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Preface

Switched control systems have attracted much interest from the control commu-

nity not only because of their inherent complexity, but also due to the practical im-

portance with a wide range of their applications in nature, engineering, and social

sciences. Switched systems are necessary because various natural, social, and engi-

neering systems cannot be described simply by a single model, and many systems

exhibit switching between several models depending on various environments. Nat-

ural biological systems switch strategies in accordance to environmental changes

for survival. Switched behaviors have also been exhibited in a number of social

systems. To achieve an improved performance, switching has been extensively uti-

lized/exploited in many engineering systems such as electronics, power systems,

and traffic control, among others.

Theoretical investigation and examination of switched control systems are aca-

demically more challenging due to their rich, diverse, and complex dynamics.

Switching makes those systems much more complicated than standard systems.

Many more complicated behaviors/dynamics and fundamentally new properties,

which standard systems do not have, have been demonstrated on switched systems.

From the viewpoint of control system design, switching brings an additional degree

of freedom in control system design. Switching laws, in addition to control laws,

may be utilized to manipulate switched systems to achieve a better performance of

a system. This can be seen as an added advantage for control design to attain certain

control purposes.

On the one hand, switching could be induced by any unpredictable sudden

change in system dynamics/structures, such as a sudden change of a system struc-

ture due to the failure of a component/subsystems, or the accidental activation of any

subsystems. On the other hand, the switching is introduced artificially to effectively

control highly complex nonlinear systems under the umbrella of the so-called hybrid

control. In both cases, an essential feature is the interaction between the continuous

system dynamics and the discrete switching dynamics. Such switched dynamical

systems typically consist of sets of subsystems and switching signals that coordi-

nate the switching among the subsystems.

In this book, we investigate the stability issues under various switching mecha-

nisms. For a controlled switching, the switching signal is a design variable just as

vii
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the control input in the conventional systems. It is measurable and can be freely

assigned. In this case, the stability is in fact a kind of stabilization by stabilizing

switching design. For an arbitrary switching, the switching signal is blind and un-

controlled, and the stability is in fact a kind of robustness against the switching per-

turbations. Besides the two extreme cases, the switching signal could be constrained

in that it is neither controlled nor free arbitrarily. In other words, partial information

is known about the switching mechanism. Typical constrained switchings include

(i) autonomous switching, where the switching signal is generated autonomously

with a preassigned state-space-partition-based switching mechanism; (ii) dwell-time

switching, where the minimum duration on each subsystem is known and positive;

and (iii) random switching with a known stochastic distribution. Switched systems

under various constrained switching might behave in a rich, diverse and complex

manner.

The objective of this book is to present in a systematic manner the stability

theory of switched dynamical systems under different switching mechanisms. By

bringing forward fresh new concepts, novel methods, and innovative tools into the

exploration of various switching schemes, we are to provide a state-of-the-art and

comprehensive systematic treatment of the stability issues for switched dynamical

systems.

The book is organized in five chapters. Except for Chap. 1 that briefly introduces

the problem formations and the organization of the book, subsequent chapters ex-

ploit several important topics in detail in a timely manner.

In Chap. 2, we focus on the guaranteed stability analysis of switched dynam-

ical systems under arbitrary switching. As global uniform asymptotic stability is

equivalent to the existence of a common Lyapunov function of the subsystems, the

Lyapunov approach plays a dominant role in the stability analysis. For switched lin-

ear systems, due to the fact that quadratic Lyapunov candidates are insufficient for

coping with stability, emphasis is laid on the sets of functions which are universal in

the sense that each asymptotically stable system admits a Lyapunov function from

the function set. Both piecewise linear functions and piecewise quadratic functions

are proven to be universal, and their connections to algebraic stability criteria are

also established. We also pay much attention to the algebraic theory of discrete-time

switched linear systems, where the stability is elegantly characterized by the spec-

tral radius of the matrix set, which generalizes the standard matrix spectral theory.

While determining the spectral radius has been proven to be NP-hard, we introduce

the homogeneous polynomials to serve as common Lyapunov functions and utilize

the sum-of-squares technique and the semi-definite programming to approximate

the spectral radius. Finally, the more subtle issue of marginal stability is carefully

examined, and its connection to the common weak Lyapunov function is established.

We reveal that marginal stability admits a block triangular decomposition with clear

spectral information, and this leads to an invariant set viewpoint for characterizing

marginal stability and marginal instability.

Chapter 3 presents stability theory for switched dynamical systems under con-

strained switching. There are three types of constrained switching addressed in this

chapter. The first type of constrained switching is the random switching with a pre-

assigned jump distribution. When the subsystems are linear and the switching is
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governed by a Markov process, the switched linear system is known to be a jump

linear system. We introduce various stability concepts and their criteria, and estab-

lish the connections to the guaranteed stability criteria in Chap. 2. The second is the

piecewise affine systems where the state space is partitioned into a set of polyhedral

cells, each relating to a subsystem, and hence the switching is totally autonomous.

The piecewise quadratic Lyapunov approach, the surface Lyapunov approach, and

the transition graph approach are introduced. The pros and cons of the approaches

are compared and discussed. The third type of constrained switching is the dwell-

time switching, where the switching duration between any two consecutive switches

admits a positive lower bound. We address both the stability analysis, where the

dwell time is preassigned, and the stabilizing switching design, where the minimum

or maximum dwell time is to be designed. The design captures the capability and

the limitation of the switching mechanism.

Chapter 4 is devoted to the stabilizing switching design for switched dynamical

systems under controlled switching. It is proven that a switched Lyapunov function

exists if the system is globally asymptotically stabilizable. However, counterexam-

ples exhibit that even stabilizable planar switched linear systems may not admit

any convex switched Lyapunov function. To overcome the intrinsic difficulty, we

introduce a class of nonconvex functions known as min functions that are piece-

wise quadratic and prove that each stabilizable switched linear system admits a

min function as a switched Lyapunov function. To further address the stabilizabil-

ity and robustness of switched linear system, we propose a pathwise state-feedback

switching strategy, which accounts to concatenating a finite number of switching

paths based on appropriate partitions of the state space. By aggregating the over-

all system into a discrete-time piecewise linear system, we are able to prove that

the switching strategy exponentially stabilizes the original switched linear system

whenever it is asymptotically stabilizable. We develop a computational procedure

to calculate a stabilizing pathwise state-feedback switching law for an asymptot-

ically stabilizable switched linear system. To further investigate the robustness of

the pathwise state-feedback switching strategy, we define a (relative) distance be-

tween two switching signals and prove that the closed-loop system is robust against

structural/unstructural/switching perturbations.

With the stability theory presented in the previous chapters, we further exploit its

connections and implications to several fundamental control problems in Chap. 5.

For absolute stability of Lur’e systems, an elegant connection to the guaranteed sta-

bility of switched linear systems is established. Utilizing this connection, computa-

tional algorithms are presented to verify absolute stability for planar Lur’e systems.

Another implication of the guaranteed stability criteria is the consensus analysis of

multiagent systems with dynamic neighbors, and exponential agreement is reached

if the graph is always strongly connected. For an intelligent system with linear local

controllers and a fuzzy rule, it is naturally converted into a piecewise linear system,

and hence the stability analysis can be conducted by means of the stability criteria

presented in Chap. 3. This brings a new design method and a fresh observation to

the fuzzy control problem. For a SISO linear process with unknown parameters, an

adaptive control framework is established based on appropriate partitions of the pa-

rameter space and proper stabilizing switching strategy among the local controllers
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which are designed to stabilize the system in a local sense. Finally, for control-

lable switched linear systems, a multilinear feedback design approach is proposed

to tackle the stabilization problem. The main idea is to associate a set of candidate

linear controllers with each subsystem, such that the extended switched system is

stabilizable. By utilizing the pathwise state-feedback switching design diagram, the

problem of stabilization is solved in a constructive manner.

The book is primarily intended for researchers and engineers in the system and

control community. It can also serve as complementary reading for nonlinear system

theory at the postgraduate level.

Acknowledgments

There is a beginning and an end in everything. For the completion of the book,

we are in debts to many distinguished individuals in our community. First of all, we

would like to thank Dazhong Zheng, Tsinghua University, for bringing our attention

to this area fourteen years ago, and much of the results were rooted fundamentally

in the numerous seminars, discussions, and well-rounded education at the Haid-

ian district, Beijing, led by many leading scientists and academics including Hanfu

Chen, Daizhan Cheng, Lei Guo, and Huashu Qin, Chinese Academy of Sciences;

Lin Huang, Peking University; Zongji Chen, Weibing Gao, and Zhanlin Wang, Bei-

jing University of Aeronautics of Astronautics; and, of course, Dazhong Zheng from

Tsinghua University.

Blessed by many discussions and encounters with many distinguished individ-

uals in society, the following people played an important role in our journey in

the field of hybrid systems and switching control: Panos J. Antsaklis, University

of Notre Dame, Tamer Basar, the University of Illinois at Urbana-Champaign, John

Baillieul and Christos G. Cassandras of Boston University, Colin B. Besant and John

C. Allwright of Imperial College, Robert R. Bitmead and Miroslav Krstic of Uni-

versity of California at San Diego, David Clements, the University of New South

Wales, Xiren Cao of the Hong Kong University of Science and Technology, Gra-

ham C. Goodwin, the University of Newcastle, Chang Chieh Hang and Tong-Heng

Lee of the National University of Singapore, David Hill of the Australian National

University, Jie Huang, the Chinese University of Hong Kong, Petar V. Kokotovic,

University of California at Santa Barbara, Frank F. Lewis of University of Texas

at Arlington, Iven Mareels of the University of Melbourne, Ian Postlethwaite of

Leicester University, Robert N. Shorten of the National University of Ireland at

Maynooth, Mark W. Spong, University of Texas at Dallas, Roberto Tempo of Po-

litecnico di Torino, and Xiaohua Xia of the University of Pretoria.

For the final completion of the book, we gratefully acknowledge the unreserved

support, constructive comments, and fruitful discussions from Hai Lin, Rui Li, Qijin

Liu, Yupeng Qiao, Cheng Xiang, and Bugong Xu.

Much appreciation goes to our individual former and current students Trung T.

Han, Yuping Peng, Thanh L. Vu, Jun Wu, Jiandong Xiong, and Zhengui Xue for



Financial Support xi

the time and effort in proofreading and providing numerous useful comments and

suggestions to improve the readability of the book.

We are also grateful to Anthony Doyle, Senior Editor of Springer-Verlag, for his

kind invitation in publishing the book. Special thanks go to Oliver Jackson, Editor

of Springer-Verlag London, and Charlotte Cross, Editorial Assistant of Springer-

Verlag London, for their reliable help and patience in the process of publishing the

book.

This book is the crystallization of our ten-year long endeavors in the hybrid sys-

tems and the rich experience in convergence, divergence, and chaos with much joys,

gratitude, and friendship in the long journey.

Financial Support

We acknowledge the financial support from the National Natural Science Foun-

dation of China under Grants 60925013, 60736024, U0735003, and 60674042,

from the National Basic Research Program of China (973 Program) under Grant

2011CB707005, and from the Program for New Century Excellent Talents in Uni-

versities of China under Grant NCET-07-0303.

Zhendong Sun

Shuzhi Sam Ge

Wushan, Guangzhou, China

Shahe, Chengdu, China/Kent Ridge Crescent, Singapore



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Switched Dynamical Systems . . . . . . . . . . . . . . . . . . . . 1

1.2 Stability and Stabilizability of Switched Systems . . . . . . . . . . 4

1.2.1 Guaranteed Stability Under Arbitrary Switching . . . . . . 5

1.2.2 Dwell-Time Stability . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Autonomous Stability Under State-Driven Switching . . . . 8

1.2.4 Stochastic Stabilities Under Random Switching . . . . . . 9

1.2.5 Stabilizing Switching Design . . . . . . . . . . . . . . . . 11

1.3 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Arbitrary Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Switched Nonlinear Systems . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Common Lyapunov Functions . . . . . . . . . . . . . . . . 20

2.2.2 Converse Lyapunov Theorem . . . . . . . . . . . . . . . . 23

2.3 Switched Linear Systems . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Relaxed System Frameworks . . . . . . . . . . . . . . . . 26

2.3.2 Universal Lyapunov Functions . . . . . . . . . . . . . . . 30

2.3.3 Algebraic Criteria . . . . . . . . . . . . . . . . . . . . . . 35

2.3.4 Extended Coordinate Transformation and Set Invariance . . 41

2.3.5 Triangularizable Systems . . . . . . . . . . . . . . . . . . 48

2.4 Computational Issues . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Approximating the Spectral Radius . . . . . . . . . . . . . 52

2.4.2 An Invariant Set Approach . . . . . . . . . . . . . . . . . 62

2.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Constrained Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Stochastic Stability . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.2 Definitions and Preliminaries . . . . . . . . . . . . . . . . 72

3.2.3 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



xiv Contents

3.3 Piecewise Linear Systems . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.2 Piecewise Quadratic Lyapunov Function Approach . . . . . 88

3.3.3 Surface Lyapunov Approach . . . . . . . . . . . . . . . . 92

3.3.4 Transition Analysis: A Graphic Approach . . . . . . . . . 100

3.3.5 Conewise Linear Systems . . . . . . . . . . . . . . . . . . 105

3.4 Dwell-time Switching . . . . . . . . . . . . . . . . . . . . . . . . 112

3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4.2 Homogeneous Polynomial Lyapunov Approach . . . . . . 119

3.4.3 Combined Switching . . . . . . . . . . . . . . . . . . . . 122

3.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Designed Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2 Stabilization via Time-Driven Switching . . . . . . . . . . . . . . 128

4.3 Stabilization via State-Feedback Switching: The Lyapunov

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3.1 Converse Lyapunov Theorems . . . . . . . . . . . . . . . 134

4.3.2 Nonconvexity of Lyapunov Functions . . . . . . . . . . . . 140

4.3.3 Min Quadratic Lyapunov Functions: An Optimization

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.3.4 Well-Definedness of State-Feedback Stabilizing Law . . . . 155

4.4 Stabilization via Mixed-Driven Switching: Aggregation and

Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.1 Pathwise State-Feedback Switching . . . . . . . . . . . . . 157

4.4.2 Computational Algorithms . . . . . . . . . . . . . . . . . 164

4.5 Stabilization via Mixed-Driven Switching: Robustness Analysis . . 170

4.5.1 Distance Between Switching Signals . . . . . . . . . . . . 171

4.5.2 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . 177

4.5.3 Examples and Simulations . . . . . . . . . . . . . . . . . . 183

4.6 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Connections and Implications . . . . . . . . . . . . . . . . . . . . . . 197

5.1 Absolute Stability for Planar Lur’e Systems . . . . . . . . . . . . 197

5.1.1 Guaranteed Stability in the Plane . . . . . . . . . . . . . . 198

5.1.2 Application to Absolute Stability of Planar Lur’e Systems . 203

5.2 Adaptive Control via Supervisory Switching . . . . . . . . . . . . 205

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.2.2 Estimator-based Supervisory Switching . . . . . . . . . . . 208

5.2.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.3 Stability Analysis of Fuzzy Systems via Piecewise Switching . . . 215

5.3.1 Piecewise Switched Linear Systems . . . . . . . . . . . . . 216

5.3.2 Stability Analysis of T–S Fuzzy Systems . . . . . . . . . . 218

5.4 Consensus of Multiagent Systems with Proximity Graphs . . . . . 221

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.4.2 A Consensus Criterion . . . . . . . . . . . . . . . . . . . . 223

5.4.3 A Verifiable Criterion . . . . . . . . . . . . . . . . . . . . 225



Contents xv

5.5 Stabilizing Design of Controllable Switched Linear Systems . . . . 231

5.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 231

5.5.2 Multilinear Feedback Design . . . . . . . . . . . . . . . . 231

5.6 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . 236

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251



List of Symbols

a
def= b Defines a to be b

iff If and only if

s.t. Such that

w.r.t. With respect to

a.s. Almost surely

R The field of real numbers

C The field of complex numbers

N The set of integers

R+ The set of positive real numbers

R+ The set of nonnegative real numbers

N+ The set of natural numbers

N+ The set of nonnegative integers

Rn The set of n-dimensional real vectors

Rn×m The set of n × m-dimensional real matrices

z∗ The conjugate transpose of complex number z√
−1 The imaginary unit

⌊a⌋ The largest integer less than or equal to a

⌈a⌉ The smallest integer larger than or equal to a

I (In) The identity matrix (of dimension n × n)

xT or AT The transpose of vector x or matrix A

A−1 The inverse of matrix A

A+ The Moore-Penrose pseudo-inverse of matrix A

[A1,A2] The matrix commutator A1A2 − A2A1

A ⊗ B Kronecker product of matrices A and B

A ⊕ B Kronecker sum of matrices A and B

P > 0 (P ≥ 0) Matrix P is Hermitian and positive (semi-)definite

P < 0 (P ≤ 0) Matrix P is Hermitian and negative (semi-)definite

x ≻ y (x � y) x is entrywise greater than (not less than) y

detA The determinant of a matrix A

tr(A) The trace of a matrix A

disc(A) The discriminant of a matrix A

xvii



xviii List of Symbols

λ(A) The set of eigenvalues of A

λmax(A) The maximum eigenvalue of a real symmetric matrix A

λmin(A) The minimum eigenvalue of a real symmetric matrix A

ρ(A) The spectral radius of a matrix set A

xi , x(i) The ith element of a vector x

A(i, j), Aij The ij th element of a matrix A

|p| The length of a switching path p

|x| The norm of a vector x

‖A‖ The induced norm of matrix A

|x|p The ℓp norm of vector x

‖A‖p The induced lp-norm of a matrix A

μ|·| The matrix measure induced by a norm | · |
ImA The image of an operator/matrix A

Eξ δ The δth-order moment of a random variable ξ

S = {x, y, . . .} The set S with quantities x, y, etc.

μS The set {μx : x ∈ S}
#S The cardinality of a set S

maxS The maximum element of a set S

minS The minimum element of a set S

supS The smallest number that is larger than or equal to each element of

a set S

infS The largest number that is smaller than or equal to each element of

a set S

S1 − S2 The set {s ∈ S1 : s �∈ S2}
arg maxS The index of the maximum element of an ordered set S

arg minS The index of the minimum element of an ordered set S

∅ The empty set

measΩ The Lebesgue measure of a set Ω in Rn

Ωo The interior of a set Ω

coΩ The convex hull of a set Ω

Br The ball centered at the origin with radius r

Hr The sphere centered at the origin with radius r

mod(a, b) The remainder of a divided by b

sgn(·) The signum function

sat(·) The saturation function with unit limits

lims↑t f (s) The limit from the left of a function f (·) at t

lims↓t f (s) The limit from the right of a function f (·) at t

Ck The set of functions with continuous kth-order derivative

D+V The upper Dini derivative of a function V

class K The set of continuous and strictly increasing functions that vanish

at zero

class K∞ The set of unbounded class K functions

class K L The set of functions β: R+ × R+ �→ R+ with β(·, t) ∈ K ∀t ≥ 0

and limt→∞ β(r, t) = 0 ∀r ≥ 0

MFΓ The Minkowski function of a region Γ



List of Symbols xix

M The index set {1,2, . . . ,m} of the discrete state

T The time space

Ts The set {t ∈ T : t ≥ s}
[a, b) The time interval {t ∈ T :a ≤ t < b}
σ The switching signal of the switched system
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Chapter 1

Introduction

1.1 Switched Dynamical Systems

Generally speaking, a switched dynamical system is a dynamical system in which

switching plays a nontrivial role. More specifically, a switched dynamical system is

a two-level hybrid system with the lower level governed by a set of modes described

by differential and/or difference equations and the upper level a coordinator that

orchestrates the switching among the modes. Clearly, the system admits continuous

states that take values from a vector space and discrete states that take values from a

discrete index set. The interaction between the continuous and discrete states makes

switched dynamical systems widely representative and complicatedly behaved.

A forced-free switched dynamical system is mathematically described by

x+(t) = fσ

(

x(t)
)

, (1.1)

where x ∈ Rn is the continuous state, σ is the discrete state taking values from

an index set M
def= {1, . . . ,m}, and fk, k ∈ M , are vector fields. x+ denotes the

derivative operator in continuous time (i.e., x+(t) = d
dt

x(t)) and the shift forward

operator in discrete time (i.e., x+(t)= x(t + 1)).

It is clear that the continuous state space is the n-dimensional Euclidean space,

and the discrete state space is the index set M with a finite number of elements. The

time space is either the set of real numbers in continuous time or the set of integers

in discrete time. According to the continuous or discrete nature of the time space,

the switched system is said to be continuous-time or discrete-time. As there are m

subsystems, the system is also termed as m-form switched system.

In the system description, each individual mode

x+(t)= fk

(

x(t)
)

(1.2)

for k ∈M is said to be a subsystem of the switched system. The discrete dynamics

represented by the switching coordinator is usually called the supervisor. The super-

visor produces the discrete state σ , also known as the switching signal or switching
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law. If σ(t)= i, then we say that the ith subsystem is active at time t . A character-

istic of a switched system is that at a time instant there is one (and only one) active

subsystem. Another characteristic is that the continuous state evolves continuously,

that is, the state does not “jump” in an impulsive way.

As we treat continuous-time systems and discrete-time systems in a unified

framework, the time space, denoted by T , may either be the real set (T = R) or

the integer set (T = N). For a real number s, let Ts be the set of times that are

greater than or equal to s, i.e., Ts = {t ∈ T : t ≥ s}. For two real numbers t1 and t2
with t1 < t2, the time interval [t1, t2) should be understood as

[t1, t2)= {t ∈ T : t ≥ t1, t < t2}.

Other types of time intervals should be understood in a similar manner. The mea-

sure of [t1, t2) is the length t2 − t1 in continuous time and the cardinality #[t1, t2)
in discrete time. For notational convenience, we take any function defined over a

discrete time set to be sufficiently smooth. For a piecewise continuous function χ

defined over a time interval [t1, t2) and for a time t ∈ (t1, t2), define

χ(t+)= lim
s↓t

χ(s), χ(t−)= lim
s↑t

χ(s)

in continuous time and

χ(t+)= χ(t + 1), χ(t−)= χ(t − 1)

in discrete time.

As can be seen from the system description, when subsystems (1.2) for k =
1, . . . ,m are given, the dynamical behavior of the switched system is decided by

the switching signal. In the literature, a switching signal is also termed as a switch-

ing path or a switching law. For clarity, in this book we distinguish the terminologies

as follows.

A switching path is a right-continuous function defined over a finite time interval

taking values from the index set, M . Given a time interval [t0, tf ) with −∞< t0 <

tf < +∞, a switching path p defined over the interval is denoted p[t0,tf ). For a

switching path p[t0,tf ), time t ∈ (t0, tf ) is said to be a jump time instant if

σ(t−) �= σ(t).

Suppose that the ordered sequence of jump instants in (t0, tf ) is t1 < t2 < t3 < · · · .
Then, the ordered sequence t0, t1, t2, . . . is said to be the switching time sequence of

σ over [t0, tf ). Similarly, the ordered discrete state sequence σ(t0), σ (t1), σ (t2), . . .

is said to be the switching index sequence of σ over [t0, tf ). The sequence of ordered

pairs

(t0, i0), (t1, i1), . . . , (ts, is)

is said to be the switching sequence of σ over [t0, tf ). The switching path is said to

be well defined if there are a finite number of jump times within the interval. The set

of well-defined switching paths defined over [t0, tf ) is denoted by S[t0,tf ).
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A switching signal is a function defined over an infinite time horizon taking val-

ues from M . Suppose that θ is a switching signal defined over [t0,+∞), and [s1, s2)

is a finite-length subinterval of [t0,+∞), then, a switching path p[s1,s2) is said to be

a subpath of θ if p(t)= θ(t) for all t ∈ [s1, s2). The notion of switching time/index

sequences could be defined in the same way as for the switching path. A switch-

ing signal is said to be well defined if all its subpaths are well defined. We denote

by θ[t0,+∞) the switching signal θ defined over [t0,+∞). The set of well-defined

switching signals defined over [t0,+∞) is denoted by S[t0,+∞) or S in short when

t0 = 0.

Given a function pair (x(·), θ(·)) over [t0, t1), where x : [t0, t1) �→ Rn is abso-

lutely continuous, and θ : [t0, t1) �→M is piecewise constant. The pair (x(·), θ(·)) is

said to be a solution of system (1.1) over [t0, t1) if for almost all t ∈ [t0, t1), we have

x+(t)= fθ(t)

(

x(t)
)

.

The term “for almost all t ∈ [t0, t1)” means that “for all t ∈ [t0, t1) except for possi-

bly a zero-measure subset”. The solution over other types of time intervals, such as

[t0, t1] and [t0,+∞), should be understood in the same way.

Switched system (1.1) is said to be (globally) well defined if for any θ ∈ S[0,+∞)

and x0 ∈ Rn, there exists a unique absolutely continuous function x on [0,+∞)

with x(0)= x0 such that pair (x(·), θ(·)) is a solution of system (1.1) over [0,+∞).

It is clear that, when each subsystem satisfies the Lipschitz condition, i.e.,

lim sup
x1 �=x2

∣

∣fk(x1)− fk(x2)
∣

∣/|x1 − x2|<+∞, k ∈M,

then, the switched system is always well defined. Throughout the book, we assume

that the Lipschitz condition holds for the subsystems, and thus the well-definedness

of the switched system is guaranteed.

For the switched system, a switching law is a switching rule that generates a

switching path or a switching signal for a set of initial configurations. Throughout

the book, we consider switching laws in the form

σ(t)= ϕ
(

t, σ (t−), x(t)
)

, (1.3)

where ϕ is a piecewise constant function taking values from M . A function x(·)
is said to be a (continuous) state trajectory of system (1.1) via the switching law

(1.3) over [t0, t1) if both equations (1.1) and (1.3) hold for almost all t ∈ [t0, t1).
The corresponding switching path/signal σ is said to be generated by the switching

law (1.3) along x(·) for initial state x0 over [t0, t1).
A switching law is said to be well defined if it generates a well-defined switch-

ing signal for any initial state. As a result, for switched system (1.1), a well-defined

switching law can be represented by the set {θx : x ∈ Rn}, where θx is the well-

defined switching signal generated by the switching law with initial state x. An-

other implication is that the switched system admits a unique solution for any initial

configuration when both the switched system and the switching law are well de-

fined. For notational convenience, the continuous state trajectory will be denoted by

φ(·; t0, x0, σ ) or φ(·;x0, σ ) in short when t0 = 0.
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1.2 Stability and Stabilizability of Switched Systems

When the dynamics of the subsystems are known, the behaviors of the switched

system are totally decided by the switching mechanism. A notable and attractive

feature of switched systems is that the switched system might produce complex and

diverse behaviors, even with simple and fixed subsystems. In this book, we aim to

develop stability theory for switched dynamical systems under various switching

mechanisms. To this end, we need to introduce the concepts of stability and stabi-

lizability for switched dynamical systems.

Let Υ = {Λx : x ∈ Rn}, where Λx is a nonempty subset of S , the set of well-

defined switching signals. The set, called the feasible set of switching signals, as-

signs each initial state a set of switching signals. This set induces a feasible set of

continuous state trajectories defined by {Γx : x ∈ Rn}, where Γx is the set of state

trajectories with initial state x and switching signals in Λx , i.e.,

Γx =
{

φ(·;0, x, θ) : θ ∈Λx
}

.

To proceed, we need to introduce some mathematical notation. A real-valued

function α : R+ �→R+ is said to be of class K if it is continuous, strictly increasing,

and α(0) = 0. If in addition, α is unbounded, then it is said to be of class K∞.

A function β : R+ ×R+ �→R+ is said to be of class K L if β(·, t) is of class K for

each fixed t ≥ 0 and limt→+∞ β(r, t)= 0 for each fixed r ≥ 0.

Definition 1.1 (Stability) Suppose that Υ = {Λx : x ∈ Rn} is a feasible set of

switching signals. Switched system (1.1) is said to be

(1) stable w.r.t. Υ if there exist a class K function ζ and a positive real number δ

such that

∣

∣φ(t;0, x0, θ)
∣

∣≤ ζ
(

|x0|
)

∀t ∈ [0,+∞), x0 ∈ Bδ, θ ∈Λx0

(2) asymptotically stable w.r.t. Υ if there exists a class K L function ξ such that

∣

∣φ(t;0, x0, θ)
∣

∣≤ ξ
(

|x0|, t
)

∀t ∈ [0,+∞), x0 ∈Rn, θ ∈Λx0

and

(3) exponentially stable w.r.t. Υ if there exist positive real numbers α and β such

that

∣

∣φ(t;0, x0, θ)
∣

∣≤ βe−αt |x0| ∀t ∈ [0,+∞), x0 ∈Rn, θ ∈Λx0

Note that the stability is uniform w.r.t. switching signals and that asymp-

totic/exponential stability is defined in a global fashion.

Definition 1.2 (Stabilizability) Suppose that Υ = {Λx : x ∈Rn} is a feasible set of

switching signals. Switched system (1.1) is said to be
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(1) stabilizable w.r.t. Υ if there exist a class K function ζ , a positive real number δ,

and a switching law {θx : x ∈Rn} with θx ∈Λx such that

∣

∣φ
(

t;0, x0, θ
x0

)
∣

∣≤ ζ
(

|x0|
)

∀t ∈ [0,+∞), x0 ∈ Bδ

(2) asymptotically stabilizable w.r.t. Υ if there exist a class K L function ξ and a

switching law {θx : x ∈Rn} with θx ∈Λx such that

∣

∣φ
(

t;0, x0, θ
x0

)∣

∣≤ ξ
(

|x0|, t
)

∀t ∈ [0,+∞), x0 ∈Rn

and

(3) exponentially stabilizable w.r.t. Υ if there exist positive real numbers α and β

and a switching law {θx : x ∈Rn} with θx ∈Λx such that

∣

∣φ
(

t;0, x0, θ
x0

)∣

∣≤ βe−αt |x0| ∀t ∈ [0,+∞), x0 ∈Rn

When the subsystem dynamics are fixed, the stability property is totally deter-

mined by the feasible set of switching signals. In particular, if Υ1 ⊇ Υ2, then stability

w.r.t. Υ1 implies stability w.r.t. Υ2, and stabilizability w.r.t. Υ2 implies stabilizability

w.r.t. Υ1.

1.2.1 Guaranteed Stability Under Arbitrary Switching

When the supervisory mechanism is totally blind, that is, switching among the sub-

systems can occur in an arbitrary way, then the stability is said to be guaranteed

stability. The feasible set of switching signals is given by

Υas =
{

Λx : x ∈Rn
}

, Λx = S, ∀x ∈Rn. (1.4)

As the feasible set is the largest one among all the feasible sets, guaranteed stability

is the most strict among various stability notions. In fact, as will be revealed later,

it is robust against any arbitrary switching mechanism. In particular, guaranteed

stability implies stability of each subsystem. The converse is not necessarily true, as

exhibited by the following example.

Example 1.1 Suppose that we have two planar linear subsystems

ẋ =
[

0 1

−1 −1

]

x

and

ẋ =
[

0 1

−1− 3a −1− a

]

x,

where a is a nonnegative real parameter. Clearly, both subsystems are exponentially

stable and in a companion form. When a = 0, the two subsystems coincide, and
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Fig. 1.1 Phase portraits and switching surfaces

the switched system is guaranteed exponentially stable. When a ≈ 36.512, the

switched system is guaranteed marginally stable (i.e., stable but not asymptoti-

cally stable). When a > 36.512, the switched system is not guaranteed stable.

Figure 1.1 depicts the phase portraits (all initiated from x0 = [−1/3,1]T ) of the

switched system under the most destabilizing switching law that is shown in the

upper left, which produces worst state trajectories that diverge as fast as possi-

ble.

1.2.2 Dwell-Time Stability

A switching signal is said to be with dwell time τ if ti+1 − ti ≥ τ for any two

consecutive jump times ti and ti+1. Let Sτ be the set of well-defined switching

signals with dwell time τ . It is a clear that S = S0 ⊇ Sτ1
⊇ Sτ2

for 0≤ τ1 ≤ τ2, and

the subset relations are strict when 0 < τ1 < τ2.

The set of arbitrary switching signals, S , allows the supervisor to switch arbitrar-

ily fast even without a uniform (positive) dwell time between the switching times.
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For instance, the switching signal

θ(t)=
{

1 if t ∈ [k, k + 1
k+2

), k = 0,1,2, . . . ,

2 otherwise

is well defined, but the length of the switching duration [k, k + 1
k+2

) approaches

zero as k approaches infinity. It is clear that this switching signal belongs to S0, but

it does not belong to any Sτ when τ > 0.

Fix a nonnegative τ . Let the feasible set of switching signals be

Υτ =
{

Λx : x ∈Rn
}

, Λx = Sτ , ∀x ∈Rn.

The stability of the switched system w.r.t. Υτ is termed to be τ -dwell-time stability.

It is clear that a necessary condition for τ -dwell-time stability is that each subsys-

tem is stable. The converse is partly true in that, if each subsystem is exponentially

stable, then the switched system is also τ -dwell-time exponentially stable for suffi-

ciently large τ . Indeed, exponential stability of the subsystems implies the existence

of a time T > 0 such that

∣

∣φi(t;x0)
∣

∣≤ 1

2
|x0| ∀t ∈ TT , x0 ∈Rn,

where φi(·;x0) denotes the state trajectory of the ith subsystem with x(0)= x0. It

can be seen that the switched system is T -dwell-time exponentially stable. However,

the assertion is not necessarily true for marginal or asymptotic stability. For instance,

for the planar switched linear system with two marginally stable subsystems

ẋ =
[

0 1

−2 0

]

x

and

ẋ =
[

0 1

−1/2 0

]

x,

the switched system is unstable if we take the first subsystem when the state is in the

second and fourth quadrants, and take the second subsystem otherwise. The lower

left picture of Fig. 1.2 depicts a sample phase portrait of the switched system under

the switching law. As the orbits for each subsystem are periodic, by incorporating

one or more periods into each switching duration, the state keeps diverging, see the

lower right picture of Fig. 1.2, where a period is incorporated in each switching

duration. This implies that, for any τ > 0, the feasible set Υτ contains destabilizing

switching signals.

According to the above analysis, for dwell-time stability, the problem is to find

a dwell time τ as small as possible such that the switched system is τ -dwell-time

stable.
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Fig. 1.2 Phase portraits of the switched marginally stable system

1.2.3 Autonomous Stability Under State-Driven Switching

Let γ : Rn �→ M be a piecewise constant function mapping the continuous state

space into the discrete state space. Its inverse map, denoted γ−1, is defined so that

γ (γ−1(i)) = i for every i ∈ Imγ , the image set of γ . Map γ induces a switching

law given by

σ(t)= γ
(

x(t)
)

, (1.5)

which is state driven. When the switching law is well defined, it generates a fea-

sible set of switching signals, denoted Υ γ . The switched system is said to be

γ -autonomously stable if it is stable w.r.t. the feasible set Υ γ .

For a switched system with a state-driven switching, switches occur au-

tonomously as the continuous state evolves. For an initial state, the switching

law might generate a unique switching signal when it is well defined, or a dead-

lock might happen that prevents the switching from well-defined. Therefore, well-

definedness is an important issue to be addressed. Another difficulty is the need to

extend the solution concept to cope with possible sliding modes. While we will not

go into details of the issues in the book, these indicate that the system behavior

might be quite complex.
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When each γ−1(i) is a convex polyhedron (or the empty set) and each subsystem

is affine, the switched system is known to be a piecewise affine system, which is

usually described by

x+(t)=Aix(t)+ bi, Cix(t)� di, (1.6)

where Ai, bi,Ci , and di are constant matrices or vectors of appropriate dimensions,

respectively, and {x : Cix � di} = γ−1(i), i ∈M . When all bi ’s vanish, the system

is known as a piecewise linear system. If, in addition, each γ−1(i) is a cone, then

the system is a conewise linear system.

It is clear that the stability properties of a piecewise affine system might not be

consistent with that of the subsystems. One difficulty for stability analysis is to make

clear the transition relationship among the polyhedral cells. As an example, consider

the discrete-time planar four-form piecewise linear system given by

x(t + 1)=Aix(t), x(t) ∈Ωi, i = 1, . . . ,4,

where Ωi is the ith quadrant for i = 1, . . . ,4, and

A1 =
[

−0.5 −1

−1 −0.5

]

, A2 =
[

−0.3 0.2

−0.2 0.3

]

A3 =
[

−1 −0.5

0.5 0.5

]

, A4 =
[

−0.8 0.5

0.5 −0.6

]

.

It can be seen that any (nonorigin) state in the first quadrant will enter into the

third quadrant, then the fourth, then the second, and then the first once again. As

a result, the discrete state is periodic with period 1,3,4,2. While not all the sub-

systems are stable, the transition matrix over a period, A2A4A3A1, is Schur stable.

Therefore, the piecewise linear system is asymptotically stable. Figure 1.3 shows

the motions of the discrete and continuous states. The continuous state converges to

the origin very slowly.

1.2.4 Stochastic Stabilities Under Random Switching

A random switching signal is a time-driven switching signal that fluctuates irregu-

larly but obeys a distribution stochastically. Even when all the subsystems are deter-

ministic, a random switching signal makes the switched system random in nature,

and the stability notions have to be defined in a stochastic manner. A well-known

feasible set of random switching signals is the Markov jump where switches be-

tween different subsystems are governed by a finite-state Markov process/chain.

When the subsystems are linear and the switching is Markov jump, the switched

system is known to be a (Markovian) jump linear system.

The stability properties of jump linear systems are much involved as there exist

several stochastic stability concepts that differ in conservativeness as well as ease
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Fig. 1.3 Motions of discrete state (left) and continuous state (right)

of testability. The most important stability notions are mean-square stability and

almost sure stability. While the detailed definitions will be presented in Sect. 3.2,

mean square stability is the asymptotic convergence to zero of the second moment

of the state norm, and almost sure stability means that the sample trajectory of the

state converges to zero with probability one. To exhibit the difference between the

stabilities, examine the simple scalar two-form jump linear system where A1 =−1

and A2 = 0.5, and the switching signal is a Markov stochastic process with the

stationary transition probability

Pr
(

σ(t + h)= j |σ(t)= i
)

= h+ o(h), i, j = 1,2, i �= j.

The state solution can be expressed by

x(t)= eA1t1+A2t2x0 = e−t1+0.5t2x0,

where t1 and t2 are the lengths of durations over [0, t] at the first and second sub-

systems, respectively. Applying the law of large numbers, we have

lim
t→+∞

t1

t
= lim

t→+∞
t2

t
= 1

2
a.s.
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It follows that

lim
t→+∞

∣

∣x(t)
∣

∣= 0 a.s.

On the other hand, it can be seen that

E
{

x2(t)
}

=
2

∑

i=1

E
{

x2(t)1{σ(t)=i}
}

,

where 1{·} is the Dirac measure. Denote Zi(t)=E{x2(t)1{σ(t)=i}}, i = 1,2; simple

calculation yields

d

dt
Z1(t) = −3Z1(t)+Z2(t),

d

dt
Z2(t) = Z1(t),

which is unstable. Therefore, the square moment is diverging with probability one,

and the system is not mean square stable.

1.2.5 Stabilizing Switching Design

By Definition 1.2, a switched system is (asymptotically/exponentially) stabilizable

if there is a feasible switching law that steers the system (asymptotically/expo-

nentially) stable. Such a switching law is said to be a stabilizing switching law for

the switched system. It is clear that, apart from formulating stabilizability criteria

that characterize the existence of a stabilizing switching law, a more important issue

is to explicitly calculate a stabilizing switching law. The latter is known to be the

problem of stabilizing switching design.

When the set of feasible switching signals is given by Υas as defined in (1.4), the

choice of a switching law is unconstrained, and the designer could take any switch-

ing mechanism into account. Otherwise, the switching design is constrained. In par-

ticular, if the switching law has to be initial-state-independent, i.e., θx = θy for all

x and y, then the stabilizability is said to be consistent stabilizability; if the switch-

ing law has to be time-independent, i.e., y = φ(s;0, x, θx) =⇒ θy(t) = θx(s + t)

∀t ∈ T0, then the stabilizability is said to be spatial stabilizability; and if the switch-

ing law has to be with a preassigned dwell time, then the stabilizability is said to be

dwell-time stabilizability. As a comparison among the stabilizabilities, we examine

the planar two-form continuous-time switched linear system with subsystems

A1 =
[

2 0

0 −1

]

, A2 =
[

1 1

−1 1

]

.
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While both subsystems are unstable, the switching law

σ(t)=
{

1 if x1(t)= 0,

2 otherwise
(1.7)

steers the switched system exponentially stable. Therefore, the switched system is

spatially stabilizable. On the other hand, the system is not consistently stabilizable,

due to the fact that the sum of the subsystem eigenvalues is greater than zero (cf.

[216]). As for dwell-time stabilizability, it can be seen that, for any preassigned

dwell time τ , there is a stabilizing switching law that admits the dwell time. Indeed,

this can be achieved by modifying the switching law to be

σ(t)=
{

1 if t ∈ Tτ & x1(t)= 0,

2 otherwise.
(1.8)

Note that the switching laws are not practically implementable due to the singular

switching condition x1(t)= 0. This brings the problem of robust switching design,

which will be addressed in Chap. 4.

1.3 Organization of the Book

The book contains five chapters. Besides this short Introduction, there are four major

chapters, which are briefly summarized as follows.

Chapter 2 focuses on stability analysis of switched dynamical systems un-

der arbitrary switching. For general switched nonlinear systems, we establish the

equivalence between marginal/asymptotic stability and the existence of a common

weak/strong Lyapunov function. This reveals that the common Lyapunov approach

is with full capacity in characterizing the guaranteed stability. For switched linear

systems where the subsystems are linear, we further investigate the classes of func-

tions that are universal for the stability. While quadratic functions are not universal

as for stability of linear systems, we show that either piecewise linear/quadratic

functions or norms are universal, which exhibit that the problem of stability is “con-

vex” in nature. Furthermore, the well-known stability notions, such as attractivity,

asymptotic stability, and exponential stability, are shown to be equivalent to each

other. The equivalences, as in the linear stability theory, demonstrate that the stabil-

ity is relatively simple in classification. Nevertheless, the verification of stability is

by no means simple. Indeed, if we connect the absolute stability of a Lur’e system,

which is notoriously difficult and still largely open though numerous achievements

have been made during the past seventy years, with the guaranteed stability of the

extreme switched linear system, then it can be seen that the former can be seen as a

special case of the latter. For discrete-time switched linear systems, it has been made

clear that the largest Lyapunov exponent is equal to the joint/generalized spectral ra-

dius, and asymptotic stability implies that the spectral radius is less than one. While
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the characteristic is insightful and elegant, the computation of the spectral radius is

usually very hard. For this, we introduce a sum-of-squares technique approximating

the spectral radius using high-order homogeneous polynomials as common Lya-

punov functions. For a continuous-time system, we prove that asymptotic stability

is equivalent to the negativeness of the least measure of the (subsystem) matrix set,

which could be seen as a generalization of the largest real part of a single matrix.

We also discuss the possibility of converting a switched system into a quasi-normal

form by means of a common and possibly nonsquare coordinate transformation.

In Chap. 3, we investigate stabilities of switched linear systems under constrained

switching. In the first part, we focus on stochastic stabilities of jump linear systems.

Several stability notions are introduced including moment stability, stochastic stabil-

ity, and almost sure stability. It is revealed that mean square asymptotic/exponential

stability is equivalent to stochastic stability, which amounts to the feasibility of a

coupled Lyapunov equation. A verifiable sufficient and necessary condition is also

presented for mean square stability. For almost sure exponential stability, a suffi-

cient and necessary condition is the norm contractivity of the state transition matrix

within a finite number of switches. Though intractable, this exhibits that almost sure

stability could be seen as stability of the averaged system.

In the second part of Chap. 3, we address the autonomous stability of piecewise

affine systems. The piecewise quadratic Lyapunov approach, the surface Lyapunov

approach, and the transition graph approach are introduced. The piecewise quadratic

Lyapunov approach could provide less conservative exponential stability criteria at

the cost of high computational burden. The surface Lyapunov approach, on the other

hand, could reduce the computational burden by searching the Lyapunov functions

over the switching surfaces instead of the total state space. It yields tractable asymp-

totic stability criteria for continuous-time piecewise linear systems with three or

less switching surfaces. The transition graph approach provides an effective method

for attractivity analysis with the aid of graphic decomposition, which is applicable

to both discrete-time and continuous-time systems. We also address stabilities of

conewise linear systems and present a constructive procedure for stability verifica-

tion.

The third part of Chap. 3 is devoted to dwell-time stability and stabilizability.

We show that dwell-time stability implies the existence of a dwell-time Lyapunov

function. With the help of the sum-of-squares technique, we present a homogeneous

polynomial Lyapunov function approach for calculating an upper bound of the least

stable dwell time. For dwell-time stabilizability, the concept of ǫ-robust dwell time

is introduced to keep a balance between the quality of the switching signal and the

performance of the continuous state. A new combined switching strategy is also

developed to further enlarge the dwell time without deteriorating the system perfor-

mance.

The object of Chap. 4 is to develop a design scheme for the problem of stabiliza-

tion by means of switching. We establish that a switched nonlinear system is asymp-

totically stabilizable iff it admits a smooth Lyapunov function. However, even for

a planar switched linear system, a convex Lyapunov function does not necessarily

exist. For this, the set of composite quadratic Lyapunov functions is examined from
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the viewpoint of optimal switching with quadratic cost indices, and we prove that

the function set is universal in the sense that each asymptotically stabilizable system

admits a Lyapunov function in the set. To further address the stabilization problem

in a constructive manner, we propose a new switching mechanism named pathwise

state-feedback switching, which concatenates a set of pre-assigned switching paths

in a state-feedback way. We develop a computational procedure for calculating a

stabilizing path-wise state-feedback switching law for an asymptotically stabilizable

switched linear system. To address the robustness of the switching law, we define

a (relative) distance between two switching signals and prove that the closed-loop

system is robust against structural/unstructural/switching perturbations.

The last chapter, Chap. 5, provides a broader view of switched dynamical systems

by connecting them with several well-known schemes in the system and control lit-

erature. First, for a planar two-form switched linear system, a phase-plane-based

stability criterion is derived, and it is applied to the absolute stability of planar Lur’e

systems. Second, we introduce a supervisory switching scheme for adaptive control

of linear processes with large-scale parameter uncertainties. The scheme consists

of a multicontroller, a multiestimator, a monitoring signal generator, and a switch-

ing logic. When properly designed, all the signals in the closed-loop system are

bounded, while the output is asymptotically convergent. Third, we conduct stability

analysis for Takagi–Sugeno (T–S) fuzzy systems. To this end, we introduce a frame-

work of piecewise switched linear systems that combine and extend both piecewise

affine systems and switched linear systems. A stability criterion for the system is

presented with the help of the piecewise quadratic Lyapunov method. By aggregat-

ing a T–S fuzzy system into a piecewise switched linear system, a stability crite-

rion is ready to obtain. Fourth, we examine the problem of consensus for a class

of multiagent systems with proximity graphs and linear control protocols. We show

that the problem is in fact a special stability problem for a piecewise linear system,

which could be addressed by means of graph transition analysis. Finally, for control-

lable switched linear systems, a multilinear feedback design approach is proposed

to tackle the stabilization problem. The main idea is to associate a set of candidate

linear controllers with each subsystem so that the extended switched system is sta-

bilizable. By utilizing the path-wise state-feedback switching design diagram, the

problem of stabilization is solved in a constructive manner.

1.4 Notes and References

Switching is a phenomenon that widely exists in many real-world processes where

logic elements interact with continuous dynamics. The study of switched dynamical

systems takes root in modeling, control, and optimization for complex dynamical

systems. First, switched dynamical systems could represent or approximately repre-

sent many practical systems, such as power electronics, gene networks, and intelli-

gent softwares, to list a few. Second, switching control is a powerful design method-

ology widely used in dealing with highly complex systems including automotive

control, flight control, and networked control. Third, even for systems which could
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be addressed by conventional methods/tools, the switching scheme provides an al-

ternative diagram that could achieve the optimization in a better manner. Fourth,

switched dynamical systems form a framework that extends both the conventional

nonlinear (continuous) systems and discrete event systems. Therefore, it is an inte-

gration of the two types of dynamical systems.

The study of switched systems could be traced back to the 1960s when a series

of works were devoted to optimality of switched system with either stochastic or

autonomous switching [68, 240, 241, 262]. In the 1990s, a more general scheme

of hybrid systems received increasing attention from both the control and computer

communities. While a commonly acceptable definition of a hybrid system is still

missing, it has been widely recognized that interaction between continuous dynam-

ics and discrete dynamics is an important feature of a hybrid system. As a simple yet

typical hybrid system, a switched system gradually became a major focus that has

been attracting many researchers’ interest. Since then, remarkable progress has been

made in problems ranging from controllability/observability [49, 55, 67, 98, 105,

122, 236, 266] to stability/stabilizability [54, 60, 88, 104, 142, 147, 159, 164, 232,

259, 281] and optimality [20, 24, 123, 141, 200, 201, 220, 270, 279]. Meanwhile,

some new problems that are unique to switched systems emerged, for instance, the

problem of slow switching [66, 219, 227, 261, 263], the problem of robustness w.r.t.

switching perturbations [225, 235], and the problem of bumpless transfer switching

[86], to list a few. These problems are closely related to the issue of high-quality

switching, which is a key in achieving good performance by means of switching.

For application-oriented switching control and design, the reader is referred to

[2, 52, 65, 97, 155, 186, 209, 246, 283] for a short list. For more systematic reviews

of recent development on switched systems, the reader is referred to the monographs

[145, 146, 180, 234] and the survey papers [91, 151, 161, 208, 233, 245].



Chapter 2

Arbitrary Switching

2.1 Preliminaries

For switched dynamical systems, the switching may be induced by unpredictable

change of system dynamics, such as a sudden change of system structure due to the

failure of a component. In these cases, in order to keep the system working, it is

necessary for the system to be stable under arbitrary switching. That is to say, the

system should be stable under any possible switching law. Therefore, the stability

is absolute or guaranteed regardless of the switching law. As the term “absolute

stability” has been used to describe the global asymptotic stability for Lur’e systems

with sector-bounded nonlinearities, here we use the term “guaranteed stability” to

describe the stability of switched systems under arbitrary switching.

In this chapter, we consider the switched dynamical system given by

x+(t)= f
(

x(t), σ (t)
)

, (2.1)

where x(t) ∈Rn is the continuous state, σ(t) ∈M
def= {1, . . . ,m} is the discrete state,

and f : Rn ×M �→ Rn is a vector field with f (·, i) Lipschitz continuous for any

i ∈M .

It is clear that system (2.1) includes both continuous evolution and discrete ele-

ments. To emphasize the hybrid nature of the system, let us define new vector fields

fi : Rn �→Rn by

fi(x)= f (x, i), i ∈M.

Then, the system can be rewritten as

x+(t)= fσ(t)

(

x(t)
)

. (2.2)

The issue of this chapter is the guaranteed stability analysis of switched dynam-

ical system (2.2). For this, we assume that
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(1) fi(0)= 0 for all i ∈M , which implies that the origin is an equilibrium.

(2) The system is globally Lipschitz continuous, that is, there exists a positive con-

stant L such that

∣

∣fi(x)− fi(y)
∣

∣≤ L|x − y| ∀x, y ∈Rn, i ∈M, (2.3)

which guarantees the well-definedness of the switched system.

For clarity, we denote by φ(t; t0, x0, σ ) the continuous state motion of system

(2.2) at time t with initial condition x(t0) = x0 and switching path σ . By abuse

of notation, we also use φ(t;x0, σ ) to denote the solution when t0 = 0. The state

evolution can be explicitly expressed in terms of the vector fields fi , i ∈M . Indeed,

for any initial condition x(t0)= x0 and time t > t0, in discrete time we have

φ(t; t0, x0, σ )= fσ(t−1) ◦ · · · ◦ fσ(t0+1) ◦ fσ(t0)(x0), (2.4)

where ◦ denotes the composition of functions, that is, f1 ◦ f2(x)
def= f1(f2(x)). For

continuous-time switched systems, the state evolution is

φ(t; t0, x0, σ )=Φ
fis
t−ts ◦Φ

fis−1
ts−ts−1

◦ · · · ◦Φfi1
t2−t1 ◦Φ

fi0
t1−t0(x0), (2.5)

where Φ
f
t (x0) denotes the value at t of the integral curve of f passing through

x(0) = x0, and (t0, i0), . . . , (ts, is) is the switching sequence of σ in [t0, t). How-

ever, as the analytic expression of the curve Φ
f
t (x0) is not available in general, the

expression in (2.5) does not provide a sound basis for further analysis.

To present stability definitions for switched systems, we need more notation. Let

d(x, y) denote the Euclidean distance between vectors x and y. For a set Ω ⊂ Rn

and a vector x ∈ Rn, let |x|Ω = infy∈Ω d(x, y), and the normal norm |x|{0} is de-

noted by |x| in short. For a set Ω ⊂Rn and a positive real number τ , let B(Ω, τ) be

the τ -neighborhood of Ω , that is,

B(Ω, τ)=
{

x ∈Rn : |x|Ω ≤ τ
}

.

Similarly, let H(Ω, τ) be the τ -sphere of Ω , that is,

H(Ω, τ)=
{

x ∈Rn : |x|Ω = τ
}

.

In particular, the closed ball B({0}, τ ) will be denoted by Bτ in short, and the sphere

H({0}, τ ) by Hτ in short.

Definition 2.1 The origin equilibrium for system (2.2) is said to be

(1) guaranteed globally attractive if

lim
t→+∞

∣

∣φ(t;x,σ )
∣

∣= 0 ∀x ∈Rn, σ ∈ S
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(2) guaranteed globally uniformly attractive if for any δ > 0 and ǫ > 0, there exists

T > 0 such that

∣

∣φ(t;x,σ )
∣

∣< ǫ ∀t ∈ TT , |x| ≤ δ, σ ∈ S

(3) guaranteed stable if for any ǫ > 0 and σ ∈ S , there exists δ > 0 such that

∣

∣φ(t;x,σ )
∣

∣≤ ǫ ∀t ∈ T0, |x| ≤ δ

(4) guaranteed uniformly stable if there exist δ > 0 and a class K function γ such

that
∣

∣φ(t;x,σ )
∣

∣≤ γ
(

|x|
)

∀t ∈ T0, |x| ≤ δ, σ ∈ S

(5) guaranteed globally asymptotically stable if it is both guaranteed stable and

guaranteed globally attractive

(6) guaranteed globally uniformly asymptotically stable if it is both guaranteed uni-

formly stable and guaranteed globally uniformly attractive

(7) guaranteed globally exponentially stable if for any σ ∈ S , there exist α > 0 and

β > 0 such that

∣

∣φ(t;x,σ )
∣

∣≤ βe−αt |x| ∀t ∈ T0, x ∈Rn

and

(8) guaranteed globally uniformly exponentially stable if there exist α > 0 and

β > 0 such that

∣

∣φ(t;x,σ )
∣

∣≤ βe−αt |x| ∀t ∈ T0, x ∈Rn, σ ∈ S

Note that the uniformity is referred to the switching signals rather than the initial

time. By abuse of notation, we say that the system is guaranteed stable/attractive if

the origin equilibrium is guaranteed stable/attractive. As we focus on the guaran-

teed stabilities with possible global attractivity in this chapter, the restrictive words

“guaranteed” and “global” will be dropped for short in the sequel. Note also that

the uniform asymptotic/exponential stability is consistent with that defined in Defi-

nition 1.1.

2.2 Switched Nonlinear Systems

In this section, we investigate the stability issue for switched nonlinear system

x+(t)= fσ(t)
(

x(t)
)

(2.6)

under arbitrary switching. We assume that each vector field fi is continuously dif-

ferentiable.
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2.2.1 Common Lyapunov Functions

The direct Lyapunov method provides a rigorous approach for studying stability of

dynamical systems. Here, we review the preliminaries of Lyapunov stability theory.

A continuous function V (x) : Rn �→R with V (0)= 0 is:

• positive definite (V (x)≻ 0) if V (x) > 0 ∀x ∈Rn − {0}
• positive semi-definite (V (x)� 0) if V (x)≥ 0 ∀x ∈Rn

• radially unbounded if there exists a class K∞ function α(·) such that V (x) ≥
α(|x|) ∀x ∈Rn

Definition 2.2 Let Ω be a neighborhood of the origin. A function V : Ω �→ R is

said to be a common weak Lyapunov function (CWLF) for switched system (2.6)

if

(1) it is lower semi-continuous in Ω

(2) it admits class K bounds, that is, there are class K functions α1 and α2 such that

α1

(

|x|
)

≤ V (x)≤ α2

(

|x|
)

∀x ∈Ω

and

(3) the upper Dini derivative of V along each vector fi is nonpositive; that is, for

all x ∈Ω and i ∈M , we have

D+V (x)|fi
def= lim sup

τ→0+

V (φ(τ ;0, x, î))− V (x)

τ
≤ 0

in continuous time, where î stands for the constant switching signal σ(t)= i ∀t ,
and

D+V (x)|fi
def= V

(

fi(x)
)

− V (x)≤ 0

in discrete time

Remark 2.3 Note that we do not require that the common weak Lyapunov func-

tion is continuous. As a matter of fact, even a uniformly stable nonlinear system

ẋ = f (x) with f being sufficiently smooth may not admit any continuous weak

Lyapunov function [14].

Definition 2.4 A function V : Rn �→ R is said to be a common (strong) Lyapunov

function (CLF) for switched system (2.6) if

(1) it is continuous everywhere and continuously differentiable except possibly at

the origin

(2) it admits class K∞ bounds, that is, there are class K∞ functions α1 and α2 such

that

α1

(

|x|
)

≤ V (x)≤ α2

(

|x|
)

∀x ∈Rn,

and
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(3) there is a class K function α3 : Rn �→R+ such that

D+V (x)|fi ≤−α3

(

|x|
)

∀x ∈Rn, i ∈M (2.7)

Remark 2.5 In continuous time, it can be seen that

D+V (x)|fi = lim sup
τ→0+

V (x + fi(x)τ )− V (x)

τ
∀x ∈Rn, i ∈M, (2.8)

due to the local Lipschitz continuity of V . For a continuously differentiable func-

tion V , its Dini derivative coincides with the (Lie) derivative of V along the vector

field

D+V (x)|f =
d

dt
V (x)

def= LfV (x)=
∂

∂x
V (x)f (x).

Suppose that system (2.6) admits a common weak Lyapunov function V . Then

for any state trajectory x(t) = φ(t;x0, σ ) in Ω , we have V (x(t)) ≤ V (x0) for all

t ≥ 0. For any ǫ > 0, choose δ such that

Bδ ⊂Ω,
{

x : V (x)≤ δ
}

⊂ Bǫ .

Then, we have |x(t)| ≤ ǫ for all t ≥ 0 if x0 ∈ Bδ . This shows that the system is

uniformly stable.

Next, suppose that system (2.6) admits a common Lyapunov function V . We

are to show that the system is uniformly asymptotically stable. For this, we assume

that the system is in continuous time, and the discrete-time case can be treated in a

similar way. Fix an initial state x0 
= 0 and a switching signal σ , and denote x(t)=
x(t;x0, σ ). It follows from Definition 2.4 that

lim sup
τ→0+

V (x(t + τ))− V (x)

τ
≤−α4

(

V
(

x(t)
))

∀t ∈ T0, (2.9)

where α4
def= α3 ◦ α−1

2 . Define the function η : R+ �→R by

η(t)=

⎧

⎨

⎩

−
∫ t

1
1

min(τ,α4(τ ))
dτ, t ∈ (0,1),

−
∫ t

1
1

α4(τ )
dτ, t ≥ 1.

It is clear that η is strictly decreasing, differentiable, and limt↓0 η(t) = +∞.

From (2.9) it can be seen that

η
(

V
(

x(t)
))

− η
(

V (x0)
)

=
∫ t

0

η̇
(

V
(

x(τ)
))

dV
(

x(s)
)

≥
∫ t

0

1ds = t ∀t ≥ 0. (2.10)
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Define the function π : R+ ×R+ �→R+ by

π(s, t)=
{

0, s = 0,

η−1(η(s)+ t), s > 0,

which can be verified to be a K L-function. As η is strictly decreasing, it follows

from (2.10) that

V
(

x(t)
)

≤ π
(

V (x0), t
)

∀t ≥ 0.

Define the other K L-function β by

β(s, t)= α−1
1

(

π
(

α2(s), t
))

, s, t ∈R+.

It can be seen that
∣

∣x(t)
∣

∣≤ β
(

|x0|, t
)

∀t ≥ 0. (2.11)

This, together with the fact that the origin is an equilibrium of the switched sys-

tem, implies that the system is uniformly asymptotically stable. Indeed, to achieve

uniform stability, for any ǫ > 0, let δ = β̄−1(ǫ), where β̄(·) def= β(·,0). Then,

|φ(t;0, x, σ )| ≤ ǫ for any x0 ∈ Bδ , t ∈ T0, and σ ∈ S . Similarly, to achieve uni-

form attractivity, for any ǫ > 0 and δ > 0, let T = β̂−1(ǫ) where β̂(·) def= β(δ, ·);
then |φ(t;0, x, σ )| ≤ ǫ for any x0 ∈ Bδ , t ∈ TT , and σ ∈ S .

To summarize, we have the following proposition.

Proposition 2.6 Switched system (2.6) is uniformly stable if it admits a common

weak Lyapunov function, and it is uniformly asymptotically stable if it admits a

common Lyapunov function.

Example 2.7 For the planar continuous-time two-form switched system with

d

dt
x(t)= fσ

(

x(t)
)

,

f1(x)=
(

−x2

x1 − xk2

)

, f2(x)=
(

x2

−x1 − xk2

)

, (2.12)

where k is any odd natural number, it can be verified that V (x1, x2) = x2
1 + x2

2 is

a common weak Lyapunov function. By Proposition 2.6, the system is uniformly

stable. However, the system does not admit any common Lyapunov function. In-

deed, if the system admits a common Lyapunov function, then it follows that any

convex combination system of the subsystems is asymptotically stable, that is, the

dynamical system

ẋ(t)= ωf1

(

x(t)
)

+ (1−ω)f2

(

x(t)
)

is asymptotically stable for any ω ∈ [0,1]. Let ω = 1
2

. It can be verified that any

state on the x1-axis is an equilibrium. As a result, the convex combination system is

not asymptotically stable. The contradiction exhibits that the switched system does

not admit any common Lyapunov function.
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2.2.2 Converse Lyapunov Theorem

While the existence of a common weak/strong Lyapunov function guarantees the

uniform/asymptotic stability of the switched system, one may naturally ask whether

the converse is also true. The answer is confirmative, as shown in the following

proposition.

Proposition 2.8 Any uniformly stable switched system admits a common weak Lya-

punov function, and any uniformly asymptotically stable switched system admits a

common Lyapunov function.

Proof To prove the first half of the statement, suppose that the system is uniformly

stable. Fix an ǫ > 0, and let δ > 0 be the number as in Definition 2.1. As in the

standard Lyapunov method, define the function V : Bδ �→R+ by

V (x)= sup
t∈T0,σ∈S

∣

∣φ(t;0, x, σ )
∣

∣. (2.13)

It is clear that the function is well defined and positive definite in Bδ . Let Ω = Bo
δ ,

where Do denotes the interior of set D. We are to prove that V is a common weak

Lyapunov function for the system.

To prove the lower semi-continuity of function V , fix an x ∈ Bδ . For any ε > 0,

there exist a time tx ≥ 0 and σx ∈ S such that

∣

∣φ(tx;0, x, σx)
∣

∣≥ V (x)− ε.

Let η= eL in continuous time and η= L in discrete time. It follows from the Lips-

chitz assumption (2.3) that

V (y) ≥
∣

∣φ(tx;0, y, σx)
∣

∣≥
∣

∣φ(tx;0, x, σx)
∣

∣−
∣

∣φ(tx;0, y, σx)− φ(tx;0, x, σx)
∣

∣

≥
∣

∣φ(tx;0, x, σx)
∣

∣− ηtx |x − y| ≥ V (x)− 2ε ∀y ∈ B

(

x,
ε

ηtx

)

∩Bδ.

As a result, V is lower semi-continuous.

Next, for any x ∈ Bδ , s ∈ T0, and i ∈M , we have

V
(

φ(s;0, x, î)
)

= sup
t∈T0,σ∈S

∣

∣φ
(

t;0, φ(s;0, x, î), σ
)∣

∣≤ sup
t∈T0,σ∈S

∣

∣φ(t + s;0, x, σ )
∣

∣

≤ sup
(t+s)∈T0,σ∈S

∣

∣φ(t + s;0, x, σ )
∣

∣= V (x).

It follows that D+V (x)|fi ≤ 0 for any i ∈M .

Finally, it is clear that V (x)≥ |x| for any x ∈ Bδ , and hence it admits a class K

lower bound. On the other hand, the uniform stability means the existence of a class

K function α2 such that |φ(t;0, x, σ )| ≤ α2(|x|) for any t ∈ T0, x ∈ Bδ , and σ ∈ S .

As a result, V (x)≤ α2(|x|) for all x ∈ Bδ .
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The above reasonale shows that the function V defined in (2.13) is indeed a

common weak Lyapunov function for the switched system.

The proof of the second half of Proposition 2.8 is involved as we have to smooth

the above function while preserving its properties such as decreasing along the state

trajectories. We will not go into the details; instead we cite the following support

lemma, which is a simper version of the well-known Lin–Sontag–Wang converse

Lyapunov theorem [152].

Lemma 2.9 For the uncertain system

x+(t)= f
(

x(t), d(t)
)

, x(t) ∈Rn, d(t) ∈ D ⊂Rp, (2.14)

suppose that f is locally Lipschitz continuous in x uniformly in d , D is a compact

set, and d ∈ PC(T0, D), the set of piecewise continuous functions mapping from T0

to D. Assume that the system is forward complete and the compact subset X of Rn is

a forward invariant set in the sense that x(t) ∈ X for all x0 ∈ X and d ∈ PC(T0, D).

If there is a K L function β such that

∣

∣x(t)
∣

∣

X
≤ β

(

|x0|X , t
)

∀x0 ∈Rn − X , t ≥ 0, d ∈ PC(T0, D), (2.15)

then, there is a Lyapunov function V for system (2.14), i.e., V is continuous every-

where and infinitely differentiable on Rn − X , and there are K∞ functions α1, α2

and a class K function α3 such that

α1

(

|x|X

)

≤ V (x)≤ α2

(

|x|X

)

and

LfV (x)≤−α3

(

|x|X

)

∀x ∈Rn, d ∈ D.

The lemma provides a general converse Lyapunov theorem, which is very impor-

tant in the development of the stability and robust analysis and design. The proof of

the lemma is quite technically involved, and the reader is referred to [124, 152] for

details.

With the help of Lemma 2.9, the proof for the necessity of Proposition 2.8 is

quite straightforward. Indeed, in Lemma 2.9, let D =M and X = {0}. Then, Propo-

sition 2.8 follows immediately from the lemma due to the fact that asymptotic sta-

bility implies (2.15). �

To summarize, in terms of the relationship between the uniform stability and the

existence of a common Lyapunov function, the following conclusion can be drawn.

Theorem 2.10 Switched system (2.6) is uniformly stable iff it admits a common

weak Lyapunov function, and it is uniformly asymptotically stable iff it admits a

common Lyapunov function.
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The theorem clearly brings the stability verification to the search of an appro-

priate common (weak) Lyapunov function and extends the conventional Lyapunov

theory to the more general setting of switched systems. As in the conventional Lya-

punov theory, there is generally no systematic way of finding the Lyapunov func-

tions. Nevertheless, for some classes of systems with special structures or properties,

the search of a Lyapunov function is tractable. We will come back to this topic in

Sect. 2.3.5.

