reconstructed image. For
the value of n, when a coordinate is moved to the LSP, it is known that
2n � jCi, jj < 2nþ1. So, the decoder uses this information, plus the sign bit that is
input just after the insertion in the LSP, to set the reconstructed coefficients
Ĉ i, j ¼ �1:5 � 2n. Similarly, during the refinement pass, the decoder adds or subtracts
2n�1 to Ĉ i, j when it inputs the bits of the binary representation of jCi, jj. In this manner,
the distortion gradually decreases during both the sorting and refinement passes.

At the end, it is worth mentioning some of the differences between EZW and
SPIHT. The first difference is that they use slightly different SOT. In EZW, each
root node in the top LL band has three offsprings, one in each high-frequency
subband at the same decomposition level, and all other coefficients have four
children in the lower decomposition subband of the same orientation. However, in
SPIHT, in a group of 2 � 2 root nodes in the top LL band, top left node has no
descendant and the other three have four offsprings each in the high-frequency
band of the corresponding orientation. Thus, SPIHT uses less number of trees with
more elements per tree than in EZW. Another important difference is in their set
partitioning rules. SPIHT has an additional partitioning step in which a descendant
(type A) set is split into four individual child coefficients and a grand descendant
(type B) set. EZW explicitly performs a breadth first search of the hierarchical
trees, moving from coarser to finer subbands. Though it is not explicit, SPIHT does
a roughly breadth first search as well. After partitioning a grand descendant set,
SPIHT places the four new descendant sets at the end of the LIS. Appending to the
LIS results in the approximate breadth first traversal.

86 Standard codecs: image compression to advanced video coding

4.7 Embedded block coding with optimised truncation (EBCOT)

Embedded block coding with optimised truncation (EBCOT) [17] is another wavelet-
based coding algorithm that has the capability of embedding many advanced features
in a single bitstream while exhibiting a state-of-the-art compression performance.
Because of its rich set of features, modest implementation complexity and excellent
compression performance, the EBCOT algorithm has been adopted in the evolving
new still image coding standard, under the name of JPEG2000. Thus, because of the
important role of EBCOT in the JPEG2000, we describe this coding technique in
some detail. Before describing this new method of wavelet coding, let us investigate
the problem with EZW and SPIHT that caused their rejection for JPEG2000.

As seen in Chapter 5, spatial and SNR scalability of images are among the
many requirements from the JPEG2000 standard. Spatial scalability means to be
able to decode pictures of various spatial resolutions from the compressed bit-
stream. This is, in fact, an inherent property of the wavelet transform, irrespective
of how the wavelet coefficients are coded, since at any level of the decomposition,
the lowest band of that level gives a smaller replica of the original picture. The
SNR scalability means to be able to decode pictures of various qualities from the
compressed bitstream. In both EZW and SPIHT, this is achieved by successive
approximation or bit plane encoding of the wavelet coefficients. Thus, it appears
that EZW and SPIHT coding of the wavelet-coded images can meet these two
scalability requirements. However, the bitstreams of both EZW and SPIHT inher-
ently offer only SNR scalability. If spatial scalability is required, then the bitstream
should be modified accordingly, which is then not SNR scalable. This is because
the ZT-based structure used in these methods involves downward dependencies
between the subbands produced by the successive wavelet decompositions. These
dependencies interfere with the resolution scalability. Moreover, the interband
dependency by the use of ZT structure causes the error to propagate through the
bands. This again does not meet the error resilience requirement of JPEG2000.

These shortfalls can be overcome, if each subband was coded independently.
Even to make coding more flexible, subband samples can be partitioned into small
blocks and to code each block independently. The dependencies may exist within a
block but not between different blocks. The size of the blocks determines the degree
to which one is prepared to sacrifice coding efficiency in exchange of flexibility in
the ordering of information within the final compressed bitstream. The independent
block coding paradigm is the heart of EBCOT. This independent coding allows local
processing of the samples in each block, which is advantageous for hardware
implementation. It also makes highly parallel implementation possible where multi-
ple blocks are encoded and decoded simultaneously. More importantly, because of
flexibility in the rearrangement of bits in the EBCOT, simultaneous SNR and spatial
scalability is possible. Obviously, the error encountered in any block’s bitstream will
clearly have no influence on other blocks and hence improves the robustness. Finally,
since, unlike EZW and SPHIT, similarities between the bands are not exploited, there
is small deficiency in the compression performance. This is compensated by the use

Subband and wavelet 87

of more efficient context-based arithmetic coding and the postcompression rate dis-
tortion (PCRD) optimisation.

In EBCOT, each subband is partitioned into relatively small block of samples,
called code blocks. Typical code block size is either 32 � 32 or 64 � 64, and each
code block is coded independently. The actual coding algorithm in EBCOT can be
divided into three stages:

1. bit plane quantisation
2. binary arithmetic coding (tier 1 coding)
3. bitstream organisation (tier 2 coding)

Each of these steps is described briefly in the following subsections.

4.7.1 Bit plane quantisation
All code blocks of a subband use the same quantiser. The basic quantiser step size
Db of a subband b is selected on the basis of either perceptual importance of the
subband or rate control. The quantiser maps the magnitude of a wavelet coefficient
to a quantised index, as shown in Figure 4.14, keeping its sign. It has uniform
characteristics (equal step size) with a dead zone of twice the step size.

y (u,v)

q(u,v) –3 –2 –1 +1 +2 +30

Δb Δb Δb 2Δb Δb Δb Δb

Figure 4.14 Uniform dead zone quantiser with step size Db

In bit plane coding, the quantiser index is encoded one bit at a time, starting from
the MSB and preceding to the LSB. If K is the sufficient number of bits to represent
any quantisation index in a code block, then the maximum coefficient magnitude
will be Db(2K � 1). An embedded bitstream for each code block is formed by first
coding the MSB, that is, (K � 1)th bit together with the sign of any significant
sample for all the samples in the code block. Then the next MSB, that is, (K � 2)th
bit, is coded until all the bit planes are encoded. If the bitstream is truncated then
some or all the samples in the block may be missing one or more least significant
bits. This is equivalent to having used a coarser dead zone quantiser with step size
Db2p, where p is the index of the last available bit plane for the relevant sample or
p least significant bits of quantiser index still remain to be encoded.

4.7.2 Conditional arithmetic coding of bit planes (tier 1 coding)
During progressive bit plane coding, substantial redundancies exist between the
successive bit planes. The EBCOT algorithm has exploited these redundancies in
two ways. The first is to identify whether a coefficient should be coded, and the
second, how best the entropy coding can be adapted to the statistics of the

88 Standard codecs: image compression to advanced video coding

neighbouring coefficients. Both of these goals are achieved through the introduc-
tion of the binary significance state s. It is defined to signify the importance of each
coefficient in a code block. At the beginning of the coding process, the significant
states of all the samples in the code block are initialised to 0 and then changed to 1
immediately after coding the first nonzero magnitude bit for the sample. Since the
neighbouring coefficients generally have similar significance resulting in clusters
of similar binary symbols in a plane, then the significance state, s, is a good indi-
cator for a bit plane of a coefficient to be a candidate for coding.

Also, in EBCOT, adaptive binary arithmetic is used for entropy coding of each
symbol. Again, the clustering of significance of neighbours can be exploited to
adapt the probability model, based on the significance states of its immediate
neighbours. This is called context-based binary arithmetic coding, where the
probability assigned to code a binary symbol of 0 or 1 or the positive/negative sign
of a coefficient is derived from the context of its eight immediate neighbours,
shown in Figure 4.15.

d

dd

d

h

v

v

h

Figure 4.15 Eight immediate neighbouring symbols

In general, the eight immediate neighbours can have 256 different contextual
states, or as many contextual states for the positive and negative signs. In EBCOT,
the probability models used by the arithmetic coder are limited within 18 different
contexts: 9 for the significance propagation, 1 for run length and 5 for sign coding
and 3 for refinement. These contexts are explained in the relevant parts.

Figure 4.16 Stripe scanned order in a code block

Subband and wavelet 89

Since the status of the eight immediate neighbours affects the formation of the
probability model, the way coefficients in a code block are scanned should be
defined. In the JPEG2000 standard, in every bit plane of a code block, the
coefficients are visited in a stripe scan order with height of four pixels as shown in
Figure 4.16.

Starting from the top left, the first 4 bits of the first column are scanned. Then
the 4 bits of the second column, until the width of the code block is covered.
Then the second 4 bits of the first column of the next stripe are scanned and so on.
The stripe height of four has been chosen to facilitate hardware and software
implementations.

4.7.3 Fractional bit plane coding
The quantised coefficients in a code block are bit plane encoded independent of
other code blocks in the subbands. Instead of encoding the entire bit plane in one
pass, each bit plane is encoded in three subbit planes passes, called fractional bit
plane coding. The reason for this is to be able to truncate the bitstream at the end of
each pass to create a near-optimum bitstream. This is also known as PCRD opti-
misation [18]. Here, the pass that results in a largest reduction in distortion for the
smallest increase in bit rate is encoded first.

R2

X2

X1

R1

D2

D1

rate

C

C

B

B A

A

distortion

Figure 4.17 The impact of order of fractional bit plane coding in distortion
reduction

The goal and benefits of fractional bit plane coding can be understood with the
help of Figure 4.17. Suppose (R1, D1) and (R2, D2) are the rate distortion pairs
corresponding to two adjacent bit planes p1 and p2. Also, assume during the
encoding of each pass, the increase in bit rate and reduction in distortion follow the
characteristics identified by labels A, B and C. As we see, in coding the whole bit
plane, that is, going from point X1 to point X2, no matter which route is followed,
the ultimate bit rate is increased from R1 to R2, and the distortion is reduced from
D1 to D2. But if due to the limit in the bit rate budget, the bit rate has to be truncated

90 Standard codecs: image compression to advanced video coding

between R1 and R2, R1 � R � R2, then it is better to follow the passes in sequence of
ABC rather than CBA.

This sort of fractional bit plane coding is in fact a method of optimising the rate
distortion curve, with the aim of generating finely embedded bitstream, which is
known as the PCRD optimisation in EBCOT [18]. Figure 4.18 compares the opti-
mised rate distortion associated with the fractional bit plane encoding versus that of
the conventional bit plane encoding. The solid dots represent the rate distortion
pairs at the end of each bit plane, and the solid line is the rate distortion curve that
one could expect to obtain by truncating the bitstream produced by this method to
an arbitrary bit rate. On the other hand, the end points associated with each pass of
the fractional bit plane coding are shown with blank circles, and the broken line
illustrates its rate distortion curve. Since initial coding passes generally have stee-
per rate distortion slopes, the end point for each coding pass lies below the convex
interpolation of the bit plane termination point. Thus, fractional bit plane encoding
results in a near-optimum coding performance compared with simple bit plane
coding.

rate

distortion

Figure 4.18 Rate distortion with optimum truncation

Generally, in coding a coefficient, the largest reduction in distortion occurs
when the coefficient is insignificant, but it is more likely to become significant
during the coding. Moderate reduction in distortion is when the coefficient is
already significant and the coding refines it. Finally, the least reduction in distor-
tion is when the insignificant coefficient after the encoding is likely to remain
insignificant. These are, in fact, the remaining coefficients that are not coded in the
two previous cases. Thus, it is reasonable to divide the bit plane encoding into three
passes and encode each pass in the above encoding order. In JPEG2000, the frac-
tional bit plane is carried out in three passes. The roles played by each encoding
pass and their order of significance in generating optimum bitstream is given
below.

Subband and wavelet 91

4.7.3.1 Significance propagation pass
This is the first pass of the fractional bit plane encoding that gives the largest
reduction in the encoding distortion. In this pass, the bit of a coefficient in a given
bit plane is encoded, if and only if, prior to this pass, the state of the coefficient was
insignificant but at least one of its eight immediate neighbours has significant
states. If the coefficient is to be coded, the magnitude of its bit, 0 or 1, is arithmetic
coded with a derived probability model from the context of its eight immediate
neighbours, shown in Figure 4.15. The probability assigned to bit 0 is com-
plementary to the probability assigned to bit 1. The context selection is based upon
the significance of sample’s eight immediate neighbours, which are grouped in
three categories:

Horizontal: hiðu, vÞ ¼ siðu � 1, vÞ þ siðu þ 1, vÞ
Vertical: viðu, vÞ ¼ siðu, v � 1Þ þ siðu, v þ 1Þ
Diagonal: diðu, vÞ ¼

X
m¼�1

X
n¼�1

siðu þ m, v þ nÞ
ð4:30Þ

where hi(u, v), vi(u, v) and di(u, v) are the horizontal, vertical and diagonal neigh-
bours for the ith coefficient at coordinates (u, v), and si(u, v) is the significance
state of a coefficient at that coordinate. Neighbours that lie outside the code block
are interpreted as insignificant for the purpose of constructing these three quan-
tities. To optimise both model adaptations cost and implementation complexity,
256 possible neighbourhood configurations are mapped to nine distinct coding
contexts based on eqn. 4.30, as shown in Table 4.4.

To make identical context assignment for LH and HL bands, the code blocks of
HL subbands are transposed before the coding. The LH subband responds most
strongly to horizontal edges in the original image, so the context mapping gives
more emphasis on the horizontal neighbours.

Note that the significance propagation pass includes only those bits of coeffi-
cients that were insignificant before this pass and have a nonzero context. If the bit
of the coefficient is 1 (the coefficient becomes significant for the first time), then its

Table 4.4 Assignment of the nine contexts based on neighbourhood significance

LL, LH and HL bands HH band

hi(u, v) vi(u, v) di(u, v) Context di(u, v) hi(u, v) þ vi(u, v) Context

0 0 0 0 0 0 0
0 0 1 1 0 1 1
0 0 >1 2 0 >1 2
0 1 X 3 1 0 3
0 2 X 4 1 1 4
1 0 0 5 1 >1 5
1 0 >0 6 2 0 6
1 >0 X 7 2 >0 7
2 X X 8 >2 X 8

92 Standard codecs: image compression to advanced video coding

state of significance, s, is changed to 1 to affect the context of its following
neighbours. Thus, the significance of states of coefficients propagates throughout
the coding, and hence the name given to this pass is significance propagation pass.
Note also that if a sample is located at the boundary of a block, then only the
available immediate neighbours are considered and the significance state of the
missing neighbours is assumed to be zero.

Finally, if a coefficient is found to be significant, its sign is also arithmetic
coded. Since the sign bits from the adjacent samples exhibit substantial statistical
dependencies, they can be effectively exploited to improve the arithmetic coding
efficiency. For example, the wavelet coefficients of horizontal and vertical edges
are likely to be of the same polarity. Those after and before the edge are of mainly
opposite polarity. In EBCOT algorithm, the arithmetic coding of sign bit employs
five contexts. Context design is based upon the relevant sample’s immediate hor-
izontal and vertical neighbours, each of which may be in one of the three states:
significant and positive, significant and negative, and insignificant. There are thus
34 ¼ 81 unique neighbourhood configurations. The details of the symmetry con-
figurations and approximations to map these 81 configurations to one of the five
context levels can be found in [18].

4.7.3.2 Magnitude refinement pass
The magnitude refinement pass is the second most efficient encoding pass. During
this pass, the magnitude bit of a coefficient that has already become significant in a
previous bit plane is arithmetic coded. The magnitude refinement pass includes
the bits from the coefficients that are already significant, except those that have
just become significant in the immediately preceding significance propagation pass.
There are three contexts for the arithmetic coder, which are derived from
the summation of the significance states of the horizontal, vertical and diagonal
neighbours. These are the states currently known to the decoder and not the
states used before the significance decoding pass. Further, it is dependent on whether
this is the first refinement bit (the bit immediately after the significance and sign bits).

In general, the refinement bits have an even distribution, unless the coefficient
has just become significant in the previous bit plane (i.e. the magnitude bit to be
encoded is the first refinement bit). This condition is first tested and if it is satisfied,
the magnitude bit is encoded using two contexts, based on the significance of the
eight immediate neighbours (see Figure 4.15). Otherwise, it is coded with a single
context regardless of the neighbouring values.

4.7.3.3 Clean-up pass
All the bits not encoded during the previous two passes of significance propagation
and refinement passes are encoded in the clean-up pass. That is, the coefficients
that are insignificant and had the context value of zero (none of the eight immediate
neighbours were significant) during the significance propagation pass. Generally,
the coefficients coded in this pass have a very small probability of being significant
and hence are expected to remain insignificant. Therefore, a special mode, called
the run mode, is used to aggregate the coefficients of remaining significant. A run

Subband and wavelet 93

mode is entered if all the four samples in a vertical column of the stripe of Figure
4.16 have insignificant neighbours. Specifically, run mode is executed if each of
the following conditions holds:

● four consecutive samples must all be insignificant, that is, si(u þ m, v) ¼ 0, for
0 � m � 3;

● the samples must have insignificant neighbours, that is, hi(u þ m, v) ¼ vi(u þ
m, v) ¼ di(u þ m, v) ¼ 0, for 0 � m � 3;

● samples must reside within the same subblock;
● the horizontal index of the first sample, u, must be even.

In the run mode, a binary symbol is arithmetic coded with a single context to
specify whether all the four samples in the vertical column remain insignificant.
Symbol 0 implies all the four samples are insignificant, and symbol 1 implies at
least one of four samples becomes significant in the current bit plane. If the symbol
is 1, then two additional arithmetic coded bits are used to specify the location of the
first nonzero coefficient in the vertical column.

Since it is equally likely that any of the four samples in the column to be the
first nonzero sample, the arithmetic coding uses a uniform context. Thus, run mode
has a negligible role in the coding efficiency. It is primarily used to improve the
throughput of the arithmetic encoder through symbol aggregation.

After specifying the position of the first nonzero symbol in the run, the
remaining samples in the vertical column are coded in the same manner as in the
significance propagation pass and use the same nine contexts. Similarly, if at least
one of four coefficients in the vertical column has a significant neighbour, the run
mode is disabled and all the coefficients in that column are again coded with pro-
cedure used for the significance propagation pass.

For each code block, the number of MSB planes that are entirely zero is sig-
nalled in the bitstream. Since the significance state of all the coefficients in the first
nonzero MSB is zero, this plane only uses the clean-up pass, and the other two
passes are not used.

Example
To show how the wavelet coefficients in a fractional bit plane are coded, Figure
4.19 illustrates a graphical demonstration of step-by-step encoding from bit plane
to bit plane and pass to pass.

The Barbara image of size 256 � 256 pixels with two levels of wavelet
decomposition generates seven subimages, as shown in Figure 4.19. Except for the
lowest band, the magnitudes of all the other bands are magnified by a factor of 4,
for better illustration of image details. The code block size is assumed to be a
square array of 64 � 64 coefficients. Hence, every high-frequency band of LH1,
HL1 and HH1 is coded in four code blocks, and the remaining bands of LL2, LH2,
HL2 and HH2 in one code block each, that is, the whole image is coded in 16 code
blocks. The bitstreams generated by each pass in every bit plane are also shown in
square boxes with different textures.

94 Standard codecs: image compression to advanced video coding

BP2

MSB

HH1HL1 LH1LL2 HL2 LH2 HH2

BP3

BP1

refinement
clean up

significancecode blocks
BP4

BP5

BP6

BP7

LL2 HL2

HH2LH2
HL1

HH1LH1

1 2

2

4

65

4

3 4

4

6
5

4 6

6

3

Figure 4.19 An illustration of fractional bit plane encoding

Subband and wavelet 95

Before the coding starts, the significance states of all the code blocks are
initialised to zero. For each code block, the encoding starts from the MSB plane.
Since the LL2 band has a higher energy (larger wavelet coefficients) than the
other bands, in this example only some of the MSB of the code block of this band
are significant at the first scanned bit plane, PB1. In this bit plane, the MSBs of
none of the other code blocks are significant (they are entirely zero) and are not
coded at all.

Since the code block of LL2 band in BP1 is coded for the first time (the
significant states of all the coefficients are initialised to zero), the MSB bit of every
coefficient has a nonsignificant neighbour and hence cannot be coded at the sig-
nificance propagation pass. Also, none of the bits is coded at the refinement pass,
because these coefficients had not been coded in the previous bit plane. Therefore,
all the bits are left to be coded in the clean-up pass, and they constitute the bit-
stream of this pass.

At the second bit plane, BP2, some of the coefficients in the HL2 and HH2
code blocks become significant for the first time. Hence, as was explained earlier,
they are coded only at the clean-up pass, as shown in the figure. For the code block
of LL2, since the coefficients with significant magnitudes of this code block have
already been coded at the clean-up pass of BP1, the code block uses all the three
passes. Those coefficients of the bit plane BP2 with insignificant states that have at
least one state significant immediate neighbour are coded with the significance
propagation pass. The state significant coefficients are now refined in the refine-
ment pass. The remaining coefficients are coded at the clean-up pass. Other code
blocks in this bit plane are not coded at all.

At the third bit plane, BP3, some of the coefficients of the code block of
subband LH2 and those of the one of the code blocks of subband HL1 become
significant for the first time; hence, they are coded only in the clean-up pass. The
code blocks of LL2, HL2 and HH2 are now coded at the three passes. The
remaining code blocks are not coded at all. The bit plane numbers of those code
blocks that are coded for the first time are also shown in the figure with numbers
from 1 to 6. As we see after bit plane 7, all the code blocks of the bands are coded,
in all the three passes.

4.7.4 Layer formation and bitstream organisation (tier 2 coding)
The arithmetic coding of the bit plane data is referred as tier 1 coding. The tier 1
coding generates a collection of bitstreams with one independent embedded bit-
stream for each code block. The purpose of tier 2 coding is to multiplex the bit-
streams for transmission and to signal the ordering of the resulting coded bit plane
pass in an efficient manner. The second tier coding process can be best viewed as a
somewhat elaborated parser for recovering pointers to code block segments in the
bitstream. It is this coding step that enables the bitstream to have SNR, spatial and
arbitrary progression and scalability.

96 Standard codecs: image compression to advanced video coding

The compressed bitstream from each code block is distributed across one or
more layers in the final compressed bitstream. Each layer represents a quality
increment. The number of passes included in a specific layer may vary from one
code block to another and is typically determined by the encoder as a result of
PCRD optimisation. The quality layers provide the feature of SNR scalability of the
final bitstream such that truncating the bitstream to any whole number of layers
yields approximately an optimal rate distortion representation of the image. How-
ever, employing a large number of quality layers can minimise the approximation.
On the other hand, more quality layer implies a large overhead as auxiliary infor-
mation to identify the contribution made by each code block to each layer. When
the number of layers is large, only a subset of the code blocks will contribute to any
given layer, introducing substantial redundancy in this auxiliary information. This
redundancy is exploited in tier 2 coding to efficiently code the auxiliary informa-
tion for each quality layer.

4.7.5 Rate control
Rate control refers to the process of generating an optimal image for a bit rate and
is strictly an encoder issue. In section 4.7.3, we introduced the fractional bit plane
coding as one of these methods. In [17], Taubman proposes an efficient rate control
method for the EBCOT compression algorithm that achieves a desired rate in
a single iteration with minimum distortion. This method is known as PCRD
optimisation. A JPEG2000 encoder, with several possible variations, can also use
this method.

In another form of PCRD, each subband is first quantised using a very fine step
size, and the bit planes of the resulting code blocks are entropy coded (tier 1 cod-
ing). This typically generates more coding passes for each code block than will be
eventually included in the final bitstream. Next, a Lagrangian R-D optimisation is
performed to determine the number of coding passes from each code block that
should be included in the final compressed bitstream to achieve the desired bit rate.
If more than single quality layer is desired, this process can be repeated at the end
of each layer to determine the additional number of coding passes from each code
block that need to be included in the next layer. The details of PCRD optimisation
can be found in [18].

At the end of this chapter, it is worth comparing the compression efficiency of
the three methods of wavelet coding, namely, EZW, SPIHT and EBCOT. Figure
4.20 shows the quality of Lena image coded with these methods at various bit rates.
As the figure shows, EZW has the poorest performance of all. The SPIHT, even
without arithmetic coding, outperforms EZW by about 0.3–0.4 dB. Adding arith-
metic coding into SPIHT improves the coding efficiency by another 0.3 dB. The
EBCOT algorithm, adopted in the JPEG2000 standard, is as good as the best of
SPIHT.

Subband and wavelet 97

42

40

38

36

34

32

30
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PS
N

R
 (d

B
)

rate (bpp)

EZW
SPIHT without arithmetic code

SPIHT with arithmetic code
JPEG-2000

Figure 4.20 Compression performance of various wavelet coding algorithms

4.8 Problems

1. Derive the analysis and synthesis subband filters of the product filter P(z)
defined by its z-transform as

PðzÞ ¼ 1
16

ð�1 þ 9z�2 þ 16z�3 þ 9z�4 � z�6Þ

2. The z-transform of a pair of low-pass and high-pass analysis filters is given by

H0ðzÞ ¼ 1ffiffiffi
2

p ð1 þ z�1Þ and H1ðzÞ ¼ 1ffiffiffi
2

p ð1 � z�1Þ

a. Calculate the product filter and deduce the amount of end-to-end encoding/
decoding delay.

b. Derive the corresponding pairs of the synthesis filters.

3. The product filter for wavelets with n zeros at z ¼ 1 is given by

PðzÞ ¼ ð1 þ z�1Þ2nQðzÞ

Use eqn. 4.7 to calculate the weighting factor of the product filter P(z) and the
corresponding end-to-end coding delay, for

a. n ¼ 2 and QðzÞ ¼ �1 þ 4z�1 � z�2

b. n ¼ 3 and QðzÞ ¼ 1 � 6z�1 þ 38
3 z�2 � 6z�3 þ z�4

98 Standard codecs: image compression to advanced video coding

4. Show that the low- and high-pass analysis filters of (a) in problem 3 are, in fact,
the (5,3) and (4,4) subband filters of LeGall and Tabatabai.

5. Show that the filters for (b) in problem 3 are the (9,3) Daubechies filter pairs.

6. Derive the corresponding pairs of the synthesis filters of problems 4 and 5.

7. List major similarities and differences between EZW and SPIHT.

8. Consider a three-level wavelet transform coefficients of 8 � 8 image shown in
Figure 4.21. Assume it has been generated by a three-level wavelet transform:
a. Show different steps in the first dominant pass (MSB plane) of EZW

algorithm.
b. Assuming that EZW uses 2 bits to code symbols in the alphabet {POS,

NEG, ZT, Z} and 1 bit to code the sign bit, calculate total number of bits
outputted in this pass.

4

7

–1

9

2

2

4

6

–4

–12

6

3

3

–2

0

3

3

13

4

–7

–2

6

–2

6

0

7

3

5

4

4

3

3

6

10

–13

–12

8

47

2

–4

3

5

49

14

–14

–1

–3

6

11

–34

23

14

–7

9

0

–3

5

63

–31

15

–9

–5

3

2

Figure 4.21 A block of three-level 8�8 transform coefficients

9. a. In Figure 4.21, calculate the number of bits outputted in the first sig-
nificant pass of the SPIHT algorithm.

b. Comment on the results of 8(b) and 9(a).

References

1. MPEG 4: ‘Video shape coding’, ISO/IEC JTC1/SC29/WG11, N1584, March
1997

2. SKODRAS, A., CHRISTOPOULOS, C. and EBRAHIMI, T.: ‘The JPEG 2000
still image compression standard’, IEEE Signal Process. Mag., September
2001, pp. 36–58

Subband and wavelet 99

3. MALAVER, H.S., and STAELIN, D.H.: ‘The LOT: transform coding with-
out blocking effects’, IEEE Trans. Acoust. Speech Signal Process., 1989,
37:4, pp. 553–559

4. SHAPIRO, J.M.: ‘Embedded image coding using zero trees of wavelet
coefficients’, IEEE Trans. Signal Process., 1993, 4:12, pp. 3445–3462

5. USEVITCH, B.E.: ‘A tutorial on modern lossy wavelet image compression:
foundation of JPEG 2000’, IEEE Signal Process. 18:5, Mag., 2001, pp. 22–35

6. CROCHIERE, R.E., WEBER, S.A. and FLANAGAN, J.L.: ‘Digital coding
of speech in sub bands’, Bell Syst. Tech. J., 1967, 55, pp. 1069–1085

7. DAUBECHIES, I.: ‘Orthonormal bases of compactly supported wavelets’,
Commun. Pure Appl. Math., 1988, 41, pp. 909–996

8. LE GALL, D. and TABATABAI, A.: ‘Subband coding of images using
symmetric short kernel filters and arithmetic coding techniques’, IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP’98, 1988, pp. 761–764

9. DAUBECHIES, I.: ‘The wavelet transform, time frequency localization and
signal analysis’, IEEE Trans. Inf. Theory, 1990, 36:5, pp. 961–1005

10. MALLAT, S.: ‘A theory of multiresolution signal decomposition: the wavelet
representation’, IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11:7, pp.
674–693

11. DAUBECHIES, I.: ‘Orthogonal bases of compactly supported wavelets II,
variations on a theme’, SIAM J. Math. Anal., 1993, 24:2, pp. 499–519

12. DA SILVA, E.A.B.: ‘Wavelet transforms in image coding’, PhD thesis, 1995,
University of Essex, UK

13. RABBANI, M. and JOSH, R.: ‘An overview of the JPEG2000 still image
compression standard’, Signal Process. Image Commun., 2002, 17:1, pp.
15–46

14. MPEG 4: ‘Video verification model version 11’, ISO/IEC JTC1/SC29/WG11,
N2171, Tokyo, March 1998

15. WITTEN, I.H., NEAL, R.M. and CLEARY, J.G.: ‘Arithmetic coding for data
compression’, Commun. ACM, 1987, 30:6, pp. 520–540

16. SAID, A. and PEARLMAN, W.A.: ‘A new, fast and efficient image codec
based on set partitioning in hierarchical trees’, IEEE Trans. Circuits Syst.
Video Technol., 1996, 6:3, pp. 243–250

17. TAUBMAN, D.: ‘High performance scalable image compression with
EBCOT’, IEEE Trans. Image Process., 2000, 9:7, pp. 1158–1170

18. TAUBMAN, D., ORDENLICH, E., WEINBERGER, M. and SEROUSSI, G.:
‘Embedded block coding in JPEG2000’, Signal Process. Image Commun.,
2002, 17:1, pp. 1–24

100 Standard codecs: image compression to advanced video coding

Chapter 5

Coding of still pictures (JPEG and JPEG2000)

In the mid-1980s, joint work by the members of the International Tele-
communication Union (Telegraphy section) (ITU-T) and the International Stan-
dards Organisation (ISO) led to a standardisation for compression of greyscale and
colour still images [1]. This effort was then known as the Joint Photographic
Experts Group (JPEG). As it is apparent, the word joint refers to the collaboration
between the ITU-T and ISO. The JPEG encoder is capable of coding full colour images
at an average compression ratio of 15:1 for subjectively transparent quality [2].
Its design meets special constraints, which make the standard very flexible. For
example, the JPEG encoder is parametrisable so that the desired compression/
quality trade-offs can be determined based on the application or the wishes of
the user [3].

JPEG can also be used in coding of video, on the basis that video is a suc-
cession of still images. In this case, the process is called motion JPEG. Currently,
motion JPEG has found numerous applications. The most notable one is video
coding for transmission over packet networks with unspecified bandwidth or bit
rates (UBR). A good example of UBR networks is the Internet where, because of
unpredictability of the network load, congestion may last for a significant amount
of time. Since in motion JPEG, each frame is independently coded, it is an ideal
encoder of video for such a hostile environment.

Another application of motion JPEG is video compression for recording on
magnetic tapes, where again the independent coding of pictures increases the
flexibility of the encoder for recording requirements, such as editing, pause, fast
forward and fast rewind. Also, such an encoder can be very resilient to loss of
information, since the channel error will not propagate through the image sequence.
However, since the coding of I-pictures in the MPEG-2 standard is similar to
motion JPEG, normally video compression for recording purposes is carried out
with the I-picture part of the MPEG-2 encoder. The I-pictures are encoded without
reference to previous or subsequent pictures. This is explained in Chapter 7.

At the turn of the millennium, the JPEG committee decided to develop another
standard for compression of still images, named the JPEG2000 standard [4]. This was
in response to growing demands for multimedia, Internet and a variety of digital
imagery applications. However, in terms of compression methodology, these two
standards are very different. Hence, in order to discriminate between them,
throughout the book, the original JPEG is called JPEG and the new one JPEG2000.

5.1 Lossless compression

The JPEG standard specifies two classes of encoding and decoding, namely lossless
and lossy compression. Lossless compression is based on a simple predictive
DPCM method using neighbouring pixel values, while discrete cosine transform
(DCT) is employed for the lossy mode.

Figure 5.1 shows the main elements of a lossless JPEG image encoder.

predictor
entropy
coder

entropy table
specifications

source
image data

compressed
image data

Figure 5.1 Lossless encoder

The digitised source image data in the forms of either RGB or YCbCr are fed to
the predictor. The image can take any format from 4:4:4 down to 4:1:0, with any
size and amplitude precision (e.g. 8 bit/pixel). The predictor is of the simple DPCM
type (see Figure 3.1), where every individual pixel of each colour component is
differentially encoded. The prediction for an input pixel x is made from combina-
tions of up to three neighbouring pixels at positions a, b and c from the same
picture of the same colour component, as shown in Figure 5.2.

xa
bc

Figure 5.2 Three-sample prediction neighbourhood

The prediction is then subtracted from the actual value of the pixel at position x,
and the difference is losslessly entropy coded by either Huffman or arithmetic
coding. The entropy table specifications unit determines the characteristics of the
variable length codes (VLCs) of either entropy coding methods.

The encoding process might be slightly modified by reducing the precision of
input image samples by one or more bits prior to lossless coding. For lossless pro-
cesses, sample precision is specified to be between 2 and 16 bits. This achieves higher
compression than normal lossless coding but has lower compression than DCT-based
lossy coding for the same bit rate and image quality. Note that this is in fact a type
of lossy compression, since reduction in the precision of input pixels by b bits is
equivalent to the quantisation of the difference samples by a quantiser step size of 2b.

102 Standard codecs: image compression to advanced video coding

5.2 Lossy compression

In addition to the lossless compression, the JPEG standard defines three lossy
compression modes. These are called baseline sequential mode, progressive mode
and hierarchical mode. These modes are all based on the DCT to achieve a sub-
stantial compression while producing a reconstructed image with high visual
fidelity. The main difference between these modes is the way in which the DCT
coefficients are transmitted.

The simplest DCT-based coding is referred to as the baseline sequential pro-
cess, and it provides capability that is sufficient for many applications. The other
DCT-based processes that extend the baseline sequential process to a broader range
of applications are referred to as extended DCT-based processes. In any extended
DCT-based decoding processes, the baseline decoding is required to be present in
order to provide a default decoding capability.

5.2.1 Baseline sequential mode compression
Baseline sequential mode compression is usually called baseline coding for short.
In this mode, an image is partitioned into 8 � 8 nonoverlapping pixel blocks from
left to right and top to bottom. Each block is DCT coded, and all the 64 transform
coefficients are quantised to the desired quality. The quantised coefficients are
immediately entropy coded and output as part of the compressed image data,
thereby minimising coefficient storage requirements.

Figure 5.3 illustrates the JPEG’s baseline compression algorithm. Each 8-bit
sample is level shifted by subtracting 28�1 ¼ 7 ¼ 128 before being DCT coded. This
is known as DC-level shifting. The 64 DCT coefficients are then uniformly quantised
according to the step size given in the application-specific quantisation matrix.
The use of a quantisation matrix allows different weighting to be applied according
to the sensitivity of the human visual system (HVS) to a coefficient of the frequency.

image

offset
(128)

– Q

Q table

zigzag scan

differential

entropy
table

compressed
image data

entropy
table

DC

AC

DCT
VLC

VLC

Figure 5.3 Block diagram of a baseline JPEG encoder

Coding of still pictures (JPEG and JPEG2000) 103

Two examples of quantisation tables are given in Tables 5.1 and 5.2 [5]. These
tables are based on psychovisual thresholding and are derived empirically using
luminance and chrominance with a 2:1 horizontal subsampling. These tables may
not be suitable for any particular application, but they give good results for most
images with an 8-bit precision.

If the elements of the quantisation tables of luminance and chrominance are
represented by Q(u,v), then a quantised DCT coefficient with the horizontal and the
vertical spatial frequencies of u and v, Fq(u,v), is given by

Fqðu; vÞ ¼
�

Fðu; vÞ
Qðu; vÞ

�
ð5:1Þ

where F(u,v) is the transform coefficient value prior to quantisation and b:c means
rounding the division to the nearest integer. At the decoder, the quantised coeffi-
cients are inverse quantised by

FQðu; vÞ ¼ Fqðu; vÞ � Qðu; vÞ ð5:2Þ

to reconstruct the quantised coefficients.

Table 5.1 Luminance Q table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 5.2 Chrominance Q table

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

104 Standard codecs: image compression to advanced video coding

A quality factor q_JPEG is normally used to control the elements of the
quantisation matrix Q(u,v) [3]. The range of q_JPEG percentage value is between 1
and 100 per cent. The JPEG quantisation matrices of Tables 5.1 and 5.2 are used for
q_JPEG ¼ 50, for the luminance and chrominance, respectively. For other quality
factors, the elements of the quantisation matrix, Q(u,v), are multiplied by the
compression factor a, defined as [3]

a ¼ 50
q JPEG

if 1 � q JPEG � 50

a ¼ 2 � 2 � q JPEG

100
if 50 � q JPEG � 99

ð5:3Þ

subject to the condition that the minimum value of the modified quantisation matrix
elements, a Q(u,v), is 1. For a 100 per cent quality, q_JPEG ¼ 100, that is, lossless
compression; all the elements of a Q(u,v) are set to 1.

After quantisation, the DC (commonly referred to as (0,0)) coefficient and the
63 AC coefficients are coded separately as shown in Figure 5.3. The DC coeffi-
cients are DPCM coded with prediction of the DC coefficient from the previous
block, as shown in Figure 5.4, that is, difference between DC coefficients (DIFF) ¼
DCi – DCi–1. This separate treatment from the AC coefficients is to exploit the
correlation between the DC values of adjacent blocks and to code them more
efficiently as they typically contain the largest portion of the image energy. The
63 AC coefficients starting from coefficient AC(1,0) are run length coded follow-
ing a zigzag scan, as shown in Figure 5.4.

DCiDCi –1

blocki–1 blocki

DIFF = DCi – DCi –1

differential encoding of DC

DC(0,0) AC(7,0)

AC(7,7)AC(0,7)

AC(1,0)

zigzag scanning of AC

Figure 5.4 Preparing the DCT coefficients for entropy coding

The adoption of a zigzag scanning pattern is to facilitate entropy coding by
encountering the most likely nonzero coefficients first. This is due to the fact that
for most natural scenes, the image energy is mainly concentrated in a few low-
frequency transform coefficients.

Coding of still pictures (JPEG and JPEG2000) 105

5.2.2 Run length coding
Entropy coding of the baseline encoder is accomplished in two stages. The first
stage is the translation of the quantised DCT coefficients into an intermediate set of
symbols. In the second stage, VLCs are assigned to each symbol. For the JPEG
standard, a symbol is structured in two parts: a VLC for the first part, normally
referred to as symbol-1, followed by a binary representation of the amplitude for
the second part, symbol-2.

5.2.2.1 Coding of DC coefficients
Instead of assigning individual VLC words (e.g. Huffman code) to each DIFF, the
DIFF values are categorised based on the magnitude range called CAT. The CAT is
then variable length coded. Table 5.3 shows the categories for the range of
amplitudes in the baseline JPEG. Since the DCT coefficient values are in the range
–2047 to 2047, there are 11 categories for nonzero coefficients. Category zero is
not used for symbols but for defining the end of block (EOB) code.

The CAT after being variable length coded is appended with additional bits to
specify the actual DIFF values (amplitude) within the category. Here, CAT is
symbol-1 and the appended bits represent symbol-2.

When the DIFF is positive, the appended bits are just the lower-order bits
of the DIFF. When it is negative, the appended bits become the lower-order bits of
DIFF-1. The lower-order bits start from the point where the most significant bit
(MSB) of the appended bit sequence is 1 for positive differences and 0 for negative
differences. For example, for DIFF ¼ 6 ¼ 0000 . . . 00110, the appended bits start
from 1; hence, it would be 110. This is because DIFF is positive and the MSB
of the appended bits should be 1. Also, since 6 is in the range of 4–7 (Table 5.3),
the value of CAT is 3. From Table B.1 the code word for CAT ¼ 3 is 100. Thus, the
overall code word for DIFF ¼ 6 is 100110, where 100 is the VLC of CAT (symbol-1)
and 110 is the appended code word (symbol-2).

Table 5.3 The category (CAT) of the baseline encoder

CAT Range

0 –
1 –1; 1
2 –3,–2; 2,3
3 –7, . . . ,–4; 4, . . . ,7
4 –15, . . . ,–8; 8, . . . ,15
5 –31, . . . ,–16; 16, . . . ,31
6 –63, . . . ,–32; 32, . . . ,63
7 –127, . . . ,–64; 64, . . . ,127
8 –255, . . . ,–128; 128, . . . ,255
9 –511, . . . ,–256; 256, . . . ,511

10 –1023, . . . ,–512; 512, . . . ,1023
11 –2047, . . . ,–1024; 1024, . . . ,2047

106 Standard codecs: image compression to advanced video coding

For a negative DIFF, such as DIFF¼ –3, first of all, –3 is in the range of –3 to�2;
thus, from Table 5.3, CAT ¼ 2, and its VLC from Table B.1 is 011. However, to find
the appended bits, DIFF – 1 ¼ –4 ¼ 1111 . . . 100, where the lower-order bits are 00.
Note that the MSB of the appended bits is 0. Thus, the code word becomes 01100.

5.2.2.2 Coding of AC coefficients
For each nonzero AC coefficient in zigzag scan order, symbol-1 is described as a
two-dimensional event of (RUN, CAT), sometimes called (RUN, SIZE). For the
baseline encoder, CAT is the category for the amplitude of a nonzero coefficient in
the zigzag order and RUN is the number of zeros preceding this nonzero coeffi-
cient. The maximum length of run is limited to 15. Encoding of runs greater than 15
is done by a special symbol (15, 0), which is a run length of 15 zero coefficients
followed by a coefficient of zero amplitude. Hence, it can be interpreted as the
extension symbol with 16 zero coefficients. There can be up to three consecutive
(15, 0) symbols before the terminating symbol-1 followed by a single symbol-2.
For example, a (RUN ¼ 34, CAT ¼ 5) pair would result in three symbols a, b and c,
with a ¼ (15, 0), b ¼ (15, 0) and c ¼ (2, 5).

An EOB is designated to indicate that the rest of the coefficients of the block in
the zigzag scanning order are quantised to zero. The EOB symbol is represented by
(RUN ¼ 0, CAT ¼ 0).

The AC code table for symbol-1 consists of one Huffman code word (max-
imum length 16 bits, not including additional bits) for each possible composite
event. Table B.2 shows the code words for all possible combinations of RUN and
CAT of symbol-1 [4]. The format of the additional bits (symbol-2) is the same as in
the coding of DIFF in DC coefficients. For the kth AC coefficient in the zigzag scan
order, ZZ(k), the additional bits are either the lower-order bits of ZZ(k) when ZZ(k)
is positive or the lower-order bits of ZZ(k) � 1 when ZZ(k) is negative. To clarify
this, let us look at a simple example.

Example: the quantised DCT coefficients of a luminance block are shown in
Figure 5.5. If the DC coefficient in the previous luminance block was 29, find the
code words for coding of the DC and AC coefficients.

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
5
–13
18

0
0
0
0
0
0
–21
31

0

Figure 5.5 Quantised DCT coefficients of a luminance block

Coding of still pictures (JPEG and JPEG2000) 107

Code word for the DC coefficient: DIFF ¼ 31 – 29 ¼ 2. From Table 5.3, CAT ¼ 2,
and according to Table B.1, the Huffman code for this value of CAT is 011. To find
the appended bits, since DIFF ¼ 2 > 0, 2 ¼ 000 . . . 0010. Thus, the appended bits
are 10. Hence, the overall code word for coding the DC coefficient is 01110.

Code words for the AC coefficients: Scanning starts from the first nonzero AC
coefficient that has a value of 18. From Table 5.3, the CAT value for 18 is 5, and
since there is no zero-value AC coefficient before it, RUN ¼ 0. Hence, symbol-1 is
(0, 5). From Table B.2, the code word for (0, 5) is 11010. The symbol-2 is the
lower-order bits of ZZ(k) ¼ 18 ¼ 000 . . . 010010, which is 10010. Thus, the first
AC code word is 1101010010.

The next nonzero AC coefficient in the zigzag scan order is –21. Since it has
no zero coefficient before it and it is in the range of –31 to –16, it has RUN ¼ 0 and
CAT ¼ 5. Thus, symbol-1 of this coefficient is (0, 5), which again, from Table B.2
of Appendix B, has a code word of 11010. For symbol-2, since –21 < 0, ZZ(k) – 1 ¼
–21 – 1 ¼ –22 ¼ 111 . . . 1101010, and symbol-2 becomes 01010 (note that the
appended bits start from where the MSB is 0). Thus, the overall code word for
the second nonzero AC coefficient is 1101001010.

The third nonzero AC coefficient in the scan is –13, which has one zero
coefficient before it. Then RUN ¼ 1, and from its range, CAT is 4. From Table B.2
of Appendix B, the code word for (RUN ¼ 1, CAT ¼ 4) is 111110110. To find
symbol-2, ZZ(k) – 1 ¼ –13 – 1 ¼ –14 ¼ 111 . . . 110010. Thus, symbol-2 ¼ 0010, and
the whole code word becomes 1111101100010.

The fourth and the final nonzero AC coefficient is 5 (CAT ¼ 3), which is
preceded by three zeros (RUN ¼ 3). Thus, symbol-1 is (3, 3), which, from Table
B.2, has a code word of 111111110101. For symbol-2, since ZZ(k) ¼ 5 ¼
000 . . . 00101, the lower-order bits are 101, and the whole code word becomes
111111110101101.

Since five is the last nonzero AC coefficient, the encoding terminates here, and
the EOB code is transmitted, which is defined as (0,0) symbol with no appended
bits. From Table B.2, its code word is 1010.

5.2.2.3 Entropy coding
For coding of the magnitude categories or run length events, the JPEG standard
specifies two alternative entropy coding methods, namely Huffman coding and
arithmetic coding. Huffman coding procedures use Huffman tables, and the type of
table is determined by the entropy table specifications, shown in Figure 5.3.
Arithmetic coding methods use arithmetic coding conditioning tables, which may
also be determined by the entropy table specification. There can be up to four
different Huffman and arithmetic coding tables for each DC and AC coefficient. No
default values for Huffman tables are specified, so the applications may choose
tables appropriate for their own environment. Default tables are defined for the
arithmetic coding conditioning. Baseline sequential coding uses Huffman coding,
while the extended DCT-based and lossless processes may use either Huffman or
arithmetic coding (see Table 5.4).

108 Standard codecs: image compression to advanced video coding

In arithmetic coding of AC coefficients, the length of zero run is no longer
limited to 15; it can go up to the end of the block (e.g. 62). Also, arithmetic coding
may be made adaptive to increase the coding efficiency. Adaptive means that the
probability estimates for each context are developed based on a prior coding
decision for that context. The adaptive binary arithmetic coder may use a statistical
model to improve encoding efficiency. The statistical model defines the contexts
that are used to select the conditional probability estimates used in the encoding
and decoding procedures.

5.2.3 Extended DCT-based process
The baseline encoder only supports basic coding tools, which are sufficient for most
image compression applications. These include input image with 8-bit/pixel precision,
Huffman coding of the run length and sequential transmission. If other modes or any
input image precision are required, and in particular, if arithmetic coding is employed
to achieve higher compression, then the term extended DCT-based process is
applied to the encoder. Table 5.4 summarises all the JPEG-supported coding modes.

Table 5.4 Summary: essential characteristics of coding process

Baseline process (required for all DCT-based decoders)
● DCT-based process
● source image: 8-bit samples within each component
● sequential
● Huffman coding: 2 AC and 2 DC tables
● decoders shall process scans with 1, 2, 3 and 4 components
● interleaved and noninterleaved scans

Extended DCT-based processes
● DCT-based process
● source image: 8- or 12-bit samples
● sequential or progressive
● Huffman or arithmetic coding: 4 AC and 4 DC tables
● decoder shall process scans with 1, 2, 3 and 4 components
● interleaved and noninterleaved scans

Lossless process
● predictive process (not DCT based)
● source image; N-bit samples (2 � N � 16Þ
● sequential
● Huffman or arithmetic coding: 4 tables
● decoders shall process scans with 1, 2, 3 and 4 components
● interleaved and noninterleaved scans

Hierarchical processes
● multiple layers (nondifferential and differential)
● uses extended DCT-based or lossless processes
● decoders shall process scans with 1, 2, 3 and 4 components
● interleaved and noninterleaved scans

Coding of still pictures (JPEG and JPEG2000) 109

Figure 5.6 illustrates the reconstruction of a decoded image in a sequential mode
(baseline or extended). As mentioned, as soon as a block of pixels is coded, its 64
coefficients are quantised, coded and transmitted. The receiver, after decoding the
coefficients, inverse quantisation and inverse transformation, sequentially adds them
to the reconstructed image. Depending on the channel rate, it might take some time to
reconstruct the whole image. In Figure 5.6, reconstructed images at 25, 50, 75 and
100 per cent of image are shown.

50%

100%

25%

75%

Figure 5.6 Reconstructed images in sequential mode

In the progressive mode, the quantised coefficients are stored in the local
buffer and transmitted later. There are two procedures by which the quantised
coefficients in the buffer may be partially encoded within a scan. First, for the
highest image quality (lowest quantisation step size), only a specified band of
coefficients from the zigzag scanned sequence needs to be coded. This procedure is
called spectral selection, since each band typically contains coefficients that occupy
a lower or higher part of the frequency spectrum for the 8 � 8 block. Second, the
coefficients within the current band need not be encoded to their full accuracy
within each scan (coarser quantisation). On a coefficient’s first encoding, a speci-
fied number of the MSBs are encoded first. In subsequent scans, the less significant
bits are then encoded. This procedure is called successive approximation or bit
plane encoding. Either procedure may be used separately, or they may be mixed in
flexible combinations.

110 Standard codecs: image compression to advanced video coding

Figure 5.7 shows the reconstructed image quality with the first method. In this
figure, the first image is reconstructed from the DC coefficient only, with its full-
quantised precision. The second image is made up of DC (coefficient 0) plus the
AC coefficients 1 and 8, according to the zigzag scan order. That is, after receiving
the two new AC coefficients, a new image is reconstructed from these coefficients
and the previously received DC coefficients. The third image is made up of
coefficients 0, 1, 8, 16, 9, 2, 3, 10, 17 and 24. In the last image, all the significant
coefficients (up to EOB) are included.

0,1,8,16,9,2,3,10,17,24 all

0 0,1,8

Figure 5.7 Reconstructed reconstruction in sequential mode

5.2.4 Hierarchical mode
In the hierarchical mode, an image is coded as a sequence of layers in a pyramid.
Each lower-size image provides prediction for the next upper layer. Except for the
top level of the pyramid, for each luminance and colour component at the lower
levels, the difference between the source components and the reference recon-
structed image is coded. The coding of the differences may be done using only
DCT-based processes, only lossless processes or DCT-based processes with a final
lossless process for each component.

Coding of still pictures (JPEG and JPEG2000) 111

Downsampling and upsampling filters, similar to those of Figures 2.4 and 2.6,
may be used to provide a pyramid of spatial resolution, as shown in Figure 5.8. The
hierarchical coder including the downsampling and upsampling filters is shown in
Figure 5.9.

Figure 5.8 Hierarchical multiresolution encoding

DCT

2

IDCT

1/2 DCT

IDCT

2

DCT

IDCT

+

–

+

+

+

+

–

–

+

input
image

top-level bitstream

second-level bitstream

base-level bitstream

bitstream for
lossless coding

+

1/4

Figure 5.9 A three-level hierarchical encoder

112 Standard codecs: image compression to advanced video coding

In this figure, the image is low pass filtered and subsampled by 4:1 in both
directions to give an image size reduced by 1/16. The baseline encoder then
encodes the reduced image. The decoded image at the receiver may be interpolated
by 1:4 to give the full size image for display. At the encoder, another baseline
encoder encodes the difference between the subsampled input image by 2:1 and the
1:2 upsampled decoded image. By repeating this process, the image is progres-
sively coded, and at the decoder it is progressively built up. The bit rate at each
level depends on the quantisation step size at that level. Finally, for lossless
reversibility of the coded image, the difference between the input image and the
latest decoded image is lossless entropy coded (no quantisation).

As we see, the hierarchical mode offers a progressive representation similar to
the progressive DCT-based mode, but it is useful in environments that have mul-
tiresolution requirements. The hierarchical mode also offers the capability of pro-
gressive transmission to a final lossless stage, as shown in Figure 5.9.

5.2.5 Extra features
In coding of colour pictures, encoding is called noninterleaved if all blocks of a
colour component are coded before beginning to code the next component.
Encoding is interleaved if the encoder compresses a block of 8 � 8 pixels from
each component in turn, considering the image format. For example, with the 4:4:4
format, one block from each luminance and two chrominance components are
coded. In the 4:2:0 format, the encoder codes four luminance blocks before coding
one block from each of Cb and Cr.

The encoder is also flexible to allow different blocks within a single
component to be compressed using different quantisation tables, resulting in a
variation in the reconstructed image quality, based on their perceived relative
importance. This method of coding is called region of interest (ROI) coding. Also,
the standard can allow different regions within a single image block to be com-
pressed at different rates.

5.3 JPEG2000

Before describing the basic principles of the JPEG2000 standard, it might be useful
to understand why we need another standard. Perhaps the most convincing expla-
nation is that since the introduction of JPEG in 1980s, too much has changed in the
digital image industry. For example, current demands for compressed still images
range from Web logos of sizes less than 10 kbytes to high-quality scanned images
of the order of 5 Gbytes [6]. The existing JPEG surely is not optimised to efficiently
code such a wide range of images. Moreover, scalability and interoperability
requirements of digital imagery in a heterogeneous network of ATM, Internet,
mobile, etc. make the matter much more complicated.

The JPEG2000 standard is devised with the aim of providing the best quality or
performance and capabilities to market evolution that the current JPEG standard
fails to cater for. In the meantime, it is assumed that Internet, colour facsimile,

Coding of still pictures (JPEG and JPEG2000) 113

printing, scanning, digital photography, remote sensing, mobile, medical imagery,
digital libraries/archives and e-commerce are among the most immediate demands.
Each application area imposes a requirement that JPEG2000 should fulfil. Some of
the most important features [7] that this standard aims to deliver are as follows:

Superior low bit rate performance: This standard should offer performance superior
to the current standards at low bit rates (e.g. below 0.25 bit/pixel for highly detailed
greyscale images). This significantly improved low bit rate performance should be
achieved without sacrificing performance on the rest of the rate distortion spec-
trum. Examples of applications that need this feature include image transmission
over networks and remote sensing. This is the highest-priority feature.

Continuous tone and bilevel compression: It is desired to have a standard coding
system that is capable of compressing both continuous tone and bilevel images [8].
If feasible, the standard should strive to achieve this with similar system resources.
The system should compress and decompress images with various dynamic ranges
(e.g. 1–16 bits) for each colour component. Examples of applications that can use
this feature include compound documents with images and text, medical images
with annotation overlays, graphic and computer-generated images with binary and
near-to-binary regions, alpha and transparency planes, and facsimile.

Lossless and lossy compression: It is desired to provide lossless compression
naturally in the course of progressive decoding (i.e. difference image encoding, or
any other technique, which allows for the lossless reconstruction to be valid).
Examples of applications that can use this feature include medical images where
loss is not always tolerable, image archival pictures where the highest quality is
vital for preservation but not necessary for display, network systems that supply
devices with different capabilities and resources, and prepress imagery.

Progressive transmission by pixel accuracy and resolution: Progressive transmis-
sion that allows images to be reconstructed with increasing pixel accuracy or spatial
resolution is essential for many applications. This feature allows the reconstruction
of images with different resolutions and pixel accuracy, as needed or desired, for
different target devices. Examples of applications include the Web browsing, image
archiving and printing.

ROI coding: Often there are parts of an image that are more important than others.
This feature allows user-defined ROI in the image to be randomly accessed and/or
decompressed with less distortion than the rest of the image.

Robustness to bit errors: It is desirable to consider robustness to bit errors while
designing the code stream. One application where this is important is wireless
communication channels. Portions of the code stream may be more important than
others in determining decoded image quality. Proper design of the code stream can
aid subsequent error correction systems in alleviating catastrophic decoding fail-
ures. Use of error confinement, error concealment, restart capabilities or source
channel coding schemes can help minimise the effects of bit errors.

114 Standard codecs: image compression to advanced video coding

Open architecture: It is desirable to allow open architecture to optimise the system
for different image types and applications. With this feature, the decoder is only
required to implement the core tool set and a parser that understands the code
stream. If necessary, unknown tools are requested by the decoder and sent from
the source.

Protective image security: Protection of a digital image can be achieved by means
of methods such as watermarking, labelling, stamping, fingerprinting, encryption
and scrambling. Watermarking and fingerprinting are invisible marks set inside the
image content to pass a protection message to the user. Labelling is already
implemented in some imaging formats such as SPIFF and must be easy to transfer
back and forth to the JPEG2000 image file. Stamping is a mark set on top of a
displayed image that can only be removed by a specific process. Encryption and
scrambling can be applied on the whole image file or limited to part of it (header,
directory, image data) to avoid unauthorised use of the image.

5.4 JPEG2000 encoder

The JPEG2000 standard follows the generic structure of the intraframe still image
coding introduced for the baseline JPEG, that is, decorrelating the pixels within a
frame by means of transformation and then quantising and entropy coding of the
quantised transform coefficients for further compression. However, in order to
meet the design requirements set forth in section 5.3, in addition to the specific
requirements from the transformation and coding, certain preprocessing on the
pixels and postprocessing of the compressed data are necessary. Figure 5.10 shows
a block diagram of a JPEG2000 encoder.

in out
preprocessing postprocessingcore encoding

Figure 5.10 A general block diagram of the JPEG2000 encoder

In presenting this coder, we only talk about the fundamentals behind this
standard. More details can be found in the ISO standardisation documents and
several key papers [7,9,10].

5.4.1 Preprocessor
Image pixels prior to compression are preprocessed to make certain goals easier to
achieve. There are three elements in this preprocessor.

Coding of still pictures (JPEG and JPEG2000) 115

5.4.1.1 Tiling
Partitioning the image into rectangular nonoverlapping pixel blocks, known as til-
ing, is the first stage in preprocessing. The tile size is arbitrary and can be as large
as the whole image size down to a single pixel. A tile is the basic unit of coding,
where all the encoding operations, from transformation down to bitstream forma-
tion, are applied to tiles independent of each other. Tiling is particularly important
to reduce memory requirement, and since they are coded independently, any part of
the image can be accessed and processed differently from the other parts of the
image. However, because of tiling, the correlation between the pixels in adjacent
tiles is not exploited, and hence, as the tile size is reduced, the compression gain of
the encoder is also reduced.

5.4.1.2 DC-level shifting
Similar to DC-level shifting in the JPEG standard (Figure 5.3), values of the RGB
colour components within the tiles are DC shifted by 2B�1, for B bits per colour
component. Such an offset makes certain processing, such as numerical overflow,
arithmetic coding and context specification, simpler. In particular, this allows the
lowest subband, which is a DC signal, to be encoded along with the rest of the AC
wavelet coefficients. At the decoder, the offset is added back to the colour com-
ponent values.

5.4.1.3 Colour transformation
There are significant correlations between the RGB colour components. Hence,
prior to compression by the core encoder, they are decorrelated by some form of
transformation. In JPEG2000, two types of colour decorrelation transforms are
recommended.

In the first type, the decorrelated colour components YCbCr, are derived from
the three colour primaries RGB according to

Y
Cb

Cr

2
4

3
5 ¼

0:299 0:587 0:114
�0:16875 �0:33126 0:500

0:500 �0:41869 �0:08131

2
4

3
5 R

G
B

2
4

3
5 ð5:4Þ

Note that this transformation is slightly different from the one used for coding
colour video (see section 2.2). Also note that since transformation matrix elements
are approximated (not exact), the decoded RGB colour components cannot be free
from loss even if YCbCr are losslessly coded. Hence, this type of colour transfor-
mation is irreversible, and it is called irreversible colour transformation (ICT). ICT
is used only for lossy compression.

The JPEG2000 standard also defines a colour transformation for lossless
compression. Therefore, the transformation matrix elements are required to be
integer. In this mode, the transformed colour components are referred to as YUV,
and are defined as

116 Standard codecs: image compression to advanced video coding

Y
U
V

2
4

3
5 ¼

0:25 0:5 0:25
1 �1 0
0 �1 1

2
4

3
5 R

G
B

2
4

3
5 ð5:5Þ

Here the colour decorrelation is not as good as ICT, but it has the property that if
YUV are losslessly coded, then the exact values of the original RGB can be
retrieved. This type of transformation is called reversible colour transformation
(RCT). RCT may also be used for lossy coding, but since ICT has a better dec-
orrelation property than RCT, use of RCT can reduce the overall compression
efficiency.

It is worth mentioning that in compression of colour images, colour fidelity
may be traded for that of luminance. In the JPEG standard, this is done by sub-
sampling the chrominance components Cb and Cr, or U and V, like the 4:2:2 and
4:2:0 image formats. In JPEG2000, image format is always 4:4:4, and the colour
subsampling is done by the wavelet transform of the core encoder. For example, in
coding of a 4:4:4 image format, if the highest LH, HL and HH bands of Cb and Cr

chrominance components are set to zero, it has the same effect as coding of a 4:2:0
image format.

5.4.2 Core encoder
Each transformed colour component of YCbCr/YUV is coded by the core encoder.
As in the JPEG encoder, the main elements of the core encoder are transformation,
quantisation and entropy coding. Thus, a more detailed block diagram of
JPEG2000 is given in Figure 5.11.

R

G

B

colour
transfor-
mation

bitstream
formatter

DWT Q E

DWT Q E

DWT Q E

DC offset

DC offset

DC offset

Figure 5.11 The encoding elements of JPEG2000

In the following sections, these elements and their roles in image compression
are presented.

Coding of still pictures (JPEG and JPEG2000) 117

5.4.2.1 Discrete wavelet transform
In JPEG2000, transformation of pixels that in the JPEG standard was DCT has been
replaced by the discrete wavelet transform (DWT). This has been chosen to fulfil
some of the requirements set forth by the JPEG2000 committee:

● Multiresolution image representation is an inherent property of the wavelet
transform. This also provides simple signal-to-noise ratio (SNR) and spatial
scalability without sacrificing compression efficiency.

● Since wavelet transform is a class of lapped orthogonal transform, it does not
create blocking artefacts even for small tile sizes.

● For larger-dimension images, the number of subband decomposition levels can
be increased. Hence, by exploiting a larger area of pixel intercorrelation,
a higher compression gain can be achieved. Thus, for images coded at low bit
rates, DWT is expected to produce better compression gain than the DCT,
which only exploits correction with 8�8 pixels.

● DWT with integer coefficients, such as the (5,3) tap wavelet filters, can be used
for lossless coding. Note that in DCT, since the cosine elements of the trans-
formation matrix are approximated, lossless coding is not possible.

The JPEG2000 standard recommends two types of filter banks for lossy and loss-
less coding. The default irreversible transform used in the lossy compression is the
Daubechies (9,7)-tap filter [11]. For reversible transform, a requirement for lossless
compression is the LeGall and Tabatabai’s (5,3)-tap filters, as they have integer
coefficients [12]. Table 5.5 shows the normalised coefficients (rounded to six
decimal points) of the low- and high-pass analysis filters H0(z)/H1(z) of the (9,7)
and (5,3) filters. Those of the synthesis G0(z) and G1(z) filters can be derived from
the usual method of G0(z) ¼ H1(�z) and G1(z) ¼ �H0(�z).

Table 5.5 Low- and high-pass analysis filter banks

Coefficients Lossy compression (9,7) Lossless compression (5,3)

Low pass H0(z) High pass H1(z) Low pass H0(z) High pass H1(z)

0 +0.602949 +1.115087 3/4 1
�1 +0.266864 �0.591272 1/4 �1/2
�2 �0.078223 �0.057544 �1/8
�3 �0.016864 +0.091272
�4 +0.026729

Note that to preserve image energy in the pixel and the wavelet domains, the
integer filter coefficients in the lossless compression are normalised for unity
gain. Since the low- and high-pass filter lengths are not equal, these types of filters
are called biorthogonal. The lossy (9,7) Daubechies filter pairs [11] are also
biorthogonal.

118 Standard codecs: image compression to advanced video coding

5.4.2.2 Quantisation
After the wavelet transform, all the coefficients are quantised linearly with a dead
band zone quantiser (Figure 3.5). The quantiser step size can vary from band to
band, and since image tiles are coded independently, it can also vary from tile to
tile. However, one quantiser step size is allowed per subband of each tile. The
choice of the quantiser step size can be driven by the perceptual importance of
that band on the HVS, similar to the quantisation weighting matrix used in JPEG
(Table 5.1), or by other considerations, such as the bit rate budget.

As mentioned in Chapter 4, wavelet coefficients are most efficiently coded
when they are quantised by successive approximation, which is the bit plane
representation of the quantised coefficients. In this context, the quantiser step size
in each subband, called the basic quantiser step size, D, is related to the dynamic
range of that subband such that the initial quantiser step size after several passes
ends up with the basic quantiser step size D. In JPEG2000, the basic quantiser step
size for band b, Db, is represented with a total of 2 bytes, an 11-bit mantissa mb and a
5-bit exponent eb according to the relationship

Db ¼ 2Rb�eb 1 þ mb

211

� �
ð5:6Þ

where Rb is the number of bits representing the nominal dynamic range of the
subband b. That is, 2Rb is greater than the magnitude of the largest coefficient in
subband b. Values of mb and eb for each subband are explicitly transmitted to the
decoder. For lossless coding, used with reversible (5, 3) filter banks, mb ¼ 0 and eb ¼
Rb, which results in Db ¼ 1. On the other hand, the maximum value of Db is almost
twice the dynamic range of the input sample when eb ¼ 0 and mb has its maximum
value, which is sufficient for all practical cases of interest.

5.4.2.3 Entropy coding
The indices of the quantised coefficients in each subband are entropy coded to
create the compressed bitstream. In Chapter 4, we introduced three efficient
methods of coding these indices, namely embedded zero tree (EZW), set parti-
tioning in hierarchical tree (SPIHT) and embedded block coding with optimised
truncation (EBCOT). As mentioned in section 4.7, the JPEG committee chose the
EBCOT because of its many interesting features that fulfil the JPEG2000 objec-
tives. Details of EBCOT were given in section 4.7, but here we only summarise its
principles and show how it is used in the JPEG2000 standard.

In EBCOT, each subband of an image tile is partitioned into small rectangular
blocks called code blocks, and code blocks are encoded independently. The
dimensions of the code blocks are specified by the encoder, and although they may
be chosen freely, there are some constraints: they must be an integer power of 2, the
total number of coefficients in a code block cannot exceed 4096 and the height of
the code block cannot be less than 4. Thus, the maximum length of the code block
is 1024 coefficients.

Coding of still pictures (JPEG and JPEG2000) 119

The quantiser indices of the wavelet coefficients are bit plane encoded, 1 bit at
a time, starting from the MSB and preceding to the least significant bit (LSB).
During this progressive bit plane encoding, if the quantiser index is still zero, that
coefficient is called insignificant. Once the first nonzero bit is encoded, the coef-
ficient becomes significant and its sign is encoded. For significant coefficients, all
subsequent bits are referred to as refinement bits. Since in the wavelet decom-
position, the main image energy is concentrated at lower-frequency bands, many
quantiser indices of the higher-frequency bands will be insignificant at the earlier
bit planes. Clustering of insignificant coefficients in bit planes creates strong
redundancies among the neighbouring coefficients that are exploited by JPEG2000
through a context-based adaptive arithmetic coding.

In JPEG2000, instead of encoding the entire bit plane in one pass, each bit
plane is encoded in three subbit plane passes. This is called fractional bit plane
encoding, and the passes are known as significance propagation pass, refinement
pass and clean-up pass. The reason for this is to be able to truncate the bitstream at
the end of each pass to create a near optimum bitstream. Here, the pass that results
in a largest reduction in distortion for the smallest increase in bit rate is encoded
first.

In the significance propagation pass, the bit of a coefficient in a given bit plane
is encoded if and only if prior to this pass the coefficient was insignificant and at
least one of its eight immediate neighbours was significant. The bit of the coeffi-
cient in that bit plane, 0 or 1, is then arithmetic coded with a probability model
derived from the context of its eight immediate neighbours. Since neighbouring
coefficients are correlated, it is more likely that the coded coefficient becomes
significant, resulting in a large reduction in the coding distortion. Hence, this pass
is the first to be executed in the fractional bit plane coding.

In the refinement pass, a coefficient is coded if it was significant in the pre-
vious bit plane. Refining the magnitude of a coefficient reduces the distortion
moderately. Finally, coefficients that were not coded in the two previous passes are
coded in the clean-up pass. These are mainly insignificant coefficients (having
eight insignificant immediate neighbours) and are likely to remain insignificant.
Hence, their contributions in reducing distortions are minimal and are used in the
last pass. For more details of coding, refer to EBCOT in section 4.7.

5.4.3 Postprocessing
Once the entire image has been compressed, the bitstream generated by the indi-
vidual code blocks is postprocessed to facilitate various functionalities of the
JPEG2000 standard. This part is similar to the layer formation and bitstream
organisation of EBCOT known as tier 2 (see section 4.7).

To form the final bitstream, the bits generated by the three spatially consistent
coded blocks (one from each subband at each resolution level) comprise a packet
partition location called precinct [9]. A collection of packets, one from each
precinct, at each resolution level comprises the layer. Figure 5.12 shows the

120 Standard codecs: image compression to advanced video coding

relationship between the packetised bitstream and the units of image, such as the
code block, precinct, tile and the image itself.

Here the smallest unit of compressed data is the coded bits from a code block.
Data from three code blocks of a precinct make a packet, with an appropriate header,
addressing the precinct position in the image. Packets are then grouped into the layer
and finally form the bitstream, all with their relevant headers, to facilitate flexible
decoding. Since precincts correspond to spatial locations, a packet could be inter-
preted as one quality increment for one resolution at one spatial location. Similarly, a
layer could be viewed as one quality increment for the entire image. Each layer
successively and gradually improves the image quality and resolution, so that the
decoder is able to decode the code block contributions contained in the layer in
sequence. Since ordering of packets into the layer and hence into the bitstream can be
as desired, various forms of progressive image transmission can be realised.

5.5 Some interesting features of JPEG2000

Independent coding of code blocks and flexible multiplexing of quality packets into
the bitstream exhibit some interesting phenomena. Some of the most remarkable
features of JPEG2000 are outlined in the followings sections.

image

tile

precinct

code block coded code block

packet

layer

bitstream

Figure 5.12 Correspondence between the spatial data and bitstream

Coding of still pictures (JPEG and JPEG2000) 121

5.5.1 Region of interest
In certain applications, it might be desired to code parts of a picture at higher
quality than the other parts. For example, in Web browsing, one might be interested
in a logo of a complex Web page image that needs to be seen first. This part needs
to be given higher priority for transmission. Another example is in medical images,
where the ROI might be an abnormality in the part of the whole image that requires
special attention.

Figure 5.13 shows an example of ROI, where the head and scarf of Barbara are
coded at higher quality than the rest of the picture, called background. Loss of
image quality outside the ROI (outside the white box), in particular on the table-
cloth, trousers and the books, is very clear.

Figure 5.13 Region of interest with better quality

Coding of the ROI in the JPEG2000 standard is implemented through the so-
called maxshift method [13]. The basic principle in this method is to scale (shift) up
the coefficients such that their bits are placed at a higher level than the bits asso-
ciated with the background data, as shown in Figure 5.14. Depending on the scale
value, S, some bits of the ROI coefficients might be encoded together with those of
the background, like Figure 5.14a, or all the bits of ROI are encoded before any
background data are coded, as shown in Figure 5.14b. In any case, the ROI at the
decoder is decoded or refined before the rest of the image.

It is interesting to note that if the value of scaling, S, is computed such that the
minimum coefficient belonging to ROI is larger than the maximum coefficient of

122 Standard codecs: image compression to advanced video coding

the background, then it is possible to have arbitrary shaped ROIs, without the need
for defining the ROI shape to the decoder. This is because every received
coefficient that is smaller than S belongs to the background and can be easily
identified.

5.5.2 Scalability
Scalability is one of the important parts of all the image/video coding standards.
Scalable image coding means being able to decode more than one quality or
resolution image from the bitstream. This allows the decoders of various cap-
abilities to decode images according to their processing powers or needs. For
example, while low-performance decoders may decode only a small portion of the
bitstream, providing basic quality or resolution images, high-performance decoders
may decode a larger portion of the bitstream, proving higher-quality images. The
most well-known types of scalability in JPEG2000 are the SNR and spatial scal-
abilities. Since in JPEG2000 code blocks are individually coded, bitstream scal-
ability is easily realised. To have either of the SNR or spatial scalability, the
compressed data from the code blocks should be inserted into the bitstream in the
proper order.

5.5.2.1 Spatial scalability
In spatial scalability, from a single bitstream, images of various spatial resolutions
can be decoded. The smaller-size picture with an acceptable resolution is the base
layer, and the parts of the bitstream added to the base layer to create higher-
resolution images comprise the next enhancement layer, as shown in Figure 5.15.

In JPEG2000, because of the octave band decomposition of the wavelet
transform, spatial scalability is easily realised. In this mode, compressed data of the
code blocks have to be packed into the bitstream such that all the bit planes of the
lower-level subbands precede those of the higher bands.

R
O
I

LSB

MSB

BGBG

R
O
I

BGBG

MSB

LSB

S

(a) (b)

Figure 5.14 Scaling of the ROI coefficients

Coding of still pictures (JPEG and JPEG2000) 123

Figure 5.15 Spatial scalable decoding

5.5.2.2 SNR scalability
The SNR scalability involves producing at least two levels of images of the same
spatial resolutions, but at different quality, from a single bitstream. The lowest-
quality image is called the base layer, and the parts of the bitstream that enhance
the image quality are called enhancement layers. In JPEG2000, through bit plane
encoding, the lowest significant bit plane that gives an acceptable image quality can
be regarded as the base layer image. Added quality from the subsequent bit planes
produce a set of enhanced images. Figure 5.16 shows a nine-layer SNR scalable
image produced by bit plane coding from a single layer, where the compressed
code block data from a bit plane of all the subbands are packed before the data from
the next bit plane.

In Figure 5.16, the first picture is made up from coding the MSB of the lowest
LL band. As bit plane coding progresses towards lower bits, more bands are coded,
improving the image quality. Any of the images shown in the figure can be
regarded as the base layer, but for an acceptable quality, picture number 4 or 5 may
just meet the criterion. The remaining higher-quality images become its enhanced
versions at different quality levels.

5.5.3 Resilience
Compressed bitstreams, especially those using VLCs (e.g. arithmetic coding), are
extremely sensitive to channel errors. Even a single bit error may destroy the
structure of the following valid code words, corrupting a very large part of the
image. Resilience and robustness to channel errors are the most desired features
expected from any image/video encoder. Fortunately, in JPEG2000, since the
individual quality packets can be independently decoded, the effect of channel
errors can be confined to the area covered by these packets. This is not the case
with the other wavelet transform encoders such as EZW and SPIHT. Figure 5.17

124 Standard codecs: image compression to advanced video coding

shows the impact of a single bit error on the reconstructed picture, encoded by the
SPIHT and JPEG2000. As the figure shows, although a single bit error destroys the
whole picture encoded by SPIHT, its effect on JPEG2000 is only limited to a small
area around Barbara’s elbow.

It is worth noting that the SPIHT encoder, even without arithmetic coding, is
very sensitive to channel errors. For example, a single bit error in the early pass of
list of insignificant set (LIS) (see section 4.6) can corrupt the whole image, as can
be seen from Figure 5.17a. In fact, this picture is not arithmetic coded at all, and the
single bit error was introduced at the first pass of the LIS data. Of course it is
possible to guard EZW and SPIHT compressed data against channel errors. For
instance, if the bitstream generated by each tree of EZW/SPIHT can be marked,
then propagation of errors into the trees can be prevented. This requires some extra
bits to be inserted between the tree’s bitstreams as the resynchronisation markers.
This inevitably increases the bit rate. Since the resynchronisation marker bits are

Figure 5.16 SNR scalable decoding

Coding of still pictures (JPEG and JPEG2000) 125

fixed in rate, irrespective of the encoded bit rate, the increase in bit rate is more
significant at lower bit rates than that at higher bit rates. For example, in coding
Barbara with SPIHT at 0.1, 0.5 and 1 bit/pixel, the overhead in bits will be 2.7, 0.64
and 0.35 per cent, respectively.

5.6 Problems

1. The luminance quantisation Table 5.1 is used in the baseline JPEG for a quality
factor of 50 per cent. Find the quantisation table for the following quality
factors:
a. 25 per cent
b. 99 per cent
c. 100 per cent

2. In problem 1, find the corresponding tables for the chrominance.

3. The DCT transform coefficients (luminance) of an 8 � 8 pixel block prior to
quantisation are given by

SPIHT JPEG2000(a) (b)

Figure 5.17 Effect of single bit error on the reconstructed image, encoded by
SPIHT and JPEG2000

1000 �2 35 18 15 �8 62 5
�4 15 �21 �4 51 2 �11 1

9 �8 13 �11 43 �20 7 �3
�17 16 �11 3 �2 5 �13 6
�6 12 42 �15 31 �2 7 �3
12 �7 2 �11 15 �5 3 18

�19 52 6 13 4 �10 8 10
35 �11 �7 3 5 9 7 382

126 Standard codecs: image compression to advanced video coding

Find the quantisation indices for the baseline JPEG with the quality factors of
a. 50 per cent
b. 25 per cent

4. In problem 3, if the quantised index of the DC coefficient in the previous block
was 50, find the pairs of symbol-1 and symbol-2 for the given quality factors.

5. Derive the Huffman code for the 25 per cent quality factor of problem 4, and
hence, calculate the number of bits required to code this block.

6. A part of the stripe of the wavelet coefficients of a band is given as

20 30
�16 65

31 11
50 24

Assume that the highest bit plane is 6. Using EBCOT identify which coeffi-
cient is coded at bit plane 6 and which one at bit plane 5. In each case identify the
type of fractional bit plane used.

References

1. ISO 10918-1 (JPEG): ‘Digital compression and coding of continuous-tone
still images’, 1991

2. FURHT, B.: ‘A survey of multimedia compression techniques and
standards. Part I: JPEG standard’, Real-time Imaging, 1995, 1, pp. 49–67

3. WALLACE, G.K.: ‘The JPEG still picture compression standard’, Commun.
ACM, 1991, 34:4, pp. 30–44

4. JPEG2000: ‘JPEG2000 Part 2, Final Committee Draft’, ISO/IEC JTC1/SC29/
WG1 N2000, December 2000

5. PENNEBAKER, W.B. and MITCHELL, J.L.: JPEG: Still Image Compres-
sion Standard, Van Nostrand Reinhold, New York, 1993

6. SKODRAS, A., CHRISTOPOULOS, C. and EBRAHIMI, T.: ‘The JPEG2000
still image compression standard’, IEEE Signal Process. 18:5, Mag., 2001,
pp. 36–58

7. CHIEN, T. and CHIEN, A.: ‘Visual evaluation of JPEG-2000 colour image
compression performance’, ISO/IECJTC1/SC29/WG1 N1583, March 2000

8. WANG, Q. and GHANBARI, M.: ‘Graphics segmentation based coding of
multimedia images’, Electronics Lett., 1995, 31:6, pp. 542–544

9. RABBANI, M. and JOSHI, R.: ‘An overview of the JPEG2000 image
compression standard’, Signal Process. Image Commun., 2002, 17:1, pp. 3–48

10. SANTA-CRUZ, D., GROSBOIS, R. and EBRAHIMI, T.: ‘JPEG2000 per-
formance evaluation and assessment’, Signal Process. Image Commun., 2002,
17:1, pp. 113–130

Coding of still pictures (JPEG and JPEG2000) 127

11. DAUBECHIES, I.: ‘The wavelet transform, time frequency localization and
signal analysis’, IEEE Trans Inf. Theory, 1990, 36:5, pp. 961–1005

12. LE GALL, D. and TABATABAI, A.: ‘Subband coding of images using
symmetric short kernel filters and arithmetic coding techniques’, IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP’98, 1988, pp. 761–764

13. CHRISTOPOULOS, C.A., ASKELF, J. and LARSSON, M.: ‘Efficient
methods for encoding regions of interest in the up-coming JPEG2000 still
image coding standard’, IEEE Signal Process. Let., 2000, 7, pp. 247–249

128 Standard codecs: image compression to advanced video coding

Chapter 6

Coding for videoconferencing (H.261)

The H.261 standard defines the video coding and decoding methods for digital trans-
mission over Integrated Services Digital Network (ISDN) at rates of p � 64 kbit/s,
where p is in the range of 1–30 [1]. The video bit rates will lie between approximately
64 and 1920 kbit/s. The recommendation is aimed at meeting projected customer
demand for videophone, videoconferencing and other audio-visual services. It was
ratified in December 1990.

The coding structure of H.261 is very similar to that of the generic codec of
Chapter 3 (Figure 3.19). That is, it is an interframe discrete cosine transform
(DCT)-based coding technique. Interframe prediction is first carried out in the pixel
domain. The prediction error is then transformed into the frequency domain, where
the quantisation for bandwidth reduction takes place. Motion compensation (MC)
can be included in the prediction stage, although it is optional. Thus, the coding
technique removes temporal redundancy by interframe prediction and spatial
redundancy by transform coding. Techniques have been devised to make the codec
more efficient, and at the same time suitable for telecommunications.

It should be noted that any recommendation only specifies what is expected for
a decoder; it does not give information on how to design it. Even less information is
given about the encoder. Therefore, the design of the encoder and the decoder is at
the discretion of the manufacturer, provided they comply with the syntax bitstream.
Since the aim of this book is the introduction to the fundamentals of video coding
standards, rather than giving instructions on the details of a specific codec, we
concentrate on the reference model (RM) codec. The RM is a software-based
codec, which is devised to be used in laboratories to study the core elements as a
basis for the design of flexible hardware specifications.

During the development of H.261, from May 1988 to May 1989, the RM
underwent eight refinement cycles. The last version, known as reference model eight
(RM8) [2], is in fact the basis of the current H.261. However, the two may not be
exactly identical (though very similar), and the manufacturers may decide on a dif-
ferent approach for better optimisation of their codecs. Herein we interchangeably
use RM8 for H.261. Before describing this codec, we will first look at the picture
format, and spatio-temporal resolutions of the images to be coded with H.261.

6.1 Video format and structure

Figure 6.1 shows a block diagram of an H.261-based audio-visual system, where a
preprocessor converts the International Radio Consultative Committee (CCIR)-601

video (video at the output of a camera) to a new format. The coding parameters of
the compressed video signal are multiplexed and then combined with the audio,
data and end-to-end signalling for transmission. The transmission buffer controls
the bit rate, either by changing the quantiser step size at the encoder or, in more
severe cases, by requesting reduction in frame rate to be carried out at the
preprocessor.

coding control

prepro-
cessor

transmission
coder

transmission
buffer

video
multiplexer

source
coder

audio

data

end-to-end signalling

Figure 6.1 A block diagram of an H.261 audio-visual encoder

The H.261 standard also allows up to three pictures to be interpolated between
transmitted pictures, thus reducing the frame rate to 15, 10 and 7.5, respectively.
The use of quarter–common intermediate format (QCIF) resolution will reduce the
sample rate even further to suit low bit rate channels.

In CIF and QCIF, DCT blocks are grouped into macroblocks (MBs) of four
luminance and two corresponding Cb and Cr chrominance blocks. The MBs are in
turn grouped into layers termed groups of blocks (GOB). A CIF frame has 12
GOBs and QCIF has 3, as illustrated in Figure 6.2.

The objectives of structuring an image into MBs and layers are as follows:

● using similar inter/intra coding mode for luminance and chrominance blocks at
the same area;

● using one motion vector for both luminance and chrominance blocks;
● efficient coding of the large number of 8 � 8 DCT blocks that will be expected

to be without coded information in interframe coding; this is implemented via
the inclusion of variable length codes (VLC) for coded block pattern (CBP)
and MB addressing [1];

● allowing synchronisation to be re-established when bits are corrupted by the
insertion of start codes in the GOB headers; note that since DCT coefficients
are variable length coded, any error during the transmission renders the
remaining variable length coded data undecodable; hence, with a GOB struc-
ture, only a portion of the picture is degraded;

130 Standard codecs: image compression to advanced video coding

● carrying side information appropriate for GOB, MB or higher layers; this
includes picture format, temporal references, MB type, quantiser index, etc.

GOBs within CIF GOBs within QCIF
352

288

176

144

16
16

1

3

5

7

9

11

2

4

6

8

10

12

macroblocks
within a GOB

1

3

5

1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33

Y0

Y3

Y1

Y2

8

8

a macroblock structure

CrCb

Figure 6.2 Block, macroblock and GOB structure of CIF and QCIF formatted
pictures

6.2 Video source coding algorithm

The video coding algorithm is shown in Figure 6.3, which is similar to the generic
interframe coder of Figure 3.19. The main elements are the prediction including
MC, transform coding, quantisation, VLC and rate control. The prediction error
(inter mode) or the input picture (intra mode) is subdivided into 16 � 16 MB pixels,
which may or may not be transmitted. MBs that are to be transmitted are divided
into 8 � 8 pixel blocks, which are transform coded (DCT), quantised and variable
length coded for transmission. As discussed in section 6.1, the atomic coding unit in

Coding for videoconferencing (H.261) 131

all standard video codecs is an MB. Hence, in describing the codec we will explain
how each MB is coded.

–

COMP

T Q

Q–1

T–1

F P

+

p

t

q, qz

v

f

Video
in VLC BUF

Th

Figure 6.3 A block diagram of H.261 video encoder

In Figure 6.3, the function of each coding element and the messages carried by
each flag are as follows:

COMP: a comparator for deciding inter/intra coding mode for an MB
Th: threshold, to extend the quantisation range
T: transform coding blocks of 8 � 8 pixels
T�1: inverse transform
Q: quantisation of DCT coefficients
Q�1: inverse quantisation
P: picture memory with motion-compensated variable delay
F: loop filter
p: flag for inter/intra
t: flag for transmitted or not
q: quantisation index for transform coefficients
qz: quantiser indication
v: motion vector information
f: switching on/off of the loop filter

Details of the functions of each block are described in the following sections.

6.2.1 Prediction
The prediction is interpicture, which may include MC, since MC in H.261 is
optional. The decoder accepts one motion vector per MB. Both horizontal and

132 Standard codecs: image compression to advanced video coding

vertical components of these motion vectors have integer values not exceeding
�15 pixels/frame. Motion estimation is only based on the luminance pixels, and the
vector is used for MC of all four luminance blocks in the MB. Halving the com-
ponent values of the MB motion vector and truncating them towards zero derives
the motion vector for each of the two chrominance blocks. Motion vectors are
restricted such that all pixels referenced by them are within the coded picture area.

For the transmission of motion vectors, their differences are variable length
coded. The differential technique is based on one-dimensional prediction, that is,
the difference between the successive motion vectors in a row of GOBs. For the
first MB in the GOB, the initial vector is set to zero.

6.2.2 MC/NO_MC decision
Not all the MBs in a picture are motion compensated. The decision whether an MB
should be motion compensated depends on whether motion-compensated predic-
tion can substantially reduce the prediction error. Figure 6.4 shows the region
(shaded) where MC is preferred. In this figure, the absolute values of frame dif-
ference, fd, and those of motion-compensated frame difference, mfd, normalised to
16 � 16 ¼ 256 pixels inside the MB are compared.

From the figure, we see that if motion-compensated error is slightly, but not
significantly, less than the nonmotion-compensated error, we prefer to use non-
motion compensation (NO_MC). This is because MC entails a motion vector
overhead (even if it might be zero); hence, if the difference between MC and
NO_MC error cannot justify the extra bits, there is no advantage in using MC.

1

2

3

4

5

1 2 3 4 5 6

x =
| fd |
256

y =
|mfd |
256

MC OFF

MC ON

0.5

1.5

2.7

x
1.1y =

Figure 6.4 MC/NO_MC mode decision

Coding for videoconferencing (H.261) 133

6.2.3 Inter/intra decision
Sometimes it might be advantageous to intraframe code an MB, rather than inter-
frame coding it. There are at least two reasons for intraframe coding:

1. Scene cuts or, in the event of violent motion, interframe prediction errors may
not be less than those of the intraframe. Hence, intraframe pictures might be
coded at lower bit rates.

2. Intraframe coded pictures have a better error resilience to channel errors. Note
that in interframe coding, at the decoder, the received data are added to the
previous frame to reconstruct the coded picture. In the event of channel error,
the error propagates into the subsequent frames. If that part of the picture is not
updated, the error can persist for a long time.

Similar to the MC/NO_MC decision, one can make a decision for coding an MB in
inter or intra mode. In this case, the variance of intraframe MB is compared with
that of interframe MB (motion compensated or not). The smallest is chosen. Figure 6.5
shows the characteristics of the function for inter/intra decision. Here for large var-
iances, no preference between the two modes is given, but for smaller variances,
interframe is preferred. The reason is that, in intra mode, the DC coefficients of the
blocks have to be quantised with a quantiser without a dead zone and with 8-bit
resolutions. This increases the bit rate compared to that of the interframe mode, and
hence interframe is preferred.

64

64 INTRA

INTER

Variance (Inter)

Variance
(Intra)

Figure 6.5 Inter/intra mode decision

134 Standard codecs: image compression to advanced video coding

6.2.4 Forced updating
As mentioned, intraframe coded MB increases the resilience of H.261 codec to
channel errors. In case in inter/intra MB decision, no intra mode is chosen, some of
the MBs in a frame are forced to be intra coded. The specification recommends that
an MB should be updated at least once every 132 frames. This means that for CIF
pictures with 396 MBs/frame, on average 3 MBs of every frame are intraframe
coded. This has an important impact on the quality of pictures due to errors. For
example, in CIF pictures at 10 Hz, the effect of channel errors may corrupt up to
132 frames, and be visible for almost 13 s.

6.3 Other types of macroblocks

In H.261, there are as many as eight different types of MBs:

1. Inter coded: interframe coded MBs with no motion vector or with a zero
motion vector.

2. MC coded: motion-compensated MB, where the MC error is significant and
needs to be DCT coded.

3. MC not coded: these are motion-compensated error MBs, where the motion-
compensated error is insignificant. Hence, there is no need to be DCT coded.

4. Intra coded: intraframe coded MBs.
5. Skipped: if all the six blocks in an MB without MC have an insignificant

energy, they are not coded. These MBs are sometimes called skipped, not-
coded or fixed MBs. These types of MBs normally occur at the static parts of
the image sequence. Fixed MBs are therefore not transmitted, and at the
decoder they are copied from the previous frame.

Since the quantiser step sizes are determined at the beginning of each GOB
or row of GOBs, they have to be transmitted to the receiver. Hence, the first
MBs have to be identified with a new quantiser parameter. Therefore, we can
have some new MB types:

6. Inter coded þ Q
7. MC coded þ Q
8. IntraþQ

To summarise the type of MB selection, we can draw a flow chart indicating how
each one of the 396 MBs in a picture is coded. Decisions on the types of coding
follow Figure 6.6 from left to right.

6.3.1 Addressing of macroblocks
If all the quantised components in one of the six blocks in an MB are zero, the
block is declared as not coded. When all six blocks are not coded, the MB is
declared not coded (fixed MB or skipped MB). In other cases, the MBs are declared
coded, and are variable length coded. The shortest code is assigned to inter code
MB and the longest to intraþQ, as they are the most frequent and most rare MB
types, respectively.

Coding for videoconferencing (H.261) 135

Input
MB

NO_MC

MC

Inter

Intra

Inter

Intra

coded

coded + Q

skipped

coded

coded + Q

coded

coded + Q

MC/
not coded

not valid

Figure 6.6 Decision tree for macroblock type

Once the type of an MB is identified and variable length coded, its position
inside the GOB should also be determined. Considering that H.261 is a video-
conferencing codec, normally used for coding head-and-shoulders pictures, it is more
likely that coded MBs are in the foreground of the picture. Hence, they are normally
clustered in regions. Therefore, the overhead information for addressing of the
positions of the coded MB is minimised if they are relatively addressed to each other.
The relative addresses are represented by run lengths, which are the number of fixed
MBs to the next coded MB. Figure 6.7 shows an example of addressing the coded
MBs within a GOB. Numbers represent the relative addressing value of the number
of fixed MBs preceding a nonfixed MB. The GOB start code indicates the beginning
of the GOB. These relative addressing numbers are finally variable length coded.

6.3.2 Addressing of blocks
Since an MB has six blocks, four luminance and two chrominance, there will be
26 ¼ 64 different combinations of the coded/noncoded blocks. Except the one with
all six blocks not coded (fixed MB), the remaining 63 are identified within 63 dif-
ferent patterns. The pattern information consists of a set of 63 coded block pattern
(CBP) indicating coded/noncoded blocks within an MB. With a coding order of Y0,
Y1, Y2, Y3, Cb and Cr, the block pattern information or pattern number is defined as

Pattern number ¼ 32Y 0 þ 16Y 1 þ 8Y 2 þ 4Y 3 þ 2Cb þ Cr ð6:1Þ

136 Standard codecs: image compression to advanced video coding

start GOB end GOB

1 0 0 0 3 0 4 0 1 0

fixed (not coded) MB

nonfixed (coded) MB

relative addresses

Figure 6.7 Relative addressing of coded MB

where the coded and noncoded blocks are assigned 1 and 0, respectively. Each
pattern number is then variable length coded. It should be noted that if an MB is
intracoded (or intraþQ), its pattern information is not transmitted. This is because,
in intraframe coded MB, all blocks have significant energy and will be definitely
coded. In other words, there will not be any noncoded blocks in an intra coded MB.
Figure 6.8 illustrates two examples of the CBP, where some of the luminance or
chrominance blocks are not coded.

Y0 Y1

Y2 Y3

Cb Cr
order of blocks in an MB

pattern number = 25

pattern number = 6

Figure 6.8 Examples of bit pattern for indicating the coded/not-coded blocks in
an MB (black, coded; white, not coded)

6.3.3 Addressing of motion vectors
The motion vectors of the motion-compensated MBs are differentially coded with a
prediction from their immediate preceding motion vector. The prediction vector is

Coding for videoconferencing (H.261) 137

set to zero if either the MB is the first MB of each row of GOB or the previous MB
was not coded, coded with zero motion vector or intra coded.

The differential vector is then variable length coded and is known as the
motion vector data (MVD). The MVD consists of a pair of VLC, the first compo-
nent for the differential horizontal value and the second component for the differ-
ential vertical displacement. Since most head-and-shoulders type scenes normally
move in a rigid fashion, differential encoding of motion vectors can significantly
reduce the motion vector overhead. However, this makes motion vectors very
sensitive to channel errors, but the extent of the error propagation is limited within
the GOB.

