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Preface

To an ever-increasing extent, pathologists are being required to use statistics in their

practice. In clinical pathology or laboratory medicine, statistics are a fundamental

requirement for the evaluation of the reliability of quantitative results for values of

serum and, in general, body fluid analytes such as electrolytes, glucose, blood urea

nitrogen (BUN), creatinine, critical enzymes, etc. and for the analysis of the

correlation between the results generated on different analyzers, all of which are

used for quantitative determination of the same analytes. Correlations between

measurements of parameters that allow categorization of tumors such as correlation

of nuclear grade with pathological stage require knowledge of statistical methods in

anatomic pathology. Correlation of the staging of different cancers with survival

involves another major use of statistics in both anatomic and clinical pathology.

Often, pathologists utilize statistical methods without knowledge of the physical

and mathematical basis that underlies the particular statistics that they are using.

This can give rise to erroneous conclusions. For example, many, but certainly not

all, quantitative analyses for analytes follow so-called Gaussian statistics, an

example of parametric statistics, with a known mathematical form for the distribu-

tion of values that gives rise to the “bell-shaped curve,” called the normal distribu-

tion. This involves computation of means, standard deviations, confidence intervals

for means, and a number of other parameters.

However, these methods cannot be used for analyte values that do not follow

Gaussian statistics which requires that the distribution of values for a given analyte

be distributed in what is termed a normal distribution as represented by the

so-called bell-shaped curve. This can affect determinations such as the reference

ranges for analytes based on values determined from presumed normal or well

individuals. If the distribution of values is assumed to be Gaussian, the range would

be computed as the mean of the values plus or minus two standard deviations from

the mean. However, if the values actually do not follow a Gaussian distribution,

serious errors can be made in establishing the reference range which may be too

narrow or too wide. Not infrequently, the use of non-parametric statistics rather

must be used in establishing reference ranges.

We are currently living in what has been termed “the age of metrology.” This

means that, to an increasing degree, statistics govern most aspects of laboratory

medicine including whether or not values can be accepted as being “true” or
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“reliable,” and the criteria for acceptability are being made more stringent. This

raises the question as to why statistics are considered essential in evaluation of

clinical laboratory results.

Statistics provide a means for at least partially removing arbitrariness for making

such critical decisions as whether results are acceptable or whether two sets of data

are actually the same or are different. However, there are limitations to statistical

analysis.

In all statistical analysis, there is some arbitrariness. For example, analysis of the

concentration of an analyte in a control sample is said to be “acceptable” if the

value lies between plus or minus two standard deviations of the mean determined

for concentration of this analyte in the control sample on a clinical chemistry

analyzer. The reason for this two standard deviation rule is that, for a Gaussian or

normal distribution, the mean plus or minus two standard deviations encompass

about 95% of the possible values. All other values are considered to be “outliers.”

This is an arbitrary number. One can inquire why some other number might be used

such as 97% (allowed by using approximately three standard deviations from the

mean) or some other number. Here, there is no definitive answer.

Given the current metrology requirements and their acceptance by federal and

state regulatory agencies and by most laboratorians and given the necessity for use

of statistics in analyzing specific clinical data, it is desirable to introduce

pathologists to the statistical methods available to them so that they understand

what methods to use in analyzing clinical data and how to use them. It is the purpose

of this textbook to achieve this goal.

Our aim, therefore, is to impart to the reader how to evaluate different types of

data using the appropriate statistical methods and why these methods are used,

rather than to refer the reader to specific programs that analyze the data without

explanation of the basis of the methods used. In this textbook, we present the most

commonly used statistical methods in the field of pathology. Our presentation is

based on three simple steps:

1. Definition of the statistical problem. For example, when a control is assayed, the

statistical problem is to determine whether the result is acceptable or not

acceptable.

2. The mathematical form of the statistical distribution that solves the statistical
problem. Using the same example given above, since the assay is performed on

the same control repeatedly, any deviation of the values from one another should

be random, i.e., there is random error. Random error is described by the Gaussian

distribution, i.e., when the probability of getting a particular value is plotted

against the values themselves, a bell-shaped curve is obtained. The mathematical

form for this bell-shaped probability distribution is the exponential form ae�bx2,

where x is any value determined experimentally and a and b are constants related

to the standard deviation.

3. How to compute the significance of results obtained from data obtained in the
medical laboratory using the appropriate distribution. The mean for the Gauss-

ian distribution can be shown to be the most probable value on the bell-shaped
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curve and equals the median value. From the Gaussian distribution, one standard

deviation from the mean can be computed. It can further be shown that approxi-

mately 95% of all values lie within the width of the bell-shaped curve at two

standard deviations. It happens that one standard deviation can also be computed

as the square root of the sum of the squares of the differences between each value

determined experimentally and the mean value divided by the number of values.

Thus, as we discussed above, if we wish to define acceptability of a value as any

value that lies within two standard deviations of the mean value, then if a result is

within this cutoff, i.e., plus or minus two standard deviations from the mean value,

it is acceptable.

The textbook is arranged so that the most commonly used statistics in pathology

are discussed first in Chap. 2 in which normal or Gaussian distributions are

described; the concepts of accuracy and precision are discussed; the evaluation of

test efficacy, i.e., sensitivity, specificity, and positive and negative predictive value,

is presented; and the evaluation of so-called receiver operator curves is performed

in deciding which of two or more tests has better or best diagnostic accuracy.

Chapter 3 then presents general probability analyses and discusses probability

distributions that are not used as frequently in pathology but may be useful,

especially the ones involving conditional probabilities.

Chapter 4 presents the underlying theory for analyzing correlations, e.g., when

samples are analyzed on two or more analyzers, what criteria are to decide whether

the values obtained on assaying samples can be considered to be the same or

different. This chapter discusses how to fit straight lines to experimentally deter-

mined points, a process termed linear regression analysis, and how to decide how

well the “best fit” line fits the points.

Chapter 5 provides the statistical basis for the all-important question as to

whether a new test for diagnosis of a particular disease is valid. Generally, these

tests provide a yes or no answer, i.e., the results are discrete and not continuous. It

happens that the distribution that is most appropriate for answering this question of

reliability of the test is given by the chi-squared distribution. A major point of this

chapter is to illustrate that, although the results of this type of testing are discrete, it

is possible to represent the probability distribution for right or wrong results as a

continuous function so that cutoffs such as those used for the Gaussian distribution

can be used and quantitative decisions can therefore be made.

Chapter 6 addresses the statistical basis for the comparison of two or more sets of

data to determine whether they are the same or different. This involves specific tests

on the mean values for the sets of data.

Chapter 7 discusses multivariate analysis, i.e., extension of the linear regression

analysis discussed in Chap. 4 to linear regression with more than two variables.

Chapter 8 presents methods for inferring values omitted from datasets that are

necessary for statistical analysis.

Chapter 9 presents the statistical solution to a problem that is common to all

medical practice: survival analysis. Many readers may be familiar with Kaplan-

Meier curves for survival of patients who carry specific diagnoses or who are being
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treated for specific diseases. This chapter explains the statistical basis for this type

of analysis and other approaches that achieve the same goal.

Chapters 10 and 11 deal with quality assurance. Chap. 10 addresses how

methods are quantitatively validated and Chap. 11 discusses the rules for evaluating

quality control.

Chapters 12 and 13 deal with the problems of how to evaluate quantitatively and

how to design diagnostic studies.

Chapter 14 is an introduction to statistical analysis of large datasets. This type of

analysis is now becoming of paramount importance as the amount of genetic

information on patients has been increasing exponentially. In this chapter, the

technique of clustering, which allows for data simplification, is discussed.

We hope that the readers of this textbook will find it helpful to them in

evaluating data in clinical practice and/or in research.

Brooklyn, NY, USA Matthew R. Pincus

Amir Momeni

Jenny Libien
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Why Every Pathologist Needs to Know
Statistics 1

Introduction

Statistics permeates our lives as pathologists. We use statistics in the interpretation

of laboratory tests, in deciding whether to use a new immunohistochemical stain or

diagnostic method, for our research projects, in our critical reading of scientific

literature, and in our quality improvement and laboratory management activities

[1]. Although we regularly use statistics as pathologists, we do not understand

statistics as well as we would like. In a survey of pathologists to assess statistical

literacy (Schmidt et al., Arch Pathol Lab Med, 2016) [2], the majority of

pathologists surveyed expressed the desire to have a better understanding of

statistics. This book aims to help pathologists achieve a higher level of statistical

literacy and gain greater comfort in using statistical methods.

We start now with the basics – the definitions of keywords. The Merriam

Webster definition of statistics is “a branch of mathematics dealing with the

collection, analysis, interpretation, and presentation of masses of numerical data”

or “a collection of quantitative data.” For pathologists, statistics can be thought of

as a way to make sense of our observations and measurements.

Outcomes and Variables in Pathology and Laboratory Medicine

The test result can have different formats. We can consider test results as variables.

‘Variables’ are data items which can be counted or measured. Variables may be

categorical, which is also known as nominal, and have a limited number of data

items such as positive staining vs. negative staining for a surgical pathology project

examining the use of a new immunohistochemical stain. Alternatively, variables

may be ordinal in which the variables are ordered, but there is still a limited number

of data items (but often more than in categorical). An example of an ordinal scale

could also use that same surgical pathology project examining the use of a new

immunohistochemical stain; however, a semiquantitative assessment is performed,
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and the percent of cells stained are ranked as 0 for none, 1þ for mild staining,

2þ for moderate staining, or 3þ for strong staining. Interval variables are quantita-

tive, and the differences between the variables are equal. They can be continuous,

with infinite subdivision, or discrete, with a set of fixed values such as age in years.

Quantitative clinical laboratory values, with results such as 3.21 mmol, are

examples of interval variables and are often continuous interval variables.

Laboratory test results may vary due to intra-subject differences such as physio-

logic changes due to circadian rhythms, intra-observer variation, and interobserver

variation. Variation is also due to preanalytic (prior to specimen testing), analytic

(during testing), and postanalytic (after testing such as during computer entry or

data transmission) variables. Sometimes the variation occurs due to pure chance

and randomness. Consequently, it is important that we can identify when a change

in a test result reflects a random variation or a variation that occurred due to

non-pathologic reasons or a variation that occurred because the patient is affected

by a disease.

The true outcome of tests irrespective of their format is the clinical impact they

have on diagnosis and/or prognosis of patients. Clinical applicability of tests is

dependent on different elements: test characteristics, cost, ease of performance, and

clinical accuracy.

True outcome studies evaluate the impact of a new laboratory test on overall

health, healthcare costs, morbidity, and mortality. Although seldom

performed, these studies would determine the true usefulness of a new laboratory

test. Laboratory tests can be accurate and reliable but cause harm to a patient when

the wrong test is ordered, or the test result is not used properly. Inaccurate test

results, although rare, may occur.

Through the application of statistical theory and statistical analysis, we can

determine whether test results can have a true effect on patient outcome or clinical

practice; the value of a test relies on its contribution to the clinical management of

the patients, and measurement of this contribution requires applying statistical tests.

The underlying concept of laboratory medicine and pathology is that we can

identify, measure, or quantify variables in individuals that can help to diagnose

them with different diseases. The aim of most test outcomes in pathology is to

identify and distinguish a diseased individual from a person unaffected by that

disease. These measurements are meaningless on their own; it is only through

experimental studies and application of statistical concepts that we can define a

test outcome relevant to the diagnosis of a disease. The basic principle for testing is

that a test is applied to the population to obtain the population average. The next

step is to apply the test to diseased and healthy individuals and determine whether

the test can contrast between the two states using robust statistical methods. Thus,

understanding of test characteristics (such as sensitivity and specificity) and imple-

mentation of tests require that the pathologists have a basic understanding of the

statistical concept behind these characteristics.

Statistical tools are either descriptive or inferential. Descriptive statistics are

used to summarize data – mean, standard deviation, range, and sample size are

examples. Inferential statistics are used to compare results between groups or

2 1 Why Every Pathologist Needs to Know Statistics



populations. Throughout the course of this book, we will show how descriptive and

inferential statistical tools can help to transform test results into meaningful patient

relevant outcomes [3–5].

Components of a Useful Diagnostic Test

Quantitative clinical laboratory test results are more than just “interval variables” –

we use the results to guide diagnostic and therapeutic decision making and to

determine prognosis. Validity, accuracy, reliability, sensitivity, specificity, and

usefulness all contribute to whether a new test becomes part of our arsenal. Validity

refers to how well a test measures what it is supposed to measure. There can be

analytical validity which indicates how well a test detects the presence or absence of

a particular change, for example, a mutation, and there can be clinical validity which

indicates how well a test detects the presence or absence of a disease. Accuracy is

when a test result is near the absolute true value as determined by control specimens

which have also been evaluated by the “gold standard” testingmethod. Accuracy can

be calculated as true positives þ true negatives/all individuals tested. Reliability

indicates that the test is reproducible – that repeat tests will give similar (nearly

identical) results. Sensitivity and specificity are measures of diagnostic accuracy.

Sensitivity is a measure of a test’s ability to detect true positives among all those

individuals who have the disease and is calculated as true positive / (true positiveþ
false negative). Specificity is a measure of a test’s ability to detect true negatives

among all the individuals without the disease and is calculated as true negative / (true

negativeþ false positive) [6–8]. We will revisit these accuracy measures in Chap. 2.

Examples

Sensitivity

A new laboratory test is used to detect a malignant brain tumor in 100 patients who

are known to have malignant brain tumors using the gold standard of brain biopsy.

The new lab test is positive in 95 of the 100 patients. The number of true positives is

95 and the sensitivity is calculated as 95/100 ¼ 95%. The false negative rate is 5%.

That is, five of the individuals who tested negative by the new lab test actually had

the disease.

Sensitivity ¼ number of true positives= Number of true positivesð
þ number of false negativesÞ

Specificity

This new laboratory test for malignant brain tumors is also used on 100 individuals

who do not have brain neoplasms by neuroimaging. The test is negative for 95 of

the individuals and is positive in 5 of the individuals. The specificity is 95%.

Components of a Useful Diagnostic Test 3
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Specificity ¼ number of true negatives= Number of true negativesð
þ number of false positivesÞ

The usefulness of a test is related to the accuracy of a test as determined by the

sensitivity and specificity and by the prevalence. Positive predictive value is the

probability that a positive test indicates disease and is calculated as true positive /

(true positive þ false positive). It indicates the reliability of a positive result. The

negative predictive value is the probability that a negative test indicates no disease

and is calculated a true negative / (true negative þ false negative). It indicates the

reliability of a negative result. Predictive value depends on the prevalence of the

disease, with higher prevalence leading to higher predictive values. Correspond-

ingly, if a test is of low prevalence, the positive predictive value will be low, and

there will be more false positives. Remember that high prevalence means high

pretest probability, and low prevalence means low pretest probability. Therefore,

the utility or usefulness of a test depends on the prevalence of the disease being

tested for in the population.

Example Malignant brain tumors are present in 10 of 1000 individuals based on

using the gold standard for diagnosis. The positive predictive value of the new

laboratory test can be calculated using the known sensitivity and specificity.

Ninety-five percent of 10 patients (¼ 9.5) who have the brain tumor test are positive

with the new test. The test is also falsely positive in 5% of the 990 (¼ 49.5)

individuals who do not have the disease. The specificity is also 95% and 940.5

individuals test as true negatives.

Positive predictive value ¼ True positives= True positivesþ false positivesð Þ
¼ 9:5= 9:5þ 49:5ð Þ ¼ 16:1%

Negative predictive value ¼ True negatives= True negativesþ false negativesð Þ
¼ 940:5= 940:5þ 0:5ð Þ ¼ 99:9%

Defining Test Objectives

When evaluating tests, it is imperative to know the objective for that test. Different

objectives require the test to have different characteristics. A common example in

pathology is when a test is used for screening versus diagnosis.

Screening tests are meant to identify disease when asymptomatic (preclinical) or

when the disease can be more easily treated. In contrast, diagnostic clinical labora-

tory testing is performed to identify the presence or absence of disease when an

individual shows clinical signs and/or symptoms of the disease. Screening is

performed as part of preventive medicine and is used for early detection. Therefore,

screening tests are designed to have many true positives, few false negatives, and

more false positives than in a diagnostic test. Diagnostic confirmatory testing needs
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to be performed after a positive screening test. Screening tests are not meant for

hospitalized, ill individuals.

Summary

Even as end users, pathologists are required to understand the evidence base that

supports a diagnostic test; this requires them to understand the statistical tools that

were employed in the studies to prove the utility of a test. Furthermore, and in order

to integrate a test into their laboratory and practice, they are required to understand

the statistical concepts that allow them to use that test for clinical decision making.

Starting from the next chapter, we will explain how we can assess diagnostic tests

and define their characteristics.
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Assessing Diagnostic Tests 2

The most important question in diagnostic medicine is “Does this individual have a

disease?”. The entire field of laboratory medicine and pathology has been devel-

oped to aid in answering that question. To be clinically relevant, a diagnostic test

needs to be able to differentiate between the diseased and healthy state, and it also

needs to be accurate and precise. Furthermore, a good diagnostic test should be

clinically applicable, it should not cause harm, and in the face of ever-increasing

constraints on healthcare finances, it needs to be cost-effective. In this chapter, we

will address different aspects of assessing a diagnostic test [1].

The first step in assessing a diagnostic test is to examine the theoretical concept

of the test and establish a causal linkage between the test and the condition of

interest. The test methodology and instrument also need to be scrutinized. The

precision and accuracy of the measurement instrument and test should be deter-

mined. The measurement error needs to be quantified and minimized if possible.

These concepts are collectively called technical accuracy and precision.

The next step in assessing a diagnostic test is to establish the discrimination power

of the test, the ability of the test to differentiate those affected by a condition from the

unaffected. This step requires carefully designed clinical trials to determine the

diagnostic metrics of the test and establish its accuracy. The level of diagnostic

accuracy and the accuracy metrics that are used are dependent on the possible

application of the test; a screening tool needs high sensitivity, while testing for a

very rare condition requires high specificity. These evaluations fall under the umbrella

of diagnostic accuracy [2–5].

The next critical question in assessing a diagnostic test involves determining the

possible effect of the test on patient outcomes. This step involves the crucial

tradeoff of benefit versus harm; the benefit of the diagnostic test should be weighed

against possible adverse outcomes for the patient or the population. Also in this

step, questions of applicability and feasibility should be addressed.

Finally, the cost of the new diagnostic test should also be addressed. Cost can

potentially be the single most prohibitive step in adopting a new test, and to justify

possible additional expenses, the cost-effectiveness of the test should be determined.
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Some of the questions relating to appraisal of new diagnostic tests will be

covered in Chap. 13, where we will discuss an evidence-based approach to

appraisal of diagnostic studies which establish the scientific basis for new tests.

In this chapter, we will start with the concept of technical accuracy and precision

focusing on measurement error and statistical analysis of error. Next will be the

concept of diagnostic accuracy focusing on discriminative and predictive powers of

the test. Clinical impact or clinical applicability is the next step in assessing a

diagnostic test. The final part of this chapter provides a brief introduction of cost-

effectiveness analysis [6–8].

Technical Accuracy and Precision

Technical accuracy is the ability of a test to produce valid and usable information.

Precision is essentially the reproducibility of the test, the ability to obtain very

similar results if the test is repeated multiple times. Technical accuracy and

precision should be determined for every new diagnostic test that is being devel-

oped, and subsequently every time a laboratory adds a test to its repertoire, it must

ensure that the test is technically accurate and precise under its laboratory

conditions. Evaluation of technical accuracy and precision should be an ongoing

effort. Technical accuracy and precision are essentially about minimizing measure-

ment error.

Error

Every measurement in laboratory medicine has a degree of uncertainty; this uncer-

tainty is called “error” and refers to imprecisions and inaccuracies in measurement.

This measurement error refers to the difference between the true value of the

measured sample and the measured value. Effectively, the results we report are

best estimates of the true value.

Understanding the nature of error and quantifying it is of utmost importance in

laboratory medicine as the results can have direct clinical impact on patients. High

precision instruments have limited the measurement error in recent years, yet we

still should estimate the error of our measurements and take corrective actions when

the error surpasses an acceptable threshold.

Two main important forms of error are “random error” and “systematic error”

(Fig. 2.1). The effects of systematic error and random error are additive. Random

errors are caused by unpredictable changes in the measurement which may be

related to instrument, sample, or environment. Addressing the causes of random

error is usually difficult, and there is always a degree of random error present for

every measurement.

For example, if you measure the sodium concentration of a solution with a

sodium content of 140 mEq/l five separate times with results being 140 mEq/l,

141 mEq/l, 139 mEq/l, 138 mEq/l, and 142 mEq/l, then you are witnessing a

8 2 Assessing Diagnostic Tests
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random error. The variations in results are random and cannot be predicted.

However, random errors, as driven by chance, follow a Gaussian normal distribu-

tion; this allows us to use statistical analysis to quantify and address random error in

our measurements. The degree of random error determines the “precision” of a test/

instrument. Random error can be minimized by increasing the number of

measurements. Averaging repeated measurement results is one way to report a

more precise estimate of the expected value. Mean or average �xð Þ is the sum of

measurement results divided by the number of measurements.

Average �xð Þ ¼ x1þ x2þ x3þ x4þ x5þ . . .þ xN

N
ð2:1Þ

Theoretically, with infinite measurements, the mean of measurement results will

be the true value. With a finite number of measurements, the true value will be

within a range of the measurement mean. The range is mainly determined by the

number of measurements (with more measurements the range will be narrower).

This range is called the “confidence interval” and will be addressed later in this

chapter.

The simplest form of random error is called “scale error.” Scale error refers to

the precision of an instrument that makes a measurement as well as the precision of

the reporting of the result. The measurement and reporting can be as integer

numbers (i.e., 1, 2, 3, 4, . . .), and a true sample value of 4.2 will be reported as

Fig. 2.1 These are the results of 500 repeated measurements of a sample with potassium

concentration of 4.3 mEq/L. The red line shows the inaccuracy of results (systematic error), and

the green line shows the imprecision of results (random error)

Technical Accuracy and Precision 9



4. The 0.2-unit imprecision is due to scale error. The scale errors for instruments are

determined by the resolution of measurement; higher resolution instruments will

provide a more precise result. While scale error can be minimized, it can never be

totally rectified as there is always a limit to the resolution of the instrument.

Different tests require different resolutions and as such the scale precision differs

between them. For example, in measuring cardiac troponins, a much better resolu-

tion is needed compared to measuring sodium levels. In laboratory medicine, test

scales are determined by the nature of the test as well as the clinical significance of

the scale. As such, the scale imprecision of tests is usually clinically insignificant.

For example, a sodium level of 133 mEq/l versus 132.987 mEq/l is considered as

clinical equivalents.

Systematic error is a nonzero error; averaging or repeating the results will not

minimize the error. Systematic errors are reproducible and skew the results consis-

tently in the same direction. Systematic error is otherwise known as bias. Bias can

be difficult to identify and address. In laboratory medicine, the most common

method of addressing bias is to use calibration. In calibration, a standard sample

at different concentrations is measured, and the difference between the results and

the expected value (bias) is reduced by using a correction factor. Systematic error

has different causes including environmental factors, calibration problems, instru-

ment drift, confounding factors, and lag time errors. Systematic error determines

the accuracy of the results [9, 10].

Accuracy refers to the proximity of the measured value to the expected (true)

value. Precision, on the other hand, deals with repeatability of the results and refers

to consistency of results from repeated independent measurements. Precision is a

measure of reliability and reproducibility. For each test, both accuracy and preci-

sion need to be addressed. These concepts are shown in Fig. 2.2.

There are different ways of reporting precision including fractional uncertainty

and confidence interval. Fractional uncertainty is the ratio of uncertainty to the

measured value. The confidence interval will be discussed later in this chapter.

Fig. 2.2 This figure depicts the concepts of accuracy and precision
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Fractional uncertainty ¼ Uncertainty

Measured value
ð2:2Þ

Accuracy can be reported as relative error and shows the ratio of drift to the true

value. Note that the relative error is directional (can be positive or negative) with a

minus relative error signifying a systematic error that underestimates the result.

Relative error ¼ Measured value� True valueð Þ
True value

ð2:3Þ

Standard Deviation

Standard deviation (σ) or (SD) is the uncertainty associated with each single

measurement. In other words, standard deviation shows the degree of variation

(spreading) of measurement results. Standard deviation is a useful measure in

variables that follow a Gaussian normal distribution. Higher standard deviations

signify a wider spread of data (Fig. 2.3).

Standard deviation is the square root of the variance (σ2). Variance is the sum of

squared deviation of every measurement from the mean:

Fig. 2.3 Histogram plots of potassium measurements with a SD of 2 and 0.5. Note that as the SD

increases the Gaussian bell curve becomes wider (wider spreading)
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σ2 ¼
PN
i¼1

xi � �xð Þ2

N
ð2:4Þ

where N is the number of measurements (or size of the sample) and �xð Þ is the

sample mean.

Thus, standard deviation can be written as

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

xi � �xð Þ2

N

vuuut
ð2:5Þ

As standard deviation shows the spreading of uncertainty of a measurement, it is

used in calculating standard deviation of mean (also known as standard error) which

is in turn used to calculate the confidence interval.

Confidence Interval

Confidence interval (CI) is the range of values, estimated from sample data, which

is likely to include a population parameter (Θ). In epidemiologic studies, the

population parameter is usually the population mean (μ), and the sample mean

�xð Þ is used to measure the confidence interval. In laboratory medicine, the parame-

ter is usually the result of a test with the confidence interval being a range which is

likely to include the actual measurement.

Confidence interval is centered around the measured parameter (either sample

mean or test result) with the range defined by level of confidence (C). Level of
confidence refers to the probability that the range contains the actual value. As

the level of confidence increases, the range becomes narrower, or, conversely, the

lower the level of confidence, the broader the range will be. Confidence levels are

usually set at 90%, 95%, or 99%. A confidence interval of 95% means that there is a

0.95 probability that the actual value is within the range provided. For most

measurements, a level of confidence of 95% is considered acceptable. Figure 2.4

shows the confidence interval on a normal density curve. For the purposes of this

Fig. 2.4 Normal density curves depicting 90%, 95%, and 99% confidence interval of a normally

distributed sample with a mean of 0 and standard deviation of 1
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chapter, we assume that the measured value follows a normal distribution. Data

from large sample size that does not follow a normal distribution can be

approximated to a normal distribution using the central limit theorem which is

discussed in the next chapter.

As the number of measurements increase (in population statistics as the

sample size increases), the confidence interval will become narrower. Repeated

measurements reduce the effect of random error on the mean test result thus leading

to increased precision. As you will see below, confidence interval is a function of

the mean �xð Þ, confidence level, standard deviation (σ), and sample size (n). The
larger the sample size, the less effect will standard deviation have on the measure-

ment (i.e., the smaller the standard error will be). Figure 2.5 shows the effect of

repeated measurements on increased accuracy of prediction.

In cases where the mean (μ) is unknown but the standard deviation (σ) is known,
the formula for confidence interval (CI) is:

CI ¼ �x � z
σffiffiffi
n

p ð2:6Þ

The z-score is used for data that follow a normal distribution. The z-scores for
90%, 95%, and 99% level of confidence are 1.645, 1.96, and 2.576, respectively. In

the potassium sample with 500 measurements, we have a sample mean of 5.099 and

sample size of 500. If the standard deviation was known to be 0.5, then we can

calculate the 95% CI:

95%CIpotassium 500ð Þ ¼ 5:099� 1:96
0:5ffiffiffiffiffiffiffiffi
500

p ¼ 5:055� 5:142 ð2:7Þ

Fig. 2.5 Histograms showing repeated measurements of potassium in a 5.1 mEq/L potassium

solution. As the number of measurements increases, the confidence interval becomes narrower
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σffiffi
n

p is also known as standard error of mean (σ �xð Þ). Thus, the confidence interval

can be simplified as

CI ¼ �x � z∗σ �x ð2:8Þ
If the mean and standard deviation are both unknown, or if the sample size is too

small (<30) for z-scores to be used, then an alternative formula is used for

calculating confidence intervals. If the standard deviation is unknown, then the

sample standard deviation (s) is used as an estimate of population standard

deviation.

CI ¼ �x � t
sffiffiffi
n

p ð2:9Þ

In these cases, the confidence level is determined by t distribution with n�1
degree of freedom. Thus, in the potassium sample with 10 measurements, we have

a sample mean of 5.102, sample standard deviation of 0.8213, and sample size

of 10. The n�1 t-score (10–1 ¼ 9) for a 95% CI is 2.262. Subsequently, the 95%CI

for the sample is:

95%CIpotassium 10ð Þ ¼ 5:102� 2:262
0:8213ffiffiffiffiffi

10
p ¼ 5:689� 4:514 ð2:10Þ

Note that the t-scores provide a wider confidence interval compared to z-scores.
As sample size increases, the t-scores will become closer to z-scores. Also as the

sample size increases, the standard deviation of the sample will be closer to the

standard deviation of the population. When measuring potassium 500 times with a

known standard deviation of 0.5, we observe that the sample standard deviation is

0.456, while measuring the potassium 10 times provides a sample standard devia-

tion of 0.821. In other words, repeated measures can lead to increased accuracy

[11–19].

Calculating Reference Intervals

Reference interval refers to the range of values of a measurement in healthy

individuals (e.g., the range of potassium in healthy adults is 3.5–5.1 mEq/L).

Reference interval is a very important information that should be provided with

every quantitative test to allow the clinicians to interpret the results and determine if

a patient’s results are abnormal. In the next section, where we introduce diagnostic

accuracy, you will see that reference interval and its overlap with values from

diseased individuals has a big role in discriminative power of a diagnostic test.

If a result is within the reference range, then these results are within a certain

distance of the population mean and part of normal distribution. These results are

alternatively known as within normal limit (WNL). The upper and lower limits of

the normal distribution of the mean are determined using the population standard
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deviation. It is generally accepted that the normal limit is �2SD of the mean (with

95% of the healthy individual results falling within the normal limit). If a reference

range is calculated in this manner, then it is called standard range. The

measurements used in calculating reference ranges come from a population of

healthy individuals. However, if characteristics of subgroups of the population

affect the measurement, then a different reference interval should be calculated

and used for each subgroup (e.g., creatinine reference range is different based on

gender).

The most straightforward way to calculate a reference interval is to measure the

values in a reference group of healthy individuals and sort the values from the least

to the most. In this method, results that are at the 2.5–97.5% percentile (or any

arbitrary cutoff) will be considered as the lower and upper limit of the reference

interval, respectively. This method, despite simplicity, is not adequately reliable,

and it is generally preferred that the reference interval is calculated using an

arithmetic normal distribution or log-normal distribution method (discussed in

Chap. 3). However, in instances where the data does not follow a Gaussian or

log-normal distribution, this method can be employed.

In calculating the reference range for a variable, the assumption is that the

measurements of the variable in the population follow a normal Gaussian distribu-

tion. As the population mean and standard deviation are usually unknown, then they

must be estimated using a sample of the population. Using these estimates, then the

95% prediction interval (95%PI) is calculated as

95%PI ¼ x
� �t0:975,n�1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

n

r
σ ð2:11Þ

In cases where the sample size is greater than 30, the t distribution is considered
as equaling 2.

For example, using a sample of 30 patients with an average potassium level of

4.5 mEq/L and standard deviation of 0.5, we can calculate the reference range for

potassium as follows:

95%PI ¼ 4:5� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31

30
� 0:5 ¼ 4:5� 1:01

r
ð2:12Þ

with the upper limit of reference range being 5.51 mEq/L and the lower limit of

reference range being 3.49 mEq/L.

The reference interval can have its own confidence interval. This confidence

interval is dependent on the standard deviation of the standard reference interval.

The size of the standard deviation is a logarithmic function of the size of the sample

with larger sample leading to smaller standard deviation (Fig. 2.6).

In our previous example, the standard deviation of the standard reference

interval for a sample size of 20 is 0.4 of the primary value or in other words

0.4 � 1 ¼ 0.4 mEq/L. Consequently, we can estimate the 95% confidence interval

of the reference range limits as
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95%CI upper reference limitð Þ ¼ 6:55� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31

30
� 0:4 ¼ 6:53� 0:81

r
ð2:13Þ

95%CI lower reference limitð Þ ¼ 2:45� 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31

30
� 0:4 ¼ 2:47� 0:81

r
ð2:14Þ

These calculations are correct for all measurements that follow a Gaussian

normal distribution. Goodness of fit tests such as Kolomogorov-Smirnov or

Shapiro-Wilk can be employed to determine if the data has a Gaussian normal

distribution.

Many laboratory tests, however, follow a log-normal distribution. One of the

main reasons for this is the fact that most physiologic parameters that are measured

can only assume nonnegative numbers (i.e., the results are always positively

skewed). In these tests, unless the standard deviation is small compared to the mean,

the Gaussian normal distribution cannot be used, and instead a log-normal distribu-

tion should be used. In other words, in measurements where the standard deviation

is small compared to the mean, even if the sample measurements are positively

skewed, the abovementioned calculation can still be used. As the standard deviation

increases, however, log-normal distribution should be employed.

The simplest way for calculating the reference interval for a test with log-normal

distribution is to calculate the natural logarithmic values of all the measurements.

Consequently, arithmetic normal distribution reference interval calculations can be

used to determine the lower and upper limits of the logarithmized values. The

exponentiated values of these upper and lower limits will form the upper and lower

limits of the reference value.