2.3 Switched Linear Systems

In this section, we focus on a special but very important class of switched systems

where all the subsystems are linear time-invariant. These systems are termed as

switched linear systems and are mathematically represented by

x+(t)=Aσ(t)x(t), x(0)= x0, (2.16)

where Ak ∈Rn×n, k ∈M , are constant matrices.

Let A= {A1, . . . ,Am}. A can be seen as the system matrix set for the switched

linear system. For briefness, we term the switched linear system as system A.

Due to the linear nature of the subsystems, the state solution can be given in an

analytic way. In fact, the solution is given by

φ(t; t0, x0, σ )=Φ(t; t0, σ )x0, (2.17)

where Φ(t; t0, σ ) is known to be the state transition matrix. In discrete time, the

state transition matrix is

Φ(t; t0, σ )=Aσ(t−1) · · ·Aσ(t0),

while in continuous time, it is

Φ(t; t0, σ )= eAis (t−ts )eAis−1
(ts−ts−1) · · · eAi1

(t2−t1)eAi0
(t1−t0),

where t0, t1, . . . , ts and i0, i1, . . . , is are the switching time/index sequences in

[t0, t), respectively.

It follows from the above expressions that

φ(t; t0, λx0, σ )= λφ(t; t0, x0, σ ) ∀t, t0, x0, σ, ∀λ ∈R, (2.18)

which we term as the radial linearity property, and

φ(t; t0, x0, σ )= φ(t − t0;0, x0, σ
′) ∀t, t0, x0, σ, (2.19)

where the switching path σ ′ is the time transition of σ , that is, σ ′(t)= σ(t + t0) for

all t . The latter property is known as the (time) transition invariance property.

Due to the above two invariance properties, for switched linear systems, it is clear

that local attractivity implies (and is equivalent to) global attractivity, and the initial

time can always be taken as t0 = 0 without loss of generality.
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2.3.1 Relaxed System Frameworks

In the stability analysis of switched linear systems, the switching signals can be ar-

bitrary. Taking the switching mechanism as the uncertainty, the guaranteed stability

requires that the system is robust w.r.t. the uncertainty. As the switching signals are

piecewise constant taking values from a finite discrete set, it is natural to “smooth”

them in some sense so that the conventional perturbation analysis approaches apply.

This leads to the relaxed or extended system frameworks as follows.

Let

W =
{

w ∈Rm :wi ≥ 0, i = 1, . . . ,m,

m
∑

i=1

wi ≤ 1

}

A(w)=
m
∑

i=1

wiAi, w ∈ W, (2.20)

and

A(x)=
{

A(w)x :w ∈ W
}

, x ∈Rn. (2.21)

Let us consider the (convex) differential/difference inclusion system

x+(t) ∈ A
(

x(t)
)

, (2.22)

and the polytopic linear uncertain system

x+(t)=A
(

w(t)
)

x(t), (2.23)

where w(·) ∈ W is a piecewise continuous function. For convenience, system (2.22)

is called (relaxed) differential/difference inclusion. Note that both the differen-

tial/difference inclusion and the polytopic linear uncertain system can be connected

to the switched system in a one-to-one manner, and the switched system can be seen

as the extreme system of the others.

A solution of (2.22) is a vector flow x : [0,+∞) �→Rn with absolutely continu-

ous entries that satisfies (2.22) almost everywhere. Solutions of the polytopic system

can be understood in the same way.

For comparison, let Γs denote the set of solutions of the switched linear system,

Γp the set of solutions of the polytopic system, and Γd the set of solutions of the

differential inclusion system. It is readily seen that

Γs ⊂ Γp ⊂ Γd

and the first subset relationship is strict. However, under mild assumptions, each

solution of the relaxed differential inclusion system can be approximated by a tra-

jectory of the switched linear system in the sense specified below.



2.3 Switched Linear Systems 27

Lemma 2.11 (See [117]) Fix ξ ∈Rn and let z : [0,+∞) �→Rn be a solution of

ż(t) ∈ A
(

z(t)
)

, z(0)= ξ.

Let r : [0,+∞) �→ R be a continuous function satisfying r(t) > 0 for all t ≥ 0.

Then, there exist η with |η− ξ | ≤ r(0) and a solution x : [0,+∞) �→Rn of

ẋ(t) ∈
{

A1x(t), . . . ,Amx(t)
}

, x(0)= η,

such that
∣

∣z(t)− x(t)
∣

∣≤ r(t) ∀t ∈ [0,+∞).

This lemma sets up a connection between stability of a switched linear system

and stability of its relaxed system. Indeed, suppose that each solution of the switched

linear system is convergent; then, each solution of the differential inclusion (2.22)

is also convergent. For discrete-time systems, the relationship also holds.

Corollary 2.12 The following statements are equivalent:

(1) The switched linear system is attractive.

(2) The polytopic linear uncertain system is attractive.

(3) The differential inclusion system is attractive.

For linear systems, it is well known that attractivity implies (and is equivalent

to) exponential stability. For switched linear systems, it can be proven that the same

property also holds as follows.

Proposition 2.13 The following statements are equivalent:

(1) The switched linear system is attractive.

(2) The switched linear system is uniformly attractive.

(3) The switched linear system is asymptotically stable.

(4) The switched linear system is uniformly asymptotically stable.

(5) The switched linear system is exponentially stable.

(6) The switched linear system is uniformly exponentially stable.

Proof First, it is clear that the uniform exponential stability implies any other stabil-

ity in the proposition, and attractivity is implied by any other stability. As a result,

we only need to prove that the attractivity implies the uniform exponential stability.

Second, for any state x on the unit sphere, it follows from the attractivity that

there is a time tx such that

sup
σ∈S

∣

∣φ
(

tx;0, x, σ
)
∣

∣<
1

2
. (2.24)

For any fixed x ∈ H1, we are to prove that supσ∈S |φ(tx;0, y, σ )| ≤ 1
2

if y is suf-

ficiently close to x. Indeed, let η =maxi∈M |Ai |. It follows from (2.24) and (2.17)
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that

∣

∣φ
(

tx;0, y, σ
)
∣

∣ =
∣

∣φ
(

tx;0, x, σ
)

+ φ
(

tx;0, y − x,σ
)
∣

∣

≤
∣

∣φ
(

tx;0, x, σ
)
∣

∣+
∣

∣φ
(

tx;0, x − y,σ
)
∣

∣

≤
∣

∣φ
(

tx;0, x, σ
)∣

∣+ eηt
x |y − x|

≤ 1

2
∀σ ∈ S, |y − x| ≤ e−ηt

x

(

1

2
− sup

σ∈S

∣

∣φ
(

tx;0, x, σ
)
∣

∣

)

.

This implies that, for any x ∈H1, there is a neighborhood Nx of x such that

sup
σ∈S

∣

∣φ
(

tx;0, y, σ
)
∣

∣≤ 1

2
∀y ∈Nx .

Third, letting x vary along the unit sphere, it is obvious that

⋃

x∈H1

Nx ⊇H1.

As the unit sphere is a compact set, by the Finite Covering Theorem, there exist a

finite number l and a set of states x1, . . . , xl on the unit sphere such that

l
⋃

i=1

Nxi ⊇H1.

Accordingly, we can partition the unit sphere into l regions R1, . . . ,Rl such that

(a)
⋃l

i=1 Ri =H1, and Ri ∩Rj = ∅ for i 
= j ; and

(b) for each i, 1≤ i ≤ l, xi ∈Ri , and

sup
σ∈S

∣

∣φ
(

txi ;0, y, σ
)∣

∣≤ 1

2
, ∀y ∈Ri .

Define the cones

Ωi = {x ∈Rn : ∃λ 
= 0 and y ∈Ri such that x = λy}, i = 1, . . . , l.

Let Ω0 = {0}. It can be seen that
⋃l

i=0 Ωi =Rn and Ωi ∩Ωj = ∅ for i 
= j . In par-

ticular, Ω0 is invariant under arbitrary switching and forms an invariant equilibrium

of the system.

Fourth, for any i = 1, . . . , l and x ∈Ωi , let tx = txi . It is clear that

max
x 
=0

tx =
l

max
i=1

txi
def= T1 <+∞. (2.25)

According to properties (a) and (b), for any x ∈ Ωi , i = 1, . . . , l, any switching

signal σ will bring x into the ball B |x|
2

at time tx .
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Finally, for any initial state x0 and switching path σ , define recursively a se-

quence of times and states

s0 = 0,

z0 = x0,

sk = sk−1 + tzk−1
,

zk = φ(sk;0, x0, σ ), k = 1,2, . . . .

It is readily seen that

sk ≤ kT1, |zk+1| ≤
|zk|
2
, k = 0,1, . . . , (2.26)

which implies that

∣

∣φ(sk;0, x0, σ )
∣

∣≤ |x0|
2k
≤ e−γ sk |x0|, k = 0,1,2, . . . ,

where γ
def= ln 2

T1
. On the other hand, let η= 2 exp(T1 max{‖A1‖, . . . ,‖Am‖}). Then,

we have
∣

∣φ(t;0, x0, σ )
∣

∣≤ ηe−γ t |x0| ∀t ≥ 0. (2.27)

Note that the inequality holds for any x0 and σ , and the parameters γ and η are inde-

pendent of x0 and σ . This clearly shows that the system is uniformly exponentially

stable. The proof is completed. �

Remark 2.14 While the theorem establishes a nice property for switched linear sys-

tems, the proof itself does not provide a constructive approach for calculating or

estimating the convergence rate. For special classes of switched linear systems with

additional structure information, however, it is possible to compute the convergence

rates explicitly. This issue will be addressed in Sect. 2.3.5.

Simple observation exhibits that the above analysis can be slightly adopted

to prove the equivalence (between attractivity and exponential stability) for the

polytopic system and the differential inclusion system, respectively. Together with

Corollary 2.12 and Theorem 2.10, we reach the following conclusion.

Theorem 2.15 The following statements are equivalent for the switched linear sys-

tem, the polytopic system, and the differential/difference inclusion system, respec-

tively:

(1) The system is attractive.

(2) The system is asymptotically stable.

(3) The system is exponentially stable.

(4) The switched system admits a common Lyapunov function.
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Remark 2.16 The theorem bridges the stability analysis for various classes of sys-

tems with different backgrounds. Indeed, the stability analysis for polytopic sys-

tems, for linear differential inclusions, and for switched linear systems is mostly

independent of each other until quite recently. The theorem assures that the stabil-

ity criteria developed for one class of systems are also applied to the others. This

greatly enriches the stability theory for the systems.

Theorem 2.15 allows us to define the stabilities in a more refined manner, as in

the linear time-invariant case. For this, define

̺(A)= lim sup
t→+∞,σ∈S,|x|=1

ln |φ(t;0, x, σ )|
t

, (2.28)

which is the largest Lyapunov exponent that specifies the highest possible rate of

state divergence, and

R(A)=
{

φ(t;0, x, σ ) : t ∈ T0, x ∈H1, σ ∈ S
}

, (2.29)

which is the attainability set of the system from the unit sphere.

Definition 2.17 A switched linear system A is said to be

(1) (exponential) stable if ̺(A) < 0

(2) marginally stable if ̺(A)= 0 and the set R(A) is bounded

(3) marginally unstable if ̺(A)= 0 and the set R(A) is unbounded

(4) (exponentially) unstable if ̺(A) > 0

It is clear that the notion of stability here is abused with the one defined for the

nonlinear setting as it is referred to the situation of exponential convergence only.

Similarly, the notion of instability is referred to exponential divergence only. In the

sequel, unless otherwise stated, all the stability notions are referred in accordance

with Definition 2.17.

2.3.2 Universal Lyapunov Functions

Through this subsection we assume, unless otherwise stated, that the switched lin-

ear system is stable. According to Theorem 2.10, the system admits a common Lya-

punov function that is smooth (C 1). As a result, the set of smooth positive definite

functions is universal for switched linear systems. Here by universal Lyapunov func-

tions we mean a set of functions such that each stable switched linear system admits

a common Lyapunov function which belongs to the set. Due to the linear structure

of the subsystems, it seems reasonable to expect a more restricted set of universal

Lyapunov functions, e.g., the set of polynomials. In particular, as a stable linear

time-invariant system always admits a quadratic Lyapunov function, it is natural to
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conjecture that the set of quadratic functions is also universal for switched linear

systems. If so, then it is possible to develop a constructive approach for calculating

a common quadratic Lyapunov function. Unfortunately, this conjecture finally was

disproved through a counterexample, which exhibits that the stability analysis of

switched linear systems is much more difficult than that of linear systems.

There are quite a few efforts in the literature to reveal the universal sets of com-

mon Lyapunov functions for switched linear systems or, equivalently, for polytopic

systems or linear convex differential inclusions. Due to the nonsmooth nature of

switched system, nonsmooth functions are also considered as Lyapunov function

candidates.

The following theorem provides several sets of universal common Lyapunov

functions for switched linear systems.

Theorem 2.18 Each of the following function sets provides universal Lyapunov

functions for stable switched linear systems.

(1) Convex and homogeneous functions of degree 2.

(2) Polynomials.

(3) Piecewise linear functions.

(4) Piecewise quadratic functions.

(5) Norms, that is, positive definite functions N : Rn �→ R+ such that N(λx) =
|λ|N(x) for any λ ∈R and N(x + y)≤N(x)+N(y) for any x, y ∈Rn.

The key ideas of proving the existence of universal Lyapunov functions are

outlined as follows. First, as in the conventional Lyapunov approach, for a stable

switched linear system, we define the function V : Rn �→R+ by

V (x)= sup
σ∈S

∫ +∞

0

∣

∣φ(t;0, x, σ )
∣

∣

2
dt (2.30)

in continuous time and

V (x)= sup
σ∈S

+∞
∑

t=0

∣

∣φ(t;0, x, σ )
∣

∣

2
(2.31)

in discrete time. It can be verified that the function is continuous, positive definite,

strictly convex, and homogeneous of degree 2. In addition, for any nontrivial state

trajectory y(·) of the switched system, we have

V
(

y(t2)
)

= sup
σ∈S

∫ +∞

0

∣

∣φ
(

t;0, y(t2), σ
)∣

∣

2
dt

= sup
σ∈S

∫ +∞

0

∣

∣φ
(

t + t2 − t1;0, y(t1), σ
)∣

∣

2
dt

= sup
σ∈S

∫ +∞

t2−t1

∣

∣φ
(

t;0, y(t1), σ
)
∣

∣

2
dt
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< sup
σ∈S

∫ +∞

0

∣

∣φ
(

t;0, y(t1), σ
)
∣

∣

2
dt

= V
(

y(t1)
)

∀t2 > t1,

which clearly exhibits that the function V is strictly decreasing along the trajectory.

Note that the function is continuous but may be nondifferentiable. The next step is

to smooth the function by introducing the integral

Ṽ (x)=
∫

SO(n)

f (R)V (Rx)dR, x ∈Rn,

where SO(n) is the set of n × n orthogonal matrices with positive determinants,

f : SO(n) �→ R+ is a smooth function with support in a small neighborhood of the

identity matrix, and
∫

SO(n)
f (R)dR = 1. It can be shown that the function Ṽ is con-

tinuously differentiable (C 1) except possibly at the origin. A smooth function of Ck

with any k can be obtained iteratively in the same manner. The newly defined func-

tion preserves the properties of convexity and homogeneity of degree 2. Moreover,

the function strictly decreases along any nontrivial state trajectory of the switched

system. By definition, the function is a common Lyapunov function of the system,

and Item (1) of the theorem is established. The existence of other classes of univer-

sal Lyapunov functions can be guaranteed by the fact that a convex level set can be

approximated to any degree by the level sets of polynomials, piecewise linear func-

tions, and piecewise quadratic functions, respectively. We omit the technical details

for briefness.

By the first statement of the theorem, there exists a common Lyapunov function

of the form

V (x)= xT P(x)x with P(λx)= P(x) > 0 ∀λ 
= 0, x 
= 0.

Note that this function is in the quadratic form, and positive definite matrix P(x)

is homogeneous of degree zero; hence it is uniquely characterized by its image on

the unit sphere. A special case is that P(x) is independent of the state, which cor-

responds to a quadratic Lyapunov function. When this is the case, the search of an

appropriate Lyapunov function can be reduced to solving the linear matrix inequal-

ities (LMIs)

AT
i P + PAi < 0, i = 1, . . . ,m, (2.32)

which is computationally tractable.

A piecewise linear function is of the form

V (x)=max
{

lTi x : i = 1, . . . , s
}

,

where li ’s are column vectors in Rn. It is convex and positively homogeneous of

degree 1. Its level set

Γ =
{

x : lTi x ≤ 1, i = 1, . . . , s
}
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is a convex and compact set containing the origin as an interior point. We call such

a set C-set. The level set Γ is also a polyhedron, and it induces the gauge function,

known as the Minkowski function of Γ , which is defined as

MFΓ (x)= inf{μ ∈R+ : x ∈ μΓ },

where μΓ = {μy : y ∈ Γ }. By definition, function MFΓ is exactly the function V ,

that is, MFΓ (x) = V (x) for all x ∈ Rn. The Minkowski function is a norm iff the

level set is 0-symmetric, i.e., x ∈ Γ implies−x ∈ Γ . The universal of piecewise lin-

ear functions as Lyapunov candidates implies that any stable switched linear system

admits a polyhedral C-set as its attractive level set, that is, D+V (x)≤−β for any x

on the boundary of the level set, where β is some positive real number. As a result,

the stability verification reduces to the search of a proper attractive polyhedral C-set.

A particular and interesting situation is that the common Lyapunov function is a

norm. In this case, it can be seen that the norm is exponentially contractive along

any nontrivial state trajectory of the switched system.

A piecewise quadratic function is in the form

Vmax(x)=max
{

xT Pix : i = 1, . . . , s
}

,

where Pi ’s are symmetric and positive definite matrices. It is clear that the functions

are positive definite and homogeneous of degree 2. A level set of Vmax is an inter-

section of a number of ellipsoids and is strict convex. As a result, the function is

also strictly convex and thus can be classified into the first class of the theorem.

As a corollary of Theorem 2.18, we have the following useful lemma that estab-

lishes the connection between a stable continuous-time system and its discrete-time

Euler approximating system.

Lemma 2.19 Suppose that the continuous-time switched linear system is stable.

Then, the Euler approximating system defined as

x(t + 1)= (In + τAσ )x(t) (2.33)

is also stable for sufficiently small τ .

Proof The lemma can be proved based on the fact that each stable switched lin-

ear system admits a polyhedral common Lyapunov function, V . For the level set

Γ = {x : V (x) ≤ 1}, define β = minx∈∂Γ α3(|x|), where α3 is the class K func-

tion as in (2.7), and ∂Γ stands for the boundary of set Γ . It follows from (2.7) that

D+V (x)≤−β for any x ∈ ∂Γ . This clearly indicates that the set Γ is also attractive

for discrete-time system (2.33) when τ is sufficiently small, which in turn implies

stability of the discrete-time system for a sufficiently small τ . �

Remark 2.20 An interesting question is whether or not the degrees of the common

polynomial Lyapunov functions are uniformly bounded? In other word, does it exist

a map χ : N+×N+ �→N+ such that each m-form attractive switched linear system
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of order n admits a common polynomial Lyapunov function of degree χ(n,m) or

less? If the answer is confirmative, then, it is possible to numerically verify the

stability by checking that, among all polynomials of degree χ(n,m) or less, whether

there is a common Lyapunov function or not. Unfortunately, such a bound does not

generally exist, even for planar switched linear systems. The reader is referred to

[168] for detailed analysis.

Finally, we turn to marginal stability and propose a universal set of common

weak Lyapunov functions.

Proposition 2.21 A marginally stable switched linear system admits a norm as its

common weak Lyapunov function.

Proof We are to prove that the common weak Lyapunov function V defined in

(2.13) is a norm. In fact, as

V (x)+ V (y) ≥ sup
t∈T0,σ∈S

{∣

∣φ(t;x,σ )
∣

∣+
∣

∣φ(t;y,σ )
∣

∣

}

≥ sup
t∈T0,σ∈S

{∣

∣φ(t;x,σ )+ φ(t;y,σ )
∣

∣

}

≥ V (x + y) ∀x, y ∈Rn,

V is convex. On the other hand, for any ǫ > 0, there is δ > 0 such that

∣

∣φ(t;0, x, σ )
∣

∣≤ ǫ ∀t ∈ T0, x ∈ Bδ, σ ∈ S.

It follows from the radial linearity property (2.18) that V (x)≤ ǫ
δ
|x| for all x ∈ Rn.

This, together with the convexity, implies that

∣

∣V (x)− V (y)
∣

∣≤ V (x − y)≤ ǫ

δ
|x − y| ∀x, y ∈Rn.

As a result, V is globally Lipschitz continuous. It is obvious that V is 0-symmetric,

and positively homogeneous of degree one. Thus, it is indeed a norm. �

By Theorem 2.18 and Proposition 2.21, a stable (marginally stable) switched

system always admits a norm as its common (weak) Lyapunov function.

A switched linear system A is said to be regular if ̺(A) is finite, where ̺(A)

is the largest divergence rate defined in (2.28). It is clear that any continuous-

time switched linear system is regular and that a discrete-time system is regular

if ̺(A) 
= −∞. For a continuous-time switched linear system A = {A1, . . . ,Am},
the normalized switched system is the switched system A = {A1 − ̺(A)In, . . . ,

Am − ̺(A)In}. Similarly, for a regular discrete-time system A = {A1, . . . ,Am},
its normalized system is defined to be the switched system A = {A1/e

̺(A), . . . ,

Am/e
̺(A)}. It is clear that any normalized system is either marginally stable or

marginally unstable.
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2.3.3 Algebraic Criteria

For a linear time-invariant system, it is well known that the stability is characterized

by the location of the poles. However, such a concise characteristic is still missing

for switched linear systems. Nevertheless, much effort has been paid to find alge-

braic criteria for stability of the switched systems. In this subsection, we present

some of the criteria which provide necessary and sufficient algebraic conditions.

For discrete-time systems, the stability is closely related to the convergence of the

transition matrices, for which numerous algebraic criteria were developed mainly

by researchers in the mathematics community. In the following, we first address the

stability and then move to other related properties.

Suppose that A= {A1, . . . ,Am} is a finite set of matrices in Rn×n. For k ∈ N+,

denote by Πk(A) the set of length-k products of A, that is,

Πk(A)= {Ai1 . . .Aik : i1, . . . , ik ∈M},

and further

Π(A)=
⋃

k∈N+
Πk(A),

which is the set of all products whose factors are elements of A.

Let | · | be any induced norm, and ρ(·) be the spectral radius of a matrix. Define

ρ̂k(A)=max
{

‖P ‖: P ∈Πk(A)
}

, (2.34)

which represents the largest possible norm of all products of k matrices chosen in

set A. In particular, denote ρ̂1(A) by ‖A‖. The joint spectral radius of A is then

defined as

ρ̂(A)= lim sup
k→+∞

ρ̂k(A)
1/k, (2.35)

which is the maximal asymptotic norm of the products of matrices. It is clear that

ρ̂(A) is norm-independent due to the equivalence of the norms. Analogously, define

the number

ρ̄k(A)=max
{

ρ(P ) : P ∈Πk(A)
}

,

which represents the largest possible spectral radius of all products of k matrices in

a set A. Furthermore, define the generalized spectral radius of A as

ρ̄(A)= lim sup
k→+∞

ρ̄k(A)
1/k, (2.36)

which is the maximal asymptotic spectral radius of the products of matrices.

Recall that, for a matrix A, we have

lim
k→+∞

∥

∥Ak
∥

∥

1/k = lim
k→+∞

ρ
(

Ak
)1/k = ρ(A).
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Therefore, both the joint spectral radius and generalized spectral radius degenerate

into the standard spectral radius when A is a singleton.

We are to present some properties of the joint spectral radius and generalized

spectral radius. To this end, let Υ be the set of vector norms in Rn. For a set of

matrices A= {A1, . . . ,Am} and a norm | · | ∈ Υ , define the (induced) norm of A to

be

‖A‖ = max
x 
=0,i∈M

|Aix|/|x|.

The least norm of A is defined to be

LNA = inf
|·|∈Υ

‖A‖.

A norm ‖ · ‖∗ is an extreme norm of A if

‖A‖∗ = LNA .

For a real number μ, μA denotes the matrix set {μA1, . . . ,μAm}.

Lemma 2.22 Suppose that A is a set of real matrices. Then, the following state-

ments hold.

(1) ρ̄(A)≤ ρ̂(A)≤ LNA.

(2) ρ̄(μA)= |μ|ρ̄(A) and ρ̂(μA)= |μ|ρ̂(A) ∀μ ∈R.

(3) ρ̄(A) < 1 implies the stability of A.

Proof First, note that ρ(A) ≤ ‖A‖ for any norm ‖ · ‖. As a result, ρ̄k(A) ≤ ρ̂k(A),

which implies that ρ̄(A)≤ ρ̂(A). On the other hand, it follows from the norm sub-

multiplicativity property that

ρ̂(A)≤ ‖A‖,

which leads to the inequality ρ̂(A)≤ LNA. This proves the first statement.

The second statement trivially follows from the linearity of the spectral radius.

To establish the third one, observe that ρ̄(A) < 1 implies that the state transition

matrix Φ(t,0, σ ) approaches zero as t approaches infinity for any switching sig-

nal σ , which further implies that the switched linear system is attractive and hence

stable. �

Based on the lemma and the converse Lyapunov theorem presented in Sect. 2.2.2,

we are able to establish the equivalence among several fundamental indices.

Theorem 2.23 For any switched linear system A, we have

ρ̄(A)= ρ̂(A)= LNA = exp
(

̺(A)
)

. (2.37)
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Proof By Lemma 2.22, to establish ρ̄(A) = ρ̂(A) = LNA, we only need to prove

ρ̄(A)≥ LNA. For this, suppose by contradiction that ρ̄(A) < LNA. Fix a real num-

ber μ with ρ̄(A) < μ < LNA. Denote Bi = Ai/μ for i = 1, . . . ,m, and further

B= {B1, . . . ,Bm}. It follows from Lemma 2.22 that

ρ̄(B) < 1 < LNB . (2.38)

Applying Lemma 2.22 once again, the switched linear system B is stable. By The-

orem 2.18, there is a norm V that serves as a common Lyapunov function of the

switched system, which is contractive. It is clear that

LNB ≤ ‖B‖V ≤ 1,

which contradicts inequality (2.38). This establishes

ρ̄(A)= ρ̂(A)= LNA .

By the definition of the largest Lyapunov exponent as in (2.28), it is clear that

exp
(

̺(A)
)

≤ LNA .

Using a similar idea as in the former part of the proof, we arrive at the conclusion

that the equality relation must hold. This completes the proof. �

The equality between the generalized spectral radius and the joint spectral radius

allows us to term the quantity as the spectral radius of matrix set A, denoted ρ(A).

Corollary 2.24 The discrete-time switched linear system is stable iff its spectral

radius is less than one. It is unstable iff its spectral radius is greater than one.

The corollary provides a new criterion for stability of a switched linear system in

terms of the spectral radius, which extends the well-known spectral radius criterion

for linear time-invariant systems. A semi-decidable verification procedure can be

developed based on the criterion, which will be presented in Sect. 2.4.

Proposition 2.25 A discrete-time switched linear system A is marginally stable iff

it admits an extreme norm with ‖A‖∗ = 1.

Proof By Proposition 2.21, marginal stability implies the existence of a common

weak Lyapunov norm V . From the definitions for the common (weak) Lyapunov

function, we have V (Aix) ≤ V (x) for all i ∈M and x ∈ Rn, which implies that

‖A‖V ≤ 1. If LNA < 1, then the switched system is asymptotically stable, which

contradicts the assumption of marginal stability. As a result, we have LNA ≥ 1. As

LNA ≤ ‖A‖V , we have LNA = ‖A‖V = 1, which clearly shows that ‖ · ‖V is an

extreme norm for the switched system.
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Conversely, suppose that the switched system admits an extreme norm ‖ · ‖ with

‖A‖ = LNA = 1. It is clear that the system is either stable or marginally stable. If

the system is stable, then, there is a common Lyapunov norm V0 such that

V0(Aix)− V0(x)≤−ω(x) ∀x ∈Rn, i ∈M,

where ω is a continuous positive definite function. Let β =minV0(x)=1 ω(x). It fol-

lows that

V0(Aix)− V0(x)≤−βV0(x) ∀x ∈Rn, i ∈M,

which further implies that ‖A‖V0
≤ 1− β , a contradiction. Therefore, the switched

system must be marginally stable. �

Next, we move to the case of continuous time. For any norm | · | in Rn, the

induced matrix measure on Rn×n is defined as

μ|·|(A)= lim sup
τ→0+,|x|=1

|x + τAx| − |x|
τ

. (2.39)

It is clear that the matrix measure possesses the following properties (see, e.g., [253].

The subscript | · | is dropped for briefness):

(1) Well-definedness. The matrix measure is well defined for any vector norm.

(2) Positive homogeneousness. μ(αA)= αμ(A) for all α ≥ 0 and A ∈Rn×n.

(3) Convexity. μ(αA+ (1− α)B)≤ αμ(A)+ (1− α)μ(B) for all α ∈ [0,1] and

A,B ∈Rn×n.

(4) Exponential estimation. |eAtx| ≤ eμ(A)t |x| for all t ≥ 0, x ∈ Rn, and A ∈
Rn×n.

The definition of the matrix measure is extendable to a set of matrices A =
{A1, . . . ,Am} as follows. For a set of matrices A = {A1, . . . ,Am} and a norm | · |
in Rn, the (induced) measure of A w.r.t. | · | is defined as

μ|·|(A)=max
{

μ|·|(A1), . . . ,μ|·|(Am)
}

. (2.40)

It can be verified that the measure possesses the positive homogeneity and convexity

properties as the matrix measure. As for the exponential estimation property, it can

be seen that

∣

∣φ(t;0, x, σ )
∣

∣≤ eμ|·|(A)t |x| ∀t ≥ 0, x ∈Rn, σ ∈ S. (2.41)

Furthermore, for a set of matrices A= {A1, . . . ,Am}, define the least measure value

as

ν(A)= inf
|·|∈Υ

μ|·|(A). (2.42)

Any matrix set measure μ with μ(A)= ν(A) is said to be an extreme measure for A.

It is well known that the switched linear system A is (exponentially) stable if there
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exists a norm | · | such that its matrix measure is negative. As an implication, when

the least measure is negative, then the switched system is exponentially stable. In

the following, we are to establish that the converse is also true.

Theorem 2.26 For any continuous-time switched linear system A, we have

ν(A)= ̺(A). (2.43)

In addition, the switched system admits (at least) one extreme measure iff its nor-

malized system is marginally stable.

Proof Firstly, it can be verified that

μ|·|(A+ λIn)= λ+μ|·|(A) ∀| · | ∈ Υ, λ ∈R,

where A+ λIn denotes the switched linear system (A1 + λIn, . . . ,Am+ λIn). As a

result, we have

ν(A+ λIn)= λ+ ν(A) ∀λ ∈R.

This, together with the fact that

̺(A+ λIn)= λ+ ̺(A) ∀λ ∈R,

indicates that (2.43) holds for general case if it holds when ̺(A) = 0, that is, the

switched system is either marginally stable or marginally unstable.

Secondly, suppose that the system is either stable or marginally stable. Fix a

vector norm | · | in Rn and define the function V : Rn �→R+ by

V (x)= sup
t∈R+,σ∈S

∣

∣φ(t;0, x, σ )
∣

∣. (2.44)

It can be seen that the function is well defined, positive definite, convex, 0-symmet-

ric, and positively homogeneous of degree one. In addition, there is a positive real

number L such that

|x| ≤ V (x)≤ L|x| ∀x ∈Rn.

This, together with the radial linearity property (2.18), implies that V is globally

Lipschitz continuous. As a result, the function V in fact forms a vector norm of Rn.

Thirdly, for any x ∈Rn, s ∈R+, and i ∈M , we have

V
(

φ(s;0, x, î)
)

= sup
t∈R+,σ∈S

∣

∣φ
(

t;0, φ(s;0, x, î), σ
)∣

∣

≤ sup
t∈R+,σ∈S

∣

∣φ(t + s;0, x, σ )
∣

∣

≤ sup
(t+s)∈R+,σ∈S

∣

∣φ(t + s;0, x, σ )
∣

∣

= V (x),
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where î stands for the switching signal î(t)≡ i. As V is Lipschitz continuous, we

further have

μV (Ai) = lim sup
τ→0+,x 
=0

V (x + τAix)− V (x)

τV (x)

= lim sup
τ→0+,x 
=0

V (φ(τ ;0, x, î))− V (x)

τV (x)

≤ 0 ∀i ∈M.

That is, the norm V induces a matrix set measure that satisfies

μV (A)≤ 0, (2.45)

which further implies that ν(A)≤ 0.

Fourthly, we focus on the situation that the switched system is marginally stable.

We claim that the least measure value is exactly zero. Indeed, if it is negative, then,

it follows from relationship (2.41) that the system is (exponentially) stable, which

yields a contradiction. This means that the matrix set measure in (2.45) is an extreme

measure.

Finally, consider the case that the switched system is marginally unstable. It is

clear that the least measure value is nonnegative. Assume that it is positive. Then,

there is a positive real number ǫ with ǫ < ν(A) such that

ν|·|(A− ǫIn) > 0,

which further means that the switched system A − ǫIn is either unstable or

marginally unstable. This is a contradiction since ̺(A− ǫIn)= −ǫ < 0. The con-

tradiction means that the least measure value is zero. On the other hand, when the

least measure value is zero, the existence of an extreme measure implies the bound-

edness of the attainability set R(A), and hence the switched system is either stable

or marginally stable. As a result, a marginally unstable switched system does not

admit any extreme measure.

To summarize, marginal stability implies the existence of an extreme measure of

zero value, and marginal instability implies zero least measure value but does not

admit any extreme measure. As the normalization does not alter the existence of an

extreme measure, the second statement of the theorem follows. �

Remark 2.27 For a real matrix, its largest divergence rate is the largest real part

of its eigenvalues, which is exactly the least measure value. This fact was pointed

out in [274]. Theorem 2.26 extends the fact to the case of switched linear systems,

though the concept of system spectrum is missing for switched linear systems.

Remark 2.28 The function V in the proof is in fact a (weak) common Lyapunov

function for the switched linear system (cf. Proposition 2.21). The observation that

it serves as a vector norm is crucial in the development.
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With the help of Theorem 2.26, we can fully characterize the stabilities in terms

of matrix set measure.

Corollary 2.29 For a continuous-time switched linear system, we have the follow-

ing statements:

(1) The system is stable iff its least measure value is negative.

(2) The system is marginally stable iff its least measure value is zero and it admits

an extreme measure.

(3) The system is marginally unstable if and only if its least measure value is zero

and it does not admit any extreme measure.

(4) The systems is unstable iff its least measure value is positive.

2.3.4 Extended Coordinate Transformation and Set Invariance

In linear systems theory, coordinate transformation and system equivalence are pow-

erful tools in stability analysis. For switched linear systems, coordinate transforma-

tion also plays an important role in converting a switched system into a new one

with clearer and/or simpler structural information, which enables us to analyze the

stability properties in a more convenient manner. However, the standard notion of

equivalence coordinate change does not directly work, and we need to extend the

notion in a way that it is capable of rigorous stability analysis.

Definition 2.30 Suppose that T ∈ Rn×r is a constant matrix. The linear coordinate

change x = Ty is said to be an extended coordinate transformation for the switched

linear system if the matrix T is of full row rank, that is, rankT = n.

It is clear that the transforming matrix could be nonsquare in that the number of

columns might be larger than that of rows. Under the extended coordinate change,

the switched system is converted into

y+ = T +AσTy, (2.46)

where T + denotes the Moore–Penrose pseudo-inverse of a matrix T . Note that the

transformed system is r-dimensional. The system is said to be the extended trans-

formed system of the original switched linear system. Note that the process of ex-

tended coordinate transformation is nonreversible, that is, the original system is not

necessarily an extended transformed system of (2.46).

Recall that a matrix A= (ai,j ) in Rn×n is said to be strictly (column) negatively

diagonal dominant if

aii +
∑

j 
=i
|aji |< 0, i = 1, . . . , n.

Note that this can be equivalently characterized by μ1(A) < 0, where μ1 is the

matrix measure corresponding to the ℓ1-norm.
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Theorem 2.31 The switched linear system is stable iff there exists an extended co-

ordinate transformation such that the extended transformed system admits a con-

tractive 1-norm in discrete time or a negative 1-measure in discrete time.

Proof Note that, if the extended transformed system admits a contractive 1-norm in

discrete time or a negative 1-measure in discrete time, then the extended transformed

system is stable. It follows from x = Ty that the original switched system is stable.

To establish the converse relationship, we first consider the discrete-time case. As

the system is stable, it follows that it is also exponentially convergent. Therefore,

there is a piecewise linear function that serves as a common Lyapunov function,

V (x)= |Fx|∞. The Lyapunov function can be rewritten in the dual representation

V (x)=min
{

|h|1 : x =Xh, h ∈Rr
}

,

where X is a matrix of full row rank. The duality relationship comes from the fact

that the set of column vectors of [X,−X] is the set of vertices of the level set Γ =
{x ∈ Rn : V (x) ≤ 1}. Let {xj : j = 1, . . . , s} be the set of vertices of Γ . By the

symmetry of Γ , we have that s = 2r , and we can reindex the vertices such that

xk+r =−xk for k = 1, . . . , r . As the level set is attractive w.r.t. the switched system,

there is λ ∈ [0,1) such that

Aixj ∈ λΓ ∀i ∈M, j = 1, . . . , s. (2.47)

This is equivalent to the existence of vectors pij with |pij |1 ≤ λ such that

Aixj =Xpij ∀i ∈M, j = 1, . . . , r. (2.48)

Define

Pi =
[

pi1, . . . , p
i
r

]

, i = 1, . . . ,m.

It is clear that ‖Pi‖1 ≤ λ. Equations (2.48) can be rewritten as

AiX =XPi, i ∈M,

which leads to the first statement of the theorem.

The case of continuous time can be treated based on the above reasonale for dis-

crete time. In fact, by Lemma 2.19, there always exists a sufficiently small positive

real number τ such that the discrete-time Euler approximating system

x(t + 1)= (In + τAσ )x(t)

is also stable. This, together with the fact that the extended transformed system

admits a contractive 1-norm, yields

(In + τAi)X =XPi, i = 1, . . . ,m (2.49)
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for some full row rank matrix X ∈Rn×r and matrices Pi with ‖Pi‖1 < 1. It is clear

that (2.49) can be equivalently expressed by

AiX =X(Pi − In)/τ, i = 1, . . . ,m,

which directly leads to the conclusion with Hi = (Pi − In)/τ . �

Remark 2.32 It is interesting to note that, for a linear time-invariant system

x+ = Ax, the criterion degenerates into the matrix relation AX = XP in discrete

time and AX =XH in continuous time, where X is a matrix of full row rank, P is

a square matrix with ‖P ‖1 < 1, and H is a strictly negatively diagonal dominant

matrix. This criterion for stability contains interesting information as discussed be-

low. The equality AX = XP can be reasonably seen as the generalized similarity

between A and P . In this sense, a matrix is Hurwitz iff it is generalized similar to

a strictly negatively diagonal dominant matrix. For the switched linear system, it is

stable iff the subsystem matrices are simultaneously generalized similar to strictly

negatively diagonal dominant matrices. In discrete time, it is interesting to note that

any stable switched system is generalized similar to a system which admits the norm

| · |1 as its common Lyapunov function.

To further identify the subtle properties of marginal stability and marginal insta-

bility, we take a view of invariant sets that start from an origin-symmetric polyhe-

dron Λ0 which contains the origin as an interior point. An example of Λ0 is the

polyhedron with extreme points whose entries are either 1 or −1. Define the set

Λ∞ =
{

x ∈Rn : φ(t;0, x, σ ) ∈Λ0 ∀t ∈ T0, σ ∈ S
}

. (2.50)

It can be seen that Λ∞ is the largest (positively) invariant set contained in Λ0 for

the switched system.

Proposition 2.33 The following statements hold:

(1) If switched linear system A is stable or marginally stable, then, Λ∞ contains

the origin as an interior point, and Λ∞ ∩ ∂Λ0 
= ∅, where ∂Λ0 is the boundary

of Λ0. Conversely, if Λ∞ contains the origin as an interior point, then, the

system is stable or marginally stable, and Λ∞ ∩ ∂Λ0 
= ∅.

(2) If the system is marginally unstable, then, Λ∞ ∩ ∂Λ0 
= ∅, and Λ∞ ⊂Λ0 ∩H ,

where H is a nontrivial subspace of Rn.

(3) The switched system is unstable if Λ∞ = {0}.

Proof It is clear that Λ∞ is origin-symmetric. Furthermore, it can be seen that it

is convex and closed. Another observation is that, as Λ∞ is an invariant set for the

system, λΛ∞ is also an invariant set for any λ ≥ 0. Therefore, Λ∞ ∩ ∂Λ0 
= ∅ iff

Λ∞ 
= {0}.
For the first statement, note that the (marginally) stable system admits a common

weak Lyapunov function, V . Define

v = max
{

r ∈R : V (x)≤ r⇒ x ∈Λ0

}

,
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ΛV =
{

x ∈Rn : V (x)≤ v
}

.

As ΛV is an invariant set contained in Λ0, we have that Λ∞ ⊃ ΛV , and thus it

contains the origin as an interior point. Conversely, suppose that Λ∞ contains the

origin as an interior point. As Λ∞ is invariant w.r.t. the system, the system is stable

or marginally stable.

For the third statement, suppose that Λ∞ = {0}. Define

Λt =
{

x ∈Rn : φ(s;0, x, σ ) ∈Λ0 ∀s ∈ [0, t], σ ∈ S
}

, t ∈ T0,

and further

η(t)= sup
{

|x| : x ∈Λt

}

, t ∈ T0.

It can be seen that the function η is decreasing and approaching to zero. As the

function is continuous, there is a time τ ∈ T0 such that

η(τ)≤ 1

2
inf{x : x ∈ ∂Λ0}.

That is, for any λ≤ 2, we have λΛτ ⊂Λ0. Define

Λλ
τ =

{

x ∈Rn : φλ(s;0, x, σ ) ∈Λ0 ∀s ∈ [0, τ ], σ ∈ S
}

,

where φλ denotes the state for switched system {(1− λ)A1, . . . , (1− λ)Am} in dis-

crete time and for {A1 − λIn, . . . ,Am − λIn} in continuous time, where In is the

nth-order identity matrix. It can be seen that Λλ
τ ⊂ (Λ0)

o when λ is a sufficiently

small positive real number. This means that the above matrix set is neither stable

nor marginal stable, which further implies the instability of the original system.

Finally, we prove the second statement. As Λ∞ = {0} implies instability as

proved previously, Λ∞ 
= {0} for marginal instability. As Λ∞ is convex, 0-sym-

metric, and containing the origin as a boundary point (w.r.t. Rn), it induces the

nontrivial subspace H of Rn given by

H
def=

⋃

λ≥0

λΛ∞. (2.51)

It is clear that Λ∞ ⊂H , and this completes the proof. �

A byproduct of Proposition 2.33 is the following system decomposition lemma.

Lemma 2.34 A marginally unstable switched linear system is simultaneously block-

triangularizable. That is, there exist a nonsingular matrix T and two positive inte-

gers n1, n2 with n1 + n2 = n such that

Āi
def= T −1AiT =

[

Ā1
i Ā3

i

0 Ā2
i

]

, i ∈M, (2.52)
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where Ā1
i and Ā2

i are n1 × n1 and n2 × n2, respectively. In addition, both Ā1 =
{Ā1

1, . . . , Ā
1
m} and Ā2 = {Ā2

1, . . . , Ā
2
m} are marginally stable as switched linear sys-

tems of dimensions n1 and n2, respectively.

Proof Let H be the subspace defined in (2.51), and let further n1 = dimH and

n2 = n−n1. The nontriviality of H implies that 1≤ n1 < n. Let H⊥ be the subspace

orthogonal to subspace H with H⊕H⊥ =Rn. Let T be a nonsingular matrix whose

first n1 columns belong to H and the others belong to H⊥. The block-triangular

structure of (2.52) comes from the fact that H is Ai -invariant for all i ∈ M . In-

deed, for any x ∈ H , there exist y ∈Λ∞ and λ ∈ R+ such that x = λy. As Λ∞ is

Ai -invariant, we have

Aix = λAiy ∈ λΛ∞ ⊂H.

It is clear that the switched system Ā1 = {Ā1
1, . . . , Ā

1
m} is either stable or marginally

stable, and the marginal stability of the switched system Ā2 = {Ā2
1, . . . , Ā

2
m} can be

derived as follows. If the switched system Ā2 is marginally unstable, then it also

admits a nontrivial invariant subspace. In this case, it can be seen that, besides the

subspace T −1H , the switched block-triangular system Ā = {Ā1, . . . , Ām} admits

another nontrivial invariant subspace, denoted H ′. We can prove that T −1H +H ′

is Āi -invariant for all i ∈M , which further implies that H + TH ′ is Ai -invariant

for all i ∈M . This contradicts the definition of H as it is the largest invariant sub-

space under Ai for i ∈M . The contradiction exhibits that the switched system Ā2

is either stable or marginally stable. However, the (exponential) stability of the

switched system Ā2 would imply marginal stability of the switched system Ā. Thus

the switched system Ā2 must be marginally stable. Finally, note that the original sys-

tem is marginally stable if the switched system Ā1 is stable, and thus the switched

system Ā1 must be marginally stable. �

Finally, by means of the triangular structure in (2.52), it is possible to estimate

the rate of growth for state norm.

Proposition 2.35 Suppose that the switched linear system A is marginally unstable.

Then, there is a polynomial P with degree less than n such that

∣

∣φ(t;0, x, σ )
∣

∣≤ P(t)|x| ∀x ∈Rn, t ∈ T0, σ ∈ S. (2.53)

Proof For continuous time, write eĀi t =
[

e
Ā1
i
t
Gi (t)

0 e
Ā2
i
t

]

. As both Ā1 = {Ā1
1, . . . , Ā

1
m}

and Ā2 = {Ā2
1, . . . , Ā

2
m} are marginally stable as switched linear systems, each Ā

j
i

is either stable or marginally stable for i ∈M and j = 1,2. As a result, there exists

a polynomial vanishing at zero and with degree less than n, denoted P1(t)= p1t +
· · ·+pn−1t

n−1, such that the absolute value of each entry of Gi(t) is upper bounded

by P1(t) for all i ∈M and t ∈ T0. Without loss of generality, we assume that all the

coefficients of P1 are nonnegative. Fix an arbitrarily given switching signal σ ∈ S

and a time t ∈ T0, and let t0 = 0, . . . , ts be the switching time sequence in [t0, t) and
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i0, . . . , is be the corresponding switching index sequence. It is clear that the state

transition matrix Φ̄(t; t0, σ )= eĀis (t−ts ) · · · eĀi0
(t1−t0) is of the form

Φ̄(t; t0, σ )=
[

e
Ā1
is
(t−ts ) · · · eĀ

1
i0
(t1−t0) Q

0 e
Ā2
is
(t−ts) · · · eĀ

2
i0
(t1−t0)

]

,

where

Q =Gis (t − ts)e
Ā2
is−1

(ts−ts−1) · · · eĀ
2
i0
(t1−t0)

+ e
Ā1
is
(t−ts )Gis−1

(ts − ts−1)e
Ā2
is−2

(ts−1−ts−2) · · · eĀ
2
i0
(t1−t0)

+ · · · + e
Ā1
is
(t−ts ) · · · eĀ

1
i2
(t3−t2)Gi1(t2 − t1)e

Ā2
i0
(t1−t0)

+ e
Ā1
is
(t−ts ) · · · eĀ

1
i1
(t2−t1)Gi0(t1 − t0).

It can be seen that the marginal stability of Ā1 and Ā2 implies the existence of an up-

per bound, denoted κ , for the entries of the corresponding state transition matrices.

It follows that each entry of Q satisfies

∣

∣Q(j, l)
∣

∣ ≤ nκ2
(

P1(t − ts)+ P1(ts − ts−1)+ · · · + P1(t1 − t0)
)

≤ nκ2P1(t − t0), j = 1, . . . , n1, l = 1, . . . , n2,

where the latter inequality comes from the fact that P1 vanishes at the origin and

its coefficients are nonnegative. It follows that the norm of Φ̄(t; t0, σ ) is upper

bounded by n2κ2(1+P1(t − t0)). As a result, the norm of the state transition matrix

Φ(t; t0, σ ) is upper bounded by P(t− t0)
def= ‖T ‖‖T −1‖n2κ2(1+P1(t− t0)), which

is a polynomial with degree less than n. This clearly leads to the conclusion.

The discrete-time case can be proceeded in a similar manner, and the details are

left to the reader. �

The proposition reveals the fact that there is a gap between exponential diver-

gence of instability and divergence rate of marginal instability which is bounded by

a polynomial with degree less than the system dimension.

Corollary 2.36 For any n-dimensional regular switched linear system A, there is a

polynomial P with degree less than n such that

∣

∣φ(t;0, x, σ )
∣

∣≤ P(t)e̺(A)t |x| ∀x ∈Rn, t ∈ T0, σ ∈ S. (2.54)

Moreover, P can be chosen to be of degree zero iff switched system A is marginally

stable.
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Example 2.37 Let us examine the continuous-time two-form switched linear system

with subsystem matrices

A1 =

⎡

⎢

⎢

⎣

−1 0 0 α

2 −1 0 0

0 0 −2 3

0 0 0 −1

⎤

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎣

−1 2 0 0

0 −1 0 0

0 0 −1 0

0 0 3 −2

⎤

⎥

⎥

⎦

,

where α is a real number. It is clear that both subsystems are stable, and the switched

linear system admits a block triangular structure,

Ai =
[

Ai,1 Ai,3

0 Ai,2

]

, i = 1,2.

When α = 0, it can be verified that the quadratic function

V (x)= xT Px, P =

⎡

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 3 −1

0 0 −1 3

⎤

⎥

⎥

⎦

is a common weak Lyapunov function. By Proposition 2.6, the switched system

is stable or marginally stable. On the other hand, it can be seen that the convex

combination 1
2
(A1+A2) is marginally stable, and hence the switched system is not

(asymptotically) stable [80]. As a result, the system is marginally stable.

When α 
= 0, the switched system is marginally unstable due to the coupling

between the two marginally stable modes. It is readily seen that the system is already

in the form specified by Lemma 2.34. Let Λ0 = {x ∈ R4 :
∑4

k=1 |xi | ≤ 1}. The

largest invariant set Λ∞ contained in Λ0 satisfies

ΛV2

def=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

0

0

x3

x4

⎤

⎥

⎥

⎦

: V2(x)≤ 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⊂Λ∞ ⊂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

0

0

x3

x4

⎤

⎥

⎥

⎦

: |x3| + |x4| ≤ 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where V2(x)= 3x2
3 + 3x2

4 − 2x3x4. Figure 2.1 depicts the sets in the x3 − x4 plane.

Finally, due to the block-triangular structure of the switched system, the system

solution satisfies

∣

∣x1(t)
∣

∣ ≤ κ1

∣

∣x1(0)
∣

∣+
∫ t

0

κ1

∣

∣αx4(τ )
∣

∣dτ ≤ κ1

∣

∣x1(0)
∣

∣+ ακ1κ2t
∣

∣x2(0)
∣

∣,

∣

∣x2(t)
∣

∣ ≤ κ2

∣

∣x2(0)
∣

∣,

where x1 = [x1, x2]T , x2 = [x3, x4]T , and κ1 and κ2 are the largest possible norms

of the state transition matrices w.r.t. subsystems {Ai,1} and {Ai,2}, respectively. It

is clear that the state norm is bounded by a polynomial of degree one, which is

consistent with Proposition 2.35. Figure 2.2 presents a sample state trajectory with

α = 1. It is clear that the state norm grows linearly.
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Fig. 2.1 Sets Λ0, Λ∞, and ΛV2

2.3.5 Triangularizable Systems

In this subsection, we focus on a special class of switched linear systems which

either possess an upper (lower) triangular structure or are simultaneously equivalent

to triangular systems. Triangular systems are interesting because they have simple

structures, and many nontriangular systems can be made to be triangular by means

of equivalence transformations (simultaneous triangularization).

Definition 2.38 The switched system is said to be simultaneously (upper) triangu-

larizable if the matrix set A= {A1, . . . ,Am} is simultaneously triangularizable, that

is, there exists a complex nonsingular matrix T ∈ Cn×n such that Bk
def= T −1AkT ,

k ∈M , are of the upper triangular form,

Bk =

⎡

⎢

⎣

bk(1,1) . . . bk(1, n)

. . .

0 . . . bk(n,n)

⎤

⎥

⎦
∈Cn×n, k ∈M. (2.55)

Note that we allow complex matrices as the equivalence transformation. For a

simultaneously triangularizable matrix set, we can transform it into the following

real normal form.
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Fig. 2.2 Sample state trajectory

Lemma 2.39 Suppose that a system A= {A1, . . . ,Am} is simultaneously triangu-

larizable. Then, there exists a real nonsingular matrix G, such that G−1AkG is of

the normal form

Āk
def= G−1AkG=

⎡

⎢

⎢

⎢

⎣

A1k ∗ . . . ∗
0 A2k . . . ∗
...

...
. . .

...

0 0 . . . Alk

⎤

⎥

⎥

⎥

⎦

, (2.56)

where l ≤ n, Ajk is either a 1× 1 or 2× 2 block, and the size of the j th block Ajk

is the same for all k ∈M . In addition, if Ajk is of 2× 2, then it is of the form

Ajk =
[

μjk ωjk
−ωjk μjk

]

. (2.57)

Proof As the matrix set {A1, . . . ,Am} is simultaneously triangularizable, for

any polynomial p(y1, . . . , ym) over R, the eigenvalues of p(A1, . . . ,Am) are

p(b1(i, i), . . . , bm(i, i)), i = 1, . . . , n. This exhibits that the matrix set possesses

Property III in [85, p. 442]. By Theorems 1 and 9 in [85], there is an orthogonal
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matrix H ∈Rn×n such that

B̄k
def= H−1AkH =

⎡

⎢

⎢

⎢

⎣

B1k ∗ . . . ∗
0 B2k . . . ∗
...

...
. . .

...

0 0 . . . Blk

⎤

⎥

⎥

⎥

⎦

, (2.58)

where l ≤ n, and for any fixed j ≤ l, we have

(i) Bj1, . . . ,Bjm are 1× 1; or

(ii) Bj1, . . . ,Bjm are 2× 2, with one of these matrices, say, Bjq , of the form

Bjq =
[

rjq ujq
−vjq rjq

]

, ujq > 0, vjq > 0,

and each of Bjk, k ∈M , is a real linear polynomial gjk in Bjq , that is, Bjk =
gjk(Bjq).

As Bjq in (ii) possesses a pair of (conjugated) complex eigenvalues, it follows from

the standard matrix theory that there exists a real nonsingular matrix Tj ∈R2×2 such

that

T −1
j BjqTj =

[

μjq ωjq
−ωjq μjq

]

,

where μjq ,ωjq ∈ R. Furthermore, as any polynomial of the matrix
[ μjq ωjq
−ωjq μjq

]

is

still of the same form, we have

T −1
j BjkTj = gjk

(

T −1
j BjqTj

)

=
[

μjk ωjk
−ωjk μjk

]

, μjk,ωjk ∈R, k ∈M.

Define K = diag[K1, . . . ,Kl], where Kj = 1 if the corresponding block in (2.58) is

1× 1, and Kj = Tj if the block is 2× 2. Letting G=HK , the theorem follows. �

Remark 2.40 Simultaneous triangularization of matrix sets has been investigated

extensively; see, for example, [5, 176, 195, 204] and the references therein. In partic-

ular, the following classes of matrix sets (and the corresponding switched systems)

have been proven to be simultaneously triangularizable:

(a) The system matrices are commutative pairwise, that is, AiAj =AjAi , i, j ∈M
[182].

(b) The Lie algebra generated by the system matrices is solvable [1, 147].

(c) A = {A1,A2} and rank(A1A2 −A2A1)= 1 [137].

For switched linear systems that are simultaneously triangularizable, it is possible

to judge the stability directly upon the eigenvalues of the subsystems. In fact, we can

go further to characterize the largest rate of convergence (cf. (2.28)) explicitly.
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Theorem 2.41 For any simultaneously triangularizable switched linear system A,

the largest divergence rate is

̺(A)=max
k∈M

n
max
i=1

ℜλi(Ak) (2.59)

in continuous time and

̺(A)=max
k∈M

n
max
i=1

∣

∣λi(Ak)
∣

∣ (2.60)

in discrete time.

Remark 2.42 Note that (2.59) and (2.60) only involve eigenvalues of the system

which are easily calculated. To apply the theorem, we do not necessarily need to find

a linear transformation that converts the system into the triangular form. Instead, we

only need to confirm that the system is simultaneously triangularizable.

To prove this theorem, we need the following technical lemma.

Lemma 2.43 A switched system Ā = {Ā1, . . . , Ām}, where Āk is in normal form

(2.56), is stable iff each Āk is stable.

Proof Suppose that the switched system is stable. Then it is clear that each subsys-

tem is also stable.

On the other hand, if each Āk is Hurwitz in continuous time, then we can con-

struct a common Lyapunov function of the form v(x) = xT Px for the switched

system. Indeed, for the B̄k defined in (2.58), let j1, . . . , jl denote the size of

B̄k(1,1), . . . , B̄k(l, l), respectively. Define

P = diag[Ij 1, q2Ij 2, . . . , qlIj l],

where positive numbers q2, . . . , ql are chosen so that the minors of the matrix

−(ĀT
k P + P Āk) of order 1, . . . , n are positive for all k ∈ M . In this way, the

switched system possesses a common Lyapunov function and thus is stable.

The discrete-time counterpart can be established in a similar manner, and the

details are omitted. �

Proof of Theorem 2.41 We proceed with the continuous-time case, and the discrete-

time case could be proven in a similar manner. Suppose that there exists a real

nonsingular matrix G such that for each k ∈M , the matrix Āk =G−1AkG is of the

triangular form (2.56).

Consider the switched system A − γ I = {A1 − γ In, . . . ,Am − γ In}, where γ

is any given real number. Let λmax
k denote the largest real part of the matrix Ak .

Suppose that γ > maxk∈M λmax
k , then it can be seen that each Āk − γ In is Hurwitz.

It follows from Lemma 2.43 that the switched system Ā− γ In = {Ā1 − γ In, . . . ,

Ām − γ In} is stable. This in turn implies that

̺(Ā− γ In) < 0
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and

̺(A)= ̺(Ā) < γ.

Accordingly, we have

̺(A)≤max
k∈M

λmax
k .

On the other hand, it can be seen that

̺(A)≥max
k∈M

̺(Ak)=max
k∈M

λmax
k .

As a result, we have

̺(A)=max
k∈M

λmax
k . �

Corollary 2.44 A simultaneously triangularizable switched linear system is asymp-

totically stable iff each subsystem is stable.

Example 2.45 For the continuous-time switched system A= {A1,A2} with

A1 =

⎡

⎣

−2 −1 −1

0 −1 0

−1 −1 −2

⎤

⎦ , A2 =

⎡

⎣

0 2 0

−2 −1 0

1 −2 −1

⎤

⎦ ,

it can be verified that the eigenvalues are {−1,−1,−3} for A1 and {−1,−0.5 +
1.9365

√
−1,−0.5 − 1.9365

√
−1} for A2, and A1A2 − A2A1 is of rank one. It

follows that the switched linear system is simultaneously triangularizable (cf. Re-

mark 2.40), which further implies that the switched system is exponentially conver-

gent with the rate of −0.5.

2.4 Computational Issues

In the previous section, we presented quite a few stability criteria, mostly for stabil-

ity and some for marginal stability. In this section, we briefly discuss the possibility

of verifying the conditions of the criteria in terms of appropriate computational pro-

cedures.

2.4.1 Approximating the Spectral Radius

For discrete-time switched linear systems, it follows from Corollary 2.24 that the

verification of asymptotic stability can be reduced to the calculation of the spectral

radius. Indeed, if the spectral radius can be exactly calculated in a finite time, then

the verification problem is decidable, that is, there exists a computational proce-

dure that produces either “yes” or “no” answer in a finite time. In the literature,
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it was conjectured that, for any finite matrix set A, there exists a finite k such

that ρ̄(A) = ρ̄k(A)
1/k . This conjecture is well known as the Finiteness Conjec-

ture, which was finally disproved by counterexamples. As a result, it remains an

open problem for the verification of asymptotic stability. Nevertheless, by Corol-

lary 2.24 and the fact that ρ(A) = infk∈N+ ρ̂k(A)
1/k , the verification problem is

semi-decidable by verifying the relationship ρ̂k(A) < 1 for k = 1,2, . . . and termi-

nating at the first confirmative instant. On the other hand, the problem of instabil-

ity verification is also semi-decidable by verifying the relationship ρ̄k(A) > 1 for

k = 1,2, . . . and terminating at the first confirmative instant. The problem of veri-

fying the marginal stability, however, was shown to be undecidable.

While it is hard to exactly calculate the spectral radius of a matrix set, it is possi-

ble to compute an approximation as follows.

Proposition 2.46 For any norm and natural number k, we have

max
B∈Πk(A)

ρ(B)1/k ≤ ρ(A)≤ max
B∈Πk(A)

‖B‖1/k, k ∈N+. (2.61)

Proof First, observe that, for any natural number j , we have

max
B∈Πk(A)

ρ(B)j ≤ max
B∈Πkj (A)

ρ(B). (2.62)

Indeed, the set of matrix products that can be expressed as the j th power of an

element in Πk(A) is a subset of Πkj (A). Inequality (2.62) follows from the equality

ρ(Aj )= ρ(A)j . Rewrite (2.62) to be

max
B∈Πk(A)

ρ(B)1/k ≤ max
B∈Πkj (A)

ρ(B)1/kj , (2.63)

which implies that

max
B∈Πk(A)

ρ(B)1/k ≤ lim sup
j→+∞

max
B∈Πkj (A)

ρ(B)1/kj .

On the other hand, it follows from Πkj (A)⊂
⋃+∞

i=1 Πi(A) that

lim sup
j→+∞

max
B∈Πkj (A)

ρ(B)1/kj ≤ lim sup
i→+∞

max
B∈Πi (A)

ρ(B)1/i,

which, together with inequality (2.63), leads to the first inequality of (2.61).

To establish the second inequality of (2.61), define

ζ =max
{

‖A1‖, . . . ,‖Am‖
}

.

For any nature number l, there are nonnegative integers ν and j with j < k such

that l = kν + j . For any index sequence i1, . . . , il in M , we have
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‖Ai1 · · ·Ail‖ ≤
ν−1
∏

ι=0

(

‖Akι+1Akι+2 · · ·Akι+k‖
)

j
∏

ι=1

‖Akν+ι‖

≤
(

max
B∈Πk(A)

‖B‖
)ν

ζ j .

It follows that

(

max
B∈Πl(A)

‖B‖
)1/l

≤
(

max
B∈Πk(A)

‖B‖
)1/k−j/kl

ζ j/ l,

which, by taking l→+∞, yields

ρ(A)≤ max
B∈Πk(A)

‖B‖1/k.
�

Remark 2.47 The proposition provides two-side bounds for the spectral radius.

Based on this relationship, a computational procedure is readily developed to

approximate the spectral radius. With a sufficiently large k, the approximation

can be made arbitrarily accurate. For stability verification, it suffices to termi-

nate the procedure when either maxB∈Πk(A) ρ(B) > 1, which implies instability, or

maxB∈Πk(A) ‖B‖ < 1 that implies stability. While a merit of this approximation is

that at each step the approximating accuracy can be estimated, the procedure is not

computationally efficient as the cardinality of Πk(A) grows exponentially with k.

Another drawback of the estimate is that both sequences maxB∈Πk(A) ρ(B)
1/k and

maxB∈Πk(A) ‖B‖1/k are not necessarily monotone w.r.t. k, which means that the ap-

proximate accuracy of estimate (2.61) is not necessarily increasing as k increases.

The following example clearly illustrates this.

Example 2.48 Let M = {1,2}, and

A1 =
[

−1 −
√

3

−0.9
√

3 −0.9

]

, A2 =
[

−0.9 −0.9
√

3√
3 −1

]

.

Table 2.1 shows the calculated joint/generalized spectral radii and the differ-

ences that represent the accuracy errors, where ρ̄k = maxB∈Πk(A) ρ(B)
1/k , ρ̂k =

maxB∈Πk(A) ‖B‖1/k , and ek = ρ̂k − ρ̄k . It is clear that all the sequences are oscillat-

ing.

To obtain a guaranteed precision of a spectral radius estimate, we take a poly-

nomial common Lyapunov approach, which could provide guaranteed accuracy by

Table 2.1 Estimated spectral

radii and error bounds k 1 2 3 4 5 6 7

ρ̄k 1.8974 1.8974 1.9652 1.8974 1.8974 1.9652 1.8974

ρ̂k 2.0000 1.9860 1.9654 1.9739 1.9709 1.9654 1.9702

ek 0.1026 0.0886 0.0002 0.0765 0.0735 0.0002 0.0728
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searching a proper common Lyapunov function in a preassigned set of polynomi-

als. For this, we first restrict ourselves to the case of quadratic common Lyapunov

functions and then extend the searching to sum-of-squares polynomials.

If the switched linear system admits a quadratic Lyapunov function, then, by

solving the linear matrix inequalities

AT
i P + PAi < 0, i = 1, . . . ,m

for symmetric matrix P , the asymptotic stability is decidable via effective algo-

rithms. Based on this idea, we define the ellipsoid norm for matrix set A by

ρL(A)= inf
{

μ ∈R+ : ∃ P > 0 s.t. AT
i PAi ≤ μ2P, i = 1, . . . ,m

}

.

It can be seen that the ellipsoid norm could be equivalently defined to be

ρL(A)= inf
P>0

m
max
i=1

‖Ai‖P , (2.64)

where ‖Ai‖P =maxx 
=0

√

xTAT
i PAix/

√
xT Px is the P -norm.

Proposition 2.49
ρL(A)√

n
≤ ρ(A)≤ ρL(A).

To proceed with the proof, we need the following supporting lemma that is part

of the well-known John’s theorem [128].

Lemma 2.50 Suppose that Ω ⊂Rn is an origin-symmetric compact convex set with

nonempty interior. Then, there is an origin-centered ellipsoid E such that

E ⊂Ω ⊂
√
nE. (2.65)

Proof of Proposition 2.49 It follows from the definition of ρL(A) that

ρ(A)≤ ρL(A). Therefore, we need only to establish that ρ(A)≥ ρL(A)√
n

.

By Theorem 2.23, for any positive real number ǫ, there is a norm | · | such that

‖A‖ ≤ ρ(A)+ ǫ. (2.66)

It is clear that the unit ball Ω = {x ∈ Rn : |x| ≤ 1} is origin-symmetric, compact,

and convex. It follows from Lemma 2.50 that there exists an ellipsoid E = {x ∈Rn :
xT Px ≤ 1

n
} such that relation (2.65) holds. This implies that

√

xT Px ≤ |x| ≤
√
n
√

xT Px,

which, together with inequality (2.66), further implies that

AT
i PAi ≤

(

ρ(A)+ ǫ
)

nP.
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This leads to

max
i∈M

‖Ai‖P ≤
√
n
(

ρ(A)+ ǫ
)

.

By the arbitrariness of ǫ, we have

ρL(A)= inf
P>0

max
i∈M

‖Ai‖P ≤
√
nρ(A).