6.4 Quantisation and coding

Every one of the six blocks of a selected MB is transform coded with a two-
dimensional DCT. The DCT coefficients of each block are then quantised and
coded. In section 3.2 we described two types of quantiser. The one without a dead
zone is used for quantising the DC coefficient of intra MB. For the H.261 standard,
this quantiser uses a fixed step size of eight. The second type is with a dead zone for
coding AC coefficients and the DC coefficient of interframe coded MB (MC or
NO_MC).

For the latter case, a threshold, th, may be added to the quantiser scale, such
that the dead zone is increased, causing more zero coefficients for efficient com-
pression. Figure 6.9 shows this quantiser, where a threshold, th, is added to every
step size. The value of the threshold is sent to the receiver as side information (see
Figure 6.3). Ratios of the quantised coefficients to the quantiser step size, called
indices, are to be coded.

th th + q th + 2q

–th – q –th – 2q –th

th + 5q/2

th + 3q/2

th + q/2

Reconstruction levels

Decision levels

–th – 5q/2

–th – 3q/2

–th – q/2

Figure 6.9 A uniform quantiser with threshold

138 Standard codecs: image compression to advanced video coding

6.4.1 Two-dimensional variable length coding
For transmission of the quantisation parameters, a special order is defined that
increases the efficiency of capturing the nonzero components. Starting from the DC
coefficient on the top left corner of an 8 � 8 coefficient matrix, the values are
scanned in a zigzag sequence as shown in Figure 6.10.

The justification for this is that in natural images, the main energy of the
transform coefficients is concentrated in the lower frequencies (top left corner).
Hence, the coefficients that normally have the larger values are scanned first.
Scanning of the indices terminates when the last nonzero coefficient has been
reached.

Scan direction
DC

component

Figure 6.10 Zigzag scanning of 8 � 8 transform coefficients

To increase the coding efficiency, a two-dimensional variable length code (2D-
VLC) has been adopted. The 2D-VLC is performed in two stages. In the first stage,
an event is produced for every nonzero index. The event is a combination of the
index magnitude (index) and the number of zeros preceding that index (run).

To see how a two-dimensional index and run generation makes 2D-VLC
coding very efficient, the following example is based on a coder having a quantiser
step size of q =16 with equal threshold levels th ¼ q. Let us assume a pixel block is
DCT coded with coefficient values as shown partly in Figure 6.11.

After zigzag scanning, coefficients are quantised. For a dead zone of th ¼ 16,
coefficient values less than this threshold are set to zero. Larger values are quan-
tised according to the quantisation characteristics (see Figure 6.9). Here we see that
rather than 1D-VLC coding of 17 individual coefficients, we need to code only 5
two-dimensional events, which requires substantially fewer bits.

In this 2D-VLC, since the range of index (possible values of indices) can vary
from �127 to þ127, and the range of run (number of zeros preceding an index)
may vary from 0 to 63, there will be 2 � 128 � 64 ¼ 16 384 possible events.

Coding for videoconferencing (H.261) 139

Design of a Huffman code for this large number of symbols is impractical. Some
code words might be as long as 200 bits! Here we use what might be called a
modified Huffman code. In this code, all the symbols with small probabilities are
grouped together and are identified with an ESCAPE symbol. The ESCAPE symbol
has a probability equal to the sum of all it represents. Now the most commonly
occurring events and the ESCAPE symbol are encoded with VLC (Huffman code)
in the usual way. Events with low probabilities are identified with a fixed-length
run and index, appended to the ESCAPE code. The end of block (EOB) code is also
one of the symbols to be variable length coded.

 83 12 21 7 –10 7

–10 35 11 5 –31

–5 15 12

10 –24

 5

83

83

88

5

12

0

0

0

–10

0

0

0

–5

0

0

0

35

35

40

2

21

21

24

1

7

0

0

0

11

0

0

0

15

0

0

0

10

0

0

0

5

0

0

0

–24

–24

–24

–1

12

0

0

0

5

0

0

0

–10

0

0

0

7

0

0

0

–31

–31

–24

–1

Raw coefficients

New coefficients

Quantised values

Index

Events to be transmitted: (run, index) (0,5) (3,2) (0,1) (5,–1) (4,–1)

Figure 6.11 Zigzag scanning and run–index generation

In H.261, ESCAPE is 6 bits long (i.e. 000001); thus, rare events with 6-bit run
(0–63) and 8-bit index (�127 to þ127) require 20 bits [1]. The EOB code is
represented with a 2-bit word. The DC/intra index is linearly quantised with a step
size of eight and no dead zone. The resulting value is coded with an 8-bit
resolution.

Figure 6.12 shows an example of a 2D-VLC table for positive values of indi-
ces, derived from statistics of coding the Claire test image sequence. As we see,
most frequent events are registered at low index and low run values. The sum of the
rare events, which represents the frequency of the ESCAPE, is even less than some
frequent events. The corresponding 2D-VLC table is also shown next to the fre-
quency table. Also in this example the sum has the same frequency as the event
(run ¼ 4, index ¼ 1). They are expected to have the same word length. Other events
can be defined as ESCAPE þ normal run þ normal index, with:

ESCAPE code ¼ 6 bits;
normal run ¼ 6 bits (1 out of 64 possible values);
normal index ¼ 8 bits (1 out of 128 values) plus the sign bit;
total bits for the modified Huffman coded events ¼ 6 þ 6 þ 8 ¼ 20.

140 Standard codecs: image compression to advanced video coding

1 2 3 4 5 6 7 8 128
index (absolute value)

12187
6216
3233
2040
1394
982
734
601
500
405
305
307
225
138
84
67
37
39

17055
3144
1558
920
563
399
246
167
134
118
119
99
45
35
28
16
10
5

3189
1283
546
333
161
144
65
70
40
30
34
27
12
4
5
0

1403
446
195
118
42
41
36
16
15
17
18
19
14
17

606
149
44
33
27
12
18
17
15
7

262
54
10
6
2
4

125
31
4
1

39
5
4

6
0

1 0

63

15
·

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

ru
n

15
14
13

63
.

12
11
10
9
8
7
6
5
4
3
2
1

ru
n

SUM = 1159

index (absolute value)

5
5
6
7
7
8
8
8
8
9
9
9
10
11
11

4
6
6
7
8
8
9
9
10
10
10

5
7
8
9

5
8

8
10

9 10
1 2 3 4 5 6 7 8 128

11
9
10

10
10
11
11

normal events (run & index)
are linearly coded + VLC of ESCAPE
code

.......

.......
0 4

Figure 6.12 An example of run and index frequency and the resulting
2D-VLC table

6.5 Loop filter

At low bit rates the quantiser step size is normally large. Larger step sizes can force
many DCT coefficients to zero. If only the DC and a few AC coefficients remain,
then the reconstructed picture appears blocky. When the positions of blocky areas
vary from one frame to another, it appears as a high-frequency noise, commonly
referred to as mosquito noise. The blockiness degradations at the slant edges of the
image appear as staircase noise. Figure 6.13 illustrates single shots of a CIF size
Claire test image sequence and its coded version at 256 kbit/s. The sequence is
in colour, with 352 pixels by 288 lines at 30 Hz, but only the luminance is shown.
The colour components have a quarter resolution of luminance (176 pixels by

Coding for videoconferencing (H.261) 141

144 lines). As can be seen, at this bit rate the coded image quality is very good with
no visible distortions.

(a) (b)

Figure 6.13 Picture of Claire: (a) original and (b) H.261 coded at 256 kbit/s

At lower bit rates, artefacts begin to appear. This is shown in Figure 6.14,
where there are more severe distortions at 64 kbit/s than at 128 kbit/s. When the
sequence is displayed at its normal rate (30 Hz), the positions of the distortions
move at different directions over the picture, and the appearance of mosquito noise
is quite visible.

(a) (b)

Figure 6.14 H.261 coded at (a) 128 kbit/s and (b) 64 kbit/s

Coarse quantisation of the coefficients that results in the loss of high-frequency
components implies that compression can be modelled as a low-pass filtering
process [3,4]. These artefacts are to some extent reduced by using the loop filter
(see position of the loop filter in Figure 6.3). The low-pass filter removes the high-
frequency and block boundary distortions. The same pictures with the use of a loop
filter are shown in Figure 6.15.

142 Standard codecs: image compression to advanced video coding

(a) (b)

Figure 6.15 Coded pictures with loop filter: (a) 128 kbit/s and (b) 64 kbit/s

Loop filtering is introduced after the motion compensator to improve the predic-
tion. It should be noted that the loop filter has a picture blurring effect. It should be
activated only for blocks with motion; otherwise, nonmoving parts of the pictures are
repeatedly filtered in the following frames, blurring the picture. Since it is motion
based, loop filtering is thus carried out on an MB basis, and it has an impulse response
given by

hðx; yÞ ¼ 1
16

1 2 1
2 4 2
1 2 1

2
4

3
5 ð6:2Þ

for pixels well inside the picture. For pixels at the image border, or corners, another
function may be used. Figure 6.16 shows an example of the filter response in these
areas.

9 3
3 1

1 2 1
2 4 2
1 2 1

1 2 1
3 6 3

Figure 6.16 Loop filter impulse response in various parts of the image

The loop filter was first defined for H.261 and its enhanced version was later
applied to H.264. In its simplest form in H.261, the loop filter is activated for
all six DCT blocks of an MB. The filtering should be applied for coding rates

Coding for videoconferencing (H.261) 143

less than 6 � 64 kbit/s ¼ 386 kbit/s and switched off otherwise. At higher bit rates,
the filter does not improve the subjective quality of the picture [3]. MPEG-1 does
not specify the requirement of a loop filter because pictures coded with MPEG-1
are at much higher bit rates than 386 kbit/s.

6.6 Rate control

The bit rate resulting from the DCT-based coding algorithm fluctuates according to
the nature of the video sequence. Variations in the speed of moving objects, their
size and texture are the main cause for bit rate variation. The objective of a rate
controller is to achieve a constant bit rate for transmission over a circuit-switched
network. A transmission buffer is usually needed to smooth out the bit rate fluc-
tuations, which are inherent in the interframe coding scheme.

The usual method for bit rate control is to monitor the buffer occupancy and vary
the quantiser step size according to the buffer fullness [3,5]. In RM8, the quantiser
step size is calculated as a linear function of the buffer content and is expressed by

q ¼ 2
buffer content

200p

� �
þ 2 ð6:3Þ

where p is the multiplier used in specifying the bit rates as in p � 64 kbit/s, and b�c
stands for integer division with truncation towards zero.

The buffer control system usually has two additional operating states to pre-
vent buffer underflow or buffer overflow from occurring. If the buffer content
reaches the trigger point for overflow state, current and subsequent coded data are
not sent to allow the buffer to be emptied. Only trivial side information pertaining
to the coded GOB or frame is transmitted.

On the other extreme, bit stuffing is invoked when buffer underflow is threa-
tened. It is essential that buffer underflow is avoided so that the decoder can
maintain synchronisation.

In practice, to allow maximum freedom of the H.261 standard codec structure, a
hypothetical reference decoder (HRD) buffer is defined. All encoders are required to
be compliant with this buffer. The HRD is best explained with reference to Figure 6.17.

time, CIF interval

 tN +1

tN
�R(t) dt

B

HRD buffer
occupancy, bits

tN + 1

dN + 1

bN + 1

tN

bN

Figure 6.17 Hypothetical reference buffer occupancy

144 Standard codecs: image compression to advanced video coding

The hypothetical buffer is initially empty. It is examined at CIF intervals
(1/29.97 % 33 ms), and if at least one complete coded picture is in the buffer, then
all the data from the earliest picture are instantly removed (e.g. at tN in Figure 6.17)
[6]. Immediately after removing the above data, the buffer occupancy should be
less than B, with B ¼ 4Rmax/29.97 and Rmax being the maximum video bit rate to be
used in the connection. To meet this requirement, the number of bits for (N þ 1)th
coded picture, dNþ1 must satisfy

dNþ1 > bN þ
ðtNþ1

tN

RðtÞdt � B ð6:4Þ

where bN is the buffer occupancy just after time tN, tN is the time at which the Nth
coded picture is removed from the HRD buffer and R(t) is the video bit rate at time t.
Note that the time interval (tNþ1–tN) is an integer number of CIF picture periods
(1/29.97, 2/29.97, 3/29.97, . . .).

This specification constrains all encoders to restrict the picture start lead jitters
to four CIF picture period’s worth of channel bits. This prevents decoder buffer
overflow at the decoder in a correctly designed H.261 codec. Jitters in the opposite
direction (phase lag) are not constrained by the H.261 recommendation. Phase lag
corresponds to buffer underflow at the decoder, which is simply dealt with by
making the decoder wait for sufficient bits to have arrived to continue decoding.

A major deficiency with the RM8/H.261 model rate controls is that bits might
be unfairly distributed across the image. For example, in the active parts of the
picture sequences, such as in the middle of the head-and-shoulders pictures, the
buffer tends to fill up very quickly, and hence the quantiser step size rises rapidly.
This causes the rest of the picture to be coded coarsely. One of the key issues in
H.261, as well as any video codec, is the way the quantiser step size or the rate
control is managed. In the past decade, numerous manufacturers have produced
H.261 codecs, but they may not perform equally. Because of the need for inter-
operability, the general structure of H.261 must be based on coding elements as
shown in Figure 6.3. Therefore, the only part that makes one codec better than the
others is the rate control mechanism. This part is kept secret by the manufacturers
and is subject to further research.

6.7 Problems

1. In a CIF picture, find the number of MBs and blocks per
a. GOB
b. picture

2. Calculate the MB interval in CIF pictures. How large is this value for a QCIF
video at 10 Hz?

3. The absolute value of the motion-compensated frame difference per MB,
|mfd|, is normally smaller than that without MC, |fd|. In a search for MC, the

Coding for videoconferencing (H.261) 145

following values for |mfd| and |fd| have been calculated. Using Figure 6.4,
determine in which of the following cases MC should be used:
a. |fd| ¼ 1200 and |mfd|=1000
b. |fd| ¼ 600 and |mfd|=500
c. |fd| ¼ 200 and |mfd|=50

4. Why is NO_MC preferred to MC for very small frame difference images?

5. To decide whether an MB should be interframe or intraframe coded, the var-
iances of intraframe and motion-compensated interframe MBs are compared,
according to Figure 6.5. Find in each of the following whether an MB should
be intraframe or interframe coded:
a. s2

intra ¼ 1500, s2
inter ¼ 1450

b. s2
intra ¼ 500, s2

inter ¼ 600
c. s2

intra ¼ 50, s2
inter ¼ 60

6. In MBs with small energy (inter or intra), why is inter MB preferred to intra
MB?

7. Calculate the CBP indices of the following MBs in an H.261 codec if:
a. all the blocks in the MB are coded
b. only the luminance blocks are coded
c. only the chrominance blocks are coded

8. Assume the transform coefficients of the block given in problem 3 of Chapter
5 belong to an H.261 codec. These coefficients are linearly quantised with the
quantiser of Figure 6.9, with th ¼ 16 and q ¼ 12. Using Figure 6.12, calculate
the number of bits required to code this block.

9. Pixels on the top left corner of a picture have values of:

200 135 180 210
75 110 134 230
62 89 52 14

and are filtered with the loop filter of Figure 6.16. Find the filtered values of
these pixels.

10. The maximum quantiser step size in H.261 is 62 (quantiser index is 31,
defined with 5 bits). A 384-kbit/s H.261 encoder with an RM8 type rate con-
trol has a smoothing buffer of 5 kbytes. Find the spare capacity of the buffer
when the quantiser step size is at its maximum value.

References

1. H.261: ‘Recommendation H.261, video codec for audiovisual services at p�64
kbit/s’, Geneva, 1990

2. CCITT SG XV WP/1/Q4: ‘Specialist group on coding for visual telephony’,
Description of reference Model 8 (RM8), 1989

146 Standard codecs: image compression to advanced video coding

3. PLOMPEN, R.H.J.M.: ‘Motion video coding for visual telephony’
(Proefschrift, 1989)

4. NGAN, K.N.: ‘Two-dimensional transform domain decimation technique’,
IEEE International Conference on Acoustics Speech and Signal Processing,
ICASSP’86, 1986, pp. 1001–1004

5. CHEN, C.T. and WONG, A.: ‘A self-governing rate buffer control strategy for
pseudoconstant bit rate video coding’, IEEE Trans. Image Process., 1993, 2:1,
pp. 50–59

6. CARR, M.D.: ‘Video codec hardware to realise a new world standard’, Br.
Telecom. J., 1990, 8:3, pp. 28–35

Coding for videoconferencing (H.261) 147

Chapter 7

Coding of moving pictures for digital storage
media (MPEG-1)

MPEG-1 is the first generation of video codecs proposed by the Motion Picture
Experts Group (MPEG) as a standard to provide video coding for digital storage media
(DSM), such as compact disc (CD), digital audio tape (DAT), Winchester discs and
optical drives [1]. This development was in response to industry needs for an efficient
way of storing visual information on storage media other than the conventional ana-
logue video cassette recorders (VCRs). At the time the CD-ROMs had the capability of
648 Mbytes, sufficient to accommodate movie programmes at a rate of approximately
1.2 Mbit/s, and the MPEG standard aimed to conform roughly to this target. Although
in most applications the MPEG-1 video bit rate is in the range of 1–1.5 Mbit/s, the
international standard does not limit the bit rate, and higher bit rates might be used for
other applications.

It was also envisaged that the stored data be within both 625 and 525 line
television systems and provide flexibility for use with workstations and personal
computers. For this reason, the MPEG-1 standard is based on progressively scanned
images and does not recognise interlacing. Interlaced sources have to be converted
to a noninterlaced format before coding. After decoding, the decoded image may be
converted back to provide an interlaced format for display.

Since coding for digital storage can be regarded as a competitor to VCRs,
MPEG-1 video quality at the rate of 1–1.5 Mbit/s is expected to be comparable to
VCRs. Also, it should provide the viewing conditions associated with VCRs such
as forward play, freeze picture, fast forward, fast reverse, slow forward and random
access. The ability of the decoder to provide these modes depends, to some extent,
on the nature of DSM. However, it should be borne in mind that efficient coding
and flexibility in operation are not compatible. Provision of the added functionality
of random access necessitates regular intraframe pictures in the coded sequence.
Those frames that do not exploit temporal redundancy in the video have poor
compression, and as a result the overall bit rate is increased.

Both H.261 [2] and MPEG-1 [1] are standards defined for relatively low bit rate
coding of low spatial resolution pictures. Like H.261, MPEG-1 utilises DCT for lossy
coding of its intraframe and interframe prediction errors. The MPEG-1 video coding
algorithm is largely an extension of H.261, and many of the features are common. Their
bitstreams are, however, incompatible, although their encoding units are very similar.

The MPEG-1 standard, like H.261, does not specify the design of the decoder,
and even less information is given about the encoder. What is expected from

MPEG-1, like H.261, is to produce a bitstream that is decodable. Manufacturers are
free to choose any algorithms they wish and to optimise them for better efficiency
and functionality. Therefore, in this chapter, we again look at the fundamentals of
MPEG-1 coding rather than the details of the implementation.

7.1 Systems coding outline

The MPEG-1 standard gives the syntax description of how audio, video and data are
combined into a single data stream. This sequence is formally termed as the ISO
11172 stream [3]. The structure of this ISO 11172 stream is illustrated in Figure 7.1.
It consists of a compression layer and a systems layer. In this book, we study only
the video part of the compression layer, but the systems layer is important for the
proper delivery of the coded bitstream to the video decoder, and hence we briefly
describe it.

adjust clocks manage buffers

multiplex-wide
operation
(pack layer)

multiplexers synchronisation

stream-specific
operation
(packet layer)

systems layer

audio video

compression layer

ISO 11172

Figure 7.1 Structure of an ISO 11172 stream

The MPEG-1 systems standard defines a packet structure for multiplexing
coded audio and video into one stream and keeping it synchronised. The systems
layer is organised into two sublayers known as the pack and packet layers. A pack
consists of a pack header that gives the systems clock reference (SCR) and the bit
rate of the multiplexed stream followed by one or more packets. Each packet has its
own header that conveys essential information about the elementary data that it
carries. The aim of the systems layer is to support the combination of video and
audio elementary streams. The basic functions are as follows:

● synchronised presentation of decoded streams
● construction of the multiplexed stream

150 Standard codecs: image compression to advanced video coding

● initialisation of buffering for playback start-up
● continuous buffer management
● time identification

In the systems layer, elements of direct interest to the video encoding and decoding
processes are mainly those of the stream-specific operations, namely, multiplexing
and synchronisation.

7.1.1 Multiplexing elementary streams
The multiplexing of elementary audio, video and data is performed at the packet
level. Each packet thus contains only one elementary data type. The systems layer
syntax allows up to 32 audio, 16 video and 2 data streams to be multiplexed
together. If more than two data streams are needed, substreams may be defined.

7.1.2 Synchronisation
Multiple elementary streams are synchronised by means of presentation time
stamps (PTS) in the ISO 11172 bitstream. End-to-end synchronisation is achieved
when the encoders record time stamps during capture of raw data. The receivers
will then make use of these PTS in each associated decoded stream to schedule
their presentations. Playback synchronisation is pegged onto a master time base,
which may be extracted from one of the elementary streams, DSM, channel or
some external source. This prototypical synchronisation arrangement is illustrated
in Figure 7.2. The occurrences of PTS and other information such as SCR and
systems headers will also be essential for facilitating random access of the MPEG-1
bitstream. This set of access codes should therefore be located near to the part of
the elementary stream where decoding can begin. In the case of video, this site will
be near the head of an intraframe.

To ensure guaranteed decoder buffer behaviour, MPEG-1 systems layer
employs a systems target decoder (STD) and decoding time stamp (DTS). The DTS
differs from PTS only in the case of video pictures that require additional reor-
dering delay during the decoding process.

7.2 Preprocessing

The source material for video coding may exist in a variety of forms such as
computer files or live video in CCIR-601 format [4]. If CCIR-601 is the source,
since MPEG-1 is for coding of video at VCR resolutions, then source input format
(SIF) is normally used. These source pictures must be processed prior to coding. In
Chapter 2, we explained how CCIR-601 video was converted to SIF format. If the
source is film, we also discussed the conversion methodology in that chapter.
However, if computer source files do not have the SIF format, they have to be
converted too. In MPEG-1, another preprocessing is required to reorder the input
pictures for coding. This is called picture reordering.

Coding of moving pictures for digital storage media (MPEG-1) 151

audio
in

video
in

assemble pictures,
sample STC for PTS

encode
video

encode
audio

multiplex
system code
& buffer

STC

assemble
audio frames

sample STC
for SCR

DSM

buffer,
decode &
present

systems decode
& extract SCR

systems decode
& extract SCR

compare
PTS

compare
PTS

STC

decoded

video

decoded

audio

Figure 7.2 Prototypical encoder and decoder of MPEG-1, illustrating end-to-end
synchronisation (STC, systems time clock; SCR, systems clock
reference; PTS, presentation time stamp; DSM, digital storage media)

7.2.1 Picture reordering
Because of the conflicting requirements of random access and highly efficient
coding, the MPEG suggested that all pictures of a video sequence should not be
coded in the same way. They identified four types of picture in a video sequence.
The first type is called I-pictures, which are coded without reference to the previous
picture. They provide access points to the coded sequence for decoding. These
pictures are intraframe coded as for JPEG, with a moderate compression. The
second type is the P-pictures, which are predictively coded with reference to the
previous I- or P-coded pictures. They themselves are used as a reference (anchor)
for coding of the future pictures. Coding of these pictures is very similar to H.261.
The third type is called B-pictures, or bidirectionally coded pictures, which may use
past, future or combinations of both pictures in their predictions. This increases the

152 Standard codecs: image compression to advanced video coding

motion compensation efficiency, since occluded parts of moving objects may be
better compensated for from the future frame. B-pictures are never used for pre-
dictions. This part, which is unique to MPEG, has two important implications:

1. If B-pictures are not used for predictions of future frames, then they can be
coded with the highest possible compression without any side effects. This is
because, if one picture is coarsely coded and is used as a prediction, the coding
distortions are transferred to the next frame. This frame then needs more bits to
clear the previous distortions, and the overall bit rate may increase rather than
decrease.

2. In applications such as transmission of video over packet networks, B-pictures
may be discarded (e.g. due to buffer overflow) without affecting the next
decoded pictures [5]. Note that if any part of the H.261 pictures, or I- and
P-pictures in MPEG, is corrupted during the transmission, the effect will pro-
pagate until they are refreshed [6].

Figure 7.3 illustrates the relationship between these three types of picture. Since
B-pictures use I- and P-pictures as predictions, they have to be coded later. This
requires reordering the incoming picture order, which is carried out at the
preprocessor.

The fourth picture type is the D-pictures. They are intraframe coded, where
only the DC coefficients are retained. Hence, the picture quality is poor and nor-
mally used for applications like fast forward. D-pictures are not part of the GOP;
hence, they are not present in a sequence containing any other picture types.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
display order

3 1 2 6 4 5 9 7 8 12 10 11 15 13 14
encoding order

GOP lengthN = 12, M = 3

I-picture P-picture B-picture

Figure 7.3 An example of MPEG-1 GOP

Coding of moving pictures for digital storage media (MPEG-1) 153

7.3 Video structure

7.3.1 Group of pictures
Since in the H.261 standard, successive frames are similarly coded, a picture is the
top level of the coding hierarchy. In MPEG-1, due to the existence of several
picture types, a group of pictures, called GOP, is the highest level of the hierarchy.
A GOP is a series of one or more pictures to assist random access into the picture
sequence. The first coded picture in the group is an I-picture. It is followed by an
arrangement for P- and B-pictures, as shown in Figure 7.3.

The GOP length is normally defined as the distance between I-pictures, which
is represented by parameter N in the standard codecs. The distance between the anchor
I/P and P-pictures is represented by M. In the above figure, N ¼ 12 and M ¼ 3. The
GOP may be of any length, but it should be at least one I-picture in each GOP.
Applications requiring random access, fast forward play or fast and normal reverse
play may use short GOPs. GOP may also start at scene cuts or other cases where
motion compensation is not effective. The number of consecutive B-pictures varies.
Neither a P- nor a B-picture needs to be present. For most applications, GOP in the
SIF-625/50 format has N ¼ 12 and M ¼ 3. In SIF-525/60, the values are 15 and 3,
respectively.

The encoding or transmission order of pictures differs from the display or
incoming picture order. In the figure, B-pictures 1 and 2 are encoded after P-picture
0 and I-picture 3. Also in this figure, B-pictures 13 and 14 are a part of the next
GOP. While their display order is 0, 1, 2, . . . , 11, their encoding order is 3, 1, 2, 6,
4, 5, This reordering introduces delays amounting to several frames at the
encoder (equal to the number of B-pictures between the anchor I- and P-pictures).
The same amount of delay is introduced at the decoder in putting the transmission/
decoding sequence back to its original. This format inevitably limits the application
of MPEG-1 for telecommunications.

7.3.2 Picture
All the three main picture types, I, P and B, have the same SIF size with 4:2:0
format. In SIF-625, the luminance part of each picture has 360 pixels, 288 lines and
25 Hz, and those of each chrominance are 180 pixels, 144 lines and 25 Hz. In SIF-
525, these values for luminance are 360 pixels, 240 lines and 30 Hz, and for the
chrominance are 180, 120 and 30, respectively. For 4:2:0 format images, the
luminance and chrominance samples are positioned as shown in Figure 2.3.

7.3.3 Slice
Each picture is divided into a group of macroblocks, called slices. In H.261 such a
group was called GOB. The reason for defining a slice is the same as that for
defining a group of blocks (GOB), namely, resetting the variable length code
(VLC) to prevent channel error propagation into the picture. Slices can have

154 Standard codecs: image compression to advanced video coding

different sizes within a picture, and the division in one picture need not be the same
as division in any other picture.

The slices can begin and end at any macroblock in a picture, but with some
constraints. The first slice must begin at the top left of the picture (the first mac-
roblock), and the end of the last slice must be the bottom right macroblock (the last
macroblock) of the picture, as shown in Figure 7.4. Therefore, the minimum
number of slices per picture is one, and the maximum number is equal to the
number of macroblocks (e.g. 396 in SIF-625).

Each slice starts with a slice start code and is followed by a code that defines
its position and a code that sets the quantisation step size. Note that in H.261, the
quantisation step sizes were set at each GOB or row of GOBs, but in MPEG-1 they
can be set at any macroblock (see section 7.3.4). Therefore, in MPEG-1, the main
reason for defining slices is not to reset a new quantiser but to prevent the effects of
channel error propagation. If the coded data are corrupted, and the decoder detects
it, then it can search for the new slice, and the decoding starts from that point. Part
of the picture slice from the start of the error to the next slice can then be degraded.
Therefore, in a noisy environment, it is desirable to have as many slices as possible.
On the other hand, each slice has a large overhead, called slice start code (minimum
of 32 bits). This creates a large overhead in the total bit rate. For example, if we use
the slice structure of Figure 7.4, where there is one slice for each row of MBs, then
for SIF-625 video there are 18 slices/picture, and with 25 Hz video, the slice
overhead can be 32 � 18 � 25 ¼ 14 400bit/s.

1 begin
2 begin
3 begin
4 begin
5 begin

18 begin
17 begin
16 begin
15 begin
14 begin
13 begin
12 begin

6 begin
7 begin
8 begin
9 begin
10 begin

end 18
end 17
end 16
end 15
end 14
end 13
end 12
end 11
end 10

end 8
end 9

end 7
end 6
end 5
end 4
end 3
end 2
end 1

11 begin

Figure 7.4 An example of slice structure for SIF-625 pictures

To optimise the slice structure, that is, to give a good immunity from channel
errors and at the same time to minimise the slice overhead, one might use short
slices for macroblocks with significant energy (such as intra MB) and long slices
for less significant ones (e.g. macroblocks in B-pictures). Figure 7.5 shows a slice
structure, where in some parts the slice length extends beyond several rows of
macroblocks and in some cases is less than one row.

Coding of moving pictures for digital storage media (MPEG-1) 155

1 begin

4 begin
5 begin

6 begin 7 begin

8 begin

9 begin
10 begin

11 begin

12 begin

end 3
end 4

end 5 end 6

end 7

end 8
end 9

end 10

end 11 end 12

2 beginend 1 3 beginend 2

Figure 7.5 Possible arrangement of slices in SIF-625

7.3.4 Macroblock
Slices are divided into macroblocks of 16 � 16 pixels, similar to the division of
GOB into macroblocks in H.261. Macroblocks in turn are divided into blocks for
coding. In Chapter 6, we gave a detailed description of how a macroblock was
coded, starting from its type, mode of selection, blocks within the MB, their posi-
tional addresses and finally the block pattern. Since MPEG-1 is also a macroblock-
based codec, most of these rules are used in MPEG-1. However, because of
differences of slice versus GOB, picture type versus a single picture format in
H.261, there are bound to be variations in the coding. We first give a general
account of these differences, and in the following section, more details are given
about the macroblocks in the various picture types.

The first difference is that since a slice has a raster scan structure, macroblocks
are addressed in a raster scan order. The top left macroblock in a picture has address 0,
the next one on the right has address 1 and so on. If there are M macroblocks in a
picture (e.g. M ¼ 396), then bottom right macroblock has address M � 1. To reduce
the address overhead, macroblocks are relatively addressed by transmitting the dif-
ference between the current macroblock and the previously coded macroblock. This
difference is called macroblock address increment. In I-pictures, since all the macro-
blocks are coded, the macroblock address increment is always 1. The exception is that,
for the first coded macroblock at the beginning of each slice, the macroblock address is
set to that of the right-hand macroblock of the previous row. This address at the
beginning of each picture is set to �1. If a slice does not start at the left edge of the
picture (see the slice structure of Figure 7.5), then the macroblock address increment
for the first macroblock in the slice will be larger than 1. For example, in the slice
structure of Figures 7.4 and 7.5, there are 22 macroblocks/row. For Figure 7.4, at the
start of slice 2, the macroblock address is set to 21, which is the address of the mac-
roblock at the right-hand edge of the top row of macroblocks. In Figure 7.5, if the first
slice contains 30 macroblocks, 8 of them would be in the second row, so the address of
the first macroblock in the second slice would be 30 and the macroblock increment

156 Standard codecs: image compression to advanced video coding

would be 9. For further reduction of address overhead, macroblock address increments
are variable length coded.

There is no code to indicate a macroblock address increment of 0. This is why
the macroblock address is set to �1 rather than 0 at the top of the picture. The first
macroblock will have an increment of 1, making its address equal to 0.

7.3.5 Block
Finally, the smallest part of the picture structure is the block of 8 � 8 pixels, for
both luminance and chrominance components. DCT coding is applied at this block
level. Figure 7.6 illustrates the whole structure of partitioning a video sequence
from its GOP level at the top to the smallest unit of block at the bottom.

B B P B B P B B P B B I

Y
Cb Cr

GOPnGOPn + 1

GOPn + 5

GOPn + 4
GOPn + 3

GOPn + 2

GOP

picture
(frame)

slice

macroblock (16�16 pixels)

block (8�8 pixels)

video sequence time

Figure 7.6 MPEG-1-coded video structure

Coding of moving pictures for digital storage media (MPEG-1) 157

7.4 Encoder

As mentioned, the international standard does not specify the design of the video
encoders and decoders. It only specifies the syntax and semantics of the bitstream
and signal processing at the encoder/decoder interface. Therefore, options are left
open to the video codec manufacturers to trade-off cost, speed, picture quality and
coding efficiency. As a guideline, Figure 7.7 shows a block diagram of an MPEG-1
encoder. Again it is similar to the generic codec of Figure 3.19 and the H.261 codec
of Chapter 6. For simplicity, the coding flags shown in the H.261 codec are omit-
ted, though they also exist.

data
– T Q

Q–1

T–1

VLC BUF

+

motion vectors

frame stores
and predictors

motion
estimation

frame
reorder

regulator

SIF
input
pictures

Figure 7.7 A simplified MPEG-1 video encoder

The main differences between this encoder and that defined in H.261 are as
follows:

● Frame reordering: at the input of the encoder, coding of B-pictures is post-
poned to be carried out after coding the anchor I- and P-pictures.

● Quantisation: intraframe coded macroblocks are subjectively weighted to
emulate perceived coding distortions.

● Motion estimation: not only is the search range extended but the search pre-
cision is increased to half a pixel. B-pictures use bidirectional motion
compensation.

● No loop filter.
● Frame store and predictors: to hold two anchor pictures for prediction of

B-pictures.
● Rate regulator: here there is more than one type of picture, each generating

different bit rates.

158 Standard codecs: image compression to advanced video coding

Before describing how each picture type is coded, and the main differences
between this codec and H.261, we can describe the codec on a macroblock basis, as
the basic unit of coding. Within each picture, macroblocks are coded in a sequence
from left to right. Since 4:2:0 image format is used, the six blocks of 8 � 8 pixels,
four luminance and one of each chrominance components are coded in turn. Note
that the picture area covered by the four luminance blocks is the same as the area
covered by each of the chrominance blocks.

First, for a given macroblock, the coding mode is chosen. This depends on the
picture type, the effectiveness of motion-compensated prediction in that local
region and the nature of the signal within the block. Second, depending on the
coding mode, a motion-compensated prediction of the contents of the block based
on the past and/or future reference pictures is formed. This prediction is subtracted
from the actual data in the current macroblock to form an error signal. Third, this
error signal is divided into 8 � 8 blocks and a DCT is performed on each block. The
resulting two-dimensional 8 � 8 block of DCT coefficients is quantised and is
scanned in zigzag order to convert into a one-dimensional string of quantised DCT
coefficients. Fourth, the side information for the macroblock, including the type,
block pattern, motion vector and address alongside the DCT coefficients are coded.
For maximum efficiency, all the data are variable length coded. The DCT coeffi-
cients are run length coded with the generation of events, as we discussed in H.261.

A consequence of using different picture types and variable length coding is
that the overall bit rate is very variable. In applications that involve a fixed rate
channel, a first-in, first-out (FIFO) buffer is used to match the encoder output to the
channel. The status of this buffer may be monitored to control the number of bits
generated by the encoder. Controlling the quantiser index is the most direct way of
controlling the bit rate. The international standard specifies an abstract model of the
buffering system (the video buffering verifier) in order to limit the maximum
variability in the number of bits that are used for a given picture. This ensures that a
bitstream can be decoded with a buffer of known size (see section 7.8).

7.5 Quantisation weighting matrix

The insensitivity of the human visual system to high-frequency distortions can be
exploited for further bandwidth compression. In this case, the higher orders of DCT
coefficients are quantised with coarser quantisation step sizes than the lower fre-
quency ones. Experience has shown that for SIF pictures, a suitable distortion
weighting matrix for the intra-DCT coefficients is the one shown in Figure 7.8.
This intra matrix is used as the default quantisation matrix for intraframe coded
macroblocks.

If the picture resolution departs significantly from the SIF size, then some
other matrix may give perceptively better results. The reason is that this matrix is
derived from the vision contrast sensitivity curve, for a nominal viewing distance
(e.g. viewing distances of four to six times the picture height) [7]. For higher or

Coding of moving pictures for digital storage media (MPEG-1) 159

lower picture resolutions, or changing the viewing distance, the spatial frequency
will change, and hence different weighting will be derived.

It should be noted that different weightings may not be used for interframe
coded macroblocks. This is because high-frequency interframe error does not
necessarily mean high spatial frequency. It might be due to poor motion compen-
sation or block boundary artefacts. Hence, interframe coded macroblocks use a
flat quantisation matrix. This matrix is called the inter or nonintra quantisation
weighting matrix.

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

intra inter

Figure 7.8 Default intra and inter quantisation weighting matrices

Note that since in H.261 all the pictures are interframe coded and a very few
macroblocks might be intra coded, only the nonintra weighting matrix is defined.
Little work has been performed to determine the optimum nonintra matrix for
MPEG-1, but evidence suggests that the coding performance is more related to
the motion and the texture of the scene than the nonintra quantisation matrix. If
there is any optimum matrix, it should then be somewhere between the flat
default inter matrix and the strongly frequency-dependent values of the default
intra matrix.

The DCT coefficients, prior to quantisation, are divided by the weighting
matrix. Note that the DCT coefficients prior to weighting have a dynamic range
from �2047 to þ2047. Weighted coefficients are then quantised by the quantisa-
tion step size, and at the decoder, reconstructed quantised coefficients are then
multiplied to the weighting matrix to reconstruct the coefficients.

7.6 Motion estimation

In Chapter 3, block matching motion estimation/compensation and its application
in standard codecs was discussed in great detail. We even introduced some fast
search methods for estimation, which can be used in software-based codecs. As we
saw, motion estimation in H.261 was optional. This was mainly due to the
assumption that since motion compensation can reduce correlation, DCT coding

160 Standard codecs: image compression to advanced video coding

may not be efficient. Investigations since the publication of H.261 have proved that
this is not the case. What is expected from a DCT is to remove the spatial corre-
lation within a small area of 8 � 8 pixels. Measurement of correlations between the
adjacent error pixels has shown that there is still strong correlation between the
error pixels, which does not impair the potential of DCT for spatial redundancy
reduction. Hence, motion estimation has become an important integral part of all
the later video codecs, such as MPEG-1, MPEG-2, H.263, H.264 and MPEG-4.
These are explained in the relevant chapters.

Considering MPEG-1, the strategy for motion estimation in this codec is dif-
ferent from the H.261 in four main respects:

1. Motion estimation is an integral part of the codec.
2. Motion search range is much larger.
3. Higher precision of motion compensation is used.
4. B-pictures can benefit from bidirectional motion compensation.

These features are described in the following sections.

7.6.1 Larger search range
In H.261, if motion compensation is used, a search is carried out within every
subsequent frame. Also, H.261 is normally used for head-and-shoulders pictures,
where the motion speed is normally very small. In contrast, MPEG-1 is used
mainly for coding of films with much larger movements and activities. More-
over, in search for motion in P-pictures, since they might be several frames apart,
the search range becomes many times larger. For example, in a GOP structure
with M ¼ 3, where there are two B-pictures between the anchor pictures, the
motion speed is three times greater than that for consecutive pictures. Thus, in
MPEG-1, we expect a much larger search range. Considering that in full search
block matching the number of search positions for a motion speed of w is (2w þ
1)2, tripling the search range makes motion estimation prohibitively computa-
tionally expensive.

In Chapter 3, we introduced some fast search methods such as logarithmic step
searches and hierarchical motion estimation. Although the hierarchical method can
be used here, of course needing one or more levels of hierarchy, use of a loga-
rithmic search may not be feasible. This is because these methods are very prone to
large search ranges, and at these ranges the final minima can be very far away from
the local minima, causing the estimation to fail [8].

One way of alleviating this problem is to use a telescopic search method. This
is unique to MPEG with B-pictures. In this method, rather than searching for the
motion between the anchor pictures, the search is carried out on all the consecutive
pictures, including B-pictures. The final search between the anchor pictures is then
the sum of all the intermediate motion vectors, as shown in Figure 7.9. Note that
since we are now searching for motion in successive pictures, the search range is
smaller, and even fast search methods can be used.

Coding of moving pictures for digital storage media (MPEG-1) 161

V

V1 V2 V3

I/P B1 B2 P

V = V1 + V2 + V3

Figure 7.9 Telescopic motion search

7.6.2 Motion estimation with half-pixel precision
In the search process with a half-pixel resolution, normal block matching with
integer pixel positions is carried out first. Then eight new positions, with a distance
of half a pixel around the final integer pixel, are tested. Figure 7.10 shows a part of
the search area, where the coordinate marked A has been found as the best integer
pixel position at the first stage.

c c

c c

hh

v

v

Z
Z

Z Z

Y

Y

XX
A

° ° °

°

°°°

°

Figure 7.10 Subpixel search positions around pixel coordinate A

In testing the eight subpixel positions, pixels of the macroblock in the previous
frame are interpolated, according to the positions to be searched. For subpixel
positions, marked with h in the middle of the horizontal pixels, the interpolation is

h ¼ A þ X

2
ð7:1Þ

where the division is truncated. For the subpixels in the vertical midpoints, the
interpolated values for the pixels are

v ¼ A þ Y

2
ð7:2Þ

162 Standard codecs: image compression to advanced video coding

and for subpixels in the corner (centre of four pixels), the interpolation is

c ¼ A þ X þ Y þ Z

4
ð7:3Þ

Note that in subpixel precision motion estimation, the range of the motion vec-
tors’ addresses is increased by 1 bit for each of the horizontal and vertical
directions. Thus, the motion vector overhead may be increased by 2 bit/vector
(in practice due to variable length coding, this might be less than 2 bits). Despite
this increase in motion vector overhead, the efficiency of motion compensation
outweighs the extra bits, and the overall bit rate is reduced. Figure 7.11 shows the
motion-compensated error, with and without half-pixel precision, for two con-
secutive frames of the Claire sequence. The motion-compensated error has been
magnified by a factor of 4 for better representation. It might be seen that half-
pixel precision has fewer blocking artefacts and, in general, motion-compensated
errors are smaller.

(a) (b)

Figure 7.11 Motion-compensated prediction error (a) with and (b) without
half-pixel precision

For further reduction on the motion vector overhead, differential coding is used.
The prediction vector at the start of each slice and each intra coded macroblock is
set to zero. Note that the predictively coded macroblocks with no motion vectors
also set the prediction vector to zero. The motion vector prediction errors are then
variable length coded.

7.6.3 Bidirectional motion estimation
B-pictures have access to both past and future anchor pictures. They can then use
either past frame, called forward motion estimation, or the future frame, for
backward motion estimation, as shown in Figure 7.12.

Coding of moving pictures for digital storage media (MPEG-1) 163

best matchforward
motion
vector macroblock to be coded

future reference picture

best match

8
backward
motion
vector

current B-picture

previous reference picture

Figure 7.12 Motion estimation in B-pictures

Such an option increases the motion compensation efficiency, particularly
when there are occluded objects in the scene. In fact, one of the reasons for the
introduction of B-pictures was this fact that the forward motion estimation used in
H.261 and P-pictures cannot compensate for the uncovered background of moving
objects.

From the two forward and backward motion vectors, the coder has a choice of
choosing any of the forward, backward or their combined motion-compensated
predictions. In the latter case, a weighted average of the forward and backward
motion-compensated pictures is calculated. The weight is inversely proportional to
the distance of the B-picture with its anchor pictures. For example, in the GOB
structure of I, B1, B2, P, the bidirectionally interpolated motion-compensated pic-
ture for B1 would be two-thirds of the forward motion-compensated pixels from the
I-picture and one-third from backward motion-compensated pixels of the P-picture.
This ratio is reversed for B2. Note that B-pictures do not use motion compensation
from each other, since they are not used as predictors. Also note that the motion
vector overhead in B-pictures is much more than in P-pictures. The reason is that,
for B-pictures, there are more macroblock types, which increase the macroblock
type overhead, and for the bidirectionally motion-compensated macroblocks two
motion vectors have to be sent.

7.6.4 Motion range
When B-pictures are present, due to various distances between a picture and its
anchor, it is expected that the search range for motion estimation to be different for
different picture types. For example, with M ¼ 3, P-pictures are three frames apart
from their anchor pictures. B1-pictures are only one frame apart from their past
frame and two frames from their future frames, and those of B2-pictures are in
reverse order. Hence, motion range for P-pictures is larger than the backward
motion range of B1-pictures, which is itself larger than the forward motion vector.

164 Standard codecs: image compression to advanced video coding

For normal scenes, the maximum search range for P-pictures is usually taken as
11 pixels/3 frames, and the forward and backward motion range for B1-pictures are
3 pixels/frame and 7 pixels/2 frames, respectively. These values for B2-pictures
become 7 and 3.

It should be noted that although motion estimation for B-pictures, due to the
calculation of forward and backward motion vectors, is more processing demand-
ing than that of the P-pictures, due to larger motion range for P-pictures, the latter
can be costlier than the former. For example, if the full search method is used, the
number of search operations for P-pictures will be (2 � 11 þ 1)2 ¼ 529. This value
for the forward and backward motion vectors of B1-pictures will be (2 � 3 þ 1)2 ¼
49 and (2 � 7 þ 1)2 ¼ 225, respectively. For B2-pictures, the forward and back-
ward motion estimation cost becomes 225 and 49, respectively. Thus, while motion
estimation cost for P-pictures in this example is 529, the cost for a B-picture is
about 49 þ 225 ¼ 274, which is less. For motion estimation with half-pixel accu-
racy, for P- and B-pictures, 8 and 16 more operations have to be added to these
values, respectively. For more active pictures, where the search range for both
P- and B-pictures is larger, the gap on motion estimation cost becomes wider.

7.7 Coding of pictures

Since the encoder was described in terms of the basic unit of a macroblock, the
picture types may be defined in terms of their macroblock types. In the following,
each of these picture types is defined.

7.7.1 I-pictures
In I-pictures, all the macroblocks are intra coded. There are two intra macroblock
types: one that uses the current quantiser scale, intra-d, and the other that defines a
new value for the quantiser scale, intra-q. Intra-d is the default value when the
quantiser scale is not changed. Although these two types can be identified with 0
and 1, and no VLC is required, the standard has foreseen some possible extensions
to the macroblock types in the future. For this reason, they are variable length
coded and intra-d is assigned with 1, and intra-q with 01. Extensions to the VLCs
with the start code of 0 are then open. The policy of making the coding tables open
in this way was adopted by the MPEG group video committee in developing the
international standard. The advantage of future extensions was judged to be worth
the slight coding inefficiency.

If the macroblock type is intra-q, then the macroblock overhead should contain
an extra 5 bits to define the new quantiser scale between 1 and 31. For intra-d
macroblocks, no quantiser scale is transmitted and the decoder uses the previously
set value. Therefore, the encoder may prefer to use as many intra-d types as pos-
sible. However, when the encoding rate is to be adjusted, which normally causes a
new quantiser to be defined, the type is changed to intra-q. Note that since in H.261
the bit rate is controlled at either the start of GOBs or rows of a GOB, if there is any

Coding of moving pictures for digital storage media (MPEG-1) 165

intra-q in a GOB, it must be the first MB in that GOB, or rows of the GOB. In
I-pictures of MPEG-1, an intra-q can be any of the macroblocks.

Each block within the MB is DCT coded, and the coefficients are divided by
the quantiser step size, rounded to the nearest integer. The quantiser step size is
derived from the multiplication of the quantisation weighting matrix and the
quantiser index (1–31). Thus, quantiser step size is different for different coeffi-
cients and may change from MB to MB. The only exception is the DC coefficients,
which are treated differently. This is because the eye is sensitive to large areas of
luminance and chrominance errors; then the accuracy of each DC value should be
high and fixed. The quantiser step size for the DC coefficient is fixed to eight. Since
in the quantisation weighting matrix, the DC weighting element is eight, then the
quantiser index for the DC coefficient is always 1, irrespective of the quantisation
index used for the remaining AC coefficients.

Because of the strong correlation between the DC values of blocks within a
picture, the DC indices are coded losslessly by DPCM. Such a correlation does not
exist among the AC coefficients, and hence they are coded independently. The
prediction for the DC coefficients of luminance blocks follows the coding order of
blocks within a macroblock and the raster scan order. For example, in the macro-
blocks of 4:2:0 format pictures shown in Figure 7.13, the DC coefficient of block
Y2 is used as a prediction for the DC coefficient of block Y3. The DC coefficient of
block Y3 is a prediction for the DC coefficient of Y0 of the next macroblock. For the
chrominance, we use the DC coefficients of the corresponding value of the block in
the previous macroblock.

8

Y0

Y3

Y1

Y2

Cb Cr8

Figure 7.13 Positions of luminance and chrominance blocks within a macroblock
in 4:2:0 format

The differentially coded DC coefficient and the remaining AC coefficients are
zigzag scanned, in the same manner as was explained for H.261 coefficients in
Chapter 6. A copy of the coded picture is stored in the frame store to be used for the
prediction of the next P and the past or future B-pictures.

7.7.2 P-pictures
As in I-pictures, each P-picture is divided into slices, which are in turn divided into
macroblocks and then blocks for coding. Coding of P-pictures is more complex than
for I-pictures, since motion-compensated blocks may be constructed. For inter
macroblocks, the difference between the motion-compensated macroblock and the
current macroblock is partitioned into blocks, and then DCT transformed and coded.

166 Standard codecs: image compression to advanced video coding

Decisions on the type of macroblock, or whether motion compensation should
be used, are similar to those of H.261 (see Chapter 6). Other H.261 coding tools
such as differential encoding of motion vectors, coded block pattern, zigzag scan,
and nature of variable length coding are similar. In fact, coding of P-pictures is the
same as coding each frame in H.261 with two major differences:

1. Motion estimation has a half-pixel precision, and because of larger distances
between the P-frames, the motion estimation range is much larger.

2. In MPEG-1, all intra MBs use the quantisation weighting matrix, whereas in
H.261 all MBs use a flat matrix. Also in MPEG-1, the intra MB of P-pictures
are predictively coded like those of I-pictures, with the exception that the
prediction value is fixed at 128 � 8 if the previous macroblock is not intra
coded.

Locally decoded P-pictures are stored in the frame store for further prediction.
Note that if B-pictures are used, two buffer stores are needed to store two prediction
pictures.

7.7.3 B-pictures
As in I- and P-pictures, B-pictures are divided into slices, which in turn are divided
into macroblocks for coding. Because of the possibility of bidirectional motion
compensation, coding is more complex than for P-pictures. Thus, the encoder has
more decisions to make than in the case of P-pictures. These are how to divide the
picture into slices; determine the best motion vectors to use; decide whether to use
forward, backward or interpolated motion compensation or to code intra; and how
to set the quantiser scale. These make processing of B-pictures computationally
very intensive. Note that motion compensation is the most costly operation in the
codecs, and for every macroblock, both forward and backward motion compensa-
tions have to be performed.

The encoder does not need to store decoded B-pictures, since they are not used
for prediction. Hence, B-pictures can be coded with larger distortions. In this regard
to reduce the slice overhead, larger slices (fewer slices in the picture) may be
chosen.

In P-pictures, as for H.261, there are eight different types of macroblocks. In
B-pictures, because of backward motion compensation and interpolation of forward
and backward motion compensation, the number of macroblock types is about 14.
Figure 7.14 shows the flow chart for macroblock type decisions in B-pictures.

The decision on the macroblock type starts with the selection of a motion
compensation mode based on the minimisation of a cost function. The cost function
is the mean-squared/absolute error of the luminance difference between the motion-
compensated macroblock and the current macroblock. The encoder first calculates
the best forward motion-compensated macroblock from the previous anchor picture
for forward motion compensation. It then calculates the best motion-compensated
macroblock from the future anchor picture, as the backward motion compensation.
Finally, the average of the two motion-compensated errors is calculated to produce

Coding of moving pictures for digital storage media (MPEG-1) 167

the interpolated macroblock. It then selects one that had the smallest error
difference with the current macroblock. In the event of a tie, an interpolated mode
is chosen.

begin

forward

backward

interpolated

A

A

A

A

intra

nonintra

coded

not coded

quant

no quant

quant

no quant

pred*
/skipped

* forward/backward/interpolated

pred-cq*

pred-c*

intra-q

intra-d

Figure 7.14 Selection of macroblock types in B-pictures

Another difference between macroblock types in B- and P-pictures is in the
definition of noncoded and skipped macroblocks. In P-pictures, the skipped MB is
the one that none of its blocks has any significant DCT coefficient (coded block
pattern, or cbp ¼ 0), and the motion vector is also zero. The first and the last MB in
a slice cannot be declared skipped. They are treated as noncoded.

A noncoded MB in P-pictures is the one that none of its blocks has any
significant DCT coefficient (cbp ¼ 0), but the motion vector is nonzero. Thus, the
first and the last MBs in a slice, which could be skipped, are noncoded with
motion vector set to zero! In H.261, the noncoded MB was called motion com-
pensated only (MC).

In B-pictures, the skipped MB has again all zero DCT coefficients, but the
motion vector and the type of prediction mode (forward, backward or interpolated)
is exactly the same as those of its previous MB. Similar to P-pictures, the first
and the last MB in a slice cannot be declared skipped and is, in fact, called
noncoded.

The noncoded MB in B-pictures has all of its DCT coefficients zero (cbp ¼ 0),
but either its motion vector or its prediction (or both) is different from its
previous MB.

7.7.4 D-pictures
D-pictures contain only low-frequency information and are coded as the DC
coefficients of the blocks. They are intended to be used for fast visible search
modes. A bit is transmitted for the macroblock type, although there is only one

168 Standard codecs: image compression to advanced video coding

type. In addition, there is a bit denoting the end of the macroblock. D-pictures are
not part of the constrained bitstream.

7.8 Video buffer verifier

A coded bitstream contains different types of pictures, and each type ideally
requires a different number of bits to encode. In addition, the video sequence may
vary in complexity with time, and it may be desirable to devote more coding bits
to one part of a sequence than to another. For constant bit rate coding, varying the
number of bits allocated to each picture requires that the decoder has a buffer to
store the bits not needed to decode the immediate picture. The extent to which an
encoder can vary the number of bits allocated to each picture depends on the size
of this buffer. If the buffer is large, an encoder can use greater variations,
increasing the picture quality, but at the cost of increasing the decoding delay.
The delay is the time taken to fill the input buffer from empty to its current level.
An encoder needs to know the size of the decoder’s input buffer in order to
determine to what extent it can vary the distribution of coding bits among the
pictures in the sequence.

In constant bit rate applications (e.g. decoding a bitstream from a CD-ROM),
problems of synchronisation may occur. In these applications, the encoder should
generate a bitstream that is perfectly matched to the device. The decoder will dis-
play the decoded pictures at their specific rate. If the display clock is not locked to
the channel data rate, and this is typically the case, then any mismatch between the
encoder and channel clock and the display clock will eventually cause a buffer
overflow or underflow. For example, assume that the display clock runs 1 part per
million too slow with respect to the channel clock. If the data rate is 1 Mbit/s, then
the input buffer will fill at an average rate of 1 bit/s, eventually causing an over-
flow. If the decoder uses the entire buffer to allocate bits between pictures, the
overflow could occur more quickly. For example, suppose the encoder fills the
buffer completely except for 1 byte at the start of each picture, then overflow will
occur after only 8 s!

The model decoder is defined to resolve three problems: it constrains the
variability in the number of bits that may be allocated to different pictures; it allows
a decoder to initialise its buffer when the system is started; and it allows the
decoder to maintain synchronisation while the stream is played. At the beginning of
this chapter, we mentioned multiplexing and synchronisation of audio and video
streams. The tools defined in the international standard for the maintenance of
synchronisation should be used by decoders when multiplexed streams are being
played.

The definition of the parameterised model decoder is known as video buffer
verifier (VBV). The parameters used by a particular encoder are defined in the
bitstream. This really defines a model decoder that is needed if encoders are to be
assured that the coded bitstream they produce will be decodable. The model
decoder looks like Figure 7.15.

Coding of moving pictures for digital storage media (MPEG-1) 169

input buffer picture decoder

model decoder

coded

bitstream decoded
pictures

Figure 7.15 Model decoder

A fixed rate channel is assumed to put bits at a constant rate into the buffer, at
regular intervals, set by the picture rate. The picture decoder instantaneously
removes all the bits pertaining to the next picture from the input buffer. If there are
too few bits in the input buffer, that is, all the bits for the next picture have been
received, then the input buffer underflows, and there is an underflow error. If
during the time between the picture starts, the capacity of the input buffer is
exceeded, then there is an overflow error.

Practical decoders may differ from this model in several important ways. They
may not remove all the bits required to decode a picture from the input buffer
instantaneously. They may not be able to control the start of decoding very pre-
cisely as required by the buffer fullness parameters in the picture header, and they
take a finite time to decode. They may also be able to delay decoding for a short
time to reduce the chance of underflow occurring. But these differences depend in
degree and kind on the exact method of implementation. To satisfy the require-
ments of different implementations, the MPEG video committee chose a very
simple model for the decoder. Practical implementations of decoders must ensure
that they can decode the bitstream constrained in this model. In many cases, this
will be achieved by using an input buffer that is larger than the minimum required
and by using a decoding delay that is larger than the value derived from the buffer
fullness parameter. The designer must compensate for any differences between the
actual design and the model in order to guarantee that the decoder can handle any
bitstream that satisfies the model.

Encoders monitor the status of the model to control the encoder so that over-
flow does not occur. The calculated buffer fullness is transmitted at the start of each
picture so that the decoder can maintain synchronisation.

7.8.1 Buffer size and delay
For constant bit rate operation, each picture header contains a variable-delay
parameter (vbv_delay) to enable decoders to synchronise their decoding correctly.
This parameter defines the time needed to fill the input buffer of Figure 7.15 from
an empty state to the current level immediately before the picture decoder
removes all the bits from the picture. This time thus represents a delay and is
measured in units of 1/90 000 s. This number was chosen because it is almost an
exact factor of the picture duration in various original video formats: 1/24, 1/25,
1/29.97 and 1/30 s, and because it is comparable in duration to an audio sample.

170 Standard codecs: image compression to advanced video coding

The delay is given by

D ¼ vbv delay

90 000
s ð7:4Þ

For example, if vbv_delay was 9000, then the delay would be 0.1 s. This means that
at the start of a picture the input buffer of the model decoder should contain exactly
0.1 s worth of data from the input bitstream.

The bit rate, R, is defined in the sequence header. The number of bits in the
input buffer at the beginning of the picture is thus given by

B ¼ D � R ¼ vbv delay

90 000
� R bits ð7:5Þ

For example, if vbv_delay and R were 9000 and 1.2 Mbit/s, respectively, then the
number of bits in the input buffer would be 120 kbits. The constrained parameter
bitstream requires that the input buffers have a capacity of 327 680 bits, and B
should never exceed this value [3].

7.8.2 Rate control and adaptive quantisation
The encoder must make sure that the input buffer of the model decoder is neither
overflowed nor underflowed by the bitstream. Since the model decoder removes all
the bits associated with a picture from its input buffer instantaneously, it is neces-
sary to control the total number of bits per picture. In H.261, we saw that the
encoder could control the bit rate by simply checking its output buffer content. As
the buffer fills up, the quantiser step size is raised to reduce the generated bit rate,
and vice versa. The situation in MPEG-1, because of the existence of three different
picture types, where each generates a different bit rate, is slightly more complex.
First, the encoder should allocate the total number of bits among the various types
of picture within a GOP, so that the perceived image quality is suitably balanced.
The distribution will vary with the scene content and the particular distribution of I-,
P- and B-pictures within a GOP.

Investigations have shown that for most natural scenes, each P-picture might
generate as many as two to five times the number of bits of a B-picture, and an I-
picture three times those of the P-picture. If there is little motion and high texture,
then a greater proportion of the bits should be assigned to I-pictures. Similarly, if
there is strong motion, then a proportion of bits assigned to P-pictures should be
increased. In both cases, lower quality from the B-pictures is expected to permit the
anchor I- and P-pictures to be coded at their best possible quality.

Our investigations with variable bit rate (VBR) video, where the quantiser step
size is kept constant (no rate control), show that the ratios of generated bits are
6:3:2, for I-, P- and B-pictures, respectively [9]. Of course, at these ratios, because
of the fixed quantiser step size, the image quality is almost constant, not only for
each picture (in fact, slightly better for B-pictures due to better motion compen-
sation) but throughout the image. Again, if we lower the expected quality for
B-pictures, we can change that ratio in favour of I- and P- pictures.

Coding of moving pictures for digital storage media (MPEG-1) 171

Although these ratios appear to be very important for a suitable balance in
picture quality, one should not worry very much about their exact values. The
reason is that it is possible to make the encoder intelligent enough to learn the best
ratio. For example, after coding each GOP, one can multiply the average value of
the quantiser scale in each picture by the bit rate generated at that picture. Such a
quantity can be used as the complexity index, since larger complexity indices
should be due to both larger quantiser step sizes and larger bit rates. Therefore,
based on the complexity index one can derive a new coding ratio, and the target bit
rate for each picture in the next GOP is based on this new ratio.

As an example, let us assume that SIF-625 video is to be coded at 1.2 Mbit/s.
Let us also assume that the GOP structure of N ¼ 12 and M ¼ 3 is used. Therefore,
there will be one I-picture, three P-pictures and eight B-pictures in each GOP. First
of all, the target bit rate for each GOP is 1200 � (12/25) ¼ 576 kbit/GOP. If we
assume a coding ratio of 6:3:2, then the target bit rate for each of the I-, P- and
B-pictures will be

I-picture
6

6 þ 3 � 3 þ 2 � 8
� 576 ¼ 6

31
� 576 ¼ 112 kbits

P-picture
3
31

� 576 ¼ 56 kbits

B-picture
2
31

� 576 ¼ 37 kbits

Therefore, each picture is aiming for its own target bit rate. Similar to H.261, one
can control the quantiser step size for that picture, such that the required bit rate is
achieved. At the end of the GOP, the complexity index for each picture type is
calculated. Note that for P- and B-pictures, the complexity index is the average of
three and eight complexity indices, respectively. These ratios are used to define
new coding ratios between the picture types for coding of the next GOP. Also, bits
generated in that GOP are added together and the extra bit rate, or the deficit, from
the GOP target bit rate is transferred to the next GOP.

In practice, the target bit rate for B-pictures compared to that for other picture
types is deliberately reduced by a factor of 1.4. This is done for two reasons. First,
because of efficient bidirectional motion estimation in B-pictures, their transform
coefficients are normally small. Increasing the quantiser step size hardly affects
these naturally small value coefficients’ distortions, but the overall bit rate can be
reduced significantly. Second, since B-pictures are not used in the prediction loop
of the encoder, even if they are coarsely coded, the encoding error is not transferred
to the subsequent frames. This is not the case with the anchor I- and P-pictures,
because through the prediction loop, any saving in one frame due to coarser coding
has to be paid back in the following frames.

Experimental results indicate that by reducing the target bit rates of the
B-pictures by a factor of 1.4, the average quantiser step size for these pictures rises

172 Standard codecs: image compression to advanced video coding

almost by the same factor, but its quality (PSNR) only slightly deteriorates, which
is worth doing it.

Also, note that although in the above example (which is typical) the bits per
B-pictures are fewer than those of I- and P-pictures, eight B-pictures in a GOP
generate almost 8 � 37 ¼ 296 kbits, which is more than 50 per cent of the bits in a
GOP. The first implication is that use of a factor 1.4 can have a significant
reduction in the overall bit rate. The second implication of this is in the transmis-
sion of video over packet networks, where during periods of congestion, if only the
B-pictures are discarded, so reducing the network load by 50 per cent, congestion
can be eased without significantly affecting the picture quality. Note that B-pictures
are not used for predictions, so their loss will result in only a very brief (480 ms)
reduction in quality.

7.9 Decoder

The decoder block diagram is based on the same principle as the local decoder
associated with the encoder as shown in Figure 7.16.

buffer MUX–1 VLD Q–1 DCT–1 + frame
reorder

frame store
& predictor

coded video
bitstream

reconstructed
output
pictures

Figure 7.16 A block diagram of an MPEG-1 decoder

The incoming bitstream is stored in the buffer and is demultiplexed into the
coding parameters such as DCT coefficients, motion vectors, macroblock types and
addresses. They are then variable length decoded using the locally provided tables.
The DCT coefficients after inverse quantisation are inverse DCT transformed and
added to the motion-compensated prediction (as required) to reconstruct the pic-
tures. The frame stores are updated by the decoded I- and P-pictures. Finally, the
decoded pictures are reordered to their original scanned form.

At the beginning of the sequence, the decoder will decode the sequence header,
including the sequence parameters. If the bitstream is not constrained and a para-
meter exceeds the capability of the decoder, then the decoder should be able to
detect this. If the decoder determines that it can decode the bitstream, then it will
set up its parameters to match those defined in the sequence header. This will
include horizontal and vertical resolutions and aspect ratio, the bit rate and the
quantisation weighting matrices.

Next the decoder will decode the GOP header field to determine the GOP
structure. It will then decode the first picture header in the GOPs and, for constant
bit rate operation, determine the buffer fullness. It will then delay decoding the rest

Coding of moving pictures for digital storage media (MPEG-1) 173

of the sequence until the input buffer is filled to the correct level. By doing this, the
decoder can be sure that no buffer overflow or underflow will occur during
decoding. Normally, the input buffer size will be larger than the minimum required
by the bitstream, giving a range of fullness at which the decoder may start to
decode.

If it is required to play a recorded sequence from a random point in the bit-
stream, the decoder should discard all the bits until it finds a sequence start code, a
GOP start code or a picture start code that introduces an I-picture. The slices and
macroblocks in the picture are decoded and written into a display buffer and per-
haps into another buffer. The decoded pictures may be postprocessed and displayed
in the order defined by the temporal reference at the picture rate defined in the
sequence header. Subsequent pictures are processed at the appropriate times to
avoid buffer overflow and underflow.

7.9.1 Decoding for fast play
Fast forward can be supported by D-pictures. It can also be supported by an appro-
priate spacing of I-pictures in a sequence. For example, if I-pictures were spaced
regularly every 12 pictures, then the decoder might be able to play the sequence at 12
times the normal speed by decoding and displaying only the I-pictures. This even
simple concept places a considerable burden on the storage media and the decoder.
The media must be capable of speeding up and delivering 12 times the data rate.
The decoder must be capable of accepting this higher data rate and decoding the
I-pictures. Since I-pictures typically require significantly more bits to code than
P- and B-pictures, the decoder will have to decode significantly more than the 1/12
of the data rate. In addition, it has to search for picture start codes and discard
the data for P- and B-pictures. For example, consider a sequence with N ¼ 12 and
M ¼ 3, such as

I B B P B B P B B P B B I B B

Assume that the average bit rate is C, each B-picture requires 0.6C, each P-picture
requires 1.4C and the remaining 3C are assigned to the I-picture in the GOP. Then
the I-pictures should code (3/12) � 100 ¼ 25 per cent of the total bit rate in just
1/12 of the display time.

Another way to achieve fast forward in a constant bit rate application is for
the media itself to sort out the I-pictures and transmit them. This would allow the
data rate to remain constant. Since this selection process can be made to produce
a valid MPEG-1 video bitstream, the decoder should be able to decode it. If
every I-picture of the preceding example were selected, then one I-picture would
be transmitted every three-picture periods, and the speed up rate would be 12/3 ¼
4 times.

If alternate I-pictures of the preceding example were selected, then one
I-picture would again be transmitted every three-picture periods, but the speed up
rate would be 24/3 ¼ 8 times. If one in N I-pictures of the preceding example were
selected, then the speed up rate would be 4N.

174 Standard codecs: image compression to advanced video coding

7.9.2 Decoding for pause and step mode
Decoding for pause requires the decoder to be able to control the incoming bit-
stream and display a decoded picture without decoding any additional pictures. If
the decoder has full control over the bitstream, then it can be stopped for pause and
resumed when play begins. If the decoder has less control, as in the case of a CD-
ROM, there may be a delay before play can be resumed.

7.9.3 Decoding for reverse play
To decode a bitstream and play in reverse, the decoder must decode each GOP in
the forward direction, store the entire decoded pictures and then display them in
reverse order. This imposes severe storage requirements on the decoder in addition
to any problems in gaining access to the decoded bitstream in the correct order.

To reduce decoder memory requirements, groups of pictures should be small.
Unfortunately, there is no mechanism in the syntax for the encoder to state what the
decoder requirements are in order to play in reverse. The amount of display buffer
storage may be reduced by reordering the pictures, either by having the storage unit
read and transmit them in another order or by reordering the coded pictures in a
decoder buffer. To illustrate this, consider the typical GOP shown in Figure 7.17.

B B I B B P B B P B B P
0 1 2 3 4 5 6 7 8 9 10 11

I B B P B B P B B P B B
2 0 1 5 3 4 8 6 7 11 9 10

I P P P B B B B B B B B
2 5 8 11 10 9 7 6 4 3 1 0

pictures in display order
temporal reference

pictures in decoding order

pictures in new order

temporal reference

temporal reference

Figure 7.17 Example of GOP in the display, decoding and new orders

The decoder would decode pictures in the new order and display them in the
reverse of the normal display. Since the B-pictures are not decoded until they are
ready to be displayed, the display buffer storage is minimised. The first two
B-pictures, 0 and 1, would remain stored in the input buffer until the last P-picture
in the previous GOP was decoded.

7.10 Postprocessing

7.10.1 Editing
Editing of a video sequence is best performed before compression, but situations
may arise where only the coded bitstream is available. One possible method would
be to decode the bitstream, perform the required editing on the pixels and recode

Coding of moving pictures for digital storage media (MPEG-1) 175

the bitstream. This usually leads to a loss in video quality, and it is better, if pos-
sible, to edit the coded bitstream itself.

Although editing may take several forms, the following discussion pertains
only to editing at the picture level, that is, deletion of the coded video material from
a bitstream and insertion of coded video material into a bitstream, or rearrangement
of coded video material within a bitstream.

If a requirement for editing is expected (e.g. clip video is provided analogous
to clip art for still pictures), then the video can be encoded with well-defined cut-
ting points. These cutting points are places at which the bitstream may be broken
apart or joined. Each cutting point should be followed by a closed GOP (e.g. a GOP
that starts with an I-picture). This allows smooth play after editing.

To allow the decoder to play the edited video without having to adopt any
unusual strategy to avoid overflow and underflow, the encoder should make the
buffer fullness take the same value at the first I-picture following every cutting
point. This value should be the same as that of the first picture in the sequence. If
this suggestion is not followed, then the editor may make an adjustment either by
padding (stuffing bits or macroblocks) or by recording a few images to make them
smaller.

If the buffer fullness is mismatched and the editor makes no correction, then
the decoder will have to make some adjustment when playing over an edited cut.
For example, consider a coded sequence consisting of three clips, A, B and C, in
order. Assume that clip B is completely removed by editing, so that the edited
sequence consists only of clip A followed immediately by clip C, as illustrated in
Figure 7.18.

Assume that, in the original sequence, the buffer is three quarters full at the
beginning of clip B and one quarter full at the beginning of clip C. A decoder
playing the edited sequence will encounter the beginning of clip C with its buffer
three quarters full, but the first picture in clip C will contain a buffer fullness value
corresponding to a quarter full buffer. To avoid buffer overflow, the decoder may
try to pause the input bitstream, or discard pictures without displaying them (pre-
ferably B-pictures), or change the decoder timing.

A B C

A C

original

edited

Figure 7.18 Edited sequences

For another example, assume that in the original sequence the buffer is one quarter
full at the beginning of clip B and three quarters full at the beginning of clip C.
A decoder playing the edited sequence will encounter the beginning of clip C with its
buffer one quarter full, but the first picture in clip C will contain a buffer fullness

176 Standard codecs: image compression to advanced video coding

value corresponding to a three quarters full buffer. To avoid buffer underflow,
the decoder may display one or more pictures for longer than the normal time.

If provision for editing was not specifically provided in the coded bitstream, or
if it must be available at any picture, then the editing task is more complex and
places a greater burden on the decoder to manage buffer overflow and underflow
problems. The easiest task is to cut at the beginning of a GOP. If the GOP following
the cut is open (e.g. GOP stars with two B-pictures), which can be detected by
examining the closed GOP flag in the GOP header, then editing must set the broken
link bit to 1 to indicate to the decoder that the previous GOP cannot be used for
decoding any B-pictures.

7.10.2 Resampling and upconversion
The decoded sequence may not match the picture rate or the spatial resolution of
the display device. In such situations (which occur frequently), the decoded video
must be resampled or scaled. In Chapter 2, we saw that CCIR-601 video was
subsampled into SIF format for coding; hence, for display it is appropriate to
upsample them back into their original format. Similarly, they have to be tempo-
rally converted for proper display, as was discussed in Chapter 2. This is particu-
larly important for cases where video was converted from film.

7.11 Problems

1. In MPEG-1, with the group of picture structure of N ¼ 12 and M ¼ 3, the
maximum motion speed is assumed to be 15.5 pixels/frame (half-pixel preci-
sion), calculate the number of search operations required to estimate the
motion in P-pictures with
a. telescopic method
b. direct on the P-pictures

2. In an MPEG-1 encoder, for head-and-shoulders type pictures, the maximum
motion speed for P-pictures is set to 13 pixels and those of the forward and
backward for the first B-picture in the subgroup are set to five pixels and nine
pixels, respectively.
a. Explain why the search range for B-picture is smaller than that of the

P-picture.
b. What would be the forward and backward search ranges for the second

B-picture in the subgroup?
c. Calculate the number of search operations with half-pixel precision for the

P- and B-pictures.

3. An I-picture is coded at 50 kbits. If the quantiser step size is linearly distributed
between 10 and 16, find the complexity index for this picture.

4. In coding of SIF-625 video at 1.2 Mbit/s, with a GOP structure N ¼ 12, M ¼ 3,
the ratios of complexity indices of I, P and B are 20:10:7, respectively. Cal-
culate the target bit rate for coding of each frame in the next GOP.

Coding of moving pictures for digital storage media (MPEG-1) 177

5. If in problem 4, the allocated bits to B-pictures were reduced by a factor of 1.4,
find the new complexity indices and the target bits to each picture type.

6. In problem 4, if due to scene change the average quantiser step size in the last
P-picture of the GOP was doubled, but those of other pictures did not change
significantly:
a. How do the complexity index ratios change?
b. What is the new target bit rate for each picture type?

7. If in problem 4, the complexity indices ratios were wrongly set to 1:1:1, but
after coding the average quantiser step sizes for I, P and B were 60, 20 and 15,
respectively, find
a. the target bit rate for each picture type before coding
b. the target bit rate for each picture type of the next GOP

References

1. MPEG-1: ‘Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s’, ISO/IEC 1117-2: video, November 1991

2. H.261: ‘ITU-T Recommendation H.261, video codec for audiovisual services
at p�64 kbit/s’, Geneva, 1990

3. ‘Coding of moving pictures and associated audio for digital storage media at
up to about 1.5 Mbit/s’, ISO/IEC 1117-2: systems, November 1991

4. CCIR Recommendation 601: ‘Digital methods of transmitting television
information’. Recommendation 601, Encoding parameters of digital television
for studios

5. WILSON, D. and GHANBARI, M.: ‘Frame sequence partitioning of video for
efficient multiplexing’, Electron. Lett., 1988, 34:15, pp. 1480–1481

6. GHANBARI, M.: ‘An adapted H.261 two-layer video codec for ATM net-
works’, IEEE Trans. Commun., 40:9, 1992, pp. 1481–1490

7. PEARSON, D.E.: Transmission and Display of Pictorial Information, Pentech
Press, London, 1975

8. SEFERIDIS, V. and GHANBARI, M.: ‘Adaptive motion estimation based on
texture analysis’, IEEE Trans. Commun., 1994, 42:2/3/4, pp. 1277–1287

9. ALDRIDGE, R.P., GHANBARI, M. and PEARSON D.E.: ‘Exploiting the
structure of MPEG-2 for statistically multiplexing video’, Proceedings of 1996
International Picture coding symposium, PCS’96, Melbourne, Australia,
March 1996, pp. 111–113

178 Standard codecs: image compression to advanced video coding

Chapter 8

Coding of high-quality moving pictures
(MPEG-2)

Following the universal success of H.261 and Motion Picture Experts Group
(MPEG)-1 video codecs, there was a growing need for a video codec to address a
wide variety of applications. Considering the similarity between H.261 and
MPEG-1, ITU-T and ISO/IEC made a joint effort to devise a generic video codec.
Joining the study was a special group in ITU-T, Study Group 15 (SG15), who were
interested in coding of video for transmission over the future broadband integrated
services digital networks (BISDN) using asynchronous transfer mode (ATM)
transport. The devised generic codec was finalised in 1995 and takes the name of
MPEG-2/H.262, though it is more commonly known as MPEG-2 [1].

At the time of the development, the following applications for the generic
codec were foreseen:

● BSS broadcasting satellite service (to the home)
● CATV cable TV distribution on optical networks, copper, etc.
● CDAD cable digital audio distribution
● DAB digital audio broadcasting (terrestrial and satellite)
● DTTB digital terrestrial television broadcast
● EC electronic cinema
● ENG electronic news gathering (including satellite news gathering (SNG))
● FSS fixed satellite service (e.g. to head ends)
● HTT home television theatre
● IPC interpersonal communications (videoconferencing, videophone, etc.)
● ISM interactive storage media (optical discs, etc.)
● MMM multimedia mailing
● NCA news and current affairs
● NDS networked database services (via ATM, etc.)
● RVS remote video surveillance
● SSM serial storage media (digital VTR, etc.)

Of particular importance is the application to satellite systems where the limitations
of radio spectrum and satellite parking orbit result in pressure to provide acceptable
quality TV signals at relatively low bit rates. As we will see at the end of this
chapter, today we can accommodate about six to eight high-quality MPEG-2 coded
TV programmes into the same satellite channel that used to carry only one

analogue TV programme. Numerous new applications have been added to the list.
In particular, high definition television (HDTV) and digital versatile disc (DVD)
for home storage systems appear to be the main beneficiaries of further MPEG-2
development.

8.1 MPEG-2 systems

The MPEG-1 standard was targeted for coding of audio and video for storage,
where the media error rate is negligible [2]. Hence, the MPEG-1 system is not
designed to be robust to bit error rates. Also, MPEG-1 was aimed at software-
oriented image processing, where large- and variable-length packets could reduce
the software overhead [3].

The MPEG-2 standard, on the other hand, is more generic for a variety of
audio-visual coding applications. It has to include error resilience for broadcasting,
and ATM networks. Moreover, it has to deliver multiple programmes simulta-
neously without requiring them to have a common time base. These require that the
MPEG-2 transport packet length should be short and fixed.

MPEG-2 defines two types of streams: the programme stream and the transport
stream. The programme stream is similar to the MPEG-1 systems stream but uses a
modified syntax and new functions to support advanced functionalities (e.g. scal-
ability). It also provides compatibility with the MPEG-1 systems stream, that is,
MPEG-2 should be capable of decoding an MPEG-1 bitstream. Like the MPEG-1
decoder, programme stream decoders typically employ long- and variable-length
packets. Such packets are well suited for software-based processing and error-
free transmission environments, such as coding for storage of video on a disc.
Here the packet sizes are usually 1–2 kbytes long, chosen to match the disc sector
sizes (typically 2 kbytes). However, packet sizes as long as 64 kbytes are also
supported.

The programme stream also includes features not supported by MPEG-1 sys-
tems. These include scrambling of data, assignment of different priorities to
packets, information to assist alignment of elementary stream packets, indication of
copyright, indication of fast forward, fast reverse and other trick modes for storage
devices. An optional field in the packets is provided for testing the network per-
formance, and optional numbering of a sequence of packets is used to detect lost
packets.

In the transport stream, MPEG-2 significantly differs from MPEG-1 [4]. The
transport stream offers robustness for noisy channels as well as the ability to
assemble multiple programmes into a single stream. The transport stream uses
fixed-length packets of size 188 bytes with a new header syntax. This can be
segmented into four 47 bytes to be accommodated in the payload of four ATM
cells, with the AAL1 adaptation scheme [5]. It is therefore more suitable for
hardware processing and for error correction schemes, such as those required in
television broadcasting, satellite/cable TV and ATM networks. Furthermore,
multiple programmes with independent time bases can be multiplexed in one

180 Standard codecs: image compression to advanced video coding

transport stream. The transport stream also allows synchronous multiplexing of
programmes, fast access to the desired programme for channel hopping, multi-
plexing of programmes with clocks unrelated to transport clock and correct syn-
chronisation of elementary streams for playback. It also allows control of the
decoder buffers during start-up and playback for both constant and variable bit rate
(VBR) programmes.

A basic data structure that is common to the organisation of both the pro-
gramme stream and transport stream is called the packetised elementary stream
(PES) packet. Packetising the continuous streams of compressed video and audio
bitstreams (elementary streams) generates PES packets. Simply stringing together
PES packets from the various encoders with other packets containing necessary
data to generate a single bitstream generates a programme stream. A transport
stream consists of packets of fixed length containing 4 bytes of header followed by
184 bytes of data, where the data are obtained by segmenting the PES packets.

video
in

audio
in

data

video
encoder

audio
encoder

pa
ck

et
is

er

MPEG
video

MPEG
audio

pr
og

ra
m

m
e

tra
ns

po
rt

m
ux

systems time clock

systems time clock

program stream
DSM

channel

transport stream

video PES

audio PES

Figure 8.1 MPEG-2 systems multiplex of programme and transport streams

Figure 8.1 illustrates both types of programme and transport stream multi-
plexes of MPEG-2 systems. Like MPEG-1, the MPEG-2 systems layer is also cap-
able of combining multiple sources of user data along with encoded audio and video.
The audio and video streams are packetised to form PES packets, which are sent to
either a programme multiplexer or a transport multiplexer, resulting in a programme
stream or transport stream, respectively. As mentioned earlier, programme streams
are intended for an error-free environment such as digital storage media (DSM).

Coding of high-quality moving pictures (MPEG-2) 181

Transport streams are intended for noisier environments such as terrestrial
broadcast channels.

At the receiver, the transport streams are decoded by a transport demulti-
plexer (which includes a clock extraction mechanism), unpacketised by a de-
packetiser and sent to audio and video decoders for decoding, as shown in
Figure 8.2.

pr
og

ra
m

 d
em

ux

&
 c

lo
ck

 c
on

tro
l

de
pa

ck
et

is
er

audio
decoder

buffer &
present

video
decoder

buffer &
present

presentation
time stamp

presentation
time stamp

video out

audio out

user data out

decoder systems time clock

channel

tra
ns

po
rt

de
m

ux

&
 c

lo
ck

 c
on

tro
l

de
pa

ck
et

is
er

audio
decoder

buffer &
present

video
decoder

buffer &
present

presentation
time stamp

presentation
time stamp

video out

audio out

user data out

decoder systems time clock

transport stream

DSM

program stream

Figure 8.2 MPEG-2 systems demultiplexing of programme and transport streams

The decoded signals are sent to the receiver buffer and presentation unit, which
outputs them to a display device and a speaker at the appropriate time. Similarly, if
the programme streams are used, they are decoded by the programme stream
demultiplexer and depacketiser and sent to the audio and video decoders. The
decoded signals are sent to the respective buffer to await presentation. Also similar
to MPEG-1 systems, the information about systems timing is carried by the clock
reference field in the bitstream that is used to synchronise the decoder systems time

182 Standard codecs: image compression to advanced video coding

clock (STC). Presentation time stamps (PTS), which are also carried by the bit-
stream, control the presentation of the decoded output.

8.2 Profiles and levels

MPEG-2 is intended to be generic in the sense that it serves a wide range of applica-
tions, bit rates, resolutions, qualities and services. Applications should cover, among
other things, DSM, television broadcasting and communications. In the course of the
development, various requirements from typical applications were considered, and
they were integrated into a single syntax. Hence, MPEG-2 is expected to facilitate
the interchange of bitstreams among different applications. However, considering the
practicality of implementing the full syntax of the bitstream, a limited number of
subsets of the syntax are also stipulated by means of profile and level [6].

A profile is a subset of the entire bitstream syntax that is defined by the MPEG-2
specification. Within the bounds imposed by the syntax of a given profile, it is still
possible to encompass very large variations in the performance of encoders and
decoders depending on the values taken by parameters in the bitstream. For
instance, it is possible to specify frame sizes as large as (approximately) 214 sam-
ples wide by 214 lines high. It is currently neither practical nor economical to
implement a decoder capable of dealing with all possible frame sizes. To deal with
this problem, levels are defined within each profile. A level is a defined set of
constraints imposed on parameters in the bitstream. These constraints may be
simple limits on numbers. Alternatively, they may take the form of constraints on
arithmetic combinations of the parameters (e.g. frame width � frame height �
frame rate). Both profiles and levels have a hierarchical relationship, and the syntax
supported by a higher profile or level must also support all the syntactical elements
of the lower profiles or levels.

Bitstreams complying with the MPEG-2 specification use a common syntax.
To achieve a subset of the complete syntax, flags and parameters are included in the
bitstream, which signals the presence or otherwise of syntactic elements that occur
later in the bitstream. Then, to specify constraints on the syntax (and hence define a
profile), it is only necessary to constrain the values of these flags and parameters
that specify the presence of later syntactic elements.

In order to parse the bitstream into specific applications, they are ordered into
layers. If there is only one layer, the coded video data are called a nonscalable
video bitstream. For two or more layers, the bitstream is called scalable hierarchy.
In the scalable mode, the first layer, called the base layer, is always decoded
independently. Other layers are called enhancement layers and can only be decoded
together with the lower layers.

Before describing how various scalabilities are introduced in MPEG-2, let us
see how profiles and levels are defined. MPEG-2 initially defined five hier-
archical structure profiles and later on added two profiles that do not fit the
hierarchical structure. The profile mainly deals with the supporting tool for coding,

Coding of high-quality moving pictures (MPEG-2) 183

such as the group of pictures (GOP) structure, the picture format and scal-
ability. The seven known profiles and their current applications are summarised in
Table 8.1.

The level deals with the picture resolutions such as the number of pixels/line,
lines/frame, frames/s and bit/s or the bit rate (e.g. Mbit/s). Table 8.2 summarises the
levels that are most suitable for each profile.

The main profile main line (MP@ML) is the most widely used pairs for
broadcast TV, and the 4:2:2 profile and main line (4:2:2@ML) is for the studio
video production and recording.

Table 8.2 The levels defined for each profile

Level Resolutions Simple
I, P
4:2:0

Main
I, P, B
4:2:0

SNR
I, P, B
4:2:0

Spatial
I, P, B
4:2:0

High
I, P, B
4:2:0
4:2:2

4:2:2
I, P, B
4:2:0
4:2:2

Multiview
I, P, B
4:2:0

Low pel/line
line/frame
frame/s
Mbit/s

352
288
30/25
4

352
288
30/15
4

352
288
30/25
8

Main pel/line
line/frame
frame/s
Mbit/s

720
576
30/25
15

720
576
30/25
15

720
576
30/25
15

720
576
30/25
20

720
512/608
30/25
50

720
576
30/25
25

High
1440

pel/line
line/frame
frame/s
Mbit/s

1440
1152
60
60

1440
1152
60
60

1440
1152
60
80

1440
1152
60
100

High pel/line
line/frame
frame/s
Mbit/s

1920
1152
60
80

1920
1152
60
100

1920
1152
60
130

1920
1152
60
300

Table 8.1 Various profiles defined for MPEG-2

Type Supporting tools Application

Simple I- and P-pictures, 4:2:0 format; nonscalable Currently not used
Main Simple profile þ B-pictures Broadcast TV
SNR scalable Main profile þ SNR scalability Currently not used
Spatial SNR profile þ spatial scalability Currently not used
High Spatial profile þ 4:2:2 format Currently not used
4:2:2 IBIBIB . . . pictures, extension of main

profile to high bit rates
Studio postproduction;

high-quality video for
storage (VTR) and video
distribution

Multiview Main profile þ temporal scalability Several video streams;
stereo presentation

184 Standard codecs: image compression to advanced video coding

8.3 How does the MPEG-2 video encoder differ from MPEG-1?

8.3.1 Major differences
From the profiles and levels, we see that the picture resolutions in MPEG-2 can
vary from SIF (352 � 288 � 25 or 30) to HDTV with 1920 � 1250 � 60. More-
over, most of these pictures are interlaced, whereas in MPEG-1, pictures are non-
interlaced (progressive). Coding of interlaced pictures is the first difference
between the two coding schemes.

In the MPEG-2 standard, combinations of various picture formats and the
interlaced/progressive option create a new range of macroblock (MB) types. While
each MB in a progressive mode has 6 blocks in the 4:2:0 format, the number of
blocks in the 4:4:4 image format is 12. Also, the dimensions of the unit of blocks
used for motion estimation/compensation can change. In the interlaced pictures,
since the number of lines per field is half the number of lines per frame, with equal
horizontal and vertical resolutions for motion estimation, it might be appropriate to
choose blocks of 16 � 8, that is, 16 pixels over eight lines. These types of sub-MBs
have half the number of blocks of the progressive mode.

The second significant difference between the MPEG-1 and the MPEG-2 video
encoders is the new function of scalability. The scalable modes of MPEG-2 are
intended to offer interoperability among different services or to accommodate the
varying capabilities of different receivers and networks upon which a single service
may operate. They allow a receiver to decode a subset of the full bitstream in order to
display an image sequence at a reduced quality and spatial and temporal resolution.

8.3.2 Minor differences
Apart from the two major distinctions, there are some other minor differences, which
have been introduced to increase the coding efficiency of MPEG-2. They are again due
to the picture interlacing used in MPEG-2. The first one is the scanning order of discrete
cosine transform (DCT) coefficients. In MPEG-1, like H.261, zigzag scanning is used.
MPEG-2 has the choice of using alternate scan, as shown in Figure 8.3b. For interlaced

(a) (b)

Figure 8.3 Two types of scanning method: (a) zigzag scan and (b) alternate scan

Coding of high-quality moving pictures (MPEG-2) 185

pictures, since the vertical correlation in the field pictures is greatly reduced, should the
field prediction be used, an alternate scan may perform better than a zigzag scan.

The second minor difference is on the nature of quantisation of the DCT co-
efficients. MPEG-2 supports both linear and nonlinear quantisation of the DCT
coefficients. The nonlinear quantisation increases the precision of quantisation at
high bit rates by employing lower quantiser scale values. This improves picture
quality at low contrast areas. At lower bit rates, where larger step sizes are needed,
again the nonlinear behaviour of the quantiser provides a larger dynamic range for
quantisation of the coefficients.

8.3.3 MPEG-1 and MPEG-2 syntax differences
The IDCT mismatch control in MPEG-1 is slightly different from that in MPEG-2.
After the inverse quantisation process of the DCT coefficients, the MPEG-1 stan-
dard requires that all the nonzero coefficients are added with 1 or –1. In the MPEG-2
standard, only the last coefficient needs to be added with 1 or –1 provided that the
sum of all coefficients is even after inverse quantisation. Another significant var-
iance is the run level values. In MPEG-1, those that cannot be coded with a variable
length code (VLC) are coded with the escape code, followed by either a 14-bit or a
22-bit fixed-length coding (FLC), whereas for MPEG-2, they are followed by an
18-bit FLC.

The constraint parameter flag mechanism in MPEG-1 has been replaced by
the profile and level structures in MPEG-2. The additional chroma formats
(4:2:2 and 4:4:4) and the interlaced related operations (field prediction and
scalable coding modes) make MPEG-2 bitstream syntax different from that of
MPEG-1.

The concept of the GOP layer is slightly different. GOP in MPEG-2 may
indicate that certain B-pictures at the beginning of an edited sequence comprise a
broken link, which occurs if the forward reference picture needed to predict the
current B-pictures is removed from the bitstream by an editing process. It is an
optional structure for MPEG-2 but mandatory for MPEG-1. The final point is that
slices in MPEG-2 must always start and end on the same horizontal row of MBs.
This is to assist the implementations in which the decoding process is split into
some parallel operations along horizontal strips within the same pictures.

Although these differences may make direct decoding of the MPEG-1 bit-
stream by an MPEG-2 decoder infeasible, the fundamentals of video coding in the
two codecs remain the same. In fact, as we mentioned, there is a need for backward
compatibility so that the MPEG-2 decoder should be able to decode the MPEG-1
encoded bitstream. Thus, MPEG-1 is a subset of MPEG-2. They employ the same
concept of a GOP, and the interlaced field pictures now become I-, P- and B-fields,
and all the MB types have to be identified as field or frame based. Therefore, in
describing the MPEG-2 video codec, we will avoid repeating what has already been
said about MPEG-1 in Chapter 7. Instead, we will concentrate on parts that have
risen due to interlacing and scalability of MPEG-2. However, for information on
the difference between MPEG-1 and MPEG-2 refer to [7].

186 Standard codecs: image compression to advanced video coding

8.4 MPEG-2 nonscalable coding modes

This simple nonscalable mode of the MPEG-2 standard is the direct extension of
the MPEG-1 coding scheme with the additional feature of accommodating inter-
laced video coding. The impact of the interlaced video on the coding methodology
is that interpicture prediction may be carried out between the fields as they are
closer to each other. Furthermore, for slow moving objects, vertical pixels in the
same frame are closer, making frame prediction more efficient.

As usual, we define the prediction modes on an MB basis. Also, to be in line
with the MPEG-2 definitions, we define the odd and the even fields as the top and
bottom fields, respectively. A field MB, similar to the frame MB, consists of 16 �
16 pixels. In the following, five modes of predictions are described [3]. They can be
equally applied to P- and B-pictures unless specified otherwise.

Similar to the reference model in H.261, software-based reference codecs for
laboratory testing have also been thought for MPEG-1 and MPEG-2. For these
codecs, the reference codec is called the test model (TM), and the latest version of
the TM is TM5 [8].

8.4.1 Frame prediction for frame pictures
Frame prediction for frame pictures is exactly identical to the predictions used in
MPEG-1. Each P-frame can make a prediction from the previous anchor frame, and
there is one motion vector for each motion-compensated MB. B-frames may use
previous, future or interpolated past and future anchor frames. There will be up to
two motion vectors (forward and backward) for each B-frame motion-compensated
MB. Frame prediction works well for slow to moderate motion as well as panning
over a detailed background.

8.4.2 Field prediction for field pictures
This mode of prediction is similar to the frame prediction except that pixels of the
target MB (MB to be coded) belong to the same field. Prediction MBs should also
belong to one field, either from the top or the bottom field. Thus, for P-pictures the
prediction MB comes from the two most recent fields, as shown in Figure 8.4. For
example, the prediction for the target MBs in the top field of a P-frame, TP, may
come either from the top field, TR, or the bottom field, BR, of the reference frame.

The prediction for the target MBs in the bottom field, BP, can be made from its
two recent fields, the top field of the same frame, TP, or the bottom field of the
reference frame, BR.