The switch to a log-normal distribution is made based on a difference ratio for

the lower and upper limits. The difference ratio can be calculated as

Fig. 2.6 This log-log graph

shows the standard deviation

of standard reference range

limit versus the number of

samples
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Difference ratio ¼ j LimitLog�normal � LimitNormal j
LimitLog�normal

ð2:15Þ

This difference ratio should be calculated separately for the lower limit and the

upper limit. A difference ratio of more than 0.1 is considered as indicative of the

need to use the log-normal distribution. The calculation of difference ratio, how-

ever, can be a cumbersome task, and thus a measure known as coefficient of

variation can be used as a proxy for difference ratio. Coefficient of variation

(CV) is the ratio of standard deviation to the mean.

CV ¼ σ

�x
ð2:16Þ

The lower limit of reference range is more sensitive to coefficient of variation,

and a CV of 0.213 is the threshold for using a log-normal distribution for the lower

limit. For the upper limit, due to positive skewedness of data, a higher CV of 0.413

is considered as the critical threshold.

In general, it is always a good idea to provide a histogram of values used for

determining the reference value to the clinicians. This will allow them to better

understand the reference interval [20].

Calculating Sample Size for Reference Interval Estimation

In calculating the sample size, the desired quantile of reference data ( p), the desired
quantile of confidence interval (α), and the desired quantile of reference interval (β)
should be decided. Quantiles are defined intervals of the data; usually the data is

divided into 100 quantiles each with equal number of the values. The reference

interval is constructed to include the middle β% of the population. Usually in these

calculations, α and β are set equally. After deciding these values, the corresponding
z-values of Zp, Z(1-α/2), and Z(1-B/2) should be used to calculate the sample size.

Another parameter of the formula is the relative margin of error (Δ) which is the

percentage ratio of the width of the confidence interval for the reference limit to

the width of the reference limit. Ideally, this margin of error should be small (i.e.,

the width of the CI for the reference interval limits should be small compared to the

reference interval width), and usually the Δ is set at 10%. The formula for sample

size calculation is as follows:

n �
z2

1�α
2ð Þ Dþ z2p

2

� �
z2

1�β
2ð Þ

Δ
100

� �2 ð2:17Þ

where (n) is the sample size and D is a constant which is equal to 1 if there are no

subgroups in the sample (i.e., the same reference interval is used for all patients). If

the test and the reference interval are dependent on a covariate, then the D value is
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determined based on the nature of the covariate; with a uniformly distributed

sample, D is 4. For normally distributed covariates, D is 5. For instances where

the covariate can be grouped into three groups, D is 5/2.

For example, if you want to determine the reference interval for sodium concen-

tration, consider that you need 80th quantile of the range included in the reference

range (P), and you want the alpha to be 0.05 and beta to be 0.20, and then you can

calculate the sample size using the above equation (z-scores for 0.9725, 0.95, and
0.80 are approximately 1.9, 1.64, and 0.84, respectively) [21].

n �
z2

1�0:5
2ð Þ þ ð1þ 0:842=2Þ
z2

1�0:2
2ð Þ � 0:12

ffi 156 ð2:18Þ

Diagnostic Accuracy and Testing for Accuracy

Diagnostic accuracy refers to a test’s discrimination power that allows it to identify

presence of a disease or condition in an individual. Different measures such as

sensitivity and specificity are considered as proxies for diagnostic accuracy. It is

important to know that diagnostic accuracy measures cover different aspects, and

depending on the clinical question, a specific set of measures should be used.

Furthermore, these measures are dynamic and can change per different parameters

mainly population characteristics; for example, disease prevalence can affect diag-

nostic accuracy. Diagnostic accuracy also suffers from the “gold standard” prob-

lem, where inaccuracies in the gold standard test can confound interpretation of the

diagnostic accuracy studies. Diagnostic accuracy studies usually lack statistical

power or fail to follow standard procedures further complicating the issue of

diagnostic accuracy. Nonetheless, clinical utility of diagnostic tests is dependent

on the diagnostic accuracy of the tests. Here we will address different indicators and

measures of diagnostic accuracy.

It is important to know that some accuracy measures are more concerned with

discriminative power and the ability of the test to discriminate between the diseased

and healthy states. Other measures are more concerned with probability estimation

and provide a likelihood of diseased state based on the test result. The most

important discriminative measures are sensitivity and specificity. The most com-

monly used probabilistic indices are positive and negative predictive values and

likelihood ratio. These latter measures are highly sensitive to disease prevalence

(pretest probability (see Chap. 3)). Sensitivity and specificity, however, are not

affected by disease prevalence and can be carried over to different populations.
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Sensitivity and Specificity

Diagnostic tests, ideally, should be able to correctly set diseased individuals apart

from healthy individuals; each diagnostic test should have a discrimination power

that allows for such distinction. For tests that are binary, with a distinct positive or

negative outcome, the measurement of this discrimination power is straightforward

with positive outcome identifying disease state (true positive) and a negative test

outcome highlighting a disease-free state (true negative). For tests that return a

range of values, cutoffs should be determined that will distinguish the healthy from

diseased. In the most ideal setting, the results of the test will not misdiagnose an

individual. However, there is always an overlap of test outcomes between healthy

and diseased individuals leading to incorrect assignment of a health state to

individuals. If a healthy individual is labeled as diseased by error, this is called a

“false-positive outcome.” On the other hand, if a diseased individual is

misdiagnosed as healthy based on the test outcome, this is called a “false-negative

outcome.” These four outcomes can be displayed in a 2 � 2 contingency

table (shown in Table 2.1).

Sensitivity is a measure that shows the proportion of individuals with a positive

test outcome who are correctly determined to be diseased. In other words, sensitiv-

ity is the proportion of “true positives” to all diseased individuals:

Sensitivity %ð Þ ¼ TP

TPþ FN
� 100 ð2:19Þ

Sensitivity is usually expressed as a percentage. Sensitivity is a measure of the

diagnostic test’s ability to screen for a condition. Increases in the sensitivity

essentially mean that the number of “false negatives” has decreased. A test with a

high sensitivity will identify a significant proportion of diseased individuals. A

sensitive test can thus be used to screen individuals with a condition as any

“negative” test outcome is more likely to be a “true negative.” Alternatively, it

can be stated that sensitive tests can be used to rule out the disease or condition of

interest.

Specificity in contrast is a measure that determines the proportion of “true

negative” individuals who are correctly determined as not having the disease, i.e.,

the proportion of “true negatives” to all individuals without the condition.

Table 2.1 2 � 2 contingency table showing the outcomes of the test in columns and the disease

condition status in rows

Test outcome

Positive Negative

Condition positive True positive (TP) False negative (FN)

Condition negative False positive (FP) True negative (TN)
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Specificity %ð Þ ¼ TN

TNþ FP
� 100 ð2:20Þ

Specific tests are useful for ruling in individuals with the condition or disease of
interest. As specificity increases, the proportion of healthy individuals with a “false-

positive” test outcome decreases which means that a “positive” test outcome is

likely to be a “true positive.”

Highly specific tests are used as confirmatory tests in a two-step diagnostic

model: the first step is to employ a population-based screening test with high

sensitivity followed by a highly specific test to confirm the diagnosis in individuals

with a positive screening. This two-step model is preferred as tests are unlikely to

be both very sensitive and very specific. Furthermore, tests with high sensitivity

tend to be more affordable than highly specific tests and are thus more suited for

population-level utilization. An example of the two-model is alkaloid testing where

a primary test (screening) is performed using Marquis reagent spot test and the

positive test results are confirmed by gas chromatography (confirmatory test). The

Marquis test is fast, affordable, and easy to perform; furthermore, it has high

sensitivity; all of these characteristics make it an ideal screening tool. Gas chroma-

tography is a cumbersome and expensive test with high specificity which makes it a

good confirmatory tool. Another example is the application of VDRL and RPR test

for screening of syphilis infection followed by a confirmatory FTA-ABS or

TP-PA test.

There usually exists a tradeoff between sensitivity and specificity. An ideal test

will have a sensitivity and specificity of 100%, but such a level of accuracy is

unattainable due to multiple factors including the Bayes error rate which states that

there is always an irreducible error inherent in any measurement. As a test gains in

sensitivity, it tends to lose specificity and vice versa. This tradeoff between sensi-

tivity and specificity will be explained more as part of receiver operating curves (see

below).

Overall accuracy is another measure that is useful and can be extracted from

Table 2.1. Accuracy is a summative measure that shows the ratio of overall correct

calls by the test to all the measurements made. Accuracy is one of the measures of

agreement used in validating a diagnostic test and will be covered in Chap. 11.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð2:21Þ

Predictive Values

Predictive values refer to the probability of having or not having the condition of

interest based on the outcome of the test. Two predictive values can be extracted

from the 2 � 2 table. First is the “positive predictive value” (PPV) which measures

the probability of having the condition of interest (TP) in individuals with a positive

test outcome (TP + FP).
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Positive predictive value PPVð Þ ¼ TP

TPþ FP
� 100 ð2:22Þ

“Negative predictive value” (NPV) is the probability of not having the condition of

interest (TN) in individuals with a negative test outcome (TN + FN).

Negative predictive value NPVð Þ ¼ TN

TNþ FN
� 100 ð2:23Þ

Predictive values are more useful clinical measures than sensitivity and specific-

ity as they can directly provide an estimation to the clinician of the likelihood of

their patient having or not having a condition based on a positive or negative test

outcome. Predictive values unlike sensitivity and specificity are affected by the

disease prevalence in the population and as such cannot be transferred from a

population to population. The effect of disease prevalence on PPV and NPV is

different; as the prevalence increases, the PPV increases (because the probability of

having a false-positive result decreases), while NPV decreases. If the prevalence

decreases, the reverse will be true; NPV will increase and PPV will decrease. The

effect of prevalence is more significant on PPV than on NPV. For diseases with a

low prevalence, a test with high specificity (low false-positive rate) is needed to

have an acceptable positive predictive value (Fig. 2.7).

Other accuracy measures can also be extracted. A summary of these measures is

shown in the table below (Table 2.2).

Fig. 2.7 Scatter plot of prevalence versus positive predictive value (PPV) for different test

specificities. Note the marked decrease in PPV as prevalence falls below 10%
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Receiver Operating Characteristic Curve

The basic assumption for every diagnostic test is that the diseased individuals will

have different test outcomes compared to the unaffected population. Many tests

return a quantitative range of values instead of a binary “positive” or “negative”

value. In these tests, cutoff values must be determined that will set apart the affected

from unaffected. Determining cutoff values will depend on the distribution of the

values among unaffected and diseased individuals as well as the desired sensitivity

and specificity levels. In a perfect test, the outcome values for the affected and

unaffected population will have no overlap. There is, however, always a degree of

overlap between the two populations making the decision of a cutoff value very

important as different cutoff values will lead to different sensitivity and specificity

levels (Fig. 2.8).

Receiver operating characteristic curve (ROC) is the graphical illustration of

true positive rate (sensitivity) as the Y-axis and false-positive rate (1-specificity) as

the X-axis. ROC curve is generated by plotting the cumulative distribution of

sensitivity as a function of cumulative distribution of false-positive rate. Conse-

quently, the ROC curve shows the trade-off between sensitivity and specificity. The

basic concept behind the ROC curve is that a reference or test variable (test

outcome) is used to classify subjects and classification performance is compared

with a classifier variable (gold standard), and at different cutoff values for the test

variable, true positive rate and false-positive rate are calculated and plotted as

Y-axis and X-axis, respectively.

The ROC curve is usually plotted using a nonparametric generalized linear

model. The most common approach was proposed by Tosteson and Begg. In the

simplest form of their model, the only classifier is the indicator of the true disease

status (χ1). The other assumption will be that for test outcome values of r1 through
rj, the subject is classified as negative (T-), and for values greater than rj+1, the
subject is classified as positive (T+). Subsequently, for the cumulative probabilities

Fig. 2.8 Distribution of mean corpuscular volume (MCV) of normal population and macrocytic

anemia (with an assumed 50% prevalence). If the cutoff is set at 102.69 fL, the specificity will be

95% and sensitivity will be 84.8%. Lowering the cutoff will increase the sensitivity and reduce the

specificity (at 98.64 fL the sensitivity and specificity will be 95% and 88.9%, respectively)
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of response, γj(χ1), determine the response categories (TP, TN, FP, and FN). In this

setting, γj(0) is the probability that an unaffected individual has in a test value

outcome of between r1 and rj (i.e., test outcome value lower than the cutoff value).

This probability represents the “true negative rate” or “specificity” and conse-

quently 1 - γj(0) represents the “false-positive rate” which forms the X-axis of the
ROC space. γj(1) will be the probability that an affected individual has in a test

outcome value of between r1 and rj (false-negative rate), and thus 1 - γj(1) will
be the “true positive rate” or “sensitivity” which forms the Y-axis of the ROC

space. The ROC curve will be constructed by plotting all the pairs of 1 - γj(0) and
1 - γj(1) for each of the test outcome cutoff points (θj). The following generalized

linear model will form the ROC curve:

g γj χð Þ� � ¼ θj � α0χ
exp β0χð Þ

j ¼ 1, . . . , j� 1

ð2:24Þ

α’ and β’ are regression parameters of location and scale, respectively. These two

parameters will determine the shape of the curve and in the simplest form are

defined as constants that will provide the curve a concave appearance. To make the

curve smooth, smoother functions known as link functions are introduced to the

generalized linear model. The most common link function used is the probit link

which is based on the standard normal cumulative function, Φ. The generalized

linear model with the link function applied will be:

Φ�1 γj χð Þ� � ¼ θj � α0χ
exp β0χð Þ

j ¼ 1, . . . , j� 1

ð2:25Þ

ROC curve has been shown to have a nonparametric interpretation like the

Mann-Whitney U test (see Chap. 6). This means that, while the distribution of

test values in the affected and unaffected population usually follows a binormal

distribution, other non-normal distributions can also be used in constructing a ROC

curve.

ROC space is a square with X- and Y-axis range of 0–1. A diagonal line connects

the top right corner of the space to the bottom left corner. This line is called the line

of no discrimination and depicts a complete random association of the test variable

with the classifier. The perfect classification point in the ROC space (100%

specificity and sensitivity) lies at the top left corner of the space. The further the

ROC curve moves away from the diagonal line toward the top left corner, the better

the classification properties of the test variables will be (Fig. 2.9).

For determination of the cutoff value, two approaches can be undertaken. In the

first approach, a decision must be made on the optimal level of sensitivity and

specificity on the ROC curve, and the cutoff value extracted from the table of curve

coordinates which shows the corresponding test value for each curve coordinate.

This manual search for the cutoff value allows for choices such as choosing a cutoff

for screening (high sensitivity) or for confirmation (high specificity) (Fig. 2.10).
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If sensitivity and specificity are given equal weights, then a ROC curve analysis

can be employed to determine the optimal cutoff value. Several methods of ROC

curve analysis have been established. One of the oldest and simplest methods is

called the Youden’s index. This index is calculated as the difference of the sum of

sensitivity and specificity from 1.

Youden0s index ¼ Sensitivityþ Specificityð Þ � 1 ð2:26Þ
Youden’s index can assume values between 0 and 1 with 0 showing poor

diagnostic accuracy and 1 showing a perfect diagnostic accuracy (sensitivity and

specificity of 100%). In ROC curve analysis using the Youden’s index, the index is

calculated for every coordinate on the ROC curve, and the corresponding test value

for the point of maximum Youden’s index is then set as cutoff value. The cutoff

value set in this approach balances the sensitivity and specificity. Essentially

Youden’s index determines the cutoff to be at the point where the two distribution

of test outcome values of the affected and unaffected population meet. Financial

considerations and cost can also be criterions for determining cutoff values and can

be incorporated in ROC curve analysis.

Fig. 2.9 ROC curves for two test variables are depicted. As the curve nears the top left corner of
the ROC space, the classifying power of the test variable increases. In this figure, note that the test

variable 1 is a far better classifier compared to test variable 2
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One of the benefits of ROC curves is the ability to calculate “area under the

curve” (AUC). AUC is one of the most useful measures of diagnostic accuracy and

discrimination power of a test. A perfect AUC will have a value of 1; this will

signify that there exists a cutoff point in test outcome values where the sensitivity

and specificity will be 100%. Consequently, as AUC nears 1, the classification

(discrimination) power of the test will increase. AUC can be stated in form of the

probability that a randomly selected affected individual will have a higher test

outcome value than randomly selected unaffected individual.

A rough estimate of levels of discrimination power based on AUC is provided in

the Table 2.3 [22, 23].

Calculating AUC

The simplest approach for calculating AUC is using the trapezoidal rule. In this

approach, the space under the curve is transformed to a series of rectangles and

triangles, and their cumulative area is calculated. If a single cutoff point ( j) is used,

Fig. 2.10 Different cutoff values can be chosen based on the desired level of specificity and

sensitivity. The square depicts a point where specificity is 90%. The circle depicts a point where

sensitivity is 90%
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then the AUC calculated using the trapezoidal method will equal to ½
(Sensitivityj + Specificityj). This method will always underestimate the true AUC.

Several nonparametric approaches can be used for better estimation of AUC.

One of the methods suggested by Hanley and McNeil is called the “Wilcoxon area

estimate.” In this method, due to inherent similarity between U statistics of a

Mann-Whitney test and AUC, the area under curve is calculated using a rank-

sum Mann-Whitney U test.

AUC ¼ non1 � U

non1
ð2:27Þ

where n0 and n1 represent the sample size of the unaffected and the affected

populations. In this calculation, the U statistics is calculated using the rank sum

of the unaffected population (R):

U ¼ R� 1

2
no no þ 1ð Þ ð2:28Þ

The standard error of the AUC estimation by the Hanley method can also be

calculated.

SE AUCð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AUC 1�AUCð Þþ n1�1ð Þ Q1�AUC2

� �þ no�1ð Þ Q2�AUC2
� �

non1

s

ð2:29Þ

Q1 ¼ AUC

2� AUCð Þ ð2:30Þ

Q2 ¼ 2AUC2

1þ AUCð Þ ð2:31Þ

While AUC is a relatively simple accuracy measure, recently there have been

arguments against using it as a measure of classification power. This is because

AUC is a summary measure that includes both relevant and irrelevant parts of a

curve; the performance of the test at the extremes of the curve (where specificity

will be very high, but sensitivity will be very low or vice versa) is usually not of

Table 2.3 Levels of

discrimination power based

on AUC

Area under curve (AUC) Discrimination power

0.9–1 Excellent

0.8–0.9 Very good

0.7–0.8 Good

0.6–0.7 Acceptable

0.5–0.6 Bad

<0.5 Not useful
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interest to the clinicians. Furthermore, AUC gives equal weight to sensitivity and

specificity and may not be useful in instances where one of the measures is of

greater importance.

Clinical Applicability

Establishing technical accuracy is the first step in appraisal of new tests. The next

step will be assessment of diagnostic accuracy. Yet, perhaps even before this step, it

is necessary to consider the clinical context in which the test will be used. Most new

tests will have a similar test or diagnostic method in the clinical pathways or

decision-making algorithms. There are exceptions to this rule, mainly when new

screening tests are developed. Thus, an effort must be made to determine the

pathway or decision-making algorithm to which the new test belongs. After the

pathway is determined, we should identify the possible role of the test in the clinical

pathway; a test can be used to screen for or diagnose a disease, it can also be used to

guide treatment choices, or it can provide prognostic information. Some tests will

also have community or population level indications; for example, they can show

the genetic predisposition of the patient’s offspring or can determine infectious

disease carrier status of a patient.

A new test will either be upstream of a clinical pathway or have a role in

“triaging” patients; it may replace an existing test in the clinical pathway or be an

add-on to the existing diagnostic pathway. The decision of where the new test will

be in regard to the clinical pathway will determine the characteristics and quality

metrics of the test. Tests can also have non-diagnostic applications such as moni-

toring and prognostication.

If a test is to be a substitute for an existing test, it needs to improve upon one or

few of the existing test’s qualities such as accuracy, cost, harm, ease of perfor-

mance, etc. Thus, to establish the superiority of the new test (or non-inferiority

when factors such as cost or harm are improved in the new test), comparative

studies should be conducted to gauge the new test against the existing test. Triage

tests or screening tests need to be noninvasive, easy to perform, and cheap; they also

need to have high sensitivity. Again, these tests need to be evaluated using clinical

trials in order to establish their diagnostic accuracy. Add-on tests will help to further

categorize patients in clinical pathways or determine prognosis or treatment

options. These tests require higher specificity and are usually time and resource

intensive to perform. Currently, a consistent proportion of new tests are focusing on

add-on tests as the market for add-on tests is more targeted with less direct

competition.

Ideally, the patient outcomes and quality metrics of new diagnostic tests should

be measured using well-designed blinded randomized clinical trials. Other trial

designs such as controlled trials, before-after studies, and prospective cohorts are

also of limited use in estimating the impact of new diagnostic tests. Another option

is to determine the effects of the new test on patient outcome via assessment of

changes in physicians’ intentions for treatment and management. However, given
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the current fast pace of innovation, in certain circumstances “modeling” can be used

to estimate the impact of the test. We will explore the diagnostic studies in Chap. 12

and data modeling in Chap. 15.

In assessing the clinical benefit of the tests, it is important to identify objective

patient outcome measures that are affected by the diagnostic test. In many

situations, finding these outcomes is problematic as a direct causative link between

diagnosis and patient outcome may be lacking. The effects of a test may not just be

physical but also emotional, behavioral, cognitive, or social. Furthermore, a multi-

tude of confounding factors can obscure the true impact of the test. Lack of a

targetable outcome with possible treatment options is serious argument against a

new test; for example, tests that identify Alzheimer’s disease in very early stages

are of limited or no clinical use as currently there are no viable treatment options

available to the patients.

Secondly, possible trade-offs of utilizing the new test should be identified and

balanced. The new test may be associated with direct harm due to invasiveness of

the test or administration of possibly toxic or hazardous elements to the patient.

Sometimes, the harm can be secondary, for example, a screening test that has good

sensitivity yet poor specificity may lead to high false-positive rates which can be

subjected to harmful tests or treatments as a follow-up to the screening test. As with

benefits, the harm of the test should be identified and measured.

Clinical utility of the test will be determined by comparing the benefit with the

harm. While there are objective methods of weighing the benefit versus harm,

sometimes a subjective judgment by consensus panels of experts is needed to

decide the utility of new tests.

One of the ways to assess the clinical utility of a test is to determine the absolute

difference (ΔP) between pretest and posttest probabilities (see Chap. 3). This

difference is dependent on test characteristics such as likelihood ratio as well as

the pretest probability: as the pretest probability decreases (e.g., prevalence

decreases), the likelihood ratio of the test should increase.

Absolute difference ΔPð Þ ¼ pretest probability� post� test probabilityj j
ð2:32Þ

Absolute probability difference is sometimes difficult to interpret; in reality, the

utility of a clinical test is to allow clinicians to alter the care and management of a

patient thus providing benefit and avoiding harm. Further calculations are needed to

extract the net benefit of a test:

Net benefit ¼ ΔP� ri � bi � hið Þð Þ � ht ð2:33Þ
where ri is the rate of changes in the interventions based on probability changes

(e.g., to follow curative treatment versus palliative treatment), bi is the benefit of the
changes in the interventions to the patient, hi is the harm of the changes in the

interventions to the patient, and ht. is the harm associated with the test itself. Cost

can also be considered in this formula.
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The question of clinical utility is usually addressed and assessed by governance

and supervisory entities (such as FDA or CLIA) or the manufactures. For the

practicing pathologist, it is often more important to be able to evaluate these studies

and advisories (see Chap. 13) and decide on the issue of clinical applicability or

relevance in their own practice setting. Clinical relevance is determined by answer-

ing two questions: transferability and feasibility.

Transferability

Studies for determining the diagnostic and technical accuracy of tests are usually

performed in controlled setting with limitation on patient population, biases, and

confounding factors. The study setting, as result, can potentially considerably

different from clinical setting. Clinical settings can also vary across geographical

or community spectra. Nonetheless, the pathologist needs to determine whether test

metrics can be transferable to his/her own practice setting.

One of the determinants of transferability is the patient spectrum. It is important

that the spectrum of patients seen in the pathologist’s practice match or be close to

the spectrum of trial subjects. Sometimes, trials upon which diagnostic accuracy is

established by manufactures suffer from “spectrum bias” where highly selected

patients with controlled parameters are included in the study. Outcome of such

studies may not be generalizable, and adopting those tests to a different practice

setting with a different population metrics may be problematic. In these setting,

before a test is adopted, test validation is required, where the performance of the test

is assessed in a representative sample of the population and the results are compared

with the test developers’ study results. Existence of gold standard tests can help in

validating a new diagnostic test (see Chap. 11).

Sensitivity and specificity are thought to be independent of disease prevalence,

yet it has been established that in highly controlled study samples with stringent

inclusion and exclusion criteria, the calculated specificity and sensitivity may differ

from clinical practice, especially in early adaptation settings of a new test due to

“indication creep,” whereby clinicians order the test for increasingly broad

indications, the case-mix, and definition of affected individual changes.

Transferability is also an issue when the test is to be used in a different role than

originally anticipated. For example, EGFR status is tested in stage IV lung

adenocarcinomas, and the test validation has been performed for that setting. If

EGFR status is tested in all lung cancer patients irrespective of stage or type, then a

shift in the role has occurred. While, in theory, there can be justification for this

transfer, the evidence to support it is lacking.

Another issue in transferability is regarding cross platform and technology

transfer. As assays, platforms, technologies, and even test version are changed,

there may be a need for revalidation of the test unless there is enough evidence to

support the cross validation of these factors.
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Feasibility

Determining feasibility of performing a test depends on the practice setting. The

needs of the population served and the resources at the disposal of the lab as well as

the requirements of the test determine the feasibility of adopting a new test or

platform. In smaller setting, answers to these questions can be easier to find, yet in

large practice settings, often, a feasibility study is needed.

A feasibility study needs to answer the following questions:

• Will the pathologists, clinicians, patients, and technicians accept the new test?

(Acceptability)

• Will there be enough demand for the new test to justify the capital investment,

retraining of staff, and the recurring costs? (Demand)

• Will performing the test be possible in the current setting with the available

resources? (Implementation)

• Will the test be practical in the practice setting? Is the level of complexity or cost

acceptable in the practice setting? (Practicality)

• Can the test be adapted and changed to fit the lab and the population served by

the lab? (Adaptability)

• Can the test be integrated into the current lab routines and systems? (Integration)

Feasibility studies need stake holder analysis with participation of the lab

director, clinicians, and technicians. Need assessment may sometimes be needed

if the demand for a new test is not clear-cut; this assessment is usually in form of

practice surveys of the clinicians. Cost analysis and breakdown of cost burden of

the new test will also be necessary in evaluating the feasibility of adopting the test.

Finally, small-scale runs or pilots can be helpful in better understanding the

feasibility of adopting the new test or platform.

It must be noted that clinical utility is a continuous and ongoing issue which

needs to be periodically revisited. As the clinical practice and technologies evolve,

it may be necessary for the lab to adapt and change, and this requires constant

review of the current tests and possible expansions or innovations that can improve,

surpass, or replace the current tests [24].

Cost-Effectiveness Analysis

When adopting a new diagnostic test, the final yet perhaps one of the most critical

questions will be the cost. The lab directors are eventually responsible for the

financial state of the lab and need to decide if adopting the new test will be

financially viable. In a purely financially driven setting, outcomes are often ignored,

and the entire enterprise is set up to minimize cost and maximize profit. However,

in most laboratories, improved patient outcome is the ultimate goal, and thus cost

should be considered alongside effectiveness or benefit; if an improved outcome is

attainable even at a higher cost, this may justify the cost.
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Cost can be broken down to capital and recurrent costs; capital is the financial

resources dedicated to procure the equipment, and the recurring costs are the

financial resources required for continued operation of the equipment and running

of the test (including reagents, controls, and labor). Capital cost should always be

weighed against discounting; due to inflation, the true value of an investment made

today will be discounted in the future; thus, in calculating investment returns,

capital adjustment is needed. The costs should be summarized in form of a

per-test cost: the financial resources needed to run a single test. In calculations of

cost-effectiveness, we will use the per-test cost as the measure of cost.

Often a test will replace an existing test. In these settings, the per-test costs of the

two tests will be directly compared, or, alternatively, a measure called “incremental

cost” can be used which is the difference in the per-test cost of the new test versus

the old test.

Measuring benefit can be more difficult than measuring cost; crude measures

such as life expectancy or changes in mortality can be used, but these measures

don’t encompass all relevant aspects of patient outcome. Subjective measures such

as visual analogue scales can also be used, but they often vary considerably from

patient to patient and can be difficult to interpret. Summary measures such as

“disability-adjusted life years” (DALY) or “quality-adjusted life years” (QALY)

are better suited for measuring effectiveness and are more relevant to patient

outcomes.

In measuring both cost and benefit (outcome), the “perspective” should also be

considered: whether the cost and outcome are measured at lab level, institution

level, or social level. This is a fundamental decision that can make tests that appear

cost-ineffective at lab level highly cost-effective at social level (e.g., using

advanced nuclear amplification detection methods for screening of tuberculosis

instead of smears). Further discussion of the measuring units of costs and effective-

ness is beyond the scope of this book.

In comparing a new test (N ) versus an existing test (O) and knowing the costs

and effectiveness of each test, then cost-effectiveness can simply be stated as

Incremental cost� effectiveness ratio

¼ CostN � CostO Δ Costð Þ
EffectivenessN � EffectivenessO Δ effectivenessð Þ

ð2:34Þ

A perfect test should have a negative “Δ cost” and a positive “Δ effectiveness.”

A test in which the effectiveness decreases and the cost increases will also be

automatically rejected. In cases where the changes in cost and effectiveness are

contradictory, the decision will be based on core values of the lab: cost minimiza-

tion versus patient outcome maximization. One way of measuring effectiveness is

to use “posterior odds” (see Chap. 3). Posterior odds are products of prior odds

(calculated using disease prevalence) and likelihood ratio.

Posterior odds ¼ Prior odds� Likelihood ratio ð2:35Þ
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Alternatively, in the formula for incremental cost-effectiveness ratio (ICER), the

net benefit of the test (see above) can be used in place of Δ effectiveness.
“Decision analytical model” will often provide more insight into cost-

effectiveness analysis (Fig. 2.11). This model follows two steps, with the first

step involving calculating the “hypothetical performance and cost” of the new

test, and if the new test passes this hypothetical step, then a clinical trial is

undertaken to calculate the actual cost considerations of the new test. If actual

test diagnostic accuracy data and cost estimations are available, then the first step

can be skipped, and the cost-effectiveness is determined using the second step.

For example, assume that we are constructing the decision analytical model for a

disease with a prevalence of 0.01. The sensitivity and specificity of the current test

(T0) are 80% and 85%, respectively, and the sensitivity and specificity of the new

test (T1) are 90% and 90%, respectively. The cost of the current test is 5$ and the

cost of the new test is 20$.

In this example, we are employing a health system perspective, and we calculate

the costs as the total cost burden of the health system. Based on this, a true positive

result will cost 5000$ (early treatment) plus test cost and lead to a DALY of 0.1. A

false-negative result will lead to a cost of 10,000$ (late treatment) plus test cost and

lead to a DALY of 10. A true negative result will lead to only the test cost and a

DALY of 0. The false-positive result will lead to a cost of 5000$ (early treatment)

plus test cost and lead to a DALY of 0.1.

Now we can construct the model (Fig. 2.12). As you can see, despite the higher

cost of the new test, at health system level, employing this test will lead to both cost

saving and reduction of average DALYs. The results of this cost-effectiveness

analysis support the adoption of the new test in place of the current test [25–29].

Summary

We have shown that to assess a diagnostic test, a stepwise approach is needed. The

first step of the assessment is technical assessment. In this step, scientific and

technical issues related to the test are evaluated, and possible sources of error are

identified and addressed. It is important that pathologists know technical test

parameters especially precision and accuracy. The pathologist should be able to

evaluate the scientific merit of the body of evidence supporting a new test. We will

discuss this at length in Chap. 12, where we provide an approach for critical

appraisal of literature.

The next important question is to determine the diagnostic accuracy of the test,

in other words, to determine if the test can measure what it was designed to measure

and whether it has enough discrimination power to be clinically relevant.

This is followed by a closely related step, in which the clinical applicability of

the test is assessed: the clinical benefit of the test should be determined and the

pathologists needs to assess whether the test is transferable to his/her setting and if

so, whether it is feasible to implement the new test or not.
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The final yet critical assessment is to assess the cost of adopting the new test and

whether the incremental cost over existing tests is justifiable. Cost-effectiveness

analysis is a power tool with which every lab director should be familiar.

We will revisit some of the concept introduced in this chapter further in the

book, specifically, in Chap. 10 where we talk about test validation.
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Probability and Probability Distribution 3

Introduction

In this chapter, we are going to show that the theory of probability and statistics

underlies all quantitative assessments relevant to pathology and laboratory medi-

cine. The probability theory gives rise to different forms of probability function that

characterize different physical processes. The probability that an event will occur is

a function of a parameter. For example, the probability that the sodium content of a

serum sample will be 140 mEq/L will be given by a Gaussian probability curve

where the parameter is distribution of normal sodium concentration in the

population.

In fact, the overwhelming probability distributions that are used in pathology

and laboratory medicine follow the Gaussian (normal) distribution, and thorough

understanding of this concept is needed. In this chapter, we have explained normal

distribution; however, we have also described the other relevant probability

distributions and explained some of the basic concepts of the theory of probability

for interested readers. These concepts, however, will be fundamental and require a

degree of understanding of mathematical annotation. You may skip this chapter if

you are more interested in practical aspects of statistics in pathology.