This completes the proof. �

Remark 2.51 Proposition 2.49 establishes that the ellipsoid norm approximation ad-

mits a guaranteed precision that relies on the system dimension. In particular, the

approximation is exact for scalar systems. For higher-order systems, the approxima-

tion is tight in that Proposition 2.49 does not generally hold when
√
n is substituted

by a smaller number. Therefore, finding a common Lyapunov function becomes

more and more difficult as the system dimension increases.

To improve the approximation precision, a natural idea is to use higher-order

polynomials as common Lyapunov functions. A suitable class of polynomial Lya-

punov functions is the set of homogeneous polynomials that can be expressed as

sums of squares.

A polynomial p is said to admit a sum-of-squares representation if there are

polynomials p1, . . . , pk such that

p(x)=
k
∑

i=1

(

pi(x)
)2 ∀x ∈Rn.

A polynomial is said to be a sum-of-squares if it admits a sum-of-squares represen-

tation.

It is clear that a sum-of-squares is always positive semi-definite, and it is positive

definite if polynomials pi , i = 1, . . . , k, do not admit a common root. Moreover,

a homogeneous sum-of-squares admits a quadratic representation as stated below.

Lemma 2.52 A homogeneous polynomial p(x) of degree 2d is a sum-of-squares if

and only if

p(x)=
(

x[d]
)T
Px[d], (2.67)

where x[d] is a vector whose entries are monomials of degree d in x, and P ≥ 0.

For a proof of the lemma, the reader is referred to [184, 203].

Example 2.53 Suppose that we try to find a sum-of-square representation for the

polynomial

p(x1, x2)= 2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2 .
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For this, let x[d] = [x2
1 , x1x2, x

2
2 ]T . Then, try the representation as in (2.67) that

reads

[

x2
1 x1x2 x2

2

]

⎡

⎣

p11 p12 p13

p12 p22 p23

p13 p23 p33

⎤

⎦

⎡

⎣

x2
1

x1x2

x2
2

⎤

⎦

= p11x
4
1 + 2p12x

3
1x2 + 2p23x1x

3
2 + (p22 + 2p13)x

2
1x

2
2 + p33x

4
2 .

Solving p(x)= (x[d])T Px[d] gives

p11 = 2, p12 = 1, 2p13 + p22 =−1, p23 = 0, p33 = 5. (2.68)

To obtain a positive semi-definite P satisfying the equalities, we can use the semi-

definite programming technique, which corresponds to the optimization of a linear

function over the intersection of an affine subspace and the cone of positive semi-

definite matrices. Specifically, we take the following semi-definite programming:

minimize 0

subject to tr(BiP)= bi, i = 1, . . . ,5,

P ≥ 0,

where Bi and bi are chosen to represent the ith equation, i = 1, . . . ,5. For instance,

to represent the third equation, 2p13 + p22 =−1, we should choose

B3 =

⎡

⎣

0 0 1

0 1 0

1 0 0

⎤

⎦ , b3 =−1.

It turns out that a feasible solution of the semi-definite programming is

P =

⎡

⎣

2 1 −3

1 5 0

−3 0 5

⎤

⎦ .

In this way, polynomial p is represented by a sum-of-squares as

p(x)= 1

2

[(

2x2
1 − 3x2

2 + x1x2

)2 +
(

x2
2 + 3x1x2

)2]
.

To utilize the sums of squares to approximate the spectral radius, we need the

following lemma.

Lemma 2.54 Suppose that p is a positive definite homogeneous polynomial of de-

gree 2d that satisfies

p(Aix)≤ γp(x) ∀x ∈Rn, i ∈M, (2.69)

for some γ > 0. Then, we have ρ(A)≤ γ
1

2d .
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Proof By the positive definiteness and continuity of p, we have

0 < min
|x|=1

p(x)
def= α1 ≤ max

|x|=1
p(x)

def= α2 <+∞,

which, together with the homogeneity, implies that

α1|x|2d ≤ p(x)≤ α2|x|2d .

For any natural number k and B ∈Πk(A), there exist an index sequence i1, . . . , ik
with elements in M such that B =Aik · · ·Ai1 . It is clear that

‖Aik · · ·Ai1‖ = max
x 
=0

|Aik · · ·Ai1x|
|x|

≤
(

α2

α1

)
1

2d

max
x 
=0

p(Aik · · ·Ai1x)

p(x)

≤
(

α2

α1

)
1

2d

γ k/2d .

As a result, we have

ρ(A)= lim sup
k→+∞

max
B∈Πk(A)

‖B‖1/k ≤ γ
1

2d .
�

It is clear that, for any homogeneous polynomial p, there always exists a positive

real number γ that satisfies inequality (2.69).

Example 2.55 For the planar discrete-time two-form switched linear system A with

A1 =
[

a 0

a 0

]

, A2 =
[

0 a

0 −a

]

,

where a is a positive real number, simple calculation gives

max
B∈Πk(A)

ρ(B)1/k = a, k = 1,2, . . . .

As a result, the spectral radius of the switched system is a. Using a common

quadratic Lyapunov function, the upper bound on the spectral radius is equal to√
2a. As a result, only when a ≤

√
2

2
, we can find a common quadratic Lyapunov

function for the switched system, which implies the (marginal) stability of system.

On the other hand, take the sum-of-squares homogeneous polynomial of degree four

V (x)=
(

x2
1 − x2

2

)2 + ǫ
(

x2
1 + x2

2

)2
,

where ǫ is a positive real number. We could verify that, for any b ≤ 4
3

, there is a

sufficiently small ǫ such that ba4V (x) − V (Aix) is a sum-of-squares. It follows
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Fig. 2.3 Sample phase portrait and level sets

from Lemma 2.54 that

ρ(A)≤
(

4

3

)1/4

a.

In particular, when a < ( 3
4
)1/4 ≈ 0.9306, we conclude that the switched system is

stable. It is interesting to note that the level sets of V (x) are nonconvex, as shown

in Fig. 2.3, where a = 0.93 and ǫ = 0.01.

The following lemma, presented in [21], characterizes the ability of sums of

squares to approximate a norm.

Lemma 2.56 For any norm | · | and natural number d , there exists a homogeneous

polynomial p(x) of degree 2d such that

(1) p is a sum-of-squares and

(2) for all x ∈Rn, we have

p(x)
1

2d ≤ |x| ≤ κdnp(x)
1

2d , (2.70)

where κdn =
(

n+d−1
d

)
1

2d .
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Recall that
(

k
j

)

is the number of combinations,
(

k
j

)

= k!
j !(k−j)! , where k! is a fac-

torial. When n is fixed and d is sufficiently large, we have

κdn ≈ 1+ 2d

(n− 1) lnd
.

This means that, for any positive real number ǫ, there is a sufficient large integer

d such that κdn ≤ 1 + ǫ. As an implication, by choosing sufficiently large d , the

estimate in (2.70) can achieve any preassigned accuracy.

Let HPnk be the set of homogeneous polynomials of degree k defined on Rn, and

SOSnk be the subset of HPnk that are sums-of-squares. Define the quantity

ρ2d
S (A)= infp∈HPnk

γ
1

2d

subject to p ∈ SOSnk ,

γp(x)− p(Aix) ∈ SOSnk .

With the help of the above notation, we are ready to state the main result of the

subsection.

Theorem 2.57 Suppose that d is a natural number. Then, we have

ρ2d
S (A)

κdn
≤ ρ(A)≤ ρ2d

S (A). (2.71)

To proceed with a proof of the theorem, we need some further auxiliary material.

First, it follows from Lemma 2.54 that

ρ(A)≤ ρ2d
S (A). (2.72)

Another observation is that, when d = 1, HPn2 is exactly the set of quadratic polyno-

mials, and SOSn2 is exactly the set of positive (semi-)definite quadratic polynomials.

For any positive real number ǫ, there is a norm | · | such that

ρ(A)≥ ‖A‖ − ǫ.

By Lemma 2.56, we have

ρ(A)≥ 1√
n
ρ2
S(A)− ǫ,

where the equality
(

n
1

)1/2 =√n is used. By the arbitrariness of ǫ, we obtain

ρ(A)≥ 1√
n
ρ2
S(A). (2.73)

Note that the approximation is the same as in Proposition 2.49.
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Next, for a vector x ∈Rn and a natural number k, define the k-lift of x, denoted

x[k], to be the vector with components {
√
α!xα}α , where α = (α1, . . . , αn) ∈ Nn

+,
∑n

i=1 αi = k, and α! denotes the multinomial coefficient α! = k!
α1!···αn! . For example,

when n= 2, we have

x[1] =
[

x1

x2

]

, x[2] =

⎡

⎢

⎣

x2
1√

2x1x2

x2
2

⎤

⎥

⎦
, x[3] =

⎡

⎢

⎢

⎢

⎢

⎣

x3
1√

3x2
1x2√

3x1x
2
2

x3
2

⎤

⎥

⎥

⎥

⎥

⎦

.

It is clear that x[k] is of dimension Nk
n =

(

n+k−1
k

)

. For standard Euclidean norm, it

can be verified that
∣

∣x[k]
∣

∣= |x|k, k = 1,2, . . . . (2.74)

On the other hand, for any matrix A ∈ Rn×n, there is an induced matrix A[k] ∈
RNk

n×Nk
n satisfying

A[k]x[k] = (Ax)[k] ∀x ∈Rn. (2.75)

It can be shown that the operation defines an algebra homomorphism that preserves

the structure of matrix multiplication. In particular, for any n×n matrices A and B ,

we have

(AB)[k] =A[k]B[k], k = 1,2, . . . . (2.76)

Integrating properties (2.74), (2.75) and the definition of spectral radius, we can

obtain the following lemma.

Lemma 2.58 For a matrix set {A1, . . . ,Am} and a natural number k, we have

ρ
(

A
[k]
1 , . . . ,A[k]m

)

= ρ(A1, . . . ,Am)
k. (2.77)

Finally, with the help of the above preparations, we are ready to prove Theo-

rem 2.57.

Proof of Theorem 2.57 Note that

ρ2
S

(

A
[d]
1 , . . . ,A

[d]
1

)

= inf
{

γ : P > 0, γ 2dP −
(

A
[d]
i

)T
PA

[d]
i ≥ 0, i = 1, . . . ,m

}

= inf
{

γ : p(x) > 0, γ 2dp(x)− p
(

A
[d]
i

)

≥ 0, i = 1, . . . ,m
}

≥
(

ρ2d
S (A)

)d
, (2.78)

where the notation p(x) = (A
[d]
i )T PA

[d]
i and the fact that γ 2dp(x) − p(A

[d]
i ) ∈

SOS
Nd
n

2 have been used. Combining Lemma 2.58 with inequalities (2.73) and (2.78)
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yields

ρ(A)d = ρ
(

A
[d]
1 , . . . ,A[d]m

)

≥ 1
√

Nd
n

ρ2
S

(

A
[d]
1 , . . . ,A[d]m

)

≥ 1
√

Nd
n

(

ρ2d
S (A)

)d
.

As a result, we have

ρ(A)≥
ρ2d
S (A)

κdn
,

which, together with inequality (2.72), leads to inequalities (2.71). The proof of

Theorem 2.57 is completed. �

Example 2.59 For the four-dimensional three-form switched system with

A1 =

⎡

⎢

⎢

⎣

0 1 7 4

1 6 −2 −3

−1 −1 −2 −6

3 0 9 1

⎤

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎣

−3 3 0 −2

−2 1 4 9

4 −3 1 1

1 −5 −1 −2

⎤

⎥

⎥

⎦

,

A3 =

⎡

⎢

⎢

⎣

1 4 5 10

0 5 1 −4

0 −1 4 6

−1 5 0 1

⎤

⎥

⎥

⎦

,

it can be calculated that ρ2
S = 9.761 and ρ4

S = ρ6
S = 8.92. As ρ(A1A3)

1
2 = 8.915,

we conclude that the spectral radius is between 8.915 and 8.92. It is clear that ρ4
S

provides a much closer upper bound for the spectral radius than ρ2
S .

2.4.2 An Invariant Set Approach

An approach for verifying the stability of the switched system is to find an appro-

priate piecewise linear common Lyapunov function.

Let us start from an initial polyhedron Λ0 which is origin-symmetric. An exam-

ple is the polyhedron with extreme points whose entries are either 1 or −1. Recall

that for any 0-symmetric polyhedral set Λ, there is a full column rank matrix FΛ
such that Λ = {x : |FΛx|∞ ≤ 1}. Another representation is Λ = {XΛα : |α|1 ≤ 1},
where XΛ = [x1, . . . , xr ] is full row rank and {±x1, . . . ,±xr} are vertices of Λ. For

a 0-symmetric polyhedral set Λ, define the set

C(Λ)= {x : Aix ∈Λ, i = 1, . . . ,m}.
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It is clear that

C(Λ)=
{

x : |FΛAix|∞ ≤ 1, i = 1, . . . ,m
}

,

which is also a 0-symmetric polyhedron. Define recursively a set of polyhedra by

Λk = C(Λk−1)∩Λ0, k = 1,2, . . . . (2.79)

The largest invariant set contained in Λ0, as defined in (2.50), is the set

Λ∞ =
⋂

k∈N+

Λk.

Note that, if Λk =Λk+1 for some k ∈ N+, then Λ∞ =Λk , and the set is tractably

computed.

Proposition 2.60 For any initial polyhedron Λ0, we have the following statements:

(1) If the discrete-time switched linear system A is stable, then, there is a finite

number k such that Λk = Λk−1, which means that Λk = Λ∞. Conversely, if

Λk = Λk−1 for some k < +∞, then, Λk = Λ∞, and the system is stable or

marginally stable.

(2) If there is a finite number k such that Λk is interior to set Λ0, then Λ∞ = {0},
and the switched system is unstable.

Proof For the former statement, let x(·) be a state trajectory of the switched system.

The exponential stability implies the existence of a time T with x(t) ∈Λ0 for t ≥ T

whenever x(0) ∈Λ0. For any k = 0,1, . . . , T , Λk has the property that x(0) ∈Λk

implies that x(k) ∈Λ0, and visa versa. This means that ΛT+1 =ΛT . Indeed, if this

is not true, then, there is a state trajectory x(·) with x(0) ∈ΛT /ΛT+1, which implies

that x(T + 1) 
∈Λ0, which is a contradiction. Conversely, if Λk = Λk−1 for some

k <+∞, then, it is clear that Λk =Λ∞ is a polyhedral C-set that is an invariant set

for the system. Thus the system is stable or marginally stable.

For the latter statement, we only need to show that Λ∞ = {0}. As Λ∞ is an

invariant set for the system, it can be seen that λΛ∞ is also an invariant set for any

λ≥ 0. As the set Λ∞ is interior to the set Λ0, there is λ > 1 such that λΛ∞ ⊂Λ0.

This in turn implies that λΛ∞ ⊂Λk for all k ∈N+, which yields λΛ∞ ⊂Λ∞. As a

result, we have Λ∞ = {0}. �

It is interesting to notice that Λk =Λ∞ does not necessarily implies the (expo-

nential) stability. A particular example is the case that A = {In}, which produces

Λk = Λ∞ = Λ0 for any k ∈ N+. In fact, if we add the identity matrix to any sta-

ble system, we have a marginally stable system which produces the same polyhe-

dral set sequence Λ0,Λ1, . . . . To further distinguish between stability and marginal

stability, one possible way is to test through the recursive procedure by setting

A= {λA1, . . . , λAm}, where λ > 1, but λ−1 is sufficiently small. If Λk =Λk−1 for

a finite k, then, the original system must be stable. Otherwise, the original system is

either marginally stable or stable but “nearly marginally stable”.
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Based on the above discussion, we can develop a computational algorithm that

verifies the stability of the discrete-time switched linear system.

Algorithm for calculating the largest invariant set (ACLIS)

Initiation. Set F 0 := FΛ0
, X0 := XΛ0

, flag := 0, and k := 0. Prespecify a natural

number kmax.

Step 1. Set F := F k , X :=Xk , and compute the matrix

G=
[

(FkA1)
T , . . . , (FkAm)

T
]T
.

Step 2. For each row Gi of G, check if ‖GiX‖∞ ≤ 1. If yes, remove the row from

matrix G.

Step 3. If flag = 0 and G is the vacant matrix, that is, it is 0 × 0, then output the

matrix X and the “stability or marginal stability” message, set flag := 1 and go to

Step 7. If flag = 1 and G is the vacant matrix, then terminate with the message

“stability”.

Step 4. Set H := [F T ,GT ]T . Compute Λk+1 = {x ∈ Rn : |Hx|∞ ≤ 1} and set

F k+1 := F k+1
Λ and Xk+1 :=XΛk+1 .

Step 5. If flag = 0 and ‖F 0Xk+1‖∞ < 1, then, terminate with the message “in-

stability.” If flag = 1 and ‖F 0Xk+1‖∞ < 1, then, terminate with the message

“marginal stability or nearly marginal stability.”

Step 6. Set k := k + 1. If k ≥ kmax, terminate with message “time is out.” Other-

wise, go to Step 1.

Step 7. Set a sufficiently small positive number λ, and Ai = (1 + λ)Ai for i =
1, . . . ,m. Set F 0 := F , and go to Step 1.

It can be seen that the algorithm is not efficient as the number of extreme points

of polyhedra Λk may grow exponentially. Within a recursive loop, the main com-

putation load is in Step 4, which computes the various representations of the new

polyhedron. Fortunately, this can be implemented by commercial softwares (e.g.

Matlab Geometric Bounding Toolbox [252]).

For continuous-time switched linear systems, it was established in Lemma 2.19

that, if the system is asymptotically stable, then, its Euler approximating system

x(t + 1)= (In + τAσ(t))x(t) (2.80)

is also asymptotically stable for sufficiently small τ . A verification procedure can

thus been outlined as follows.

Step 1. Choose a sufficiently small positive real number τ .

Step 2. Run the Algorithm ACLIS for system (2.80). If the algorithm terminate with

stability, then, set Λ∞ =Λk and go to Step 4. Otherwise, go to Step 3.

Step 3. Set τ = τ/2 and go to Step 2.

Step 4. Check if Λ∞ is positively invariant for the original system. If yes, then

terminate with the message “the continuous-time system is stable”. Otherwise, go

to Step 3.
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Note that the fourth step can be conducted with the help of Theorem 2.31. Gen-

erally, there is no guarantee that the procedure terminates in a finite time even for

stable switched systems. As a matter of fact, the stability verification for continuous-

time switched systems is still an open problem for further investigation.

2.5 Notes and References

This chapter introduced the fundamental issues which are relevant to the develop-

ment of guaranteed stability theory for switched dynamical systems. As a matter of

fact, the development of stability theory for switched systems is not isolated. On

the contrary, the progress actively interacted with stability and robustness issues for

several different system frameworks of various backgrounds, as briefly discussed in

Sect. 2.3.1. Indeed, when the switching path is taken as a perturbation variable, the

stability of a switched system is in fact robustness against a class of time-varying

uncertainties. This can be seen from expression (2.1) where the switching signal

σ(t) is an unknown time-varying perturbation. A unique feature of the perturbation

is that its image set is finite and thus isolated. By taking convex linear combinations

as in (2.20) and (2.21), the switched system is naturally connected to the polytopic

uncertain system and the relaxed differential inclusion. As these classes of dynam-

ical systems share the same stability properties, it is natural that the stability theory

for switched systems has been deeply interacted with that of other system frame-

works. To fully understand the major progress in the stability analysis of switched

systems, it is important to highlight the various sources of literature from the related

disciplines.

The first source of literature is the absolute stability analysis for Lur’e systems.

A Lur’e system is a linear plant with a sector-bounded nonlinear output feedback.

Specifically, a SISO Lur’e system is mathematically described by

ẋ(t) = Ax(t)+ bϕ(y), x ∈Rn, y ∈R,

y(t) = cx(t), k1y
2 ≤ yϕ(y)≤ k2y

2. (2.81)

The problem of absolute stability is to determine the exact bound of k1 and k2

that guarantee global asymptotic stability of the system. The research on this

problem could be traced back to the 1940s, and the early pioneers were mainly

from the Russian applied mathematics community (Lur’e [157], Aizerman [4],

Yakubovich [271], etc.). Aizerman [3] conjectured that, if for each k ∈ [k1, k2],
the matrix A + kbc is Hurwitz, then the Lur’e system is [k1, k2]-absolutely sta-

ble. This is equivalent to the statement that the stability of each convex combina-

tion of A+ k1bc and A+ k2bc implies the stability of the switched linear system

A = {A+ k1bc,A+ k2bc}. While this conjecture was disproved by counterexam-

ples, it did greatly stimulate the study on the problem of absolute stability. Quadratic

Lyapunov functions (sometimes plus an integral of nonlinearity) were sought by

Lur’e himself and many other researchers. A quadratic Lyapunov function for the
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Lur’e system is in fact a common Lyapunov function for the extreme systems. That

is, the existence of a common Lyapunov function for A+ k1bc and A+ k2bc im-

plies [k1, k2]-absolute stability of the Lur’e system. In the 1970–1980s, many re-

searchers realized that the quadratic Lyapunov functions are not universal for ab-

solute stability, and they turned to more general nonquadratic Lyapunov functions.

Piecewise quadratic Lyapunov functions were proved to be universal for absolute

stability [170–172].

The second source of literature is the boundedness analysis for the infinite prod-

ucts of a set of (complex or real) matrices A = {A1, . . . ,Am}. This topic has been

quite active since the 1990s, and the literature can be traced back to the 1950s [260].

It was widely recognized that the joint spectral radius is an index that is closely re-

lated to the boundedness of the matrix semigroup [199]. The joint spectral radius

and the generalized spectral radius were proved to be equal for any finite set of

matrices [25, 69]. Berger and Wang [25] established that a discrete-time switched

system is asymptotically stable iff the spectral radius is less than one. As the spec-

tral radius is equal to the least possible induced norms [69], the asymptotic stability

is equivalent to the existence of a contractive norm. This norm is in fact a com-

mon Lyapunov function for the matrix set. To verify the boundedness, Lagarias and

Wang [138] conjectured the existence of a finite k such that the generalized spec-

tral radius ρ̄(A) = ρ̄k(A)
1/k for any given finite matrix set A. This well-known

Finiteness Conjecture was finally disproved [39, 45], which indicates that the ex-

act computation of the spectral radius might be very involved. On the other hand,

Brayton and Tong [47, 48] developed constructive procedures for stability verifi-

cation. The procedures search a piecewise linear common Lyapunov function by

recursively approximating its level set. While the computational algorithms are not

efficient, the method itself is valuable as it clarifies some useful properties that ben-

efit the forthcoming investigations. Besides the mathematical characteristics, there

has been much effort to establish the connections among various notions from the

dynamical system’s viewpoints. In particular, the notions of vanishing-step(VS)-

stability, bounded-variation(BV)-stability, and para-contractility were introduced,

and their relationships with the left-convergent-products (LCP) property (all left-

infinite products converge) were established [255]. There were also a few works

focusing on the more subtle situation that the spectral radius is one, which corre-

sponds to either marginal stability or marginal instability. Among these, the notion

of defectivity and its properties were investigated [69, 96].

The third source of literature is the robustness analysis for a class of polytopic

linear uncertain systems. When a linear nominal system

ẋ(t)=A0x(t)+B0u(t)

is perturbed by a time-varying uncertainty with a polyhedral bound

d(t) ∈ co
{

A1x(t), . . . ,Amx(t)
}

,

the perturbed system can be described by

ẋ(t)=A0x(t)+B0u(t)+ d(t)=A
(

ω(t)
)

+B0u(t),
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where ω(t) ∈ {w ∈ Rm : wi ≥ 0,
∑m

i=1 wi = 1} and A(w) = A0 +
∑m

i=1 wiAi .

A more general description is

ẋ(t)=A
(

ω(t)
)

+B
(

ω(t)
)

u(t),

where the input gain matrix is also perturbed. For this class of systems, the main

problems are of various (gain-scheduling, robust) stabilizing design and robustness

analysis. Blanchini and his coworkers [30, 32, 34] developed a nonquadratic Lya-

punov scheme for stabilizing design of polytopic linear uncertain systems. By de-

veloping a Brayton–Tong-like recursive procedure, it was possible to evaluate both

the transient performance and the asymptotic behavior of the linear uncertain sys-

tems [33].

The fourth source of literature is the stability of differential inclusions. Differen-

tial inclusions provide a unified representation of a wide class of dynamical systems.

For a differential inclusion

ẋ(t) ∈ F
(

x(t)
)

and its relaxed convex system

ẋ(t) ∈ coF
(

x(t)
)

,

the solution sets for both systems admit a common closure (w.r.t. an appropri-

ate normed functional space) [13, 83]. This implies the fact that the two systems

share same stability properties. This observation bridges the stability theories for

the switched linear system, the polytopic linear uncertain system (without control

input), and the linear convex differential inclusion, as the last one can be seen as

the relaxed system for the former two. On the other hand, it has long been estab-

lished [135, 188] that an asymptotically stable differential inclusion admits a strictly

convex and homogeneous Lyapunov function. This paves the way for finding more

universal sets of Lyapunov functions. Indeed, as a strictly convex level set can be

arbitrarily approximated via a polyhedral set or an intersection of a set of ellipsoids,

both sets of piecewise linear and piecewise quadratic functions are universal.

Finally, the literature on switched and hybrid systems has grown rapidly since the

1990s. The common Lyapunov function approach was proposed based on the fact

that, if all the subsystems share a common Lyapunov function, then the switched

system is stable under arbitrary switching. Much effort was paid to find criteria for

the existence of common quadratic Lyapunov functions for switched linear systems.

Narendra and Balakrishnan [182] found that, if all linear subsystems are stable with

commuting A-matrices, then they share a common quadratic Lyapunov function.

The commutation condition in fact implies the simultaneous triangularizability, and

for this, the commutation condition can be further relaxed [1, 164]. The commut-

ing criterion was recently extended to switched nonlinear systems [256]. For planar

switched linear systems, complete criteria for common quadratic stability were es-

tablished [53, 204]. There were a few works reporting various converse Lyapunov

theorems [64, 159, 168], which in fact can be seen as special cases of the earlier

results in different contexts [34, 152, 173].
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It should be noticed that, while many early studies focused on one-system frame-

work, more and more researchers took advantage of the tight connections among the

schemes [146, 149, 173, 234]. A notable example is that most researchers from var-

ious backgrounds realized the limitation of quadratic Lyapunov functions in tack-

ling the stability and robustness problems for linear and quasi-linear systems, which

leads to the active research into the nonquadratic Lyapunov approach. Another ex-

ample is that the constructive criterion for the stability of planar switched linear

systems [112] also provides a solution for the absolute stability of planar Lur’e sys-

tems [163].

While the above review provides a brief survey on the relevant literature, it only

mentioned a small fraction of the existing results, methods, and literature. The reader

is referred to [31, 62, 63, 146, 148] and references therein for more details.

In this chapter, we tried to integrate novel ideas, fresh methods, and rigorous

results from various schemes into a systematic framework. The richness of the rel-

evant material enables us to highlight the most notable progress within a unified

framework.

The notational preliminaries in Sect. 2.1 were adapted from the books [146, 234].

The common Lyapunov function approach presented in Sect. 2.2 is a combination

of several works including [31, 152, 224]. In particular, the notion of the common

strong Lyapunov function is a mixture of the smooth version [159] and the locally

Lipschitz version [30], and the notion of common weak Lyapunov function was

taken from [224].

In Sect. 2.3, Lemma 2.11 can be found in [117], and Proposition 2.13 was

adapted from [221]. As for Theorem 2.15, the fact of the equivalence between

asymptotic stability and exponential stability was reported in [82, 139] for differ-

ential inclusions. The equivalence between local attractivity and global exponential

stability was established in [8] for switched systems. The context of universal Lya-

punov functions in Sect. 2.3.2 was mainly adapted from [173]. The continuous-time

version of Propositions 2.21, 2.33, and 2.35 and Lemma 2.34 were adapted from

[224], where their discrete-counterparts can be found in [22, 25, 33, 69], respec-

tively. A simplified proof was presented in [156] for Proposition 2.35 in discrete

time. Proposition 2.25 was reported in [69] for discrete-time systems and in [223]

for continuous-time systems. The important algebraic criterion, Theorem 2.31, was

adapted from [32, 173]. The context in Sect. 2.3.5 on triangular systems was adapted

from [239]. While conceptually simple, the research on simultaneous triangulariza-

tion has been quite active, which impacts greatly on the common Lyapunov function

approach.

The computational issues presented in Sect. 2.4 highlight some progress in calcu-

lating the spectral radius of a matrix set and verifying the stability of the correspond-

ing switched system. It has been revealed that the computation of the joint spectral

radius is NP-hard, and the stability verification “ρ(A)≤ 1” is undecidable [41, 251].

This reveals that effective approximating of the joint spectral radius is difficult in

general. Nevertheless, much effort has been paid in investigating the approximation

issues, and the reader is referred to [7, 37, 95, 158, 190, 249] and the references

therein. Proposition 2.46 and Example 2.48 were taken from the thesis [249]. The
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accuracy of the ellipsoidal norm approximation, Proposition 2.49, could be found

in [7, 38]. The approximation by means sum-of-squares homogeneous polynomial

Lyapunov functions, which forms the main content of Sect. 2.4.1, was largely bor-

rowed from [190]. The recursive procedure for calculating the largest invariant set

contained in a polyhedron, which forms the main content of Sect. 2.4.2, was adapted

from [33]. It is also possible to investigate the stability through the largest invariant

set containing a polyhedron [47, 48, 193].



Chapter 3

Constrained Switching

3.1 Introduction

In the previous chapter, we addressed the stability issues for switched systems under

arbitrary switching. In many practical situations, however, the switching signals are

subject to various constraints. For instance, the switching is governed by a random

process, that is, the switching times form a random process with known stochastic

distribution. Another example is that the switching is autonomous in that a switch

occurs when the state enters into a preassigned region. In either case, the set of

possible switching signals is only a fraction of the set of arbitrary switching signals,

as discussed in the previous chapter. For these constrained switched systems, while

the stability criteria for arbitrary switching is still applicable to the stability analysis,

the criteria are no doubt too conservative. In this chapter, we present new approaches

that lead to less conservative stability analysis for the constrained switched systems.

We focus on three types of constrained switching, namely, the random switching,

the autonomous switching, and the dwell-time switching.

3.2 Stochastic Stability

3.2.1 Introduction

A stochastic switched system is a hybrid system that consists of a set of deterministic

subsystems and a random switching law that coordinates the switching among the

subsystems. The random nature of the switching mechanism enables such systems to

be widely representative in many real-world processes with abrupt variable structure

and/or unpredictable component failure. For the special case where the subsystems

are linear and the switching is governed by a Markov process, the switched system is

known to be a jump linear system. A jump linear system is mathematically described

as

ẋ(t)=Aσ(t)x(t), (3.1)
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where x(t) ∈ Rn is the continuous state, σ(t) is a time-homogeneous irreducible

Markov stochastic process taking value in the finite discrete state space M
def=

{1, . . . ,m}, and Ai ∈ Rn×n, i ∈M , are known real constant matrices. Suppose that

Ψ = (ψij )m×m is the infinitesimal matrix of the process σ(t). Therefore, the sta-

tionary transition probability is

Pr
(

σ(t + h)= j |σ(t)= i
)

=
{

ψijh+ o(h), i �= j,

1 + ψiih + o(h), i = j,
h > 0.

3.2.2 Definitions and Preliminaries

Denote the underlying probability space by (Ω, F ,Pr), where Ω is the space of

elementary events, F is a σ -algebra, and Pr is a probability measure. Let Ξ be

the set of probability measures on M . Let x0 ∈ Rn and ρ ∈ Ξ be the initial state

and initial distribution of σ(t), respectively. Given an event ω ∈ Ω , the continuous

state evolution of system (3.1) is denoted by φ(·;x0,ω) or x(·) in short. The state

transition matrix over time interval [s1, s2] is denoted by Φ(s2, s1,ω), which is a

random matrix.

Given an initial probability distribution p0
i = Pr{σ(0) = i} for i ∈ M , the proba-

bility distribution p(t) = [Pr{σ(t) = 1}, . . . ,Pr{σ(t) = m}]T satisfies

ṗ(t) = Ψ T p(t). (3.2)

The irreducibility assumption implies the existence of an invariant distribution p =
[p1, . . . , pm]T that is globally attractive, i.e., Ψ T p = 0 and limt→+∞ p(t) = p.

Let 0 = t0 < t1 < t2 < · · · be the sequence of switching times. Denote τj−1 =
tj − tj−1 for j = 1,2, . . . . It is clear that τ0, τ1, τ2, . . . are successive duration (so-

journ) times between jumps. The duration at a discrete state i ∈ M is exponen-

tially distributed with parameter −ψii . The corresponding switching index sequence

σ(t0), σ (t1), σ (t2), . . . is said to be the embedded Markov chain of the switching

signal. This discrete Markov chain is with transition probability

Pr
{

σ(tk+1) = j |σ(tk) = i
}

=
{

−ψij

ψii
, i �= j,

0, i = j.

It is clear that the joint sequence (τj , σ (tj )), j = 0,1,2, . . . , also is a Markov chain.

It can be seen that the joint sequence uniquely determines the switching signal,

and vice versa. The stationary (invariant) probability distribution for the embedded

Markov chain can be computed to be

ϑ =
[

p1ψ11
∑m

j=1 pjψjj

, . . . ,
pmψmm

∑m
j=1 pjψjj

]T

. (3.3)



3.2 Stochastic Stability 73

The transition matrix over [t0, tk] can thus be expressed by the switching sequence

as

Φ(tk, t0)= e
Aσ(tk−1)τk−1 · · · eAσ(t1)τ1eAσ(t0)τ0 . (3.4)

Definition 3.1 The jump linear system is said to be

• (asymptotically) mean square stable if for any initial state x0 and initial distribu-

tion ρ, we have

lim
t→+∞

Eρ

{∣

∣φ(t;x0,ω)
∣

∣

2}= 0

• exponentially mean square stable if for any initial state x0 and initial distribution

ρ, we have

Eρ

{
∣

∣φ(t;x0,ω)
∣

∣

2}≤ βe−αt |x0|2

for some positive real numbers α and β independent of the initial condition

• stochastically (mean square) stable if for any initial state x0 and initial distribu-

tion ρ, we have

∫ +∞

0

Eρ

{
∣

∣φ(t;x0,ω)
∣

∣

2}
dt < +∞

• (asymptotically) almost surely stable if for any initial state x0 and initial distri-

bution ρ, we have

Pr
{

lim
t→+∞

∣

∣φ(t;x0,ω)
∣

∣= 0
}

= 1

Remark 3.2 It is clear that the first three stabilities are moment stabilities, while the

last one is sample stability. The mean square stabilities can be extended to δ-moment

stabilities (where δ is a positive real number) by simply substituting the square

power by δ-power in the definition. Another simple observation is that exponential

mean square stability implies both mean square stability and stochastic stability.

3.2.3 Stability Criteria

Recall that a Hermitian matrix P ∈ Cn×n is said to be positive definite if z∗Mz > 0

for all nonzero complex vectors z, where z∗ denotes the conjugate transpose

of z. Let P1, . . . ,Pk be a sequence of complex or real matrices. The sequence

P = (P1, . . . ,Pk) is said to be (semi-)positive definite, denoted P > 0 (P ≥ 0), if

each matrix is Hermitian and positive (semi-)definite. For two real n×n matrices A

and B , denote by A ⊗ B their Kronecker product, and by A ⊕ B their Kronecker
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sum. Taking n= 2 for example, we have

A⊗B =
[

a11B a12B

a21B a22B

]

=

⎡

⎢

⎢

⎣

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

⎤

⎥

⎥

⎦

and

A⊕B =A⊗ In + In ⊗B =

⎡

⎢

⎢

⎣

a11 + b11 b12 a12 0

b21 a11 + b22 0 a12

a21 0 a22 + b11 b12

0 a21 b21 a22 + b22

⎤

⎥

⎥

⎦

.

Note that both A⊗B and A⊕B are of n2 × n2.

Theorem 3.3 For the jump linear system, the following statements are equivalent:

(1) The system is mean square stable.

(2) The system is exponentially mean square stable.

(3) The system is stochastically stable.

(4) The matrix diag(A1 ⊕A1, . . . ,Am ⊕Am)+ Ψ T ⊗ In2 is Hurwitz.

(5) For any real S = (S1, . . . , Sm) > 0, the coupled (algebraic) Lyapunov equations

AT
i Pi + PiAi +

m
∑

j=1

ψjiPj = −Si, i = 1, . . . ,m, (3.5)

admit a unique solution P = (P1, . . . ,Pm) > 0.

To prove the theorem, we need to introduce some auxiliary preliminaries. For

a matrix X ∈ Rn×n, denote its columns by X1, . . . ,Xn and define its column

stacking form to be V (X) = [XT
1 , . . . ,XT

n ]T . Similarly, for a matrix sequence

Y = (Y1, . . . , Yk) with Yi ∈ Rn×n, i = 1, . . . , k, define its column stacking form

to be V (Y ) = [V T (Y1), . . . , V
T (Yk)]T . It is clear that

∥

∥V (Y )
∥

∥

1

def=
k
∑

i=1

∥

∥V (Yi)
∥

∥

1
≤ n

k
∑

i=1

‖Yi‖1. (3.6)

For the jump linear system, let

Zi(t) = E
{

x(t)xT (t)1{σ(t)=i}
}

, i = 1, . . . ,m,

Z(t) =
(

Z1(t), . . . ,Zm(t)
)

,

where 1{·} is the Dirac measure. It can be seen that

m
∑

i=1

∥

∥Zi(t)
∥

∥

1
≤

m
∑

i=1

E
{

xT (t)x(t)1{σ(t)=i}
}

= E
{

xT (t)x(t)
}

. (3.7)
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Moreover, simple calculation gives

dZi(t) =
(

AiZi(t)+Zi(t)A
T
i

)

dt +E
{

xT (t)x(t) d(1{σ(t)=i})
}

=
(

AiZi(t)+Zi(t)A
T
i

)

dt

+
m
∑

j=1

E
{

E
{

xT (t)x(t)1{σ(t+dt)=i}1{σ(t)=j}
}∣

∣Ft

}

−E
{

xT (t)x(t)1{σ(t)=i} dt
}

=
(

AiZi(t)+Zi(t)A
T
i

)

dt

+
m
∑

j=1

Pr
(

σ(t + dt)= i|σ(t)= j
)

Zj (t)−Zi(t) dt,

which further implies that

d

dt
Zi(t)=AiZi(t)+Zi(t)A

T
i +

m
∑

j=1

ψjiZj (t). (3.8)

Define the linear mapping

Γ (P )=
(

Γ1(P ), . . . ,Γm(P )
)

,

where P = (P1, . . . ,Pm) is positive definite, and

Γi(P )=AiPi + PiA
T
i +

m
∑

j=1

ψjiPj , i = 1, . . . ,m.

Similarly, define the linear mapping Υ to be

Υ (X1, . . . ,Xm)= (Υ1, . . . ,Υm)

with Υi = AT
i Xi + XiAi +

∑m
j=1 ψjiXj for i = 1, . . . ,m. It follows that we can

rewrite (3.8) in the more compact form

Ż(t)= Γ
(

Z(t)
)

. (3.9)

Finally, define the matrix

Λ= diag(A1 ⊕ A1, . . . ,Am ⊕ Am) + Ψ T ⊗ In2 .

It can be verified that

V
(

Γ (P )
)

= ΛV (P ),

V
(

Υ (P )
)

= ΛT V (P ) (3.10)

for any matrix sequence P = (P1, . . . ,Pm).
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Define the exponential of Γ by eΓ t (P )=
∑+∞

l=0
t l

l! Γ
l(P ). The exponential of Υ

can be defined in the same way. Then, we have the following lemma.

Lemma 3.4 For any complex matrix P > 0, eΓ t (P ) > 0 and eΥ t (P ) > 0.

For a proof of the lemma, the reader is referred to [160].

With the above preparations, we are ready to prove the main theorem.

Proof of Theorem 3.3 We proceed to establish (1)→(2), (3)→(4), (4)→(5),

(5)→(2), respectively. These relationships, together with the straightforward im-

plications (2)→(1) and (2)→(3), lead to the conclusion.

(1)→(2): Suppose that, for any ρ ∈ Ξ , we have

lim
t→+∞

Eρ

{

ΦT (t,0,ω)Φ(t,0,ω)
}

= 0. (3.11)

Let 0 = t0 < t1 < · · · be the switching time sequence. It is clear that there exist

positive real numbers γ1 and γ2 such that

γ1 ≤ lim
k→+∞

tk

k
≤ γ2,

which further implies the existence of a sufficiently large number κ1 such that

γ1

2
k ≤ tk ≤ 2γ2k ∀k ≥ κ1. (3.12)

It follows from (3.11) and (3.12) that, for any initial distribution ρ, there exists a

sufficiently large natural number κ2 ≥ κ1 such that

Eρ

{

ΦT (t,0,ω)Φ(t,0,ω)
}

≤ η < 1 ∀t ≥ tκ2
, (3.13)

where η is a real constant. Let κ be the largest κ2 when ρ spreads over all the unit

vectors. It follows that

Eξ

{

ΦT (t,0,ω)Φ(t,0,ω)
}

≤ η ∀ξ ∈ Ξ, t ≥ tκ . (3.14)

Simple calculation gives

Eξ

{

ΦT (t,0,ω)Φ(t,0,ω)
}

≤ ηj e4ηκν ≤ βe−αt ∀ξ (3.15)

for all t ∈ [t(j−1)κ , tjκ ] with j = 1,2, . . . , where ν = max{‖A1‖, . . . ,‖Am‖}, β =
η−1e4ηκν , and α = − lnη

2κγ2
. This directly leads to the conclusion that the system is

exponentially mean square stable.

(3)→(4): Suppose that the system is stochastically stable. It follows from (3.9)

that, for any initial configuration, we have

∫ +∞

0

∥

∥eΓ t
(

Z(0)
)∥

∥

1
dt =

∫ +∞

0

∥

∥Z(t)
∥

∥

1
dt
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≤
m
∑

i=1

∫ +∞

0

∥

∥Zi(t)
∥

∥

1
dt

≤
m
∑

i=1

∫ +∞

0

E
{

nxT (t)x(t)1{σ(t)=i}
}

dt

≤ n

∫ +∞

0

E
{

xT (t)x(t)
}

dt <+∞.

Therefore, we have
∫ +∞

0

∥

∥eΓ t (X)
∥

∥dt < +∞ (3.16)

for any real X = (X1, . . . ,Xm) > 0. For complex X = (X1, . . . ,Xm) > 0, it is clear

that X ≤ (λmax(X1)I, . . . , λmax(Xm)I ). It follows from Lemma 3.4 that relationship

(3.16) also holds for X = (X1, . . . ,Xm) > 0. Furthermore, a complex matrix H can

be decomposed into two Hermitian matrices as

H =
1

2

(

H + H ∗)+
√

−1

2

(

H̄ + H̄ ∗),

where H̄ and H ∗ denote the complex conjugate and conjugate transpose, respec-

tively, and a Hermitian matrix can be expressed to be a substraction of two positive

definite matrices. As a result, we have the decomposition

H = H1 − H2 +
√

−1(H3 − H4),

where H1, . . . ,H4 are positive definite. This means that (3.16) still holds for any

complex X = (X1, . . . ,Xm) due to the linearity of eΓ t . On the other hand, it can be

routinely verified that

∫ +∞

0

∥

∥eΛty
∥

∥

1
dt ≤

∫ +∞

0

∥

∥V
(

eΓ t
(

V −1(y)
))∥

∥

1
dt

≤ n2

∫ +∞

0

∥

∥eΓ t
(

V −1(y)
)∥

∥

1
dt ∀y ∈ Rmn2

, (3.17)

where the former inequality comes from (3.10), and the latter from (3.6). Combining

(3.16) with (3.17) yields

∫ +∞

0

∥

∥eΛty
∥

∥

1
dt < +∞ ∀y ∈ Rmn2

,

which implies that the matrix Λ is Hurwitz.

(4)→(5): Let the mappings V −1
i be the inverse of the ith matrix in V with

V
(

V −1
1 (y), . . . , V −1

m (y)
)

= y ∀y ∈ Rmn2

.
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Define

Pi =−V −1
i

(

Λ−T V (S)
)

, i = 1, . . . ,m, (3.18)

and P = (P1, . . . ,Pm). It is clear that

ΛT V (P1, . . . ,Pm)=−V (S1, . . . , Sm).

It follows from (3.10) that

V
(

Υ (P1, . . . ,Pm)
)

=−V (S1, . . . , Sm),

which implies that

Υ (P1, . . . ,Pm)+ (S1, . . . , Sm)= 0,

which is exactly (3.5). Suppose that there is another P ∗ = (P ∗
1 , . . . ,P ∗

m) satisfy-

ing (3.5). Then, it can be seen that

ΛT V (P1, . . . ,Pm) = ΛT V
(

P ∗
1 , . . . ,P ∗

m

)

,

which means that V (P ) = V (P ∗) and further P ∗ = P , due to the nonsingularity

of Λ. It is clear that

Υ
(

P T
1 , . . . ,P T

m

)

=
(

Υ (P1, . . . ,Pm)
)T = −(S1, . . . , Sm).

This means that (P T
1 , . . . ,P T

m ) is a solution to (3.5). By the uniqueness of solution,

Pi are symmetric for i = 1, . . . ,m. Furthermore, utilizing the facts that d
dt

(eΛT t ) =
ΛT eΛT t and that ΛT is Hurwitz, we have

∫ +∞

0

eΛT tV (S)dt = Λ−T

∫ +∞

0

d

dt
eΛT tV (S)dt

= −Λ−T V (S) = V (P ). (3.19)

On the other hand, it follows from (3.10) that

∫ +∞

0

eΛT tV (S)dt =
∫ +∞

0

V
(

eΥ t (S)
)

dt = V

(∫ +∞

0

eΥ t (S) dt

)

. (3.20)

Combining (3.19) with (3.20) gives

P =
∫ +∞

0

eΥ t (S) dt (3.21)

whose positive definiteness follows from Lemma 3.4.

(5)→ (2): Note that the joint process {(x(t), σ (t)) : t ≥ 0} is a time-homogeneous

Markov process with the infinitesimal generator

Θ = Ψ + diag

(

xT AT
1

∂

∂x
, . . . , xT AT

m

∂

∂x

)

.
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Define a stochastic Lyapunov function to be

V (x,σ )= xT Pσ x, (3.22)

where P = (P1, . . . ,Pm) > 0 is the solution to (3.5) with, say, S = (I, . . . , I ). Then,

we have

(ΘV )(x, i) =
m
∑

j=1

ψijV (x, j)+ xT AT
i

∂

∂
V (x, i)

= xT

(

m
∑

j=1

ψijPj +AT P + PA

)

x =−xT x.

This implies that

(ΘV )(x, i) ≤ −αV (x, i) ∀i = 1, . . . ,m,

where α = 1/maxm
i=1 λmax(Pi) > 0. It follows that

E
{

V
(

x(t), σ (t)
)}

≤ e−αtV
(

x0, σ (0)
)

∀t ≥ 0,

which clearly implies the exponential mean square stability. �

Remark 3.5 The theorem reveals important and rich information about mean square

stabilities. First, the stabilities are all equivalent to each other, and thus we do not

distinguish them any more. Second, the stability admits Lyapunov characteristics

that extend the standard Lyapunov theory for linear systems. Third, the stability is

verifiable in terms of the subsystem matrices and the switching transition distribu-

tion.

Remark 3.6 From the proof, statement (4) in Theorem 3.3 is further equivalent to

either

(4a) Matrix Γ is Hurwitz

or

(4b) Matrix Υ is Hurwitz.

Note that Matrix Λ is of mn2-dimension. As the Lyapunov operators Γ and Υ are

defined over the symmetric matrix group, they are of m(n(n+1))
2

-dimension, which is

approximately half that of the Λ.

Remark 3.7 It can be proven that statement (5) in Theorem 3.3 is equivalent to the

following statement

(5a) There is a sequence P = (P1, . . . ,Pm) > 0, such that Γ (P ) < 0.

Besides, statements (5) and (5a) still hold if Γ is replaced by Υ .



80 3 Constrained Switching

Remark 3.8 It is interesting to observe that a mean square stable jump linear system

always admits a component-wise quadratic Lyapunov function as in (3.22). In con-

trast, for a deterministic switched linear system, the existence of such a Lyapunov

function is a sufficient condition for guaranteed stability, which may be far from ne-

cessity. In this sense, the mean square stability is easier to tackle than the guaranteed

stability.

It follows from Theorem 3.3 that any mean square stable system is also struc-

turally mean square stable, as stated in the following corollary.

Corollary 3.9 For any mean square stable jump linear system (A,Ψ ), there exist

positive real numbers ǫ1 and ǫ2 such that any perturbed jump linear system (Ā, Ψ̄ )

is mean square stable when ‖Ā − A‖ < ǫ1 and ‖Ψ̄ − Ψ ‖ < ǫ2.

Example 3.10 For the third-order jump linear system with two subsystems

A1 =

⎡

⎣

0 0 −2

1 −1 −2

1 1 0

⎤

⎦ , A2 =

⎡

⎣

0 0 1

−1 −1 0

−1 1 0

⎤

⎦

and transition probability

Ψ =
[

−1 1

2 −2

]

,

it is clear that the first subsystem is marginally stable while the second is unstable.

Routine calculation gives

Λ = diag(A1 ⊕ A1,A2 ⊕ A2) + Ψ T I

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 −2 0 0 0 −2 0 0 2 0 0 0 0 0 0 0 0

1 −2 −2 0 0 0 0 −2 0 0 2 0 0 0 0 0 0 0

1 1 −1 0 0 0 0 0 −2 0 0 2 0 0 0 0 0 0

1 0 0 −2 0 −2 −2 0 0 0 0 0 2 0 0 0 0 0

0 1 0 1 −3 −2 0 −2 0 0 0 0 0 2 0 0 0 0

0 0 1 1 1 −2 0 0 −2 0 0 0 0 0 2 0 0 0

1 0 0 1 0 0 −1 0 −2 0 0 0 0 0 0 2 0 0

0 1 0 0 1 0 1 −2 −2 0 0 0 0 0 0 0 2 0

0 0 1 0 0 1 1 1 −1 0 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 −2 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 −1 −3 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 −1 1 −2 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 −1 0 0 −3 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 −1 0 −1 −4 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 −1 −1 1 −3 0 0 0

0 0 0 0 0 0 1 0 0 −1 0 0 1 0 0 −2 0 1

0 0 0 0 0 0 0 1 0 0 −1 0 0 1 0 −1 −3 0

0 0 0 0 0 0 0 0 1 0 0 −1 0 0 1 −1 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which can be verified to be a Hurwitz matrix. According to Theorem 3.3, the jump

linear system is mean square stable. On the other hand, under the natural basis, the
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Lyapunov operator Υ can be computed to be

Υ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 0 −2 0 0 0 1 0 0 0 0 0

2 −2 −2 0 −2 0 0 1 0 0 0 0

2 1 −1 0 0 −4 0 0 1 0 0 0

0 1 0 −3 −2 0 0 0 0 1 0 0

0 1 1 2 −2 −4 0 0 0 0 1 0

0 0 1 0 1 −1 0 0 0 0 0 1

2 0 0 0 0 0 −2 0 1 0 0 0

0 2 0 0 0 0 −2 −3 0 0 1 0

0 0 2 0 0 0 −2 1 −2 0 0 2

0 0 0 2 0 0 0 −1 0 −4 0 0

0 0 0 0 2 0 0 −1 −1 2 −3 0

0 0 0 0 0 2 0 0 −1 0 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which can also be verified to be Hurwitz. It is clear that Λ is of eighteenth order,

while Υ is of twelfth order. Therefore, the latter is more convenient in calculating

and expressing. An interesting observation is that all eigenvalues of Υ are also of Λ,

and they admit a common largest real part. Another interesting point is to calculate

the transition probability set that makes the jump linear system stable. For this,

define the region

Ω =
{[

α

β

]

∈R2
+ : Ψ =

[

−α α

β −β

]

, (A1,A2,Ψ ) is mean square stable

}

.

Figure 3.1 depicts the region within [0,20] × [0,20]. It is a little surprising

that, though neither subsystem is exponentially stable, the region of stable transi-

tion probabilities looks larger than unstable transition probability region.

The next theorem shows that the mean square stability implies almost sure sta-

bility.

Theorem 3.11 Any mean square stable jump linear system is almost surely stable.

Proof Suppose that the system is exponentially mean square stable. Then, there are

positive real numbers α and β such that

Eρ

{
∥

∥Φ(t,0,ω)
∥

∥

2}≤ βe−αt .

Let η = lim supk→+∞ ‖Φ(k,0,ω)‖. It can be seen that, for any ǫ > 0, we have

Pr{η > ǫ} = Pr

{

⋂

j≥0

⋃

k≥j

{∥

∥Φ(k,0,ω)
∥

∥> ǫ
}

}

≤ lim
j→+∞

Pr

{

⋃

k≥j

{∥

∥Φ(k,0,ω)
∥

∥> ǫ
}

}
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Fig. 3.1 Stable transition probability region

≤ lim
j→+∞

+∞
∑

k=j

Pr
{∥

∥Φ(k,0,ω)
∥

∥> ǫ
}

≤ lim
j→+∞

+∞
∑

k=j

1

ǫ2
Eρ

{∥

∥Φ(k,0,ω)
∥

∥

2}

≤
1

ǫ2
lim

j→+∞

+∞
∑

k=j

βe−αk = 0.

As a result, Pr{η = 0} = 1, and the theorem follows. �

According to the theorem, almost sure stability is weaker than mean square sta-

bility. Therefore, the mean square stability criteria in Theorem 3.3 provide sufficient

conditions for almost sure stability. In general, almost sure stability does not imply

mean square stability, as illustrated by the following example.

Example 3.12 Let us examine the first-order jump linear system with two subsys-

tems and transition probability matrix as



3.2 Stochastic Stability 83

A1 = a1, A2 = a2, Ψ =
[

−1 1

1 −1

]

.

First, applying Theorem 3.3 yields the following mean square stability conditions:

a1 + a2 < 1, a1 + a2 < 2a1a2.

The stability region in terms of a1 and a2 is depicted in Fig. 3.2.

Next, note that, for almost sure stability, the unique stationary distribution is

( 1
2
, 1

2
). The state solution can be expressed by

φ(t, x0,ω)= ea1t1+a2t2x0,

where t1 and t2 are the lengths of durations over [0, t] at the first and second sub-

systems, respectively. Applying the law of large numbers, we have

lim
t→+∞

t1

t
= lim

t→+∞
t2

t
=

1

2
a.s.

It follows that

lim
t→+∞

∣

∣φ(t, x0,ω)
∣

∣= 0 a.s.

when a1 + a2 < 0. When a1 + a2 = 0, it can be shown that

Pr
{

lim
τ→+∞

sup
t≥τ

∣

∣φ(t, t0,ω)
∣

∣= 0
}

> 0.

The above reasonale shows that the system is almost surely stable iff a1 + a2 < 0.

It is clear from Fig. 3.2 that the stability region is larger than that of mean square

stability.

The example exhibits that mean square stability can be more conservative than

almost sure stability, even for scalar systems. In practical applications, almost sure

stability is more interesting as it means that the sample state trajectory is convergent

almost surely. For scalar systems, using similar techniques as in the example, it can

be proven that almost sure stability is equivalent to

p1A1 + p2A2 + · · · + pmAm < 0,

where [p1, . . . , pm]T is an invariant distribution. As a result, the linear convex com-

bination w.r.t. the stationary distribution is stable. Recall that the condition is also

equivalent to the existence of a (high-frequency) periodic (deterministic) switching

signal that drives the system stable in the deterministic sense. This means that, for

scalar switched systems, guaranteed stability is equivalent to almost sure stability

w.r.t. arbitrary probability transition. For higher-order systems, the above equiva-

lences still hold when the subsystems are simultaneously triangularizable, that is,

the subsystem matrices are upper triangular w.r.t. a common coordinate change. For

more discussion on this issue, the reader is referred to [70, 239].
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Fig. 3.2 Almost sure stability region vs mean square stability region

To further address almost sure stability, we need to introduce the concept of top

Lyapunov exponent, which is well known in the mathematics and control literature.

Definition 3.13 For any ρ ∈Ξ , the top Lyapunov exponent is defined to be

λρ(ω)= lim sup
t→+∞,|x|=1

ln |φ(t;x,ω)|
t

. (3.23)

It is clear that the top Lyapunov exponent is well defined and bounded:

−max
{

‖A1‖, . . . ,‖Am‖
}

≤ λρ(ω) ≤ max
{

‖A1‖, . . . ,‖Am‖
}

.

It captures the rate of divergence (or convergence) of the state trajectory. To be more

precise, for any positive real ǫ, there is a positive real δ such that

∣

∣φ(t;x,ω)
∣

∣≤ δe(λρ(ω)+ǫ)t |x| ∀t ≥ 0, x ∈ Rn.

While the top Lyapunov exponent is a random variable, it is proved to be almost

surely a constant [189], as summarized in the following lemma.
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Lemma 3.14 (1) For any ρ ∈Ξ ,

λρ = lim
t→+∞

Ep

{

ln‖Φ(t,0,ω)‖
}

= λ̄ a.s.

(2)
λ̄ =

1

d
lim

k→+∞

1

k
Eϑ

{

ln
∥

∥Φ(tk,0)
∥

∥

}

,

where 0 = t0 < t1 < · · · is the switching time sequence with respect to the invari-

ant transition p, d = limk→+∞
tk
k

, and ϑ and Φ(tk,0) are as in (3.3) and (3.4),

respectively.

Definition 3.15 The jump linear system is said to be exponentially almost surely

stable if there exists a positive real number μ such that for any initial state with unit

norm and initial distribution of σ(t), we have

Pr

{

lim sup
t→+∞

ln |x(t)|
t

≤ −μ

}

= 1.

It is clear that exponential almost sure stability implies (asymptotic) almost sure

stability. It is not clear whether the converse is true. That is, whether asymptotic

almost sure stability implies exponential almost sure stability or not is still an open

problem. Also it can be seen that exponential almost sure stability is equivalent to

λ̄ < 0.

The following theorem presents a necessary and sufficient condition for expo-

nential almost sure stability with the help of Lemma 3.14.

Theorem 3.16 The jump linear system is exponentially almost surely stable if and

only if Eϑ {‖Φ(tN ,0)‖} < 1 for some natural number N .

Proof Suppose that the system is exponentially almost surely stable. Then, the top

Lyapunov exponent λ̄ < 0. It follows from Lemma 3.14 that

lim
k→+∞

Eϑ

{

ln
∥

∥Φ(tk,0)
∥

∥

}

< 0.

As a result, there is a natural number N such that Eϑ {‖Φ(tN ,0)‖} < 1.

Conversely, the existence of such N implies that

ψ
def=

1

N
Eϑ

{

ln
∥

∥Φ(tN ,0)
∥

∥

}

< 0.

For an arbitrarily given natural number k, there exist integers μ1 and μ2 with

0 ≤ μ2 ≤ N − 1 such that k = μ1N + μ2. We have

1

k
Eϑ

{

ln
∥

∥Φ(tk,0)
∥

∥

}

≤
1

μ1N + μ2
Eϑ

{

ln
∥

∥Φ(tμ1N+μ2
, tμ1N )

∥

∥

}

+
1

μ1N + μ2
Eϑ

{

μ1
∑

j=1

ln
∥

∥Φ(tjN , t(j−1)N )
∥

∥

}
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= 1

μ1N +μ2
Eϑ

{

ln
∥

∥Φ(tμ1N+μ2
, tμ1N )

∥

∥

}

+ μ1ψ

μ1N +μ2
,

where the last equality follows from stationarity. It can be seen that, as μ1 → +∞,

λ̄ ≤
ψ

dN
< 0, (3.24)

which implies that the system is exponentially almost surely stable. �

Remark 3.17 While the theorem is not generally verifiable, it reveals an essential

property for exponential almost sure stability. Indeed, a system is exponentially al-

most surely stable only if the state transition matrix is norm contractive within a

finite number of switches. On the other hand, the norm contractility over a period

implies that the transition matrix is also contractive over any other period with the

same length. In this way, we can further estimate the rate of convergence in terms

of ψ , N , and d , as showed in (3.24).

Remark 3.18 It is interesting to compare the criterion with [216, Prop. 3], which

provides a necessary and sufficient condition for consistent stabilizability for deter-

ministic switched systems. By the proposition, for the deterministic switched lin-

ear system, the state transition matrix is norm contractive within a finite number

of switches iff the system is exponentially stable under a periodic switching signal.

Theorem 3.16 provides a stochastic counterpart for this. However, it should be noted

that the computation of the stochastic transition matrix is much harder than that of

the deterministic case.

Suppose that Eϑ {‖Φ(tN ,0)‖} < 1 as in Theorem 3.16. Then, by the continuous

dependence of the parameters, the contraction relationship still holds true even if the

parameters are slightly perturbed. Hence we have the following robustness property.

Corollary 3.19 For an exponentially almost surely stable jump linear system

(A,Ψ ), there exist positive real numbers ǫ1 and ǫ2 such that any perturbed jump

linear system (Ā, Ψ̄ ) is exponentially almost surely stable when ‖Ā − A‖ < ǫ1 and

‖Ψ̄ − Ψ ‖ < ǫ2.

3.3 Piecewise Linear Systems

3.3.1 Introduction

Piecewise linear systems are switched linear systems with autonomous switching.

Precisely, suppose that Ω1, . . . ,Ωm form a nondegenerate polytopic partition of the
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state space, that is, each region Ωi is a (convex) polyhedron with nonempty interior,
⋃m

i=1 Ωi = Rn, and Ωi ∩ Ωo
j = ∅ for i �= j , where Ωo denotes the interior of Ω

w.r.t. Rn. Then, a piecewise linear system is mathematically described by

ẋ(t)=Aix(t)+ ai, x(t) ∈Ωi (3.25)

in continuous time and by

x(t + 1)=Aix(t)+ ai, x(t) ∈Ωi (3.26)

in discrete time, where Ai ∈ Rn×n, and ai ∈ Rn. The systems are known as piece-

wise affine systems in the literature due to the existence of the affine terms. When

the affine terms vanish, the system is said to be a piecewise linear system. Here we

abuse the notation as a piecewise system can be converted into a piecewise linear

system via expanding the system dimension by one. Indeed, by letting

x̄ =
[

x

1

]

, Āi =
[

Ai ai
0 c

]

, i = 1, . . . ,m,

where c = 0 in continuous time, and c = 1 in discrete time, we can reexpress the

system as

x̄+(t)= Āi x̄(t), x(t) ∈Ωi, (3.27)

which is piecewise linear.

It is clear that the evolution of the continuous state relies only on the initial con-

figuration and is denoted by φ(t; t0, x0).

Piecewise linear systems are very important in representing and approximating

many practical systems. First, it is a common practice that, for effectively analyzing

and controlling a complex nonlinear dynamical system, the system is linearized

around certain operating regions, and the linearized mode is used to approximate

the system dynamics in the corresponding region. In this way, the original system is

approximately represented by a piecewise linear system as a whole. Second, some

well-known phenomena, for instance, saturations, relays, dead zones, etc., are all of

piecewise linear forms. Third, when a linear system is controlled by state-feedback

switching controllers, the overall system is exactly a piecewise linear system.

A well-known problem of piecewise linear system is the well-posedness prob-

lem caused by possible right-hand discontinuities of the system equation when the

state crosses the boundaries. As a result, chattering may occur along the bound-

aries, which implies that a solution in the standard sense may not always exist. The

following example exhibits this.

Example 3.20 For the planar two-form piecewise linear system

ẋ =

⎧

⎨

⎩

[

0 −1
0 −1

]

x when [1 0]x ≥ 0,

[

0 1
0 −1

]

x when [1 0]x < 0,
(3.28)
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it can be seen that the semi-line

Ω+ =
{

[0, y]T : y > 0
}

is a (stable) sliding mode. Therefore, for any initial state lies on the semi-line, the

system does not admit a solution in the standard sense.

The ill-posedness illustrates that piecewise linear systems might exhibit complex

system behaviors. To address this issue, more general concepts of solutions, such as

the well-known Filippov and Caratheodory definitions, should be exploited. For the

above example, it can be seen that the system is always well-posed by Filippov’s

definition, that is, it admits a unique Filippov solution over [0,+∞) for any initial

state. However, it can be proven that the system is not well-posed by Caratheodory’s

definition. Furthermore, if we replace A1 in (3.28) by
[

0 −1
0 1

]

, then the system is ill-

posed by either definition, due to the fact that it admits no Caratheodory solution

for initial states on the semi-line Ω+, and it admits more than one (in fact, infinitely

many) Filippov solution on Ω+.

In this section, we present several approaches for analyzing stability of general

piecewise linear systems, including the piecewise quadratic Lyapunov approach, the

surface Lyapunov approach, and the transition graph approach. In the last subsection

we focus on stability analysis of piecewise conic systems. To avoid ill-posedness,

we assume that the right-hand side is always continuous over the boundaries. Under

this assumption, we further assume without loss of generality that partition cells Ωi

are closed polyhedra. To guarantee that the origin is an equilibrium, we assume that

ai = 0 when 0 ∈Ωi . For notational convenience, we divide the index set M into M1

and M2 such that i ∈M1 iff 0 ∈Ωi .

3.3.2 Piecewise Quadratic Lyapunov Function Approach

Note that, piecewise linear systems with origin equilibrium are locally (around the

origin) piecewise linear with autonomous switching. As a result, any sufficient con-

dition for guaranteed stability is also sufficient for the autonomous stability. In par-

ticular, if the subsystems admit a common quadratic Lyapunov function, then the

system is autonomously stable. While many stability criteria were given by exploit-

ing this idea, the criteria are doomed to be conservative in general. A less conser-

vative idea is to exploit the piecewise quadratic Lyapunov functions, which result

in bilinear matrix inequalities or even linear matrix inequalities that are efficiently

solvable numerically, as discussed below.

A piecewise quadratic Lyapunov function for the piecewise linear system is of

the form

V (x)= xT Pix + 2qix + ri = x̄T P̄ x̄, x ∈Ωi, (3.29)

where x̄ =
[ x

1

]

, P̄i =
[

Pi q
T
i

qi ri

]

. When 0 ∈ Ωi , we require that qi = 0 and ri = 0,

which means that V (x)= xT Pix for x ∈Ωi . For consistency, we also redefine x̄ to
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be [xT ,0]T when i ∈M1. To apply the Lyapunov approach, we need to figure out

the continuity of the function over the cell boundaries and the definite positiveness

of the function.

Fix a natural number k. Let F̄i ∈ Rk×(n+1), i = 1, . . . ,m, be a sequence of ma-

trices. The matrix sequence is said to be a continuity matrix sequence w.r.t. the

partition sequence Ω1, . . . ,Ωm if

F̄i x̄ = F̄j x̄ ∀x ∈Ωi ∩Ωj , i �= j.

Similarly, let Ēi ∈ Rk×(n+1), i = 1, . . . ,m be a sequence of matrices. The ma-

trix sequence is said to be polyhedral cell bounding w.r.t. the partition sequence

Ω1, . . . ,Ωm if

Ēi x̄ � 0 ∀x ∈Ωi .

Lemma 3.21 Suppose that F̄i , i = 1, . . . ,m, is a continuity matrix sequence. Then,

for any symmetric matrix T ∈ Rk×k , the piecewise quadratic scalar function V in

(3.29) with P̄i = F̄ T
i T F̄i is continuous everywhere. Moreover, there exist real num-

bers β1 and β2 such that

β1x
T x ≤ V (x) ≤ β2x

T x.