For B-pictures, the prediction MBs are taken from the two most recent anchor
pictures (I/P or P/P). Each target MB can make a forward or a backward prediction
from either of the fields.

For example, in Figure 8.5 the forward prediction for the bottom field of a
B-picture, BB, is either TP or BP, and the backward prediction is taken from TF or
BF. There will be one motion vector for each P-field target MB, and two motion
vectors for those of B-fields.

Coding of high-quality moving pictures (MPEG-2) 187

reference field
picture

P-field
picture

TR BR TP BP

Figure 8.4 Field prediction of field pictures for P-picture MBs

TP BP TB
BB TF BF

past reference
field picture

future reference
field picture

B-field
picture

Figure 8.5 Field prediction of field pictures for B-picture MBs

8.4.3 Field prediction for frame pictures
In this case the target MB in a frame picture is split into two top field and bottom
field pixels, as shown in Figure 8.6. Field prediction is then carried out indepen-
dently for each of the 16 � 8 pixel target MBs.

For P-pictures, two motion vectors are assigned for each 16 � 16 pixel target
MB. The 16 � 8 predictions may be taken from either of the two most recently
decoded anchor pictures. Note that the 16 � 8 field prediction cannot come from
the same frame, as was the case in field prediction for field pictures.

188 Standard codecs: image compression to advanced video coding

16

8

16

816

16 16 × 8 field blocks

Figure 8.6 A target MB is split into two 16 � 8 field blocks

For B-pictures, because of the forward and the backward motion, there can be
two or four motion vectors for each target MB. The 16 � 8 predictions may be
taken from either field of the two most recently decoded anchor pictures.

8.4.4 Dual prime for P-pictures
Dual prime is only used in P-pictures, where there are no B-pictures in the GOP.
Here only one motion vector is encoded (in its full format) in the bitstream together
with a small differential motion vector correction. In the case of the field pictures,
two motion vectors are then derived from this information. These are used to form
predictions from the two reference fields (one top, one bottom), which are averaged
to form the final prediction. In the case of frame pictures, this process is repeated
for the two fields so that a total of four field predictions are made.

Figure 8.7 shows an example of dual-prime motion-compensated prediction
for the case of frame pictures. The transmitted motion vector has a vertical dis-
placement of three pixels. From the transmitted motion vector, two preliminary
predictions are computed, which are then averaged to form the final prediction.

The first preliminary prediction is identical to field prediction except that the
reference pixels should come from the previously coded fields of the same parity
(top or bottom fields) as the target pixels. The reference pixels, which are obtained
from the transmitted motion vector, are taken from two fields (taken from one field
for field pictures). In the figure the predictions for target pixels in the top field, TP,
are taken from the top reference field, TR. Target pixels in the bottom field, BP, take
their predictions from the bottom reference field, BR.

The second preliminary prediction is derived using a computed motion vector
plus a small differential motion vector correction. For this prediction, reference
pixels are taken from the parity field opposite to the first parity preliminary pre-
diction. For the target pixels in the top field TP, pixels are taken from the bottom
reference field BR. Similarly, for the target pixels in the bottom field BP, prediction
pixels are taken from the top reference field TR.

The computed motion vectors are obtained by a temporal scaling of the
transmitted motion vector to match the field in which the reference pixels lie, as
shown in Figure 8.7. For example, for the transmitted motion vector of value 3, the

Coding of high-quality moving pictures (MPEG-2) 189

computed motion vector for TP would be 3 � 1/2 ¼ 1.5, since the reference field BR

is midway between the top reference field and the top target field. The computed
motion vector for the bottom field is 3 � 3/2 ¼ 4.5, as the distance between the
reference top field and the bottom target field is three fields (3/2 frames). The
differential motion vector correction, which can have up to one-half pixel preci-
sion, is then added to the computed motion vector to give the final corrected motion
vector.

In the figure, the differential motion vector correction has a vertical displace-
ment of �0.5 pixels. Therefore, the corrected motion vector for the top target field,
TP, would be 1:5 � 0:5 ¼ 1, and for the bottom target field, it is 4:5 � 0:5 ¼ 4, as
shown with thicker lines in the figure.

For interlaced video, the performance of dual-prime prediction can, under
some circumstances, be comparable to that of B-picture prediction and has the
advantage of low encoding delay. However, for dual prime, unlike B-pictures, the
decoded pixels should be stored to be used as reference pixels.

computed motion vector

reference picture target (predicted) picture

TR BR TP BP

A
B

C

D

A

B

C

D

transmitted motion vectorA

B

differential motion vectorC D final motion vector

5.0

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

3.0
3.5

4.0

4.5

–1.0

–0.5

0

0.5

1.0
1.5

2.0

2.5

3.0
3.5

4.0
4.5

5.0

Figure 8.7 Dual-prime motion-compensated prediction for P-pictures

190 Standard codecs: image compression to advanced video coding

8.4.5 16 � 8 motion compensation for field pictures
In this mode, a field of 16 � 16 pixel MB is split into upper half and lower half
16 � 8 pixel blocks, and a separate field prediction is carried out for each. Two
motion vectors are transmitted for each P-picture MB, and two or four motion
vectors for the B-picture MB. This mode of motion compensation may be useful in
field pictures that contain irregular motion. Note the difference between this mode
and the field prediction for frame pictures in section 8.4.3. Here a field MB is split
into two halves, and in the field prediction for frame pictures, a frame MB is split into
two top and bottom field blocks.

Thus, the five modes of motion compensation in MPEG-2 in relation to field
and frame predictions can be summarised in Table 8.3.

Table 8.3 Five motion compensation modes in MPEG-2

Motion compensation mode Use in field
pictures

Use in frame
pictures

Frame prediction for frame pictures No Yes
Frame prediction for field pictures Yes No
Field prediction for frame pictures No Yes
Dual prime for P-pictures Yes Yes
16 � 8 motion compensation for field pictures Yes No

8.4.6 Restrictions on field pictures
It should be noted that field pictures have some restrictions on I-, P- and B-picture
coding type and motion compensation. Normally, the second field picture of a
frame must be of the same coding type as the first field. However, if the first field
picture of a frame is an I-picture, then the second field can be either I or P. If it is a
P-picture, the prediction MBs must all come from the previous I-picture, and dual
prime cannot be used.

8.4.7 Motion vectors for chrominance components
As explained, the motion vectors are estimated on the basis of the luminance pixels;
hence, they are used for the compensation of the luminance component. For each of
the two chrominance components, the luminance motion vectors are scaled
according to the image format as follows:

● 4:2:0: Both the horizontal and vertical components of the motion vector are
scaled by dividing by two.

● 4:2:2: The horizontal component of the motion vector is scaled by dividing by
two; the vertical component is not altered.

● 4:4:4: The motion vector is unmodified.

Coding of high-quality moving pictures (MPEG-2) 191

8.4.8 Concealment motion vectors
Concealment motion vectors are motion vectors that may be carried by the intra
MBs for the purpose of concealing errors, should transmission error result in loss of
information. A concealment motion vector is present for all intra MBs if and only if
the concealment_motion_vectors flag in the picture header is set. In the normal
course of events, no prediction is formed for such MBs, since they are of intra type.
The specification does not specify how error recovery shall be performed. How-
ever, it is a recommendation that concealment motion vectors should be suitable for
use by a decoder that is capable of performing the function. If concealment is used
in an I-picture, then the decoder should perform prediction in a similar way to a
P-picture.

Concealment motion vectors are intended for use in the case that a data error
results in information being lost. There is, therefore, little point in encoding the
concealment motion vector in the MB for which it is intended to be used. This is
because if the data error results in the need for error recovery, it is very likely that
the concealment motion vector itself would be lost or corrupted. As a result, the
following semantic rules are appropriate:

● For all MBs except those in the bottom row of MBs concealment motion,
vectors should be appropriate for use in the MB that lies vertically below the
MB in which the motion vector occurs.

● When the motion vector is used with respect to the MB identified in the
previous rule, a decoder must assume that the motion vector may refer to
samples outside of the slices encoded in the reference frame or reference
field.

● For all MBs in the bottom row of MBs, the reconstructed concealment motion
vectors will not be used. Therefore, the motion vector (0,0) may be used to
reduce unnecessary overhead.

8.5 Scalability

Scalable video coding is often regarded as being synonymous with layered video
coding, which was originally proposed by the author to increase robustness of video
codecs against packet (cell) loss in ATM networks [9]. At the time (late 1980s),
H.261 was under development, and it was clear that purely interframe coded video
by this codec was very vulnerable to loss of information. The idea behind layered
coding was that the codec should generate two bitstreams, one carrying the most
vital video information named as the base layer and the other carrying the residual
information to enhance the base layer image quality, named the enhancement layer.
In the event of network congestion, only the less important enhancement data
should be discarded, and the space made available for the base layer data. Such a
methodology had an influence on the formation of ATM cell structure to provide
two levels of priority for protecting base layer data [5]. This form of two-layer
coding is now known as signal-to-noise ratio (SNR) scalability in the MPEG-2

192 Standard codecs: image compression to advanced video coding

standard, and currently, a variety of new two-layer coding techniques have been
devised. They now form the basic scalability functions of the MPEG-2 standard.

Before describing various forms of scalability in some details, it will be useful
to know the similarity and, more importantly, any dissimilarity between these two
coding methods. In the next section, this is dealt with in some depth, but since
scalability is the commonly adopted name for all the video coding standards, we
use scalability throughout the book to address both methods.

The scalability tools defined in the MPEG-2 specifications are designed to
support applications beyond that supported by the single-layer video. Among the
noteworthy applications areas addressed are video telecommunications, video on
ATM networks, interworking of video standards, video service hierarchies with
multiple spatial, temporal and quality resolutions, HDTV with embedded TV,
systems allowing migration to higher temporal resolution HDTV, etc. Although a
simple solution to scalable video is the simulcast technique, which is based on
transmission/storage of multiple independently coded reproductions of video, a
more efficient alternative is scalable video coding, in which the bandwidth allo-
cated to a given reproduction of video can be partially reutilised in coding of the
next reproduction of video. In scalable video coding, it is assumed that given an
encoded bitstream, decoders of various complexities can decode and display
appropriate reproductions of the coded video. A scalable video encoder is likely to
have increased complexity when compared to a single-layer encoder. However, the
standard provides several different forms of scalabilities that address nonoverlap-
ping applications with corresponding complexities. The basic scalability tools
offered are data partitioning, SNR scalability, spatial scalability and temporal
scalability. Moreover, combinations of these basic scalability tools are also sup-
ported and are referred to as hybrid scalability. In the case of basic scalability, two
layers of video, referred to as the base layer and the enhancement layer, are
allowed, whereas in hybrid scalability up to three layers are supported.

8.5.1 Layering versus scalability
Considering the MPEG-1 and MPEG-2 systems functions, defined in section 8.1,
we see that MPEG-2 puts special emphasis on the transport of bitstream. This is
because MPEG-1 video is mainly for storage and software-based decoding appli-
cations in an almost error-free environment, whereas MPEG-2, or known as H.262
in the ITU-T standard, is for transmission and distribution of video in various
networks. Depending on the application, the emphasis can be put on either trans-
mission or distribution. In the introduction to MPEG-2/H262, potential applications
for this codec were listed. The major part of the application is the transmission of
video over networks, such as satellite and terrestrial broadcasting, news gathering,
personal communications and video over ATM networks, where, for better quality
of service, the bitstream should be protected against channel misbehaviour, which
is very common on these environments. One way of protecting data against channel
errors is to add some redundancy, like forward error correcting bits into the bit-
stream. The overhead is a percentage of the bit rate (depending on the amount of

Coding of high-quality moving pictures (MPEG-2) 193

protection) and will be minimal if the needed protection part had a small channel
rate requirement. Hence, it is logical to design the codec in such a way as to
generate more than one bitstream and protect the most vital bitstream against the
error to produce a basic quality picture. The remaining bitstreams should be such
that their presence enhances the video quality, but their absence or corruptions
should not degrade the video quality significantly. Similarly, in ATM networks,
partitioning the bitstream into various parts of importance and then providing a
guaranteed channel capacity for a small part of the bitstream are much easier than
that for the entire bitstream. This is the fundamental concept behind the layered
video coding. The most notable point is that the receiver is always expecting to
receive the entire bitstream, but if some parts are not received, the picture will not
break up or the quality will not degrade significantly. Increasing the number of
layers and unequally protecting the layers against errors (cell loss in ATM net-
works) according to their importance in their contribution to video quality can give
a graceful degradation on video quality.

On the other hand, some applications set forth for MPEG-2 are mainly for
distribution of digital video to the receivers of various capabilities. For example, in
cable TV distribution over optical networks (CATV), the prime importance is to be
able to decode various quality pictures from a single bitstream. In this network,
there might be receivers with various decoding capability (processing powers) or
customers with different requirement for video quality. Then, according to the
need, a portion of the bitstream is decoded for that specific service. Here, it is
assumed that the error rate in the optical channels is negligible and sufficient
channel capacity for the bitstream exists; both the assumptions are plausible.

Thus, in comparing layered coding with scalability, the fundamental difference is
that in layered coding the receiver expects to receive the entire bitstream, but occa-
sionally, some parts might be in error or missing, while in scalable coding a receiver
expects to decode a portion of the bitstream, but when that is available, it remains so for
the entire communication session. Of course, in scalable coding, for efficient com-
pression, generation of the bitstream is made in a hierarchical structure such that the
basic portion of the bitstream gives a video of minimum acceptable quality, similar to
the base layer video. The subsequent segments of the bitstream enhance the video
quality accordingly, similar to the enhancement layers. If the channel requires any
protection, then the base layer bitstream should be guarded, or in ATM networks the
required channel capacity is to be provided. Now, in this respect, we can say that
scalable and layered video coding are the same. This means that scalable coding can be
used as a layering technique, but, however, layered coded data may not be scalable.
Thus, scalability is a more generic name for layering, and throughout the book we use
scalability to address both. Parts in which the video codec acts as a layered encoder but
not as a scalable encoder will be particularly identified.

8.5.2 Data partitioning
Data partitioning is a tool intended for use when two channels are available for the
transmission and/or storage of a video bitstream, as may be the case in ATM

194 Standard codecs: image compression to advanced video coding

networks, terrestrial broadcasting, magnetic media, etc. Data partitioning, in fact, is
not a true scalable coding, but as we will see, it is a layered coding technique. It is a
means of dividing the bitstream of a single-layer MPEG-2 into two parts or layers.
The first layer comprises the critical parts of the bitstream (such as headers, motion
vectors, lower-order DCT coefficients) that are transmitted in the channel with the
better error performance. The second layer is made of less critical data (such as
higher DCT coefficients) and is transmitted in the channel with poorer error per-
formance. Thus, degradations to channel errors are minimised since the critical
parts of a bitstream are better protected. Data from neither channel may be decoded
on a decoder that is not intended for decoding data-partitioned bitstreams. Even
with the proper decoder, data extracted from the second-layer decoder cannot be
used unless the decoded base layer data are available.

single-layer
encoder

data
partitioner

m
ul

tip
le

xe
r

base layer
bitstream

enhancement
layer
bitstream

output
bitstream

video
in

Figure 8.8 Block diagram of a data-partitioning encoder

A block diagram of a data-partitioning encoder is shown in Figure 8.8. The
single-layer encoder is, in fact, a nonscalable MPEG-2 video encoder that may or
may not include B-pictures. At the encoder, during the quantisation and zigzag
scanning of each 8 � 8 DCT coefficient, the scanning is broken at the priority break
point (PBP), as shown in Figure 8.9.

The first part of the scanned quantised coefficients after variable length coding,
with the other overhead information such as motion vectors, MB types and addresses,
including the PBP, is taken as the base layer bitstream. The remaining scanned and
quantised coefficients plus the end of block (EOB) code constitute the enhancement
layer bitstream. Figure 8.9 also shows the position of the PBP in the DCT coefficients.

DC

priority
break
point

enhancement
layer data

base layer
data

Figure 8.9 Position of the PBP in a block of DCT coefficients

Coding of high-quality moving pictures (MPEG-2) 195

The base and the enhancement layer bitstreams are then multiplexed for trans-
mission into the channel. For prioritised transmission such as ATM networks, each
bitstream is first packetised into high- and low-priority cells and the cells are
multiplexed. At the decoder, having known the position of PBP, a block of DCT
coefficients is reconstructed from the two bitstreams. Note that PBP indicates the
last DCT coefficient of the base. Its position at the encoder is determined on the
basis of the portion of channel rate from the total bit rate allocated to the base layer.

Figure 8.10 shows single shots of an 8-Mbit/s data-partitioning MPEG-2 coded
video and its associated base layer picture. The PBP is adjusted for a base layer bit
rate of 2 Mbit/s. At this bit rate, the quality of the base layer is almost acceptable.
However, some areas in the base layer show the blocking artefacts, and in others
the picture is blurred. Blockiness is due to the reconstruction of some MBs from
only the DC and/or from a few AC coefficients. Blurriness is due to loss of high-
frequency DCT coefficients.

It should be noted that since the encoder is a single-layer interframe coder, at
the encoder both the base and the enhancement layer coefficients are used at the
encoding prediction loop. Thus, reconstruction of the picture from only the base
layer can result in a mismatch between the encoder and decoder prediction loops.
This causes picture drift on the reconstructed picture, that is, a loss of enhancement
data at the decoder is accumulated and appears as mosquito-like noise. Picture drift
occurs only on P-pictures, but since B-pictures may use P-pictures for prediction,
they too suffer from picture drift. Also, I-pictures reset the feedback prediction;
hence, they clean up the drift. The more frequent the I-pictures, the less the
appearance of picture drift, but at the expense of higher bit rates.

In summary, to have a drift-free video, the receiver should receive the entire
bitstream. That is, a receiver that decodes only the base layer portion of the bit-
stream cannot produce a stable video. Therefore, data-partitioned bitstream is not
scalable, but it is layered coded. It is, in fact, the simplest form of layering tech-
nique, which has no extra complexity over the single-layer encoder.

Although the base picture suffers from picture drift and may not be usable
alone, that of the enhanced (base layer plus the enhancement layer) picture with
occasional losses is quite acceptable. This is due to normally low loss rates in most
networks (e.g. less than 10–4 in ATM networks), such that before the accumulation
of loss becomes significant, the loss area is cleaned up by I-pictures.

8.5.3 SNR scalability
SNR scalability is a tool intended for use in video applications involving tele-
communications and multiple-quality video services with standard TV and
enhanced TV, that is, video systems with the common feature that a minimum of
two layers of video quality are necessary. SNR scalability involves generating two
video layers of the same spatio-temporal resolution but different video qualities
from a single video source such that the base layer is coded by itself to provide the
basic video quality and the enhancement layer is coded to enhance the base layer.
The enhancement layer, when added back to the base layer, regenerates a higher-
quality reproduction of the input video. Since the enhancement layer is said to

196 Standard codecs: image compression to advanced video coding

enhance the SNR of the base layer, this type of scalability is called SNR. Alter-
natively, as we will see later, SNR scalability could have been called coefficient
amplitude scalability or quantisation noise scalability. These types, although a bit
wordy, may better describe the nature of this encoder.

(a)

(b)

Figure 8.10 Data partitioning: (a) enhanced and (b) base pictures

Coding of high-quality moving pictures (MPEG-2) 197

enhancement
layer
bitstream

m
ul

tip
le

xe
r

base layer
encoder

base layer
decoder

enhancement
layer

encoder

video in

output
bitstream

base layer
bitstream

+

–

Figure 8.11 Block diagram of a two-layer SNR scalable coder

Figure 8.11 shows a block diagram of a two-layer SNR scalable encoder. First,
the input video is coded at a low bit rate (lower image quality) to generate the base
layer bitstream. The difference between the input video and the decoded output of
the base layer is coded by a second encoder, with a higher precision, to generate the
enhancement layer bitstream. These bitstreams are multiplexed for transmission
over the channel. At the decoder, decoding of the base layer bitstream results in the
base picture. When the decoded enhancement layer bitstream is added to the base
layer, the result is an enhanced image. The base and the enhancement layers may
either use the MPEG-2 standard encoder or the MPEG-1 standard for the base layer
and MPEG-2 for the enhancement layer. That is, in the latter a 4:2:0 format picture
is generated at the base layer, but a 4:2:0 or 4:2:2 format picture at the second layer.

It may appear that the SNR scalable encoder is much more complex than is the
data-partitioning encoder. The former requires at least two nonscalable encoders,
whereas data partitioning is a simple single-layer encoder, and partitioning is just
carried out on the bitstream. The fact is that if both layer encoders in the SNR coder
are of the same type, for example, both nonscalable MPEG-2 encoders, then the
two-layer encoder can be simplified. Consider Figure 8.12, which represents a
simplified nonscalable MPEG-2 of the base layer [10].

Z

DCT

IDCT

quantiser

predictor

X
Y

T(X–Y)

+

+

+

–

+
–

requantiser

base layer
bitstream

enhancement
layer bitstream

video in

–
+ second-layer encoder (MPEG-2)

OR

Figure 8.12 A DCT-based base layer encoder

198 Standard codecs: image compression to advanced video coding

According to the figure, the difference between the input pixels block X and
their motion-compensated predictions Y is transformed into coefficients T(X – Y).
These coefficients after quantisation can be represented with T(X – Y) – Q, where Q
is the introduced quantisation distortion. The quantised coefficients, after the
inverse DCT (IDCT), reconstruct the prediction error. They are then added to the
motion-compensated prediction to reconstruct a locally decoded pixel block Z.

Thus, the interframe error signal X � Y, after transform coding, becomes

TðX � Y Þ ð8:1Þ
and after quantisation, a quantisation distortion Q is introduced to the transform
coefficients. Then eqn. 8.1 becomes

TðX � Y Þ � Q ð8:2Þ

After the IDCT, the reconstruction error can be formulated as

T�1½TðX � Y Þ � Q� ð8:3Þ
where T�1 is the inverse transformation operation. Since transformation is a linear
operator, the reconstruction error can be written as

T�1TðX � Y Þ � T�1ðQÞ ð8:4Þ
Also, because of the orthonormality of the transform, where T�1T ¼ 1, eqn. 8.4 is
simplified to

X � Y � T�1ðQÞ ð8:5Þ
When this error is added to the motion-compensated prediction Y, the locally
decoded block becomes

Z ¼ Y þ X � Y � T�1ðQÞ ¼ X � T�1ðQÞ ð8:6Þ
Thus, according to Figure 8.12, what is coded by the second-layer encoder is

X � Z ¼ X � X þ T�1ðQÞ ¼ T�1ðQÞ ð8:7Þ

that is, the inverse transform of the base layer quantisation distortion. Since the
second-layer encoder is also an MPEG encoder (e.g. a DCT-based encoder), DCT
transformation of X � Z in eqn. 8.7 would result in

TðX � ZÞ ¼ TT�1ðQÞ ¼ Q ð8:8Þ

where again the orthonormality of the transform is employed. Thus, the second-
layer transform coefficients are, in fact, the quantisation distortions of the base
layer transform coefficients, Q. For this reason, the codec can also be called a
coefficient amplitude scalability or quantisation noise scalability unit.

Coding of high-quality moving pictures (MPEG-2) 199

Therefore, the second layer of an SNR scalable encoder can be a simple
requantiser, as shown in Figure 8.12, without much more complexity than a data-
partitioning encoder. The only problem with this method of coding is that since
normally the base layer is poor or at least worse than the enhanced image (base plus
the second layer), the used prediction is not good. A better prediction would be a
picture of the sum of both layers, as shown in Figure 8.13. Note that the second
layer is still encoding the quantisation distortion of the base layer.

DCT

IDCT

Qb

IQb

Qe

IQe

predictor
+

–
+

+

+

+ +

–

video
in

base layer
bitstream

enhancement
layer
bitstream

Figure 8.13 A two-layer SNR scalable encoder with drift at the base layer

In this encoder, for simplicity, the motion compensation, variable length cod-
ing of both layers and the channel buffer have been omitted. In the figure, Qb and
Qe are the base and the enhancement layer quantisation step sizes, respectively.
The quantisation distortion of the base layer is requantised with a finer precision
(Qe < Qb), and then it is fed back to the prediction loop to represent the coding loop
of the enhancement layer. Now, compared with data partitioning, this encoder only
requires a second quantiser, and so the complexity is not so great.

Note the tight coupling between the two-layer bitstreams. For freedom from
drift in the enhanced picture, both bitstreams should be made available to the
decoder. For this reason, this type of encoder is called an SNR scalable encoder
with drift at the base layer or no drift in the enhancement layer. If the base layer
bitstream is decoded by itself, then because of loss of differential refinement
coefficients, the decoded picture in this layer will suffer from picture drift. Thus,
this encoder is not a true scalable encoder, but is, in fact, a layered encoder. Again,
although the drift should only appear in P-pictures, since B-pictures use P-pictures
for predictions, this drift is transferred into B-pictures too. I-pictures reset the dis-
tortion, and drift is cleaned up.

For applications with the occasional loss of information in the enhancement
layer, parts of the picture have the base layer quality, and other parts that of the
enhancement layer. Therefore, picture drift can be noticed in these areas.

If a true SNR scalable encoder with drift-free pictures at both layers is the
requirement, then the coupling between the two layers must be loosened. Appli-
cations such as simulcasting of video with two different qualities from the same
source need such a feature. One way to prevent picture drift is not to feed back the

200 Standard codecs: image compression to advanced video coding

enhancement data into the base layer prediction loop. In this case, the enhancement
layer will be intra coded and bit rate will be very high.

To reduce the second-layer bit rate, the difference between the input to and the
output of the base layer (see Figure 8.11) can be coded by another MPEG encoder [11].
However, here we need two encoders, and the complexity is much higher than that in
data partitioning. To reduce the complexity, we need to code only the quantisation
distortion. However, since transformation operator and, most importantly, in SNR
scalability, the temporal and spatial resolutions of the base and enhancement layers
pictures are identical, the motion estimation and compensation can be shared between
them. Following eqns 8.1–8.8, we can also simplify the two independent encoders into
one encoder generating two bitstreams, such that each bitstream is drift-free decodable.
Figure 8.14 shows a block diagram of a three-layer truly SNR scalable decoder, where
the generated picture of each layer is drift free and can be used for simulcasting [12].

T Q0 EC

IQ0

+B IT

+

+

T Q1

IQ1

+B IT

+

+

T Q2

IQ2

+B IT

+

base layer

enhancement
layer 1

enhancement
layer 2–

–

–

–

–

ECQ1

ECQ2

MV

MV

MV

Figure 8.14 A three-layer drift-free SNR scalable encoder

In the figure, T, B, IT and EC represent transformation, prediction buffer, inverse
transformation and entropy coding, and Qi is the ith-layer quantiser. A common
motion vector is used at all layers. Note that although this encoder looks to be made of
several single-layer encoders, but since motion estimation and many coding decisions
are common to all the layers and the fact that motion estimation comprises about 55–70
per cent of encoding complexity of an encoder, the increase in complexity is moderate.
Figure 8.15 shows the block diagram of the corresponding three-layer SNR decoder.

Coding of high-quality moving pictures (MPEG-2) 201

IQ0

+

+

B

IT +

IQ1

IQ2

MV

decoded picture

ED

ED

ED

base layer

enhancement
layer 1
enhancement
layer 2

Figure 8.15 A block diagram of a three-layer SNR decoder

Each layer, after entropy decoding (ED), is inverse quantised, and then all
are added together to represent the final DCT coefficients. These coefficients are
inverse transformed and are added to the motion-compensated previous picture to
reconstruct the final picture. Note that there is only one motion vector, which is
transmitted at the base layer. Note also that the decoder of Figure 8.13, with drift
in the base layer, is also similar to this figure, but with only two layers of
decoding.

Figure 8.16 shows the picture quality of the base layer at 2 Mbit/s. That of the
base plus the enhancement layer would be similar to those of the data partitioning,

Figure 8.16 Picture quality of the base layer of SNR encoder at 2 Mbit/s

202 Standard codecs: image compression to advanced video coding

albeit with slightly higher bit rate. At this bit rate, the extra bits would be in the
order of 15–20 per cent, due to the overhead of the second-layer data [11] (also see
Figure 8.26). Because of coarser quantisation, some parts of the picture are blocky,
as was the case in data partitioning. However, since any significant coefficient can
be included at the base layer, the base layer picture of this encoder, unlike that of
data partitioning, does not suffer from loss of high-frequency information.

Experimental results show that the picture quality of the base layer of SNR
scalable coder is much superior to that of data partitioning, especially at lower bit
rates [13]. This is because at lower base layer bit rates, data partitioning can only
retain DC and possibly one or two AC coefficients. Reconstructed pictures with
these few coefficients are very blocky.

8.5.4 Spatial scalability
Spatial scalability involves generating two spatial resolution video streams from a
single video source such that the base layer is coded by itself to provide the basic
spatial resolution and the enhancement layer employs the spatially interpolated
base layer, which carries the full spatial resolution of the input video source [14].
The base and the enhancement layers may either use both the coding tools in the
MPEG-2 standard or the MPEG-1 standard for the base layer and MPEG-2 for the
enhancement layer or even an H.261 encoder at the base layer and an MPEG-2
encoder at the second layer. Use of MPEG-2 for both layers achieves a further
advantage by facilitating interworking between video coding standards. Moreover,
spatial scalability offers the flexibility in choice of video formats to be employed in
each layer. The base layer can use SIF or even lower-resolution pictures at 4:2:0,
4:2:2 or 4:1:1 formats, while the second layer can be kept at CCIR-601 with 4:2:0
or 4:2:2 format. Like the other two scalable coders, spatial scalability is able to
provide resilience to transmission errors as the more important data of the lower
layer can be sent over channel with better error performance and the less critical
enhancement layer data can be sent over a channel with poorer error performance.
Figure 8.17 shows a block diagram of a two-layer spatial scalable encoder.

m
ul

tip
le

xe
r

base layer
encoder

base layer
decoder

enhancement
layer

encoder

video in

output
bitstream

base layer
bitstream

enhancement
layer
bitstream

downsampler

upsampler

+

–

Figure 8.17 Block diagram of a two-layer spatial scalable encoder

Coding of high-quality moving pictures (MPEG-2) 203

An incoming video is first spatially reduced in both the horizontal and vertical
directions to produce a reduced picture resolution. For 2:1 reduction, normally a
CCIR-601 video is converted into an SIF image format. The filters for the luminance
and the chrominance colour components are the seven- and four-tap filters, respec-
tively, described in section 2.3. The SIF image sequence is coded at the base layer by
an MPEG-1 or MPEG-2 standard encoder, generating the base layer bitstream. The
bitstream is decoded and upsampled to produce an enlarged version of the base layer
decoded video at CCIR-601 resolution. The upsampling is carried out by inserting
zero-level samples between the luminance and chrominance pixels, and interpolating
with the seven- and four-tap filters, similar to those described in section 2.3. An
MPEG-2 encoder at the enhancement layer codes the difference between the input
video and the interpolated video from the base layer. Finally, the base and enhance-
ment layer bitstreams are multiplexed for transmission into the channel.

If the base and the enhancement layer encoders are of the same type (e.g. both
MPEG-2), then the two encoders can interact. This is not only to simplify the two-
layer encoder, as was the case for the SNR scalable encoder, but also to make the
coding more efficient. Consider an MB at the base layer. Because of 2:1 picture
resolution between the enhancement and the base layers, the base layer MB corre-
sponds to four MBs at the enhancement layer. Similarly, an MB at the enhancement
layer corresponds to a block of 8 � 8 pixels at the base layer. The interaction would
be in the form of upsampling the base layer block of 8 � 8 pixels into an MB of 16 �
16 pixels and using it as a part of the prediction in the enhancement layer coding loop.

Figure 8.18 shows a block of 8 � 8 pixels from the base layer that is upsampled
and is combined with the prediction of the enhancement layer to form the final
prediction for an MB at the enhancement layer. In the figure, the base layer
upsampled MB is weighted by w and that of the enhancement layer by 1 – w.

+
8

8

16

16

16

16

16

16

w

1–w

MC prediction from
enhancement layer

8 × 8 block from
base layer

upsampler

Figure 8.18 Principle of spatio-temporal prediction in the spatial scalable
encoder

More details of the spatial scalable encoder are shown in Figure 8.19. The base
layer is a nonscalable MPEG-2 encoder, where each block of this encoder is
upsampled, interpolated and fed to a weighting table (WT). The coding elements of
the enhancement layer are shown without the motion compensation, VLC and the

204 Standard codecs: image compression to advanced video coding

other coding tools of the MPEG-2 standard. A statistical table (ST) sets the WT
elements. Note that the weighted base layer MBs are used in the prediction loop,
which will be subtracted from the input MBs. This part is similar to taking the
difference between the input and the decoded base layer video and coding their
differences by a second-layer encoder, as was illustrated in the general block dia-
gram of this encoder in Figure 8.17.

Figure 8.20 shows a single shot of the base layer picture at 2 Mbit/s. The picture
produced by the base plus the enhancement layer at 8 Mbit/s would be similar to that
resulting for data partitioning, shown in Figure 8.10. Note that since picture size is
one-quarter of the original, the 2 Mbit/s allocated to the base layer would be suffi-
cient to code the base layer pictures at almost identical quality to the base plus the
enhancement layer at 8 Mbit/s. An upsampled version of the base layer picture to fill
the display at the CCIR-601 size is also shown in the figure. Comparing this picture
with those of data partitioning and the simple version of the SNR scalable coders, it
can be seen that the picture is almost free from blockiness. However, still some very
high-frequency information is missing, and the aliasing distortions due to the
upsampling will be introduced into the picture. Note that the base layer picture can
be used alone without picture drift. This was not the case for data partitioning and
the simple SNR scalable encoders. However, the price paid is that this encoder is
made up of two MPEG encoders and is more complex than data partitioning and
SNR scalable encoders. Note that unlike the true SNR scalable encoder of Figure
8.14, here because of differences in the picture resolutions of the base and
enhancement layers, the same motion vector cannot be used for both layers.

8.5.5 Temporal scalability
Temporal scalability is a tool intended for use in a range of diverse video appli-
cations from telecommunications to HDTV. In such systems, migration to higher
temporal resolution systems from that of lower temporal resolution systems may be
necessary. In many cases the lower temporal resolution video systems may be

DCT Qe

predictor

–
+

+

+

video
in

base layer
bitstream

enhancement
layer
bitstream

base layer
MPEG-2

WT ST
IDCT

IQe

Figure 8.19 Details of spatial scalability encoder

Coding of high-quality moving pictures (MPEG-2) 205

either the existing systems or the less expensive early-generation systems. The
more sophisticated systems may then be introduced gradually.

Temporal scalability involves partitioning of video frames into layers, in which
the base layer is coded by itself to provide the basic temporal rate and the
enhancement layer is coded with temporal prediction with respect to the base layer.
The layers may have either the same or different temporal resolutions, which, when
combined, provide full temporal resolution at the decoder. The spatial resolution of

(a)

(b)

Figure 8.20 (a) Base layer picture of a spatial scalable encoder at 2 Mbit/s and
(b) its enlarged version

206 Standard codecs: image compression to advanced video coding

frames in each layer is assumed to be identical to that of the input video. The video
encoders of the two layers may not be identical. The lower temporal resolution
systems may only decode the base layer to provide basic temporal resolution,
whereas more sophisticated systems of the future may decode both layers and
provide high temporal resolution video while maintaining interworking capability
with earlier-generation systems.

Since in temporal scalability the input video frames are simply partitioned
between the base and the enhancement layer encoders, the encoder need not be more
complex than a single-layer encoder. For example, a single-layer encoder may be
switched between the two base and enhancement modes to generate the base and the
enhancement bitstreams alternately. Similarly, a decoder can be reconfigured to
decode the two bitstreams alternately. In fact, the B-pictures in MPEG-1 and MPEG-2
provide a very simple temporal scalability that is encoded and decoded alongside
the anchor I- and P-pictures within a single codec. I- and P-pictures are regarded as
the base layer, and the B-pictures become the enhancement layer. Decoding of I- and
P-pictures alone will result in the base pictures with low temporal resolution, and
when added to the decoded B-pictures, the temporal resolution is enhanced to its full
size. Note that since the enhancement data do not affect the base layer prediction
loop, both the base and the enhanced pictures are free from picture drift.

Figure 8.21 shows the block diagram of a two-layer temporal scalable encoder.
In the figure, a temporal demultiplexer partitions the input video into the base and
enhancement layers, input pictures. For a 2:1 temporal scalability shown in the

temporal
demux second-layer pictures1 2 3

1 3 5 7

4 5 6 7

base layer
encoder

base layer
decoder

enhancement
layer
encoder

m
ul

tip
le

xe
r

output
bitstream

base layer
bitstream

enhancement
layer
bitstream

7531

2 4 6

video
in

base layer
decoded
video

enhancement
layer
video in

base layer
video in

base layer pictures

Figure 8.21 A block diagram of a two-layer temporal scalable encoder

Coding of high-quality moving pictures (MPEG-2) 207

figure, the odd-numbered pictures are fed to the base layer encoder and the even-
numbered pictures become inputs to the second-layer encoder. The encoder at the
base layer is a normal MPEG-1, MPEG-2 or any other encoder. Again, for greater
interaction between the two layers, either to make encoding simple or more effi-
cient, both layers may employ the same type of coding scheme.

At the base layer, the lower temporal resolution input pictures are encoded in
the normal way. Since these pictures can be decoded independently of the
enhancement layer, they do not suffer from picture drift. The second layer may use
prediction from the base layer pictures or from its own picture, as shown for frame
4 in the figure. Note that at the base layer, some pictures might be coded as
B-pictures, using their own previous, future or their interpolation as prediction, but
it is essential that some pictures should be coded as anchor pictures. On the other
hand, in the enhancement layer, pictures can be coded at any mode. Of course, for
greater compression, at the enhancement layer, most, if not all, of the pictures are
coded as B-pictures. These B-pictures have the choice of using past, future and
their interpolated values, either from the base or the enhancement layer.

8.5.6 Hybrid scalability
MPEG-2 allows combination of individual scalabilities such as spatial, SNR or
temporal scalability to form hybrid scalability for certain applications. If two
scalabilities are combined, then three layers are generated, and they are called the
base layer, enhancement layer 1 and enhancement layer 2. Here enhancement layer
1 is a lower layer relative to enhancement layer 2, and hence, decoding of enhan-
cement layer 2 requires the availability of enhancement layer 1. In the following
sections, some examples of hybrid scalability are shown.

8.5.6.1 Spatial and temporal hybrid scalability
Spatial and temporal scalability is perhaps the most common use of hybrid scal-
ability. In this mode the three-layer bitstreams are formed by using spatial scal-
ability between the base and enhancement layer 1, while temporal scalability is
used between enhancement layer 2 and the combined base and enhancement layer
1, as shown in Figure 8.22.

spatial
scalability
encoder

temporal
enhancement
encoder

temporal
demux

In

In-0

In-1

In-2 enhancement 2

enhancement 1

base
spatial
reducer

Figure 8.22 Spatial and temporal hybrid scalability encoder

208 Standard codecs: image compression to advanced video coding

In this figure, the input video is temporally partitioned into two lower temporal
resolution image sequences In-1 and In-2. The image sequence In-1 is fed to the
spatial scalable encoder, where its reduced version, In-0, is the input to the base
layer encoder. The spatial encoder then generates two bitstreams for the base and
enhancement layer 1. In-2 image sequence is fed to the temporal enhancement
encoder to generate the third bitstream, enhancement layer 2. The temporal
enhancement encoder can use the locally decoded pictures of a spatial scalable
encoder as predictions, as was explained in section 8.5.4.

8.5.6.2 SNR and spatial hybrid scalability
Figure 8.23 shows a three-layer hybrid encoder employing SNR scalability and
spatial scalability. In this coder, the SNR scalability is used between the base and
the enhancement layer 1 and the spatial scalability is used between the layer 2
and the combined base and enhancement layer 1. The input video is spatially
downsampled (reduced) to lower resolution as In-1 is to be fed to the SNR scalable
encoder. The output of this encoder forms the base and enhancement layer 1 bit-
streams. The locally decoded pictures from the SNR scalable coder are upsampled
to full resolution to form prediction for the spatial enhancement encoder.

SNR
scalability
encoder

spatial
enhancement
encoder

In enhancement 2

enhancement 1

base

spatial
reducer spatial

interpolator

In-2

In-1

Figure 8.23 SNR and spatial hybrid scalability encoder

8.5.6.3 SNR and temporal hybrid scalability
Figure 8.24 shows an example of an SNR and temporal hybrid scalability encoder.
The SNR scalability is performed between the base layer and the first enhancement
layer. The temporal scalability is used between the second enhancement layer and
the locally decoded picture of the SNR scalable coder. The input image sequence
through a temporal demultiplexer is partitioned into two sets of image sequences,
and these are fed to each individual encoder.

8.5.6.4 SNR, spatial and temporal hybrid scalability
The three scalable encoders might be combined to form a hybrid coder with a larger
number of levels. Figure 8.25 shows an example of four levels of scalability using
all the three scalability tools mentioned.

Coding of high-quality moving pictures (MPEG-2) 209

spatial
enhancement
encoder

temporal
enhancement
encodertemporal

demux
In

In-0

In-1

In-2

enhancement 2

enhancement 1

base

spatial
decimator

enhancement 3

SNR
scalability
encoder

spatial
interpolator

Figure 8.25 SNR, spatial and temporal hybrid scalability encoder

The temporal demultiplexer partitions the input video into image sequences
In-1 and In-2. Image sequence In-2 is coded at the highest enhancement layer
(enhancement 3), with the prediction from the lower levels. The image sequence In-1
is first downsampled to produce a lower-resolution image sequence, In-0. This
sequence is then SNR scalable coded to provide the base and the first enhancement
layer bitstreams. An upsampled and interpolated version of the SNR scalable de-
coded video forms the prediction for the spatial enhancement encoder. The output
of this encoder results in the second enhancement layer bitstream (enhancement 2).

Figure 8.25 was just an example of how various scalability tools can be com-
bined to produce bitstreams of various degrees of importance. Of course, depending
on the application, formation of the base and the level of the hierarchy of the higher
enhancement layers might be defined in a different way to suit the application. For
example, when the above scalability methods are applied to each of the I-, P- and
B-pictures, since these pictures have different levels of importance, their layered
versions can increase the number of layers even further.

SNR
scalability
encoder

temporal
enhancement
encoder

temporal
demux

In

In-1

In-2 enhancement 2

enhancement 1

base

Figure 8.24 SNR and temporal hybrid scalability encoder

210 Standard codecs: image compression to advanced video coding

8.5.7 Overhead due to scalability
Although scalability or layering techniques provide a means of delivering a better
video quality to the receivers than the single-layer encoders, this is done at the
expense of higher encoder complexity and higher bit rate. We have seen that data
partitioning was the simplest form of layering, and spatial scalability the most
complex one. The amount of extra bits generated by these scalability techniques is
also different.

Data partitioning is a single-layer encoder, but inclusion of the PBP in the
zigzag scanning path and the fact that the zero run of the zigzag scan is now broken
into two parts incur some additional bits. These extra bits, along with redundant
declaration of the MB addresses at both layers, generate some overhead over the
single-layer coder. Our investigations show that the overhead bit is in the order of
3–4 per cent of the single-layer counterpart almost irrespective of the percentage of
the bits from the total bit rate assigned to the base layer.

In SNR scalability, the second layer codes the quantisation distortions of the
base layer plus the other addressing information. The additional bits over the single
layer depend on the relationship between the quantiser step sizes of the base and
enhancement layers and, consequently, on the percentage of the total bits allocated
to the base layer. At the lower percentages, the quantiser step size of the base layer
is large, and hence, the second layer efficiently codes any residual base layer
quantisation distortions. This is very similar to successive approximation (two sets
of bit planes); hence, the SNR scalable coding efficiency is not expected to be
much worse than the single layer.

At the higher percentages of base layer bit rates, the quantiser step sizes of the
base and enhancement layers become close to each other. Considering that for a
base layer quantiser step size of Qb, the maximum quantisation distortion of the
quantised coefficients is Qb/2 and the nonquantised ones that fall in the dead zone is
Qb, as long as the enhancement quantiser step size Qb > Qe > Qb/2, none of the
significant base layer coefficients are coded by the enhancement layer except, of
course, the ones in the dead zone of the base layer. Thus, again, both layers code the
data efficiently, that is, the coefficient is coded at either the base layer or the
enhancement layer, and the overall coding efficiency is not worse than that in case
of the single layer. Reducing the base layer bit rate from its maximum value means
increasing Qb. As long as Qb/2 < Qe, none of the base layer quantisation distortions
(except the ones on the dead zone) can be coded by the enhancement layer. Hence,
the enhancement layer does not improve the picture quality noticeably, and since
the base layer is coded at a lower bit rate, the overall quality will be worse than that
in case of the single layer. The worst quality occurs when Qe ¼ Qb/2.

If the aim was to produce the same picture quality, then the bit rate of SNR
scalable coder had to be increased, as shown in Figure 8.26. In this figure, the
overall bit rate of the SNR scalable coder is increased over the single layer such
that the picture quality under both encoders is identical. The percentage of the bits
assigned to the base layer from the total bits is varied from its minimum value to
its maximum value. As we see, the poorest performance of the SNR scalable

Coding of high-quality moving pictures (MPEG-2) 211

(the highest overhead) is when the base layer is allocated about 40–60 per cent of
the total bit rate. In fact, at this bit rate, the average quantiser step size of the
enhancement layer is half of that of the base layer. This maximum overhead is
30 per cent, and that of the data partitioning is also shown, which reads about
3 per cent irrespective of the bits assigned to the base layer.

In spatial scalability, the smaller-size picture of the base layer is upsampled, and
its difference with the input picture is coded by the enhancement layer. Hence, the
enhancement layer, in addition to the usual redundant addressing, has to code two new
items of information. One is the aliasing distortion of the base layer due to upsampling,
and the other is the quantisation distortion of the base layer, if there is any.

At the very low percentage of the bits assigned to the base layer, both of these
distortions are coded efficiently by the enhancement layer. As the percentage of
bits assigned to the base layer increases, similar to SNR scalability, the overhead
increases too. At the time where the quantiser step sizes of both layers become
equal, Qb ¼ Qe, any increase in the base layer bit rate (making Qb < Qe) means that
the enhancement layer cannot improve the distortions of the base layer further.
Beyond this point, aliasing distortion will be the dominant distortion, and any
increase in the base layer bit rate will be wasted. Thus, as the bit rate budget of the
base layer increases, the overhead increases too, as shown in Figure 8.26. This
differs from the behaviour of the SNR scalability.

In fact, in spatial scalability with a fixed total bit rate, increasing the base layer
bit rate beyond the critical point of Qb ¼ Qe will reduce the enhancement layer bit
rate budget. In this case, increasing the base layer bit rate will increase the aliasing
distortion, and hence, as the base layer bit rate increases, the overall quality
decreases.

00
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50
Base bit rate (% of total)

60 70 80 90 100

To
ta

l b
it

ra
te

 (%
 in

cr
ea

se
)

Salesman sequence

SNR
Spatial

DP

Figure 8.26 Increase in bit rate due to scalability

212 Standard codecs: image compression to advanced video coding

In temporal scalability, in contrast to the other scalability methods, in fact, the
bit rate can be less than single-layer encoder. This is because there is no redundant
addressing to create overhead. Moreover, since the enhancement layer pictures
have more choice for their optimum prediction, from either base or enhancement
layers, they are coded more efficiently than the single layer. A good example is the
B-pictures in MPEG-2 that can be coded at much lower bit rate than the P-pictures.
Thus, temporal scalability can, in fact, be slightly more efficient than for single-
layer coding.

8.5.8 Applications of scalability
Considering the nature of the basic scalability of data partitioning, SNR,
spatial and temporal scalability and their behaviour with regard to picture drift
and the overhead, suitable applications for each method may be summarised as
follows:

● Data partitioning: This mode is the simplest of all, but since it has a poor
base layer quality and is sensitive to picture drift, it can be used in the
environment where there is rarely any loss of enhancement data (e.g. loss rate
< 10–6). Hence, the best application would be video over ATM networks,
where, through admission control, the loss ratio can be maintained at low
levels [15].

● SNR scalability: In this method, two pictures of the same spatio-temporal
resolutions are generated, but one has lower picture quality than the other.
It generally has a higher bit rate over nonscalable encoders but can have a good
base picture quality and can be drift free. Hence, suitable applications can be as
follows:
* transmission of video at different qualities of interest, such as multiquality

video, video on demand, broadcasting of TV and enhanced TV
* video over networks with a high error or packet loss rates, such as Internet

or heavily congested ATM networks
● Spatial scalability: This is the most complex form of scalability, where each

layer requires a complete encoder/decoder. Such a loose dependency between
the layers has the advantage that each layer is free to use any codec, with
different spatio-temporal and quality resolutions. Hence, there can be numer-
ous applications for this mode, such as the following:
* interworking between two different standard video codecs (e.g. H.263 and

MPEG-2)
* simulcasting of drift-free good-quality video at two spatial resolutions,

such as standard TV and HDTV
* distribution of video over computer networks
* video browsing
* reception of good-quality low spatial resolution pictures over mobile

networks
* similar to other scalable coders, transmission of error resilience video over

packet networks

Coding of high-quality moving pictures (MPEG-2) 213

● Temporal scalability: This is a moderately complex encoder, where either a
single-layer coder encodes both layers, such as coding of B-pictures and the
anchor I- and P-pictures in MPEG-1 and MPEG-2 or two separate encoders
operating at two different temporal rates. The major applications can then be as
follows:
* migration to progressive (HDTV) from the current interlaced broadcast

TV
* internetworking between lower bit rate mobile and higher bit rate fixed

networks
* video over LANs, Internet and ATM for computer workstations
* video over packet (Internet/ATM) networks for loss resilience

Tables 8.4, 8.5 and 8.6 summarise a few applications of various scalability tech-
niques that can be applied to broadcast TV. In each application, parameters of the
base and enhancement layers are also shown.

Table 8.4 Applications of SNR scalability

Base layer Enhancement layer Application

ITU-R-601 Same resolution and format as
lower layer

Two quality service for
standard TV

High definition Same resolution and format as
lower layer

Two quality service
for HDTV

4:2:0 High definition 4:2:2 Chroma simulcast Video production/distribution

Table 8.5 Applications of spatial scalability

Base Enhancement Application

Progressive (30 Hz) Progressive (30 Hz) CIF/QCIF compatibility
or scalability

Interlace (30 Hz) Interlace (30 Hz) HDTV/SDTV scalability
Progressive (30 Hz) Interlace (30 Hz) ISO/IECE11172-2/compatibility

with this specification
Interlace (30 Hz) Progressive (60 Hz) Migration to HR progressive HDTV

Table 8.6 Applications of temporal scalability

Base Enhancement Higher Application

Progressive (30 Hz) Progressive (30 Hz) Progressive (60 Hz) Migration to HR
progressive HDTV

Interlace (30 Hz) Interlace (30 Hz) Progressive (60 Hz) Migration to HR
progressive HDTV

214 Standard codecs: image compression to advanced video coding

8.6 Video broadcasting

Currently, more than 95 per cent of MPEG-2 coded video is for broadcasting
applications, carried via terrestrial, satellite and cable TV networks to homes. In
Europe, the standard ITU-R 601 video is encoded in the range of 2–4 Mbit/s
depending on the scene content of the video. The lower end of the bit rate is for
head-and-shoulders type video such as the video clip of a newsreader, and the
higher bit rates are required for the critical scenes such as sports programmes,
similar to the snap shot shown in Figure 8.10. Normally, scenes with grass and tree
leafs, which have detailed texture and random motion due to wind, if they appear
alongside some plain scenes, like lake or stream, are the most difficult scenes to
code. Random motions of the detailed area make motion estimation useless, and
for a limited bit rate budget, increase in quantiser step size will cause blocking
artefacts in the plain areas. For HDTV video, the required bit rate is in the order of
10–15 Mbit/s.

In both terrestrial and satellite TV, for better channel utilisation, several TV
programmes may be multiplexed and then digitally modulated on to a carrier. At
the destination, the receiver, known as the set-top box, separates the channels and
decodes each programme, and the individual analogue signals can be fed to the
television set for display. Although the same multiplexing technique can be used,
since digital modulation techniques for terrestrial and satellite are different,
unfortunately, the same set-top box cannot be used for both.

For multiplexing of TV programmes, the individual bitstreams are first deco-
ded and then reencoded to a new target bit rate. For optimum multiplexing, the
target bit rate for each TV channel is made dependent on the content (statistics) of
each programme, and hence, it is called statistical multiplexing. Here, more com-
plex video might be assigned higher bit rates, and since video complexity may vary
over time, for optimum statistical multiplexing, we need to monitor the video
complexity continuously.

One way of calculating the complexity of a scene in a video programme is
to define the scene complexity as the sum of the complexity indices of its I-, P- and
B-pictures in a GOP [16]. For each picture type, the complexity index is the product
of its average quantiser step size and its bit rate in that frame. For example, the
video scene complexity index (SCI) of a video with a GOP structure of N ¼ 12 and
M ¼ 3, which has one I-, three P- and eight B-pictures, is

SCI ¼ 1
12

IQI þ
X3

j¼1

PjQPj þ
X8

j¼1

BjQBj

" #
ð8:9Þ

where I, P and B are the target bit rates for the I-, P- and B-pictures, and QI, QP and
QB are their respective average quantiser step sizes. After calculating SCI for each
TV programme, the total bit rate is divided between the TV channels in proportion
of their SCI. Values of the SCI can be continuously calculated on frame-by-frame
basis (within a window of a GOP) to provide an optimum statistical multiplexing.

Coding of high-quality moving pictures (MPEG-2) 215

One of the main attractions of the digital satellite TV is the benefit of broad-
casting many TV programmes from a single transponder. In the analogue era, one
satellite transponder with a bandwidth of 36 MHz could accommodate only one
frequency-modulated (FM) TV programme, whereas currently, about six to eight
high-quality digital TV programmes can be multiplexed into 27 Msymbol/s and are
accommodated in the same transponder. There are even stations that squeeze about
10–15 digital TV programmes into a transponder, albeit at a slightly lower video
quality. In addition to this increase on the TV channels, the required transmitted
power for digital can be in the order of 10�20 per cent of analogue, or for the same
power, the satellite dishes can be made much smaller (45- to 60-cm diameter dishes
compared to 80 cm used in analogue). Digital terrestrial TV also benefits from the
low-power transmitters.

In the digital terrestrial TV, normally one programme is digitally modulated
into an 8-MHz (European) ultra-high frequency (UHF) channel. The bitstream prior
to channel modulation is orthogonal frequency division multiplexed (OFDM) into
1705 carriers (2000 carriers is also an option), and the channel modulation is a
64-QAM. At a higher modulation rate (e.g. 256-QAM), it is even possible to
accommodate 18–24 Mbit/s bitstream into the same 8-MHz UHF channel, thus
being able to multiplex four to eight digital programmes (or even higher for poorer
quality) into one existing analogue UHF terrestrial channel.

Since at the base band, a 2–4 Mbit/s MPEG-2 video is OFDM modulated into
almost 2000 carriers, each bit of the video is transmitted at a rate of 1–2 kbit/s. Such
a low data rate (large interval) is very robust against interference, similar to a high-
frequency burst of noise, and can be cleaned up easily. Thus, OFDM is particularly
attractive for ghost-free TV broadcasting in big cities, where multiple reflections
from tall buildings can create interference (a common problem with analogue TV).
Moreover, it is possible to cover the whole broadcast TV network with a single
frequency, since interference is not a problem. This will release a lot of wireless
bandwidth for other communication services. Finally, similar to satellite, the trans-
mitter power can be reduced by a factor of 10 (in practice, by a factor of 7).

The price paid for all these benefits of digital TV is the sensitivity of the digital
TV to channel errors. During heavy rain or snow, pictures become blocky or, in the
more severe cases, there is a complete loss of picture (picture freeze). This is the
main disadvantage of digital TV, since in analogue TV weaker reception may cause
snowy pictures, which is better than picture break-up or freeze in digital TV. To
alleviate this problem, layered video coding with unequal error protection to var-
ious layers may be used. Or, one may use a more intelligent technique of dis-
tributing the transmitter power among the layers such that the picture quality
gradually degrades, closer to quality degradation in analogue TV.

8.7 Digital versatile disc

DVD is a new storage media for MPEG-2 coded high-quality video. DVD discs
with 9-Gbyte storage capacity (in two tracks of 4.5 Gbytes) are introduced to

216 Standard codecs: image compression to advanced video coding

replace the 648 (or 700)-Mbyte CD-ROMs. The main reason for the introduction of
this new product is that viewers’ expectations of video quality have grown over the
time. CD-ROMs could only store MPEG-1 compressed video of SIF format at
about a target rate of 1.2 Mbyte/s. When SIF pictures are enlarged to the standard
size (e.g. 720 pixels by 576 lines) to be displayed on TV sets, for certain scenes the
enlarged pictures look blocky. This is usually not sufficient for home movies or
HDTV programmes.

In DVD, video of CCIR-601 standard size is MPEG-2 compressed. Con-
sidering the double-track DVD discs of total capacity of 9 Gbytes, the nominal
movies of 90 min can be coded at an average bit rate of 6–12 Mbit/s, depending on
whether one or both tracks are used.

To increase the video quality and, at the same time, to optimise the storage
capacity, MPEG-2 encoder is set to encode the video at a VBR. This is done by
fixing the quantiser step size at a constant value, producing video of almost
constant quality over the entire programme, irrespective of scene complexity.
Because of constant quantiser step size, during high picture activity, the instanta-
neous bit rate of the encoder can be very high (e.g. 30 Mbit/s). However, these
events only occur for a short period, and there are occasions when the scenes might
be very quiet, producing lower bit rates (e.g. 2 Mbit/s). Depending on the propor-
tions of the scene activities in the video, its peak-to-mean bit rate ratio, even
smoothed over a GOP, can be in the order of 3–5 (peak-to-mean ratio smoothed
over one frame can easily rise above 10). Thus, had the video been coded at a
constant bit rate (CBR), then for the same picture quality as VBR, the target bit rate
would have to be set to the peak bit rate. Hence, at the quiet scenes, the storage
capacity of the disc can be wasted. In fact, the advantage of VBR over CBR is the
saving in storage capacity by the ratio of the peak bit rate to the mean bit rate,
which can be considerable.

The main problem with VBR is that the chunk of compressed data read from
the disc decodes a variable number of pictures per given time unit (e.g. seconds).
For a uniform and smooth display (e.g. 25 pictures/s), the read data from the disc
has to be smoothed. This is done by writing them into a random access memory
(RAM) and reading it at the desired rate of the decoder. Considering that today the
electronic notebooks are equipped with 1–2 Gbytes RAM, they are not too
expensive to be included in the DVD decoders. These are sufficient to store about
5–10 min of the programme, well over what is needed to produce pictures without
interruptions.

8.8 Video over ATM networks

MPEG-2 and in particular layered video coding and the ATM networks have a very
strong link. They were introduced at about the same time (early 1990) and influ-
enced each other’s development. The cell loss priority in ATM is the direct product
of the success of layered two-layer video coding in delivering a minimum accep-
table picture quality [9]. Selection of 188-byte packet size for the MPEG-2

Coding of high-quality moving pictures (MPEG-2) 217

transport stream was influenced by the ATM cell size. An ATM cell (packet) is 53
bytes long, with a 5-byte header and a 48-byte payload. One of the AAL (where the
data to be transported are interfaced to the channel) called AAL1 accepts 47-byte
raw data and adds 1-byte synchronisation and other information to the payload [15].
Hence, each MPEG-2 packet can be transported with four ATM cells.

ATM is a slotted channel, where each 53-byte cell is seized by the server to
insert its data for transmission. If the server has nothing to send, the cell is left
empty. Hence, the source can send its data at a variable rate. VBR video trans-
mission is particularly attractive since compressed video is variable in rate by
nature. With a constant quantiser step size, the video is coded at almost constant
quality. At low picture activity (low motion and low texture), less bits are gener-
ated, and at high picture activity, more bits are generated. Such VBR transmission
makes statistical multiplexing even more effective than the one used with the fixed
bit rate broadcast TV. It is easy to show that more VBR services can be accom-
modated in a given channel than the fixed bit rate services.

The main problem with VBR transmission is that if bursts of data from various
services occur at the same time, there will be more traffic than the network can
handle, and it will be congested. In this case, cells carrying visual information
might be excessively delayed. There is a maximum tolerable delay beyond which
late arrival cells will be of no use. Either the switching nodes or the receiver can
discard these cells. In the former case, the cell discard is due to the limited capacity
of the switching multiplex buffer, and in the latter the received information is too
late to be of any use by the decoder. In both cases, loss of cells leads to degradation
in picture quality.

The cell loss priority bit in ATM cells coupled with two-layer video coding can
enhance the video quality significantly. Here the base layer video is assigned high
priority, and the enhancement layer the lower priority. In the event of network
congestion, low-priority cells (enhancement data) can be discarded and room made
available to the high-priority cells (base layer). For example, even in the normal
MPEG-2 with a GOP structure of N ¼ 12 and M ¼ 3, which can be regarded as
temporal scalability, during the network congestion, all the B-pictures can be
temporarily discarded to make room for the I- and P-pictures.

In ATM network, in addition to layering, the packetisation strategy also plays
an important role on the video quality. One form of packetisation may confine the
effect of a lost packet to a small area of the picture, while other methods may spread
degradation to a larger area. With AAL1 packetisation [15], where every 47 bytes
of the bitstream are packed into the ATM cell payload without any further pro-
cessing, if a cell is lost, the following cells may not be recoverable until the next
slice or GOB. Thus, a large part of a picture slice may be degraded depending on the
location of the lost MB. This problem can be overcome by making the first MB of
each cell absolutely addressed; hence, the loss can be confined to a smaller area of
the picture [17]. Let us call this method of packing AALx, as shown in Figure 8.27.

In AALx, where the first MB in each ATM cell is absolutely addressed, the lost
area could be confined to the area covered by the lost cell. All following cells could
then be decodable. For the decoder to be able to recognise the absolute address, an

218 Standard codecs: image compression to advanced video coding

additional 11-bit header (absolute address header) must be inserted before the
address. Also, the average length of the relative addressing is normally 2 bits,
whereas the length of the absolute address can be 9 bits, resulting in an additional
7 bits [17]. Thus, AALx has an almost 5 per cent extra overhead compared to
AAL1. Referring to the multiplex cell discard graphs, this can result in five to ten
times more cell loss depending on the network load and the number of channels in
the multiplex [18].

In an experiment, 90 frames of the Salesman image sequence were MPEG-2
coded with the first frame being intra (I-frame) coded and the remaining frames
predictively (P-frame) coded (N ¼ 1, M ¼ 1). Two types of packetisation meth-
ods, AALx and AAL1, were used. The AALx type cells were discarded with the
ITU-T cell loss model with a cell loss rate of 10�2 and a mean burst length of 1 (see
Appendix E) [19]. Those of AAL1 were discarded at cell loss rates of 10�3

(10 times lower) and 10�4 (100 times lower) with the same mean burst length.
From Figure 8.28, it can be seen that AALx outperforms AAL1 at ten times lower
cell loss rate, but is inferior to AAL1 with a cell loss rate of 100 times lower.
Considering that in the experiment AALx is likely to experience five to ten times
more loss than AAL1, AALx is a better packetisation scheme for this type of image
format (e.g. H.261 or H.263).

In another experiment the same 90 frames of the Salesman image sequence
were MPEG-2 coded with a GOP structure of N ¼ 12 and M ¼ 1. The packetisation
techniques were similar to that in the previous experiment. In this case, shown in
Figure 8.29, AALx does not show the same improvement over AAL1, as was the
case for Figure 8.28. In fact, its performance, because of higher overhead, is worse
than AAL1, with ten times lower cell loss rate.

The implications of these two experiments are that with MPEG-1 and MPEG-2
structures, where there are regular I-pictures every N frames, AAL1 outperforms
AALx. But for very large N (e.g. in H.261), AALx is better than AAL1.

It should be noted that the video quality can be improved by concealing the
effect of packet loss or channel errors. In MPEG-2, there is an option that additional

H S P

AAL1: H: header, 5 bytes
S: cell sequency number, 1 byte
P: payload, 47 bytes

AALx: H: header, 5 bytes
S: cell sequency number, 1 byte
U: unique pattern, 11 bits
A: absolute address, 9 bits
P1 and P2: payload, 45.5 bytes

H P1 U A P2S

Figure 8.27 Structure of ALL1 and AALx cells

Coding of high-quality moving pictures (MPEG-2) 219

motion vectors for I-pictures are derived and they are transmitted in the following
slice. In case some of the MBs are damaged, these motion vectors are used to copy
pixels from the previous frame, displaced by the amount of motion vectors to
replace the damaged MBs. In the next chapter, more general forms of concealing
side effects of packet losses and channel errors are discussed in greater depth.

AALx (10–2)

AAL1 (10–3)

AAL1 (10–4)

PS
N

R
 (d

B
)

0 25 50 75
Frame No

25

26

27

28

29

Figure 8.29 PSNR of MPEG-2 coded video sequence with 12 frames per GOP
(IPP . . . IPPP . . . IP . . .): AALx with error rate of 10–2, AAL1 with
error rate of 10–3 and AAL1 with error rate of 10–4

PS
N

R
 (d

B
)

0 25 50 75 100
Frame No

AAL1_10–4

AAL1_10–3

AALx_10–2

25

26

27

28

29

Figure 8.28 PSNR of MPEG-2 coded video sequence GOP (IPPPPPP . . .): AALx
with error rate of 10–2, AAL1 with error rate of 10–3 and AAL1 with
error rate of 10–4

220 Standard codecs: image compression to advanced video coding

8.9 Problems

1. Why are the systems in MPEG-2 different from those in MPEG-1?

2. Which of the following represents level and profile?
a. 1.5 Mbit/s
b. SIF
c. SNR scalability
d. 720 � 576 pixels

3. The DCT coefficients of a motion-compensated picture block are given as
follows:

They are linearly quantised with th ¼ q and zigzag scanned and the assigned
bits are calculated from Figure 6.12. For q ¼ 8, identify the two-dimensional
events of (run, index) and the number of bits required to code the block.

4. The block of problem 3 is partitioned into two, and the PBP is set at coefficient
(2,2). Assuming that PBP can be identified with 6 bits and the quantiser step
size is q ¼ 8, calculate the number of bits generated in each layer and the total
number of bits. (Note that the first DCT coefficient is defined at (0,0).)

5. The block in problem 3 is SNR scalable coded with the base and enhancement
quantiser step sizes of 14 and 8, respectively. What are the number of generated
bits in each layer and the total number of bits (assume in each layer th ¼ q)?

6. An MPEG-2 coded video with its associated audio and forward error correct-
ing codes comprises 8 Mbit/s. With a 64-QAM modulation, determine how
many such videos can be accommodated in a UHF channel of 8-MHz band-
width with 2-MHz guard band. Assume that each modulated symbol occupies
1.25 Hz of the channel.

7. Draw a two-state channel error model and determine the transition prob-
abilities for each of the following conditions:
a. bit error rate of P ¼ 10�5 and burst length of B ¼ 5
b. bit error rate of P ¼ 10�5 and burst length of B ¼ 1

8. Table 8.7 shows the duration of various parts of a 90-min VBR-MPEG-2 coded
video stored on a DVD. The given bit rate is smoothed over a GOP but is
presented in Mbit/s.
a. Calculate the required storage capacity.
b. Calculate the peak-to-mean bit rate ratio.

33 �10 �41 3 17 2 7 �13
61 �5 23 12 �11 5 6 �9
�3 11 3 9 �15 6 3 �1

2 �34 6 4 0 1 3 1
�21 �3 0 5 12 3 0 1
�7 �5 9 3 2 7 �1 �2

6 3 2 5 7 �2 �3 1
�5 4 �2 6 3 1 2 1

Coding of high-quality moving pictures (MPEG-2) 221

c. Calculate the storage required if the video was coded in CBR at a quality
not poorer than that of the VBR.

9. The ATM cells with AAL1 adaptation layer have a 5-byte header and a
48-byte payload, of which 47 bytes are used for packing the video data. If the
channel bit error rate is 10�7, calculate the probability that
a. video is decoded erroneously
b. the cell is lost

10. The stored DVD video in problem 8 is to be streamed via an ATM network,
with a maximum channel capacity of 50 Mbit/s. Because of the other users on
the link, on the average, only 30 per cent of the link capacity can be used by
the DVD server. With an AAL1 packetisation, calculate the time required to
download the entire DVD video stream over the link.

11. The cell loss rate of an ATM link can be modelled with P ¼ 10�10ð1�r2Þ,
where 0 � r � 1 is the load of the link. Twenty-five video sources, each coded
at an average bit rate of 4 Mbit/s, are streamed via a 155-Mbit/s ATM link,
with AAL1 adaptation layer.
a. Calculate the network load, r.
b. Calculate the loss rate that each ATM cell may experience.

12. The video sources in problem 11 were two-layer coded with SNR scalability,
but the overall video quality was assumed to remain the same. If in each
source, 50 per cent of its data are assigned to the base layer and the base layer
cells are always served in preference to the enhancement layer cells, calculate
the cell loss probability at the
a. base layer
b. enhancement layer
(Hint: use Figure 8.26 for the additional overhead due to scalability)

13. Repeat problem 12 for data partitioning.

14. Repeat problem 12 for spatial scalability.

References

1. MPEG-2: ‘Generic coding of moving pictures and associated audio infor-
mation’, ISO/IEC 13818-2: video, Draft International Standard, November
1994

Table 8.7 Duration of various picture activities in a
DVD programme

Duration (min) 0.5 5 10 20 30 24.5
Bit rate (Mbit/s) 20 15 10 7.5 5 4

222 Standard codecs: image compression to advanced video coding

2. MPEG-1: ‘Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s’, ISO/IEC 1117-2: video, November 1991

3. HASKEL, B.G., PURI, A. and NETRAVALI, A.N.: Digital Video: An
Introduction to MPEG-2, Chapman and Hall, New York, 1997

4. ‘Generic coding of moving pictures and associated audio information’, ISO/
IEC 13818-1 Systems, Draft International Standard, November 1994

5. ITU-T recommendation I.363: ‘B-ISDN ATM adaptation layer (AAL) spe-
cification’, June 1992

6. OKUBA, S., MCCANN, K. and LIPPMAN, A.: ‘MPEG-2 requirements,
profile and performance verification’, Signal Process., Image Commun.,
1995, 7:3, pp. 201–209

7. SAVATIER, T.: ‘Difference between MPEG-1 and MPEG-2 video’. ISO/
IEC JTC1/SC29/WG11 MPEG94/37, March 1994

8. Test model editing committee, ‘MPEG-2 video test model 5’, ISO/IEC JTC1/
SC29/WG11 Doc. N0400, April 1993

9. GHANBARI, M.: ‘Two-layer coding of video signals for VBR networks’,
IEEE J. Sel. Areas Commun., 1989, 7:5, pp. 771–781

10. GHANBARI, M.: ‘An adapted H.261 two-layer video codec for ATM net-
works’, IEEE Trans. Commun., 1992, 40:9, pp. 1481–1490

11. GHANBARI, M. and SEFERIDIS, V.: ‘Efficient H.261 based two-layer
video codecs for ATM networks’, IEEE Trans. Circuits Syst. Video Technol.,
1995, 5:2, pp. 171–175

12. ITU-T study group XVI: ‘Efficient coding of synchronised H.26L streams’,
Document VCG-N35, September 2001

13. HERPEL, C.: ‘SNR scalability vs data partitioning for high error rate chan-
nels’, ISO/IEC JTC1/SC29/WG11 doc. MPEG 93/658, July 1993

14. MORRISON, G. and PARKE, I.: ‘A spatially layered hierarchical approach
to video coding’, Signal Process. Image Commun., 1995, 5:5-6, pp. 445–462

15. ITU-T Draft Recommendation I.371: ‘Traffic control and congestion control
in B-ISDN’, Geneva, 1992

16. ROSDIANA, E. and GHANBARI, M.: ‘Picture complexity based rate allo-
cation algorithm for transcoded video over ABR networks’, Electron. Lett.,
2000, 36:6, pp. 521–522

17. GHANBARI, M. and HUGHES, C.J.: ‘Packing coded video signals into
ATM cells’, IEEE ACM Trans. Networking, 1993, 1:5, pp. 505–509

18. HUGHES, C.J., GHANBARI, M., PEARSON, D.E., SEFERIDIS, V. and
XIONG, J.: ‘Modelling and subjective assessment of cell discard in ATM
video’, IEEE Trans. Image Process., 1993, 2:2, pp. 212–222

19. ITU SGXV working party XV/I, Experts Group for ATM video coding,
working document AVC-205, January 1992

Coding of high-quality moving pictures (MPEG-2) 223

Chapter 9

Video coding for low bit rate
communications (H.263)

The H.263 recommendation specifies a coded representation that can be used for
compressing the moving picture components of audio-visual services at low bit
rates. Detailed specifications of the first generation of this codec under the test
model (TM) to verify the performance and compliance of this codec were fina-
lised in 1995 [1]. The basic configuration of the video source algorithm in this
codec is based on the ITU-T recommendation H.261, which is a hybrid of
interpicture prediction to utilise temporal redundancy and transform coding of the
residual signal to reduce spatial redundancy. However, during the course of the
development of H.261 and the subsequent advances on video coding in MPEG-1
and -2 video codecs, substantial experience was gained, which has been exploited
to make H.263 an efficient encoder [2–4]. In this chapter, those parts of the
H.263 standard that make this codec more efficient than its predecessors are
explained.

It should be noted that the primary goal in the H.263 standard codec was
coding of video at low or very low bit rates for applications such as mobile net-
works, public switched telephone network (PSTN) and the narrowband Integrated
Services Digital Network (ISDN). This goal could only be achieved with small
image sizes such as sub-quarter of common intermediate format (sub-QCIF) and
QCIF, at low frame rates. Later on, the codec was found so attractive that higher-
resolution pictures could also be coded at relatively low bit rates. The standard
recommends operation on five standard pictures of the CIF family, known as sub-
QCIF, QCIF, CIF, 4CIF and 16CIF.

Soon after the finalisation of the H.263 in 1995, work began to improve the
coding performance of this codec further. The H.263þ was the first set of exten-
sions to this family, which was intended for near-term standardisation of enhance-
ments of H.263 video coding algorithms for real-time telecommunications [5].
Work on improving the encoding performance was an ongoing process under
H.263þþ, and every now and then a new extension called annex was added to the
family [6]. The codec for long-term standardisation was called H.26L [7]. The
H.26L project had the mandate from ITU-T to develop a very low bit rate (less than
64 kbit/s with emphasis on less than 24 kbit/s) video coding recommendation
achieving better video quality, lower delay, lower complexity and better error
resilience than were available at the time. In 2001, MPEG-4 committee joined the

project in investigating new video coding techniques and technologies as candi-
dates for recommendation.

The joint team eventually recommended the joint video team (JVT) codec
which is informally known as advanced video coding (AVC). The standard is for-
mally known as H.264 by the ITU-T and MPEG-4 part 10 by the International
Standards Organisation (ISO)/International Electrotechnical Commission (IEC)
[8]. Details of this codec are given in Chapter 11, but since H.264/AVC is an
evolution of H.263, most of the materials given in the current chapter will be the
foundations to follow H.264/AVC. Hence, readers are recommended to read this
chapter before Chapter 11. In explaining the current chapter, any part or its
improved version that leads to a recommendation in the H.264/AVC standard will
be reminded.

9.1 How does H.263 differ from H.261 and MPEG-1?

The source encoder of H.263 follows the general structure of the generic discrete
cosine transform (DCT)-based interframe coding technique used in the H.261 and
MPEG-1 codecs (see Figure 3.19). The core H.263 employs a hybrid inter picture
prediction to utilise temporal redundancy and transform coding of the residual
signal to reduce spatial redundancy. The decoder has motion compensation cap-
ability, allowing optional incorporation of this technique at the encoder. Half-pixel
precision is used for the motion compensation, as opposed to the optional full-pixel
precision and loop filter used in the recommendation H.261. In the improved ver-
sions of H.263, use of a quarter of pixel precision for luminance and one-eighth for
chrominance is recommended [6].

Perhaps the most significant differences between the core H.263 and H.261/
MPEG-1 are in the coding of the transform coefficients and motion vectors. In the
following sections, these and some other notable differences such as the additional
optional modes are explained.

9.1.1 Coding of H.263 coefficients
In H.261 and MPEG-1, we saw that the transform coefficients are converted via a
zigzag scanning process into two-dimensional run and index events (see section
6.4). In H.263, these coefficients are represented as a three-dimensional event of
(last, run, level). Similar to the two-dimensional event, the run indicates the number
of zero-valued coefficients preceding a nonzero coefficient in the zigzag scan, and
level is the normalised magnitude of the nonzero coefficient which is sometimes
called index. A new variable, last, replaces the end of block (EOB) code of H.261
and MPEG-1. It takes only two values, 0 and 1; last 0 means that there are more
nonzero coefficients in the block, and 1 means that this is the last nonzero coeffi-
cient in the block.

The most likely events of (last, run, level) are then variable length coded. The
remaining combinations of (last, run, level) are coded with a fixed 22-bit word
consisting of 7 bits escape, 1 bit last, 6 bits run and 8 bits level.

226 Standard codecs: image compression to advanced video coding

9.1.2 Coding of motion vectors
The motion compensation in the core H.263 is based on one motion vector per
macroblock of 16 � 16 pixels, with half-pixel precision. The macroblock motion
vector is then differentially coded with predictions taken from three surrounding
macroblocks, as indicated in Figure 9.1. The predictors are calculated separately for
the horizontal and vertical components of the motion vectors, MV1, MV2 and MV3.
For each component, the predictor is the median* value of the three candidate
predictors for this component:

predx ¼ medianðMV1x, MV2x, MV3xÞ
predy ¼ medianðMV1y, MV2y, MV3yÞ ð9:1Þ

The difference between the components of the current motion vector and their
predictions is variable length coded. The vector differences are defined by

MVDx ¼ MV x � predx

MVDy ¼ MV y � predy
ð9:2Þ

MVMV1

MV3MV2
MV : current motion vector
MV1: previous motion vector
MV2: above motion vector
MV3: above right motion vector

Figure 9.1 Motion vector prediction

In the special cases, at the borders of the current group of blocks (GOB) or
picture, the following decision rules are applied in order:

1. The candidate predictor MV1 is set to zero if the corresponding macroblock is
outside the picture at the left side (Figure 9.2a).

2. The candidate predictors MV2 and MV3 are set to MV1 if the corresponding
macroblocks are outside the picture at the top, or if the GOB header of the
current GOB is nonempty (Figure 9.2b).

3. The candidate predictor MV3 is set to zero if the corresponding macroblock is
outside the picture at the right side (Figure 9.2c).

4. When the corresponding macroblock is intra coded or was not coded, the
candidate predictor is set to zero.

The values of the difference components are limited to the range � 16 to 15.5.
Since in H.263 the source images are of the CIF family with the 4:2:0 format, each
macroblock comprises four luminance and two chrominance components, Cb and
Cr. Hence, the motion vector of the macroblock is used for all four luminance
blocks in the macroblock. Motion vectors for both chrominance blocks are derived

* To find the median value, the components are rank ordered and the middle value is chosen.

Video coding for low bit rate communications (H.263) 227

by dividing the component values of the macroblock vector by 2, due to the lower
chrominance resolution. The resulting values of the quarter pixel resolution vectors
are modified towards the nearest half-pixel position. (Note: The macroblock motion
vector has half-pixel resolution.)

MV(0,0)

MV3MV2

MVMV1

(0,0)MV2

MVMV1

MV1 MV1

picture or GOB border

(a) (b) (c)

Figure 9.2 (a–c) Motion vector prediction for the border macroblocks

9.1.3 Source pictures
The source encoder operates on noninterlaced pictures at approximately 29.97
frames/s. These pictures can be one of the following five standard picture formats
of the CIF family: sub-QCIF, QCIF, CIF, 4CIF and 16CIF. Since in CIF the
luminance and chrominance sampling format is 4:2:0, for either of these pictures
the horizontal and vertical resolutions of the chrominance components are half
the luminance. Table 9.1 summarises pixel resolutions of the CIF family used
in H.263.

Table 9.1 Number of pixels per line and number of lines per picture for each of
the H.263 picture formats

Picture
format

Number of pixels
for luminance
per line

Number of lines
for luminance
per picture

Number of pixels
for chrominance
per line

Number of lines
for chrominance
per picture

Sub-QCIF 128 96 64 48
QCIF 176 144 88 72
CIF 352 288 176 144
4CIF 704 576 352 288
16CIF 1408 1152 704 576

Each picture is divided into a GOB. A GOB comprises k � 16 lines depending
on the picture format (k ¼ 1 for sub-QCIF, QCIF and CIF; k ¼ 2 for 4CIF; k ¼ 4
for 16CIF). The number of GOBs per picture is 6 for sub-QCIF, 9 for QCIF and
18 for CIF, 4CIF and 16CIF. Each GOB is divided into 16 � 16 pixel macroblocks,
of which there are four luminance blocks and one each of chrominance blocks
of 8 � 8 pixels.

228 Standard codecs: image compression to advanced video coding

9.1.4 Picture layer
The picture layer contains the picture header, the GOB header together with various
coding decisions on macroblocks in a GOB and finally the coded transform coef-
ficients, which are also used in H.261 and MPEG-1 and -2. The most notable
difference in the header information for H.263 is in the type information, called
PTYPE. For the first generation of H.263, this is a 13-bit code that gives infor-
mation about the complete picture, in the form of [1]:

bit 1: always 1, in order to avoid start code emulation
bit 2: always 0, for distinction with H.261
bit 3: split screen indicator – 0, off; 1, on
bit 4: document camera indicator – 0, off; 1, on
bit 5: freeze picture release – 0, off; 1, on
bits 6–8: source format – 000, forbidden; 001, sub-QCIF; 010, QCIF; 011,

CIF; 100, 4CIF; 101, 16CIF; 110, reserved; 111, extended PTYPE
bit 9: picture coding type – 0, intra; 1, inter
bit 10: optional unrestricted motion vector mode – 0, off; 1, on
bit 11: optional syntax-based arithmetic coding mode – 0, off; 1, on
bit 12: optional advanced prediction mode – 0, off; 1, on
bit 13: optional PB frames mode – 0, normal picture; 1, PB frame

The split screen indicator is a signal that indicates the upper and lower halves of the
decoded picture could be displayed side by side. This has no direct effect on the
encoding and decoding of the picture.

The freeze picture release is a signal from an encoder which responds to a
request for packet retransmission (if not acknowledged) or fast update request, and
allows a decoder to exit from its freeze picture mode and display decoded picture in
the normal manner.

Bits 10–13 refer to the early four optional modes of H.263. Since 1995, more
options as annexes have been added to the extensions of this codec. These optional
modes are activated when the bits 6–8 of the PTYPE header are in the extended mode
of 111, and necessarily some additional bits define the new options. Hence, extensions
of H.263 have a longer PTYPE header and also a different picture layer than the above
13 bits. All these optional modes are only used after negotiation between the encoder
and the decoder via the control protocol recommendation H.245 [9].

Also, for further reduction in the overhead, the code for macroblock type and
coded block pattern are combined. For example, the combined code of macroblock
type and coded block pattern is called MCBPC. MCBPC is always present for each
macroblock, irrespective of its type and the options used. Note that in H.261, MPEG-1
and -2, the coded block pattern is defined separately from the macroblock type.

9.2 Switched multipoint

One of the initial aims in the design of a new low bit rate video codec was to
replace H.261 with a more efficient one, which took the name of H.263. Hence, the

Video coding for low bit rate communications (H.263) 229

functionalities of H.261, but with some improvements, need to be included in this
codec; they appear in Annex C of the H.263 specification that can be activated or
disabled as desired [22-C]. Since this annex was introduced prior to all the other
annexes, which later on were called optionalities, we introduce this annex prior to
all the other options.

In H.263, the decoder can be instructed to alter its normal decoding mode and
provide some extra display functions. Instructions for the alterations may be issued
by an external device such as recommendation H.245, which is a control protocol
for multimedia communications [9]. Some of the commands and the actions are
given in the following sections.

9.2.1 Freeze picture request
This signal causes the decoder to freeze its displayed picture until a freeze release
signal is received or a time-out period of at least 6 s has expired. A frozen picture is
much better perceived by the viewer than say a broken picture due to channel
errors, or if the encoder cannot deliver the compressed bitstream on time for a
continuous display.

9.2.2 Fast update request
This command causes the encoder to encode its next picture in intra mode,
with coding parameters to avoid buffer overflow. This mode in conjunction
with the back channel reduces the probability of error propagation into the
subsequent pictures. This mode improves the resilience of the codec to
channel errors.

9.2.3 Freeze picture release
Freeze picture release is a signal from the encoder, which has responded to a
fast update request, and allows a decoder to exit from its freeze mode and
display decoded pictures in the normal manner. This signal is transmitted by the
PTYPE in the picture header of the first picture coded in response to the fast update
request.

9.2.4 Continuous presence multipoint
In a multipoint connection, a multipoint control unit (MCU) can assemble two to
four video bitstreams into one video bitstream, so that up to four different video
signals can be displayed simultaneously at the receiver. In H.261, this can be done
on a quad screen by only editing the GOB header, but in H.263 it is more complex
due to a different GOB structure, overlap motion estimation, multiple motion
vectors, etc. Therefore, in H.263, a special continuous presence multipoint mode is
provided in which four independent video bitstreams are transmitted in the four
logical channels of a single H.263 video bitstream.

230 Standard codecs: image compression to advanced video coding

9.3 Extensions of H.263

In the late 1990s, the Video Coding Experts Group (VCEG) of the ITU-
telecommunications standardisation sector set up two activities. The aim was to
develop very low bit rate video coding at bit rates less than 64 kbit/s and more
specifically at less than 24 kbit/s. One activity was looking at the video coding for
very low bit rates, under the name of H.263þ [5]. Later on, work of this activity
continued under the name of H.263þþ, indicating further improvements on
H.263þ [6]. The other activity, which had more in common with MPEG-4, is work
on advanced low bit rate video coding, under the name of H.26L [7].

The H.263þ/H.263þþ development effort was intended for short-term stan-
dardisation of enhancements of the H.263 video coding algorithm for real-time
telecommunication and related nonconversational services. The H.26L develop-
ment effort was aimed at identifying new video coding technology beyond the
capabilities of enhancements to H.263 by the H.263þ/H.263þþ coding algorithms.

These two subgroups also had a close cooperation in the development of their
codecs, since the core codec is still H.263. They also worked closely with the other
bodies of ITU. For example, the collaboration between the H.263þ and the mobile
group has led to the consideration for greater video error resilience capability. The
back channel error resilience in H.263þ is especially designed to address the needs
of mobile video and other such unreliable bitstream transport environments. The
H.26L group worked very closely with the MPEG-4 group, as this group had
the mandate of developing advanced video coding for storage and broadcasting
applications [7]. The team work was proven very fruitful and led to the recom-
mendation H.264/AVC that is explained in detail in Chapter 11.

One of the key features of the H.263þ, H.263þþ and H.26L is the real-time
audio-visual conversational services. In a real-time application, information is
simultaneously acquired, processed and transmitted and is usually used immedi-
ately at the receiver. This feature implies critical delay and complexity constraints
on the codec algorithm.

An important component in any application is the transmission media over
which it will need to operate. The transmission media for H.263þ/H.26L applica-
tions include PSTN, ISDN (1B), dial-up switched 56/64 kbit/s service, local area
networks (LANs), mobile networks (including GSM, DECT, UMTS, FLMPTS,
NADC, PCS, etc.), microwave and satellite networks, digital storage media (i.e. for
immediate recording) and concatenation of the above media. Because of the large
number of likely transmission media and the wide variations in the media error and
channel characteristics, error resiliency and recovery are critical requirements for
this application class.

9.3.1 Scope and goals of H.263þ
The expected enhancements of H.263þ over H.263 fall into two basic categories:

● enhancing quality within existing applications;
● broadening the current range of applications.

Video coding for low bit rate communications (H.263) 231

A few examples of the enhancements are as follows:

● improving perceptual compression efficiency;
● reducing video coding delay;
● providing greater resilience to bit errors and data losses.

Note that H.263þ has all the features of H.263, and further tools are added to this
codec to increase its coding efficiency and its robustness to errors. This was
an ongoing process, and more tools were added every year. In 2000, this codec
was upgraded to H.263þþ, to emphasise the ongoing improvement in the coding
efficiency [6].

9.3.2 Scopes and goals of H.26L
The long-term objective of the ITU-U video experts group, under the AVC project,
was to provide a video coding recommendation which at very low bit rates can
perform substantially better than that achievable with the existing standards of that
time (e.g. H.263þ). The adopted technology should provide for:

● enhanced visual quality at very low bit rates and particularly at PSTN rates
(e.g. at rates below 24 kbit/s);

● enhanced error robustness in order to accommodate the higher error rates
experienced when operating, for example, over mobile links;

● low complexity appropriate for small, relatively inexpensive, audio-visual
terminals;

● low end-to-end delay as required in bidirectional personal communications.

In addition, the group was closely working with the MPEG-4 experts group, to
include new coding methods and promote interoperability. This work was formally
ratified in 2003 and named H.264 in ITU-T and MPEG-4 part 10 in ISO/IEC.
Details of this codec are covered in Chapter 11.

9.3.3 Optional modes of H.263
In the course of development of H.263, numerous optional modes have been added
as annexes to the main specifications to improve the visual communication effi-
ciency of this codec. Some of the annexes were introduced along with the intro-
duction of the core H.263, and many more were added gradually under the H.263þ
and H.263þþ. The intention is neither to introduce all these annexes nor to specify
which annex belongs to which generation of the codec. Instead, we try to classify
them into groups, without specifying in which generation they were introduced, to
give a better appreciation of these optional modes in improving the coding effi-
ciency. As we will see, since H.263 video codec is primarily aimed for mobile
video communications, and UHF channels are particularly prone to channel errors,
the majority of the annexes deal with the protection of visual data against channel
errors. It is worth noting that improved versions of most of these annexes or options
are taken as the core parts of H.264/AVC (depending on the profile). Thus, their

232 Standard codecs: image compression to advanced video coding

study here will help readers to better appreciate the fundamentals behind the
compression efficiency and error resiliency of H.264/AVC.

9.4 Advanced motion estimation/compensation

Motion estimation/compensation is probably the most evolutionary coding tool in
the history of video coding. For every previous generation of video codecs, motion
estimation has been considered as a means of improving coding efficiency. In the
first video codec (H.120) under COST211, which was a differential pulse code
modulation (DPCM)-based codec, working on pixel-by-pixel, motion estimation for
each pixel would have been costly, and hence it was never used. Motion estimation
was made optional for the H.261 block-based codec, on the grounds that the DCT of
this codec is to decorrelate interframe pixels, and since motion compensation
reduces this correlation, nothing is left for DCT! Motion compensation in MPEG-1
was considered seriously, since for B-pictures, which refer to both past and future,
the motion of objects, even those hidden in the background, can be compensated. It
was so efficient that it was also recommended for the P-pictures, and even with a
half-pixel precision. In MPEG-2, due to interlacing, a larger variety of motion
estimation/compensation between fields and frames or their combinations was
introduced. The improvement in coding efficiency was at the cost of additional
overhead for delivering the motion vectors to the receiver. However, for MPEG-1
and -2, coding at a rate of 1–5 Mbit/s, this overhead is negligible, but the question is:
how this overhead can be justified for H.263 at a rate of 24 kbit/s or less? In fact, as
we will see below, some extensions of H.263 recommend using smaller block sizes,
which imply more motion vectors per picture, and they even suggest motion esti-
mation precision should be at quarter of a pixel. All these increase the motion vector
overhead, which is very significant at a very low bit rate of 24 kbit/s.

The fact is that if motion compensation is efficient, the motion-compensated
pictures may not need to be coded by the DCT, that is, these blocks are only repre-
sented by their motion vectors. In H.261 and MPEG-1, we have seen a form of
macroblock that was coded only by the motion vector, without coding the motion-
compensated error. However, if the expected video quality is low and the motion
estimation is efficient, then we can see more of these macroblocks in a codec. This is in
fact what is happening with motion compensation in H.263. In the following sections,
some improvements to motion estimation/compensation, in addition to those intro-
duced for H.261, MPEG-1 and -2, are discussed. At the end of this section, a form of
motion estimation that warps the picture for better compensation of complex motion is
introduced. Although this method is neither a part of any form of H.263 nor recom-
mended for other video coding standards, there is no reason why we cannot have this
form of motion estimation and compensation in the future video codecs.

9.4.1 Unrestricted motion vector
In the default prediction mode of H.263, motion vectors are restricted so that all
pixels referenced by them are within the coded picture area. In the optional

Video coding for low bit rate communications (H.263) 233

unrestricted motion vector mode, this restriction is removed and therefore motion
vectors are allowed to point outside the picture [22-D]. When a pixel referenced by
a motion vector is outside the coded picture area, an edge pixel is used instead. This
edge pixel is found by limiting the motion vector to the last full-pixel position
inside the coded picture area. Limitation of the motion vector is performed on a
pixel-by-pixel basis and separately for each component of the motion vector.

9.4.2 Advanced prediction
The optional advanced prediction mode of H.263 employs overlapped block
matching motion compensation and may have four motion vectors per macroblock
[22-F]. The use of this mode is indicated in the macroblock type header. This mode
is only used in combination with the unrestricted motion vector mode [22-D],
described in the previous subsection.

9.4.2.1 Four motion vectors per macroblock
In H.263, one motion vector per macroblock is used except in the advanced pre-
diction mode, where either one or four motion vectors per macroblock are
employed. In this mode, the motion vectors are defined for each 8 � 8 pixel block.
If only one motion vector for a certain macroblock is transmitted, this is repre-
sented as four vectors with the same value. When there are four motion vectors, the
information for the first motion vector is transmitted as the code word motion
vector data (MVD), and the information for the three additional vectors in the
macroblock is transmitted as the code word MVD2–4.

The vectors are obtained by adding predictors to the vector differences indi-
cated by MVD and MVD2–4, as was the case when only one motion vector per
macroblock was present (see section 9.1.2). Again the predictors are calculated
separately for the horizontal and vertical components. However, the candidate
predictors MV1, MV2 and MV3 are redefined as indicated in Figure 9.3.

MVMV1

MV2 MV3

MV3

MVMV1

MV2

MVMV1

MV3MV2

MV2

MVMV1

MV3

Figure 9.3 Redefinition of the candidate predictors MV1, MV2 and MV3 for each
luminance block in a macroblock

234 Standard codecs: image compression to advanced video coding

As Figure 9.3 shows, the neighbouring 8 � 8 blocks that form the candidates
for the prediction of the motion vector MV take different forms depending on the
position of the block in the macroblock. Note that if only one motion vector in the
neighbouring macroblocks is used, then MV1, MV2 and MV3 are defined as 8 � 8
block motion vectors, which possess the same motion vector of the macroblock. It
is worth noting that this option now is a core element in H.264 with even smaller
block size of 4 � 4 pixels and quarter of a pixel precision. There even the motion
vectors of the subblocks are also predictively addressed, similar to Figure 9.3.

9.4.2.2 Overlapped motion compensation
Overlapped motion compensation is only used for the 8 � 8 luminance blocks.
Each pixel in an 8 � 8 luminance prediction block is the weighted sum of three
prediction values, divided by 8 (with rounding). To obtain the prediction values,
three motion vectors are used. They are the motion vector of the current luminance
block and two out of four remote vectors, as follows:

● the motion vector of the block at the left or right side of the current luminance
block;

● the motion vector of the block above or below the current luminance block.