Probability is a concept that occurs due to randomness; a random event is an event

whose outcome cannot be predicted with certainty before the event occurs. Under-

standing probability also needs a second assumption which is the event or experiment

can be repeatable either through time or space; in other words, the event can occur

multiple times (indefinitely) under the same conditions (e.g., tossing a die multiple

times or tossing multiple dice at the same time). This assumption is the foundation of

classical probability theory and allows us to form the probability space.

A random event or experiment has two main components of interest: the first is

the “outcome” which is the result of the event that is being recorded. The second is

“parameter” which is a constant in the experiment which can affect the outcome.

In biology, most systems are chaotic, in that there is a multitude of parameters

and initial conditions affecting each single event which makes determining the
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outcome with certainty difficult. In other words, most events in biology are random

and thus are governed by laws of probability, and, consequently, laboratory medi-

cine where our concern is to measure these biological events is also governed by

randomness and probability.

Consider the following question:

How many individuals have a hemoglobin level of between 10 and 15 g/dl?

One way to answer this question is to measure hemoglobin levels on every person in

the population; this, of course, is practically impossible. The probability theory can

help us answer this question using only a fraction of the population which we call a

“sample.” By understanding probability, we can select a “random sample” from the

population and generalize the results to the population with a small degree of

uncertainty. This question and similar questions are vital to pathology and labora-

tory medicine: The entire concept of diagnostic medicine is to be able to differenti-

ate an affected individual from unaffected individuals, and this requires being able

to determine normal and abnormal ranges, determining the distribution of a test

outcome and making inferences about the results. These, fundamentally, are

answered by employing concepts of probability.

Repeatability is used in “compound experiments” where an experiment (Ej) is

repeated “j” times from E1 to Ej with each experiment being independent of the

previous experiments. A compound experiment can be running the same test on the

same individual for “j” times or running the experiment on a random sample of “j”
size. This sampling, if sufficiently large, can allow us to draw conclusions about the

distribution of the experimental outcome in the population. In simplest form of

experiments otherwise known as “Bernoulli trials,” the outcome can be binary, i.e.,

only one of two possible outcomes can occur. If multiple outcomes are possible,

then the experiment is a “multinomial trial.” [1]

To progress further, first we need to introduce some basic concepts:

Sample Set

“Set” or S is a collection of objects also known as elements. For example, the

alphabet is a set of letters that is used for writing:

S ¼ a; b; c; d; . . . ; zf g, ð3:1Þ
A “sample space” for a random event includes all the possible outcomes of the

event; this set may have elements other than those that are the possible outcomes of

the event. For example, the sample set for hemoglobin measurement can be written

as Shgb¼ {0,1} even though the range of values of hemoglobin will be only a finite

spectrum of the above set. In a compound experiment of n experiments, the sample

set will be “Cartesian product” of all the sets of experiments (Sn ¼ S1x S2x . . . x Sn).

Event

“Event” is a subset of the sample set. For example, a pregnancy test has two

outcomes, either positive or negative. Thus the set for the pregnancy test is
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S ¼ {Pos, Neg}. Positive outcomes are an event or a subset of the test outcomes. In

diagnostic test, usually we are interested to determine whether an event occurs

or not.

The algebra of events follows a grammar which is shown in Fig. 3.1. Other

notable algebraic terms used in probability theory include “A � B” meaning that

occurrence of “A” implies the occurrence of “B” and “A\B” meaning that only “A”

occurs and “B” does not occur.

Random Variable

“Random variable” is a variable whose value is determined by a set of random

events; it can be expressed as a function that assigns probability to outcome of an

experiment. If “s” is the outcome of an experiment with a sample set of “S,” then

“X” is a random variable which takes the value “X(s)”:

s2S, X ¼ X sð Þ, ð3:2Þ
For example, a urine pregnancy test has two possible outcomes: positive and

negative (S). Thus, the result of the urine pregnancy test is a random variable that

can only assume values of S, i.e., positive or negative.
Each random variable has a “probability distribution” which is the probability

that the value of the variables falls within a certain subset of possible values.

Often, other random variables can be derived from another random variable, i.e.,

some variables can be a function of another variable. For example, variable “Y” can
be derived from random variable “X” using the function “g.”

Fig. 3.1 Algebra of events in an experiment with two events: A and B. ∅ is an expression that

never occurs as it implies that none of the values in the set are obtained. “\” or “AND” is an

expression that dictates that both events on the two sides of the expression should happen. "[” or
“OR” is an expression that dictates that either of the two sides of the expression should occur
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s2S, Y sð Þ ¼ g X sð Þ½ �, ð3:3Þ
For example, if troponin levels are a randomly distributed variable, then the

probability of a patient suffering from myocardial infarction is another random

variable that is derived from the troponin level.

Another form of variables is “indicator variable” which shows if a specific event

has occurred. Indicator variables have a value of “1” if the event has occurred and a

value of “0” if the event has not occurred. The indicator variable for event “A” can
be shown as “1A(s).”

1A sð Þ ¼ 1, s2A
0, s=2A

�
ð3:4Þ

Probability Measure and Axioms of Probability

The “probability” of event “A” is the set function “P” that assigns to each event “A”
in sample set “S” a value “P(A).” This probability needs to fulfill three “probability
axioms” also known as “Kolmogorov axioms”:

(a) For every event A, P(A) � 0. That is, event A has a probability between 0 and

1 of occurring.

(b) The probability of sample set is 1, i.e., P(S) ¼ 1. That is, if the event A occurs

every time the experiment is run, then its probability will be 1.

(c) Given mutually exclusive events (A1, A2, . . .), i.e., [Ai \ Aj ¼ Ø, for i 6¼ j],
then

P A1 [ A2 [ . . . [ Aið Þ ¼ P A1ð Þ þ P A2ð Þ þ � � � þ P Aið Þ ð3:5Þ

or P
[
i2I

Ai

 !
¼
X
i2I

P Aið Þ ð3:6Þ

Probability has multiple rules and theorems; some of the basic and fundamental

rules are provided below:

1. P (∅)¼ 0, (3.7), i.e., the probability that the result of the experiment is not in the

sample set is zero.

2. P (AC) ¼ 1�P (A), (3.8), i.e., the probability of event not occurring equals to

1 minus the probability of event A occurring.

3. If A � B, then P(A) < P(B), (3.9), i.e., if event A only occurs if event B has

already occurred, then the probability of event A is smaller than the probability

of event B.

4. If A� B, then P(B\A)¼ P(B)�P(A), (3.10), i.e., if event A only occurs if event B

has already occurred, then the probability that event B occurs without event A

occurring equals to the difference of the two probabilities.
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5. P(B\A) ¼ P(B)�P(A\B), (3.11); axiom 4 can be alternatively stated that the

probability of event B to occurring without event A occurring equals to the

probability of event B minus the probability of the intercepts of event A and B.

6. Product rule – for any two independent events A and B:

P A;Bð Þ ¼ P Að Þ � P Bð Þ, ð3:12Þ
i.e., the probability of two independent events to occur equals the product of

their probabilities (e.g., probability of rolling two dice and getting two sixes

equals to probability of rolling one six multiplied by the probability of rolling

another six: 1/6 � 1/6 ¼ 1/36).

7. Boole’s inequality (union bound) provides the upper bound of probability of a

union of finite events:

If Ai : i2 If g is a finite collection of events, then P
[
i

Ai

 !

�
X
i

P Aið Þ, ð3:13Þ

8. Bonferroni’s inequality provides lower bounds of probability of a finite union:

If Ai : i2 If g is a finite collection of events, then

P
\
i

Ai

 !
� 1�

X
i

1� P Aið Þ, ð3:14Þ

9. Inclusion-exclusion rule – for any events A or B:

P A [ Bð Þ ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ, ð3:15Þ

Alternatively, this theorem can be written as

P A \ Bð Þ ¼ P Að Þ þ P Bð Þ � P A [ Bð Þ, ð3:16Þ

This rule can be expanded to any number of events:

P
[
i

Ai

 !
¼
Xn
k¼1

�1ð Þk�1
X

J�I, # Jð Þ¼k

P
\
j

Aj

 !
ð3:17Þ
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These rules can help answer some of the relevant questions in diagnostic

medicine. Here we will provide a couple of genetics examples that use the above

theorems:

Example 3.1

Q: Type 1 hemochromatosis is an autosomal recessive hereditary disease that is

caused by mutations in the HFE gene. C282Y is one of the common mutations in

this gene. If one parent of a child is homozygous for C282Y and the other parent is

heterozygous for C282Y, then what is the probability of their child having type

1 hemochromatosis or being heterozygous for the disease?

A: One parent has two alleles with C282Y which means that the probability of

passing on this mutation to the offspring is 1. The other parent is heterozygous for

the mutation which means that the possibility of passing on this mutation to the

offspring is 0.5. Thus, the probability of a homozygous child is 0.5 (product of the

two probabilities) and the probability of a heterozygous child is 0.5 as well. The

union of these two probabilities is 1.

P ChildHeterozygous or Homozygous

� � ¼ P ChildHeterozygous [ ChildHomozygous

� �
¼ P ChildHeterozygous

� �
þ P ChildHomozygous

� �
¼ 0:5þ 0:5 ¼ 1, ð3:18Þ

Example 3.2

Q: A disease has two causative mutations: A and B. Patients manifest the disease if

they have one or both mutations. The probability of a person having mutation A is

0.02 and the probability of a person having mutation B is 0.03 and the probability of

having both mutations is 0.01. What is the probability that a person has the disease?

A: This can be answered using the inclusion-exclusion rule:

P A [ Bð Þ ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ ¼ 0:02þ 0:03� 0:01 ¼ 0:04, ð3:19Þ

Conditional Probability

Conditional probability relates to the probability of an event occurring if another

event has already occurred. For example, instead of asking the probability that a

random person develops chronic renal failure, we can ask what is the probability of

a random person who has diabetes to develop chronic renal failure. Thus, in

conditional probability, a condition (or sets of conditions) needs to be satisfied,

before a probability can be assigned to an event. The probability of the event

occurring in this setting is proportional to the condition sets; let B be the condition

and A the event, we can write conditional probability as P(A|B):
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P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ , ð3:20Þ

The condition in conditional probability can itself be a conditional probability

measure. For example, for events A, B, and C, A is conditional to B which is

conditional to event C:

P AjB \ Cð Þ ¼ P A \ BjCð Þ
P BjCð Þ , ð3:21Þ

Conditional probability is very useful in diagnostic medicine: many of the

important test measures are conditional probabilities. To better demonstrate this,

we will provide an example: Table 3.1 is a 2 � 2 contingency table that shows the

number of individuals who have disease A (Dþ) in first row and the number of

unaffected individuals (D-) in second row. Test B has been developed to test for this

disease, and the results of the test are shown in columns with the first column

showing the number of individuals with a positive test (Tþ) and the second column

showing the number of individuals who tested negative (T�).

An important question to ask is if a person has the disease A (Dþ), then what is

the probability that he will test positive for test B (Tþ) or P(T þ |Dþ):

P T þ jDþð Þ ¼ P T þ \Dþð Þ
P Dþð Þ ¼ 40

45
ffi 0:89, ð3:22Þ

Incidentally, this probability (P(T þ |Dþ)) is called “sensitivity” of the test.

Other important test conditional probabilities include:

• If a person is unaffected by disease A (D-), then what is the probability that he

will test negative for test B (T�) or P(T�|D�)? This is known as test “specific-

ity” which is approximately 0.82 in the above example.

• If a person tests positive for test B (Tþ), then what is the probability that he has

disease A (Dþ) or P(Dþ |Tþ)? This is known as test “positive predictive value”

which is 0.80 in the above example.

• If a person tests negative for test B (T-), then what is the probability that he does

not have disease A (D�) or P(D�|T�)? This is known as test “negative

predictive value” which is 0.90 in the above example.

These test measures are explained further in Chap. 2.

Table 3.1 2 � 2 confusion matrix of disease A and test B results in 100 individuals

Test B positive (Tþ) Test B negative (T�) Total

Disease A positive (Dþ) 40 5 45

Disease A negative (D�) 10 45 55

Total 50 50 100

Conditional Probability 45



Probability axioms also apply to conditional probability. For example, the law of

unions can be applied to conditional probabilities; given that P(B) > 0 and events

A1, A2, . . ., Aiare exclusive, then

P A1 [ A2 [ . . . [ AijBð Þ ¼ P A1jBð Þ þ P A2jBð Þ þ � � � þ P AijBð Þ: ð3:23Þ

Example 3.3

Q: If five men and five women are in a group and two people are randomly chosen

from the group, then what is the probability of choosing a woman if the first choice

has been a man?

A: P(W2|M1)¼

Example 3.4

Q: In 1000 patients, presence of diabetes (Di) and proteinuria (Pr) is assessed.

150 patients had proteinuria (Prþ), while 200 patients had diabetes (Diþ). Of the

200 patients that had diabetes, 110 had proteinuria. What is the probability of a

person having proteinuria (Prþ) without having diabetes (Di�)?

A : P Prþ jDi�ð Þ ¼ P Prþ jDi�ð Þ
P Di�ð Þ ¼

40=1000

800=1000 ¼ 40
800

¼ 0:05,
ð3:24Þ

Multiplication Rule

Occasionally, conditional probability is the probability that is known; we can use

this to calculate other event probabilities.

P A \ Bð Þ ¼ P Bð Þ � P AjBð Þ ¼ P Að Þ � P BjAð Þ, ð3:25Þ
This can be generalized to a sequence of events (A1, A2, . . ., Ai) in a random

experiment:

P A1 \ A2 \ . . . \ Aið Þ ¼ P A1ð Þ � P A2jA1ð Þ � P A3jA1 \ A3ð Þ � . . .
� P AijA1 \ A2 \ . . . \ Ai�1ð Þ, ð3:26Þ
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For example, if we have three events (A, B, C), then

P A \ B \ Cð Þ ¼ P Að Þ � P BjAð Þ � P CjA \ Bð Þ, ð3:27Þ

Example 3.5

Q: In a standard deck of cards, what is the probability of drawing four consecutive

aces from the deck?

A : P A1 \ A2 \ A3 \ A4ð Þ ¼ 4=52�3=51�2=50�1=49
0:000003, ð3:28Þ
Two events are considered independent, if occurrence of one does not affect the

probability of the other. In such cases the multiplication rule can be written as

P A \ Bð Þ ¼ P Að Þ � P Bð Þ, ð3:29Þ
Alternatively, two events are independent if and only if the above formula is

correct.

If there are more than two events, then a “pairwise independence” is sought,

whereby any pair of events should be independent. For example, for events A, B,
and C to be pairwise independent, the following statements must all be true:

P A \ Bð Þ ¼ P Að Þ � P Bð Þ½ �AND P A \ Cð Þ ¼ P Að Þ � P Cð Þ½ �
� AND P B \ Cð Þ ¼ P Bð Þ � P Cð Þ½ �, ð3:30Þ
If in addition to the pairwise independence, the following statement is also true:

P A \ B \ Cð Þ ¼ P Að Þ � P Bð Þ � P Cð Þ, ð3:31Þ
then these events are considered as being “mutually exclusive.”

Bayesian Probability

Bayes theorem allows us to determine the probability of an event knowing prior

conditions or an inverse probability of the event. For example, we can determine P
(B|A) if P(A|B) is known. The Bayes theorem borrows from the concepts of

conditional probability and can be written as

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ , ð3:32Þ

In Bayes theorem, the probability measures that are known and given as input

are called “prior probabilities,” and the probabilities that are calculated are called

“posterior probability.” In the next section, we introduce the concepts of pretest and

posttest probability which are governed by Bayes theorem.
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The Bayes theorem can be expressed using the law of total probability; in this

law probability of event B ( p(B)) is conditioned on the partition A which is a finite

collection of exclusive events with probabilities larger than zero that partition the

sample space (S) [A ¼ {Ai: i 2 I}] (Fig. 3.2).
In this setting the law of total probability states that P(B) is the sum of weighted

average of the conditional probability of P(B|Ai) with P(Ai) being the weight factors

(over i 2 I):

P Bð Þ ¼
X
i2I

P Aið ÞP BjAið Þ: ð3:33Þ

Thus, the Bayes theorem can be rewritten as

P AjjB
� � ¼ P Aj

� �
P BjAj

� �
P Bð Þ ¼P

i2I
P Aið ÞP BjAið Þ , ð3:34Þ

In this formula, P(Aj) is the prior probability of Aj and P(Aj|B) is the posterior

probability of Aj.

We will demonstrate the Bayes theorem further in the following example:

Example 3.6

Q: Going back to the example of proteinuria and diabetes; suppose that the

probability of someone having proteinuria (Prþ) is 0.04 and the probability of

someone having diabetes (Diþ) is 0.3. Now suppose that the probability of a

diabetic having proteinuria is 0.1. Now calculate the probability of someone with

proteinuria being a diabetic.

Fig. 3.2 A partitioning of

sample space S to finite

events A ¼ {Ai: i 2 I}

induces a portioning of event

B
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A:

P Diþ jPrþð Þ ¼ P Prþ jDiþð ÞP Diþð Þ
P Prþð Þ ¼ 0:1� 0:3

0:04
¼ 0:75, ð3:35Þ

Bayesian probability is very useful in diagnostic medicine; it allows for calcula-

tion of false positive and false negative probabilities if factors such as test sensitiv-

ity, specificity, and disease prevalence (prior probability) are known. In the next

section, we have elaborated this concept further [2–5].

Pretest and Posttest Probability

When interpreting diagnostic tests, one must exercise caution as there is always an

element of error in measurements. As such it rarely occurs that positivity for a test

will mean that an individual is affected by a condition with a 100% certainty.

Knowing the prior risk (prior probability) of the individual will help interpret the

result by allowing us to calculate the posterior probability of the individual.

Prior probability or pretest probability is the probability that the individual being

tested has the disease of interest before testing is performed. This probability can be

based on disease prevalence or can also consider certain demographic or clinical

information about the patient. Posttest probability is the probability of having a

disease after a test or set of tests are performed. For example, if a 70-year-old

woman tests positive for pregnancy using a highly accurate pregnancy test, it is still

highly unlikely that she is pregnant. Measures such as “positive predictive value”

and “negative predictive value” are more sensitive to changes in prior probability

than sensitivity and specificity.

Positive predictive value ¼ P Dþ jTþð Þ ¼ P T þ jDþð ÞP Dþð Þ
P Tþð Þ

¼ P T þ jDþð ÞP Dþð Þ
P Dþð ÞP T þ jDþð Þ þ P D�ð Þ T þ jD�ð Þ , ð3:36Þ

Negative predictive value ¼ P D� jT�ð Þ

¼ P T � jD�ð ÞP D�ð Þ
P Dþð ÞP T � jDþð Þ þ P D�ð ÞP T � jD�ð Þ , ð3:37Þ

As you can see in the formula above, knowing P(D+) and P(D�) is important in

determining whether a positive test means being affected or a negative test means

being unaffected. Usually it can be assumed that sensitivity (α) and specificity (β) of
tests are stable across populations. Knowing the prior probability of an individual

having disease A (p ¼ P(A)), then the posterior probability of the individual having
disease A based on a positive test (P ¼ P(A|Tþ)) can be calculated:
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P ¼ αp

αþ β � 1ð Þpþ 1� βð Þ , ð3:38Þ

P is a function of p where if p increases from 0 to 1, then P also continuously

increases from 0 to 1. If the sum of sensitivity and specificity is greater than 1, then

the function P has a concave downward shape (see ROC curve, Chap. 2). If P ¼ p,
then α + β ¼ 1 and the test is only randomly associated with the disease status

(independent).

Alternatively, it can be stated that the posttest probabilities can be measured

using likelihood ratio; likelihood ratio (LR) is a product of sensitivity and specific-

ity of the test and consequently is less prone to sampling bias or changes in pretest

probability. Posttest probability is calculated using the posttest odds which is a

product of pretest odds and likelihood ratio. The pretest odds is the ratio of those

who have a condition versus those who are unaffected, i.e., the ratio of probability

of having a condition (pretest probability ( p)) versus not having it.

Pretest odds ¼ p

1� p
, ð3:39Þ

Likelihood ratio (LR) can either be positive (LRþ) which means the likelihood

of a positive test result favors the individual being affected by the condition of

interest or it can be negative (LR�) which favors the individual being unaffected.

LRþ is the ratio of true positive results to false positive results, and LR� is the ratio

of false negative results to true negative results.

LRþ ¼ P T þ jDþð Þ
P T þ jD�ð Þ ¼

Sensitivity

1� Specificity
, ð3:40Þ

LR� ¼ P T � jDþð Þ
P T � jD�ð Þ ¼

1� Sensitivity

Specificity
, ð3:41Þ

LRþ can have values between 0 and1. If LRþ is less than 1, then test positivity

decreases the posttest probability. As likelihood ratio nears 1, the test result effect

on posttest probability decreases, with a likelihood ratio of 1 denoting that the test

has no effect on posttest probability. With LRþ values greater than 1, a positive test

outcome has more effect on posterior probability with a LR value of 10 increasing

the posttest probability by 45% if the test outcome is positive.

Posterior odds is a product of pretest odds and LRþ:

Posterior odds ¼ pretest odds� positive likelihood ratio, ð3:42Þ
The posttest probability can be calculated from the posterior odds:

Posttest probability ¼ Posterior odds

Posterior oddsþ 1
, ð3:43Þ
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In tests where a screening test is followed by a confirmatory test, the posttest

probability of the screening test will be the pretest probability of the confirmatory

test. In these cases, it is important to determine if the two tests are independent and

do not have significant overlap. In general, tests of the same modality have

considerable overlap and should be avoided as a confirmatory test. In the simplest

example, if a test is run for one person twice, the results of the first run should not be

interpreted as the posterior probability of the second run.

Example 3.7

Q: Let us assume that prostate-specific antigen (PSA) value of more than 10 ng/ml

has a sensitivity of 90% and specificity of 70% for detection of prostatic cancer. If

prostate cancer has a prevalence of 0.005 in a 40-year-old man, then what is the

posterior probability of a PSA higher than 10 ng/ml in a 40-year-old man?

A: The pretest odds of the patient is approximately 0.005 (0.005/0.995). The

LRþ of PSA at this age is 3 (0.9/(1–0.7)). The posterior odds of the patient is 0.015

(0.005 � 3). The posttest probability of this patient is approximately 0.014 (0.015/

(1 þ 0.015)). Thus, despite the high PSA level in this patient, he is still highly

unlikely to have a prostate cancer.

Q: A new array comparative genomic hybridization (CGH) assay has been

developed for prostate cancer that has a sensitivity of 99% and specificity of

99%. The test is performed for the above patient after the PSA levels were

determined and the test results are positive. What is the posterior probability of

the patient having prostate cancer?

A: The pretest odds of the patient is now 0.015. The LRþ of the new test is

99 (0.99/(1–0.99)). The posterior odds of the patient is 1.485 (99 � 0.015). The

posttest probability of patient having prostate cancer is now approximately 0.6.

Fagan nomogram (Fig. 3.3) is a visual estimation of the pretest and posttest

probabilities based on the likelihood ratio of the test; using the nomogram a straight

line can be drawn from the pretest probability at the left nomogram to the test

likelihood ratio. Continuation of this line to the right side of the nomogram will

provide the posttest probability at the point where the line crosses the posttest

probability scale.

Pathologists should be aware of the concept of pretest and posttest probability

and use tests cautiously when approaching cases; tests, however accurate, can lead

to misleading diagnoses if pretest probabilities are ignored. Thus, pathologists and

especially anatomic pathologists should avoid using shotgun panels and tests (such

as ordering a wide panel of immunohistochemical stains) to work up cases. As the

example above showed, a test with a specificity and sensitivity of 99% can only

change a 1% pretest probability to 40% posttest probability. Therefore, multistep

diagnostic approaches or established diagnostic criteria with acceptable statistical

power should be employed in diagnosis.
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Probability Distribution

Probability distribution is the probability of occurrence of different possible

outcomes of a random trial or experiment. Probability distribution can be discrete,

for example, “binomial distribution” or “Poisson distribution.” Probability distri-

bution can also be continuous, for example, “normal distribution.” Understanding

probability distribution is fundamental to understanding statistics. Many of the

applications of statistics in pathology and laboratory medicine require an under-

standing of probability distribution and its different forms. Concepts such as

Fig. 3.3 The Fagan nomogram. The panel on the right shows a patient with a pretest probability

of 0.5% who had a positive test result with a positive likelihood ratio of 2000 which translates to a

posttest probability of 90% [6–10]
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“confidence interval,” “mean,” “reference range,” “error,” etc. are all determined

using probability distribution.

While what follows may appear exhaustive, we encourage the readers to at least

familiarize themselves with concepts of “probability mass function,” “cumulative

distribution function,” “probability density function,” “normal distribution,” “log-

normal distribution,” “mean,” and “variance.” At the end of the chapter, we have

provided an introduction of the different plots used to depict probability

distributions.

Discrete Distribution

A discrete random variable is a countable finite or infinite random variable; let us

assume that we call a discrete random variable X, and then the possible ranges of

X is a countable set ({Rx ¼ x1, x2, x3, . . .}). Now assume that event A is the set of

outcomes (s) in sample space S for which the value of X is equal to xj.

A ¼ s2SjX sð Þ ¼ xj
� �

, ð3:44Þ
We can show the probabilities of the events where variable X assumes the value

xj ({X ¼ xj}) as the “probability mass function” (PMF) of X. PMF is also known as

“probability distribution” for discrete random variables.

PX xj
� � ¼ P X ¼ xj

� �
, for j ¼ 1, 2, 3, . . .

0 if xj=2 Rx

�
, ð3:45Þ

PMF is a function that provides the probabilities of different possible values of a

discrete random variable. Thus, the theorems and laws of probability also apply to

PMF. For example, the sum of all probabilities of X will be 1.

X
x2A

Px xð Þ ¼ 1: ð3:46Þ

Also:

0 � Px xð Þ � 1 for all x and, ð3:47Þ

for any set A � Rx,P X2Að Þ ¼
X
x2A

Px xð Þ: ð3:48Þ

Example 3.8

Q: Two consecutive qualitative HIV tests are run; if X is the number of positive

results, define the PMF for X.
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A: Here the sample space will be:

S ¼ þþ;þ�;�þ;��f g, ð3:49Þ
The possible ranges of values for X will be:

Rx ¼ 0; 1; 2f g, ð3:50Þ

The PMF for X will be:

Px 0ð Þ ¼ 1

4
, Px 1ð Þ ¼ 1

2
, Px 2ð Þ ¼ 1

4
, ð3:51Þ

The values of the PMF can be plotted (Fig. 3.4). The figure shows that if the

experiment is repeated infinitely, then half of the times we will observe the value of

X to be 1 (Px(1) ¼ 1/2). This peak can also be observed in the plot.

The random variable X also has a “cumulative distribution function” (CDF)

otherwise known as “distribution function of X.” CDF is the probability that the

random variable X, evaluated at x, takes a value equal or smaller than x.

FX xð Þ ¼ P X � xð Þ ¼
Xx
m¼0

f mð Þ ¼ f 0ð Þ þ f 1ð Þ þ f 2ð Þ þ � � � þ f xð Þ: ð3:52Þ

CDF has certain properties:

1. The values of CDF range from 0 to 1.

2. CDF is a nondecreasing function of x, for �1 < x < 1.

3. The probability of X taking a value between x1 and x2 is a cumulative function as

well:

P x1 < X < x2ð Þ ¼ Fx bð Þ � Fx að Þ, ð3:53Þ

Fig. 3.4 PMF plot of an

experiment consisting of a

binary event repeated twice

(see Example 3.8)
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CDF is more useful for evaluating the distribution of random continuous

variables. The cumulative distribution function of a continuous random variable

is equal to the area under the curve of the “probability density function”:

FX xð Þ ¼
Z x

�1
f X tð Þdt: ð3:54Þ

Example 3.9

Q: Considering the PMF of Example 3.8, what is the CDF of X � 1?

A: For X� 1, it means that X can either have a value of 0 or 1. Then the CDF can

be calculated as

FX x � 1ð Þ ¼ Px 0ð Þ þ Px 1ð Þ ¼ 1

4
þ 1

2
¼ 3

4
, ð3:55Þ

Let us assume that we have a finite population with a size of N that contains a

number of a certain type (m) and the remainder of another type (N � m).
“Hypergeometric distribution” then is the probability mass function of drawing a

number of items of type m from the population without replacement (i.e., with each
successive draw, the population decreases) (x).

P X ¼ xð Þ ¼
m
x

� �
N�m
n�x

� �
N
n

� � , ð3:56Þ

The term m
x

� �
is called a binomial coefficient which states the number of ways for

picking x unordered outcomes from m possibilities and is read as “m choose x.” The
value of the binomial coefficient can be calculated with the following formula:

m

x

� �
¼ m!

m� xð Þ!x! , ð3:57Þ

Example 3.10

Q: There are 10 patients in a ward and 3 of them have contracted a hospital-acquired

infection. Your staff randomly picks 5 patients for a blood culture. Let X be the

number of infected patients selected. What is the PMF of the X variable?

A: In this example, the size of population (N ) is 10, the number of draws is 5 (n),
and the number of successful draws is (x) which can have values of {0, 1, 2, 3}.

Thus, the PMF is

P X ¼ xð Þ ¼

3

x

	 

10� 3

5� x

	 

10

5

	 
 x ¼ 0, 1, 2, 3

0 Otherwise

8>>>><
>>>>:

, ð3:58Þ
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Q: What is the probability of drawing exactly three infected patients?

A:

P X ¼ 3ð Þ ¼
3
3

� �
7
2

� �
10
5

� � ¼ 1

12
, ð3:59Þ

The PMF and CDF functionsof the above example can be plotted (Fig. 3.5) [11].

Binomial Distribution
“Binomial random variables” are discrete random variables that count the number

of successes in a fixed number of trials. In each trial, the choices are binary: there

will either be success (the event of choice occurs) or failure; these trials are

otherwise known as “Bernoulli trials.” These trials are independent, and there

will be replacement meaning that the probability of success is the same for each

trial. Each binomial random variable (X) has a probability mass function:

Fig. 3.5 PDF (a) and CDF (b) plots of Example 3.10
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f xð Þ ¼ n

x

� �
px 1� pð Þn�x ¼ n!

x! n� xð Þ! p
x 1� pð Þn�x

, ð3:60Þ

where p is the probability of success in each trial, n is the number of trials, and x is
the number of successes.

Each binomial variable has a “binomial distribution”:

Xeb n; pð Þ, ð3:61Þ
n and p are the parameters of the distribution of X. If p is 0.5 (i.e., half of the trials

are successes), then the distribution of the binomial variable will be “symmetrical”

(Fig. 3.6a). If p is small, the successes are less likely to occur, and the distribution

will be “skewed right” with the smaller numbers constituting the bulk of the

distribution and the distribution tailing off toward larger numbers (this holds true

Fig. 3.6 Symmetrical distribution with p ¼ 0.5 and n ¼ 10 (a). Right skewed distribution with

p ¼ 0.2 and n ¼ 10 (b). Left skewed distribution with p ¼ 0.8 and n ¼ 10 (c). As the number of

trials increases (n ¼ 40), the distribution approaches symmetry irrespective of p (frames d–f)
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if the number of trials (n) is small) (Fig. 3.6b). Conversely, if the p is large with

small trial size, then the distribution is said to be “skewed left” (Fig. 3.6c). If the

number of trials is sufficiently large, then the distribution “approaches symmetry”

irrespective of the probability of success (Fig. 3.6d–f).

Example 3.11

Q: You have noticed that in each run of 10 samples in your blood gas machine, one

sample result is incorrect (p¼ 0.1). You choose a random sample from each run for

5 runs (n ¼ 5), what is the probability of choosing the sample with the wrongly

reported result, 3 times out of 5 (x ¼ 3)?

A:

f 3ð Þ ¼ 5

3

	 

0:13 0:9ð Þ2 ¼ 0:0081, ð3:62Þ

Q: What is the probability of finding the sample at least two times?

A: Here you can calculate the probability by calculating the CDF of 2 � x � 5.

F 2 � x � 5ð Þ ¼ f 2ð Þ þ f 3ð Þ þ f 4ð Þ þ f 5ð Þ ¼ 1� f 0ð Þ þ f 1ð Þð Þ
¼ 0:08146, ð3:63Þ

In reality, the binomial distribution occurs only rarely in the practice of pathol-

ogy. However, it is of interest that this distribution can be used to generate all

isozyme forms of multi-subunit enzymes such as creatine kinase (CK) and lactate

dehydrogenase (LDH). Here, we know that CK has two isozymes termed M and B

that exist as dimers. The question is how many distinct dimers can exist? The

answer is (M þ B)2 or (M2 þ 2 MB þ B2). Thus, there are three forms. For LDH,

there are two isozymes, H and M, that form tetramers. To generate the

combinations, we compute (H þ M)4 or H4 þ 4H3M þ 6H2M2 þ 4HM3 þ M4 or

a total of five different tetramers. In general, the number of distinct polymer forms

with two subunits is (A þ B)N where A and B are the distinct isozymes and N is the

number of units per polymer. It is easy to see that the number of distinct forms, each

form containing N subunits, is N þ 1 [12, 13].

Geometric Distribution

Geometric distribution is a discrete probability distribution of the number of

“Bernoulli trials” needed to obtain one success (X) or alternatively the number of

failures before a success is achieved (Y ¼ X�1). Geometric distributions have two

parameters: the probability of success ( p) and the number of trials until a successful

trial (x).
The probability mass function of a geometric distribution of number of trials

before a success is attained is written as

f xð Þ ¼ P X ¼ xð Þ ¼ 1� pð Þx�1p, ð3:64Þ
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Alternatively, the distribution of number of failures before a successful trial can

be written as

f xð Þ ¼ P X ¼ xð Þ ¼ 1� pð Þxp, ð3:65Þ
The cumulative distribution function of a geometric distribution of number of

trials before a success is attained is

F xð Þ ¼ P X � xð Þ ¼ 1� 1� pð Þx, ð3:66Þ
And the CDF for the distribution of number of failures before a successful trial is

F xð Þ ¼ P X � xð Þ ¼ 1� 1� pð Þxþ1
, ð3:67Þ

Example 3.12
Q: Going back to Example 3.11, what is the probability of going through three runs

before finding one sample with an incorrectly reported result?