Proof The continuity of V follows straightforwardly from the continuity of F̄ix

over the cell boundaries. For the latter part, note that

λmin(P̄i)x
T x ≤ V (x) ≤ λmax(P̄i)x

T x ∀x ∈ Ωi

when i ∈ M1 and

λmin(P̄i)̟1x
T x ≤ V (x) ≤ λmax(P̄i)̟2x

T x ∀x ∈ Ωi

when i ∈ M2, where ̟1 = 1 + 1
min{xT x:x∈Ωi }

, and ̟2 = 1 + min{sgn(λmin(P̄i )),0}
min{xT x:x∈Ωi }

. This

clearly leads to the conclusion due to the finiteness of the index set. �

Lemma 3.22 Let Ēi = [Ei, ei], i = 1, . . . ,m, be a polyhedral cell bounding matrix

sequence. Suppose that symmetric matrices W1, . . . ,Wm ∈ Rk×k
+ satisfy

Pi − ET
i WiEi > 0, i ∈ M1,

P̄i − ĒT
i WiĒi > 0, i ∈ M2.

Then, there is α > 0 such that the piecewise quadratic function V satisfies

V (x) ≥ αxT x ∀x ∈ Rn.

Proof Note that

xT Pix > 0 ∀x ∈ Ωi, x �= 0
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for i ∈M1. Clearly the function xT Pix

xT x
is radially constant and continuous every-

where in Ωi except possibly at the origin. Due to the closedness of cells, we have

x �=0

min
x∈Ωi

xT Pix

xT x
> 0, i ∈M1.

The same argument also holds for i ∈ M2. The conclusion follows from the finite-

ness of the index set. �

With the help of the above lemmas, we are ready to prove the main result on

piecewise quadratic stability.

Theorem 3.23 Let k be a natural number, Ēi = [Ei, ei] and F̄i = [Fi, fi], i =
1, . . . ,m, be polyhedral cell bounding matrix sequence and continuity matrix se-

quence, respectively, and T , Ui , Wi be symmetric matrices with T ∈ Rk×k , Ui,Wi ∈
Rk×k

+ , i = 1, . . . ,m. Suppose that

Pi = F T
i T Fi, i ∈M1,

P̄i = F̄ T
i T F̄i, i ∈M2,

satisfy

AT
i Pi + PiAi +ET

i UiEi < 0,

Pi −ET
i WiEi > 0,

i ∈M1, (3.30)

and

ĀT
i P̄i + P̄iĀi + ĒT

i UiĒi < 0,

P̄i − ĒT
i WiĒi > 0,

i ∈M2. (3.31)

Then, the piecewise linear system is globally exponentially stable.

Proof It follows straightforwardly from Lemmas 3.21 and 3.22 that the function V

is continuous everywhere, αxT x ≤ V (x) ≤ βxT x for some positive real numbers α

and β , and V̇ ≤ −γ xT x almost everywhere for some γ > 0. As a result, the system

is globally exponentially stable. �

Remark 3.24 The main advantages of the piecewise quadratic Lyapunov function

approach include: (1) the criterion is much less conservative than the existence of

a common quadratic Lyapunov function; (2) the searching of piecewise quadratic

Lyapunov function is reduced to a set of linear matrix inequalities (LMIs), which

admits efficient numerical verification [46]; and (3) software packages are available

for the searching of a piecewise quadratic Lyapunov function numerically, see, e.g.,

[100]. However, to find qualified piecewise quadratic Lyapunov functions, we usu-

ally need to further partition the cells, which makes the computation inefficient for

higher-dimensional systems.



3.3 Piecewise Linear Systems 91

Example 3.25 For the two-form piecewise linear system

ẋ =
{

A1x when x1x2 ≥ 0,

A2x when x1x2 < 0,

with

A1 =
[

−4.6 5.5

−5.5 4.4

]

A2 =
[

4.4 5.5

−5.5 −4.6

]

,

it can be verified that both subsystems are stable. While the cones {x : x1x2 ≥ 0}
and {x : x1x2 ≤ 0} are not convex, each is the union of two quadrants. Therefore,

let A3 = A1, A4 = A2, and let Ωi be the ith quadrant for i = 1, . . . ,4. Rewrite the

piecewise linear system as

ẋ =Aix, x ∈Ωi . (3.32)

As all the subsystem phase portraits are rotating clockwise, the system is always

well defined, though the right side is not continuous over the boundaries. To apply

Theorem 3.23, choose the continuity matrix sequence to be

F1 = −F3 = I2, F2 = −F4 =
[

−1 0

0 1

]

,

and polyhedral cell bounding matrix sequence to be

Ei =
[

Fi
I2

]

, i = 1, . . . ,4.

Furthermore, let

T =

⎡

⎢

⎢

⎣

1.1 −0.9 0 0

−0.9 1.1 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎦

, Ui = 0, Wi = 0, i = 1, . . . ,4.

Then, it can be verified that the conditions of Theorem 3.23 are satisfied. As a re-

sult, the piecewise linear system is exponentially stable, and a piecewise quadratic

Lyapunov function is

V (x)= xT Pix, x ∈Ωi,

with P1 = P3 =
[

1.1 −0.9
−0.9 1.1

]

and P2 = P4 =
[

1.1 0.9
0.9 1.1

]

.

Figure 3.3 depicts the phase portrait of the state trajectory and the level set of the

Lyapunov function. The flower-like trajectory indicates that there does not exist a

quadratic Lyapunov function whose level sets are invariant. In fact, it can be veri-

fied that the convex combination 0.4A1 + 0.6A−1
2 has an eigenvalue with positive

real part. As a result, the switched system does not admit any common quadratic

Lyapunov function [205].
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Fig. 3.3 Phase portrait (solid) and level set (dashed)

3.3.3 Surface Lyapunov Approach

While the piecewise quadratic Lyapunov approach introduced in the previous sub-

section provides much less conservative criteria than the conventional quadratic

Lyapunov approach, the approach may admit very heavy computational load. In-

deed, for many piecewise linear systems, it is necessary to seek more refined parti-

tions (than the natural partitions) so that a valid piecewise quadratic function could

be found. For continuous-time piecewise linear systems, any state trajectory has to

cross cell boundaries or otherwise stay within a cell forever. It is thus heuristic to an-

alyze the stability through the system dynamics across the switching surfaces. This

is clearly illustrated by the following example.

Example 3.26 For the continuous-time two-form piecewise linear system

ẋ =

⎧

⎨

⎩

[

0.9 1
−1 −1

]

x if x1 ≥ 0,

[

1.1 3
−1 −1

]

x if x1 ≤ 0,
(3.33)

it is clear that the first subsystem is unstable. Therefore, the piecewise system does

not admit any global Lyapunov function, nor it admits any piecewise quadratic Lya-

punov function w.r.t. the natural cell partition (cf. [100]). However, the system is
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Fig. 3.4 Phase portrait (left) and transition map (right)

exponentially stable, as illustrated from the phase portrait (the left of Fig. 3.4). In

fact, starting from the unit vector z0 = [0 1]T on x2-axis, the state comes back to the

axis at z1 ≈ [0 − 0.62]T and z2 ≈ [0 0.69]T . It is clear that the map at the switching

surface (from z0 to z2) over a period is contractive w.r.t. the Euclidean norm, which

is shown on the right of Fig. 3.4. The exponential convergence follows from the

homogeneity of the switched system.

The example indicates a way to analyze the stability of piecewise linear systems

through the contractility of surface (impact) maps, which are defined on the switch-

ing surfaces instead of the total state space. More accurately, if each map from one

switching surface to another is contractive w.r.t. an energy function, the piecewise

linear system is stable if no unstable state trajectory exists within a cell. In this way,

the searching of a Lyapunov function is reduced to the searching of a surface Lya-

punov function, which is required to decrease along the impact maps. The major

steps toward the approach include the computation of the impact maps over possi-

ble switching transitions and the searching of a proper surface Lyapunov function

for the impact maps. Let us define the impact maps first.

Consider the affine linear system given by

ẋ =Ax +B, (3.34)
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where x ∈ Rn, A ∈ Rn×n, and B ∈ Rn. Suppose that the system is defined over a

polyhedron X ⊂ Rn and that S0 and S1 are two hyperplanes in the boundary of X

with

S0 =
{

x ∈Rn : C0x = d0

}

, S1 =
{

x ∈Rn : C1x = d1

}

,

where C0, C1, and d0, d1 are matrices and column vectors with compatible dimen-

sions. Let X̄ be the closure of X, Sd0 be a polytopic subset of S0 with the prop-

erty that any trajectory x(·) starting at Sd0 satisfies x(t1) ∈ S1 for some time t1 and

x(t) ∈ X̄ for t ∈ [0, t1], and Sa1 be the subset of S1 which is the collection of the

above x(t1)’s. The impact map from Sd0 to Sa1 is the map from x0 = x(0) ∈ Sd0 to

x1 = x(t1) ∈ Sa1 through the state trajectory x(·). Note that the map is not neces-

sarily injective. Indeed, when a state trajectory starting from S0 reaches S1 more

than once within region X̄, there is a sequence of time constants t1 < t2 < · · ·< tk ,

k ≥ 2, such that x(tj ) ∈ S1, j = 1, . . . , k, and x(t) ∈ X̄ for t ∈ [0, tk]. As a result,

the impact map may be multivalued and discontinuous.

Suppose that x∗
0 and x∗

1 are two states belonging to the hyperplanes S0 and S1,

respectively. A state x0 in Sd0 can be parameterized by x0 = x∗
0 +Δ0 with C0Δ0 = 0.

Similarly, a state x1 in Sd
1 can be parameterized by x1 = x∗

1 + Δ1 with C1Δ1 = 0.

In this way, the impact map from x0 to x1 reduces to the map from Δ0 to Δ1. Let

x(t;x0) be the state trajectory with initial state x(0) = x0, and by x0(t) and x1(t)

we shortly denote x(t;x∗
0 ) and x(t;x∗

1 ), respectively.

Definition 3.27 Let x0 = x∗
0 + Δ0 ∈ Sd

0 . Define the set of switching times of the

impact map at Δ0 to be

tΔ0
=
{

s ∈ R+ : x(s) ∈ S1, x(t;x0) ∈ X̄ ∀t ∈ [0, s]
}

.

Define the set of switching times of the impact map over Sd
0 − x∗

0 to be

T =
⋃

Δ∈Sd
0 −x∗

0

tΔ.

In general, the sets of switching times may be unbounded, and it is hard to express

the sets in a closed form. However, by defining the functions

w(t) =
C1e

At

d1 − C1x0(t)

and

H(t) = eAt +
(

x0(t) − x∗
1

)

w(t),

the impact map can be characterized as follows.
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Theorem 3.28 Assume that C1x
0(t) �= 0 for t ∈ T . Then, for any Δ0 ∈ Sd

0 − x∗
0 ,

there exists t ∈ T such that the impact map is given by

Δ1 = H(t)Δ0. (3.35)

Proof Suppose that x0 = x∗
0 + Δ0 ∈ Sd

0 and x1 = x∗
1 + Δ1 ∈ Sa

1 . Integrating the

system equation (3.34) yields

x1 = eAtx0 +
∫ t

0

eA(t−τ)B dτ

for some t ∈ T . This further implies that

Δ1 = eAtΔ0 + x0(t) − x∗
1 . (3.36)

On the other hand, it follows from C1Δ1 = 0 and C1x
∗
1 = d1 that

C1e
AtΔ0 = d1 − C1x

0(t),

which leads to

w(t)Δ0 = 1. (3.37)

Combining (3.36) with (3.37) yields

Δ1 = eAtΔ0 +
(

x0(t) − x∗
1

)

w(t)Δ0,

which is exactly (3.35). �

Remark 3.29 The theorem asserts that the impact map from Δ0 to Δ1 is linear, pro-

vided that the switching time is fixed. To utilize this fact, it is necessary to examine

the submanifold of Sd
0 that corresponds to the same switching time. For a time t ∈ T ,

let St be the set of states x∗
0 + Δ0 with t ∈ tΔ0

. It is clear that St is nonempty and

that
⋃

t∈T St = Sd
0 . Furthermore, as w(t)Δ0 = 1 and C0Δ0 = 0, St is a subset of a

linear manifold of dimension n − 2.

Based on the above preparations, we are ready to introduce the surface Lyapunov

functions for analyzing the global asymptotic stability of piecewise linear systems.

Let V0 and V1 be two smooth positive definite functions defined over Sd
0 − x∗

0 and

Sa
1 − x∗

1 , respectively. Clearly, if

V1(Δ1) < V0(Δ0) ∀Δ0 ∈ Sd
0 − x∗

0 , (3.38)

then the impact map from Sd
0 to Sa

1 is a contraction. In this case, V0 and V1 are

called surface Lyapunov functions defined over Sd
0 and Sa

1 , respectively. Usually, it

is very hard to verify the contractility for general surface Lyapunov functions due
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to the nonlinear nature of the impact map. So we restrict our attention to piecewise

quadratic surface Lyapunov functions of the form

Vi(x)= xT Pix − 2gTi x + αi, i = 0,1, (3.39)

where 0 < Pi ∈ Rn×n, gi ∈ Rn, and αi ∈ R, i = 0,1. For a symmetric matrix M ∈
Rn×n and a region Y ⊆ Rn, by M > 0 on Y we mean xT Mx > 0 for any 0 �= x ∈ Y .

Theorem 3.30 Suppose that Vi , i = 0,1, are piecewise quadratic surface Lyapunov

functions as in (3.39) and define

R(t) = P0 − H T (t)P1H(t) − 2
(

g0 − H T (t)g1

)

w(t) + wT (t)αw(t), (3.40)

where α = α0 − α1. Then, inequality (3.38) holds iff R(t) > 0 on St − x∗
0 for all

t ∈ T .

Proof Rewrite (3.38) as

ΔT
1 P1Δ1 − 2gT

1 Δ1 + α1 < ΔT
0 P0Δ0 − 2gT

0 Δ0 + α0.

Applying Theorem 3.28 gives

ΔT
0

(

P0 − H T (t)P1H(t)
)

Δ0 − 2
(

gT
0 − gT

1 H(t)
)

Δ0 + α > 0.

Utilizing the fact that w(t)Δ0 = 1, we obtain

ΔT
0

(

P0 − H T (t)P1H(t) − 2wT (t)
(

gT
0 − gT

1 H(t)
)

+ wT (t)αw(t)
)

Δ0 > 0,

which verifies the theorem. �

Corollary 3.31 The impact map from Sd
0 − x∗

0 to Sa
1 − x∗

1 is a contraction if there

exist P0,P1 > 0 and g0, g1, α such that R(t) > 0 on St − x∗
0 for all t ∈ T .

This corollary provides a criterion for contractility of the impact map. However,

the computation of the manifold St is usually untractable. One way to cope with this

difficulty is to further relax the condition as follows.

Corollary 3.32 The impact map from Sd
0 − x∗

0 to Sa
1 − x∗

1 is a contraction if there

exist P0,P1 > 0 and g0, g1, α such that

R(t) > 0 on S0 − x∗
0 ∀t ∈ T . (3.41)

Condition (3.41) is an infinite set of linear matrix inequalities (LMIs). Compu-

tationally, the set should be gridded into a finite subset of LMIs, which can be effi-

ciently solved using available softwares. More details could be found in [92, 93].

To summarize, for a piecewise linear system, the main steps toward global

asymptotic stability analysis include: (1) identifying all impact maps associated
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with the piecewise linear system; (2) defining all surface quadratic functions on

the respective domains of impact maps; and (3) adjusting the parameters of the sur-

face Lyapunov function so that condition (3.41) holds. In contrast to the piecewise

quadratic Lyapunov function approach introduced in the previous subsection, the

surface Lyapunov approach has several advantages including: (1) the analysis is

based on the original cell partition, and no refinement of the partition is needed, and

thus the computational burden is usually much lower; (2) the approach scales better

with the dimension of the system due to the fact that the Lyapunov function is only

needed to be sought on the switching surfaces instead of the total state space; and

(3) the approach can prove global asymptotic stability, while the piecewise quadratic

Lyapunov function approach can only prove exponential stability. However, it is

clear that the approach applies only to continuous-time systems, while the piecewise

quadratic Lyapunov function approach applies to both continuous- and discrete-time

systems. Besides, the identification of impact maps is usually not an easy task, es-

pecially when there are three or more switching surfaces.

Next, we apply the above analysis approach to a class of saturated systems.

A single-input single-output linear system with a saturated unitary output feedback

could be described by
⎧

⎪

⎨

⎪

⎩

ẋ =Ax + bu,

y = cT x,

u= sat (y),

(3.42)

where sat(·) is the standard saturation function

sat (y)=

⎧

⎪

⎨

⎪

⎩

−1 if y <−1,

y if |y| ≤ 1,

1 if y > 1.

Note that the saturated system always admits a unique solution due to the fact that

Ax + b sat (cT x) is globally Lipschitz continuous.

It is clear that there are two switching surfaces, i.e.,

S+ =
{

x ∈ RN : cT x = 1
}

and

S− =
{

x ∈ RN : cT x = −1
}

.

The surfaces are origin-symmetric and separated. Denote A1 =A+ bcT . To ensure

that the origin is the unique equilibrium with local stability, we must have that A1

is Hurwitz, and A does not admit any eigenvalue with positive real part. Besides,

when A is nonsingular, it must satisfy −cTA−1b < 1. Define

S+
+ =

{

x ∈ S+ : cTA1x ≥ 0
}

, S+
− =

{

x ∈ S+ : cTA1x ≤ 0
}

and

S−
+ =

{

x ∈ S− : cTA1x ≥ 0
}

, S−
− =

{

x ∈ S− : cTA1x ≤ 0
}

.
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As A1 is Hurwitz, there exists a nonempty subset of S+− , denoted S∗, such that any

state trajectory starting from S∗ will not switch again and will converge to the origin

asymptotically. To see this, let P > 0 be a solution of AT
1 P +PA1 = −I , and define

̟ = maxxT Px=1 cT x; then the intersection S+ ∩ {x : xT Px = ̟ 2} is inside S∗. It

can be seen that the subset S∗ is a convex and closed subset of S+
− .

Taking advantage of the origin-symmetry of S+ and S−, we need to take care of

three impact maps: (1) the map from S+
+ to S+

− ; (2) the map from S+
− − S∗ to S+

+ ;

and (3) the map from S+
− − S∗ to S−

− . Let T1, T2, T3 denote the sets of the switching

times for the impact maps, respectively. For a state trajectory starting from x0 ∈ S+
+ ,

it switches at x1 ∈ S+
− . If x1 ∈ S∗, then the trajectory converges to the origin without

any further switching. Otherwise, x1 ∈ S+
− −S∗, and it may switch at either x2a ∈ S+

+
or x2b ∈ S−. The next switching occurs at x3a ∈ S+

− and x3b ∈ S−
− , respectively. The

idea is to check whether sequence x1, x3a/ − x3b, . . . is contractive with respect

to a quadratic surface Lyapunov function. If so, then the sequence will eventually

enter into set S∗, and global asymptotic stability of the piecewise linear system is

established.

Choose x∗
1 = P −1c/(cT P −1c) ∈ S∗, where P > 0 satisfies AT

1 P + PA1 = −I .

x∗
0 ∈ S+

+ can be chosen similarly in a subtler manner. Let x0(·) and x1(·) be the state

trajectories starting from x∗
0 and x∗

1 , respectively.

Define the functions

w1(t) = cT eAt/
(

1 − cT x0(t)
)

, w2(t) = cT eA1t/
(

1 − cT x1(t)
)

,

w3(t) = cT eA1t/
(

−1 − cT x1(t)
)

,

and further the impact maps

H1(t) = eAt +
(

x0(t) − x∗
1

)

w1(t), H2(t) = eA1t +
(

x1(t) − x∗
0

)

w2(t),

H3(t) = eA1t +
(

x1(t) + x∗
0

)

w3(t).

By applying Corollary 3.32, we have the following stability criterion for saturated

systems.

Proposition 3.33 Saturated system (3.42) is globally asymptotically stable if there

exist matrices P1, P2 > 0, vectors g1 and g2, and a real number α such that the

inequalities

P1 − H T
1 (t)P2H1(t) − 2

(

g1 − H T
1 (t)g2

)

w1(t) + wT
1 (t)αw1(t) > 0 on S+ − x∗

0 ,

P2 − H T
2 (t)P1H2(t) − 2

(

g2 − H T
2 (t)g1

)

w2(t) + wT
2 (t)αw2(t) > 0 on S+ − x∗

1 ,

P2 − H T
3 (t)P1H3(t) − 2

(

g2 − H T
3 (t)g1

)

w3(t) + wT
3 (t)αw3(t) > 0 on S+ − x∗

1

hold for t ∈ T1, t ∈ T2, and T ∈ T3, respectively.

Finally, we present a numerical example to illustrate the effectiveness of the sur-

face Lyapunov function approach for saturated systems.
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Example 3.34 For the planar linear system with saturated output feedback

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ẋ =
[−1 0

0 0

]

x +
[

2

−0.4

]

u,

y = [0.6 1]x,
u= sat (y),

(3.43)

it is clear that the system is locally stable at the origin equilibrium. An ele-

mentary analysis shows that any state trajectory starting from the saturated area

(|cT x(0)| > 1) crosses the switching surfaces. There are three impact maps: the

map from S++ to S∗, the map from S+
− − S∗ to S−

− , and the map from S−
− to −S∗,

which is symmetric to the first map. Note that any state trajectory starting from the

switching surfaces enters into ±S∗ by two or less switches. As any state trajectory

starting from ±S∗ asymptotically converges to the origin, global asymptotic stabil-

ity is guaranteed. Figures 3.5 and 3.6 show sample phase portraits starting from S+

and the corresponding impact maps, respectively. In this simple case, no explicit

surface Lyapunov function is needed for stability analysis.

An interesting point here is that the system is not globally exponentially stable.

Indeed, let x(t;x0) be the state trajectory with x0 = [a 1 − 0.6a]T ∈ S+, where a is

Fig. 3.5 Sample phase portraits
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Fig. 3.6 Illustration of impact maps

a real parameter. Furthermore, let t1 be the first switching time with x(t1;x0) ∈ S+.

Then, it can be shown that

lim
a→−∞

t1

a
= −

3

2
,

which excludes the possibility of global exponential stability of the piecewise linear

system. This means that the piecewise Lyapunov function approach does not apply

to the system.

3.3.4 Transition Analysis: A Graphic Approach

An intrinsic difficulty of stability analysis for piecewise linear systems lies in the

fact that switching transitions among the cells are autonomous. Therefore, the au-

tonomous stability is neither robust as in guaranteed stability nor flexible as in stabi-

lizing switching design. The lack of both robustness and flexibility in the switching

mechanism makes autonomous stability very hard to understand.

In this subsection, rather than taking the autonomous switching as a negative

factor, we try to take advantage of the switching transitions and present a graphic

approach for autonomous stability analysis.
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Definition 3.35 Discrete state i ∈M is said to be weakly transitive if for all x0 ∈
Ωi − {0}, we have either

∃t > 0, φ(t;0, x0) �∈ Ωi

or

∀t > 0, φ(t;0, x0) ∈ Ωi, lim
t→+∞

φ(t;0, x0) = 0.

It is clear that, when 0 �∈ Ωi , then state i is weakly transitive if for all x0 ∈ Ωi ,

there exists t > 0 such that φ(t;0, x0) �∈ Ωi . That is to say, there does not exist a

whole (continuous) state trajectory that stays within the cell. In this case, state i is

said to be transitive. Another observation is that a necessary condition for global

asymptotic stability of the origin is the weak transitivity of all discrete states.

Based on the transitive relationship, we could formulate a graphic approach for

addressing the stability of the piecewise linear system.

Let (V ,Ξ) be a directed graph with V = M being the node set, (i, j) ∈ Ξ if

i �= j , and there exist a state x0 ∈ Ωi and a time t > 0 such that φ(t;0, x0) ∈ Ωj .

When (i, j) ∈ Ξ , (i, j) is said to be an edge of the graph, and Ξ is the edge set. For

a node i, its neighbor set is

Γi =
{

j ∈ V : (i, j) ∈ Ξ
}

.

Definition 3.36 A collection of nodes V0 ⊂ V is said to be invariant if Γi ⊂ V0 for

all i ∈ V0.

As a trivial fact, the node set V itself is invariant.

Definition 3.37 A collection of nodes V0 ⊂ V is said to be attractive if it is invariant

and the set V − V0 does not contain any loop.

It is clear that, a node set is attractive if each path with sufficiently large length

contains a node in this set and all the successive nodes stay in the set forever.

An attractive set is said to be minimal if any strict subset is not attractive. A min-

imal set is denoted Vmin.

For the piecewise linear system, any invariant node set V0 ⊂ V induces a subdy-

namics described by

x+(t) = Aix + ai, x ∈ Ωi, i ∈ V0 (3.44)

whose dynamics is part of that of the original system, and the stability is simpler

to analyze. For simplicity, system (3.44) is denoted by V0-induced piecewise linear

system.

Theorem 3.38 The piecewise linear system is globally asymptotically stable if the

following conditions hold:
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(1) each discrete state is weakly transitive

(2) there is an index i ∈M such that 0 ∈Ωo
i and i ∈ Vmin, and

(3) the Vmin-induced system is globally asymptotically stable

Proof The proof is straightforward. Any state trajectory either converges to the ori-

gin without going through the region
⋃

i∈Vmin
Ωi due to the weak transitivity or

enters into the region in a finite time and then converges to the origin within the

region. �

Remark 3.39 The merits of the theorem include simplifying the stability verifica-

tion with the aid of graphic decomposition and applying to both discrete-time and

continuous-time systems. More importantly, the graphic approach provides an effec-

tive method for attractivity analysis. Indeed, when V0 is attractive, then
⋃

i∈V0
Ωi is

an invariant domain.

Example 3.40 H–K model of opinion dynamics.

Krause–Hegselmann [103] proposed a model of opinion dynamics with a uni-

form confident level, which is mathematically described by

xi(t + 1)= 1

|Ni |
∑

j∈Ni

xj (t), i = 1, . . . , κ, (3.45)

where xi ∈R is the opinion value of agent i, x = [x1, . . . , xκ ]T , r is the level of con-

fidence, Ni is the neighbor set of agent i defined by Ni(t)= {j : |xj (t)−xi(t)| ≤ r},
and |Ni | denotes the cardinality of set Ni . The model is called K–H model or H–K

model in the literature.

The problem of asymptotic consensus is to determine the region of initial states

that lead the agents’ opinions to a common value. For this, define the region

X =
{

x0 ∈ Rκ : lim
t→+∞

(

xi(t, x0) − xj (t, x0)
)

= 0 ∀i �= j
}

, (3.46)

where xi(t, x0) denotes the state xi at time t with initial condition xi(0) = x0i . It has

been established in [103] that any consensus process is finite-time convergent, that

is,

xi(t, x0) = xj (t, x0) ∀i �= j, x0 ∈ X, t ≥ T ,

where T is a natural number that relies on κ . From this and from the complete

orderedness of the opinions we can further prove that each process reaches its final

dynamics in a finite time, that is, there is a natural number T ∗ such that

xi

(

t + T ∗, x0

)

= xi

(

T ∗, x0

)

∀t ∈ T0, x0 ∈ Rκ .

As a result, the limit in (3.46) always exists. Furthermore, when xi(0) ≤ xj (0),

then we have xi(t) ≤ xj (t) for all t > 0. As a result, the order of the opin-

ion values always keeps unchanged. Without loss of generality, we assume that
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x1 ≤ x2 ≤ · · · ≤ xκ . Another useful observation is that if xi+1(t) − xi(t) > r for

some i and t , then the inequality holds for all forward time. Therefore, a necessary

condition for consensus is

xi+1(t) − xi(t) ≤ r, ∀i = 1, . . . , κ − 1, t ∈ T0. (3.47)

To apply the graphic approach, one way is to redefine the state vector that takes

xi − xj as elements, and the consensus problem reduces to the attractivity of the

piecewise linear system. However, for the sake of simplicity, here we still use x as

the state vector, and the graphic approach is utilized in a heuristic manner.

First, define

X1 =
{

x ∈ Rκ : xκ − x1 ≤ r
}

.

This implies that |Ni | = κ for all i. It is clear that any opinion process initiated from

X1 achieves consensus in one step, and any consensus process must enter into X1

before the final consensus is achieved. As a result, X1 ⊂ X, and X1 is the minimal

attractive region w.r.t. X. That is to say, any other cell within X must be transitive to

X1 in a finite time. Note that when κ = 2, X = X1, and the consensus is equivalent

to initial connectedness of the opinion dynamics network.

Next, for κ ≥ 3, define

X2 =
{

x ∈ Rκ : xκ − x2 ≤ r, xκ−1 − x1 ≤ r, xκ − x1 > r
}

.

This corresponds to |N1| = |Nκ | = κ −1 and |Ni | = κ otherwise. For any x(0) ∈ X2,

we have

xκ

(

1, x(0)
)

− x1

(

1, x(0)
)

=
1

κ − 1

κ
∑

i=2

xi(0) −
1

κ − 1

κ−1
∑

i=1

xi(0)

=
1

κ − 1

(

xκ(0) − x1(0)
)

≤
2

κ − 1
r,

which means that x(1, x(0)) ∈ X1. That is, X2 is transitive to X1 in one step. Note

that when κ = 3, X = X1 ∪ X2, and the consensus is equivalent to initial connect-

edness of the opinion dynamics network.

Then, continue the analysis process and define

Xl1 =
{

x ∈ Rκ : xκ − xl1 ≤ r, xκ−l2 − x1 ≤ r,

xκ − xl1−1 > r, xκ−l2+1 − x1 > r
}

,

where l1 = ⌊ κ+1
2

⌋ is the largest integer less than or equal to κ+1
2

, and l2 = ⌈ κ+1
2

⌉
is the smallest integer larger than or equal to κ+1

2
. It can be verified that, for any

x(0) ∈ Xl1 , we have

xκ

(

1, x(0)
)

− xl1

(

1, x(0)
)

≤ r
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and

xl2
(

1, x(0)
)

− x1

(

1, x(0)
)

≤ r.

This means that x(1, x(0)) ∈
⋃l1

j=1 Xj , which further implies that x(t, x(0)) ∈
⋃l1

j=1 Xj for all t ∈ T0. It follows from the opinion dynamics equation that both

xκ(t, x(0))−xl1(t, x(0)) and xl2(t, x(0))−x1(t, x(0)) are contractive as t increases,

which further implies that region Xl1 is transitive to X1 in a finite time.

To summarize, the regions X2, . . . ,Xl1 are transitive to X1 in a finite time, and

any state in X1 achieves consensus in one step. By applying Theorem 3.38, we

obtain the following consensus criterion.

Proposition 3.41 The opinion dynamics reaches a consensus if |Ni(0)| ≥ κ+1
2

for

any i = 1, . . . , κ .

While conservative, the proposition provides an easily verifiable sufficient con-

dition, which only relies on the initial network graph. Besides, it tells us that, when

each person in a society finds that more than half of the population (nearly) agree

with him, then a consensus could be finally achieved.

To illustrate the effectiveness of the above analysis, we take κ = 5. Let r = 1 and

x0 = [−1,−0.9,0,0.9,1]T . It can be verified that the condition in Proposition 3.41

Fig. 3.7 Consensus of the opinion dynamics
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Fig. 3.8 Split of the opinion dynamics

is satisfied. Therefore, consensus can be achieved. Figure 3.7 shows the evolution

of the opinion dynamics, which achieves consensus in three steps.

Finally, take the initial state to be x0 = [−1,0,1,1.5,2]T . It can be verified that

|N1(0)| = 2, which means that the condition in Proposition 3.41 is violated. Fig-

ure 3.8 depicts the evolution of the opinion dynamics, and it is clear that the agents

split into two parties within two steps.

3.3.5 Conewise Linear Systems

A continuous function f : Rn → Rn is said to be conewise linear if there exist a

finite set of convex polyhedral cones {X1, . . . ,Xm} with
⋃m

i=1 Xi = Rn and n × n

matrices {L1, . . . ,Lm} such that f (x)= Lix for x ∈ Xi .

A conewise linear system is a differential or difference equation with a conewise

linear function as the right-hand side:

x+(t)=Aix, x ∈ Xi, (3.48)

where A1, . . . ,Am are n × n real constant matrices, and {X1, . . . , Xm} is a set of

convex polyhedral cones with
⋃m

i=1 Xi = Rn and X o
i ∩ X o

j = ∅ for i �= j .
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It is clear that conewise linear systems are piecewise linear systems with conic

state partitions and without affine terms. Other important features include that the

system is homogeneous with degree one and that the right-hand side is globally

Lipschitz continuous. As a result, the system always admits a unique solution over

the time space from any initial state, and local asymptotic stability implies global

asymptotic stability. Furthermore, we can prove the equivalence among the stability

notions, as stated in the following proposition.

Proposition 3.42 For the conewise linear system, the following statements are

equivalent:

(1) The system is attractive.

(2) The system is asymptotically stable.

(3) The system is exponentially stable.

Proof We only need to prove that attractivity implies exponential stability. For this,

suppose that the conewise system is attractive. This means that, for any state x on

the unit sphere, there is a time tx > 0 such that

∣

∣φ
(

tx;0, x
)
∣

∣≤
1

4
.

As the vector field of the system is globally Lipschitz continuous, there is a positive

real number r such that

∣

∣φ
(

tx;0, x
)

− φ
(

tx;0, y
)∣

∣≤
1

4
∀y ∈ Br(x).

Combining the above inequalities yields

∣

∣φ
(

tx;0, y
)∣

∣≤
1

2
∀y ∈ Br(x).

Letting x vary along the unit sphere, we have

⋃

x∈H1

Br(x) ⊃ H1.

As the unit sphere is compact, by the Finite Covering Theorem, there is a finite set

of states x1, . . . , xl on the unit sphere such that

l
⋃

j=1

Br(xj ) ⊃ H1.

As a result, we can partition the unit sphere into l regions R1, . . . ,Rl such that Rj ⊂
Br(xj ), j = 1, . . . , l,

⋃l
j=1 Rj = H1, and Rj ∩ Rk = ∅ ∀j �= k. Define accordingly

Ωj = {x : ∃λ ≥ 0, λx ∈ Rj }, sj = txj , j = 1, . . . , l.
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For any initial state x0, define recursively

ik = #{x ∈Ωj },
tk+1 = tk + sik ,

zk+1 = φ(tk+1; tk, zk), k = 0,1,2, . . . ,

with t0 = 0 and z0 = x0. It can be seen that

zk = φ(tk;0, x0), |zk+1| ≤
|zk|
2

, k = 0,1,2, . . . ,

which further implies that

∣

∣φ(t;0, x0)
∣

∣≤ βe−αt |x0| ∀t ∈ T0,

where β = emax{‖A1‖,...,‖Am‖}max{s1,...,sl}, and α = ln 2
max{s1,...,sl} . The conclusion fol-

lows due to the arbitrariness of x0. �

Note that the stabilities do not always coincide for general piecewise linear sys-

tems, as exhibited by Example 3.34.

Next, we are to present a verifiable criterion for stability of conewise linear sys-

tems. For this, we introduce the notion of unit-sphere contractility as defined below.

Definition 3.43 For a given norm | · |, the conewise linear system is unit-sphere

contractive (w.r.t. norm | · |) if for any state x with unit norm, there is a time T > 0

such that |φ(T ;0, x)| < 1.

Theorem 3.44 The following statements are equivalent to each other:

(1) The conewise linear system is exponentially stable.

(2) The conewise linear system is unit-sphere contractive w.r.t. any given norm.

(3) For a given norm, the conewise linear system is unit-sphere contractive.

Proof It is clear that (1) =⇒ (2) =⇒ (3). So we need only to prove (3) =⇒ (1).

For any arbitrarily given but fixed state x with unit norm, let T be such that

|φ(T ;0, x)| = μx < 1. Define

Tx = min
{

t :
∣

∣φ(t;0, x)
∣

∣= μx

}

.

By the continuous dependence of initial state, there exists an open neighborhood Nx

of x such that

∣

∣φ(Tx;0, y) − φ(Tx;0, x)
∣

∣≤
1 − μx

2
∀y ∈ Nx,

which further implies that

∣

∣φ(Tx;0, y)
∣

∣≤
1 + μx

2
∀y ∈ Nx .
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Letting x vary along the unit sphere, it is obvious that

⋃

x∈H1

Nx ⊇ H1.

By the compactness of the unit sphere and the Finite Covering Theorem, there exist

a finite number l and a set of states x1, . . . , xl on the unit sphere such that

l
⋃

i=1

Nxi ⊇ H1.

Accordingly, we can partition the unit sphere into l regions R1, . . . ,Rl such that
⋃l

i=1 Ri = H1. In addition, for each i, 1 ≤ i ≤ l, we have

∣

∣φ(Txi
;0, y)

∣

∣≤
1 + μxi

2
∀y ∈ Ri .

For any state z ∈ Rn, there are x ∈ Ri with 1 ≤ i ≤ l and a positive real number λ

such that z = λx. Denote Tz = Txi
and μ = max{μx1

, . . . ,μxl
}. It is clear that

∣

∣φ(Tz;0, z)
∣

∣≤
1 + μ

2
|z| ∀z ∈ Rn. (3.49)

Then, for any x0 �= 0, define recursively the sequence of states

z0 = x0,

zk+1 = φ(Tzk
;0, zk), k = 0,1, . . . .

Similarly, define recursively a sequence of times

t0 = 0,

tk+1 = tk + Tzk
, k = 0,1, . . . .

It follows from (3.49) that

∣

∣φ(tk;0, z)
∣

∣≤
(

1 + μ

2

)k

|z|, k = 1,2, . . . . (3.50)

Finally, we prove that each state trajectory under the above switching path is

exponentially convergent. To see this, let

T = l
max
i=1

Txi
, α = ln 2/T , η = m

max
j=1

‖Aj‖, β = 2eηT .

It follows that
∣

∣φ(t;0, x0)
∣

∣≤ βe−αt |x0| ∀x0 ∈ Rn, t ∈ T0. (3.51)

This completes the proof. �
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Next, we are to develop a constructive procedure for verifying the unit-sphere

contractility, which by the theorem provides a computational verification of expo-

nential stability of the conewise linear system. The idea is to select a set of states

with unit norm and determine a neighbor of contractility for each state. When all

the neighbors cover the unit sphere, the system is unit-sphere contractive. A key

issue is to estimate a contractility neighbor for a given initial state. For this, denote

L=max{‖A1‖, . . . ,‖Am‖} and fix a real number δ ∈ (0,1).

Proposition 3.45 Let x be a state with unit norm, and Tx > 0 be such that

|φ(Tx;0, x)| ≤ δ. Then, for any y with |y − x| < ηx(1 − δ), we have

∣

∣φ(Tx;0, y)
∣

∣< 1, (3.52)

where ηx = e−LTx in continuous time, and ηx = 1
LTx

in discrete time.

Proof Note that L is a Lipschitz constant for the conewise linear system, that is, for

any indices i, j ∈ {1, . . . ,m} and any states x ∈ Xi and y ∈ Xj , we have

|Aix − Ajy| ≤ L|x − y|.

To see this, denote the ordered set of intermediate states

z0 = x, z1, . . . , zk, zk+1 = y

on the segment (x, y) such that (zl, zl+1) is within some Xμl
for each l ∈

{0,1, . . . , k}. It is clear that

|Aix − Ajy| ≤ |Aix − Aiz1| + · · · + |Ajzk − Ajy|

≤ L
(

|x − z1| + · · · + |zk − y|
)

= L|x − y|.

This implies that, for continuous-time systems, we have

∣

∣φ(Tx;0, y) − φ(Tx;0, x)
∣

∣≤ |x − y| + L

∫ Tx

0

∣

∣φ(t;0, y) − φ(t;0, x)
∣

∣dt.

It follows from the Bellman–Gronwall lemma that

∣

∣φ(Tx;0, y) − φ(Tx;0, x)
∣

∣≤ eLTx |y − x|,

which leads to inequality (3.52). The discrete time case can be established in the

same manner. �

Remark 3.46 The proposition presents an estimate of the radius of a ball within the

contractility neighbor for any given state with unit norm. The radius is dependent on



110 3 Constrained Switching

the contractility ratio, the subsystem matrices, and the time length Tx for contractil-

ity. For any exponentially stable conewise linear system with convergence estimate

(3.51), it can be seen that Tx can be chosen such that

Tx ≤
lnβ − ln δ

α
∀x.

This means that a uniform lower bound of the radius could be explicitly computed.

Based on the proposition, we could outline a computational procedure for veri-

fying the unit-sphere contractility. For this, denote the region Nx = {y : |x − y| <

ηx(1 − δ)} for a state x.

(1) Select a set of initial states x1, . . . , xk that are uniformly distributed on the unit

sphere with a preassigned dense.

(2) Determine the times Txi
by simulation.

(3) Check whether H1 ⊂
⋃k

i=1 Nxi
or not. If yes, return “System is exponentially

stable.” Otherwise, double the dense of the initial states and repeat the process.

Conceptually, the procedure does work as it terminates in a finite time when

the system is unit-sphere contractive. However, it does not terminate when the sys-

tem is not unit-sphere contractive. Technically, it is usually not an easy task for

representation of a region and a union of regions, and for verification of subset re-

lationship between two regions. In particular, region Nx is norm-dependent, that is,

different norms may correspond to different regions. Note that, for the ℓ2-norm, the

region is generally nonconvex (and not a union of a finite set of convex regions)

and nonpolyhedric as well. In this case, it is very hard to verify the subset relation

H1 ⊂
⋃k

i=1 Nxi
. Accordingly, we use the ℓ1-norm instead. In this case, each Nx is a

convex polytope, and the subset relationship can be verified by means of commercial

numerical softwares (for example, MATLAB GBT Toolbox [252]).

To further reduce the computational load, we take the reduced-order approach.

For this, first consider the (upper) half unit sphere given by

H+
1 =

{

x = [x1, . . . , xn]T : xn ≥ 0, |x|1 = 1
}

.

This sphere can be projected into the (n − 1)-dimensional unit ball by the map

Pn : H+
1 �→ Bn−1

1 , Pnx = [x1, . . . , xn−1]T .

The inverse map is

P −1
n y =

[

y1, . . . , yn−1,1 − |y|1
]T

, y ∈ Bn−1
1 .

Define N+
x = {y ∈ H+

1 : |x − y| < ηx(1 − δ)} and PN+
x = {Pny : y ∈ N+

x } ⊂ Bn−1
1 .

Similar reduction can be made for the (lower) half unit sphere given by

H−
1 =

{

x = [x1, . . . , xn]T : xn ≤ 0, |x|1 = 1
}

.
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The subset relation H1 ⊂
⋃k

i=1 Nxi is reduced to

⋃

xk∈H+1

PN+xk = Bn−1
1 ,

⋃

xk∈H−1

PN−xk = Bn−1
1 ,

which could be verified over the (n− 1)-dimensional unit ball.

Example 3.47 For the planar discrete-time conewise linear system

x(t + 1)=Aix(t), x(t) ∈ Xi, t = 0,1, . . . ,

with

A1 =
[

−1.4078 0.1223

1.3846 0.4437

]

,

A2 =
[

−0.5837 −0.7019

0.5213 1.3070

]

,

A3 =
[

0.2405 0.1223

−0.3420 0.4437

]

,

X1 =
{

x ∈R2 :
[

1 0

1 −1

]

x � 0

}

,

X2 =
{

x ∈R2 :
[

1 1

−1 1

]

x � 0

}

,

X3 =
{

x ∈R2 :
[

−1 0

−1 −1

]

x � 0

}

,

it can be verified that the first and the second subsystems are unstable, and the third

one is stable.

Set contractility rate δ = 0.8, and dense size γ = 0.01. Let yk = −1 + γ k,

k = 0,1, . . . ,2/γ , which are equally distributed on the one-dimensional unit ball

[−1,1]. By projecting yk into the two-dimensional upper and lower half unit

spheres, respectively, we have xu
k = [yk,1− |yk|]T and xl

k = [yk,−1+ |yk|]T for

k = 0,1, . . . ,2/γ . The next step is to determine Tx by simulation for each ini-

tial state x ∈ {xu
k , xl

k, k = 0,1, . . . ,2/γ }. It was found that each initial state is

δ-contractive within three steps. Simple calculation shows that the radius of Nx

is not less than 0.0092, which corresponds to r = 0.0065 when projected into the

one-dimensional space. In this way, the interval (yk − r, yk + r) is a contractility

neighbor of yk . It is clear that

[−1,1] ⊂
2/γ
⋃

k=0

(yk − r, yk + r),
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Fig. 3.9 Phase portrait of the conewise linear system

which means that the conewise linear system is exponentially stable. Figure 3.9

depicts a sample phase portrait, which stays and converges within X2 after several

switches between X1 and X3.

3.4 Dwell-Time Switching

For switched linear systems, it is well known that the exponential stability of the

subsystems does not necessarily imply stability of the switched systems under arbi-

trary switching. However, under a switching law with sufficiently large dwell time,

the exponential stability of the subsystems does imply the asymptotic stability of

the switched systems, due to the fact that any exponentially stable system admits

a finite transient process. This arises an interesting problem of finding the least

dwell time such that the switched system is globally stable under any switching

signal with the dwell time. The problem, which we refer to the least stable dwell

time problem, is both theoretically challenging and practical appealing. Indeed, the

least stable dwell time is a measure of fault tolerance for systems with a nominal

subsystem and a substitute subsystem which works when the nominal loop fails to

work properly. It is clear that the smaller the least stable dwell time, the better abil-

ity of fault tolerance. Theoretically, the least stable dwell time captures the subtle
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property of marginal transition among subsystems, which is a unique and important

phenomenon for switched systems.

On the other hand, when the subsystems are unstable, the switched system can

still be stabilizable by means of proper switching among the subsystems. A well-

known condition for stabilizability is the existence of a stable convex combination

of the subdynamics, for which high-frequency switching can stabilize the switched

system. However, high-frequency switching is usually harmful and undesirable in

most applications. This arises the problem of finding stabilizing switching with the

largest possible dwell time, which we refer to the slow switching (design) problem.

In this section, we investigate the above problems in a heuristic manner. As the

problems are very difficult, we mainly focus on two-form switched linear systems.

3.4.1 Preliminaries

For a time-driven switching signal σ with the switching sequence

(t0, i0), (t1, i1), . . . , (tl, il), l ≤ +∞,

its dwell time is the least duration of switching, that is,

dσ =
l

inf
k=1

{tk − tk−1}.

It is clear that the dwell time is nonnegative, and positive dwell time implies well-

definedness, but the converse is not true. For a nonnegative real number τ , let Sτ be

the set of switching signals with dwell time greater than or equal to τ , that is,

Sτ = {σ ∈ S : dσ ≥ τ }.

As an extension, we define the average dwell time of switching signal σ as

da
σ = inf lim

k→l

tk − t0

k
.

For a nonnegative real number τ , the set of switching signals with average dwell

time greater than or equal to τ is denoted by S a
τ . It is clear that the average dwell

time is larger than or equal to the dwell time for any switching signal, and Sτ is a

subset of S a
τ for any τ .

For the switched linear system

ẋ(t) = Aσ(t)x(t), (3.53)

let S ∗ be the set of switching signals that make the switched system asymptoti-

cally stable. A nonnegative real number τ is said to be a stable dwell time if each

switching signal in Sτ makes the switched system asymptotically stable, and the

least stable dwell time is defined to be

τ∗ = inf{τ : Sτ ⊆ S ∗},
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which is the infimum over the stable dwell times. The least stable average dwell

time can be defined in the same manner.

It can be seen that, when all the subsystems are exponentially stable, the least

stable (average) dwell time is always finite. Indeed, there exist positive real number

pairs (αj , βj ), j = 1,2, . . . ,m, such that

∥

∥eAj t
∥

∥≤ βj e
−αj t ∀t ∈ T0. (3.54)

Suppose that the switching signal σ is with switching sequence

(t0, i0), (t1, i1), . . . , (tl, il).

Then the state transition matrix is

Φ(t, t0, σ ) = eAik
(t−tk)e

Aik−1
(tk−tk−1) · · · eAi0

(t1−t0) ∀t ∈ (tk, tk+1].

Define

τ1 = max

{

lnβ1

α1
, . . . ,

lnβm

αm

}

.

It can be seen that any switching signal with dwell time τ1 makes the state transition

matrix norm contractive. As a result, τ1 is an upper bound of the least stable dwell

time. Note that such an upper bound is norm-dependent.

Another approach for approximating the least stable dwell time is the Lyapunov

approach. Suppose that P1, . . . ,Pm is a sequence of symmetric and positive definite

matrices. Let τ be a positive real number satisfying

AT
i Pi − PiAi < 0 ∀i ∈ M

and

eAT
i τPj e

Aiτ < Pi ∀i, j ∈ M, i �= j.

Then, by taking the piecewise quadratic Lyapunov function

V (x, t) = xT Pσ(t)x,

it can be seen that, for any switching signal with dwell time τ , the Lyapunov func-

tion is strictly decreasing along switching instants. Hence, the switched system is

asymptotically stable. As a result, τ is an upper bound of the least stable dwell

time.

The above idea of using piecewise quadratic functions can be further extended to

piecewise norm functions. Indeed, the following result has been established.

Lemma 3.48 (See [261]) τ is a stable dwell time for the switched linear system iff

there exist norms vi , i = 1, . . . ,m, such that

vi

(

eAi tx
)

− vi(x) < 0 ∀x �= 0, t > 0,

vj

(

eAiτx
)

− vi(x) < 0 ∀x �= 0, i, j ∈ M, i �= j. (3.55)



3.4 Dwell-Time Switching 115

To find a lower bound of the least stable dwell time, we examine the sampled-data

system

xk+1 =Dτ
σ xk

with sampling period τ , and Dτ
j = eAj τ , j = 1, . . . ,m. It can be seen that a neces-

sary condition for τ to be a stable dwell time is the guaranteed asymptotic stability

of the sampled switched system, which can be verified by calculating the spectral

radius of the sampled system. When the generalized spectral radius is larger than or

equal to one, then τ is a lower bound of the least stable dwell time. Suppose that we

have found an upper bound τ1 for τ∗. Here we provide a random search procedure

for computing such a lower bound.

Step 1. Fix an integer K and set τ0 := 0 and k := 0.

Step 2. Randomly choose a sampling period τ from the interval (τ0, τ1). Sample

the switched system with the period.

Step 3. Calculate the generalized spectral radius λ̄ of the sampled system. If λ̄ ≥ 1,

then set τ0 := τ . Set k := k + 1.

Step 4. If k ≤ K , then go back to Step 2. Otherwise, return τ0 as the lower bound

estimate of the least stable dwell time.

Example 3.49 For the planar two-form switched linear system with

A1 =
[

0.0957 1.4148

−0.9812 −0.3837

]

, A2 =
[

0.0517 −0.5547

0.7801 −0.4392

]

,

by solving the Lyapunov equations

AT
i Pi + PiAi = −I2, i = 1,2,

we obtain (cf. (3.54))

αi =
1

2λmax(Pi)
, βi =

√

λmax(Pi)/λmin(Pi), i = 1,2,

which further gives τ1 = 3.4630. On the other hand, applying the above search

procedure (with K = 1000) gives τ0 = 1.2425. Thus the least stable dwell time

τ∗ ∈ (1.2425,3.4630).

Next, we turn to the problem of slow switching, where the largest possible sta-

bilizing dwell time is to be sought. To be more precise, a nonnegative real number

τ is a stabilizing dwell time if there exists a switching signal in Sτ that steers the

switched system asymptotically stable, and the largest stabilizing dwell time is de-

fined to be

τ ∗ = sup{τ : Sτ ∩ S ∗ �= ∅},

which is the supremum over the stabilizing dwell times. The largest stabilizing av-

erage dwell-time can be defined in the same manner.
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For a two-form switched linear system with at least one unstable subsystem, we

define the set

Δ=
{

(τ1, τ2) : τ1 > 0, τ2 > 0, eA1τ1eA2τ2 is Schur
}

.

It can be seen that, when (τ1, τ2) ∈Δ, the switched system is asymptotically stable

if we take the periodic switching signal

σ(t)=
{

1 if mod (t, τ1 + τ2) < τ1,

2 otherwise.
(3.56)

As a result, min{τ1, τ2} is a lower bound of the largest stabilizing dwell time, and

(τ1+ τ2)/2 is a lower bound of the largest stabilizing average dwell time. To obtain

a tighter estimate, we use the quantities

sup
(τ1,τ2)∈Δ

min{τ1, τ2} and sup
(τ1,τ2)∈Δ

(τ1 + τ2)/2 (3.57)

to serve as lower bounds for the largest stabilizing dwell time and the largest stabi-

lizing average dwell time, respectively.

It is interesting to examine the open set Δ. It is clear that, when A1 and A2 admit

a stable convex combination, 0 is an accumulating point of the set, and vice versa.

Even in this case, the set is not necessarily convex. In fact, the set may contain dis-

connected subsets, and each connected subset is possibly nonconvex. For example,

for the two-form switched system with

A1 =

⎡

⎣

−2.1 1.4 5.9

−8.0 −5.7 −0.2

0.6 5.8 1.6

⎤

⎦ , A2 =

⎡

⎣

1.0 −0.5 −2.8

4.8 −5.0 1.1

−1.0 −6.6 −2.1

⎤

⎦ , (3.58)

it can be verified that wA1+ (1−w)A2 is Hurwitz for 0.33 ≤ w ≤ 0.75. Therefore,

for any w ∈ (0.33,0.75), there exists a positive real number τ such that the segment

from (0,0) to (wτ, (1 − w)τ) belongs to the set Δ. Figure 3.10 depicts the set that

contains several isolated subregions. It is clear that the largest subregions are not

convex. The nonconvexity nature makes the effective computation of the set very

difficult.

Another observation is that a periodic switching signal with the largest dwell

time as defined in (3.57) steers the switched system marginally stable with possible

very long transient process and very large overshoot. In fact, even for a dwell time

near the boundary of the set Δ, the corresponding transient process may be quite

long. For system (3.58), if we take the periodic switching signal with

τ1 = 2.1009, τ2 = 2.1132,

then it can be verified that the matrix eA1τ1eA2τ2 admits spectra

{0.6384,−0.7891,−0.0000},
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Fig. 3.10 The set Δ

which means that the transition matrix is Schur stable. This implies that (τ1, τ2) ∈Δ.

Figure 3.11 shows the state trajectory of the switched system under the periodic

switching with initial state x0 = [1,−1,0]T . It is clear that the transient process is

quite long and the overshoot is very large.

To improve the system performance, we introduce the notion of ǫ-robust stabi-

lizing dwell time pair. Precisely, given ǫ > 0, a pair of positive real numbers (τ1, τ2)

is said to be an ǫ-robust stabilizing dwell time pair if

Bǫ(τ1, τ2) ∈Δ.

That is, the ball centered at (τ1, τ2) with radius ǫ is inside the stabilizing dwell time

set Δ. The set of such pairs, denoted Δǫ , is a strict subset of the set Δ. Instead of

computing the largest dwell time as in (3.57), we are to find the largest ǫ-robust

stabilizing dwell time defined by

sup
(τ1,τ2)∈Δǫ

min{τ1, τ2}. (3.59)

The next random searching procedure aims at computing the dwell time.

Initial Setting

Set τ1 := 0 and τ2 := 0. Set two searching steps, k1 and k2. Set ǫ.
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Fig. 3.11 State trajectory under periodic switching

Finding Dwell Times

(1) Set k1 := k1 − 1 and input two random positive real numbers a and b.

(2) If k1 <= 0, go to Step 4. Otherwise, check the Schur stability of the matrix

eA1(τ1+a)eA2(τ2+b). If not, go to Step 1.

Checking ǫ-robustness

(3.1) Set j := k2.

(3.2) If j <= 0, go to Step 3.4. Otherwise, input two random numbers c and d

between −ǫ and ǫ.

(3.3) Check the Schur stability of the matrix eA1(τ1+a+c)eA2(τ2+b+d). If not, then go

to Step 1. Otherwise, set j := j − 1 and go to Step 3.2.

(3.4) Set τ1 := τ1 + a and τ2 := τ2 + b. Go to Step 1.

Conclusion

(4) Set τ :=min(τ1, τ2), which is an estimate of the largest ǫ-robust dwell time.

Finally, let us examine the behavior of system (3.58) under various ǫ’s. As

we mentioned before, the transient performance is very poor when ǫ = 0 (cf.

Fig. 3.11). When ǫ = 0.01, the computed largest ǫ-robust dwell time is 0.8503 with

τ1 = 0.8503 and τ2 = 0.8524. Figure 3.12 shows the state trajectory under the peri-

odic switching, which admits much better transient process than that of ǫ = 0. When
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Fig. 3.12 State trajectory of under periodic switching with ǫ = 0.01

ǫ = 0.1, the computed largest ǫ-robust dwell time is 0.3350 with τ1 = 0.3350 and

τ2 = 0.3634. The corresponding state trajectory, shown in Fig. 3.13, has smaller set-

tling time and overshoot than those with smaller ǫ’s. Notice the interesting trade-off

between the switching period and the system state performance, which is in fact the

trade-off between the discrete state quality and continuous state quality.

3.4.2 Homogeneous Polynomial Lyapunov Approach

As stated in Lemma 3.48, τ is a stable dwell time if inequality (3.55) holds from

some norms vi , i = 1, . . . ,m. This indicates a way of approximating the least dwell

time. In this subsection, we present a computational approach that searches for a

least possible stable dwell time when the norms are adopted from homogeneous

polynomial functions.

Fix a natural number d . For a positive definite homogeneous polynomial with

degree 2d given by

p(x)=
i1,...,in≥0
∑

i1+···+in=2d

ai1,...,inx
i1
1 · · ·xin

n ,
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Fig. 3.13 State trajectory of under periodic switching with ǫ = 0.1

a norm on Rn is induced as v(x)= p
1

2d (x). It is clear that, if there exist a sequence

of positive definite homogeneous polynomials p1, . . . , pm such that

pi

(

eAi tx
)

− pi(x) < 0 ∀x �= 0, t > 0,

pj

(

eAiτx
)

− pi(x) < 0 ∀x �= 0, i, j ∈ M, i �= j, (3.60)

for some τ , then the induced norms vi , i = 1, . . . ,m satisfy (3.55), which means that

τ is a stable dwell time for the switched linear system. Note that when d = 1, the

set of Lyapunov functions degenerate into the set of piecewise quadratic Lyapunov

functions, and the computation of the quantity can be conducted by means of linear

matrix inequalities.

As discussed in Sect. 2.4.1, we take the set of positive definite homogeneous

polynomials that admit a sum-of-squares expression as

p(x) =
(

x[d])T Px[d],

where P is a positive definite matrix, and x[d] is the d-lift of state x. Denote by A
[d]
i

the induced matrix such that (Aix)[d] = A[d]x[d] and

dx[d](t)

dt
= A

[k]
σ(t)x

[d](t).
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Let Nd
n =

(

n+d−1
d

)

. It can be seen that x[d] is Nd
n -dimensional and that the matrix

A[d] is of Nd
n ×Nd

n .

Lemma 3.50 τ is a stable dwell time of the switched system if there exists a se-

quence of positive definite matrices Qi ∈RNd
n×Nd

n , i = 1, . . . ,m, such that

(

A
[d]
i

)T
Qi +QiA

[d]
i < 0 ∀i ∈ M,

exp
((

A
[d]
i

)T
τ
)

Qj exp
(

A
[d]
i τ
)

< Qi ∀i, j ∈ M, i �= j. (3.61)

Proof It is clear that exp(A
[d]
i τ) = (eAiτ )[d]. The conclusion follows from (3.60)

with pi(x) = (x[d])T Qix
[d]. �

Note that, when τ satisfies the second inequality of (3.61), any real number ς > τ

also satisfies the inequality with τ replaced by ς . Indeed, it follows from the first

inequality of (3.61) that

e(A
[d]
i )T (ς−τ)Qie

A
[d]
i (ς−τ) ≤ Qi, i ∈ M.

Pre- and post-multiplying the second inequality of (3.61) by e(A
[d]
i )T (ς−τ) and

eA
[d]
i (ς−τ), respectively, we obtain

exp
((

A
[d]
i

)T
ς
)

Qj exp
(

A
[d]
i ς

)

< e(A
[d]
i )T (ς−τ)Qie

A
[d]
i (ς−τ) ≤ Qi .

This means that, if we take τ as a variable, then inequality (3.61) admits a set of

solutions with a unique infimum, which is an upper bound of the least stable dwell

time.

The above discussion enable us to formulate the optimization problem

inf τ

∃Qi > 0 s.t. (3.61) holds.

The problem can be solved by means of semi-definite programming technique. The

resultant solution, denoted τ d
∗ , is the smallest upper bound of τ∗ when the Lyapunov

function is in the set of homogeneous sum-of-squares with degree 2d .

Example 3.51 Consider the planar two-form switched system with

A1 =
[

0 1

−2 −1

]

, A2 =
[

0 1

−9 −1

]

.

Taking d = 1,2,3,4, we obtain the upper bounds τ d
∗ presented in the table below.

d 1 2 3 4

τ d
∗ 0.6222 0.6079 0.6073 0.6073
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It is clear that 0.6073 is an upper bound of the least stable dwell time. On the

other hand, we can prove that 0.6073 is also a lower bound of τ∗. Indeed, let h1 =
0.8800 and h2 = 0.6073. It is straightforward to verify that the state transition matrix

eA1h1eA2h2 admits the spectra {−1.0000,−0.2260}, which shows the existence of a

periodic switching that steers the switched system marginally stable.

To conclude, we have τ∗ = 0.6073, and the homogeneous polynomial Lyapunov

function approach provides a nonconservative estimate of the least stable dwell time

for this example.

3.4.3 Combined Switching

Based on the largest ǫ-robust stabilizing dwell time, we can further enlarge the dwell

time by introducing a combined switching mechanism, that is, the state-feedback

switching with fixed dwell time.

Next, suppose that τ1 and τ2 are fixed and that the matrix eA1τ1eA2τ2 is Schur

stable. Clearly, there exist a positive definite matrix P and a real number δ ∈ (0,1)

such that
(

eA2τ2eA1τ1
)T

PeA2τ2eA1τ1 ≤ (1 − δ)P . (3.62)

Assume without loss of generality that τ1 < τ2.

Fix a real number η ∈ (0, δ
1−δ

). Let Qi = AT
i P + PAi , i = 1,2. Define

ν = ln

(

1 + 2η‖A1‖
λmin(P )

λmax(Q1)

)

/
(

2‖A1‖
)

,

where λmin(P ) and λmax(Q1) are the smallest and the largest eigenvalues of P and

Q1, respectively.

Suppose that x is initialized at x(t0) = x0. Define the switching sequence

σ(t0) =
{

1 if xT
0 Q1x0 ≤ xT

0 Q2x0,

2 otherwise,

tk+1 =
{

inf{t > tk + ν : x(t)T Q1x(t) ≥ 0} + τ1 if σ(tk) = 1,

inf{t ≥ tk + τ2 : x(t)T Q2x(t) ≥ 0} if σ(tk) = 2,
(3.63)

σ(tk+1) =
{

2 if σ(tk) = 1,

1 if σ(tk) = 2,
k = 0,1, . . . .

According to this strategy, when the first subsystem is activated, it is first kept

active for time ν, and then it must be kept active for the additional dwell time τ1

after the state-feedback switching time is due. On the other hand, if the second

subsystem is activated, it must be kept active for the dwell time τ2, and then the

state-feedback switching law decides the next switching time. In this way, the dwell
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time of the combined switching is greater than or equal to min(τ1+ ν, τ2), which is

larger than the original dwell time τ1.

The following result states the main property of the proposed switching strategy.

Theorem 3.52 The switched system is exponentially stable under switching

law (3.63).

Proof Let V (x) = xT Px be the Lyapunov candidate. Fix an initial state and sup-

pose that the switching time sequence is t0, t1, . . . . Taking any switching instant tk
with σ(tk)= 1, we examine the monotonicity of the Lyapunov candidate along with

the time interval [tk, tk+2). According to the switching law, the time-driven period

is

[tk, tk + ν) ∪ [tk+1 − τ1, tk+1 + τ2),

while the state-driven period is

[tk + ν, tk+1 − τ1) ∪ [tk+1 + τ2, tk+2).

Note that the Lyapunov candidate function is decreasing during the state-driven pe-

riod. During the time-driven period [tk+1 − τ1, tk+1 + τ2), it follows from (3.62)

that

V
(

x(tk+1 + τ2)
)

≤ (1 − δ)V (tk+1 − τ1).

For the time-driven period [tk, tk + ν), we have

∫ tk+ν

tk

xT (t)Q1x(t) dt ≤ ηV
(

x(tk)
)

,

which further implies that

V
(

x(tk + ν)
)

<
1

1 − δ
V
(

x(tk)
)

.

Combining the above facts together yields

V
(

x(tk+2)
)

< V (xtk ).

As the time-driven period is with fixed length τ1 + τ2 + ν for each switching cy-

cle, the Lyapunov candidate converges exponentially, and the switched system is

exponentially stable.

To illustrate the effectiveness of the proposed switching law, we reexamine the

example as in (3.58). We take τ1 = 0.3350 and τ2 = 0.3634 that correspond to the

largest ǫ-robust stabilizing dwell time with ǫ = 0.1. Furthermore, take

P =

⎡

⎣

1.1125 0.0681 0.0878

0.0681 2.1136 1.6565

0.0878 1.6565 3.4735

⎤

⎦ , η = δ = 0.2180.
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Fig. 3.14 Sample state trajectory (upper) and switching signal (lower)

As a result, we have ν = 0.0249. It follows that switching law (3.63) admits the

dwell time of 0.3599, which is larger than 0.3350 for the periodic switching law

(3.56). Moreover, due to the introduction of the state-driven mechanism, the av-

erage dwell time can be further enlarged. Figure 3.14 depicts the state trajectory

and switching signal of the switched system under switching law (3.63) with ini-

tial state x0 = [0.8040,−1.7240,0.1741]T . For this piece of sample switching path,

the average dwell time is 0.4672 sec, which is one third larger than that of periodic

switching (3.56), 0.3492 sec. �

3.5 Notes and References

Stability of stochastic systems is not a new topic, and the history can be traced back

to the 1950s. Systematic investigations were made by quite a few scholars such as

Bharucha [27], Kozin [133], Kushner [136], and Khasminskii [131]. In particular,

Kozin [133] established that exponential mean square stability implies almost sure

stability, as stated in Theorem 3.11. In the survey paper [134], Kozin clarified some

confusing concepts and explained the relationships among the stability concepts.
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Much progress has been made in understanding various stabilities since the 1990s.

The reader is referred to [43, 59, 74, 79, 140, 167] and the references therein.

The equivalence among the mean square stabilities, as stated in Items (1)–(3) of

Theorem 3.3, was obtained by Feng et al. [79], which was extended to the δ-moment

stabilities by Fang [70]. The stability criteria, Items (4) and (5) of Theorem 3.3, were

presented in [79] and [160], respectively. The proof of Theorem 3.3 was combined

from [70, 79, 160]. Lemma 3.4 was adapted from [160]. For almost sure stability,

while many sufficient conditions and necessary conditions were presented in the

literature (see, e.g., [70, 71, 144, 166]), it was well recognized that, as the Lya-

punov component is notoriously difficult to calculate [10, 251], almost sure stability

is much harder to tackle than moment stabilities [61]. It was established, however,

that as δ → 0, the stability region (w.r.t. subsystem matrices) of δ-moment stability

shrinks exactly to the stability region of almost sure stability [70, 73]. While this

reveals the insightful connection between almost sure stability and moment stabil-

ity, it provides little help in practical verification of almost sure stability, due to the

lack of verifiable moment stability criteria. The necessary and sufficient condition

for almost sure stability, Theorem 3.16, was adapted from [42]. Though the criterion

is of limited practical value, it does provide a counterpart of the transition contrac-

tion criterion for deterministic switched systems, as presented in [216, Prop. 3].