The remote motion vectors from other GOBs are treated in the same way as the
remote motion vectors inside the GOB.

For each pixel, the remote motion vectors of the block at the two nearest block
borders are used. This means that for the upper half of the block, the motion vector
corresponding to the block above the current block is used, while for the lower half
of the block, the motion vector corresponding to the block below the current block
is used, as shown in Figure 9.4. In this figure, the neighbouring pixels closer to the
pixels in the current block take greater weights.

2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 2 2 2 2 2 2 1

bottom of the
current block

top of the
current block

Figure 9.4 Weighting values for prediction with motion vectors of the luminance
blocks on top or bottom of the current luminance block, H1(i, j)

Similarly, for the left half of the block, the motion vector corresponding to the
block at the left side of the current block is used, and for the right half of the block

Video coding for low bit rate communications (H.263) 235

the motion vector corresponding to the block at the right side of the current block is
used, as shown in Figure 9.5.

2 1 1 1 1 1 1 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 1 1 1 1 1 1 2

2 2 1 1 1 1 1 2

left of
the
current
block

right of
the
current
block

Figure 9.5 Weighting values for prediction with motion vectors of luminance
blocks to the left or right of current luminance block, H2(i, j)

The creation of each interpolated (overlapped) pixel, p(i, j), in an 8 � 8
reference luminance block is governed by

pði, jÞ ¼ ½qði, jÞ�H0ði, jÞþ rði, jÞ�H1ði, jÞþ sði, jÞ�H2ði, jÞþ 4�==8 ð9:3Þ
where q(i, j), r(i, j) and s(i, j) are the motion-compensated pixels from the reference
picture with the three motion vectors defined by

qði, jÞ ¼ pði þ MVx
0, j þ MV y

0Þ
rði, jÞ ¼ pði þ MV x

1, j þ MV y
1Þ

sði, jÞ ¼ pði þ MV x
2, j þ MV y

2Þ

where ðMV x
0, MV y

0Þ denotes the motion vector for the current block, ðMV x
1, MV y

1Þ
denotes the motion vector of the block either above or below and ðMV x

2, MV y
2Þ

denotes the motion vector of the block to either the left or right of the current block.
The matrices H0(i, j), H1(i, j) and H2(i, j) are the current, top–bottom and left–right
weighting matrices, respectively. Weighting matrices of H1(i, j) and H2(i, j) are
shown in Figures 9.4 and 9.5, respectively, and the weighting matrix for prediction
with the motion vector of the current block, H0(i, j), is shown in Figure 9.6.

If one of the surrounding blocks was not coded or was in intra mode, the
corresponding remote motion vector is set to zero. However, in PB frames mode
(see section 9.5), a candidate motion vector predictor is not set to zero if the cor-
responding macroblock is intra mode.

If the current block is at the border of the picture and therefore a surrounding
block is not present, the corresponding remote motion vector is replaced by the
current motion vector. In addition, if the current block is at the bottom of the
macroblock, the remote motion vector corresponding with an 8 � 8 luminance

236 Standard codecs: image compression to advanced video coding

block in the macroblock below the current macroblock is replaced by the motion
vector for the current block.

4 5 5 5 5 5 5 4

5 5 5 5 5 5 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

4 5 5 5 5 5 5 4

5 5 5 5 5 5 5 5

Figure 9.6 Weighting values for prediction with motion vector of current block,
H0(i, j)

9.4.3 Importance of motion estimation
To demonstrate the importance of motion compensation and to some extent the
compression superiority of H.263 over H.261 and MPEG-1 in an experiment,
the CIF Claire test image sequence was coded at 256 kbit/s (30 frames/s) with the
following encoders:

● H.261;
● MPEG-1, with a group of pictures (GOP) length of 12 frames and two

B-frames between the anchor pictures, that is, N ¼ 12 and M ¼ 3 (MPEG-
GOP);

● MPEG-1, with only P-pictures, that is, N ¼ ? and M ¼ 1 (MPEG-IPPPP . . .);
● H.263 with advanced mode (H.263-ADV).

Figure 9.7 illustrates the peak-to-peak signal-to-noise ratio (PSNR) of the coded
sequence. At this bit rate, the worst performance is that of MPEG-1, with a GOP
structure of 12 frames/GOP, and two B-frames between the anchor
pictures (IBBPBBPBBPBBIBB . . .). The main reason for the poor performance of
this codec at this bit rate is that I-pictures consume most of the bits, and compared
to the other coding modes, relatively lower bits are assigned to the P- and
B-pictures.

The second poorest is the H.261, where all the consecutive pictures are inter-
frame coded with an integer pixel precision motion compensation. The second best
performance is the MPEG-1 with only P-pictures. It is interesting to note that this
mode is similar to H.261 (every frame is predictively coded), except that motion
compensation is carried out with half-pixel precision. Hence, this mode shows the
advantage of using half-pixel precision motion estimation. The amount of
improvement for the used sequence at 256 kbit/s is almost 2 dB.

Video coding for low bit rate communications (H.263) 237

46

44

42

40

38

36

34
0 10 20 30 40 50 60 70 80 90

PS
N

R
, d

B

Frame number

H.263-ADV

MPEG-IPP

MPEG-GOP

H.261

Figure 9.7 PSNR of Claire sequence coded at 256 kbit/s, with MPEG-1, H.261
and H.263

Finally, the best performance comes from the advanced mode of H.263, which
results in an almost 4-dB improvement over the best of MPEG-1 and 6 dB over
H.261. The following are some of the factors that may have contributed to such a
good performance:

● motion compensation on smaller block sizes of 8 � 8 pixels results in smaller
error signals than for the macroblock compensation used in the other codecs;

● overlapped motion compensation; by removing the blocking artefacts on the
block boundaries, the prediction picture has a better quality, thus reducing the
error signal, and hence the number of significant DCT coefficients;

● efficient coding of DCT coefficients through three-dimensional events of (last,
run, level);

● efficient representation of the combined macroblock type and block pattern.

Note that, in this experiment, other options such as PB frames mode and arithmetic
coding were not used. Had the arithmetic coding been used, it is expected that the
picture quality would be further improved by 1–2 dB. Experimental results have
confirmed that arithmetic coding has approximately 5–10 per cent better com-
pression efficiency over the Huffman coding [10].

It is worth mentioning that overlapped motion compensation removes blockiness
artefacts of block-based motion compensation. Such an artefact can also be reduced
by the deblocking filter, to be explained below. It appears that if deblocking filter is
used, there is no need for overlapped motion compensation. Hence, H.264 has
adopted deblocking filter tool and does not use overlapped motion compensation.

9.4.4 Deblocking filter
At very low bit rates, the block of pixels is mainly made of low-frequency DCT
coefficients. In these areas, when there is a significant difference between the DC

238 Standard codecs: image compression to advanced video coding

levels of the adjacent blocks, they appear as block borders. At the extreme case,
pictures break into blocks, and the blocking artefacts can be very annoying.

The overlapped block matching motion compensation to some extent reduces
these blocking artefacts. For further reduction in the blockiness, the H.263 speci-
fication recommends deblocking of the picture through the block edge filter [22-J].
The filtering is performed on 8 � 8 block edges and assumes that 8 � 8 DCT is
used and the motion vectors may have either 8 � 8 or 16 � 16 resolution. Filtering
is equally applied to both luminance and chrominance data, and no filtering is
permitted on the frame and slice edges.

Consider four pixels A, B, C and D on a line (horizontal or vertical) of the
reconstructed picture, where A and B belong to block 1 and C and D belong to a
neighbouring block 2, which is either to the right of or below block 1, as shown in
Figure 9.8.

block 1

block 2

block 1

filtered pixels on a
vertical block edge

filtered pixels on a
horizontal block edge

block boundary

B C DA

A

C
B

D

Figure 9.8 Filtering of pixels at the block boundaries

To turn the filter on for a particular edge, either block 1 or block 2 should be an
intra or a coded macroblock with the code COD ¼ 0. In this case, B1 and C1 replace
values of the boundary pixels B and C, respectively, where

B1 ¼ B þ d1

C1 ¼ C � d1

d1 ¼ signðdÞ � ðMaxð0, jdjÞ � Maxð0, 2 � jdj � QPÞÞ
d ¼ 3A � 8B þ 8C � 3D

16
QP : quantisation parameter of block 2

ð9:4Þ

The amount of alteration of pixels, �d1, is related to a function of pixel differences
across the block boundary, d, and the quantiser parameter QP, as shown in (9.4).
The sign of d1 is the same as the sign of d.

Figure 9.9 shows how the value of d1 changes with d and the quantiser para-
meter QP, to make sure that only block edges which may suffer from blocking
artefacts are filtered and not the natural edges. As a result of this modification, only
the pixels on the edge are filtered so that their luminance changes are less than the
quantisation parameter, QP.

Video coding for low bit rate communications (H.263) 239

QP/2

d1

QP
d

Figure 9.9 d1 as a function of d

This optional tool of H.263 improves both objective (PSNR) and subjective
quality of video. Hence, it is made a core element of H.264/AVC, but is imple-
mented in a more efficient way. Since H.264 does not use overlapped motion
compensation, the decision for filtering a border pixel is also made depending on
the motion of adjacent blocks. Details of this filter in H.264/AVC codec are given
in Chapter 11.

9.4.5 Motion estimation/compensation with spatial transforms
The motion estimation we have seen so far is based on matching a block of pixels in
the current frame against a similar size block of pixels in the previous frame, the so-
called block matching algorithm (BMA). It relies on the assumptions that the
motion of objects is purely translational and the illumination is uniform, which of
course are not realistic. In practice, motion has a complex nature that can be
decomposed into translation, rotation, shear, expansion and other deformation
components, and the illumination changes are nonuniform. To compensate for
these nonuniform changes between the frames, a block of pixels in the current
frame can be matched against a deformed block in the previous frame. The defor-
mation should be such that all the components of the complex motion and illumi-
nation changes are included.

A practical method for deformation is to transform a square block of N � N
pixels into a quadrilateral of irregular shape, as shown in Figure 9.10.

B(k, 0)

C(k, k)
G(xG, yG)

F(xF, yF)E(xE, yE)

A(0, 0)

D(0, k)

H(xH, yH)

Figure 9.10 Mapping of a block to a quadrilateral

240 Standard codecs: image compression to advanced video coding

One of the methods for this purpose is the bilinear transform, defined as [11]

x ¼ a0u þ a1v þ a2uv þ a3

y ¼ a4u þ a5v þ a6uv þ a7
ð9:5Þ

where a pixel at a spatial coordinate (u, v) is mapped into a pixel at coordinate (x, y).
To determine the eight unknown mapping parameters a0–a7, eight simultaneous
equations relating the coordinates of vertices A, B, C and D into E, F, G and H of
Figure 9.10 must be solved. To ease computational load, all the coordinates are offset
to the position of coordinates at u ¼ 0 and v ¼ 0, as shown in the figure. Referring to
the figure, the eight mapping parameters are derived as

a0 ¼ xF � xE

k
; a4 ¼ yF � yE

k
; a1 ¼ xH � xE

k
; a5 ¼ yH � yE

k

a2 ¼ xE � xF þ xG � xH

k
; a6 ¼ yE � yF þ yG � yH

k
; a3 ¼ xE; ð9:6Þ

a7 ¼ yE

where k ¼ N � 1 and N is the block size, for example, for N ¼ 16, k =15.
To use this kind of spatial transformation as a motion estimator, the four cor-

ners E, F, G and H in the previous frame are chosen among the pixels within a
vertex search window. Using the offset coordinates of these pixels in (9.6), the
motion parameters that transform all the pixels in the current square macroblock of
ABCD into a quadrilateral are derived. The positions of E, F, G and H that result in
the lowest difference between the pixels in the quadrilateral and the pixels in the
transformed block of ABCD are regarded as the best match. Then a0–a7 of the best
match are taken as the parameters of the transform that define the motion estima-
tion by spatial transformation.

It is obvious that in general the number of pixels in the quadrilateral is not
equal to the N2 pixels in the square block. To match these two unequal size blocks,
the corresponding pixel locations of the square block in the quadrilateral must be
determined. Since these in general do not coincide with the pixel grid, their values
should be interpolated from the intensity of their four surrounding neighbours, I0,
I1, I2 and I3, as shown in Figure 9.11.

I0 I1

I3I2

I
b

a

Figure 9.11 Intensity interpolation of a nongrid pixel

Video coding for low bit rate communications (H.263) 241

The interpolated intensity of the mapped pixels, I, from its four immediate
neighbours, is inversely proportional to their distances and is given by

I ¼ ð1 � aÞð1 � bÞI0 þ að1 � bÞI1 þ ð1 � aÞbI2 þ abI3 ð9:7Þ

which is simplified to

I ¼ ðI1 � I0Þa þ ðI2 � I0Þb þ ðI0 þ I3 � I1 � I2Þab þ I0

where a and b are the horizontal and vertical distances of the mapped pixel from the
pixel with intensity I0.

Note that this type of motion estimation/compensation is much more complex
than the simple block matching. First, in block matching for a maximum motion
speed of w pixels/frame, there are (2w þ 1)2 matching operations, while in the
spatial transforms, since each vertex is free to move in any direction, the number of
matching operations becomes (2w þ 1)8. Still each operation is more complex than
BMA, since for each match the transformation parameters a0–a7 have to be cal-
culated, and all the mapped pixels should be interpolated.

There are numerous methods of simplifying the operations [11]. For example,
a fast matching algorithm, such as the orthogonal search algorithm (OSA) intro-
duced in section 3.3, can be used. Since for a motion speed of 8 pixels/frame, OSA
needs only 13 operations, then the total search operations become 134 ¼ 28 561,
which is practical and is much less than using the full-search method of (2� 8 þ 1)8 ¼
7 � 109, which is not practical! Also, the use of simplified interpolation reduces the
interpolation complexity to some extent [12].

To appreciate the motion compensation capability of this method, a head-and-
shoulders video sequence was recorded, at a speed of almost 12 frames/s, where the
head moves from one side to another in 3 s. Assuming that the first frame is
available at the decoder, the remaining 35 frames were reconstructed by the motion
vectors only, and no motion-compensated error was coded. Figure 9.12 shows
frames 5, 15, 25 and 35 of the reconstructed pictures by the bilinear transform,
called here block matching with spatial transform (BMST) and the conventional
BMA. At frame 5, where the eye should be closed, the BMA cannot track it, as this
method only translates the initial eye position of frame 1, where it was open, but
BMST tracks it well. Also, throughout the sequence, the BMST tracks all the eye’s
and head’s movements (plus opening and closing the mouth) and produces almost
good-quality picture, while that of BMA performs a noisy image.

To explain why the BMST can produce such a remarkable performance, con-
sider Figure 9.13, where the reconstructed pictures around frame 30, that is, frames
28–32, are shown. Looking at the back of the ear, we see that from frame to frame
the hair grows, such that at frame 32 it looks quite natural. This is because if, for
example, the quadrilateral is only made up of a single black dot and it is then
interpolated over 16 � 16 pixels to be matched to the current block of the same size
in hair, then the current block can be made from a single pixel.

242 Standard codecs: image compression to advanced video coding

Figure 9.12 Reconstructed pictures with operating individually the BMST and
BMA motion vectors

Figure 9.13 Frame-by-frame reconstruction of the pictures by BMST

Note that in BMST, each block requires eight transformation parameters
equal to four motion displacements at the four vertices of the quadrilateral. Either
the eight parameters a0–a7 or four displacement vectors at the four vertices of
the quadrilateral as four motion vectors should be sent. The second method is
preferred, since a0–a7 are in general noninteger values and need more bits
than the four motion vectors. Hence, the motion vector overhead of this method
is four times that of BMA of the same block size. However, if BMA of 8 � 8
pixels is used as in the advanced prediction mode [22-F], then we have the
same overhead. Again this is irrespective of the block size, since BMA com-
pensates for translational motion only and cannot produce any better results than
those above.

One way of reducing the motion vector overhead is to force the vertices of the
four adjacent quadrilaterals to a common vertex. This generates a net-like structure
or mesh, as shown in Figure 9.14a. As can be seen, the motion-compensated picture
(Figure 9.14b) is smooth and free from blocking artefacts.

Video coding for low bit rate communications (H.263) 243

(a) (b)

Figure 9.14 Mesh-based motion compensation: (a) mesh and (b) motion-
compensated picture

40

38

36

34

32

30
20 25 30 35 40 45 50 55 60

Frame number – susie

Av
er

ag
e

fr
am

e
PS

N
R

 (d
B

)

BM-FSA
QM-TSS
MB-ITR

Figure 9.15 Performance of spatial transform motion compensation

To generate such a mesh, the three vertices of a quadrilateral are fixed to
their immediate neighbours and only one (bottom right vertex) is free to move.
This constrains the efficiency of the motion estimation, and for better perfor-
mance, motion estimation for the whole frame has to be iterated several times.
Thus, it is not expected to perform as well as the unconstrained movement of the
vertices applied to Figure 9.12. Despite this, since mesh-based motion estimation
creates a smooth boundary between the quadrilaterals, the motion-compensated
picture will be free from blockiness. Also, it needs only one motion vector per
quadrilateral, similar to BMA. Thus, this mesh-based motion estimation is
expected to be better than the BMA with the same motion vector overhead, but
of course with increased computational complexity. Figure 9.15 compares the
motion compensation efficiency of the full-search block matching algorithm
(BM-FSA) with the quadrilateral matching, using three-step search (QM-TSS)

244 Standard codecs: image compression to advanced video coding

and the mesh-based iterative algorithm (MB-ITR). The motion compensation is
applied between the incoming pictures to eliminate accumulation of errors. Also,
since QM requires four motion vectors per block, in order to reduce motion
vector overhead, each macroblock is first tested with BMA, and if the MBA
motion-compensated error is larger than a given threshold, QM is used; other-
wise, BMA is used. Hence, MQ overhead is less than four times of BMA. Our
investigations show that for head-and-shoulders type pictures, about 20–30 per
cent of the macroblocks need QM and the rest can be faithfully compensated by
the BMA method. In this figure, QM also used overlap motion compensation
[13]. However, the mesh-based (MB) method requires the same overhead as
BMA (slightly less, no need at the picture borders).

As the figure shows, mesh-based motion compensation is superior to the
conventional block matching technique, with the same motion vector overhead.
Considering the smooth motion-compensated picture of mesh-based method
(Figure 9.14) and its superiority over the block matching, it is a good candidate to
be used in the future standard codecs.

More information on motion estimation with the spatial transforms is given in
[11], [14] and [15]. In these papers some other spatial transforms such as affine and
perspective are also tested. Methods for their use in a video codec to generate equal
overhead to those used in H.263 are also explained.

9.5 Treatment of B-pictures

B-pictures play an important role in low bit rate applications. If they are coded at
lower quality, the quantisation distortion is not accumulated (since they are not
used for prediction; see section 7.6). This is not the case for P-pictures, where any
gain in reducing the bits in one frame may have to be returned at a higher cost later,
when the distortion accumulates in a noise-like signal, which is difficult to code.
For very low bit rate video, such as video for mobile networks, normally the frame
rate is low (e.g. 5–10 frames/s), and hence the number of B-pictures between the
anchor P- and I-pictures cannot be large. Apparently only one B-picture is an ideal
choice. Also, in these applications I-pictures are hardly used, or if they are used, the
GOP length is normally very large. Hence, it is plausible to assume, if there is any
B-picture in a video, that it is accompanied by a neighbouring P-picture. Thus, one
can nearly always code B-pictures in relation to the P-picture counterpart, and
interrelate their addressing. Two of these are used as annexes in the H.263 family,
and are discussed in the following.

9.5.1 PB frames mode
A PB frame consists of two P- and B-pictures coded as one unit [22-G]. The
P-picture is predicted from the last decoded P-picture, and the B-picture is pre-
dicted from both the last decoded P-picture and the P-picture currently being
decoded. The prediction process is illustrated in Figure 9.16.

Video coding for low bit rate communications (H.263) 245

PBP

decoded P-picture current P-picture

PB frames

Figure 9.16 Prediction in PB frames mode

9.5.1.1 Macroblock type
Since in the PB frames mode a unit of coding is a combined macroblock from
P- and B-pictures, the composite macroblock comprises 12 blocks. First the data
for the six P-blocks are transmitted as the default H.263 mode, and then the data
for the six B-blocks. The composite macroblock may have various combinations
of coding status for the P- and B-blocks, which are dictated by the MCBPC.
One of the modes of the MCBPC is the intra macroblock type that has the
following meaning:

● the P-blocks are intra coded;
● the B-blocks are inter coded with prediction as for an intra block.

The MVD is also included for intra blocks in pictures for which the type infor-
mation PTYPE indicates inter. In this case, the vector is used for the B-block only.
The code words MVD2–4 are never used for intra. The candidate motion vector
predictor is not set to zero if the corresponding macroblock was coded in intra
mode.

9.5.1.2 Motion vectors for B-pictures in PB frames
In the PB frames mode, the motion vectors for the B-pictures are calculated as
follows. Assume that we have a motion vector component MV in half-pixel units to
be used in the P-pictures. This MV represents a vector component for an 8 � 8
luminance block. If only one motion vector per macroblock is transmitted, then MV
has the same value for each of the 8 � 8 luminance blocks.

For prediction of the B-picture, we need both forward and backward
vector components MVF and MVB. Assume also that MVD is the delta vector
component given by the motion vector data of a B-picture (MVDB) and corre-
sponds to the vector component MV. Now MVF and MVB are given in half-pixel
units by the following formulae:

246 Standard codecs: image compression to advanced video coding

MV F ¼ TRB � MV

TRD
þ MV D

MV B ¼ ðTRB � TRDÞ � MV

TRD
, if MV D ¼ 0

MV B ¼ MV F � MV , if MV D 6¼ 0

ð9:8Þ

Here TRD is the increment of temporal reference (TR) from the last picture header.
In the optional PB frames mode, TR only addresses P-pictures. TRB is the TR for
the B-pictures, which indicates the number of nontransmitted pictures since the last
P- or I-picture and before the B-picture.

Division is done by truncation, and it is assumed that scaling reflects the actual
position in time of P- and B-pictures. Care is also taken that the range of MVF

should be constrained. Each variable length code (VLC) for MVDB represents a
pair of difference values. Only one of the pairs will yield a value for MVF falling
within the permitted range of �16 to þ15.5. The above relations between MVF,
MVB and MV are also used in the case of intra blocks, where the vector is used for
predicting B-blocks.

For chrominance blocks, the forward and backward motion vectors, MVF and
MVB, are derived by calculating the sum of the four corresponding luminance
vectors and dividing this sum by 8. The resulting one-sixteenth pixel resolution
vectors are modified towards the nearest half-pixel position.

9.5.1.3 Prediction for a B-block in PB frames
In PB frames mode, predictions for the 8 � 8 pixel B-blocks are related to the
blocks in the corresponding P-macroblock. First, it is assumed that the forward and
backward motion vectors MVF and MVB are calculated. Second, it is assumed that
the luminance and chrominance blocks of the corresponding P-macroblock are
decoded and reconstructed. This macroblock is called PREC. On the basis of PREC

and its prediction, the prediction for the B-block is calculated.
The prediction of the B-block has two modes that are used for different parts of

the block:

● For pixels where the backward motion vector MVB points to inside PREC, use
bidirectional prediction. This is obtained as the average of the forward pre-
diction using MVF relative to the previously decoded P-picture, and the back-
ward prediction using MVB relative to PREC. The average is calculated by
dividing the sum of the two predictions by 2 with truncation.

● For all other pixels, forward prediction using MVF relative to the previously
decoded P-picture is used.

Figure 9.17 shows forward and bidirectionally predicted B-blocks. Part of the block
that is predicted bidirectionally is shaded, and the part that uses forward prediction
only is shown unshaded.

Video coding for low bit rate communications (H.263) 247

FWD

BID

backward
vector

P-macroblock

B-block

FWD: forward prediction
BID: bidirectional prediction

Figure 9.17 Forward and bidirectional prediction for a B-block

9.5.2 Improved PB frames
This mode is an improved version of the optional PB frames mode of H.263 [22-M].
Most parts of this mode are similar to the PB frames mode, the main difference being
that in the improved PB frames mode, the B part of the composite PB-macroblock,
known as BPB-macroblock, may have a separate motion vector for forward and
backward prediction. This is in addition to the bidirectional prediction mode that is
also used in the normal PB frames mode.

Hence, there are three different ways of coding a BPB-macroblock, and the
coding type is signalled by the MVDB parameter. The BPB-macroblock coding
modes are as follows:

1. Bidirectional prediction: In the bidirectional prediction mode, prediction uses
the reference pictures before and after the BPB-picture. These references are the
P-picture part of the temporally previous improved PB frames and the P-pic-
ture part of the current improved PB frames. This prediction is equivalent to
the prediction in normal PB frames mode when MVD ¼ 0. Note that in this
mode the MVD of the PB-macroblock must be included if the P-macroblock is
intra coded.

2. Forward prediction: In the forward prediction mode the vector data contained
in MVDB are used for forward prediction from the previous reference picture
(an intra or inter picture, or the P-picture part of PB or improved PB frames).
This means that there is always only one 16 � 16 vector for the BPB-
macroblock in this prediction mode. A simple prediction is used for coding of
the forward motion vector. The rule for this predictor is that if the current
macroblock is not at the far left edge of the current picture or slice and the
macroblock to the left has a forward motion vector, then the predictor of
the forward motion vector for the current macroblock is set to the value of the
forward motion vector of the lock to the left; otherwise, the predictor is set to
zero. The difference between the predictor and the desired motion vector is

248 Standard codecs: image compression to advanced video coding

then variable length coded in the same way as vector data to be used for the
P-picture (MVD).

3. Backward prediction: In the backward prediction mode the prediction of
BPB-macroblock is identical to BREC of normal PB frames mode. No MVD is
used for the backward prediction.

9.5.3 Quantisation of B-pictures
In normal mode the quantisation parameter quant is used for each macroblock of
P- and B-pictures. In PB frames mode, quant is used for P-blocks only, while for
the B-blocks a different quantisation parameter bquant is used. In the header
information a relative quantisation parameter known as dbquant is sent which
indicates the relation between quant and bquant, as defined in Table 9.2.

Division is done by truncation, and bquant ranges from 1 to 31. If the range
exceeds these values, they are clipped to their limits. Note that since dbquant is a
2-bit code word, whereas quantisation information, such as quant, is a 5-bit word
(indicating quantisation indices in the range of 1–31), such a strategy significantly
reduces the overhead information.

Despite the good results of PB frames mode and its improved version, later on
it was discovered that if B-pictures are allowed to be used as references, there is no
need to have only one B-picture to be combined with a P-picture. When B-pictures
can refer to each other, their consecutive numbers can be increased to improve
compression gain. This is a strategy implemented in H.264 and called hierarchical
B-pictures, which is explained in Chapter 11.

9.6 Advanced variable length coding

H.263 pays special attention to the VLC for two different reasons. First, since
H.263 is a low bit rate codec, it uses any means as well as arithmetic coding as an
efficient VLC to enhance the compression efficiency. On the other hand, since
H.263 is intended for mobile applications, where the channel error can be very
severe and variable length coded data are very prone to the effects of errors, it uses
a less compression-efficient VLC to localise the side effect of channel errors. These

Table 9.2 dbquant codes and relation
between quant and bquant

dbquant bquant

00 ð5 � quantÞ=4

01 ð6 � quantÞ=4

10 ð7 � quantÞ=4

11 ð8 � quantÞ=4

Video coding for low bit rate communications (H.263) 249

two contradictory requirements are of course for two different applications, and
both are optional. In the normal mode, H.263 like the other standard video codecs
uses the conventional VLC.

9.6.1 Syntax-based arithmetic coding
The video syntax is arranged in a hierarchical order of picture, slice/GOB, mac-
roblock and block. In the normal VLC mode of H.263, each element of syntax
(e.g. vector data) as a symbol is variable length coded. There are several Huffman-
designed VLC tables, each specifically designed for a syntax. A symbol is variable
length encoded using one of these tables, based on the syntax of the encoder.
The symbol is first mapped to an entry of the table in a look-up operation, and the
output is a binary code word.

In the optional arithmetic coding of H.263 [22-E], all the Huffman VLC
operations are replaced by arithmetic coding, and instead of each table, a cumula-
tive frequency function defines the probability model for each symbol. This is
called syntax-based arithmetic coding (SAC). There are as many probability
models as are syntaxes. Both encoder and decoder have the same cumulative fre-
quency SAC model stored in their buffer, similar (but not the same) to the one
given in Appendix D. In section 3.4.2.5, we have shown how a symbol with a given
probability model is arithmetic coded. It is shown that use of arithmetic coding
improves the compression efficiency by approximately 5–10 per cent depending on
the type of data to be coded [10]. The use of this mode is indicated by the type
information, PTYPE.

Arithmetic coding is another successful optional coding tool of H.263, and its
refined version is implemented in H.264. The main refinement is on adapting the
probability model to the context of the symbols. However, since context adaptation
in binary symbols is easier, context adaptive binary arithmetic coding (CABAC) is
the type adopted in H.264. More details of CABAC are given in Chapter 11.

9.6.2 Reversible variable length coding
To decode variable length coded data, decoders need to find the beginning of the
code word that starts after the resynchronisation marker. The marker has a unique
pattern which is known to the decoder. Variable length coded data are decoded 1 bit
at a time, and each time the found bits are compared against a set of code words in a
look-up table. If a valid code word is found, the symbol is decoded; otherwise,
another bit from the bitstream is appended to the code and tested again. In the event
of any error in the bitstream, either a wrong symbol is decoded or the result is
declared invalid. In the former, it is more likely that the decoded symbols that
follow will all be wrong, and/or eventually an invalid code word is detected. In the
case of an invalid code word, decoding is halted, and the decoder waits for the next
resynchronisation marker to start decoding. Thus, a single-bit error may cause a
large part of the picture, from the occurrence of the error to the next resynchroni-
sation marker, to be corrupted.

250 Standard codecs: image compression to advanced video coding

One way of reducing the damaged area is to be able to decode the bitstream
backward as well as forward. This is called reversible variable length code
(RVLC). The decoder normally decodes in the forward mode, but when an invalid
code word is detected, it stops decoding, and stores the remaining data, up to the
next resynchronisation marker. It then decodes backward from the marker, to find
an invalid code word, as shown in Figure 9.18. The area between the forward and
reverse nondecodable part becomes the erroneous part.

Resyn-
chronisation

Resyn-
chronisation

Forward
Decode

Error Backward
Decode

Figure 9.18 A reversible VLC

RVLC to work as a variable length code on both ways is required to be sym-
metric, and its success very much depends on finding an invalid code word arising
from the error. If this is not found, then there is no way of identifying the erroneous
area unless by postprocessing, which is discussed in section 9.7.4. Fortunately, due
to symmetry of RVLCs, any error will most likely destroy the symmetry and will
cause a nonvalid code word.

9.6.3 Resynchronisation markers
The resynchronisation markers play an important role in the performance of H.263
video codec. If used too often, they limit the damaged area more tightly, thus
improving the error resilience of the codec. On the other hand, they incur some
overheads, which can be costly for low bit rate video. In secure communication
environments, they might be used only along with the picture header, where a
single-bit error can damage the whole picture. In this case, the overhead is mini-
mised and the error-free picture quality is at its best. In normal transmission media,
the resynchronisation markers are preferred to be used at each GOB to give a
balance between the compression efficiency (nonerroneous picture quality) and
resilience to errors.

For an optimum balance between the resilience and the coding efficiency, the
resynchronisation markers may be inserted where they are needed the most. For
example, if a GOB does not produce enough bits or if it belongs to a B-picture, then
markers may be inserted between several GOBs. Similarly, if a part of a picture is
very active, such as the intraframe coded macroblocks, then within a GOB several
markers can be inserted.

This optional mode of H.263 is defined under Annex K and is called slice
structure mode [22-K]. Two slicing formats are defined. One type is called rec-
tangular slice (RS) submode that occupies a rectangular region of width specified at
the slice header. It contains integer number of MBs in the scanning order within the
rectangular region. The other type is called arbitrary slice ordering (ASO) sub-
mode, where slices may appear in any order within the bitstream. Slices are treated

Video coding for low bit rate communications (H.263) 251

independent of each other to prevent error propagation within the picture. Slice
headers such as GOB headers also act as the resynchronisation markers for bit error
and packet loss recovery. However, a slice header has more information than a
GOB header (e.g. repeating picture header), such that out-of-order decoding of
slices within a picture is possible. This is particularly useful for packetised trans-
mission of H.263 coded data, where out-of-sequence decoding of packets reduces
the decoding delay. Note that there is no complete independence between the sli-
ces, since some processing tools such as deblocking filter mode interrelate adjacent
slices [22-J].

To ensure that slice boundary locations can act as resynchronisation points and
that slices can be sent out of order without causing additional decoding delays, the
following rules are adopted in the slice structure mode:

● The prediction of motion values is the same as if a GOB header was present
(see section 9.1.2), preventing the use of motion vectors of blocks outside the
current slice for the prediction of the values of motion vectors within the slice.

● The advanced intra coding mode [22-I] treats the slice boundary as if it was a
picture boundary with respect to the prediction of intra block DCT coefficient
values.

● The assignment of remote motion vectors for use in overlapped block motion
compensation within the advanced prediction mode [22-F] also prevents the
use of motion vectors of blocks outside the current slice for use as remote
motion vectors.

For complete independency between slices, the recommendation describes the
optional independent segment decoding mode [22-R]. When this mode is used,
the slice boundaries are treated like the picture boundaries, including the treat-
ment of motion vectors which cross those boundaries. If need be, the boundary
pixels are extrapolated to be able to use other optional modes such as unrestricted
motion vector, advanced prediction mode, deblocking filter and scalability
[22-R].

This slicing structure option of H.263 is another fruitful feature of this codec
that has been taken into the H.264 standard. Its error resiliency feature has been so
impressive that in H.264 not only the concept of GOB is abandoned but the picture
type is also abolished and all encoding conditions are defined for slices. Moreover,
flexible ordering of macroblocks within the slice and grouping of slices have
improved the error robustness of the H.264 codec. This part is extensively
addressed in Chapter 11.

9.6.4 Advanced intra/inter VLC
For further improvement to compression efficiency, H.263 specifies some optional
modes that can use the normal Huffman-designed VLCs differently from the other
standard video codecs. The following two optional modes describe situations where
proper use of VLC improves the encoding efficiency.

252 Standard codecs: image compression to advanced video coding

9.6.4.1 Advanced intra coding
In this optional mode [22-I], intra blocks are predictively coded using nearby
blocks in the image to predict values in each intra block. A separate VLC is used
for the intra VLC coefficients, and also quantisation of the DC coefficient for
intra is different. This is all done to improve the coding efficiency of the intra
macroblocks.

The prediction may be made from the block above or the block to the left of the
current block being decoded. An exception occurs in the special case of an isolated
intra coded macroblock in an inter coded frame with the macroblock neither above
nor to the left being intra coded. In this case, no prediction is made. In prediction,
DC coefficients are always predicted in some manner, although either the first row
or column of AC coefficients may or may not be predicted as signalled on a
macroblock-by-macroblock basis. Inverse quantisation of the intra DC coefficient
is identical to the inverse quantisation of AC coefficients for predicted blocks,
unlike the core H.263 or other standards that use a fixed quantiser of 8 bits for intra
DC coefficients.

Also, in addition to zigzag scanning, two more scans are employed, alternate
horizontal and alternate vertical scans, as shown in Figure 9.19. Alternate vertical is
similar to the alternate scan mode of MPEG-2. For intra predicted blocks, if the
prediction mode is set to zero, a zigzag scan is selected for all blocks in a macro-
block; otherwise, the prediction direction is used to select a scan on a block basis.
For instance, if the prediction refers to the horizontally adjacent block, an alternate
vertical scan is selected for the current block; otherwise (for DC prediction refer-
ring to vertically adjacent block), alternate horizontal scan is used for the current
block.

(a) (b)

Figure 9.19 Alternate scans: (a) horizontal and (b) vertical

For nonintra blocks, the 8 � 8 blocks of transform coefficients are always
scanned with zigzag scanning, similar to all the other standard codecs. A separate
VLC table is used for all intra DC and AC coefficients.

Video coding for low bit rate communications (H.263) 253

u

v

B(u, v)

A(u, v)

E(u, v)

Figure 9.20 Three neighbouring blocks in the DCT domain

Depending on the value of intra mode, either one or eight coefficients are the
prediction residuals that must be added to a predictor. Figure 9.20 shows three 8 � 8
blocks of quantised DC levels and prediction residuals labelled A(u, v), B(u, v) and
E(u, v), where u and v are row and column indices, respectively.

E(u, v) denotes the current block that is being decoded. A(u, v) denotes
the block immediately above E(u, v), and B(u, v) denotes the block immediately to
the left of E(u, v). Define C(u, v) to be the actual quantised DCT coefficient. The
quantised level C(u, v) is recovered by adding E(u, v) to the appropriate prediction
as signalled in the intra mode field.

The reconstruction for each coding mode is given by

Mode 0: DC prediction only

Cð0, 0Þ ¼ Eð0, 0Þ þ 1
2

Að0, 0Þ � QPA

QPC
þ Bð0, 0Þ � QPB

QPC

� �
Cðu, vÞ ¼ Eðu, vÞ, u 6¼ 0; v 6¼ 0; u ¼ 0, . . . , 7; v ¼ 0, . . . , 7

ð9:9Þ

Mode 1: DC and AC prediction from the block above

Cð0, vÞ ¼ Eð0, vÞ þ Að0, vÞ � QPA

QPC
, v ¼ 0, . . . , 7

Cðu, vÞ ¼ Eðu, vÞ, u ¼ 1, . . . , 7; v ¼ 0, . . . , 7

ð9:10Þ

Mode 2: DC and AC prediction from the block to the left

Cðu, 0Þ ¼ Eðu, 0Þ þ Bðu, 0Þ � QPB

QPC
, u ¼ 0, . . . , 7

Cðu, vÞ ¼ Eðu, vÞ, u ¼ 0, . . . , 7; v ¼ 1, . . . , 7

ð9:11Þ

254 Standard codecs: image compression to advanced video coding

where QPA, QPB and QPC denote the quantisation parameters (taking values
between 1 and 31) used for A(u, v), B(u, v) and C(u, v), respectively.

The outcome of this option has also influenced the way intra blocks in H.264 are
coded. First, as this annex shows, predictions are carried out in the transform
domain and only applied to the 2D transform coefficients at the block borders. In
H.264, prediction is carried out in the pixel domain and applied to all pixels within
the block. However, it should be borne in mind that these transform coefficients
mainly carry the block energy and if prediction is to be carried out in the transform
domain, they are the more appropriate candidates. However, in textured areas all
transform coefficients become important, and for efficient compression they are
better to be predicted. Hence, pixel domain prediction is superior to the transform
domain, which is observed in H.264. Second, in this annex only three types of
predictions (DC, horizontal and vertical) are used, but in H.264 either four or
nine directional predictions are used. These predictors can significantly reduce the
transform coefficient residues in detailed areas, and hence intra MBs in H.264 are
very efficiently coded. Details of various directional predictions for intra blocks
are discussed in Chapter 11.

9.6.4.2 Advanced inter coding with switching between two VLC tables
At low frame rates (very common for low bit rate applications), the DCT coeffi-
cients of interframe coded macroblocks are normally large. Also, in general, the
VLC tables designed for intraframe coded macroblocks suit larger value coeffi-
cients better. Hence, to improve the compression efficiency of the H.263 codec, the
inter coded macroblocks are allowed to use the VLC tables that are primarily
designed for intra macroblocks, but with a different interpretation of level and run.
This is made optional and is called alternative inter VLC mode [22-S]. It is acti-
vated when significant changes are evident in the picture.

The intra VLC is constructed so that code words have the same value for last (0 or
1) in both the inter and intra tables. The intra table is therefore produced by reshuffling
the meaning of the code words with the same value of last. Furthermore, for events
with large level, the intra table uses a code word which in the inter table has large run.

Encoder action
The encoder uses the intra VLC table for coding an inter block if the following two
criteria are satisfied:

● The intra VLC results in fewer bits than inter VLC.
● If the coefficients are coded with the intra VLC table but the decoder assumes

that the inter VLC is used, coefficients outside the 64 coefficients of an 8 � 8
block are addressed.

With many large coefficients, this will easily happen due to the way the intra VLC
is used.

Decoder action
At the decoder the following actions are taken:

● The decoder first receives all coefficient codes of a block.

Video coding for low bit rate communications (H.263) 255

● The code words are then interpreted assuming that inter VLC is used; if the
addressing of coefficients stays inside the 64 coefficients of a block, the
decoding is ended.

● If coefficients outside the block are addressed, the code words are interpreted
according to the intra VLC.

The outcome of this annex [22-S] in a different form is also used in H.264.
In H.264, rather than switching between 2 VLC tables, selection is made among
11 VLC tables. Decision for selection of the most suitable table is based on the
context of data to be coded. This is called context adaptive VLC (CAVLC),
explained in great detail in Chapter 11.

9.7 Protection against error

H.263 provides error protection, robustness and resilience to allow accessing of
video information over a wide range of transmission media. In particular, due to the
rapid growth of mobile communications, it is extremely important that access is
available to video information via wireless networks. This implies a need for useful
operation of video compression algorithms in a very error-prone environment at
low bit rates (i.e. less than 64 kbit/s).

In the previous sections, we studied the two important coding tools of VLC and
resynchronisation markers in the H.263 codec. The former spreads the errors, and
the latter tries to confine them into a small area. In this section, we introduce
some more useful tools that can enhance the video quality beyond what we have
seen so far. Some of these are recommended as options (or annexes) and some
as postprocessing tools that can be implemented at the decoder without the help
of the encoder. They can be used either together or individually to improve video
quality.

9.7.1 Forward error correction
Forward error correction is the simplest and most effective means of improving
video quality in the event of channel errors. It is based on adding some redundancy
bits, known as parity bits, to a group of data bits, according to some rules. At the
receiver, the decoder, invoking the same rule, can detect if any error has occurred,
and in certain cases even correct it. However, for video data, error correction is not
as important as is error detection.

The forward error correction for H.263 is the same as for H.261, and is optional
[22-H]. However, since the main usage of H.263 will be in a mobile environment
with poor error characteristics, forward error correction is particularly important. In
most cases (e.g. the GSM system), the error correction will be an integral part of the
transmission channel. If it is not, or if additional protection is required, then it
should be built into the H.263 system.

To allow the video data and error correction parity information to be identified
by the decoder, an error correction framing pattern is included. This pattern consists

256 Standard codecs: image compression to advanced video coding

of multiframes of eight frames, each frame comprising 1-bit framing, 1-bit fill
indicator (FI), 492 bits of coded data and 18-bit parity. One bit from each one of
the eight frames provides the frame alignment pattern of (S1S2S3S4S5S6S7S8) ¼
(00011011) that will help the decoder to resynchronise itself after the occurrence of
errors.

The error detection/correction code is a BCH (511, 493) [16]. The parity is
calculated against a code of 493 bits, comprising 1-bit FI and 492 bits of coded
video data. The generator polynomial is given by

gðxÞ ¼ ðx9 þ x4 þ 1Þðx9 þ x6 þ x4 þ x3 þ 1Þ ð9:12Þ

The parity bits are calculated by dividing the 493 bits (left shifted by 18 bits) of
the video data (including the fill bit) to this generating function. Since the gen-
erating function is a 19-bit polynomial, the remainder will be an 18-bit binary
number (that is why data bits had to be shifted by 18 bits to the left), to be used as
the parity bits. For example, for the input data of 01111 . . . 11 (493 bits), the
resulting correction parity bits are 011011010100011011 (18 bits). The encoder
appends these 18 bits to the 493 data bits, and the whole 511 bits are sent to the
receiver as a block of data. Now these 511-bit data are exactly divisible to the
generating function, and the remainder will be zero. Thus, the receiver can perform
a similar division, and if there is any remainder, it is an indication of channel error.
This is a very robust form of error detection, since burst of errors can also be
detected.

9.7.2 Back channel
The impact of error on interframe coded pictures becomes objectionable when error
propagates through the picture sequence. Errors affecting only one video frame are
easily tolerated by the viewers, especially at high frame rates. To improve quality
of video services, propagation of errors through the picture frames must be pre-
vented. A simple method for this task is that when the decoder detects errors in the
bitstream (e.g. section 9.7.1), it may ask the encoder to code that part of the picture
in the next frame in intra mode. This is called forced updating, and of course
requires a back channel from the decoder to the encoder.

Since intraframe coded macroblocks generate more bits than interframe coded
ones, forced updating may not be too impressive. In particular, in normal inter-
frame coding, only a small number of MBs in a GOB are coded. Forced updating
will encode all the MBs in the GOB (including the noncoded MBs) in intra mode,
which increases the bit rate significantly. This can have a side effect of impairing
video quality in the subsequent frames. Moreover, if errors occur in more than one
GOB, the situation becomes much worse, since the encoder can exceed its bit rate
budget, dropping some picture frames. This results in picture jerkiness, which is
equally annoying.

A better way of preventing propagation of errors is to ask the encoder to
change its prediction to an error-free picture. For example, if error occurs in frame

Video coding for low bit rate communications (H.263) 257

N, then in coding of the next frame (frame N þ 1), the encoder uses frame N � 1,
which is free of error at the decoder. This of course requires some additional picture
buffers at both the encoder and the decoder.

The optional reference picture selection mode of H.263 uses additional picture
memory at the encoder to perform such a task [22-N]. The amount of additional
picture memory accommodated in the decoder may be signalled by external means
to help memory management at the encoder. The source encoder for this mode is
similar to the generic interframe coder, but several picture memories are provided
in order that the encoder may keep a copy of several past pictures, as shown in
Figure 9.21.

The source encoder selects one of the picture memories according to the
backward channel message GOB-by-GOB to suppress the temporal error propa-
gation due to the interframe coding. The information to signal which picture is
selected for prediction is included in the encoded bitstream. The decoder of this
mode also has an additional plural number of picture memories to store the cor-
rectly decoded video signals with its temporal reference (TR) information. The
decoder uses the stored picture whose TR is TRP as the reference picture for
interframe decoding, instead of the last decoded picture, if the TRP field exists in
the forward message. When the picture whose TR is TRP is not available at the
decoder, the decoder may send the forced intra update signal to the encoder.

T Q
Q–1

T–1

+

P

CC

video
in

AP2

APn

AP1

–

t
p

qz
q

v

Figure 9.21 An encoder with multiple reference pictures (T, transform;
Q, quantiser; CC, coding control; P, picture memory with motion-
compensated variable delay; AP, additional picture memory,
v, motion vector; p, flag for intra/inter; t, flag for transmitted or not;
qz, quantisation indication; q, quantisation index for DCT
coefficients)

258 Standard codecs: image compression to advanced video coding

A positive acknowledgment (ACK) or a negative acknowledgment (NACK) is
returned depending on whether the decoder successfully decodes a GOB.

An improved version of this annex [22-N] is used in H.264, under the concept
of multiple reference frames. It is used to improve both compression efficiency, by
searching for better motion vectors among several frames, and error robustness as
discussed here. Multiple reference motion compensation and error-free selection of
reference frame are studied in some detail in Chapter 11.

9.7.3 Data partitioning
Although the individual bits of the variable length coded symbols in a bitstream are
equally susceptible to channel errors, the impact of the error on the symbols is
unequal. Between the two resynchronisation markers, symbols that appear earlier in
the bitstream suffer less from the errors than those which come later. This is due to
the cumulative impact of VLC on decoding of the subsequent data. To illustrate the
extent of difference on the unequal susceptibility to errors, consider a segment of
variable length coded video data between two resynchronisation markers. Also,
assume that the segment has N symbols with an average VLC length of L bit/
symbol and a channel with a bit error rate of P. If any of the first L bits of the
bitstream (those immediately after the first marker) are in error, then the symbol
would be in error with a probability of LP. The probability that the second symbol
in the bitstream is in error now becomes 2LP, since any error in the first L bits also
affects the second symbol. Hence, the probability that the last symbol in the bit-
stream is in error will be NLP, since every error ahead of this symbol can change
the value of this symbol. Thus, the last symbol is N times more likely to be in error
than the first symbol in the bitstream.

In applications where some video data are more important than the others,
such as the macroblock addresses (as distinct from interframe DCT coefficients),
by sending the important data ahead of the nonimportant data, one can sig-
nificantly reduce the channel error side effects. This form of partitioning the
variable length coded data into segments of various importance is called data
partitioning, which is one of the optional modes of H.263 [22-V]. Note that this
form of data partitioning is different from the data partitioning used as a layering
technique, described in section 8.5.2. There, through the priority break point the
DCT coefficients were divided into two parts, and the lower frequency coeffi-
cients along with the other data comprised the base layer and the high-frequency
DCT coefficients were the second layer. Inclusion of the priority break points and
other overheads increase the bit rate by about 3–4 per cent (see Figure 8.25). But
here, the entire set of data in a GOB is partitioned, and the data are ordered
according to the importance of their contributions in video quality, without any
additional overhead. For example, within a GOB, the order of importance of data
can be as follows: coding status of MBs, motion vectors, block pattern, quantiser
parameter, DC coefficients and AC coefficients. Thus, it is also possible to
extract all the DC coefficients of the blocks in a GOB, and send them ahead of
all the AC coefficients.

Video coding for low bit rate communications (H.263) 259

(a) (b)

Figure 9.22 Effects of errors (a) with and (b) without data partitioning

To appreciate the importance of data partitioning in protecting video against
channel errors, Figure 9.22 shows two snap shots of a video sequence with and
without data partitioning. It was assumed that in data partitioning, only the DCT
coefficients were subjected to errors, but for the normal mode, the bit error could
affect any bit of the data. This is a plausible assumption, since normally the
important data comprise a small fraction of the bitstream and they can be heavily
protected against error. The important data can also use an RVLC, such that some
of the corrupted data can be retrieved. In fact, Annex V of data partitioning
recommends RVLC for slice header (including the macroblock type) and motion
vectors [22-V]. The DCT coefficients according to this recommendation use nor-
mal VLC. The good picture quality with data partitioning over the normal as shown
in Figure 9.22 justifies such a decision. This also shows the insignificance of the
DCT coefficients, as their loss hardly affects the picture quality. It should be noted
that in this picture, all the macroblocks were interframe coded. Had there been any
intraframe coded macroblock, then its loss would have been noticeable.

Table 9.3 compares the normal VLC and RVLC for the MCBPC for I-pictures.
Note that RVLC is symmetric, and it has more bits than the normal VLC. Hence, its
use should be avoided, unless it is vital to prevent drastic image degradation.

Table 9.3 VLC and RVLC bits of MCBPC (for I-pictures)

Index MB type CBPC Normal VLC RVLC

0 3 (intra) 00 1 1
1 3 01 001 010
2 3 10 010 0110
3 3 11 011 01110
4 4 (intra+Q) 00 0001 00100
5 4 01 000001 011110
6 4 10 000010 001100
7 4 11 000011 0111110

260 Standard codecs: image compression to advanced video coding

Table 9.4 shows the average number of bits used in an experiment for each
slice of a QCIF size salesman image test sequence (picture in Figure 9.22). The
last column is the average bit/slice in normal coding of the sequence, for the
whole nine slices. For data partitioning, the second column is the slice overhead
(including the macroblock type, resynchronisation markers), the third column is
the motion vector overhead and the fourth column is the number of bits used for
the DCT coefficients. The sum of all the bits in data partitioning is given in the
fifth column.

Table 9.4 Number of bits per slice for data partitioning

Data partitioning

Slice no. Slice header MV Coefficient Sum Normal

1 52 30 211 293 269
2 63 34 506 603 571
3 45 42 748 835 803
4 48 42 1025 1115 1083
5 45 71 959 1075 1043
6 41 46 844 931 899
7 48 34 425 507 475
8 51 32 408 491 459
9 38 24 221 283 251

First, since the sum of slice header and motion vectors is only 8–28 per cent of
the data, less for more active slices, they can be easily protected without sig-
nificantly increasing the total bit rate. Second, comparing the total number of bits in
data partitioning with normal coding (columns 5 and 6), we see that data parti-
tioning uses about 3–12 per cent more bits than does normal coding. Considering
that this increase is due to the use of RVLC for only the header and the motion
vectors and some more resynchronisation markers at the end of the important data,
had we used RVLC for the entire bits, the increase in bit rate would have been
much higher. Hence, the fact that DCT coefficients do not contribute too much to
image quality and RVLC needs more bits than VLC; it is very wise not to use
RVLC for the DCT coefficients, as Annex V recommends [22-V]. It should be
noted that the main cause for the unpleasant appearance of the picture without data
partitioning (Figure 9.22b) is the error on the important data of the bitstream, such
as MB address and motion vectors. When the coding status of an MB is wrongly
addressed to the decoder, visual information is misplaced. Also, in the non-data-
partitioning mode, since the data, MB and motion vectors variable length coded are
mixed, any bit error easily causes nonvalid code words, and a large area of the
picture will be in error, as shown in Figure 9.22b.

Note that data partitioning is only used for P- and B-pictures, because for
I-pictures, DCT coefficients are all important and their absence degrades picture
quality significantly.

Video coding for low bit rate communications (H.263) 261

Data partitioning is one of the most efficient error resilience tools with the
least overhead. A more comprehensive way of partitioning data is implemented
in H.264. In H.264, the coded data are partitioned into three groups, in the order
of sensitivity to errors, as: data part A, part B and part C. Part A contains the
most important information such as headers, addresses, coding modes and MVD.
Part B contains the intra coded transform coefficients, and those of inter coded
are carried into part C. Since part A can be heavily protected against errors,
H.264 does not need RVLC that incurs high overhead. Like H.263, I-pictures in
H.264 (in fact, I-slices) are not data partitioned. These are discussed in greater
depth in Chapter 11.

9.7.4 Error detection by postprocessing
In the error correction/detection section of 9.7.1, we saw that with the help of
parity bits the decoder can detect an erroneous bitstream. In data communications,
the decoder normally ignores the entire segment of the bits and requests for
retransmission. Because of the delay-sensitive nature of visual services, in video
communication retransmission is never used. Moreover, the decoder can decode a
part of the bitstream, up to the point where it finds an invalid code word. Hence, a
part of the corrupted bitstream can be recovered, limiting the damaged area.

ErrorNormal decoding Cannot decode

Invalid
code word

Resynchronisation Resynchronisation

Figure 9.23 Error in a bitstream

However, the decoder still cannot identify the exact location of the error (if this
was possible, it could have corrected it!). What is certain is that the bits after the
invalid code word up to the next resynchronisation marker are not decodable, as
shown in Figure 9.23.

It is to be expected that several symbols are wrongly decoded before the
decoder finds an invalid code word. In some cases, the entire data may be decod-
able without encountering an invalid code word, although this rarely happens. For
example, the grey parts of the slices in Figure 9.22b are due to the invalid code
words that the decoder has given up decoding. Figure 9.22b also shows wrongly
decoded blocks of pixels, where the decoder can still carry on decoding beyond
these blocks. Hence, in those parts that are decodable, the correctly decoded data
cannot be separated from the wrongly decoded ones, unless some form of proces-
sing on the decoded pixels is carried out.

A simple and efficient method of separating correctly decoded blocks from the
wrongly decoded ones is to test for pixel continuity at the macroblock (MB)
boundaries. For nonerroneous pictures, due to high interpixel correlation pixel,
differences at the MB borders are normally small, and those due to errors create

262 Standard codecs: image compression to advanced video coding

large differences. As shown in Figure 9.24a, for every decoded MB, the average of
upper and lower pixel differences at the MB boundaries is calculated as

BD ¼ 1
N

XN

i¼1

jPi
in � Pi

outj ð9:13Þ

where N is the total number of pixels at the upper and lower borders of the MB.

below

above

DCT-
block 0

DCT-
block 2

DCT-
block 1

DCT-
block 3

 p6 p5 p4 p3 p2 p1 p0

 p7
 p6

 p4
 p3
 p2
 p1
 p0

 p7
 p6

 p5 p5
 p4
 p3
 p2
 p1
 p0

 p6

 p7

 p7 p5 p4 p3 p2 p1 p0

left right

(a) (b)

………..………..

P in Pout

U

L

M

………..
………..

Figure 9.24 Pixels at the boundary of (a) a macroblock and (b) four blocks

The boundary difference (BD) of each MB is then compared against a
threshold, and for those MBs which are larger, the implication is that they are most
likely to be erroneously decoded. Since due to texture or edges in the image, there
might be some inherent discontinuity at the MB boundaries, the boundary threshold
can be made dependent on the local image statistics. For example, the mean value
of the BDs of all the MB in the slice, or the slice above, with some tolerance (a few
times the standard deviation of the mean differences) can be used as the threshold.
Our experiments show that mean plus four times the standard deviation is a good
value for the threshold [17]. The BD can be calculated separately for luminance and
each of the colour differences. A macroblock might have been erroneously decoded
if any of these BDs so indicated.

Another method is to calculate the BDs around the 8 � 8 pixel block bound-
aries, as shown in Figure 9.24b. In 4:2:0 image format, each MB has four lumi-
nance blocks and one of each chrominance block, and hence the BD is applied only
to the luminance blocks.

In a similar fashion to the BD of (9.13), the block boundary is calculated on the
inner and outer pixels of the blocks, as shown in Figure 9.24b. Again, if any of the
four block boundary values, BD, indicates a discontinuity, the macroblock is most
likely to be erroneously decoded. Combining BDs of macroblock (Figure 9.24a)
and the block (Figure 9.24b) increases the reliability of detection [17].

Assuming that these methods can detect an erroneously decoded MB, if the
first erroneous MB in a slice is found and provided that the error had only occurred

Video coding for low bit rate communications (H.263) 263

in the bits of this MB, then in general it is possible to retrieve the remaining data.
Here, after identifying the first erroneous MB, some of the bits are skipped and
decoding is performed on the remaining bits. The process is continued, such that
the remaining bits up to the next resynchronisation marker are completely decod-
able (no invalid code word is encountered). In doing so, even parts of the slice/
GOB that were not decodable before are now decoded and the erroneous part of the
GOB can be confined to one MB.

If errors occur in more than one MB, then it may not be possible to have perfect
decoding (no invalid code word) up to the next resynchronisation marker. Thus, in
general, when decoding proceeds up to the next resynchronisation marker, the
number of erroneous MBs is counted. This number should be less than the number of
erroneous MB in the previous run. The process ends when any further skips in bits
and decoding do not further reduce the number of erroneous macroblocks in a GOB.

Figure 9.25 shows the decoded pictures at each stage of this step-by-step
skipping and decoding of the bits. For the purpose of demonstration, only 1 bit was
introduced in the bitstream between the resynchronisation markers of some of the
slices. The first picture shows the erroneous picture without any postprocessing.
The second picture shows the reconstructed picture after the first round of bit
skipping in each slice, and so on. As we see in each stage the erroneous area
(number of erroneous MBs) is reduced, and further processing does not reduce the
number of erroneous MBs (not much differences between pictures d and e). There
is only one erroneous MB in each slice of the final picture (Figure 9.25e), which
can easily be concealed.

In the above example, it was assumed that a single-bit error affected one MB,
or a burst of errors affected only one MB. If errors affect more than one MB, then at
the end more than one MB will be in error and of course it will take more time to

(a) (b)

(d) (e)

(c)

Figure 9.25 (a–e) Step-by-step decoding and skipping of bits in the bitstream

264 Standard codecs: image compression to advanced video coding

find these erroneous MBs in the decoding. This is because, after finding the first
erroneous MB, since there are some erroneous MBs to follow, perfect decoding
(not to find invalid code word) is not possible. Our experiments show that in most
cases, all the macroblocks between the first and the last erroneous MBs in a slice
will be in error. However, it is still possible to recover some of the macroblocks,
which without this sort of processing was not possible.

9.7.5 Error concealment
If any of the error resilience methods mentioned so far or their combinations is not
sufficient to produce satisfactory picture quality, then one may try to hide the image
degradation from the viewer. This is called error concealment.

The main idea behind error concealment is to replace the damaged pixels with
pixels from some parts of the video that have maximum resemblance. In general,
pixel substitution may come from the same frame or from the previous frame.
These are called intraframe and interframe error concealment, respectively [18].

9.7.5.1 Intraframe error concealment
In intraframe error concealment, pixels of an erroneous MB are replaced by those
of a neighbouring MB with some form of interpolation. For example, pixels at the
macroblock boundary may be directly replaced by the pixels from the other side of
the border, and for the other pixels, the average of the neighbouring pixels inversely
weighted by their distances may be substituted.

FFT LPF IFFT

Figure 9.26 An example of intraframe error concealment

An efficient method of intraframe error concealment is shown in block dia-
gram of Figure 9.26. A block of pixels, larger than the size of a macroblock (pre-
ferably 48 � 48 pixels, equivalent to 3 � 3 MBs), encompassing the MB to be
concealed is fast Fourier transformed (FFT). Pixels of the MB to be concealed
initially are filled with grey-level values. The FFT coefficients are two-dimensionally
low-pass filtered (LPF) to remove the discontinuity due to these inserted pixels.
The resultant low-pass filtered coefficients are then inverse fast Fourier trans-
formed (IFFT) to reconstruct a replica of the input pixels. Because of low pass
filtering, the reconstructed pixels are similar but not exactly the same as the input
pixels. The extent of dissimilarity depends on the cut-off frequency of the low-pass
filter. The lower the cut-off frequency, the stronger is the influence of the neigh-
bouring pixels into the concealed MB. The centre MB at the output now replaces
the centre MB at the input, and the whole process of FFT, LPF and IFFT repeats
again. The process is repeated several times, and at each time the cut-off frequency
of the LPF is gradually increased. To improve the quality of error concealment,
the low-pass filter can be made directional, based on the characteristics of the

Video coding for low bit rate communications (H.263) 265

surrounding pixels. The process is terminated when the difference between the
pixels of the concealed MB at the input and output is less than a threshold.

This form of error concealment assumes an isolated erroneous MB surrounded
by eight immediate nonerroneous neighbours. This is suitable for JPEG or motion
JPEG coded pictures, where error is localised (see Figure 5.17), or for interframe
coded pictures, if by means of postprocessing error is confined to an MB (e.g.
Figure 9.25e). For video, where there is a danger of error at the same slice/GOB,
pixels of the top and bottom slices should be used, and the two right and left MBs
are treated as they are in error. This impairs the performance of the concealment,
and may not be suitable. For video, a more suitable error concealment is interframe
error concealment, which is explained in the following.

9.7.5.2 Interframe error concealment
In interframe error concealment, pixels from the previous frame are substituted for
the pixels of the MB to be concealed, as shown in Figure 9.27. This could be either
by direct substitution or by their motion-compensated version, using an estimated
motion vector. Obviously, due to movement, motion-compensated substitution is
better. The performance of this method depends on how accurately the motion
vector for concealment is estimated. In the following sections, several methods of
estimating this motion vector are explained, and their error concealment fidelities
are compared against each other.

C0P0

current frameprevious frame

1

4

3
2

5
6

Figure 9.27 A grid of 3 � 3 macroblocks in the current and previous frames

Zero MV
Direct substitution of pixels from the MB of the previous frame at the same spatial
position of the MB to be concealed (zero motion vector). This is the simplest
method of substitution, and is effective in the picture background, or in the
foreground with slow motion.

Previous MV
The estimated motion vector is the same as the motion vector of the spatially similar
MB in the previous frame. This method, which assumes a uniform motion of objects,
performs well most of the time, but however it is eventually bound to fail.

266 Standard codecs: image compression to advanced video coding

Top MV
The estimated motion vector is the same as the motion vector of MB at the top of
the wanted MB (e.g. MB number 2 of Figure 9.27). Similarly, the motion vector
of the bottom MB (e.g. MB number 5) may be used. Since these two MBs are
closest to the current MB, it is expected that their MV will have the highest
similarity. However, this method is as simple as the direct substitution (zero MV)
and previous MV.

Mean MV
The average of the motion vectors of the six immediate neighbours represents the
estimated MV. The mean values for horizontal displacement, x0, and vertical
displacement, y0, are taken separately:

x0 ¼ 1
6

X6

i¼1

xi; y0 ¼ 1
6

X6

i¼1

yi ð9:14Þ

where xi and yi are the horizontal and vertical components of the motion vector i,
MVi(xi, yi). Note that due to averaging, any small perturbations in the neighbouring
motion vector components will cancel each other. Thus, the estimated motion
vector will be different from the motion vector of the neighbouring MB, creating
discontinuity at the macroblock borders. This method of error concealment may not
produce a smooth picture. The discontinuity at the MB boundaries produces a
blocking artefact that appears very annoying. Hence, this method is not good for
parts of the picture with motion in various directions, such as the movement of lips
and eyes of a talking head.

Majority MV
The majority of the motion vectors are grouped together, and their mean or other
representative value is taken as the estimated motion vector:

x0 ¼ 1
N

XN

i¼1

xi; y0 ¼ 1
N

XN

i¼1

yi, N � 6 ð9:15Þ

where N out of six motion vectors are almost at the same direction. Since in general
all motion vectors can differ from each other, to find the majority, the motion
vectors should be vector quantised, and the majority is found among their original
values. This method works well for rigid body movement, where the neighbouring
motion vectors normally move at the same direction. However, since there are only
six neighbouring motion vectors, a definite majority among them cannot be found
reliably. Hence, for nonrigid movement, such as lips and eyes, this method may not
work well.

Vector median MV
The median of a group of vectors is one of the vectors in the group that has the
smallest Euclidean distance from all. Thus, among the six neighbouring motion
vectors MV1–MV6 of Figure 9.27, the jth motion vector, MVj, is the median if

Video coding for low bit rate communications (H.263) 267

distj ¼ 1
5

X6

i¼1

ffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
, i 6¼ j ð9:16Þ

such that for all motion vectors MVk, 1 � k 6, distance of vector j, distj, is less than
the distance of vector k, distk [19].

This method is expected to produce a good result, because since the median
of vectors has the least distance from all, it has the largest correlation with them.
Also, since the macroblock to be concealed is at the centre of all and has the
highest correlation with them, it has the same property as the median vector. This
good performance is achieved at a higher computational cost. Here, a Euclidean
distance of each vector from all the other five vectors should be calculated first,
which requires (1/2)(6 � 5) ¼ 15 vector distance calculations. Then for each
vector, the five distances should be averaged to represent the average distance of
a vector from the others. Finally, they should be rank ordered to find the mini-
mum distance.

To compare the relative error concealment performance of each method, four
sets of head-and-shoulders type image sequences at QCIF resolutions were sub-
jected to channel errors. In the event of error, the whole GOB was concealed by the
above-mentioned methods. This is because, due to VLC, a single-bit error may
cause the remaining bits up to the next GOB nondecodable, as shown on the
erroneous picture of Figure 9.22. Tables 9.5 and 9.6 summarise the quality of these
error concealment methods for QCIF video at 5 and 12.5 frames/s, respectively. To
show just the impact of error concealment, measurements were carried out only on
the concealed areas.

As the tables show, the vector median method gives the best result at both high
and low frame rates. That of the majority method is the second best. In all cases, the
performance of the average method is as poor as the simple method of top and, in
some cases it is even poorer (seq-1 and seq-4 of Table 9.5). The poor performance
of the previous MV means that motion is not uniform. This is particularly evident at
the low frame rate of 5 frames/s. However, all the methods are superior to zero

Table 9.5 PSNR (dB) of various error concealment
methods at 5 frames/s

Type Sequencea

Seq-1 Seq-2 Seq-3 Seq-4

Zero 17.04 18.15 14.54 13.08
Previous 17.28 18.34 14.53 13.48
Top 19.27 21.08 17.04 16.25
Average 19.18 21.74 17.51 16.18
Majority 19.35 21.83 17.89 16.61
Median 19.87 22.52 18.29 16.89
No errors 22.57 26.94 20.85 19.88

a64 kbps, 5 fps, QCIF.

268 Standard codecs: image compression to advanced video coding

motion, implying that loss concealment by an estimated motion vector improves
picture quality.

Also, note that since quality measurements were carried out at the error-
concealed areas, the performance at a lower frame rate is poorer than the higher
frame rate, that is, as the frame rate is reduced, the estimated motion vector is less
similar to the actual motion vector. Despite this, estimating motion vectors by all the
methods gives better performance than not estimating them (zero MV). Figure 9.28
shows an accumulated erroneous picture of seq-3 at 5 frames/s and its concealed one
with the median vector method [19].

Figure 9.28 An erroneous picture along with its error-concealed one

Bidirectional MV
If B-pictures are present in the GOP, then due to stronger relation between the motion
vector of a B-picture and its anchor P- or I-picture, a better estimation of the motion
vector can be made. As an example, consider a GOP of N ¼? and M ¼ 2, that is, the
image sequence is made of alternate P- and B-pictures, as shown in Figure 9.29.

Table 9.6 PSNR (dB) of the various error concealment
methods at 12.5 frames/s

Type Sequencea

Seq-1 Seq-2 Seq-3 Seq-4

Zero 20.62 22.11 18.64 16.62
Previous 22.49 22.19 18.19 16.53
Top 22.97 25.16 20.97 20.04
Average 22.92 25.99 21.24 20.08
Majority 23.33 26.32 21.57 20.36
Median 24.36 26.72 22.16 20.81
No errors 26.12 29.69 23.93 23.04

a64 kbps, 12.5 fps, QCIF.

Video coding for low bit rate communications (H.263) 269

P31

B23 B21

P5P3P1 B4B2B2
P5P3P1

B4

Figure 9.29 A group of alternate P- and B-pictures

To estimate a missing motion vector for a P-picture, say P31, the available
motion vectors of the same spatial coordinates of the B-pictures can be used, with
the following substitutions:

If only B23 is available, then P31 ¼ 2 � B23.
If only B21 is available, then P31 ¼ �2 � B21.
If both B23 and B21 are available, then P31 ¼ B23 � B21.
If none of them are available, then set P31 ¼ 0.

To estimate a missing motion vector of a B-picture, simply divide that of the
P-picture by 2; B23 ¼ (1/2)P31 or B21 ¼ �(1/2)P31.

Here we have used a simple previous MV estimation method, explained earlier.
Although in the tests of Tables 9.5 and 9.6 (image sequences made of P-pictures
only), this method did not perform well, but since the relation here between P- and
B-pictures is strong, the method works well. For example, using MPEG-1 video we
have achieved about 3- to 4-dB improvement over the majority method [20]. The
amount of improvement is picture dependent, and it appears for QCIF images
coded with H.263; at least 1-dB improvement over the majority can be achieved.
Interested readers should consult [20] for further detailed information.

9.7.5.3 Loss concealment
In transmission of video over packet networks such as IP, ATM or wireless packet
networks, the video data are packed into the payload of the packets. In this trans-
mission mode, two types of distortion may occur. One is the error in the payload,
which results in erroneous reception of the bitstream, similar to the effect of
channel errors. The second one is either error in the packet header, which results in
a packet loss, or the loss of a packet if it is queued in a congested network.
Excessively delayed packets will be of no use, and hence they will be discarded
either by the switching nodes (routers) or by the receiver itself.

Detection, correction and concealment of the error in the packet payload are
similar to those of the previous methods mentioned. For packet loss the methods
can be slightly different. First, the decoder by examining the packet sequence
number discovers that a packet is missing. Second, when a packet is lost, unlike
channel errors, no part of the video data is decodable. Hence, loss concealment is

270 Standard codecs: image compression to advanced video coding

more vital to video over packet networks than the error concealment in nonpacket
transporting environment.

Considering that in coding of video, in particular at low bit rates, not all parts of
the picture are coded, the best concealment for noncoded macroblocks is the direct
copy of the previous macroblock without any motion compensation (i.e. zero MV).
For those which are coded, as Tables 9.5 and 9.6 show, a motion-compensated
macroblock gives a better result. However, the information as to which macroblock
was or was not coded is not available at the decoder. It is obvious that any attempt to
replace the noncoded area by the motion-compensated macroblock will degrade the
image quality rather than improve it. Our simulations show that replacing a noncoded
MB with an estimated motion-compensated MB would degrade the quality of the
pixels in that MB by 7–10 dB [21]. One solution is to build a probability model for an
MB to be concealed or not. More information can be found in [21].

9.7.5.4 Selection of best-estimated motion vector
Although Tables 9.5 and 9.6 show that one method of estimating a lost motion
vector is better than the other, nevertheless they represent the average quality over
the entire video sequence. Had we compared these methods on macroblock-by-
macroblock basis, there can be situations in which an overall best method will not
perform well. The reason is that the quality of such error/loss concealment depends
on the directions and values of the surrounding motion vectors of that macroblock.
What makes poor error/loss concealment is that the motion-compensated replace-
ment macroblock shows some pixel discontinuity. This makes the reconstructed
picture to look blocky, which is very disturbing.

To improve the error/loss-concealed image quality, one may apply all the above
motion estimation methods, and test for image discontinuity around the reconstructed
macroblock. The method that gives the least discontinuity is then chosen. Methods
introduced in section 9.7.4 can be used as a discontinuity measure.

Both intraframe and interframe error/loss concealment have been used in
H.264. In this codec, the intraframe error concealment is simple bilinear inter-
polation of boundary pixels. The interframe error concealment is based on block
edge discontinuity with a similar method shown in Figure 9.24, which is looked at
some detail in Chapter 11.

9.8 Scalability

Although we have extensively described the scalability under JPEG2000 and
MPEG-2, but since in H.263 it is used with a different terminology, we visit this
subject again. It might be useful to know that scalability in H.263 is not used for
distribution purposes, but more as a layering technique. Hence, by unequal error
protection on the base layer, this method in conjunction with the other error resilience
methods, explained in section 9.7, further improves the robustness of this codec.

Extensions of H.263 also support temporal, SNR and spatial scalability as
optional modes [22-O]. This mode is normally used in conjunction with the error

Video coding for low bit rate communications (H.263) 271

control scheme. The capability of this mode and the extent to which its features are
supported are signalled by external means such as H.245 [9].

There are three types of enhancement picture in the H.263þ codec that are
known as B-, EI- and EP-pictures [5]. Each of these has an enhancement layer
number, ELNUM, that indicates to which layer it belongs to, and a reference layer
number, RLNUM, that indicates which layer is used for its prediction. The encoder
may use either of its basic scalability modes of temporal, SNR, spatial or their
combinations in a multilayer scalability mode. Details of the basic and multilayer
scalabilities are given in section 8.5. However, due to the different nature and
application of H.263 compared to that of MPEG-2, there are some differences.

9.8.1 Temporal scalability
Temporal scalability is achieved using bidirectionally predicted pictures or
B-pictures. As usual, B-pictures use prediction from either or both of a previous
and subsequent reconstructed picture in the reference layer. These B-pictures differ
from the B-picture part of PB or improved PB frames in that they are separate
entities in the bitstream. They are not syntactically intermixed with a subsequent
P or its enhancement part EP.

B-pictures and the B part of PB or improved PB frames are not used as reference
pictures for the prediction of any other pictures. This property allows for B-pictures
to be discarded if necessary without adversely affecting any subsequent pictures, thus
providing temporal scalability. There is no limit to the number of B-pictures that
might be inserted between the pairs of the reference pictures in the base layer. A
maximum number of such pictures may be signalled by external means (e.g. H.245).
However, since H.263 is normally used for low frame rate applications (low bit rates,
e.g. mobile), due to larger separation between the base layer I- and P-pictures, there is
normally one B-picture between them. Figure 9.30 shows the position of base layer
I- and P-pictures and the B-pictures of the enhancement layer for most applications.

B B PPI

Figure 9.30 B-picture prediction dependency in the temporal scalability

9.8.2 SNR scalability
In SNR scalability, the difference between the input picture and lower quality base
layer picture is coded. The picture in the base layer which is used for the prediction
of the enhancement layer pictures may be an I-picture, a P-picture, or the P part of
PB or improved PB frames, but should not be a B-picture or the B part of a PB or its
improved version.

272 Standard codecs: image compression to advanced video coding

In the enhancement layer two types of picture are identified, EI and EP. If
prediction is only formed from the base layer, then the enhancement layer picture
is referred to as EI-picture. In this case, the base layer picture can be an I- or a
P-picture (or the P part of PB frames). It is possible, however, to create a mod-
ified bidirectionally predicted picture using both a prior enhancement layer pic-
ture and temporally simultaneous base layer reference picture. This type of
picture is referred to as an EP-picture or enhancement P-picture. Figure 9.31
shows the positions of the base and enhancement layer pictures in an SNR scalable
coder. The figure also shows the prediction flow for the EI and EP enhancement
pictures.

EP EI EPEPEI

P P PPI

enhancement
layer

base
layer

Figure 9.31 Prediction flow in SNR scalability

For both EI- and EP-pictures, prediction from the reference layer uses no
motion vectors. However, EP may be predictively coded with respect to its
previous reconstructed picture at the same layer, called forward prediction. It
might be just the difference between the enhancement and base layer, called
upward prediction, or the average of the two predictions, called bidirectional
prediction. Decisions are made based on the one that gives the least prediction
error.

9.8.3 Spatial scalability
The arrangement of the enhancement layer pictures in the spatial scalability is
similar to that of SNR scalability. The only difference is that before the picture in
the reference layer is used to predict the picture in the spatial enhancement layer, it
is downsampled by a factor of 2 either horizontally or vertically (one-dimensional
spatial scalability), or both horizontally and vertically (two-dimensional spatial
scalability). Figure 9.32 shows the flow of the prediction in the base and
enhancement layer pictures of a spatial scalable encoder.

Video coding for low bit rate communications (H.263) 273

EP EI EPEPEI

P P PPI

enhancement
layer

base
layer

Figure 9.32 Prediction flow in spatial scalability

9.8.4 Multilayer scalability
Undoubtedly multilayer scalability will increase the robustness of H.263 against the
channel errors. In the multilayer scalable mode, it is possible for B-pictures to be
temporally inserted not only between the base layer pictures of type I, P, PB and
improved PB, but also between the enhancement picture types of EI and EP, whether
these consist of SNR or spatial enhancement pictures. It is also possible to have more
than one SNR or spatial enhancement layer in conjunction with the base layer. Thus, a
multilayer scalable bitstream can be a combination of SNR layers, spatial layers and
B-pictures. The size of a picture cannot be decreased by increasing the layer number.
Figure 9.33 illustrates the prediction flow in a multilayer scalable encoder.

As with the two-layer case, B-pictures may occur in any layer. However, any
picture in an enhancement layer which is temporally simultaneous with a B-picture
in its reference layer must be a B-picture or the B-picture part of PB or improved
PB frames. This is to preserve the disposable nature of B-pictures. Note, however,
that B-pictures may occur in any layers that have no corresponding picture in the
lower layers. This allows an encoder to send enhancement video with a higher
picture rate than the lower layers.

The enhancement layer number and the reference layer number of each enhance-
ment picture (B, EI or EP) are indicated in the ELNUM and RLNUM fields, respec-
tively, of the picture header (when present). If a B-picture appears in an enhancement
layer in which temporally surrounding SNR or spatial pictures also appear, the
reference layer number (RLNUM) of the B-picture is the same as the enhancement
layer number (ELNUM). The picture height, width and pixel aspect ratio of a
B-picture are always equal to those of its temporally subsequent reference layer picture.

9.8.5 Transmission order of pictures
Pictures, which are dependent on other pictures, are located in the bitstream after
the pictures on which they depend. The bitstream syntax order is specified such that

274 Standard codecs: image compression to advanced video coding

for reference pictures (i.e. pictures having types I, P, EI, EP or the P part of PB or
improved PB) the following two rules shall be obeyed:

1. All reference pictures with the same temporal reference appear in the bitstream
in increasing enhancement layer order. This is because each lower layer
reference picture is needed to decode the next higher layer reference picture.

2. All temporally simultaneous reference pictures as discussed in item 1 appear in
the bitstream prior to any B-pictures for which any of these reference pictures
is the first temporally subsequent reference picture in the reference layer of the
B-picture. This is done to reduce the delay of decoding all reference pictures,
which may be needed as references for B-pictures.

Then, the B-pictures with earlier temporal references follow (temporally ordered
within each enhancement layer). The bitstream location of each B-picture complies
with the following rules:

● Be after that of its first temporally subsequent reference pictures in the refer-
ence layer. This is because the decoding of the B-pictures generally depends on
the prior decoding of that reference picture.

● Be after that of all reference pictures that are temporally simultaneous with the
first temporally subsequent reference picture in the reference layer. This is to
reduce the delay of decoding all reference pictures, which may be needed as
references for B-pictures.

B EP BEIEIenhancement
layer 2

base
layer

EP EI EPEPEI

P P PPI

enhancement
layer 1

Figure 9.33 Positions of the base and enhancement layer pictures in a multilayer
scalable bitstream

Video coding for low bit rate communications (H.263) 275

● Precede the location of any additional temporally subsequent pictures other
than B-pictures in its reference layer. Otherwise, it would increase picture
storage memory requirement for the reference layer pictures.

● Be after that of all EI- and EP-pictures that are temporally simultaneous with
the first temporally subsequent reference picture.

● Precede the location of all temporally subsequent pictures within the same
enhancement layer. Otherwise, it would introduce needless delay and increase
picture storage memory requirements for the enhancement layer.

Figure 9.34 shows two allowable picture transmission orders given by the rules
above for the layering structure shown as an example. Numbers next to each picture
indicate the bitstream order, separated by commas for the two alternatives.

enhancement
layer 2

base
layer

B EPEI

B P

BB

I

enhancement
layer 1

4,4

3,3

2,2

1,1 8,5

7,8

6,7

5,6

Figure 9.34 Example of picture transmission order

Scalability is also introduced in H.264, under the name of scalable extension of
H.264 video coding (H.264/SVC), as well as in the reference model known as joint
scalable video model (JSVM). H.264/SVC has improved the compression defi-
ciency of scalable coding (discussed in section 8.5.7), by better inter layer predic-
tion, as well as by introducing a large number of B-pictures in the form of
hierarchical B-pictures. More on SVC is given in Chapter 11.

9.9 Buffer regulation

Regulation of output bit rates for better distribution of the target bit rate among the
encoding parameters is an important part of any video encoder. This is particularly
vital in the H.263 encoder, at least for the following reasons:

● Better bit rate regulation requires larger buffer sizes, hence longer delays.
● H.263 is intended for visual telephony, and the encoding delay should be limited;

hence, smaller buffer sizes are preferred.

276 Standard codecs: image compression to advanced video coding

● The target bit rate is in the order of 24 kbit/s, and even small-size buffers can
introduce long delays.

There is no best known method for buffer regulation, and the recommendation H.263
does not standardise any method (neither do other standard encoders). However, at
least for the laboratory simulations, one can use those methods designed for the test
models. The following is a method that can be used in the simulations [5]. The bit
rate is controlled at a macroblock level by changing the quantiser parameter, QP,
depending on the bit rate, the source and target frame rates.

For the first picture, which is intraframe coded, the quantisation parameter is
set to its mid range QP ¼ 16 (QP varies from 1 to 31). After the first picture, the
buffer content is set to

R

ftarget
þ 3 � R

FR
and Bi�1 ¼ B ð9:17Þ

For the following pictures the quantiser parameter is updated at the beginning
of each new macroblock line. The formula for calculating the new quantiser para-
meter is

QPnew ¼ QPi�1 1 þ D1B

2B
þ 12D2B

R

� �
D1B ¼ Bi�1 � B

and

D2B ¼ Bi, mb � mb

MB
� B

ð9:18Þ

where

QPi�1 ¼ mean quantiser parameter for the previous picture
Bi�1 ¼ number of bits spent for the previous picture

B ¼ target number of bits per picture
mb ¼ present macroblock number
MB ¼ number of macroblocks in a picture

Bi,mb ¼ number of bits spent until now for the picture
R ¼ bit rate

FR ¼ frame rate of the source picture (typically 25 or 30 Hz)
ftarget ¼ target frame rate

The first two terms of the above formula are fixed for macroblocks within a picture.
The third term adjusts the quantiser parameter during coding of the picture.

The calculated new quantisation parameter, QPnew, must be adjusted so that
the difference fits within the definition of dquant. The buffer content is updated
after each complete picture by using the following C program:

buffer_content=buffer_contentþBi,99;
while(buffer_content>(3R/FR)){

Video coding for low bit rate communications (H.263) 277

buffer_content=buffer_content (R/FR);
frame_incrþþ;
}

The variable frame_incr indicates how many times the last coded picture must
be displayed. It also indicates which picture from source is coded next and how
many pictures are skipped.

To regulate the frame rate, ftarget, a new B is calculated at the start of each frame:

f target ¼ 10 � QPi�1

4
, 4 < f target < 10

B ¼ R

f target
ð9:19Þ

For this buffer regulation, it is assumed that the process of encoding is temporarily
stopped when the physical transmission buffer is nearly full, preventing buffer over-
flow. However, this means that no minimum frame rate and delay can be guaranteed.

9.10 Problems

1. Assume the DCT coefficients of problem 3 of Chapter 8 are generated by an H.263
encoder. After zigzag scanning, and quantisation with th ¼ q ¼ 8, they are con-
verted into three-dimensional events of (last, run, level). Identify these events.

2. The neighbouring motion vectors of the motion vector MV are shown in Figure
9.35.
a. Find the median of the neighbouring motion vectors.
b. Find the MVD, if the motion vector MV is (2, 1).

MV

5, –2

3, –3

4, 3 –1, 1

Figure 9.35

3. The intensity of four pixels A, B, C and D of the borders of two macroblocks is
given in Figure 9.36.

A B C D

MB1 MB2

Figure 9.36

278 Standard codecs: image compression to advanced video coding

Using the deblocking filter of (9.4), find the interpolated pixels B1 and C1

at the macroblock boundary for each of:
a. A ¼ 100, B ¼ 150, C ¼ 115 and D ¼ 50
b. A ¼ B ¼ 150 and C ¼ D ¼ 50

Assume the quantiser parameter of macroblock 2 is QP ¼ 16.

4. Figure 9.37 shows the six neighbouring macroblocks of a lost motion vector.
The values of these motion vectors are also given. Calculate the estimated
motion vector for this macroblock for each of the following loss concealment
methods:
a. top
b. bottom
c. mean
d. majority
e. vector median

References

1. Draft ITU-T Recommendation H.263: ‘Video coding for low bit rate
communication’, July 1995

2. H.261: ‘ITU-T Recommendation H.261, video codec for audiovisual services
at p�64 kbit/s’, Geneva, 1990

3. MPEG-1: ‘Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s’, ISO/IEC 1117-2: video, November 1991

4. MPEG-2: ‘Generic coding of moving pictures and associated audio infor-
mation’, ISO/IEC 13818-2: video, Draft International Standard, November
1994

5. Draft ITU-T Recommendation H.263þ: ‘Video coding for very low bit rate
communication’, September 1997

6. ITU-T recommendation H.263þþ: ‘Video coding for low bit rate commu-
nication’, ITU-T SG16, February 2000

7. WIEGAND, T.: ‘H.26L test model long-term number 9 (TML-9) draft0’,
VCEG-N83 d1, Germany, December 2001

8. WIEGAND, T. and SULLIVAN, G.: ‘Draft ITU-T recommendation and final
draft international standard of joint video specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC)’, March 2003

1 2 3

4 65

MV
MV1 = (2, 3); MV2 = (3, 4); MV3 = (–2, –1)

MV4 = (4, 1); MV5 = (0, –3); MV6 = (–1, –1)

Figure 9.37

Video coding for low bit rate communications (H.263) 279

9. ITU-T Recommendation H.245, ‘Control protocol for multimedia communi-
cation’, September 1998

10. WALLACE, G.K.: ‘The JPEG still picture compression standard’, Commun.
ACM, 1991, 34, pp. 30–44

11. GHANBARI, M., DE FARIA, S., GOH, I.N. and TAN, K.T.: ‘Motion com-
pensation for very low bit rate video’, Signal Process. Image Commun., 1994,
7, pp. 567–580

12. NETRAVALI, A.N. and ROBBINS, J.B.: ‘Motion-compensated television
coding: Part I’, Bell Syst. Tech. J., 1979, 58, pp. 631–670

13. LOPES, F.J.P. and GHANBARI, M.: ‘Analysis of spatial transform motion
estimation with overlapped compensation and fractional-pixel accuracy’, IEE
Proc. Vis. Image Signal Process., 1999, 146, pp. 339–344

14. SEFERIDIS, V. and GHANBARI, M.: ‘General approach to block matching
motion estimation’, Opt. Eng., 1993, 32, pp. 1464–1474

15. NAKAYA, Y. and HARASHIMA, H.: ‘Motion compensation based on spa-
tial transformation’, IEEE Trans. Circuits Syst. Video Technol., 1994, 4, pp.
339–356

16. BLAHUT, R.E.: Theory and Practice of Error Control Codes, Addison-
Wesley, Boston, NJ, 1983

17. KHAN, E., LEHMANN, S., GUNJI, H., and GHANBARI, M.: ‘Error detec-
tion and step-by-step correction of H.263 coded video over wireless net-
works’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14:12, pp.
1294–1307

18. GHANBARI, M. and SEFERIDIS, V.: ‘Cell loss concealment in ATM video
codecs’, IEEE Trans. Circuits and Syst. Video Technol., special issue on
packet video, 1993, 3:3, pp. 238–247

19. GHANBARI, S. and BOBER, M.Z.: ‘A cluster-based method for the recovery
of lost motion vectors in video coding’, The 4th IEEE Conference on Mobile
and Wireless Communications Networks, MWCN’2002, 9–11 September,
2002, Stockholm, Sweden

20. SHANABLEH, T. and GHANBARI, M.: ‘Loss concealment using
B-pictures motion information’, IEEE Trans. Multimedia, 2003, 5:2, pp.
257–266

21. LIM, C.P., TAN, E.A.W., GHANBARI, M. and GHANBARI, S.: ‘Cell loss
concealment and packetisation in packet video’, Int. J. of Imaging Syst.,
Technol., 1999, 10, pp. 54–58

22. Some of the H.263 Annexes used in this chapter:
Annex C ‘Considerations for Multipoint’
Annex D ‘Unrestricted Motion Vector Mode’
Annex E ‘Syntax-Based Arithmetic Coding Mode’
Annex F ‘Advanced Prediction Mode’
Annex G ‘PB-Frames Mode’
Annex H ‘Forward Error Correction for Coded Video Signal’
Annex I ‘Advanced INTRA Coding Mode’
Annex J ‘Deblocking Filter Mode’

280 Standard codecs: image compression to advanced video coding

Annex K ‘Slice Structured Mode’
Annex M ‘Improved PB-Frames Mode’
Annex N ‘Reference Picture Selection Mode’
Annex O ‘Temporal, SNR, and Spatial Scalability Mode’
Annex R ‘Independent Segment Decoding Mode’
Annex S ‘Alternative INTER VLC mode’
Annex V ‘Data Partitioning’

Video coding for low bit rate communications (H.263) 281

Chapter 10

Content-based video coding (MPEG-4 visual)

MPEG-4 is another ISO/IEC standard developed by Moving Picture Experts Group
(MPEG), the committee that also developed the Emmy Award winning standards of
MPEG-1 and MPEG-2. While MPEG-1 and MPEG-2 video aimed at devising
coding tools for CD-ROM and digital television, respectively, MPEG-4 video aims
at providing tools and algorithms for efficient storage, transmission and manip-
ulation of video data in multimedia environments [1,2]. The main motivations
behind such a task are the proven success of digital video in three fields of digital
television, interactive graphics applications (synthetic image content) and the
interactive multimedia (World Wide Web, distribution and access to image con-
tent). The MPEG-4 group believe these can be achieved by emphasising the
functionalities of the proposed codec, which include efficient compression, object
scalability, spatial and temporal scalability, error resilience, etc.

The approach taken by the experts group in coding of video for multimedia
applications relies on a content-based visual data representation of scenes. In
content-based coding, in contrast to conventional video coding techniques, a scene
is viewed as a composition of video objects (VO) with intrinsic properties such as
shape, motion and texture. It is believed that such a content-based representation is
a key to facilitating interactivity with objects for a variety of multimedia applica-
tions. In such applications, the user can access arbitrarily shaped objects in the
scene and manipulate these objects.

The MPEG-4 group has defined the specifications of their intended video codec
in the form of verification models (VMs) [3]. The verification model in MPEG-4 has
the same role as the reference and test models defined for H.261 and MPEG-2,
respectively. The verification model has evolved over time by means of core
experiments in various laboratories round the world. It is regarded as a common
platform with a precise definition of the encoding and decoding algorithms that can
be represented as tools addressing specific functionalities of MPEG-4. New algo-
rithms/tools are added to the VM and old algorithms/tools are replaced in the VM by
successful core experiments.

So far, the verification model has been gradually evolved from version 1.0 to
version 11.0, and during each evolution new functionalities have been added. In
this chapter, we do not intend to review all of them but instead to address those
functionalities that have made MPEG-4 video coding radically different from its
predecessors. Hence, it is intended to look at the fundamentals of new coding
algorithms that have been introduced in MPEG-4.

It is worth noting that if the whole video frame is coded as a single object, then
the object-based video coding becomes similar to the other frame-based video
coding. To distinguish this codec from MPEG-4 part 10, which is another name for
H.264, object-based MPEG-4 is commonly known as MPEG-4 visual. MPEG-4
visual for frame-based coding is very similar to H.263 with almost equal com-
pression performance. At the end of this chapter, this codec is contrasted against the
H.263 codec. Before going into details of object-based video coding, let us examine
the functionalities of this codec.

10.1 Profiles and levels

MPEG-4, as with MPEG-2, has so many functionalities that the users may only be
interested in a subset of them. These are defined as profiles. For each profile, a
number of resolution states such as bit rate, frame rate, pixel resolutions can be
defined as levels. Since MPEG-4 is a very versatile video coding tool, it has several
profiles and levels, and every now and then many more are added to them. Profile
in MPEG-4 is also synonymous to the support of a set of annexes in H.263. Some
well-known profiles with the associated commonly used levels are as follows:

● Simple profile: this profile provides the simplest tool for low-cost applications,
such as video over mobile and Internet. It supports up to four rectangular
objects in a scene within quarter of common intermediate format (QCIF) pic-
tures. There are three levels in this profile to define bit rates from 64 to
384 kbit/s (64, 128 and 384 kbit/s for level 1, level 2 and level 3, respectively).
The simple profile also supports most of the optionalities (annexes in H.263)
that are mainly useful for error resilience transmission. In addition to I- and
P-VOPs (video object planes (VOPs) defined in section 10.2), they include
AC/DC prediction, four motion vectors, unrestricted motion vectors, quarter-
pixel spatial accuracy, slice synchronisation, data partitioning and reversible
variable length code (RVLC). This profile can decode a bitstream generated by
the core H.263.

● Simple scalable profile: this adds the support for B-VOPs and temporal and
spatial scalability to the simple profile. It provides services to the receivers
requiring more than one level of quality of service, such as video over Internet.

● Advanced real-time simple profile: this adds the error protection to the simple
profile through the introduction of the back channel. In response to a negative
acknowledgement from the decoder, the encoder encodes the affected parts of
the picture in intra mode. This profile improves the robustness of real-time
visual services over error-prone channels such as videophone.

● Advanced simple profile: this improves the compression efficiency of the
simple profile by supporting quarter-pixel resolution and global motion esti-
mation in addition to B-VOPs.

● Fine granular scalability profile: this is similar to SNR scalability, but the
enhancement layers are represented in bit planes to offer up to eight scalable

284 Standard codecs: image compression to advanced video coding

layers. It is mainly used with the simple or advanced simple profile as the
base layer.