A:

f xð Þ ¼ P X ¼ 3ð Þ ¼ 0:92 � 0:1 ¼ 0:081, ð3:68Þ
In geometric distributions, the number of trials needed before a successful trial is

the inverse of the probability of success (1 p= ). Incidentally, 1 p= is also the mean of a

geometrically distributed variable.

This concept is used in two useful epidemiologic measures: “number needed to

treat” and “number needed to harm.” Simply stated, these measures mean the

number of individuals who must receive a treatment or be exposed to a hazard to

have one person be cured or to develop an adverse outcome in case of number

needed to harm. This follows a geometric distribution and they can be written as

Number needed to treat NNTð Þ ¼ 1

Absolute risk reduction
, ð3:69Þ

Number needed to harm NNHð Þ ¼ 1

Absolute risk increase
, ð3:70Þ

The absolute risk difference (either reduction or increase) is the difference

between the probability of cure (or harm) in the experimental group and the control

group.

Negative Binomial Distribution

A “negative binomial” random variable is a binomial variable that denotes “the

number of Bernoulli trials choosing the rth- 1 success” or xþr�1
r�1

� �
where x is the

number of failures and r � 1 is the number of successful trials with success on the

(x þ r)th trial. The negative binomial distribution (also known as “Pascal distribu-

tion”) can be written as
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Xenb r; pð Þ, ð3:71Þ
The probability mass function of a negative binomial distribution is given by

f xð Þ ¼ Pr,p ¼ xþ r � 1

r � 1

	 

pr 1� pð Þx, ð3:72Þ

And the CDF is given by

F xð Þ ¼
Xx
n¼0

xþ r � 1

r � 1

	 

pr 1� pð Þx, ð3:73Þ

Example 3.13

Q: Going back to Example 3.11, what is the probability of finding the third

wrongfully reported sample (r) in the seventh run (x þ r)?
A:

P3;0:1 ¼ 6

2

	 

0:13 0:9ð Þ4 ¼ 0:0172187, ð3:74Þ

Q: What is the probability of finding the third wrongfully reported sample on or

before the seventh run?

A:

F 4ð Þ ¼
X4
n¼0

xþ r � 1

r � 1

	 

pr 1� pð Þx ¼ 0:0701908, ð3:75Þ

Mean and Variance

Before we can introduce the concept of “Poisson distribution,” we need to explain

“mean,” “variance,” and “moment-generating functions” (MGF).

Each random variable (X) has an “expected value” (E[X]) which is the weighted
average of values that X can take on. For discrete variables, the weights of values

are determined by their respective probability.

E x½ � ¼
X
x

f xð ÞP xð Þ: ð3:76Þ

In other words, the expected value of X can be thought of as the “mean of X.” For
continuous variables, the expected value is the integral of its probability density

function.
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E x½ � ¼
Z

f xð ÞP xð Þdx, ð3:77Þ

If a random experiment is repeated many times, the average value of outcomes

converges on the expected value of the experiment. Thus, the mean is the “central

tendency” or “location” of a probability distribution.

The expected values of powers of X are called the “moments of X.” The

“moments about the mean of X” are expected values of powers of [X�E[X]].
In continuous variables, the zeroth moment (E0) equals 1 and is the total

probability. The first moment (E1) is the mean of the variable, the second central

moment ((X�E[X])2) is the variance, the third central moment ((X�E[X])3) is the
skewness, and finally the fourth central moment ((X�E[X])4) is the kurtosis.

Thus, variance (σ2) is the expected value of the squared difference of the random
variable from its mean. Variance shows the dispersion of the probability

distribution.

σ2 ¼ E X � E X½ �ð Þ2
h i

, ð3:78Þ

Moment-generating function is a real function, the derivatives of which at zero

are equal to moment of the random variable. The MGF can characterize the

distribution of the random variable. The MGF can be given by

Mx tð Þ ¼ E etX
� �

, ð3:79Þ
where t is all real numbers belonging to the closed interval [�h,h] [�h, h]�R, for
which the expected value E[etX] exists and is finite.

A summary of formulas for mean, variance, and moment-generating function of

different distributions is provided in Table 3.2.

Poisson Distribution

Poisson distribution is a probability distribution that gives the probability of a given

number of events occurring in a fixed interval (of time or space) if these events are

independent and the average rate of the events is known. For example, if X is the

Table 3.2 Characteristics of different random distributions

Distribution Mean Variance Moment-generating function

Bernoulli E(x)¼ p σ2¼ p(1� p) 1� p+ pet

Binomial E(x)¼ np σ2¼ np(1� p) (1� p+ pet)n

Geometric E xð Þ ¼ 1
p σ2 ¼ 1�p

p2
pet

1� 1�pð Þet

Negative binomial E xð Þ ¼ pr
1�p σ2 ¼ pr

1�pð Þ2
1�pð Þr
1�petð Þr

Poisson E(x)¼ λ σ2¼ λ eλ et�1ð Þ

Normal E(x)¼ μ σ2 etμþ
1
2
σ2 t2

Chi-squared E(x)¼ k σ2¼ 2k 1� 2tð Þ�k
2
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number of tests ordered in a day with the number of tests ordered each day being

independent of the number of tests ordered in prior days and if the average number

of tests ordered is known, then X is a Poisson random variable.

Other conditions that must be met for a variable to follow Poisson distribution

are:

• Two events must be separated (i.e., they cannot occur at the same time).

• The rate of occurrence of events is constant with the probability of events

occurring in an interval being proportional to length of the interval.

The probability mass function of a Poisson variable is given by

f xð Þ ¼ e�λλx

x!
, ð3:80Þ

where λ is the mean and variance of X and e is the mathematical constant with a

value of 2.7182 to four decimal points.

The distribution of a Poisson variable is symmetrical and is centered around

its mean.

The cumulative distribution function of a Poisson variable can be written as

F xð Þ ¼ e�λ
Xk
i¼0

λi

i!
, ð3:81Þ

where k is the floor function of x which is the largest integer less than or equal to x.

Example 3.14

Q: If X is the number of tests ordered in a day with the number of tests ordered each

day being independent of the number of tests ordered in prior days and if the

average number of tests ordered is 10 per day, then what is the probability of having

a day in which 8 tests are ordered?

A:

f 8ð Þ ¼ e�10108

8!
ffi 0:112599, ð3:82Þ

Q: What is the probability of having 8 or less tests per day?

A: (Fig. 3.7)

F 8ð Þ ¼ e�10
X8
i¼0

10i

i!
¼ 0:33282 ð3:83Þ
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Continuous Distributions

Unlike discrete random variable where the sample set consists of a range of finite

values, the continuous variables have a range that is infinite and uncountable. In

these variables, single points among the range have a probability of 0, and only

ranges of values can have a non-zero probability (Fig. 3.8).

Probabilities of continuous random variables are derived from the area under

curve of its probability distribution plot. Hence, instead of probability mass func-

tion, we use “probability distribution function” to characterize continuous

variables. Probability density function (PDF) is the integrable function f(x) for

continuous variable x which for all x in the sample set, f(x) > 0 and the area

under curve for the entire range of the sample set are equal to 1. The integral of f(x)
for any interval (a � x � b) in the sample set is the probability of x falling within

that interval. PDF can be given as

f xð Þ ¼ P a � x � bð Þ ¼
Zb
a

f X xð Þdx: ð3:84Þ

The cumulative distribution function of continuous variables is a nondecreasing

continuous function (unlike discrete variables where CDF is a nondecreasing step

Fig. 3.7 Probability distribution plot of Example 3.14 with the darker area showing the cumula-

tive probability of X assuming values of 8 or less
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function). We introduced the cumulative distribution function of a continuous

variable before (Formula (3.54)).

Continuous variables are very important in clinical pathology as most tests are

quantitative and return an outcome from a continuous range. One of the important

properties of continuous variables is that they can have “percentiles.” The concept

of percentiles is very important since factors such as “confidence interval” and

“reference range” are determined using percentiles. A percentile is a value (πp)
below which a given percentile of observations or outcomes falls. For each πp, the
area under the curve to the left of the value has a probability p which is equal to the
percentile (Fig. 3.9). In other words, each percentile signifies a CDF from �1 to

πp.
The mean (expected value) of a continuous variable is called μ and is calculated

as

μ ¼ E Xð Þ ¼
Z 1

�1
x f xð Þdx: ð3:85Þ

Consequently, the variance (σ2) of a continuous variable is given by:

σ2 ¼
Z 1

�1
x� μð Þ2f xð Þdx: ð3:86Þ

Fig. 3.8 In this normal distribution, the shaded area shows a range of values of X and has a

non-zero probability (0.06846); the dotted line, however, represents a single point in the range of X
values and has a probability of 0

64 3 Probability and Probability Distribution



Normal Distribution

“Normal distribution” otherwise known as “Gaussian distribution” is perhaps one

of the most important probability distributions in laboratory medicine. This crucial

role of the Gaussian distribution is due to the “central limit theorem.” Simply stated,

this theorem postulates that if a measurement (e.g., a diagnostic test result) is

influenced by infinite uncertainty sources, then the distribution function of the

measurement will approach a normal distribution, irrespective of the probabilities

and distributions of the uncertainty sources. In reality, even a finite but sufficiently

large number of uncertainty sources will shift the probability distribution toward a

normal distribution. In biology and by extension laboratory medicine, each mea-

surement or test is influenced by many sources of uncertainty like age, gender,

individual traits, nutritional status, etc. Thus, many of the quantitative test results in

laboratory medicine have either a normal distribution or log-normal distribution.

The normal distribution curve has the famous bell-shaped (Fig. 3.9) appearance

with probability at μ being the maximum height of curve. It means that normal

distribution is perfectly symmetrical around its mean and its moments beyond mean

and variance are zero (i.e., there is skewness or kurtosis and so on). In normal

distribution, the bulk of the values is within a few standard deviations of the mean,

and for practical purposes the probabilities of values falling more than four standard

deviations from the mean are practically considered to be zero ( lim
x!�1

f xð Þ ¼ 0
�
(see

Westgard rules, Chap. 10).

Fig. 3.9 Examples of percentile: 5th (a) 50th (b) and 95th (c) percentiles
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The two main parameters of a normal curve are mean and variance: the mean

determines the location of the curve and the variance determines the spread of the

curve. As the variance increases, the curve becomes flatter or vice versa, as the

variance decreases, the curves become taller.

The probability density function of a normal (Gaussian) distribution is given by:

f xjμ, σ2� � ¼ 1ffiffiffiffiffiffiffiffiffiffi
2σ2π

p e�
x�μð Þ2
2σ2 , ð3:87Þ

The CDF function of normal distribution is denoted with Φ and is written as

Φ xð Þ ¼ 1ffiffiffiffiffi
2π

p
Z x

�1
e�

t2

2dt, ð3:88Þ

Direct calculations of the integral are technically difficult; to facilitate these

calculations, each variable with normal distribution (N(μ, σ2)) can be transformed

into a standard normal distribution (N(0, 1)).
If X is the random normal variable with N(μ, σ2), then the standardized distribu-

tion of X is given by:

Z ¼ x� μ

σ
, ð3:89Þ

This standardized distribution now has the distribution N(0, 1). Thus, any inter-

val (a� x� b) can be transformed into a Z-value and the corresponding probability

calculated using the values of the Z-table (Appendix A). Z-table contains the

mathematical values of standardized Φ [14, 15].

Example 3.15
Q: The mean corpuscular volume of red blood cells follows a normal distribution

with mean of 92 fL and variance of 16. What is the probability of a normal

individual (i.e., no anemia) having a MCV of less than 80 fL?

A: The standardized value of 80 fL can be calculated as

Z ¼ 80� 92

4
¼ �3, ð3:90Þ

Going to the Z-table, you can see that there are no negative Z-values. Thus, for

negative values, you use the corresponding complementary cumulative Z-value

which shows that the probability of a value falling below Z-score of 3 is 0.00135.

Thus, a healthy individual has a 0.00135 probability of having a MCV of less than

80 fL.

Alternatively, if a probability is provided, then the corresponding value of x can
be calculated by transforming the probability to its corresponding Z-value and then

calculating the corresponding x value using the following formula:
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x ¼ μþ zσ, ð3:91Þ
One of the important questions in statistics is whether a continuous variable has a

normal distribution or not. We will talk about this is detail in Chap. 6 where we will

introduce the concepts of parametric and non-parametric measures as well as

testing for normality.

Log-Normal Distribution

In physiologic measurements, many of the measurement values converge to a

limiting distribution. In a simplified manner, these measurements are usually

bound by a lower limit and exhibit additive percentage changes that are usually

unidirectional. For example, for every gender/age group, there is a limit to how low

a person’s weight can be; on the other hand, the weight of individuals can be very

high (Fig. 3.10). In other words, many physiologic processes are right skewed.

These continuous measurements will not fit normal distribution, and “log-normal

distribution” should be used.

Log-normal distribution is a continuous probability distribution whose logarithm

follows a normal distribution (if X ~ lnN(μ, σ2) then ln(X) ~N(μ
0
, σ

02)). If X is the

log-normal random variable with μ and σ being the mean and standard deviation of

the variable natural logarithm, then we can express X as

X ¼ eμþσZ, ð3:92Þ

Fig. 3.10 Body mass index (BMI) distribution plot follows a log-normal distribution with a lower

threshold of 15, scale of 1, and a location of 23

Probability Distribution 67

https://doi.org/10.1007/978-3-319-60543-2_6


The probability density function of a log-normal variable with a known mean

and standard deviation of the variable natural logarithm (μ and σ) is given by:

f xð Þ ¼ 1

xσ
ffiffiffiffiffi
2π

p e�
ln x�μð Þ2
2σ2 , ð3:93Þ

σ is the main determinant of the shape of the log-normal distribution. As σ
increases, the curve shifts toward the left increasing the skewness, and as σ
decreases, the curve shifts to the right increasing the symmetry (approaching

normal distribution) (Fig. 3.11). μ on the other hand determines the location of

the curve, with the peak of the curve corresponding to μ.
The cumulative distribution function of a variable with log-normal distribution

is written as

F xð Þ ¼ Φ
ln x

σ

	 

, ð3:94Þ

where Φ is the cumulative distribution function of standard normal distribution

[16].

Introduction to Distribution Plots

Distribution plots are graphs that visualize the distribution of a random variable.

Examining distribution plots allows for a subjective and rapid assessment of data

and can be a powerful tool in data analysis and reporting results. We will introduce

some of the distribution plots here. Most of these plots mainly concern visualizing

continuous random variables especially normally distributed variables.

Normal Distribution Plot

“Normal distribution plots” or “normal probability plots” are used to assess whether

the data follows a normal distribution. This allows for a fast and visual inspection of

normality before statistical procedures that are designed for normal distributions

can be used. In normal distribution plots, the observed values of the variable are

plotted against a theoretical normal distribution; if the variable has a normal

distribution, then the points in the plot should approximate a straight line

(Fig. 3.12).

Fig. 3.11 Changes in shape of log-normal curves with changes in σ (scale)
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Quantile-Quantile Plots

“Quantile-quantile plots” also known as Q-Q plots provide a visual estimation of a

comparison of two variable distributions. This graph plots the quantile distributions

of one variable against quantile distributions of another variable (note quantile

distributions and not the actual values). If the points in the Q-Q plot approximate a

straight line, then the two variables plotted are likely to be from the same distribu-

tion family (e.g., both are normally distributed). Significant departures from a

straight line show that the two variables have different distribution families

(Fig. 3.13).

Cumulative Distribution Plots

CDF plot plots the cumulative distribution of probabilities of values of a variable

less than a given x. The Y-axis of the plot is the cumulative probability and ranges

from 0 to 1. The CDF plot for discrete variables consists of a series of steps and for

continuous variables is a curve (Fig. 3.14).

Histogram

“Histogram” is a visual representation of the distribution of a variable. The Y-axis

of a histogram consists of either frequency or relative frequency in which the

frequencies are normalized to a scale (e.g., percents). The X-axis of the plot consists

of values of the variable put in “bins.” Bins are range of values of the variable that

Fig. 3.12 The panel on the left shows a normal distribution; note that the points in the plot

approximate a straight line. The panel on the right shows a log-normal distribution; note the

departure of the points from the straight line
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are clustered together; in other words, the X-axis is divided into equal length

intervals (bins) (Fig. 3.15).

The choice of bin size is very important in drawing a histogram: too wide

intervals will hide crucial variations in data, while too narrow intervals can show

too much noise.

Often, you can fit distributions to a histogram. In these instances, a curve best

fitting the distribution of the data is added to the histogram. Interpretation of the

fitted distribution curve is often easier than interpreting the histogram itself.

Fig. 3.13 Q-Q plot of MCV versus RBC hemoglobin concentration. Note that the points form a

straight line suggesting that both variables have the same distribution family

Fig. 3.14 The panel on the left shows the CDF plot of a continuous random variable, and the

panel on the right shows the CDF plot of a discrete random variable
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Boxplot

Each randomly distributed variable can be summarized in a five-number summary

which is composed of the median, first quartile, third quartile, and minimum and

maximum of the data range. Boxplot graphs allow visualization of these five-

number summaries and are powerful tools in comparative exploratory analysis.

Boxplots consist of a rectangle, the upper and lower bounds of which mark the third

and first quartile, respectively. The median is marked by a horizontal line through

the rectangle. The minimum and maximum are shown as linear extensions from the

rectangle. Outliers can be marked as points or circles along the axis of the plot

(Fig. 3.16) [17].

Summary

In this chapter, we reviewed two fundamental concepts of statistics and statistical

inference: probability and distribution. Many of the concepts that we will introduce

in later chapters require an understanding of these fundamentals.

A set of rules or theorems govern probability. Probability has its own alphabet;

different elements can define each random variable such as sample set, event rate,

probability mass function, and cumulative distribution function.

It is imperative that the readers understand the nature of the experiment or

measurement which gives rise to the random variable. Calculations and

Fig. 3.15 Histogram of mean corpuscular volume
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measurements of probability differ based on the type of experiment. Conditional

probabilities and Bayesian probabilities are two broad categories of probability.

Finally, one of the most important features of a random variable is its distribu-

tion. The nature of the distribution, whether discrete or continuous, and their

subclassifications will determine the statistical inference tests that can be used to

analyze and compare random variables.
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Linear Correlations 4

Linear Correlations in the Medical Laboratory

Central to all statistical evaluations of the reliability of results in quantitative

laboratory medicine is the correlation of results of testing for analytes on more

than one analyzer. Almost always, at least two analyzers are available in clinical

laboratories for performing routine analyses, either functioning concurrently to

handle the testing volume or with one analyzer serving as a “backup” analyzer

for the other analyzer which is handling the testing volume. Since both analyzers

report patient values, the question arises as to how close are the values that the two

(or more) analyzers are reporting. This question is answered by performing testing

on given patient samples on each analyzer and evaluating whether the values on

each sample are the same or different. CLIA and its surrogate regulatory agency,

the College of American Pathologists (CAP), require correlation studies at least

twice per year, preferably at 6-month intervals. There are at least two ways in which

the results of such a study can be evaluated.

Two-Tailed T-Test

First, each sample can be run multiple (say, five) times on each of two analyzers so

that the mean and standard deviation can be computed for the sample on each

analyzer. These data can then be used in a two-tailed student t-test, as described in

Chap. 6. If the p value is >0.05, the two sets of data from the two analyzers are not

statistically significantly different from one another, and it can be concluded that

the two analyzers give results that are the same.

Of course, this approach assumes that the results that are generated are based on

the same method and that the two analyzers are the same. However, there are

instances in which, as we discuss below, the results may be generated by two

different methods where the units of measurement may not even be the same. In

these cases, if the results are proportionate, then they may be expressed in common
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standardized units. For example, the results from each method can be expressed as a

fraction of the highest value found. These fractions can then be compared using the

T-test.

Irrespective of the results being compared, this method would require around

five determinations per sample on each analyzer. Generally, at least ten different

samples should be tested covering low, normal, and elevated values for the

analytes. Since, in most clinical chemistry laboratories, analyzers now perform

upwards of 40 tests, around 2000 determinations must be performed. Since at least

two analyzers are involved, the number of tests performed must be doubled to 4000.

Irrespective of the speed of the analyzers, this is a time-consuming process. There is

an alternate method that requires fewer determinations [1].

Correlation Plots

In this alternate approach, single determinations of each analyte are performed on

each of the ten samples referred to in the preceding paragraph. The value for an

analyte for each sample on one analyzer (called analyzer 1) is then plotted on the Y-
axis (ordinate) against the value determined on the other analyzer (called analyzer

2) on the X-axis (abscissa). This process is repeated for all ten samples. The

resulting plot is called a correlation plot because it shows how good the correlation

is between the values determined on each analyzer.

The general equation of a straight line is

Y ¼ mX þ b ð4:1Þ
where m is the slope and b is the Y-intercept.

Ideally, both analyzers should give the same value for a given sample. If this

were to occur, then the plot of the data would show a straight line with a slope of

1 and a Y-intercept of 0. This would indicate that the two analyzers correlate

perfectly for testing for a particular analyte.

An example of the “perfect” straight line is shown in Fig. 4.1 (the data for which

are given in Table 4.1). This figure is a plot of the points resulting from analyzing

eleven samples for BUN over a range of values from about 5–50 mg/dL. To the

nearest tenth of a mg/dL, the results for each sample on the two analyzers were the

same. However, most of the time, there are differences between the values, and the

points do not all fall exactly on the best straight line.

Then, what happens when the points do not fall perfectly on a straight line? We

know that there is always statistical error behind each point making the perfect plot

unlikely for every analyte. Given that two analyzers are the same, i.e., are made by

the same manufacturer and have been previously tested and found to correlate well

for all analytes which are tested on the analyzers, we make the assumption that the

points generated lie on a straight line. The question is what is the “best” straight line

that the points “should” lie on. They do not lie exactly on this line because of the

error involved in their determinations. This assumption therefore excludes the
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Fig. 4.1 The least squares best fit line to the points from Table 4.1, represented by filled circles,

generated from running 11 serum BUN samples on two identical analyzers. All the points lie on or

very close to the best fit line. Only one point, the lowest value, point 1 in Table 4.1, deviated

slightly from the best fit line. The best fit equation for this line is Y (analyzer 2)¼ 0.999 X (analyzer

1)þ 0.0374. As can be seen from the slope and the intercept, this line is very close to the “perfect”

1:1 line with a slope of 1 and a Y-intercept of 0.0

Table 4.1 Values of serum BUN plotted for 11 samples run on two identical analyzers

Number X Y Y,est.

1 5.5 5.9 5.5

2 10.2 10.2 10.2

3 12.4 12.4 12.4

4 15.0 15.0 15.0

5 16.8 16.8 16.8

6 17.3 17.3 17.3

7 18.3 18.3 18.3

8 20.6 20.6 20.6

9 26.7 26.7 26.7

10 30.2 30.2 30.2

11 50.6 50.6 50.6

The X values (analyzer 1) are given in the first column, the corresponding Y values (analyzer 2) are

given in column 2, and the best fit Y values are given in the third column. These values are seen to

be virtually identical to those in column 2 except for the first (lowest) value. The plot of column

2 values against the column 1 values is shown in Fig. 4.1. Y,est. is the “best fit” Y value to the points

in column 2; these values are seen to be identical to the X values. The straight line in Fig. 4.1 is the

plot of Y,est. vs. X
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possibility that a nonlinear law better fits the data, which, for this case, appears to be

a physically reasonable one.

In fact, in general, correlations between two parameters are not necessarily

linear. They may follow any number of other laws such as a quadratic law wherein

the best parabola that fits the data would be of the form AX2 +BX+C or some higher

order form as AnX
n+An� 1X

n� 1 +An� 2X
n� 2þ . . . . þA1. The basic objective for

fitting a curve or a straight line to a given set of points is to determine the values of

the coefficients for each term in X that gives the lowest sum of squares of the

deviations of the Y values from the X values.

Here, we present how the best values for the slope and intercept are determined

for determining the straight line that gives the lowest sum of squares of deviations
of the determined Y values from their corresponding predicted values on the “best”

straight line [2, 3].

Determination of the “Best” Straight Line Through
Experimentally Determined Points

The simplest approach to the determination of the “best” line is to define it as the

straight line that results in the lowest possible deviation of the individual points

from this line. Thus, for each X value on the correlation plot, we want the Y value to

deviate as little as possible, i.e., we want the error, Si, for the Y value, Yi, when
X¼Xi, to be as small as possible, and we define Si as:

Si ¼ Yi � mXi þ bð Þ ð4:2Þ
where m and b are the slope and intercept, respectively, of the “ideal” line Y value.

Notice that in this treatment we consider that there is no error in the Xi value, i.e.,

Xiis assumed to be absolutely accurate.
Now, there are the other experimentally determined points for which we wish the

same condition to hold. Suppose one point gives an error of, say, �2 and the other

gives an error of þ2. Even though both points deviate from the ideal line, one error

cancels the other giving a net error of 0. To avoid this occurrence, we define the

square of the error for each point as

Si
2 ¼ Yi � mXi þ bð Þ½ �2 ð4:3Þ

and

X
Si

2 ¼
X

Yi � mXi þ bð Þ½ �2 ð4:4Þ

where the sum, ∑, is taken over all points, in the above example shown in Fig. 4.1,

points 1–11. In general, the sum is written as:
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XN
i¼1

Si
2 ¼ S1

2 þ S2
2 þ S3

2 þ :::þ SN
2þ

which reads “sum of Si squared i¼ 1 to N¼ S12þ S22þ S32þ . . . . þ SN2". For

brevity, we represent the sum simply as ∑.

Overall, the object is to have the sum of the squares of the individual errors add

up to as small a value as possible; that is, we wish to determine the value for m and

the value for b that will give the lowest possible value for ∑Si
2.

Derivation of the Least Square Best Fit Line Through
the Experimentally Determined Points

Using the methods of the calculus of functions of more than one variable (here, two

variables), we have to minimize ∑Si
2, i.e., we must take its first derivative with

respect to the slope, m, and the intercept, b, and set each resulting equation equal to
0. This process gives the values for m and b for which ∑Si

2 is a minimum.

Therefore, for the slope,

∂=∂m
X

Si
2 ¼

X
2Si � ∂Si=∂m ¼ 0, ð4:5Þ

and

X
Si � ∂Si=∂m ¼ 0 ð4:6Þ

Now, ∂Si/∂m, from Eq. 4.2, is �Xi. So Eq. 4.6 becomes

X
Si � ∂Si=∂m ¼

X
�YiXi þ m

X
Xi

2 þ b
X

Xi ¼ 0 ð4:7Þ

Similarly, for the intercept,

∂=∂b
X

Si
2 ¼

X
2Si � ∂Si=∂b ¼ 0 ð4:8Þ

and

X
Si � ∂Si=∂b ¼ 0 ð4:9Þ

Now, ∂Si/∂b, from Eq. 4.2, is �1. Therefore,

X
Si � ∂Si=∂b ¼ 0 ¼ �

X
�Yi þ m

X
Xi þ

X
b: ð4:10Þ

We now have two Eqs. 4.7 and 4.10, with two unknowns, i.e., m and b. We can

write these, respectively as:
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m
X

Xi
2 þ b

X
Xi ¼

X
XiYi ð4:11Þ

and

m
X

Xi þ
X

b ¼
X

Yi, and ð4:12Þ

m
X

Xiþ nb ¼
X

Yi ð4:13Þ

where n is the number of points.

Solving these simultaneous equations for m and b, we get:

m ¼ n
X

YiXi �
X

Xi

X
Yi

� �
= n

X
Xi

2 �
X

Xi

h i2� �
ð4:14Þ

and

b ¼
X

Yi

X
Xi

2 �
X

Xi

X
XiYi

� �
= n

X
Xi

2 �
X

Xi

h i2� �
: ð4:15Þ

For the data plotted in Fig. 4.1, the slope, m, of the best fit line is 0.999, and the

Y intercept, b, is 0.0374.
Equations 4.14 and 4.15 give values for m and b such that the deviations of the

determined Y points will have the lowest possible deviation from the best straight

line that runs through these points. This least squares best fit line to the experimen-

tally determined points is referred to as the regression line, and the process

described using Eqs. 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15 is

referred to as regression analysis.

We now rewrite Eq. 4.4, once the optimal values of m and b are computed, as

X
Si

2 ¼
X

Yi � Yi; estð Þ2 ð4:16Þ

where Yi,est. is the computed value of Y from Xi using the optimized values for

m and b from Eqs. 4.14 and 4.15 and further defines the average deviation, S2, as

S2 ¼
X

Yi � Yi; estð Þ2=N ð4:17Þ

and

S ¼
X

Yi � Yi; estð Þ2=N
h i1=2

ð4:18Þ

In this formulation, S2 is the average of the sum of the squares of the deviations

of Yi points from the corresponding computed values which we call Yi,est. (or Yi,
estimated or computed) using the optimized values for m and b. This expression is

of the identical form to the variance described in Chap. 3, and S in Eq. 4.18 is

80 4 Linear Correlations



identical in form to the equation for computing the standard deviation of points

from the mean. In fact, we can construct lines in which 1S and integral multiples of

S are added to b, the Y-intercept for the best fit straight line, and obtain 68% (1S),

95% (approximately 2S), and 99.7% (approximately 3S) of all the points that would

be included between the resulting lines.

The value of S for the BUN correlation plot in Fig. 4.1 is 0.22. From Chap. 3, the

coefficient of variation of CV is the standard deviation, which for the correlation

plot is S in Eq. 4.18, divided by the mean. For the data plotted in Fig. 4.1 (black

line), the mean is 20.281. Thus, the CV¼ 1.08%, an indication of low error.

Normally, the two lines representingþ 2 standard deviations and �2 standard

deviations from the best line shown in Fig. 4.1 in which 95% of the points should

fall are drawn parallel to the best fit line. For the data plotted in Fig. 4.1, the

standard deviation is so small that the two lines lie very close to the best fit line and

have therefore not been drawn in this figure [4, 5].

Correlation Coefficient

Once the best slope and intercept for the points from a given set of determinations is

completed, the question arises as to how good the correlation is between the

corresponding points. The quantitative value for the closeness of the correlation

is given by Eqs. 4.17 and 4.18. The problem in evaluating the closeness of fit from S
2 is that it is difficult to evaluate the meaning of specific values for S2 without

having some standard for comparison. Obviously, if S2 is 0 or close to 0, the fit can
be judged to be excellent. For higher values, the degree of closeness of fit becomes

less apparent.

The currently accepted method for evaluating closeness of fit is to define the

total variation of Y values from the mean value, i.e., ∑(Yi� Yav)
2, where Yav is the

mean of the Y values. It can be shown that

X
Yi � Yavð Þ2 ¼

X
Yi � Yi; estð Þ2 þ

X
Yi; est� Yavð Þ2 ð4:19Þ

There are two components to this expression, ∑(Yi� Yi, est)
2, which is the sum

of the squares of the minimum deviations of the points from the corresponding

points on the best straight line through them, which contains the uncertainty of Yi
since there is error in its determination, and ∑(Yi, est� Yav)

2, which is a computed

set of values, Yi,est. derived from the best fit line to the points and Yav which is the

average of all of the Yi points. Due to these considerations, the first term in Eq. 4.19

is called the unexplained variation (due to error in determination of the Y values),

and the second term is referred to as the explained variation. The correlation
coefficient, r, is then defined as the square root of the ratio of the explained
variation to the total variation, i.e.,
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r ¼
X

Yi; est� Yavð Þ2=
X

Yi � Yavð Þ2
h i1=2

¼
X

Yi; est� Yavð Þ2=
X

Yi � Yi; estð Þ2 þ
X

Yi; est� Yavð Þ2
� �h i1=2

ð4:20Þ

Note from the right side of Eq. 4.20, if all of the points fall out exactly on the best

fit straight line, then the first term in the denominator, i.e., ∑(Yi� Yi, est)
2, the

unexplained variation, is 0, and r therefore must equal 1. On the other hand, if the

unexplained variation becomes much larger than the explained variation due to

large deviations of the Yi from the best fit straight line values, then the value of the

ratio in Eq. 4.20 approaches 0. Thus, r ranges between 0 and 1, 0 being totally

uncorrelated and 1 being a perfect correlation.

Using Eq. 4.20, the r value for the regression plot in Fig. 4.1 is 0.999 which

indicates a strong correlation between the Xi and Yi values [6, 7].

Problems with This Approach

While Eq. 4.20 gives a “standard” to evaluate the closeness of fit of the computed

best straight line through the points, the division of terms into “explained” and

“unexplained” deviations is artificial. Errors in Yi will affect Yav, which is the

average of the Yi values and will also affect their closeness to the best straight

line through them and hence will also affect Yi,est.

Correlation Versus Closeness of Fit to a Straight Line
There is also the question as to the best straight line through points that occur on a

perfect horizontal line, i.e., where the slope is 0. Using the example, at the

beginning of this chapter, of two analyzers that are determining the concentration

of an analyte in a series of serum samples, if one analyzer is not sensitive to changes

in analyte concentration and gives the same result for all samples, then there is no

correlation between the two analyzers.