Lemma 3.14 was adapted from [70].

It should be noted that the material here is limited to continuous-time homoge-

neous jump linear systems. For the discrete-time counterpart and/or jump diffusion

counterpart, the reader is referred to [59, 70, 72, 144, 160] and the references therein.

Piecewise linear systems are switched linear systems with state-space-partition-

based switching. Theoretically, piecewise linear systems are powerful in approxi-

mating highly nonlinear dynamic systems [210], in representing interconnections

of linear systems and finite automata [212], and in characterizing control systems

with fuzzy logics [76]. From the model point of view, piecewise linear systems

provide an equivalent framework to the well-known linear complementary systems

[101, 102, 143] and mixed logical dynamical systems [23, 174]. Primary topics in

the literature include well-posedness [116, 265], controllability, reachability, and

observability [11, 49, 202], stability and stabilization [93, 94, 119, 125, 126], and

computational complexity [40], among others. While the study on stability of piece-

wise linear systems has been attracting increasing attention, the stability problem

is found to be notoriously challenging [29, 230]. One reason for this is the fact

that switching is autonomous based on cell partitions which usually induce highly

nonlinear transition maps that are very difficult to characterize. Nevertheless, re-

markable progress has been made during the last decades, with much attention be-

ing paid to the development of computational approaches. The piecewise quadratic

Lyapunov approach, proposed initially by Johansson and Rantzer in [125, 126], pro-

vides a rigorous method for analyzing the stability of general piecewise linear sys-

tems. To find qualified piecewise quadratic Lyapunov functions, we usually need

to further partition the cells, which makes the computation inefficient for higher-

dimensional systems. This motivates the development of a natural-partition-based

mechanism to reduce the computational burden. The surface Lyapunov function ap-

proach, proposed by Goncalves et al. in [92, 93], is exactly such an approach. It
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focuses on the contractility of the impact maps defined over the switching surfaces

instead of the total state space, which captures and utilizes the subtle properties

of the impact maps that are generally nonlinear and multivalued. The approach is

powerful in coping with piecewise linear systems whose impact maps could be pa-

rameterized. Particular but important examples include a linear plant with a non-

linear relay/on–off/saturated feedback. It is clear that the approach only applies to

continuous-time systems. An extended scheme is to analyze the transition relation-

ships among different cells, which could possibly be represented by a digraph. By

applying the graph theory, it is possible to reduce global graph analysis to that of

subgraphs which are invariant and attractive. While simple, the approach applies to

both continuous time and discrete time.

The main results in Sect. 3.3.2 were adapted from [126], and the contents

in Sect. 3.3.3 were mainly taken from [93]. The transition analysis presented in

Sect. 3.3.4 was proposed in [226], where the concept of (weak) transitivity was bor-

rowed from [119]. As a specific class of piecewise linear systems, conewise linear

systems admit simpler behavior; for example, a continuous conewise linear system

is always well defined as no Zeno phenomenon occurs [50]. Proposition 3.42 reveals

another nice property for the system, which naturally follows from the homogeneity

of the switched system [8]. The other part of Sect. 3.3.5 was taken from [229].

Switching with positive dwell time or average dwell time was proposed to ad-

dress the stability problem by Morse and Hespanha in [110, 178], and numerous

works could be found along this line in the literature, see, e.g., [56, 90, 99, 197, 278]

and the references therein. While simple in idea and popular in literature, finding the

least stable dwell time for stability of switched stable linear systems is very diffi-

cult due to the fact that the concatenation of two feasible switching signals is not

necessarily feasible, which destroys the semigroup nature of the transition matrices

[261]. A closely related problem is to find the largest dwell time for stabilizability

of switched unstable linear systems, which is also an open problem. The reader is

referred to [234, Problem 7.6] for more discussion on the problems.

The homogeneous polynomial Lyapunov function approach presented in

Sect. 3.4.2 was mainly adopted from [56], and the reader is referred to [57] for

more detailed background about the approach. The other material of Sect. 3.4 was

mostly taken from [227].
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Designed Switching

4.1 Preliminaries

To effectively control complex dynamics with either high nonlinearity or large-scale

unknown/uncertain parameters, it is a common practice to use the “divide and con-

quer” strategy. One approach in light of this strategy is the hybrid control scheme,

which amounts to designing a set of candidate controllers, each working around a

local support, and a switching mechanism coordinating the switching among the

candidate controllers. Indeed, this hybrid control scheme integrates the ideas from

several well-known conventional control schemes such as gain scheduling, intel-

ligent control, and adaptive control [78, 107, 183]. One good example is hybrid

control of nonholonomic systems which are not stabilizable by means of any indi-

vidual continuous state feedback controller [106, 132]. Even for simple linear time-

invariant (LTI) systems, the performance (e.g., transient response) can be improved

through controllers/compensators switching [81, 118, 169].

For a hybrid control system, when the candidate controllers are known or de-

signed, the overall system is the switched dynamical system described by

x+(t)= fσ(t)
(

x(t)
)

, (4.1)

where x(t) ∈ Rn is the continuous state, σ(t) ∈ M
def= {1, . . . ,m} is the discrete

state or switching signal, fi : Rn �→ Rn is a Lipschitz continuous vector field with

fi(0)= 0 for any i ∈M , and x+ denotes the derivative operator in continuous time

and the shift forward operator in discrete time.

The issue of this chapter is the stabilizing switching design of switched dynam-

ical system (4.1). For this, we assume that the switching signal is observable and

controllable and that we can freely select the switching mechanism.

For clarity, we denote by φ(t; t0, x0, σ ) the continuous state of system (4.1) at

time t with initial condition x(t0) = x0 and switching path/signal/law σ . Denote

ℓp-norm by | · |p for p ∈ [1,+∞]. For any positive real number r , let

Br =
{

x ∈ Rn : |x| ≤ r
}

, Hr =
{

x ∈ Rn : |x| = r
}

.

Z. Sun, S.S. Ge, Stability Theory of Switched Dynamical Systems,

Communications and Control Engineering,

DOI 10.1007/978-0-85729-256-8_4, © Springer-Verlag London Limited 2011

127

http://dx.doi.org/10.1007/978-0-85729-256-8_4


128 4 Designed Switching

Finally, recall that, for a time interval ̟ , S̟ is the set of well-defined switching

paths defined over the interval, and S is the set of well-defined switching signals.

Definition 4.1 Switched system (4.1) is said to be

(1) (uniformly) stabilizable if for any ε > 0, there exist δ > 0 and a switching law

{px : x ∈ Bδ} such that

∣

∣φ
(

t;0, x,px
)∣

∣≤ ε ∀x ∈ Bδ, t ∈ T0 (4.2)

(2) (globally uniformly) switched attractive if for any ǫ > 0 and γ > 0, there exist

a switching law {px : x ∈ Bγ } and a time T > 0 such that

∣

∣φ
(

t;0, x,px
)
∣

∣≤ ǫ ∀x ∈ Bγ , t ∈ TT (4.3)

(3) (globally uniformly) asymptotically stabilizable if for any ε > 0, ǫ > 0, and

γ > 0, there exist δ > 0, T > 0, and a switching law {px : x ∈ Rn} such that

relationships (4.2) and (4.3) hold simultaneously, and

(4) (globally uniformly) exponentially stabilizable if there are positive real numbers

α and β and a switching law {px : x ∈Rn} such that

∣

∣φ
(

t;0, x,px
)∣

∣≤ βe−αt |x| ∀x ∈Rn, t ∈ T0

The switching law {px} in the definition is said to be an (asymptotically/expo-

nentially) stabilizing/switched-attractive switching law, respectively.

Note that the uniformity is referred to the switching law rather than the initial

time as in the conventional stability notions, and asymptotic stabilizability means

stabilizability and switched attractivity w.r.t. a (common) switching law. In partic-

ular, even when a switched system is both switched attractive and stabilizable, it is

not necessarily asymptotically stabilizable. Indeed, if we take the first subsystem

with an attractive but unstable origin equilibrium and the second subsystem with an

identity motion (that is, each state is an invariant equilibrium), then, it is clear that

the switched system is both switched attractive (by assigning σ = 1̂) and stabilizable

(by assigning σ = 2̂), but the switched system is not asymptotically stabilizable.

In this chapter, we address the problem of stabilization by designing various

switching mechanisms including time-driven switching, state-feedback switching,

and mixed-driven switching. The aim is to reveal the capability and limitation of

each switching mechanism, to provide a comprehensive understanding of the stabi-

lization problem and to present computation design procedures.

4.2 Stabilization via Time-Driven Switching

In this section, we examine the possibility of achieving stabilizability by means of

time-driven switching. For this, we introduce the notion of consistent stabilizability.
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Definition 4.2 Switched system (4.1) is said to be consistently (asymptotically, ex-

ponentially) stabilizable if there is a consistent switching signal σ such that the

system is well defined and uniformly (asymptotically, exponentially) stable.

It is clear that a consistent stabilizable system is also stabilizable in the sense of

Definition 4.1. We are interested in whether the converse is still true or not. Indeed,

if any stabilizable system is also consistently stabilizable, then the stabilized system

is in fact a linear time-varying system with a piecewise constant system matrix, and

the problem of stabilization can be seen as a special case of stability problem for

linear time-varying systems. This, however, is not generally true, as shown in the

sequel.

Consider the switched linear system given by

x+(t)=Aσ(t)x(t), (4.4)

where Ai, i ∈M , are real constant matrices.

Lemma 4.3 Suppose that the switched linear system is consistently stabilizable.

Then, there is k ∈M such that

n
∑

i=1

λi(Ak)≤ 0 (4.5)

in continuous time and
∣

∣

∣

∣

∣

n
∏

i=1

λi(Ak)

∣

∣

∣

∣

∣

≤ 1 (4.6)

in discrete time, where λi(A), 1≤ i ≤ n, are the eigenvalues of the matrix A.

Proof We proceed with the continuous-time case, and the discrete-time case could

be proven in a similar way. Let σ be a consistent switching signal that stabilizes the

switched system. Suppose that the switching duration sequence of σ is

DSσ =
{

(i0, h0), (i1, h1), . . .
}

.

If the sequence is finite, i.e., there involve only finite switches in σ , then, it can be

seen that the last active subsystem must be stable, and the theorem follows immedi-

ately. If the sequence is infinite, it follows from the well-definedness of σ that there

involve only finite switches in any finite time. As a consequence,
∑l

i=1 hi →∞ as

l→∞. According to Definition 4.2, by setting ε = 1, there exists δ > 0 such that

‖x0‖ ≤ δ =⇒
∥

∥φ(t;0, x0, σ )
∥

∥≤ 1 ∀t ≥ t0.

In particular,

∥

∥eAis hs · · · eAi1
h1eAi0

h0x0

∥

∥≤ 1 ∀x0 ∈ Bδ, s = 0,1, . . . .
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As a consequence, all entries of the matrices

eAi0
h0, eAi1

h1eAi0
h0 , . . . , eAis hs · · · eAi1

h1eAi0
h0 , . . . (4.7)

must be bounded by 1
δ
. Suppose that

̺= min
k∈M

{

n
∑

i=1

λi(Ak)

}

> 0.

Then, we have

det eAkh = exp

(

h

n
∑

i=1

λi(Ak)

)

≥ e̺h, k ∈M, h > 0.

As a result, we have

det eAis hs · · · eAi1
h1eAi0

h0 ≥ e
̺
∑s

j=0 hj →∞ as s→∞.

This contradicts the boundedness of entries of the matrices. This establishes the

former part of the theorem. The latter part can be proven in a similar manner. �

Recall that a switching signal θ[0,∞) is said to be periodic if there exists a positive

time T such that

θ(t + T )= θ(t) ∀t ≥ 0.

Proposition 4.4 If a switched system is consistently asymptotically stabilizable,

then, there is a periodic switching signal that asymptotically stabilizes the switched

system.

Proof If there is a subsystem, say, Ak , that is asymptotically stable, then the constant

switching signal σ ≡ k works. Otherwise, suppose that a switching signal σ with

duration sequence

DSσ =
{

(i0, h0), (i1, h1), . . .
}

asymptotically stabilizes the switched system. It is obvious that this switching signal

must involve infinite switches. From the proof of Lemma 4.3, matrix sequence (4.7)

converges to the zero matrix. Consequently, there is a finite number N such that

∥

∥eAiN
hN · · · eAi1

h1eAi0
h0
∥

∥< 1. (4.8)

It can be verified that the periodic and synchronous switching path θ with duration

sequence

DSθ =
{

(i0, s0), . . . , (iN , sN ), (i0, s0), . . . , (iN , sN ), . . .
}

(4.9)

asymptotically stabilizes the switched system. �
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Estimation (4.8) is very important in analyzing the convergence of the sys-

tems. It establishes the contractibility uniformly for all initial states. Indeed, let

Φ(T ,0,p) be the state transition matrix under switching path p over interval

[0, T ]. Inequality (4.8) is equivalent to the contraction of the transition matrix, i.e.,

‖Φ(T ,0,p)‖ < 1. This motivates us to construct a periodic stabilizing switching

signal σ as σ(t) = p(t) for t ∈ [0, T ) and σ(t + T ) = σ(t) for all t . Under this

periodic switching signal, the resultant switched system is in fact a periodic linear

time-varying system whose lifting system is Schur stable, and its dynamics is well

understood. Note that the stabilizing switching signal is always well defined as it is

self-concatenated of the well-defined switching path p.

Corollary 4.5 For a switched linear system, the following statements are equiva-

lent:

(i) the system is consistently asymptotically stabilizable

(ii) the system is consistently exponentially stabilizable

(iii) the system is periodically asymptotically stabilizable

(iv) there exist a natural number l, an index sequence i1, . . . , il , and a positive real

number sequence h1, . . . , hl such that the matrix eAil
hl · · · eAi1

h1 is Schur, and

(v) for any real number s ∈ (0,1), there exist a natural number l = l(s), an index

sequence i1, . . . , il , and a positive real number sequence h1, . . . , hl such that

∥

∥eAil
hl · · · eAi1

h1
∥

∥≤ s. (4.10)

Proof From the proof of Proposition 4.4, (i) implies that there is a finite number N

such that
∥

∥eAiN
hN · · · eAi1

h1eAi1
h1
∥

∥= γ < 1

for some sequences i1, . . . , iN and h1, . . . , hN . Let l = kN , where k will be deter-

mined later. Define

ij+μN = ij and hj+μN = hj , j = 1, . . . ,N, μ= 1, . . . , k − 1.

It can be seen that

∥

∥eAil
hl · · · eAi1

h1eAi1
h1
∥

∥=
(∥

∥eAiN
hN · · · eAi1

h1eAi1
h1
∥

∥

)k = γ k.

Accordingly, for any s ∈ (0,1), by letting k ≥ ln s
lnγ

, inequality (4.10) holds. This

means that (i) =⇒ (v). In the same manner, we can prove that (iv)=⇒ (v). Other

implications are trivial, and the corollary follows. �

Finally, utilizing the Lemma 4.3, we present two examples that are stabilizable

but not consistently stabilizable.

Example 4.6 For the planar continuous-time two-form switched system with

A1 =
[

2 0

0 −1

]

, A2 =
[

1 1

−1 1

]

,
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it can be verified that condition (4.5) does not hold, and thus the system is not

consistently stabilizable.

On the other hand, the system can be made asymptotically stable by means of the

following switching law: activating the second subsystem until the state reaches the

x2-axis and then turning to the first subsystem forever.

Example 4.7 For the planar discrete-time two-form switched system with

A1 =
[

3 0

0 1/2

]

, A2 =
101

100

[

cos(π/18) sin(π/18)

− sin(π/18) cos(π/18)

]

,

it can be verified that condition (4.6) does not hold, and hence the system is not

consistently stabilizable. On the other hand, the system is asymptotically stabilizable

due to the following facts:

(1) for any state y in the coneΛ= {x ∈R2 : | arctan(x1/x2)| ≤ π/36}, |A1y|< κ|y|
with κ ≈ 0.7596

(2) for any state y outside the cone, applying A2 by ky times (ky ≤ 17) will steer y

into the cone, and

(3) |A1A
ky
2 y|< κ|Aky

2 y| ≤ κ‖A2‖ky |y| ≤ κ‖A2‖17|y|<μ|y| with μ≈ 0.8996

Fig. 4.1 Sample phase portrait
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Therefore, a stabilizing switching law is to activate the first subsystem when the

state is in cone Λ and to activate the second subsystem when the state is outside the

cone. Figure 4.1 shows a sample phase portrait of the switched system.

The above examples exhibit that not all stabilizable systems can be made stable

by means of time-driven switching laws. That is, time-driven switching laws are not

universal for stabilizing switched systems.

4.3 Stabilization via State-Feedback Switching: The Lyapunov

Approach

In this section, we investigate the possibility of using the Lyapunov approach for

addressing stabilizability issues. For this, we need to define a proper set of Lyapunov

function candidates.

Definition 4.8 Function V : Rn �→ R+ is said to be a switched Lyapunov function

for switched system (4.1) if

(1) it is locally Lipschitz continuous

(2) it admits class K∞ bounds, that is, there are class K∞ functions η1 and η2 such

that

η1

(

|x|
)

≤ V (x)≤ η2

(

|x|
)

∀x ∈Rn

and

(3) the least upper Dini derivative of V along vectors fi(x), i ∈ M , is negative

definite. That is, there is a positive definite continuous function w : Rn �→ R+
such that

min
i∈M

D+V (x)|fi
def= min

i∈M
lim inf
τ→0+

V (x + τfi(x))− V (x)

τ
≤−w(x)

in continuous time and

min
i∈M

D+V (x)|fi
def= min

i∈M
V
(

fi(x)
)

− V (x)≤−w(x)

in discrete time

Remark 4.9 The local Lipschitz continuity of the Lyapunov function implies that

lim inf
τ→0+

V (x + τfi(x))− V (x)

τ
= lim inf

τ→0+

V (φ(τ ;0, x, î))− V (x)

τ

in continuous time, where î stands for the constant switching signal σ(t)= i ∀t .
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Suppose that switched system (4.1) admits a switched Lyapunov function V .

Then, the switching law

σ(t+)= arg min
i∈M

{

D+V
(

x(t)
)∣

∣

fi

}

(4.11)

steers the switched system asymptotically stable, provided that the switching law is

well defined. Note that chattering might occur when the switching surface

{

x ∈Rn : ∃ i, j s.t. D+V (x)|fi = D+V (x)|fj
}

is a sliding mode. To avoid such ill-definedness, we can use the hysteresis switching

law as follows. Define the regions

Ωi =
{

x ∈Rn : D+V (x)|fi
≤ 1

2
min
j∈M

D+V (x)|fj

}

, i ∈M. (4.12)

Starting from any given initial state x(0)= x0, select the index of the active subsys-

tem at t0 = 0 as

σ x0(t0)= arg min
i∈M

{

D+V (x0)|fi

}

.

If there are two or more such indices, we simply choose the minimum one. The

consecutive switching times/indices can be recursively selected as

tk = inf
{

t > tk−1 : D+V
(

x(t)
)∣

∣

fσ(tk−1)
�∈Ωσ(tk−1)

}

,

σ x0(tk)= arg min
i∈M

{

D+V
(

x(tk)
)

|fi

}

, k = 1,2, . . . .
(4.13)

It can be proven that this hysteresis switching law is well defined and that it steers

the switched system asymptotically stable.

4.3.1 Converse Lyapunov Theorems

Suppose that the switched system is asymptotically stabilizable. We are to prove

the existence of a switched Lyapunov function as in Definition 4.8. To this end, we

need some technical preliminaries adapted from the proofs for converse Lyapunov

theorems of (nonswitched) nonlinear systems (cf. [130, 152]).

Firstly, it follows from the asymptotic stabilizability that there exist a class K∞
function α and a class K L function β̄ such that for any initial state x, we have a

switching signal θx ∈ S satisfying

∣

∣φ
(

t;0, x, θx
)∣

∣≤ α(|x|) ∀t ∈ T0 (4.14)

and
∣

∣φ
(

t;0, x, θx
)
∣

∣≤ β̄
(

|x|, t
)

∀t ∈ T0.
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The latter can be equivalently represented by

α
(
∣

∣φ
(

t;0, x, θx
)
∣

∣

)

≤ β
(

|x|, t
)

∀x ∈Rn, t ∈ T0, (4.15)

with β = α ◦ β̄ . It is clear that β is a class K L function.

Secondly, define the function g : Rn �→R+ as

g(x)= sup
t∈T0

inf
σ∈S[0,t]

∣

∣φ(t;0, x, σ )
∣

∣.

It is clear that the function is well defined and

|x| ≤ g(x)≤ α
(

|x|
)

∀x ∈Rn. (4.16)

It can be seen that

g(x)≥ inf
σ∈S[0,t]

g
(

φ(t;0, x, σ )
)

, ∀t ∈ T0, x ∈Rn. (4.17)

Thirdly, we show that the function g is locally Lipschitz continuous at any

nonorigin state. Given x �= 0, let positive real numbers γ1 and γ2 be such that

γ2 < |x| < γ1, and let T be the time constant corresponding to γ = γ1 and ǫ = γ2

as defined in Definition 4.1. It can be seen that

g(x)= max
t∈[0,T ]

inf
σ∈S[0,t]

∣

∣φ(t;0, x, σ )
∣

∣.

As a result, for any ε > 0, there is a switching path θ ∈ S[0,T ] such that

g(x)≥ max
t∈[0,T ]

∣

∣φ(t;0, x, θ)
∣

∣− ε.

Let Lx =max{Lx
1, . . . ,L

x
m}, where Lx

i is the Lipschitz constant of fi at x for i ∈M .

Choose a sufficiently small positive real number r such that

|x| + r < γ1, |x| − r > γ2,

and
∣

∣fi(y1)− fi(y2)
∣

∣≤ Lx |y1 − y2| ∀i ∈M, y1, y2 ∈ B(x, r).

It can be verified that, for any y ∈ B(x, r), we have

g(y) ≤ max
t∈[0,T ]

∣

∣φ(t;0, y, θ)
∣

∣

≤ max
t∈[0,T ]

(∣

∣φ(t;0, x, θ)
∣

∣+ eL
x t |x − y|

)

≤ max
t∈[0,T ]

∣

∣φ(t;0, x, θ)
∣

∣+ eL
xT |x − y|

≤ g(x)+ eL
xT |x − y| + ε.
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From the arbitrariness of ε and the interchangeability of x and y we have

∣

∣g(x)− g(y)
∣

∣≤ eL
xT |x − y| ∀y ∈ B(x, r),

which shows that g is locally Lipschitz continuous at x. Note that while we do not

prove that g is locally Lipschitz continuous at the origin, g is indeed continuous at

the origin due to the facts that g(x)≤ α(|x|) and α is of class K.

Fourthly, define the function V : Rn �→R+ by

V (x)= sup
t∈T0

inf
σ∈S

{

g
(

φ(t;0, x, σ )
)1+ 2t

1+ t

}

.

It follows from relationships (4.16) and (4.17) that

|x| ≤ g(x)≤ V (x)≤ 2g(x)≤ 2α
(

|x|
)

. (4.18)

By the similar argument used with g, we can show that V is locally Lipschitz con-

tinuous at any nonorigin state. It is clear that V is continuous at the origin.

Fifthly, fix x �= 0 and i ∈M . It follows from inequality (4.15) that there exists

a function ψ : R+ × R+ �→ R+ such that ψ(u, ·) is continuous and decreasing for

any fixed u, ψ(·, v) is increasing for any fixed v, and

16β
(

u,ψ(u, v)
)

≤ α−1(v) ∀u,v ∈R+.

Denote ρ = (1+ψ(|x|, α(|x|)))2 and let τ > 0 be a time with

inf
t∈[0,τ ]

inf
σ∈S[0,t]

V
(

φ(t;0, x, σ )
)

≥ |x|
2
.

For any h ∈ [0, τ ], we have

V
(

φ(h;0, x, î)
)

= sup
t∈T0

inf
σ∈S

{

g
(

φ
(

t;0, φ(h;0, x, î), σ
))1+ 2t

1+ t

}

= sup
t∈T0

inf
σ∈S

{

g
(

φ(t + h;0, x, σ ◦h î)
)1+ 2t

1+ t

}

,

where σ ◦h î is the switching path that concatenates î and σ at time h,

(σ ◦h î)(t)=
{

i, t ∈ [0, h),
σ (t − h), t ∈ [h,+∞).

It follows that, for any given ε ∈ (0, |x|
8ρ
), there is a time ζ ∈ (0, τ ) such that

min
i∈M

V
(

φ(h;0, x, î)
)

≤ sup
t∈T0

inf
σ∈S

{

g
(

φ(t + h;0, x, σ )
)1+ 2t

1+ t

}

+ ε (4.19)
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for any h ∈ [0, ζ ]. Utilizing the fact that

inf
σ∈S

g
(

φ(t + h;0, x, σ )
)1+ 2t

1+ t
≤ 2 inf

σ∈S
α
(
∣

∣φ(t + h;0, x, σ )
∣

∣

)

≤ 2β
(

|x|, t + h
)

,

we see that for all t + h≥ψ(|x|, α(|x|)),

inf
σ∈S

g
(

φ(t + h;0, x, σ )
)1+ 2t

1+ t
+ ε

≤ 1

4
|x| ≤ inf

σ∈S

1

2
V
(

φ(h;0, x, σ )
)

≤min
i∈M

1

2
V
(

φ(h;0, x, î)
)

.

This, together with relationship (4.19), implies that the supremum in (4.19) is

reached at some s with s + h≤ψ(|x|, α(|x|)). As a result, we have

min
i∈M

V
(

φ(h;0, x, î)
)

≤ inf
σ∈S

{

g
(

φ(s + h;0, x, σ )
)1+ 2s

1+ s

}

+ ε

≤ inf
σ∈S

{

g
(

φ(s + h;0, x, σ )
)1+ 2s + 2h

1+ s + h

(

1− h

2ρ

)}

+ |x|
4ρ

≤ V (x)

(

1− h

4ρ

)

∀h ∈ [0, ζ ]. (4.20)

Finally, we show that the function V is strictly decreasing along at least one

subsystem. Define the function

w(x)= |x|
4ρ

= |x|
4(1+ψ(|x|, α(|x|)))2 ,

which can be verified to be continuous and positive definite. It follows from (4.20)

that

min
i∈M

lim inf
τ→0+

V (φ(τ ;0, x, î))− V (x)

τ
≤−w(x) (4.21)

for any x �= 0. It is clear that the inequality still holds at the origin. By Remark 4.9,

the local Lipschitz continuity of the Lyapunov function implies that

min
i∈M

lim inf
τ→0+

V (x + τfi(x))− V (x)

τ
≤−w(x) ∀x ∈Rn.

As a result, the function V is a switched Lyapunov function for the switched system.

The above discussion leads to the following conclusion.

Theorem 4.10 A switched nonlinear system is asymptotically stabilizable iff it ad-

mits a (smooth) switched Lyapunov function.
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Remark 4.11 The theorem converts the verification of asymptotic stabilizability of a

switched system into the searching of a switched Lyapunov function for the system.

The equivalence connection is important as it extends the conventional Lyapunov

method to the switched Lyapunov approach for the stabilizability of switched sys-

tems.

Next, we restrict our attention to the switched linear system (4.4).

Note that, if the system admits a switched Lyapunov function V which is posi-

tively homogeneous with degree one, i.e.,

V (λx)= |λ|V (x) ∀x ∈Rn, λ ∈R,

then the state-space partitions Ωi , i ∈ M , as defined in (4.12), are 0-symmetric

cones, i.e.,

x ∈Ωi ⇐⇒ λx ∈Ωi ∀x, i, λ �= 0.

In this case, the resultant hysteresis switching law (4.13) is radially invariant in the

sense that σ x = σ λx for any x ∈ Rn and λ �= 0. This further implies that the state

trajectories are radially linear, i.e.,

φ
(

t;0, λx,σ λx
)

= λφ
(

t;0, x, σ x
)

∀x ∈Rn, λ ∈R. (4.22)

The radial linearity property is important due to the fact that, if we make the dynam-

ical system well behaved locally, then it also well behaves globally.

Theorem 4.12 Any asymptotically stabilizable switched linear system admits a

switched Lyapunov function which is globally Lipschitz continuous and positively

homogeneous with degree one.

Proof We proceed with the continuous-time case, and the discrete-time case can be

proven in a similar manner. Suppose that the switched linear system is asymptoti-

cally stabilizable. Define the function V : Rn �→R+ as

V (x)= inf
σ∈S[0,T ]

∫ T

0

∣

∣φ(t;0, x, σ )
∣

∣dt, (4.23)

where T will be determined later. Due to the fact that asymptotic stabilizability

implies exponential stabilizability [218], the function is well defined, positively ho-

mogeneous with degree one, and

∫ T

0

e−ηt dt |x| ≤ V (x)≤ β

α
|x| ∀x ∈Rn, (4.24)

where α and β are as in Definition 4.1, and η=max{‖A1‖, . . . ,‖Am‖}.
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Choose T to satisfy the following property: For any given state x �= 0, there is a

positive real number ǫx such that for any switching path σ with

∫ T

0

∣

∣φ(t;0, x, σ )
∣

∣dt ≤ V (x)+ ǫx,

we have

∣

∣φ(t;0, x, σ )
∣

∣≤ |x|
8

∀t ∈ TT .

This choice is always possible due to the fact that the finiteness of the integration

with T →+∞ implies the convergence of corresponding state trajectory (cf. [220]).

For any fixed switching signal σ , time t , and states x and y, it is clear that

∫ T

0

∣

∣φ(t;0, x + y,σ )
∣

∣dt ≤
∫ T

0

∣

∣φ(t;0, x, σ )
∣

∣dt +
∫ T

0

∣

∣φ(t;0, y, σ )
∣

∣dt

≤
∫ T

0

∣

∣φ(t;0, x, σ )
∣

∣dt +
∫ T

0

eηt dt |y|.

This implies that the function V is globally Lipschitz continuous with Lipschitz

constant μ=
∫ T

0
eηt dt .

Due to the global Lipschitz continuity, it can be seen that

min
i∈M

D+V (x)|Aix = min
i∈M

lim inf
τ→0+

V (x + τAix)− V (x)

τ

= inf
σ∈S[0,T ]

lim inf
τ→0+

V (φ(τ ;0, x, σ ))− V (x)

τ
.

Finally, let s be a positive time with

∣

∣φ(t;0, x, σ )
∣

∣≥ |x|
2

∀t ≤ s, σ ∈ S[0,s).

For any state x �= 0 and any positive real number ǫ ≤ ǫx , there is a switching path

σ x such that

inf
σ∈S[0,T ]

V
(

φ(t;0, x, σ )
)

= inf
σ∈S[0,T ]

inf
̺∈S[0,T ]

∫ T

0

∣

∣φ
(

τ ;0, φ(t;0, x, σ ), ̺
)∣

∣dτ

≤
∫ T

0

∣

∣φ
(

τ ;0, x, σ x
)
∣

∣dτ −
∫ t

0

∣

∣φ
(

τ ;0, x, σ x
)
∣

∣dτ

+
∫ T+t

T

∣

∣φ
(

τ ;0, x, σ x
)∣

∣dτ

≤ V (x)+ ǫ − |x|
4
t ∀t ≤ s.
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By the arbitrariness of ǫ, this yields

inf
σ∈S[0,T ]

lim inf
τ→0+

V (φ(τ ;0, x, σ ))− V (x)

τ
≤−|x|

4
,

which shows that the function V satisfies the last item in Definition 4.8. �

Remark 4.13 Note that in the proof of Theorem 4.12, the switched Lyapunov func-

tion given in (4.23) may be nonsmooth. While the function can be smoothed by

the standard technique, the smoothed function is not necessarily homogeneous

any more. Putting Theorems 4.10 and 4.12 together, an asymptotically stabilizable

switched linear system admits a switched Lyapunov function that is either smooth

or positively homogeneous.

4.3.2 Nonconvexity of Lyapunov Functions

Recall that for guaranteed stability of switched linear systems, asymptotic stability

always implies the existence of a convex and homogeneous Lyapunov function. As

convexity is a crucial requirement from the computational points of view, it is ex-

pected that stabilizability also implies the existence of a convex switched Lyapunov

function. This, however, is not true as exhibited by the counterexamples as follows.

For any subset R of the state space, time T ≥ 0, and switching signal σ , define

the set of attainable states to be

CT (R, σ )=
{

φ(t;0, x, σ ) : t ∈ TT , x ∈ R
}

.

For a positive definite function V :Rn →R+, define the set of compliant switching

signals w.r.t. V to be

SV =
{

σ ∈ S : V
(

φ(t1;0, x, σ )
)

<V
(

φ(t2;0, x, σ )
)

∀t1 > t2, x �= 0
}

.

As a preliminary preparation, we introduce the following lemma.

Lemma 4.14 Suppose that R ⊂Rn is a compact set and R �= {0}. If switched linear

system (4.4) admits a convex Lyapunov function V , then, we have

R �⊆ co
{

CT (R, σ )
}

∀T > 0, σ ∈ SV . (4.25)

Proof Suppose that V is a convex switched Lyapunov function and that σ is a

switching signal compliant with V . Fix T > 0. It is clear that

sup
x∈R,t∈TT

V
(

φ(t;0, x, σ )
)

< max
x∈R

V (x).
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It follows from the convexity of V that

sup
x∈co{CT (R,σ )}

V (x) < max
x∈R

V (x),

which immediately leads to relationship (4.25). �

Example 4.15 Consider the planar continuous-time switched linear system given by

ẋ = Aσx, σ ∈ {1,2} (4.26)

A1 =
[

1 0

0 −1

]

, A2 =
[

γ −1

1 γ

]

,

where γ > 0 is a parameter.

Note that both subsystems are unstable. However, the x2-axis is a stable invariant

subspace for the first subsystem, and the second subsystem rotates at a constant

angular speed. Therefore, any initial state away from the x2-axis can be steered to the

axis in a finite time. This clearly means that the switched system is asymptotically

stabilizable. However, as proven below, Lemma 4.14 is violated, and the switched

system does not admit any convex switched Lyapunov function.

Proposition 4.16 There exist a time T > 0 and a positive real number γ0 such that

H1 ⊆ co
{

CT (H1, σ )
}

∀γ > γ0, σ ∈ S.

To prove the proposition, we first consider the convex sector

D =
{

x ∈R2 : x1 ≥ |x2|
}

.

See Fig. 4.2. Let V (x)= 1
2
xT x. It is clear that V̇ (x)|Ai

is nonnegative for any x ∈D.

In addition, for the phase at x ∈ D, θ(x) = arctan( x2
x1
), and its derivative can be

computed to be

θ̇ (x)|A1
=− 2x1x2

x2
1 + x2

2

, θ̇ (x)|A2
= 1.

As a result, for the lower part of D which is in the fourth quadrant, the rotation is

always counterclockwise. The above analysis means that, for any initial state x at

the lower part of D and any switching signal σ that steers the system convergent

from x, the state trajectory must intersect the x1-axis and abandon D by crossing

the radial b= {x ∈R2 : x1 = x2, x1 ≥ 0}.
Then, let us have a closer look at the possible intersectant states. For this, let

x0 = [
√

2
2
,−

√
2

2
]T , and Sx0 be the set of switching signals that steer the system

convergent from x0. Define

xc =
[

x∗1
0

]

, x∗1 = inf
{

x1 : ∃t ∈ T0, σ ∈ Sx0 s.t. [x1,0]T = φ(t;0, x0, σ )
}

,
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Fig. 4.2 Phase portrait, the convex hull, and the unit circle

which is the state with least norm that is intersectant with x1-axis, and

xb =
[

x∗2
x∗2

]

, x∗2 = inf
{

x2 : ∃t ∈ T0, σ ∈ Sxc , s.t. [x2, x2]T = φ(t;0, xc, σ )
}

,

which is the state with least norm that is intersectant with radial b.

Next, we estimate the locations of xb and xc. To this end, let g be the radial

g = {x ∈R2 : x1 =−(γ +
√

γ 2 + 1)x2, x1 ≥ 0}. Rewrite the state equation as

dx2

dx1
=

⎧

⎨

⎩

− x2
x1
, σ = 1,

x1+γ x2

γ x1−x2
, σ = 2.

The curve that generates xc is thus achieved by taking σ = 1 as long as the state is

below radial g and by taking σ = 2 when the state is on or above g. Denoting by xg
the intersectant state with g, routine calculation yields

|xg| =

√

γ +
√

γ 2 + 1

2

def= κ.
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As V (and the norm) is nondecreasing on D, we have

|xb| ≥ |xc| ≥ κ.

Finally, note that the above argument also holds for −x0 with region −D =
{−x : x ∈D}. We thus have −xc and −xb accordingly. It can be seen that the unit

ball is strictly inside co{xb, xc,−xb,−xc} if κ ≥ cot π
8
≃ 2.6131, which can be guar-

anteed when γ ≥ 7
def= γ0. Note that the above estimate is conservative, and extensive

simulation exhibits that γ ≥ 1.2 still works.

To summarize, Proposition 4.16 holds for Example 4.15. It follows from

Lemma 4.14 that the switched system does not admit any convex switched Lya-

punov function.

Example 4.17 For the planar discrete-time switched linear system

x(k + 1) = Aσ(k)x(k), σ ∈ {1,2}, (4.27)

A1 =
[

μ 0

0 0

]

, A2 = ν

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

,

we assume that θ = 5
8
π and that ν and μ are sufficiently large positive real numbers.

It is clear that both subsystems are unstable. Notice that, however, the first sub-

system steers any state on the x2-axis to the origin in one step and steers any other

state to the x1-axis in one step. On the other hand, the second subsystem steers any

state on the x1-axis to x2-axis in four steps. This clearly means that the switched sys-

tem is asymptotically stabilizable. But it can be proven that Lemma 4.14 is violated,

and the switched system does not admit any convex switched Lyapunov function.

Let R = {[x1,0]T : x1 ∈ [−1,1]} and x0 = [1,0]T . Note that to make a state

x norm contractive in one step, it is necessary that x ∈ Ω = {[x1, x2]T : x2
2 ≥

(μ2 − 1)x2
1 }. To steer x0 or −x0 to region Ω , one needs at least four steps along

the second subsystem, while at each step the state norm strictly increases. Applying

the first subsystem during the process leads the state back to the x1-axis with larger

norm. These facts clearly indicate that any convergent trajectory starting from x0

must admit a convex hull that strictly contains R as an interior. It follows from

Lemma 4.14 that switched system (4.27) does not admit any convex switched Lya-

punov function.

Remark 4.18 From the above two counterexamples, an asymptotically stabilizable

switched linear system does not necessarily admit a convex switched Lyapunov

function. As an implication, function sets like piecewise linear and polynomials are

not universal as switched Lyapunov function candidates. Recall that, for guaranteed

stability, a convex (and homogeneous) Lyapunov function always exists. The sub-

tle difference stems from the following facts. On the one hand, guaranteed stability

means stability under arbitrary switching, and a Lyapunov function takes the largest

possible energy with respect to all the switching signals; hence the function is con-

vex if the energy function for each switching path is convex, which is indeed the
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case due to the linearity of the subsystems. On the other hand, stabilizability only

implies stability along certain switching signals, and a Lyapunov function takes the

least possible energy w.r.t. the switching signals; thus the function might not be

convex even when the level set for each subsystem is convex.

4.3.3 Min Quadratic Lyapunov Functions: An Optimization

Approach

As convex Lyapunov candidates are not universal for solving the problem of sta-

bilization, we need to seek nonconvex Lyapunov candidates. Recall that any stable

linear time-invariant system admits a quadratic Lyapunov function. It is thus natural

to extend from quadratic to nonquadratic via proper composite quadratic functions.

In the literature, there are various kinds of composite quadratic functions, for exam-

ple, the maximum (piecewise) quadratic functions

V k
max(x)=max

{

xT P1x, . . . , x
T Pk

}

, (4.28)

the convex hull quadratic functions

V k
c (x)=

γi≥0

min
∑

γi=1
xT

(

∑

i

γiPi

)−1

x, (4.29)

and the minimum quadratic functions

V k
min(x)=min

{

xT P1x, . . . , x
T Pkx

}

, (4.30)

where k is a natural number, and P1, . . . ,Pk are symmetric and positive definite

matrices. All these functions are positive definite and homogeneous of degree two,

and both the maximum and the convex hull quadratic functions are convex. The

minimum quadratic functions, which we will call min functions for simplicity, are

nonconvex. This indicates the possibility that the class of min functions is poten-

tially powerful in addressing the problem of stabilization. Fortunately, this is indeed

the case, and we are able to prove the following theorem.

Theorem 4.19 Suppose that the discrete-time switched linear system is exponen-

tially stabilizable. Then, there exist a natural number k and positive definite real

matrices P1, . . . ,Pk such that the min function of (4.30) is a switched Lyapunov

function of the system.

To prove the theorem, we need some technical preparations. The discrete-time

switched system is given by

x(t + 1)=Aσ(t)x(t). (4.31)
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Let Qi , i = 1, . . . ,m be positive definite matrices. Define the ith running cost to be

L(x, i)= xTQix.

The total cost w.r.t. a switching signal is

J (x,σ )=
+∞
∑

t=0

L
(

φ(t;0, x, σ ), σ (t)
)

, (4.32)

which is nonnegative and possibly infinite. The optimal cost is defined to be

V ∗(x)= inf
σ∈S

J (x,σ ). (4.33)

It has been established that the optimal cost is finite for any initial state iff the

system is exponentially stabilizable, and in this case the optimal cost is continuous

[220]. The problem of switched linear quadratic regulation (SLQR) is to find, if any,

a switching law that achieves the minimal cost.

For any mapping V :Rn �→R+, define the operator ζ [V ] to be

ζ [V ](x)= inf
i∈M

{

L(x, i)+ V (Aix)
}

, (4.34)

which is called the one-stage cost iteration of the SLQR problem. The composition

of the operator could be defined iteratively by

ζ k+1[V ](x)= ζ
[

ζ k[V ]
]

(x), k = 1,2, . . . . (4.35)

To approach the optimal cost, for a natural number k, we define the k-step cost

function by

Vk(x)= inf
σ∈S[0,k−1]

k−1
∑

t=0

L
(

φ(t;0, x, σ ), σ (t)
)

.

In particular, let V0(x)= 0 for all x ∈Rn.

According to the standard theory of dynamical programming, we have the fol-

lowing result, which can be found in [26].

Lemma 4.20 We have the following statements:

(i) Vk(x)= ζ k[V0](x) for all k ∈N+ and x ∈Rn.

(ii) limk→+∞ Vk(x)= V ∗(x) for all x ∈Rn.

(iii) ζ [V ∗](x)= V ∗(x) for all x ∈Rn.

The equality in Item (iii) is the well-known Bellman equation. Furthermore, there

is a state-dependent switching law σ(t)=ψ(x(t)) such that

L
(

x,ψ(x)
)

+ V ∗(Aψ(x)x)= V ∗(x) ∀x ∈Rn. (4.36)
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Suppose that the switched linear system is exponentially stabilizable. Then, it

can be seen that

qxT x ≤ V ∗(x)≤ β2

(1− e−α)
xT x ∀x ∈Rn, (4.37)

where α and β are as in Definition 4.1, and

q =min
{

λmin(Q1), . . . , λmin(Qm)
}

.

On the other hand, it follows from (4.36) that there exists a positive real number δ

such that

min
i∈M

V ∗(Aix)− V ∗(x)≤−δxT x. (4.38)

As a result, the function V ∗ is a switched Lyapunov function of the switched system.

Furthermore, we have the following result.

Lemma 4.21 Suppose that the switched linear system is exponentially stabilizable.

Then, there is a natural number K such that Vk is a switched Lyapunov function of

the switched linear system for any k ≥K .

Proof Fix μ ∈ (0, δ), where δ is as in (4.38). Note that, for any x ∈Rn, we have

0= V0(x)≤ V1(x)≤ V2(x)≤ · · · ≤ V ∗(x).

It follows from (4.37) that

qxT x ≤ Vk(x)≤
β2

(1− e−α)
xT x ∀x ∈Rn, k ≥ 1. (4.39)

By Item (ii) of Lemma 4.20, for any state x with unit norm, there is a natural number

jx such that

V ∗(x)− Vk(x)≤ μ/2 ∀k ≥ jx .

Due to the continuity of V ∗ and Vk , there is a neighborhood of x, denoted Nx , such

that

V ∗(y)− Vk(y)≤ μ ∀k ≥ jx, y ∈Nx .

As the unit sphere is compact, it follows from the Finite Covering Theorem that

there exist a natural number i and states x1, . . . , xi with unit norm such that

i
⋃

s=1

Nxs =H1.

Taking K =max{jx1
, . . . , jxi }, we have

V ∗(y)− Vk(y)≤ μ ∀y ∈H1, k ≥K. (4.40)
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Taking advantage of the homogeneity of both V ∗ and Vk , we have

min
i∈M

Vk(Aix)− Vk(x)

=min
i∈M

Vk(Aix)−min
i∈M

V ∗(Aix)+ V ∗(x)− Vk(x)+min
i∈M

V ∗(Aix)− V ∗(x)

≤−(δ −μ)xT x ∀k ≥K. (4.41)

This, together with inequality (4.39), clearly shows that Vk is a switched Lyapunov

function of the switched system when k ≥K . �

To connect V ∗ and Vk with min functions as in (4.30), we define the mapping

Zi(P )=Qi +AT
i PAi,

where P is symmetric and positive definite. Furthermore, given a set of real sym-

metric matrices Y = {P1, . . . ,Pl}, define the switched Riccati mapping to be

Z(Y)=
{

Zi(Pj ) : i = 1, . . . ,m, j = 1, . . . , l
}

.

Finally, define the sequence of matrix sets by

Z0 = {0n×n},
Zj = Z(Zj−1), j = 1,2, . . . .

Clearly, the elements of Zj are positive definite matrices for j > 0, and Zj consists

of up to mj elements. The following result is a simple yet useful observation that

leads to further insight into the SLQR problem.

Lemma 4.22 Vk(x)=min{xT Px : P ∈ Zk} for k = 0,1,2, . . . .

Proof We proceed by induction. The equality clearly holds when k = 0. Suppose

that the relation holds for a general integer k. Then, by Item (i) of Lemma 4.20, we

have

Vk+1(x) = ζ [Vk](x)= inf
i∈M

{

L(x, i)+ Vk(Aix)
}

= min
i∈M

(

xT Qix +min
{

(Aix)T P(Aix) : P ∈ Zk

})

= min
i∈M,P∈Zk

xT
(

Qi +AT
i PAi

)

x = min
P∈Zk+1

xT Px,

which completes the proof. �

Proof of Theorem 4.19 Simply combining Lemmas 4.21 and 4.22 leads directly to

the conclusion. �
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Theorem 4.19 implies that, when the switched linear system is exponentially

stabilizable, the system always admits a switched Lyapunov function that is a min

function. This exhibits that the class of min functions is universal in characterizing

the problem of stabilization. From an invariant set point of view, this indicates that

a generally nonconvex level set (of a nonconvex switched Lyapunov function) could

be effectively approximated by unions of a finite set of ellipsoids. This also strength-

ens and generalizes the connection between linear systems and quadratic Lyapunov

functions, which is insightful and powerful in system analysis and synthesis.

Suppose that Vk(x) = min{xT Px : P ∈ Zk} is a switched Lyapunov function.

Then, it can be seen that an exponentially stabilizing switching law is

σ(t)= arg min
i

{

min
P∈Zk

xT (t)
(

Qi +AT
i PAi

)

x(t)
}

. (4.42)

When there are two or more indices achieving the minimum, then just take any one.

Alternatively, define the state partitions

Ωi =
{

x : min
P∈Zk

xT
(

Qi +AT
i PAi

)

x = min
j∈M,P∈Zk

xT
(

Qj +AT
j PAj

)

x
}

. (4.43)

It is clear that Ωi is a (possibly empty) cone that is not necessarily to be convex. In

addition, the union of the partitions cover the whole state space. In terms of the state

space partitions, the stabilizing switching law could be given by

σ(t)= arg min
i

{

x(t) ∈Ωi

}

. (4.44)

Lemmas 4.21 and 4.22 indicate a constructive approach for computing a switched

Lyapunov function. For this, we first need to compute the matrix set Zk and then

verify whether or not the corresponding min function is strictly decreasing along

the unit sphere. Note that the number of elements in Zk is up to mk , which is huge

when k is large. To produce a practically implementable computational procedure,

we need to further reduce the computational load, as discussed below.

A min function could be equivalently expressed by two or more sets of min-

imal piecewise quadratic functions. To be more precise, suppose that matrix sets

{Q1, . . . ,Qi} and {R1, . . . ,Rj } satisfy

min
{

xT Q1x, . . . , xT Qix
}

=min
{

xT R1x, . . . , xT Rjx
}

∀x ∈Rn.

Then, it is clear that the two matrix sets represent the same min function, and the

two sets are said to be equivalent. In particular, given a matrix set Q, if a subset

Q̃ ⊂ Q is equivalent to Q, then any element in Q − Q̃ is redundant, which could

be pruned out. A subset with least cardinality that is equivalent to Q is said to be

a minimum equivalent subset. A matrix set could admit more than one minimum

equivalent subset. While it is usually hard to find a minimum equivalent subset, we

could prune out a redundant element using the following proposition.
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Proposition 4.23 For a matrix set {Q1, . . . ,Qi}, an element Qj is redundant if

there are nonnegative real numbers αs with
∑

s �=j αs = 1 and such that

∑

s �=j
αsQs ≤Qj .

Proof Straightforward. �

The verification of the proposition is a convex optimization problem, and it ad-

mits numerically efficient algorithms.

Note that matrix set Zk is defined in a recursive way. Therefore, the pruning

process should be implemented in each iterating step. In this process, it is crucial

that useful information could be preserved. This indeed is the case, as shown in the

following proposition.

Proposition 4.24 Suppose that Z̃k is an equivalent subset of Zk . Then, Z(Z̃k) is an

equivalent subset of Zk+1.

Proof It is clear that an element of Zk+1 is of the form Qi+AT
i PAi , where P ∈ Zk

and i ∈M . For arbitrarily given x ∈Rn, let y =Aix. As Z̃k is an equivalent subset

of Zk , there is a matrix P̃ ∈ Z̃k such that

yT P̃ y ≤ yT Py,

which implies that

xT
(

Qi +AT
i P̃Ai

)

x ≤ xT
(

Qi +AT
i PAi

)

x.

Since (Qi + AT
i P̃Ai) ∈ Z(Z̃k), the conclusion follows due to the arbitrariness

of x. �

With the help of the above propositions, we can outline a pruning procedure for

removing the redundant elements from sets Zk and obtaining the equivalent subsets

with smaller cardinalities.

Pruning Procedure for Calculating Z̃K

1. Set k := 0 and Y := {0}.
2. Compute Ŷ = Z(Y).

3. Prune Ŷ by applying Proposition 4.23 and set the resultant set to be Ỹ .

4. Set k := k + 1 and Y := Ỹ .

5. If k =K , set Z̃K := Y and stop. Otherwise, go to Step 2.

Example 4.25 For the planar discrete-time two-form switched linear system with

A1 =
[

−1.2299 0.9390

1.6455 −1.1496

]

, A2 =
[

2.6229 0.0564

2.3756 −0.5879

]

,

it can be verified that both subsystems are unstable.
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Table 4.1 Cardinalities of

Zk ’s k 1 2 3 4 5 6 7

# 2 4 6 9 10 12 14

To apply the optimization approach, we need to calculate the cost-to-go func-

tions. For this, let Q1 = Q2 = I . By the pruning procedure, we obtain Z̃k for

k = 1, . . . ,7. Table 4.1 shows the cardinalities of these sets. It is clear that the

pruning algorithm successfully removes many redundant elements. For example,

Z8 contains 128 matrices, while Z̃8 contains only 14, which is only one ninth of the

former.

Next, we examine the qualification of Vk’s as switched Lyapunov functions. For

this, we verify the relationship

min
i∈M,P∈Z̃k

xT
(

Qi +AT
i PAi

)

x < min
P∈Z̃k

xT Px ∀x ∈H1

for i = 1,2, . . . and find that the relationship holds for k = 5. Therefore, Vk ,

k = 5,6, . . . , are switched Lyapunov functions for the switched linear system. As a

result, the switched system is exponentially stabilizable, and a stabilizing switching

Fig. 4.3 The cost-to-go functions
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Fig. 4.4 A sample phase portrait

law can be obtained by means of (4.42) or (4.44). Figure 4.3 shows the cost-to-go

functions Vk along the unit circle. To be more precise, let θ be an angular in [0,π],
and x = [sin(θ), cos(θ)]T . The figure shows Vk along x through θ . It can be seen

that, as k becomes larger, Vk − Vk−1 becomes much smaller, that is, the differences

between Vk and Vk−1 approach zero.

To further present the simulations, we fix V6 as the switched Lyapunov function.

Figures 4.4 and 4.5 depict a sample phase portrait (with x0 = [0,1]T ) and the level

set {x : V6(x)= 1}, respectively. It is clear that the state trajectory converges to zero

exponentially, and the level set is the union of a set of ellipsoids. Finally, Fig. 4.6

shows the state space partitions, where each partition is a cone.

Finally, we briefly discuss the continuous-time case. While technically more in-

volved, the optimization approach is applicable to continuous-time systems, which

yields exactly the same conclusion as in Theorem 4.19 [192]. As a result, the set of

min functions is universal in providing switched Lyapunov functions for exponen-

tially stabilizable switched linear systems. To develop a computational procedure for

calculating a min function as a switched Lyapunov function, we could first convert

the continuous-time switched system into a discrete-time switched system by sam-

pling and then implement the pruning procedure for finding a switched Lyapunov

function. We demonstrate this by a numerical example.
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Fig. 4.5 The level set of V6

Example 4.26 For the continuous-time two-form switched linear system with

A1 =

⎡

⎢

⎣

0.2341 −0.9471 −1.0559

0.0215 −0.3744 1.4725

−1.0039 −1.1859 0.0557

⎤

⎥

⎦
,

A2 =

⎡

⎢

⎣

−1.2173 −1.3493 0.1286

−0.0412 −0.2611 0.6565

−1.1283 0.9535 −1.1678

⎤

⎥

⎦
,

it can be verified that both subsystems are unstable.

Taking the sampling period as τ = 0.2 sec, we convert the continuous-time

switched system into the discrete-time switched system

z(k + 1)= B̺(k)z(k), z(0)= x0,

where Bi = eAiτ , i = 1,2, and ̺ is the switching signal with ̺(k) = σ(kτ), k =
0,1, . . . . When the switching signal of the original system satisfies

σ(t)= σ(kτ) ∀k = 0,1,2, . . . , t ∈
[

kτ, (k+ 1)τ
)

,
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Fig. 4.6 State space partitions

we have z(k)= x(kτ) for k = 0,1, . . . . In this case, state z(·) is a sampled trajectory

of the original system with the same initial condition.

Let Q1 = Q2 = I . Applying the pruning procedure to the sampled system,

we obtain Z̃k for k = 1, . . . ,5. While Z5 contains 32 matrices, Z̃5 contains 24.

Furthermore, it is numerically verified that V5 is a switched Lyapunov function

for the sampled switched system. As a result, the sampled system is exponen-

tially stabilizable, and the original continuous-time system is also exponentially

stabilizable. Figure 4.7 depicts the level set {x : V5(x) = 1} on the unit sphere

x = [cos θ1, sin θ1 cos θ2, sin θ1 sin θ2]T , θ1, θ2 ∈ [0,2π). It can be seen that the level

set is the union of a set of ellipsoids and is nonconvex.

Next, fix the initial state x0 = [0,1,−1]T . To find a switching signal that steers

the original system exponentially stable, we need to calculate a stabilizing switching

signal as in (4.42) for the sampled switched system. Then, a stabilizing switching

signal for the original continuous-time system is given by

σ(t)= ̺(kτ), t ∈
[

kτ, (k+ 1)τ
)

.

Figures 4.8 and 4.9 depict the switching signal and the corresponding state trajec-

tory, respectively. It is clear that the state trajectory exponentially converges to zero

at a satisfactory rate.
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Fig. 4.7 The level set of V5 on the unit sphere

Fig. 4.8 Switching signal
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Fig. 4.9 State trajectory

4.3.4 Well-Definedness of State-Feedback Stabilizing Law

A state-feedback switching law can be described by

σ(t)= ϕ
(

x(t), σ (t−)
)

and is said to be pure-state-feedback when ϕ does not explicitly rely on σ(t−).

Note that, as any asymptotically stabilizable system admits a switched Lyapunov

function (cf. Theorem 4.10), a state-feedback stabilizing switching law can be con-

structed as in (4.11) or (4.13) by means of the Lyapunov function. However, it

should be stressed that, while state-feedback switching laws are universal in sta-

bilizing switched systems, they are not always well behaved due to the fact that

a well-defined state-feedback switching law for a nominal switched linear system

may produce chattering (Zeno) phenomenon for a slightly perturbed system. We

show this through a numerical example.

Example 4.27 Consider a perturbed switched linear system given by

ẋ(t) = Aσ x(t)+ fσ (t),

A1 =
[

−2 0

0 1

]

, A2 =
[

1 0

0 −2

]

,



156 4 Designed Switching

f1(t) = −f2(t)=
[

−1

1

]

e−0.1t , (4.45)

where f1 and f2 are perturbations associated to the first and second subsystems,

respectively.

It can be easily verified that the function V (x)= 1
2
(x2

1 + x2
2) is a switched Lya-

punov function for the nominal system. A stabilizing switching law can be con-

structed as follows.

First, define the regions

Ωi =
{

x ∈R2 : V̇ |Ai
≤−riV (x)

}

, i = 1,2,

where ri , i = 1,2, are nonnegative real numbers. It can be seen that the union of the

regions cover the total state space if ri < 1 for i = 1,2. A hysteresis switching law

can be defined recursively as

t0 = 0,

σ (t0)= arg min
i=1,2

{

xT
0 Qix0

}

,

tk+1 = inf
{

t ≥ tk : x(t) �∈Ωσ(tk)

}

,

σ (tk+1)=
{

1, σ (tk)= 2,

2, σ (tk)= 1,
k = 0,1,2, . . . .

(4.46)

This switching law stabilizes the nominal switched system, and it can be seen that

the switching law is well defined for the nominal system.

For the perturbed system, suppose that we use the state-feedback switching law

(4.46) with r1 = r2 = 0.4. Figure 4.10 depicts the state trajectories and the number

of switchings starting from x(0)= [1,−1]T . It can be seen that the chattering phe-

nomenon occurs when t > 11.45 sec. In fact, as the state converges to the origin,

the information of the state is “merged” by the perturbations, that is,
|fσ (t)|
|x(t)| →+∞.

Because the state direction and the perturbation direction are always opposite, chat-

tering occurs.

The example clearly exhibits that a well-defined state-feedback switching law

might loss its well-definedness if the system is slightly perturbed. This indicates that

state-feedback switching laws might not be appropriate for achieving both stability

and robustness.

4.4 Stabilization via Mixed-Driven Switching: Aggregation and

Calculation

In this section, we focus on stabilizing switching design for the switched linear

system

x+(t)=Aσ(t)x(t), (4.47)
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Fig. 4.10 State trajectories and switching numbers of system (4.45)

where x(t) ∈ Rn, σ(t) ∈ {1, . . . ,m}, and A1, . . . ,Am are known real constant ma-

trices.

The objective is to find, if possible, a switching law that achieves (i) stability,

(ii) robustness against exterior perturbations including structured, unstructured, and

switching perturbations, and (iii) well-definedness for the nominal system and the

perturbed system.

As discussed in the previous sections, time-driven switching laws are not univer-

sal for the problem of stabilization, though its well-definedness is clear as it is inde-

pendent of the system dynamics. State-feedback switching laws, on the other hand,

are universal, but the well-definedness is sensitive to system perturbations. This mo-

tivates us to find a new switching law that achieves the merits of both schemes while

getting rid of the demerits. The pathwise state-feedback switching law proposed be-

low is exactly such a switching law.

4.4.1 Pathwise State-Feedback Switching

Suppose that the switched system is not consistently stabilizable. This means that

any single switching path could not make the total state space contractive. However,

it is still possible that a switching path makes a subset of the state space contractive.
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For simplicity, we assume that two switching paths, p1 over [0, T1) and p2 over

[0, T2), make regions Ω1 and Ω2 contractive, respectively. To be more precise, we

have

∣

∣φ(Ti;0, x,pi)
∣

∣< |x| ∀x ∈Ωi, i = 1,2.

Moreover, assume that Ω1∪Ω2 =Rn. We further assume without loss of generality

that Ω1∩Ω2 = ∅, otherwise just redefine Ω2 =Rn−Ω1. With these in mind, we can

construct a stabilizing switching law σ as follows. For any initial state x0 = x(t0),

let the system operate along switching path p1 if x belongs to Ω1, otherwise let the

system operate along switching path p2. Define

i0 = arg{x0 ∈Ωj },
t1 = t0 + Ti0,

σ x0(t) = pi0(t − t0) ∀t ∈ [t0, t1),
x1 = φ(Ti0;0, x0,pi0).

It is clear that |x1| ≤ |x0|. Starting from time t1 at x1, let the system operate along

switching path p1 if x1 belongs to Ω1, otherwise let the system operate along

switching path p2. Define accordingly

i1 = arg{x1 ∈Ωj },
t2 = t1 + Ti1,

σ x0(t) = pi1(t − t1) ∀t ∈ [t1, t2),
x2 = φ(Ti1;0, x1,pi1).

Repeating the process in the same manner, we obtain the switching signal σ x0 over

[0,+∞) such that

|xk+1| =
∣

∣φ
(

tk+1; t0, x0, σ
x0
)
∣

∣

≤ |φ
(

tk; t0, x0, σ
x0
)

| = |xk|, k = 0,1, . . . .

Let x0 vary among the state space, we obtain a switching law that makes the

switched system stable.

For any initial state, the above switching law generates a switching signal that

concatenates switching paths p1 and p2 through the state measurement at the con-

catenating instants. Therefore, the switching mechanism is mixed time-driven and

state-feedback. It is clear that the switching law is well defined if both p1 and p2 are

well defined, and the well-definedness is independent of the subsystem dynamics.

On the other hand, as a state-feedback mechanism is incorporated, the switching

law can accommodate the initial state and exotic perturbation information, and it is

expected to have some flexibility in achieving both stability and robustness.
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We are ready to formally describe the switching law, which will be termed as the

pathwise state-feedback switching law.

Suppose that k is a natural number, Ωi , i = 1, . . . , k, are regions in Rn satisfying
⋃k

i=1 Ωi = Rn and Ωi ∩Ωj = ∅ for any i �= j , and θi : [0, si] �→M , i = 1, . . . , k,

are well-defined switching paths. The pathwise state-feedback switching law via Ωi

and θi w.r.t. system (4.47), denoted by
∧k

i=1 θ
Ωi

i , is the concatenation of switching

paths {θi}ki=1 through {Ωi}ki=1 as defined below. For any initial state x(t0)= x0, the

generated switching signal σ x0 is recursively defined by

ik = arg{xk ∈Ωj },
tk+1 = tk + sik ,

σ x0(t)= θik (t − tk) ∀t ∈ [tk, tk+1),

xk+1 = φ(sik ;0, xk, θik ), k = 0,1,2, . . . .

(4.48)

It is clear that the pathwise state-feedback switching law is always well defined

over [0,+∞) for any initial state. As each generated switching signal is a concate-

nation from paths {θi}ki=1, the switching law can be equivalently represented by the

set of sequences
{

(x0; i0, i1, . . . ) : x0 ∈Rn
}

,

where i0, i1, . . . are defined as in (4.48). Note that the switching law is indepen-

dent of the permutation of Ωi and θi , provided that the pairwise relationship keeps

unchanged.

Note also that each switching path θi corresponds to a state transition matrix

Gi =Φ(si,0, θi) with the property that φ(si;0, x, θi)=Gix for all x ∈Ωi .

Lemma 4.28 Switching law
∧k

i=1 θ
Ωi

i asymptotically stabilizes switched linear sys-

tem (4.47) iff the discrete-time piecewise linear system

z(t + 1)=Giz(t), z(t) ∈Ωi, (4.49)

is asymptotically stable.

Proof From the definition of
∧k

i=1 θ
Ωi

i it is clear that

xj = φ
(

tj ;0, x0, σ
x0
)

= z(j), j = 0,1,2, . . . ,

where tj and xj are defined as in (4.48), and z(j) is the state of system (4.49) with

z(0) = x(0). As a result, each state trajectory of (4.49) is exactly a sampled state

trajectory of the original switched system (4.47) at specified sampled instants. This

implies the “only if” part of the lemma. On the other hand, it can be seen that, for

any t ∈ (tj , tj+1), we have

∣

∣φ
(

t;0, x0, σ
x0
)
∣

∣≤ ηT
∣

∣φ
(

tj ;0, x0, σ
x0
)
∣

∣= ηT
∣

∣z(j)
∣

∣,
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where T = maxi∈M si , η = maxi∈M exp(‖Ai‖) in continuous time, and η =
maxi∈M ‖Ai‖ in discrete time. This, together with the asymptotic stability of system

(4.49), guarantees that the original switched system (4.47) is asymptotically stable

under switching law
∧k

i=1 θ
Ωi

i . �

For clarity, we term the discrete-time switched system (4.49) as the aggregated

system of the original system (4.47) w.r.t. {(θi,Ωi)}ki=1. It is clear that each pathwise

state-feedback switching law corresponds to an aggregated system, and the switch-

ing law stabilizes the original system iff the aggregated system is asymptotically

stable.

Lemma 4.28 indicates a way to find a stabilizing switching law for the switched

linear system. Indeed, if we can find a number of switching paths θi and a set of state

partitions Ωi that make the aggregated system asymptotically stable, then the orig-

inal system is stabilized by the pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i .

For this, we need to find the switching paths and the state partitions at the same

time, which may be not an easy task. To reduce the complexity, observe that, if

the switching paths θi are properly designed in the following sense, then the corre-

sponding state partitions can then be determined accordingly.

Lemma 4.29 Suppose that V is a continuous positive definite function defined on

Rn and that θi , i = 1, . . . , k, are switching paths defined over [0, si), respectively.

Then, switched system (4.47) is asymptotically stabilizable if

k

min
i=1

V
(

φ(si;0, x, θi)
)

<V (x) ∀x ∈Rn, x �= 0. (4.50)

The proof of the lemma is immediate as condition (4.50) implies that the aggre-

gated system

z(t + 1)=Giz(t), z(t) ∈Ωi,

with Gi =Φ(si,0, θi) is asymptotically stable. In this case, let

Ω1 =
{

x : V
(

φ(s1;0, x, θ1)
)

=
k

min
i=1

V
(

φ(si;0, x, θi)
)

}

(4.51)

and

Ωj =
{

x : V
(

φ(sj ;0, x, θj )
)

=
k

min
i=1

V
(

φ(si;0, x, θi)
)

}

−
j−1
⋃

l=1

Ωl (4.52)

for j = 2, . . . , k. It can be seen that the pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i asymptotically stabilizes the original system.

Lemma 4.29 enables us to design the switching paths instead of designing both

the switching paths and the corresponding state-space partitions, as indicated by
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Lemma 4.28. Note that, if V is 0-symmetric and positively homogeneous of degree

one, i.e.,

V (λx)= |λ|V (x) ∀x ∈Rn, λ ∈R,

then the state-space partitions Ωi as defined in (4.51) and (4.52) are 0-symmetric

cones, i.e.,

x ∈Ωi ⇐⇒ λx ∈Ωi ∀x, i, λ �= 0.