● Core profile: this adds scalability to still textures, B-VOPs, binary shape cod-
ing, and temporal scalability of rectangular as well as binary shape objects to
the simple profile. Its maximum bit rate for level 1 is 384 kbit/s and for level 2
is 1 Mbit/s. This profile is useful for high-quality interactive services as well as
mobile broadcast services.

● Core scalable visual profile: this adds object-based SNR, spatial and temporal
scalability to the core profile.

● Main profile: this supports for interlaced video, greyscale alpha maps and
sprites. This profile is intended for broadcast services that can handle both
progressive and interlaced video. It can handle up to 32 objects with a max-
imum bit rate of 38 Mbit/s.

● Advanced coding efficiency: this profile is an extension of the main profile, but
for bit rates less than 1 Mbit/s. It adds quarter pixel and global motion esti-
mation to the main profile to improve the encoding efficiency. However, it
does not support sprites.

● Simple studio profile: this only supports I-VOP pictures coded at very high
quality up to 1200 Mbit/s. As the name implies, it is designed for studio appli-
cations and can support high-resolution video for HDTV and digital cinema.
Each I-VOP may have an arbitrary shape and have several alpha planes.

● Core studio profile: this adds P-VOPs to the simple studio profile to reduce the
bit rate for very high quality video.

10.2 Video object plane

In object-based coding, the video frames are defined in terms of layers of video
object planes (VOP). Each VOP is then a video frame of a specific object of interest
to be coded, or to be interacted with. Figure 10.1a shows a video frame that is made
of three VOPs. In this figure, the two objects of interest are the balloon and the
aeroplane. They are represented by their video object planes of VOP1 and VOP2.
The remaining part of the video frame is regarded as a background, represented
with VOP0. For coding applications, the background is coded only once, and the
other object planes are encoded through the time. At the receiver, the reconstructed
background is repeatedly added to the other decoded object planes. Since in each
frame the encoder only codes the objects of interest (e.g. VOP1 and/or VOP2), and
usually these objects represent a small portion of the video frame, the bit rate of the
encoded video stream can be extremely low. Note that had the video frame of
Figure 10.1a been coded with a conventional codec such as H.263, since clouds in
the background move, the H.263 encoder would have inevitably encoded most parts
of the picture with a much higher bit rate than that generated from the two objects.

The VOP can be a semantic object in the scene, such as the balloon and
aeroplane in Figure 10.1. It is made of Y, U and V components plus theirs shapes.
The shapes are used to mask the background and help to identify object boarders.

Content-based video coding (MPEG-4 visual) 285

(a)

(c) (d)

(b)

+

+

=

Figure 10.1 (a) A video frame composed of (b) balloon VOP1, (c) aeroplane
VOP2 and (d) the background VOP0

In MPEG-4 video, the VOPs are either known by construction of the video
sequence (hybrid sequence based on blue screen composition or synthetic sequences)
or are defined by semiautomatic segmentation. In the former, the shape information
is represented by 8 bits, known as greyscale alpha plane. This plane is used to blend
several video object planes to form the video frame of interest. Thus, with 8 bits, up
to 256 objects can be identified within a video frame. In the second case, the shape
is a binary mask to identify individual object borders and their positions in the
video frames.

Figure 10.2 shows the binary shapes of the balloon and aeroplane in the above
example. Both cases are currently considered in the encoding process. The VOP can
have an arbitrary shape. When the sequence has only one rectangular VOP of fixed
size displayed at a fixed interval, it corresponds to the frame-based coding, and is
mostly known as MPEG-4 visual to distinguish it from MPEG-4 v10 (H.264/AVC).
MPEG-4 visual is similar to H.263, with some minor differences, which will be
discussed in section 10.12.

286 Standard codecs: image compression to advanced video coding

(a) (b)

Figure 10.2 Shape of objects (a) balloon and (b) aeroplane

10.2.1 Coding of objects
Each video object plane corresponds to an entity that after being coded is added to
the bitstream. The encoder sends, together with the VOP, composition information to
indicate where and when each VOP is to be displayed. Users are allowed to trace
objects of interest from the bitstream. They are also allowed to change the compo-
sition of the entire scene displayed by interacting with the composition information.

Figure 10.3 illustrates a block diagram of an object-based coding verification
model. After defining the video object planes, each VOP is encoded, and the encoded
bitstreams are multiplexed to a single bitstream. At the decoder, the chosen object
planes are extracted from the bitstream and then are composed into an output video to
be displayed.

10.2.2 Encoding of VOPs
Figure 10.4 shows a general overview of the encoder structure for each of the video
object planes (VOPs). The encoder is mainly composed of two parts: the shape
encoder and the traditional motion and texture encoder (e.g. H.263) applied to the
same VOP.

Before explaining how the shape and the texture of the objects are coded, in
the following, we first explain how a VOP should be represented for efficient
coding.

10.2.3 Formation of VOP
The shape information is used to form a VOP. For maximum coding efficiency, the
arbitrary shape VOP is encapsulated in a bounding rectangle such that the object

Content-based video coding (MPEG-4 visual) 287

contains the minimum number of macroblocks. To generate the bounding rec-
tangle, the following steps are followed:

1. Generate the tightest rectangle around the object, as shown in Figure 10.5.
Since the dimensions of the chrominance VOP are half of the luminance VOP
(4:2:0), the top left position of the rectangle should be an even-numbered
pixel.

input

VOP0
coding
VOP1
coding
VOP2
coding

M
U
X

bitstream

*
*

VOPn
coding

VOP
definition

output

VOP0
decoding

VOP1
decoding
VOP2
decoding

D
E
M
U
X

bitstream

*
*

VOPn
decoding

composition

Encoder

Decoder

Figure 10.3 An object-based video encoder/decoder

shape
coding

motion
estimation

motion
compensation

texture
coding

previous reconstructed
VOP

in
outM

U
X

shape information

motion information

texture
information

_

+

Figure 10.4 VOP encoder structure

288 Standard codecs: image compression to advanced video coding

2. If the top left position of this rectangle is the origin of the frame, skip the
formation procedure.

3. Form a control macroblock at the top left corner of the tightest rectangle, as
shown in Figure 10.5.

4. Count the number of macroblocks that completely contain the object,
starting at each even-numbered point of the control macroblock. Details are as
follows:
(i) Generate a bounding rectangle from the control point to the right

bottom side of the object that consists of multiples of 16 � 16 pixel
macroblocks.

(ii) Count the number of macroblocks in this rectangle that contain at least
one object pixel.

5. Select that control point which results in the smallest number of macroblocks
for the given object.

6. Extend the top left coordinate of the tightest rectangle to the selected control
coordinate.

This will create a rectangle that completely contains the object but with the mini-
mum number of macroblocks in it. The VOP horizontal and vertical spatial refer-
ences are taken directly from the modified top left coordinate.

10.3 Image segmentation

If VOPs are not available, then video frames need to be segmented into objects
and a VOP derived for each one. In general, segmentation consists of extracting
image regions of similar properties such as brightness, colour or texture. These
regions are then used as masks to extract the objects of interest from the image [4].
However, video segmentation is by no means a trivial task and requires the use of a
combination of techniques that were developed for image processing, machine
vision and video coding. Segmentation can be performed either automatically or
semiautomatically.

control point

tightest rectangle

object extended
bounding
box

intelligently
generated
VOP

control
MB

Figure 10.5 Intelligent VOP formation

Content-based video coding (MPEG-4 visual) 289

10.3.1 Semiautomatic segmentation
In semiautomatic video segmentation, the first frame is segmented by manually
tracing a contour around the object of interest. This contour is then tracked through
the video sequence by dynamically adapting it to the object’s movements. The use
of this deformable contour for extracting regions of interest was first introduced by
Kass et al. [5], and it is commonly known as active contour or active snakes.

In the active snakes method, the contour defined in the first frame is modelled
as a polynomial of an arbitrary degree, the most common being a cubic polynomial.
The coefficients of the polynomial are adapted to fit the object boundary by
minimising a set of constraints. This process is often referred to as the minimisation
of the contour energy. The contour stretches or shrinks dynamically while trying to
seek a minimal energy state that best fits the boundary of the object. The total
energy of a snake is defined as the weighted sum of its internal and external energy,
given by

Etotal ¼ aEinternal þ bEexternal ð10:1Þ

In this equation, the constants a and b give the relative weightings of the
internal and the external energy. The internal energy (Einternal) of the snake con-
strains the shape of the contour and the amount it is allowed to grow or shrink.
External energy (Eexternal) can be defined from the image property, such as the local
image gradient. By suitable use of the gradient-based external constrain, the snake
can be made to wrap itself around the object boundary. Once the boundary of
the object is located in the first frame, the shape and positions of the contours can
be adapted automatically in the subsequent frames by repeated applications of the
energy minimisation process.

10.3.2 Automatic segmentation
Automatic video segmentation aims to minimise user intervention during the seg-
mentation process and is a significantly harder problem than the semiautomatic
segmentation. Foreground objects or regions of interest in the sequence have to be
determined automatically with minimal input from the user. To achieve this, spatial
segmentation is first performed on the first frame of the sequence by partitioning it
into regions of homogeneous colour or grey level. Following this, motion estima-
tion is used to identify moving regions in the image and to classify them as fore-
ground objects.

Motion information is estimated for each of the homogenous region using a
future reference frame. Regions that are nonstationary are classified as belonging to
the foreground object and are merged to form a single object mask. This works well
in simple sequences that contain a single object with coherent motion. For more
complex scenes with multiple objects of motion disparity, a number of object
masks have to be generated. Once the contours of the foreground objects have been
identified, they can be tracked through the video sequence using techniques such as

290 Standard codecs: image compression to advanced video coding

active snakes. In the following sections, each element of the video segmentation is
explained.

10.3.3 Image gradient
The first step of the segmentation process is the partitioning of the first video frame
into regions of homogenous colour or grey level. A technique that is commonly
used for this purpose is the watershed transform algorithm [6]. This algorithm
partitions the image into regions that correspond closely to the actual object
boundaries, but direct application of the algorithm on the image often leads to over-
segmentation. This is because, in addition to the object borders in the image, tex-
ture and noise may also create artificial contours. To alleviate this problem, the
image gradient is used as input to the watershed transform instead of the actual
image itself.

10.3.3.1 Nonlinear diffusion
To eliminate the false contours, the image has to be smoothed in such a way that
edges are not affected. This can be done by diffusing the image iteratively without
allowing the diffusion process to cross the object borders. One of the best-known
filters for this purpose is nonlinear diffusion, where the diffusion is prohibited
across edges but unconstrained in regions of almost uniform texture.

Nonlinear diffusion can be realized by space variant filtering, which adapts the
Gaussian kernel dynamically to the local gradient estimate [7]. The Gaussian kernel
is centred at each pixel, and its coefficients are weighted by a function of the
gradient magnitude between the centre pixel and its neighbours. The weighted
coefficients aij are given by

aij ¼
wijcijP

i, j¼1wijcij
wij ¼ gðjjrI ijjjÞ ð10:2Þ

where cij is the initial filter coefficient, wij is the weight assigned to each coefficient
based on the local gradient magnituderI ij, and g is the diffusion function [8]. If
wij ¼ 1, then the diffusion is linear. The local gradient is computed for all pixels
within the kernel by taking the difference between the centre and the corresponding
pixels. More precisely, rI ij ¼ I ij � Ic, where Ic is the value of the centre pixel and
Iij are the pixels within the filter kernel.

Figure 10.6 shows the diffusion function and the corresponding adapted
Gaussian kernel to inhibit diffusion across a step edge. The figure shows that
for large gradient magnitudes, the filter coefficient is reduced in order not to
diffuse across edges. Similarly at the lower gradient magnitudes (well away from
the edges) within the area of almost uniform texture, the diffusion is uncon-
strained, so as to have maximum smoothness. The gradient image generated in
this form is suitable to be segmented at its object borders by the watershed
transform.

Content-based video coding (MPEG-4 visual) 291

–10
–5

0
5

10 –10
–5

0

5

10

w

I

Δ

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 10.6 Weighting function (left), adapted Gaussian kernel (right)

10.3.3.2 Colour edge detection
Colour often gives more information about the object boundaries than the luminance.
However, while gradient detection in greyscale images is to some extent easy,
deriving the gradient of colour images is less straightforward because of separation of
the image into several colour components. Each pixel in the RGB colour space can
be represented by a position vector in the three-dimensional RGB colour cube.

!
p ¼ R

!
i þ G

!
j þ B

!
k ð10:3Þ

Likewise, pixels in other colour spaces can be represented in a similar manner.
Hence, the problem of detecting edges in a colour image can be redefined as the
problem of computing the gradient between vectors in the three-dimensional colour
space. Various methods have been proposed for solving the problem of colour
image gradient detection, and they include component-wise gradient detection and
vector gradient.

Component-wise gradient
In this approach, gradient detection is performed separately for each colour chan-
nel, followed by the merging of the results. The simplest way is to apply the Prewitt
or the Sobel operator separately on each channel and then combine the gradient
magnitude using some linear or nonlinear function [10]. For example,

rI ¼ rIR þrIG þrIB

3
or rI ¼ maxðrIR;rIG;rIBÞ ð10:4Þ

where rIR, rIG, rIB represent the gradient magnitude computed for each of the
colour channels.

Vector gradient
This approach requires the definition of a suitable colour difference metric in the
three-dimensional colour space. This metric should be based on human perception

292 Standard codecs: image compression to advanced video coding

of colour difference, such that a large value indicates significant perceived differ-
ence and a small value indicates colour similarity. A metric that is commonly used
is the Euclidean distance between two colour vectors. For the n-dimensional colour
space, the Euclidean distance between two colour pixels, A and B, is defined as
follows:

euclidðA, BÞ ¼
ffiXn

i¼1

ðAi � BiÞ2

s
ð10:5Þ

The gradient of the image is then derived on the basis of the sum of the colour
differences between each pixel and its neighbours. This approximates the Prewitt
kernel and is given by the following equations:

@I

@x
¼
Xyþ1

a¼y�1

euclid½Iðx þ 1, aÞ, Iðx � 1, aÞ�

and
@I

@y
¼
Xxþ1

a¼x�1

euclid½Iða, y þ 1Þ, Iða, y � 1Þ�
ð10:6Þ

The gradient magnitude is then defined as,

jjrI jj ¼
ffi
@I

@x

� �2

þ @I

@y

� �2
s

The use of Euclidean distance in the RGB colour space does not give good
indication of the perceived colour differences. Hence, in [9], it was proposed
that the vector gradient should be computed in the CIELUV colour space. CIELUV
is an approximation of a perceptually uniform colour space, which is designed
so that the Euclidean distance could be used to quantify colour similarity or dif-
ference [10].

10.3.4 Watershed transform
The watershed transform algorithm can be visualized by adopting a topological
view of the image, where high-intensity values represent peaks and low-intensity
values represent valleys. Water is flooded into the valleys, and the lines where the
waters from different valleys meet are called the watershed lines, as shown in
Figure 10.7. The watershed lines separate one region (catchment basin) from
another. In actual implementation, all pixels in an image are initially classified as
unlabelled and they are examined starting from the lowest-intensity value. If the
pixel that is currently being examined has no labelled neighbours, it is classified as
a new region or a new catchment basin. On the other hand, if the pixel was a
neighbour to exactly one labelled region, it would be classified as belonging to that
region. However, if the pixel separates two or more regions, it would be labelled as
part of the watershed line.

Content-based video coding (MPEG-4 visual) 293

flooding from holes
pierced in bottom of valley

this valley will
not be flooded
until the water
level has
reached its
bottom

watershed
lines
current
flooding

Figure 10.7 Immersion-based watershed flooding

The algorithm can be seeded with a series of markers (seed regions), which
represent the lowest point in the image from where water is allowed to start
flooding. In other words, these markers form the basic catchment basins for the
flooding. In some implementations, new basins are not allowed to form, and hence,
the number of regions in the final segmented image will be equal to the number of
markers. In other implementations, new regions are allowed to be formed if they
are at a higher (intensity) level as compared to the markers. In the absence of
markers, the lowest point (lowest-intensity value) in the valley is usually chosen as
the default markers.

There are two basic approaches to the implementation of watershed transform
and they are the immersion method [11] and the topological distance method [5].
Results obtained using different implementations are usually not identical.

10.3.4.1 Immersion watershed flooding
Efficient implementations of immersion-based watershed flooding are largely
based on Vincent and Soille’s algorithm [11]. Immersion flooding can be visua-
lized by imagining that holes are pierced at the bottom of the lowest point in each
valley. The image is then immersed in water, which flows into the valley from the
holes. Obviously, the lowest-intensity valley will get flooded first before valleys
that have a higher minimum point, as shown in Figure 10.7.

Vincent and Soille’s algorithm uses a sorted queue in which pixels in the
image are sorted on the basis of their intensity level. In this way, pixels of low
intensity (lowest points in valleys) could be examined first before the higher-
intensity pixels. This algorithm achieves fast performance since the image is
scanned in its entirety only once during the queue set-up phase.

10.3.4.2 Topological distance watershed
In the topological distance approach, a drop of water that falls on the topology will
flow to the lowest point via the slope of the steepest descent. The slope of the
steepest descent is loosely defined as the shortest distance from the current position
to the local minima. If a certain point in the image has more than one possible
steepest descent, then that point would be a potential watershed line that separates

294 Standard codecs: image compression to advanced video coding

two or more regions. A more rigorous mathematical definition of this approach can
be found in [5].

10.3.5 Colour similarity merging
Despite the use of nonlinear diffusion and the colour gradient, the watershed trans-
formation algorithm still produces an excessive number of regions. For this reason,
the regions must be merged based on colour similarity in a suitable colour space. The
CIELUV uniform colour space is a plausible candidate due to the simplicity of
quantifying colour similarity based on Euclidean distances. The mean luminance L
and colour differences u* and v* values are computed for each region of the
watershed-transformed image. The regions are examined in the increasing order of
size and merged with their neighbours if the colour difference between them is less
than a threshold (Th). More precisely, the regions A and B are merged iff,

euclidðAL, u	, v	 , BL, u	, v	 Þ < Th ð10:7Þ

where AL,u*,v* and BL,u*,v* are the mean CIELUV values of the respective regions.
Since it is likely that each region would have multiple neighbours, the neighbour
that minimizes the Euclidean distance is chosen as the target for merging. After
each merging, the mean L, u* and v* values of the merged region are updated
accordingly.

10.3.6 Region motion estimation
Spatial segmentation alone cannot discriminate the foreground objects in a video
sequence. Motion information between the current frame and a future reference
frame must be utilized to identify the moving regions of the image. These moving
regions can then be classified as foreground objects or as regions of interest.

Motion estimation is performed for each of the regions after the merging
process. Since regions can have any arbitrary shapes, the boundary of each region is
extended to its tightest fitting rectangle. Using the conventional block matching
motion estimation algorithm, the motion of the fitted rectangular is estimated.

Figure10.8 gives a pictorial summary of the whole video segmentation process.
The first frame of the video after filtering and gradient operator generates the gra-
dient of the diffused image. This image is then watershed transformed into various
regions, some of whom might be similar in colour and intensity. In the above
example, the watershed-transformed image has about 2660 regions, but many regions
are identical in colour. Through the colour similarity process, identical colour regions
are merged into about 60 regions (in this picture). Finally, homogeneous neigh-
bouring regions are grouped together and are separated from the static background,
resulting in two objects: the ball and the hand and the table tennis racket.

10.3.7 Object mask creation
The final step of the segmentation process is the creation of the object mask. Object
mask is synonymous with object segmentation, since it is used to extract the object

Content-based video coding (MPEG-4 visual) 295

from the image. The mask can be created from the union of all regions that have
nonzero motion vectors. This works well for sequences that have a stationary
background with a single moving object. For more complex scenes with nonsta-
tionary background and multiple moving objects, nine object masks are created
for the image. Each mask is the union of all regions with coherent motion.
Mask 0 corresponds to regions of zero motion, and the other 8 masks are
regions with motion in the N, NE, E, SE, S, SW, W and NW directions, respec-
tively. These object masks are then used to extract the foreground objects from the
video frame.

Figure 10.9 shows two examples of creating the object mask and extracting the
object for two video sequences. The mother and daughter sequence has a fairly
stationary background, and hence, the motion information, in particular motion
over several frames, can easily separate foreground from the background.

For the BBC car, due to the camera following the car, the background is not
static. Here before estimating the motion of the car, the global motion of the
background needs to be compensated. In section 10.7, we will discuss global
motion estimation.

The contour or shape information for each object can also be derived from the
object masks and used for tracking the object through the video sequence. Once the
object is extracted and its shape is defined, the shape information has to be coded
and sent along with the other visual information to the decoder. In the following
section, several methods for coding of shapes are presented.

(a) (b) (c)

(d)(e)

Figure 10.8 A pictorial representation of video segmentation (a) original,
(b) gradient, (c) watershed transformed, (d) colour merged and
(e) segmented image

296 Standard codecs: image compression to advanced video coding

(a) (b) (c)

Figure 10.9 (a) Gradient image, (b) object mask and (c) segmented object

10.4 Shape coding

The binary and greyscale shapes are normally referred to binary and greyscale
alpha planes. Binary alpha planes are encoded with one of the binary shape-coding
methods (to be explained later), while the greyscale alpha planes are encoded by
motion-compensated discrete cosine transform (DCT) similar to texture coding (e.g.
H.263). An alpha plane is bounded by a rectangle that includes the shape of the VOP,
as described in the formation of VOP in section 10.2.3. The bounding rectangle of the
VOP is then extended on the right bottom side to multiples of 16 � 16 pixel mac-
roblocks. The extended alpha samples are set to zero. Now the extended alpha plane
can be partitioned into exact multiples of 16 � 16 pixel macroblocks. Hereafter,
these macroblocks are referred to alpha blocks, and the encoding and decoding
process for block-based shape coding is carried out per alpha block.

If the pixels in an alpha block are all transparent (all zero), the block is skipped
before motion and/or texture coding. No overhead is required to indicate this mode
since this transparency information can be obtained from shape coding. This
skipping applies to all I-, P- and B-VOPs. Since shape coding is unique to MPEG-4
(no other standard codecs use it), in the following sections we pay special attention
to various shape-coding methods.

10.4.1 Coding of binary alpha planes
A binary alpha plane is encoded in the intra mode for I-VOPs and the inter mode
for P-VOPs and B-VOPs. During the development of MPEG-4, several methods
for coding of the binary alpha planes have been considered. These include chain
coding of the object contours, quad tree coding, modified modified reed (MMR)

Content-based video coding (MPEG-4 visual) 297

and context-based arithmetic encoding (CAE) [3,12]. It appears that CAE, recom-
mended in the latest version of the verification model (VM-11) [3], is the best.
Hence, in the introduction of these methods, more details are given on the CAE.

10.4.2 Chain code
In the chain code method, the object boundaries are represented by a closed con-
tour, as shown in Figure 10.10, and the chain codes are then applied to the contour.
Derivation of the contour from the binary alpha plane is similar to detection of the
edge, as discussed in section 10.3. For coding, it involves moving on the contour in
one of eight directions, as shown in the figure, and coding the direction. The chain
code terminates when the starting point is revisited.

Each chain code contains a start point data followed by the first chain code and
the subsequent differential chain codes. If VOP contains several closed contours,
then plural chain codes are coded following the data for the number of regions.

3

4

5

6

0

2

1

7

Figure 10.10 Object boundaries for chain coding and the eight directions of the
chain around the object

Since a chain code has a cyclic property, a differential chain code in
eight directions can be expressed in the range from �3 to 4 by the following
definition:

d ¼
cn � cn�1 þ 8, if cn � cn�1 < �3
cn � cn�1 � 8, if cn � cn�1 > 4
cn � cn�1, otherwise

8<
: ð10:8Þ

where d is the differential chain code, cn is the current chain code and cn�1 is the
previous chain code. Huffman code is used to encode the differential chain code d.
The Huffman table is shown in Table 10.1.

At the receiver, after the variable length decoding of d, the current chain code,
cn, is then reconstructed as follows:

cn ¼ ðcn�1 þ d þ 8Þ mode 8 ð10:9Þ

298 Standard codecs: image compression to advanced video coding

10.4.3 Quad tree coding
Each binary alpha block (BAB) of 16 � 16 pixels, represented by binary data (white
255 and black 0), is first quad tree segmented. The indices of the segments, according
to the rules to be explained, are calculated and then Huffman coded. Figure 10.11
shows the quad tree structure employed for coding of a binary alpha block.

At the bottom level (level 3) of the quad tree, a 16 � 16 alpha block is parti-
tioned into 64 subblocks of 2 � 2 samples. Each higher level as shown also con-
tains 16 � 16 pixels, but in groups of 4 � 4, 8 � 8 and 16 � 16 subblocks.

The calculation of the indices is as follows:

● The indexing of subblocks starts at level 3, where an index is assigned to each
2 � 2 subblock pixel.

● For the four pixels of the subblock b[0] to b[3] of Figure 10.12, the index is
calculated as

index ¼ ð27 � b½0�Þ þ ð9 � b½1�Þ þ ð3 � b½2�Þ þ b½3� ð10:10Þ

where b[i] ¼ 2 if the sample value is 255 (white) and b[i] ¼ 0 if it is black. Hence,
there are 16 different index values with a minimum of 0 and a maximum of 80.

Step 1. Indexing of subblocks at level 3
These indices then become inputs to level 2 for the generation of a new set of
indices at this level. However, to increase inter block correlation, the subblocks are
swapped in decreasing order of indices. The swapping also causes the distribution
of index values to be predominantly low and hence this nonuniform distribution
is more efficiently variable length coded. Arrangement for the swap of the four
subblocks is carried out according to the relationship of the neighbouring indices
in the following order. The upper and left neighbouring indices are shown in
Figure 10.13.

Table 10.1 Huffman table for the
differential chain code

d Code

0 1
1 00

�1 011
2 0100

�2 01011
3 010100

�3 0101011
4 0101010

Content-based video coding (MPEG-4 visual) 299

18

24

26

16

4 5

6 7

8 9

10

12

11

1

2 3

0

0

19

20 21

22 23

25

27

28 29

30 31

32

34 35

36 37

38 39

40 41

42 43

44 45

46 47

48 49

50 51

52 53

54 55

56 57

58 59

33

174 5

6 7

8 9

10

12 13

1511 14

1

2 3

0

16

8

8 pel

16 pel

4 pel

4

2 pel

2

level 3

level 2

level 1

level 0

1

2

13

14

6160

15

0

3

62 63

Figure 10.11 Quad tree representation of a shape block

b[1]

b[3]b[2]

b[0]

Figure 10.12 A subblock of 2 � 2 pixels

● If upper_index[0] is less than upper_index[1], then swap index[0] with index[1]
and index[2] with index[3], except for subblocks numbered 0, 1, 4, 5, 16, 17, 20
and 21.

● If left_index[0] is less than left_index[1], then swap index[0] with index[2] and
index[1] with index[3], except for subblocks numbered 0, 2, 8, 10, 32, 34, 40
and 42.

300 Standard codecs: image compression to advanced video coding

index[1]index[0]
left_
index[0]

left_
index[1]

upper_
index[0]

upper_
index[1]

index[3]index[2]

Figure 10.13 Upper and left level indices of a subblock

● If upper_index[0] þ upper_index[1] is less than left_index[0] þ left_index[1],
then swap index[1] with index[2], except for subblocks numbered 0, 1, 2, 4, 5,
8, 10, 16, 17, 20, 21, 32, 34, 40 and 42.

● The index of level 2 is computed from index[0], index[1], index[2] and index[3]
after swapping according to:

index level 2 ¼ 27 � f ðindex½0�Þ þ 9 � f ðindex½1�Þ þ 3 � f ðindex½2�Þ

þ f ðindex½3�Þ
where

f ðxÞ ¼ 0 if x ¼ 0
f ðxÞ ¼ 2 if x ¼ 80
f ðxÞ ¼ 1 otherwise

ð10:11Þ

The current subblock is then reconstructed and used as a reference when pro-
cessing subsequent subblocks.

Step 2. Grouping process for higher levels
The grouping process of blocks at the higher level first starts at level 2 where four
subblocks from level 3 are grouped to form a new subblock. The grouping process
involves swapping and indexing similarly to that discussed for level 3, except that in
this level a 4 � 4 pixel block is represented by a 2 � 2 subblock whose elements are
indices rather than pixels. The current subblock is then reconstructed and used as a
reference when processing subsequent subblocks. At the decoder, swapping is done
following a reverse sequence of steps as at the encoder.

The grouping process is also performed similarly for level 1 where four sub-
blocks from level 2 are grouped to form a new subblock. The swapping, indexing
and reconstruction of a subblock follow grouping, the same as that for other levels.

Now arrangement of subblocks in decreasing order of their indices at level 2,
to utilise inter block correlation, is done as follows:

● If f (upper_index[0]) is less than f (upper_index[1]), then swap index[0] with
index[1] and index[2] with index[3], except for subblocks numbered 0, 1, 4
and 5.

Content-based video coding (MPEG-4 visual) 301

● If f (left_index[0]) is less than f (left_index[1]), then swap index[0] with index[2]
and index[1] with index[3] except for subblocks numbered 0, 2, 8 and 10.

● If f (upper_index[0]) þ f (upper_index[1]) is less than f (left_index[0]) þ
f (left_index[1]), then swap index[1] with index[2] except for subblocks num-
bered 0, 1, 2, 4, 5, 8 and 10.

● The index of level 1 is computed from index[0], index[1], index[2] and index[3]
after swapping, according to (10.11).

At level 1 no swapping is required.

Step 3. Encoding process
The encoding process involves use of results from the grouping process that pro-
duces a total of 85 (= 1 þ 4 þ 16 þ 64) indices for a 16 � 16 alpha block. Each
index is encoded from the topmost level (level 0). At each level, the order for
encoding and transmission of indices is shown by numbers in Figure 10.11. Indices
are Huffman coded. Note that indices at level 3 can take only 16 different values,
but at the other levels they take 80 different values. Hence, for efficient variable
length coding, two different Huffman tables are used, one with 16 symbols at
level 3 and the other with 80 symbols at levels 0–2. These tables are shown in
Appendix C.

10.4.4 Modified modified reed
During the course of MPEG-4 development, another shape-coding method named
modified modified reed (MMR) was also investigated [12]. The basic idea in this
method is to detect the pixel intensity changes (from opaque to transparent and vice
versa) within a block and to code the positions of the changing pixels. The chan-
ging pixels are defined by pixels whose colour changes while scanning an alpha
block in raster scan order. Figure 10.14 illustrates the changing pixels in an intra
and motion-compensated inter alpha block. Also in the figure are the top and left
reference row and column of pixels, respectively.

motion compensated MB

a0

c0

c1

b0

a1

b1

current MB
changing pixel(a) (b)

top reference row

left
reference
column

Figure 10.14 Changing pixels of (a) intra and (b) inter alpha block

302 Standard codecs: image compression to advanced video coding

To code the position of the changing pixels, the following parameters, as
shown in Figure 10.14, are defined.

For each length, the starting pixel is denoted by a0. Initially a0 is positioned at
the right end in the top reference and addressed as abs_a0 ¼ �1. The first changing
pixel appearing after a0 is called a1. For intra blocks, the pixel located above a0 is
called b0. The area from the next pixel to b0 down to a0 is called the reference area
in intra-MMR. In this case, the reference-changing pixel is called b1. This pixel is
found in reference area r1 or r2, shown in Figure 10.15a. Searching in r1, the first
changing pixel whose colour is the opposite of a0 is named b1; if not found, the first
changing pixel in r2 is named b1. Thus b1 might become identical to a0. Excep-
tionally b1 may not be found when abs_a0 ¼ �1.

motion compensated MB

c0

c1

b1

b0

a0
a1

current MB
reference area r1 reference area r2

(a) (b)

Figure 10.15 Reference area for detecting reference-changing pixel (a) b1

and (b) c1

For inter-MMR, the pixel at the corresponding position to a0 is called c0. The
area from the next pixel to c0 down to the end of alpha block is called reference
area in inter-MMR. The reference-changing pixel in this mode is called c1. This
pixel is found in the reference area r1 or r2, shown in Figure 10.15b. Searching in
r1, the first changing pixel whose colour is opposite of a0 is named c1; if not found,
the first changing pixel in r2 is named c1.

Given a0, the eventual task is to identify a1 by referring to either b1 or c1,
depending on the intra-MMR or inter-MMR mode, respectively. This is achieved in
three different modes as vertical, horizontal and vertical pass modes. The vertical
mode is the first option that is considered and if it is decided not to be applicable,
the horizontal mode or the vertical pass mode is employed in turn.

In the vertical mode, the position of a1 is identified relative to that of b1. It is
invoked only when the absolute value of the relative distance defined by the rela-
tive address DIST ¼ r_a1 � r_b1 is equal to or less than a predefined threshold
[12]. The DIST is then variable length coded using the appropriate intra-MMR and
inter-MMR VLC tables.

Content-based video coding (MPEG-4 visual) 303

If the vertical mode is not used (DIST > threshold), then the horizontal mode
is considered for coding. In this mode, the position of a1 is identified on the basis of
the absolute distance from a0. If this distance is less than the width of the alpha
block, then it is used; otherwise, the vertical pass mode is used, which implies that
one row of the pixels in the alpha block is passed (not coded).

Finally, the decision to use intra-MMR or inter-MMR is to first scan the alpha
block in the horizontal and vertical scanning directions. The one requiring the least
of bits is chosen. In the case of a tie, the horizontal scanning is chosen. For the final
decision between intra-MMR and inter-MMR, again the one that gives the least
coding bits is selected.

10.4.5 Context-based arithmetic coding
Each intra coded binary alpha block (BAB) and the inter coded one, after being
motion compensated by block-based motion compensation, is context-based arith-
metic encoded (CAE). In general each binary alpha block is coded according to one
of the following seven modes (in C terminology):

1. MVDs == 0 && No_Update
2. MVDs ! ¼ 0 && No_Update
3. All_0
4. All_255
5. Intra-CAE
6. MVDs == 0 && Inter-CAE
7. MVDs ! ¼ 0 && Inter-CAE

The first and second modes indicate that the shape will not be updated, and the
All_0 and All_255 indicate that the BAB contains only black and white pixels,
respectively. None of these modes are required to be arithmetic coded. Also in the
quad tree and MMR methods, All_0 and All_255 are not coded further.

Intra-CAE is the mode for context-based arithmetic coding of BABs that
contains a mixture of black and white pixels. In modes 6 and 7, the interframe
BABs (mixed black and white pixels) with and without motion compensation,
respectively, are arithmetic coded.

The motion vector data of shape (MVDS) is the difference between the shape
motion vector and its predictor, MVP. The prediction procedure is similar to that of
the motion vector data for texture, described in section 9.1.2. However, there are
differences, such as

● the prediction motion vectors can be derived from the candidate motion vec-
tors of shape MVS1, MVS2, MVS3 or the candidate motion vectors of the
texture, MV1, MV2 and MV3, similar to those of H.263 illustrated in Figure
9.2; the prediction motion vector is determined by taking the first encountered
motion vector that is valid; if no candidate is valid, the prediction is set to
zero;

● overlapped, half-pixel precision and 8 � 8 motion compensation is not
carried out;

304 Standard codecs: image compression to advanced video coding

● in the case that the region outside the VOP is referred to, the value for that is
set to zero;

● for B-VOPs, only forward motion compensation is used and neither backward
nor interpolated motion compensation is allowed.

It should be noted that when the shape prediction motion vector (MVPS) is deter-
mined, the difference between the motion-compensated BAB indicated with MVPS
and the current BAB is calculated. If the motion-compensated error is less than a
certain threshold (AlphaTH) for any 4 � 4 subblock of the BAB, the MVPS is
directly employed as the best prediction. If this condition is not met, MV is sear-
ched around the prediction vector MVPS by comparing the BAB indicated by the
MV and the current BAB. The MV that minimises the error is taken as the best
motion vector for shape (MVS), and the motion vector data for shape (MVDS) is
given by MVDS ¼ MVS � MVPS.

10.4.5.1 Size conversion
Rate control and rate reduction in MPEG-4 is realised through size conversion of
the binary alpha information. This method is also applicable to quad tree and MMR.
It is implemented in two successive steps.

In the first step, if required, the size of the VOP can be reduced by half in each
of the horizontal and vertical directions. This is indicated in the VOP header, as the
video object plane conversion ratio (VOP_CR), which takes a value of either 1 or
½. When VOP_CR is ½, the size conversion is carried out on the original bounding
box of Figure 10.5.

In the case that the value of VOP_CR is ½, the locally decoded shape that is
size converted at the VOP level is stored in the frame memory of the shape frame.
For the shape motion estimation and compensation, if VOP_CR of the reference
shape VOP is not equal to that of the current shape VOP, the reference shape frame
(not VOP) is size converted corresponding to the current shape VOP.

For P-VOPs, if the VOP_CR is ½, the components of the shape motion
information vector are measured on the downsampled shape frame. The predicted
motion vector for the shape, MVPS, is calculated only using the shape motion
vectors MVS1, MVS2 and MVS3.

In the second step, when required, the size conversion is carried out for every
binary alpha block, BAB, except for All_0, All_255 and No_Update. At the block
level, the conversion ratio can be one of ¼, ½ and 1 (the original size).

For CR ¼ ½, if the average of pixel values in a 2 � 2 pixel block is equal to or
larger than 128, the pixel value of the downsampled block is set to 255, otherwise it
is set to zero. For CR ¼ ¼, if the average of pixels in a 4 � 4 pixel block is equal to
or larger than 128, the pixel value of the downsampled block is set to 255, other-
wise it is set to zero. In either of these cases, upsampling is carried out for the BAB.
The values of the interpolated pixels are calculated from their neighbouring pixels
according to their Euclidean distances.

Selection of a suitable value for the conversion ratio is done based on the
conversion error between the original BAB and the BAB that is once downsampled

Content-based video coding (MPEG-4 visual) 305

and then reconstructed by upsampling. The conversion error is computed for each
4 � 4 subblock by taking the absolute difference of pixels in the corresponding
subblocks of the original and reconstructed BABs. If this difference is greater than
a certain threshold, this subblock is called an error pixel block (Error_PB). Size
conversion at a certain conversion ratio is accepted if there is no Error_PB at that
ratio. Figure 10.16 summarises determination of the conversion ratio, CR.

start

set CR = 1/4

at least one
Error_PB in MB

at least one
Error_PB in MB

set CR = 1

set CR = 1/2

end

n

n

y

y

Figure 10.16 CR determination algorithm

If a downsampled BAB turns out to be all transparent or all opaque and the
conversion error in any 4 � 4 subblocks in the BAB is equal to or lower than the
threshold, the shape information is coded as shape_mode ¼ All_0 or All_255.
Unless this is the case, the BAB is coded with a context-based arithmetic coding at
the size determined by the algorithm for the rate control.

10.4.5.2 Generation of context index
The pixels in the binary alpha block (BABs) are context-based arithmetic coded for
both intra and inter modes. The number of pixels in the BAB is determined by the
conversion ratio (CR), which is either 16 � 16, 8 � 8 or 4 � 4 pixels for CR values
of 1, ½ and ¼, respectively.

The context based arithmetic encoding (CAE) is a binary arithmetic coding,
where the symbol probability is determined from the context of the neighbouring
pixels. Such a coding is applied to each pixel of the BAB in the following manner.

306 Standard codecs: image compression to advanced video coding

First, prior to encoding of each BAB, the arithmetic encoder is initialised. Each
binary pixel is then encoded in the raster scan order. The process for coding a given
pixel is carried out using the following steps:

1. compute the context number
2. index a probability table using the context number
3. use the indexed probability to derive an arithmetic encoder

When the final pixel has been encoded, the arithmetic code is terminated.
Figure 10.17 shows the template of the neighbouring pixels that contribute to

the creation of the context number for intra and inter shape pixels.

C1

C3

C9 C8

C4

C0

C2

C7

C6

?

C5

C3 C2

C0

C1

C4

C5

?

C6C7

C8
alignment

pixels of the
current BAB

pixels of the
MC BAB

(a) (b)

Figure 10.17 Template for the construction of the pixels of (a) the intra and
(b) inter BABs. The pixel to be coded is marked with ‘?’

For intra coded BABs, a 10-bit context C ¼P9
k¼0 ck2k is calculated for each

pixel, as shown in Figure 10.17a. In this figure, the pixel to be encoded is repre-
sented by ?, and the 10 neighbouring pixels are ordered as shown. For inter coded
BABs, in addition to spatial redundancy, temporal redundancy is exploited by using
pixels from the bordered motion-compensated BAB, to make up part of the context,
as shown in Figure 10.17b. In this mode, only 9 bits are required to calculate the
context number, for example, C ¼P8

k¼0 ck2k .
In both modes, there are some special cases to note:

● In building contexts, any pixel outside the bounding box of the current VOP to
the left and above are assumed to be zero.

● The template may cover pixels from BABs that are not known at the decoding
time. The values of these unknown pixels are estimated by template padding in
the following manner:
* When constructing the intra context, the following steps are taken in

sequence:
– If (C7 is unknown) C7 ¼ C8.
– If (C3 is unknown) C3 ¼ C4.
– If (C2 is unknown) C2 ¼ C3.

Content-based video coding (MPEG-4 visual) 307

* When constructing the inter context, the following conditional assignment
is performed:
– If (C1 is unknown) C1 ¼ C2.

Once the context number is calculated, it is used to derive a probability table for
binary arithmetic coding. Two probability tables, a 10-bit for intra and a 9-bit for
inter BABs, are given in Appendix D. These tables contain the probabilities for a
binary alpha pixel being equal to 0 for intra and inter shape coding using the context-
based arithmetic coding. All probabilities are normalised to the range of [1, 65 535].

As an example, let us assume the neighbouring pixels for an intra BAB tem-
plate has a black and white pattern as shown in Figure 10.18.

C1

C3

C9 C8

C4

C0

C2

C7

C6

?

C5

Figure 10.18 An example of an intra BAB template

In this figure, C0 ¼ C1 ¼ C2 ¼ C3 ¼ C4 ¼ C7 ¼ 1, and C5 ¼ C6 ¼
C8 ¼ C9 ¼ 0. Hence, the context number for coding of pixel ? is
C ¼ 20 þ 21 þ 22 þ 23 þ 24 þ 27 ¼ 159.

If pixel ? was a black pixel it would have been coded with an Intra_prob[159].
This value according to Appendix D is 74 out of 65 535. If it was a white pixel, its
probability would have been 65 535 – 74 ¼ 65 461 out of 65 535. Such a high
probability for a white pixel in this example is expected, since this pixel is sur-
rounded by many white pixels. Note also, although the given probability table is
fixed, as the pattern of neighbouring pixels changes, the calculated context number
changes such that the assigned probability to the pixel is better suited for that pattern.
This is a form of adaptive arithmetic coding that only looks at the limited number of
past coded symbols. It has been shown that adaptive arithmetic coding with limited
past history has more efficient compression over fixed rate arithmetic coding [13].

10.4.6 Greyscale shape coding
The grey level alpha plane is encoded as its support function and the alpha values
on the support. The support is obtained by thresholding the grey level alpha plane
by 0, and the remaining parts constitute the alpha values, as shown in Figure 10.19.

grey level alpha

support alpha values

binary shape coder texture coder

Figure 10.19 Greyscale shape coding

308 Standard codecs: image compression to advanced video coding

The support function is encoded by binary shape coding, as described in sec-
tion 10.4.5. The alpha values are partitioned into 16 � 16 blocks and encoded the
same way as the luminance of texture is coded.

10.5 Motion estimation and compensation

The texture of each VOP is motion compensated prior to coding. The motion
estimation and compensation is similar to that of H.263 with the exception that the
blocks on the VOP borders have to be modified to cater for the arbitrary shapes of
the VOPs. These modified macroblocks are referred to as polygons, and the motion
estimation is called polygon-based matching. Furthermore, since shapes change
from time to time, some conversion is necessary to ensure the consistency of the
motion compensation.

A macroblock that lies on the VOP boundary, called a boundary macroblock, is
padded by replicating the boundary samples of the VOP towards the exterior. This
process is carried out by repetitive padding in the horizontal and vertical directions.
In case there are macroblocks completely outside the VOP, they are padded by
extended padding.

In horizontal padding, each sample at the boundary of a VOP is replicated
horizontally in the left or right direction in order to fill the transparent region
outside the VOP of a boundary macroblock. If there are two boundary sample
values for filling a sample outside a VOP, the two boundary samples are averaged.
A similar method is used for vertical padding of the boundary macroblocks in the
vertical direction.

Exterior macroblocks immediately next to boundary macroblocks are filled by
replicating the samples at the border of the boundary macroblocks. The boundary
macroblocks are numbered in a prioritised order according to Figure 10.20.

The exterior macroblock is then padded by replicating upwards, downwards,
leftwards or rightwards the rows of sampling from the horizontal, vertical border of
the boundary macroblock having the largest priority number. Note that the
boundary macroblocks have already been padded by horizontal and vertical

boundary
MB 3

exterior
MB

boundary
MB 1

boundary
MB 2

boundary
MB 4

Figure 10.20 Priority of boundary macroblocks surrounding an exterior
macroblock

Content-based video coding (MPEG-4 visual) 309

repetitive padding. The remaining macroblocks that is; those which are not located
next to any boundary macroblock are filled with 128. The original alpha plane for
the VOP is used to exclude the pixels of the macroblocks that are outside the VOP.

The reference VOP is padded based on its own shape information. For exam-
ple, when the reference VOP is smaller than the current VOP, the reference is not
padded up to the size of the current VOP.

The motion estimation and compensation with the padded VOPs can be carried
out in several different forms, such as integer pixel motion estimation, half and
quarter sample search, unrestricted motion estimation/compensation, overlapped
motion compensation and advanced mode prediction. Motion vectors are then
differentially encoded, similar to H.263.

10.6 Texture coding

The intra VOPs and motion-compensated inter VOPs are coded with 8� 8 block DCT.
The DCT is performed separately for each of the luminance and chrominance planes.

For an arbitrarily shaped VOP, the macroblocks that completely reside inside the
VOP shape are coded with a technique identical to H.263. For the boundary macro-
blocks, if it is of intra type, it is padded with horizontal and vertical repetition. For inter
macroblocks, not only is the macroblock repeatedly padded, but also the region outside
the VOP within the block is padded with zeros. Transparent blocks are skipped and
therefore are not coded. These blocks are then coded in a manner identical to the
interior blocks. Blocks that lie outside the original shape are padded with 128, 128 and
128 for the luminance and the two chrominances in the case of intra, and 0, 128 and
128 for inter macroblocks. Blocks that belong neither to the original nor to the coded
arbitrary shape but to the inside of the bounding box of the VOP are not coded at all.

10.6.1 Shape-adaptive DCT
At the boundary macroblocks, the horizontally/vertically padded blocks can be
coded with a standard 8 � 8 block DCT. This padding removes any abrupt tran-
sitions within a block, and hence reduces the number of significant DCT coeffi-
cients. At the decoder, the added pixels are removed by the help of shape
parameters from the decoded BABs.

Since the number of opaque pixels in the 8 � 8 blocks of some of the boundary
macroblocks is usually less than 64 pixels, it would have been more efficient if
these opaque pixels could have been DCT coded without padding. This method of
DCT coding is called shape-adaptive DCT (SA-DCT). The internal processing of
SA-DCT is controlled by the shape information that has to be derived from the
decoded BAB. Hence, only opaque pixels within the boundary blocks are actually
coded. As a consequence, in contrast to standard DCT, the number of DCT coef-
ficients in an SA-DCT is equal to the number of opaque pixels.

There are two types of SA-DCT, one used for inter blocks, known as SA-DCT,
and the other for intra blocks, known as DSA-DCT, which is an extension of

310 Standard codecs: image compression to advanced video coding

SA-DCT. For both cases, a two-dimensional separable DCT with a varying length
of basis vectors is used.

The basic concept of SA-DCT is shown in Figure 10.21. Segments of the
opaque pixels are encapsulated in the picture grids of 8 � 8 pixel blocks as shown
in Figure 10.21a. Each row of the pixels is then shifted and aligned to the left, as
shown in Figure 10.21b. The aligned pixels are then one-dimensionally DCT coded
in the horizontal direction with variable basis functions, where the lengths of the
basis functions are determined by the number of pixels in each line. For example,
the first pixel of the segment is represented by itself as a DC coefficient.

DCT-1
D

C
T-

6

D
C

T-
2

D
C

T-
3

D
C

T-
4

D
C

T-
5

DCT-3

DCT-2
DCT-4
DCT-5
DCT-5

(a)

(d)

(b)

(e) (f)

(c)

Figure 10.21 An example of SA-DCT (a) original segment, (b) ordering of pixels
and horizontal SA-DCT, (c) location of 1D coefficients, (d) location
of samples prior to vertical SA-DCT, (e) ordering of 1D samples
and vertical (f) location of 2D SA-DCT coefficients

The second line of the pixels is DCT coded with a three-point transform, and
the third line with a five-point transform, and so on. The coefficients of the N-point
DCT, cj, are defined by

cj ¼
ffiffiffiffi
2
N

r
c0 cos pðk þ 0:5Þ p

N

h i

and c0 ¼
ffiffiffi
2

p

2
if p ¼ 0;

c0 ¼ 1 otherwise

ð10:12Þ

Content-based video coding (MPEG-4 visual) 311

Figure 10.21c illustrates the horizontal DCT coefficients, where the DC values
are represented with a dot. These coefficients now become the input to the second-
stage one-dimensional DCT in the vertical direction. Again they are shifted
upwards and aligned to the upper border, and the N-point DCT is applied to each
vertical column, as shown in Figure 10.21e. The final two-dimensional DCT
coefficients are shown in Figure 10.21f. Note that since the shape information from
the decoded BABs is known, these processes of shifting and alignments in the
horizontal and vertical directions are reversible.

The DSA-DCT algorithm that is used for intra coded macroblocks is similar to
SA-DCT but with extra processing. This additional processing is simply calculating
the mean of the opaque pixels in the block, and subtracting the mean from each
individual pixel. The resultant zero mean opaque pixels are then SA-DCT coded.
The mean value is separately transmitted as the DC coefficient.

Zigzag scanning, quantisation and the variable length coding of the SA-DCT
coefficients operations are similar to those of standard DCT used in H.263.

10.7 Coding of the background

An important advantage of the content-based coding approach in MPEG-4 is that
the compression efficiency can be significantly improved by not coding the video
background. If the background is completely static, all the other noncontent-based
codecs would not code the background either. However, because of noise, camera
shaking, or deliberate camera movement, such as panning, zooming, and tilt, the
background cannot be entirely static. One of the attractive features of the content-
based or object-based coding is that the background movement does not need to be
represented at its exact form. Viewers normally do not pay attention to the accuracy
of the background video, unless it is badly coded, such that the coding distortion
distracts the viewer from the main scene.

An efficient way of coding the background is to represent the background
movement with a global motion model. In section 9.4.5, we saw that motion
compensation with the spatial transform was capable of dealing with complex
motions such as translation, sheering, and zooming. The same concept can be used
to compensate for the global motion of the background. Here the whole background
VOP is transformed to match against the VOP of the previous frame. The trans-
formation parameters then represent the amount of information required to code the
background VOP, which corresponds to an extremely low bit rate.

In MPEG-4, the global motion is represented either by six motion parameters
(three motion vectors) through the affine transform, defined as

x ¼ a0u þ a1v þ a2 and y ¼ a3u þ a4v þ a5 ð10:13Þ
or by eight parameters (four motion vectors), using the perspective transform,
defined by

x ¼ a0u þ a1v þ a2

a6u þ a7v þ 1
and y ¼ a3u þ a4v þ a5

a6u þ a7v þ 1
ð10:14Þ

312 Standard codecs: image compression to advanced video coding

In both cases, similar to the bilinear transform of section 9.4.5, the coordinates
(u, v) in the current frame are matched against the coordinates (x, y) in the previous
frame. The best matching parameters then define the motion of the object (in this
case, the background VOP).

In MPEG-4, global motion compensation is based on the transmission of a
static sprite. A static sprite is a (possibly large) still image, describing panoramic
background. For each consecutive image in a sequence, only eight global motion
parameters describing camera motion are coded to reconstruct the object. These
parameters represent the appropriate perspective transform of the sprite transmitted
in the first frame.

Figure 10.22 depicts the basic concept for coding an MPEG-4 video sequence
using a sprite panorama image. It is assumed that the foreground object (tennis
player, top right image) can be segmented from the background and that the sprite
panorama image can be extracted from the sequence prior to coding. (A sprite
panorama is a still image that describes the content of the background over all
frames in the sequence.) The large panorama sprite image is transmitted to the
receiver only once as the first frame of the sequence to describe the background.
The sprite is stored in a sprite buffer. In each consecutive frame, only the camera
parameters relevant for the background are transmitted to the receiver. This allows
the receiver to reconstruct the background image for each frame in the sequence
based on the sprite. The moving foreground object is transmitted separately as an
arbitrary shape VO. The receiver composes both the foreground and background
images to reconstruct each frame (bottom picture in Figure 10.22). For low-delay
applications, it is possible to transmit the sprite in multiple smaller pieces over
consecutive frames or to build up progressively the sprite at the decoder.

The global motion compensation can also be applied to the foreground objects.
Here for each VOP, a spatial transform, like the perspective transform, is used to

Figure 10.22 Static sprite of Stefan (Courtesy of MPEG-4)

Content-based video coding (MPEG-4 visual) 313

estimate the transformation parameters. These are regarded as the global motion
parameters that are used to compensate for the global motion of the foreground
object. Globally, motion-compensated VOP is then coded by the motion-
compensated texture coding, where it is motion compensated once more, but this
time with a conventional block matching technique.

10.8 Coding of synthetic objects

Synthetic images form a subset of computer graphics, which can be supported by
MPEG-4. Of particular interest in synthetic images is the animation of head-and-
shoulders or cartoon-like images. Animation of synthetic faces was studied in the
first phase of MPEG-4, and the three-dimensional body animation was addressed in
the second phase of MPEG-4 development [2].

The animation parameters are derived from a two-dimensional mesh, which is
a tessellation of a two-dimensional region into polygonal patches. The vertices of
the polygonal patches are referred to as the node points or vertices of the mesh. In
coding of the objects, these points are moved according to the movement of the
body, head, eyes, lips and changes in the facial expressions. A two-dimensional
mesh matched to the Claire image is shown in Figure 10.23a. Since the number of
nodes representing the movement can be very small, this method of coding,
known as model-based coding, requires a very low bit rate, possibly in the range of
10–100 bit/s [14].

To make synthetic images look more natural, the texture of the objects is
mapped into the two-dimensional mesh, as shown in Figure 10.23b. For coding of
the animated images, triangular patches in the current frame are deformed by the
movement of the node points to be matched into the triangular patches or facets in
the reference frame. The texture inside each patch in the reference frame is thus
warped onto the current frame, using a parametric mapping, defined as a function
of the node point motion vectors.

(a) (b)

Figure 10.23 (a) A two-dimensional mesh and (b) the mapped texture

314 Standard codecs: image compression to advanced video coding

For triangular meshes, the affine mapping with six parameters (three node
points or vertices) is a common choice [15]. Its linear form implies that texture
mapping can be accomplished with a low computational complexity. This mapping
can model a general form of motion including translation, rotation, scaling,
reflection and shear, and preserves straight lines. This implies that the original two-
dimensional motion field can be compactly represented by the motion of the node
points, from which a continuous, piecewise affine motion field can be recon-
structed. At the same time, the mesh structure constrains movements of adjacent
image patches. Therefore, meshes are well suited to represent mildly deformable
but spatially continuous motion fields.

However, if the movement is more complex, like the motion of lips, then affine
modelling may fail. For example, Figure 10.24 shows the reconstructed picture of
Claire after nine frames of affine modelling. The accumulated error due to model
failure around the lips is very evident.

Figure 10.24 Reconstructed model-based image with the affine transform

For a larger complex motion, requiring a more severe patch deformation, one
can use quadrilateral mappings with eight degrees of freedom. Bilinear and per-
spective mappings are these kinds of mappings, which have a better deformation
capability over the affine mapping [16,17].

10.9 Coding of still images

MPEG-4 also supports coding of still images with a high coding efficiency as well
as spatial and SNR scalability. The coding principle is based on the discrete
wavelet transform, which was described in some length in Chapter 4. The lowest
subband after quantisation is coded with a differential pulse code modulation
(DPCM) and the higher bands with a variant of embedded zero tree wavelet (EZW)
[18]. The quantised DPCM and zero tree data are then entropy coded with an
arithmetic encoder. Figure 10.25 shows a block diagram of the still image encoder.

Content-based video coding (MPEG-4 visual) 315

DWT

Q

Q

DPCM

zero tree

AC

ACother bands

bitstream
input

low-low band

Figure 10.25 Block diagram of a wavelet-based still image encoder

In the following sections, each part of the encoder is described.

10.9.1 Coding of the lowest band
The wavelet coefficients of the lowest band are coded independently from the other
bands. These coefficients are DPCM coded with a uniform quantiser. The predic-
tion for coding a wavelet coefficient wx is taken from its neighbouring coefficients
wA or wC, according to

if jwA � wBj < jwA � wC j wprd ¼ wC

otherwise wprd ¼ wA,
ð10:15Þ

The difference between the actual wavelet coefficient wx and its predicted value
wprd is coded. The positions of the neighbouring pixels are shown in Figure 10.26.

The coefficients after DPCM coding are encoded with an adaptive arithmetic
coder. First the minimum value of the coefficient in the band is found. This value,
known as band_offset, is subtracted from all the coefficients to limit their lower
bound to zero. The maximum value of the coefficients as band_max_value is also
calculated. These two values are included in the bitstream.

C B

X A

Figure 10.26 Prediction for coding the lowest band coefficients

For adaptive arithmetic coding [19], the arithmetic coder model is initialised at
the start of coding with a uniform distribution in the range of 0 to band_max_value.
Each quantised and DPCM-coded coefficient after arithmetic coding is added to the
distribution. Hence, as the encoding progresses, the distribution of the model adapts
itself to the distribution of the coded coefficients (adaptive arithmetic coding).

10.9.2 Coding of higher bands
For efficient compression of higher bands as well as for a wide range of scalability,
the higher order wavelet coefficients are coded with the embedded zero tree

316 Standard codecs: image compression to advanced video coding

wavelet (EZW) algorithm first introduced by Shapiro [18]. Details of this coding
technique are given in Chapter 4. Here we show how it is used within the MPEG-4
still image coding algorithm.

Figure 10.27 shows a multiscale zero tree coding algorithm, based on EZW,
for coding of higher bands. The wavelet coefficients are first quantised with a
quantiser Q0. The quantised coefficients are scanned with the zero tree concept
(exploiting similarities among the bands of the same orientation), and then entropy
coded with an arithmetic coder (AC). The generated bits comprise the first portion
of the bitstream, as the base layer data, BS0. The quantised coefficients of the base
layer after inverse quantisation are subtracted from the input wavelet coefficients,
and the residual quantisation distortions are requantised by another quantiser, Q1.
These are then zero tree scanned (ZTS) entropy coded to represent the second
portion of the bitstream, BS1. The procedure is repeated for the all the quantisers,
Q0 to QN, to generate N þ 1 layers of bitstream.

The quantisers used in each layer are uniform with a dead band zone of twice
the quantiser step size of that layer. The quantiser step size in each layer is specified
by the encoder in the bitstream. As we are already aware, each quantiser is multi-
layer, and the quantiser step size of a lower layer is several times that of its
immediate upper layer. This is because, for a linear quantiser Qi, with a quantiser
step size of qi, the maximum residual quantisation distortion is qi (for those that fall
in the dead zone of Qi) and qi/2 (for those that are quantised). Hence, for a higher-
layer quantiser Qi+1, with a quantiser step size of qi+1 to be efficient, the qi+1

should be several times smaller than qi. If qi+1 ¼ 1
2qi, then it becomes a bilevel

quantiser.
The number of quantisers indicates the number of SNR-scalable layers, and the

quantiser step size in each layer determines the granularity of SNR scalability at
that layer. For finest granularity of SNR scalability, all the layers can use a bilevel
(1 bit) quantiser. In this case, for optimum encoding efficiency, the quantiser step

ZTS AC

buffer
+

–

–

ZTS AC

IQ1

IQ0

Q1

Q0

buffer
+

Qn ZTS AC BSn

BS1

BS0
higher band coefficients

Figure 10.27 A multiscale encoder of higher bands

Content-based video coding (MPEG-4 visual) 317

size of each layer is exactly twice that of its immediate upper layer. Multistage
quantisation in this mode now becomes quantisation by successive approximation
or the bit plane encoding, described in Chapter 4. Here, the number of quantisers is
equal to the number of bit planes required to represent the wavelet transform
coefficients. In this bilevel quantisation, instead of quantiser step sizes, the max-
imum number of bit planes is specified in the bitstream.

As the figure shows, the quantised coefficients are zero tree scanned (ZTS) to
exploit similarities among the bands of the same orientation. The zero tree takes
advantage of the principle that if a wavelet coefficient at a lower frequency band is
insignificant, then all the wavelet coefficients of the same orientation at the same
spatial location are also likely to be insignificant. A zero tree exists at any node when
a coefficient is zero and all the node’s children are zero trees. The wavelet trees are
efficiently represented and coded by scanning each tree from the root at the lowest
band through the children and assigning symbols to each state of the tree.

If multilevel quantiser is used, then each node encounters three symbols: zero
tree root, value zero tree root (VZ) and value (V). A zero tree root symbol denotes a
coefficient that is the root of a zero tree. When such a symbol is coded, the zero tree
does not need to be scanned further, because it is known that all the coefficients in
such a tree have zero values. A value zero tree root symbol is a node where the
coefficient has a nonzero value, and all its four children are zero tree roots. The
scan of this tree can stop at this symbol. A value symbol identifies a coefficient
with value either zero or nonzero, but some of the descendents are nonzero. The
symbols and the quantised coefficients are then entropy coded with an adaptive
arithmetic coder.

When a bilevel quantiser is used, then the values of each coefficient is either
0 or 1. Hence, depending on the implementation procedure, different types of
symbols can be defined. Since multilayer bilevel quantisation is, in fact, quantisa-
tion by successive approximation, this mode is exactly the same as coding the
symbols at EZW. There we defined four symbols of +, �, ZT and Z, where ZT is a
zero tree root symbol, Z is an isolated zero within a tree, and þ and � are the values
for refinement (see section 4.5 for details).

To achieve both spatial and SNR scalability, two different scanning methods
are employed in this scheme. For spatial scalability, the wavelet coefficients are
scanned from subband to subband, starting from the lowest frequency band to the
highest frequency band. For SNR scalability, the wavelet coefficients are scanned
quantiser to quantiser. The scanning method is defined in the bitstream.

10.9.3 Shape-adaptive wavelet transform
Shape-adaptive wavelet (SA-wavelet) coding is used for compression of arbitrary
shaped textures. SA-wavelet coding is different from the regular wavelet coding
mainly in its treatment of the boundaries of arbitrary shaped texture. The coding
ensures that the number of wavelet coefficients to be coded is exactly the same as the
number of pixels in the arbitrary shaped region, and coding efficiency at the object
boundaries is the same as for the middle of the region. When the object boundary is
rectangular, SA-wavelet coding becomes the same as the regular wavelet coding.

318 Standard codecs: image compression to advanced video coding

The shape information of an arbitrary shaped region is used in performing the
SA-wavelet transform in the following manner. Within each region, the first row of
pixels belonging to that region and the first segment of the consecutive pixels in the
row are identified. Depending on whether the starting point in the region has odd or
even coordinates, and the number of pixels in the row of the segment is odd or
even, the proper arrangements for 2:1 downsampling and use of symmetric exten-
sions are made [3].

Coding of the SA-wavelet coefficients is the same as coding of regular wavelet
coefficients, except that a modification is needed to handle partial wavelet trees
that have wavelet coefficients corresponding to pixels outside the shape boundary.
Such wavelet coefficients are called out nodes of the wavelet trees. Coding of the
lowest band is the same as that of the regular wavelet, but the out nodes are not
coded. For the higher bands, for any wavelet trees without out nodes, the regular
zero tree is applied. For a partial tree, a minor modification to the regular zero tree
coding is needed to deal with the out nodes. That is, if the entire branch of a partial
tree has out nodes only, no coding is needed for this branch, because the shape
information is available to the decoder to indicate this case. If a parent node is not
an out node, all the children out nodes are set to zero, so that the out nodes do not
affect the status of the parent node as the zero tree root or isolated zero. At the
decoder, the shape information is used to identify such zero values as out nodes. If
the parent node is an out node and not all of its children are out nodes, there are two
possible cases. The first case is that some of its children are out nodes, but they are all
zeros. This case is treated as a zero tree root and there is no need to go down the tree.
The shape information indicates which children are zeros and which are out nodes.
The second case is that some of its children are not out nodes and at least one of such
nodes is nonzero. In this case, the out node parent is set to zero, and the shape
information helps the decoder to know that this is an out node, and coding continues
further down the tree. There is no need to use a separate symbol for any out nodes.

10.10 Video coding with the wavelet transform

The success of the zero tree in efficient coding of wavelet transform coefficients has
encouraged researchers to use it for video coding. Although wavelet-based video
coding is not part of the standard, there is no reason why wavelet-based video coding
cannot be used in the future. This, of course, depends on the encoding efficiency of
wavelet-based coding and its functionalities. For this reason, in this section, we look
at some video coding scenarios and examine the encoding efficiency.

One way of wavelet-based video coding is to use the generic video encoder of
Figure 3.19, but replacing the DCT with the DWT, as shown in Figure 10.28. Here,
variable length coding of the quantised coefficients is replaced by the zero tree
coding of either EZW or set partitioning in hierarchical tree (SPIHT) [18,21]. Also,
overlapped motion compensation has been found to be very effective with the
wavelet transform, as it prevents the motion compensation blocking artefacts from
creating spurious vertical and horizontal edges.

Content-based video coding (MPEG-4 visual) 319

DWT

frame
store

Q

motion
estimator

+

–

input
video

bitstream

ZTS buffer

inverse
Q&DWT

inter/intra

motion vectors

Figure 10.28 Block diagram of a wavelet video codec

Another method that might be used with the wavelet transform is shown in
Figure 10.29.

n-band wavelet
decomposition

motion compensation at the last stage
and refinement at other stages

DCT-based
encoder (H.263)

ZTS

video
in MVs bitstream

Figure 10.29 A hybrid H.263/wavelet video coding scheme

Each frame of the input video is transformed into n-band wavelet subbands.
The lowest LL band is fed into a DCT-based video encoder, such as MPEG-1 or
H.263. The other bands undergo a hierarchical motion compensation. First, the
three high-frequency bands of the last stage are motion compensated using the
motion vectors from MPEG-1/H.263. The reconstructed picture from these four
bands (LL, LH, HL and HH), which is the next level LL band, only requires a �1
pixel refinement [20]. The other three bands at this stage are also motion com-
pensated by the same amount. This process is continued for all the bands. Hence, at
the end all the bands are motion compensated. Now these motion-compensated
bands are coded with a zero tree-based coding method (EZW or SPIHT).

10.10.1 Virtual zero tree algorithm
The lowest band of the wavelet, LL, is a reduced size replica of the original video
and hence can be encoded with an efficient encoder, such as H.263. When a zero

320 Standard codecs: image compression to advanced video coding

tree-based coding such as EZW/SPIHT is used along with the standard codecs
(e.g. Figure 10.29), it meets some problems. First, the subband decomposition
stops when the top level LL band reaches a size of SIF/QSIF or sub-QSIF. At
these levels there will be too many clustered zero tree roots. This is very com-
mon for either static parts of the pictures or when motion compensation is very
efficient. Even for still images or I-pictures, a large part of the picture may
contain only low spatial frequency information. As a result, at the early stages of
the quantisation by successive approximation, where the yardstick is large, a vast
majority of the wavelet coefficients fall below the yardstick. Second, even if the
subband decomposition is taken to more stages, such that the top stage LL is a
small picture of 16 � 16 pixels (e.g. Figure 10.28), it is unlikely that many zero
trees can be generated. In other words, with a higher level of wavelet decom-
position, the tree structure is bound to break and hence the efficiency of EZW/
SPIHT is greatly reduced.

To improve the efficiency of zero tree-based coding, we have devised a version
of it called virtual zero tree (VZT) [22]. The idea is to build trees outside the
image boundary, hence the word virtual, as an extension to the existing trees that
have roots in the top stage, so that the significant map can be represented in a more
efficient way. It can be imagined as replacing the top level LL band with zero value
coefficients. These coefficients represent the roots of wavelet trees of several vir-
tual subimages in normal EZW/SPIHT coding, although no decomposition and
decimation actually take place, as demonstrated in Figure 10.30.

A virtual zero tree map

LL

HL1

HL2

HH1LH1

HH2LH2

HL5
HL4

HL3

LH4

LH3

LH5

HL6
LH6

HH4

HH3

Figure 10.30 A virtual zero tree

Content-based video coding (MPEG-4 visual) 321

In this figure, virtual trees, or a virtual map, are built in the virtual subbands
on the high-frequency bands of the highest stage. Several wavelet coefficients of
the highest stage form a virtual node at the bottom level of the virtual map. Then
in the virtual map, four nodes of a lower level are represented by one node of a
higher level in the same way a zero tree is formed in EZW/SPIHT coding. The
virtual map has only two symbols: VZT root or non-VZT root. If four nodes of a
2 � 2 block on any level of a virtual tree are all VZT roots, the corresponding
node on the higher level will also be a VZT root. Otherwise this one node of the
higher level will be a non-VZT node. This effectively constructs a long-rooted
tree of clustered real zero trees. One node on the bottom level of the virtual map
is a VZT root only when the four luminance coefficients of a 2 � 2 block and
their two corresponding chrominance coefficients on the top stage wavelet band
are all zero tree roots. Chrominance pictures are also wavelet decomposed and,
for a 4:2:0 image format, four zero tree roots of the luminance and one from each
chrominance can be made a composite ZT root [22].

10.10.2 Coding of high-resolution video
A wavelet transform can be an ideal tool for coding of high-resolution pictures or
video. This is because the high correlation among the dense pixels of high-
resolution pictures are better exploited if a larger area for decorrelation of pixels
are used. Unfortunately, in the standard video codecs, the DCT block sizes are
fixed at 8 � 8, and hence pixel correlation beyond eight-pixel distances cannot be
exploited. On the other hand, in the wavelet transform, increasing the number of
decomposition levels means decorrelating the pixels at larger distances if so
desired.

We have tested the encoding efficiency of the wavelet transform (for Figure
10.29) for high definition video (HDTV) as well as super HDTV (SHD). For
HDTV, we have used the test sequence Gaynor (courtesy of BBC). For this image
sequence, a two-stage (seven-band) wavelet transform is used, and the LL band of
the SIF size was MPEG-1 coded. Motion-compensated higher bands were coded
with VZT and EZW. For the SHD video, the park sequence with 2048 � 2048
pixels at 60 Hz (courtesy of NHK Japan [21]) was used. The SHD images after
three-stage subband decomposition result in ten bands. The LL band, with picture
resolutions of 256 � 256 pixels, is MPEG-1 coded; the remaining nine bands are
VZT and EZW coded in two separate experiments.

It appears at first that by creating virtual nodes, we have increased the number
of symbols to be coded, and hence the bit rate tends to increase rather than to
decrease. However, these virtual roots will cluster the zero tree roots into a bigger
zero tree root, such that instead of coding these roots one by one, at the expense of a
large overhead by a simple EZW, we can code the whole cluster by a single VZT
with only a few bits. VZT is more powerful at the early stages of encoding, where
the vast majority of top stage coefficients are zero tree roots. This can be seen from
Table 10.2, where a complete breakdown of the total bit rate required to code a
P-picture of the park sequence by both methods is given.

322 Standard codecs: image compression to advanced video coding

Table 10.2 Breakdown bit rate in coding of a P-picture with VZT and EZW

VZT (kbits) EZW (kbits)

Virtual
pass

Real
pass

Dominanat
pass

Sub-
ordinate
pass

Sum Dominanat
pass

Sub-
ordinate
pass

Sum

MPEG – – – – 171 – – 171
MV – – – – 15 – – 15
Pass-1 1.5 3.2 4.4 0.16 4.9 25 0.16 25
Pass-2 7.7 31 39 1.7 41 153 1.7 156
Pass-3 18 146 164 11 175 465 11 476
Pass-4 29 371 400 41 441 835 41 896
Pass-5 42 880 992 128 1050 1397 128 1326
Grand

total
1898 3265

The first row of the table shows that 171 kbits are used to code the LL band by
MPEG-1. The second row shows that 15 kbits is used for the additional �1 pixel
refinement in all bands. For the higher bands, the image is scanned in five passes,
where the bits used in the dominant and subordinate passes of VZT and EZW are
shown. In VZT, the dominant pass is made up of two parts: one used in coding of
the virtual nodes and the other parts for real data in the actual nine bands. Note that
although some bits are used to code the virtual nodes (are not used in EZW), the
total bits of the dominant pass in VZT are much less than for EZW. The number of
bits in the subordinate passes, which code the real subordinate data, is the same for
both methods. In the table, the grand total is the total number of bits used to code
the P-frame under the two coding schemes. It can be seen that VZT requires two-
thirds of the bit rate required by EZW.

For HDTV, our results show that although a good quality video at 18 Mbit/s
can be achieved under EZW, the VZT only needs 11 Mbit/s [22].

10.10.3 Coding of low-resolution video
Although coding of low spatial resolution (e.g. QCIF, sub-QCIF) video may not
benefit from the wavelet decomposition to the extent that higher-resolution video
does, nevertheless zero tree coding is efficient enough to produce good results. In
fact, the multiresolution property of the wavelet-based coding is a bonus that the
DCT-based coding most suffer from. In section 8.5.7, we saw that two-layer spatial
and SNR scalability of the standard codecs (MPEG-2, H.263) reduces the com-
pression efficiency by as much as 30 per cent. That is spatial/SNR coders are
required to generate about 30 per cent more bits to be able to produce the same
video quality as a single-layer coder does. Undoubtedly, increasing the number of
layers, or combining them in a hybrid form, will widen this deficiency gap.

On the other hand, with the wavelet transform, as the number of decomposition
levels increases, the encoding efficiency increases too. Moreover, with the concept

Content-based video coding (MPEG-4 visual) 323

of virtual zero tree, a large area of static parts of the picture can be grouped together
for efficient coding, as we have seen from the results of higher-resolution pictures
of the previous section.

To compare the quality of wavelet-coded video (purely wavelet-based video
codec of Figure 10.28) against the best of the standard codec, we have coded 10 Hz
QCIF size of Akio and Carphone standard video test sequences at various bit rates,
as shown in Figure 10.31, for Akio and Figure 10.32 for Carphone.

For the wavelet coder, we have used three levels of wavelet decomposition (ten
bands) and two levels of virtual nodes, with an SPIHT-type zero tree coding, called
virtual SPHIT [23]. Unlike Figure 10.29, where the lowest subband was coded by a
standard DCT codec, here we have coded all the bands, including the LL band, with
the virtual SPIHT (Figure 10.28). This is because after three-level wavelet decom-
position, the lowest LL band has a dimension of 22 � 18 pixels, which is neither
viable nor practical to be coded with codecs using 16 � 16 pixel macroblocks. On the
motion compensation, the whole QCIF image was motion compensated with an
overlapped block matching algorithm, with half a pixel precision. Motion-compen-
sated wavelet coefficients after the zero tree scan were arithmetic coded.

For comparison we have also coded these sequences with a single- and two-
layer SNR-scalable H.263 codecs, at various bit rates from 20 up to 60 kbit/s. For
the two-layer H.263, 50 per cent of the total bits were assigned to the base layer. As
the PSNR Figures 10.31 and 10.32 show, single-layer H.263 is consistently better
than the wavelet that itself is better than the two-layer H.263. However, sub-
jectively wavelet-coded video appears better than single-layer H.263, despite being
1–2 dB poorer on the PSNR.

30

32

34

36

38

40

42

44

20 25 30 35 40 45 50 55 60

PS
N

R
 (d

B
)

bit rate (kbps)

H263
H263_2Layer

Wavelet

Figure 10.31 Quality of QCIF size Akio sequence coded at various bit rates

324 Standard codecs: image compression to advanced video coding

27

28

29

30

31

32

33

34

20 25 30 35 40 45 50 55 60

PS
N

R
 (d

B
)

bit rate (kbps)

H263
H263_2Layer

Wavelet

Figure 10.32 Quality of QCIF size Carphone sequence coded at various bit rates

(a) (b) (c)

Figure 10.33 A snap shot of Akio coded at 20 kbit/s, 10 Hz, (a) H.263,
(b) SNR-scalable H.263 and (c) wavelet SPIHT

(a) (b) (c)

Figure 10.34 A snap shot of Carphone coded at 40 kbit/s, 10 Hz, (a) H.263,
(b) SNR-scalable H.263 and (c) wavelet SPIHT

Content-based video coding (MPEG-4 visual) 325

Figures 10.33 and 10.34 show snap shots of the Akio and Carphone, coded at
20 and 40 kbit/s, respectively. Although these small pictures may not show the
subjective quality differences between the two codecs, the fact is that the H.263
picture is blocky while that of wavelet is not. In the Carphone picture, wavelet-
coded picture is smeared but it is still much sharper than the two-layer H.263. Some
nonexperts prefer smeared picture to the blocky one, but expert viewers have a
different opinion. Comparing wavelet with the two-layer H.263, both subjective
and objective results are in favour of wavelet.

Considering that the above three-level decomposition wavelet transform can
be regarded as an N-layer video without impairing its compression efficiency, it
implies that the wavelet has a high potential for multilayer coding of video.
Although this video codec is not a part of any standard, there is no doubt that its
high potential for multilayer coding makes it very attractive.

10.11 Scalability

We have covered scalability in the standard codecs several times, but because of
the nature of content-based coding, scalability in MPEG-4 can be different from the
other standard codecs. However, since MPEG-4 is also used as a frame-based video
codec, the scalability methods we have discussed so far can also be used in this
codec. Thus, we introduce two new methods of scalability that are only defined for
MPEG-4.

10.11.1 Fine granularity scalability
The scalability methods we have seen so far, SNR, spatial and temporal, are nor-
mally carried out in two or a number of layers. These create coarse levels of
representing various quality, spatial and temporal resolutions. A few spatial and
temporal resolutions are quite acceptable for the natural scenes, as it is of no
practical use to have more resolution levels of these kinds. Hence, for the frame-
based video, MPEG-4 also recommends the spatial and temporal scalabilities as we
have discussed so far.

On the other hand, the existing SNR scalability has the potential to be repre-
sented in more quality levels. The increment in quality is both practical and
appreciated by the human observer. Thus, in MPEG-4, instead of SNR scalability, a
synonymous method named fine granularity scalability (FGS) is recommended. In
this method, the base layer is coded similar to the base layer of an SNR-scalable
coder, namely, coding of video at a given frame rate and a relatively large quantiser
step size. Then the difference between the original DCT coefficients and the
quantised coefficients in the base layer (base layer quantisation distortion) rather
than being quantised with a finer quantiser step size, as is done in the SNR-scalable
coder, are represented in bit planes. Starting from the highest bit plane that contains
nonzero bits, each bit plane is successively coded using run length coding, on
block-by-block basis. The code words for the run lengths can be derived from either

326 Standard codecs: image compression to advanced video coding

Huffman or arithmetic coding. Typically, different codebooks are used for different
bit planes, because the run length distributions across the bit planes are different.

10.11.2 Object-based scalability
In the various scalability methods described so far, including the FGS, the scal-
ability operation is applied to the entire frame. In object-based scalability, the
scalability operations are applied to the individual objects. Of particular interest to
MPEG-4 is the object-based temporal scalability (OTS), where the frame rate of a
selected object is enhanced, such that it has a smoother motion than the remaining
area. That is, the temporal scalability is applied to some objects to increase their
frame rates against the other objects in the frames.

MPEG-4 defines two types of OTS. In type-1, the VO layer 0 (VOL0) com-
prises the background and the object of interest. Higher frame rates of the object of
interest are coded at VOL1, as shown in Figure 10.35, where it is predictively
coded, or Figure 10.36, if the enhancement layer is bidirectionally coded.

enhancement
layer

0 1 2 3 4 5 6 7 8

VOL0

VOL1

frame
No.

base
layer

Figure 10.35 OTS enhancement structure of type-1, with predictive coding of
VOP

frame
No.

base
layer

0 1 2 3 4 5 6 7 8

VOL0

VOL1
enhancement
layer

Figure 10.36 OTS enhancement structure of type-1, with bidirectional coding of
VOP

Content-based video coding (MPEG-4 visual) 327

On type-2 OTS, the background is separated from the object of interest, as
shown in Figure 10.37. The background VO0 is sent at low frame rate without
scalability. The object of interest is coded at two frame rates of base and
enhancement layers of VOL0 and VOL1, respectively, as shown in the figure.

base
layer

0 1 2 3 4 5 6 7 8

VOL0
of VO1

VOL1
of VO1

frame
No.

VO0

enhancement
layer

Figure 10.37 OTS enhancement structure of type-2

10.12 MPEG-4 versus H.263

There is a strong similarity between the simple profile MPEG-4 and H.263, such
that a simple profile MPEG-4 can decode a bitstream generated by the core H.263.
In fact, most of the annexes introduced into H.263 after the year 2000 were parts of
the profiles designed for MPEG-4 in mid-1990s. However, there is no absolute
reverse compatibility between the simplest profile of MPEG-4 and the H.263.

The main source of incompatibility is concerned with the systems function of
MPEG-4. Like its predecessor, MPEG-4 uses a packet structure form of trans-
porting compressed audio-visual data. In MPEG-2, we saw that packetised ele-
mentary streams (PES) of audio, video and data are multiplexed into a transport
packet stream. In MPEG-4, because of the existence of many objects (up to 256
visual objects plus audio and data), the transport stream becomes significantly
important. Even if one object is coded (frame-based mode), the same transport
stream should be used. In particular, for transmission of MPEG-4 video over
mobile networks, the packetised system has to add extra error resilience to the
MPEG-4 bitstream. It is this packetised format of MPEG-4 that makes it non-
decodable by an H.263 codec.

328 Standard codecs: image compression to advanced video coding

In MPEG-4, the elementary objects of the audio-visual media are fed to the syn-
chronisation layer (SL) to generate SL-packets. An SL-packet has a resynchronisation
marker, similar to the GOB and slice resynchronisation markers in H.263. However,
in MPEG-4, the resynchronisation marker is inserted after certain number of bits
are coded, but in H.263 they are added after several macroblocks. Since the number of
bits generated per macroblock is variable, while distances between the resyn-
chronisation markers in H.263 are variable, those of MPEG-4 are fixed. This helps to
reduce the effect of channel errors in MPEG-4, hence making it more error resilient.

A copy of picture header is repeated in every SL-packet to make them inde-
pendent of each other. Each media may generate more than one SL-packet. For
example, if scalability is used, several interrelated packets are generated. Packets
are then multiplexed into the output stream. This layer is unaware of the transport
or delivery layer. The sync layer is interfaced to the delivery layer through the
delivery multimedia integration framework (DMIF) application interface (DAI).
The DAI is network independent but demands for session set-up and stream control
functions. It also enables setting up quality of service for each stream.

The transport or delivery layer is delivery aware but unaware of media.
MPEG-4 does not define any specific delivery layer. It relies mainly on the existing
transport layers, such as Real-time Transport Protocol (RTP) for Internet, MPEG-2
transport stream for wired and wireless or ATM for B-ISDN networks.

There are also some small differences on the employment of the coding tools
in the two codecs. For example, RVLC used in the simple profile of MPEG-4 is not
exactly the same as the RVLC used in data partitioning of Annex V of H.263. In the
former, RVLC is also used for DCT coefficients, while in the latter it is used for the
non-DCT coefficients, for example, motion vectors and macroblock addresses.
Although in Chapter 9 we showed that RVLC because of its higher overhead over
the conventional VLC is not viable for the DCT coefficients, nevertheless in the
experiments of Chapter 9, macroblocks of the P-pictures were all interframe coded.
Had any macroblock been intraframe coded, its retrieval through RVLC would
have improved the picture quality.

These differences are significant enough to ask which one of the H.263 or
MPEG-4 might be suitable for video over mobile networks. In late 1990s, an
international collaboration under the project 3gpp (third-generation partnership
project) set up extensive investigation to compare the performance of these two
codecs [24]. The outcome of one of the experiments is shown in Figure 10.38.

In this experiment, wireless channels of 64 kbit/s were used, of which 7.6 kbit/s
were assigned to speech signal. The remaining bits were the target video bit rates for
coding of the overtime video test sequence for the two codecs, including the over-
heads. The channel errors were set to 10�6, 2 � 10�4 and 10�3 for both fixed and
mobile sets, identified by F and M in the figure, respectively. The H.263 codec is
equipped with annexes D, F, I, J and N (see list of H.263 annexes in Chapter 9 [22])
and that of MPEG-4 was the simple profile (see section 10.1). The performance of
the reconstructed pictures after error concealment was subjectively evaluated. The
average of the viewers’ scores (see section 2.4) as the mean opinion score (MOS) is
plotted in Figure 10.38 against the tested error rates.

Content-based video coding (MPEG-4 visual) 329

1.0
F 10–6 F 10–3 M 10–3F 2 �10–4 M 2 �10–4M 10–6

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
H.263 MPEG-4

MOS versus bit error rate, 64 kbps, overtime

Figure 10.38 Comparison between MPEG-4 and H.263

At the low error rate of 10�6, H.263 outperforms MPEG-4 for both mobile and
fixed environments. Thus, it can be concluded that H.263 is a more compression
efficient encoder than the MPEG-4. Much of this is due to the use of RVLC in the
MPEG-4, as we have seen in Table 9.3, RVLC is less compression efficient than
MPEG-4. Other overheads, such as packet header, more frequent resynchronisation
markers add to this overhead. On the other hand, at high error rates, the superior
error resilience of MPEG-4 over H.263 compensates for compression inefficiency
and in some cases the decoded video under MPEG-4 is perceived better than H.263.

Considering the above analysis, one cannot for sure say whether H.263 is
better or worse than MPEG-4. In fact, what makes bigger impact on the experi-
mental results is not the basic H.263 or MPEG-4 definitions, but the annexes or
optionalities of these two codecs that make all the differences. For example, had
data partitioning (Annex V) been used in H.263, it would have performed as well at
high error rate as MPEG-4 would have. Unfortunately, data partitioning in H.263
was introduced in 2001, while this study was carried out in 1997. Hence, the 3ggp
project fails to show the true difference between the H.263 and MPEG-4.

10.13 Problems

1. Figure 10.39 shows a part of a binary alpha plane, where shaded pixels are
represented by 1 and blank pixels by 0:
a. calculate the context number for pixels A, B and C
b. use the intra table of Appendix D to calculate the probability for coding of

alpha pixels A, B and C

330 Standard codecs: image compression to advanced video coding

X A B C
1

0

Y

Figure 10.39

2. Draw a part of the contour of the shape of Figure 10.39 starting from point X
and ending at point Y. Use the Huffman Table 10.1 to calculate the number of
bits required to differentially chain code the part of the contour from X to Y.

3. Figure 10.40 shows a part of quad tree binary alpha block (BAB). Assume
shaded pixels at level 3 are binary 1 and blank ones binary 0:
a. calculate the index of each pixel at level 2
b. calculate the index of pixel at level 1

level 3

level 2

level 1

Figure 10.40

4. A part of a foreground texture within an 8 � 8 pixel block is shown in
Figure 10.41. The background pixels are shown in blank. The block is DCT
coded and the quantised coefficients with a step size of th ¼ q ¼ 8 are zigzag
scanned. Compare the efficiency of the following two coding methods:
a. use an SA-DCT to code the block, assume that the shape of this object is

available to the decoder
b. use normal DCT, but assume the background pixels are zero

23
56 15

42

82

18 28

35

64

Figure 10.41

Content-based video coding (MPEG-4 visual) 331

References

1. KOENEN, R., PEREIRA, F. and CHIARIGLIONE, L.: ‘MPEG-4: context
and objectives’, Image Commun. J., 1997, 9:4, pp. 295–304

2. MPEG-4: ‘Generic coding of audio-visual objects: Part 2 - visual’, ISO/IEC
JTC1/SC29/WG11 N1902, FDIS of ISO/IEC 14496-2, Atlantic City,
November 1998

3. MPEG-4 video verification model version-11, ISO/IEC JTC1/SC29/WG11,
N2171, Tokyo, March 1998

4. Special issue on segmentation, IEEE Trans. Circuits Syst. Video Technol.,
1998, 8:5

5. KASS, M., WITKIN, A. and TERZOPOULOS, D.: ‘Snakes: active contour
models’, Inter. J. Comput. Vis., 1987, 1, pp. 321–331

6. ROERDINK, J.B.T.M. and MEIJSTER, A.: ‘The watershed transform: defi-
nitions, algorithms, and parallellization strategies’, Fundamental Informatics,
2000, 41, pp. 187–228

7. IZQUIERDO, E. and GHANBARIM, M.: ‘Key components for an advanced
segmentation systems’, IEEE Trans. Multimedia, 2002, 4:1, pp. 97–113

8. PERONA, P. and MALIK, J.: ‘Scale-space and edge detection using aniso-
tropic diffusion’, IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12:7,
pp. 629–639

9. SHAFARENKO, L., PETROU, M. and KITTLER, J.: ‘Automatic watershed
segmentation of randomly textured color images’, IEEE Trans. Image Pro-
cess., 1997, 6:11, pp. 1530–1544

10. WYSZCKI, G. and STILES, W.S.: Color Science: Concepts and Methods,
Quantitative Data and Formulae, 2nd edn, Wiley, Hoboken, NJ, 1982

11. VINCENT, L., and SOILLE, P.: ‘Watersheds in digital spaces: an efficient
algorithm based on immersion simulations’, IEEE Trans. Pattern Anal. Mach.
Intell., 1991, 13:6, pp. 583–589

12. MPEG-4: ‘Video shape coding’. ISO/IEC JTC1/SC29/WG11, N1584, March
1997

13. GHANBARI, M.: ‘Arithmetic coding with limited past history’, Electron.
Lett., 1991, 27:13, pp. 1157–1159

14. PEARSON, D.E.: ‘Developments in model-based video coding’, Proc. IEEE,
1995, 83:6, pp. 892–906

15. WOLBERG, G.: ‘Digital Image Warping’, IEEE Computer Society Press,
Los Alamitos, CA, 1990

16. SEFERIDIS, V. and GHANBARI, M.: ‘General approach to block matching
motion estimation’, J. Opt. Engineering, 1993, 37:7, pp. 1464–1474

17. GHANBARI, M., De FARIA, S., GOH, I.J. and TAN, K.T.: ‘Motion com-
pensation for very low bit-rate video’, Signal Process. Image Commun.,
special issue on very low bit-rate video, 1995, 7:(4–6), pp. 567–580

18. SHAPIRO, J.M.: ‘Embedded image coding using zero-trees of wavelet
coefficients’, IEEE Trans. Signal Process., 1993, 4:12, pp. 3445–3462

332 Standard codecs: image compression to advanced video coding

19. WITTEN, I.H., NEAL, R.M. and CLEARY, J.G.: ‘Arithmetic coding for data
compression’, Commun. ACM, 1987, 30:6, pp. 520–540

20. WANG, Q. and GHANBARI, M.: ‘Motion-compensation for super high
definition video’, Proceedings of IS&T/SPIE Symposium, on Electronic
imaging, science and technology, very high resolution and quality imaging,
San Jose, CA, 27 January–2 February, 1996

21. SAID, A. and PEARLMAN, W.A.: ‘A new, fast and efficient image codec
based on set partitioning in hierarchical trees’, IEEE Trans. Circuits Syst.
Video Technol., 1996, 6:3, pp. 243–250

22. WANG, Q. and GHANBARI, M.: ‘Scalable coding of very high resolution
video using the virtual zero-tree’, IEEE Trans. Circuits Syst. Video Technol.,
special issue on multimedia, 1997, 7:5, pp. 719–729

23. KHAN, E. and GHANBARI, M.: ‘Very low bit rate video coding using vir-
tual SPIHT’, Electron. Lett., 2001, 37:1, pp. 40–42

24. 3rd Generation Partnership Project (3gpp): TSG-SA codec working group,
release 1999, technical report TR 26.912 V 3.0.0

Content-based video coding (MPEG-4 visual) 333

Chapter 11

Advanced video coding (H.264)

The ITU-T video coding experts group, after successful completion of their H.263
video codec in 1995, started to work on the advanced video coding (AVC) project.
Their long-term objective was to recommend a video codec to be at least twice
better than the existing video codec, such as H.263. The project was initially called
H.26L, with L standing for long-term objectives [1]. However, H.263 was under
constant improvement. Its improved version under H.263þ was finalised in 1997,
and in 2000, the H.263þþ specification was ratified, where each þ is an indication
of major improvement. Most of the innovations in H.263þ in the forms of options
or annexes were also fed to H.26L. ITU-T submitted H.26L to MPEG call for
proposals in 2001. MPEG-4 experts group of ISO/IEC, who were not very happy
with their content-based video codec (due to high complexity the codec could not
be marketed), and its frame-based counterpart had a similar performance to H.263,
showed an interest in this new codec. They joined the AVC project and worked
closely with the ITU-T team. The project’s name was then changed to joint video
team (JVT).

The final work of H.264 was recommended by ITU-T as H.264 in 2003.
This codec in ISO is known as 14496-10 or MPEG-4 part 10. Since the project
started as AVC, it is informally known as AVC. Finally, due to the joint team
work of ITU-T and ISO, it is also known as JVT. However, eliminating any
confusion with all these names as well as the MPEG-4 content-based (visual) codec
of Chapter 10, in this chapter, we refer to this codec mainly as H.264/AVC, or
simply H.264.

The H.264 codec, since its formal introduction in 2003, has proven to be a
universally accepted video codec for all kinds of applications. Now in 2010, it is the
codec for all new video services. For telecommunications, it has replaced H.263
and is the de facto video compressor for both terrestrial and satellite broadcast
of digital high definition (HD) TV. Although terrestrial and satellite broadcast of
digital TV in Europe is on MPEG-2, because when these services were launched in
1998, H.264 was not available, now countries who want to start broadcasting digital
SD TV are seriously thinking of using H.264. This is mainly due to at least twice
better compression performance of H.264 over MPEG-2, which makes it possible
to double the number of TV programmes in the satellite transponders and the ter-
restrial UHF channels. Such a trend is also seen in storage of high-quality video on
Blu-ray, for increased quality and storage efficiency. Finally, for new video

services launched by telcos, such as IPTV, video over Internet, catch-up TV and
video streaming in general, H.264 family are the only codecs. A variant of this
codec, such as Microsoft VC1, Chinese AVS, X.264, DivXþ and Sorenson, which
are based on H.264, are becoming a household tool kit. Like other standards, there
is a laboratory software model for this codec, called joint mode (JM), and its latest
version is given in [4]. Now in 2010, we can only say that H.264 is a codec for all
video communication, distribution, storage and networking applications.

Towards the end of this chapter, we will compare H.264 compression effi-
ciency over the other standard codecs. However, early simulations with the nuclei
of this codec, H.26L, had shown substantial superiority over most optimised H.263
and frame-based MPEG-4 (visual or part 2) codecs. Most notable features of this
new codec are as follows:

● Up to 50 per cent in bit rate saving: Compared to H.263þ (H.263V2) or
MPEG-4 simple profile (MPEG-4 visual or part 2, see Chapter 10), the new
codec achieved an average reduction in bit rate by up to 50 per cent for a
similar degree of encoder optimisation at most bit rates. This means that H.264
offers consistently higher quality at all bit rates including low bit rates over the
previous standards.