From Eq. 4.20, if the Yi values are identical to the corresponding Yi,est. values,
then r in equa. 20¼ [∑(Yi, est� Yav)

2/∑ (Yi, est� Yav)
2]1/2. Normally, this would

be 1.0, but Yav is the same as Yi,est. The argument is made that, since this makes the

numerator r¼ 0, then the value of the fraction ¼0. Thus r¼ 0, i.e., there is no

correlation. Omitted from this argument is that the denominator also¼0. This gives

rise to an indeterminate form, 0/0. The actual limit of the fraction ∑(Yi, est� Yav)
2/

∑ (Yi, est� Yav)
2 as Yi,est approaches Yav is 1. This means that r is 1, indicating the

“perfect” correlation when, in fact, there is none even though there is a perfect fit of

the points to the horizontal line.
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Slopes and Intercepts

Equations 4.14 and 4.15 give the least squares best fit values for the slope, m, and
the intercept, b. These values are important for further evaluation of the correlation

between the results of the two analyzers.

For the case we presented earlier in this chapter, there are two identical analyzers

that perform analyses for analyte levels on the same serum samples. Here, we

would expect not only a high value of r, i.e.,�0.9, but also a slope close to 1 and an

intercept close to 0. If the r value is high but m is <0.9, and b is significantly high,

there is evidence of differences in performance of the two analyzers, and these

findings suggest that an investigation of both analyzers is warranted.

In most commercial programs, such as EP-Evaluator (1), that evaluate correla-

tion data, in addition to providing the plot of the data, i.e., the actual points and the

best line through these points and the value of r, the correlation coefficient, another
plot is presented in which the so-called one-to-one line is also plotted. This is a plot

of the line with a slope of 1.0 and an intercept 0.0. This line is termed one-to-one

because the angle that this “perfect” line makes with the x-axis is 45�, giving a slope
of 1 (the slope is the tangent of this angle and equals 1 for 45

�
), and the change in

value for any two successive Xi values is the same. If this line significantly differs

from the best fit line actually obtained, this finding would prompt an investigation.

However, not all correlation studies are constrained by the above considerations.

When a correlation study is performed on two different methods that analyze for

levels of the same analyte, slopes of <0.9 and intercepts that differ significantly

from 0.0 can be accepted. If the r value is >0.9, the correlation equation may be

used to “convert” the result obtained using one method to the result that would have

been obtained using the other method. This situation is often encountered in

immunoassays. One company uses one monoclonal antibody to detect the antigen

of interest, while another company may use a polyclonal antibody or a different

monoclonal antibody. These antibodies may react with different determinants with

different affinities, and the different determinants may be subjected to different

rates of proteolytic degradation. In such cases, while the r values are >0.9, the

slopes may be considerably lower (or higher) than 1, and the Y-intercepts may differ

significantly from 0.0.

Errors in the Slopes and Intercepts

Since, most often, most Yi values in a correlation study lie off the least squares best
fit line, giving rise to deviations or errors, there will be, in general, errors in the

slopes and intercepts.

Determination of the errors in the slopes and intercepts of correlation studies is

important because these errors determine the range of values that can be assumed

by each of these two parameters. In the case of the two identical analyzers discussed

above, for a correlation coefficient of >0.9, suppose we find that m¼ 0.85 and
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b¼ 5.0. The question is will the error in m include 1 as a possible value and the

error in b allow inclusion of 0?

Determination of the error for each of these two parameters allows us to compute

what is termed the confidence interval or CI. Knowledge of the CI allows direct

determination of whether the slope and intercept can assume values of 1.0 and 0.0,

respectively.

Error in the Slope

The accepted definition of the error in the slope for the regression line is

Error in Slope¼σ ¼
X

Yi � Yi; estð Þ2= N � 2ð Þ=
X

Xi � Xavð Þ2
h i1=2

ð4:21Þ

where N is the number of points and Xav is the average of the X values. The

numerator is S in Eq. 4.18 except instead of N, we are using N � 2. The difference

between these becomes small as N increases. we can therefore write

σ ¼ S=
X

Xi � Xavð Þ2
h i1=2

ð4:22Þ

This equation that results from a theoretical analysis of the variance of a function

of random variables states that the error in the slope is the error in the experimen-

tally determined Y values, as defined in Eq. 4.18, i.e., the square root of the average

of the squares of the errors or differences between the individual Yi points from the

corresponding regression least squares best fit line values, divided by the sum of the

squares of the differences between the corresponding X values and the average

X value. The (N � 2) value in Eq. 4.21 (we used N in Eq. 4.18) is used rather than

N because designation of a slope involves two points so there are N � 2 degrees of

freedom.

Overall, this equation computes the square of the errors in Y divided by the sum

of the squares of the change in X. This ratio is divided by N� 2 to obtain an average

square of the error in Y as X changes. The square root of this quantity gives the

average error in Y as X changes, and this is equated to the error in the slope.

Ideally, computation of the error in the slope should involve differences between

successive Y values for given X changes. Since it is assumed that all variations in

values that occur are due to variations in Y (remember all X values are assumed to

be completely accurate), the error in the slope should be computed as the error of

the difference between two successive Y values divided by the difference in the

X values corresponding to these two Y values. However, it is impossible to compute

the error of the difference between two points, each of which has its own respective

error.
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An Alternate Method
Another approach to computing the error of the slope (and, also, the error of the

intercept) might be to consider that, for N points, there are N(N � 1)/2 pairs of

points. Since two points determine a straight line, there are N(N� 1)/2 lines that can

be drawn for the N points. Each of these lines has a slope and an intercept.

The error can be assessed in two ways. The first is to compute the mean slope and

the mean intercept from the N(N � 1)/2 lines and then compute the respective

standard deviations for these. The second would be to compute the difference

between the slope and the intercept of each line and the slope and intercept of the

regression line. The square root of the sum of the squares of these differences

divided by the number of lines minus 2 (to take into account the degrees of

freedom), i.e., [N(N � 1)/2]�2, would give the error. Note that, if all points lie

on the best fit line, then the slopes and intercepts of all lines will be the same as the

slope and intercept of the best fit line, and there will be zero error for both slope and

intercept.

There is a formulation based on this overall approach, called the Passing-Bablok

method, which is often referenced when the results of regression analysis of data

points are presented. In this method, point pairs that have slopes around 0 are

discarded as outliers.

Confidence Interval for the Slope
Regardless of what method is used to compute the error in the slope and intercept, it

is necessary to compute the confidence interval for the slope (and intercept) values.

Confidence intervals are discussed in Chap. 2.

By way of review, the basic concept of the confidence interval for regression

lines is to calculate the error in the mean or, in our present case, the error of the
slope (and the intercept) if we repeat the exact same determinations of the samples

run on the two analyzers. We would expect to generate points that are similar but

not, for the most part, identical to the ones we obtained in the first experiment. We

can further expect that the slope and intercept of the regression line will also be

similar but not identical to those determined in the first experiment. The question

then arises as to what variation, or error, in the slope and intercept can we expect to

occur if we repeat the same experiment a large number of times? This error can be

computed using a simple equation

Error of the mean ¼ σ=√N ð4:23Þ
where σ is one standard deviation from the mean.

Since the distributions of values for the slopes and intercepts that would be

determined in successive experiments are assumed to follow a Gaussian distribu-

tion, this error is the same as one standard deviation from the mean (or, here, one

standard deviation from the regression value). Notice, in this equation, the error

decreases when N increases because the effect of random fluctuations is diminished

when the number of determinations becomes large.
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It may be recalled from Chap. 3 that approximately 80% of values occur within

one standard deviation, about 95% of values occur within 2 (really 1.96) standard

deviations, and about 99% values occur within 3 (2.57) standard deviations. The

actual percent of inclusion of values in a Gaussian distribution depends on the

number of degrees of freedom.

Thus, for a given mean and number of degrees of freedom, one can compute the

number of standard deviations that will include a desired percent of all values. This

percent of all values is called the level of confidence, which is mostly the 95% level.

The parameter that determines the number of standard deviations that will give this

desired level is the so-called Z (t for small values of N ) parameter.

We can now define the confidence interval (CI) as

CI ¼ m� Z � σ=√N ð4:24Þ
where m is the regression line slope.

Note, in this equation, Z is a multiple of one standard deviation. σ for the slope of
the regression line in Fig. 4.1 is 0.0056, using Eq. 4.21. The CI for 95% confidence

level, using Eq. 4.24, is 0.986–1.012. This interval includes 1.0, indicating good

correlation between the two analyzers. Thus, the slope for this line may be written

as 0.999 � 0.013.

Error in the Intercept (Sint)

The accepted definition of this error, again based on the theoretical analysis of the

variance of a function of random variables, is

Sint ¼
X

Yi � Yi; estð Þ2= N � 2ð Þ
h i1=2

�
X

Xi
2

� �
= N � 2½ �

X
Xi � Xav

�� �2
� �1=2

ð4:25Þ

Using Eqs. 4.18 and 4.21, this equation can be written as

Sint ¼ σ �
X

Xi
2
�
= N � 2½ �

h i1=2
ð4:26Þ

where σ is the error in the slope as defined in Eq. 4.21. That the error in the slope

influences the error in the intercept may be seen by changing the angle between a

straight line and the X-axis, which determines the slope. Even small changes in this

angle will cause significant changes in the Y-intercept.
The confidence interval for the intercept is, using Eq. 4.24,
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CI ¼ b� Z � Sint=√N ð4:27Þ
where b is the computed intercept.

For the regression line in Fig. 4.1, σ for the intercept, using Eq. 4.24, is 0.1332,

and the CI using 95% confidence level is �0.2640 to 0.3389. This interval contains

the value 0.0. We can write the Y-intercept for the data in Fig. 4.1 as

0.0374 � 0.302. Thus, the line with a slope of 1 and an intercept of 0 is within

the range of possible lines that fit the data.

Bias

This refers to the extent to which (Xi,Yi) points may be skewed to higher or lower

values in correlations. If, say, most of the Yi points are higher in value than the

corresponding Xi points, respectively, then there is a bias toward higher Y values. If

this finding is consistent, it may indicate the presence of a systematic error as

defined in Chap. 2. There is no generally accepted method for measuring bias, but

the extent of bias can be measured at least semiquantitatively in at least two ways.

First, one can compare the means for the Xi and Yi values to detect any significant

differences. The second is to plot the differences between Yi and Xi on the Y-axis
and the Xi values on the X-axis to detect possibly consistent bias trends. There are

basically two types of trends: random and nonrandom. Random implies that about

as many values lie above the X-axis as below it and the points are distributed

randomly above and below or on the X-axis. Nonrandom means that there is a

definite pattern. Figure 4.2 shows the bias plot for the data used to construct the line

in Fig. 4.1. As can be seen in this figure, there is no appreciable trend in either

direction, indicating overall no significant bias. In contrast, Fig. 4.3 shows a

nonrandom “U-shaped” distribution of differences. Nonrandom patterns suggest

possible systematic errors involved in one or the other analyzer [8, 9].

Linearity and Calibration

Linearity is the term used for the procedure to establish the limits of sensitivity of a

given quantitative assay. For clarity, we use an example of linearity analysis assays

based on measuring the absorbance of a compound or complex of compounds to

determine its concentration. The concentration of a compound is proportional to its

absorbance at an appropriate wavelength of light. This relationship may be written

as Beer’s law, i.e.,

A ¼ €� C� I ð4:28Þ
where A is absorbance, C is the concentration of the compound in solution, € is the

proportionality constant, called the molar extinction coefficient, and l is the path
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length in cm. Since in overwhelmingly most cases, l¼ 1 cm, Eq. 4.27 can be written

as

A ¼ €� C ð4:29Þ
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At low or high concentrations, the linear relationship between A and C may break

down. Thus, the purpose of linearity analysis is to determine the range of

concentrations over which the relationship of A to C is linear, i.e., Eq. 4.28 holds.

One manner in which this task can be accomplished is to make a solution of the

compound at the highest level desired at very high accuracy and then to dilute very

accurately the solution with an appropriate diluent serially to low levels. These

solutions are termed standard solutions or just standards.

The absorbance of each of these solutions is then determined, and a least squares

best fit line is constructed for these absorbances using Eqs. 4.14 and 4.15. If this line

has an r value (correlation coefficient) >0.9, a slope of 1 that is included in the

confidence interval for the slope, and an intercept that has a value of 0 that is

included in its confidence interval, the levels of the lowest and the highest

concentrations in the study “define” the linearity range as defined in Eqs. 4.24,

4.25 and 4.26 above. This range is referred to as the “analytical measured range” or

AMR.

Further procedures that can be performed include comparison of the computed

value of €, which is the slope of the best fit line from Eq. 4.28, with its known

value. If these are similar or identical, then the linear relationship is further

confirmed. In addition, determination of the value of the absorbance of the diluent

itself (with no compound present), used in making up the standard solutions, can be

performed. This value should be 0 or close to it and should be included as a point for

the construction of the best fit line [10, 11].

Practical Considerations

CLIA and CAP require that linearity studies be performed in the same manner as

correlation studies, i.e., at least twice per year, preferably every 6 months as

described above. Most laboratories do not have the facility for composing standard

solutions and, even if they did, do not have the appropriate staff to make these

solutions.

To fill in this gap, commercial companies have established facilities for

manufacturing standard solutions for most analytes assayed for in the clinical

chemistry laboratory. These standard solutions, which are prepared by

manufacturers with laboratories dedicated to making these standard solutions,

contain, or should contain, very accurately determined concentrations of the analyte

over a wide range of concentrations. With all other factors being equal, the results

on the medical laboratory analyzer should be close to the value of the accurately

determined analyte level at the manufacturer’s laboratory.

Calibration

There is a problem that arises with this procedure. There are many different

analyzers in medical laboratories. Each analyzer has different calibrators for their
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instruments. Calibration is a process in which, still using absorbance measurement

as an example, the absorbance of a standard solution, whose concentration is known

to great accuracy, is set to have an absorbance that will give this concentration for

that solution.

This process is repeated for another standard solution. Depending on the ana-

lyzer and the analyte, this process may be performed several times or may just be

performed for two standard solutions, a so-called two-point calibration. Once the

channel used for measuring the analyte has been calibrated in this manner, assays of

samples can then be performed.

The problem that arises in performing linearity studies is that the standard

solutions provided by the manufacturers may not have similar compositions to

the calibrator solutions used on the medical laboratory analyzer. This can lead to

significant differences between the laboratory value and the one determined by the

manufacturer for any given analyte.

Therefore, the manufacturer performs assessments of the results for all medical

laboratories and divides the results into peer groups, each group using the same

manufacturer’s analyzer. For each peer group, the mean value and the standard

deviation for the level of the analyte in question for each solution are determined for

the peer group. If a medical laboratory is found to have a value for a given solution

that lies outside �2 standard deviations from the peer group mean, the point is said

to fail linearity. If two or more points are found to lie outside the 2 standard

deviation range, the entire assay for the analyte in question is judged to have failed

linearity. Thus, the criterion for linearity is based on peer-group statistics.

However, there is a flaw in this procedure. A regression analysis of the points

obtained for the standard solutions for a given analyte is performed. The least

squares best fit line is the determined for these points, and the slope and the

intercept and the confidence interval for each are likewise determined. It is possible

that, even for several points that differ by >2 standard deviations from the group

mean, the correlation coefficient can be >0.9, and the confidence interval for the

slope and the intercept can include 1.0 and 0.0, respectively. In such cases, the

values can be said to lie on a straight line with a slope of 1.0 and an intercept of

0. With the correlation coefficient >0.9, the points pass linearity.

Summary

We have shown the methods that are to evaluate how well two analyzers correlate

when they perform quantitative assays for specific analytes. If the two analyzers are

identical and use the same methods, the correlation between the values obtained on

the two analyzers should be linear. To test whether the values determined do

correlate linearly, regression analysis is applied to the experimentally determined

points. This analysis gives the slope and the intercept for the straight line that can be

drawn through these points that give the minimum or lowest deviation of the sum of

the squares of these points from the corresponding values computed from the slope

and intercept of this line.
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To judge whether the points do conform to a straight line, the correlation

coefficient, which is computed as the ratio of the explained error to the sum of

the explained þ the unexplained error, should be greater than 0.9 although this is

not a statistically determined criterion. In addition, the confidence interval for the

slope should include the value of 1.0, and the confidence interval for the intercept

should include the value of 0. Although many correlations are linear, especially the

ones between values of analytes assayed by two identical analyzers, correlations in

general may not be linear but can follow other functional forms. The general

method is the same as that used for linear correlations, i.e., determination of the

values of the coefficients for the mathematical function that minimize the sum of

the squares of the deviations of the experimental values from the corresponding

values predicted by the mathematical function.

The same methodology can be applied to linearity analysis where standards

solutions whose concentrations have been accurately determined are assayed by a

medical laboratory. Ideally, the results should be close to the predetermined value.
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Cross Tabulation and Categorical Data
Analysis 5

Introduction

Statistical inference is a powerful tool that allows us to make sense out of data.

Using statistical tests, we can draw conclusions about the distribution of data,

associations of events with each other, or their correlation with each other. In this

chapter, we will introduce the concept of hypothesis testing and explain statistical

tests used for hypothesis testing for categorical variables. These tests generally

benefit from cross tabulation of data. Cross tabulation is the summarization of

categorical data into a table with each cell in the table containing the frequency

(either raw or proportional) of the observations that fit the categories represented by

that cell. The summary data presented in cross-tabulated form can then be used for

many statistical tests most of which follow a distribution called chi-squared distri-

bution. These relatively simple tests are very powerful tools that can help a

pathologist in many aspects from result verification to test validation. For example,

if we have a new test with a yes and no answer and we want to see if this diagnostic

test can diagnose a condition, then we need to use chi-squared tests to determine the

usefulness of the test [1].

Most statistical software programs are equipped to run these tests; however,

users need to understand the context in which each test can be applied, learn how to

interpret the test results, and know the possible limitations of each test.

Before we can delve into these concepts, however, we need to define categorical

variables and explain the notion of contingency tables.

Categorical Variables

“Categorical variables” (also known as “nominal variables”) represent qualitative

properties that allow categorization of observation units (or test subjects) into

nominal categories. These variables usually take on discrete and sometimes fixed
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unordered values, with each possible value designated as a “level.” Categorical

values follow discrete distributions (see Chaps. 2 and 3).

Categorical variables in the simplest form have binary values, i.e., they can only

assume one of the two values. For example, disease status can be a categorical

variable that lists individuals as either “affected” or “healthy.” Categorical

variables can also be polytomous, meaning that they can assume more than two

values. For example, in Bethesda guidelines for reporting of thyroid cytology

specimens, the values can be one of the six categories: nondiagnostic, benign,

atypia of undetermined significance, follicular neoplasm, suspicious for malig-

nancy, and malignancy.

Statistical tests used for categorical variable are different from those used for

continuous variables. In categorical variables, usually the statistical questions are

whether group allocations are similar or dissimilar between individuals and

variables. Alternatively, it can be stated that statistical tests for categorical variables

in general either test for independence (association) or homogeneity.

Categorical variables commonly assume values that are determined by qualita-

tive properties of the unit of observation. For example, if the categorical variable is

disease status, then the values that the variable can assume are inherently qualitative

like “yes/no” or “affected/unaffected.” Quantitative properties and data, however,

can be discretized into categorical variables or dichotomized into binary variables.

For example, hemoglobin values can be dichotomized into anemic and non-anemic.

In Chap. 2, we showed that using receiver operating characteristic (ROC) curve a

continuous variable can be dichotomized into a binary categorical variable based on

desired specificity and sensitivity. While continuous variables contain more infor-

mation, discretization into categorical variables can allow easier interpretation and

analysis of the data.

Contingency Table

Contingency tables are used to analyze the associations of two categorical

variables. We saw an example of contingency table in Chap. 2 which is often

used in pathology and laboratory medicine: the 2 � 2 contingency table of test

status versus disease status. Using tests to categorize individuals into disease status

groups is one of the ultimate goals of pathology. Contingency tables are two

dimensional matrices composed of rows and columns. The rows (r) represent the
possible values of one of the variables, and the columns represent the possible

values of the other variable (c). Thus, a contingency table is a r � c matrix. In each
cell of the table, the numbers or proportions of the units of observation that fit the

categories represented by that cell are provided. Table 5.1 represents a contingency

table of eye color versus hair color in 100 individuals.

Overall the most common contingency table used is the 2 � 2 table which sets

two binary variables against each other. Some of the most important statistical tests

for categorical variables use the 2 � 2 contingency table. As such, sometimes

94 5 Cross Tabulation and Categorical Data Analysis

https://doi.org/10.1007/978-3-319-60543-2_2
https://doi.org/10.1007/978-3-319-60543-2_3
https://doi.org/10.1007/978-3-319-60543-2_2
https://doi.org/10.1007/978-3-319-60543-2_2


categorical variables with more than two values are dichotomized (combined) into a

binary variable for inclusion in a 2 � 2 contingency table.

Some of the information that can be from a contingency table are descriptive

measures. The simplest of these measures is “count” which is the raw observed

frequency of a cell. Another measure is “relative frequency” stated in proportion or

percentage which shows the proportion of total data, row total, or column total that

is represented in the cell. If relative frequencies are used, it is imperative that the

table states which relative frequency (share of total, row total, or column total) is

represented.

As stated earlier, values in each cell can either represent actual counts (raw

observed frequencies) or proportions. However, if the purpose of drawing up a

contingency table is to perform statistical tests then one should avoid using relative

frequencies and proportional data in the cells.

Bar charts are usually used to visualize the information contained in categorical

variables. In bar charts, each bar represents a value of the category, and the length

of the bars is represented by the frequency of the observed category. Information

from a contingency table can also be shown by bar charts. Clustered bar charts are

ideal for showing the distribution of categories of a variable within another variable

(subcategories), where for each category of the first variable bars representing the

frequencies of the second variable are plotted. However, if the goal is to show the

proportions of both categories, stacked bar charts should be used, where the bars

represent the frequencies of one variable and the fill patterns or colors represent the

second variable. Figure 5.1 represents the bar chart of Table 5.1.

Pie charts can also be used to visualize categorical data. Pie charts are especially

ideal when the goal is to show the relative frequencies of the categorical variable. If

categorical variables have too many levels, then pie charts are less suitable for

plotting the variable unless some of levels (or categories) with small relative

frequencies are combined. Figure 5.2 represents the pie chart of hair color from

Table 5.1.

Table 5.1 A 4 � 4 contingency table of hair color versus eye color. Each cell represents the

number of individuals that fit the categories represented by the cell. Row and column totals are

usually included in a contingency table

Eye / hair Black Brown Green Blue Total

Black 9 10 3 1 23

Brown 5 5 5 3 18

Blonde 1 2 6 8 17

Ginger 0 1 6 5 12

Total 15 18 20 17 70
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Hypothesis Testing

Hypothesis is a testable assumption about parameters or phenomenons. The pur-

pose of testing is to determine whether the assumption is true (accepted) or false

(rejected). In statistics, “hypothesis testing” is part of “statistical inference” and

aims to assess the proposed or assumed statistical relationship between two or more

datasets and parameters.

The first step in hypothesis testing is to state the “null hypothesis” (H0) and the

“alternative hypothesis” (H1 or Ha). In simplified terms, the null hypothesis states

that there is no statistical relationship between the compared datasets and any

observed relationship is either due to error or to chance. Essentially, the null

hypothesis is true (or considered likely) if the observed data can be justified using

chance and randomness. Alternatively, the null hypothesis is rejected

(or considered unlikely) if the observed data cannot be justified using chance

alone which means that the alternative hypothesis is likely to be true. Simply stated,

alternative hypothesis is the postulation that the observations are due to a real

effect. In statistical inference, we usually assume that the null hypothesis is true and

tests are designed to reject the null hypothesis.

Stating the null and alternative hypotheses is very important. If they are not

clearly defined, then perhaps inappropriate statistical tests are used to test them, or

the results of the test can be interpreted incorrectly. For example, in a 2 � 2

contingency table, the null hypothesis can be that there is no association between

two variables (H0 of testing of independence) with the alternative hypothesis being

that the two variables are associated. Another possibility is that the null hypothesis

states that the distribution of the categorical variable is the same in two populations

(H0 of testing for homogeneity) with the alternative hypothesis being that the

distribution of the categorical variable differs across the populations. While in

2 � 2 tables the analysis is the same for both these null/alternative hypothesis

pairs, the conclusions drawn from the tests are different.

Fig. 5.2 Pie chart of hair color (a) and eye color (b) from Table 5.1
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The second step in hypothesis testing is to choose appropriate statistical tests to

assess the hypothesis. This choice depends on the properties of the variables used

for testing including their values and distribution as well as the hypothesis being

tested. Furthermore, each statistical test has relevant test statistics such as mean,

variance, etc.

Table 5.13 provides a summary on choosing the appropriate tests for categorical

variables.

The third step in hypothesis testing is to set “power” (β) and “significance level”
(α). To understand power and significance level, first you need to understand the

concepts of “statistical error.” Generally, there are two types of statistical error:

• Type I error: When the null hypothesis (H0) is true, but it is rejected, then a “type

I error” has occurred. The rate of type I error is known as significance level (α)
and is the probability of rejecting the null hypothesis while it is true. The

significance level is commonly set at 0.05 or 0.01. An alpha level of 0.05

means that there is a 5% probability that the null hypothesis is rejected while

it is true.

• Type II error: If the null hypothesis (H0) is false, but the test fails to reject it, then

a “type II error” has occurred. The probability of type II error is called the beta

rate (β). The “power of the test” is determined as 1� β.

Type I and type II errors are akin to false-positive and false-negative concepts

introduced in Chap. 2. In fact, a 2 � 2 contingency table can be drawn to better

explain these errors (Table 5.2).

Statistical Power
Statistical power is the complement of β. Power is a concept like sensitivity and is

the probability of correctly rejecting the null hypothesis. In other words, power is

the ability of the test to detect a statistical effect, if it truly exists.

Power is determined by statistical significance level, magnitude of effect, and

sample size. As more stringent significance levels are employed, the power of the

study decreases, i.e., assuming all the condition remains constant, a study has more

power for a significance level of 0.05 versus a significance level of 0.01. As the

significance level is mostly constant, then the statistical power is mostly determined

by magnitude of the effect and sample size in real-world situations.

The magnitude of the effect is the difference of the test statistic between the

groups being compared. Ideally, the magnitude of the effect should be a

Table 5.2 This table shows the two types of error in statistical hypothesis testing

H0

False True

Statistical test for

H0

Rejects True positive False positive (type I

error)

Fails to

reject

False negative (type II

error)

True negative
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standardized test statistic to have information about both the location and spread of

the data. As effect magnitude increases, the test power increases and vice versa.

One of the most important determinants of power is the sample size. As sample

size increases, the test power increases. Statistical power analysis is used in trial

designs for sample size calculations. Researchers usually set β and α as constants

when designing trials. They then choose the desired magnitude of effect and use

these to calculate the sample size (choosing the magnitude of effect in clinical

setting usually means choosing clinically significant effect). We will explore the

concept of sample size calculation further in Chap. 12.

P-Value
Alpha is often mistaken with p-value. Alpha is the level of significance set by the

investigators before a test is run. Alpha is usually arbitrarily chosen, but the

consensus is that alpha levels of 0.05 or 0.01 are adequate for most practical

purposes. After the test is run, the likelihood that the observed statistic occurred

due to chance (based on the distribution of the sample) is called the p-value. If

p-value is less than or equal to the significance level (p-value <α), then the null

hypothesis is rejected, and the test result is statistically significant. Alternatively, if

p-value>α then the test has failed to reject the null hypothesis, and we can state that
the test is statistically nonsignificant. In simple terms, if the observed phenomenon

was likely to happen due to chance only, then its p-value will be greater than the

chosen alpha level, and we cannot rule out the null hypothesis. The alpha is the

cutoff that we choose to say whether something has occurred due to randomness or

a true effect and, thus, if the p-value is smaller than alpha, then we can say that what

we have observed is probably because of a true effect, and we can reject the null

hypothesis.

Unlike α, p-value is dependent on sample size as the p-value calculation requires

computing the sampling distribution under the null hypothesis which in turn is

dependent on the statement of the null hypothesis, the test statistic used (and its

distribution), and finally the data (including the size of the sample).

Essentially, to calculate the p-value, the cumulative distribution function (CDF)

of the sampling distribution under the null hypothesis is calculated. After the test is

run, the observed values are compared to the CDF, and the p-value then is the

probability (assuming H0 is true) that a value equal or more extreme than what was

observed is obtained (Fig. 5.3).

There is a common mistake in interpreting p-values: if the p-value is greater than

the significance level, it implies that the test has failed to reject the null hypothesis

at the stated significance level; this, however, does not mean that the null
hypothesis is true.

Let us use a simple example for the concept of alpha and p-value. We have

measured the sodium concentration of a serum sample a hundred times, and we

have a normally distributed value with mean of 140 mEq/L and standard deviation

of 2.5 mEq/L. We measure the sodium concentration for the 101st time. Is the value

obtained due to random distribution of the results or is it because of a measurement

error?
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• H0: The value of 101st measurement is part of the random distribution of the true

value.

• H1: The value of 101st measurement has occurred nonrandomly, most probably

because of a measurement error.

For this example, we are going to set the alpha level at 0.05 meaning that if the

measured values fall within 95% of the probability distribution around the mean,

then we are dealing with a random variation. This 95% incidentally is the 95%

confidence interval in normally distributed variables. The 95% CI of our

measurements is the mean plus and minus two standard deviations (i.e., 140 � 5).

Thus, if the sodium value of the 101st measurement falls within the range of

135–145 mEq/L, then we can say that we cannot reject the null hypothesis. If we

get a value of, for example, 147.5 mEq/L because it is beyond our cutoff of 0.05

probability, then we can say that it occurred nonrandomly and most likely because

of a measurement error. In fact, the probability of observing 147.5 mEq/L in the

101st time is exactly 0.00135 which is our p-value. This is shown in Fig. 5.4 [1].

Bonferroni Correction
Under certain conditions the probability of a type I error increases. For example,

when multiple comparisons are made, a type I error becomes more likely. In these

situation adjustments are needed to the significance level. One of the methods used

for adjusting the significance level is called the “Bonferroni method.”

Fig. 5.3 Visual presentation of p-value using the probability distribution plot under null

hypothesis
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If an α level is decided for an entire experiment and the experiment has m tests

(Ti , 1� i�m) for the alternative hypothesis (Hi) under the null hypothesis assump-

tion that all the alternative hypotheses are false, then the α level for individual tests

(Ti) should be set in a way that:

Xm
1

αi � α, ð5:1Þ

The simplest way of satisfying the above equation is to set the individual test

significance levels at α/m. For example, if there are five tests in an experiment

with an overall significance level of 0.05, then the significance level for each test

can be set at 0.01. Bonferroni correction does not require that all the tests have equal

significance levels. This is helpful in studies with interim analysis where the

significance level can be set at lower thresholds for earlier phases of the study

with higher significance level for the final analysis. For example, if a study has one

interim and one final analysis and the overall α is set at 0.05, then the significance

level for the interim level can be set at 0.01, and the significance level for the final

analysis can be set at 0.04.

Fig. 5.4 Normal distribution curve of sodium concentration with mean of 140 mEq/L and

standard deviation of 2.5 mEq/L. The shaded area shows a two-tailed alpha of 0.05. The reference

line shows the value of 147.5 mEq/L. The probability of its random occurrence is 0.00135 which is

also its p-value. Since p-value is smaller than the alpha, then we can reject the null hypothesis
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Analysis of Risk Ratios

One of the simplest comparisons in a 2 � 2 table is comparing the risks in two

groups known as “risk ratio” (also “relative risk”) or RR. The calculation of risk

ratio is simple with direct comparison of cumulative rate of event in the two groups.

Relative risk ¼ Probability when exposed

Probability when non� exposed
, ð5:2Þ

Based on a 2 � 2 (Table 5.3) the relative risk can be stated as

Relative risk ¼
a

aþbð Þ
c cþdð Þ,=

,
ð5:3Þ

Example 5.1
Q: We are evaluating a new test for diagnosis of pancreatic cancer. The results of

the study are summarized in Table 5.4. What is the relative risk of having pancreatic

cancer if the test is positive?

A:

Relative risk ¼
80=95

10=85 ffi 7:15,
ð5:4Þ

which means that, if the test outcome is positive in an individual, he/she is seven

times more likely to have pancreatic cancer than a person with negative result.

Risk ratio can assume values between 0 to1. If risk ratio is close to 1, it implies

that there is little or no risk difference between the groups, with risk ratios of greater

than 1 suggesting increased risk and risk ratios smaller than 1 suggesting

decreased risk.

A confidence interval (CI) can be calculated for risk ratio; as the logarithm of

relative risk has a sampling distribution that is approximately normal, we can

calculate a confidence interval that is located around the logarithm of relative risk.

Table 5.3 A 2� 2 table of

an event status versus

disease status

Disease þ Disease �
Event þ a b

Event � c d

Table 5.4 2 � 2 table of

results for Example 5.1
Pancreatic cancer þ Pancreatic cancer �

Test þ 80 15

Test � 10 75

102 5 Cross Tabulation and Categorical Data Analysis



CIRR ¼ logRR� SE� zα, ð5:5Þ
zα is the standard score for the level of significance, and SE is the standard error

which can be calculated as

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

c

� �
� 1

aþ bð Þ þ
1

cþ dð Þ
� �s

, ð5:6Þ

If the confidence interval of relative risk excludes 1, then the relative risk is said to

be statistically significant. For example, a relative risk of 1.2 with CI of (1.1–1.3) is

statistically significant while a relative risk of 1.5 with confidence interval of

0.5–2.5 is not statistically significant.