Therefore, the resultant pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i for the

nominal switched linear system is radially invariant in the sense σ x = σ λx for any

x ∈ Rn and λ �= 0. This further implies that the state trajectories are radially linear,

i.e.,

φ

(

t;0, λx,

k
∧

i=1

θ
Ωi

i

)

= λφ

(

t;0, x,

k
∧

i=1

θ
Ωi

i

)

∀x ∈Rn, λ ∈R. (4.53)

The above discussion encourages us to look for an origin-symmetric and posi-

tively homogeneous function serving as the Lyapunov function in Lemma 4.29. For

this, note that vector norms are natural candidates. A question that arises is whether

the existence of such Lyapunov functions is universal or not. The following theorem

presents a confirmative answer.

Theorem 4.30 Let | · | be any vector norm in Rn, and μ be any real number with

0 <μ< 1. Suppose that switched linear system (4.47) is switched attractive. Then,

there exist a natural number k, positive times si > 0 for i = 1, . . . , k, and well-

defined switching paths θi over [0, si) for i = 1, . . . , k such that

k

min
i=1

∣

∣φ(si;0, x, θi)
∣

∣≤ μ|x| ∀x ∈Rn. (4.54)

Proof Note that relationship (4.54) implies (4.50) with V (x)= |x|. As the norm is

positively homogeneous of degree one, (4.54) holds if it holds for the unit sphere,

i.e.,

k

min
i=1

∣

∣φ(si;0, x, θi)
∣

∣≤ μ ∀x ∈H1. (4.55)

Fix x ∈ H1. It follows from the switched attractivity that there exist a positive

time tx and a well-defined switching path θx[0,tx ] such that

∣

∣φ
(

tx;0, x, θx
)∣

∣≤ μ

2
. (4.56)

In terms of the transition matrix, it follows from (4.56) that

∣

∣Φ
(

tx,0, θx
)

x
∣

∣≤ μ

2
.
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As a result, there is an open neighborhood Nx of x such that

∣

∣Φ
(

tx,0, θx
)

y
∣

∣≤ μ ∀y ∈ Nx . (4.57)

Letting x vary along the unit sphere, it is obvious that

⋃

x∈H1

Nx ⊇H1.

As the unit sphere is a compact set in Rn, by the Finite Covering Theorem, there

exist a natural number k and a set of states x1, . . . , xk on the unit sphere such that

k
⋃

i=1

Nxi ⊇H1.

Accordingly, we can partition the unit sphere into k regions M1, . . . ,Mk such that

(a)
⋃k

i=1 Mi =H1, and Mi ∩ Mj = ∅ for i �= j and

(b) xi ∈ Mi for any i = 1, . . . , k, and

∣

∣Φ
(

txi ,0, θxi
)

y
∣

∣≤ μ ∀y ∈ Mi . (4.58)

Let si = txi and θ i = θxi . It is clear that relationship (4.58) implies (4.55), and the

theorem follows. �

Corollary 4.31 For the switched linear system, the following statements are equiv-

alent:

(1) The system is switched attractive.

(2) The system is asymptotically stabilizable.

(3) The system is exponentially stabilizable.

Proof Suppose that the system is switched attractive. It follows from Theorem 4.30

that, there exist switching paths θ i[0,si ), i = 1, . . . , k, such that the aggregated sys-

tem (4.49) is exponentially stable. In fact, let z0, z1, . . . be a state trajectory of the

aggregated system. It can be seen that

|zj | ≤ μj |z0|, j = 0,1, . . . .

Back to the original system, it is clear that

φ

(

tj ;0, z0,

k
∧

i=1

θ
Ωi

i

)

= zj ∀j = 0,1,2, . . . , (4.59)

where Ωi and ti are given in (4.51)–(4.52) and (4.48), respectively.
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Let h=max{s1, . . . , sk}, α =− lnμ
h

, η=max{‖A1‖, . . . ,‖Am‖}, and β = ehη in

continuous time and β = ηh in discrete time. It can be seen that

∣

∣

∣

∣

∣

φ

(

t;0, x0,

k
∧

i=1

θ
Ωi

i

)∣

∣

∣

∣

∣

≤ β

∣

∣

∣

∣

∣

φ

(

tj+1;0, x0,

k
∧

i=1

θ
Ωi

i

)∣

∣

∣

∣

∣

= β|zj+1| ≤ βμj+1|x0| ≤ βe−α(j+1)h|x0|
≤ βe−αt |x0| ∀t ∈ [tj , tj+1), j = 0,1,2, . . . ,

which clearly exhibits that the original system is exponentially stable under the path-

wise state-feedback switching law
∧k

i=1 θ
Ωi

i . This concludes the proof. �

Theorem 4.30 reveals a couple of important facts, which are listed below as re-

marks.

Remark 4.32 The most important implication of the theorem is that the class of

pathwise state-feedback switching laws is universal for the purpose of stabilizing

design of switched linear systems. Indeed, suppose that switching paths θ i[0,si ) sat-

isfy relationship (4.54). Let the state-space partitions Ωi be

Ω1 =
{

x :
∣

∣φ(s1;0, x, θ1)
∣

∣=
k

min
i=1

∣

∣φ(si;0, x, θi)
∣

∣

}

,

Ωj =
{

x :
∣

∣φ(sj ;0, x, θj )
∣

∣=
k

min
i=1

∣

∣φ(si;0, x, θi)
∣

∣

}

−
j−1
⋃

l=1

Ωl,

j = 2, . . . , k.

(4.60)

Then, the pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i exponentially stabilizes

the switched linear system. As a result, the aggregated system (4.49) is exponentially

stable.

Remark 4.33 It should be noticed that number k is independent of the number of the

subsystems, m. As can be seen in the proof of Theorem 4.30, it relies on the norm

and the particular choice of the contractive switching paths for the state on the unit

sphere. Due to the nonconstructiveness of the Finite Covering Theorem, we do not

have a general upper bound of number k, though it is indeed a finite number. The

same comment applies to the lengths si of the switching paths θ i . Nevertheless, for

any consistently stabilizable system, it is always possible to find a single switching

path that makes the unit sphere contractive, and thus the system admits a linear time-

invariant system as its aggregated system. Here we present an example to show how

k varies w.r.t. the norm.

Example 4.34 For the continuous-time switched linear system

ẋ(t) = Aσ(t)x(t), σ (t) ∈ {1,2},
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A1 =
[

1 −ǫ
ǫ 1

]

, A2 =
[

1 0

0 −ǫ

]

,

where ǫ is a positive real number, it can be verified that the system is switched

attractive and hence is exponentially stabilizable.

For the standard Euclidean norm, it can be seen that the contractive cone for the

second subsystem is contained in the region

Ω1
def=

{

x :
√

1− ǫ2|x1|< ǫ|x2|
}

.

Note that, for any initial state outside the cone, the stabilizing switching law that

achieves the largest possible convergence rate is to activate the first subsystem until

the state reaches region Ω1. To steer the state x0 =
[

1
0

]

to region Ω1, it needs at

least time h ≥ π/2−arcsin(ǫ)
ǫ

, which tends to infinity as ǫ approaches 0. At the same

time, any states x1 and x2 on the unit sphere can be steered to region Ω1 by a single

switching path only if they can be simultaneously steered to the region by activating

the first subsystem. This means that to steer the whole unit sphere into region Ω1,

we need at least N = ⌈ π
2 arcsin(ǫ)

⌉ − 1 switching paths, where ⌈a⌉ denotes the least

natural number greater than or equal to a. It is clear that N approaches infinity as ǫ

approaches 0.

On the other hand, if we take the norm as |x| =
√

ǫ5x2
1 + x2

2 , it can be verified

that the region Ω2
def= {x : 2ǫ2|x1| ≤ |x2} is contractive under the switching path

2̂[0,s1), where s1
def= 1

4
min{1, ǫ}. For any state outside the region, it can be verified

that the switching path 2̂[0,s1) ∧ 1̂[0,s2) makes the state contractive, where ∧ denotes

the concatenation of switching paths, and s2
def= 2 arctan(2ǫ2). As a result, k = 2,

and si , i = 1,2, are small for small ǫ.

Finally, we present the following definition which is motivated from Theo-

rem 4.30.

Definition 4.35 Suppose that | · | is a given vector norm. A pathwise state-feedback

switching law
∧k

i=1 θ
Ωi

i is said to be piecewise contractive w.r.t. the switched linear

system and the norm if

∣

∣φ(si;0, x, θi)
∣

∣< |x| ∀x ∈Ωi, x �= 0, i = 1, . . . , k.

4.4.2 Computational Algorithms

Theorem 4.30 establishes that pathwise state-feedback switching laws are universal

in achieving exponential stability of switched linear systems. To solve the stabiliza-

tion problem, we need to develop a constructive procedure for computing a pathwise
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state-feedback switching law that stabilizes the switched linear system. In this sub-

section, we present several algorithms for calculating a stabilizing switching law.

The following procedure summarizes the main steps toward the construction of

a stabilizing switching law.

Conceptual Procedure for Finding a Stabilizing Switching Law

1. Fix a vector norm | · | and a real number μ ∈ (0,1). For each state x in the unit

sphere, find a time tx and a switching path θx[0,tx ] such that

∣

∣φ
(

tx,0, x, θx
)∣

∣≤ μ.

2. By the Finite Covering Theorem, there exist a finite natural number k, a state set

{x1, . . . , xk}, and a partition of state space {Ω1, . . . ,Ωk} such that

k
⋃

i=1

Ωk =Rn, Ωi ∩Ωj = ∅ ∀i �= j,

and
∣

∣φ
(

txi ,0, x, θxi
)
∣

∣≤ μ|xi | ∀x ∈Ωi, i = 1, . . . , k.

Denote θi = θxi for i = 1, . . . , k.

3. The state-feedback pathwise switching law
∧k

i=1 θ
Ωi

i exponentially stabilizes the

switched system.

It can be seen from the procedure that, while Step 3 is implementable online by

means of a timer and a state-measure device, Steps 1 and 2 are generally not con-

structive. To tackle this problem, we propose an alternative procedure to find k, θi ,

and Ωi simultaneously.

First, we show that, for any asymptotically stabilizable continuous-time switched

linear system, it is always possible to find a positive sampling period such that

the sampled system is also asymptotically stabilizable as a discrete-time switched

system. Note that a pathwise state-feedback switching law for the sampled sys-

tem can be converted into a pathwise state-feedback switching law for the original

continuous-time system in a clear manner. As a result, the design procedure of a

stabilizing switching law for both continuous-time and discrete-time systems can

be presented in a unified manner.

Lemma 4.36 For an asymptotically stabilizable continuous-time switched linear

system

ẋ(t)=Aσ(t)x(t), σ (t) ∈M,

there is a positive real number ρ such that for any sampling period T < ρ, the

sampled switched system

y(t + 1)= B̺(t)y(t), ̺(t) ∈M, Bi = eAiT (4.61)
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is also asymptotically stabilizable.

Proof Suppose that
∧k

i=1 θ
Ωi

i is a stabilizing switching law for the continuous-time

system with
∣

∣φ(si; t0, x, θi)
∣

∣≤ μ|x| ∀x ∈Ωi, i = 1, . . . , k,

where μ< 1. Rewrite the inequality as

∣

∣e
A
j i
li−1

(t ili
−t ili−1) · · · e

A
j i
0
(t i1−t i0)

x
∣

∣≤ μ|x| ∀x ∈Ωi, i = 1, . . . , k, (4.62)

where t0 = t i0 < t i1 < · · · < t ili−1 and j i0, j
i
1, . . . , j

i
li−1 are the switching time/index

sequences of θi over [0, si), respectively, and t ili = si . Define the functions ξi : Rli ×
Ωi �→R for i = 1, . . . , k by

ξi
(

τ i1, . . . , τ
i
li
, x
)

=
∣

∣e
A
j i
li−1

τ is
e
A
j i
li−2

τ ili−1 · · · e
A
j i
0
τ i1
x
∣

∣.

Fix μ̄ ∈ (μ,1). It follows from (4.62) and the continuity of the functions that there

exists a positive real number ρ such that

ξi
(

τ i1, . . . , τ
i
li
, x
)

≤ μ̄|x| ∀x ∈Ωi, i = 1, . . . , k,

whenever τ ij − (t ij − t ij−1) ∈ [0, ρ], j = 1, . . . , li . As a result, when the sampling

rate T is less than or equal to ρ, then there are natural numbers νi1, . . . , ν
i
li

such that

∣

∣

(

exp(Aj ili−1
T )

)νili · · ·
(

exp(Aj i0
T )

)νi1x
∣

∣≤ μ̄|x| ∀x ∈Ωi, i = 1, . . . , k.

This means that, under the sampling rate T , the sampled-data system (4.61) is

switched attractive and is asymptotically stabilizable. �

Lemma 4.36 enables us to focus on the discrete-time switched linear system

x(t + 1)=Aσ(t)x(t), σ (t) ∈ {1, . . . ,m}. (4.63)

The system can be represented by the m-tuple (A1, . . . ,Am).

We can arrange an ordered set of all the possible switching paths and their corre-

sponding state transition matrices. For example, let

ϑ1 = (1), . . . , ϑm = (m), ϑm+1 = (1,1), . . . , ϑ2m = (1,m),

ϑ2m+1 = (2,1), . . . , ϑ3m = (2,m), . . . , ϑm2+1 = (m,1), . . . ,

ϑm2+m = (m,m), ϑm2+m+1 = (1,1,1), . . . ,

and the corresponding state transition matrices be

C1 = A1, . . . , Cm =Am, Cm+1 =A2
1, . . . , C2m =AmA1,
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C2m+1 = A1A2, . . . , C3m =AmA2, . . . , Cm2+1 =A1Am, . . . ,

Cm2+m = A2
m, Cm2+m+1 =A3

1, . . . .

The next algorithm presents a schematic procedure for finding the requested pa-

rameters k, θi , and Ωi , i = 1, . . . , k.

Schematic Algorithm for Computing the Parameters

Initialization.

(0) Set k := 0, ContractiveRegion := ∅, j := 0. Fix μ in (0,1).

Recursion.

(1) Set j := j + 1.

(2) Set C := Cj and compute the singular values of matrix C. If all the singular

values are greater than or equal to one, then go back to Step (1). Otherwise,

compute the set Ω = {x ∈Rn : |Cx| ≤ μ|x|}.
(3) If Ω ⊆ ContractiveRegion, then go back to Step (1). Otherwise, set

k := k+ 1, Ωk :=Ω, θk := ϑj , and

ContractiveRegion := ContractiveRegion∪Ω.

(4) If ContractiveRegion=Rn, then go to Step (5). Otherwise, go back to Step (1).

Reduction.

(5) For i = 1, . . . , k, verify if Ωi ⊆
⋃

l �=iΩl . If yes, set Ωl :=Ωl+1 and θl := θl+1

for l = i, . . . , k − 1 and set k := k − 1. Continue the process until the partition

is irreducible.

(6) Finally, set Ωi :=Ωi −
⋃i−1

l=1 Ωl for i = 2, . . . , k.

The termination condition ContractiveRegion = Rn means that, for each initial

state x, there exists a region Ωi such that x ∈ Ωi and the switching path θi that

makes the region (and the state) contractive. Upon termination of the algorithm,

Ωi and θi for i = 1, . . . , k give the state partitions and the corresponding switching

paths, respectively.

Note that the algorithm terminates only when ContractiveRegion = Rn. That is

to say, if the switched linear system is not switched attractive, then the algorithm

will not terminate in a finite time. However, if the system is switched attractive,

the algorithm does terminate in a finite number of steps, although we do not have

an upper bound of the step number. Other termination conditions may apply, for

example, if all the singular values of matrices A1, . . . ,Am are greater than or equal

to one, then the system is by no means to be switched attractive [213], and we can

terminate the algorithm in m steps (j ≤m).

In the schematic algorithm, the major computational loads include the determi-

nation of the regions Ωi and the verification of
⋃l

i=1 Ωi = Rn. For this, we briefly
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discuss the computation of the region XC = {x ∈ Rn : |Cx| ≤ μ|x|} for a matrix

C ∈Rn×n and the verification of the relationship

k
⋃

j=1

XCj
=Rn (4.64)

for a matrix set {C1, . . . ,Ck}.
Note that the region XC is norm-dependent, that is, different norms may corre-

spond to different regions XC for a matrix C. Note also that, for the ℓ2-norm, the

region is generally nonpolyhedric in nature, that is, it is not a union of a finite set of

polyhedra. In this case, it is very hard to verify whether or not
⋃k

j=1 XCj
= Rn for

a matrix set {C1, . . . ,Ck}. On the other hand, for the ℓ1-norm, the region is indeed

polyhedric. Accordingly, we use the ℓ1-norm.

Given a matrix C = (ci,j )n×n, it is clear that

XC =
{

x ∈Rn :
n
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

ci,jxj

∣

∣

∣

∣

∣

≤ μ

n
∑

j=1

|xj |
}

, (4.65)

which can be routinely converted into the union of a finite number of regions in the

form

{x : E1x + F1 ≤ 0}, (4.66)

where E1 and F1 are a matrix and a column vector with compatible dimensions,

respectively. It is clear that any region in form (4.66) is a convex polyhedron.

Next, we propose a reduced-order method which enables us to compute the re-

gion (4.65) and to verify relation (4.64) in a unifying scheme.

Take the half unit sphere

H
xn≥0
1 =

{

x = [x1, . . . , xn]T : xn ≥ 0, |x|1 = 1
}

.

This half-sphere can be projected onto the (n− 1)-dimensional unit ball by the map

Pn : H
xn≥0
1 �→ Bn−1

1 , Pnx = [x1, . . . , xn−1]T .

The inverse map is

P−1
n y =

[

y1, . . . , yn−1,1− |y|1
]T
, y ∈ Bn−1

1 .

Let

YC =
{

y ∈ Bn−1
1 :

∣

∣CP−1
n y

∣

∣

1
≤ μ

∣

∣P−1
n y

∣

∣

1

}

,

which is also a finite union of regions in form (4.66). It can be seen that

XC =
{

rP−1
n y : r ∈R, y ∈ YC

}

.
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Moreover, given matrices C1, . . . ,Ck , a necessary and sufficient condition for
⋃

XCi
=Rn is

⋃

YCi
= Bn−1

1 . (4.67)

When n = 2, the set YC is the union of several (possibly empty) pieces of in-

tervals, and the verification of (4.67) is simply of dimension one. Similarly, when

n = 3, the verification of (4.67) is to check whether the regions cover the pla-

nar unit ball, which can be conducted conveniently by phase plane portraits. For

higher-dimensional systems, due to the polyhedric structure of YCi
and Bn−1

1 , there

are commercial numerical softwares available (for example, MATLAB GBT Tool-

box [252]) for computing the regions YCi
and for verifying relation (4.67).

Integrating the conceptual procedure, the schematic algorithm, and Lemma 4.36,

we obtain the following constructive procedure for stabilizing switching design of

the switched linear system.

Computational Algorithm for Stabilizing Switching Design

1. Given n, m, and Ai ∈Rn×n for i ∈M = {1, . . . ,m}. Set flag := 0 for continuous

time and flag := 1 for discrete time.

2. If flag = 1, then set Bi−1 := Ai for i ∈M , and τ := 1. Otherwise, choose a

positive real number τ (sampling rate), and let Bi−1 := exp(Aiτ) for i ∈M .

3. Set k := 0, FeasibleSet := ∅, UnionOfRegions := ∅.

4. Express k in base m, i.e., k =
∑s

i=1 jim
i−1 with ji ∈M and js �= 0. Set path :=

[j1, . . . , js] and C := Bjs · · ·Bj1
.

5. Compute YC .

6. If YC �⊂UnionOfRegions, set

FeasibleSet := FeasibleSet+ {(C,path, YC)}, and

UnionOfRegions :=UnionOfRegions∪ YC .

7. If UnionOfRegions �= Bn−1
1 , set k := k+ 1 and go to Step 4).

8. Remove the reducible triplet elements of FeasibleSet whose YC ’s are subsets of

the union of the other YC ’s (cf. the reduction part of the Schematic Algorithm).

9. Set k to be the number of elements of FeasibleSet. For i = 1, . . . , k, set Gi be

the C in FeasibleSet(i), pathi be the path in FeasibleSet(i), and Λi be the YC

in FeasibleSet(i).

10. Set Λi :=Λi −
⋃i−1

s=1 Λs for i = 2, . . . , k.

11. Input an initial state x0 and a terminal time tf .

12. Set State := ∅, IterativeState := x0, IterativeTime := 0.

13. Set y := Pn(sgn(IterativeState(n)) ∗ IterativeState/|IterativeState|), find i ∈
{1, . . . , k} such that y ∈Λi , and set j := 1.

14. Set index := pathi(j)+ 1.

15. Compute the solution [t, x] of the differential/difference equation

x+(t)=Aindexx(t)

over time interval [IterativeTime, IterativeTime+ τ ] and set

IterativeTime := IterativeTime+ τ and

State := State∪ [t, x].
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16. If j < length(pathi), set j := j + 1 and go to Step 14).

17. If IterativeTime < tf , set IterativeState := State(IterativeTime) and go to

Step 13).

18. Plot the state trajectory State.

4.5 Stabilization via Mixed-Driven Switching: Robustness

Analysis

Suppose that switched linear system (4.47) is asymptotically stabilizable and that

the pathwise state-feedback switching law
∧k

i=1 θi
Ωi
si exponentially stabilizes the

system with convergence rate α. That is,

∣

∣

∣

∣

∣

φ

(

t;0, x,

k
∧

i=1

θi
Ωi
si

)
∣

∣

∣

∣

∣

≤ βe−αt |x| ∀x ∈Rn, t ∈ T0 (4.68)

for some β > 0.

Let us consider the situation that the switched linear system undergoes exotic

disturbances or perturbations. The perturbations can enter either structurally or un-

structurally and can enter into either the subsystems or the switching signals. A gen-

eral description of the perturbed system can thus be given as

x+(t)= (Aσ̄ (t) + Ãσ̄ (t))x(t)+ fσ̄ (t)(t)+ f0(t),

where σ̄ (t) is the (structural) perturbation of the nominal switching signal, Ãi and

fi are the structural and unstructural perturbations on the ith subsystem, respec-

tively, and f0(t) is the unstructural perturbation of the nominal system. As f0 can

be absorbed by fi in an obvious manner, we can assume that this part is null and

rewrite the perturbed system as

x+(t)= (Aσ̄ (t) + Ãσ̄ (t))x(t)+ fσ̄ (t)(t). (4.69)

The objective of this section is to analyze the robustness of the nominal switched

linear system w.r.t. the perturbations. For this, note that the structural and unstruc-

tural perturbations for the subsystems can be handled by the conventional scheme

of robust analysis in a normed space. The perturbation analysis for switching signal,

however, is a new topic that needs more attention.

The study of the robustness against switching signal perturbations is well mo-

tivated for the reasons below. First, in practice we cannot implement a switching

signal precisely. For example, time delay is unavoidable in many practical situa-

tions, and exact online measure of the state variable is usually impossible. Second,

the switching device may mismanipulate in certain cases. For instance, the system

should activate the ith subsystem, but it activates the j th instead. Third, component

(subsystem) failures lead to displacement of switching paths, and the ability of fault

tolerance is always an important issue for practical implementation. Finally, from
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the design viewpoint, we prefer to choose a switching law which still works (for the

stability purpose) under small perturbations.

In the next subsection, we present an approach to characterize the distance be-

tween two switching signals generated by a pathwise state-feedback switching law,

which paves the way for the robust analysis conducted later.

4.5.1 Distance Between Switching Signals

To implement a pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i , it involves a re-

peated process of first determining an index j according to the online state mea-

surement, and then coordinating the switching along the switching path θj . In this

process, perturbations might enter either in index determining or in executing the

switching law. The distance between the nominal switching signal and perturbed

switching signal should be the summation of the variations of both types in some

sense. For this, we first define the distance between two switching paths and then

extend it to the case of pathwise state-feedback switching laws.

For a right-continuous switching path p[t0,tf ), let t0 < t1 < · · ·< ts be its switch-

ing time sequence. Its switching index sequence is p(t0),p(t1), . . . , p(ts). For con-

venience, we refer to the sequence

SSp =
{(

t0,p(t0)
)

,
(

t1,p(t1)
)

, . . . ,
(

ts,p(ts)
)

, . . .
}

as its switching sequence and the sequence

DSp =
{(

p(t0), t1 − t0
)

,
(

p(t1), t2 − t1
)

, . . . ,
(

p(ts−1), ts − ts−1

)

, . . .
}

as its duration sequence. It is clear that p, SSp , and DSp are equivalent in the sense

that one can determine the others and vice versa. As a result, a variation of a switch-

ing path means a variation of the switching/duration sequence, which can also be

seen as a variation of the transition chain defined later. This simple observation

provides a basic insight into the way for characterizing the distance between two

switching paths.

For a switching duration sequence (i0, h0), (i1, h1), . . . , the transition chain is

defined as the sequence of state transition matrices at the switching instants, i.e.,

ϕ(i0, h0)|ϕ(i1, h1)ϕ(i0, h0)|ϕ(i2, h2)ϕ(i1, h1)ϕ(i0, h0)| · · · , (4.70)

where ϕ(i, h) = eAih in continuous time, and ϕ(i, h) = Ah
i in discrete time. The

transition chain clearly exhibits the state transition process along the switching path.

Before formulating the distance between two switching paths, we present a cou-

ple of motivating examples.

Example 4.37 Consider a continuous-time switching signal p1 whose switching

sequence is (0,1), (1,2), (2,1), (3,2), . . . .
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Suppose that there is a small time delay ǫ at the first switching time. It is

obvious that the delayed switching signal p2 is with switching sequence (0,1),

(1 + ǫ,2), (2 + ǫ,1), (3 + ǫ,2), . . . . The corresponding transition chains for the

nominal and perturbed switching signals are

eA1 |eA2eA1 |eA1eA2eA1 | · · ·

and

eA1(1+ǫ)|eA2eA1(1+ǫ)|eA1eA2eA1(1+ǫ)| · · · ,

respectively. It can be seen that the two chains possess the same convergence prop-

erty, that is, the perturbed matrix chain is convergent iff the nominal matrix chain is

convergent. However, it is clear that

p1(t) �= p2(t) ∀t ∈Θ,

where Θ
def=
⋃+∞

k=1[k, k+ ǫ). That is, the two switching signals are not equal at time

intervals of an infinite length no matter how small ǫ is. This excludes the reason-

ableness of formulating the distance between p1 and p2 by meas{t : p1(t) �= p2(t)},
though this seems to be the most straightforward way. Another observation from

this example is that, comparing with the switching sequence, the switching duration

sequence is more suitable for describing the transition chain of the switched system.

Example 4.38 For the following three switching paths

(i) DSp1
= {(i0, h0), (i1, h1), (i2, h2), (i3, h3), . . . }

(ii) DSp2
= {(i1, h0), (i0, h1), (i2, h2), (i3, h3), . . . } and

(iii) DSp3
= {(i0, h1), (i1, h0), (i2, h2), (i3, h3), . . . }

which two are closer?

The transition chains of the paths are

ϕ(i0, h0) | ϕ(i1, h1)ϕ(i0, h0) | ϕ(i2, h2)ϕ(i1, h1)ϕ(i0, h0) | · · · ,
ϕ(i1, h0) | ϕ(i0, h1)ϕ(i1, h0) | ϕ(i2, h2)ϕ(i0, h1)ϕ(i1, h0) | · · · ,
ϕ(i0, h1) | ϕ(i1, h0)ϕ(i0, h1) | ϕ(i2, h2)ϕ(i1, h0)ϕ(i0, h1) | · · · ,

respectively.

Roughly speaking, though the switching time sequences totally coincide for the

first and second switching paths, the index sequences are different for the first two

periods, so the difference in time measure is h0 + h1. Similarly, the difference

between the first and third is 2|h1 − h0|, and between the second and third it is

2 min{h0, h1}. In this sense, if h1 ≥ 2h0 or h0 ≥ 2h1, then the distance between the

second and third is shortest, otherwise the distance between the first and the third

is shortest. In both cases, the distance between the first and the second paths is the

longest.
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Example 4.39 Consider two switching paths θ1 and θ2 in discrete time, which are

represented by sequences

θ1 = 3 1 2 4 2 1 3 1 1 1 3 1 1 2 2 2 1 2 2 1,

θ2 = 3 1 2 4 3 1 3 1 1 3 3 1 1 2 2 1 2 2 1, (4.71)

which are of lengths 20 and 19, respectively. To compare the sequences, two intu-

itive ways are aligning the sequence by adding and by removing certain elements

to/from the sequences. By adding new elements, we have

θ̄1 = 3 1 2 4 2 3̄ 1 3 1 1 1 3̄ 3 1 1 2 2 2 1 2 2 1,

θ̄2 = 3 1 2 4 2̄ 3 1 3 1 1 1̄ 3 3 1 1 2 2̄ 2 1 2 2 1, (4.72)

where the numbers with a bar are newly added. It is clear that five new elements

are incorporated, and θ̄1 is identical to θ̄2. Similarly, by removing elements from the

sequences, we have

↑ 2 ↑ 1 ↑ 2

θ̃1 = 3 1 2 4 1 3 1 1 3 1 1 2 2 1 2 2 1,

θ̃2 = 3 1 2 4 1 3 1 1 3 1 1 2 2 1 2 2 1,

↓ 3 ↓ 3

where five elements are removed, and θ̃1 is identical to θ̃2. Note also that the cardi-

nality of θ̄1 is 22, the cardinality of θ̃1 is 17, and the difference is five. As a result, it

is intuitively proper to define the absolute distance between θ1 and θ2 to be five.

The above examples motivate us to define the distance between two switching

paths through the time variation while ignoring the dynamic difference between the

system matrices, that is, we assume, for simplicity, that the distance between any Ai

and Aj is normalized.

Let Δ be the set of intervals of the form [a, b) with 0 ≤ a < b and of unions

of such intervals. Given π ∈ Δ, we can define the map ψπ : (R+ − π) �→ R+
by

ψπ (t)= t −meas{s ≤ t : s ∈ π}, t ∈R+ − π.

Given two switching paths p1[t1,t2) and p2[t3,t4), p1 is said to be a child-path

of p2, or p2 is said to be a parent-path of p1, denoted by p1 " p2, if there exist

π ∈Δ and a time transition δ ∈R such that

[t1, t2) =
⋃

t∈([t3,t4)−π)

{

ψπ (t)− δ
}

,

p2(t) = p1

(

ψπ (t)− δ
)

∀t ∈ [t3, t4)− π. (4.73)
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Correspondingly, let Δ
p2
p1

be the set of π that satisfies (4.73). It should be stressed

that the set Δ
p2
p1

may contain more than one element.

For two switching paths p1 " p2, define the distance to be

|p2 − p1| = inf
π∈Δp2

p1

measπ. (4.74)

It is clear that |p2 − p1| = 0 iff p1 is a pure time transition of p2, that is, t4 − t3 =
t2 − t1 and p1(t1 + s) = p2(t3 + s) for all s ∈ [0, t2 − t1). In this case, we denote

p2 = p
�→t3−t1
1 .

Given switching paths p1, p2, and p3, p3 is said to be a common parent-path

of p1 and p2, denoted p3 ∈ CP (p1,p2), if p1 " p3 and p2 " p3. It can be seen

that, for any two switching paths, there must exist a common parent-path. Indeed,

suppose that

DSpj =
{(

i
j

0 , h
j

0

)

,
(

i
j

1 , h
j

1

)

,
(

i
j

2 , h
j

2

)

, . . .
}

, j = 1,2.

Then, the switching path

DSp3
=
{(

i10 , h
1
0

)

,
(

i20 , h
2
0

)

,
(

i11 , h
1
1

)

,
(

i21 , h
2
1

)

,
(

i12 , h
1
2

)

,
(

i22 , h
2
2

)

, . . .
}

is a common parent-path of p1 and p2.

Definition 4.40 For any switching paths p1 and p2, the distance between them is

defined as

d(p1,p2)= inf
p3∈CP(p1,p2)

(

|p3 − p1| + |p3 − p2|
)

. (4.75)

Remark 4.41 It is interesting to note that the switching distance is closely related to

sequence alignment, which is one of the basic tasks of bioinformatics. A primary us-

age of alignment is to attempt to identify regions of sequences that share a common

evolutionary origin. That is, the purpose of sequence alignment is to identify the

similarity of two or more biological sequences. It is clear that the smaller distance,

the more similarity. Taking mRNA sequences as an example, they are taking values

from alphabet {A,C,G,T }. In fact, if we relabel A, C, G, and T with 1, 2, 3, and 4,

respectively, then the sequences (4.71) are exactly segments of mRNA sequences as

shown in [191, Fig. 2B]. While numerous computer algorithms were developed for

sequence alignment, the distance defined here captures the major feature of many

algorithms. The reader is referred to [181, 185] for recent development of sequence

alignment.

Proposition 4.42 The distance between switching paths possesses the following

properties:

(1) (positive definiteness) d(p1,p2)≥ 0, and d(p1,p2)= 0 iff p1 = p �→s
2 for some

s ∈R
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(2) (symmetricalness) d(p1,p2)= d(p2,p1) and

(3) (triangular inequality) d(p1,p2)≤ d(p1,p3)+ d(p2,p3)

Proof Properties (1) and (2) straightforwardly follow from the definition. To

prove (3), let ε be an arbitrarily small positive real number. By definition, there

is a common parent-path p4 of paths p1 and p3 such that

d(p1,p3)≥ |p4 − p1| + |p4 − p3| − ε.

Similarly, there is a common parent-path p5 of paths p2 and p3 such that

d(p2,p3)≥ |p5 − p2| + |p5 − p3| − ε.

On the other hand, we can find a common parent-path p6 of paths p4 and p5 such

that

|p6 − p4| ≤ |p5 − p3| and |p6 − p5| ≤ |p4 − p3|.
As p6 is also a common parent-path of p1 and p2, we have

d(p1,p2) ≤ |p6 − p1| + |p6 − p2|
≤ |p6 − p4| + |p4 − p1| + |p6 − p5| + |p5 − p2|
≤ |p5 − p3| + |p4 − p1| + |p4 − p3| + |p5 − p2|
≤ d(p1,p3)+ d(p2,p3)+ 2ε.

Due to the arbitrariness of ε, the triangular inequality holds. �

It follows from the proposition that the set of switching paths forms a metric

space.

Next, we formulate the distance between two switching signals generated by a

pathwise state-feedback switching law. Fix a pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i . For any given switched system, it generates a switching signal σ x for any

initial state x that is the concatenation of the switching paths θi , i = 1, . . . , k. This

switching signal can be described in a recursive way, as described below.

(1) Initiation. From the initial state x0, choose the active subsystem index j ∈
{1, . . . , k} such that x0 ∈Ωj , and let the system evolve along switching path θj
for the duration of sj . At the end of the process, the state is x1 = φ(sj ;0, x0, θj ),

which is termed as the current relay state at t1 = sj .

(2) Recursion. From the current relay state xν at tν , choose the active subsystem

index l ∈ {1, . . . , k} such that xν ∈Ωl , and let the system evolve along switching

path θl for the duration of sl . At the end of the process, the state is xν+1 =
φ(sl;0, xν, θl), which is the current relay state at tν+1 = tν + sl .

Suppose that we are to implement the (nominal) switching signal in the above-

mentioned recursive way. Then, perturbations may enter in the following possible

manners:
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(1) When implementing a switching path θi for a duration of si , mismanipulations

may occur in certain cases. For instance, a time delay in the operation or com-

ponent (subsystem) failures lead to displacement of switching paths, etc.

(2) At the concatenating instants tj , the next piece of switching path is wrongly

selected due to the imprecise measure of the current initial state.

In either case, due to the interaction between the continuous state and the switch-

ing signal, for the same initial state, any small perturbation may lead the perturbed

switching signal to totally deviated from the nominal switching signal. This in-

dicates that the distance between the perturbed switching signal and the nominal

switching signal should be formulated based on the following rules:

(1) The distance should be counted locally (piece by piece) rather than globally.

(2) Any mismanipulation should be counted only once in the sense that the future

effluence should not be taken into account to the distance.

(3) Once a mismanipulation occurs, the next current relay state should be taken as

the nominal initial state for future comparison between the switching signals.

In the light of the rules, we rewrite the nominal switching signal σn as

+∞
∑

i=0

(xi, ji, θji , sji ) : xi+1 = φ(sji ;0, xi, θji ) ∈Ωji+1
. (4.76)

Suppose that the perturbed switching signal σp can be expressed in a similar way as

+∞
∑

i=0

(yi, κi,pi, τi) : yi+1 = φ(τi;0, yi,pi), y0 = x0, (4.77)

where κi is the actually selected (perturbed) index of the switching path for the

current initial state yi , and pi[0,τi )
is the actual (perturbed) implementation of θjκi . It

can be seen that a deviation occurs when either yi �∈Ωκi or pi �= θjκi .

Definition 4.43 For a pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i , let σ x
n and

σ xp be the nominal switching signal and perturbed switching signal with initial

state x, respectively.

(1) For a natural number N , the N -distance between σ x
n and σ x

p is

DN
x (σp, σn)=

N−1
∑

i=0

d(pi, θli ), (4.78)

where li is the index that yi ∈Ωli for i = 0, . . . ,N−1, and d(·, ·) is the distance

between two switching paths as defined in (4.75).
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(2) The relative distance between the nominal switching signal σ xn and the per-

turbed switching signal σ xp is defined as

RDx(σp, σn)= lim sup
N→+∞

1

N
DN
x (σp, σn). (4.79)

(3) The supremal relative distance between the nominal switching signal σn and the

perturbed switching signal σp is defined as

SRD(σp, σn)= lim sup
x∈Rn

RDx(σp, σn). (4.80)

Remark 4.44 The N -distance measures the absolute distance between the nominal

switching and the perturbed switching over the first N -concatenating periods. It is

the summation of the distances between the nominal and perturbed switching sig-

nals. The relative distance, on the other hand, measures the average distance in time

over an infinite horizon. It should be stressed that the relative distance is more subtle

than the (absolute) N -distance in characterizing the distance between two switching

signals. In fact, for any two switching signals defined on an infinite horizon, the ab-

solute ∞-distance must be infinite if the relative distance is positive, but the reverse

is not necessarily true.

4.5.2 Robustness Analysis

In this subsection, we establish that a well-designed pathwise state-feedback switch-

ing law is robust against various types of perturbations including structural pertur-

bations, unstructural perturbations, and switching perturbations.

Suppose that the pathwise state-feedback switching law σ =
∧k

i=1 θ
Ωi

i is piece-

wise contractive for the switched linear system

x+(t)=Aσ(t)x(t), (4.81)

where A1, . . . ,Am are known real matrices. Define

ρi
def= sup

x∈Ωi∩H1

∣

∣φ(si;0, x, θi)
∣

∣< 1, i = 1, . . . , k. (4.82)

According to the analysis in Sect. 4.4.1, we have

∣

∣

∣

∣

∣

φ

(

t;0, x,

k
∧

i=1

θ
Ωi

i

)∣

∣

∣

∣

∣

≤ βe−αt |x| ∀x ∈Rn, t ∈ T0,

where α and β are positive real numbers that can be explicitly estimated.

The first property of the switching law is its robustness with respect to structural

perturbations.
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Theorem 4.45 There is a positive real number ε such that the switching law expo-

nentially stabilizes any switched linear system

x+(t)= Āσ(t)x(t) (4.83)

with maxmi=1 ‖Ai − Āi‖< ε.

Proof The main idea is to prove that the switching law is still piecewise contrac-

tive w.r.t. the perturbed system when ε is sufficiently small. To see this, we ex-

amine the state transition matrices of the nominal and perturbed systems, respec-

tively. For switching path θi , denote by t0, t1, . . . , tk its switching time sequence.

Let Φ(si,0, θi) and Φ̄(si,0, θi) be the state transition matrices of the nominal sys-

tem and the perturbed system, respectively. It is obvious that

Φ(si,0, θi) = eAσ(tk )
(si−tk) · · · eAσ(t0)

(t1−t0),

Φ̄(si,0, θi) = eĀσ(tk )
(si−tk) · · · eĀσ(t0)

(t1−t0)

in continuous time and

Φ(si,0, θi)=Aσ(si−1) · · ·Aσ(0), Φ̄(si,0, θi)= Āσ(si−1) · · · Āσ(0)

in discrete time. Define the error

Φ̃ = Φ̄(si,0, θi)−Φ(si,0, θi).

It is clear that Φ̃ is a continuous function of the entries of matrices Āi for i =
1, . . . ,m. Note that Φ̃ = 0 when Āi = Ai for i = 1, . . . ,m. It follows from (4.82)

that

sup
x∈Ωi∩H1

∣

∣Φ̄(si,0, θi)x
∣

∣< 1, i = 1, . . . ,m,

when maxmi=1 ‖Ai− Āi‖ is sufficiently small. This clearly leads to the conclusion. �

Remark 4.46 The robustness against structural perturbations is sometimes termed as

structural stability. The property is important in that the system cannot work prop-

erly if it is not structurally stable. An interesting open problem is how to estimate

the margin ε explicitly.

Next, we turn to the robustness w.r.t. unstructural perturbations. We formulate

the problem by means of the framework of input-to-state stability (ISS).

For the perturbed system

x+(t)=Aσ(t)x(t)+w(t), (4.84)

where w(t) ∈ Rn is the unstructural system perturbation, we take the perturbation

as an uncontrolled input.
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Definition 4.47 For a switching law σ , system (4.84) is said to be input-to-state

stable (ISS) w.r.t. the switching law, if there exist real-valued functions α ∈ K∞ and

β ∈ K L such that

∣

∣φ(t;x0, σ,w)
∣

∣≤max
{

β(x0, t), α
(

|wt |∞
)}

, ∀x0, w, t ∈ T0, (4.85)

where |wt |∞ = sups∈[t0,t) |w(s)|, and φ(·;x0, σ,w) denotes the solution of (4.84)

with initial condition x(0)= x0.

This notion degenerates into the standard ISS for nonswitched systems [211].

The second property of the switching law is that it steers the switched system

ISS.

Theorem 4.48 The switched system is input-to-state stable under the switching law
∧k

i=1 θ
Ωi

i .

Proof For the perturbed system (4.84), its aggregated system is

zl+1 =Gizl + νl, zl ∈Ωi, (4.86)

where

νl =
∫ si

0

Φ(si, τ, θi)w(tl + τ) dτ, l ∈N

in continuous time, and

νl =
si−1
∑

j=0

Φ(si, j, θi)w(tl + j), l ∈N

in discrete time, and 0, t1, t2, . . . is the switching time sequence. This implies that,

for any nonnegative integer l, we have

ωl def= max
{

|ν0|, |ν1|, . . . , |νl |
}

≤ υ sup
{

|w(t)| : t ∈ [t0, tl]
}

, (4.87)

where

υ =max
(

e‖A1‖s, . . . , e‖Am‖s)

in continuous time, and

υ =max
(

‖A1‖s, . . . ,‖Am‖s
)

in discrete time. Here s
def= max{s1, . . . , sk}.

In view of (4.82), let μ=max{ρ1, . . . , ρk}, and let μ̄ be a real number in (μ,1).

Fix a natural number j . For any l ≤ j , if |zl | ≤ ωj

μ̄−μ , then we have

|zl+1| = |Gizl + νl | ≤ μ|zl | +ωj ≤ ωj

μ̄−μ
.
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This means that the closed ball B ωj

μ̄−μ

is invariant in that the successor of any state

within the ball is still kept in the ball. On the other hand, if |zl |> ωj

μ̄−μ
, then we have

|zl+1| ≤ μ|zl | +ωj ≤ μ̄|zl |.

The above facts clearly lead to

|zl | ≤max

{

μ̄l |x0|,
ωj

μ̄−μ

}

∀l = 1, . . . , j. (4.88)

It is also clear that

∣

∣φ(t;x0, σ,w)
∣

∣≤ υ|zl | ∀t ∈ (tl, tl+1), l = 0,1,2, . . . . (4.89)

Combining (4.87), (4.88), and (4.89) yields

∣

∣φ(t;x0, σ,w)
∣

∣≤
{

υμ̄e−αt ,
υ2wt

μ̄−μ

}

∀t ∈ T0,

where α = − ln μ̄
max(s1,...,sk)

. This clearly exhibits that the original system is input-to-state

stable under the switching law. �

The next property is the robustness of the switching law against switching per-

turbations. In terms of the distance between switching signals defined in Defini-

tion 4.43, we have the following result.

Theorem 4.49 There is a positive real number γ such that the switching law
∧k

i=1 θ
Ωi

i exponentially stabilizes any switched linear system

x+(t)=Aσ̄ (t)x(t) (4.90)

with SRD(σ̄ ,
∧k

i=1 θ
Ωi

i ) < γ .

To proceed with the proof of the theorem, we need the following technical

lemma.

Lemma 4.50 Suppose that p1 and p2 are switching paths defined over in-

tervals [0, τ1) and [0, τ2), respectively, and x is an arbitrarily given state. If

|φ(τ1;0, x,p1)| ≤ψ |x| and d(p1,p2)= ζ , then, we have

∣

∣φ(τ2;0, x,p2)
∣

∣≤
(

ητ1+ζ+1ζ +ψ
)

|x|, (4.91)

where η
def= maxmi=1 e

‖Ai‖ in continuous time, and η
def= max(1,maxmi=1 ‖Ai‖) in dis-

crete time.
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Proof Here we only prove for the continuous time, and the discrete-time case can

be proceeded in a similar manner. Let ε be an arbitrarily given positive real number.

By the definition of the distance between two switching paths, there is a common

parent path p over [0, τ ) of p1 and p2 such that

|p− p1| + |p− p2| ≤ ζ + ε.

Denote ζ1 = |p− p1| and ζ2 = |p− p2|. Suppose, for instance, that

Φ(τ1,0,p1)= eA2h2eA1h1 , Φ(τ,0,p)= eA2h2eA4h4eA1h1eA3h3 .

Other cases can be treated in exactly the same way. Simple computation yields

∣

∣φ(τ ;0, x,p)
∣

∣ ≤
∣

∣φ(τ ;0, x,p)− φ(τ1;0, x,p1)
∣

∣+
∣

∣φ(τ1;0, x,p1)
∣

∣

≤
∣

∣eA2h2eA4h4eA1h1eA3h3x − eA2h2eA1h1x
∣

∣+ψ |x|

≤
∣

∣eA2h2
(

eA4h4 − I
)

eA1h1eA3h3x
∣

∣

+
∣

∣eA2h2eA1h1
(

eA3h3 − I
)

x
∣

∣+ψ |x|

≤
(

ητ1+ζ1+1ζ1 +ψ
)

|x|,

where the relationships τ1 = h1 + h2, ζ1 = h3 + h4 and ‖eAt − I‖ ≤ ‖A‖e‖A‖t |t |
have been used. Further calculation leads to

∣

∣φ(τ2;0, x,p2)
∣

∣ ≤
∣

∣φ(τ2;0, x,p2)− φ(τ ;0, x,p)
∣

∣+
∣

∣φ(τ ;0, x,p)
∣

∣

≤ ητ2+ζ2+1ζ2|x| +
∣

∣φ(τ ;0, x,p)
∣

∣

≤
(

ητ2+ζ2+1ζ2 + ητ1+ζ1+1ζ1 +ψ
)

|x|

≤
(

ητ1+ζ+ε+1(ζ + ε)+ψ
)

|x|,

where the relationship τ2 ≤ τ1 + ζ1 was utilized. This completes the proof due to

the arbitrariness of ε. �

Proof of Theorem 4.49 Let x0 be any given but fixed state, ǫ be any given pos-

itive real number, and σ x0 and σ̄ x0 be the nominal switching signal and the per-

turbed switching signal generated by the switching law
∧k

i=1 θ
Ωi

i w.r.t. initial state

x(0)= x0 for the nominal system and the perturbed system, respectively. Recall that

SRD(σ̄ ,
∧k

i=1 θ
Ωi

i ) < γ means that RDx0
(σ̄ x0 , σ x0) < γ , which further means that

the N -distance between the perturbed switching and the nominal switching is upper

bounded by N(γ + ǫ) for sufficiently large N .

Rewrite the nominal switching law as in (4.76):

σ x0 =
+∞
∑

i=0

(xi, ji, θji , sji ) : xi+1 = φ(sji ;0, xi, θji ) ∈Ωji+1
.
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Similarly, rewrite the perturbed switching law as in (4.77):

σ̄ x0 =
+∞
∑

i=0

(yi, κi,pi, τi) : yi+1 = φ(τi;0, yi,pi), y0 = x0.

We are to prove that the state sequence y0, y1, . . . is exponentially convergent, which

implies the exponential stability of the perturbed system. For this, we only examine

the continuous time, and the discrete-time case can be proven in a similar manner.

In view of (4.82), let μ=max{ρ1, . . . , ρk}, and let μ̄ be a real number in (μ,1).

Fix an arbitrarily given natural number i. Let τ
def= max{s1, . . . , sk}, and let ϑ =

η−(τ+2)(μ̄−μ). It follows from Lemma 4.50 that

|yi | ≤ μ̄|yi−1| if d(pi, θji )≤ ϑ. (4.92)

Applying Lemma 4.50 again gives

|yi | ≤
(

ητ+di+1 + μ

ϑ

)

di |yi−1| ≤ ηλ+didi |yi−1| if d(yi, θji ) > ϑ, (4.93)

where λ = τ + 2 + max{0, (lnμ − lnϑ)/ lnη}, and di
def= d(yi, θji ). Now choose

γ = ǫ =̟ϑ where ̟ is a positive real number to be determined later. Let l be a

(sufficiently large) natural number such that, for any N ≥ l, the N -distance between

the perturbed switching and the nominal switching is upper bounded by N(γ + ǫ).

Fix N ≥ l and define

N1 = #
{

i ≤N : |yi |> μ̄|yi−1|
}

, N2 =N −N1,

where # denotes the cardinality of a set. By the definition of N -distance, we have

N1 ≤ ⌈N̟⌉, N2 ≥
⌊

N(1−̟)
⌋

,

where ⌈a⌉ (⌊a⌋) denotes the smallest (largest) integer equal to or greater (less)

than a. Based on the above facts, routine calculation gives

|yN | ≤ |y0|μ̄N2
∏

di>ϑ

ηλ+didi ≤ e−ν(N(1−̟)−1)e2N̟(1+eλ−1)|x0|

≤ e−(N−1)νeN(ν+2+2eλ−1)̟ |x0|, (4.94)

where ν
def= − ln μ̄, and the fact that maxx(

a
x
)x = e

a
e was used.

Finally, let ̟ = ν
2(ν+2+2eλ−1)

, which is clearly independent of N . Then, it can be

seen from inequality (4.94) that the sequence y0, y1, . . . is exponentially convergent

with rate ν/2. This completes the proof. �

Remark 4.51 Theorem 4.49 reveals that the pathwise state-feedback switching law

is robust against perturbations from the switching law itself, which means that the



4.5 Stabilization via Mixed-Driven Switching: Robustness Analysis 183

switching law is fault tolerant—a very important property from the practical point of

view. Moreover, it can be seen from the proof that the allowable robustness margin

γ can be explicitly estimated.

Finally, by combining Theorems 4.45, 4.48, and 4.49, we can prove the follow-

ing comprehensive robustness property of the switched system with the stabilizing

pathwise state-feedback switching law.

Theorem 4.52 Suppose that the switching law
∧k

i=1 θ
Ωi

i exponentially stabilizes

the nominal system

x+(t)=Aσ(t)x(t).

Then, there are positive real numbers ǫ1 and ǫ2 such that the switching law makes

the perturbed system

x+(t)= Āσ̄ (t)x(t)+w(t)

input-to-state stable if

m
max
k=1

‖Āk −Ak‖ ≤ ǫ1, SRD

(

σ̄ ,

k
∧

i=1

θ
Ωi

i

)

≤ ǫ2. (4.95)

4.5.3 Examples and Simulations

Example 4.53 Let us examine the discrete-time switched linear system

x(t + 1)=Aσ(t)x(t), x(t) ∈R2, σ (t) ∈ {1,2,3} (4.96)

with

A1 =
[

−0.7113 0.5333

1.8498 0.0968

]

, A2 =
[

−0.0378 0.4588

2.4130 0.4437

]

,

and

A3 =
[

−0.7714 0.2266

−0.8239 −1.4026

]

.

Simple computation exhibits that

λ1(Ai)λ
2(Ai) > 1, i = 1,2,3,

where {λ1(A),λ2(A)} is the spectrum of matrix A ∈ R2×2. It follows from

Lemma 4.3 that the switched linear system is not consistently stabilizable. That

is, the system cannot be made stable via any single switching signal.
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To verify the stabilizability of the switched system, we conduct the computational

algorithm in Sect. 4.4.2, which yields

⋃

YGi
= B1

1 = [−1,1],

where

G1 =A1, G2 =A2, G3 =A3, G4 =A2
1A3, G5 =A2A1A3,

and the corresponding switching paths are

θ1 = (1), θ2 = (2), θ3 = (3), θ4 = (3,1,1), θ5 = (3,1,2).

As a result, the algorithm terminates with k = 5, which exhibits that the switched

system is exponentially stabilizable. To further calculate a stabilizing pathwise state-

feedback switching law, we choose

Λ1 = [−0.0995,0.4540)⊂ YG1
,

Λ2 = [−0.3895,−0.0995)⊂ YG2
,

Λ3 = [−0.7100,−0.3895)⊂ YG3
,

Λ4 = [−1.0000,−0.9625)∪ [0.4540,1.0000] ⊂ YG4
,

Λ5 = [−0.9625,−0.7100)⊂ YG5
,

which generate the state space partitions

Ω1 =
{

rP−1
2 y : r ∈R, y ∈Λ1

}

,

Ωi =
{

rP−1
2 y : r �= 0, y ∈Λi

}

, i = 2, . . . , k.

Figure 4.11 shows the YGi
’s, the Λi ’s, and Ωi ’s.

With the state partitions, the aggregated system is

zj+1 =Gizj , zj ∈Ωi

with z0 = x(0). It is clear that the aggregated system is exponentially stable, and

the pathwise state-feedback switching law
∧k

i=1 θ
Ωi

i exponentially stabilizes the

original switched system.

Take the initial state to be

x(0)= [1.1908,−1.2025]T .

In what follows, we present simulations for the nominal systems and its perturbed

systems, respectively.

Firstly, Fig. 4.12 shows sample state phase portraits for the original system and

the aggregated system. It can be seen that the aggregated state trajectory is always
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Fig. 4.11 State partitions (right) and their projections (left)

contractive relative to the norm | · |1, while the original state trajectory is not neces-

sarily contractive at the nonaggregated instants.

Secondly, to illustrate the robustness against structural perturbations, we assume

that the matrices Ai are perturbed by the matrices Ãi , where

Ã1 =
[

0.2117 −0.3501

0.1243 0.1395

]

, Ã2 =
[

0.1623 0.2620

0.1273 0.0654

]

,

and

Ã3 =
[

−0.1346 −0.4898

−0.0299 0.0947

]

.

Figure 4.13 depicts the state phase portrait for the perturbed system

x(t + 1)= (Aσ(t) + Ãσ(t))x(t).

It is clear that the perturbed system is also exponentially convergent, though the

convergence rate is lower than that of the nominal system.

Thirdly, to illustrate the robustness of the switching law with respect to switch-

ing perturbations, we assume that the nominal switching signal is perturbed in the

following way: (i) a delay occurs at each time implementing the switching path
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Fig. 4.12 State phase portraits of the original system and the aggregated system

Fig. 4.13 State phase portraits of the structurally perturbed system
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Fig. 4.14 State phase portraits with perturbed switching

θ1 = (1), that is, the perturbed switching path is θ̂1 = (1,1); and (ii) the state mea-

surement is inexact in that the measured state is x̄ = [1.1x1, x2]T for any state

x = [x1, x2]T , that is, there is a ten-percent overdue for the first state variable. Fig-

ure 4.14 shows the state phase portrait for the perturbed system. It is clear that the

state is still convergent. A routine calculation gives that the relative distance in the

simulated horizon is 0.0526. This means that over five percent length of the switch-

ing signal is wrongly implemented.

Fourthly, to illustrate the input-to-state stability, let us examine the perturbed

system

x(t + 1)=Aσ(t)x(t)+w(t)

with w(t) = sgn(tan(t)), and sgn(·) denotes the signum function. The state phase

portrait for the perturbed system is shown in Fig. 4.15. It can be seen that the system

is input-to-state stable with a reasonable bound.

Finally, by putting all the above perturbations together, we have the perturbed

system with three types of perturbations. Figure 4.16 depicts its state phase portrait,

which is still input-to-state stable with a bigger overshoot.

Example 4.54 For the continuous-time switched linear system

ẋ(t)=Aσ(t)x(t), x(t) ∈R3, σ (t) ∈ {1,2}, (4.97)



188 4 Designed Switching

Fig. 4.15 State phase portrait illustrating the ISS property

Fig. 4.16 State phase portrait of the mixed perturbed system
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with

A1 =

⎡

⎣

−0.4203 1.4913 0.3085

−1.4281 1.2367 −1.1178

−0.2091 0.7129 −0.7467

⎤

⎦ ,

A2 =

⎡

⎣

0.1967 −0.5520 0.9880

0.5359 −0.7562 −1.0518

−1.0481 0.7114 0.8080

⎤

⎦ ,

simple computation exhibits that

3
∑

j=1

λj (Ai) > 0, i = 1,2.

By Lemma 4.3, the switched linear system is not consistently stabilizable. In partic-

ular, the matrices A1 and A2 do not admit any stable convex combination, and the

system is not quadratically stabilizable [80].

Let the sampling period be τ = 0.38, and Bi = eAiτ for i = 1,2. For the sampled-

data switched system

x
(

(j + 1)τ
)

= Bσ(jτ)x(jτ), j ∈N,

we apply the computational algorithm in Sect. 4.4.2. This gives

⋃

YGi
= B2

1,

where

G1 = B1B
2
2 , G2 = B2B

2
1 , G3 = B2

1B2B1, G4 = B1B
2
2B1,

G5 = B3
2B1, G6 = B3

1B2B1, G7 = B2
1B2B1B2,

G8 = B1B2B
2
1B2, G9 = B2

2B1B2B1, G10 = B3
2B

2
1 .

As a result, the algorithm terminates with k = 10, which exhibits that the switched

system is exponentially stabilizable. The corresponding switching paths can be for-

mulated routinely as, for example,

θ1(t) =
{

2 t ∈ [0,2τ),

1 t ∈ [2τ,3τ),

θ2(t) =
{

1 t ∈ [0,2τ),

2 t ∈ [2τ,3τ),

and so forth. To determine the state partitions, let

Λ1 = YG1
,
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Λj = YGj
−

j−1
⋃

i=1

Λi, j = 2, . . . , k,

which generate the state space partitions

Ω1 =
{

rP−1
3 y : r ∈R, y ∈Λ1

}

,

Ωi =
{

rP−1
3 y : r �= 0, y ∈Λi

}

, i = 2, . . . , k.

Hence, the aggregated system is

zj+1 =Gizj , zj ∈Ωi,

with z0 = x(0).

From the above preparation, we are ready to implement the pathwise state-

feedback switching law
∧k

i=1 θ
Ωi

i . Take the initial state to be

x(0)= [−0.6918,0.8580,1.2540]T .

Figure 4.17 shows the original state and the aggregated state of the closed-loop

system. It can be seen that the systems converge exponentially with satisfactory

rate.

Fig. 4.17 Original (upper) and aggregated (lower) state trajectories
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The next steps are to verify the robustness of the switching law w.r.t. various

types of perturbations. For this, we take the perturbed matrices to be

Ã1 =

⎡

⎣

0.3915 −0.0680 0.2380

0.1009 −0.2280 −0.2232

0.3729 −0.0422 0.1271

⎤

⎦ ,

Ã2 =

⎡

⎣

−0.1203 0.0172 0.0924

0.1102 −0.4009 −0.0642

−0.2200 −0.0986 0.2473

⎤

⎦ ,

and the unstructural perturbation to be

w(t)= cos
(

sin(t)
)

, t ∈ T0.

As for the switching signal, we assume that the nominal switching signal is per-

turbed in the following way: (i) a delay of d = 0.1 sec occurs at each duration of the

second subsystem in a sample period. That is, the sampling period for the second

subsystem is τ + d instead of τ ; and (ii) the state measurement is inexact in that the

measured state is x̄ = [x1, x2,0.9x3]T for any state x = [x1, x2, x3]T , that is, there is

a ten-percent error in measuring the third state variable. Let σ̄ denote the perturbed

switching signal for the initial state x0. Figures 4.18, 4.20, and 4.19 show the state

motions for the perturbed systems

ẋ(t)= (Aσ(t) + Ãσ(t))x(t),

Fig. 4.18 State trajectory of the structurally perturbed system
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Fig. 4.19 ISS stability of the unstructurally perturbed system

Fig. 4.20 State trajectory with perturbed switching signal
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Fig. 4.21 State trajectory of the mixed-perturbed system

ẋ(t)=Aσ(t)x(t)+w(t),

and

ẋ(t)=Aσ̄ (t)x(t),

respectively. It is clear that the state trajectories are still convergent and bounded,

respectively.

Finally, by putting all the above perturbations together, we have the perturbed

system with three types of perturbations given by

ẋ(t)= (Aσ̄ (t) + Ãσ̄ (t))x(t)+w(t).

Figure 4.21 depicts the state trajectories, which is still input-to-state stable with a

bigger overshoot.

4.6 Notes and References

When the switching signal is a design variable for the switched system, the primary

issues for stability and robustness include (1) establishing stabilizability criteria, or

equivalently, identifying the class of switched systems which could be made sta-

ble by means of suitable switching laws; and (2) stabilizing switching design, or
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equivalently, developing computational algorithms for finding switching laws that

achieve stability and robustness. For both issues, many works have been published

in the literature. The stabilizing switching design problem received a lot of attention

in the literature. In particular, it was found that, when there is a stable linear convex

combination of the subsystems, the switched systems are quadratically stabilizable

[15, 258, 259]. It was also proved that the converse is also true for switched linear

systems with two subsystems [80]. For the class of switched linear systems that ad-

mit stable convex combinations, quite a few stabilizing switching design procedures

have been reported, among which the most notable are the periodic switching design

based on the average approach [250, 257, 258, 267, 277], the state-feedback switch-

ing design based on the Lyapunov method [87, 217, 259], the passivity/dissipativity

approach [281, 282], and the combined switching design to reduce the switching fre-

quency [219, 263, 264]. However, it is well recognized that the existence of a stable

convex combination is too conservative for quadratic stabilizability, not to mention

the general stabilizability which is not necessarily quadratic or even convex [35, 36].

For the robust switching design problem, which is to find switching laws that steer

the switched systems stable and robust in the presence of perturbations and dis-

turbances, there were also some delightful developments. In particular, it has been

revealed that the class of consistently stabilizable switched linear systems is also

robust against small structural perturbations [213, 216], Lyapunov-like techniques

were also utilized to tackle the problem [276], and a comprehensive treatment can

be found in [150, 151].

This chapter presented the state-of-the-art development on stabilizing switching

design. We examined the problems of stabilization by means of time-driven switch-

ing, state-feedback switching, and mixed-driven switching, respectively. In particu-

lar, we show that asymptotic stabilizability is equivalent to the existence of a smooth

switched Lyapunov function, and furthermore, the set of min functions is proven to

be universal in providing switched Lyapunov functions for switched linear systems.

By proposing the pathwise state-feedback switching law, the stabilizing switching

design problem and the robust switching design problem were addressed in a uni-

fied and rigorous framework for both continuous-time and discrete-time switched

systems.

Section 4.2 presented several properties of consistent stabilizability, which is sta-

ble under a time-driven switching signal. The material was mostly taken from [216].

While the periodic switching is not able to generally address the problem of sta-

bilization, recent progress indicates that eventually periodic switching signals are

capable of fully characterizing the problem [16].

In Sect. 4.3, the switched Lyapunov function in Definition 4.8 is an autonomous

function of the state, and the word “switched” here reflects the fact that it needs only

to decrease along the most descendent switching signal. In the literature, the con-

cept of switched Lyapunov functions appeared in [60], which is switching-signal-

dependent and is with a different meaning. The converse Lyapunov theorem for

switched nonlinear system, Theorem 4.10, could be seen as a special case of the

converse Lyapunov theorems established in [58, 198] and [129] for more general

class of dynamical systems. The converse Lyapunov theorem for switched linear
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systems, Theorem 4.12, could be found in [222]. The two counterexamples, Exam-

ples 4.15 and 4.17, are owned to Blanchini and Savorgnan [35, 36]. The composite

quadratic Lyapunov functions have been investigated in [114, 115]. Theorem 4.19

and the supporting material were adopted from [279, 280] for discrete-time systems

and from [192] for continuous-time systems.

The main content of Sects. 4.4 and 4.5 was adopted from [225]. Example 4.27

was taken from [217]. Corollary 4.31 can be found in [218]. Section 4.5.1 and The-

orem 4.49 were adopted from [231, 235].



Chapter 5

Connections and Implications

A notable and attractive feature of a switched dynamical system is its wide con-

nections with many other known types of dynamical systems. As a result, stability

of switched systems has clear implications in stability and robustness analysis for

many well-known system frameworks. In particular, the guaranteed stability under

arbitrary switching can be seen as robustness against the switching signal, which

is an aggregation of the robustness for a nominal plant with structural/unstructural

linear/nonlinear time-invariant/time-variant uncertainties or disturbances. The au-

tonomous stability of piecewise linear systems is closely related to stability analy-

sis of highly nonlinear systems by means of piecewise linear approximation. The

stabilizing switching design methodology provides hybrid control approaches for

controlling and optimizing highly nonlinear systems with possibly unknown param-

eters.

In this chapter, we investigate several typical problems in systems and control

that are closely related with stability of switched linear systems. The problems in-

clude the absolute stability of Lur’e systems, stability of T–S fuzzy systems, con-

sensus of multiagent systems, supervisory adaptive control, and stabilization of con-

trollable systems. By establishing their connections with switching-oriented analy-

sis and design, the ideas and methods developed in the previous chapters can be

applied to the problems either directly or indirectly.

5.1 Absolute Stability for Planar Lur’e Systems

Lur’e systems are closed-loop systems consisting of linear plants and sector-

bounded uncertain output feedbacks. Absolute stability is a problem that looks for

the largest possible sector bounds within which the Lur’e system is globally asymp-

totically stable with respect to all the sector-bounded uncertainties. As a classic

topic of interest, the problem provides a most originating and stimulating source

of motivation for the development of the nonlinear control theory. In Sect. 2.5, we

discussed the connection between the absolute stability of a Lur’e system and the

guaranteed stability of a switched linear system. In this section, by taking advantage

Z. Sun, S.S. Ge, Stability Theory of Switched Dynamical Systems,

Communications and Control Engineering,

DOI 10.1007/978-0-85729-256-8_5, © Springer-Verlag London Limited 2011
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of the connection, we present an algebraic criterion for the guaranteed stability of

planar switched systems and apply the criterion to the problem of absolute stability.

5.1.1 Guaranteed Stability in the Plane

Consider the planar continuous-time two-form switched linear system given by

ẋ =Aσx, (5.1)

where x ∈R2, σ ∈ {1,2}, and A1 and A2 are stable matrices in R2×2.