● Adaptation to delay constraints: H.264/AVC can operate in a low-delay
mode to adapt telecommunication applications (e.g. H.264 for videoconferen-
cing), while allowing higher processing delay in applications with no delay
constraints such as video storage and server-based video streaming applica-
tions (MPEG-4 part 10).

● Error resilience: H.264 provides the tools necessary to deal with packet loss
in packet networks and bit errors in error-prone wireless networks.

● Network friendliness: The codec has a feature that conceptually separates the
video coding layer (VCL) from the network abstraction layer (NAL). The
former provides the core high-compression representation of the video picture
content, and the latter supports delivery over various types of network. This
facilitates easier packetisation and better information priority control. The
NAL can provide compressed video data in two formats, for the stream-based
protocols like H.320, H.324 or MPEG-2 and for the packet-based protocols like
RTP/IP and TCP/IP. For the stream-based protocols, the data are provided with
start codes such that the transport layers and the decoder can easily identify the
structure of the bitstream. For the packet-based protocol, the bit structure is
identified by the packet headers [5].

Before going into details of how this codec works, let us look at some of its fea-
tures, which are different from that of its predecessors.

● Two entropy coding schemes, context-adaptive variable length coding
(CAVLC) and context-adaptive binary arithmetic coding (CABAC).

● Multiple reference pictures motion compensation as well as allowing B-slices
to be used as references, even for P-slices.

● Variable block size motion estimation from 4 � 4 to 16 � 16 pixels.

336 Standard codecs: image compression to advanced video coding

● Quarter-pixel precision motion compensation with improved prediction accu-
racy and lower interpolation complexity.

● Directional spatial prediction in intra coded macroblocks (MBs) for efficient
compression.

● The discrete cosine transform (DCT) is replaced by a reversible integer trans-
form avoiding inverse transform mismatch.

● Variable block size integer transforms of 8 � 8 and 4 � 4.
● Deblocking filter to remove artefacts caused by motion compensation and

quantisation.
● Parameter sets are used between the encoder and decoder for syntax

synchronisation.
● More error resiliency through flexible arrangement of MBs and slices.
● Data partitioning (DP) and packetisation of video slices into three priority

levels to provide transmission protection.
● Redundant transmission of some regions to enhance robustness to data loss.
● Synchronisation/switching pictures for robust video streaming.

Despite the above mentioned differences, H.264 has its roots in the other standard
codecs, especially in the H.263 standard. Hence, in describing the codec with the
aim of addressing these specific changes, it is assumed that the reader is not only
familiarised with the principles of video compression, given in the previous chap-
ters, but has also read Chapter 9 on H.263. However, to make this chapter self-
contained, some important concepts of previous standards are revisited.

11.1 Picture format

The H.264 standard supports both interlaced and progressive video. Since its main
function is video distribution, the picture format is 4:2:0, though for contribution
where higher-quality colour is required, 4:2:2 format may also be used, as well as
the 4:4:4 format for the high 4:4:4 profile. Like other standard codecs, an MB of
16 � 16 pixels is the basic unit of compression, which, when coding 4:2:0 sampled
video, is comprised of 16 � 16 luminance (luma) pixels and 8 � 8 pixels for each
of Cb and Cr chrominance colour components (chroma). Each MB can optionally
be further subdivided into smaller blocks, called sub-MBs, to provide the possibi-
lity of better compression gain. Further partitioning is a result of trade-off between
efficient motion compensation with smaller blocks and the amount of data required
to represent the motion vector (MV) overhead. Various MB partitions are discussed
in the motion estimation section (section 11.3.1).

11.1.1 Slicing
A group of MBs represent a picture slice, or simply a slice. In this standard, slice
structure is of arbitrary shape, which is different from the other standards, as shown
in Figure 11.1a. For interlaced video, when MB-adaptive frame/field (MB-AFF)

Advanced video coding (H.264) 337

decoding is used, the picture is partitioned into slices containing an integer number
of MB pairs, as shown in Figure 11.1b.

slice #0

slice #1

slice #2

A macroblock
pair

(a) (b)

Figure 11.1 (a) Subdivision of a picture into slices and MB. (b) Slices with
MB pairs

Different numbers of MBs are normally raster scanned from left to right and
top to bottom to form a slice. Other forms of slice structure, like flexible macro-
block ordering (FMO), are also available, which are discussed in the error resi-
lience section (section 11.8.2). There is no constraint on the size of a slice; its size
ranges from one MB per slice to an entire picture per slice.

As usual, slices are a self-contained group of MBs, where they can be encoded
and decoded independent of each other. Hence, the syntax elements of each slice can
be parsed from the bitstream, and the portion of picture can be decoded independent of
other slices. This of course reduces the compression gain of the encoder, but it pre-
vents error propagation, which is important for video transmission. However, at the
slice boundaries, information from adjacent slices is used in the deblocking filter.

Each slice has a header that defines the slice type and the picture to which the slice
belongs. The slice data consist of a series of coded and/or information about the non-
coded (skipped) blocks. Slicing involves overhead depending on the bit rate, image
content, motion activity, interlacing, redundant slices, etc. The maximum overhead per
slice can be as high as 54 bytes, which is a very significant figure for low bit rate
applications. Various forms of slices in terms of number of MBs are as follows:

● One slice per picture: It is the simplest picture slice in which the whole picture
is coded as one slice. This may lead to larger packet size than what the com-
munication protocol (e.g. IP layer) can handle, and hence, data can be frag-
mented during transmission.

● Fixed number of MBs per slice: The picture is subdivided into slices, with the same
number of MBs per slice. This results in packets with different lengths in bytes.

● Fixed number of bytes per slice: The picture is subdivided into slices having
almost the same byte length but different number of MBs per slice. In this case,
normally, a maximum packet size is specified, and if the slice is bigger than the
maximum packet size defined, the remaining bytes go into a smaller packet.

338 Standard codecs: image compression to advanced video coding

Slices can be grouped for more error resilience coding. This is discussed in the
error resilience section (section 11.8.2).

11.1.2 Slice types
Unlike other standards in which the coding tools are defined for picture types, in
H.264 they are defined for slice types. H.264 defines five types of slice, which are
as follows:

● I-slice: A slice where all the MBs are intra coded.
● P-slice: In addition to intra coded MBs, some MBs can be inter predicted with

at most one motion-compensated prediction signal per block.
● B-slice: In addition to coding available to a P-slice, some MBs can be inter

predicted with two motion-compensated predictions.
● Switching predictive (SP)-slice: A switching slice/picture used for efficient

switching between two references to prevent picture drift.
● Switching intra (SI)-slice: Used for random access to a bitstream as well as for

error recovery.

In the following sections, we explain how I-, P- and B-slices are coded, and in
section 11.8.7 on robust video coding, SP- and SI-slices are explained.

It is worth emphasising that in H.264, there is no traditional picture header,
though there is an optional picture delimiter. It is optionally inserted between the
coded pictures to indicate the start of a new picture and to indicate the types of
slices it contains. All slices representing a picture do not need to be of the same
type, so a picture could be made up of a mixture of I-, P- and B-slices. Moreover,
slice structure can be different from one picture to another. Despite this, for sim-
plicity of description, and in line with most implementations, one may consider that
all slice types of a picture are the same and, hence, define a picture of a specific
type. Hence, one may also define group of pictures (GOP) for H.264 to highlight
the existence of anchor (key) pictures. This is dealt with in section 11.12 on scal-
able video coding.

11.1.3 An overview of the encoder
Before explaining how these slices are coded, it is worth noting that H.264 uses the
generic encoder of Figure 3.19, described in Chapter 3. That is, MBs are divided
into smaller blocks (here 4 � 4), and they are then either intra or inter coded. The
residual pixels resulting from the prediction (intra or inter) are transformed, zigzag
scanned and quantised, and, along with other coding parameters, such as addres-
sing, MVs are entropy coded for further bit rate reduction. A copy of the com-
pressed MB is reconstructed to be used for prediction of the forthcoming MBs. The
decoding loop of the encoder also contains a deblocking filter as well as several
picture stores for multiple reference picture prediction, which are discussed in
details later. Such a structure is similar to the H.263 codec of Figure 9.21.

There is no single element in this encoder that can claim the overall improve-
ment in coding efficiency, but it is the combination of smaller improvements that add

Advanced video coding (H.264) 339

up for the entire gain in compression. In the remaining sections, each of these
elements is described in details.

11.1.4 Progressive and interlaced coding
In coding of interlaced video, for higher compression efficiency, the H.264 design
allows encoders to code a picture either in a frame or in a field mode. In the frame
mode, every MB comprising of 16 � 16 luma pixels of the two fields is coded
together. In the field mode, the picture is first divided into two fields, and then 16 � 16
luma pixels of each field represent an MB. This choice is signalled at the picture
parameter set (PPS) and is called picture-adaptive frame/field (PAFF) mode. A field
MB is coded similar to a frame MB, but reference MV should come from a field
picture, and zigzag scanning is different. Also, strong deblocking filter should not be
used in horizontal edges for field blocks, because the field rows are spatially twice as
far apart as frame rows and the length of the filter thus covers a larger spatial area.
Figure 11.2 shows the frame and field zigzag scans.

(a) (b)
7

6

4

3

51

2 8 12

9 13

14

1511

10

0

10

8

9

3

42

1 5 6

7 12

13

1514

11

0

Figure 11.2 Zigzag scans: (a) frame scan and (b) field scan

Frame coding is better for progressive content as well as detailed slow-moving
interlaced content. On the other hand, field coding is better for fast-moving content.
However, if content is a mixture of both types, it is best coded if localised frame/
field adaptation can be made. For this reason, H.264 defines a new block type made
up of vertically adjacent pairs of MBs (Figure 11.1). When this mode is chosen,
these MB pairs are then split into two 16 � 16 MBs of either frame or field, as
shown in Figure 11.3. This mode of block-by-block adaptation is called macro-
block adaptive frame/field MB-AFF mode. Presence of MB-AFF can be signalled
at the sequence parameter set (SPS), as it is normally applied to the whole pictures
in a sequence and does not change from picture to picture. The frame and field MBs
are coded similar to the respective MBs of PAFF, as discussed above. It should be
noted that throughout the chapter, picture is used as a general term for both frame
and field, and if frame or field is specifically meant, they are explicitly mentioned.

340 Standard codecs: image compression to advanced video coding

(b) (c)(a)

16

32

Figure 11.3 MB-adaptive frame/field mode: (a) a 16 � 32 block pair, (b) two
frame pair MB and (c) two field pair MB

11.1.5 Macroblock syntax elements
Since MB is the basic encoding unit of any standard video codec, for proper decoding
of pictures, the decoder needs to know how an MB was coded. This information is
known as the MB syntax, and its elements include MB type (mb_type), which
determines its intra-, inter- and bidirectional prediction nature (I, P and B), the mode,
where for intra- and inter-MB what predictions they have used as well as the list (see
section 11.3). MVs are differentially addressed, and sub_mb prediction defines how
the partitions of an MB are predicted. mb_qd delta indicates the changes in the
quantiser parameter (QP), and its offset indicates the relative QP of chroma to luma.
Coded block pattern (CBP), like other standards, defines which blocks of an MB are
not coded, how they are addressed and, finally, where the transform coefficients are.

11.2 Intra prediction

Intra coded MBs are used in all types of slice, and for efficient compression, they
are spatially predictive coded. The spatial predictions are made from the decoded
pixel blocks to the left and/or above the current block from the same picture. This is
a major difference in intra coding between H.264 and the previous standards, such
as H.263þ and MPEG-4 visual, which use prediction in the transform domain (see
section 9.6.4).

Spatial prediction is based on the idea that adjacent MBs tend to have similar
textures, improving the predicted signal quality. Since adjacent blocks may be inter
coded, to prevent error propagation, a constraint on intra prediction can be imposed
such that prediction should only come from the intra coded areas.

There are three types of intra coding modes for the luma known as intra 4 � 4,
intra 16 � 16 and I_PCM, though intra 8 � 8 does also exist, which uses similar
prediction pattern to intra 4 � 4 (see later in this section). In the intra 4 � 4 mode,
an MB is divided into 16 blocks of size 4 � 4 pixels and each has an independently
specified prediction mode; this is best suited for the picture areas with significant
details. In the intra 16 � 16 mode, all pixels of an MB use the same prediction

Advanced video coding (H.264) 341

mode. In I_PCM, the prediction and transformation are bypassed, and the raw
values of the pixels (PCM) are sent without performing any prediction and trans-
form coding; this mode is primarily intended to prevent data expansion when
encoding at very high quality.

11.2.1 Intra 4 � 4
In the intra 4 � 4 mode, each 4 � 4 block is predicted spatially from the neigh-
bouring encoded and reconstructed blocks. There are a total of nine prediction modes
in which eight are directional and one is DC. In Figure 11.4a, the pixels of a 4 � 4
block to be predicted are labelled a–p. The prediction pixels are the border pixels A–H
in the upper horizontal row and M–L in the left vertical row of the current block that
come from the past reconstructed blocks as reference blocks. The eight directional
predictions are shown in Figure 11.4b labelled from 0 to 8 and are known as mode 0
(vertical), mode 1 (horizontal), mode 3 (diagonal down left), mode 4 (diagonal
down right), mode 5 (vertical right), mode 6 (horizontal down), mode 7 (vertical
left), mode 8 (horizontal up) and a nondirectional DC mode 2. Figure 11.5 shows the
directions of various modes applied to the pixels of the current block. Predictions
for modes 0 and 1 are, respectively, the top and left border pixels. In mode 2, the
prediction is the average of four top and four left border pixels. For the other six
modes, various combinations of border pixels, even within the mode, are used. For
example, in mode 3 (diagonal down left), predictions for samples are

a: ðA þ 2B þ C þ 2Þ � 2

b and c: ðB þ 2C þ D þ 2Þ � 2

c, f and i: ðC þ 2D þ E þ 2Þ � 2

but prediction for sample p: ðG þ 3H þ 2Þ � 2 ð11:1Þ
Readers should consult draft recommendation for details [3], as for some modes,
due to the availability of the border pixels and prediction direction, a complex
mixture of border pixels are used.

It is obvious that if the block texture is in any of these directions, the prediction
error would be minimal, resulting in bit rate reduction. DC mode does the same if
block is plain with no significant details. Note that every 4 � 4 block may use a
different prediction mode.

M E F G H
a b c d
A B C D

e f g h
i j k l

m n o p

I
J
K
L

(b)(a)

8
1

6
4

507
3

Figure 11.4 Intra 4 � 4 prediction: (a) prediction samples and (b) prediction
directions

342 Standard codecs: image compression to advanced video coding

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

M E F G HA B C D
I
J
K
L

0 (vertical) 1 (horizontal) 2 (DC) 3 (diagonal down-left) 4 (diagonal down-right)

5 (vertical-right) 6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)

Mean
(A...D,I...L)

Figure 11.5 Intra 4 � 4 prediction modes

In case the prediction samples E–H are not available for modes 3 and 7, they
are replaced by sample D.

11.2.2 Intra 16 � 16
In intra 16 � 16, the MB is treated in its entirety but with only four prediction
modes. They are mode 0 (vertical), mode 1 (horizontal), mode 2 (DC) and mode 3
(plane) as shown in Figure 11.6. These modes are similar to the corresponding
modes in intra 4 � 4, with difference in the block size. The plane prediction uses a
linear prediction between the neighbouring pixels to the left and top to predict the
current pixel.

H

V

H

V Mean (H + V)

H

V

H

V..............

...
...

...
...

..

Figure 11.6 Intra 16 � 16 prediction modes

Intra 16 � 16 is efficient in smooth and low detailed areas, as it has much
lower overhead than intra 4 � 4. The entropy of overhead per MB for the former is
2 bits (4 modes), and for the latter, this value is 16 � log2(9) & 51 bits! On the
other hand, intra 4 � 4 with nine directional predictors and small block size (pixels
are very close to the predictions) result in small residue, reducing the transform
coefficient bits. To reduce the overhead and, at the same time, to have a good
predictor, the standard also defines intra 8 � 8. In this mode, each 8 � 8 block also
uses nine directional predictors, similar to intra 4 � 4, and hence, the overhead is
only 4 � log2(9) & 13 bits. However, since pixels in blocks of 8 � 8 are farther
away from their predictors than those of 4 � 4 blocks, the residues are larger,
reducing the compression gain.

11.2.3 Chroma prediction
Since chroma is usually smooth over large areas, its intra predictions are similar to
the luma samples of intra 16 � 16. However, mode numbering is different, and

Advanced video coding (H.264) 343

predictions are carried out on 8 � 8 samples of each chroma MB. In intra chroma,
the prediction modes are defined as mode 0 (DC), mode 1 (horizontal), mode 2
(vertical) and mode 3 (plane).

11.2.4 I_PCM
Finally, I_PCM is another intra coding mode, but as stated before, the encoder
bypasses the prediction and transformation and the data are sent in the raw PCM
format. The I_PCM mode helps in accurately representing the values of the
anomalous picture contents without significant data expansion. It also places a hard
limit on the number of bits per MB a decoder must handle without compromising
the coding efficiency.

11.3 Inter prediction

Interframe predictive coding refers to encoding the difference between pixels of the
current picture and the predicted ones from reference pictures. The reference pic-
tures are the previously encoded pictures, and both the encoder and decoder
maintain a list of these pictures in the decoded picture buffer (DPB). Pictures used
for prediction of blocks in P-slices are referred to in list 0, and for B-slices, the
reference pictures are divided into two lists: list 0 and list 1. Both lists can contain
previous and future pictures, and hence, in H.264, blocks in P-slices can also be
predicted from the future pictures.

In multipicture prediction, during encoding, it is determined whether a pre-
viously decoded picture is to be used as a future reference picture and, if it is a
reference picture, whether it should belong to a short term of references or a long
term. A short-term reference picture is normally the most recent one, and a long-
term reference picture is the one that is most likely to be used for prediction of
many forthcoming pictures. This decision is carried out by the reference picture
management system. The system also uses a sliding window, with a size deter-
mining the maximum number of short- and long-term reference pictures, such that
when a recent reference picture is added to the list, an old picture is deleted from
the list. The system also decides whether a reference picture of either short or long
term for B-slices should belong to list 0 or list 1.

Since interframe coding involves motion-compensated prediction, in terms of
motion estimation, interframe coding in H.264 has three distinct differences from
the previous standards, which are

1. variable block size motion estimation,
2. quarter-pixel precision of MVs and
3. multiple reference picture motion compensation.

11.3.1 Variable block size motion estimation
In the previous standards, motion estimation/compensation is performed on fixed
size blocks of 16 � 16 pixels (8 � 8 also in H.263). Large blocks are not suitable

344 Standard codecs: image compression to advanced video coding

for motion estimation when the block size is comparable or bigger than the size of
the moving object. This mostly happens for QCIF images, where a large block may
contain motions at several directions. Surely, motion compensation of such a block
is not plausible. Also, for larger-size picture formats, like SD and HD, motion of
objects at their borders can be better compensated with smaller block sizes. On the
other hand, smaller block sizes require a large overhead. To overcome this problem,
H.264 has introduced variable block size motion compensation, which allows an MB
to be partitioned into seven different size blocks as illustrated in Figure 11.7.

16 � 16
16 � 8

16 � 8

4
�

 8

4
�

 8

8 � 8
8 � 4

8 � 4

4 � 4

4 � 4

4 � 4

4 � 4

8 � 8

8 � 8

8 � 8

8 � 88
�

 1
6

8
�

 1
6

Figure 11.7 Block partition types

In the figure, a luma MB 16 � 16 can be partitioned into 16 � 8, 8 � 16 and
8 � 8 pixel sub-MBs. If an 8 � 8 sub-MB is selected, then it can be further divided
into smaller blocks of 8 � 4, 4 � 8 and 4 � 4 pixels. This partitioning of MBs
into motion-compensated sub-MBs is sometimes called tree-structured motion
compensation.

Partitioning of the MB into smaller blocks is carried out such that cost of
coding of the MB is minimised. In plain areas, larger block sizes have less MV
overheads. On the other hand, smaller block sizes in detailed areas, despite having
larger MV overhead, have much reduced motion-compensated error, and the overall
bit rate is reduced. Some well motion-compensated blocks need not be transform
coded and are just represented by their MVs (e.g. skipped MBs), where the MVs
themselves need not be sent at all.

It may appear that multiple block size motion estimation increases motion
estimation complexity by a factor of seven. Of course, by proper implementation,
this huge volume of complexity can be simplified. In practice, for every MB,
motion is only estimated for the sixteen 4 � 4 block sizes, and for each search
position, the motion-compensated error (MCE) in the form of sum absolute dif-
ference (SAD) is stored in an auxiliary buffer. To derive MVs for 4 � 8 blocks,
first, for any position (x,y), the SAD of the two 4 � 4 constituent blocks is retrieved
from the buffer. If the estimated bits associated with the sum of the two SADs plus
the entropy of the new MV are less than the sum of two individual 4 � 4 block bits
(their estimated SAD bits plus their MV bits), then 4 � 8 (or 8 � 4) can replace the
two 4 � 4 blocks. Note that in order a block of two 4 � 8 (or 8 � 4) to replace four

Advanced video coding (H.264) 345

subblocks of 4 � 4, the other 4 � 8 (or 8 � 4) part of the block is also required to
have lower estimated bits than its corresponding two 4 � 4 subblocks. If this is not
satisfied, the four 4 � 4 subblocks cannot be replaced by two 4 � 8 (or 8 � 4), since
a block of only one part with 4 � 8 and two parts with 4 � 4 is not allowed.

Also, how to search for the best position of (x,y) in the auxiliary buffer is a
matter of implementation issue (standard has no recommendation for any parts of
the encoder as well as for motion estimation), but common sense says that the
search position (x,y) should be at the vicinity of the MVs of the two participating
4 � 4 subblocks.

With a similar procedure, it can be tested if the four 4 � 4 subblocks can be
represented by one 8 � 8 block, as well as merging 8 � 8 blocks to bigger 8 � 16,
16 � 8 and 16 � 16 blocks. Hence, the extra complexity over the individual 16
motion searches of the 4 � 4 subblocks includes an auxiliary buffer, small motion
refinement plus a set of rate distortion (RD) optimisations. The latter part is dealt
with in some details in section 11.7. Throughout this chapter, we see that RD
optimisation is involved in almost all the decision-making parts of the H.264
encoder.

The positions of the derived MVs are predictively coded, with the median of
left, top and top-right MVs, similar to those used in H.263 (section 9.1.2). The
predictions for the MVs of subblocks come from the neighbouring MVs of the
subblocks within the MB.

11.3.2 Motion estimation
11.3.2.1 Fast motion estimation in H.264
Throughout the book, the importance of motion compensation for bit rate reduction
has been reiterated several times. We have seen that there was no new codec and
that its motion estimation strategy had not been improved. Moreover, since motion
estimation consumes the major processing power of the encoder (could be as high
as 70 per cent, especially with multiple reference pictures), attempts to reduce the
motion estimation complexity have long lived with the developments of the codecs.
In section 3.3, several fast motion estimation algorithms were introduced, where,
through a logarithmic step search, the local minima is located. Unfortunately, these
methods work well when the search area is small, and they fail when the dynamic
range of the motion is large. The bad news is that when multiple reference picture
motion compensation is used, the search range is multiplied by the furthest picture
distance, which could be as high as 16 pictures (could be longer – depends on how
the DPB is managed). In such a large range, direct use of previous fast motion
estimation algorithms like TSS, TDA, CSA and OSA all fail.

Considering that standard does not recommend any specific method for motion
estimation and as long as the derived MV syntax complies with the decoder
requirement, encoders are free to estimate it as best as they can. From the several
proposals for fast motion estimation in the past decade, the methods that exploit the
spatio-temporal correlations among the adjacent spatial and temporal MVs appear

346 Standard codecs: image compression to advanced video coding

to perform best. Zonal search algorithms like predictive MV field adaptive search
technique (PMVFAST) and enhanced predictive zonal search (EPZS) belong to
these families that have almost equal RD performance to the full search method
(FSM), and it is claimed to have 1/200 of its computational complexity [6].

The zonal search methods are based on three principles: predicting a starting
point for search, early termination of search if the resultant motion-compensated
error is less than a threshold and, finally, refinement of search if the motion-
compensated error is still not satisfactory. In the following sections, these methods
are briefly explained.

11.3.2.2 Prediction selection
The cost of search is significantly reduced if the search starting point is as close to
the final displacement position as possible. EPZS suggests four subsets of pre-
dictors for the starting point. These predictors are selected in the following order of
their priority:

Subset 1: The median of left, top and top-right (or top-left) MVs of the current block
is the first choice for the starting point. This is an ideal position, because if the final
MV is found at the vicinity of this point, since the MVs are predicatively coded with
prediction from that median value, then the MV overhead is minimised.

Subset 2: The MV of the colocated block in the previous picture, along with the four
MVs of left, top-left, top and top-right of the current block as well the (0,0) MV (total
of six), is tested. The one that gives the least motion-compensated error is chosen.

Subset 3: Use of adjacent or colocated MVs in subsets 1 and 2 is useful if motion is
respectively homogeneous or constant. When motion between the pictures varies,
adding acceleration/deceleration to the previous pictures MVs improves prediction
reliability. In this case, for instance, the MV difference between pictures n � 2 and
n � 3, MVn�2 � MVn�3 can be added to the colocated MV at picture n � 1, MVn�1

to make a prediction for the current block. At this stage, the eight surrounding MVs
of the colocated block can also be offset with this accelerator/decelerator and used
as candidates. It appears that among these eight candidates, the diagonal blocks are
not very useful, and to save computational cost, they can be ignored, and the MVs
of the colocated block plus the four left, right, top and bottom blocks, after being
offset, become the five candidates in subset 3.

Subset 4: Although predictions of the previous subsets give almost good results,
there are times when motion is not predictable, and in this case, prearranged
fixed search positions might be preferred. These positions can be spaced either
equally or logarithmically around the main centre (0,0) or even around the best
predictor of any subset. The density and the number of these positions define the
complexity and quality of search, as tightly spaced positions are equal to full
search. Figure 11.8 shows a grid of equally spaced positions for a search range of
16 pixels.

Advanced video coding (H.264) 347

11.3.2.3 Early termination
In search for a good predictor in any subset, if the resultant motion-compensated
error is satisfactory, that is, it is less than a threshold, the search can be terminated.
To find a proper threshold level, one may consider that motion-compensated errors
of adjacent blocks, similar to the MVs themselves, tend to be highly correlated.
Hence, a measure of past motion-compensated errors might be used as the thresh-
old. Threshold values may vary from subset to subset and can depend on the block
type as well as the temporal distance of the reference picture to the current picture.
Although setting a suitable threshold level looks simple, it should be carried out
with great care. Too small values of a threshold may not lead to any early termi-
nation, and hence, the search for the best predictor is wasted. Too large values can
lead to early termination, producing a false MV, impairing motion compensation
efficiency.

11.3.2.4 Motion vector refinement
With proper threshold values, if the early termination does not occur, it means that
the estimated MV, so far, is not desirable and further refinement is required. The
additional search around the best predicted MV of the four subsets may have var-
ious patterns and ranges. Figure 11.9 shows some of the patterns, like small dia-
mond, square and large diamond patterns [6].

Any of these may be iteratively used to refine the MV. Iteration means that
at the end of the search of all the points, the position with the least distortion
becomes a new centre and the search is repeated, as shown in Figure 11.10. The
search can be terminated at either meeting a threshold value or reaching a max-
imum search range.

–6

–5

–4

–3

–2

–1

0

+1

+2

+3

+4

+5

+6

+7

–7

+6 +7+4 +5+2 +30 +1–2 –1–4 –3–6 –5–7

x

x

x

x

x

x

x

x

x

x x

x xx

x

x

Centre

+8

+9

+9 +10+8 +11–9–11 –10 –8

–8

–9

Figure 11.8 Additional fixed predictor grid for search range 16

348 Standard codecs: image compression to advanced video coding

11.3.3 Fractional precision of motion vectors
Equally important to variable block size motion compensation is the fractional bit
representation of the MVs. In section 9.4.3, it was shown that half-pixel precision
motion compensation can improve the compression gain of an encoder by almost
2 dB. In H.264, the precision of estimated motion for luma and chroma samples can
be up to one-quarter and one-eighths of pixel, respectively, in both horizontal and
vertical directions. To estimate motion with fractional-pixel precision, the esti-
mated MVs pointing to an integer sample location of the previous section undergo
another round of refinement. In this round, the current block is contrasted against
the interpolated pixels of the reference block from the integer positions. For half-
sample precision, the interpolation is carried out by a six-tap FIR filter vertically
and horizontally. For the quarter-pixel motion compensation, interpolation is done
by averaging samples at already found half-pixel positions or their integer posi-
tions, as need be [7].

Figure 11.11 shows the interpolation at fractional sample positions for the luma
samples a–s inside the box. In the figure, integer samples found at the first round of
search are shown in shaded blocks with upper case letters. The interpolated samples

(a) (b) (c)

Figure 11.9 Search patterns: (a) small diamond, (b) square and (c) large diamond

(a) (b)

Figure 11.10 Iteration of search for (a) small diamond and (b) large diamond

Advanced video coding (H.264) 349

with quarter-sample precision are shown in unshaded blocks with lower case
letters. For a half-sample interpolation like that at position b and h, a six-tap
filter with coefficients of (1, �5, 20, 20, �5, 1) is used in a two-step operation.
First, the intermediate values b1 and h1 are derived by applying the filter hor-
izontally and vertically, respectively, on the integer positions A, C, E, . . . of the
figure as

b1 ¼ ðE � 5 � F þ 20 � G þ 20 � H � 5 � I þ jÞ ð11:2Þ
h1 ¼ ðA � 5 � C þ 20 � G þ 20 � M � 5 � R þ TÞ

The final values of b and h are calculated by rounding and clipping the above
values in the range 0–255:

b ¼ clipðb1 þ 16Þ � 5

h ¼ clipðh1 þ 16Þ � 5 ð11:3Þ

The half-sample value at the centre, j, is derived in a similar manner and can be
done in two ways:

j1 ¼ cc � 5 � dd þ 20 � h1 þ 20 � m1 � 5 � ee þ f f

or

j1 ¼ aa � 5 � bb þ 20 � b1 þ 20 � s1 � 5 � gg þ hh ð11:4Þ

and is rounded and clipped in the range 0–255.

j ¼ clipðj1 þ 512Þ � 10

A aa B

E

cc

K

F

dd

L

C

G

d

h

M

R

bb

b

f

j

s

gg

D

H

m

N

S

I

ee

P

J

ff

Q

c

g

k

a

e

i

n q rp

T hh U

Figure 11.11 Integer half- and quarter-pixel positions

350 Standard codecs: image compression to advanced video coding

The remaining half-sample values s and m are calculated similar to b and h, with
the final values of

s ¼ clipððs1 þ 16Þ � 5Þ
m ¼ clipððm1 þ 16Þ � 5Þ ð11:5Þ

These half-sample values are used to derive the quarter-sample luma values a, c, d,
n, f, i, k and q. They are derived by averaging and rounding up to the nearest sample
at integer and half-sample positions. For example, the interpolated value for a in
Figure 11.11 is

a ¼ clipðG þ b þ 1Þ � 1 ð11:6Þ

The remaining quarter-sample positions labelled, for example, p and r, are derived
by averaging and rounding up the nearest half samples at diagonal positions. For
instance, interpolated value for e in Figure 11.11 is

e ¼ clipðb þ h þ 1Þ � 1 ð11:7Þ

11.3.3.1 Chroma interpolation
As the human visual system is more sensitive to brightness than colour, motion
estimation is usually carried out on the luma. For 4:2:0 image format, the estimated
MVs are scaled down by a factor of 2 and used to compensate for chroma. Both
the chroma samples (Cb and Cr) are partitioned similar to the luma MB, with the
difference that the horizontal and vertical resolutions are halved and their MVs
have a maximum of one-eighth-pixel precision. The chroma MB partitions (see
Figure 11.12) are similar to the luma partitions of Figure 11.7, with the exception
that the largest block size is 8 � 8 and the smallest size 2 � 2.

8 � 8

8
�

 4
4

�
 2

4
�

 2
8

�
 4

4 � 4
2 � 4

2 � 4

4 � 8

4 � 8

4 � 4 4 � 4

4 � 4 4 � 4

2 � 2 2 � 2

2 � 2 2 � 2

Figure 11.12 Chroma partitions

The prediction of the chroma components at one-eighth sample position is
obtained by bilinear interpolation of integer positions as shown in Figure 11.13,
without any additional filtering. These integer chroma positions are neighbours to
the truncated half-luminance MV lengths, and the remainder of division defines the

Advanced video coding (H.264) 351

one-eighth position of the sample to be interpolated. For example, the sample
labelled a is interpolated as

a ¼ round
½ð8 � dxÞð8 � dyÞA þ dxð8 � dyÞB þ ð8 � dxÞdyC þ dxdyD�

64

� �

A B

a

C D

dy

8-dy

dx 8-dx

Figure 11.13 Interpolation of chroma with one-eighth sample position

With the given values of dx ¼ 2 and dy ¼ 3 in Figure 11.13, the interpolated
value of a becomes

a ¼ round
ð30A þ 10B þ 18C þ 6DÞ

64

� �
ð11:8Þ

11.3.4 Motion compensation and slice type
11.3.4.1 P-skip
Picture areas with no changes and efficient motion compensation result in small
interframe error signals with almost no significant transform coefficients (resi-
duals). If these areas also contain constant motion like slow panning, then differ-
ential MV may also be zero. In the case when all residues are zero, the differential
MV is zero, and the reference picture has index 0 in list 0, no additional information
about the residuals or the MVs and reference picture index are required to be
transmitted. Such a block in P-slices is called P-skip, and the block is reconstructed
from the reference picture with index 0 in the buffer. The method applies equally to
all block lengths, 4 � 4 to 16 � 16.

11.3.4.2 Motion compensation in B-slices
In H.264, the concept of B-pictures is generalised and is different from that in the
previous standards. In this new codec, B-slices are allowed to be used as references
for another B-slice, whereas in the previous standard, a B-picture cannot be used as
a reference. This creates a hierarchy of B-pictures, and it is also known with this
name. Since in this hierarchy, B-pictures can be close to their references (another
B-picture), their number can be very long, improving the compression efficiency.

352 Standard codecs: image compression to advanced video coding

Note that in the other standards that do not use B-pictures for prediction, increasing
the number of B-pictures beyond a few pictures reduces the compression effi-
ciency, rather than improving it. More details of hierarchical B-pictures are given
in the temporal scalability section 11.12.

In H.264, B-pictures support two lists of reference pictures, list 0 and list 1, and
use four types of prediction:

1. list 0 prediction
2. list 1 prediction
3. biprediction
4. direct prediction

In which list to include a reference picture is a decision taken by the multireference
picture buffer control. Usually, reference pictures in list 0 and list 1 are arranged as
follows:

List 0: Index starts from the temporally closest past picture, followed by the
rest of the past pictures and then the future pictures.
List 1: It is numbered starting from the temporally closest future picture, fol-
lowed by the remaining future and then past pictures.

In the biprediction mode, weighted average of the motion-compensated prediction
signals from list 0 and list 1 is taken as:

Pði, jÞ ¼ ðP0ði, jÞ þ P1ði, jÞ þ 1Þ � 1 ð11:9Þ

where P(i,j) is the bipredictive sample and P0(i,j) and P1(i,j) are the prediction
signals derived from list 0 and list 1. This prediction is then subtracted from the MB
signals of the current picture at the locations.

In the direct mode, no MV is transmitted, and at the decoder, they are inferred
from list 0 and list 1 MVs, knowing the previously coded vectors. Generally, despite
not having MV, the block may contain transform coefficients. If the transform
coefficients are also zero, then, like P-skip mode, these blocks are called B-skip.
However, B-skip is defined at the MB level, but direct mode is generally defined at
the sub-MB level. Thus, in addition to block size differences, the main element
discriminating direct mode from the skip mode is that the former contains some
transform coefficients, but the latter has none.

11.3.4.3 Multiple reference picture motion compensation
Syntax of H.264 supports multiple reference picture motion compensation in con-
trast to the previous standards, where only one reference picture is used in
P-pictures and at the most two reference pictures in B-pictures. Multiple reference
picture motion compensation improves compression efficiency by allowing the
encoder to select from a number of reference pictures. Both the encoder and the
decoder must have the same decoded pictures in the buffer. Each part of a sub-MB
may refer to a different picture, but subpartitions of 8 � 8 blocks use the same
reference picture (index) for all the subblocks in the 8 � 8 region. A reference

Advanced video coding (H.264) 353

index for each used reference picture is transmitted. Figure 11.14 shows how var-
ious partitions of a current MB of a B-slice use their motion-compensated predic-
tions from various references. In this figure, as an example, the top-left 8 � 8 block
in picture n uses two reference pictures, one from picture n þ 1 and the other from
picture n � 3 (bidirectional prediction). The four 4 � 4 blocks of the top-right 8 � 8
partitions use the same reference picture n � 2. The two 4 � 8 blocks of the
bottom-left 8 � 8 also use the same reference picture n � 1. Finally, the bottom
right block 8 � 8 uses a prediction from picture n þ 1. Note that two different parts
of an MB can point to the same reference picture, albeit at different locations.

n n � 1n�1n�2n�3

Figure 11.14 Multipicture motion compensation prediction

Using a larger number of reference pictures can potentially increase the motion
compensation efficiency due to the use of a more diversified and temporally distant
list of pictures. The H.264 standard allows up to 16 reference pictures for motion
estimation. These pictures are organised in two different lists. Depending on the
MB type, P or B, each block can be predicted using one or two lists of reference
pictures. For P MBs, each partition chooses its prediction from a single picture
in list 0, but B MB partitions can use two predictions, one from list 0 and another
from list 1.

11.3.4.4 Multiple reference picture weighted prediction
Weighted prediction is used to scale the relative effect of the MVs from different
reference pictures. In the previous standards, the weighted prediction was not used
in the P MBs, and in the B MBs, it was a simple averaging of the two prediction
signals, that is, (P0 þ P1)/2. In H.264, the concept of weighted prediction is not
only extended to P MBs but also with a different weighting factor.

Figure 11.14 can also be used to illustrate the concept of multiple reference
picture weighted prediction, where the selected predictions from various references
are properly weighted and used as the final interframe prediction for the current
block. There are two modes for weighting the motion compensations of the
pictures. In the explicit mode, the weighting factor for each used prediction for both
P- and B-slices is sent to the decoder. In the implicit mode, which is applied to
B-slices, weighting factor is determined by the temporal distance of the reference
picture from the current picture. Closer the reference picture to the current picture,
the larger is the weighting factor and vice versa.

354 Standard codecs: image compression to advanced video coding

11.4 Transformation and quantisation

11.4.1 Transformation
Similar to previous standards, the pixel residues (intra or inter) are transform coded to
condense spatial detail residues into a few transform coefficients. The transform
coefficients are then quantised for redundancy reduction and entropy coded for bit rate
reduction. However, H.264 uses smaller block size of 4 � 4 integer transform instead
of 8 � 8 DCT. This includes all the 16 luma and 4 of each chroma blocks in an MB.
The transformation matrix approximates a 4 � 4 DCT with integer values, given by

H1

1 1 1 1
2 1 �1 �2
1 �1 �1 1
1 �2 2 �1

2
664

3
775 ð11:10Þ

This transform, in addition to its simplicity, which can be realised through shift and
add operations on 16-bit integers, has an exact inverse transform, and hence, there
is no transformation mismatch. This is very useful for lossless video coding that the
conventional DCT cannot provide.

In order for the approximated transformation matrix to be orthonormal, the
two-dimensional transform coefficients (after horizontal and then vertical trans-
formation) are postmultiplied by a forward-scaling matrix Ef:

Ef ¼

a2 ab
2 a2 ab

2

ab
2

b2

4
ab
2

b2

4

a2 ab
2 a2 ab

2

ab
2

b2

4
ab
2

b2

4

2
66664

3
77775 ð11:11Þ

That is, the two-dimensional transform coefficients TC of a block of pixels P are
given by

TC ¼ ðH1PH1
T Þ � Ef ð11:12Þ

where T stands for transpose of the matrix and � is element-by-element (Kronecker)
product. Thus, the final two-dimensional transform coefficients become

TC ¼

(
1 1 1 1
2 1 �1 �2
1 �1 �1 1
1 �2 2 �1

2
664

3
775½P�

1 2 1 1
1 1 �1 �2
1 �1 �1 2
1 �2 1 �1

2
664

3
775
)

�

a2 ab

2
a2 ab

2
ab

2
b2

4
ab

2
b2

4

a2 ab

2
a2 ab

2
ab

2
b2

4
ab

2
b2

4

2
66666666664

3
77777777775
ð11:13Þ

Advanced video coding (H.264) 355

Also, the inverse transformation matrix is defined as

H�1
1 ¼

1 1 1 1

1
1
2

� 1
2

�1

1 �1 �1 1
1
2
�1 1 � 1

2

2
666664

3
777775 ð11:14Þ

Because of orthonormality, the two-dimensional transform coefficients before the
inverse transform are weighted with an inverse scaling matrix of Ei:

Ei ¼
a2 ab a2 ab
ab b2 ab b2

a2 ab a2 ab
ab b2 ab b2

2
664

3
775 ð11:15Þ

And hence, the reconstructed pixel block P of transform coefficients TC becomes

P ¼ H�1
T ðTC � EiÞH�1

P ¼

1 1 1
1
2

1
1
2

�1 �1

1 � 1
2

�1 �1

1 �1 1 � 1
2

2
6666666664

3
7777777775

(
½TC� �

a2 ab a2 ab
ab b2 ab b2

a2 ab a2 ab
ab b2 ab b2

2
664

3
775
) 1 1 1 1

1
1
2

� 1
2

�1

1 �1 �1 1
1
2
�1 1 � 1

2

2
6666664

3
7777775

ð11:16Þ
where a ¼ 1/2 and b ¼ ffiffiffiffiffiffiffiffi

2=5
p

. Note the positions of the transposed matrices in the
forward and inverse transforms, as well as the positions of Kronecker products.

For intra 16 � 16, since the four spatial predictions cannot completely remove
all the spatial redundancies, the DC values of all the sixteen 4 � 4 blocks do show
high correlation. To reduce it, the standard defines a second transform, of type 4 � 4
Hadamard, as

H2 ¼
1 1 1 1
1 1 �1 �1
1 �1 �1 1
1 �1 1 �1

2
664

3
775 ð11:17Þ

to be applied on the DC values of 4 � 4 integer transform coefficients.

356 Standard codecs: image compression to advanced video coding

Similarly, the chroma DC values, due to poorer directional prediction, undergo
a 2 � 2 Hadamard transform of

Ha ¼ 1 1
1 �1

� �
ð11:18Þ

This creates a hierarchy of intra coded transform coefficients, and their transmis-
sion order is shown in Figure 11.15. If the MB is of type intra 16 � 16, the block
with label �1 is transmitted. This block contains all the DC coefficients of the luma
4 � 4 blocks. It is followed by coefficients in blocks 0–25, where blocks 0–15
contain the luma AC coefficients and blocks 16 and 17 contain the DC coefficients
of the chroma. Their AC coefficients are in blocks 18–25. Note that for nonintra
16 � 16, there is no block label �1, and blocks 0–15 contain all the luma coeffi-
cients, including the DC ones.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Luminance signal Y

18 19

16

22 23

20 21 24 25

17

Cb Cr

Chrominance signals
(Only for 16 � 16

INTRA mode)

–1

Figure 11.15 Transmission order of the coefficients of MB

For high profiles of H.264, transformation matrix in the horizontal and vertical
directions can be an 8 � 8 integer transform. It is an approximation of 8 � 8 DCT
and is defined as

H ¼ 1
8

8 8 8 8 8 8 8 8
12 10 6 3 �3 �6 �10 �12
8 4 �4 �8 �8 �4 4 8

10 �3 �12 �6 6 12 3 10
8 �8 �8 8 8 �8 �8 8
6 �12 3 10 �10 �3 12 �6
4 �8 8 �4 �4 8 8 4
3 �6 10 �12 12 �10 6 �3

2
66666666664

3
77777777775

ð11:19Þ

Advanced video coding (H.264) 357

Thus, with H.264, blocks of 4 � 8, 8 � 4 and 8 � 8 can also be coded, but the
standard recommends only 4 � 4 or 8 � 8. When 8 � 8 transform is used, the
transform coefficients are scanned in two forms, known as frame and field scan, as
shown in Figure 11.16.

(a) (b)

0 1

2

3

4

5 6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

25

24

26

28

29

4130

31

32

27

33

34

35 36

37

38

39

40

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57 58

59

60

61

62 63

0

1

2

3

4

7

5

6

10

11

9

13

17

12

18

19

8

14

24

25

26

27

16

20

21

32

33

34

35

23

28

15 22

29

40

41

42

43

31

36

30

37

47

48

49

50

39

44

38

45

54

55

56

57

46

51

52

53

60

61

62

63

58

59

Figure 11.16 8 � 8 transform coefficients scan: (a) frame scan and (b) field scan

11.4.2 Quantisation
Transform coefficients are quantised with a semilogarithmic step size quantiser.
The lowest step size Qstep is 0.625 and the largest step size is 224. These step sizes
are addressed with the QP ranging from 0 to 51. Relation between QP and Qstep is
shown in Table 11.1. As seen, Qstep is doubled with every six increments in QP.
Thus, a single-unit increase in QP results in approximately 12.5 per cent increase in
the Qstep. The exact relation between Qstep and QP can be derived from the first six
QP and their step sizes, given by

QstepðQPÞ ¼ QstepðQP%6Þ2f loorðQP=6Þ ð11:20Þ

where QP%6 and floor(QP/6), respectively, represent the remainder and smallest
integer ratio of QP to 6. For example, the quantiser step size for a QP¼ 16 is 16%6¼ 4
and floor(16/6) ¼ 2. From the table, Qstep(4) ¼ 1, and hence, Qstep(16) ¼ 1 � 22= 4.

Table 11.1 Table of Qstep in terms of QP

QP 0 1 2 3 4 5 6 7 8
Qstep 0.625 0.6875 0.8125 0.875 1 1.125 1.25 1.375 1.625

QP 9 10 11 12 13 14 15 16 17
Qstep 1.75 2 2.25 2.5 2.75 3.25 3.5 4 4.5

QP 18 – 24 – 30 – 36 – 51
Qstep 5 10 20 40 224

358 Standard codecs: image compression to advanced video coding

The postmultiplied transform coefficients of eqn. 11.13 TC are then divided by
the quantiser step size, Qstep, to give the quantised transform index Qc.

Qc ¼ round
Tc

Qstep

 !
ð11:21Þ

The quantised transform indices are scanned in frame or field scan order, and the
2 � 2 transform coefficients of the chroma components are scanned in raster (the
same as zigzag) order and are then entropy coded.

Quantised transform indices prior to inverse transform are multiplied by the
quantisation step size to regain their approximated values.

Tc ¼ Qc � Qstep ð11:22Þ

The final reconstructed pixel residues are then obtained by the inverse transfor-
mation matrix of eqn. 11.16 and clipping the values within the range 0–255.

It is worth noting that at larger QP (e.g. QP > 30), the quantiser step sizes
become very large. These are suitable for the luma transform coefficients but are
too big for the chroma transform coefficients, which normally have lower spatial
resolutions (details) than luma, resulting in lower values of chroma residues. The
standard recommends that the chroma quantiser step sizes for QP > 30 should be
less than those of luma step size. A user-defined offset between QstepY and QstepC
may be signalled in the picture parameter set (PPS). Table 11.2 shows the nominal
relation between the chroma and luma quantiser parameters QPC and QP,
respectively. In this table, for QP < 30, the same quantiser step size of luma is used
for the chroma, but at higher QP, the quantiser step size of chroma is derived from a
lower QP than that used for luma.

Table 11.2 Specification of QPC as a function of QP

QP < 30 30 31 32 33/34 35 36/37 38/39 40/41 42–44 45–47 48–51
QPC ¼ QP 29 30 31 32 33 34 35 36 37 38 39

It is also worth noting that for high profiles where 10 and 12 bit/ pixel are used,
the QP for every bit is incremented by 6. For instance, in 10 bit/pixel input pictures,
the QP range is 0–63.

11.5 Deblocking filter

Principles of deblocking filter in the block-based codecs such as H.263 were stu-
died in section 9.4.4, but since this filter is a core element of the H.264 codec, the
test model has some recommendations for its characteristics and use. Note that
since deblocking filter is used at the decoder as well as in the decoder loop of the

Advanced video coding (H.264) 359

encoder, following the recommendation for decoding compatibility is essential. It is
recommended that filtering should be applied at MB level to each of 4 � 4 sub-
partitions first in the horizontal and then in the vertical direction. Both the filtering
operations are completed before moving to the next MB in a raster scan order. The
same procedure is applied to the chroma samples. The filtering procedure is
adaptively changed on slice, block edge and sample levels [8]. The overall filtering
operation is determined in three steps.

1. filter strength
2. filtering decision
3. filter implementation

11.5.1 Boundary strength
The filter strength, or most commonly, the boundary strength (BS), is the amount of
filtering exerted to the pixels. The BS is made dependent on the inter/intra pre-
diction decision, motion and reference picture differences and the presence of
residues in the two participating blocks. Table 11.3 summarises BS values in the
range 0–4, derived from every two 4 � 4 subpartitions of luma pixels. Value 0
means no filtering, and 4 corresponds to the heaviest filtering operation.

Thus, at areas where there are more distortions, higher values of BS are
selected, such as the boundary of an intra coded MB or a boundary between blocks
that contain coded coefficients (residues).

11.5.2 Filtering decision
One of the most important decisions on the filtering operation is to distinguish
between the artificial edges created by picture blockiness and the natural contextual
edges of the image, as filtering of natural edges may lead to picture blurriness. One
way of discriminating contextual edges from the artificial block boundaries is to
analyse relations between the pixels of the two participating blocks. Let us name
the participant blocks p and q, and their four samples along a line, either in the
horizontal or vertical direction, by p3, p2, p1 and p0, and q0, q1, q2 and q3 on either
side of a boundary line, as shown in Figure 11.17. The gradient of the pixels at the
block boundary, |p0 � q0| can be an indication of block edge. Pixel differences at

Table 11.3 Boundary strength (BS)

If either of blocks is intra coded and the block boundary
coincides with the block edge

BS ¼ 4 (heaviest filtering)

Otherwise BS ¼ 3
If both blocks are inter coded and at least one of the luma

blocks has non-zero transform coefficients
BS ¼ 2

Otherwise if they have different reference pictures or
different motion vectors

BS ¼ 1

Otherwise BS ¼ 0 (no filtering)

360 Standard codecs: image compression to advanced video coding

either side of the edge, like |p2 � p0| for block p, can be used as an indication of
texture (details) in that block. Hence, comparing them, one might be able to deter-
mine if the gradient |p0 � q0| is due to a natural or an artificial edge. However, since
blockiness is due to coarse quantisation, the gradients should be contrasted against
some thresholds, a and b, whose values change with the quantisation parameters QP.

p3
p2 p1

p0

β
q0

q1
q2

q3

β

Block Edge

a

Figure 11.17 One-dimensional representation of pixels of two adjacent blocks

a and b increase and decrease with the average QP of the two blocks p and q.
The idea is that if the difference between the samples near the block edge is so large
that it cannot be explained by the coarseness of QP, it can be taken as a true edge in
the picture. Otherwise, it is taken as blocking artefact and is required to be
smoothed. The values of a(QP) and b(QP) are given by [8]

aðxÞ ¼ 0:8ð2ðx=6Þ � 1Þ
bðxÞ ¼ 0:5x � 7

ð11:23Þ

The actual values can vary based on empirical tests to produce visually pleasing
results for a variety of content.

11.5.3 Filter implementation
Knowing the boundary strength (BS) and the various pixel gradients, one can
decide either not to filter a pixel or to filter it with various degrees, indicated by the
filter length. Table 11.4 summarises the conditions set on the pixel gradients along
with the BS to filter the boundary pixels. Under the conditions set in this table,
pixels along each side and each line (vertical, horizontal) are filtered with three to
five tap filters as well as not being filtered at all. In the table, values of the filtered
pixels are identified by (0) and the remaining pixels are not filtered.

Experiments indicate that deblocking filter can reduce the blocking artefacts
without notably harming the sharpness of the true edges. For moderate picture
details, it can reduce the bit rate by 6–9 per cent for the same objective quality, and
subjective quality improvement is even better [9].

Advanced video coding (H.264) 361

11.6 Entropy coding

Entropy coding is the last step in redundancy reduction. In Annex E of H.263,
arithmetic coding was introduced to improve the coding efficiency. The results were
not as promising as expected for some reasons. First, the arithmetic coding was
equally applied to all symbols, addresses, block type, MVs and transform residual
coefficients alike, but these coding syntaxes have their own characteristics. Second,
the model was not adaptive, and third, it was an m-ary arithmetic coding, which not
only makes it complex but its adaptation is also almost impossible. In H.264, it was
thought that through binarisation and adaptation of the symbol model, one can
improve the compression efficiency. This, of course, increases coding complexity, as
there are numerous symbols each requiring its own model. For this reason, H.264 has

Table 11.4 Conditions set for deblocking filters

BS value Conditions Filtered sample

0 NA No

1, 2, 3 NA p 0
0 ¼ p0 þ clipð4ðq0 � p0Þ þ p1 � q1 þ 4Þ=8

q 0
0 ¼ q0 þ clipð4ðp0 � q0Þ þ q1 � p1 þ 4Þ=8

|p2 � p0| < b p 0
1 ¼ p1 þ clipðp2 þ 0:5ðp0 þ q0 þ 1Þ � 2p1Þ

else p 0
1 ¼ p1

|q2 � q0| < b q 0
1 ¼ q1 þ clipðq2 þ 0:5ðq0 þ p0 þ 1Þ � 2q1Þ

else q 0
1 ¼ q1

4 |p2 � p0| < b and
|p0 � q0| < a/4 and
luma sample

p 0
0 ¼ p2 þ 2p1 þ 2p0 þ 2q0 þ q1 þ 4

8

p 0
1 ¼

p2 þ p1 þ p0 þ q0 þ 2
4

p 0
2 ¼

2p3 þ 3p2 þ p1 þ p0 þ q0 þ 4
8

else p 0
0 ¼ 2p1 þ p0 þ q1 þ 2

4

|q2 � q0| < b and
|p0 � q0| < a/4 and
luma sample

q 0
0 ¼ q2 þ 2q1 þ 2q0 þ 2p0 þ p1 þ 4

8

q 0
1 ¼

q2 þ q1 þ q0 þ p0 þ 2
4

q 0
2 ¼

2q3 þ 3q2 þ q1 þ q0 þ p0 þ 4
8

else q 0
0 ¼

2q1 þ q0 þ p1 þ 2
4

362 Standard codecs: image compression to advanced video coding

adopted two methods of entropy coding. One is called context adaptive variable
length code (CAVLC), where, based on the context of past symbols, a set of Huffman
tables are adaptively selected. The other is called context adaptive arithmetic coding
(CABAC), where the probability model of the arithmetic coder is adapted to the
context. However, most elements of a codec, such as MB type, MVs and their
addresses, do not need adaptation. To make entropy coding simple, both CAVLC and
CABAC use a single infinite extent code word, called exponential-Golomb
(Exp-Golomb), to generate the required code for these kinds of data. In the following,
the fundamental elements of the entropy coding methods defined in H.264 are pre-
sented, and for more detailed information and implementation issues, one should
refer to [10].

11.6.1 Exp-Golomb
Exp-Golomb code is a universal code with a regular construction structure that can
be tailored for any symbol without the need for look-up tables [11]. Their generated
code words are also known as universal variable-length code (UVLC). The code
word can be constructed by concatenation of a prefix and a suffix, as

code word ¼ ½M �1½info� ð11:24Þ
where M zeros represent the prefix followed by a 1 and then a suffix called info,
which is the binary representation of the source symbol. Values of M, info and the
length of the code word of a symbol x for a kth-order Exp-Golomb (EGK) are given by

M ¼ floor log2
x

2k
þ 1

h i�
info ¼ x þ 2kð1 � 2MÞ ð11:25Þ

The info is the binary representation of the above expression within k þ M sig-
nificant bits. Hence, the length of the code word becomes

length of code word ¼ k þ 2M þ 1 ð11:26Þ
The EGK is used in CABAC, but its zero-order version, EG0, is used in CAVLC
for coding of all symbols except the transform coefficients. EG0 code word then
has a length of only 2M þ 1 bits, and its prefix M and suffix info become

M ¼ floorðlog2½x þ 1�Þ
info ¼ x þ 1 � 2M ð11:27Þ

Table 11.5 lists the Exp-Golomb code for nine positive integers, generated from the
above equation.

Table 11.5 Exp-Golomb code for nine positive integers

Symbol (x) 0 1 2 3 4 5 6 7 8
Code word 1 010 011 00100 00101 00110 00111 0001000 0001001 . . .

Advanced video coding (H.264) 363

Any encoding parameter (except transform coefficients) is first mapped to a
symbol, and the symbol is then Exp-Golomb coded. Depending on the syntax of the
parameter, mapping is done by one of the following three methods:

1. Unsigned direct mapping: The symbol x is taken as the parameter itself.
Examples of this kind include MB type and reference picture index.

2. Signed direct mapping: Parameters that can be either positive or negative, like
the MV differences or QP differences, are mapped to symbol x by

x ¼ 2 jparameterj if parameter � 0

x ¼ 2 jparameterj �1 if parameter > 0 ð11:28Þ
3. Mapped symbols: Parameters other than the above two are mapped to a symbol

through some tables for mapping provided by the standard. The tables are
designed such that the most frequent occurring parameters have shorter symbol
lengths x to generate shorter code words. Coded block pattern (CBP) is one of
the examples.

11.6.2 CAVLC encoding for residual data
CAVLC is used as a lesser complex entropy coder of the transform coefficients in the
baseline profile of H.264. As mentioned, all the coding parameters except the
transform coefficients are Exp-Golomb coded. The transform coefficients are
Huffman-derived variable length coded, and based on some context adaptation an
appropriate VLC table is selected from a set of 11. To make VLC efficient, each
table is designed for a particular distribution of transform coefficient value. Selection
of one of these tables is based on the value of some of the previously coded
coefficients.

Transform coefficients after quantisation and zigzag scanning have some prop-
erties that can be taken advantage of for more efficient coding. These are as follows:

● They are typically sparse, containing a large number of zero coefficients.
These trains of zeroes can be easily run length coded.

● Most of the nonzero coefficients are sequences of �1s with equal probabilities.
These sequences should be represented in a compact manner.

● The nonzero coefficients of the adjacent blocks are highly correlated. Hence,
the number of nonzero coefficients of the neighbouring blocks can be used as a
context for adaptive selection of the look-up tables.

● The magnitudes of the nonzero coefficients tend to decrease from the start of
the scanning towards the end. This can be exploited for the choice of magni-
tude (level) parameter.

With the above properties of the quantised transform coefficients, their CAVLC
coding (after zigzag scanning) is as follows.

11.6.2.1 Encode number of coefficients and trailing 1s (T1s)
First, the number of nonzero coefficients and the number of trailing �1s are coded.
For blocks of 4 � 4 pixels, the number of coefficients can be anything from 0 to 16,

364 Standard codecs: image compression to advanced video coding

but the number of trailing �1s is assumed to be between 0 and 3. If the number
of �1s is greater than three, then the remaining �1s are treated as normal
coefficients.

Both the number of nonzero coefficients and the number of trailing �1s are
variable length coded from a choice of four look-up tables. Three of these tables are
variable-length code tables, and one is a fixed-length code table. The choice of
table depends on the number of nonzero coefficients in the blocks above and to the
left of the current block. For example, if the number of nonzero coefficients is less
than two, the first VLC table, known as num-VLC0, is chosen.

11.6.2.2 Encode sign of each T1
The trailing 1s need only sign information as their values are known to be 1. A
single bit 1 or 0 represents the negative and positive signs, respectively. They are
encoded in the reverse order from the highest frequency of T1s towards the lowest.

11.6.2.3 Encode levels of nonzero coefficients
The magnitude (level) of each nonzero coefficient is encoded with a look-up table.
There are seven look-up tables to choose from, and the selection is done adaptively
depending on the encoding of each prior level. The level of each nonzero coeffi-
cient is encoded in the reverse order of frequent occurrence of coefficient values,
that is, the highest frequency first and then moving back towards the DC coeffi-
cient. The tables are such that table 0 is biased towards lower magnitudes and table
1 is biased towards slightly higher magnitudes and so on. Adaptive selection of the
look-up tables is achieved through the following:

● The table is initialised to the lowest look-up table 0. Another look-up table is
chosen only if there are more than ten nonzero coefficients and less than three
T1s, in which case, the starting table is look-up table 1.

● The highest-frequency nonzero coefficient is encoded first.
● If the magnitude of the current coefficient is greater than a predefined thresh-

old, then the look-up table number is incremented by 1.

11.6.2.4 Encode each run of zeros
The number of zeros preceding each nonzero coefficient is encoded in reverse
order. This value is not encoded if the following two conditions are encountered:

1. If there are no more zeros to be encoded.
2. It is not required to encode the number of zeros before the last nonzero

coefficient.

The number of zeros encoded before a nonzero coefficient depends on the number
of zeros left to be encoded.

11.6.3 CABAC: Context-adaptive binary arithmetic coding
In the CAVLC of the baseline coder, although the tables are adaptively selected,
each code itself is in fact a Huffman code, with a minimum of 1 bit. This is not

Advanced video coding (H.264) 365

efficient for symbols with probability of occurrences greater than 0.5, and we have
seen in the earlier chapters that arithmetic coding of these symbols is more efficient.
To make arithmetic coding practical and, at the same time, context adaptive, H.264
has chosen the context adaptive binary arithmetic coding (CABAC) strategy. A block
diagram of this encoder is shown in Figure 11.18, with three main building blocks.

1. binarisation
2. context modelling
3. binary arithmetic coding

Binariser
Context
Modeler

Bypass
Coding Engine

Regular
Coding
Engine

Non-binary valued
syntax element

syntax element

Binary valued
syntax element

Bin
string Loop over

bins

bypass
bypass

regular regular

Bin value

Bin value
context model

Coded bits

Coded bits

bitstream

Binary arithmetic coder

a x
b Bin value for context model update

context

bin

Figure 11.18 A block diagram of CABAC

In the figure, an incoming symbol, called syntax element, is uniquely map-
ped to a binary sequence, the so-called bin string. In the regular mode, prior to
arithmetic coding, a probability model is assigned either to a bin or to the syntax
element. The selected probability model depends on the previously encoded
bins or elements. After assigning the context model, the bin value and its asso-
ciated model are passed to a regular arithmetic coding engine. Alternatively,
the bypass coding engine may be chosen, where bins are arithmetic coded without
any specific model. This mode is suitable for symbols with nearly uniform
distribution.

In the following, these three fundamental building blocks are explained in
general, and for more detailed information, one should refer to [10].

11.6.3.1 Binarisation
Prior to arithmetic coding and context modelling, the syntax elements are converted
from an m-ary code to a binary string. The reason for binarisation is that binary
arithmetic coding is much simpler than m-ary arithmetic coding to implement, and
context adaptation can be even carried out at the bin level. For the latter reason,
binarisation is not a simple binary representation of an m-ary, but it is a kind of
Huffman coding. In the Huffman tree, the last level of the child nodes would

366 Standard codecs: image compression to advanced video coding

represent the binary code word for a syntax element, and the probability of a bin at
each node can be related to all the probabilities of the bins in the tree to the root.
This is an interesting property that can be used for estimating and adapting the
probability model based on the context.

For binarisation, CABAC does not use Huffman-designed VLC tables, as this
requires several tables to be stored. Instead, four coding methods are used, which
are simpler to compute on the fly:

1. unary code
2. truncated unary code
3. EGK codes
4. fixed-length codes

Unary and truncated unary binarisation
In unary binarisation, each unsigned integer value symbol x 0 is represented by x
number of 1 bits followed by a terminating 0 bit. In the truncated unary, where the
value of x is truncated to a maximum of S, 0 � x � S, for x < S, unary code is used, but
for x ¼ S, the code word consists of only x number of 1s without the terminating 0 bit.

EGK codes
This is similar to the EG0 coding scheme used in CAVLC, which consists of a
prefix M zeros and a suffix info, as was explained in section 11.6.1. In the kth order
of EGK, the code length is given by K þ 2M þ 1.

Fixed-length binarisation
In this coding scheme, a symbol x within a finite size of S is represented by its bit
representation of a fixed length (FL), with a length l ¼ blog2Sc bits. This kind of
binarisation is typically applied to syntax elements with fairly uniform distribution,
where each bit in the FL binary representation represents a specific coding deci-
sion. Examples include a part of coded block-pattern symbol related to the luma
residual data.

In addition to the above four binarisation schemes, three additional schemes
are defined by their concatenation. One is a concatenation of fixed length and
truncated unary, which is used for binarisation of coded block pattern. The other
two are derived from the concatenation of truncated unary and EGK, which are
used for the MV differences and the absolute values of the transform coefficients
levels. For example, for MV difference with one-quarter-pixel precision, �2 extra
samples are needed, which is catered for by EGK of k ¼ 3 [10].

11.6.3.2 Context modelling
Context modelling is the process of selecting a probability model for one or more
bins of a binary symbol. The choice of model depends on the statistics of the
recently coded syntax elements or bins. Thus, through context adaptation, an
appropriate probability model is assigned to a binary value 0 and 1. The com-
pression achieved by the arithmetic coder is highly dependant on the good fit of the
used model. Ideally, a model should explore maximum statistical dependencies to
achieve maximum compression. Considering that training the model for adaptation

Advanced video coding (H.264) 367

is costly and the cost increases exponentially with the number of probabilities to be
modelled, one might think that not all symbols need context modelling. Only
symbols with high frequency of occurrence that have major contributions to the
generated bit rate should be modelled, hence decreasing modelling cost.

CABAC uses four different types of context models [10]. The first model is
applied on the syntax element based on the modelling of the related bin values of
the neighbouring elements, which lie to the top and left of the current syntax ele-
ment. Thus, context adaptation is carried out at syntax element level.

The second model is used for modelling of MB type (mbtype) and sub-MB
type (sub_mbtype). In this type of model, the values of the previously coded bins
are used as the choice of a model for the current bin with an index i. Thus, the
context adaptation is done at the bin level.

The third and the fourth types are used for coding of residual transform coef-
ficients only. In the third type, coding is based on the position of the bin in the
scanning path. This position is provided by a significance map. The fourth type is
based on the level information of prior encoded (decoded) bins to fix the level
information of the current bin to be encoded (decoded).

The reason for these two types of context modelling for the residual data is the
way the transform coefficients in CABAC are coded. The idea has been borrowed
from wavelet image coding, where the significance of coefficients are noted and,
knowing the characteristics of the coefficients (listed in section 11.6.2), their pre-
sence and values are coded. Here, for each block with at least one nonzero quan-
tised transform coefficient, a sequence of binary significance flags, indicating the
positions of the significant (i.e. nonzero) coefficients within the scanning path, is
generated. These significance flags are interleaved with another sequence of
so-called last flags (one for each significant coefficient level) for signalling the
position of the last significant level within the scanning path. This so-called sig-
nificance information is transmitted as a preamble of the regarded transform block
followed by the magnitude and sign information of nonzero levels in the reverse
scanning order. The context modelling of binarised-level magnitudes is based on
the number of previously transmitted level magnitudes greater or equal to 1 within
the reverse scanning path, which is motivated by the observation that levels with
magnitude equal to 1 are statistically dominant at the end of the scanning path. For
context-based coding of the significance information, each significance/last flag is
conditioned on its position within the scanning path, which can be interpreted as a
frequency-dependent context modelling. Furthermore, for each of the different
transforms (integer, 4 � 4 and 2 � 2 Hadamard) in H.264 as well as for luma and
chroma components, a different set of contexts denoted as context category is
employed. This allows the discrimination of statistically different sources, with the
result of a significantly better adaptation to the individual statistical characteristics.

The context models are accessed through an index parameter g, which is
determined by two values: one is a 6-bit probability state (64 probability states)
index a and another is the most probable symbol (MPS) b. The context index ranges
from 0 to 398. The indices from 0 to 72 are related to syntax elements of MB type,
sub-MB type, prediction modes of spatial and temporal type and slice- and

368 Standard codecs: image compression to advanced video coding

MB-based control information [10]. The remaining context indices are all used to
represent residual transform coefficients.

The context index in the range 0–72 is given by

g ¼ Gs þ cs ð11:29Þ

where Gs is the context index offset and cs is the context index increment for a
given syntax element S. Its value for the range 73–398 is given by

g ¼ Gs þ DsðctxcatÞ þ cs ð11:30Þ

where ctxcat is the context category dependant offset. An important factor about
context modelling is that only the past coded values of the current slice are con-
sidered for the coding of a current syntax element.

11.6.3.3 Binary arithmetic coding
In the previous chapters, binary arithmetic coding was described in detail. Now that the
model adaptation for CABAC is known, its binary arithmetic coding is easy to follow.
As we had seen, binary arithmetic coding is carried out by recursively subdividing an
interval according to the probability of symbols. If the least probable binary symbol
(LPS) 0 or 1 has a probability rLPS < 0.5, and the interval has a lower bound L and its
width or range is R, then the interval is divided into two subintervals with

RLPS ¼ R � rLPS ð11:31Þ

associated to the LPS, and its dual interval RMPS ¼ R � RLPS, assigned to the most
probable binary symbol (MPS), having the complementary probability of 1 � rLPS.
Depending on whether LPS or MPS was encoded, the new range R is set to either
RMPS or RLPS. A binary value pointing into that interval represents the sequence of
binary decisions processed so far, and the range of that interval corresponds to the
products of the probabilities of those binary symbols [11].

For adaptation, it remains to estimate the probability of least probable symbol,
rLPS. CABAC defines 64 representative probability values, rLPS, in the range
0.01875–0.5 for LPS, by the following recursive equations:

rs ¼ a� rs�1 for all s ¼ 1, :::, 63
with a ¼ ð0:01875=0:5Þ1=62 and r0 ¼ 0:5

ð11:32Þ

Both the scaling factor a& 0.95 and the cardinality N ¼ 64 are chosen to represent
a good compromise for fast adaptation and accurate estimation. Thus, each context
model in CABAC can be completely determined by two parameters: its current
estimate of LS probability, which in turn is characterised by an index s between 0
and 63 and its value of MPS being either 0 or 1.

Another interesting feature adopted by the CABAC scheme is the use of a
simplified bypass coding mode as shown in Figure 11.18. If the syntax elements are
found to be uniformly distributed, then the computationally intensive process of

Advanced video coding (H.264) 369

context modelling can be skipped, and the syntax elements are directly arithmeti-
cally coded with a fixed probability.

11.7 Rate distortion optimisation

In H.264, similar to the other standards, only the bitstream syntax and the decoding
procedure are specified, and the encoder is flexible to have any implementations.
This means that the encoder is free to encode an MB in any way it prefers and
hence to spend its bit rate budget as long as the generated bitstream is decodable.
The idea behind rate distortion (RD) optimisation is to distribute bits among the
parts of MB encoding elements, like coding modes, predictions, MVs, QP and the
residual data out of several choices such that larger reduction in distortion is
achieved for minimum spent bits. For a good and efficient RD optimiser, selection
of these huge ranges of choices can only be achieved through an exhaustive search.
To simplify the search, one may assume an analytical model relating the rate and
distortion and through Lagrangian optimisation to achieve RD efficiency.

11.7.1 Lagrangian optimisation technique
Lagrangian techniques are based on converting a constraint optimisation problem
to an unconstrained one [12]. In eqn. 11.33, the task is to minimise the distortion,
D, with a constraint that the rate R should be less than a target value Rc:

minimize D subject to R � Rc ð11:33Þ

The constrained eqn. 11.33 can be solved by converting it to a nonconstrained
equation, through the Lagrangian cost function J, with parameter l. In this case, the
task becomes to minimise the cost function J, which has a well-defined equation,
given by

J ¼ D þ l� R ð11:34Þ

Encoding of every MB in a picture generates a rate of r and distortion d, and the
sum of these values over a slice or picture results in R and D. Assuming that r and d
of an MB are only dependant on the MB’s own coding parameters and not the
others, the optimisation of eqn. 11.34 is simplified to minimising the cost of coding
each MB separately:

j ¼ d þ l� r ð11:35Þ

11.7.2 Optimisation process
An MB can be coded in a variety of forms, like SKIP, inter 16 � 16, inter 16 � 8,
inter 8 � 16, inter 8 � 8 as well as intra 16 � 16 and intra 4 � 4. Inter 8 � 8 itself
can be divided into inter 8 � 4, inter 4 � 8 or inter 4 � 4. Since interframe coding is
more common than the other modes, its cost is first estimated. The Lagrangian

370 Standard codecs: image compression to advanced video coding

optimiser starts by finding the optimal MVs of inter coded MB and the optimal
mode for any block. Here through Lagrangian optimisation, the cost of coding the
MVs in bits, and their motion-compensated distortions in the form of sum of
absolute distortion (SADMV) of motion-compensated pixels in the MB is derived.

jMV ¼ SADMV þ lMV � rMV ð11:36Þ

where lMV is the Lagrangian parameter of the MV. After determining the optimum
MVs for inter modes, the Lagrangian optimisation is used again to choose the
optimal mode by minimising the overall Lagrangian cost of each (intra and inter)
and the skip mode (jmode).

jmode ¼ SSDmode þ lmode � rmode ð11:37Þ

where rmode includes all the required bits to code an MB and SSDmode is the sum of
squared differences (SSD) between the original and the reconstructed pixels. The
mode that has the least jmode among all others is selected as the optimum mode.
Note that in intra slices, only the intra modes are allowed and searched, but in inter
slices, both types are examined.

11.7.3 Selection of l
In the above optimisations, the values of l are empirically found to be [13]

lmode ¼ 0:85 � 2ðQP�12Þ=3

lMV ¼
ffiffiffiffiffiffiffiffiffiffi
lmode

p
ð11:38Þ

These relationships between the parameters can be verified experimentally. For
each MB, by varying l, the QP that yields the least bit rate is recorded. The average
values of QP for the given l establish this relation. For instance, Figure 11.19 shows
the results of the experiment for the foreman test sequence. The encoder examines
various values of QP as well as MB modes and selects a QP that has the least
Lagrangian cost. The figure indicates that values of QP that have l given according
to eqn. 11.38 on the average are the most frequently selected QP for an optimum bit
rate [14]. Hence, relation between l and QP given in eqn. 11.38 looks very plausible.

It is worth mentioning that for higher compression, normally B-slices are
quantised coarser than I- and P-slices. In MPEG-1, we saw that the quantiser step
size of B-pictures was 1.4 times larger than that of I- and P-pictures. In some
versions of the JM software of H.264, it is noted that the lmode of B-slices are set at
four times that of I- and P-slices. This ratio, according to eqn. 11.38, means that QPB ¼
QPP þ 6. Since a six-level increment in the QP doubles its step size, the quantiser
step size of B-slices will be twice that of I- and Q-slices, that is, QstepB ¼ 2QstepP.
Such a very high quantise step size for B-slices is mainly due to very efficient motion
compensation of these slices, such that larger quantiser step size forces many of their
MBs to be skipped, reducing the bit rate significantly without noticeable picture
degradations.

Advanced video coding (H.264) 371

The above discussions imply that the optimisation outcome is heavily dependent
on the QP, as both lmode and lMV are QP dependent. This creates the chicken and egg
dilemma, as the main goal of optimisation is to find the most suitable QP, but we see
that the outcome of optimisation is QP dependent. In practice, selection of QP comes
first. In variable bit rate (VBR) coding, for a given video quality, a fixed QP is
chosen. In the constant bit rate (CBR) coding, for a given bit rate budget, through a
rate control strategy, an appropriate QP is determined, though it may change from
slice to slice. Thus, although we start with a given QP, the outcome of optimisation
may indicate that a better QP should have been selected. Hence, new QP can be
chosen, but it should be ensured for CBR that the bit rate budget is not exceeded.

RD optimisation is extensively used in various parts of the H.264 encoder, and
it comprises a significant portion of the encoding complexity, perhaps comparable
to motion estimation (see section 11.11.1). Even a small part of motion estimation
complexity is due to its use of RD optimisation, as merging inter 4 � 4 MVs to larger
blocks is carried out through RD decision, as discussed in section 11.3.1. The spatial
prediction modes of intra 4 � 4/intra 16 � 16 are also determined through RD, and
the one with the least cost is selected. In fact, in the encoder, no decision, such as the
intra/inter/skip decisions, is made without referring to RD optimisation, and this is
why RD optimisation consumes a major portion of the encoder complexity.

11.8 Error resilient encoding

Although the H.264 standard through the network abstraction layer (NAL) tries to
protect the video coding layer (VCL) bitstream against the underlying transport
channel uncertainties, some degree of error resiliency within the VCL stream itself
has also been envisaged. Most of these techniques like data partitioning, error

17
0

10

20

30

Av
er

ag
e

Q
P

oc
cu

re
nc

e
(%

)

40

50

60

70

80

22 27
QP

32 37 42

Lambda (QP:20)
Lambda (QP:35)Lambda (QP:30)
Lambda (QP:25)

Lambda (QP:40)

Figure 11.19 Average occurrence of QP for various values of l

372 Standard codecs: image compression to advanced video coding

concealment, reference picture selection are either borrowed from the previous
standards or their improved versions are adopted. The new standard also has some
of its own, like flexible macroblock ordering (FMO), redundant slices, parameter
setting and switching pictures, which have been developed specifically for this
codec. In the following, some of the most important error resiliency techniques
used in H.264 are explained.

11.8.1 Error detection
The syntax elements for a standard decoder, like addresses, picture number, MVs
and transform coefficients are all defined within a format and range. They have to
be received in proper order and form to be decodable. Any violation in the syntax
elements due to channel errors can lead to illegal value of these elements, and
hence, the decoder can abandon decoding till the next synchronisation is received.
Because of predictive coding nature of the codec, a single error may cause all
elements within a slice not to be decodable. The syntax errors may include [3]

● illegal value of syntax elements
● illegal synch header
● more than 16 transform coefficients
● incorrect number of stuffing bits

When a part of a slice is not decodable, it may be copied from the same positions
from the previous picture. This is informally known as frame copy. Alternately, the
lost area can be concealed by copying correlated pixels from other parts of the
picture itself or previous pictures. The standard defines two intra- and interframe
error concealment techniques, which is explained in details in section 11.9. Inter-
frame error concealment is colloquially known as motion copy.

11.8.2 Flexible macroblock ordering (FMO)
Although picture slicing can prevent error propagation beyond a slice, proper
arrangement of MBs in forming a slice can improve the degraded slice quality. For
example, if MBs are arranged in a checkerboard pattern, error concealment can
perform better on the lost slice, where each lost MB is surrounded by several safely
received ones. The final outcome of course very much depends on how efficiently
the error concealment algorithm is implemented.

For robust transmission, the standard allows the MBs of various parts of the
picture to be grouped in a flexible manner, the so-called flexible macroblock ordering
(FMO). In this technique, MBs are grouped together according to a user-defined
shape known as slice grouping. Each slice group is a set of MBs defined by an MB to
slice group map, specified in the picture parameter set (PPS) and some information in
the slice header. This map consists of a slice group identification number for each
MB in the picture, which specifies to which slice group it belongs to. To reduce
addressing information, as well as preventing data fragmentation, each slice group is
partitioned into one or more slices, such that a slice is a sequence of MBs within the
same slice group, which are processed in the raster scan order [3].

Advanced video coding (H.264) 373

The slice grouping and ordering of MBs within slices depend on applications.
Figure 11.20a shows two foreground slice groups #0 and #1 and a background slice
group #2, and in Figure 11.20b, two slice groups #0 and #1 are interleaved in a
checkerboard pattern. While the first method can be used for coding of region of
interest (or importance), in the second method, when a slice is lost, it can be easily
concealed from the neighbouring MBs of the other slice. Hence, this method is
useful for multiple descriptions coding, where each slice can be sent through a
different channel, such that one covers for the loss of other.

slice group #0

slice group #1

slice group #2

(a) (b)

slice group #0

slice group #1

Figure 11.20 Subdivision of a QCIF picture into slice groups: (a) foreground/
background and (b) checkerboard pattern

H.264 defines six implicit types of MB classification pattern, known from type
0 to type 5, plus an explicit pattern, in which the MB map is user defined (a total of
seven patterns). Figure 11.21 shows the six implicit patterns of FMO for two slice
groups #0 and #1. These types are defined as: type 0 is interleaved, type 1 is
checkerboard (or dispersed), type 2 is foreground and background, type 3 is box

Slice
group 1

Slice
group 0(0) Interleaved (1) Dispersed (2) Foreground

(3) Box out (4) Raster scan (5) Wipe

Figure 11.21 Various types of FMO

374 Standard codecs: image compression to advanced video coding

out, type 4 is raster scan and type 5 is wipe. In the explicit case, the parameter
slice_group_id is transmitted for each MB in the picture specifying the slice group
to which it belongs to.

Proper arrangement of MBs in multiple slice groups increases error resiliency
of the bitstream. For example, MBs with high texture and motion, which normally
create strong transform coefficients residues, can be grouped and better protected
against the channel errors. Moreover, by spreading MBs in different groups in the
form of interleaved or checkerboard (dispersed), one can conceal the loss of MBs in
the missing slice by the safely received ones. Experiments show that for video-
conferencing applications (low activity), without unequal error protection, a loss
rate of 10 per cent can be easily concealed without showing any annoying artefacts.
If slice groups containing important MBs are strongly protected against the channel
errors, the bitstream can even stand much higher error rates than the 10 per cent.

However, reordering MB positions reduces the correlations between the
neighbouring MB, impairing the compression efficiency of the encoder. The largest
penalty is that of the checkerboard (dispersed) pattern, where predictions from the
neighbouring blocks are abandoned to prevent error propagation. This is followed
by the interleaving of slices, especially when they are line by line interleaved. The
penalty in bit rate in error-free environment is both content and bit rate (QP)
dependent, and can vary from 5 to even 20 per cent of the no-error resilience bit
rate [3]. But in an error-prone environment, where forward error correcting (FEC)
code is required, the compression deficiency of the FMO mode can be offset with
the required FEC overhead.

Figure 11.22 shows the error resilience of six forms of implicit FMO without
any external FEC. Here the side effects of lost MBs at the decoder are concealed,
and hence, the superiority of one method over the other indicates how an FMO
pattern has a better loss concealment property. The ultimate video quality depends
on how efficiently the error concealment algorithm is implemented. In this figure,
the foreman test sequence with QCIF@15 frame/s was coded at 64 kbyte/s for all
modes, and each picture was divided into two slices. The erroneous pictures were
then decoded by a JM decoder with the motion copy facility for loss concealment.
As seen, the checkerboard (dispersed) followed by the interleave modes produces
better quality than the other modes.

It is also worth noting that as the slices can be decoded independently, this
gives rise to the concept of the arbitrary slice ordering (ASO). In this case, the
slices of a picture can be in any order in the bitstream, and this can reduce the
decoding delay in case of out-of-order delivery of the NAL units.

11.8.3 Data partitioning
The importance of data partitioning (DP) in making video stream more robust to
errors was addressed in section 9.7.3. There it was discussed that if the more
important encoding parameters like addressing and MVs are sent before the less
important data, like the residual transform coefficients, then the impact of errors on
the video quality is minimised. However, one can still improve the perceived video

Advanced video coding (H.264) 375

quality by discriminating and better protecting the important encoding parameters
over the nonimportant ones. Such a strategy called unequal error protection was an
option for H.263, but now, due to its importance, has become an important part of
H.264. H.264 has even some recommendations for better protection of bitstream
against the error. This standard partitions the bitstream into three different classes
called DP_A, DP_B and DP_C in the descending order of importance. Each part is
encapsulated into a separate unit of the NAL for transmission, described in section
11.13. The partitioned data in H.264 are defined as follows:

● Data partition A (DP_A) contains header information, MB types, addresses,
quantisation parameters and MVs. These are the most important information,
and if this data is missing, the other partitions cannot be decoded.

● Data partition B (DP_B) is the second-most important partition, consisting of
intra coefficients and intra-CBP. Because of the importance of intra coded
information in preventing error propagation, the loss of this partition severely
degrades the quality of the forthcoming pictures and may result in synchronisation
loss. To decode partition B, partition A of the same slice needs to be available.

● Data partition C (DP_C) is the least important data and it contains only inter-
CBP and inter coded residues. It usually comprises the largest portion of a
coded slice. Its loss may lead to some picture artefacts, but it does not disturb
the encoder/decoder synchronisation.

Since parts A and B are important, they can be more heavily protected with forward
error correcting code (FEC) code than data from part C. For normal pictures at
nominal bit rates, this does not impose significant increase in the bit rate. Despite

Disp
Interleaved
Wipe
Forg
Raster
Box out

12

14

16

18

20

22

24

26

28

30

32

34

0 5 10 15 20 25 30 35 40 45 50

PS
N

R
 (d

B
)

Packet Loss (%)

Figure 11.22 Error resilience performance of various FMO modes

376 Standard codecs: image compression to advanced video coding

this protection, some of these partitions may not be available at the decoder. It can
be due to severe channel condition such that the used FEC is not sufficient for their
correct decoding, or in a packet network environment, due to network congestion,
they are lost. However, to decode a picture completely, all the partitions should be
available; if some partitions are missing, the others can still be used to conceal the
ill effects of the lost partition in the following order:

1. If partition C is missing, it can be concealed with the MVs from partition A and
texture from partition B using intraframe concealment.

2. If only partition B is missing, it can be concealed with MVs from partition A
and inter information from partition C.

3. If partitions B and C are missing, MVs of partition A are used for concealment.
4. If partition A is missing and B and/or C are available, MVs spatially above the

MB row for each lost MB are used.

11.8.4 Intra-MB/IDR
Intra pictures or intra slices are used to confine the picture drifting errors and
prevent their propagation into the following pictures/slices. H.264 supports two
types of intra slices, the instantaneous decoding refresh (IDR) slice and the intra
slice. Furthermore, some of the MBs inside inter coded slices can be intra coded to
prevent error propagation, or they are chosen because their bit rates might be less
than that of inter coded ones (e.g. when motion is unpredictable).

Both the intra and the IDR are intra coded slices/pictures without reference to
any other pictures. The difference between the two is that the IDR picture invali-
dates all the reference pictures in the buffer prior to itself and thus can completely
confine the drifting errors induced by the previous pictures. The intra slices, on the
other hand, do not invalidate the reference pictures in the buffer and thus can
confine drift error at that picture position only. If the future pictures refer to any
picture older than the intra picture, the drift error can occur again.

Decision for inter/intra coding is done according to the RD optimisation such
that an appropriate coding mode is selected minimising the Lagrangian cost func-
tion. In the RD optimisation, the rate of intra coded blocks is that of block coeffi-
cients, but in inter coded block, the rate is a sum of block coefficients and the
MVs rates.

To prevent picture drift due to error/loss, some of the MBs in each slice might
be forced to be intra coded. Arrangement for intra coding is such that the whole
picture is updated after several frames. For this reason, this method is also called
forced intra update. Forced intra updating can be done either randomly or within a
certain update pattern. For example, a row of MBs in each frame in turn is intra
coded.

Figure 11.22 compares the error resiliency of FMO (checkerboard/dispersed),
data partition (DP), intra update and intra update combined with FMO against no-
error resilience coding. For this test, the foreman sequence at CIF@30 Hz with
IPPP . . . Group of Pictures (GOP) was coded with JM software at a target bit rate of

Advanced video coding (H.264) 377

1 Mbit/s under all encoding conditions. Compressed bitstream of each method was
packetised into 1-kbyte packets, and packets were randomly dropped. Each point in
the figure is the average video quality over 20 runs. For intra update, at each
picture, a row of MBs (22 MBs in CIF) in turn were forcibly intra coded. For DP,
partitions B and C of each slice were subject to loss, but not partition A. For FMO
plus intra update, first of all, one row of MBs in each picture was intra coded, and
then the MBs of the whole picture were grouped into two sets and reordered in
checkerboard pattern. In fact, in this case, forced intra coded MBs are spread into
more rows of MBs, which should create better condition for loss concealment.

The intra update due to inefficient coding of intra over inter coding has lower
video quality at no or very low loss rate. Increasing the loss rate intra update due to
its ability to prevent error propagation yields the best result of all the error resilient
schemes (see Figure 11.23). When this is combined with FMO, the better-quality
images of intra updates with the better loss concealment environment provided by
FMO give the best result.

20

22

24

26

28

30

32

34

36

38

40

0 1 2 3 4 5 6 7 8 9 10

PS
N

R
 (d

B
)

Data drop (%)

IR
DP drop BC
FMO Disp
No Res

FMO Disp with IR

Figure 11.23 Performance of various error resilient modes

Data-partitioned video quality at no loss is better than intra update (IR in the
Figure), but as the loss rate increases, accumulated loss of residual transform
coefficients of parts B and C makes it poorer than intra update (DP drop BC, in the
figure). However, at high loss rates, due to its better loss concealment, it overtakes
intra update. Note that in DP with protected part A, loss concealment is carried out
with the exact MVs, producing better image quality than interframe loss conceal-
ment, which estimates the lost MVs. Nevertheless, it is still inferior to intra plus
FMO. It should be noted that adding FMO to DP may not improve its performance

378 Standard codecs: image compression to advanced video coding

as done with intra update; this is because, as stated above, its loss concealment is
done with its exact MVs and does not need a good estimate. However, FMO due to
isolation of neighbouring MBs prevents spatial propagation of errors, improving
image quality in any case.

Finally, FMO gives the poorest performance, as it has to just rely on the loss
concealment. This, of course, depends on how well the loss concealment has been
implemented, and it can be improved with better loss concealment strategy.
Nevertheless, it is always worse than DP, which uses exact MVs; one should note
that in DP, protection of part A exerts extra overheads. All methods outperform no-
error resilience coding (No Res in the figure).

11.8.5 Multiple reference pictures
Multiple reference pictures, in addition to efficient motion compensation for
improving the compression gain of the encoder, can also be used in a different form
for error robustness in error-prone environments. In section 9.7.2, we discussed that if
one of the error-free references is selected, then error propagation can be prevented.
In H.263, this was an option for the encoder, but in H.264, it plays an important role,
and the standard recommends some guidelines for its better use, to be defined shortly.
This procedure can be used with and without a back channel. In systems with a back
channel like bidirectional conversational application, the decoder can initiate the
selection of reference pictures using one of the following modes [15]:

● ACK mode: The decoder acknowledges safe reception of the message, and the
encoder marks the correctly received slices for future references.

● NACK mode: The decoder sends a negative acknowledgement for every lost/
corrupted slice (e.g. through checking slice reference time or receiving an
erroneous slice). When the encoder receives a NACK message, that picture is
not used for future reference, and the reference picture is selected from the
pictures before the NACK picture.

● ACKþNACK mode: In this case, the encoder switches between the above two
modes according to the message from the decoder.

The ACK mode incurs too much overhead on the back channel, but the encoder is
ensured that the used reference picture is error free and error propagation is limited.
The other side effect is in the long routes, where a large gap between the current
picture to be coded and the error-free reference picture reduces the compression
gain. On the other hand, the NACK mode has no significant back channel load for
good-quality communication link, but if for any reason the NACK signal is not
received by the encoder, the error will be persistent and propagates through the
pictures. Even future reception of NACK cannot prevent this error propagation.
However, the NACK mode has high coding gain, since any chosen picture can be
used as a reference, unless it was not acknowledged.

The combination of ACKþNACK is perhaps the best solution for compression
efficiency and robustness to channel errors. To minimise the back channel signal-
ling load, the encoder initiates communication with the NACK mode. After

Advanced video coding (H.264) 379

receiving N consecutive NACK signals, which is an indication of a bad channel, the
encoder switches to ACK mode. The encoder can switch back to NACK mode,
when M consecutive ACK signals are received. Thus, ACKþNACK has a source
channel optimisation property, such that in good channel conditions, it uses NACK
mode, and hence, closer reference pictures are used for higher compression, and in
bad channels, through ACK, it is ensured that the used reference pictures are error
free and the error is not propagated. In erroneous environment, error robustness is
more desired than higher error-free compression gain.

In the systems without a back channel, such as multicasting, video redundancy
coding (VRC) technique is used instead [16]. In VRC, the input video is separated
into two or more threads, and pictures in each thread use their own predictions. For
example, odd pictures can go into one thread and the even pictures into the other.
The bitstream in each thread starts and ends with a sync picture, and the sync
pictures can also be inserted at specific intervals. The sync picture may be an
I-picture or an SI-picture. A simple example is shown in Figure 11.24, with two
streams having odd- and even-numbered pictures in different threads. When a
picture is lost from one stream, the other stream is decoded intact, and the temporal
resolution of decoded pictures is temporally reduced. If display of higher frame rate
is desired, the decoded pictures of the safe route can be repeated. Alternately, the
corrupted/lost picture of the erroneous route is reconstructed from the pictures of
the other stream having shorter temporal distances (i.e. loss concealment), and the
remaining pictures are decoded following the lost concealed reference picture
(picture quality can be slightly degraded).

P1 P3 P5 P7

P2 P4 P6 P8

Sync Sync

Time

Figure 11.24 VRC scheme with two threads and four pictures per thread

This technique is also called multiple description coding, and in wireless
communications, it can be combined with space diversity technique to make sure
that at least one of the channels is not affected by fading. The missing data are then
interpolated from the safely received channel data. For better loss concealment,
slice and MB ordering, ASO and FMO may be used in each of the odd and even
pictures.

11.8.6 Redundant slices
To enhance error robustness in H.264, the encoder can send duplicate copies of
some or all slices of a picture. To minimise the extra bits of redundant transmission,
these slices are coded with coarser QP than the main slice. If both representations

380 Standard codecs: image compression to advanced video coding

of the same slice are received by the decoder, then the redundant slice is discarded
and the main slice is decoded. In case the main slice is lost, then the redundant
representation is decoded. Redundant slices have been introduced for mobile
applications but can be efficiently used in IP-based communication.

11.8.7 Stream switching
In H.264, two new types of slice called switching predictive (SP)- and switching intra
(SI)-slices have been defined. Since pictures containing these slices have specific
applications such as stream switching, splicing, random access, fast forward, fast
backward and error resilience/recovery, all slices in a picture are of the same type,
and hereafter, we refer to them as SP/SI-pictures [18]. For error resiliency, the idea
behind the switching pictures is to regain loss of synchronisation between the enco-
der and decoder, which may arise due to channel errors. In this case, the encoder
sends a switching picture referenced to a correctly received picture, and the decoder
can follow drift-free decoding with reference to this switching picture.

There are numerous other applications for the switching pictures. For example,
in channel capacity varying environment, a video may be coded at two different
rates. At low channel rate, users stream low-quality video, and when channel capa-
city increases, they may switch to a higher-quality video. Or, in a fixed-capacity
channel, lower-rate video can be better protected by heavier FEC code than the
higher-rate (quality) video. When channel condition is poor, lower-quality video is
streamed, and when the condition improves, it is switched to higher-quality stream.
Forward/backward switching may occur as many times as required.

Switching pictures are either predictive coded (SP) or intra coded (SI). The
predictive pictures (SP) themselves are of two types: primary (PSP) and secondary
(SSP) switching pictures, which are explained in the following sections.