Chi-Squared Tests

Comparison of distributions of two categorical variables can be done using the

“chi-squared test” (χ2). Chi-squared statistics compares the counts of categorical

variables between two independent groups, or it determines if two categorical

variables from a single population are independent or not. χ2 tests contain a broad

set of statistical hypothesis tests where the sampling distribution of the test statistic

follows a chi-squared distribution if H0 is true. In this chapter, we will introduce

some of the chi-squared tests including Pearson chi-squared test, McNemar test,

and Cochran-Mantel-Haenszel test. Before we introduce these tests, however, we

need to explain the χ2 distribution.
The underlying concept for a chi-squared test is that if we have two nominal

variables that occur randomly then we expect the probability of the events to be

random. For example, coin toss is a random nominal variable, and we expect that

the probability of heads and tails are equal. This is called the expected value. In

terms of a 2 � 2 contingency table, we can say that the expected value, means that

the true positive count and false-positive count are equal as well as the true negative

count and false-negative counts being equal. In Table 5.4, this means that of the

total 95 patients who tested positive, half (47.5) would have the disease and half

would not (47.5). Similarly, for the patients who tested negative for the disease

(85), half of them have the disease (42.5), and half do not have the disease (42.5).

The chi-squared test compares the observed counts to the expected counts. The

further the observed counts are from the expected counts, the more likely they are to

have occurred nonrandomly.

In fact, the ratio of the squared deviation of the observed values of each cell from

expected values of that cell to the expected value is the chi-squared test. The

chi-squared statistic that is produced from this equation follows a continuous

probability distribution called the chi-squared distribution (which is a kind of

gamma distribution). Just like a normal distribution, we can set levels of signifi-

cance for this distribution and then look if the calculated chi-square statistic is
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larger than the cutoff value (thus failing to reject the null hypothesis) or smaller

than the cutoff value (thus rejecting the null hypothesis). The shape of the

chi-squared distribution curve is determined by the degrees of freedom (Fig. 5.5).

We discuss the chi-squared distribution in detail below for those interested in the

mathematics that results in this distribution. For those who prefer not to peruse this

section, please proceed to the section below entitled “The Chi-Squared Probability

Distribution Function.” [4–6]

Fig. 5.5 Chi-squared distribution plot with one degree of freedom (upper panel). Chi-squared

distribution plots with two, three, and four degrees of freedom (lower panel).
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Degrees of Freedom

“Degrees of freedom” is the number of values that are free to vary in the calculation

of a statistic. The degrees of freedom in contingency tables are the number of cells

in the two-way table of the categorical variables that can vary, given the constraints

of the row and column totals. Thus, the degree of freedom in contingency tables is

determined by the number of columns and rows and can be given by

d:f : ¼ r � 1ð Þ c� 1ð Þ, ð5:7Þ
where r is the number of rows and c is the number of columns [7].

Chi-Squared Distribution

χ2 distribution (Q ~ χ2(v)) is the distribution of sum of the squares of v number of

independent standard normal random variables with v degrees of freedom. In other

words, it is the distribution of the sum of squared normal deviates (Zi).

χ2 �
Xv
i¼1

Z2
i , ð5:8Þ

The χ2 distribution is a gamma distribution with θ of 2 and α of v/2.
“Gamma distribution” is a continuous probability distribution with a scale

parameter (θ) and a shape parameter (α). These parameters are positive real

numbers. A gamma distributed variable (X) can be stated as

XeΓ α; θð Þ, ð5:9Þ
To calculate the probability density function and cumulative distribution function

of a gamma distributed variable, we need to use “gamma function” and “lower

incomplete gamma function.” Gamma function (Γ) of n (n being a positive integer)
is a sort of factorial function represented as

Γ nð Þ ¼ n� 1ð Þ!, ð5:10Þ
The gamma function can also be stated in integral form (Euler integral form):

Γ zð Þ ¼
Z 1

0

tz�1e�tdt, ð5:11Þ

One of the most commonly used gamma functions is theΓ 1
2

� �
which equals

ffiffiffi
π

p
. The

proof for this value is beyond the scope of this book. The complete gamma function

can be generalized into upper and lower incomplete gamma functions. In the

gamma distribution, the lower incomplete gamma function (γ(a, x)) is of interest
to us and is given by

Chi-Squared Tests 105



γ a; xð Þ ¼
Z x

0

ta�1e�tdt, ð5:12Þ

The probability distribution function (PDF) of a gamma distributed variable is

given by

f x; α; θð Þ ¼ xα�1 e�
x
θ

θαΓ αð Þ for x > 0, ð5:13Þ

The cumulative distribution function (CDF) is then stated as

F x; α; θð Þ ¼ γ α;
x θ= Þ
Γ αð Þ,

�
ð5:14Þ

The Chi-Squared Probability Distribution Function
The PDF for variables with chi-squared distribution of 1 d.f. can be given as

f x;
1

2
; 2

� �
¼

0:797885e�2x

x0:5
0 for x ¼ 0

(
for x > 0, ð5:15Þ

This is plotted in Fig. 5.4a. The probability distribution plots of a chi-squared

distribution with two, three, and four degrees of freedom are plotted in Fig. 5.4b.

In fact, a chi-squared distribution with one degree of freedom is the square of a

standard normal distribution (χ2(v)¼ Z2). This close approximation to standard

normal distribution makes the chi-squared test ideal for hypothesis testing as it

can simplify many statistical calculations. Thus, we can assume that extreme values

of a chi-squared distribution, just like in a normal distribution, have low

probabilities and consequently will have lower p-values. In fact, in a 2 � 2 contin-

gency table, if 0.05 is designated as the level of significance, χ2 values of more than

3.84 are considered statistically significant (i.e., p value<0.05). If 0.01 is chosen as

α, then any χ2 value more than 6.63 will be statistically significant.

In summary, if the observed values vary greatly from the expected values, the

chi-squared statistic will increase; if it increases beyond 3.84, then with a signifi-

cance level of 0.05, we can state that it is highly unlikely that the counts we are

observing occurred due to chance, and, in fact, there is a true effect (either

independence or homogeneity) present, and we can reject the null hypothesis.

It must be remembered that a chi-squared distribution only approaches a normal

distribution if the sample size is sufficiently large (see central limit theorem,

Chap. 3), and with small sample sizes, alternative approaches (e.g., Fisher’s exact

test) should be employed.

The chi-squared distribution table for different degrees of freedom is given in

Appendix B.
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Pearson Chi-Squared Test

One of the most commonly used chi-squared tests is called the “Pearson

chi-squared test”; this statistical test evaluates whether there is a statistically

significant difference between distributions of two categorical variables. In other

words, the general null hypothesis for this test is that any differences observed

between the two categorical variables are due to chance.

Pearson’s chi-squared test can test three different sets of null/alternative hypoth-

esis pairs. It is important to remember that while conducting the test is similar for all

these pairs, the interpretation of the results is different.

The most common hypothesis tested with Pearson’s chi-squared test is a test of

independence (also known as test of association). In this case, we are interested in

knowing whether there is association between two variables. For example, is there

association between having a positive PPD test and having tuberculosis? The null

and alternative hypothesis in testing for independence state:

• H0: There is no association between the two variables, i.e., the variables are

independent (e.g., there is no association between PPD result and tuberculosis

status).

• H1: There is association between the two variables, i.e., the variables are

associated (e.g., there is association between PPD result and tuberculosis status).

Alternatively, Pearson’s chi-squared test can be used to test for homogeneity. In

this test, we are comparing the distribution of a categorical variable in two

populations. For example, is the distribution of diabetes similar between men and

women? The null and alternative hypotheses in this setting are:

• H0: The distribution of the categorical variable is similar between the two

populations (e.g., prevalence of diabetes is the same in men and women).

• H1: There is a difference in the distribution of the categorical variable between

the two populations (e.g., the prevalence of diabetes is different between men

and women).

Finally, Pearson’s chi-squared test can be used to test for “goodness of fit.” In

this setting, the observed frequency distribution of a categorical variable is com-

pared to an expected or predicted distribution. For example, we wish to determine if

men are 1.5 times more likely than women to have Hodgkin’s lymphoma, in a

random sample of Hodgkin lymphoma cases drawn from a given population, as has

been found to occur in other populations. We inquire if the gender distribution in

the population under study is similar to our expectation. The null/alternative

hypothesis pair in this case states:

• H0: The distribution of the categorical variable is similar to the expected

distribution (e.g., in our randomly drawn sample from patients with Hodgkin’s

lymphoma, there are 1.5 times more men than women).

• H1: The distribution of the categorical variable is different from the expected

distribution (e.g., in our randomly drawn sample from patients with Hodgkin’s

lymphoma, the men and women are equally represented).
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After formulating the hypothesis, the next step is to test our data under the null

hypothesis. If we are testing for independence or homogeneity, this requires us first

to calculate the expected value of the two categorical variables for each cell of the

contingency table. The calculation is based on the contingency table with r rows
and c columns (in case of a 2 � 2 table, two rows and two columns):

Ei, j ¼
Pc
k¼1

Oi,k

Pr
k¼1

Ok, j

N
for i 1; 2ð Þand j 1; 2ð Þ, ð5:16Þ

where Ei , j is the expected value for the cell in column i and row j, Oi , j is the

observed value for the cell in column i and row j, Ok , j is the observed value for the

cell in column k and row j, and N is the total count of the contingency table.

The next step is to calculate the value of the chi-squared test (χ2):

χ2 ¼
Xr
i¼1

Xc
j¼1

Oi, j � Ei, j

� �2
Ei, j

, ð5:17Þ

If the degree of freedom is 1, i.e., the contingency table is 2 � 2, then the formula

can simply be written as

χ2 ¼
X2
i¼1

X2
j¼1

Oi, j � Ei, j

� �2
Ei, j

¼ O1,1 � E1,1ð Þ2
E1,1

þ O1,2 � E1,2ð Þ2
E1,2

þ O2,1 � E2,1ð Þ2
E2,1

þ O2,2 � E2,2ð Þ2
E2,2

,

ð5:18Þ

Notice that, as we stated earlier, the chi-squared value is the sum of the squares of

deviates and with an α of 0.05; if the calculated χ2 score is greater than 3.84, then

we can state that the null hypothesis is rejected.

For goodness of fit studies, we don’t need to calculate the expected value using

the abovementioned formula: we can derive the expected value for each cell from

the expected distribution in the null hypothesis.

Example 5.2
Q: Going back to Table 5.4 (repeated here for convenience), we want to test for

association of the new test with pancreatic cancer. State the appropriate null/

alternative hypothesis, and determine if the two variables are associated at 0.05

significance level.

A:

• H0: There is no association between the test and pancreatic cancer.

• H1: There is an association between the test and pancreatic cancer.
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The expected cell counts are:

E1,1 ¼
P2
k¼1

Oi, j

P2
1

Ok, 1

180
¼ O1,1 þ O1,2ð Þ � O1,1 þ O2,1ð Þ

180
¼ 90� 85

180

¼ 42:5, ð5:19Þ

E1,2 ¼ O1,1 þ O1,2ð Þ � O1,1 þ O2,1ð Þ
180

¼ 90� 85

180
¼ 42:5, ð5:20Þ

E2,1 ¼ O2,1 þ O2,2ð Þ � O2,2 þ O1,2ð Þ
180

¼ 95� 90

180
¼ 47:5, ð5:21Þ

E2,2 ¼ O2,1 þ O2,2ð Þ � O2,2 þ O1,2ð Þ
180

¼ 95� 90

180
¼ 47:5, ð5:22Þ

In other words, if the data were completely random, then the 2 � 2 contingency

table would look like below:

Pancreatic cancer þ Pancreatic cancer �
Test þ 47.5 47.5

Test - 42.5 42.5

The expected values for cell 1,1 and cell 1,2 are simply calculated as the sum of

observed values for those cells divided by two. The expected values for cell 2,1 and

2,2 are simply the sum of observed values for those cells divided by two.

The observed values are provided in Table 5.4. The chi-squared test is the sum of

the ratios of squared differences between the observed values of each cell with its

expected value divided by the expected (random) value. For example, for patients

who have pancreatic cancer and test positive for it, the ratio is 80 minus 47.5

squared divided by 47.5. We do this operation for all four cells and add the results.

The final result is the chi-squared score.

In other words, the χ2 score can be calculated as

χ2 ¼
X2
i¼1

X2
j¼1

Oi, j � Ei, j

� �2
Ei, j

¼ O1,1 � E1,1ð Þ2
E1,1

þ O1,2 � E1,2ð Þ2
E1,2

þ O2,1 � E2,1ð Þ2
E2,1

þ O2,2 � E2,2ð Þ2
E2,2

¼ 75� 42:5ð Þ2
42:5

þ 10� 42:5ð Þ2
42:5

þ 15� 47:5ð Þ2
47:5

þ 80� 47:5ð Þ2
47:5¼ 94:18,

ð5:23Þ

The χ2 is 94.18 which is much greater than the 3.84 significance threshold; in fact,

the p-value for this chi-square value is less than 0.00001. Thus, the null hypothesis

is rejected, and the two variables are associated, i.e., the outcome of the new test is
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associated with the pancreatic cancer status. In fact, the association is so strong that

if we plot the chi-squared distribution, the p-value will be at the extreme end of the

distribution tail (Fig. 5.6) [4, 5, 8].

Measures of Association
As you saw earlier, one of the hypothesis tests performed using the chi-squared test

is the test for association. The chi-squared score can be used to construct measures

known as “measures of association” which show the degree to which two variables

are associated.

Phi coefficient (ϕ) is one of such measures that can be calculated for 2 � 2

contingency tables and is calculated by the following formula:

ϕ ¼
ffiffiffiffiffiffiffi
X2

N
,

s
ð5:24Þ

where χ2 is the chi-squared score from the Pearson test and N is the total number of

observations. ϕ has a range of [0–1]. If ϕ is 0, it shows that the two variables are

independent. If the number of rows and columns is more than two, then alternative

measures of association should be used. One of these is called the “Cramér V

coefficient” and it can be calculated as

Fig. 5.6 Chi-squared distribution plot for Example 5.2. The shaded area is the 0.05 significance

level. You can see that the calculated test statistic is at the very extreme end of the distribution

curve
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Cram�e r0s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2

N k � 1ð Þ,
s

ð5:25Þ

where k is the number of columns or rows (whichever is smaller). As with phi, the

Cramér V coefficient can assume values between 0 and 1 [9, 10].

McNemar’s Test

In Pearson’s chi-squared test, the assumption is that the two sets of variables are

different, i.e., they quantify different things; however, if we are using a repeated

measure in a single population, then we cannot use the Pearson correlation test, and

instead we must use the McNemar test. Essentially, the McNemar test is a test that

measures consistency in responses in two categorical binary variables. For example,

if we want to compare the number of positive blood samples for influenza virus in a

community before and after a vaccination campaign, then we should use the

McNemar test. InMcNemar’s test the assumption is that the two variables are paired

because they are quantifying the same parameter (e.g., detection of influenza virus).

The reason for this different approach is that in paired variables there will be a

degree of association and thus testing for association using a Pearson chi-squared test

is not appropriate. In fact, you need to measure for disagreement between the two

variables. The null/alternative hypothesis pair for McNemar’s test can be stated as:

• H0: The distribution of the responses after the intervention is the same as the

distribution of the responses before the intervention (e.g., the probability of a

person having a positive or negative influenza blood test is the same before and

after vaccination).

• H1: The distribution of the responses after the intervention is different from the

distribution of the responses before the intervention (e.g., the probability of a

person having a positive or negative influenza blood test changes after

vaccination).

In the above pair, the hypotheses are two sided, i.e., any change (whether positive or

negative) is considered. However, in many before-after or paired comparisons, we

are only interested in one-sided change (e.g., how much the prevalence of positive

influenza blood test decreases after vaccination). Thus, a one-sided hypothesis pair

can be states as:

• H0: The probability of a person having a positive or negative influenza blood test

is the same before and after vaccination.

• H1: The probability of a person having a positive influenza blood test decreases

after vaccination, or the probability of a person having a negative influenza

blood test increases after vaccination.

Note that McNemar’s test is only applicable in 2 � 2 contingency tables

(Table 5.5). For instances where there are more than two response categories for
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each variable, the Cochran Q test should be used (the explanation of the Cochran Q

test is beyond the scope of this book). Based on the contingency table above, the

McNemar chi-squared statistics can be given by

X2 ¼ b� cð Þ2
bþ c

, ð5:26Þ

The test statistics has a chi-squared distribution with one degree of freedom, and

thus the critical values can be looked up in a chi-squared table. In simple terms, the

McNemar test shows if the difference between the two tests is statistically signifi-

cant, i.e., it shows whether the difference is a true effect or it occurred because of

randomness.

Cochran–Mantel–Haenszel Test

“Cochran-Mantel-Haenszel test” or the CMH test for short allows us to compare

two binary variables across multiple strata or matched categorical data. In

McNemar’s test we can only use paired data, for example, a before-after result,

but CMH test is suitable if there have been multiple repeats of measurement. The

reason for using the CMH test instead of multiple McNemar tests or Pearson

chi-squared tests is to avoid the “Simpson paradox.” Simply stated, Simpson’s

paradox occurs when a trend is observed in different groups or strata of data, but it

either dissipates or reverses by combining these groups. In other words, by running

the tests multiple times, we may wrongfully reject or fail to reject the null

hypothesis.

Data stratification is the partitioning of units of observation or results into

subgroups based on a factor. For example, we can stratify colon adenocarcinomas

into well-differentiated, moderately differentiated, and poorly differentiated

subgroups. Usually, stratification is done to control confounding variables (e.g.,

in case of colon adenocarcinomas, we can control for histologic grade when

assessing treatment effect or survival). However, over-stratification can lead to

small subgroups and consequently loss of statistical power.

For example, we want to evaluate the effectiveness of imatinib in patients with

gastrointestinal stromal tumor (GIST). We have stratified the GISTs into three

molecular subgroups: KIT mutants, PDGFRA mutants, and double negative

group (without KIT or PDGFRA mutations). Our goal is to evaluate the response

to imatinib treatment in the case group in comparison with placebo in the control

group. We measure the response to treatment as a binary outcome (e.g., cured

Table 5.5 2 � 2 contingency table for McNemar’s test

Test 2 positive Test 2 negative

Test 1 positive Positive agreement (a) Disagreement (b)

Test 1 negative Disagreement (c) Negative agreement (d)
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versus not cured). In this example, the appropriate test to be used to show the

treatment effect is the CMH test.

As always, the first step is to determine the null/alternative hypothesis pair:

• H0: There is no association between the two categorical variables, i.e., they are

independent (e.g., imatinib has no effect on treatment outcome for GIST

patients).

• H1: There is association between the two categorical variables (e.g., imatinib has

an effect on treatment outcome for GIST patients).

The second step in the CMH test is to summarize the data for each stratum in

2 � 2 contingency tables. The i� th table is shown as Table 5.6.

The CMH tests whether the combined odds ratio (R) is equal to 1 (or near 1). The
further the odds ratio gets from 1 the more likely the test becomes to reject the null

hypothesis. Thus, the null/alternative hypothesis pair can be restated as

• H0: R¼ 1

• H1: R 6¼ 1

The combined odds ratio is given by

R ¼
PN
i¼1

aidi
TiPN

i¼1

bici
Ti

, ð5:27Þ

where N is the number of strata. To test the hypothesis, the following test formula is

used:

χ2CMH ¼
PN
i¼1

ai � R1iC1i

Ti

� �2
PN
i¼1

R1iR2iC1iC2i

T2
i Ti�1ð Þ

, ð5:28Þ

χ2CMH follows a chi-squared distribution with one degree of freedom, and conse-

quently the same inferences about the p-value as the chi-squared test can be made

for the CMH test [11, 12].

Table 5.6 The i-th 2 � 2 contingency table showing the raw counts for the i-th stratum

i� th 2 � 2 contingency table Cured Not cured Total

Case (imatinib) ai bi R1i

Control (placebo) ci di R2i

Total C1i C2i Ti
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Example 5.3
Q: Table 5.7 shows the stratified results of the study of imatinib for treatment of

GIST. Calculate the χ2CMH score and determine whether imatinib is effective for

treatment of GIST at significance level of 0.05.

A:

χ2CMH ¼
PN
i¼1

ai � R1iC1i

Ti

� �2
PN
i¼1

R1iR2iC1iC2i

T2
i Ti�1ð Þ

¼ 5� 8�7
13

� �þ 20� 27�32
60

� �þ 10� 15�17
27

� �
8�5�7�6
132 12ð Þ þ 27�33�32�28

602 59ð Þ þ 15�12�17�10
272 26ð Þ

¼ 6:498, ð5:29Þ
Going to the chi-squared distribution table (Appendix B), we can see that the test’s

p-value is 0.011; thus, we can reject the null hypothesis and conclude that imatinib

is effective in treating GIST. The results of stratified association tests can be shown

using a clustered bar chart (Fig. 5.7).

Fisher’s Exact Test

“Fisher’s exact test” is a powerful tool for analysis of categorical variables and

contingency tables. Most statistical tests calculate statistical significance by

approximating the distribution of values to a normal distribution and thus providing

an approximation of the p-value; this requires that the sample size is large enough

for this approximation to be valid. Fisher’s exact test, however, calculates the exact

value of the p-value. The most important characteristic of this test is that it is not

dependent on sample size and thus it can be used in cases where the sample size is

small (making chi-squared distributed tests invalid).

Fisher’s exact test is a test for independence (or association). While the test can

be used for a table of any size, it is most commonly used for 2 � 2 contingency

tables as the calculations for larger tables will be computationally taxing. The null/

alternative hypothesis pair can be stated as:

Table 5.7 The stratified results for Example 5.3

Response

Cured Not cured

Count Count

Group Case Subgroup Double neg 5 3

KIT 20 7

PDGFRA 10 5

Control Subgroup Double neg 2 3

KIT 12 21

PDGFRA 7 5
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– H0: There is no association between the two variables (i.e., they are

independent).

– H1: There is a nonrandom association between the two variables.

Table 5.8 is a 2 � 2 contingency table which we will use for calculating the

Fisher exact test.

The probability of obtaining the observed values in a contingency table follows a

hypergeometric distribution (see Chap. 3). The first step in calculation is to deter-

mine the cutoff p-value ( pcutoff) which is the conditional probability of the observed
values:

pcutoff ¼
r1
a

� �
r2
c

� �
N
c1

� � ¼ aþ bð Þ! cþ dð Þ! aþ cð Þ! bþ dð Þ!
a!b!c!d!N!

, ð5:30Þ

The next step is to find all possible tables where the row totals (r1, r2) and column

totals (c1, c2) remain constant and calculate the associated conditional probability

for each table using Equation 5.30. After this, all the sum of all the p-values that are

smaller than the cutoff p-value is calculated. The sum of these p-values then is the

overall p-value of the test. If the overall p-value is smaller than the significance

level, then we can say that the null hypothesis is rejected [13].

Fig. 5.7 Clustered bar chart for Example 5.3
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Example 5.4
Q: For Table 5.8 calculate the exact p-value, and determine whether the Fisher

exact test is statistically significant at α of 0.05 Table 5.9.

A:First let us calculate the cutoff p-value:

pcutoff ¼
4ð Þ! 4ð Þ! 5ð Þ! 3ð Þ!
4!0!1!3!8!

¼ 24� 24� 120� 6

24� 1� 1� 40320
¼ 0:428571, ð5:31Þ

Now let us find all the tables that have the same row and column totals.

1 3

4 0

� �
,

2 2

3 1

� �
,

3 1

2 2

� �
The conditional probability for each of these tables is 0.071428, 0.428571, and

0.428571, respectively. Only the first conditional probability is smaller than the

cutoff p-value; thus, the sum of p-values will be 0.071428. Because this p-value is

larger than the significance level, then we have failed to reject the null hypothesis,

i.e., there is no association between the event status and disease status. Remember

that this is a one-tailed p-value. If we are interested in two-tailed p-value, then we

must double the sum of p-values (e.g., in this case the two-tailed p-value is 0.1429).

Generally, if the expected count for a cell is below 5, it is advisable to avoid

chi-squared tests and use Fisher’s exact test.

Measures of Agreement

Sometimes the reason for analysis of a contingency table is to determine the degree

of agreement between the sets. In pathology, measuring agreement is used in test

validation as well as for determining inter- and intraobserver reliability and agree-

ment. For example, when two pathologists look at the same histopathology slide, do

they come to the same conclusion? One of the commonly used statistics for

measuring agreement is the “Kappa coefficient.”

Table 5.8 A 2 � 2

contingency table
Disease þ Disease � Total

Event þ a b r1 (a þ b)

Event � c d r2 (c þ d)

Total C1 (a þ c) C2 (b þ d) N (a þ b þ c þ d)

Table 5.9 2 � 2

contingency table for

Example 5.4

Disease þ Disease � Total

Event þ 4 0 4

Event � 1 3 4

Total 5 3 8

116 5 Cross Tabulation and Categorical Data Analysis



Cohen’s Kappa

“Cohen’s Kappa” is a relatively simple statistic to calculate, yet it is powerful

metric since it considers the possibility that the agreement has occurred by chance.

Cohen’s Kappa is calculated by comparing the observed proportionate agreement

( p0) with the overall probability of random agreement ( pe). For these calculations,
we are going to use a 2 � 2 contingency table (Table 5.10).

The observed proportionate agreement ( p0) is given by

p0 ¼
aþ d

N
, ð5:32Þ

The overall probability of random agreement ( pe) is given by

pe ¼
r1c1ð Þ þ r2c2ð Þ

N2
, ð5:33Þ

The Cohen Kappa coefficient can then be calculated using:

κ ¼ p0 � pe
1� pe

, ð5:34Þ

If the observed agreement is more than chance alone, then the Kappa coefficient

will have values of between 0 and þ1. The closer the Kappa coefficient gets to þ1,

the stronger the agreement becomes. Table 5.11 is a rule of thumb index for degrees

of agreement based on Kappa coefficient.

Example 5.5
Q: Two pathologists are reviewing voided urine cytopathology slides for the

presence of high-grade urothelial carcinoma. Table 5.12 summarizes their results.

Calculate the Cohen Kappa coefficient for agreement between the two pathologists.

A: Let us calculate the p0 and pe first.

Table 5.10 2 � 2

contingency table for

measuring agreement

Yes No Total

Yes a b r1 (a þ b)

No c d r2 (c þ d)

Total C1 (a þ c) C2 (b þ d) N (a þ b þ c þ d)

Table 5.11 Levels of

agreement based on Kappa

coefficient

Kappa coefficient Level of agreement

0–0.20 Poor

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Good

0.81–1 Excellent
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p0 ¼
aþ d

N
¼ 23þ 33

65
¼ 0:8615, ð5:35Þ

pe ¼
r1c1ð Þ þ r2c2ð Þ

N2
¼ 27� 28ð Þ þ 38� 37ð Þ

4225
¼ 0:5117, ð5:36Þ

Now we can calculate the Cohen Kappa coefficient:

κ ¼ p0 � pe
1� pe

¼ 0:8615� 0:5117

0:4883
¼ 0:7163, ð5:37Þ

The results show that there is good agreement between the two pathologists.

If the categorical variables are paired, then the Kappa coefficient will overesti-

mate the agreement; in these situations, McNemar’s test with a null/alternative

hypothesis pair of homogeneity should be used.

Fleiss’s Kappa

Cohen’s Kappa coefficient is only used in situations when there are two raters. If

there are more than two raters or more than two categories for the binary variable

being compared, then another measure of agreement called the “Fleiss Kappa

coefficient” should be calculated. As before, the coefficient is a measure of overall

consistency in rating units of observation. The overall Kappa formula is the same as

Cohen’s Kappa, but p0 and pe are calculated differently (here �P0 and �Pe since they

are the means of probabilities).
�P0 is given by

�P0 ¼ 1

Nn
n� 1ð Þ

XN
i¼1

Xk
j¼1

nij

2

� Nn

 !
, ð5:38Þ

where N is the total number of subjects, n is the number of rating per subject, and

k is the number of categories. i denotes the index of subjects and j is index of

Table 5.12 2 � 2 contingency table of agreement for Example 5.5

Pathologist 1

Total

Positive for high-

grade urothelial

carcinoma

Negative for high-

grade urothelial

carcinoma

Pathologist
2

Positive for high-
grade urothelial
carcinoma

23 4 27

Negative for high-
grade urothelial
carcinoma

5 33 38

Total 28 37 65
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categories. Thus, nij is the number of raters who assigned the i-th subject to the j-th
category.

�Pe is given by

�Pe ¼
Xk
j¼1

P2
j , ð5:39Þ

where Pj is the proportion of all observations (n/N) that were assigned to the j-th
category (i.e., column totals divided by all observations).

The interpretation of Fleiss’s Kappa coefficient is like Cohen’s coefficient (see

Table 5.11) [14, 15].

Summary

In this chapter, we introduced the concepts of statistical inference for categorical

(nominal variables). The general approach for any statistical inference test is to

formulate the null/alternative hypothesis pair. Choose an appropriate statistic to test

the hypothesis. Organize the data into appropriate format. Calculate the statistic and

interpret the results based on the hypotheses and the significance level.

Table 5.13 summarizes the tests introduced in this chapter [16].

Table 5.13 Summary of statistical tests introduced in this chapter

Test

Hypothesis

testing Condition (s) Example (s)

Pearson’s

chi-squared

test

Test for

independence

Test for

homogeneity

Test for

goodness of

fit

The data should be

organized into a

contingency table.

The measurements should

not be paired or matched.

Sample size should be

sufficiently large

Are test results associated with

a disease status?

Do patients with and without

disease X have similar

qualitative test results?

McNemar’s

test

Testing for

change in

paired data

The data should be paired.

Can only be used for 2 � 2

contingency tables

Do the results of a binary

response qualitative test differ

in a patient before and after an

intervention?

Cochran-

Mantel-

Haenszel

test

Test for

association

The data is stratified or

there are multiple repeated

measures

Are test results associated with

a disease status among both

men and women?

Fisher’s

exact test

Test for

association

The test is not chi-square

distributed, so it can be

used for small sample sizes

Are test results associated with

a disease status?

Kappa

coefficient

N/A The contingency table is of

raters’ categories against

each other

How much is the inter-rater

reliability for a pathologic

diagnosis?
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Comparing Sample Means 6

Introduction

In the previous chapter, we learned about statistical inference for discrete variables.

In pathology and laboratory medicine, however, there are many tests that provide

quantitative and continuous results, examples of which include complete blood

count, metabolite levels, enzyme activity, and so on. In fact, many qualitative,

categorical test results are derived from quantitative results that are dichotomized

for ease of interpretation.

Consequently, understanding of statistical inference for quantitative continuous

variables is of utmost importance for practicing pathologists. They can use these

statistical tests for many different applications, for example, for assessing the

performance of one assay against another assay or for comparing the results of

their lab to the results from the standard lab.

In this chapter, we explain some of the more important statistical tests that are

used for continuous variables. We begin the chapter with introducing a few

fundamental concepts such as continuous data, goodness of fit (also discussed in

Chap. 4), and parametric and non-parametric testing and then move on introducing

each of the tests.

Continuous Data

“Continuous variables” can assume any value in a real number interval. In continu-

ous variables, there is no real limit to accuracy, i.e., they can assume any real

number within their range. The data in continuous variables is only limited by the

accuracy of measurement, documentation, and reporting. In other words, the range

of values for continuous variables has no gaps no matter how infinitesimally small,

and there are infinite numbers of real numbers between any two real numbers in the

range of the variable, hence the term continuous.
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As previously discussed in Chap. 3, measuring probabilities in continuous

variables means measuring the probabilities of intervals, and this is done using

the probability density function (PDF). For probability measurement in continuous

intervals, a curve is fit to the data, and the area under the curve represents the

probability which must always equal to 1, i.e., the entire area under the probability

distribution curve has a probability of 1. Probabilities of intervals are calculated by

PDF using the area under curve that corresponds to that interval. The cumulative

distribution function (CDF) can calculate the cumulative probability of values

smaller than a given cutoff. The CDF function has an important role in calculating

p-values.

Mean and Median

Continuous data have two main summary location measures: “mean” and “median.”

Mean or expected value (μ or E(x)) is the long-run average value of the random

continuous variable and can be calculated using the following formula:

E Xð Þ ¼
ð1
�1

xf xð Þdx ð6:1Þ

Example 6.1
Q: Assuming X is a random continuous variable with the following PDF, calculate

the mean of X.

f xð Þ ¼
x

5
0 � x � 3

0 for all other values

8<
: ð6:2Þ

A:

E Xð Þ ¼
ð3
0

xf xð Þdx ¼
ð3
0

x� x

5
dx ¼ 0:2

ð3
0

x2dx ¼ 9

5
¼ 1:8 ð6:3Þ

Percentiles are values of a continuous random variable that bound a

corresponding area under the probability distribution curve. For example, the fifth

percentile is the value of the random variable, the cumulative distribution function

of which is 0.05.

“Median” represents the 50th percentile of a random variable. We can say that

the median is the middle value of the distribution.

Figure 6.1 shows the median and mean of a positively skewed continuous

variable.

Median is a more stable statistic of a distribution compared to mean. Changes in

the distribution and departures from normality tend to change mean more than
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median. Hence, in normally distributed data, statistical tests that use mean as a

metric are used, while in skewed distributions, median is preferred.

Note that in a perfectly symmetrical data distribution, the mean and median are

equal.

Variance, Skewness, and Kurtosis

Variance, skewness, and kurtosis are high-degree central moments (see Chap. 3) of

a random variable. These measures contain information about the shape of the

distribution of the random variable. There are higher-degree central moments as

well (e.g., hyperskewness and hyperflatness), but they are beyond the scope of

this book.