For a matrix A ∈ R2×2, let detA and tr(A) be the determinant and the trace,

respectively. Furthermore, introduce the notation

disc(A) = tr(A)2 − 4 detA,

Γ (A1,A2) =
1

2

(

tr(A1) tr(A2)− tr(A1A2)
)

,

τi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

tr(Ai )√
|disc(Ai )|

if disc(Ai) �= 0,

tr(Ai )√
|disc(Aj )|

if disc(Ai) = 0 & disc(Aj ) �= 0,

tr(Ai)
2

if disc(A1) = disc(A2) = 0,

ψ =
2τ1τ2

tr(A1) tr(A2)

(

tr(A1A2)−
1

2
tr(A1) tr(A2)

)

,

Δ = 4
(

Γ (A1,A2)
2 − Γ (A1,A1)Γ (A2,A2)

)

,

ηi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

π
2

− arctan
tr(A1) tr(A2)(ψτi+τj )

2τ1τ2

√
Δ

if disc(Ai) < 0,

arctanh 2τ1τ2

√
Δ

tr(A1) tr(A2)(ψτi−τj )
if disc(Ai) > 0,

2
√
Δ

(tr(A1A2)−tr(A1) tr(A2)/2)τi
if disc(Ai) = 0,

̟ =
2Γ (A1,A2)+

√
Δ

2
√

detA1 detA2

eτ1η1+τ2η2 ,

where i = 1,2 and j ∈ {1,2} − {i}. Note that all the above constants are invariant

w.r.t. coordinate transformations. In particular, disc(A) is the discriminant of ma-

trix A, which is defined as the discriminant of its characteristic polynomial. For

matrix A ∈ R2×2, disc(A) ≥ 0 (disc(A) < 0) means that the matrix admits real

(complex) eigenvalues. Observe that τi < 0, i = 1,2, due to the fact that both Ai

are Hurwitz. As a result, we have sgnΓ (A1,A2) = sgn(τ1τ2 −ψ). Finally, observe

that Γ (A,A) = detA and sgnψ = sgn(2 tr(A1A2)− tr(A1) tr(A2)).

Theorem 5.1 For planar switched linear system (5.1), we have the following state-

ments:
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(1) If Γ (A1,A2) <−
√

detA1 detA2, then the system is unstable.

(2) If Γ (A1,A2) = −
√

detA1 detA2, then the system is marginally stable.

(3) If Γ (A1,A2) > −
√

detA1 detA2 and tr(A1A2) > −2
√

detA1 detA2, then the

system is quadratically stable.

(4) Otherwise, the system is stable, marginally stable, and unstable if ̟ < 1,

̟ = 1, and ̟ > 1, respectively.

To prove the theorem, we need some preparations.

Lemma 5.2 If switched linear system (5.1) is (marginally) stable, then, for any

positive real numbers κ1 and κ2, the rescaled switched system

ẋ = Āσx, Āi = κiAi, i = 1,2,

is also (marginally) stable.

Proof As the system is (marginally) stable, it admits a common (weak) Lyapunov

function that decreases along any subsystems. It can be seen that the function is also

a common (weak) Lyapunov function for the rescaled switched system. As a result,

the rescaled system is (marginally) stable. �

Based on the lemma, a normal form for the switched system can be described as

follows.

Lemma 5.3 Suppose that the commutator [A1,A2] is nonsingular. Then, up to a

linear coordinate transformation, exchanging of A1 and A2, and a rescaling ac-

cording to Lemma 5.2, A1 admits the normal form

A1 =
[

τ1 1

sgn(disc(A1)) τ1

]

, (5.2)

and

(1) when det[A1,A2] < 0, there exists a real number F with |F | > 1 such that

F + sgn(disc(A1)disc(A2))
F

= 2ψ , and

A2 =
[

τ2 sgn(disc(A2))/F

F τ2

]

(5.3)

(2) when det[A1,A2] > 0, we have ψ ∈ (−1,1), and

A2 =
[

τ2 +
√

1 −ψ2 ψ

ψ τ2 −
√

1 −ψ2

]

(5.4)

Proof We proceed with the case where det[A1,A2] < 0, and the other case can be

proven in a similar manner.
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Suppose first that both disc(A1) and disc(A2) are negative. Let αi ±
√

−1βi

be the eigenvalues of Ai for i = 1,2, where αi < 0 and βi > 0, i = 1,2. By a

coordinate change, we can put A1 and A2 into normal forms as

A1 =
[

α1 β1

−β1 α1

]

, A2 =
[

α2 −β2/F

β2F α2

]

,

where F is a real number. This corresponds to putting A1 into the normal form and

then rotating the coordinates so that the integral curves of A2 are elliptical spirals

with axes along the x1 and x2 directions. Simple calculation gives

[A1,A2] = β1β2(F − 1/F )

[

1 0

0 −1

]

.

It is clear that det[A1,A2] < 0 implies that F − 1/F > 0. On the other hand, simple

computation yields F + 1/F = 2ψ . It is clear that we can choose F with |F | > 1.

Rescaling Ai by Ai

βi
, i = 1,2, we obtain the normal forms as in (5.2) and (5.3).

Next, suppose that disc(A1)disc(A2) = 0. Up to exchanging A1 and A2, we as-

sume that disc(A1) = 0. By a suitable coordinate change, we have

A1 =
[

α1 1

0 α1

]

, A2 =
[

a b

c d

]

.

It is clear that det[A1,A2] = −c2, which implies that c �= 0. Taking the linear trans-

formation T =
[

1 a−d
2c

0 1

]

, we have

T −1A1T = A1, T −1A2T =
[

a+d
2

disc(A2)
4c

c a+d
2

]

.

If disc(A2) = 0, then 2ψ = c and a+d
2

= τ2, and hence the transformed matrices are

exactly of the normal forms. Otherwise, by further implementing the linear trans-

formation

T̄ =

⎡

⎣

√
2

|disc(A2)|1/4 0

0
|disc(A2)|1/4

√
2

⎤

⎦

and properly re-scaling, we can also obtain the normal forms.

Finally, suppose that max{disc(A1),disc(A2)} > 0 and disc(A1)disc(A2) �= 0.

Up to exchanging A1 and A2, we assume that disc(A1) > 0. By a suitable coordinate

change, we have

A1 =
[

α1 0

0 α2

]

, A2 =
[

a b

c d

]

,

where α1 < α2. Simple computation gives det[A1,A2] = bc(α1 − α2)
2, which im-

plies that bc < 0. By implementing the linear transformation

T =
[

−
√

−b/c
√

−b/c

1 1

]

,
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we have

2
√

disc(A1)
T −1A1T =

[

τ1 1

1 τ1

]

and

2
√

|disc(A2)|
T −1A2T =

[

τ2 sgn(disc(A2))/F

F τ2

]

,

where F satisfies F +sgn(disc(A2))/F = 2ψ . Note that this is exactly of the normal

form. The proof is completed. �

Remark 5.4 The lemma presents normal forms for the case that [A1,A2] is nonsin-

gular. When the commutator [A1,A2] is singular, it is not hard to see that A1 and A2

are simultaneously triangularizable. As a result, the switched system is quadratically

stable when both A1 and A2 are stable (cf. Sect. 2.3.5).

Lemma 5.5 Switched linear system (5.1) is quadratically stable iff for any ω ∈
[0,1], we have

det
(

ωA1 + (1 −ω)A2

)

> 0, det
(

ωA1 + (1 −ω)A−1
2

)

> 0. (5.5)

Proof Suppose first that the switched linear system is quadratically stable, that is,

there is P > 0 such that AT
i P + PAi < 0 for i = 1,2. It follows that A−T

i P +
PA−1

i < 0 [154]. As a result, we have

(

ωA1 + (1 −ω)A2

)T
P + P

(

ωA1 + (1 −ω)A2

)

< 0,

(

ωA1 + (1 −ω)A−1
2

)T
P + P

(

ωA1 + (1 −ω)A−1
2

)

< 0

for any ω ∈ [0,1], which implies (5.5).

When the switched system is not quadratically stable, then either A1A2 or A1A
−1
2

admits (at least) one negative real eigenvalue [206]. We proceed with the case where

A1A
−1
2 admits a negative real eigenvalue, and the other case can be addressed in a

similar way. It can be seen that there is a positive real number μ such that

det
(

μI2 +A1A
−1
2

)

= 0,

which implies that

det(μA2 +A1) = 0.

This violates the first inequality of (5.5). �

Proof of Theorem 5.1 First, assume that Γ (A1,A2) ≤ −
√

detA1 detA2. Taking

ϕ(ω) = det(ωA1 + (1 −ω)A2) as a function of ω in [0,1], we have

ϕ(ω) = ω2 detA1 + 2ω(1 −ω)Γ (A1,A2)+ (1 −ω)2 detA2.
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Straightforward calculation demonstrates that the minimum of the function is

achieved at

ω0 =
detA2 − Γ (A1,A2)

detA1 + detA2 − 2Γ (A1,A2)
∈ (0,1)

with

ϕ(ω0)=
−Δ

4(detA1 + detA2 − Γ (A1,A2))
≤ 0.

In particular, when Γ (A1,A2) <−
√

detA1 detA2, we have ϕ(ω0) < 0, which im-

plies that the matrix ω0A1 + (1 − ω0)A2 admits a positive real eigenvalue, and the

switched system admits an unstable convex combination. As a result, the switched

system is unstable. On the other hand, when Δ = 0, we have ϕ(ω0) = 0. Similar

analysis leads to the conclusion that the switched system is not (asymptotically) sta-

ble. However, it is marginally stable since it admits the following common weak

quadratic Lyapunov function:

V (x) = x2
1 +

(sgn(disc(A1)) sgn(disc(A2))− F 2)2

4F 2(τ1F − τ2 sgn(disc(A1)))2
x2

2 .

This proves Statements (1) and (2).

Next, assume that

Γ (A1,A2) > −
√

detA1 detA2, tr(A1A2) > −2
√

detA1 detA2.

It is clear that Γ (A1,A2) > −
√

detA1 detA2 is equivalent to ψ(ω) > 0 for any

ω ∈ [0,1]. Similar analysis shows that tr(A1A2) > −2
√

detA1 detA2 is equivalent

to det(ωA1 + (1 − ω)A−1
2 ) > 0 for any ω ∈ [0,1]. It follows from Lemma 5.5 that

the switched system is quadratically stable. This proves Statement (3).

Finally, we proceed with the case where Γ (A1,A2) > −
√

detA1 detA2 and

tr(A1A2) ≤ −2
√

detA1 detA2. Note that

tr(A1A2) ≤ −2
√

detA1 detA2,

which implies that

Γ (A1,A2) =
1

2

(

tr(A1) tr(A2)− tr(A1A2)
)

>
√

detA1 detA2.

Therefore, we only need to consider the case where

Γ (A1,A2) >
√

detA1 detA2, tr(A1A2) ≤ −2
√

detA1 detA2.

From the normal form we compute that

tr(A1A2) = 2ψ + 2τ1τ2,

which implies that ψ < 0 and further F < −1. Denote Q(x) = det[A1x,A2x] for

x ∈ R2, and it is clear that the discriminant of Q is exactly Δ. Define Ω = {x ∈ R2 :
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Q(x) = 0}. It follows from the fact Δ > 0 that Ω = D1 ∪ D2, where D1 and D2

are (noncoinciding) lines passing through the origin. For an x ∈ Ω − {0}, we say

that Ω is direct (inverse, respectively) at x if A2x = μA1x for some μ> 0 (μ< 0,

respectively). It is clear that there are real constants μ1 and μ2 such that

A2A
−1
1 A1x = A2x = μiA1x ∀x ∈ Di, i = 1,2.

It follows that both μ1 and μ2 are eigenvalues of matrix A2A
−1
1 . As a result, μ1μ2 =

det(A2A
−1
1 ) = detA2/detA1 > 0. On the other hand, it follows from the fact A−1

1 =
(2τ1I2 −A1)/detA1 that

μ1 +μ2 = tr
(

A2A
−1
1

)

= tr(2τ1A2 −A2A1)/detA1

= Γ (A1,A2)/detA1 > 0,

which implies that both μ1 and μ2 are positive, i.e., Ω is always direct. Furthermore,

we can establish that

det[A1x, x] > 0, det[A2x, x] > 0 ∀x ∈ Ω − {0},

which implies that both A1 and A2 rotate clockwise at Ω .

It is clear that D1 and D2 divide the state space into four cones, and within

a cone the sign of Q(x) keeps unchanged. Note that, from an initial state, the

most stabilizing/destabilizing phase portrait (along all possible switching signals)

is achieved when switches occur at Ω . To be more precise, from a nonzero ini-

tial state x0, the most destabilizing state trajectory, denoted by φ∗(t, x0), is that

φ̇∗(t, x0) = Aiφ
∗(t, x0) forms the smaller angle with the exiting radial direction

than the other at any nonswitching time t . Note that the most destabilizing trajectory

rotates clockwise in the phase plane, and the switched system is stable iff the trajec-

tory is convergent (to the origin). Now take an initial state x0 ∈ D1, and let t∗ be the

least (positive) time that x1 = φ∗(t∗, x0) ∈ D1. Denote the ratio R = |x1|
|x0| . Then the

switched system is stable (marginal stable, unstable) iff R < 1 (R = 1, R > 1, re-

spectively). Tedious but straightforward analysis based on the normal forms shows

that R is exactly ̟ , and the conclusion follows. �

5.1.2 Application to Absolute Stability of Planar Lur’e Systems

A typical Lur’e system consists of a linear plant with an output feedback whose

gain is sector-bounded. Suppose that the planar linear plant is both controllable and

stable and is described by

ẋ = Ax + bu =
[

0 1

−α1 −α2

][

x1

x2

]

+
[

0

1

]

u,

y = cx = [c1 c2]
[

x1

x2

]

,

(5.6)
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where α1 and α2 are positive real numbers. For a positive real number k, the system

is said to be [0, k)-absolutely stable if the system is globally asymptotically stable

under any (continuous) time-varying nonlinear output feedback law u= κ(y, t) with

0 ≤ κ(y, t)y < ky2. The problem of absolute stability is to determine the largest

possible number k∗ such that the system is [0, k)-absolutely stable for any k < k∗.

If the system is [0, k)-absolutely stable for any k, then let k∗ = +∞.

Note that the absolute stability implies that, for any k ∈ [0, k∗), the switched

system with subsystems A1 = A and A2 = A + kbc is guaranteed asymptotically

stable. The converse is also true. Therefore, the stability criterion presented in the

previous subsection applies. To this end, observe that

A+ bkc =
[

0 1

−α1 + kc1 −α2 + kc2

]

,

which is also of the companion form. Let k∗
1 = supk{kc1 ≤ α1, kc2 ≤ α2}. It

is clear that k∗ ≤ k∗
1 . Another observation is that, for any k ≤ k∗

1 , we have

Γ (A,A + kbc) ≥ 0. According to Theorem 5.1, if k∗ < +∞, it should satisfy the

relationships

tr
(

A(A+ k∗bc)
)

≤ −2
√

detAdet(A+ k∗bc), ̟ = 1. (5.7)

Take the equation

tr
(

A(A+ kbc)
)2 = 4 detAdet(A+ kbc), (5.8)

where k is a variable to be determined. A solution of the equation is a root of a

second-order polynomial, and it admits an analytical expression. Denote the two

solutions to be k2
1 and k2

2 . If the numbers are real, then there is at most one k2
i

satisfying

k2
i ∈ (0, k∗

1 ], tr
(

A
(

A+ k2
i bc
))

< 0.

In this case, let k∗
2 = k2

i . Otherwise, let k∗
2 = k∗

1 . It follows from Theorem 5.1 that

the Lur’e system is [0, k∗
2)-absolutely stable. As a result, k∗ ≥ k∗

2 . In the case where

k∗
1 = k∗

2 , we have k∗ = k∗
1 , and the problem is solved.

When k∗
1 > k∗

2 , we are to determine the k∗ such that the corresponding ̟ is equal

to one. As ̟ relies on k in a highly nonlinear manner, we propose a computational

searching procedure for finding k∗. As an initiation, substitute k∗
1 into a very large

number (in the computational sense) when k∗
1 = +∞ and verify whether or not k∗

i ,

i ∈ {1,2}, corresponds to unit ̟ . If so, set k∗ := k∗
i , and the procedure is terminated.

Otherwise, set ki := k∗
i , i = 1,2, and go to the recursive steps described in the

following.

Set k :=
√
k1k2 and compute the corresponding ̟ . If ̟ = 1, then set k∗ := k

and terminate. Else if ̟ < 1, then set k1 := k. Otherwise, set k2 := k. Repeat the

process.

Note that in the above procedure, ̟ = 1 should be understood to be ̟ ∈ (1 − ǫ,
1

1−ǫ
), where ǫ > 0 is a small number fixed in advance.
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Fig. 5.1 Most destabilizing phase portrait

Example 5.6 Assume that

α1 = α2 = 1, c1 =−3, c2 =−1.

It is clear that A + kbc is stable for any k ≥ 0, and we have k∗
1 = +∞. Solving

equation (5.8) gives k = 1±
√

7/2. Further verification shows that k∗
2 = 1+

√
7/2 ≈

2.3229. Applying the above computational procedure (with k∗
1 = 1e + 10 and ǫ =

1e − 8), we obtain k∗ = 36.5031. Figure 5.1 depicts the most destabilizing phase

trajectory of the switched system with A and A + k∗bc being the subsystems. It is

clear that the trajectory is periodic. The switching surfaces (the dashed lines) are

also depicted in the figure.

5.2 Adaptive Control via Supervisory Switching

For a control system with relatively small uncertainties or disturbances, it is possible

to design a robust (single) controller that renders the uncertain system working well.

However, when the uncertainties are of large scale, a robust controller might not ex-

ist, and usually the methodology of adaptive control has to be sought. By the well-

known Astrom–Wittenmark textbook [12], an adaptive controller is “a controller
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that can modify its behavior in response to changes in the dynamics of the plant

and the character of the disturbances”. The classical adaptive control theory seeks a

parameterized controller where the parameter is taking value over a continuum, and

a controller is chosen based on the online estimate of the parameter and the princi-

ple of certainty equivalence. While effective when the parameter enters linearly and

the parameter set is convex, the classical approach faces severe limitations when the

unknown parameter enters the plant in nonlinear/nonconvex ways. To overcome the

inherent difficulties, an alternative approach known as supervisory adaptive control

appeared since the 1980s. A primary difference between this approach and the clas-

sical approach lies in the mechanism of controller selection, which is logic-based

switching in the supervisory control rather than continuous tuning in the classical

approach. The key idea behind the approach is to incorporate, besides the plant and

the parameterized controller, a “high-level” supervisor that coordinates the switch-

ing among the candidate controllers in the way that an optimal controller is finally

switched on so that a satisfactory performance is achieved. For this, a monitoring

signal is designed based on the measured input/output data, and the switching sig-

nal is chosen to minimize the monitoring signal. In this way, suitable design of the

monitoring signal is a crucial step toward the supervisory switching adaptive control

diagram.

5.2.1 Preliminaries

Consider a single-input single-output plant with an unknown (but fixed) parameter

described by

ŷ(s)= g(λ, s)û(s), (5.9)

where λ ∈ Λ, which is a compact subset of an Euclidean space, g(λ, s) =
αλ(s)/βλ(s) is a strictly proper transfer function for each λ, βλ is monic, αλ and

βλ are coprime, and g(λ, s) depends continuously on λ in the sense that the coeffi-

cients of polynomials αλ and βλ depend continuously on λ. The plant with transfer

function g(λ, s) is denoted by Pλ. We denote by λ∗ the (unknown) true parameter,

and P λ∗
(or P in short) the true plant.

We are to address the problem of adaptive stabilization within the supervisory

adaptive control scheme. To this end, we need a feasibility assumption as follows.

Assumption 5.1 For each λ ∈ Λ, a stabilizing controller Cλ exists for process Pλ.

Note that, when controller Cλ stabilizes plant Pλ, it also stabilizes any plant Pμ

when μ is sufficiently close to λ. This, together with the facts of continuous de-

pendence of λ in Pλ and compactness of Λ, implies the existence of a finite set of

parameters {λ1, . . . , λk} and a related set of stabilizing controllers {C1, . . . ,Ck} such

that
⋃k

i=1 Λ
i = Λ, where Λi = {λ ∈ Λ : Ci stabilizes Pλ}.
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Next, we present a constructive way of determining a finite set of stabilizing con-

trollers. For a plant P and a controller C, let T(P,C) be the closed-loop generalized

sensitivity transfer function matrix defined by [254],

T(P,C)= 1

1−CP

[

−PC P

−C 1

]

.

For each λ ∈Λ, we can find a stabilizing controller Cλ for plant Pλ such that

∥

∥T(Pλ,Cλ)
∥

∥

∞ =
1

√

1 − ‖ αλ
βλ

‖2
H

, (5.10)

where ‖ · ‖∞ denotes the H∞ norm, and ‖ · ‖H the Hankel norm. On the other hand,

controller Cλ stabilizes any plant with transfer function α(s)/β(s) when

∥

∥

∥

∥

αλ − α

βλ − β

∥

∥

∥

∥

∞

∥

∥T(Pλ,Cλ)
∥

∥

∞ < 1.

Fix sufficiently small positive real numbers ǫ and δ.

Procedure for Calculating a Finite Set of Stabilizing Controllers

(1) Grid the parametric set Λ into Υ = {λ1, . . . , λk} uniformly distributed with ra-

dius δ.

(2) For each λ ∈ Υ , calculate controller Cλ that satisfies (5.10) and estimate the

parametric subset

Λλ ⊆
{

μ ∈ Rp :
∥

∥

∥

∥

αμ − αλ

βμ − βλ

∥

∥

∥

∥

∞
≤ (1 − ǫ)

√

1 −
∥

∥

∥

∥

αλ

βλ

∥

∥

∥

∥

2

H

}

.

(3) Verify the coverage Λ ⊆
⋃

λ∈Υ Λλ. If yes, go to Step (4). Otherwise, set

δ := δ/2, and go back to Step (1).

(4) Prune Υ as long as coverage is kept.

In the above procedure, the major computational load is the estimate of the para-

metric subset in Step (2) and the coverage verification in Step (3). Due to the con-

tinuous dependence of the process on the parameter, the parametric subset admits

nonempty interior; hence it is possible to approximate the set by means of a (con-

vex) polyhedron. In this case, the coverage verification can be made by means of

numerical softwares such as MATLAB GBT Toolbox [252].

In the sequel, we assume that the procedure is carried out successfully,

which returns a finite parametric set {λ1, . . . , λk}, the corresponding controller

set {Cλ1
, . . . ,Cλk }, and stabilizing region set {Λλ1, . . . ,Λλk } with Λ ⊆

⋃k
i=1 Λ

λi .

Each process Pλi is said to be a nominal model that represents a family of systems

Pλ : λ ∈ Λλi . The stabilizing controller set {Cλ1
, . . . ,Cλk } is said to be the candidate

controllers for the plant. For notational convenience, redenote Pλi by Pi , Λ
λi by Λi ,

and Cλi by Ci for i = 1, . . . , k.
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Fig. 5.2 Supervisory switching diagram

5.2.2 Estimator-based Supervisory Switching

As we are to find a supervisor that coordinates the switching among the candidate

controllers such that the closed-loop system is stable, we need to design a switch-

ing law based on measured input/output data. Heuristically, if the plant parameter

λ∗ is known to belong to a parametric subset Λi∗ , setting the switching signal to

constant i∗ could achieve the desired performance. However, as the plant parameter

is unknown, we have to introduce a “monitoring signal” based on measured data

and then design a monitoring-signal-driven switching law. For this, we incorporate

a multiestimator whose outputs are signals yi , i ∈ {1, . . . , k}. When the right (i∗th)

controller is switched into the loop yi∗ would asymptotically converge to y, the plant

output. The estimation errors ei = yi − y are a key in producing the monitoring sig-

nal in a suitable manner.

To summarize, the supervisory switching scheme consists of (1) a multiestimator

E with input (u, y) and outputs yi , i ∈ {1, . . . , k}; (2) a monitoring signal generator

M with inputs ei and outputs μi called monitoring signals; and (3) a switching logic

S with inputs μi and output σ . The system diagram is shown in Fig. 5.2.

First, for every i ∈ {1, . . . , k}, let

ẋC = AC
i xC + bCi y,

u = hixC + riy
(5.11)
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be a realization of controller Ci , all sharing the same state xC , where AC
i is stable,

and

ẋE =AExE + bEy + dEu,

yi = cixE
(5.12)

be a realization of the estimators, all sharing the same state xE . Note that AE, bE ,

and dE can be chosen to be parameter-independent with AE stable. By defining the

composite state x =
[ xE
xC

]

, we have the system equations

ẋ =Aσx + dσ eσ ,

y = [ci∗ 0]x − ei∗ ,

u= fσx + gσ ei∗ ,

(5.13)

where σ ∈ {1, . . . , k} is the switching signal, eσ = yσ − y is the estimation error,

and

Ai =
[

AE + (bE + dEri)ci dEhi
bCi ci AC

i

]

,

di = −
[

bE + dEri
bCi

]

,

fi = [rici hi],

gi = −ri, i = 1, . . . , k.

As Ci stabilizes Pi for each i = 1, . . . , k, there exists a positive real number λ0 such

that all eigenvalues of Ai ’s are on the left of the vertical line s = −λ0 on the complex

plane. On the other hand, as Ci∗ robustly stabilizes the plant set {Pλ : λ ∈ Λi∗}, the

error ei∗ converges exponentially when the “right” controller is switched onto the

loop. This means the existence of a positive real number λ1 such that

∣

∣ei∗(t)
∣

∣≤ ϑ1e
−λt (5.14)

for any λ < λ1, where ϑ1 is a constant relying on the initial condition. This further

implies that

∫ t

0

e2λτ e2
i∗(τ ) dτ ≤ ϑ2 (5.15)

for any λ < λ1, where ϑ2 is a constant relying on the initial condition. Fix a λ < λ0

such that both (5.14) and (5.15) hold.

Then, define the monitoring signal to be

μi(t) =
∫ t

0

e2
i (τ ) dτ + ǫi, (5.16)
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where ǫi , i = 1, . . . , k are positive real numbers. Note that the monitoring signal is

a solution of the differential equation

μ̇i(t)= e2
i (t), μi(0)= ǫi .

It is clear that the monitoring signal is the L2 performance w.r.t. the (virtue) out-

put error and is strictly increasing and positively lower bounded. Constants ǫi ,

i = 1, . . . , k, are decided by the designer according to the prior experience which

measure the possibility that the ith controller stabilizes the true plant, or otherwise

arbitrarily chosen.

Next, fix a hysteresis factor h > 0 and define the switching signal recursively by

tj+1 =min
{

t > tj : (1+ h)min
{

μ1(t), . . . ,μk(t)
}

≤ μσ(tj )(t)
}

,

σ (tj+1)= arg min
{

μ1(tj+1), . . . ,μk(tj+1)
}

(5.17)

for j = 0,1,2, . . . , where initially t0 = 0 and σ(t0) = arg min{ǫ1, . . . , ǫk}. When

there are two or more indices achieving the minimum, just choose one arbitrarily.

It is clear that the switching law is scale-independent in the sense that, when the

monitoring signal is scaled by Θ(t) with Θ a positive function, the switching signal

will keep unchanged.

Finally, we briefly analyze the system performance for the supervised uncertain

system. For this, we need a technical lemma as follows.

Lemma 5.7 For any t > 0, the number of switches Nt within [0, t) is upper bounded

by

Nt ≤ 1+ k+ k

ln(1+ h)
ln

(

μi∗(t)

minj ǫj

)

. (5.18)

Proof Let (t0, i0), . . . , (tNt , iNt ) be the switching sequence in [0, t). Denote

tNt+1 = t . From the switching law we have

μil (t) ≤ (1 + h)μj (t) ∀l = 0, . . . ,Nt , j = 1, . . . , k, t ∈ [tl, tl+1], (5.19)

and

μil (tl) ≤ μj (tl) ∀l = 0, . . . ,Nt .

In particular, it follows from (5.19) that

μil (tl+1) ≤ (1 + h)μil+1
(tl+1) ∀l = 0, . . . ,Nt − 1.

Let s be the most frequently appeared index in the set {i0, . . . , iNt }. It is clear that

there exist a natural number ν ≥ ⌈(Nt − 1)/k⌉ and integers 0 ≤ κ1 < κ2 < · · · <
κν <Nt such that iκj = s for j = 1, . . . , ν. When ν ≤ 1, inequality (5.18) is trivially
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true. Suppose that ν ≥ 2; then we have

(1 + h)μs(tκj ) ≤ (1 + h)μiκj+1
(tκj ) ≤ (1 + h)μiκj+1

(tκj+1)

= μs(tκj+1) ≤ μs(tκj+1
) ∀j = 1, . . . , ν − 1,

where the relationship tκj+1 ≤ tκj+1
and the monotonicity of μj ’s have been utilized.

As a result, we have

μi∗(t) ≥ μi∗(tκν ) ≥ μs(tκν ) ≥ (1 + h)ν−1μs(tκ1
)

≥ (1 + h)ν−1μs(t0) ≥ (1 + h)ν−1 min
j

ǫj ,

which implies that

ν ≤ 1 +
1

ln(1 + h)
ln

(

μi∗(t)

minj ǫj

)

.

As Nt ≤ kν + 1, inequality (5.18) follows. �

It follows from the lemma and inequality (5.15) that

Nt ≤ 1 + k +
k

ln(1 + h)
ln

(

ϑ2 + ǫi∗

mini ǫi

)

,

which is a finite number independent of t . As a result, there exist an index j∗ and a

time T ∗ such that σ(t) = j∗ for t ≥ T ∗. By the switching law, we have

μj∗(t) ≤ (1 + h)μi∗(t) ≤ (1 + h)(ϑ2 + ǫi∗),

which means that ej∗ ∈ L2. As Aj∗ is stable and ei∗ ∈ L2, it follows from relation-

ship (5.13) that y → 0, and all other signals are bounded.

To summarize, we have the following conclusion.

Theorem 5.8 All the signals in the closed-loop system remain bounded for any

initial conditions, and y(t) → 0 as t → +∞.

Remark 5.9 As in the traditional adaptive scheme, the identified parameter j∗ is not

necessarily the “true parameter” i∗. In general, as we do not exclude the possibil-

ity that more than one candidate controller stabilizes the true plant, the identified

parameter may be initial-condition dependent. Another observation is that, though

the supervisor can coordinate the switching to a final (stabilizing) controller in a

finite time, it cannot prevent a destabilizing controller from connecting to the loop

more than one time. This means that the switching frequency may be high during

the identifying process, which may worsen the transient performance as switching

itself is usually undesirable.
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5.2.3 An Example

Let the set of plants be

Pλ : g(λ, s)= λ(s − 1)

(s + 1)(s − 2)
, λ ∈Λ= [1,40]. (5.20)

It is clear that all the plants are unstable and nonminimum phase systems. The large

parameter uncertainty excludes the possibility to design a single, fixed-parameter

linear controller that regulates the system in a satisfactory way.

It follows from the standard frequency domain theory that, for any fixed λ ∈Λ,

a stabilizing controller can be chosen to be

Cλ = λ−1 448s2 + 450s − 18

31s(s − 9)
.

As the unknown parameter is a scalar multiplicative gain in the system, we take

λj = γ j−1 for j = 1, . . . , k, where γ > 1 should be chosen such that Λλj covers

the interval [ λj√
γ
,
√
γ λj ] for any j = 1, . . . , k, which is confirmative if

∥

∥

∥

∥

αγ − α1

βγ − β1

∥

∥

∥

∥

∞

∥

∥T(P1,C1)
∥

∥

∞ < 1.

Simple calculation shows that γ = 1.2 satisfies the requirement. As a result, we can

choose k = 21 and

λj = 1.2j−1, j = 1, . . . , k.

This corresponds to 21 candidate controllers Cj with Cj = 1.21−j 448s2+450s−18
31s(s−9)

,

j = 1, . . . ,21. For any j = 1, . . . ,21, the controller Cj stabilizes the set of plants

Pλ with λ ∈ [ 1√
1.2

λj ,
√

1.2λj ].
Next, we construct a supervisor that coordinates the switching among the candi-

date controllers. For this, note that the j th estimator can be chosen as

ẋE =
[

0 1

−1 −2

]

xE +
[

1

−3

]

y +
[

3

−3

]

u,

yj = [λj 0]xE,

and the j th controller can be realized by

ẋC =
[

9 1

0 0

]

xC +

⎡

⎣

144.5806
λj

− 0.5806
λj

⎤

⎦y,

u = [1 0]xC + 14.4516y.
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Fig. 5.3 The closed-loop state trajectories

Fig. 5.4 The input and output trajectories
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Fig. 5.5 The switching signal

To proceed with simulation, assume that the true parameter is 4 and that the true

plant can be realized by

ẋP =
[

0 1

−1 −2

]

xP +
[

1

−3

]

y +
[

3

−3

]

u,

y = [4 0]xP .

In addition, the factor h in the switching law (5.17) is set to be h= 0.1.

Let the initial state of the true plant be xP (0)= [1,−1]T , and both the candidate

controller and the estimator be initially at the origin. Suppose that the first candidate

controller is connected into the loop initially, that is, σ(0)= 1. Figures 5.3 and 5.4

depict the closed-loop state and input–output trajectories, respectively. These exhibit

satisfactory closed-loop performance, though the convergence rate is quite low due

to the fact that Ai∗ has an eigenvalue at −0.0825, which is very close to the imag-

inary axis. The switching signal is shown in Fig. 5.5, which identifies the “right”

controllers via 5 switches in 1 sec. It is interesting to note that, before the final

identification of the right controller, the controller had been connected to the loop

but disconnected after a while. This indicates that the switching mechanism fails

to identify the right controller even if it is connected to the loop. Furthermore, we

set the right controller initially, i.e., σ(0) = i∗ = 9, and carry out the simulation

again. The switching signal in Fig. 5.6 exhibits that the finally identified controller
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Fig. 5.6 The input–output and switching signals

is not the “right” controller. This is not surprising due to the fact that the identified

controller is a stabilizing controller for the true plant.

5.3 Stability Analysis of Fuzzy Systems via Piecewise Switching

Fuzzy systems and fuzzy logic control have gained much attention due to their

wide applications to many areas including machine intelligence, signal processing,

and management, to list a few. As an alternative of the conventional control de-

sign methodologies, fuzzy control is powerful in dealing with nonlinear dynamical

systems. However, the development of systematic methods for analysis and con-

trol of fuzzy systems has proven to be very hard. In particular, quadratic stability

analysis leads usually to conservativeness, and nonquadratic analysis may result in

intractable computational burden.

In this section, we examine a special yet typical class of fuzzy systems, which

was known to be linear Takagi–Sugeno systems or the T–S fuzzy model in short.

A forced-free T–S system is described by a set of rules in the form

Rl : IF z1 is F l
1 AND · · · AND zs is F l

s ,

THEN x(t + 1)=Alx(t)+ al, (5.21)
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where Rl denotes the lth fuzzy inference rule, l ∈ M = {1, . . . ,m}, F l
i , l =

1, . . . ,m, i = 1, . . . , s, are fuzzy sets, x(t) ∈ Rn is the state, zi , i = 1, . . . , s, are

measurable variables of the system, and (Al, al) is the lth local model. By the stan-

dard fuzzy inference, the inferred system can be written as

x(t + 1)=A
(

μ(x)
)

x(t)+ a
(

μ(x)
)

, (5.22)

where

A(μ)=
m
∑

l=1

μlAl, a(μ)=
m
∑

l=1

μlal

with μl =
∏s

i=1 F
l
i

∑m
j=1

∏s
i=1 F

j
i

. It is clear that μl ≥ 0 for l ∈ M and that
∑

l∈M μl = 1.

Therefore, A(μ) is always a convex combination of the matrices A1, . . . ,Am. When

the affine term vanishes, andA1, . . . ,Am admit a common quadratic Lyapunov func-

tion, the fuzzy system is globally exponentially stable. While simple, the idea may

lead to very conservative criteria. Indeed, as the membership functions are state

dependent, the common Lyapunov function approach does not utilize this useful in-

formation. To tackle this problem, we introduce a general framework of piecewise

switched linear systems and conduct stability analysis for the systems. The approach

is then applied to stability of T–S systems.

5.3.1 Piecewise Switched Linear Systems

Piecewise switched linear systems are piecewise dynamical systems with switched

linear systems as local dynamics. Such a system may represent, for instance, a non-

linear process where approximate linearization is taken at different operating points,

and the approximate error and other perturbations are taken into account as pa-

rameter/structural uncertainties. From a system framework’s perspective, piecewise

switched linear systems extend both switched linear systems and piecewise linear

systems.

A discrete-time piecewise switched linear system can be described by

x(t + 1)=Ai,σix(t)+ ai,σi for x(t) ∈ Ωi, (5.23)

where x(t) ∈ Rn is the state, Ω1, . . . ,Ωk are convex polyhedra with the union be-

ing the state space, σi ∈ {1, . . . ,mi}, i = 1, . . . , k, and Ai,j ∈ Rn×n and ai,j ∈ Rn,

j = 1, . . . ,mi, i = 1, . . . , k, are real constant matrices and vectors, respectively. For

treatment convenience, the system can be restated to be

x̄(t + 1) = Āi,σi x̄(t) for x(t) ∈ Ωi,

where Āi,j =
[Ai,j ai,j

0 1

]

, j = 1, . . . ,mi, i = 1, . . . , k, and x̄ =
[ x

1

]

.
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We assume that the system is well defined in the sense that a unique solution

exists and extends to infinity in time for any initial condition and switching signal.

While several stabilities can be defined for the system under various switching

mechanisms, here we focus on the (guaranteed) global exponential stability which

means that any state trajectory exponentially converges to the origin under arbitrary

switching.

Take the Lyapunov candidate as

V (x)= xT Pi(x)x + 2qi(x)x + ri(x)= x̄T P̄i(x)x̄, x ∈Ωi, (5.24)

where P̄i =
[

Pi q
T
i

qi ri

]

. When 0 ∈Ωi , we require that qi = 0 and ri = 0, which means

that V (x)= xT Pi(x)x for x ∈Ωi . Assume that V (x) is continuous in each Ωi , i =
1, . . . , k. Note that we do not impose the continuity of V (x) over the cell boundaries.

Proposition 5.10 The piecewise switched linear system is globally exponentially

stable if there is a Lyapunov candidate V as in (5.24) satisfying

(1) for any i = 1, . . . , k, there exist positive real numbers αi and βi such that

αix
T x ≤ V (x)≤ βix

T x ∀x ∈ Ωi (5.25)

(2) for any i = 1, . . . , k, there exists a positive real number γi such that

x̄T ĀT
i,j P̄l(Ai,jx)Āi,j x̄ − x̄T P̄i(x)x̄ ≤ −γix

T x

∀x ∈ Ωi, j = 1, . . . ,mi, (5.26)

where l = arg{μ : Ai,jx ∈ Ωμ}

Proof The proof is straightforward. Indeed, let

α = min
i

αi, β = max
i

βi, γ = min
i

γi .

Taking an arbitrarily given state trajectory x(t), t = 0,1,2, . . . , it can be seen from

Item (2) that

V
(

x(t + 1)
)

≤
(

1 −
γ

β

)

V
(

x(t)
)

∀t = 0,1,2, . . . ,

which, together with Item (1), implies that

∣

∣x(t)
∣

∣≤
√

β

α

(

1 −
γ

β

)t/2
∣

∣x(0)
∣

∣ ∀t = 0,1,2, . . . .
�

Remark 5.11 Note that x̄T P̄i(x)x̄ is a common Lyapunov function for Āi,j , j =
1, . . . ,mi over the cell Ωi . When P̄i(x) = P̄i is a constant matrix, the subsystems of

the ith local model admit a common quadratic Lyapunov function. When the sub-

systems do not admit such a common Lyapunov function, we could seek piecewise
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quadratic ones instead. To verify the proposition, we need to examine one-step cell

transitions of the state, that is, to determine the indices of the cells that Ai,jx belong

to for any x ∈Ωi, j = 1, . . . ,mi, i = 1, . . . , k.

To search a qualified Lyapunov candidate that satisfies inequality (5.25), we take

the parameterization in terms of polyhedral cell bounding, as presented in Sect. 3.3.

Proposition 5.12 Suppose that Ēi = [Ei, ei], i = 1, . . . , k, are polyhedral cell

bounding matrices. The piecewise switched linear system is globally exponentially

stable if there exist symmetric matrices P̄1, . . . , P̄k satisfying

(1) for any i = 1, . . . , k, there exists a matrix Wi with positive real entries such that

P̄i − ĒT
i WiĒi > 0 (5.27)

(2) for any i = 1, . . . , k, there exists a positive real number γi such that

x̄T ĀT
i,j P̄lĀi,j x̄ − x̄T P̄i x̄ ≤−γix

T x

∀x ∈ Ωi, j = 1, . . . ,mi, (5.28)

where l = arg{μ : Ai,jx ∈ Ωμ}

The proposition could be proven by simply combining Proposition 5.10 with

Theorem 3.23. The details are omitted.

Remark 5.13 The above criteria are much less conservative than the existence of a

common quadratic Lyapunov function, and they could be verified by means of linear

matrix inequalities. However, to find qualified piecewise quadratic Lyapunov func-

tions, we usually need to further partition the cells, which makes the computation

inefficient for higher-dimensional systems.

5.3.2 Stability Analysis of T–S Fuzzy Systems

A T–S fuzzy system (5.22) can be aggregated into a piecewise switched linear sys-

tem in a clear manner. Indeed, suppose that Ω1, . . . ,Ωk partition the state space.

Define

ζi =
{

j : ∃x ∈ Ωi s.t. μj (x) > 0
}

, i = 1, . . . , k,

that is, ζi is the set of indices of the normalized membership functions that do not

vanish in the region Ωi . Let mi be the cardinality of the set ζi , and denote the

corresponding set of subsystem matrices by Ai,1, . . . ,Ai,mi
and the affine terms

by ai,1, . . . , ai,mi
, respectively. The corresponding piecewise switched linear sys-

tem (5.23) is said to be the aggregated system w.r.t. partition {Ω1, . . . ,Ωk}.
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Lemma 5.14 Suppose that Ω1, . . . ,Ωk partition the state space. T–S fuzzy sys-

tem (5.22) is globally exponentially stable if its aggregated system is globally expo-

nentially stable.

While simple and straightforward, the lemma provides a general approach for

verifying the stability of a T–S fuzzy system. By appropriately choosing the state

partition, the approach may lead to less conservative stability criteria. For this, we

need to find a minimum partition {Ω∗
1 , . . . ,Ω

∗
k∗} in the sense that, for any l and j ,

either μl(x) �= 0 ∀x ∈ Ω∗
j or μl(x) ≡ 0 in Ω∗

j . A minimum partition can be cal-

culated from the supporting sets of the normalized membership functions. In fact,

denote Υi = {x : μi(x) > 0} for i = 1, . . . ,m and by Υ c
i the complement to Υi .

Then, each Ω∗
i is exactly an intersection of some Υi ’s and Υ c

i ’s. In particular, in the

regions where μl = 1 for some l, all other membership functions are equal to zero.

We will call such a region an operating regime. In between operating regimes, there

are regions where 0 <μl < 1, and these regions are called interpolation regimes.

Example 5.15 Suppose that a T–S fuzzy system is with local modes

A1 =
[

−0.9425 0.4308

0.2132 0.2615

]

, a1 =
[

−0.4111

0.6656

]

,

A2 =
[

−0.2821 −0.6661

0.7458 0.9664

]

, a2 =
[

0

0

]

,

A3 =
[

0.1133 0.9112

0.2925 −1.5132

]

, a3 =
[

−1.1257

0.9847

]

,

and normalized membership functions are scheduled by variable x1 as

μ1(x1) =

⎧

⎪

⎨

⎪

⎩

1 if x1 ≤ −5,

(x1 + 3)/2 if − 5 < x1 ≤ −3,

0 otherwise,

μ2(x1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if x1 ≤ −5,

(5 + x1)/2 if − 5 < x1 ≤ −3,

1 if − 3 < x1 ≤ 1,

2 − x1 if 1 ≤ x1 < 2,

0 otherwise,

μ3(x1) =

⎧

⎪

⎨

⎪

⎩

0 if x1 ≤ 1,

x1 − 1 if 1 < x1 ≤ 2,

1 otherwise.

By partitioning the state space into five regions as shown in Fig. 5.7, the fuzzy

systems can be aggregated into a piecewise switched linear system, where Ω1, Ω3,
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Fig. 5.7 The membership functions and state partitions

Ω5 are related to single local modes (A1, a1), A2, and (A3, a3), respectively, while

Ω2 and Ω4 are related to mode pairs {(A1, a1),A2} and {A2, (A3, a3)}, respectively.

By searching piecewise quadratic Lyapunov functions in form (5.24) that verify

Proposition 5.10, we obtain

P1 = P2 =
[

1.0934 0.0216

0.0216 0.8491

]

, q1 = q2 = [0.6570, 0.7234],

r1 = r2 = 1.3152,

P3 =
[

3.4437 1.3694

1.3694 2.3554

]

, q3 = [0, 0], r3 = 0,

P4 = P5 =
[

5.9608 2.4491

2.4491 1.8491

]

, q4 = q5 = [−1.7496, 0.5635],

r4 = r5 = 3.7524.

By Lemma 5.14, the fuzzy system is globally asymptotically stable. The level sets

of the Lyapunov functions and the sample phase portrait are depicted in Fig. 5.8. It

is clear that the Lyapunov function is not continuous over the region boundaries.
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Fig. 5.8 A sample phase portrait with level sets

5.4 Consensus of Multiagent Systems with Proximity Graphs

5.4.1 Introduction

A multiagent system is a collection of physical or virtual entities, each with the

abilities of acting and perceiving the environment (possibly in a partial manner) and

communicating with others. A typical example is a school of migrating birds that

stay together, coordinate turns, and avoid collision with obstacles. A bird is capable

of adjusting its speed and flying toward the center of the flock within its sight. The

motion of an individual bird can be mathematically described by

ẋi(t)=
∑

j∈Ni(t)

(

xj (t)− xi(t)
)

,

where i is the bird’s label, xi is the physical state (w.r.t. a fixed coordinate), and Ni

is a neighbor set of the bird, i.e., the set of birds within its sight. Let ri be the sight

radius of the bird. Then, the neighbor set is

Ni =
{

j �= i : |xj − xi | ≤ ri
}

.
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Suppose that there are m agents in the flocking system and that the agents are

with a uniform radius of perception, i.e., ri = r for all i = 1, . . . ,m. The multiagent

system is thus represented by

ẋi(t)=
∑

|xj (t)−xi (t)|≤r

(

xj (t)− xi(t)
)

, i = 1, . . . ,m, (5.29)

where xi ∈ Rn, i = 1, . . . ,m. Note that the system is exactly a piecewise linear

system where the switching surfaces are the hyperplanes

Hi,j =
{[

xT1 , . . . , x
T
m

]T ∈Rmn : |xi − xj | = r
}

, i �= j

and their intersections. For any fixed x = [xT1 , . . . , xTm]T ∈ Rmn, there corresponds

a sequence of neighbor sets N x
1 , . . . ,N x

m with

N x
i =
{

j �= i : |xj − xi | ≤ r
}

, i = 1, . . . ,m.

Define

Ω(x) =
{

y ∈ Rmn : N
y
i = N x

i , i = 1, . . . ,m
}

and

Λ(x) =

⎡

⎢

⎣

Λ11(x) . . . Λ1m(x)

. . .

Λm1(x) . . . Λmm(x)

⎤

⎥

⎦
,

where

Λij (x) =

⎧

⎪

⎨

⎪

⎩

In if j ∈ N x
i ,

−|N x
i |In if j = i,

0n×n otherwise,

and |N x
i | is the cardinality of the set N x

i . It is clear that we can reexpress the system

equations as

ẋ = Λ(x)x =
(

A(x)⊗ In
)

x, (5.30)

where

A(x) =

⎡

⎢

⎣

A11(x) . . . A1m(x)

. . .

Am1(x) . . . Amm(x)

⎤

⎥

⎦
, Aij (x) =

⎧

⎪

⎨

⎪

⎩

1 if j ∈ N x
i ,

−|N x
i | if j = i,

0 otherwise.

Note the following equivalencies:

(

N x
1 , . . . , N x

m

)

=
(

N
y

1 , . . . , N
y
m

)

⇐⇒ Ω(x) = Ω(y) ⇐⇒ A(x) = A(y).

As N x
i ⊂ {1, . . . ,m} for any i = 1, . . . ,m and x ∈ Rmn, the value space of sequence

(N x
1 , . . . , N x

m) admits a finite number of elements (up to
∏m−1

i=0 2i elements). As a
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result, there exist a finite number of polyhedra Ω1, . . . ,ΩN that partition the state

space in the sense that
⋃N

j=1 Ωj =Rmn and Ωk ∩Ωo
j = ∅ for all k �= j and that any

Ω(x) belongs to the partitioned polyhedra set, i.e., Ω(x) ∈ {Ω1, . . . ,ΩN }. Let Ai

be the matrix A(x) corresponding to Ωi . The multiagent system can be rewritten as

ẋ =
(

Aj ⊗ In
)

x, x ∈ Ωj , (5.31)

which is exactly a piecewise linear system.

5.4.2 A Consensus Criterion

For multiagent system (5.31), an interesting problem is to find conditions under

which the agreement can be achieved in a certain sense. More precisely, for a system

motion x(·), let Vt = (G,Υ x
t ) be the dynamic graph, where G = {1, . . . ,m} is the

set of nodes, and Υ x
t ⊆ G×G is the set of edges at t ,

Υ x
t =
{

(i, j) : j �= i,
∣

∣xj (t)− xi(t)
∣

∣≤ r
}

.

For a node i, the set of neighbors at t is

N x
i (t) =

{

j �= i : (i, j) ∈ Υ x
t

}

=
{

j �= i :
∣

∣xj (t)− xi(t)
∣

∣≤ r
}

.

Nodes i and j are said to be agree at time t if xi(t) = xj (t). The motion is said to be

in consensus at t if any two nodes agree at t . The motion is said to be in asymptotic

consensus if consensus is achieved asymptotically, i.e., limt→+∞(xi(t)−xj (t)) = 0

for all i, j ∈ G. In particular, when the limit limt→+∞ xi(t) exists, the consensus

limit is said to be the group decision value. If it happens that the limit is equal to the

algebraic average of the initial state, i.e., limt→+∞ xi(t) = 1
m

∑m
i=1 xi(t0), then the

average consensus is achieved.

The multiagent system (5.30) is equivalently represented by its dynamic

graph in the following sense. Let B(t) = [bij (t)]m×m be the adjacency matrix

of graph Vt , that is, bij (t) = 1 if (i, j) ∈ Υt , and bij (t) = 0 otherwise. Let

C(t) = diag(c1(t), . . . , cm(t)) be the valency matrix with ci(t) =
∑m

j=1 bij (t),

i = 1, . . . ,m. Furthermore, define the graph’s dynamic Laplacian matrix to be

L(t) = C(t) − B(t). Note that Vt is an undirected graph for any t and that the ad-

jacency matrix is a symmetric matrix, so is the Laplacian matrix. Correspondingly,

a motion x(·) of the multiagent system satisfies

ẋ(t) = −
(

L(t)⊗ In
)

x(t). (5.32)

The system is a piecewise linear system with the system matrices all being graph

Laplacian matrices. As a result, the properties of the Laplacian matrices play an

important role in analyzing the system behavior. Fortunately, the well-developed

algebraic graph theory (see, e.g, [28, 89]) provides a rigorous tool for this.
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Fix a (undirected) graph V = (G,Υ ), and suppose that its Laplacian matrix is L.

It is clear that L is symmetric; hence all its eigenvalues are real. We denote the

spectra to be

λ1 ≤ λ2 ≤ · · · ≤ λm.

An observation is that the matrix is row-stochastic, that is, the sum of elements in

each row is zero. As an implication, zero is an eigenvalue with eigenvector 1 =
[1, . . . ,1]T . This further implies that 1T x(t) is a constant independent of the time.

As the matrix is row-dominated by its diagonal entries, it is in fact semi-definite

positive. Combining the above analysis gives λ1 = 0. λ2 is called the algebraic

connectivity, and the smallest nontrivial eigenvalue is called the spectral gap.

Lemma 5.16 (See [28]) The multiplicity of zero as an eigenvalue of L is exactly the

number of largest connected components of the graph.

As a corollary, the algebraic connectivity is the spectral gap if and only if the

graph is connected. In this case, rankL=m− 1.

With the above preparations, we are ready to prove the main result of this sub-

section.

Theorem 5.17 Multiagent system (5.30) achieves asymptotic average consensus if

the associated dynamic graph is always connected.

Proof Note that, without loss of generality, we can assume that the system is one-

dimensional. In fact, by denoting yj = [xj1 , . . . , x
j
m]T , j = 1, . . . , n, with x

j
i being

the j th entry of vector xi , we can rewrite system (5.32) into

ẏj =−L(t)yj , j = 1, . . . , n.

The consensus of the multidimensional system is thus converted to that of a set of

one-dimensional systems.

Let α =
∑m

j=1 xj (0)/m be the average of the initial states, and δ = [x1 − α,

. . . , xm − α]T be the group disagreement vector. It follows from L(t)1 = 0 that

δ̇ =−L(t)δ. Define the Lyapunov-like function

V (δ)= δT δ.

Simple calculation gives

dV

dt
=−2δTL(t)δ ≤−2λ2

(

L(t)
)

V ≤−2λ∗
2V,

where the fact that δT 1 = 0 has been used, and λ∗
2 is the smallest algebraic con-

nectivity of the Laplacian matrices L(t). Note that this number is positive since

L(t) ∈ {−A1, . . . ,−Am}. As a result, δ → 0 as t → +∞, and the consensus is thus

established. �
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Remark 5.18 The theorem provides an elegant criterion on consensus of the multi-

agent system (5.30) in terms of connectivity of the associated dynamic graph. This

exhibits the power of the algebraic graph theory in the analysis of multiagent con-

sensus. In particular, for one-dimensional systems, the sufficient condition is also

necessary due to the fact that any disconnected agent at a time will be isolated for

any forward time. However, graph connectivity is not necessary for two- or higher-

dimensional systems.

5.4.3 A Verifiable Criterion

The criterion in Theorem 5.17 is not verifiable since it requires graph connectiv-

ity at all times. As multiagent system (5.30) is piecewise linear with autonomous

switching, the connectivity relies totally on the initial agent locations. By applying

the idea of graph transition analysis introduced in Sect. 3.3.4, we present here a

verifiable consensus criterion in terms of initial network connectivity.

Let κi(t) denote the degree of node i at time t , i.e., κi(t)= |Ni(t)|. The dynamic

network is said to be initially connected if the static graph (G,Υ (0)) is connected,

and throughout connected if the graph (G,Υ (t)) is connected for any time t ∈ T0.

Define the Lyapunov-like function

V (x)= i �=j
max

i,j=1,...,m

{

(xi − xj )
T (xi − xj ) : |xi − xj | ≤ r

}

, (5.33)

which is the largest square distance of the connected edges. When no edge exists

in the graph, let V (x) = +∞. It is clear that V (x) is always positive unless all xi ’s

coincide with each other. The function is continuous as long as the interconnection

relationship keeps unchanged, that is, when neither new edge is added nor old edge

is disconnected.

Let x(t) be the motion of the multiagent system.

The following lemma states a monotone condition for V (x(t)) that will be used

later.

Lemma 5.19 Suppose that

(

xi(t)− xj (t)
)T
(

∑

k∈Ni(t)

(

xk(t)− xi(t)
)

−
∑

k∈Nj (t)

(

xk(t)− xj (t)
)

)

≤ 0

∀(i, j) s.t.
∣

∣xi(t)− xj (t)
∣

∣= max
{∣

∣xk(t)− xl(t)
∣

∣ : (k, l) ∈ Υ (t)
}

∀t ∈ T0. (5.34)

Then, V (x(t)) is nonincreasing as long as the interconnection relationship keeps

unchanged.
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Proof Under condition (5.34), function V is nonincreasing as its derivative is non-

positive. As a result, the maximum edge length does not increase when no new edge

is added. This leads directly to the conclusion. �

Remark 5.20 The monotonicity of V (x(t)) means that, while a connected edge can

generally become longer in length, the maximum edge length is always decreasing.

A simple yet useful observation is that, if V (x(t)) is nonincreasing as long as the

interconnection relationship keeps unchanged, it is possible that one or more new

edges will appear, but no existing edge will be disconnected. In this case, V (x(t))

is always right-continuous, and the number of discontinuities is finite (in fact, upper

bounded by m(m− 2)). Therefore, if V (x(t)) is always nonincreasing except at the

discontinuous instants, then any initially connected network will keep connected for

all the forward time.

Next, with the aid of Lemma 5.19 and Remark 5.20, we are able to establish the

main result of this subsection as follows.

Theorem 5.21 Suppose that the multiagent system is initially connected and satis-

fies

κi + κj ≥
3

2
m− 2 ∀(i, j) ∈ Υ (5.35)

and

κi + κj ≥
3

2
m− 4 ∀(i, j) �∈ Υ, i �= j, (5.36)

at the initial time. Then, the network is throughout connected, and the asymptotic

average consensus is achieved.

Proof First, pick up any node pair (i, j) with i �= j , let ν
j
i be the number of nodes

(excluding i and j ) that connect to both i and j , and ι
j
i be the number of nodes

(excluding i and j ) that connect to i but disconnect to j . It is clear that, among the

m − 2 nodes except for i and j , there are κi − 1 that connect to i, and there are

κj − 1 that connect with j . According to the Pigeonhole Principle, the number of

common neighbors of i and j , ν
j
i , satisfies the inequality

ν
j
i ≥ (κi − 1)+ (κj − 1)− (m− 2) = κi + κj −m.

Similarly, we have

ι
j
i = (κi − 1)− ν

j
i ≤ m− κj − 1

and

ιij = (κj − 1)− ν
j
i ≤ m− κi − 1.
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Second, observe that, under the conditions of the theorem, we have

ν
j
i +m ≥ κi + κj ≥ 3m− (κi + κj )− 4 ∀(i, j) ∈ Υ (5.37)

when the network has the same connectivity as in the initial time. Note that inequal-

ity (5.37) further implies that

ν
j
i + 2 ≥ 2m− (κi + κj )− 2

= (m− κi − 1)+ (m− κj − 1)

≥ ι
j
i + ιij ∀(i, j) ∈ Υ. (5.38)

Third, pick any two connected nodes i and j with

|xi − xj | = max
{

|xk − xl | : (k, l) ∈ Υ
}

.

It can be seen that

∑

k∈Ni

(xk − xi)−
∑

k∈Nj

(xk − xj )

=
(

2 + ν
j
i

)

(xj − xi)+
∑

k∈ψj
i

(xk − xi)−
∑

k∈ψ i
j

(xk − xj ),

where ψ
j
i is the set of nodes (excluding i and j ) that connect to i but disconnect

to j . It follows that

(xi − xj )
T

(

∑

k∈Ni

(xk − xi)−
∑

k∈Nj

(xk − xj )

)

≤ −
(

2 +m
j
i − ι

j
i − ιij

)

|xi − xj |2 ≤ 0 (5.39)

when the network has the same connectivity as that in the initial time.

Finally, suppose that the multiagent system is initially connected and relationship

(5.35) initially holds. Then, it follows from (5.39) and Lemma 5.19 that each edge

will keep connected until new edges add into the network graph. A further implica-

tion is that each node degree is nondecreasing and inequality (5.35) still holds for old

edges. On the other hand, inequality (5.36) guarantees that each newly added edge

also satisfies (5.35). The above reasonale shows that relationships between (5.35)

and (5.36) hold for all forward time, which further implies throughout connectivity

under the assumption of initial network connectivity. It follows from Theorem 5.17

that the system achieves asymptotic average consensus. �

Remark 5.22 The theorem presents an easily verifiable sufficient condition, which

only relies on initial network graph, for consensus of the multiagent system under
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the linear feedback protocol. It is interesting to note that the set of initial configu-

rations under the theorem condition is in fact invariant and attractive. To be more

precise, define the region

{

x : ∀i �= j, #
{

k �∈ (i, j) : |xi − xk| ≤ r
}

+ #
{

k �∈ (i, j) : |xj − xk| ≤ r
}

≥
3

2
m− 4

}

,

where #{·} denotes the cardinality of a set. The region is attractive in that, once the

multiagent system state enters into the region, it will never leave the region for any

future time. Moreover, any consensus state trajectory must enter into and stay inside

the region due to the fact that the consensus equilibrium is an interior point of the

region.

Corollary 5.23 A sufficient condition for throughout connectivity is the initial con-

nectivity and that each initial node degree is not less than 3
4
m− 1.

The corollary reveals an important fact: if the node degree exceeds a certain

threshold (three fourth of the graph order), no edge will be disconnected, and the

throughout connectivity reduces to initial connectivity. While conservative, this re-

sult is simple and verifiable, and it readily applies to a phase of any consensus pro-

cess.

Next, we apply the approach to the multiagent networks with five or less nodes.

The case of two-node networks is trivial, and consensus is equivalent to initial

connectedness. For three-node networks, if the network is initially connected, then

the consensus follows from Theorem 5.21. Otherwise, reaching consensus is equiv-

alent to the existence of an initial edge, and the (least) distance between the initially

isolated state to the edge is equal to or less than r .

The case of four-node networks is more interesting, to which the proposed ap-

proach applies either directly or indirectly. Figure 5.9 demonstrates the types of

connected networks, where (a)–(e) verifies Theorem 5.21. For a system with initial

interaction (f), it is clear that the sum of any two node degrees is less than or equal

to four, which verifies inequality (5.38). This means that the connection will keep

unchanged unless a new edge appears. On the other hand, the appearance of any

new edge leads the network to satisfy (5.35) and (5.36). Therefore, any multiagent

system with network (f) reaches consensus under the linear control protocol.

The above analysis is summarized into the following proposition.

Proposition 5.24 For a multiagent network with four or less nodes, initial connect-

edness is equivalent to throughout connectedness.

Finally, let us examine the multiagent networks with five nodes, which exhibit

more diverse and complex dynamics. When the size of initial graph is fourteen or

more, the network is always initially connected. In particular, if the size is sixteen or
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Fig. 5.9 Four-node connected networks

Fig. 5.10 Connection modes

for five-node networks

more, then Theorem 5.21 applies, and the network is throughout connected. When

the size is exactly fourteen, there are four connection types, which are depicted in

Fig. 5.10. It can be easily verified that Theorem 5.21 applies to case (a).
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Fig. 5.11 Initial connectivity with no consensus

For case (b), the theorem is not applicable, but an analysis can be conducted

based on Lemma 5.19. In fact, by (5.38), any edge other than (2,3) and (3,4) will

keep connected if the interconnection keep unchanged. For edge (2,3), calculate

d

dt
|x3 − x2|2 = 2(x3 − x2)

T
[

(x4 − x3)+ (x2 − x3)

+ (x2 − x1)+ (x2 − x3)+ (x2 − x5)
]

= −6
∣

∣(x3 − x2)
∣

∣

2 + 2(x3 − x2)
T
[

(x2 − x1)+ (x4 − x5)
]

,

which means that the length of edge (2,3) will strictly decrease when the edge

length is the largest among all the edges, and the edge will keep connected if the

interconnection keep unchanged. The same property holds for edge (3,4). On the

other hand, the introduction of any new edge leads the network to verify Theo-

rem 5.21. As a result, the network is throughout connected in this case.

System with initial network (c) is throughout connected due to the facts that

inequality (5.38) holds for each edge and Theorem 5.21 applies when new edges

appear.

Network (d) is most interesting as disconnectedness does might happen. To see

this, we take a one-dimensional system with
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x1(0)=−1, x2(0)=−0.95, x3(0)=−0.9,

x4(0)= 0, x5(0)= 0.95, r = 1.

It can be verified that the system admits network (d) as initial graph. Figure 5.11

shows the state trajectory, where node 5 becomes isolated at time 0.083 sec. It can be

seen that, as neighbors of x4, x5 imposes x4 going up, but x1, x2, and x3 impose x4

going down. As a result of the “competition”, x4 goes down and becomes invisible

from x5. This makes x5 isolated.

5.5 Stabilizing Design of Controllable Switched Linear Systems

5.5.1 Problem Formulation

A practical motivation for studying hybrid dynamical systems stems from the fact

that the hybrid control scheme provides an effective approach for controlling highly

nonlinear complex dynamical systems. Indeed, while linear design techniques are

widely used in control system synthesis, as far as nonlinear dynamics are concerned,

in practice a linear controller is only valid around a specific operating point. It is

thus a common practice to design more than one linear controller, each at a different

operating region and a switching mechanism that coordinates the switching among

them.

Consider the switched linear control system given by

ẋ(t)=Aσ(t)x(t)+Bσ(t)uσ(t)(t), (5.40)

where x(t) ∈ Rn is the continuous state, σ(t) ∈ {1, . . . ,m} is the switching signal,

ui(t) ∈Rpi is the control input, Ai ∈Rn×n and Bi ∈Rn×pi , i ∈ {1, . . . ,m}, are real

constant matrices. Denote the continuous state by φ(t;0, x,u,σ ).

Suppose that the system is completely controllable, that is, for any state x ∈ Rn,

there exist a time tf ≥ 0, a switching law σ : [0, tf ] �→ {1, . . . ,m}, and inputs ui :
[0, tf ] �→ Rpi , i ∈ {1, . . . ,m}, such that solution of the continuous state at tf is the

origin, i.e., φ(tf ;0, x,u,σ ) = 0.

The problem of exponential stabilization is to find a control law and a switching

law such that the switched system is exponentially stable. To be more precise, find

a pathwise state-feedback switching law and a state-feedback control law that steer

the controllable switched system exponentially stable.

5.5.2 Multilinear Feedback Design

In this subsection, we investigate the possibility of solving the stabilization problem

with a feedback control scheme. The main idea is to associate with each subsystem
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a set of candidate linear controllers such that the extended switched system is stabi-

lizable. We thus can apply the design approach presented in Sect. 4.4 for calculating

a pathwise state-feedback switching law for the extended system.

Suppose that F
j
i , j = 1, . . . , ki , are linear gain matrices associated with the ith

subsystem. Then, with the linear controller

ui = Fix, Fi ∈
{

F 1
i , . . . ,F

ki
i

}

,

the switched system is extended to

ẋ = Cςx, (5.41)

where ς ∈ {1, . . . ,
∑m

i=1 ki}, Cl = Ai + BiF
j
i for i = 1, . . . ,m, j = 1, . . . , ki , and

l =
∑i−1

μ=1 kμ + j .

Definition 5.25 Switched system (5.40) is multifeedback exponentially stabiliz-

able if there exist natural numbers k1, . . . , km and gain matrices F
j
i , i = 1, . . . ,m,

j = 1, . . . , ki , such that the extended forced-free switched system (5.41) is exponen-

tially stabilizable. In this case, the gain matrix set {F j
i : i = 1, . . . ,m, j = 1, . . . , ki}

is a solution of the exponential stabilization problem.

To proceed, we introduce the concept of unit sphere switched contractility.

Definition 5.26 Switched system (5.40) is unit sphere switched contractive, if for

any state x with unit norm, there exist a time T > 0, an input u, and a switching

signal σ such that |φ(T ;0, x,u,σ )|< 1.

Lemma 5.27 The switched linear system is multifeedback exponentially stabiliz-

able iff it is unit sphere switched contractive w.r.t. any given norm.

Proof It is clear that multifeedback exponential stabilizability implies unit sphere

switched contractility. Thus, we need only to prove the converse.

For any arbitrarily given but fixed state x with unit norm, let Tx , u, and σ be such

that |φ(Tx;0, x,u,σ )| = ρx < 1. Without loss of generality, we assume that state

curve {y(t) = φ(t;0, x,u,σ ) : t ∈ [0, Tx]} does not pass by the origin, otherwise

redefine Tx to be

min
{

t : |φ(t;0, x,u,σ )| = ρx
}

.