11.8.7.1 PSP-picture
The primary switching pictures (PSP) are motion-compensated predictive pictures
and are coded like the P-pictures. Their main difference is the extra quantisation
imposed on the PSP-picture to make sure that its quality is the same as that of the
secondary pictures, SSP (see below). Thus, PSP-pictures generate slightly more bits
than the normal P-pictures. They are inserted into the bitstream to mark the posi-
tions where the switching can take place. When switching occurs, a secondary
switching picture is used instead. Although the bit rate of the secondary switching
picture might be high, since they are used only once and the frequently transmitted
PSP-pictures have much lower rate than the I-pictures, switching pictures are used
in video streaming instead of I-pictures.

11.8.7.2 SSP-picture
A secondary switching picture (SSP) is, in fact, the picture used for switching
purposes. The decoder can decode the bitstream with reference to this picture
irrespective of what its encoded reference picture was. These pictures are only sent

Advanced video coding (H.264) 381

at the switching instants or for regaining synchronisation between the encoder and
decoder, which may arise due to channel errors.

11.8.7.3 SI-picture
SI-pictures are the intra coded representation of the SSP-pictures. Although these
pictures can be used for switching, they are normally used for accessing a bit-
stream, as they act like an I-picture, as shown in Figure 11.25.

11.8.7.4 Switching between two streams
To see how switching pictures act and how they should be coded, let us look at
switching between two streams, as shown in Figure 11.24. Each stream is populated
with PSP-pictures at specific locations to mark a possible location for switching.
Every PSP-picture has an SSP counterpart stored in the server, but SSP is only
transmitted when switching becomes necessary. In the figure, two bitstreams,
switched-from and switched-to, are shown with periodically inserted PSP-pictures.
The solid arrows in the figure indicate the transmission path. As an example, it
starts by sending all the pictures from the switched-from stream up to a PSP-
picture, which demands switching. In this case, an SSP-picture is transmitted
instead of a PSP and followed by pictures from the switched-to stream. The SSP-
picture is the counterpart of the PSP-picture of the switched-to bitstream (second
PSP in the figure) coded with reference to the previous picture of the switched-from
bitstream. The dotted arrows show the pictures that are coded but not transmitted.
The PSP-picture can be inserted at any place, but currently, only periodic imple-
mentation is available in the JM software encoder.

Switched-to bitstream

Switched-from bitstream

SSP1,2

PSPP PSPP PSPP P

PSPP PSPP PSPP P

Figure 11.25 Bitstream switching with SSP-picture

Switching with SI-picture is shown in Figure 11.26. The only difference is that
the SI-picture is the intra representation of the SSP-picture without reference to any
previous picture. Although SI-pictures can also be used instead of SSP-pictures, but
since they generate higher bit rates than the SSP-pictures, the latter is preferred
(note: if switching occurs infrequently, the added bits are negligible). However, the
main use of SI-pictures will be random access of the stream.

382 Standard codecs: image compression to advanced video coding

Switched-to bitstream

Switched-from bitstream

PSPP PSPP PSPP P

PSPP PSP

SI

P PSPP P

Figure 11.26 Bitstream switching with SI-picture

11.8.7.5 Error recovery
As another example, Figure 11.27 shows switching pictures used for error recovery.
In this figure, SSP-picture is coded with reference to a picture that ensures that the
receiver has an error-free copy of it. When error occurs, the client signals a picture
loss, to which the server responds by sending an SSP-picture in place of the next
PSP-picture. The picture immediately after the PSP-picture switches its prediction
to the SSP-picture, and decoding continues, as shown in the figure. It is worth
noting that the longer the communication link, the farther away is the SSP-picture
from its prediction, increasing its bit rate.

Pn – 4 Pn – 3 Pn – 2 Pn – 1 Pn + 1 Pn + 2PSPn

SSP

Figure 11.27 Switching picture in error recovery

11.8.7.6 Encoding of switching pictures
Encoding of PSP-picture
The primary switching picture, PSP, is predictive coded like a P-picture, with the
main difference that it is doubly quantised. That is, it is first motion compensated,
transform coded and quantised with its own stream quantiser parameter QSP, as
shown in Figure 11.28. It is then dequantised and requantised with the quantiser
parameter of the secondary switching picture, QSSP of the other stream. The
reconstructed picture with the second quantiser is a predictor for coding the next
P-picture. Quantisation of the predicted picture before residue calculation is
optional, but it improves the switched picture quality by almost 0.4 dB [19].

Advanced video coding (H.264) 383

Original Frame

En
tro

py
 C

od
in

g

TC

QSSP QSSP–1

TC

MCP

RD-opt
Choice

+

QSP

Frame
Memory

Modes,
motion data

–

lerr

PSPpred

PSPrec

QSP–1

QSSP

QSSP–1

TC–1

+

+

Figure 11.28 PSP-picture encoder

Encoding of SSP-picture
Figure 11.29 shows encoding of an SSP-picture with the quantiser parameter QSSP.
Since after switching, the first predictive picture of the switched-to stream, Pst, will
be predicted from the SSP, rather than from its own PSP-picture, SSP is required to
have the same quality as the PSPst. However, according to Figure 11.25, SSP was
coded with reference to a P-picture from the switched-from stream, Psf. Thus, to
generate an SSP-picture, first the primary switching picture of switched-to stream
PSPst is motion compensated with the reference to Psf, transform coded and
quantised with QSSP. This generates the mismatch between the PSPst and the
picture stored from the previous stream at the receiver buffer. The mismatch resi-
dues are then subtracted from the transform coefficients of the PSPst, shown as

En
tro

py
 c

od
in

g

TCMCP
SSPerr

PSPst PSPTC

Mode,MV

Psf

PSPmis
QSSP +

–

Figure 11.29 SSP-picture encoder

384 Standard codecs: image compression to advanced video coding

PSPTC in the figure to generate an error signal for SSP. The resulting error signal is
the SSP residue, SSPerr, to be entropy coded and transmitted. The overall operation
is summarised by

SSPerr ¼ VLCðPSPTC � ðQSSPðMCPð f sf , PSPstÞÞÞÞ ð11:39Þ
Encoding of SI-picture
SI-picture is an intra coded picture with the quality of the PSP-picture. Thus, the
PSP-picture is reencoded as intraframe, and any difference between the intra- and
interframe is added to the predictive coded PSP-picture.

11.9 Error concealment

Despite all the error robustness procedures envisaged for the codec, some parts of
the bitstream either may not be received by the decoder (lost data) or are severely
damaged, which are not decodable and are inevitably discarded by the decoder. The
best a decoder does is to conceal or hide the ill effect of lost data. In section 9.7.5,
the general idea for loss/error concealment was introduced. However, loss/error
concealment is not a part of any standard, and hence, it is not a normative feature to
be within the scope of the H.264 standard. Despite this, the test model of the
standard provides a basic level of error concealment for the decoder [4]. Two error
concealment algorithms are defined in the H.264 test mode:

1. weighted pixel value averaging for intraframe concealment
2. boundary matching based MVs for interframe concealment

11.9.1 Weighted pixel value averaging
Weighted pixel value averaging is used for intraframe concealment, in which pixels
of a lost MB are interpolated from the weighted average values of the border pixels
of the intra neighbouring MBs. If a lost MB has only two correctly decoded MBs,
they are used in the interpolation process; otherwise, previously concealed MBs are
used. The procedure is pictorially shown in Figure 11.30, and the interpolated value
of a lost pixel p0 is given by

p0 ¼
P4

i¼1 dipiP4
i¼1 di

ð11:40Þ

where pi are the values of the four pixels at the left, right, top and bottom border
pixels of the surrounding blocks to the lost pixel and di are the distances of the
pixels pi from pixel p0.

11.9.2 Boundary matching based motion vectors
In the interframe error concealment, pixels from the reference picture but motion
compensated with an estimated MV are used to reconstruct missing pixels. In the
proposed loss concealment method of the reference model, MBs of the whole

Advanced video coding (H.264) 385

picture are considered together in two steps. The motion activities of the correctly
received slices are considered first. If the average length of the MVs in the slice is
less than a threshold (e.g. quarter or half a pixel), all the lost slices are copied from
the colocated reference pictures (frame copy). Otherwise, motion-compensated
error concealment with estimated MVs for the lost MBs is used (motion copy). For
better estimation of MVs, the whole picture is scanned MBs column wise from left
and right edges towards the picture centre. Consecutive lost MBs in a column are
concealed starting from top and bottom of the area towards the centre.

Each 8 � 8 block luminance of the MB is handled separately. Only the MVs
and reference pictures of the spatially adjacent correctly received blocks are used
for concealment. If all the MVs of the neighbouring block are missing, their con-
cealed MVs are used instead. In addition, the colocated block from the previous
picture is always one of the candidates.

In section 9.7.5, we showed how among the several candidate MVs, the one
that gives the least block boundary discontinuity can be selected. As an example,
this is shown in Figure 11.31, where a lost 8 � 8 block has two 4 � 4 blocks MVtop1

and MVtop2 at the top and three 8 � 8 blocks MVleft, MVright and MVbot at the left,
right and bottom, respectively. The difference between the border pixels of a
missing block, shown as outer pixels in the figure and the motion compensated
inner pixels by the motion vectors of the neighbouring top, bottom, left, right and
co-located blocks in turn are tested according to eqn. 11.41

min arg
fcolocated, top,bot, lef t, rightg

dsm ¼
XN

j¼1

jŶ ðMVÞj
IN �Y j

OUT j=N

()
ð11:41Þ

pi

pi

pi pip0

Figure 11.30 Spatial concealment 16 � 16 block

386 Standard codecs: image compression to advanced video coding

where Ŷ and Y represent the pixel values of the motion-compensated and the neigh-
bouring blocks at the border, respectively. The one that results in the least border
difference (discontinuity) is chosen.

MV top1

MV bot

OutInMV left

MV top2

MV right

Figure 11.31 Estimating MVs for prediction

11.10 Profiles and levels

As discussed in earlier chapters, due to the heterogeneity of the communication
systems and video services, the standard codecs are required to support inter-
operability between various scenarios. This is even more stringent for H.264 that
has to cover a wide range of video services from telcos, IPTV and storage to
broadcast. To cope with this diverse range of application conditions, the H.264
standard defines several profiles and levels to tailor the codec for a specific
application. Otherwise, the codec would be extremely complex and expensive.
Conforming to the codec for a specific application is determined with profiles
and levels.

Profiles and levels specify restrictions on bitstreams and hence the capabilities
needed to decode them. Profile defines a subset of coding tools in the bitstream
specified by the standard, for instance, if the encoder supports B-slices, error
resiliency and DP. Within the capabilities defined for a given profile, it is still
possible to have a variety of performances, like bit rates, picture resolutions and
frame rates. These are the constraints imposed on the values of the syntax elements
in the bitstream and are defined under the level.

The first version of the standard specifies three profiles: the baseline, main
and extended profiles, all with 4:2:0 picture format at 8-bit depth. Major applica-
tions of the baseline profile include video telephony, videoconferencing and
wireless communication. The main profile is for television broadcasting and
video storage. The extended profile is mainly defined for streaming media appli-
cations. The features of H.264 that each profile can support are summarised in
Figure 11.32.

Advanced video coding (H.264) 387

Main Profile

B Slices
Weighted Prediction CABACI and P Slices

CAVLC

Arbitrary Slice Order
FMO

Redundant Slices

Baseline Profile

Extended Profile

SI and SP Slices
Data Partitioning

High Profile

 Predictive lossless coding
 Residual colour transform
 HVS weighting matrices
Adaptive transform (4 × 4) or (8 × 8)

Figure 11.32 Profiles for H.264

The baseline profile is the simplest profile of H.264 and is defined for pro-
gressive video. It supports most of the features of the standard except for B-slices,
weighted prediction, CABAC, interlaced video, SP/SI-slices and DP. It emphasises
on coding efficiency and robustness with low computational complexity.

The main profile contains all the features of the standard with the exception of
error resilience tools of FMO, ASO, redundant slices, data partition and SP/SI-
slice. Thus, only a subset of the coded video sequences that are decodable by a
baseline profile decoder can be decoded by a main profile decoder. This is a major
departure from the earlier profiles defined in the previous standards. In those
standards, profiles are normally subset of each other, and a higher-layer profile can
decode the lower-layer one.

The extended profile emphasises on robustness and flexibility with high coding
efficiency and supports all the features of H.264 including switching pictures and
DP, except CABAC.

The standard later on introduced professional or fidelity range extensions
(FREx) profile for very high quality applications, mainly known as high profile. It
is a superset of the main profile with enhanced bit depths and chroma resolutions.
The fidelity range extensions (high) profile has two added optional tools of 8 � 8
transform of motion-compensated residual blocks and perceptual-based scaling
quantisation matrices to the main profile. The scaling factors are derived based on
the spatial frequency response of the human visual system. That is, higher trans-
form coefficients that represent higher spatial frequency are quantised coarser than

388 Standard codecs: image compression to advanced video coding

lower ones, as discussed in section 7.5. These profiles are themselves defined in
terms of four high profiles.

High profile ¼ 4:2:0, 8 bits
High 10 profile ¼ 4:2:0, 8–10 bits
High 4:2:2 profile ¼ 4:2:2, 8–10 bits
High 4:4:4 profile ¼ 4:4:4, 8–12 bits

The high profile is the simplest superset of the main profile, having the same chroma
bit depth and resolution for the same application. Hence, it is expected to replace the
main profile in the future applications that were expected to be used. Higher-order
profiles increase either the chroma bit depth or the resolution or both. At the extreme
of the high profiles, stands the high 4:4:4 profile with 8- to 12-bit resolution. In this
profile, colour has the same resolution of luminance, and transformation and quan-
tisation of the encoder are bypassed, and the residual data are directly entropy coded.
Differences between the encoding tools supported by various profiles are tabulated in
Table 11.6. The remaining encoding tools, such as deblocking filters, CAVLC, I/P-
slices, variable block size and quarter-sample motion estimation, and intra prediction,
which are not listed in this table, are common to all.

Various applications of these profiles, compared to the MPEG-4 visual pro-
files, are summarised in Table 11.7.

The standard also defines 16 levels by setting constraints on the encoding
parameters of picture size, bit rates, buffer, etc. Table 11.8 summarises the level
parameters defined for various picture resolutions and bit rates from QCIF to 4K
video of digital cinema.

Table 11.6 Coding tools supported by various profiles

Feature Base Ext. Main High High 10 High
4:2:2

High
4:4:4

B-slice No Yes Yes Yes Yes Yes Yes
SI/SP No Yes No No No No No
FMO Yes Yes No No No No No
ASO Yes Yes No No No No No
Redundant slice Yes Yes No No No No No
DP No Yes No No No No No
PAFF/MB-AFF No Yes Yes Yes Yes Yes Yes
CABAC No No Yes Yes Yes Yes Yes
Adaptive 4 � 4/8 � 8

transform
No No No Yes Yes Yes Yes

Quantisation scaling
matrix

No No No Yes Yes Yes Yes

Separate chroma QP No No No Yes Yes Yes Yes
Monochrome (4:0:0) No No No Yes Yes Yes Yes
Lossless coding No No No No No No Yes
Bit depth 8 8 8 8 8–10 8–10 8–12
Chroma format 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0 4:2:0/

4:2:2
4:2:0/

4:2:2/
4:4:4

Advanced video coding (H.264) 389

Table 11.8 Levels defined for H.264

Level Constraints Level Constraints

Level 1 15 Hz QCIF@64 kbit/s Level 3 25 Hz 625SD@10 Mbit/s
Level 1b 15 Hz QCIF@128 kbit/s Level 3.1 30 Hz 720p@20 Mbit/s
Level 1.1 30 Hz QCIF@192 kbit/s Level 3.2 60 Hz 720p@20 Mbit/s
Level 1.2 15 Hz CIF@384 kbit/s Level 4 30 Hz 1080@20 Mbit/s
Level 1.3 30 Hz QCIF@768 kbit/s Level 4.1 30 Hz 1080@50 Mbit/s
Level 2 30 Hz QCIF@2 Mbit/s Level 4.2 60 Hz 16VGA@135 Mbit/s
Level 2.1 25 Hz 625HHR@4 Mbit/s Level 5 30 Hz 16VGA@135 Mbit/s
Level 2.2 12.5 Hz 625SD@4 Mbit/s Level 5.1 30 Hz 4k � 2k@240 Mbit/s

11.11 Compression gain and complexity of H.264

11.11.1 Compression gain
The changes introduced to the H.264 encoder throughout sections 11.3 to 11.7
can each improve the compression gain of H.264 over its predecessors. It is
difficult to specify exactly how much each part contributes to the overall coding
gain, as the amount of improvement is picture content (texture) dependent, can
vary with the nature of motion and also depends on the bit and frame rates.
Moreover, very often a combination of encoding tools makes them more efficient.

Table 11.7 Applications of various profiles

Application Requirements H.264
profile

MPEG-4 profile

Broadcast TV Coding efficiency, reliability,
interlace, low-complexity
decoder

Main ASP (advanced simple
profile)

Video streaming Coding efficiency, reliability,
scalability

Extended ARTS (advanced real
time simple or FGS)

Video storage and
playback

Coding efficiency, interlace,
low-complexity encoder
and decoder

Main ASP

Videoconferencing Coding efficiency, reliability,
low latency, low-
complexity encoder
and decoder

Baseline SP (simple profile)

Mobile video Coding efficiency, reliability,
low latency, low-
complexity encoder
and decoder, low power
consumption

Baseline SP

Studio distribution Lossless or near lossless,
interlace, efficiency
transcoding

main Studio profile

390 Standard codecs: image compression to advanced video coding

For example, spatial predictions of intra-MB or the variable block length motion
estimation without RD optimisation may not show their true benefits, since per-
formance depends on how wisely a mode is selected. Finally, manipulation of
compressed elements, or the so-called coding tricks, can have a significant role in
reducing the bit rate. Proper addressing of MVs, MB modes, skipped MB, QP
change, selected look-up table, etc. all affect the bit rate. Although the amount of
contribution from each coding trick might be small, their collective impact can be
significant.

Despite these arguments, through experience and experiments, one can roughly
estimate the contributions that each part can make to the overall coding gain. For
instance, in normal video at nominal bit rates, the average contributions to the coding
gains are [20]: variable block size motion estimation of 4 � 4 to 16 � 16, can give
about 15 per cent improvement over the two block sizes of 8� 8 and 16� 16 of H.263,
where this itself gives 5–8 per cent improvement over the fixed block size of 16 � 16
of MPEG-2. The quarter-pixel resolution of MVs gives 10–20 per cent improvement
over the half-pixel resolution, and that itself gives the same degree of improvement
over the integer pixel resolution. The coding gain due to multiple reference picture
motion compensation is about 10–15 per cent depending on the motion model and
the number of reference pictures. The CABAC entropy coder is about 5–15 per cent
more efficient than CAVLC, and CAVLC itself is 10–20 per cent more efficient than
the conventional nonadaptive Huffman coding, used in the earlier standards. The
deblocking filter can contribute about 5–8 per cent in the objective (PSNR) quality of
video, and its subjective quality improvement is even more impressive. Finally, the RD
optimiser adds another 5–8 per cent in bit rate reduction, though its true benefit through
decision making in the other coding parts is much greater. In fact, no new coding
element as much as RD optimiser is involved in numerous coding activities, and for
that reason, it is one of the more costly operations of the encoder.

These all easily add up to about 100 per cent, making the codec to be twice
better than say H.263 and far better than MPEG-2. It appears that H.264 has
achieved its goal set out at the beginning of this chapter. However, it should be
borne in mind that during the development of H.264, the learnt lessons have also
been exploited in the older standards, improving their compression performance
over time, since encoders are free to code MBs the way they want, of course, to the
extent the coding syntax is not violated. For instance, RD optimisation can be easily
used in any codec without affecting its standard syntax.

Figure 11.33 compares the compression performance of four codecs, MPEG-2,
H.263, MPEG-4 visual and H.264, for various bit rates of foreman standard test
sequence of CIF@10 Hz resolution. The quality improvement is very noticeable.

The above relative coding gain of the codecs is just for one sequence, and the
relative performance can vary with video content. Considering that H.264 has
already replaced H.263/MPEG-4 visual, it is of vital importance to know its relative
superiority over MPEG-2. This is because currently, several broadcasting organi-
sations throughout the world who are in the process of moving towards digital
terrestrial TV want to know how much real benefit one can get from H.264 over
MPEG-2. Does the compression gain justify its extra complexity?

Advanced video coding (H.264) 391

H.264
MPEG-4
H.263
MPEG-2

39
38
37
36
35
34
33

Q
ua

lit
y

- P
SN

R
 (d

B
)

32
31
30
29
28
27

0 50 100
Bit rate (kbps)

Foreman QCIF (at 10 frames/s)

150 200 250

Figure 11.33 Comparisons of MPEG-2, MPEG-4, H.263 and H.264

To answer this question, let us look at the relative performance of H.264 over
MPEG-2 derived from the hardware codecs of a manufacturer for a very wide range
of video contents at various bit rates, shown in Figure 11.34 [21]. Each point on the
scatter diagram shows the coding outcome of one video content. Each video is
coded with an MPEG-2 encoder at a certain bit rate, and it was also coded with
H.264, targeting for the same subjective quality produced under MPEG-2. The
reduction in bits of H.264 is calculated as the amount of saved bits over the MPEG-2
at that quality and bit rate.

0
0

10
20
30
40
50
60
70
80

2 4 6 8
MPEG-2 Bit Rate (Mbit/s)

H
.2

64
 B

it
R

at
e

Sa
vi

ng
 (%

)

H.264 Bit Rate Saving (SDTV)

10 12 14 16

Figure 11.34 Bit rate saving of H.264 over MPEG-2 at equal bit rates
(Source: [21])

The figure shows that saving in bits is video content dependent and also varies
with the bit rate. For some video, the bit saving is more than 70 per cent, meaning
that H.264 requires less than 30 per cent of MPEG-2 bit rate or that it is more than
three times compression efficient than MPEG-2. On the other side, one can find a

392 Standard codecs: image compression to advanced video coding

video that saves almost 10 per cent in bit rates, or requires 90 per cent of MPEG-2
bit rate. For broadcast entertainment TV, where programme quality is expected to
be at its best and video content is unpredictable, perhaps one has to be conservative
and look for the minimum saved bit rates. In this case, as seen, it is not too much.

However, if there are several videos to be accommodated in a given channel and
saving bits on each is achieved according to this figure, then through statistical mul-
tiplexing, on the average, saving in bits can be significant. The larger the number of
channels, the more likely is the average of these values to be achieved. This is more
likely to be realised in satellite than terrestrial broadcast, as the former with a band-
width of 36 MHz can accommodate more TV channels than the latter with 8 MHz.

11.11.2 Complexity
The compression gain of H.264 over its predecessors is achieved at the cost of extra
encoding and decoding complexity. Similar to compression gain, it is difficult to
give a complexity figure to any encoding function. Moreover, the hardware com-
plexity of one element over the other does not match its software complexity ratio.
For example, in terms of hardware, CABAC is far more complex than motion
estimation, especially full search motion estimation is simple in hardware, but in
terms of software, motion estimation requires too many CPU operations and cycles.
If we resort to software complexity, which is easier to measure on the CPU time,
our tests with numerous videos at various bit rates indicate that the two most costly
encoding operations are motion estimation and RD optimisation. The motion esti-
mation complexity is mainly influenced by the search window size. With EPZS and
a maximum search of 16 pixels, it comprises about 65 per cent of the encoding
time, down to 25 per cent for a search area of four pixels. These values each
becomes about 8 per cent lower for smaller QP. The reason is that at larger QP, due
to early termination and more of the MBs to be skipped, other encoding operations
are seized and the major portion of CPU time goes to motion estimation. On the
other hand, RD optimisation time is more image content dependent and varies with
the quantisation parameter (encoding bit rate). In textured images with lower QP,
RD execution time is significantly higher than that in softer images, and motion
estimation range does not affect this complexity too much. However, in terms of
portion of encoding time, when motion estimator uses less time, RD portion is
increased. For example, at high-quality detailed image with a search of four pixels,
where motion estimation is only 17 per cent of the encoding time, this portion for
RD is about 70 per cent! When QP is increased, the RD portion is about 60 per
cent, and that of motion estimation increases to 27 per cent. Though the actual
motion estimation time does not increase, it is just the proportion that changes. On
the other side of complexity, for a large motion search of 16 pixels, at high bit rate
(low QP) coding, the RD portion of CPU time is about 27 per cent and that of
motion estimation is 57 per cent, but at lower quality, these values become,
respectively, 28 and 66 per cent. These arguments imply that if motion estimation
has a proper starting point in the search window such that only small search win-
dow is sufficient, the cost of RD would be higher than that in motion estimation.

Advanced video coding (H.264) 393

Thus, one may conclude that sum of motion estimation and RD optimisation
complexities can contribute to more than 85 per cent of encoding time, and hence,
the other encoding parts contribute to less than 15 per cent. Now, if we compare
encoder and decoder complexities, there are numerous operations in the encoder
that are not needed at the decoder. These include motion estimation, RD optimi-
sation, entropy coding, transformation and various MB encoding decisions. Thus, it
can be seen that the decoder complexity can be less than 10 per cent of the encoder,
or that an encoder is ten times more complex than a decoder. Within the decoder
itself, the most costly operation will be the deblocking filter, followed by the
inverse transform, though these comprise a tiny portion of encoding complexity.

11.12 Scalable video coding

The three forms of scalability, temporal, spatial and quality, for the MPEG-2,
H.263 and MPEG-4 visual were studied in details in the relevant chapters. H.264,
which is an extension to H.263, very strongly supports this feature. This is mainly
due to its wide range of applications, ranging from video distribution at various
qualities and resolutions (scalabilities) to protection of video against transmission
loss and errors (layering).

At the early stage of design, to perform temporal scalability, the ITU/ISO
group were thinking to use short kernel wavelet filters in the temporal direction.
This is called motion-compensated temporal filtering (MCTF), where through
motion compensation, pictures are aligned temporally, and through dyadic filter
(Haar transform), a hierarchy of temporally filtered pictures are generated [22].
However, experiments have shown that hierarchical B-pictures already supported
in H.264 are more compression efficient than the MCTF pictures. Hence, the group
opted for hierarchical B-pictures instead. These pictures are so efficiently coded
that they even reshaped the structure of spatial and SNR scalability, which is
defined in the following [23]. That is, spatial and SNR scalabilities do always
include temporal scalability to offset their compression deficiency due to layering.
The laboratory software model for this coder is called joint scalable video model
(JSVM) [24].

11.12.1 Temporal scalability
In the standard codecs, temporal scalability is realised in the form of B-pictures.
Since AVC allows B-pictures to be used as references for themselves, increasing
the number of B-pictures in the hierarchy (up to 32 frames) can increase the
compression gain, of course at the expense of longer coding delay. Note that in the
other standards, B-pictures only refer to the anchor pictures of I and P, and hence,
too many consecutive B-pictures are not efficiently coded. Some pictures are very
far away from their references, and those which are close are inclined to get their
predictions from only one reference (see Figure 11.35), nullifying the concept of
bidirectional prediction. Hence, on the whole, the compression efficiency that one
expects from bidirectional prediction does not materialise.

394 Standard codecs: image compression to advanced video coding

GOP borders GOP borders

I0 B1 B2 B3 B5 B6 B7P4 P8

Figure 11.35 Classical B-picture prediction

Figure 11.36 illustrates the concept of hierarchical B-pictures, where the
dyadic temporal enhancement layers, due to their proximity to their reference
pictures, can be efficiently coded. Here the reference picture in lists 0 and 1 are
restricted to be temporally preceding and succeeding reference pictures, respec-
tively. In the figure, the base layer picture, normally a P- or an I-picture, is
identified by the temporal layer identifier T0, called key picture. Distance
between the two key pictures defines the length of the GOP. The identifiers of
the temporal enhancement layers in the order of their importance in the level of
hierarchy are also shown. Each set of temporal layers {T0, T1, . . . ,Tk} can be
extracted and decoded independently of all the layers with a temporal identifier
T > K. The transmission/decoding order of the pictures in the GOP follows their
temporal layer order Ti.

T0 T0T3 T3 T3T2 T2T3 T1

GOP borders

K
ey

 p
ic

tu
re

K
ey

 p
ic

tu
re

Figure 11.36 Hierarchical B-pictures with four dyadic levels (GOP of 8)

Advanced video coding (H.264) 395

T0 T2 T2 T1 T2 T2 T1 T2 T2 T0 T2 T2 T1 T1T2 T2 T2 T2 T0

GOP borders GOP borders

Figure 11.37 Nondyadic hierarchical B-pictures

Considering that multiple reference pictures can also be used in H.264, the
reference picture lists can be reconstructed from more than one reference picture,
and these pictures can be of the same temporal level of the predicted ones.
Furthermore, prediction hierarchy may not be dyadic, and various sets of pictures
may be decoded. For example, in Figure 11.37, two independent subsequences of
one-ninth and one-third of the full frame rate can be decoded. Hence, by chan-
ging the prediction structure and the number of reference pictures, a variety of
temporal scalabilities can be generated. These all affect the compression effi-
ciency of temporal scalability and, at the same time, the dependability of the
decoded pictures.

Finally, the relation between the quantiser step sizes of the layers affects the
compression efficiency. In MPEG-2, we saw that B-pictures, due to better predic-
tion, could be coded coarser than the P-pictures. Here too, we can make quantiser
step sizes of closely predicted pictures to be coarser than those further away from
their references. The JSVM recommends that for a quantiser parameter QP0 at the
base layer, the QP at a given temporal layer T is [24]

QPT ¼ QP0 þ 3 þ T ð11:42Þ

Although this strategy makes picture quality in terms of PSNR to fluctuate,
nevertheless, reconstructed pictures appear smooth, and the impact to overall bit
rate reduction is very significant, especially at high GOP sizes.

11.12.2 Spatial scalability
Spatial scalability in H.264/scalable video coding (SVC) follows the same princi-
ples used in the other standard codecs of MPEG-2, H.263 and MPEG-4 visual. That
is, video is coded in such a way that pictures of various spatial resolutions from a
single bitstream can be extracted. The main difference between H.264/SVC and the
previous scalable codecs is the way the interlayer information is exploited. In the
earlier standards, the prediction signal for the enhancement layer is formed by
motion-compensated pixels of the same layer, upsampled reconstructed reference
layer or averaging both. The main problem with this strategy is that in a highly
textured area, the upsampled pictures are contaminated by heavy aliasing noise and
are not good predictors for the enhancement layer. In such a condition, the encoder

396 Standard codecs: image compression to advanced video coding

prefers to use motion-compensated prediction of its own layer, and the reference
layer data will not be of any use. Thus, for a two-layer scalability, there are two
independent encoders, and compared with a single-layer encoder, it has to code,
first of all, 25 per cent more pixels (base layer). Second, since these pixels are less
correlated than the single-layer pixels, the overall bit rate will be much higher.
Thus, it is of no surprise, if we see in section 8.5.7 that spatial scalability generates
more than 30 per cent bits over the single layer.

To solve this problem, H.264/SVC tries to use interlayer information more
efficiently than the previous standards. First of all, through analysing the local
signal characteristics, the encoder decides to use either interlayer or intralayer
prediction. Switching between the two can occur on MB by MB basis. In the
intralayer prediction, the enhancement layer is independently coded from the base
layer, and its MBs are either intra coded or motion compensated inter coded from
the enhancement layer pictures. For interlayer coding, a new MB type is defined,
which is signalled by setting the base flag mode [23]. When this mode is set, two
types of predictions are made. These are defined in the following sections.

11.12.2.1 Prediction of macroblock modes
When the base mode flag is set, information from every 8 � 8 pixels of lower layer,
such as mode, reference indices and MVs, are transferred to the colocated MB at the
upper layer. In this case, if the reference layer is inter coded, then the enhancement
layer is also interceded. Here, MB partitioning of the base layer in the area of 8 � 8
of the reference layer is upsampled and carried into the enhancement layer (each
four blocks in the enhancement layer use one reference layer mode). The associated
MVs are then derived by upscaling the reference layer MVs by a factor of 2. Now,
the enhancement layer uses all these data to code its motion-compensated residue,
without any overhead.

In addition to this new MB type, MVs of the reference layer can also be used as
a predictor for efficient coding of the enhancement layer MVs. Thus, here the
enhancement layer sends a refinement to the reference layer MVs. This is used if
the cost of additional MV at the enhancement layer justifies the reduced motion-
compensated error at this layer.

11.12.2.2 Prediction of residuals
Information from the reference layer can also be used as predictions for coding the
enhancement layer residues. This equally applies to whether the enhancement layer
MB is a new type (i.e. the base mode flag is set) or of a conventional type. This is
signalled by the residual prediction flag. In this case, the residual signal of the
corresponding 8 � 8 subblock in the reference layer is block-wise upsampled and
used as a predictor to code the residuals of the enhancement layer. Thus, only the
corresponding difference signal needs to be coded at the enhancement layer. The
upsampling of the reference layer residuals is better to be carried out in the trans-
form domain. This ensures no filtering will be carried out by the deblocking filter at
the block boundaries.

Advanced video coding (H.264) 397

If the colocated 8 � 8 subblock in the reference layer is intra coded, then the
prediction will be the upsampled reconstructed reference layer subblock. This is
similar to the interlayer coding used in the other standard.

In the above interlayer prediction, the enhancement layer uses the reference
layer information without any significant overhead, reducing the bit rate. In addi-
tion to this, the standard also employs temporal scalability in all the layers, as
shown in Figure 11.38. Now as it is claimed, the additional bits over the single
layer are about 10 per cent [23]. When spatial scalability is combined with temporal
scalability, the main anchor base layer picture (P or I) is called the key picture, and
it defines the GOP size. Also, note that in spatio-temporal scalability, the number of
pictures in the base and enhancement layer GOP can be different. As shown in
Figure 11.38, some of the enhancement layer pictures do not have a temporally
corresponding base layer picture and do not use any interlayer prediction. They use
only intralayer bidirectional motion compensation, which can be equally efficient.

T0

QCIF

CIF

T3

Key picture

Motion compensated prediction

Key picture

T3 T3 T3 T0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

T2T1T2

GOP borders

Figure 11.38 Two spatio-temporal scalability layers with GOP sizes of 4 for
QCIF and 8 for CIF

11.12.3 Quality (SNR) scalability
In quality (SNR) scalability, pictures of the same size but different quality are
coded. As was discussed in MPEG-2 and H.263, in this form of scalability, the
enhancement layer codes the residual quantisation distortion of the base layer.
There, we also noted that this kind of scalability, like spatial one, generates more
bits than the single layer (about 30 per cent). To combat against the excessive bits,
the standard also combines this scalability with the temporal one to gain from
bidirectional predictions. However, temporal prediction can be applied in a variety
of ways, where some of the base or enhancement layers are better to use their

398 Standard codecs: image compression to advanced video coding

predictions from each other for more compression efficiency. Of course, this
increases their inter dependency and might create picture drift. In MPEG-2, we dis-
cussed the role of including the enhancement pictures at the base layer prediction
loop for increased compression, but at the expense of picture drift. It is claimed that
this kind of scalability has about 10 per cent more bits over the single layer [23].

H.264/SVC defines two types of quality scalability, coarse grain scalability
(CGS) and medium grain scalability (MGS). These are defined with the same
purpose of the fine granular scalability defined for MPEG-4 visual. The CGS is
similar to the SNR scalability of H.263 defined in section 9.8.2. In CGS, the
quantiser parameter of the enhancement layer is less than that of the base layer,
Q1 < Q0, to code its residual quantisation distortion. Figure 11.39 shows CGS for a
group of four pictures. As all CGS layers are of identical sizes, interlayer upsam-
pling prediction is not used. CGS allows a limited number of rate points equal to
the number of layers, that is, a set of base and enhancement layer pictures that give
the target bit rate.

T0 T2 T1 T0T0

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

T2 T2T2T1

GOP borders GOP borders

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

0 1 2 3 4 5 6 7 8

Decoding order 0 4 2 1 3 8 6 5 7

Figure 11.39 SNR with CGS scalability

To increase the coding efficiency and the supported number of rate points,
MGS is defined. In MGS, the enhancement block transform coefficients can be
partitioned into several layers, similar to the layering technique with frequency
selective data partitioning introduced in MPEG-2 (see section 8.5.2). The break
points in the zigzag scan define the picture quality at various layers. Since block
size is 4 � 4, theoretically, up to 16 MGS layers can be defined. Thus, MGS can

Advanced video coding (H.264) 399

provide graceful degradation between quality layers by switching between different
MGS layers in any access unit. To limit drift propagation, key pictures are used as
synchronisation points between the encoder and the decoder. MGS provides flex-
ibility for bitstream adaptation and error robustness. Bitstream adaptation is pro-
vided at the packet level (NAL unit).

Figure 11.40 shows an MGS layer with transform coefficients partitioned over
three MGS quality layers.

Figure 11.41 shows an example of how the enhancement block transform
coefficients can be partitioned into three sets of coefficients that can provide the
enhancement pictures in Figure 11.40, identified by quality layers Q1–Q3.

0 1 2 3 4 5 6 7 8

Decoding order 0 4 2 1 3 8 6 5 7

T0 T0 T0T2 T2 T2 T2T1 T1

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
2

Q
2

Q
3

Q
3

Q
2

Q
3

Q
2

Q
3

Q
2

Q
3

Q
2

Q
3

Q
2

Q
3

Q
2

Q
3

Q
2

Q
3

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

Q
1

GOP borders GOP borders

Figure 11.40 SNR with MGS scalability

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

(a) (b) (c) (d)

0 1

2 5

4

3

12

11 13

10 14 15

6

7

8

9

Figure 11.41 (a) Original block, and parts of the block for quality layers (b) Q1,
(c) Q2 and (d) Q3

400 Standard codecs: image compression to advanced video coding

This scalability technique thus generates more layers of quality, and hence,
quality differences between the layers are softer than in case of CGS. Note that
the prediction loops in CGS (Figure 11.39) are different from those of MGS
(Figure 11.40). Thus, even if in the MGS, the enhancement block is not partitioned
and it has only one quality layer like CGS, due to different prediction directions,
the resultant pictures have different quality and errors resiliency.

The key pictures (P or I), at temporal reference T0, are the main base layer
reference pictures that feed the others. The direction of the prediction of the
remaining base and all of the enhancement layers, as shown, are very interdependent.
Therefore, this kind of scalability can have a strong picture drift within the GOP
boundaries, unless for the wanted application, the prediction loop for certain pictures
may be disconnected, which inevitably reduces the compression gain.

11.12.4 Combined scalability
It is possible to combine the concepts of spatial, SNR and temporal scalabilities to
generate a bitstream that supports a variety of spatial, quality and temporal rate
points. Figure 11.42 shows an example of spatio-SNR-temporal scalability with a
GOP of four pictures. In this figure, the enhancement layer of a spatial scalable

0 1 2 3 4 5 6 7 8
Decoding order 0 4 2 1 3 8 6 5 7

T0 T0 T0T2 T2 T2 T2T1 T1

Q
0

Q
1

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
0

Q
1

Q
0

Q
1

Q
1

Q
1

Q
0

Q
1

Q
0

Q
0

Q
1

Q
1

Q
1

GOP borders GOP borders

D
ep

en
de

nc
y

la
ye

r 1
D

ep
en

de
nc

y
la

ye
r 0

Key picture Key picture

Interlayer prediction

Figure 11.42 Combined spatial, SNR and temporal scalability with a GOP size
of 4 (2 for the base layer)

Advanced video coding (H.264) 401

coder is coded at two quality layers, Q0 and Q1 (SNR scalability), generating
enhance 1 and enhance 2 bitstreams. Temporal scalability, as usual, is present,
where the base layer, with low spatio-temporal resolution pictures, has lower pic-
ture rate and smaller pictures than the enhancement layers, generating the base
layer bitstream. In this figure, the spatial scalability uses the base enhancement
interlayer prediction, but in the SNR scalability, prediction between enhance 1 and
enhance 2 is both interlayer and intralayer.

The spatio-temporal quality resolution at various points is better visualised on
a three-dimensional plot, as shown in Figure 11.43. This figure shows various
extraction points of the corresponding combined scalable video of Figure 11.42.
For a CIF@30 Hz input video sequence, a CIF@30 Hz and Q1 is the highest rate
point, and a QCIF@7.5 Hz, Q0 is the lowest extractable rate point.

CIF @ 7.5 fps

Q = 1

CIF @ 7.5 fps

Q = 0

QCIF @ 7.5 fps

Q = 0

CIF @ 15 fps

Q = 0

QCIF @ 15 fps

Q = 0

CIF @ 30 fps

Q = 0

CIF @ 30 fps

Q = 1

CIF @ 15 fps

Q = 1

Temporal

SNR

Sp
at

ia
l

Figure 11.43 Three-dimensional representation of spatio-temporal quality at
various points

11.12.5 SVC profiles
For the SVC extension of H.264, the standard specifies three profiles, known under
H.264/SVC as scalable baseline profile, scalable high profile and scalable high
intra profile.

11.12.5.1 Scalable baseline profile
This profile is primarily targeted for videoconferencing, mobile broadcasting and
surveillance applications with limited processing capabilities. The profile builds on
top of a constrained version of the H.264 baseline profile to which the base layer of
the scalable stream must conform. In this profile, the resolution ratio between
successive spatial layers is limited to 1.5 and 2 in both horizontal and vertical

402 Standard codecs: image compression to advanced video coding

directions. Furthermore, interlaced coding is not included in this profile. The pro-
file supports B-slices in the enhancement layers.

11.12.5.2 Scalable high profile
This profile is built on top of the H.264 high profile and is primarily designed for
broadcast, streaming and storage applications. The scalable baseline profile lim-
itations are not present. The base layer of scalable high-profile bitstream should
conform to the H.264 high profile.

11.12.5.3 Scalable high intra profile
This profile mainly targets professional applications. All pictures of bitstreams
conforming to this profile are IDR pictures. All the tools for the scalable high
profile are supported in this profile.

11.13 Network abstraction layer

One of the distinct departures of H.264 from its predecessors is its two-layer
architecture for separating video compression methodology from its transport over
the network. The first layer called video coding layer (VCL), like other standard
codecs, defines the methodologies used for compression of video that we have
described so far. The second layer, called network abstraction layer (NAL), facil-
itates the delivery of the VCL data as well as the auxiliary data (non-VCL) to the
underlying protocols such as RTP/UDP/IP, H.32X or MPEG-2 transport stream.

VCL NAL units contain data that represent video pictures in the form of a slice
or data partition, while the non-VCL NAL units contain other additional informa-
tion such as parameter sets, timing information and other supplemental data.

Figure 11.44 shows the basic view of interfacing VCL and non-VCL data into
the network transport layer via the NAL. Each NAL unit could be considered as a
packet that contains an integer number of bytes including a header and a payload.
The header specifies the NAL unit type, and the payload contains the related data.

Control
Data

Video Coding Layer

Data Partitioning

Network Abstraction Layer

H.323/IP MPEG-2 etc.H.320 MP4FF

Coded macroblock

Coded slice/partition

Figure 11.44 H.264 in transport environment

Advanced video coding (H.264) 403

Ideally, the VCL should never generate NAL units larger than the medium
transfer unit (MTU) size to avoid IP-layer fragmentation. This can easily be
achieved by packing data of each slice into one NAL unit. However, as long as the
NAL units are smaller than 64 kbytes, IP performs the fragmentation and the
recombination of fragmented packets. Hence, even by simple packetisation, most
prerecorded NAL unit streams can be conveyed.

11.13.1 NAL header format
The NAL unit specifies a generic format for sending video data over both packet
oriented (e.g. Internet protocol/RTP systems) and bitstream-oriented transport
systems (e.g. H.320 and MPEG-2/H.222.0 systems). In the latter, the data are
transmitted in packets with the identification of the boundaries of NAL units for the
systems that require delivery of the entire or partial NAL unit stream as ordered
streams of bytes or bits.

Each NAL unit consists of a 1-byte header and a payload of variable number of
bytes containing the coded symbols. The header indicates the type of the NAL unit
and whether a VCL NAL unit is a part of a reference or nonreference. Furthermore,
it can also signal the relative importance of the NAL unit and any syntax violation.
Format of the NAL header is shown in Figure 11.45.

5 bits

F NRI TYPE

2 bits1 bit

NALu Payload

Figure 11.45 NAL unit

The first bit F is the forbidden bit, usually set to zero at the source. The net-
work elements can use it for indication of errors and set it to 1 in the presence of
errors in the NAL unit. It can also be used in heterogeneous network environments,
like combined wired line and wireless environments, where some decoders may be
prepared to operate on NAL units containing bit errors and others do not.

The two bit field NRI (nal_ref_idc) can be used to indicate the importance of a
NAL unit for the reconstruction process. The higher this value is, the more the
importance of the NAL unit. For instance, a zero indicates that the NAL unit is not
used as a reference by other units and hence can be discarded by the decoder or by
network elements without risking picture drift.

The TYPE is a 5-bit field, which characterises the NAL unit as one of 32
different types, out of which the first 12 are currently defined by H.264. Types 24–
31 are made available for uses outside of H.264. The RTP payload specifies some
of these values for signalling, aggregation and fragmentation of packets. All other
values are reserved for future use by H.264.

In byte stream format, the NAL unit is prefixed with a 3-byte start code prefix.
The boundaries of the NAL unit can then be identified by searching the coded data
for the unique start code prefix pattern. To prevent accidental generation of start

404 Standard codecs: image compression to advanced video coding

code prefix inside the payload data, the payload is interleaved with the ‘emulation
prevention’ bytes.

11.13.2 Parameter sets
For correct decoding of bitstream, the decoder should synchronise itself with the
encoder, as well as with the syntax. The decoder needs to know how slices are
coded. Some information that may change from slice to slice, like slice type, can be
sent in the slice header. There are other coding parameters, such as picture format,
picture size, the type of entropy encoder, bit rate and MV resolution, that do not
change very often during a video session, and hence, they are not required to be
repeatedly transmitted. Various combinations of these parameters, called parameter
sets, can be stored in tables by both the encoder and the decoder [17]. When nee-
ded, the encoder sends an index of the table and the receiver gets all the used
parameters from its twin table.

There are two parameter sets of the VCL data. One set is called the picture
parameter set (PPS) that contains information about the all slices of one or more
pictures. The other set, called the sequence parameter set (SPS), contains information
about the sequence. Each VCL NAL unit contains an identifier for the PPS, and the
PPS has an identifier for the relevant SPS.

Parameter set is not an error resilience tool, but since it decouples the trans-
mission of frequently changing encoded video samples from infrequently changing
information, its proper usage can improve both error robustness and compression
efficiency. It must be ensured that the PPS and SPS arrive at the decoder in time.
Therefore, they can be transmitted out-of-band using reliable control protocol or
can be sent in-band with appropriate application layer protection. Figure 11.46
illustrates an example of communication on the parameter set. In the figure, the

Encoder

1 2 3

Decoder

1 2 3

Parameter sets selected within the bitstream

Sync. Parameter Set #2

Picture Width in MBs 22
Picture Height in MBs 18
Motion Resulotion 1/4
Entropy Coding CABAC

RTP packets containing partitions/slices

Figure 11.46 Parameter set concept of H.264

Advanced video coding (H.264) 405

encoder only sends table index #2 to inform the decoder about the picture dimen-
sions, MV and entropy coding type, and the decoder fetches these data from its own
table at index #2. The bits required to send an index are much less then sending all
those parameter sets one by one, improving compression efficiency. They can be
sent as frequently as required to improve the error robustness.

Up to 32 SPS can be defined, but only one set is sent until the next IDR. These
sets define profile and level, picture size, chroma format and bit depth, scaling matrix,
picture order count, etc. The PPS can be up to 256, but only one set is used for each
picture. They define entropy coder (CAVLC or CABAC), slice group parameters,
number of reference pictures in list 0 and list 1, scaling matrix, initial QP, etc.

In addition to the parameter sets of the video coding layer (VCL), some non-VCL
supplemental enhancement information (SEI) that helps the decoding and display
process is also sent. SEI contains a number of features that can enhance the utility of
decoded video data without requiring alteration of the decoding process. For example,
parameters for gradual decoder refresh can be signalled within SEI. Similarly,
decoding and presentation time stamps for pictures are transmitted as SEI. Other
supported functionalities of SEI include buffering parameters and timing information,
which do not affect the pixel values and can be discarded by the decoder.

11.13.3 Access unit
A set of NAL units containing exactly one complete decoded picture is called an
access unit. In addition, the access unit may contain one or more redundant coded
slices/pictures or other NAL units of auxiliary information. For example, it can
contain SEI to indicate the type of slices present in the main coded picture and to
specify detection of the boundary between access units.

All NAL units within an access unit have the same temporal identifier T. The
first access unit of each video sequence is an IDR access unit, and the subsequent
units are of type non-IDR. The access unit that is associated with the buffering
period of SEI message that initialises the coded picture buffer (CPB) is referred to
access unit 0. The value of the identifier is incremented by 1 for each subsequent
access unit in decoding order.

In SVC, similar to the temporal identifier in AVC, one can define layer iden-
tifier. This identifier, in addition to time identifier T, also defines a layer depen-
dency identifier D, indicating how construction of pictures at each layer depends on
each other. Each dependency layer contains one or more quality layers identified by
a quality identifier Q. Thus, the SVC layers are identified by three IDs: the tem-
poral ID (T), dependency ID (D) and quality (i.e. SNR) ID (Q), which are written as
triplet (D,T,Q). For example, the base layer NAL unit of the lowest temporal
resolution and SNR scalability is identified as (0,0,0).

In each access unit, layers are encoded in increasing order of their layer
identifier. For coding of a layer, already transmitted data of another layer with a
small layer identifier can be employed. The layer to predict from can be selected on
an access unit basis and is referred to as the reference layer. Base layer has a layer
identifier equal to zero and is coded in conformance with one of the H.264 profiles.

406 Standard codecs: image compression to advanced video coding

Temporal scalability is achieved by partitioning the access units into a tem-
poral base and one or more temporal enhancement layers. Thus, layers are sepa-
rated by their temporal ID, as we have seen in, for example, Figure 11.36, and
decoded in the order of their temporal ID, Ti.

At any time defined by temporal ID, access units of spatial and SNR scal-
ability are defined based on their dependency and quality IDs. For spatial scal-
ability, normally base and enhancement layers have the same quality ID, but their
dependency IDs are different. For SNR scalability, especially the MGS, there are
numerous quality and dependency layers. Switching between quality refinement
layers is possible in any access unit, while switching between different depen-
dency layers is only possible at IDR access units. Using quality refinement layers
within the same dependency layer, it is possible to define packet-based scalability
as the decoder cannot detect if a packet is dropped or has been intentionally
discarded.

11.13.4 NAL type
Table 11.9 summarises a list of 32 NAL unit types, identified within the 5-bit NAL
header. NAL units 1–5 contain different VCL data, which are described later. NAL
units 6–12 are non-VCL units containing additional information such as parameter
sets and supplemental information. Parameter sets are header data that are
unchanged in a number of NAL units and are then sent to prevent their repetition.
Supplemental information is timing or other addressing data that enhances the
decoder usability but is not essential in decoding the pictures. NAL units 12–23 are
reserved for future use of H.264 extensions, and the types 24–31 are available for
use by different applications.

Of the five NAL unit types carrying VCL data, the slices of an IDR or I-picture
(i.e. a picture with all intra slices) are located in the type 5 NAL unit, while those
belonging to a non-IDR or non-I-picture (P- or B-pictures) are packed in NAL units
of type 1, and in types 2–4 when DP is used.

However, in H.264, when DP is enabled, every slice is divided into three
separate partitions and each partition is located in type 2, type 3 or type 4 NAL unit.

Table 11.9 NAL unit types

NAL unit type Class Content of NAL unit

0 Unspecified
1 VCL Coded slice data
2 VCL Coded slice data partition A
3 VCL Coded slice data partition B
4 VCL Coded slice data partition C
5 VCL Coded slice of an IDR picture
6–12 Non-VCL Supplemental information, parameter sets, etc.
12–23 Reserved
23–31 Unspecified

Advanced video coding (H.264) 407

A NAL unit of type 2, also known as partition A, comprises the most important
information of the compressed video bitstream for P- and B-slices, including the
MBs addresses, MVs and essential headers. If any MBs in these slices are intra
coded, their coded block pattern and transform coefficients are packed into a type 3
NAL unit, also known as partition B. Type 4 NAL, also known as partition C,
carries transform coefficients of the motion-compensated inter picture and the inter
coded block-pattern MBs.

11.13.4.1 NAL for SVC
Although full specifications of SVC have not been finalised yet, there are sugges-
tions for their packetisation. The proposal put forward to the Internet engineering
task force (IETF) suggests a 3-byte extended header to the 1-byte NAL unit header
[25]. This new NAL unit for SVC stream is shown in Figure 11.47 with some brief
description of each flag.

NALu Header NALu Payload

1 byte 3 bytes NALu Header extension

R I PRID N DID QID TID U D O RR

1 1 6 1 3 4 3 1 1 1 2

Figure 11.47 Extended NAL unit header for SVC

R: 1-bit reserved_one_bit. Reserved bit for future extension. R must be equal to 1.
I: 1-bit idr_flag. This component specifies whether the represented layer is an (IDR) information.
PRID: 6-bit priority_id. This flag specifies a priority identifier for the NAL unit. A lower value of prid
indicates a higher priority.
N: 1-bit no_inter_layer_pred_flag. This flag specifies whether interlayer prediction may be used for
decoding the coded slice.
DID: 3-bit dependency_id. This component indicates the interlayer coding dependency level of a layer.
At any access unit, a layer representation with a given dependency_id may be used for interlayer pre-
diction of a layer with a higher dependency_id but cannot not be used for interlayer prediction of a lower
dependency_id.
QID: 4-bit quality_id. This component indicates the quality level of an MGS layer representation. At any
access unit and for identical dependency_id values, a layer with quality_id equal to Qi uses a layer of
quality_id ¼ Qi � 1 for interlayer prediction.
TID: 3-bit temporal_id. This component indicates the temporal level of a layer representation. The
temporal_id is associated with the frame rate, with lower values of temporal_id corresponding to lower
frame rates. A layer representation at a given temporal_id typically depends on layer representations
with lower temporal_id values, but it never depends on layer representations with higher temporal_id
values.
U: 1-bit use_ref_base_pic_flag. A value of 1 indicates that only reference base pictures are used during
the inter prediction process, and a value of 0 means that they are not used.
D: 1-bit discardable_flag. A value of 1 indicates that the current NAL unit is not used for decoding NAL
units with values of dependency_id higher than the one of the current NAL unit in the current and all
subsequent access units. Such NAL units can be discarded without risking the integrity of layers with
higher dependency_id values. discardable_flag equal to 0 indicates that the decoding of the NAL unit is
required to maintain the integrity of layers with higher dependency_id.
O: 1-bit output_flag. Affects the decoded picture output process.
RR: 2-bit reserved_three_2bits. Reserved bits for future extension. RR must be equal to ‘11’ (in binary
form).

408 Standard codecs: image compression to advanced video coding

11.14 Problems

1. Pixels a–d of Figure 11.48 belong to a 4 � 4 block with the given neighbouring
border pixels as shown. Find their prediction values if they are intra 4 � 4
coded with the following modes:
a. 0
b. 1
c. 2

100 70 110 150 190

80 a

60 b

40 c

20 d

Figure 11.48

2. Show that for the integer transforms of length 4 to be orthonormal, the DC and
the second AC coefficients should be divided by 2, but the first and the third
AC coefficients should be divided by

ffiffiffiffiffi
10

p
. Determine the inverse transfor-

mation matrix, and show that it is an orthonormal matrix.

3. A block of 4 � 4 pixels given by

x½ � ¼
100 120 85 10
80 70 60 50

110 90 100 120
180 200 150 200

2
664

3
775

are two-dimensionally transformed by 4 � 4 integer transform of problem 2.
Show that the resultant two-dimensional transform coefficients would be the
same as used in eqn. 11.13.

4. In problem 3, find the reconstructed pixel block for the following QP:
a. QP ¼ 4
b. QP ¼ 36

5. Find the quantiser step sizes for the following luma QP:
a. QP ¼ 8
b. QP ¼ 26
c. QP ¼ 48
d. QP ¼ 51

6. Find the quantiser step size for chroma of problem 5.

7. Find the zero-order Exp-Golomb of parameter p with signed direct mapping if
a. p ¼ 5
b. p ¼ �5

8. Find the mode and motion Lagrangian parameters for QP ¼ 36.

Advanced video coding (H.264) 409

References

1. WIEGAND, T.: ‘H.26L Test Model Long-Term Number 9 (TML-9) draft0’,
VCEG-N83 d1, Germany, December 2001

2. ITU-T recommendation H.264: ‘Advanced video coding for generic audio
visual services’, March 2005

3. WIEGAND, T. and SULLIVAN, G.: ‘Draft ITU-T recommendation and final
draft international standard of joint video specification (ITU-T Rec. H.264 |
ISO/IEC 14496-10 AVC)’, March 2003

4. TOURAPIS, A.M., LEONTARIS, A., SUHRING, K. and SULLIVAN, G.:
‘H.264/14496-10AVC reference software manual’, Joint Video Team (JVT)
of ISO/IEC MPEG&ITU-T VCEG, 31st meeting, London, UK, 28 June–
3 July 2009

5. KUMAR, S., XU, L., MANDAL, M.K. and PANCHANATHAN, S.: ‘Error
resiliency schemes in H.264/AVC standard’, J. Vis. Commun. Image Repre-
sentation, special issue on emerging H.264/AVC video coding standard,
17:2, April 2006, pp. 425–450

6. TOURAPIS, H.Y.C., TOURAPIS, A.M. and TOPIWALA, P.: ‘Fast motion
estimation within the JVT codec’, Joint Video Team (JVT) of ISO/IEC
MPEG&ITU VCEG, 9–17 October 2002, Document JVT-E023

7. WIEGAND, T., SULLIVAN, G.J., BJONTEGARD, G. and LUTHRA, A.:
‘Overview of the H.264/AVC video coding standard’, IEEE Trans. Circuits
Syst. Video Technol., 2003, 13:7, pp. 560–576

8. LISM, P., JOCH, A., LAINEMA, J., BJONTEGRAD, G. and KARCZE-
WICZ, M.: ‘Adaptive deblocking filter’, IEEE Trans. Circuits Syst. Video
Technol., 2003, 13:7, pp. 614–619

9. OSTERMAN, J., BORMANS, J., LIST, P., MARPE, D., NORROSCHKE, M.,
PEREIRA, F., STOCKHAMMER, T. and WIEGAND, T.: ‘Video coding with
H.264/AVC: tools, performance and complexity’, IEEE Trans. Circuits Syst.
Magazine, 2004, pp. 7–28

10. MARPE, D., SCHWARZ, H. and WIEGAND, T.: ‘Context-based adaptive
binary arithmetic coding in the H.264/AVC video compression standard’,
IEEE Trans. Circuits Syst. Video Technol., 2003, 13:7, pp. 620–636

11. DESAI, D.: ‘Study and evaluation of the H.264 coding standard’, March 2008
12. ORTEGA, A. and RAMCHANDRAN, K.: ‘Rate-distortion methods for

image and video compression’, IEEE Signal Process. Mag., 1998, 15, pp. 23–50
13. WIEGAND, T., SCHWARZ, H., JOCH, A., KOSSENTINI, F. and

SULLIVAN, G.J.: ‘Rate-constrained coder control and comparison of video
coding standards’, IEEE Trans. Circuits Syst. Video Technol. 2003, 13:7,
pp. 688–703

14. GHANDI, M.M. and GHANBARI, M.: ‘A Lagrangian optimised rate control
algorithm for the H.264/AVC encoder’, Proc. IEEE Int. Conf. on Image
Process. (ICIP04), 24–27 October 2004, Singapore

410 Standard codecs: image compression to advanced video coding

15. STOCKHAMMER, T., HANNUKSELA, M.M. and WIEGAND, T.: ‘H.264/
AVC in wireless environment’, IEEE Trans. Circuits Syst. Video Technol.,
2003, 13:7, pp. 657–673

16. WENGER, S., KNORR, G.D., OTT, J. and KOSSENTINIS, F.: ‘Error resi-
lience support in H.263þ’, IEEE Trans. Circuits Syst. Video Technol., 1998,
8, pp. 867–877

17. WENGER, S.: ‘H.264/AVC over IP’, IEEE Trans. Circuits Syst. Video
Technol., 2003, 13:7, pp. 645–656

18. KARCZEWICZ, M. and KURCEREN, R.: ‘The SP- and SI-frames design for
H.264/AVC’, IEEE Trans. Circuits Syst. Video Technol., 2003, 13:7,
pp. 637–644

19. SETTON, E. and GIROD, B.: ‘Rate-distortion analysis and streaming of SP
and SI frames’, IEEE Trans. Circuits Syst. Video Technol., 2006, 16:6,
pp. 733–743

20. GHANBARI, M., CRAWFORD, D., FLEURY, M., KHAN, E., WOODS, J.,
LU, H., et al.: ‘Future performance of video codecs’, Research report for
Office of Communications (Ofcom), London, November, 2006

21. MITCHINSON, D.: ‘Tandberg television SMPTE presentation’, http://www.
atlanta-smpte.org

22. OHM, J.: ‘Three-dimensional subband coding with motion compensation’,
IEEE Trans. Image Process., 1994, 3:5, pp. 559–571

23. SCHWARZ, H., MARPE, D. and WIEGAND, T.: ‘Overview of the scalable
extension of the H.264/MPEG-4 AVC video coding standard’, IEEE Trans.
Circuits Syst. Video Technol., September 2007

24. REICHEL, J., SCHWARZ, H. and WEIN, M.: ‘Joint scalable video model 11
(JSVM 11)’, Joint Video Team, Doc. JVT-X202, 2007

25. WANG, Y.K. and SCHIERL, T.: ‘RTP payload format for SVC video’, draft-
ietf-avt-rtp-svc-21.txt, 26 April 2010

Advanced video coding (H.264) 411

Chapter 12

Content description, search and delivery
(MPEG-7 and MPEG-21)

As more and more audio-visual information becomes available in digital form,
there is an increasing pressure to make use of it. However, before one can use any
information, it has to be located. Unfortunately, widespread availability of inter-
esting material makes this search extremely difficult.

For textual information, currently, many ‘text-based’ search engines, such as
Google, Yahoo and AltaVista, are available on the World Wide Web (www), and
they are among the most visited sites. This is an indication of real demand for
searching information on the public domain. However, identifying information for
audio-visual content is not so trivial, and no generally recognised description of
these materials exists. In the meantime, there is no efficient way of searching the
www for say a piece of video concert by Pavarotti or improving the user friendli-
ness of interconnected computers via Internet by rich-spoken queries, hand-drawn
sketches and image-based queries.

The question of finding contents is not restricted to database retrieval appli-
cations. For example, producers of TV programmes may want to search and
retrieve famous events stored among the thousands hours of audio-visual records
in order to collect material for a programme. This will reduce programme time
and increase the quality of its content. Another example is the selection of a
favourite TV programme from a vast number of available satellite television
channels. Currently, 10 to 15 MPEG-2 coded TV programmes can be accom-
modated in a satellite transponder. Considering that each satellite can have up to
12 transponders, each in horizontal and vertical polarisation mode, and satellites
can be stationed within 2 degrees guard band, it is not unrealistic that users may
have access to thousands of TV channels. Certainly, the current method of print-
ing weekly TV programmes will not be practical (tens of thousands of pages per
week!), and more intelligent computerised way of choosing a TV programme is
needed. MPEG-7, under the name of ‘multimedia content-based description
standard’, aims to address these issues and define how humans expect to interact
with computers [1].

The increasing demand for searching multimedia contents in the Web has opened
up new opportunities for creation and delivery of these contents on the Internet.
Today, many elements exist to build an infrastructure for the delivery and con-
sumption of multimedia content. There is, however, no standard way of describing

these elements or relating to each other. It is hoped that such a standard will be devised
by the International Standards Organisation/International Electrotechnical Commis-
sion (ISO/IEC) MPEG committee under the name of MPEG-21 [2].

The main aim of this standard is to specify how various elements for content
creation fit together, and when a gap exists, MPEG-21 will recommend which new
standards are required. The MPEG standard will then develop new standards as
appropriate, while other bodies may develop other relevant standards. These spe-
cifications will be integrated into the ‘multimedia framework’ through collabora-
tion between MPEG and these bodies. The result is an open framework for
multimedia delivery and consumption, with both the content creators and content
consumers as the main beneficiaries. The open framework aims to provide content
creators and service providers with equal opportunities in the MPEG-21 enabled
market. It will also be to the benefit of the content users, providing them access to a
large variety of data in an interoperable manner.

In summary, MPEG-7 is about describing and finding contents, and MPEG-21
deals with the delivery and consumption of these contents. As we see, none of these
standards are about the video compression, which is the main subject of this book.
However, for the completeness of the book on the standard codecs, we briefly
describe these two new standards that are incidentally developed by the ISO/IEC
MPEG standard bodies.

12.1 MPEG-7: multimedia content description interface

The main goal of MPEG-7 is to specify a standard set of descriptors that can be
used to describe various types of multimedia information coded with the standard
codecs, as well as other databases and even analogue audio-visual information.
This will be in the form of defining descriptor schemes or structures and the rela-
tionship between various descriptors. The combination of the descriptors and
description schemes will be associated with the content itself to allow a fast and
efficient searching method for the material of user’s interest. The audio-visual
material that has MPEG-7 data associated with it can be indexed and searched for.
This material may include still pictures, graphics, three-dimensional models, audio,
speech, video and information about how these elements are combined in a mul-
timedia presentation.

Figure 12.1 shows a highly abstract block diagram of the MPEG-7 mission. In
this figure, object features are extracted and are described in a manner meaningful

feature extraction search engine

scope of MPEG-7

standard description

Figure 12.1 Scope of MPEG-7

414 Standard codecs: image compression to advanced video coding

to the search engine. As usual, MPEG-7 neither specifies how features should be
extracted nor how they should be searched for, but specifies only the order in which
features should be described.

12.1.1 Description levels
Since the description features must be meaningful in the context of the application,
they may be defined in different ways for different applications. Hence, a specific
audio-visual event might be described with different sets of features if their appli-
cations are different. To describe ‘visual’ events, they are first described by their
lower abstraction level, such as shape, size, texture, colour, movement and their
positions inside the picture frame. At this level, the ‘audio’ material may be defined
as key, mood, tempo, tempo changes and position in the sound space.

The high level of the abstraction is then a description of the semantic relation
between the above lower-level abstractions. For the earlier example of ‘a piece of
Pavarotti’s concert’, the lower level of abstraction for the picture would be Pavarotti’s
portrait, a picture of a band of music, shapes of musical instruments, etc. For the audio,
this level of abstraction could be, of course, his song, as well as other background
music. All these descriptions are, of course, coded in a way to be searched as efficiently
as possible.

The level of abstraction is related to the way the required features are extracted.
Many low-level features can be extracted in a fully automatic manner. High-level
features, however, need more human interactions to define the semantic relations
between the lower-level features.

In addition to the description of contents, it may also be required to include
other types of information about the multimedia data. For example:

● The form: An example of the form is the coding scheme used (e.g. JPEG,
MPEG-2) or the overall data size.

● Conditions for accessing material: This would include copyright information,
price, etc.

● Classification: This could include parental rating and content classification
into a number of predefined categories.

● Links to other relevant material: This information will help the users to speed
up the search operation.

● The context: For some recorded events, it is very important to know the occasion
of recording (e.g. World Cup 2002, final between Brazil and Germany).

In many cases, addition of textual information to the descriptors may be useful.
Care must be taken such that the usefulness of the descriptors is as independent as
possible from the language. An example of this is giving names of authors, films
and places. However, providing text-only documents will not be among the goals of
MPEG-7.

The MPEG group has also defined a laboratory reference model for MPEG-7.
This time it is called eXperimental Model (XM), which has the same role as RM,
TM, JM, and VM in the H.261, MPEG-2, H.264, and MPEG-4, respectively.

Content description, search and delivery (MPEG-7 and MPEG-21) 415

12.1.2 Application area
The elements that MPEG-7 standardises will support a broad range of applications.
MPEG-7 will also make the Web as searchable for multimedia content as it is for text
today. This would apply especially to large content archives as well as to multimedia
catalogues, enabling people to identify content for purchase. The information used
for content retrieval may also be used by agents for the selection and filtering of
broadcasted material or for personalised advertising.

All application domains making use of multimedia will benefit from MPEG-7.
Some of these domains that might find MPEG-7 useful are as follows:

● architecture, real estate and interior design (e.g. searching for idea);
● broadcast multimedia selection (e.g. radio and TV channels);
● cultural service (e.g. history museums, art galleries);
● digital libraries (e.g. image catalogue, musical dictionary, biomedical imaging

catalogues, film, video and radio archives);
● e-commerce (e.g. personalised advertising, online catalogues, directories of

electronic shops);
● education (e.g. repositories of multimedia courses, multimedia search for

support material);
● home entertainment (e.g. systems for the management of personal multimedia

collections, including manipulation of content, such as home video editing,
searching a game);

● investigation services (e.g. human characteristics recognition, forensics);
● journalism (e.g. searching speeches of a certain politician using his/her name,

voice or face);
● multimedia directory services (e.g. yellow pages, tourist information, geo-

graphical information systems);
● multimedia editing (e.g. personalised electronic news services, media

authoring);
● remote sensing (e.g. cartography, ecology, natural resources management);
● shopping (e.g. searching for cloths that you like);
● surveillance (e.g. traffic control, surface transportation, nondestructive testing

in hostile environment); and many more.

The way MPEG-7 data will be used to answer user queries is outside the scope of
the standard. In principle, any type of audio-visual material may be retrieved by
means of any type of query material. For example, video material may be queried
using video, music and speech. It is for the search engine to match the query data
and the MPEG-7 audio-visual description. A few query examples are as follows:

● Play a few notes on a keyboard and retrieve a list of musical pieces similar to
the required tune.

● Draw a few lines on a screen and find a set of images containing similar
graphics, logos and ideograms.

● Sketch objects, including colour patches or textures, and retrieve examples
among which you select the interesting objects to compose your design.

416 Standard codecs: image compression to advanced video coding

● On a given set of multimedia objects, describe movements and relations between
the objects and search for animations fulfilling the described temporal and spa-
tial relations.

● Describe actions and get a list of scenarios containing such actions.
● Use an excerpt of Pavarotti’s voice and obtain a list of his records, video clips

where he is singing and photographic material portraying him.

12.1.3 Indexing and query
The current status of research at this stage of MPEG-7 development is concentrated
into two interrelated areas, ‘indexing’ and ‘query’. In the former, significant events
of video shots are indexed, and in the latter, given a description of an event, the
video shot for that event is searched for. Figure 12.2 shows how the indices for a
video clip can be generated.

shot

feature
extraction

key frame

video
clip

index
generation

data-
base

Figure 12.2 Index generation for a video clip

In this figure, a video programme (normally 30–90 min) is temporally seg-
mented into video ‘shots’. A shot is a piece of video clip where the picture content
from one frame to the other does not change significantly, and in general there is no
scene cut within a shot. Therefore, a single frame in a shot has a high correlation to
all the pictures within the shot. One of these frames is chosen as the ‘key frame’.
Selection of the key frame is an interesting research issue. An ideal key frame is the
one that has maximum similarity with all the pictures within its own shot but
minimum similarity with those of the other shots. The key frame is then spatially
segmented into objects with meaningful features. These may include colour, shape
and texture, where a semantic relation between these individual features defines an
object of interest. As mentioned, depending on the type of application, the same
features might be described in a different order. Also, in extracting the features,
other information like motion of the objects, background sound or sometimes text
might be useful. Here, features are then indexed, and the indexed data along with
the key frames are stored in the database, sometimes called ‘metadata’.

The query process is the opposite of indexing. In this process, the database is
searched for a specific visual content. Depending on how the query is defined to the
search engine, the process can be very complex. For instance, in our earlier
example of ‘Pavarotti’s singing’, the simplest form of the query is that a single
frame (picture) of him or a piece of his song is available. This picture (or song) is

Content description, search and delivery (MPEG-7 and MPEG-21) 417

then matched against all the key frames in the database. If such a picture is found,
then, due to its index relation with the actual shot and video clip, that piece of video
is located. Matching of the query picture with the key frames is under active
research, since this is very different from the conventional pixel-to-pixel matching
of the pictures. For example, due to motion, obstruction of the objects, shading and
shearing, the physical dimensions of the objects of interest might change, such that
pixel-to-pixel matching does not necessarily find the right object. For instance, with
the pixel-to-pixel matching, a circle can be more similar to a hexagon of almost the
same number of pixels and intensity than to a smaller or larger circle, which is not a
desired match.

The extreme complexity in the query is when the event is defined verbally or in
a text, like the text of ‘Pavarotti’s song’. Here, these data have to be converted into
audio-visual objects to be matched with the key frames. There is no doubt that most
of the future MPEG-7 activity will be focused in this extremely complex audio and
image processing task.

In the following sections, some of the description tools used for indexing and
retrieval are described. To be consistent, we have ignored speech and audio, and
considered only the visual description tools. Currently, there are five visual
description tools that can be used for indexing. During the search, either of them or
their combination, as well as other data, say from audio description tools, might be
used for retrieval.

12.1.4 Colour descriptors
Colour is the most important descriptor of an object. MPEG-7 defines seven colour
descriptors to be used in combinations for describing an object. These are defined
in the following sections.

12.1.4.1 Colour space
Colour space is the feature that defines how the colour components are used in
other colour descriptors. For example, R, G, B (red, green, blue), Y, Cr, Cb (lumi-
nance and chrominance), HSV (hue, saturation, value) components or monochrome
are the types describing the colour space.

12.1.4.2 Colour quantisation
Once the colour space is defined, the colour components of each pixel are quantised
to represent them with a small (manageable) number of levels or ‘bins’. These bins
can then be used to represent the ‘colour histogram’ of the object, that is, the
distribution of the colour components at various levels.

12.1.4.3 Dominant colour(s)
This colour descriptor is most suitable for representing local (object or image
region) features where a small number of colours are enough to characterise the
colour information in the region of interest. Dominant colour can also be defined
for the whole image. To define the dominant colour, colour quantisation is used to
extract a small number of representing colours in each region or image. The

418 Standard codecs: image compression to advanced video coding

percentage of each quantised colour in the region then shows the degree of the
dominance of that colour. A spatial coherency on the entire descriptor is also
defined and is used in similarity retrieval (objects having similar dominant
colours).

12.1.4.4 Scalable colour
The scalable colour descriptor is a colour histogram in HSV colour space, which is
encoded by a Haar transform. Its binary representation is scalable in terms of bin
numbers and bit representation accuracy over a wide range of data rates. The
scalable colour descriptor is useful for image-to-image matching and retrieval
based on colour feature. Retrieval accuracy increases with the number of bits used
in the representation.

12.1.4.5 Colour structure
The colour structure descriptor is a colour feature that captures both colour content
(similar to colour histogram) and information about the structure of this content
(e.g. colour of the neighbouring regions). The extraction method embeds the colour
structure information into the descriptor by taking into account the colours in a
local neighbourhood of pixels instead of considering each pixel separately. Its main
usage is image-to-image matching and is intended for still-image retrieval. The col-
our structure descriptor provides additional functionality and improved similarity-
based image retrieval performance for natural images compared to the ordinary
histogram.

12.1.4.6 Colour layout
This descriptor specifies the spatial distribution of colours for high-speed retrieval
and browsing. It can be used not only for image-to-image matching and video-to-
video clip matching but also in layout-based retrieval for colour, such as sketch-to-
image matching, which is not supported by other colour descriptors. For example,
to find an object, one may sketch the object and paint it with the colour of interest.
This descriptor can be applied either to a whole image or to any part of it. This
descriptor can be applied to arbitrary shaped regions.

12.1.4.7 GOP colour
The group of pictures (GOP) colour descriptor extends the scalable colour
descriptor that is defined for still images to a video segment or a collection of still
images. Before applying the Haar transform, the way colour histogram is derived
should be defined. MPEG-7 considers three ways of defining the colour histogram
for GOP colour descriptor, namely ‘average’, ‘median’ and ‘intersection’ histo-
gram methods.

The average histogram refers to averaging the counter value of each bin across
all pictures, which is equivalent to computing the aggregate colour histogram of all
pictures with proper normalisation. The median histogram refers to computing the
median of the counter value of each bin across all pictures. It is more robust to
round off errors and the presence of the outliers in image intensity values compared

Content description, search and delivery (MPEG-7 and MPEG-21) 419

to the average histogram. The intersection histogram refers to computing the
minimum of the counter value of each bin across all pictures to capture the least
common colour traits of a group of images. The same similarity/distance measures
that are used to compare scalable colour descriptions can be employed to compare
GOP colour descriptors.

12.1.5 Texture descriptors
Texture is an important structural descriptor of objects. MPEG-7 defines three
texture-based descriptors, which are explained in the following sections.

12.1.5.1 Homogeneous texture
Homogeneous texture has emerged as an important primitive for searching and
browsing through large collections of similar looking patterns. In this descriptor,
the texture features associated with the regions of an image can be used to index the
image. Extraction of texture features is done by filtering the image at various scales
and orientations. For example, using the wavelet transform with Gabor filters in say
6 orientations and 4 levels of decompositions, one can create 24 subimages. Each
subimage reflects a particular image pattern at certain frequency and resolution.
The mean and the variance of each subimage are then calculated. Finally, the image
is indexed with a 48-dimensional vector (24 mean and 24 standard deviations). In
image retrieval, the minimum distance between this 48-dimensional vector of the
query image and those in the database is calculated. The one that gives the mini-
mum distance is retrieved. The homogeneous texture descriptor provides a precise
and quantitative description of a texture that can be used for accurate search and
retrieval in this respect.

12.1.5.2 Texture browsing
This descriptor is useful for representation of homogeneous texture for browsing-
type applications, and is defined by at most 12 bits. It provides a perceptual char-
acterisation of texture, similar to a human characterisation, in terms of regularity,
coarseness and directionality. Derivation of this descriptor is done in a similar way
to the homogeneous texture descriptor of section 12.1.5.1; that is, the image is
filtered with a bank of orientation and scale-tuned filters using Gabor functions.
From the filtered image, the two dominant texture orientations are selected. Three
bits are needed to represent each of the dominant orientations (out of say 6). This is
followed by analysing the filtered image projections along the dominant orienta-
tions to determine the regularity (quantified by 2 bits) and coarseness (2 bits � 2).
The second dominant orientation and second scale feature are optional. This
descriptor, combined with the homogeneous texture descriptor, provides a scalable
solution to representing homogeneous texture regions in images.

12.1.5.3 Edge histogram
This descriptor represents the spatial distribution of five types of edges, namely
four directional edges and one nondirectional edge. It consists of the distribution of
pixel values in each of these directions. Since edges are important in image

420 Standard codecs: image compression to advanced video coding

perception, they can be used to retrieve images with similar semantic meaning. The
primary use of this descriptor is image-to-image matching, especially for natural
edges with nonuniform edge distribution. The retrieval reliability of this descriptor
is increased when it is combined with other descriptors, such as the colour histo-
gram descriptor.

12.1.6 Shape descriptors
Humans normally describe objects by their shapes, and hence shape descriptors are
very instrumental in finding similar shapes. One important property of shape is its
invariance to rotation, scaling and displacement. MPEG-7 identifies three shape
descriptors, which are defined in the following sections.

12.1.6.1 Region-based shapes
The shape of an object may consist of either a single region or a set of regions.
Since a region-based shape descriptor makes use of all pixels constituting the shape
within a picture frame, it can describe shapes of any complexity.

The shape is described as a binary plane, with the black pixel within the object
corresponding to 1 and the white background corresponding to 0. To reduce the
data required to represent the shape, its size is reduced. MPEG-7 recommends
shapes to be described at a fixed size of 17.5 bytes. The feature extraction and
matching processes are straightforward to have low order of computational com-
plexities so as to be suitable for tracking shapes in the video data processing.

12.1.6.2 Contour-based shape
The contour-based shape descriptor captures the characteristics of the shapes more
similar to the human notion of understanding shapes. It is the most popular method
for shape-based image retrieval. Section 12.2 demonstrates some of its practical
applications in image retrieval.

The contour-based shape descriptor is based on the so-called curvature scale
space (CSS) representation of the contour. That is, by filtering the shape at various
scales (various degrees of smoothness of the filter), a contour is smoothed at var-
ious levels. The smoothed contours are then used for matching. This method has
several important properties:

● It captures important characteristics of the shapes, enabling similarity-based
retrieval.

● It reflects properties of the perception of human visual system.
● It is robust to nonrigid motion or partial occlusion of the shape.
● It is robust to various transformations on shapes, such as rotation, scaling and

zooming.

12.1.6.3 Three-dimensional shape
Advances in multimedia technology have brought three-dimensional contents into
today’s information systems in the forms of virtual worlds and augmented reality.
The three-dimensional objects are normally represented as polygonal meshes, such as

Content description, search and delivery (MPEG-7 and MPEG-21) 421

those used in MPEG-4 for synthetic images and image rendering. Within the MPEG-7
framework, tools for intelligent content-based access to three-dimensional information
are needed. The main applications for the three-dimensional shape description are
search, retrieval and browsing of three-dimensional model databases.

12.1.7 Motion descriptors
Motion is a feature that discriminates video from still images. It can be used as a
descriptor for video segments, and MPEG-7 standard recognises four motion-based
descriptors.

12.1.7.1 Camera motion
Camera motion is a descriptor that characterises the three-dimensional camera
motion parameters. These parameters can be automatically extracted or generated
by the capturing devices.

The camera motion descriptor supports the following well-known basic camera
motion:

● fixed: camera is static
● panning: horizontal rotation
● tracking: horizontal traverse movement, also known as travelling in the film

industry
● tilting: vertical rotation
● booming: vertical traverse movement
● zooming: change of the focal length
● dollying: translation along the optical axis
● rolling: rotation around the optical axis

The subshots for which all frames are characterised by a particular camera motion,
which can be single or mixed, determine the building blocks for the camera motion
descriptor. Each building block is described by its start time, duration, speed of the
induced image motion, fraction of time of its duration compared with a given
temporal window size and focus of expansion or focus of contraction.

12.1.7.2 Motion trajectory
The motion trajectory of an object is a simple high-level feature defined as the
localisation in time and space of one representative point of this object. This
descriptor can be useful for content-based retrieval in object-oriented visual data-
bases. If a priori knowledge is available, the trajectory motion can be very useful.
For example, in surveillance, alarms can be triggered if an object has a trajectory
that looks unusual (e.g. passing through a forbidden area).

The descriptor is essentially a list of key points along with a set of optional
interpolating functions that describe the path of the object between the key points
in terms of acceleration. The key points are specified by their time instant and
either two- or three-dimensional Cartesian coordinates, depending on the intended
application.

422 Standard codecs: image compression to advanced video coding

12.1.7.3 Parametric motion
Parametric motion models of affine, perspective, etc. have been extensively used
in image processing, including motion-based segmentation and estimation, global
motion estimation. We have seen some of these in Chapter 9 for motion estimation and
in Chapter 10 for global motion estimation used in the sprite of MPEG-4. Within
MPEG-7 framework, motion is a highly relevant feature, related to the spatio-temporal
structure of a video and concerning several MPEG-7 specific applications, such as
storage and retrieval of video databases and hyperlinking purposes.

The basic underlying principle consists of describing the motion of objects in
video sequences in terms of its model parameters. Specifically, affine model
includes translations, rotations, scaling and a combination of them. Planar perspec-
tive models can take into account global deformations associated with perspective
projections. More complex movements can be described with the quadratic motion
model. Such an approach leads to a very efficient description of several types of
motions, including simple translations, rotations and zooming or more complex
motions such as combinations of the above-mentioned motions.

12.1.7.4 Motion activity
Video scenes are usually classified in terms of their motion activity. For example,
sports programmes are highly active and newsreader video shots represent low
activity. Therefore, motion can be used as a descriptor to express the activity of a
given video segment.

Activity descriptor can be useful for applications such as surveillance, fast
browsing, dynamic video summarisation and movement-based query. For example,
if the activity descriptor shows a high activity, then during the playback, the frame
rate can be slowed down to make highly active scenes viewable. Another example
of an application is finding all the high-action shots in a news video programme.

12.1.8 Localisation
This descriptor specifies the position of a query object within the image, and it is
defined with two types of descriptions.

12.1.8.1 Region locator
The region locator is a descriptor that enables localisation of regions within images
by specifying them with a brief and scalable representation of a ‘box’ or a ‘polygon’.

12.1.8.2 Spatio-temporal locator
This descriptor defines the spatio-temporal locations of the regions in a video
sequence, such as moving object regions, and provides localisation functionality.
The main application of it is hypermedia, which displays the related information
when the designated point is inside the object. Another major application is object
retrieval by checking whether the object has passed through particular points,
which can be used in surveillance. The spatio-temporal locator can describe both
spatially connected and nonconnected regions.

Content description, search and delivery (MPEG-7 and MPEG-21) 423

12.1.9 Others
MPEG-7 is an ongoing process, and in the future, other descriptors will be added to
the above list. In this category, the most notable descriptor is ‘face recognition’.

12.1.9.1 Face recognition
The face recognition descriptor can be used to retrieve face images. The descriptor
represents the projection of a face vector onto a set of basis vectors, which are
representative of possible face vectors. The face recognition feature set is extracted
from a normalised face image. This normalised face image contains 56 lines, each
line with 46 intensity values. At the 24th row, the centres of the two eyes in each
face image are located at the 16th and 31st column for the right and left eye,
respectively. This normalised image is then used to extract the one-dimensional
face vector that consists of the luminance pixel values from the normalised face
image arranged into a one-dimensional vector in the scanning direction. The face
recognition feature set is then calculated by projecting the one-dimensional
face vector onto the space defined by a set of basis vectors.

12.2 Practical examples of image retrieval

In this section, some of the methods described in the previous sections are used to
demonstrate the practical application of these methods in retrieving visual infor-
mation from image databases. I have chosen the texture- and shape-based retrievals
for demonstration purposes, since those of colour- and motion-based methods are
not feasible to be demonstrated in black and white pictures and within the limited
space of the book.

12.2.1 Texture-based image retrieval
Spatial frequency analysis of textures provides an excellent way of classifying
them. The complex Gabor wavelet, which is a modulated Gaussian function to a
complex exponential, is ideal for this purpose [3]. A two-dimensional complex
Gabor wavelet is defined as

gðx, yÞ ¼ 1
2psxsy

e
1=2ððx2þy2Þ=ðsx2þsy2ÞÞ � e

j 2p f 0x ð12:1Þ

where sx and sy are the horizontal and vertical standard deviations of the Gaussian
and f0 is the filter bandwidth. Thus, its frequency domain representation (Fourier
transform) is given by

Gðu, vÞ ¼ e1=2ðððu�f 0Þ2þv2Þ=ðsu
2þsv

2ÞÞ ð12:2Þ

where u and v are the horizontal and vertical spatial frequencies and su and sv are
their respected standard deviations.

424 Standard codecs: image compression to advanced video coding

The g(x, y) of eqn. 12.1 can be used as the mother wavelet to decompose a
signal into various levels and orientations. In Chapter 4, we showed how mother
wavelets could be used in the design of discrete wavelet transform filters. The same
procedure can be applied to the mother Gabor wavelet.

Figure 12.3 shows the spectrum of the Gabor filter at four levels and six
orientations. It is derived by setting the lowest and highest horizontal spatial fre-
quencies to ul ¼ 0.05 and uh ¼ 0.4, respectively. The intermediate frequencies are
derived by constraining the bands to touch each other.

v

ul uh u

Δθ

Figure 12.3 Gabor filter spectrum; the contours indicate the half-peak magnitude
of the filter responses in the Gabor filter dictionary. The filter
parameters used are uh ¼ 0.4, ul ¼ 0.05, M ¼ 4 and L ¼ 6

The above set of filters can decompose an image into 4 � 6 ¼ 24 subimages.
As we had seen in Chapter 4, each subimage reflects characteristics of the image at
a specific direction and spatial resolution. Hence, it can analyse textures of images
and describe them at these orientations and resolutions. For the example given
above, one can calculate the mean and standard deviation of each subimage, and
use it as a 48-dimensional vector to describe it. This is called the ‘feature vector’,
which can be used for indexing the texture of an image, and is given by

Feature vector ¼½m00m01m02m03m04m05m10m11 . . .

m35s00s01s02s03s04s05s10s11 . . . s35�1�48

ð12:3Þ

To retrieve a query texture, its feature vector is compared with the feature vectors
of the textures in the database. The similarity measure is the Euclidean distance
between the feature vectors, and the one that gives the least distance is the most
similar texture.

Figure 12.4 demonstrates retrieving of a texture from a texture database of 112
images. In this database, images are identified as D1 to D112. The query image,

Content description, search and delivery (MPEG-7 and MPEG-21) 425

D5, is shown at the top left, along with 12 most similar retrieved images, in the
order of their similarity measure. As we see, the query texture itself, D5, is found as
the closest match, followed by a visually similar texture, D54, and so on. In the
figure, the similarity distance, sm, of each retrieved candidate texture is also given.

12.2.2 Shape-based retrieval
Shapes are best described by the strength of their curvatures along their contours. A
useful way of describing this strength is the ‘curvature function’, k(s, q), defined as
the instantaneous rate of change of the angle of the curve (tangent) q over its arc
length s:

kðs, qÞ ¼ dq
ds

ð12:4Þ

At sharp edges, where the rate of change of the angle is fast, the curvature
function, k(s, q), has large values. Hence, contours can be described by some values
of their curvature functions as feature points. For example, feature points can be
defined as the positions of large curvature points or their zero crossings. However,
since contours are normally noisy, direct derivation of the curvature function from
the contour can lead to false feature points.

To eliminate these unwanted feature points, contours should be denoised
through smoothing filters. Care should be taken on the degree of filter smoothness,

query texture D54, sm = 7.964012D5, sm = 0.000000 D23, sm = 9.122925 D111, sm = 10.259979

D7, sm = 12.005980D66, sm = 11.978440 D86, sm = 12.280370 D60, sm = 13.602213

D112, sm = 14.401694D27, sm = 13.976846 D28, sm = 15.581867 D62, sm = 15.782819

Figure 12.4 An example of texture-based image retrieval; query texture: D5

426 Standard codecs: image compression to advanced video coding

since heavily filtered contours loose the feature points and lightly filtered ones
cannot get rid of the false feature points. Large number of feature points also
demand more storage and heavy processing for retrieval.

Filtering a contour with a set of Gaussian filters of varying degrees of
smoothness is the answer to this question, the so-called scale space representation
of curves [4]. Figure 12.5 shows four smoothed contours of a shape at scaling
(smoothing) factors of 16, 64, 256 and 1024. The positions of the curvature
extremes on the contour at each scale are also shown. These points very well
exhibit the most important structure of each contour.

original

t = 1024 t = 256 t = 64 t = 16

Figure 12.5 A contour and the positions of its curvature extremes at four
different scales

For indexing and retrieval applications, these feature points can be joined
together to approximate each smoothed contour with a polygon [5]. Moving round
the contour, the angle of every polygon line with horizontal is recorded, and this set
of angles is called ‘turning function’. The turning function is the index of the shape
that can be used for retrieval.

The similarity measure is based on the minimisation of the Euclidean distance
between the query turning function and the turning functions of the shapes in the
database. That is,

sm ¼ min
XN

i¼1

kqq
i � qj

ik ð12:5Þ

where qq
i is the ith angle of the query turning function, qj

i is the ith angle of jth
shape turning function in the database and N is the number of angles in the turning
function (e.g. number of vertices of the polygons or feature points on the

Content description, search and delivery (MPEG-7 and MPEG-21) 427

contours). Calculation of the Euclidean distance necessitates that all the indices
should have equal number of turning angles in their turning functions. This is
done by inserting additional feature points on the contours such that polygons
have N vertices.

Insertion of new feature points on the contour should be such that they should
also represent important curvature extremes. This is done by inserting points on the
contour, one at a time, where the contour has its largest distance from the polygon.
Figure 12.6 shows the polygons of Figure 12.5 with the added new vertices. The
number of total vertices is chosen such that approximation distortion of the original
contour with a polygon is less than an acceptable value.

Figure 12.6 New polygons of Figure 12.5 with some added vertices

To show the retrieval efficiency of this method of shape description,
Figure 12.7a shows a query shape to be searched in a database of almost 1100 marine
creatures. The query marine is found as the closest shape, followed by three next
closest marine shapes in the order of their closeness as shown in Figure 12.7.

(a) (b) (c) (d)

Figure 12.7 (a) The query shape; (b, c and d) the three closest shapes in order

12.2.3 Sketch-based retrieval
In the above two examples of image retrieval, it was assumed that the query image
(texture or shape) is available to the user. However, there are occasions where these
query images may not be available. What users might have could be a verbal
description of the objects of interest, or have in their minds images of some visual
objects.

428 Standard codecs: image compression to advanced video coding

One way of searching for visual objects without the query images is to sketch
the object of interest and submit it to the search engine. Then, based on a set of
retrieved objects, the user may iteratively modify his sketch till he finds the desired
object. Assume that the fish in Figure 12.8c1 is the desired shape in a database. The
user first draws a rough sketch of this fish, as he imagines, like the one shown
in Figure 12.8a0. On the basis of shape similarity, the three best similar shapes in
the order of their similarity to the drawn shape are shown in Figure 12.8a1, 12.8a2
and 12.8a3.

a0 b0 c0

a2 b2 c2

a3 b3 c3

a1 b1 c1

Figure 12.8 Sketch-based shape retrieval

By inspecting these outputs, the user then realises that none of the matched
fish has any fins. Adding a dorsal and a ventral fin to the sketched fish, the new
query fish of Figure 12.8b0 is created. With this new query shape, the new set of
best-matched shapes in the order of their similarity to the refined sketch becomes
Figure 12.8b1, 12.8b2 and 12.8b3.

Finally, adding an anal fin and a small adipose fin to the refined sketch, a
further refined query shape of Figure 12.8c0 is created. The new set of retrieved
shapes, in the order of their similarity to the refined sketch, now becomes Figure
12.8c1, 12.8c2 and 12.8c3. This is the last iteration step, as the desired shape in
Figure 12.8c1 comes as the best-matched shape.

This technique can also be extended to other retrieval methods. For example,
one might paint or add some texture to the above drawings. This would certainly
improve the reliability of the retrieval system.

Content description, search and delivery (MPEG-7 and MPEG-21) 429

12.3 MPEG-21: multimedia framework

Today multimedia technology is so advanced that access to the vast amount of
information and services from almost anywhere at any time, through ubiquitous
terminals and networks, is possible. However, no complete picture exists of how
different communities can best interact with each other in a complex infrastructure.
Examples of these communities are the content, financial, communication, com-
puter and consumer electronics sectors and their customers. Developing a common
multimedia framework will facilitate cooperation between these sectors and sup-
port a more efficient implementation and integration of different models, rules,
interests and content formats. This is the task given to the multimedia framework
project under the name of MPEG-21. The name is chosen to signify the coincidence
of the start of the project with the twenty-first century.

The chain of multimedia content delivery encompasses content creation, pro-
duction, delivery and consumption. To support this, the content has to be identified,
described, managed and protected. The transport and delivery of content will
undoubtedly be over a heterogeneous set of terminals and networks. Reliable
delivery of contents, management of personal data, financial transaction and user
privacy are some of the issues that the multimedia framework should take into
account. In the following sections, the ‘seven architectural key elements’ that the
multimedia framework considers instrumental in the realisation of the task are
explained.