Variance (σ2 or s2) is the second central moment and shows the dispersion of the

data around the central location (mean). Variance of a random variable (X) is

the expected value of the squared deviation from the mean, and it is always a

nonnegative value:

σ2 ¼ E X � μð Þ2
h i

ð6:4Þ

Fig. 6.1 Depiction of Median and Mean in a positively skewed distribution. Note that while in

this distribution the mean is to the right of the median, this is not always true for skewed

distributions
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As the variance increases, the data will become more dispersed, and the

distribution curve becomes flatter.

For continuous random variables, the variance is calculated using definite

integrals:

σ2 ¼
ð
x2f xð Þdx� μ2 ð6:5Þ

The standard deviation (σ) is the positive square root of variance.
Skewness is a measure of asymmetry of the probability distribution and is the

third central moment. A positively skewed distribution will either have the tail of

the distribution longer on the right side or the bulk of distribution on the left side

(or both). Conversely, a negatively skewed distribution will either have the tail of

the distribution on the left side or the bulk of the distribution on the right side

(or both). Symmetric distributions have a skewness of zero, while a skewness of

zero does not necessarily imply a symmetrical distribution as the asymmetries on

either side can cancel each other out.

Kurtosis is the fourth central moment and is a measure of the shape of the tails of

the random variable distribution. High kurtosis means that the tails of the distribu-

tion are heavy, meaning that the peak of the distribution is narrower and more of the

distribution falls under the tails of the distribution. Low kurtosis distributions have

light tails, meaning that more of the distribution falls under the peak.

Calculation of skewness and kurtosis is beyond the scope of this book. The

main applications of skewness and kurtosis are in some tests for normality (see

below) [1, 2, 5–9].

Parametric Versus Non-parametric Tests

When deciding which statistical tests to use for continuous data, one of the first

decisions is the choice between parametric and non-parametric tests. Parametric

tests are based on assumptions about the data especially the distribution of the

values; generally, parametric tests should be used when the data is known to follow

a normal distribution. Non-parametric tests on the other hand make no assumptions

about the distribution of the data.

The parametric tests that we will cover in this chapter include t-test and

ANOVA.

Parametric tests analyze group means, and their hypothesis testing is about

finding difference in the mean value. This has been shown to give parametric

tests a greater statistical power compared to non-parametric tests, i.e., these tests

are more likely to detect a significant effect when it truly exists.

Non-parametric tests analyze group medians. This is especially important in

highly skewed data distributions in which median is a better measure of central

tendency compared to mean (see above). In fact, many laboratory tests are highly

skewed and follow log-normal distribution rather than normal distribution. Take

liver function tests, for example. These tests have a lower threshold, but there is no
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real upper limit, while in healthy individuals they are likely to be bound within a

normal range, but some patients and healthy individuals have higher liver function

tests. In other words, we are more likely to see a very high AST than a very lowAST.

The non-parametric tests that we will cover in this chapter include Mann-

Whitney test and Kruskal-Wallis test.

However, and because of the central limit theorem (see Chap. 3) as the sample

size increases, the distribution of data approximates a normal distribution. Thus,

even for data that is not normally distributed, we can treat the data as normally

distributed and use parametric tests for their analysis. In fact, and as a rough guide,

for a one-sample t-test, if the sample size is greater than 20, we can use abnormally

distributed data as well. For a two-sample t-test and one-way ANOVA, the sample

size in each group should be greater than 15 (in ANOVA if you have more than ten

groups, the sample size in each group should be greater than 20). So, if the sample

size is small and you are uncertain about the normal distribution of the data, you can

use non-parametric tests; otherwise, you can still use parametric tests.

One of the problems with non-parametric tests is that their basic assumption is

that the dispersion (spread) of the data should be similar in the groups. In parametric

tests, however, different spreads (different variances) are tolerated.

On the other hand, only continuous data without significant outliers can be used

with parametric tests, while some non-parametric tests can handle outliers and, in

addition, ordinal and ranked data.

The parametric tests and their non-parametric counterparts (with respective null/

alternative hypothesis) that are covered in this chapter are summarized in

Table 6.20 in the summary section of this chapter [10–12].

Outliers

There are circumstances when some of the variables have values that are too distant

from other observations to fit into the distribution of interest. For example, suppose

we are measuring the sodium level in the sera of individuals and we have

established that 95% of individuals have sodium values that fall between 135 and

145 mEq/L. If we have one sample that is diluted with water and has a sodium value

of 115 mEq/L, then this sample is an outlier (Fig. 6.2).

It is very important to determine if the outliers are due to true variability or if

they have occurred because of a measurement error. If the outlier is due to a

measurement error, then it can be ignored. In laboratory medicine, if an outlier is

identified, the routine practice is to repeat the measurement: if the value remains the

same, then it is attributed to variability. If the value changes, then the original

measurement is considered as an error and is ignored. Checking for outliers is either

done using control samples (which have a known distribution) or by performing a

“delta check”, in which the patient’s results are compared with their previous

results. We will discuss outliers more in Chap. 10.

When the data contains outliers, it is usually more appropriate to use

non-parametric tests.
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One-Tailed Versus Two-Tailed Testing

In the previous chapter, we explored the p-value; here, we will discuss a very

important characteristic of tests that relates to p-value calculation and interpreta-

tion: one-tailed or two-tailed test. Ignoring this concept can lead to misinterpreta-

tion of test results and to misinformed conclusions drawn from the p-value.
When dealing with a one-tailed test, the test allots all the α to statistical

significance in one direction of the test. Essentially, a one-tailed test is a directional

test that not only shows that the sets of variables compared are different but that the

difference is in one direction. For example, if we want to compare the performance

of a new test with another test and our objective is to show that the new test is better

(superior) than the other test, then a one-tailed test is desired. The types of studies

that rely on one-tailed tests are said to follow a superiority design (see Chap. 12). If

the effect of the test is only important in one direction, then a one-tailed test in that

direction should be employed as one-tailed tests tend to have more power in

detecting an effect. But this may cause effects in the opposite direction to the

one-tailed test to be missed, and this can be serious, for example, when testing if a

new test is better than another test, if a one-tailed test is used, detection of an effect

means that the new test is better, but, if no effect is detected, it does not mean that

the new test is equal to the other test; in fact, it may mean that the new test is

performing worse than the other test.

Fig. 6.2 Boxplot showing sodium concentration in the serum. Note the outlier at the extreme left

of the diagram. A boxplot shows the distribution of continuous data. The box (the rectangle)
usually contains the central three quartiles of data with the horizontal lines extending to 10th and

90th percentiles of the data. The circles represent outliers in the data
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The direction of the one-tailed test can be in either side of test statistic distribu-

tion (Fig. 6.3). When the direction is toward the lower extreme of the distribution,

the test is useful for noninferiority trial designs (e.g., where the objective is to show

that a new test is not performing worse than a current test). When the direction is

toward the higher end of the distribution, the test is useful for superiority trial

designs.

The two-tailed test allots the α to the two sides of test statistic distribution. In

effect, in two-tailed tests, if the test statistic value is in either extreme of the

distribution, then the null hypothesis is rejected. If significance level is set at

0.05, then in a two-tailed test, 0.025 cutoff at either extreme of the distribution is

considered as statistical significance. Two-tailed tests can be used in equivalence

trials (e.g., where the objective is to show that the performance of two diagnostic

tests is similar). However, they are generally preferred by statisticians, and, in most

statistical software, the tests are set to two-tailed testing by default. Overall,

two-tailed testing is a more robust statistical analysis.

Unless stated otherwise, we have assumed a two-tailed test in explaining the

concepts in this chapter.

Fig. 6.3 One-tailed tests with significance level of 0.05 are shown with either left-sided or right-

sided testing (a, b). A significance level of 0.05 for a two-tailed test divides the significance to

either end of the test statistic distribution (c)
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Testing for Normality

Sometimes, it is advisable to determine the distribution of the variable we want to

use in a statistical test. While, in many instances, we can assume normal or near-

normal distribution, testing for normality can verify if a variable is normally

distributed. This is an important step before attempting to use parametric tests to

see if the data satisfy the requirements of those tests. In pathology and laboratory

medicine, this is even more critical as we determine reference intervals with the

assumption that the diagnostic test results follow a Gaussian distribution in the

population (see Chap. 3).

While the central limit theorem allows us to assume that the distribution is near

normal for large sample sizes (>30), it is still a good practice to check for

normality.

The easiest way to judge the normality of distribution is to use normality

distribution plots (see Chap. 3) and check whether the plotted distribution forms a

straight line. A Q-Q plot comparing the quantile distribution of the variable against

quantile distribution of a variable which we know is normally distributed is another

way to visually inspect for normal distribution. These methods, however, suffer

from inaccuracy as subjective inspection of the probability distribution plots may

not be able to detect small deviations from normality.

There are many statistical tests that test for normality. These include the Jarque-

Bera test, D’Agostino-Pearson omnibus test, Shapiro-Wilk test, Kolmogorov-

Smirnov test, and the W/S test. Here we will discuss the latter two tests.

“W/S test” is a simple test for kurtosis, q, that is the ratio of the range of values,

W, to the standard deviation, s, i.e.,

q ¼ w

s
ð6:6Þ

q values for each sample size has a critical range, and, if the calculated q values fall
within that range, then we can say that the data is normally distributed. Table 6.1

lists the critical values of q for different sample sizes (up to 50) and significance

levels.

Example 6.2

Q: Table 6.2 shows the AST results from a sample of 14 patients. The standard

deviation of the results is 7.35. Determine whether the results are normally

distributed at significance level of 0.05.

A:

q ¼ w

s
¼ 24

7:35
¼ 3:265 ð6:7Þ

Going to Table 6.1, we can see that the critical range for a sample size of 15 at

significance level of 0.05 is from 2.97 to 4.17, and since 3.265 is within this critical
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range, then we can conclude that the data is normally distributed. Fig. 6.4 is a

normal distribution plot of the data.

“Kolmogorov-Smirnov test” (K-S test) can be used to determine if a sample has

a specific distribution. The K-S test is the most commonly used test for testing

goodness of fit for normal distribution. This test is based on the “empirical distri-

bution function” (EDF). To define the EDF, all the data points in the sample should

be ordered from smallest to largest value. For example, if X is a random variable

with N values, the variable values should be ordered from x1 to xn. Then EDF is a

stepwise function, and at each step, it can be calculated as

Fn xð Þ ¼ n ið Þ
N

ð6:8Þ

Table 6.1 The critical values for “q values” for different sample sizes at different significance

levels. “a” is the lower boundary of the critical range and “b” is the upper boundary of the critical
range

Sample size

Alpha ¼ 0.000 Alpha ¼ 0.005 Alpha ¼ 0.01 Alpha ¼ 0.05

a b a b a b a b

3 1.732 2.000 1.735 2.000 1.737 2.000 1.758 1.999

4 1.732 2.449 1.82 2.447 1.87 2.445 1.98 2.429

5 1.826 2.828 1.98 2.813 2.02 2.803 2.15 2.753

6 1.826 3.162 2.11 3.115 2.15 3.095 2.28 3.012

7 1.871 3.464 2.22 3.369 2.26 3.338 2.40 3.222

8 1.871 3.742 2.31 3.585 2.35 3.543 2.50 3.399

9 1.897 4.000 2.39 3.772 2.44 3.720 2.59 3.552

10 1.897 4.243 2.46 3.935 2.51 3.875 2.67 3.685

11 1.915 4.472 2.53 4.079 2.58 4.012 2.74 3.80

12 1.915 4.690 2.59 4.208 2.64 4.134 2.80 3.91

13 1.927 4.899 2.64 4.325 2.70 4.244 2.82 4.00

14 1.927 5.099 2.70 4.431 2.75 4.34 2.92 4.09

15 1.936 5.292 2.74 4.53 2.80 4.44 2.97 4.17

16 1.936 5.477 2.79 4.62 2.84 4.52 3.01 4.24

17 1.944 5.657 2.83 4.70 2.88 4.60 3.06 4.31

18 1.944 5.831 2.87 4.78 2.92 4.67 3.10 4.37

19 1.949 6.000 2.90 4.85 2.96 4.74 3.14 4.43

20 1.949 6.164 2.94 4.91 2.99 4.80 3.18 4.49

25 1.961 6.93 3.09 5.19 3.15 5.06 3.34 4.71

30 1.966 7.62 3.21 5.40 3.27 5.26 3.47 4.89

35 1.972 8.25 3.32 5.57 3.38 5.42 3.58 5.04

40 1.975 8.83 3.41 5.71 3.47 5.56 3.67 5.16

45 1.978 9.38 3.49 5.83 3.55 5.67 3.75 5.26

50 1.980 9.90 3.56 5.93 3.62 5.77 3.83 5.35
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where n(i) for each xi is the number of values less than xi. The EDF is stepwise, in

the sense that for each increase from one ordered value to the next, the value of EDF

increases by 1/N. EDF is similar to cumulative distribution function in the sense that

the sum of all the EDF values over the range of the variable equals 1.

Table 6.2 The table

of AST results

for Example 6.2

Patient number AST level (units/L)

1 32

2 28

3 33

4 34

5 40

6 28

7 33

8 37

9 50

10 36

11 52

12 43

13 29

14 37

15 42

Fig. 6.4 The normal distribution plot for Example 6.2
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Now the K�S test (Dn) can be calculated by comparing the EDF function of the

variable with the cumulative distribution function of the desired distribution

(usually Gaussian normal distribution).

Dn ¼ max1�i�N j Fn xð Þ � F xð Þ j ð6:9Þ
where F(x) is the CDF of the desired distribution. Simply stated, the computed

value of the K�S test is the maximum positive value that the difference of

estimated distribution function with CDF can take for all the points in the range

of the sample. This calculated value can then be looked up in a table of critical

values for the corresponding sample size and desired significance level (Table 6.3).

If the test value is less than the corresponding critical value, then the sample has a

distribution like our chosen distribution.

The K�S test should only be used for continuous variables (discrete variables

should be adapted into a continuous distribution). One limitation of the K�S test is

that it is more sensitive to differences in distribution near the center of the data

distribution which renders the test less sensitive to problems in the tails. Also, it is

generally recommended that the K�S test is used for larger datasets (where

N > 50). For smaller datasets, the Shapiro-Wilks test can be used.

Table 6.3 The critical

values for “D values” for

different sample sizes at

different significance levels

N 0.10 0.05 0.01

1 0.950 0.975 0.995

2 0.776 0.842 0.929

3 0.642 0.708 0.828

4 0.564 0.624 0.733

5 0.510 0.565 0.669

6 0.470 0.521 0.618

7 0.438 0.486 0.577

8 0.411 0.457 0.543

9 0.388 0.432 0.514

10 0.368 0.410 0.490

11 0.352 0.391 0.468

12 0.338 0.375 0.450

13 0.325 0.361 0.433

14 0.314 0.349 0.418

15 0.304 0.338 0.404

16 0.295 0.328 0.392

17 0.286 0.318 0.381

18 0.278 0.309 0.371

19 0.272 0.301 0.363

20 0.264 0.294 0.356

25 0.240 0.270 0.320

30 0.220 0.240 0.290

35 0.210 0.230 0.270

OVER 35 1:22ffiffiffi
N

p 1:36ffiffiffi
N

p 1:63ffiffiffi
N

p
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The Anderson-Darling test is an improved version of the K�S test that is

available in some statistical software and is usually more powerful than the

K�S test.

A two-sample Kolmogorov-Smirnov test can be used to determine if two

samples have a similar distribution by comparing the EDF functions of the two

samples. The critical value for two sample K�S test is calculated based on the

sample size and the desired significance level:

Critical value ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 þ N2

N1N2

r
ð6:10Þ

where C is a constant that equals 1.36 for a 0.05 significance level and 1.63 for a

0.01 significance level. If the calculated K�S test value is smaller than the critical

value, then the two variables have a similar distribution [3, 4].

Example 6.3

Q: Table 6.4 shows the results of AST and ALT values from a sample of 20 patients.

The results are ordered from the smallest to largest. Do AST and ALT have a

similar distribution at a significance level of 0.05?

A: Table 6.5 lists the EDF values of the AST and ALT among the range of their

sample, and for each pair of EDF values, the corresponding difference is shown.

The maximum value (Dn) is in bold face.

Table 6.4 Table of values

for Example 6.3
Sample number AST (units/L) ALT (units/L)

1 27 25

2 30 26

3 31 30

4 31 30

5 33 32

6 36 33

7 38 33

8 39 37

9 40 38

10 41 39

11 41 40

12 41 41

13 43 44

14 44 44

15 48 47

16 49 49

17 50 50

18 51 51

19 52 52

20 53 52
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The K�S test value is 2/20 (0.1). The critical value for the sample size and

significance level is given by

Critical value ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 þ N2

N1N2

r
¼ 1:36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20þ 20

20� 20

r
ffi 0:430 ð6:11Þ

Since the calculated K�S value (0.1) is smaller than the critical value (0.43),

then AST and ALT can be said to follow a similar distribution.

The EDF values can also be plotted. The plot is like a CDF plot, and in fact, in

one-sample K�S test, the sample EDF is plotted against the CDF of the desired

distribution. Figure 6.5 shows the plot for Example 6.3.

Parametric Tests

Parametric statistics is one of the most common statistical tests used; this is because

they are easier to compute and have more statistical power. As with any other

statistical test, the first step is to formulate the null/alternative hypotheses pair.

Based on the hypotheses pair and nature of the data, a decision can be made over

which statistical test to employ.

Table 6.5 EDF values for AST and ALT and the corresponding difference of the values. The

maximum difference is in bold face

Sample number AST (units/L) ALT (units/L) EDFAST EDFALT |EDFAST – EDFALT|

1 27 25 0 0 0

2 30 26 1/20 1/20 0

3 31 30 2/20 2/20 0

4 31 30 2/20 2/20 0

5 33 32 4/20 4/20 0

6 36 33 5/20 5/20 0

7 38 33 6/20 5/20 1/20

8 39 37 7/20 7/20 0

9 40 38 8/20 8/20 0

10 41 39 9/20 9/20 0

11 41 40 9/20 10/20 1/20

12 41 41 9/20 11/20 2/20

13 43 44 12/20 12/20 0

14 44 44 13/20 12/20 1/20

15 48 47 14/20 14/20 0

16 49 49 15/20 15/20 0

17 50 50 16/20 16/20 0

18 51 51 17/20 17/20 0

19 52 52 18/20 18/20 0

20 53 52 19/20 18/20 1/20
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All parametric tests work by comparing the location (mean) of data. The null

hypothesis generally is that the location of the data is similar between either the

samples or the sample and a hypothetical distribution. The alternative hypothesis

states that the samples have different locations. In other words, parametric tests aim

to determine whether two or more sets of continuous data are significantly different

from each other. These tests also make assumptions about data, for example, the

assumption for the t-test is that the data are normally distributed.

For example, if we are interested in cholesterol levels in patients with and

without coronary artery disease (CAD), we can use a parametric test. The null

hypothesis would be that cholesterol levels are similar in patients with and without

CAD. The alternative hypothesis here will be that there is a statistically significant

difference in cholesterol levels in patients with and without CAD.

Here we will discuss two parametric statistical tests: “t-test” and “analysis of

variance.” In short, the t-test is applicable in cases where there are one or two

groups. For comparisons of three or more groups, analysis of variance should be

employed.

Student’s t-Test

The so-called student’s t-test was invented by William Sealy Gosset in the early

twentieth century who published his method under the pseudonym, “student.” This

Fig. 6.5 Plot of EDFs for AST and ALT from Example 6.3

134 6 Comparing Sample Means



“t-test” is used to determine whether the mean value of the data for a group is

significantly different from the mean of another group or from a specific value. In

cases where the mean of the group is compared to a specific mean (hypothesized

mean), a one-sample t-test is used, and in comparisons between groups, two-sample

t-test is used.

Student’s t-test is based on calculation of a test statistic called “t-value.” This

value is a standardized variable with a standardized distribution. Thus, since the

distribution of t-value is known and based on the location of the calculated t-value

on the t-distribution curve, a p-value can be calculated. This concept is similar to

computation of p-values from the chi-squared score (see Chap. 5).

Note that, if we are dealing with population-sized samples, i.e., large samples,

then we can use z-test instead of the t-test. The fundamental difference is that we

look for critical values of z-distribution instead of t-distribution.

Before we show you the calculations for t-test, we will introduce the concept of

t-distribution.

T-Distribution
“T-distribution” is a well-known and documented distribution. The distribution of

t-values is mainly determined by the degree of freedom (D.F. or v).
Simply stated, degree of freedom is dependent on the number of parameters in

the equation and the sample size. As the number of parameters increases, you will

have a lower degree of freedom meaning that the accuracy of your assumptions

decreases. However, any increase in the sample size can offset the increase in the

number of parameters. For example, a one-sample t-test, with N being the sample

size, has one parameter, and thus one degree of freedom is spent calculating the

mean, and the remainder of the sample (N�1) is used for estimating variability of

the data. For a two-sample t-test, there are N�2 degrees of freedom for variability

and error. Essentially, an increase in the number of parameters is a cost that needs to

be offset from the sample size.

T-distribution resembles a normal distribution in that it has a bell-shaped

distribution curve which is symmetrical around its mean (which is 0). The differ-

ence between a t-distribution and normal distribution is that the sample for a normal

distribution is population sized, but, for the t-distribution, the sample is a subset of

the population, i.e., the sample size is usually small. Thus, the t-distribution curve

has a narrower peak and heavier tails compared to normal distribution. Figure 6.6

plots the t-distribution curve for different degrees of freedom.

As the sample size increases, the t-distribution plot will approximate normal

distribution plot. With sample sizes of more than 20, the t-distribution is like a

normal distribution for practical purposes.

Let us examine an example. We assume that the population mean for sodium is

140 mEq/L. We have a sample of 20 patients, and we want to see if the mean

sodium of this sample is the same as the population mean (i.e., a one-sample t-test)

at a significance level of 0.05. This means that we have a t-distribution with

19 degrees of freedom (N�1). This is a two-tailed test since we are interested if

the means are equal (not if one is greater than the other). Thus, the significance level
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of 0.05 will mean the extreme 0.025 of either tail of the distribution curve; this

translates to a t-value of 2.093 and�2.093 (these values are looked up in the t-score

critical values table). If the t-value of the one-sample t-test is 1.5, then we can say

that the sample mean is like the population mean, because to get a p-value of less
than 0.05, we need t-values of either more than 2.093 or less than �2.093. This is

shown in Fig. 6.7.

Cutoff values for the t-distribution for different degrees of freedom at 0.05 and

0.01 significance levels are provided in Table 6.6. These cutoff values essentially

describe a 95% and 99% confidence interval for the t-distribution. As you can see,

as the degree of freedom increases, the cutoffs get closer to that of a normal

distribution (from Chap. 2, we know that 95% and 99% confidence intervals are

1.96σ and 2.58σ, respectively).
A comprehensive table of critical t-values is given in Appendix C.

One-Sample t-Test
One sample t-test is used when we want to determine if the mean of a sample (μ) is
similar or different to a hypothesized mean (m0). Thus, the null/alternative

hypotheses pair can be stated as:

• H0: the mean of the sample is equal to the hypothesized mean (μ¼m0).

• H1: the mean of the sample is different from the hypothesized mean (μ 6¼m0).

Fig. 6.6 Plots of t-distribution based on degrees of freedom
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The next step is to calculate the sample mean (μ):

μ ¼ x1 þ x2 þ . . .þ xn
n

ð6:12Þ

where n is the sample size. Followed by calculation of the variance (σ2):

σ2 ¼
Pn

1 xn � μð Þ2
n� 1

ð6:13Þ

Fig. 6.7 A two-tailed α of 0.05 is shown (shaded area) on a t-distribution curve with 19 degrees

of freedom. Since the calculated t-value is not within the shaded area, then we have failed to reject
the null hypothesis. This means that the sample mean sodium level is like our hypothesized mean

of 140 mEq/L

Table 6.6 Cutoff values

of two-tailed t-distribution

for different degrees of

freedom at 0.05 and 0.01

significance levels

df α¼ 0.05 α¼ 0.01

2 �4.303 �9.925

3 �3.182 �5.841

4 �2.776 �4.604

5 �2.571 �4.032

8 �2.306 �3.355

10 �2.228 �3.169

20 �2.086 �2.845

50 �2.009 �2.678

100 �1.984 �2.626
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The standard deviation (σ) is the square root of the variance:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1 xn � μð Þ2
n� 1

s
ð6:14Þ

The t-statistic is then given by

t ¼ μ� m0

σ=
ffiffiffi
n

p ð6:15Þ

σ=
ffiffiffi
n

p
is also known as the standard error of the mean (SE) and is also known as the

noise (variation). The numerator of this formula is known as the signal. T-statistics,

then, is really a signal-to-noise ratio; the bigger the ratio, the more certain we are

that the difference or signal is the cause rather than noise (or random variability).

The t-value can then be looked up in a table of t-values for corresponding

degrees of freedom (n�1) and significance level.

Example 6.4

Q: Table 6.7 lists the serum sodium levels of 11 patients. Determine if the mean

sodium level of these patients is equal to 140 with a significance level of 0.05.

A: The mean of the sample is

μ ¼ x1 þ x2 þ . . .þ x11
11

¼ 1565

11
¼ 142:27 ð6:16Þ

The standard deviation of the sample is

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11

1 xn � μð Þ2
10

s
¼ 4:78 ð6:17Þ

Table 6.7 Sodium levels

for Example 6.4
Sample number Sodium (mEq/L)

1 137

2 150

3 138

4 138

5 144

6 142

7 145

8 147

9 148

10 137

11 139
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Now we can calculate the test statistic:

t ¼ 142:27� 140

4:78=
ffiffiffiffiffi
11

p ¼ 1:58 ð6:18Þ

Looking at Table 6.6, we can see that, for 10 degrees of freedom and a signifi-

cance level, α, of 0.05, the cutoff value is 2.228; since the t-value of 1.58 is less than
this value, we can conclude that the mean of the sample is equal to the

hypothesized mean.

Independent Sample t-Test
In cases where our objective is to compare the mean value of a variable between

two independent groups, we can use the two-sample independent t-test. The null/

alternative hypotheses pair can be stated as:

• H0: the mean of the two sets are equal (μ1¼ μ2).
• H1: the mean of the two sets are different (μ1 6¼ μ2).

Alternatively, it can be stated that the t-test shows us whether the difference we

observe between the two groups is a random occurrence or is there a true difference

between the two sets.

It is imperative that, before using the t-test to test the hypothesis, we must make

sure that our data fits the assumptions for parametric tests, namely, that it is a

continuous variable that either follows a normal distribution or the sample size is

sufficiently large.

After formulating the hypotheses, the next step is to calculate the mean and

variance of the two groups.

The test statistic is given by

t ¼ μ1 � μ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1

n1
þ σ2

2

n2

q ð6:19Þ

To determine the p-value for the corresponding t-value, the degree of freedom of

the t-test should be determined:

df ¼
σ2
1

n1
þ σ2

2

n2

� �2

σ2
1

n1

n1�1
þ

σ2
2

n2

n2�1

ð6:20Þ

The calculated degree of freedom should be rounded down to the nearest integer.

Example 6.5

Q: Compare the mean sodium level in Table 6.7 to the mean sodium level in

Table 6.8, and determine if they are significantly different at α of 0.05.
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A:

The mean and standard deviation of sodium level for the first table are 142.27

and 4.78, respectively. The mean and standard deviation of sodium level for the

second table are 143.91 and 7.67, respectively.

The t-statistic is given by

t ¼ 142:47� 143:91ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:782

11
þ 7:672

11

q ¼ �0:60 ð6:21Þ

The df is given by

df ¼
4:782

11
þ 7:672

11

� �2

4:782

11

11�1
þ 7:672

11

11�1

ffi 16 ð6:22Þ

For 16 degrees of freedom and a significance level of 0.05, the cutoff values for

t-statistic will be�2.120. Thus, because�0.60 does not reach the cutoff point, then

we can say that the means of the two groups are equal. Figure 6.8 shows the

boxplots for this example.

Paired t-Test
There are circumstances where we want to compare the means between two paired

groups. For example, we want to measure the serum sodium levels in patients

before and after giving them a diuretic. In paired samples, each patient is its own

control. We can formulate the paired t-test hypotheses pair as:

• H0: there is no difference before and after the treatment.

• H1: there is a difference in sodium levels before and after the treatment.

Paired tests have more statistical power since the only source of variability is

intra-patient variability (e.g., the difference in sodium levels of the patient before

Table 6.8 Sodium levels

for Example 6.5
Sample number Sodium (mEq/L)

1 140

2 142

3 138

4 148

5 144

6 132

7 155

8 137

9 149

10 157

11 141
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and after the treatment) rather than inter-patient variability. The intra-patient

variability is more likely to be due to true effect rather than random variation,

and consequently the paired tests have higher statistical power.

The paired test can be thought of as a one-sample t-test; the difference of values

for each pair of observations is determined, and the mean difference (μD) is

calculated. For the null hypothesis to be true, we expect that the mean difference

equals to 0. (In special circumstances we can set the hypothesized mean difference

at a non-zero value, e.g., when we expect a natural difference in the before and after

calculations.) Thus, now we can rewrite the null/alternative hypotheses pair as:

• H0: the mean difference between two groups is zero.

• H1: the mean difference between two groups is non-zero.

The degree of freedom for a paired t-test is like a one-sample t-test and equals

n�1 with n being the number of paired observations.

Now we can calculate the t-statistic as

t ¼ μD
σD=

ffiffiffi
n

p ð6:23Þ

Comparing the t-statistic with critical t-values at corresponding degrees of

freedom and significance levels can give us the p-value [13, 14].

Fig. 6.8 Boxplot diagram for Example 6.5
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Example 6.6

Q: Table 6.9 shows the serum sodium levels of patients before and after a diuretic is

given. Determine if the diuretic influences sodium levels at significance level of

0.05.

A: The mean difference of the sodium level before and after diuretic adminis-

tration is 5.91, and the standard deviation is 4.66. Now we can calculate the

t-statistic as

t ¼ μD
σD=

ffiffiffi
n

p ¼ �5:91

4:66=
ffiffiffiffiffi
11

p ffi �4:66 ð6:24Þ

The degree of freedom of the test is 10 (n�1), and the cutoff values for t-statistic

at significance level of 0.05 for this degree of freedom are �2.228. Since the

calculated t-value is beyond this cutoff, then we can reject the null hypothesis

and state that the sodium level after diuretic administration is different from sodium

level before the diuretic.

One-Way ANOVA

With the t-test, we can only determine if the means of two groups are different.

However, what if we have three groups or more and we want to see if the means of

these groups are different? To answer this, we can use the “analysis of variance”

test, also known as “ANOVA.” Here we will discuss the concept of one-way

ANOVA. In one-way ANOVA, there is only one grouping variable which can

have two or more number of groups (e.g., the country of origin of patients). In

two-way ANOVA, there are two grouping variables (e.g., the country of origin of

patients and their gender).

Table 6.9 Serum sodium levels before and after administration of a diuretic. The difference

between the values is written in the fourth column

Sample

number

Sodium (mEq/L)

before diuretic

Sodium (mEq/L)

after diuretic Difference

1 140 130 �10

2 142 137 �5

3 138 131 �7

4 148 142 �6

5 144 143 �1

6 132 135 3

7 155 142 �13

8 137 128 �9

9 149 142 �7

10 157 148 �9

11 141 140 �1

142 6 Comparing Sample Means



The null/alternative hypotheses pair can be stated as:

• H0: there is no difference in the mean of groups.

• H1: there is a difference in the mean of groups.

ANOVA uses “F-statistics” which is the ratio of “mean squares” (MS). Alterna-

tively, F-statistic is the ratio of explained variance to unexplained variance or in

other words the ratio of between-group variability to within-group variability:

F ¼ MSeffect
MSerror

¼ Explained Variance

Unexplained Variance
¼ Between � group Variance

Within� group variance
ð6:25Þ

The explained variance (SS2b=K�1) is given by

Explained variance ¼
XK
i¼1

ni μi � μð Þ2
k � 1

ð6:26Þ

where μ is the overall mean of data, K is the number of groups, μi is the mean of the

ith group, and ni is the size of the ith group.

The unexplained variance (SS2w= N � K½ �) is given by

Unexplained variance ¼
XK
i¼1

Xni
j¼1

xij � μi
� �2
N � K

ð6:27Þ

where xij is the jth observation of the ith group and N is the overall sample size.

Thus, the F-statistic can be rewritten as

F ¼
PK

i¼1
ni μi�μð Þ2

k�1PK
i¼1

Pni
j¼1

xij�μið Þ2
N�K

ð6:28Þ

The F-statistic follows the F-distribution with K�1 and N�K degrees of free-

dom. The calculated F-value should be compared with the cutoff values for

F-distribution with corresponding degrees of freedom and significance level. The

critical values for F-distribution for different significance levels and degrees of

freedom are provided in Appendix D.

The reasoning behind F-statistics is that if the means of the groups are equal

(or almost equal), they will be clustered around the overall mean of the data (i.e.,

their variance is small); however, if one or two group means are different from the

other means and the overall mean, then the variance will be larger. Thus, if the

variability (variance) between the groups decreases, we can say that the means are

more likely to be equal. Here, the within-group variance is the noise (which we need

to cancel, hence being the denominator).
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Software that runs ANOVA usually provides a table that summarizes the

F-statistic (Table 6.10) [15].

Example 6.7

Q: Table 6.11 lists the serum concentration of drug A in three groups of individuals.

At a significance level of 0.05, determine if the serum concentration of drug A in the

three groups is equal or different.