Let it = arg maxnj=1 |yj (t)|. It can be seen that it is piecewise constant and yit is

nonzero and piecewise continuous w.r.t. t . For any t ∈ [0, Tx], denote z= y(t), and

define a pi × n matrix F z by

F z(j, k)=
{

(uσ(t)(t))j/zk if k = it ,

0 otherwise.
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It is clear that F z is well defined and piecewise continuous w.r.t. z. In addition,

uσ(t)(t)= F zx(t). Therefore, we have

ẏ(t)=
(

Aσ(t) +Bσ(t)F
y(t)
)

y(t).

According to the continuous dependence of initial state, there exist a natural num-

ber N , a time sequence 0 = t0 < t1 < t2 < · · · < tN < Tx , and a constant matrix

sequence F x
0 ,F

x
1 , . . . ,F

x
N such that solution of the linear time-varying system

ẇ =
(

Aσ(t) +Bσ(t)F
x
k

)

w(t), t ∈ [tk, tk+1), k = 0,1, . . . ,N,

w(0)= x, tN+1 = Tx,

satisfies |w(Tx)−y(Tx)| ≤ 1−ρx
2

. Assume without loss of generality that the switch-

ing times of σ in [0, Tx] are in the set {t1, . . . , tN }, otherwise just incorporate the

times into the set. As

w(Tx) = exp
((

Aσ(t0) +Bσ(t0)F
x
0

)

(t1 − t0)
)

· · ·

× exp
((

Aσ(tN ) +Bσ(tN )F
x
N

)

(tN+1 − tN )
)

x
def= Φxx,

we have |Φxx| ≤ 1+ρx
2

< 1.

To summarize, for any state on the unit sphere, there exist a finite number of gain

matrices such that the associated state trajectory is norm contractive. By the standard

arguments as in [234, Theorem 3.9], there exist multilinear feedback controllers

for each input channel such that the extended forced-free switched linear system is

exponentially stable. This completes the proof. �

It is clear that complete controllability implies unit sphere switched contractil-

ity. According to Lemma 5.27, any controllable switched system is multifeedback

exponentially stabilizable.

Next, we develop a design procedure to compute a set of multifeedback gains

such that the extended switched system is exponentially stabilizable.

Sample the switched system into a discrete-time switched linear system

zk+1 = Cτ
̺x +Dτ

̺u, (5.42)

where τ > 0 is the sampling period, ̺ ∈ {1, . . . ,m} is the switching signal, and

Cτ
i = eAiτ , Dτ

i =
∫ τ

0 exp(Ai t) dtBi , i = 1, . . . ,m. It has been known that the sam-

pled system is controllable under almost all period τ (see, e.g., [234, Lemma 4.53]).

Pick up such a τ . From the controllability of the sampled system, we can find a

natural number k and an index sequence i1, . . . , ik such that

rank
[

Dτ
ik
,Cτ

ik
Dτ

ik−1
, . . . ,Cτ

ik
· · ·Cτ

i2
Dτ

i1

]

= n. (5.43)

Fix a Schur stable matrix E. By perturbation analysis, for almost all matrices Ẽτ ,

the equation

E + Ẽτ =
(

Cτ
ik
+Dτ

ik
F τ
k

)

· · ·
(

Cτ
i1
+Dτ

i1
F τ

1

)
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admits at least one solution (F τ
1 , . . . ,F

τ
k ) which satisfies the relationships

E + Ẽτ −Cτ
ik
· · ·Cτ

i1
=
[

Dτ
ik
,Cτ

ik
Dτ

ik−1
, . . . ,Cτ

ik
· · ·Cτ

i2
Dτ

i1

]

⎡

⎢

⎣

F̄ τ
k
...

F̄ τ
1

⎤

⎥

⎦
(5.44)

and

F̄ τ
1 = F τ

1 ,

F̄ τ
2 = F τ

2

(

Cτ
i1
+Dτ

i1
F τ

1

)

,

...

F̄ τ
k = F τ

k

(

Cτ
ik−1

+Dτ
ik−1

F τ
k−1

)

· · ·
(

Cτ
i1
+Dτ

i1
F τ

1

)

.

(5.45)

On the other hand, the nonsingularity of E implies the nonsingularity of (Cτ
ij
+

Dτ
ij
F τ
j ), which in turn implies the solvability of F τ

j by means of F̄ τ
j in (5.45). A use-

ful observation here is that, even when k ≥ n, it is always possible to solve (5.44)

with at most n nonzero F τ
j ’s.

Proposition 5.28 Suppose that limτ→0 Ẽ
τ = 0. For sufficiently small τ , any solu-

tion (F τ
1 , . . . ,F

τ
k ) of (5.44) and (5.45) is a solution of multifeedback stabilization

problem of the continuous-time switched linear system.

The proof is simply based on the observation that, as τ → 0+, we have

e(Aik
+Bik

F τ
k )τ · · · e(Ai1

+Bi1
F τ

1 )τ → E.

As a result, the switched system with the multifeedback controllers is stabilizable

by means of periodic switching signals (see, e.g., [234, Corollary 3.12]).

While the extended switched system is consistently stabilizable by a periodic

switching signal, the periodic switching may not be practically applaudable. In-

deed, the switched system with such a switching is possibly with poor transient

performance and small stability margin. For this, we use the state-feedback path-

wise switching mechanism instead. The computational procedure for finding the

state-feedback pathwise switching law can be found in Sect. 4.4.2.

To summarize, to achieve stability within the multilinear feedback control

scheme, we need to implement the following steps.

(1) Compute a set of multilinear feedback control gain matrices.

(1.1) Sample the switched system as in (5.42).

(1.2) Solve (5.44) and (5.45).

(2) Compute a state-feedback pathwise switching law.
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Example 5.29 Consider system (5.40) with n= 3, m= 2, and

A1 =

⎡

⎣

0 0 0

1 1 0

0 0 1

⎤

⎦ , B1 =

⎡

⎣

1

0

0

⎤

⎦ ,

A2 =

⎡

⎣

0 0 0

0 1 0

1 0 1

⎤

⎦ , B2 =

⎡

⎣

0

0

0

⎤

⎦ .

(5.46)

It can be verified that the system is completely controllable. However, it has been

shown that the system cannot be stabilized by means of (single) linear feedback

controllers [234, Example 5.23].

We are to design a multilinear feedback control law and a state-feedback path-

wise switching law that achieve exponential stability. For this, the first step is to

sample the continuous-time system into a discrete-time controllable switched sys-

tem. Choose the sampling rate to be τ = 0.2 sec, and let

E =

⎡

⎣

0.1 0 0

0 0.1 −0.1

−0.2 0 0.1

⎤

⎦ and Ẽ = 03×3.

By solving (5.44) and (5.45) for the sampled-data system, we obtain the feedback

gain matrices

F1 = [−8.0276,0,−32.1765],
F2 = [−7.3529,−35.5013,1.8918],
F3 = [−2.6700,21.9002,−4.0833].

The extended forced-free system has four subsystems with matrices Ci = A1 +
B1Fi, i = 1,2,3, and C4 =A2, respectively.

The next step is to compute a state-feedback pathwise switching law. For this,

apply the computational algorithm for stabilizing switching design presented in

Sect. 4.4.2. Choose τ = 0.3 sec (note that this sampling rate is not equal to that

of multilinear feedback design). It can be verified that the four switching paths

ϑ1 = (1), ϑ2 = (2), ϑ3 = (3,2,4,1), ϑ4 = (3,2,4,1,3,2,4,1)

are piecewise contractive w.r.t. the ℓ1-norm. By implementing the multilinear feed-

back control law and the state-feedback pathwise switching law, we obtain an

extended switched system that is exponentially stable. Figure 5.12 depicts sam-

ple state/input/switching trajectories of the switched system with initial state x0 =
[−1 1.5 1]T . The switching signal is taken from the extended system to accommo-

date the multilinear feedbacks (for instance, when the first subsystem is activated

with the third linear feedback controller, the switching signal is equal to 3).
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Fig. 5.12 State/input/switching trajectories

5.6 Notes and References

Absolute stability of Lur’e systems has long been a stimulating motivation for non-

linear control theory. The problem is notoriously difficult, and it is still among

the most famous open problems in the control society. Nevertheless, remarkable

progress has been made so far, especially for lower-dimensional systems. In par-

ticular, Pyatnitskiy and Rapoport presented a necessary and sufficient condition

for absolute stability of second- and third-order systems [194, 196]. Technically,

they characterized the “most destabilizing” phase portrait using variational calcu-

lus, and this amounts to solving a nonlinear equation with three unknowns that no

efficient numerical verification is available in general. The idea of constructing the

so-called most destabilizing nonlinearity is clearly related to finding a worst pos-

sible switching strategy that makes the extreme switched linear system diverging

with a largest rate. Along this line, several new characterizations were carried out

[44, 112, 162, 163] that solve the problem of absolute stability for planar Lur’e sys-

tems in a computational point of view. Other related and interesting progress can be

found in [165, 207].

The algebraic criterion, Theorem 5.1 in Sect. 5.1.1, was borrowed from

[17, 18, 44]. The application to the problem of absolute stability in Sect. 5.1.2 is

straightforward.
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Switching-based adaptive control can be traced back to the pioneering work by

Fu and Barmish [84], who proposed an adaptive control scheme with multiple con-

trollers and a sequential switching logic that disconnects the “wrong” controllers by

evaluating the performance index. Since the 1990s, the adaptive stabilization via hy-

brid control has witnessed a great progress, mostly in the framework of “logic-based

supervisory control” developed by Morse and his coworkers [107, 177, 178]. While

the design of candidate controllers/estimators is somewhat standard [6], the design

of switching logics could be quite involved [109, 111, 178, 183]. It has been shown

that a properly designed switching logic can not only stabilize a system with large-

scale unknown parameters, but also improve the performances, for instance, tran-

sient response [182] and robustness [9, 179]. For more recent progress, the reader is

referred to [19, 214] and the references therein.

The switching adaptive scheme presented in Sect. 5.2 is a simplified and com-

bined version taken from [6, 109]. In particular, Sect. 5.2.1 was adopted from [6],

and Sect. 5.2.2 was adopted from [109]. Lemma 5.18 was taken from [108], and the

numerical example in Sect. 5.2.3 was taken from [6].

A fuzzy system is a dynamical system based on fuzzy logic, which was first initi-

ated by Zadeh in the 1960s [272, 273]. Several types of fuzzy models have been pro-

posed, among which the T–S fuzzy systems (known also as Type-3 fuzzy systems)

have gained more and more attention and recognition [215, 244]. A T–S fuzzy sys-

tem uses fuzzy rules to describe the global nonlinear dynamics by means of a set of

local linear modes that are smoothly connected by fuzzy membership functions. The

clear two-level “execution-supervisor” structure makes it powerful in approximat-

ing general nonlinear systems and flexible in high-level design [51, 248]. Note that if

we take the IF-THEN fuzzy logic as a switching logic, then a T–S system is closely

related to the corresponding switched system. Therefore, stability analysis for fuzzy

systems can be benefited from stability analysis for switched systems. Much ear-

lier effort has been paid to present stability criteria based on common quadratic

Lyapunov functions [247], and later it was extended to the piecewise quadratic Lya-

punov approach that may lead to less conservative criteria [76, 127]. Most criteria

can be expressed in terms of linear matrix inequalities (LMIs), which permits effi-

cient numerical solvers [46]. Despite a remarkable progress made so far, stability

analysis is still a challenging problem to be solved. The reader is referred to the

surveys [77, 248] and the references therein for more details.

The framework and stability criteria in Sect. 5.3 were mainly adopted from

[76, 127]. The piecewise switched linear system is a straightforward extension of

a piecewise system with a set of switched linear systems as subsystems. Propo-

sition 5.12 simply combines the piecewise quadratic Lyapunov function approach

with transition analysis among the partitions.

The consensus or agreement problem for multiagent systems is a typical prob-

lem in distributed computational intelligence, which is to achieve a common value

asymptotically by means of proper cooperative control among the agents in a dis-

tributed manner. Numerous linear/nonlinear protocols have been proposed to solve

the problem in the literature. In particular, with the aid of the Laplacian matrix the-

ory, the problem was tackled in an elegant manner by means of linear protocols for
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multiagent systems with either static or dynamic connections [75, 153, 187]. A mul-

tiagent system with a linear protocol is exactly a piecewise linear system, and the

consensus analysis can be conducted based on stability of piecewise linear systems.

It was established that, under the linear feedback protocol and the assumption that

the network is always connected, the system admits a common quadratic Lyapunov

function, and asymptotic consensus is achieved. This was summarized in Sect. 5.4.2,

where a first-order differential equation was used for simplification.

While the connectedness assumption in Theorem 5.17 can be further relaxed

in various manners (see, e.g., [113, 120, 175]), the verification of the connectivity

assumptions are not tractable for dynamic network interconnections. To tackle this

issue, one way is to seek for nonlinear protocols as in [121, 275]. Alternatively, by

combining the transition analysis presented in Sect. 3.3.4 and a novel Lyapunov-

like function method, we can estimate a set of initial configurations that is in fact

invariant and attractive, and hence the requirement of throughout connectivity can

be removed. This was first presented in [237], from which Sect. 5.4.3 was adopted.

For switched linear control systems, the problem of stabilization by means of si-

multaneous switching/control design is both important and challenging. A primary

reason for this lies in the fact that a nontrivial gap exists between controllability

and feedback stabilizability. To be more precise, it was revealed that controllability

does not imply feedback stabilizability if one linear feedback controller is attached

to a subsystem [234]. However, when more than one controller is allowed to con-

nect with a subsystem, controllability does imply stabilizability [242, 268, 269].

Therefore, a natural way to address the problem of stabilization, as adopted here in

Sect. 5.5.2, is first to introduce multiple controllers that not necessarily connect with

the subsystems in a one-to-one manner and then to design a state-feedback path-

wise switching law for the (extended) switched system. The notion of unit sphere

switched contractility given in Definition 5.26 and its connection with stabilizabil-

ity were borrowed from [228]. The design procedure of calculating multifeedback

gains was a combination of that presented in [242, 268]. For more recent progress

on the problem of stabilization, the reader is referred to [238, 243, 279].



References

1. Agrachev AA, Liberzon D. Lie-algebraic stability criteria for switched systems. SIAM J

Control Optim. 2001;40(1):253–69.

2. Aguiar AP, Hespanha JP, Pascoal AM. Switched seesaw control for the stabilization of un-

deractuated vehicles. Automatica. 2007;43(12):1997–2008.

3. Aizerman MA. On a problem concerning stability “in large” of the dynamic systems. Usp

Mat Nauk. 1949;4(4):186–8.

4. Aizerman MA, Gantmakher FR. Absolyutnaya ustoichivost reguliruemykh sistem (Absolute

stability of the controlled systems). Moscow: Akad Nauk SSSR; 1963.

5. Al’pin YA, Ikramov KD. Reducibility theorems for pairs of matrices as rational criteria.

Linear Algebra Appl. 2000;313(1–3):155–61.

6. Anderson BDO, Brinsmead TS, De Bruyne F, Hespanha JP, Liberzon D, Morse AS. Multiple

model adaptive control, part 1: finite controller coverings. Int J Robust Nonlinear Control.

2000;10(11–12):909–29.

7. Ando T, Shih M-H. Simultaneous contractibility. SIAM J Matrix Anal Appl. 1998;19(2):

487–98.

8. Angeli D. A note on stability of arbitrarily switched homogeneous systems. Preprint; 1999.

9. Angeli D, Mosca E. Lyapunov-based switching supervisory control of nonlinear uncertain

systems. IEEE Trans Autom Control. 2002;47(3):500–5.

10. Arnold L, Wihstutz V, editors. Lyapunov exponents. New York: Springer; 1986.

11. Asarin E, Bournez O, Dang T, Maler O. Approximate reachability analysis of piecewise-

linear dynamical systems. In: Lynch N, Krogh BH, editors. Hybrid systems: computation

and control. Berlin: Springer; 2000. p. 20–31.

12. Astrom KJ, Wittenmark B. Adaptive control. 2nd ed. Eaglewood Cliffs: Prentice Hall; 1995.

13. Aubin JP, Cellina A. Differential inclusions. Berlin: Springer; 1984.

14. Auslander J, Seibert P. Prolongations and stability in dynamical systems. Ann Inst Fourier

(Grenoble). 1964;14:237–68.

15. Bacciotti A. Stabilization by means of state space depending switching rules. Syst Control

Lett. 2004;53(3–4):195–201.

16. Bacciotti A, Mazzi L. A discussion about stabilizing periodic and near-periodic switching

signals. In: Proc IFAC NOLCOS; 2010. p. 250–5.

17. Balde M, Boscain U. Stability of planar switched systems: the nondiagonalizable case. Com-

mun Pure Appl Anal. 2008;7:1–21.

18. Balde M, Boscain U, Mason P. A note on stability conditions for planar switched systems.

Int J Control. 2009;82(10):1882–8.

19. Baldi S, Battistelli G, Mosca E, Tesi P. Multi-model unfalsified adaptive switching supervi-

sory control. Automatica. 2010;46(2):249–59.

20. Baotic M, Christophersen FJ, Morari M. Constrained optimal control of hybrid systems with

a linear performance index. IEEE Trans Autom Control. 2006;51(12):1903–19.

Z. Sun, S.S. Ge, Stability Theory of Switched Dynamical Systems,

Communications and Control Engineering,

DOI 10.1007/978-0-85729-256-8, © Springer-Verlag London Limited 2011

239

http://dx.doi.org/10.1007/978-0-85729-256-8


240 References

21. Barvinok A. A course in convexity. Providence: Am Math Soc; 2002.

22. Bell JP. A gap result for the norms of semigroups of matrices. Linear Algebra Appl.

2005;402(1–3):101–10.

23. Bemporad A, Morari M. Control of systems integrating logic, dynamics, and constraints.

Automatica. 1999;35(3):407–27.

24. Bengea SC, DeCarlo RA. Optimal control of switching systems. Automatica. 2005;41(1):11–

27.

25. Berger M, Wang Y. Bounded semigroups of matrices. Linear Algebra Appl. 1992;166:21–7.

26. Bertsekas DP. Dynamic programming and optimal control, vol II. 3rd ed. Nashua: Athena

Scientific; 2010.

27. Bharucha BH. On the stability of randomly varying systems. PhD dissertation, Dept Elec

Eng, Univ Calif Berkeley; 1961.

28. Biggs N. Algebraic graph theory. Cambridge: Cambridge University Press; 1993.

29. Biswas P, Grieder P, Lofberg J, Morari M. A survey on stability analysis of discrete-time

piecewise affine systems. In: Proc IFAC World Congress, Prague, Czech Republic; 2005.

30. Blanchini F. Nonquadratic Lyapunov function for robust control. Automatica. 1995;

31(3):451–61.

31. Blanchini F. Set invariance in control. Automatica. 1999;35(11):1747–67.

32. Blanchini F. The gain scheduling and the robust state feedback stabilization problems. IEEE

Trans Autom Control. 2000;45(11):2061–70.

33. Blanchini F, Miani S. On the transient estimate for linear systems with time-varying uncertain

parameters. IEEE Trans Circuits Syst I, Fundam Theory Appl. 1996;43(7):592–6.

34. Blanchini F, Miani S. A new class of universal Lyapunov functions for the control of uncer-

tain linear systems. IEEE Trans Autom Control. 1999;44(3):641–7.

35. Blanchini F, Savorgnan C. Stabilizability of switched linear systems does not imply the ex-

istence of convex Lyapunov functions. In: Proc IEEE CDC; 2006. p. 119–24.

36. Blanchini F, Savorgnan C. Stabilizability of switched linear systems does not imply the ex-

istence of convex Lyapunov functions. Automatica. 2008;44(4):1166–70.

37. Blondel VD, Nesterov Yu. Computationally efficient approximations of the joint spectral

radius. SIAM J Matrix Anal Appl. 2005;27(1):256–72.

38. Blondel VD, Nesterov Yu, Theys J. On the accuracy of the ellipsoidal norm approximation

of the joint spectral radius. Linear Algebra Appl. 2005;394:91–107.

39. Blondel VD, Theys J, Vladimirov AA. An elementary counterexample to the finiteness con-

jecture. SIAM J Matrix Anal Appl. 2003;24(4):963–70.

40. Blondel VD, Tsitsiklis JN. Complexity of stability and controllability of elementary hybrid

systems. Automatica. 1999;35(3):479–89.

41. Blondel VD, Tsitsiklis JN. A survey of computational complexity results in systems and

control. Automatica. 2000;36(9):1249–74.

42. Bolzern P, Colaneria P, De Nicolaob G. On almost sure stability of continuous-time Markov

jump linear systems. Automatica. 2006;42(6):983–8.

43. Bolzern P, Colaneria P, De Nicolaob G. Markov jump linear systems with switching transition

rates: mean square stability with dwell-time. Automatica. 2010;46(6):1081–8.

44. Boscain U. Stability of planar switched systems: the linear single input case. SIAM J Control

Optim. 2002;41:89–112.

45. Bousch T, Mairesse J. Asymptotic height optimization for topical IFS, Tetris heaps and the

finiteness conjecture. J Am Math Soc. 2002;15(1):77–111.

46. Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in systems and

control theory. Philadelphia: SIAM; 1994.

47. Brayton RK, Tong CH. Stability of dynamic systems: a constructive approach. IEEE Trans

Circuits Syst. 1979;26(4):224–34.

48. Brayton RK, Tong CH. Constructive stability and asymptotic stability of dynamic systems.

IEEE Trans Circuits Syst. 1980;27(11):1121–30.

49. Camlibel MK, Heemels WPMH, Schumacher JM. Algebraic necessary and sufficient con-

ditions for the controllability of conewise linear systems. IEEE Trans Autom Control.

2008;53(3):762–74.



References 241

50. Camlibel MK, Pang JS, Shen J. Conewise linear systems: non-Zenoness and observability.

SIAM J Control Optim. 2006;45(5):1769–800.

51. Cao SG, Rees NW, Feng G. Universal fuzzy controllers for a class of nonlinear systems.

Fuzzy Sets Syst. 2001;122(1):117–23.

52. Cardim R, Teixeira MCM, Assuncao E, Covacic MR. Variable-structure control design of

switched systems with an application to a DC–DC power converter. IEEE Trans Ind Electron.

2009;56(9):3505–13.

53. Cheng DZ, Guo L, Huang J. On quadratic Lyapunov functions. IEEE Trans Autom Control.

2003;48(5):885–90.

54. Cheng DZ, Guo L, Lin YD, Wang Y. Stabilization of switched linear systems. IEEE Trans

Autom Control. 2005;50(5):661–6.

55. Cheng DZ, Lin YD, Wang Y. Accessibility of switched linear systems. IEEE Trans Autom

Control. 2006;51(9):1486–91.

56. Chesi G, Colaneri P, Geromel JC, Middleton R, Shorten R. On the minimum dwell time for

linear switching systems. In: Proc ACC; 2010. p. 2487–92.

57. Chesi G, Garulli A, Tesi A, Vicino A. Homogeneous polynomial forms for robustness anal-

ysis of uncertain systems. Berlin: Springer; 2009.

58. Clarke FH, Ledyaev YS, Sontag ED, Subbotin AI. Asymptotic controllability implies feed-

back stabilization. IEEE Trans Autom Control. 1997;42(10):1394–407.

59. Costa OLV, Fragoso MD, Marquez RP. Discrete-time Markov jump linear systems. London:

Springer; 2005.

60. Daafouz J, Riedinger P, Iung C. Stability analysis and control synthesis for switched systems:

a switched Lyapunov function approach. IEEE Trans Autom Control. 2002;47(11):1883–7.

61. Dai XP, Huang Y, Xiao MQ. Almost sure stability of discrete-time switched linear systems:

a topological point of view. SIAM J Control Optim. 2008;47(4):2137–56.

62. Dai XP, Huang Y, Xiao MQ. Criteria of stability for continuous-time switched systems by

using Liao-type exponents. SIAM J Control Optim. 2010;48(5):3271–96.

63. Daubechies I, Lagarias JC. Corrigendum/addendum to: sets of matrices all infinite products

of which converge. Linear Algebra Appl. 2001;327(1–3):69–83.

64. Dayawansa WP, Martin CF. A converse Lyapunov theorem for a class of dynamical systems

which undergo switching. IEEE Trans Autom Control. 1999;44(4):751–60.

65. De Jong H, Gouze J-L, Hernandez C, Page M, Sari T, Geiselmann J. Qualitative simula-

tion of genetic regulatory networks using piecewise-linear models. Bull Math Biol. 2004;66:

301–40.

66. De Persis C, De Santis R, Morse AS. Switched nonlinear systems with state-dependent

dwell-time. Syst Control Lett. 2003;50(4):291–302.

67. De Santis E, Di Benedetto MD, Pola G. A structural approach to detectability for a class of

hybrid systems. Automatica. 2009;45(5):1202–6.

68. Drenick R, Shaw L. Optimal control of linear plants with random parameters. IEEE Trans

Autom Control. 1964;9(3):236–44.

69. Elsner L. The generalized spectral-radius theorem: an analytic-geometric proof. Linear Al-

gebra Appl. 1995;220:151–8.

70. Fang Y. Stability analysis of linear control systems with uncertain parameters. PhD disserta-

tion, Dept Syst Contr Ind Eng, Case Western Reserve Univ; 1994.

71. Fang Y. A new general sufficient condition for almost sure stability of jump linear systems.

IEEE Trans Autom Control. 1997;42:378–82.

72. Fang Y, Loparo KA. Stochastic stability of jump linear systems. IEEE Trans Autom Control.

2002;47(7):1204–8.

73. Fang Y, Loparo KA. On the relationship between the sample path and moment Lyapunov

exponents for jump linear systems. IEEE Trans Autom Control. 2002;47(9):1556–60.

74. Fang Y, Loparo KA. Stabilization of continuous-time jump linear systems. IEEE Trans Au-

tom Control. 2002;47(10):1590–603.

75. Fax JA, Murray RM. Information flow and cooperative control of vehicle formations. IEEE

Trans Autom Control. 2004;49(9):1465–76.



242 References

76. Feng G. Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lya-

punov functions. IEEE Trans Fuzzy Syst. 2004;12(1):22–8.

77. Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Trans

Fuzzy Syst. 2006;14(5):676–97.

78. Feng G, Ma J. Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems.

IEEE Trans Circuits Syst I, Fundam Theory Appl. 2001;48(11):1337–44.

79. Feng X, Loparo KA, Ji Y, Chizeck HJ. Stochastic stability properties of jump linear systems.

IEEE Trans Autom Control. 1992;37(1):38–53.

80. Feron E. Quadratic stabilizability of switched systems via state and output feedback. Mas-

sachusetts Inst Tech, Tech Rep CICS-P-468; 1996.

81. Feuer A, Goodwin GC, Salgado M. Potential benefits of hybrid control for linear time invari-

ant plants. In: Proc ACC; 1997. p. 2790–4.

82. Filippov AF. Stability for differential equations with discontinuous and many-valued right-

hand sides. Differ Uravn (Minsk). 1979;15:1018–27.

83. Filippov AF. Differential equations with discontinuous right-hand side. Moscow: Nauka;

1985.

84. Fu M, Barmish B. Adaptive stabilization of linear systems via switching control. IEEE Trans

Autom Control. 1986;31(12):1097–103.

85. Gaines FJ, Thompson RC. Sets of nearly triangular matrices. Duke Math J. 1968;35(3):441–

54.

86. Ge SS, Sun Z. Switched controllability via bumpless transfer input and constrained switch-

ing. IEEE Trans Autom Control. 2008;53(7):1702–6.

87. Geromel JC, Colaneri P. Stability and stabilization of continuous-time switched linear sys-

tems. SIAM J Control Optim. 2006;45(5):1915–30.

88. Geromel JC, Colaneri P, Bolzern P. Dynamic output feedback control of switched linear

systems. IEEE Trans Autom Control. 2008;53(3):720–33.

89. Godsil C, Royle GF. Algebraic graph theory. Berlin: Springer; 2001.

90. Goebel R, Sanfelice RG, Teel AR. Invariance principles for switching systems via hybrid

systems techniques. Syst Control Lett. 2008;57(12):980–6.

91. Goebel R, Sanfelice RG, Teel AR. Hybrid dynamical systems. IEEE Control Syst Mag.

2009;29(2):28–93.

92. Goncalves JM, Megretski A, Dahleh A. Global stability of relay feedback systems. IEEE

Trans Autom Control. 2001;46(4):550–62.

93. Goncalves JM, Megretski A, Dahleh A. Global analysis of piecewise linear systems using im-

pact maps and surface Lyapunov functions. IEEE Trans Autom Control. 2003;48(12):2089–

106.

94. Griggs WM, King CK, Shorten RN, Mason O, Wulff K. Quadratic Lyapunov functions for

systems with state-dependent switching. Linear Algebra Appl. 2010;433(1):52–63.

95. Gripenberg G. Computing the joint spectral radius. Linear Algebra Appl. 1996;234:43–60.

96. Guglielmi N, Zennaro M. On the limit products of a family of matrices. Linear Algebra Appl.

2003;362:11–27.

97. Guo YQ, Wang YY, Xie LH, Zheng JC. Stability analysis and design of reset systems: theory

and an application. Automatica. 2009;45(2):492–7.

98. Gurvits L. Stabilities and controllabilities of switched systems (with applications to the quan-

tum systems). In: Proc 15th int symp math theory network syst; 2002.

99. Han TT, Ge SS, Lee TH. Persistent dwell-time switched nonlinear systems: variation

paradigm and gauge design. IEEE Trans Autom Control. 2010;55(2):321–37.

100. Hedlund S, Johansson M. PWLTOOL: a MATLAB toolbox for analysis of piecewise linear

systems. Dept Automat Contr, Lund Inst Tech; 1999.

101. Heemels WP, Brogliato B. The complementarity class of hybrid dynamical systems. Eur J

Control. 2003;9(2–3):322–60.

102. Heemels WP, De Schutter B, Bemporad A. Equivalence of hybrid dynamical models. Auto-

matica. 2001;37(7):1085–91.

103. Hegselmann R, Krause U. Opinion dynamics and bounded confidence: models, analysis, and

simulation. J Artif Soc Soc Simul. 2002;5(3):2–34.



References 243

104. Hespanha JP. Uniform stability of switched linear systems: extensions of LaSalle’s invariance

principle. IEEE Trans Autom Control. 2004;49(4):470–82.

105. Hespanha JP, Liberzon D, Angeli D, Sontag ED. Nonlinear norm-observability notions and

stability of switched systems. IEEE Trans Autom Control. 2005;50(2):154–68.

106. Hespanha JP, Liberzon D, Morse AS. Logic-based switching control of a nonholonomic sys-

tem with parametric modeling uncertainty. Syst Control Lett. 1999;38(3):167–77.

107. Hespanha JP, Liberzon D, Morse AS. Overcoming the limitations of adaptive control by

means of logic-based switching. Syst Control Lett. 2003;49(1):49–65.

108. Hespanha JP, Liberzon D, Morse AS. Hysteresis-based switching algorithms for supervisory

control of uncertain systems. Automatica. 2003;39:263–72.

109. Hespanha JP, Liberzon D, Morse AS, Anderson BDO, Brinsmead TS, De Bruyne F. Multiple

model adaptive control, part 2: Switching. Int J Robust Nonlinear Control. 2001;11(5):479–

96.

110. Hespanha JP, Morse AS. Stability of switched systems with average dwell-time. In: Proc

IEEE CDC; 1999. p. 2655–60.

111. Hockerman-Frommer J, Kulkarni SR, Ramadge PJ. Controller switching based on output

prediction errors. IEEE Trans Autom Control. 1998;43(5):596–607.

112. Holcman D, Margaliot M. Stability analysis of switched homogeneous systems in the plane.

SIAM J Control Optim. 2003;41(5):1609–25.

113. Hong YG, Gao LX, Cheng D, Hu JP. Lyapunov-based approach to multiagent systems with

switching jointly connected interconnection. IEEE Trans Autom Control. 2007;52(5):943–8.

114. Hu TS, Lin ZL. Composite quadratic Lyapunov functions for constrained control systems.

IEEE Trans Autom Control. 2003;48(3):440–50.

115. Hu TS, Ma LQ, Lin ZL. Stabilization of switched systems via composite quadratic functions.

IEEE Trans Autom Control. 2008;53(11):2571–85.

116. Imura J. Well-posedness analysis of switch-driven piecewise affine systems. IEEE Trans Au-

tom Control. 2003;48(11):1926–35.

117. Ingalls B, Sontag ED, Wang Y. An infinite-time relaxation theorem for differential inclusions.

Proc Am Math Soc. 2003;131(2):487–99.

118. Ishii H, Francis BA. Stabilizing a linear system by switching control with dwell time. IEEE

Trans Autom Control. 2002;47(12):1962–73.

119. Iwatania Y, Hara S. Stability tests and stabilization for piecewise linear systems based on

poles and zeros of subsystems. Automatica. 2006;42(10):1685–95.

120. Jadbabaie A, Lin J, Morse AS. Coordination of groups of mobile agents using nearest neigh-

bor rules. IEEE Trans Autom Control. 2003;48(6):988–1001.

121. Ji M, Egerstedt M. Distributed coordination control of multiagent systems while preserving

connectedness. IEEE Trans Robot. 2007;23(4):693–703.

122. Ji ZJ, Wang L, Guo XX. Design of switching sequences for controllability realization of

switched linear systems. Automatica. 2007;43(4):662–8.

123. Jiang SX, Voulgaris PG. Performance optimization of switched systems: a model matching

approach. IEEE Trans Autom Control. 2009;54(9):2058–71.

124. Jiang ZP, Wang Y. A converse Lyapunov theorem for discrete-time systems with distur-

bances. Syst Control Lett. 2002;45(1):49–58.

125. Johansson M. Piecewise linear control systems. New York: Springer; 2003.

126. Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid

systems. IEEE Trans Autom Control. 1998;43:555–9.

127. Johansson M, Rantzer A, Arzen K-E. Piecewise quadratic stability of fuzzy systems. IEEE

Trans Fuzzy Syst. 1999;7(6):713–22.

128. John F. Extremum problems with inequalities as subsidiary conditions. In: Studies and essays

presented to R. Courant on his 60th birthday. New York: Interscience; 1948. p. 187–204.

129. Kellet CM, Teel A. Weak converse Lyapunov theorems and control-Lyapunov functions.

SIAM J Control Optim. 2004;42:1934–59.

130. Khalil HK. Nonlinear systems. 3rd ed. Upper Saddle River: Prentice Hall; 2002.

131. Khas’minskii RZ. Necessary and sufficient condition for the asymptotic stability of linear

stochastic systems. Theory Probab Appl. 1967;12(1):144–7.



244 References

132. Kolmanovsky I, McClamroch NH. Developments in nonholonomic control problems. IEEE

Control Syst Mag. 1995;15(6):20–36.

133. Kozin F. On relations between moment properties and almost sure Lyapunov stability for

linear stochastic systems. J Math Anal Appl. 1965;10:324–53.

134. Kozin F. A survey of stability of stochastic systems. Automatica. 1969;5(1):95–112.

135. Krasovskii NN. Stability of motion. Stanford: Stanford Univ Press; 1963.

136. Kushner HJ. Stochastic stability and control. New York: Academic Press; 1967.

137. Laffey TJ. Simultaneous triangularization of matrices—low rank case and the nonderogatory

case. Linear Multilinear Algebra. 1978;6(1):269–305.

138. Lagarias JC, Wang Y. The finiteness conjecture for the generalized spectral radius of a set of

matrices. Linear Algebra Appl. 1995;214:17–42.

139. Lasota A, Strauss A. Asymptotic behavior for differential equations which cannot be locally

linearized. J Differ Equ. 1971;10(1):152–72.

140. Lee JW, Dullerud GE. Uniform stabilization of discrete-time switched and Markovian jump

linear systems. Automatica. 2006;42(2):205–18.

141. Lee JW, Khargonekar PP. Optimal output regulation for discrete-time switched and Marko-

vian jump linear systems. SIAM J Control Optim. 2008;47(1):40–72.

142. Lee JW, Khargonekar PP. Detectability and stabilizability of discrete-time switched linear

systems. IEEE Trans Autom Control. 2009;54(3):424–37.

143. Leenaerts DMW. On linear dynamic complementary systems. IEEE Trans Circuits Syst I,

Fundam Theory Appl. 1999;46(8):1022–6.

144. Li ZG, Soh YC, Wen CY. Sufficient conditions for almost sure stability of jump linear sys-

tems. IEEE Trans Autom Control. 2000;45(7):1325–9.

145. Li ZG, Soh YC, Wen CY. Switched and impulsive systems: analysis, design and applications.

Berlin: Springer; 2005.

146. Liberzon D. Switching in systems and control. Boston: Birkhäuser; 2003.

147. Liberzon D, Hespanha JP, Morse AS. Stability of switched systems: a Lie-algebraic condi-

tion. Syst Control Lett. 1999;37(3):117–22.

148. Liberzon MR. Essays on the absolute stability theory. Autom Remote Control. 2006;

67(10):1610–44.

149. Lin H, Antsaklis PJ. Stability and stabilizability of switched linear systems: a short survey of

recent results. In: Proc IEEE ISIC; 2005. p. 24–9.

150. Lin H, Antsaklis PJ. Switching stabilizability for continuous-time uncertain switched linear

systems. IEEE Trans Autom Control. 2007;52(4):633–46.

151. Lin H, Antsaklis PJ. Stability and stabilizability of switched linear systems: a survey of recent

results. IEEE Trans Autom Control. 2009;54(2):308–22.

152. Lin Y, Sontag ED, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM

J Control Optim. 1996;34(1):124–60.

153. Lin Z, Broucke M, Francis B. Local control strategies for groups of mobile autonomous

agents. IEEE Trans Autom Control. 2004;49(4):622–9.

154. Loewy R. On ranges of real Lyapunov transformations. Linear Algebra Appl. 1976;13(1):79–

89.

155. Lu L, Lin ZL. A switching anti-windup design using multiple Lyapunov functions. IEEE

Trans Autom Control. 2010;55(1):142–8.

156. Lur YY. A note on a gap result for norms of semigroups of matrices. Linear Algebra Appl.

2006;419(2–3):368–72.

157. Lur’e AI. Nekotorye nelineinye zadachi teorii avtomaticheskogo regulirovaniya (Some non-

linear problems of the automatic control theory). Moscow: Gostekhizdat; 1951.

158. Maesumi M. An efficient lower bound for the generalized spectral radius of a set of matrices.

Linear Algebra Appl. 1996;240:1–7.

159. Mancilla-Aguilar JL, Garcia RA. A converse Lyapunov theorem for nonlinear switched sys-

tems. Syst Control Lett. 2000;41(1):67–71.

160. Marcelo D, Fragoso MD, Costa OLV. A unified approach for stochastic and mean square

stability of continuous-time linear systems with Markovian jumping parameters and additive

disturbances. SIAM J Control Optim. 2005;44(4):1165–91.



References 245

161. Margaliot M. Stability analysis of switched systems using variational principles: an introduc-

tion. Automatica. 2006;42(12):2059–77.

162. Margaliot M, Gitizadeh R. The problem of absolute stability: a dynamic programming ap-

proach. Automatica. 2004;40(7):1247–52.

163. Margaliot M, Langholz G. Necessary and sufficient conditions for absolute stability: the case

of second-order systems. IEEE Trans Circuits Syst I, Fundam Theory Appl. 2003;50(2):227–

34.

164. Margaliot M, Liberzon D. Lie-algebraic stability conditions for nonlinear switched systems

and differential inclusions. Syst Control Lett. 2006;55(1):8–16.

165. Margaliot M, Yfoulis C. Absolute stability of third-order systems: a numerical algorithm.

Automatica. 2006;42(10):1705–11.

166. Mariton M. Almost sure and moment stability of jump linear systems. Syst Control Lett.

1988;11(5):393–7.

167. Mariton M. Jump linear systems in automatic control. New York: Marcel Dekker; 1990.

168. Mason P, Boscain U, Chitour Y. On the minimal degree of a common Lyapunov function for

planar switched systems. In: Proc IEEE CDC; 2004. p. 2786–91.

169. McClamroch NH, Kolmanovsky I. Performance benefits of hybrid control design for linear

and nonlinear systems. Proc IEEE. 2000;88(7):1083–96.

170. Molchanov AP, Pyatnitskiy YeS. Lyapunov functions defining the necessary and suffi-

cient conditions for absolute stability of the nonlinear control systems, I. Avtom Telemeh.

1986;3:63–73.

171. Molchanov AP, Pyatnitskiy YeS. Lyapunov functions defining the necessary and suffi-

cient conditions for absolute stability of the nonlinear control systems, II. Avtom Telemeh.

1986;4:5–15.

172. Molchanov AP, Pyatnitskiy YeS. Lyapunov functions defining the necessary and sufficient

conditions for absolute stability of the nonlinear control systems, III. Avtom Telemeh.

1986;5:38–49.

173. Molchanov AP, Pyatnitskiy YeS. Criteria of asymptotic stability of differential and difference

inclusions encountered in control theory. Syst Control Lett. 1989;13(1):59–64.

174. Morari M, Baotic M, Borrelli F. Hybrid systems modeling and control. Eur J Control.

2003;9(2–3):177–89.

175. Moreau L. Stability of continuous-time distributed consensus algorithms. In: Proc IEEE

CDC; 2004. p. 3998–4003.

176. Mori Y, Mori T, Kuroe Y. A solution to the common Lyapunov function problem for

continuous-time systems. In: Proc IEEE CDC; 1997. p. 3530–1.

177. Morse AS. Logic-based switching and control. In: Francis BA, Tannenbaum AR, editors.

Feedback control, nonlinear systems, and complexity. New York: Springer; 1995. p. 173–

95.

178. Morse AS. Supervisory control of families of linear set-point controllers, part 1: Exact match-

ing. IEEE Trans Autom Control. 1996;41(10):1413–31.

179. Morse AS. Supervisory control of families of linear set-point controllers, part 2: Robustness.

IEEE Trans Autom Control. 1997;42(11):1500–15.

180. Morse AS. Lecture notes on logically switched dynamical systems. In: Agrachev AA, Morse

AS, Sontag ED, Sussmann HJ, Utkin VI, editors. Nonlinear and optimal control theory.

Berlin: Springer; 2008. p. 61–161.

181. Mount DM. Bioinformatics: sequence and genome analysis. 2nd ed. New York: Cold Spring

Harbor Laboratory Press; 2004.

182. Narendra KS, Balakrishnan J. A common Lyapunov function for stable LTI systems with

commuting A-matrices. IEEE Trans Autom Control. 1994;39(12):2469–71.

183. Narendra KS, Balakrishnan J. Adaptive control using multiple models. IEEE Trans Autom

Control. 1997;42(2):171–87.

184. Nesterov Y. Squared functional systems and optimization problems, high performance opti-

mization. Appl Optim. 2000;33:405–40.

185. Notredame C. Recent progresses in multiple sequence alignment: a survey. Pharmacoge-

nomics. 2002;3(1):131–44.



246 References

186. Oktem H. A survey on piecewise-linear models of regulatory dynamical systems. Nonlinear

Anal. 2005;63(3):336–49.

187. Olfati-Saber R, Murray RM. Consensus problems in networks of agents with switching topol-

ogy and time-delays. IEEE Trans Autom Control. 2004;49(9):1520–33.

188. Opoiytsev VI. Conversion of principle of contractive maps. Usp Mat Nauk. 1976;31:169–98.

189. Opoiytsev VI. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dy-

namical systems. Trans Mosc Math Soc. 1968;19:197–231.

190. Parrilo PA, Jadbabaie A. Approximation of the joint spectral radius using sum of squares.

Linear Algebra Appl. 2008;428:2385–402.

191. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl

Acad Sci USA. 1988;85:2444–8.

192. Peng YP. Feedback stabilization and performance optimization of switched systems. PhD

dissertation, South China Univ Tech; 2010.

193. Protasov Yu. The geometric approach for computing the joint spectral radius. In: Proc IEEE

CDC; 2005. p. 3001–6.

194. Pyatnitskiy ES, Rapoport LB. Criteria of asymptotic stability of differential inclusions and

periodic motions of time-varying nonlinear control systems. IEEE Trans Circuits Syst I, Fun-

dam Theory Appl. 1996;43(3):219–29.

195. Radjavi H, Rosenthal P. Simultaneous triangularization. New York: Springer; 1999.

196. Rapoport LB. Asymptotic stability and periodic motions of selector-linear differential inclu-

sions. In: Garofalo F, Glielmo L, editors. Robust control via variable structure and Lyapunov

techniques. New York: Springer; 1996. p. 269–85.

197. Riedinger P, Sigalotti M, Daafouz J. On the algebraic characterization of invariant sets of

switched linear systems. Automatica. 2010;46(6):1047–52.

198. Rifford L. Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J

Control Optim. 2000;39(4):1043–64.

199. Rota GC, Strang X. A note on the joint spectral radius. Indag Math. 1960;22:379–81.

200. Santarelli KR, Dahleh MA. Optimal controller synthesis for a class of LTI systems via

switched feedback. Syst Control Lett. 2010;59(3–4):258–64.

201. Seatzu C, Corona D, Giua A, Bemporad A. Optimal control of continuous-time switched

affine systems. IEEE Trans Autom Control. 2006;51(5):726–41.

202. Shen JL. Observability analysis of conewise linear systems via directional derivative and

positive invariance techniques. Automatica. 2010;46(5):843–51.

203. Shor NZ. Class of global minimum bounds of polynomial functions. Cybernetics.

1987;23(6):731–4.

204. Shorten RN, Narendra KS. On the existence of a common quadratic Lyapunov functions for

linear stable switching systems. In: Proc Yale Workshop Adapt Learn Syst; 1998.

205. Shorten RN, Narendra KS. Necessary and sufficient conditions for the existence of a common

quadratic Lyapunov function for two stable second order linear time-invariant systems. In:

Proc ACC; 1999. p. 1410–4.

206. Shorten RN, Narendra KS. Necessary and sufficient conditions for the existence of a common

quadratic Lyapunov function for a finite number of stable second order linear time-invariant

systems. Int J Adapt Control Signal Process. 2003;16:709–28.

207. Shorten RN, Narendra KS, Mason O. A result on common quadratic Lyapunov functions.

IEEE Trans Autom Control. 2003;48(1):110–3.

208. Shorten RN, Wirth F, Mason O, Wulff K, King C. Stability criteria for switched and hybrid

systems. SIAM Rev. 2007;49(4):545–92.

209. Solmaz S, Shorten RN, Wulff K, Cairbre F. A design methodology for switched discrete

time linear systems with applications to automotive roll dynamics control. Automatica.

2008;44(9):2358–63.

210. Sontag ED. Nonlinear regulation: the piecewise linear approach. IEEE Trans Autom Control.

1981;26(2):346–58.

211. Sontag ED. Smooth stabilization implies coprime factorization. IEEE Trans Autom Control.

1989;34(4):435–43.



References 247

212. Sontag ED. Interconnected automata and linear systems: a theoretical framework in discrete-

time. In: Alur R, Henzinger TA, Sontag ED, editors. Hybrid systems III—Verification and

control. Berlin: Springer; 1996. p. 436–48.

213. Stanford DP, Urbano JM. Some convergence properties of matrix sets. SIAM J Matrix Anal

Appl. 1994;14(4):1132–40.

214. Stefanovic M, Safonov M. Safe adaptive switching control: stability and convergence. IEEE

Trans Autom Control. 2008;53(9):2012–21.

215. Sugeno M. On stability of fuzzy systems expressed by fuzzy rules with singleton conse-

quents. IEEE Trans Fuzzy Syst. 1999;7(2):201–24.

216. Sun Z. Stabilizability and insensitiveness of switched systems. IEEE Trans Autom Control.

2004;49(7):1133–7.

217. Sun Z. A modified stabilizing law for switched linear systems. Int J Control. 2004;77(4):389–

98.

218. Sun Z. A general robustness theorem for switched linear systems. In: Proc IEEE ISIC; 2005.

p. 8–11.

219. Sun Z. Combined stabilizing strategies for switched linear systems. IEEE Trans Autom Con-

trol. 2006;51(4):666–74.

220. Sun Z. Stabilization and optimal switching of switched linear systems. Automatica.

2006;42(5):783–8.

221. Sun Z. Guaranteed stability of switched linear systems revisited. In: Proc IEEE ICCA 2007;

2007. p. 18–23.

222. Sun Z. Converse Lyapunov theorem for switched stability of switched linear systems. In:

Proc Chinese contr conf; 2007. p. 678–80.

223. Sun Z. Matrix measure approach for stability of switched linear systems. In: IFAC NOLCOS;

2007. p. 557–60.

224. Sun Z. A note on marginal stability of switched systems. IEEE Trans Autom Control.

2008;53(2):625–31.

225. Sun Z. Stabilizing switching design for switched linear systems: a state-feedback path-wise

switching approach. Automatica. 2009;45(7):1708–14.

226. Sun Z. A graphic approach for stability of piecewise linear systems. In: Proc Chinese conf

dec contr; 2009. p. 1016–9.

227. Sun Z. The problem of slow switching for switched linear systems. In: Proc ICCAS-SICE;

2009. p. 4843–6.

228. Sun Z. Robust switching of switched linear systems. In: Proc IFAC NOLCOS; 2010.

p. 256–9.

229. Sun Z. Stability and contractivity of conewise linear systems. In: Proc IEEE MSC; 2010.

p. 2094–8.

230. Sun Z. Stability of piecewise linear systems revisited. Annu Rev Control. 2010;34(2):

221–31.

231. Sun Z. Switching distance and robust switching for switched linear systems. Automatica.

2010; submitted.

232. Sun Z, Ge SS. Dynamic output feedback stabilization of a class of switched linear systems.

IEEE Trans Circuits Syst I, Fundam Theory Appl. 2003;50(8):1111–5.

233. Sun Z, Ge SS. Analysis and synthesis of switched linear control systems. Automatica.

2005;41(2):181–95.

234. Sun Z, Ge SS. Switched linear systems: control and design. London: Springer; 2005.

235. Sun Z, Ge SS. On stability of switched linear systems with perturbed switching paths. J Con-

trol Theory Appl. 2006;4(1):18–25.

236. Sun Z, Ge SS, Lee TH. Reachability and controllability criteria for switched linear systems.

Automatica. 2002;38(5):775–86.

237. Sun Z, Huang J. A note on connectivity of multi-agent systems with proximity graphs and

linear feedback protocol. Automatica. 2009;45(9):1953–6.

238. Sun Z, Peng Y. Stabilizing design for switched linear control systems: a constructive ap-

proach. Trans Instrum Meas. 2010;32(6):706–35.



248 References

239. Sun Z, Shorten RN. On convergence rates of simultaneously triangularizable switched linear

systems. IEEE Trans Autom Control. 2005;50(8):1224–8.

240. Sworder D. Control of a linear system with a Markov property. IEEE Trans Autom Control.

1965;10(3):294–300.

241. Sworder D. Feedback control of a class of linear systems with jump parameters. IEEE Trans

Autom Control. 1969;14(1):9–14.

242. Szabo Z, Bokor J, Balas G. Generalized piecewise linear feedback stabilizability of con-

trolled linear switched systems. In: Proc IEEE CDC; 2008. p. 3410–4.

243. Szabo Z, Bokor J, Balas G. Controllability and stabilizability of linear switched systems. In:

Proc ECC; 2009.

244. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and

control. IEEE Trans Syst Man Cybern. 1985;15(1):116–32.

245. AH Tan. Direction-dependent systems—a survey. Automatica. 2009;45(12):2729–43.

246. Tan PV, Millerioux G, Daafouz J. Left invertibility, flatness and identifiability of switched

linear dynamical systems: a framework for cryptographic applications. Int J Control.

2010;83(1):145–53.

247. Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy Sets

Syst. 1992;12(2):135–56.

248. Tanaka K, Wang HO. Fuzzy control systems design and analysis: a linear matrix inequality

approach. New York: Wiley; 2001.

249. Theys J. Joint spectral radius: theory and approximations. PhD dissertation, Dept Math Eng,

Univ Louvain; 2005.

250. Tokarzewski J. Stability of periodically switched linear systems and the switching frequency.

Int J Syst Sci. 1987;18(4):697–726.

251. Tsitsiklis JN, Blondel VD. The Lyapunov exponent and joint spectral radius of pairs of ma-

trices are hard, when not impossible, to compute and to approximate. Math Control Signals

Syst. 1997;10(1):31–40.

252. Veres SM. The geometric bounding toolbox, user’s manual & reference. UK: SysBrain;

2001.

253. Vidyasagar M. Nonlinear systems analysis. 2nd ed. Eaglewood Cliffs: Prentice Hall; 1993.

254. Vinnicombe G. Frequency domain uncertainty and the graph topology. IEEE Trans Autom

Control. 1993;38:1371–83.

255. Vladimirov A, Elsner L, Beyn WJ. Stability and paracontractivity of discrete linear inclu-

sions. Linear Algebra Appl. 2000;312(1–3):125–34.

256. Vu L, Liberzon D. Common Lyapunov functions for families of commuting nonlinear sys-

tems. Syst Control Lett. 2005;54(5):405–16.

257. Wang W, Nesic D. Input-to-state stability and averaging of linear fast switching systems.

IEEE Trans Autom Control. 2010;55(5):1274–9.

258. Wicks MA, Peleties V, DeCarlo RA. Construction of piecewise Lyapunov functions for sta-

bilizing switched systems. In: Proc IEEE CDC; 1994. p. 3492–7.

259. Wicks MA, Peleties P, DeCarlo RA. Switched controller synthesis for the quadratic stabi-

lization of a pair of unstable linear systems. Eur J Control. 1998;4(2):140–7.

260. Wielandt H. Losung der Aufgabe 338 (When are irreducible components of a semigroup of

matrices bounded?). Jahresber Dtsch Math-Ver. 1954;57:4–5.

261. Wirth F. A converse Lyapunov theorem for linear parameter-varying and linear switching

systems. SIAM J Control Optim. 2005;44(1):210–39.

262. Witsenhausen HS. A class of hybrid-state continuous-time dynamic systems. IEEE Trans

Autom Control. 1966;11(2):161–7.

263. Wu AG, Feng G, Duan GR, Gao HJ. A stabilizing slow-switching law for switched discrete-

time linear systems. In: Proc IEEE MSC; 2010. p. 2099–104.

264. Wu J, Sun Z. New slow-switching laws for switched linear systems. In: Proc IEEE ICCA;

2010. p. 2274–7.

265. Xia X. Well-posedness of piecewise-linear systems with multiple modes and multiple crite-

ria. IEEE Trans Autom Control. 2002;47(10):1716–20.



References 249

266. Xie G, Wang L. Controllability and stabilizability of switched linear-systems. Syst Control

Lett. 2003;48(2):135–55.

267. Xie G, Wang L. Periodical stabilization of switched linear systems. J Comput Appl Math.

2005;18(1):176–87.

268. Xie G, Wang L. Controllability implies stabilizability for discrete-time switched linear sys-

tems. In: Hybrid systems: computation and control. Berlin: Springer; 2005. p. 667–82.

269. Xie G, Wang L. Periodic stabilizability of switched linear control systems. Automatica.

2009;45(9):2141–8.

270. Xu X, Antsaklis PJ. Optimal control of switched systems based on parameterization of the

switching instants. IEEE Trans Autom Control. 2004;49(1):2–16.

271. Yakubovich VA, Leonov GA, Gelig AK. Ustoichivost Nelineinykh Sistem s Needinstven-

nym Sostoyaniem Ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium

State). Moscow: Nauka; 1978.

272. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338–53.

273. Zadeh LA. Fuzzy algorithm. Inf Control. 1968;12:94–102.

274. Zahreddine Z. Matrix measure and application to stability of matrices and interval dynamical

systems. Int J Math Math Sci. 2003;2:75–85.

275. Zavlanos MM, Jadbabaie A, Pappas GJ. Flocking while preserving network connectivity. In:

Proc IEEE CDC; 2007. p. 2919–24.

276. Zhai G, Lin H, Antsaklis PJ. Quadratic stabilizability of switched linear systems with poly-

topic uncertainties. Int J Control. 2003;76(7):747–53.

277. Zhai G, Yasuda K. Stability analysis for a class of switched systems. Trans Soc Instrum

Control Eng. 2000;36(5):409–15.

278. Zhang LX, Gao HJ. Asynchronously switched control of switched linear systems with aver-

age dwell time. Automatica. 2010;46(5):953–8.

279. Zhang W, Abate A, Hu JH, Vitus MP. Exponential stabilization of discrete-time switched

linear systems. Automatica. 2009;45(11):2526–36.

280. Zhang W, Hu JH. On optimal quadratic regulation for discrete-time switched linear sys-

tems. In: Egerstedt M, Mishra B, editors. Hybrid systems: computation and control. Berlin:

Springer; 2008. p. 584–97.

281. Zhao J, Hill DJ. Dissipativity theory for switched systems. IEEE Trans Autom Control.

2008;53(4):941–53.

282. Zhao J, Hill DJ. Passivity and stability of switched systems: a multiple storage function

method. Syst Control Lett. 2008;57(2):158–64.

283. Zhao J, Hill DJ, Liu T. Synchronization of complex dynamical networks with switching

topology: a switched system point of view. Automatica. 2009;45(11):2502–11.



Index

A

Absolute stability, 204

Almost sure stability, 73

asymptotically -, 73

exponentially -, 85

Attractivity, 18

guaranteed global -, 18

guaranteed global uniform -, 19

switched -, 128

Autonomous stability, 8

B

Bellman-Gronwall Lemma, 109

C

C-set, 33

Candidate controller, 207

Column stacking form, 74

Conewise linear system, 9, 105

Consensus, 102

asymptotic -, 102, 223

average -, 223

Consistent stabilizability, 11

Continuous state, 1, 17

Contractility, 86

norm -, 86

piecewise -, 164

switched -, 232

unit-sphere -, 107

Converse Lyapunov theorem, 24

Coordinate transformation, 41

extended -, 41

Current relay state, 175

D

Difference inclusion, 26

Differential inclusion, 26

Dini derivative, 20

upper -, 20, 133

Dirac measure, 11

Discrete state, 1, 17

transitive -, 101

weakly -, 101

Dwell time, 6, 113

- stability, 7

- stabilizability, 11

average -, 113

stabilizing -, 115

largest -, 115

stable -, 113

least -, 113

E

ǫ-robust dwell time pair, 117

Ellipsoid norm, 55

Euler approximating system, 64

F

Finite Covering Theorem, 162

Function, 2

class K -, 4

class K∞ -, 4

class K L -, 4

Minkowski -, 33

positive definite -, 20

radially unbounded -, 20

saturation -, 97

G

Graph, 101

adjacency matrix of -, 223

algebraic connectivity of -, 224

Z. Sun, S.S. Ge, Stability Theory of Switched Dynamical Systems,

Communications and Control Engineering,

DOI 10.1007/978-0-85729-256-8, © Springer-Verlag London Limited 2011

251

http://dx.doi.org/10.1007/978-0-85729-256-8


252 Index

Graph (cont.)

connected -, 225

initially -, 225

throughout -, 225

directed -, 101

edge of -, 101

Laplacian matrix of -, 223

node set of -, 101

attractive -, 101

invariant -, 101

minimal attractive -, 101

spectral gap of -, 224

Group decision value, 223

Guaranteed stability, 5, 19

global asymptotic -, 19

global exponential -, 19

global uniform asymptotic -, 19

global uniform exponential -, 19

marginal -, 6

uniform -, 19

I

Input-to-state stability, 179

Instability, 30

marginal -, 30

J

John’s theorem, 55

Jump linear system, 9, 71

K

K–H model, 102

L

Law of large numbers, 10

Lipschitz condition, 3

Lyapunov exponent, 30, 84

top -, 84

Lyapunov function, 20

common -, 20

common weak -, 20

surface -, 95

switched -, 133

M

Markov chain, 9

embedded -, 72

Markov process, 9, 72

transition probability of -, 72

Matrix measure, 38

Matrix sequence

continuity -, 89

polyhedral cell bounding -, 89

Matrix set

measure of -, 38

extreme -, 38

least -, 38

norm of -, 36

extreme -, 36

least -, 36

positive definite -, 73

simultaneously triangularizable -, 48

Mean square stability, 73

exponentially -, 73

stochastic -, 73

structurally -, 80

Multiagent system, 222

agreement of -, 223

consensus of -, 223

Multiestimator, 208

P

Piecewise affine system, 9

Piecewise linear system, 87

Pigeonhole Principle, 226

Polynomial, 30

homogeneous -, 56

sum-of-squares -, 55, 56

Polytopic linear uncertain system, 26

R

Radial linearity property, 25

S

Semi-definite programming, 57

Spatial stabilizability, 11

Spectral radius, 37

Finiteness Conjecture for -, 53

generalized -, 35

joint -, 35

Stability, 4, 30

asymptotic -, 4

exponential -, 4

marginal -, 30

structural -, 178

Stabilizability, 5, 128

asymptotic -, 5, 128

consistent -, 129

exponential -, 5, 128

multifeedback -, 232

Stabilizing switching design, 11

State trajectory, 3

feasible set of -, 4

State transition matrix, 25, 72

Stochastic stability, 9

almost sure -, 10

mean square -, 10



Index 253

Switched linear system, 25

piecewise -, 216

regular -, 34

simultaneously triangularizable -, 48

Switched Riccati mapping, 147

Switched system, 1

aggregated systems of -, 160

m-form -, 1

normalized -, 34

solution of -, 3

subsystem of -, 1

supervisor of -, 1

well-defined -, 3

Switching index sequence, 2

Switching law, 2

slow -, 113

stabilizing -, 11, 128

state-feedback -

pathwise -, 159

pure -, 155

switched attractive -, 128

well-defined -, 3

Switching path, 2

child path of -, 173

jump time of -, 2

parent path of -, 173

common -, 174

subpath of -, 3

well-defined -, 2

Switching sequence, 2, 129

Switching signal, 2

attainability set of -, 140

compliant -, 140

feasible set of -, 4

Markov jump -, 9

periodic -, 130

well-defined -, 3

Switching time sequence, 2

T

T–S system, 215

aggregated system of -, 218

Time space, 2

Transformed system, 41

extended -, 41

Transition invariance property, 25


	Stability Theory of Switched Dynamical Systems
	Preface
	Acknowledgments
	Financial Support

	Contents
	List of Symbols

	Introduction
	Switched Dynamical Systems
	Stability and Stabilizability of Switched Systems
	Guaranteed Stability Under Arbitrary Switching
	Dwell-Time Stability
	Autonomous Stability Under State-Driven Switching
	Stochastic Stabilities Under Random Switching
	Stabilizing Switching Design

	Organization of the Book
	Notes and References

	Arbitrary Switching
	Preliminaries
	Switched Nonlinear Systems
	Common Lyapunov Functions
	Converse Lyapunov Theorem

	Switched Linear Systems
	Relaxed System Frameworks
	Universal Lyapunov Functions
	Algebraic Criteria
	Extended Coordinate Transformation and Set Invariance
	Triangularizable Systems

	Computational Issues
	Approximating the Spectral Radius
	An Invariant Set Approach

	Notes and References

	Constrained Switching
	Introduction
	Stochastic Stability
	Introduction
	Definitions and Preliminaries
	Stability Criteria

	Piecewise Linear Systems
	Introduction
	Piecewise Quadratic Lyapunov Function Approach
	Surface Lyapunov Approach
	Transition Analysis: A Graphic Approach
	Conewise Linear Systems

	Dwell-Time Switching
	Preliminaries
	Homogeneous Polynomial Lyapunov Approach
	Combined Switching

	Notes and References

	Designed Switching
	Preliminaries
	Stabilization via Time-Driven Switching
	Stabilization via State-Feedback Switching: The Lyapunov Approach
	Converse Lyapunov Theorems
	Nonconvexity of Lyapunov Functions
	Min Quadratic Lyapunov Functions: An Optimization Approach
	Well-Definedness of State-Feedback Stabilizing Law

	Stabilization via Mixed-Driven Switching: Aggregation and Calculation
	Pathwise State-Feedback Switching
	Computational Algorithms

	Stabilization via Mixed-Driven Switching: Robustness Analysis
	Distance Between Switching Signals
	Robustness Analysis
	Examples and Simulations

	Notes and References

	Connections and Implications
	Absolute Stability for Planar Lur'e Systems
	Guaranteed Stability in the Plane
	Application to Absolute Stability of Planar Lur'e Systems

	Adaptive Control via Supervisory Switching
	Preliminaries
	Estimator-based Supervisory Switching
	An Example

	Stability Analysis of Fuzzy Systems via Piecewise Switching
	Piecewise Switched Linear Systems
	Stability Analysis of T-S Fuzzy Systems

	Consensus of Multiagent Systems with Proximity Graphs
	Introduction
	A Consensus Criterion
	A Verifiable Criterion

	Stabilizing Design of Controllable Switched Linear Systems
	Problem Formulation
	Multilinear Feedback Design

	Notes and References

	References
	Index
	Cover
	Stability Theory of Switched Dynamical Systems
	Preface
	Acknowledgments
	Financial Support

	Contents
	List of Symbols

	Introduction
	Switched Dynamical Systems
	Stability and Stabilizability of Switched Systems
	Guaranteed Stability Under Arbitrary Switching
	Dwell-Time Stability
	Autonomous Stability Under State-Driven Switching
	Stochastic Stabilities Under Random Switching
	Stabilizing Switching Design

	Organization of the Book
	Notes and References

	Arbitrary Switching
	Preliminaries
	Switched Nonlinear Systems
	Common Lyapunov Functions
	Converse Lyapunov Theorem

	Switched Linear Systems
	Relaxed System Frameworks
	Universal Lyapunov Functions
	Algebraic Criteria
	Extended Coordinate Transformation and Set Invariance
	Triangularizable Systems

	Computational Issues
	Approximating the Spectral Radius
	An Invariant Set Approach

	Notes and References

	Constrained Switching
	Stochastic Stability
	Introduction
	Introduction
	Definitions and Preliminaries
	Stability Criteria

	Piecewise Linear Systems
	Introduction
	Piecewise Quadratic Lyapunov Function Approach
	Surface Lyapunov Approach
	Transition Analysis: A Graphic Approach
	Conewise Linear Systems

	Dwell-Time Switching
	Preliminaries
	Homogeneous Polynomial Lyapunov Approach
	Combined Switching

	Notes and References

	Designed Switching
	Preliminaries
	Stabilization via Time-Driven Switching
	Stabilization via State-Feedback Switching: The Lyapunov Approach
	Converse Lyapunov Theorems
	Nonconvexity of Lyapunov Functions
	Min Quadratic Lyapunov Functions: An Optimization Approach
	Well-Definedness of State-Feedback Stabilizing Law

	Stabilization via Mixed-Driven Switching: Aggregation and Calculation
	Pathwise State-Feedback Switching
	Computational Algorithms

	Stabilization via Mixed-Driven Switching: Robustness Analysis
	Distance Between Switching Signals
	Robustness Analysis
	Examples and Simulations

	Notes and References

	Connections and Implications
	Absolute Stability for Planar Lur'e Systems
	Guaranteed Stability in the Plane
	Application to Absolute Stability of Planar Lur'e Systems

	Adaptive Control via Supervisory Switching
	Preliminaries
	Estimator-based Supervisory Switching
	An Example

	Stability Analysis of Fuzzy Systems via Piecewise Switching
	Piecewise Switched Linear Systems
	Stability Analysis of T-S Fuzzy Systems

	Consensus of Multiagent Systems with Proximity Graphs
	Introduction
	A Consensus Criterion
	A Verifiable Criterion

	Stabilizing Design of Controllable Switched Linear Systems
	Multilinear Feedback Design
	Problem Formulation

	Notes and References

	References
	Index