12.3.1 Digital item declaration
In multimedia communication to facilitate a wide range of actions involving
‘digital items’, there is a strong need for concrete description of defining exactly
what constitutes such an ‘item’. Clearly, there are many kinds of content and
possibly as many possible ways of describing it. This presents a strong challenge to
lay out a powerful and flexible model for digital item, from which the content can
be described more accurately. Such a model is only useful if it yields a format that
can be used to represent any digital items defined within the model unambiguously
and communicate them successfully.

Consider a simple Web page as a digital item. This Web page typically consists
of an HTML (hypertext markup language) document with embedded links or
dependencies to various image files (e.g. JPEG images) and possibly some layout
information (e.g. style sheet). In this simple case, it is a straightforward exercise to
inspect the HTML document and deduce that this digital item consists of the
HTML document itself plus all the other resources upon which it depends.

Now let us constrain the above example such that the Web page should be
viewed with the JavaScript language. The presence of the language logic now
raises the question of what constitutes this digital item and how it can be unam-
biguously determined. The first problem is that addition of the scripting code
changes the declaration of the links, since the links can be determined only by
running the embedded script on the specific platform. This could still work as a

430 Standard codecs: image compression to advanced video coding

method of deducing the structure of digital item, assuming the author intended each
translated version of the Web page to be a separate and distinct digital item. This
assumption creates a second problem, as it is ambiguous whether the author actu-
ally intends for each translation of the page to be a stand-alone digital item or
whether the intention is for the digital item to consist of the page with the language
choice left unresolved. If the latter is the case, it makes it impossible to deduce the
exact set of resources that this digital item consists of, which leads back to the first
problem. In the course of standardisation, MPEG-21 aims to come up with a
standard way of defining and declaring digital items.

12.3.2 Digital item identification and description
Currently, the majority of content lacks identification and description. Moreover,
there is no mechanism to ensure that this identity and description is persistently
associated with the content, which hinders any kind of efficient content storage.

However, in the meantime, some identifiers have been successfully imple-
mented and commonly used for several years, but they are defined in a single media
type. ISBN (International Standard Book Number) and URN (Universal Resource
Name) are two examples of digital identifiers. This is just the beginning, and in the
future we will see more of these.

There are many examples of business that have requirements for the deploy-
ment of a unique identification system on a global scale. Proprietary solutions such
as labelling and watermarking for insertion, modification and extractions of IDs
have emerged in the past. However, no international standard is available today for
the deployment of such technologies, and it is the second task of MPEG-21 to
identify and describe them.

12.3.3 Content handling and usage
The availability and access of content within networks is exponentially increasing
over time. With the goal of MPEG-21 to enable transparent use of this content over
a variety of networks and devices, it becomes extremely important that standards
should exist to facilitate searching, locating, caching, archiving, routing, distribut-
ing and using content. In addition, the content has to be relevant to the customer
needs and a better return of money for the business.

Thus, the goal of MPEG-21 multimedia framework is to provide interfaces and
protocols that enable creation, manipulation, search, access, storage, delivery and
use of content across the content creation and consumption chain. The emphasis
should be given to improve interaction model for users with personalisation and
content handling.

12.3.4 Intellectual property and management
MPEG-21 should provide a uniform framework that enables users to express their
rights and interests in, and agreements related to, digital items. They should be
assured that those rights, interests and agreements will be persistently and reliably
managed and protected across a wide range of networks and devices.

Content description, search and delivery (MPEG-7 and MPEG-21) 431

12.3.5 Terminal and networks
Accessibility of heterogeneous content is becoming widespread to many network
devices. Today, we receive a variety of information through set-top boxes for ter-
restrial/cable/satellite networks, personal digital assistants, mobile phones, etc.
Additionally, these access devices are used in different locations and environments.
This makes it difficult for service providers to ensure that content is available
anywhere and anytime, and can be used and rendered in a meaningful way.

The goal of MPEG-21 is to enable transparent use of multimedia resources
across a wide range of networked devices. This inevitably has an impact on the way
network and terminal resources themselves are being dealt with.

Users accessing content should be offered services with a known subjective
quality, perhaps at a known or agreed price. They should be shielded from network
and terminal installation, management and implementation issues.

From the network point of view, it is desirable that the application serving the
user translates the user requirements into a network Quality of Service (QoS)
contract. This contract, containing a summary of negotiated network parameters, is
handled between the user or their agents and the network. This guarantees the
delivery of service over the network for a given QoS. However, the actual imple-
mentation of network QoS does not fall within the scope of MPEG-21. The intent is
to make use of these mechanisms and propose requirements to network QoS
functionality extensions to fulfil the overall MPEG-21 QoS demands.

12.3.6 Content representation
Content is the most important element of a multimedia framework. Within the
framework, content is coded, identified, described, stored, delivered, protected,
transacted, consumed, etc.

Although MPEG-21 assumes content is available in digital form, it should be
represented in a form to fulfil some requirements. For example, digital video, as a
digital item, needs to be compressed and converted into a format to be stored more
economically. Although there are several standards for efficient compression
(representation) of image and video, they have been devised for specific purposes.
Throughout the book, we have seen that JPEG and JPEG-2000 are some of the
standards for coding of still images. For video, H.261, H.263, H.26L, MPEG-1 and
MPEG-2 are used for frame-based video and MPEG-4 is for coding of arbitrary
shaped objects; but this is not enough for unique and unambiguous representation
of digital video item. The same is true for audio.

In fact, users are becoming more mobile and have a need to access information
on multiple devices in different context at different locations. Currently, content
providers and authors have to create multiple formats of content and deploy them in
a multitude of networks. Also, no satisfactory automated configurable way of
delivering and consuming content that scales automatically to different network
characteristics and device profiles exists. This is despite the introduction of various
scalable coding of video to alleviate some of these problems.

432 Standard codecs: image compression to advanced video coding

Content representation element of the framework intends to address the tech-
nology needed so that the content is represented in a way adequate to pursue the
general objectives of MPEG-21. In this regard, MPEG-21 assumes that content
consists of one or a combination of the following:

1. content represented by MPEG standards (e.g. MPEG-4 video)
2. content used by MPEG but not covered by MPEG standards, for example, plain

text and HTML.
3. content that can be represented by (1) and (2) but is represented by different

standards or proprietary specifications
4. future standards for other sensory media

12.3.7 Event reporting
Every interaction is an ‘event’, and there is a necessity that events should be
reported. However, there are a number of difficulties in providing an accurate
report about the event. Different observers of the event may have different per-
spectives, needs and focuses. Currently, there exists no standardised means of event
reporting.

In multimedia environment, there are many events that need reporting. For
example, accurate product cost, consumer cost, channel costs or their profitability
information need to be reported. This allows users to understand operational pro-
cesses and simulate dynamics in order to optimise efficiencies and outputs.

However, every industry reports information about its performance to other
users. A number of issues make this difficult for the receiving users to process this
information. For example, different reporting formats, different standards from
country to country, different currencies and languages make event processing dif-
ficult. As the last key architectural element, MPEG-21 intends to standardise event
reporting to eliminate these shortfalls.

References

1. ISO/IEC JTC1/SC29/WG11/N4031: ‘Overview of the MPEG-7 standard’,
Singapore, March 2001

2. ISO/IEC JTC1/SC29/WG11/N4040: ‘Study on MPEG-21 (digital audiovisual
framework) Part 1’, Singapore, March 2001

3. LEE, T.S.: ‘Image representation using 2D Gabor wavelets’, IEEE Trans.
Pattern Anal. Mach. Intell., 1996, 18:10, pp. 959–971

4. IZQUIERDO, E. and GHANBARI, M.: ‘Nonlinear Gaussian filtering approach
for object segmentation’, IEE Proc. Vis. Image Signal Proc., 1999, 146:3,
pp. 137–143

5. ARKIN, E., CHEW, L., HUTTENLOCHER, D. and MITCHELL, J.:
‘An efficiently computable metric for comparing polygonal shapes’, IEEE
Trans. Pattern Anal. Mach. Intell, 1991, PAMI-13, pp. 209–216

Content description, search and delivery (MPEG-7 and MPEG-21) 433

Appendix A

A ‘C’ program for the fast discrete
cosine transform

/*ffdct.c*/
/*fast forward discrete cosine transform in the
current frame */

#include "config.h"
#include "global.h"

#define W1 2841 /* sqrt(2)cos(�/16) << 11 */
#define W2 2676 /* sqrt(2)cos(2�/16) << 11 */
#define W3 2408 /* sqrt(2)cos(3�/16) << 11 */
#define W5 1609 /* sqrt(2)cos(5�/16) << 11 */
#define W6 1108 /* sqrt(2)cos(6�/16) << 11 */
#define W7 565 /* sqrt(2)cos(7�/16) << 11 */
#define W10 2276 /* W1 - W7 */
#define W11 3406 /* W1 + W7 */
#define W12 4017 /* W3 + W5 */
#define W13 799 /* W3 - W5 */
#define W14 1568 /* W2 - W6 */
#define W15 3784 /* W2 + W6 */

/* global declarations */
void ffdct _ANSI_ARGS_((int *block));

void ffdct(block)
int *block;
{
int s[10],t[10],r[10];
int *p;
int j, temp;

/*forward transformation in "H" direction*/
p ¼ block;
for(j=0; j<64; j +=8)

{
/* first stage transformation */
s[0]= (*(p) + *(p+7));
s[1]= (*(p+1) + *(p+6));
s[2]= (*(p+2) + *(p+5));
s[3]= (*(p+3) + *(p+4));
s[4]= (*(p+3) - *(p+4));
s[5]= (*(p+2) - *(p+5));
s[6]= (*(p+1) - *(p+6));
s[7]= (*(p)- *(p+7));

/* second stage transformation */
t[0]= s[0] + s[3];
t[1]= s[1] + s[2];
t[2]= s[1] - s[2];
t[3]= s[0] - s[3];
t[5]= ((s[6] - s[5]) * 181) >> 8;
t[6]= ((s[6] + s[5]) * 181) >> 8;

/* third stage transformation */
r[4]= s[4] + t[5];
r[5]= s[4] - t[5];
r[6]= s[7] - t[6];
r[7]= s[7] + t[6];

/* fourth stage transformation */
block[0+j]= (t[0] + t[1]);
block[4+j]= (t[0] - t[1]);
temp ¼ (r[4] + r[7]) * W1;
block[1+j]= (temp - r[4] * W10) >> 11;
block[7+j]= (r[7] * W11 - temp) >> 11;
temp ¼ (r[5] + r[6]) * W3;
block[3+j]= (temp - r[5] * W12) >> 11;
block[5+j]= (temp - r[6] * W13) >> 11;
temp ¼ (t[2] + t[3]) * W6;
block[2+j]= (temp + t[3] * W14) >> 11;
block[6+j]= (temp - t[2] * W15) >> 11;
p += 8;
}

436 Standard codecs: image compression to advanced video coding

/* forward transformation in ’V’ direction */
for(j=0; j<8; j++)

{
/* first stage transformation */
s[0] ¼ block[j] + block[j+ 56];
s[1] ¼ block[j+8] + block[j+ 48];
s[2] ¼ block[j+16] + block[j+ 40];
s[3] ¼ block[j+24] + block[j+ 32];
s[4] ¼ block[j+24] - block[j+ 32];
s[5] ¼ block[j+16] - block[j+ 40];
s[6] ¼ block[j+8] - block[j+ 48];
s[7] ¼ block[j] - block[j+ 56];

/* second stage transformation */
t[0] ¼ s[0] + s[3];
t[1] ¼ s[1] + s[2];
t[2] ¼ s[1] - s[2];
t[3] ¼ s[0] - s[3];
t[5] ¼ ((s[6] - s[5]) * 181) >> 8;
t[6] ¼ ((s[6] + s[5]) * 181) >> 8;

/* third stage transformation */
r[4] ¼ s[4] + t[5];
r[5] ¼ s[4] - t[5];
r[6] ¼ s[7] - t[6];
r[7] ¼ s[7] + t[6];

/* fourth stage transformation */
/* transform coefficients */
/* coefficients are divided by 8 and rounded */
block[0+j]= ((t[0] + t[1]) + 4) >> 3;
block[32+j]= ((t[0] - t[1]) + 4) >> 3;
temp ¼ (r[4] + r[7]) * W1;
block[8+j]= ((temp - r[4] * W10) + 8192) >> 14;
block[56+j]=(((r[7]*W11)-temp)+8192)>>14;
temp ¼ (r[5] + r[6]) * W3;
block[24+j]=((temp-r[5]*W12)+8192)>>14;
block[40+j]=((temp-r[6]*W13)+8192)>>14;
temp ¼ (t[2] + t[3]) * W6;
block[16+j]=((temp+t[3]*W14)+8192)>>14;
block[48+j]=((temp-t[2]*W15)+8192)>>14;
}

A ‘C’ program for the fast discrete cosine transform 437

Appendix B

Huffman tables for the DC and AC coefficients
of the JPEG baseline encoder

Table B.2 AC Huffman coefficients of luminance

(RUN,CAT) Code word (RUN,CAT) Code word

0,0 (EOB) 1010
0,1 00 4,1 111011
0,2 01 4,2 1111111000
0,3 100 4,3 1111111110010110
0,4 1011 4,4 1111111110010111
0,5 11010 4,5 1111111110011000
0,6 1111000 4,6 1111111110011001
0,7 11111000 4,7 1111111110011010
0,8 1111110110 4,8 1111111110011011
0,9 1111111110000010 4.9 1111111110011100
0,10 1111111110000011 4,10 1111111110011101
1,1 1100 5,1 1111010
1,2 11011 5,2 11111110111
1,3 1111001 5,3 1111111110011110
1,4 111110110 5,4 1111111110011111
1,5 11111110110 5,5 1111111110100000

Table B.1 DC Huffman coefficients of luminance

Category (CAT) Code word

0 00
1 010
2 011
3 100
4 101
5 110
6 1110
7 11110
8 111110
9 1111110

10 11111110
11 111111110

(Continues)

(RUN,CAT) Code word (RUN,CAT) Code word

1,6 1111111110000100 5,6 1111111110100001
1,7 1111111110000101 5,7 1111111110100010
1,8 1111111110000110 5,8 1111111110100011
1,9 1111111110000111 5,9 1111111110100100
1,10 1111111110001000 5,10 1111111110100101
2,1 11100 6,1 1111011
2,2 11111001 6,2 111111110110
2,3 1111110111 6,3 1111111110100110
2,4 111111110100 6,4 1111111110100111
2,5 1111111110001001 6,5 1111111110101000
2,6 1111111110001010 6,6 1111111110101001
2,7 1111111110001011 6,7 1111111110101010
2,8 1111111110001100 6,8 1111111110101011
2,9 1111111110001101 6,9 1111111110101100
2,10 1111111110001110 6,10 1111111110101101
3,1 111010 7,1 11111010
3,2 111110111 7,2 111111110111
3,3 111111110101 7,3 1111111110101110
3,4 1111111110001111 7,4 1111111110101111
3,5 1111111110010000 7,5 1111111110110000
3,6 1111111110010001 7,6 1111111110110001
3,7 1111111110010010 7,7 1111111110110010
3,8 1111111110010011 7,8 1111111110110011
3,9 1111111110010100 7,9 1111111110110100
3,10 1111111110010101 7,10 1111111110110101
8,1 111111000 12,1 1111111010
8,2 111111111000000 12,2 1111111111011001
8,3 1111111110110110 12,3 1111111111011010
8,4 1111111110110111 12,4 1111111111011011
8,5 1111111110111000 12,5 1111111111011100
8,6 1111111110111001 12,6 1111111111011101
8,7 1111111110111010 12,7 1111111111011110
8,8 1111111110111011 12,8 1111111111011111
8,9 1111111110111100 12,9 1111111111100000
8,10 1111111110111101 12,10 1111111111100001
9,1 111111001 13,1 11111111000
9,2 1111111110111110 13,2 1111111111100010
9,3 1111111110111111 13,3 1111111111100011
9,4 1111111111000000 13,4 1111111111100100
9,5 1111111111000001 13,5 1111111111100101
9,6 1111111111000010 13,6 1111111111100110
9,7 1111111111000011 13,7 1111111111100111
9,8 1111111111000100 13,8 1111111111101000
9,9 1111111111000101 13,9 1111111111101001
9,10 1111111111000110 13,10 1111111111101010
10,1 111111010 14,1 1111111111101011
10,2 1111111111000111 14,2 1111111111101100
10,3 1111111111001000 14,3 1111111111101101
10,4 1111111111001001 14,4 1111111111101110

Table B.2 (Continued)

440 Standard codecs: image compression to advanced video coding

10,5 1111111111001010 14,5 1111111111101111
10,6 1111111111001011 14,6 1111111111110000
10,7 1111111111001100 14,7 1111111111110001
10,8 1111111111001101 14,8 1111111111110010
10,9 1111111111001110 14,9 1111111111110011
10,10 1111111111001111 14,10 1111111111110100
11,1 1111111001 15,1 1111111111110101
11,2 1111111111010000 15,2 1111111111110110
11,3 1111111111010001 15,3 1111111111110111
11,4 1111111111010010 15,4 1111111111111000
11,5 1111111111010011 15,5 1111111111111001
11,6 1111111111010100 15,6 1111111111111010
11,7 1111111111010101 15,7 1111111111111011
11,8 1111111111010110 15,8 1111111111111100
11,9 1111111111010111 15,9 1111111111111101
11,10 1111111111011000 15,10 1111111111111110
The special symbol representing 16 zero 15,0 (ZRL) 11111111001

Huffman tables for the DC and AC coefficients 441

Appendix C

Huffman tables for quad tree shape coding

Huffman tables for quad tree shape coding: table_012.dat is used at levels 0,1 and 2
and table_3.dat is used at level 3.

(Continues)

Table C.1 table_012.dat

Index Code Index Code

0 – 41 11110011
1 10011 42 11111111010
2 11110101 43 11110010
3 101101 44 0101
4 0010 45 1110011
5 1110110 46 1101111
6 111111011 47 11110111
7 1100110 48 111111111100
8 01110 49 11101111
9 101111 50 101110

10 10010 51 111111111111101
11 11110100 52 111111111001
12 1111111111100 53 110001
13 11110000 54 11110001
14 1110100 55 1111111111101
15 1111111111111111 56 111111111111110
16 111111111010 57 110000
17 1101110 58 1111111001
18 11111011 59 1111111111110
19 11111000 60 0100
20 110010 61 1101010
21 111111111111100 62 11111010
22 1111111000 63 10000
23 11111001 64 1111111011
24 1111111111111110 65 111111111000
25 11111111001 66 1101000
26 111111010 67 11110000
27 10001 68 11111111011
28 1111111010 69 11101110
29 111111111101 70 01101
30 01111 71 101100
31 1110101 72 0000

Table C.1 (Continued)

Table C.2 table_3.dat

Index Code

0 –
2 1101
6 1111110
8 1011

18 11101
20 100
24 11111111
26 111110
54 1100
56 11111110
60 01
62 11110
72 00
74 1010
78 11100
80 –

Index Code Index Code

32 11111111000 73 1100111
33 1101011 74 1101101
34 1110010 75 1101001
35 11111100 76 0011
36 0001 77 10100
37 1110001 78 1101100
38 111111111011 79 01100
39 11110110 80 –
40 10101

444 Standard codecs: image compression to advanced video coding

Appendix D

Frequency tables for the CAE encoding
of binary shapes

Frequency tables for intra and inter blocks, used in the context-based arithmetic
encoding (CAE) method of binary shapes.

Intra_prob[1024] ¼ {
65267,16468,65003,17912,64573,8556,64252,5653,40174,3932,29789,277,45152,1140,32768,2043,
4499,80,6554,1144,21065,465,32768,799,5482,183,7282,264,5336,99,6554,563,
54784,30201,58254,9879,54613,3069,32768,58495,32768,32768,32768,2849,58982,54613,32768,12892,
31006,1332,49152,3287,60075,350,32768,712,39322,760,32768,354,52659,432,61854,150,
64999,28362,65323,42521,63572,32768,63677,18319,4910,32768,64238,434,53248,32768,61865,13590,
16384,32768,13107,333,32768,32768,32768,32768,32768,32768,1074,780,25058,5461,6697,233,
62949,30247,63702,24638,59578,32768,32768,42257,32768,32768,49152,546,62557,32768,54613,19258,
62405,32569,64600,865,60495,10923,32768,898,34193,24576,64111,341,47492,5231,55474,591,
65114,60075,64080,5334,65448,61882,64543,13209,54906,16384,35289,4933,48645,9614,55351,7318,
49807,54613,32768,32768,50972,32768,32768,32768,15159,1928,2048,171,3093,8,6096,74,
32768,60855,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,55454,32768,57672,
32768,16384,32768,21845,32768,32768,32768,32768,32768,32768,32768,5041,28440,91,32768,45,
65124,10923,64874,5041,65429,57344,63435,48060,61440,32768,63488,24887,59688,3277,63918,14021,
32768,32768,32768,32768,32768,32768,32768,32768,690,32768,32768,1456,32768,32768,8192,728,
32768,32768,58982,17944,65237,54613,32768,2242,32768,32768,32768,42130,49152,57344,58254,16740,
32768,10923,54613,182,32768,32768,32768,7282,49152,32768,32768,5041,63295,1394,55188,77,
63672,6554,54613,49152,64558,32768,32768,5461,64142,32768,32768,32768,62415,32768,32768,16384,
1481,438,19661,840,33654,3121,64425,6554,4178,2048,32768,2260,5226,1680,32768,565,
60075,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,
16384,261,32768,412,16384,636,32768,4369,23406,4328,32768,524,15604,560,32768,676,
49152,32768,49152,32768,32768,32768,64572,32768,32768,32768,54613,32768,32768,32768,32768,32768,
4681,32768,5617,851,32768,32768,59578,32768,32768,32768,3121,3121,49152,32768,6554,10923,
32768,32768,54613,14043,32768,32768,32768,3449,32768,32768,32768,32768,32768,32768,32768,32768,
57344,32768,57344,3449,32768,32768,32768,3855,58982,10923,32768,239,62259,32768,49152,85,
58778,23831,62888,20922,64311,8192,60075,575,59714,32768,57344,40960,62107,4096,61943,3921,
39862,15338,32768,1524,45123,5958,32768,58982,6669,930,1170,1043,7385,44,8813,5011,
59578,29789,54613,32768,32768,32768,32768,32768,32768,32768,32768,32768,58254,56174,32768,32768,
64080,25891,49152,22528,32768,2731,32768,10923,10923,3283,32768,1748,17827,77,32768,108,
62805,32768,62013,42612,32768,32768,61681,16384,58982,60075,62313,58982,65279,58982,62694,62174,
32768,32768,10923,950,32768,32768,32768,32768,5958,32768,38551,1092,11012,39322,13705,2072,
54613,32768,32768,11398,32768,32768,32768,145,32768,32768,32768,29789,60855,32768,61681,54792,
32768,32768,32768,17348,32768,32768,32768,8192,57344,16384,32768,3582,52581,580,24030,303,
62673,37266,65374,6197,62017,32768,49152,299,54613,32768,32768,32768,35234,119,32768,3855,
31949,32768,32768,49152,16384,32768,32768,32768,24576,32768,49152,32768,17476,32768,32768,57445,
51200,50864,54613,27949,60075,20480,32768,57344,32768,32768,32768,32768,32768,45875,32768,32768,
11498,3244,24576,482,16384,1150,32768,16384,7992,215,32768,1150,23593,927,32768,993,
65353,32768,65465,46741,41870,32768,64596,59578,62087,32768,12619,23406,11833,32768,47720,17476,

32768,32768,2621,6554,32768,32768,32768,32768,32768,32768,5041,32768,16384,32768,4096,2731,
63212,43526,65442,47124,65410,35747,60304,55858,60855,58982,60075,19859,35747,63015,64470,25432,
58689,1118,64717,1339,24576,32768,32768,1257,53297,1928,32768,33,52067,3511,62861,453,
64613,32768,32768,32768,64558,32768,32768,2731,49152,32768,32768,32768,61534,32768,32768,35747,
32768,32768,32768,32768,13107,32768,32768,32768,32768,32768,32768,32768,20480,32768,32768,32768,
32768,32768,32768,54613,40960,5041,32768,32768,32768,32768,32768,3277,64263,57592,32768,3121,
32768,32768,32768,32768,32768,10923,32768,32768,32768,8192,32768,32768,5461,6899,32768,1725,
63351,3855,63608,29127,62415,7282,64626,60855,32768,32768,60075,5958,44961,32768,61866,53718,
32768,32768,32768,32768,32768,32768,6554,32768,32768,32768,32768,32768,2521,978,32768,1489,
58254,32768,58982,61745,21845,32768,54613,58655,60075,32768,49152,16274,50412,64344,61643,43987,
32768,32768,32768,1638,32768,32768,32768,24966,54613,32768,32768,2427,46951,32768,17970,654,
65385,27307,60075,26472,64479,32768,32768,4681,61895,32768,32768,16384,58254,32768,32768,6554,
37630,3277,54613,6554,4965,5958,4681,32768,42765,16384,32768,21845,22827,16384,32768,6554,
65297,64769,60855,12743,63195,16384,32768,37942,32768,32768,32768,32768,60075,32768,62087,54613,
41764,2161,21845,1836,17284,5424,10923,1680,11019,555,32768,431,39819,907,32768,171,
65480,32768,64435,33803,2595,32768,57041,32768,61167,32768,32768,32768,32768,32768,32768,1796,
60855,32768,17246,978,32768,32768,8192,32768,32768,32768,14043,2849,32768,2979,6554,6554,
65507,62415,65384,61891,65273,58982,65461,55097,32768,32768,32768,55606,32768,2979,3745,16913,
61885,13827,60893,12196,60855,53248,51493,11243,56656,783,55563,143,63432,7106,52429,445,
65485,1031,65020,1380,65180,57344,65162,36536,61154,6554,26569,2341,63593,3449,65102,533,
47827,2913,57344,3449,35688,1337,32768,22938,25012,910,7944,1008,29319,607,64466,4202,
64549,57301,49152,20025,63351,61167,32768,45542,58982,14564,32768,9362,61895,44840,32768,26385,
59664,17135,60855,13291,40050,12252,32768,7816,25798,1850,60495,2662,18707,122,52538,231,
65332,32768,65210,21693,65113,6554,65141,39667,62259,32768,22258,1337,63636,32768,64255,52429,
60362,32768,6780,819,16384,32768,16384,4681,49152,32768,8985,2521,24410,683,21535,16585,
65416,46091,65292,58328,64626,32768,65016,39897,62687,47332,62805,28948,64284,53620,52870,49567,
65032,31174,63022,28312,64299,46811,48009,31453,61207,7077,50299,1514,60047,2634,46488,235
};

Inter_prob[512] ¼ {
65532,62970,65148,54613,62470,8192,62577,8937,65480,64335,65195,53248,65322,62518,62891,38312,
65075,53405,63980,58982,32768,32768,54613,32768,65238,60009,60075,32768,59294,19661,61203,13107,
63000,9830,62566,58982,11565,32768,25215,3277,53620,50972,63109,43691,54613,32768,39671,17129,
59788,6068,43336,27913,6554,32768,12178,1771,56174,49152,60075,43691,58254,16384,49152,9930,
23130,7282,40960,32768,10923,32768,32768,32768,27307,32768,32768,32768,32768,32768,32768,32768,
36285,12511,10923,32768,45875,16384,32768,32768,16384,23831,4369,32768,8192,10923,32768,32768,
10175,2979,18978,10923,54613,32768,6242,6554,1820,10923,32768,32768,32768,32768,32768,5461,
28459,593,11886,2030,3121,4681,1292,112,42130,23831,49152,29127,32768,6554,5461,2048,
65331,64600,63811,63314,42130,19661,49152,32768,65417,64609,62415,64617,64276,44256,61068,36713,
64887,57525,53620,61375,32768,8192,57344,6554,63608,49809,49152,62623,32768,15851,58982,34162,
55454,51739,64406,64047,32768,32768,7282,32768,49152,58756,62805,64990,32768,14895,16384,19418,
57929,24966,58689,31832,32768,16384,10923,6554,54613,42882,57344,64238,58982,10082,20165,20339,
62687,15061,32768,10923,32768,10923,32768,16384,59578,34427,32768,16384,32768,7825,32768,7282,
58052,23400,32768,5041,32768,2849,32768,32768,47663,15073,57344,4096,32768,1176,32768,1320,
24858,410,24576,923,32768,16384,16384,5461,16384,1365,32768,5461,32768,5699,8192,13107,
46884,2361,23559,424,19661,712,655,182,58637,2094,49152,9362,8192,85,32768,1228,
65486,49152,65186,49152,61320,32768,57088,25206,65352,63047,62623,49152,64641,62165,58986,18304,
64171,16384,60855,54613,42130,32768,61335,32768,58254,58982,49152,32768,60985,35289,64520,31554,
51067,32768,64074,32768,40330,32768,34526,4096,60855,32768,63109,58254,57672,16384,31009,2567,
23406,32768,44620,10923,32768,32768,32099,10923,49152,49152,54613,60075,63422,54613,46388,39719,
58982,32768,54613,32768,14247,32768,22938,5041,32768,49152,32768,32768,25321,6144,29127,10999,
41263,32768,46811,32768,267,4096,426,16384,32768,19275,49152,32768,1008,1437,5767,11275,
5595,5461,37493,6554,4681,32768,6147,1560,38229,10923,32768,40960,35747,2521,5999,312,
17052,2521,18808,3641,213,2427,574,32,51493,42130,42130,53053,11155,312,2069,106,
64406,45197,58982,32768,32768,16384,40960,36864,65336,64244,60075,61681,65269,50748,60340,20515,
58982,23406,57344,32768,6554,16384,19661,61564,60855,47480,32768,54613,46811,21701,54909,37826,

446 Standard codecs: image compression to advanced video coding

32768,58982,60855,60855,32768,32768,39322,49152,57344,45875,60855,55706,32768,24576,62313,25038,
54613,8192,49152,10923,32768,32768,32768,32768,32768,19661,16384,51493,32768,14043,40050,44651,
59578,5174,32768,6554,32768,5461,23593,5461,63608,51825,32768,23831,58887,24032,57170,3298,
39322,12971,16384,49152,1872,618,13107,2114,58982,25705,32768,60075,28913,949,18312,1815,
48188,114,51493,1542,5461,3855,11360,1163,58982,7215,54613,21487,49152,4590,48430,1421,
28944,1319,6868,324,1456,232,820,7,61681,1864,60855,9922,4369,315,6589,14
};

Frequency tables for the CAE encoding of binary shapes 447

Appendix E

Channel error/packet loss model

Digital channels and packet networks can be modelled as a discrete two-state
Elliot–Gilbert model, as shown in Figure E.1.

β

α

gb1 – α 1 – β

Figure E.1 An Elliot–Gilbert two-level error model

When the model is at the bad state, b, a bit is corrupted or a packet is received
erroneously, and can be regarded as lost. The model is run for every bit (or packet)
to be transmitted, and the average number of times that the model stays at the bad
position is the average bit error rate, or packet loss rate, P. Consequently, the
average number of times it stays at the good state is 1 � P. In the following, we
show how the average bit error or packet loss rate is related to the transition
probabilities a and b. We analyse on packet loss rate, and the same procedure can
be used for bit error rate. The model has also been accepted by the ITU-T for the
evaluation of ATM networks.*

Calculation of mean packet loss rate
At each run of the model, a packet is lost in two ways. First, before the run it was at
the bad state, but after the run it is also at the bad state. Second, it was in a good
state, but after the run it is at the bad state. Thus, the probability of being at bad
state (loss), P, is

P ¼ Pð1 � aÞ þ ð1 � PÞb

*
ITU SGXV working party XV/I, Experts Group for ATM video coding, working document AVC-205,
January 1992.

and rearranging the equation, the average packet loss rate P is

P ¼ b
aþ b

ðE:1Þ

Calculation of mean burst length
A burst of lost packets is defined as a sequence of consecutive packets, all of which
are marked as lost. The burst starts when a packet is lost after one or more packets
have not been lost. Thus, the probability of a burst length of 1 is just being at the
bad state and then going to the good state. This probability is a. Similarly, the
probability of burst length of 2 is the probability of being at the bad state but
coming to this state at the next run. This probability is (1 � a)a. Thus, in general,
the probability of a burst length of k packets is to be at the bad state for k � 1 times
and the next run to go to the good state, which is (1 � a)(k�1)a

The mean burst length B is then

B ¼ aþ 2ð1 � aÞaþ 3ð1 � aÞ2aþ 4ð1 � aÞ3aþ � � � þ kð1 � aÞk�1aþ � � �

Summing this series leads to

B ¼ 1
a

ðE:2Þ

Rearranging eqn. E.2 gives

a ¼ 1
B

ðE:3Þ

and rearranging eqn. E.1 and substituting for a from eqn. E.3 gives

b ¼ P

Bð1 � PÞ ðE:4Þ

Simulation of packet loss
For a given mean packet loss rate P and average burst length B, the transition
probabilities a and b can be calculated from eqns E.3 and E.4. The model is run for
as many packets as are to be served, and at each run it is decided whether the packet
should be marked as lost or not. To do this, each run is equivalent to running a
random number between 0 and 1, and if it is less than the relevant transition
probabilities, the packet is marked lost, otherwise it is received safely.

A pseudo code to perform packet loss is given below.

PreviousPacketLost=FALSE;
Readln(P,B);
� =(1/B);
� =P/(B�(1-P));

450 Standard codecs: image compression to advanced video coding

FOR (number of packets to be transmitted)
BEGIN
CASE PreviousPacketLoss OF

TRUE: IF random <1-� THEN PacketLoss=TRUE;
ELSE Packetloss=FALSE;

FALSE: IF random <� THEN PacketLoss=TRUE;
ELSE Packetloss=FALSE;

END

Channel error/packet loss model 451

Appendix F

Solutions to the problems

Chapter 2

1. r g b
R 1 0 0
G 0 1 0
B 0 0 1

y c m w
1 0 1 1
1 1 0 1
0 1 1 1

2. r g b
Y 82 145 41
Cb 90 54 240
Cr 240 34 110

y c m w
210 170 107 235

16 166 202 128
146 16 222 128

3. T ¼ 1
25 � 625

¼ 64 ms and T ¼ 1
30 � 525

¼ 63:5 ms

4.
13:5 � 106

25 � 625
¼ 864 pixels; 864 � 720 ¼ 144 pixels;

144

13:5 � 106
¼ 10:67 ms

5. 857 pixels; 857 � 720 ¼ 137 pixels; 10 ms
6. a. 720 � 576 � 25 � 2 � 8 ¼ 166 Mbit/s

b. 720 � 525 � 30 � 2 � 8 ¼ 166 Mbit/s
c. 360 � 288 � 25 � 1.5 � 8 ¼ 31 Mbit/s
d. 360 � 240 � 30 � 1.5 � 8 ¼ 31 Mbit/s
e. 37 Mbit/s
f. 31 Mbit/s
g. 31 Mbit/s
h. 4.7 Mbit/s
i. 1.4 Mbit/s

7. 94 73 194 184 50 204 207
8. 94 82 73 132 194 201 184 109 50 121 204 222 207

PSNR ¼ 20.2 dB
9. a. A sinusoid with amplitude A has a peak-to-peak 2A ¼ 2n D) D ¼ A 21�n

SNR ¼ 10 log10
A2=2

D2=12

 !
¼ 10 log(3 � 22n�1) = 1.78 þ 6n dB

b. Peak-to-peak power of the sinusoid is 10 log10
ð2AÞ2

A2=2

�
¼ 9 dB higher than

its mean power) PSNR ¼ 10.78 þ 6n
c. 10.78 þ 6n � 58) n � 8 bits

Chapter 3
1. a. jxj � 16; y ¼ 0 16 < jxj � 32; y ¼�24 32 < jxj � 48; y ¼�40; etc.

b. jxj � 16; y ¼�8 16 < jxj � 32; y ¼�24 32 < jxj � 48; y ¼�40; etc.
2. 12 16 28 240 196 32 PSNR ¼ 43.4 dB
3. 6 12 27 77 127 77 PSNR ¼ 10.7 dB
4. 15 21 19 21 19 69 119 169 219 234 232 230 232 230

G-noise G-noiseSlope overload
5.

T =
1
2

0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
0.98 0.83 0.56 0.2 − 0.2 − 0.56 − 0.83 − 0.98
0.92 0.38 − 0.38 − 0.92 − 0.92 − 0.38 0.38 0.92
0.83 − 0.2 − 0.98 − 0.56 0.56 0.98 0.2 − 0.83
0.71 − 0.71 − 0.71 0.71 0.71 − 0.71 − 0.71 0.71
0.56 − 0.98 0.2 0.83 − 0.83 − 0.2 0.98 − 0.56
0.38 − 0.92 0.92 − 0.38 − 0.38 0.92 − 0.92 0.38
0.2 − 0.56 0.83 − 0.98 0.98 − 0.83 0.56 − 0.2

0.71 0.98 0.92 0.83 0.71 0.56 0.38 0.2
0.71 0.83 0.38 − 0.2 − 0.71 − 0.98 − 0.92 − 0.56
0.71 0.56 − 0.38 − 0.98 − 0.71 0.2 0.92 0.83
0.71 0.2 − 0.92 − 0.56 0.71 0.83 − 0.38 − 0.98
0.71 − 0.2 − 0.92 0.56 0.71 − 0.83 − 0.38 0.98
0.71 − 0.56 − 0.38 0.98 − 0.71 − 0.2 0.92 − 0.83
0.71 − 0.83 0.38 0.2 − 0.71 0.98 − 0.92 0.56
0.71 − 0.98 0.92 − 0.83 0.71 − 0.56 0.38 − 0.2

=
1
2

T −1 = TT

6. a. 364 15 �211 �26 �5 38 �2 �1
b. The basis vector of the second AC coefficient matches the input pixels
c. 35 82 190 250 200 150 101 23. Because of the mismatch

(approximating the cosine elements) some of the input pixels cannot be
reconstructed, for example, 81/82 and 100/101.

7. quantised coefficients: 360 0 �216 �24 0 40 0 0
reconstructed pixels: 30 70 185 250 204 153 104 27
PSNR ¼ 30 dB

8. a. reconstructed pixels: 128 128 128 128 128 128 128 128
PSNR ¼ 10.4 dB

b. reconstructed pixels: 28 87 169 227 227 169 87 28
PSNR ¼ 23.4 dB

9. a. MV (�1, �1)
b. MV (�1, �1)

10. a. 169
b. (i) multiplications ¼ 256 � 169, additions ¼ 511 � 169

(ii) multiplications ¼ 0, additions ¼ 510 � 169

11. type operation multiplication addition
TDL 23 23 � 256 23 � 511
TSS 25 25 � 256 25 � 511
CSA 17 17 � 256 17 � 511
OSA 13 13 � 256 13 � 511

454 Standard codecs: image compression to advanced video coding

12. a ¼ 010, b ¼ 1, c ¼ 00, d ¼ 011 Av bits ¼ 1.8 entropy ¼ 1.72
13. a. cbdad ¼ 001011010011

b. (i) first bit in error, decoded string ¼ babbad
(ii) third bit in error, decoded string ¼ ccbbad
(iii) fifth bit in error, decoded string ¼ cbcbad

14. lower value ¼ 0.83875, upper value ¼ 0.841875
15. a. the first three symbols ¼ cbc

b. the first five symbols ¼ cbcab
16. Same as 15
17. 11010110111
18. Same as 17
19. a. First bit in error ¼ 0.01010110111 ¼ 2�2 þ 2�4 þ 2�6 þ 2�7 þ 2�9 þ

2�10 þ 2�11 ¼ 0.33935546875, which is decoded to string bbacb
b. Similarly, with the third bit in error the decimal number would be

0.96435546875, decoded to dbacb
c. With the fifth bit in error, the decimal number is 0.87060546875 and it is

decoded to string cbacb

Chapter 4
1. PðzÞ ¼ H0ðzÞH1ð�zÞ should be factorised into two terms. The given P(z) is

zero at z�1 ¼ �1; hence it is divisible by 1 þ z�1. Divide as many times as
possible that gives:

a. 1
16 ð1 þ z�1Þð�1 þ z�1 þ 8z�2 þ 8z�3 þ z�4 � z�5Þ

b. 1
16 ð1 þ z�1Þ2ð�1 þ 2z�1 þ 6z�2 þ 2z�3 � z�4Þ

c. 1
16 ð1 þ z�1Þ�3ð�1 þ 3z�1 þ 3z�2 � z�3Þ

d. 1
16 ð1 þ z�1Þ�4ð�1 þ 4z�1 � z�2Þ

Thus, in (a) the low-pass analysis filter will be H0ðzÞ ¼ 1
16 ð�1 þ z�1þ

8z�2 þ 8z�3 þ z�4 � z�5Þ and the high-pass analysis filter is H1ðzÞ ¼ 1 � z�1.
In (b) H0ðzÞ ¼ 1

8 ð�1 þ 2z�1 þ 6z�2 þ 2z�3 � z�4Þ and the high pass is
H1ðzÞ ¼ 1

2 ð1 � z�1Þ2 ¼ 1
2 ð1 � 2z�1 þ z�2Þ, which are the (5,3) subband filter

pairs.
In (c) H0ðzÞ ¼ 1

4 ð�1 þ 3z�1 þ 3z�2 � z�3Þ and the high pass is H1ðzÞ ¼
1
4 ð1 � z�1Þ�3 ¼ 1

4 ð1 � 3z�1 þ 3z�2 � z�3Þ, which gives the second set of (4,4)
subband filters.
In (d) H0ðzÞ ¼ 1

2 ð�1 þ 4z�1 � z�2Þ and H1ðzÞ ¼ 1
8 ð1 � z�1Þ4 ¼ 1

2 ð1 � 4z�1þ
6z�2 � 4z�3 þ z�4Þ
Any other combinations may be used, as desired.

2. a. PðzÞ ¼ H0ðzÞ � H1ð�zÞ ¼ 1
2 ð1 þ z�1Þ2 ¼ 1

2 þ z�1 þ 1
2 z�2. Thus, with

PðzÞ � Pð�zÞ ¼ 2z�1 results in one sample delay.
b. G0ðzÞ ¼ H1ð�zÞ ¼ 1ffiffi

2
p ð1 þ z�1Þ

G1ðzÞ ¼ �H0ð�zÞ ¼ � 1ffiffi
2

p ð1 � z�1Þ

Solutions to the problems 455

3. a. With a weighting factor of k, PðzÞ ¼ kð1 þ z�1Þ�4ð�1 þ 4z�1 � z�2Þ, and
using P(z) � P(�z) ¼ 2z�m gives k ¼ 1/16 and m ¼ 3.

b. The factor for the other set will be k ¼ 3/256 and m ¼ 5 samples delay.
4. In problem 3, P(z) is in fact the type (d) of problem 1. Hence, it leads not only

to the two sets of (5,3) and (4,4) filter pairs but also to two new types of filters,
given in (a) and (d) of problem 1.

5. With PðzÞ ¼ 3
256 ð1 þ z�1Þ6ð1 � 6z�1 þ 38

3 � 6z�3 þ z�4Þ, retaining H1ð�zÞ ¼
ð1 þ z�1Þ2 ¼ 1 þ 2z�1 þ z�2, which gives the three-tap high-pass filter of
H1ðzÞ ¼ 1 � 2z�1 þ z�2 and the remaining parts give the nine-tap low-pass
filter.

H0ðzÞ ¼ 3
256

ð1 þ z�1Þ4ð1 � 6z�1 þ 38
3

z�2 � 6z�3 þ z�4Þ

or

H0ðzÞ ¼ 1
25

½3� 6z�1 � 16z�2 þ 38z�3 þ 90z�4 þ 38z�5 � 16z�6 � 6z�7 � 3�8�:

Had we divided the high-pass filter coefficients, H1(z), by 2
ffiffiffi
2

p
, and hence

multiplying those of low-pass H0(z) by this amount, we get the (9,3) tap filter
coefficients of Table 4.2.

6. Use G0(z) ¼ H1(�z) and G1(z) ¼ �H0(�z) to derive the synthesis filters
7. See pages 82 to 86
8. 33 bits
9. 29 bits

Chapter 5
1. a. Multiply all the luminance matrix elements by a ¼ 50/25 ¼ 2

b. a ¼ 2 � 2�99
100 ¼ 0:02, and small elements of the matrix will be 1 and lar-

ger ones become 2.
c. a ¼ 0, hence all the matrix elements will be 1

2. Same as problem 1.

3. a. 62 0 3 1 0 0 1 0
0 1 −1 0 1 0 0 0
0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3

b. 31 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

456 Standard codecs: image compression to advanced video coding

4. For 50% quality: DIFF ¼ 62 � 50 ¼ 12, symbol_1 ¼ 4, symbol_2 ¼ 12
scanned pairs: (3,1)(0,3)(0,1)(0,�1)(1,�1)(6,1)(6,1)(1,1)(1,1)(35,3) and the
resultant events: (3,1)(0,2)(0,1)(0,1)(1,1)(6,1)(6,1)(1,1)(1,1)(15,0)(15,0)(3,3)
For 25% quality: DIFF ¼ 31 � 50 ¼ �19, symbol_1 ¼ 5, symbol_2 ¼
�19 � 1 ¼ �20
scanned pairs: (4,1)(57,1)
events: (4,1)(15,0)(15,0)(15,0)(9,1)

5. For DC: DIFF ¼ �19) CAT ¼ 5; DIFF � 1 ¼ �20
VLC for CAT ¼ 5 is 110 and –20 in binary is 11101100; hence, the VLC for
the DC coefficient is 11001100
For AC, using the AC VCLC tables:
for each (15,0) the VLC is 11111111001
and for (9,1) the VLC is 111111001
total number of bits: 8 þ (3 � 11) þ 9 ¼ 50 bits.

6. At bit plane 6 coefficient 65 at clean-up pass. At bit plane 5 coefficient 65 at all
passes and coefficient 50 at clean-up pass.

Chapter 6
1. a. 33, 198

b. 396, 2376

2. CIF : 1
30�396 ¼ 84:2 ms QCIF : 1

10�99 ¼ 1ms
3. a. MC

b. NO_MC
c. NO_MC

4. Due to motion vector overhead
5. a. inter

b. intra
c. inter

6. For small values in intra mode DC still needs 8 bits, while in inter mode it is less.
7. a. 63

b. 60
c. 3

8. 83 0 2 1 0 0 4 0
0 0 − 1 0 3 0 0 0
0 0 0 0 3 − 1 0 0

− 1 1 0 0 0 0 0 0
0 0 3 0 2 0 0 0
0 0 0 0 0 0 0 1

− 1 4 0 0 0 0 0 0
2 0 0 0 0 0 0 31

events: (0,83)(4,2)(0,1)(0,�1)(1,�1)(1,1)(4,3)(4,�1)(1,3)(1,3)(1,4)(2,�1)(3,4)
(0,2)(3,2)(20,1)(2,31)
number of bits (including the sign bit): 20 þ 10 þ 5 þ 5 þ 6 þ 6 þ 11 þ 8 þ 8
þ 8 þ 9 þ 7 þ 11 þ 5 þ 8 þ 20 þ 20 ¼ 167
no EOB is used, as the last coefficient is coded

Solutions to the problems 457

9. 159
105

149
113

170
133

10. @384 kbit/s P ¼ 6 and with q ¼ 62 and P ¼ 6, the buffer content is 36 kbits,
leftover capacity ¼ 5000 � 8 � 36000 ¼ 4000 bits

Chapter 7
1. a. each operation ¼ (2 � 15 þ 1)2 þ 8 ¼ 969, total operations ¼ 3 � 969 ¼

2907
b. w ¼ 3 � 15 ¼ 45, total no of operations ¼ (2 � 45 þ 1)2 þ 8 ¼ 8289

2. a. The first B-picture is closer to its forward prediction than its backward
prediction picture.

b. for the second B-picture, FWD ¼ 9 and BWD ¼ 5
c. for P-picture (2 � 13 þ 1)2 þ 8 ¼ 737

and for each B-picture (2 � 5 þ 1)2 þ 8 þ (2 � 9 þ 1)2 þ 8 ¼ 498
3. Average Q ¼ 10þ16

2 ¼ 13 and the complexity index is 50� 1000� 13¼ 65� 104.
4. (8 � 7) þ (3 � 10) þ 20 ¼ 106

for I-pictures:

1:2 � 106 � 12 � 20
25 � 106

¼ 108:7

for P ¼ 54.3 kbits and for B ¼ 38 kbits
5. The new index ratio for B becomes 7/1.4 ¼ 5

(8 � 5) þ (3 � 10) þ 20 ¼ 90, and bits for I ¼ 128 kbits, for P ¼ 64 and for
B ¼ 32 kbits

6. 20 þ 10 þ 10 þ 20 þ 8 � 7 ¼ 116
for P, the average index of (10 þ 10 þ 20)/3 ¼ 13.3 should be used, hence
the target bit rates for I ¼ 99.3 kbits, for P ¼ 66.2 kbits and for B ¼
34.75 kbits.

7. a. all equal to 48 kbit/s
b. 60 þ 3 � 20 þ 8 � 15 ¼ 240

For I ¼ 1:2�106�12�60
25�240 ¼ 144 kbits, for P ¼ 48 kbits and for B ¼ 36 kbits

Chapter 8
2. a. L

b. L
c. P
d. L

3. 4 − 1 − 5 0 2 0 0 − 1
7 0 2 1 − 1 0 0 − 1
0 1 0 1 − 1 0 0 0
0 − 4 0 0 0 0 0 0

− 2 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

458 Standard codecs: image compression to advanced video coding

2D-events: (0,4)(0,�1)(0,7)(2,�5)(1,2)(0,1)(1,�2)(0,�4)(1,1)(0,2)(1,�1) (0,1)
(7,�1)(2,�1)(4,1)(5,1)(2,�1)EOB (using Figure 6.12 the bits including the
sign bit)
8 þ 5 þ 11 þ 20 þ 7 þ 5 þ 7 þ 8 þ 6 þ 5 þ 6 þ 5 þ 9 þ 6 þ 8 þ 8 þ 6 þ 2 ¼
132 bits

4. The base layer events: (0,4)(0,�1)(0,7)(2,�5)(1,2)(0,1)(1,�2)(0,4) þ PBP
the bits: 8 þ 5 þ 11 þ 20 þ 7 þ 5 þ 7 þ 8 þ 6 ¼ 77 bits
The enhancement layer events: (1,1)(0,2)(1,�1)(0,1)(7,�1)(2,�1)(4,1)
(5,1)(2,�1) þ EOB the bits: 6 þ 5 þ 6 þ 5 þ 9 þ 6 þ 8 þ 8 þ 6 þ 2 ¼ 61
Total bits 77 þ 61 ¼ 138 bits, about 4.5 per cent extra over one-layer coding

5. base 2 0 2 0 1 0 0 0
4 0 1 0 0 0 0 0
0 0 0 0 − 1 0 0 0
0 − 2 0 0 0 0 0 0

− 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

enhancement 0 − 1 0 0 0 0 0 − 1
0 0 0 1 − 1 0 0 − 1
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Base layer events: (0,2)(1,4)(2,�2)(1,1)(2,�1)(0,�2)(2,1)(10,�1)EOB
Bits: 5 þ 9 þ 7 þ 6 þ 6 þ 5 þ 6 þ 10 þ 2 ¼ 56 bits
Enhancement layer events: (1,�1)(6,1)(4,1)(2,�1)(0,1)(10,�1)(10,1)(2,�1)
EOB
Bits: 6 þ 9 þ 8 þ 6 þ 5 þ 10 þ 10 þ 6 þ 2 ¼ 62 bits
Total bits ¼ 56 þ 62 ¼ 118
Note: the overall bit rate is less than the one layer, but the distortion will be
larger.

6. 8�2
1:25 log264 ¼ 28:8 Mbit/s, 28.8/8 ¼ 3.5; thus, three TV programmes

7. a. for B ¼ 1, a ¼ 1 and b ¼ 10�5

b. for B ¼ 5, a ¼ 0.2 and b ¼ 2 � 10�6

8. a. 34 980 Mbits ¼ 4.3725 Gbytes
b. mean bit rate ¼ 34 980/(90 � 60) ¼ 6.478 Mbit/s
c. CBR ¼ 90 � 60 � 20/8 ¼ 13.5 Gbytes, peak-to-mean ¼ 3.09

9. a. if error in any video bits, packet is in error; P¼ 47� 8� 10�7 ¼ 3.76� 10�7

b. if error in the header, packet is lost P ¼ 5 � 8 � 10�7 ¼ 4 � 10�6

Solutions to the problems 459

10. available link rate ¼ 50 � 30 � 102 ¼ 15 Mbit/s
total data to be sent ¼ 34 980 � 53/47 ¼ 39 445.5 Mbits
time required ¼ 39 445.5/15 Mbit/s ¼ 43 min 50 s

11. 25 � 4 ¼ 100 Mbit/s, load r ¼ 100�53
155�47 ¼ 0:7275

and the error rate is P ¼ 10�10ð1�0:72752Þ ¼ 2 � 10�6

12. With SNR scalability, assume 30% more load, then total load ¼ 100 � 1.3 ¼
130 Mbit/s, of which 65 Mbit/s is assigned to the base layer. Since the base
layer has an absolute priority, then network load for the base layer
r ¼ 65�53

155�47 ¼ 0:4729 and at this load P ¼ 1.72 � 10�8

For the enhancement layer, it sees the whole load, of 130 Mbit/s, thus load
will be r ¼ 130�53

155�47 ¼ 0:9457 and the error rate will be P ¼ 0.088
13. In data partitioning, with 4 per cent extra bits over one layer and 50 per cent to

the base layer, the base layer load will be r ¼ 1
2 � 0:7275 � 1:04 ¼ 0:3783 and

the error rate P ¼ 2.7 � 10�9. The enhancement layer has a load of 2 � 3.783 ¼
0.7566 that leads to an error rate of P ¼ 5.3 � 10�5.

14. With spatial scalability, assuming 50 per cent more bits over one layer and
50 per cent assigned to the base layer, then the allocated bits to the base
layer will be 75 Mbit/s. Base layer load is r ¼ 75�53

155�47 ¼ 0:5456, leading to P ¼
9.5 � 10�8. For the enhancement layer, the load will be more than 100 per cent
and the loss probability will be P ¼ 1!

Chapter 9
1. Prepend 0 to all events of problem 3 of Chapter 8, except the last event, where

1 should be appended, and no need for EOB, for example, first event (0,4,0)
and the last event (2,�1,1)

2. For x, the median of (3,4,�1) is 3 and for y, the median of (�3,3,1) is 1. Hence,
the prediction vector is (3,1) and MVD ¼ (2 � 3 ¼ �1; 1 � 1 ¼ 0) ¼ (�1,0)

3. a. d ¼ 300�1200þ920�150
16 ¼ �8:125, d1 ¼ �(max(0,8.125 � max(0,2 �

8.125 � 16))) ¼ 8
Thus, B1 ¼ 150 � 8 ¼ 142 and C1 ¼ 115 þ 8 ¼ 123

b. d ¼ �31.25, and d1 ¼ 0, hence B and C do not change
4. a. (3,4)

b. (0,�3),
c. (1,0.5)
d. (3,2.6)
e. (�1,�1)

Chapter 10
1. For A: c0 ¼ c2 ¼ c3 ¼ 1, index ¼ 1 þ 4 þ 8 ¼ 13, the given frequency table in

Appendix D is for prob(0); hence prob(0) ¼ 29789, but since A is a 1 pixel,
then its probability prob(1) ¼ 1 � 29789 ¼ 35746 out of 65 535
For B: c0 ¼ c1 ¼ c2 ¼ c3 ¼ c4 ¼ 1, and index ¼ 1 þ 2 þ 4 þ 8 þ 16 ¼ 31, prob
(0) ¼ 6554. As we see this odd pixel of 0 among the 1s has a lower probability.

460 Standard codecs: image compression to advanced video coding

For C: c1 ¼ c2 ¼ c3 ¼ c4 ¼ c5 ¼ c7 ¼ 1, and the index becomes 190. Like pixel
A the prob(0) ¼ 91, but its prob(1) ¼ 65 535 � 91 ¼ 65 444 out of 65 535,
which is as expected.

2. The chain code is 0, 1, 0, 1, 7, 7. The differential chain code will be: 0,1,�1,1,
�2,0 with bits 1 þ 2 þ 3 þ 2 þ 5 þ 1 ¼ 14 bits

3. At level 2 the indices (without swapping) will be 0 for the two blank blocks
and index ¼ 27 � 2 þ 9 � 2 þ 0 þ 2 ¼ 74 and index ¼ 0 þ 0 þ 3 � 2 þ 2 ¼ 8
for the two blocks.
At the upper level the index is: index ¼ 0 þ 0 þ 3 � 0 þ 1 ¼ 4

4. The coefficients of the shape adaptive DCT will be

127 � 40 1
10 � 15
23 � 7
�6

confined to the top left corner, while that of the normal DCT with padded
zeros, the significant coefficients are scattered all over the 8 � 8 area.

Chapter 11
1. a. a: 70, b: 110, c: 150, d: 190

b. a: 80, b: 60, c: 40, d: 20
c. a:b:c:d:90

2. In order for a matrix to be orthonormal, multiplying each row by itself should
be 1. Hence, in rows 1 and 3 (basis vectors 0 and 2), their values are 4, hence
they should be divided by

ffiffiffi
4

p ¼ 2. In rows 2 and 4 their products give: 4 þ 1 þ
1 ¼ 2 ¼ 10, hence their values should be divided by

ffiffiffiffiffi
10

p
:

Thus, the forward 4 � 4 integer transform becomes

T ¼
0:5ffiffiffiffiffi

10
p
0:5ffiffiffiffiffi

10
p

1 1 1 1
2 1 �1 �2
1 �1 �1 1
1 �2 2 �1

2
664

3
775

And the inverse transform is its transpose.

T�1 ¼ TT ¼

1
2

2ffiffiffiffiffi
10

p 1
2

1ffiffiffiffiffi
10

p
1
2

1ffiffiffiffiffi
10

p �1
2
� 2ffiffiffiffiffi

10
p

1
2
� 1ffiffiffiffiffi

10
p �1

2
2ffiffiffiffiffi
10

p
1
2
� 2ffiffiffiffiffi

10
p 1

2
� 1ffiffiffiffiffi

10
p

2
6666666666664

3
7777777777775

Solutions to the problems 461

As can be tested, this inverse transform is orthonormal, for example,

1
2

� �2

þ 2ffiffiffiffiffi
10

p
� �2

þ 1
2

� �2

þ 1ffiffiffiffiffi
10

p
� �2

¼ 1
4
þ 4

10
þ 1

4
þ 1

10
¼ 1

3. With the integer transform of problem 2, the 2D transform coefficients
(rounded to the nearest integer) will be

431 42 � 6 � 13
�157 51 � 46 28

91 29 � 26 � 19
�15 0 � 7 14

Exactly similar values are obtained through eqn. 11.13
4. a. With QP ¼ 4, Qstep ¼ 1, and the resultant coefficients in problem 3 can be

used in eqn. 11.16, resulting the pixel values of

100 120 85 10
80 70 60 50

110 90 100 120
180 200 150 200

which are exact values of the input pixels.
b. With QP ¼ 36, the quantiser step size Qstep ¼ 40. Rounding the transform

coefficients of problem 3 to 40 results in the quantised transform indices of

11 1 0 0
�4 1 �1 1

2 1 �1 0
0 0 0 0

and the inverse quantised coefficients become
440 40 0 0

�160 40 � 40 40
80 40 � 40 0
0 0 0 0

and the reconstructed pixels with eqn. 11.16 become

107 125 117 70
87 70 89 81

113 91 89 119
158 167 151 145

5. For N ¼ 10 with reference to the six quantiser step sizes of Table 11.1
8%6 ¼ 2 and floor(8/6) ¼ 1; Qstep(8) ¼ 0.8125 � 21 ¼ 1.65
26%6 ¼ 2 and floor(26/6) ¼ 4; Qstep(26) ¼ 0.8125 � 24 ¼ 13
48%6 ¼ 0 and floor(48/6) ¼ 8; Qstep(48) ¼ 0.625 � 28 ¼ 160
51%6 ¼ 3 and floor(51/6) ¼ 8; Qstep(51) ¼ 0.875 � 28 ¼ 224

462 Standard codecs: image compression to advanced video coding

6. According to Table 11.2, the corresponding quantiser parameters for the
chroma will be
QP ¼ 8, hence Qstep(8) ¼ 1.65
QP ¼ 26, hence Qstep(26) ¼ 1.65
QP ¼ 39, 39%6 ¼ 3 and floor(39/6) ¼ 6; Qstep(39) ¼ 0.875 � 26 ¼ 56
QP ¼ 39, Qstep(39) ¼ 56

7. a. parameter ¼ 5 > 0; x ¼ 2 � 5 � 1 ¼ 9; M ¼ floorðlog2½9 þ 1�Þ ¼ 3 and
info ¼ 9 þ 1 � 23 ¼ 2, which should be defined in binary at 3 bits; thus
code word ¼ 0001010

b. parameter ¼ �5 < 0; x ¼ 2 � 5 ¼ 10; M ¼ floorðlog2½10 þ 1�Þ ¼ 3 and
info ¼ 10 þ 1 � 23 ¼ 3; thus, code word ¼ 0001011

8. lmode ¼ 0:85 � 2
36�12

3 ¼ 0:85 � 28 ¼ 217:6

lMV ¼ ffiffiffiffiffiffiffiffiffiffiffi
217:6

p ¼ 14:76

Solutions to the problems 463

Appendix G

Glossary of acronyms

2D-VLC two-dimensional variable length code
3D-VLC three-dimensional variable length code
AAL ATM adaptation layer
ABT adaptive block transform
ACK acknowledgement
ASO adaptive slice ordering
ATM asynchronous transfer mode
AVC advanced video coding
BD boundary difference
BISDN broadband ISDN
BMA block matching algorithm
BS boundary strength
CABAC context-adaptive binary arithmetic coding
CAVLC context-adaptive variable length coding
CAT category
CBP coded block pattern
CBR constant bit rate
Cb, Cr (u,v) chrominance components
CCF cross-correlation function
CCIR International Radio Consultative Committee (now called ITU)
CGS coarse grain scalability
CIF common intermediate format
CPU central processing unit
CSA cross-search algorithm
DCT discrete cosine transform
DIFF difference between DC coefficients
DP data partition
DPCM differential pulse code modulation
DSCQS double stimulus continuous quality score
DSIS double stimulus impairment scale
DSM digital storage media
DTS decoding time stamp
DVD digital versatile (video) disc
DWT discrete wavelet transform

EBCOT embedded block coding with optimised truncation
EG0 zero-order Exp-Golomb code
EGK kth-order Exp-Golomb code
ELNUM enhancement layer number
EOB end of block
EPZS enhanced predictive zonal search
EZW embedded zero tree
FEC forward error correcting
FFT fast Fourier transform
FGS fine granular scalability
FIR finite impulse response
FLC fixed-length code
FMO flexible macroblock ordering
FR-TV full reference TV
FSM full search method
GOB group of blocks
GOP group of pictures
HBMA hierarchical block matching algorithm
HDTV high definition television
HVS human visual system
ICT irreversible colour transform
IEC International Electrotechnical Commission
INTER interframe
INTRA intraframe
IDCT inverse DCT
IDR instantaneous decoding refresh
IP Internet Protocol
IQ, Q�1 inverse quantiser
ISDN integrated services digital network
ISO International Standards Organisation
ITC, TC�1 inverse transform
ITU-T International Telecommunication Union (telegraphy section)
JPEG Joint Photographic Experts Group
JM joint model
JSVM joint scalable video model
L (Y) luminance component
LAN local area network
LIP list of insignificant pixels
LIS list of insignificant set
LPF low-pass filter
LPS least probable symbol
LSB least significant bit
LSP list of significant pixels
MAE mean absolute error

466 Standard codecs: image compression to advanced video coding

MB macroblock
MB-AFF macroblock adaptive frame/field
MC motion compensation
MCBPC macroblock type and coded block pattern
MCU multipoint control unit
MCTF motion-compensated temporal filtering
ME motion estimation
MGS medium grain scalability
MOS mean opinion score
MPEG Motion Picture Experts Group
MPS most probable symbol
MSB most significant bit
MSE mean-squared error
MTU medium transfer unit
MV motion vector
MVD motion vector data
MVDB motion vector data for B-pictures
MVDS motion vector data for shape
NACK negative acknowledgement
NAL network abstraction layer
NR-TV no reference TV
NTSC National Television System Committee
OFDM orthogonal frequency division multiplex
OSA orthogonal search algorithm
PAFF picture-adaptive frame/field
PAL phase alternate line
PBP priority break point
PCRD post compression rate distortion
PES packetised elementary stream
PMVFAST predictive motion vector field adaptive search technique
PPS picture parameter set
PSNR peak signal-to-noise ratio
PSTN public switched telephone network
PTS presentation time stamp
Q quantiser
QCIF quarter of CIF
QP quantiser parameter
RCT reversible colour transform
RGB red, green and blue colour primaries
RD rate distortion
RLNUM reference layer number
RM reference model
ROI region of interest
RR-TV reduced reference TV

Glossary of acronyms 467

PSP primary switching predictive
RTP real-time transport protocol
RVLC reversible variable length code
SAC syntax-based arithmetic coding
SAD sum absolute difference
SCR systems clock reference
SD TV standard television
SECAM sequential couleur avec memoire
SEI supplemental enhancement information
SI-slice switching intra slice
SIF source input format
SOT special orientation tree
SP-slice switching predictive slice
SPIHT set partitioning in hierarchical tree
SPS sequence parameter set
SSCQE single stimulus continuous quality evaluation
SSP secondary switching picture
ST statistical table
STC systems time clock
STD system target decoder
sub-QCIF one-ninth of CIF
SVC scalable video coding
TC transform coding
TM test model
TTS three-step search
UBR unspecified bit rate
UDP user datagram protocol
UTQ uniform threshold quantiser
UTQ-DZ uniform threshold quantiser with dead zone
VBR variable bit rate
VCL video coding layer
VCR video cassette recorder
VLC variable length code
VLD variable length decode
VQEG Video Quality Experts Group
VRC video redundancy coding
WT weighting table
ZT zero tree

468 Standard codecs: image compression to advanced video coding

Index

access unit, NAL 406–7
AC coefficients, coding of 107–8

multiple reference pictures 379–80
adaptive arithmetic coding 43, 53
addressing

blocks 136–7
macroblocks 135–6, 156–7
motion vectors 137–8, 163

advanced motion estimation/
compensation 233–4

advanced prediction mode 234
advanced simple profile 284

see also profile
advanced video coding (AVC) 226

see also H.264
alternative inter VLC mode 255

see also variable length codes (VLC)
analogue video 9–11

colour components 10–11
scanning: see scanning

analysis filters
band-pass 62–3
two-band 63–4

annex 225, 229–30, 232–3, 251, 255,
284, 328–9, 362

arbitrary slice ordering (ASO) 251
arithmetic coding 42–53, 317

adaptive 43, 53
binary 46–52
context-based 53
decoding process of 45–6
fixed model of 43
principles of 43–6
process, representation of 44

ATM networks, MPEG-2 217–20
automatic video segmentation 290–1

BAB: see binary alpha block (BAB)
back channel 257–9
background, coding of 312–14
baseline profile, for H.264 387–8

see also profile(s), for H.264
baseline sequential mode

compression 103–5
B-block in PB frames

prediction for a 247–9
bidirectional MV 269–70
bidirectional prediction 273
bilinear transform 241
binarisation 366–7

EKG 367
fixed-length 367
truncated unary 367
unary 367

binary alpha block (BAB) 304
binary alpha planes, coding of 297–8
binary arithmetic coding 46–52
bit plane coding

conditional arithmetic coding 88–90
fractional 90–6

bit plane encoding 110
bit plane quantisation, EBCOT 88
blocking artefacts 142, 163
block matching algorithm (BMA) 35,

240
fast, methods of 37–9
hierarchical 39–40

block matching with spatial transform
(BMST) 242–3

blocks, of pixels 131–2, 157
boundary matching based motion

vectors 385–7
BPB-macroblock 276

B-pictures 152–3, 208, 272, 339
coding of 167–8
hierarchical 249, 395
motion compensation in 352–3
motion estimation in 164
motion range for 164–5
quantisation of 249
quantiser step size of 371
target bit rate for 172
temporal scalability 394
treatment of 245

broken link 177
browsing, texture for 420

see also texture
buffer

overflow/underflow 176–7
regulation 159
size 170–1

CAE: see context-based arithmetic
encoding (CAE)

camera motion 422
see also motion

CAT 106
CBP: see coded block pattern (CBP)
CGS: see coarse grain scalability

(CGS)
chain codes 298–9
chroma, intra predictions of 343–4
CIELUV colour space 293
CIF: see common intermediate format

(CIF)
clean-up pass 93–8
coarse grain scalability (CGS) 399,

401
coded block pattern (CBP) 130,

136–7, 341
coded picture buffer (CPB) 406
coding

of AC coefficients 107–8
of background 312–14
of binary alpha planes 297–8
context-based arithmetic 304–8
of DC coefficients 106–7
entropy 108–9

greyscale shape 308–9
of higher band 316
of high-resolution video 322–3
of lowest band 316
of low-resolution video 323–6
region of interest (ROI) 113
of still images 315–19
of synthetic objects 314–15
wavelet subimages 78–80

see also wavelet subimages,
coding of

coding algorithm, SPIHT 85–6
colour descriptors 418–20
colour edge detection 292–3

component-wise gradient 292
vector gradient 292–3

colour layout 419
colour quantisation 418
colour similarity merging 295
colour space 418
colour structure 419
colour transformation, JPEG2000

116–17
combined scalability, H.264 401–2

see also scalability
common intermediate format (CIF)

130–1, 225
complexity, of H.264 393–4
complexity index 172
component-wise gradient detection 292
compression gain, of H.264 390–3
compression layer, in MPEG-1 150
conditional arithmetic coding, of bit

planes 88–90
conjugate direction search (CDS) 37
constant bit rate (CBR) 56, 169

rate controller for 144
context-adaptive binary arithmetic

coding (CABAC) 336, 363,
365–70

binarisation 366–7
binary arithmetic coding 369–70
context modelling 367–9
see also entropy coding;

Exp-Golomb code

470 Standard codecs: image compression to advanced video coding

context-adaptive variable length
coding (CAVLC) 53, 256, 336,
363–5

context-based arithmetic encoding
(CAE) 304–8

continuous presence multipoint 230
contour-based shapes 421

see also shapes
conversion ratio (CR) 306
core profile 285

see also scalability
core scalable visual profile 285

see also scalability
core studio profile 285

see also scalability
COST211 1, 233
CPB: see coded picture buffer (CPB)
CR: see conversion ratio (CR)
cross-correlation function (CCF) 35
cross-search algorithm (CSA) 37–8
CSS: see curvature scale space (CSS)
curvature scale space (CSS) 421

data partitioning 211, 213, 259–62
in adavanced video coding

375–7
dbquant 249
DC coefficients, coding of 106–7
DC-level shifting, JPEG2000 116
DCT: see discrete cosine transform

(DCT)
deblocking filter 238–40

boundary strength 359
filtering decision 360–1
H.264 359–61

decoded picture buffer (DPB) 344
delivery multimedia integration

framework (DMIF) 329
differential pulse code modulation

(DPCM) 1–2, 25–6, 78, 233
lossless compression 102

digital item(s) 430–1
digital storage media (DSM) 149
digital versatile disc (DVD)

MPEG-2 216–17

discrete cosine transform (DCT) 2,
6–8, 28–9, 55, 61, 130

coefficients, quantisation of 31–34
lossy compression 103
wavelet transform and 61

discrete wavelet transform (DWT) 69
JPEG2000 118

DMIF: see delivery multimedia
integration framework (DMIF)

dominant colour(s) 418–19
dominant pass 80–1

see also JPEG2000
double-stimulus impairment scale

(DSIS) 20
DPB: see decoded picture buffer

(DPB)
DPCM: see differential pulse code

modulation (DPCM)
D-pictures 153

coding of 168–9
DVD: see digital versatile disc

(DVD)
DWT: see discrete wavelet transform

(DWT)

early wavelet transform: see subband
coding

edge histogram 420–1
see also texture

editing, in MPEG-1 175–7
EI-pictures 272
ELNUM 272, 274
embedded block coding with

optimised truncation
(EBCOT) 87–91

arithmetic coding 88–90
bit plane quantisation 88
bitstream organisation 96–7
fractional bit plane coding 90–6
layer formation 96–7
rate control 97

embedded zero tree wavelet (EZW)
62, 316–17

algorithm 80–2
analysis of algorithm 82

Index 471

encoder
H.261 audio-visual 130
H.261 video 132
H.263 226, 229–30, 250, 255
H.264 339–40
MPEG-1 158–9, 185–6
MPEG-2 185–6

encoding
interleaved 113
noninterleaved 113

end of block (EOB) code 106, 140
entropy coding 108–9

CABAC 336, 363, 365–70
CAVLC 256, 336, 363–5
Exp-Golomb code 363–4
H.264 362–70
JPEG2000 119–20

EOB: see end of block (EOB) code
EP-pictures 272
error concealment 265–70

H.264 385–7
error detection by postprocessing

262–5
error resilience, JPEG2000 124–6
error resilient encoding, H.264 372–85

data partitioning (DP) 375–7
FMO 372–5
intra-MB/IDR 377–9
multiple reference pictures 379–80
redundant slices 380–1
stream switching: see switching

pictures
syntax errors 372

ESCAPE symbol 140
eXperimental Model (XM) 415

see also MPEG-7
Exp-Golomb code 363–4

for nine positive integers
extended DCT-based process 109–11
EZW: see embedded zero tree wavelet

(EZW)

face recognition descriptor 424
fast forward 174
fast update request 230

fidelity range extensions profile 388–9
see also profile(s), for H.264

filter banks, wavelet transform and 72–3
filtering loop, for H.261 141–4
filters/filtering

analysis 62–4
band-pass 62–3
chrominance signal 11
deblocking 238–40
in digitising analogue video 11
loop 141–4
luminance signal 11
product 67
synthesis 66
two-band 63–4
wavelet, design 74–6

fine granular scalability (FGS) 326–7
profile 284–5

flexible macroblock ordering (FMO)
373–5

error resilience of 375
FMO: see flexible macroblock

ordering (FMO)
forced updating 135, 257
forward error correction 256–7
forward prediction 273
four motion vectors per macroblock

234–5
fractional bit plane coding 90–6

clean-up pass 93–4
magnitude refinement pass 93
PCRD optimisation 90–1
significance propagation pass 92–3

fractional precision of motion vectors
349–51

freeze picture request 230
full-search block matching algorithm

(BM-FSA) 36–7, 244

GOB: see groups of blocks (GOB)
GOP: see group of pictures (GOP)
greyscale shape coding 308–9
group of pictures (GOP) 154

colour 419–20
groups of blocks (GOB) 130–1

472 Standard codecs: image compression to advanced video coding

H.261 129, 225
audio-visual system 129–30
ESCAPE in 140
historical perspectives 2
loop filter for 141–4
macroblocks in: see macroblocks (MB)
picture format with 130–1
quantisation and coding in 138–41
rate control 144–5
video coding algorithm 131–5
video encoder
vs. MPEG-1 156, 161, 167

H.263 225
buffer regulation 276–8
coefficients, coding of 226
extensions of 231–3
historical perspectives 4
optional modes of 232–3
picture formats
prediction for a B-block in PB

frames 247–9
protection against error 256–65
scalability 271–6
vs. MPEG-4 visual 328–30

H.263+ 225
scope and goals of 231–2

H.264 5–6, 335
complexity 393–4
compression gain 390–3
deblocking filter 359–62
encoder 339–40
entropy coding 362–70
error resilient encoding 372–85
features of 336–7
levels 387, 389
motion estimation/compensation in

346–54
picture format 337–41
profiles 387–90
quantisation 358–9
rate distortion optimisation 370–2
scalability 394–403
slice types 339
slicing 337–9
transformation 355–8

Haar wavelet 71–2
header format, NAL 404–5
hierarchical B-pictures 249

see also B-pictures
hierarchical block matching algorithm

(HBMA) 39–40
high definition television (HDTV)

18–19
higher-order systems, wavelet

transform 74
high-pass subband generation 64
high profile, for H.264 388–9

see also profile(s), for H.264
high-resolution video, coding of

322–3
H.26L 225

scopes and goals of 232
H.262/MPEG-2 4–5, 181
homogeneous texture 420

see also texture
HRD: see hypothetical reference

decoder (HRD) buffer
H.120 1–2
Huffman coding 40–2, 238, 366–7

modified 140
human visual system (HVS) 103
HVS: see human visual system (HVS)
hybrid scalability 209–10

MPEG-2 208–10
SNR, spatial and temporal 209–10
SNR and spatial 209
SNR and temporal 209
spatial and temporal 208–9
see also scalability

hypothetical reference decoder (HRD)
buffer 144–5

IEC: see International Electrotechnical
Commission (IEC)

IETF: see Internet engineering task
force (IETF)

image format 12–19, 130–1
image gradient 291–3

colour edge detection 292–3
nonlinear diffusion 291–2

Index 473

image retrieval
shape-based 426–8
sketch-based 428–9
texture-based 424–6

image segmentation
automatic segmentation 290–1
colour similarity merging 295
image gradient 291–3
object mask creation 295–7
region motion estimation 295
semiautomatic segmentation 290
watershed transform 293–5

immersion watershed flooding 294
indexing 417–18
instantaneous decoding refresh (IDR)

slice 377
Integrated Services Digital Network

(ISDN), narrowband 225
intellectual property 431
interframe error concealment 266–70
interframe prediction, in H.264

344–6
inter/intra decision 134
interleaved, encoding 113
International Electrotechnical

Commission (IEC) 226, 414
International Standards Organisation

(ISO) 101, 226, 414
International Telecommunication

Union (ITU-T) 2, 5, 101
International Telegraph and Telephone

Consultative Committee 1
Internet engineering task force (IETF)

408
intraframe coding 134, 153
intraframe coding prediction 341–4

intra 4� 4 342–3
intra 16� 16 343
I_PCM 344

intraframe error concealment 265–6
I_PCM 344
I-pictures 152

coding of 165–6
target bit rate for 172

I-slice 339

ISO: see International Standards
Organisation (ISO)

ISO 11172 stream, structure of 150
ITU-R 601 215
ITU-T: see International

Telecommunication Union
(ITU-T)

JCT-VC: see Joint Collaborative Team
on Video Coding (JCT-VC)

Joint Collaborative Team on Video
Coding (JCT-VC) 6

Joint Photographic Experts Group
(JPEG) 2, 7, 101–13

application of 101
lossless compression 102
lossy compression: see lossy

compression
wavelet transform and 61–2

joint scalable video model (JSVM) 276
joint video team (JVT) codec 226
JPEG: see Joint Photographic Experts

Group (JPEG)
JPEG2000 7, 113–26

encoder: see JPEG2000 encoder
features 114–15, 121–6

JPEG2000 encoder 115–21
core encoder 117–20
postprocessing 120–1
preprocessor 115–17

see also preprocessor

Lagrangian optimisation 370
least significant bit (LSB) 79
levels

H.264 387, 389
MPEG 185

LIS: see list of insignificant set (LIS)
list of insignificant set (LIS) 125
loop filter, for H.261 141–4
loss concealment 270–1
lossless compression 102
lossy compression 103–13

baseline sequential mode
compression 103–5

474 Standard codecs: image compression to advanced video coding

extended DCT-based process
109–11

hierarchical mode 111–13
run length coding: see run length

coding
low-pass subband generation 64
low-resolution video, coding of 323–6

macroblock address increment 156
macroblocks (MB) 130–1

addressing of 135–8
coding for 131–2
motion vectors of 137–8
in MPEG-1 156–7
noncoded, defined 168
syntax elements 341
type 246
types 135, 165
see also picture format, H.264

magnitude refinement pass 93
main profile 285

see also profile(s), for H.264
MB: see macroblocks (MB)
MCBPC 229
MCE: see motion-compensated error

(MCE)
MCTF: see motion-compensated

temporal filtering (MCTF)
medium grain scalability (MGS)

399–401
see also scalability

mesh-based (MB) method 245
MGS: see medium grain scalability

(MGS)
MMR: see modified reed (MMR)
modified Huffman coding 140
modified modified reed (MMR) 302–4
mother wavelet 68
motion 422–3

activity 423
camera 422
parametric 423
trajectory 422

motion-compensated error (MCE)
345

motion-compensated temporal filtering
(MCTF) 394

motion compensation 309–10
in B-slices 352–3

motion estimation/compensation
35–7, 54, 132–3, 160–5, 237–8,
309–10

bidirectional search 163–4
decision 133
fast search methods for 37–9
with half-pixel search 162–3
overlapped 235–45
search range 161–2, 164–5
with spatial transforms 240–5
telescopic search 161

motion estimation/compensation, in
H.264 346–52

B-pictures 352–3
chroma interpolation 351–2
early termination 348
fractional precision of motion

vectors 349–51
motion vector refinement 348
multiple reference picture 352–4
prediction selection 347
P-skip 352

motion vector data (MVD) 138, 234
motion vector data of shape

(MVDS) 304
motion vectors 132–3

addressing 137–8, 163
for B-pictures in PB frames 246–7
coding of 227–8
fractional precision of 349–51
prediction
refinement 348
selection of best-estimated 271

Moving Picture Experts Group
(MPEG) 2, 149–77, 283

MPEG-4 283–330
MPEG: see Moving Picture Experts

Group (MPEG)
MPEG-1 149, 283

block in 157
decoder 173–5

Index 475

editing 175–7
encoder 158–9
fast play 174
GOP 154
historical perspectives 2–3
H.261 vs. 156, 161, 167
macroblocks in 156–7
motion estimation/compensation in

160–5
multiplexing 151
pause and step mode 175
picture in 154

see also picture, in MPEG-1
postprocessing in 175–7
preprocessing in 151–3
prototypical encoder and decoder of
quantisation weighting matrix

159–60
reverse play 175
slices in 154–6
synchronisation 151
systems layer 150–1
video buffer verifier 169–73

MPEG-2 283
ATM networks 217–20
digital versatile disc (DVD) 216–17
historical perspectives 3–4
scalability of 192–214
video broadcasting 215–16

MPEG-4 4, 283, 335
MPEG-7 414–24

applications 416–17
colour descriptors 418–20
indexing 417–18
objective of 414
query 417–18
texture descriptors: see texture

MPEG-21 6, 430–3
see also multimedia framework

MPEG-4 visual 283–330
coding of background 312–14
coding of still images 315–19
coding of synthetic objects 314–15
image segmentation 289–97
levels 284–5

motion compensation 309–10
motion estimation 309–10
profiles 284–5
scalability 326–8
shape coding 297–309

see also shape coding
texture coding 310–12
verification models in 283
video coding with wavelet

transform 319–26
video object plane (VOP) 285–9

see also video object plane (VOP)
vs. H.263 328–30

multilayer scalability 274
see also scalability

multimedia framework 430–3
content handling and usage 431
content representation 432–3
digital items 430–1
event reporting 433
intellectual property 431
networks 432
terminal 432

multiple reference pictures
ACK mode 379–80
motion compensation 353–4
NACK mode 379–80
weighted prediction 354

multiplexing, statistical 215
multipoint control unit (MCU) 230
multiresolution decomposition 71
multiresolution representation, wavelet

transform 69–72
MVD: see motion vector data (MVD)
MVDS: see motion vector data of

shape (MVDS)
MVPS: see shape prediction motion

vector (MVPS)

NACK: see negative acknowledgment
(NACK)

National Television System Committee
(NTSC) signals 1

negative acknowledgment (NACK) 259
multiple reference pictures 379–80

476 Standard codecs: image compression to advanced video coding

network abstraction layer (NAL)
403–8

access unit 406–7
header format 404–5
for SVC 408
unit types 407–8

noise 34, 63
blockiness 141–2
mosquito 141–2

noninterleaved, encoding 113
nonlinear diffusion 291–2
NTSC: see National Television System

Committee (NTSC)

object-based scalability 327–8
see also scalability

object mask creation 295–7
OFDM: see orthogonal frequency

division multiplexed (OFDM)
optimisation process, H.264 370–1
optionalities 230
orthogonal frequency division

multiplexed (OFDM) 216
orthogonal search algorithm (OSA)

242
overflow/underflow, buffer 176–7
overlapped motion compensation

235–45

parametric motion 423
see also motion

parity bits 256
pattern number 136–7
pause and step mode, decoding for

175
PB frames

mode 245
motion vectors for B-pictures in

246–7
prediction for a B-block in 247–9

PCM coding: see pulse code
modulation (PCM) coding

picture, in MPEG-1 154
B-pictures 152–3, 167–8
coding of 165–9

D-pictures 153, 168–9
I-pictures 152, 165–6
P-pictures 152, 166–7
SI-picture

picture format, H.264 337–41
PSP picture 381–3
SI picture 339, 382, 385
SP picture 339, 381–5
SSP picture 381–5

picture layer 229
picture quality, assessment of 19–22
picture reordering 151–3
pictures, transmission order of

274–6
postprocessing, in MPEG-1 175–7
P-pictures

coding of 166–7
motion estimation in 164
motion range for 164–5
target bit rate for 172

precinct 120
prediction loop 132–3
preprocessing, in MPEG-1 151–3
preprocessor, JPEG2000 encoder

colour transformation 116–17
DC-level shifting 116
tiling 116

presentation time stamps (PTS) 151
primary switching pictures (PSP)

381
encoding 383–4

product filter 67
profile(s)

advanced coding 285
core studio profile 285
fine granular scalability 284–5
H.264: see profiles(s), for H.264
main profile 285
MPEG-2 183–4
MPEG-4 284–5
simple 284
simple scalable 284
simple studio 285

profile(s), for H.264 387–90
baseline 387–8

Index 477

extended 387–8
high 388–9
main 387–8

P-skip 352
P-slices 339, 352
PTS: see presentation time stamps

(PTS)
PTYPE 229
public switched telephone network

(PSTN) 225
pulse code modulation (PCM) coding 1

QCIF: see quarter–common
intermediate format (QCIF)

quad tree coding 299–302
encoding process 302
grouping process for higher levels

301–2
subblock indexing 299–301

Quality of Service (QoS) contract
432

quality (SNR) scalability, H.264
398–401

see also scalability
CGS 399, 401
MGS 399–401

quantisation 55
adaptive 171–3
of DCT coefficients 31–4
in H.261 138–41
in H.264 358–9
in JPEG2000 119
parameter 139
weighting matrix 159–60

quantisation by successive
approximation 78–9

quantiser, for H.261 138
quarter–common intermediate format

(QCIF) 18, 130–1

rate control 144–5, 171–3
EBCOT 97

rate distortion optimisation, H.264
370–2

Lagrangian optimisation 370

l selection 371–2
optimisation process 370–1

rectangular slice (RS) submode 251
redundant slices 380–1
reference model (RM) codec 129
region-based shapes 421

see also shapes
region motion estimation, image

segmentation 295
region of interest (ROI) 113

JPEG2000 122–3
resampling 177
resynchronisation markers 251–2
reverse play, decoding for 175
reversible variable length code

(RVLC) 250–1
RLNUM 272, 274
ROI: see region of interest (ROI)
run length coding 106–9, 136

coding of AC coefficients 107–8
coding of DC coefficients 106–7
entropy coding 108–9

SAD: see sum absolute difference
(SAD)

SA-DCT: see shape-adaptive DCT
(SA-DCT)

scalability 326–8
applications of 213–14
CGS 399, 401
fine granularity scalability 326–7
hybrid 208–10
MGS 399–401
MPEG-2 192–214
object-based scalability 327–8
overhead due to 211–13
SNR 209–10, 213
spatial 203–5, 213
temporal 205–8, 214

scalability, H.264 394–403
combined 401–2
quality (SNR) 398–401
spatial 396–8
SVC 402–3
temporal 394–6

478 Standard codecs: image compression to advanced video coding

scalability, JPEG2000 123–4
SNR scalability 124
spatial scalability 123–4

scalable baseline profile, H.264 402–3
scalable colour descriptor 419
scalable high intra profile, H.264 403
scalable high profile, H.264 402–3
scalable video coding (SVC) 402–3

combined scalability, H.264 401–2
NAL for 408
profiles 185, 402–3
quality (SNR) scalability 398–401
spatial scalability 396–8
temporal scalability 394–6

scaling function, of multiresolution
representation 71

scanning 9–10
interlaced 9
progressive 9

scene complexity index (SCI) 215
SCI: see scene complexity index (SCI)
search engines 413
secondary switching picture (SSP)

381–2
encoding 384–5

SEI: see supplemental enhancement
information (SEI)

semiautomatic video segmentation
290

sequence parameter set (SPS) 340
set partitioning in hierarchical trees

(SPIHT) 82–7, 319
coding algorithm 85–6
SOT in 84

shape-adaptive DCT (SA-DCT)
310–12

shape-adaptive wavelet transform
318–19

shape-based image retrieval 426–8
see also image retrieval

shape coding 297–309
chain code method 298–9
coding of binary alpha planes 297–8
context-based arithmetic coding

304–8

greyscale shape coding 308–9
modified modified reed (MMR)

302–4
quad tree coding 299–302

shape prediction motion vector
(MVPS) 305

shapes 421–2
contour-based 421
region-based 421
three-dimensional 421–2

SIF: see source input format (SIF)
significance propagation pass 92–3
simple profile 284
simple scalable profile 284
simple studio profile 285
single-stimulus continuous quality

evaluation (SSCQE) 20
size conversion 305–6
sketch-based image retrieval 428–9

see also image retrieval
slices, H.264 337–9

motion compensation and 352–4
quantisation 358–9
syntax elements 338
transformation 355–8
types 339

slices, in MPEG-1 154–6
slice start code 155
slice structure mode 251
slope overload noise 34
SNR scalability 82, 209–11, 272–3

applications of 213
JPEG2000 124

SNR scalability, H.264 398–401
CGS 399, 401
MGS 399–401

source encoder 228
source input format (SIF) 12–15, 151
spatial redundancy reduction 25–34

mismatch control 30
predictive coding 25–6
transform coding 26–30

spatial scalability 82, 273
applications of 213
JPEG2000 123–4

Index 479

MPEG-2 203–5
see also hybrid scalability; scalability

spatial scalability, in H.264 396–8
macroblock modes prediction 397
residuals prediction 397–8

spatio-temporal locations 423
SPIHT: see set partitioning in

hierarchical tree (SPIHT)
SPS: see sequence parameter set (SPS)
SSP: see secondary switching picture

(SSP)
still images, coding of 315–19
subband coding 62–7

Fourier basis functions and 62
principle 62

subordinate pass 81
sub-quarter of common intermediate

format (sub-QCIF) 225
successive approximation 110
sum absolute difference (SAD) 345
supplemental enhancement

information (SEI) 406
SVC: see scalable video coding (SVC)
switched multipoint 229–30
switching intra (SI) pictures 339

encoding 385
switching pictures

encoding of 383–5
error recovery 383
PSP 381–4
SI-pictures 382, 385
SSP-pictures 381–2, 384–5
between two streams 382

switching predictive (SP)-slice 339
syntax-based arithmetic coding

(SAC) 250
synthesis filters 66
synthetic objects, coding of 314–15
systems layer, in MPEG-1 150–1

temporal redundancy reduction 34–40
motion estimation 35–7

temporal scalability 205–8, 272
applications of 214
in H.264 394–6
see also hybrid scalability; scalability

texture 420–1
browsing 420
edge histogram 420–1
homogeneous 420

texture-based image retrieval 424–6
see also image retrieval

texture coding 310–12
three-dimensional shapes 421–2

see also shapes
tier 2 96–7, 120
tiling, JPEG2000 116
topological distance watershed

294–5
trajectory, motion 422
transformation, H.264 355–8
two-band analysis filter 63–4
two-dimensional VLC 139–41

UBR: see unspecified bandwidth/bit
rates (UBR)

underflow/overflow, buffer 176–7
uniform threshold quantiser (UTQ)

32–3
universal variable-length code

(UVLC) 363
unrestricted motion vector 233–4
unspecified bandwidth/ bit rates

(UBR) 101
upconversion 177
upward prediction 273
UTQ: see uniform threshold quantiser

(UTQ)
UVLC: see universal variable-length

code (UVLC)

value symbol 318
value zero tree root (VZ) 318
variable bit rate (VBR) 56, 171
variable block size motion estimation

344–6
variable-delay parameter 170–1
variable length coding (VLC) 25,

40–53, 56, 102, 130, 249–52
advanced inter, with switching

between two VLC tables
255–6

480 Standard codecs: image compression to advanced video coding

advanced intra 253–5
arithmetic coding: see arithmetic

coding
Huffman coding 40–2
two-dimensional 139–41

VBR: see variable bit rate (VBR)
VBV: see video buffer verifier (VBV)
VCL: see video coding layer (VCL)
vector gradient detection 292–3
vector median MV 267–9
verification models (VM)

in MPEG-4 283
video broadcasting, MPEG-2 coded

215–16
video buffer verifier (VBV) 169–73

buffer size and delay 170–1
rate control and adaptive

quantisation 171–3
video coding, history of 1–8
Video Coding Experts Group

(VCEG) 231
video coding layer (VCL) 405–6
video coding with wavelet transform

319–26
video compression 25–6

constant bit rate 56
spatial redundancy reduction:

see spatial redundancy reduction
temporal redundancy reduction:

see temporal redundancy
reduction

technique 1, 6
variable bit rate 56
variable length coding: see variable

length coding (VLC)
videoconferencing 129–45

H.261: see H.261
video object plane (VOP) 285–9

coding of objects 287
encoding of 287
formation of 287–8

video objects (VO) 283

Video Quality Experts Group
(VQEG) 20

video redundancy coding (VRC)
380

virtual zero tree algorithm 320–2
VLC: see variable length coding

(VLC)
VM: see verification models (VM)
VO: see video objects (VO)
VOP: see video object plane (VOP)
VRC: see video redundancy coding

(VRC)
VZ: see value zero tree root (VZ)

watershed transform 293–5
immersion watershed flooding 294
topological distance watershed

294–5
wavelet filter design 74–6
wavelet subimages, coding of

quantisation by successive
approximation 78–9

similarities among bands 79–80
wavelet transform

discrete wavelet transform 69
filter banks and 72–3
higher-order systems 74
JPEG and 61–2
multiresolution representation

69–72
subband coding 62–7

see also subband coding
video coding with 319–26
wavelet filter design 74–6

wavelet transform coefficients 69
weighted pixel value averaging 385
weighted prediction 354
weighting matrices 236

zero tree root symbol 318
zero tree (ZT) 78
ZT: see zero tree (ZT)

Index 481

	Contents
	Preface to first edition
	Preface to second edition
	Preface to third edition
	1. History of video coding
	2. Video basics
	3. Principles of video compression
	4. Subband and wavelet
	5. Coding of still pictures (JPEG and JPEG2000)
	6. Coding for videoconferencing (H.261)
	7. Coding of moving pictures for digital storage media (MPEG-1)
	8. Coding of high-quality moving pictures (MPEG-2)
	9. Video coding for low bit rate communications (H.263)
	10. Content-based video coding (MPEG-4 visual)
	11. Advanced video coding (H.264)
	12. Content description, search and delivery (MPEG-7 and MPEG-21)
	Appendix A: A ‘C’ program for the fast discrete cosine transform
	Appendix B: Huffman tables for the DC and AC coefficientsof the JPEG baseline encoder
	Appendix C: Huffman tables for quad tree shape coding
	Appendix D: Frequency tables for the CAE encoding of binary shapes
	Appendix E: Channel error/packet loss model
	Appendix F: Solutions to the problems
	Appendix G: Glossary of acronyms
	Index