A: The explained variance can be calculated as

Explained variance ¼
X3
i¼1

ni μi � μð Þ2
2

¼ 8 29:5� 31:41ð Þ2
2

þ 8 30:5� 31:41ð Þ2
2

þ 8 34:25� 31:41ð Þ2
2

¼ 50:167

ð6:29Þ

The unexplained variance can be calculated as

Unexplained variance ¼
XK
i¼1

Xni
j¼1

xij � μi
� �2
N � K

¼ 68þ 76þ 37:5

21
¼ 8:643 ð6:30Þ

Table 6.10 Summary of F-statistics

Sum of squares Degree of freedom Mean square F p-value

Between group SS2b K�1 (df1) SS2b
k�1

MSeffect
MSerror

Calculated

p-value

Within group SS2w N�K (df2) SS2w
N�K

Total SS2b þ SS2w N�1

Table 6.11 Serum levels of drug A in three groups

Sample number

Drug concentration

in group 1 (mg/L)

Drug concentration

in group 2 (mg/L)

Drug concentration

in group 3 (mg/L)

1 30 33 35

2 28 34 37

3 32 29 37

4 34 27 34

5 24 25 30

6 27 31 33

7 30 31 35

8 31 34 33

Mean 29.5 30.5 34.25

Standard deviation 3.11 3.29 2.31

Overall mean: 31.41
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Thus, the F-statistic can be calculated as

F ¼ Explained Variance

Unexplained Variance
¼ 50:167

8:643
¼ 5:804 ð6:31Þ

The critical value for F-distribution with degrees of freedom of 2 and 21 and

significance level of 0.05 is 3.4668. Thus, since the calculated F-statistic is greater

than the critical value, we can reject the null hypothesis and state that at least one

group mean is different from others (Fig. 6.9).

Note that ANOVA only shows if there is a difference between group means but it

will not show us which groups are different from each other. In Example 6.7, a

boxplot diagram can show us that the mean drug level in groups 1 and 3 is different

(Fig. 6.10). But sometimes the identification of the source of difference is not so

straightforward, and, to find this out, we need to conduct “post hoc tests”; these tests

provide one-by-one comparisons between the groups to identify the source of

difference. We will briefly introduce some of these tests, but the detailed explana-

tion of the tests is beyond the scope of this book.

One of the tests that can be used is called the “Fisher’s least significant differ-

ence” (LSD) test; this test performs one-by-one comparisons and finds the source of

difference if the null hypothesis is rejected by ANOVA. The shortcoming of the

LSD test is that it does not correct for multiple comparisons.

A general rule that you need to remember for running these post hoc tests is that

if you are doing multiple one-by-one comparisons, the probability of falsely

Fig. 6.9 F-distribution plot for Example 6.7
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rejecting the null hypothesis and finding a difference goes up, i.e., the possibility of

type I error increases. In Chap. 5, we introduced the concept of Bonferroni

correction for dealing with the issue of increased type I error in multiple

comparisons, and in fact, one of the post hoc tests that you can use is to do multiple

two-sample t-tests and correct the alpha level using a Bonferroni correction.

There are other post hoc tests and corrections. Most statistical software have

these post hoc tests as an option when running ANOVA; the choice of which test to

use is user and data dependent, but, in general, we recommend “Scheffé’s method”

which can be used in many different scenarios. Another option is the “Tukey’s test”

which compares all possible pairs of means and is a powerful post hoc test.

Non-parametric Tests

As we mentioned earlier, the parametric tests make assumptions about the data

including its distribution. Non-parametric tests are useful when those assumptions

are violated or when you feel that median might be a better summary statistic for

your data than mean (e.g., there are many outliers in the data). However, the

generalizability of non-parametric tests comes at the expense of their statistical

power. Here we will explain two of the more common non-parametric tests: the

“Mann-Whitney U test” and the “Kruskal-Wallis test.” [16]

Fig. 6.10 Boxplot diagram for Example 6.7
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Mann-Whitney U Test

“Mann-Whitney U test” is a non-parametric test that can compare a continuous

(or ordinal) variable between two groups, and in a sense, it is the non-parametric

equivalent of the t-test. This test is one of the more powerful non-parametric tests

and in fact can be used even for variables with normal distribution as it has a

statistical power comparable to the t-test.

The problem that the Mann-Whitney test addresses is: given two sets of data, are

the two sets the same or are they different? Mann-Whitney compares the median
values of the two sets of data and tests the difference to determine if it is significant.

Note the use of the median rather than the mean; means can be strongly determined

by extreme values, while medians are much less influenced by extreme values.

As part of the test, as we describe below, the values for each dataset are arranged in

either increasing or decreasing orders or ranks and are then compared. Quantitation

of the difference of the so-called sum of ranks enables us to determine whether

the datasets are statistically similar or different by computing the so-called

U-statistic.

Simply stated, the Mann-Whitney U test null hypothesis is that the two groups

have a similar distribution of data and a similar median. The alternative hypothesis

states that the median and distribution of the two data are different.

If the null/alternative hypothesis pair sounds familiar, it is because we

introduced a similar concept when talking about the two-sample Kolmogorov-

Smirnov test early in the chapter. In fact, the two-sample KS test is also a

non-parametric test that you can use. The difference between the KS test and the

Mann-Whitney test is that the former is more sensitive to any difference between

the two distributions, while the Mann-Whitney test is more sensitive to differences

in the median value.

One of the important assumptions of the Mann-Whitney U test is that the

variable being compared has a scale, i.e., in comparing two values from the variable

lists, we can clearly determine which is greater and which is smaller. This assump-

tion means that continuous and ordinal variables are acceptable. Another assump-

tion is that the observations are independent.

Mann-Whitney U test provides us with a statistic called the U-value. The

U-value follows a distribution known, unsurprisingly, as the U-distribution under

the null hypothesis. As we demonstrated with other tests above, we need to look up

the U-value obtained from the test in the U-distribution and determine if the value is

smaller than the cutoff set by our significance level. (For the U test to be significant,

the U-value should be smaller than the cutoff value.) The cutoff values are based on

the size of each group and the significance level selected. For sample sizes larger

than 20, the distribution of U approximates a normal distribution.

The Mann-Whitney test is actually very simple, and we will demonstrate the test

using an example [17, 18].
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Example 6.8

Q: Table 6.12 shows the ranked results of serum concentration of AST in a total of

20 patients, ten of whom have chronic hepatitis and ten of whom are ostensibly

normal (labeled “healthy” in the table). Using Mann-Whitney test with a signifi-

cance level of 0.05 (corresponding to a two-tailed U-statistic cutoff of 23), deter-

mine if the two have different distributions.

A: Here is how we calculate the U-statistic:

First, for each AST value in the healthy group, count how many AST values in

the chronic hepatitis group is less than that value (i.e., rank the value). Count all the

ties as 0.5. Sum all the ranks for the healthy group (R1) (Tables 6.13 and 6.14).

Repeat this for the chronic hepatitis group to obtain the sum of ranks for that

group (R2).

Now the U-statistic for the test is the smaller of the two sum of ranks, which

means that U equals 27. As we show below, there is a U-distribution, which is

Table 6.12 Values

of AST in the chronic

hepatitis and healthy group

for Example 6.8

AST (units/L) Group

30 Healthy

35 Healthy

36 Chronic hepatitis

39 Chronic hepatitis

39 Healthy

40 Healthy

42 Healthy

44 Chronic hepatitis

44 Healthy

47 Healthy

50 Chronic hepatitis

52 Chronic hepatitis

53 Healthy

53 Healthy

55 Chronic hepatitis

56 Healthy

60 Chronic hepatitis

100 Chronic hepatitis

160 Chronic hepatitis

200 Chronic hepatitis

Table 6.13 Calculation of sum of ranks for the healthy group for Example 6.8

Healthy group AST

value 30 35 39 40 42 44 47 53 53 56 Total

Number of AST values

in chronic hepatitis

group that are less than

this value

0 0 1.5 2 2 2.5 3 5 5 6 27
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dependent on the number of degrees of freedom. As it happens, at an alpha value of

0.05, the critical value for the U-distribution is 23. Since 27 is greater than the

cutoff value of 23, then we can say that we have failed to reject the null hypothesis,

i.e., the two datasets are statistically the same. The underlying reason for this

conclusion lies in the fact that the median values for the distribution of the values

for each dataset are close to one another as we show in Fig. 6.11. We also show that

the distributions of the values overlap strongly. We have shown the two

distributions using two histograms in Fig. 6.11.

Alternatively, we can use the following formula for calculation of Mann-

Whitney U-statistic (either of these two formulas can be used).

U1 ¼ R1 � n1 n1 þ 1ð Þ
2

and U2 ¼ R2 � n2 n2 þ 1ð Þ
2

ð6:32Þ

U ¼ min U1;U2ð Þ ð6:33Þ

Table 6.14 Calculation of sum of ranks for the chronic hepatitis group for Example 6.8

Chronic hepatitis

group AST value 36 39 44 50 52 55 60 100 160 200 Total

Number of AST

values in healthy

group that are less

than this value

2 2.5 5.5 7 7 9 10 10 10 10 73

Fig. 6.11 Distribution of

values and histogram for AST

values in the healthy and

chronic hepatitis groups. You

can see that the fitted curves

for the two distributions

overlap
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where n1 is the sample size of group 1 and n2 is the sample size of group 2. To

calculate the sum of ranks, order all the values (from both groups), and assign

overall ranks to each value (breaking the ties by giving 0.5). Now, R1 is the sum of

ranks for values from group 1; R2 is the sum of ranks for values from group 2.

Kruskal-Wallis Test

“Kruskal-Wallis test” is the equivalent of the ANOVA test for comparisons of a

continuous variable between multiple groups when the basic assumptions of

ANOVA (e.g., normal distribution) are violated. Just like ANOVA, in the

Kruskal-Wallis test, the objective is to determine whether a difference between

the values of the groups exists. Thus, the null/alternative hypotheses pair is like

ANOVA with the exception that in Kruskal-Wallis instead of mean we use the term

“stochastic dominance.”

Stochastic dominance is a partial ordering. In simple terms, it means that values

from one group are more likely to be greater (or lesser) than the values from another

group.

The Kruskal-Wallis test uses H-statistics. H-statistics follows a chi-squared distri-

bution with degrees of freedom corresponding to the number of groups minus 1.

The first step in the K-W test is just as Mann-Whitney test and involves ordering

all the values from all groups and assigning ranks to them. The average overall rank

(�r) and average rank for each group (�ri) are then calculated.

Assuming there are no ties (or few ties) in the data, then the Kruskal-Wallis

H-statistic is given by

H ¼ N � 1ð Þ
Pg

i¼1 ni �ri � �rð Þ2Pg
i¼1

Pni
j¼1

�
�rij � �r

�
2

ð6:34Þ

where g is the number of groups, N is the total number of values, ni is the sample

size for group i, and rij is the rank of the observation j of group i.

If there are many ties in the data, the H-value needs to be corrected:

Corrected H ¼ H

1�
PG

i¼1
t3i �tið Þ

N3�N

ð6:35Þ

where G is the number of groups that have tied ranks and ti is the number of tie

values in the ith group.

If K�W test rejects the null hypothesis ( p value < alpha), and you want to

determine which group dominates which group (s), then you can use the Dunn’s

post hoc test.

Calculations for K�W and Dunn’s post hoc tests are usually cumbersome, and

we recommend that statistical software be employed for these calculations.
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Effect Size

Unfortunately, in reporting of scientific studies, usually the p-value is the sole

metric that is reported with a test. P-value on its own has little merit in showing

the degree of association or difference, and it simply implies rejection of the null

hypothesis. As the p-value gets smaller, it means that the certainty with which we

can reject the null hypothesis increases but this does not necessarily mean that, for

example, the two means in a t-test are getting further apart.

In fact, the pathologists should always be aware of the difference between

statistical significance and clinical significance. In pathology and laboratory medi-

cine, a successful diagnostic or prognostic test needs to accurately classify patients

and individuals and be a guide in clinical decision making.

For example, we may conduct a study with very high statistical power that shows

a very small yet statistically significant difference in mean values of a metabolite

between two groups. This difference may be undetectable using less accurate

analyzers or be of no importance to the clinicians treating the patients.

For these reasons, we highly recommend reporting of “effect size” in conjunc-

tion with reporting of statistical significance. Effect size is the size of the difference

between groups. This can give useful insights into clinical applicability of the study

results.

In Chap. 5, we introduced the association measures such as Cramer’s V; these

are essentially effect size measures for nominal variables. For continuous variables,

there are multiple effect size measures available. Here we will introduce “Cohen’s

d” and “Cohen’s f.”

Cohen’s d

We can use “Cohen’s d” for describing the size of the effect in two-sample t-tests.

Cohen’s d is a concept similar to coefficient of variation: the calculation of Cohen’s

d consists of the ratio of the mean difference to the pooled standard deviation:

d ¼ μ1 � μ2
σpooled

ð6:36Þ

The pooled standard deviation can be given by

σpooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þσ21 þ n2 � 1ð Þσ22

n1 þ n2 � 2

s
ð6:37Þ

where n1 and n2 are the size of the samples and σ21 and σ22 are their respective

variances. Table 6.15 shows the attributed effect size based on d value:
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Cohen’s f

“Cohen’s f” also known as “Cohen’s f2” is used to show the size of the effect in

either ANOVA tests or multiple regression. Cohen’s f is the ratio of the standard

deviation of the means to the pooled standard deviation.

f ¼ σmeans

σpooled
ð6:38Þ

The standard deviation of the means is given by

σmeans ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP k

i¼1 μi � μð Þ2
k

s
ð6:39Þ

where k is the number of the groups, μi is the mean of each group, and μ is the

overall mean. The pooled standard deviation is the square root of the mean squared

error (see above) [19, 20].

Ordinal Variables

There are instances where observations of a variable are ordered or ranked. Ranked

variables are in between categorical and continuous variables: they are assigned

discrete numbers, but these numbers are part of a scale. The scale, however, may

not show exactly how much one rank is different from another, just that it is larger

(or smaller) than the other rank.

A common example of ordinal variables in pathology is cancer staging, where

cancer patients are staged into pathologic stages I, II, III, and IV and clinical stages I,

II, III, and IV. As the stage rank increases, the prognosis worsens, but the degree of

worsening of the prognosis is not uniform across stages or different cancers.

Statistical evaluation of ordinal variables requires special non-parametric tests.

Here, we will introduce two of such tests: “Kendall’s Tau test” and “Spearman’s

rho test.” For smaller sample sizes, use Kendall’s Tau and for larger sample sizes

use Spearman’s rho test.

Table 6.15 Effect size

based on Cohen’s d value
d value Effect size

0.01 Negligible

0.20 Small

0.50 Medium

0.80 Large

1.20 Very large

2.0 Huge
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Kendall’s Tau Test

“Kendall’s Tau test” is used to identify associations between two ordinal variables.

The null/alternative hypotheses pair in Kendall’s Tau is stated as:

• H0: the ranks are discordant, i.e., if the rank for observation i of one variable is

larger (or smaller) than the rank for variable jth of that variable, then rank for

observation ith of the other variable should also be smaller (or larger) than the

rank for the observation jth of that variable (i.e., if xi> xj then yi< yj and xi< xj
then yi> yj). In other words, the variables are independent.

• H1: the ranks are concordant, i.e., if the rank for observation ith of one variable is
larger (or smaller) than the rank for variable jth of that variable, then rank for

observation ith of the other variable should also be larger (or smaller) than the

rank for the observation jth of that variable (i.e., if xi> xj then yi> yj and xi< xj
then yi< yj). In other words, the variables are dependent.

There are three Kendall’s Tau tests: Tau-a, Tau-b, and Tau-c. The latter is more

commonly used as it adjusts for ties. Here, we will explain Tau-a. Calculation of

Tau-b is a bit more complicated with adjustments made for the ties. Tau-c is

preferable in situations where the number of ranks in the two variables is unequal.

Overall, manual calculation of Tau tests is a time-consuming effort (especially with

large sample sizes), and we recommend using computers for this task as most

statistical software can calculate all three Tau tests.

Tau-a statistic is given by

τa ¼ Number of concordant pairs� number of discordant pairs

Number of concordant pairsþ number of discordant pairs
ð6:40Þ

In Tau-a calculation, tied pairs are ignored as they are neither concordant nor

discordant.

Tau, like Pearson’s correlation, has values between �1 and 1 with 0 showing no

association, �1 showing perfect negative correlation, and 1 showing perfect posi-

tive correlation. In order to test for significance, for smaller sample sizes, the Tau

critical value tables can be consulted; if the calculated Tau is greater than the

corresponding value for significance level and sample size (number of pairs), then

reject the null hypothesis.

Example 6.9

Q: Table 6.16 shows the pathologic stage and nuclear grade of six breast cancer

cases. Is pathologic stage dependent on nuclear grade? Critical value for Tau for

this example is 0.733.

A: Table 6.17 shows the number of concordant and discordant pairs as we move

down the ranks. Remember for each nuclear grade rank we should consider all

ranks larger than that rank and check if the corresponding pathologic stage ranks are

concordant or discordant (ties are counted only once).
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Now, we can calculate the Tau-a:

τa ¼ Number of concordant pairs� number of discordant pairs

Number of concordant pairsþ number of discordant pairs
¼ 5� 1

5þ 1
¼ 4

6

¼ 0:667

ð6:41Þ
Since 0.667 is less than the cutoff (0.733), then we cannot reject the null

hypothesis.

Spearman’s Rho Test

Spearman’s rho test is equivalent of Pearson’s correlation coefficient for ordinal

variables. In fact, Spearman’s rho is also the non-parametric alternative of

Pearson’s correlation, which can be used in situations where the distribution of

the two continuous variables is unknown or non-normal.

The Spearman’s rho test like the Kendall’s Tau test tests for dependence of two

ordinal variables. However, where the Tau test counted the number of the concor-

dant and discordant pairs, the Spearman’s rho test is a measure of differences

between assigned ranks. In this test, the first variable is ordered from smallest

rank to largest rank (xi), and then the difference between the corresponding rank of

the second variable with the rank of the first variable is calculated (di¼ xi� yi). The
next step is to calculate the sum of the squared differences (

P
d2i ).

Table 6.16 Table of

nuclear grade of breast

cancer versus pathologic

stage

Sample number Nuclear grade Pathologic stage

1 I I

2 II I

3 II II

4 III III

5 III IV

6 III IV

Table 6.17 Counting of concordant and discordant pairs for Example 6.9

Sample number Nuclear grade Pathologic stage Concordant pairs Discordant pairs

1 I I 2 [(II,II), (III, III)] 1 [(II,I)]

2 II I 2 [(II,II), (III,III)] 0

3 II II Ignored tie

4 III III 1 [(III,III)] 0

5 III IV Ignored tie

6 III IV Ignored tie

Total 5 1
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Now, the Spearman’s rho is given by

ρs ¼ 1� 6
P

d2i
n n2 � 1ð Þ ð6:42Þ

In order to test for significance, a t-value can be calculated from the rho

statistics; this t-value follows a student’s t-distribution with n�2 degrees of free-

dom under the null hypothesis.

t ¼ ρs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� ρs2

s
ð6:43Þ

Note that in the above formula for Spearman’s rho, ties are not tolerated and the

ranks should all be distinct integers [21, 22].

Example 6.10
Q: Two pathologists have ranked their preference for using immunohistochemistry

or special stains in workup of renal cancers. Their rankings are given in Table 6.18.

Are the two rankings dependent? The significance level for the corresponding

t-value is 1.860.

A: The differences and squared differences of the ranks are shown in Table 6.19.

The rho value can be calculated as

ρs ¼ 1� 6
P

d2i
n n2 � 1ð Þ ¼ 1� 6� 28

10 100� 1ð Þ ffi 1� 0:17 ¼ 0:83 ð6:44Þ

The corresponding t-value for this rho is

t ¼ ρs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� ρs2

s
¼ 0:83

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

0:3111
ffi 4:21

r
ð6:45Þ

Table 6.18 Rankings of two pathologists for IHC markers for renal cancers

Stain Pathologist 1 preference for IHC Pathologist 2 preference for IHC

CA-IX 1 1

CK7 2 3

CD117 3 6

AMACR 4 4

CD10 5 5

PAX2 6 2

Colloidal iron 7 7

PAX8 8 8

RCC 9 10

TFE3 10 9
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Since 4.21 is larger than 1.860, then the null hypothesis is rejected, and we can

say that the rankings of the two pathologists are similar (dependent). In fact, the

calculated p-value is 0.0029.

Summary

In this chapter, we provided an overview of the commonly used statistical tests for

continuous and ordinal variables. The choice of these tests depends on the null/

alternative hypotheses pair as well as the nature of the data being tested. Remember

that parametric tests while more powerful make assumptions about the data; if these

assumptions are not met, then the results of a parametric test may be misleading.

Non-parametric tests, on the other hand, make much less assumptions about the

data but suffer from lower statistical power. Table 6.20 provides a summary of tests

introduced in this chapter.

Table 6.19 Corresponding differencesand squared differences in ranking for Example 6.10

Stain Pathologist 1 preference for IHC

Pathologist 2

preference for IHC di d2i
CA-IX 1 1 0 0

CK7 2 3 -1 1

CD117 3 6 -3 9

AMACR 4 4 0 0

CD10 5 5 0 0

PAX2 6 2 4 16

Colloidal iron 7 7 0 0

PAX8 8 8 0 0

RCC 9 10 -1 1

TFE3 10 9 1 1

Total 28

Table 6.20 Summary of statistical tests in this chapter

Parametric Non-parametric Examples

One-

sample

t-test

One-sample

Wilcoxon

Is the mean of our sample equal to a hypothetical mean?

Two-

sample

t-test

Mann-Whitney

U test

Are the liver function test results for patients with chronic

viral hepatitis different from patients with autoimmune

hepatitis?

One-way

ANOVA

Kruskal-Wallis

test

Are the liver function test results different between patients

with acute viral hepatitis, chronic viral hepatitis, and

autoimmune hepatitis?
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Multivariate Analysis 7

Introduction

Thus far, we have been dealing with statistical tests that can handle two variables.

This includes regression of two continuous variables or test of independence for

two categorical variables. There are many situations, however, where we deal with

multiple variables, and we want to understand their contribution to a desired

outcome [1]. In pathology and laboratory medicine, this is commonly encountered

in the form of multiple risks/hazards/exposures and an outcome like disease status.

In these situations, one-by-one comparison (univariate analysis) between input

variables and the response variables is problematic as we will explain below. In

such situations, we can use another class of statistics called multivariate statistics.

Another goal in pathology and laboratory medicine is to create diagnostic/

prognostic models. As our field has expanded, we now have a battery of tests at

our disposal that can help in diagnosing patients. However, interpreting these tests

at the same time and coming to a single conclusion about the patient can be difficult.

In these situations, decision-making tools and criteria are helpful. One of the ways

for creating such criteria is to apply multivariate statistics.

Thus, there are two advantages in running multivariate statistics. One is to create

predictive models that can summarize multiple independent variables and allow the

summary metric to be used for diagnostic/prognostic purposes. For example, the

relation of mutational status which is composed of multiple genes with prognosis

can be summarized in a single summary metric. Another advantage is to account for

confounding factors.

When running statistical tests, there are variables or factors that correlate with

the dependent variable and the independent variable, thus making the correlation

and relation between the independent and dependent confounded. Ideally, in design

of the studies, confounding factors should be identified and controlled using

random sampling and stratification. Unfortunately, it is difficult to account for all

confounding factors in trial design; hence multivariate statistical tests allow us to

explain the remaining confounding factors and understand the true effect between
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an independent variable and a dependent variable. For example, in calculation of

glomerular filtration rate (GFR), we know that there is a correlation between serum

creatinine and GFR; however, this correlation is affected by age, gender, and race.

Thus, to calculate GFR using serum creatinine, adjustments are required. These

adjustments can be made with the help of multivariate statistics.

As we pointed out, an alternative to multivariate statistics is to stratify the data

and run the univariate analysis in each stratum. For example, we can compare the

data in women and men separately. However, as we mentioned in the previous

chapters, running multiple comparisons increases the chance of type I error,

furthermore by dividing the sample into strata each stratum will have smaller

sample size. Thus too many strata will lead to diminished statistical power. For

all these reasons, multivariate analysis is often a more viable option.

Here we will talk about “generalized linear models.” Unlike previous chapters,

we will not provide in depth explanation of the solutions used for calculating these

statistical tests as they require advanced understanding of mathematical notation,

and, in reality, hardly anyone attempts to solve these equations without the aid of

statistical software. Instead, in this chapter, we focus on providing an understanding

of the concepts for each test, provide guidance on the appropriate context for each

test, and helping you to interpret the results of these statistical tests.

Generalized Linear Model

The most common way to fit one (or more) variables to another variable and

determine association or create predictive models is to create a linear regression

model. The assumption of the linear regression model is that the response or

dependent variable should be a continuous variable with a normal distribution.

The linear regression creates a linear predictor model where the value of the

response variable (Y ) is predicted by the input variables (Xk). Each input variable

in the model has a corresponding regression coefficient (β), which is the amount of

change in the response variable if the corresponding input variable changes one unit

and all other input variables are constant.

Generalized linear models expand the concept of linear regression to continuous

and non-continuous response variables like nominal or ordinal variables. There are

different categories of generalized linear functions including linear regression,

logistic regression, and Poisson regression. The models with non-continuous

response variables use “link functions” as proxies for the response variable.

These link functions are commonly the logarithm of the odds of the response

variable (called logit functions). The advantage of the logit functions is that they

are continuous variables with near normal distribution and thus can be used for

fitting models just as in linear regression [2].

We introduced the concept of linear regression for two variables in Chap. 4. Here

we will explain multiple regression analysis (i.e., regression between multiple input

variables and a single response variable). We will also talk about logistic regression

and introduce different types of logistic regression.
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Multiple Regression Analysis

We learned in Chap. 4 that we can form a regression line between an independent

and dependent continuous variable pair. This regression line can also tell us about

the correlation of the two variables. This regression and correlation are fundamental

principle of many analyzers used in pathology where an indirect or proxy measure

with high correlation with the true analyte level is used for measuring that analyte.

There are situations where the dependent variable is affected by multiple

independent input variables, i.e., we want to model the relationship between a

dependent variable (Y ) with multiple predictors (Xk). The input variables can be

continuous or categorical. For categorical variables, they must be recoded into a

“dummy variable” or “indicator variable,” i.e., for each category, a number should

be assigned (for binary variables, a value of 0 and 1 should be assigned).

In biology and medicine, the relation between the predictors and outcome is

hardly deterministic, i.e., the predictors can give an approximation of the dependent

variable with an associated degree of error. The “multiple regression analysis” (also

known as multiple linear regression) allows us to devise a general additive linear

model that correlates a dependent variable to multiple input variables. This linear

predictor function can be stated as

Y ¼ β0 þ β1x1 þ β2x2 þ . . .þ βkxk þ ε, ð7:1Þ
where β0 (alternatively called α) is the intercept of the model. βk is the regression
coefficient for each input variable and ε is the error. The assumption in these models

is that the error is normally distributed with a mean value of 0.

The standard deviation of error (σ) will also be the standard deviation of the

dependent variable for fixed values of input variables (as summarized in Eq. 7.18 in

Chap. 4). If the standard deviation of error is large, then the confidence interval for

Y will also be large. As the standard deviation of error decreases, the confidence

interval for Y also narrows. The regression function essentially provides the mean

predicted value of Y for any set of values for input variables (in fact, comparison of

the predicted values with the observed values of Y allows us to check for goodness

of fit of the model).

The coefficient of regressions can be shown in plots as well. For input variable xk
if all the other variables are considered as constants, then the regression coefficient

is the slope of the plot of xk versus Y (Fig. 7.1). The intercept is the value of Y if all

the predictors are set to 0.

Model fitting in multiple regression analysis is like simple linear regression. The

simplest method involves using ordinary least squares (OLS) principle to estimate

the regression coefficients. This principle is based on minimizing the sum of

squared deviation of the model from the observed values. For each observation,

we have an observed dependent variable value; the model also predicts a value for

the dependent variable by estimating the value from the input variables. The

difference between the two values is the residual of the model at each point. An

ideal model will have the smallest sum of residuals. This can be stated as
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Q ¼
Xn
i¼1

yi � β0 þ β1x1i þ β2x2i þ . . .þ βkxkið Þð Þ2, ð7:2Þ

The regression coefficients for the model are ones that allow for the above sum

to be minimized. This essentially means solving k þ 1 equations with k þ 1

unknowns (in this case the intercept and the regression coefficients). Statistical

software follow solutions similar to what was discussed in Chap. 4 for solving this

problem. It mainly involves deriving the normal equations for the predictor function

and inverting the matrix of the resultant normal equations and using this matrix for

solving the equations.

After running a multiple regression analysis in a statistical software, a table like

Table 7.1 will be provided which summarizes the parameter estimates.

In this table, the first row (sometimes last row) will be the intercept of the model.

Subsequent rows will be the predictors of the model. Commonly, the first column

will have the regression coefficients for each variable and the second column will

contain the corresponding standard error of the regression coefficient. This essen-

tially is an estimate of the variability of the regression coefficient (as the sample

size increases, the standard error of the coefficients will be smaller).

The third column in this table usually is a test statistic that allows us to determine

if the input variable is a statistically significant predictor of the dependent variable.

A commonly used statistic is the t-value. This value is ratio of the regression

coefficient and its standard error:

Fig. 7.1 The plots for regression coefficients for the predictor function: Y¼ 2þ 0.2x1þ 0.6x2.
The left panel shows the plot for the first input variable and the right panel shows the plot for the
second input variable versus the response variable while the other variable is constant (and set to 0)

Table 7.1 Table of

parameter estimates for

multiple regression

analysis

Input variable B SEB T p� value

Intercept B0 SEB0 T0 p� value0

x1 B1 SEB1 T1 p� value1

x2 B2 SEB2 T2 p� value2

. . . . . . . . . . . . . . .

xk Bk SEBk Tk p� valuek
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t ¼ Bk

SEBk
, ð7:3Þ

t-value follows the t-distribution; simple interpretation of t-value will be that if

t-value is larger than the corresponding cutoff for a significance level of 0.05 or

alternatively if the 95% confidence interval of the regression coefficient excludes

0, then we can say that input variable is a predictor of the dependent variable (i.e.,

the null hypothesis that the regression coefficient for that input variable is 0 is

rejected). The corresponding p-value for the t-test is shown in the next column

[3, 4].

Assessing Utility of the Fitted Model

The next question to ask is how good the predictor function fits the observed data.

Assessing the goodness of fit is done using the R2 statistics. The “R-squared” is also

known as the “coefficient of determination.” This statistic determines the propor-

tion of the variability in the dependent variable that is explained from the indepen-

dent variable(s). For simple linear regressions with intercept, the r-squared statistic

is the square of the correlation coefficient (r2). For multiple correlations, the R2 is

the sum of all correlation coefficients adjusted for correlations between the input

variables. R2 statistic can have values between 0 and 1. As the statistic nears one,

the prediction power of the model increases, with 1 being the perfect score

(meaning that all the variations in the response variable are explained by the

input variable).

The calculation of R-squared is done through calculation of the “residual sum of

squares” (SSresidual) and “total sum of squares” (SStotal) as discussed in Chap. 4,

Eq. 4.19:

SStotal ¼
Xn
i¼1

yi � �yð Þ2, ð7:4Þ

SSresidual ¼
Xn
i¼1

yi � yi predicted

� �2

, ð7:5Þ

where �y is the mean of the observed values of the dependent variable. This equation

has (n� (kþ 1)) degrees of freedom, where n is the sample size and k is the number

of input variables.

Now a measure called “R-squared (R2)” can be calculated that will have a

perfect score of 1 (showing a perfect model) and minimum score of 0:

R2 ¼ 1� SSresidual
SStotal

, ð7:6Þ
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This test essentially means if the total deviance of the predicted model is small

compared to the variation of the observed values of Y, then the model predictions

are good.

The problem with R-squared is that, if you increase the number of predictors in

the model, R-squared invariably increases as the model has more ways to fit the

data. Yet when the model is tested on another sample, the model’s prediction will

not be accurate. Because of this, it is advisable to use “adjusted R-squared”

statistics to assess the model’s fit.

Adjusted R2 ¼ 1� n� 1

n� k þ 1ð Þ
� �

� SSresidual
SStotal

� �
, ð7:7Þ

F-Test

Multiple regression creates a model with the estimated linear function that predicts

the dependent variable. The assumption is that all the dependent variables are at

least predicted by one of the independent input variables, i.e., at least one of the

regression coefficients should be non-zero. This can be stated as a null/alternative

hypotheses pair and then tested:

• H0: All the regression coefficients are zero, i.e., there is no relationship between

the dependent variable and the input variables (B1¼B2¼ . . .¼Bi¼ 0).

• H1: At least one of the regression coefficients is non-zero. (i.e., model’s predic-

tion with inclusion of at least one predictor is superior to prediction using only

the intercept).

This hypothesis can be tested using the “F-test”. This test is similar to ANOVA

and compares the explained and unexplained variance in the data. The test statistic

can be derived from the R-squared measure:

F ¼
R2
�

k

1�R2ð Þ�
n� kþ1ð Þð Þ,

ð7:8Þ

The test statistics follows an upper-tailed F-distribution (i.e., significance means

that the model’s prediction with predictors is better than the intercept only model)

with df1 of k degrees and df2 of (n�(kþ 1)) degrees. If the test is significant (i.e., p-
value is less than alpha), then we can reject the null hypothesis and state that a

model can be fitted to data and that there is at least one predictor in the model.

Example 7.1

A study has been done to understand the predictors of glomerular filtration rate

(GFR) or its equivalent creatinine clearance. In the study, creatinine clearance

(response variable), age, weight, gender, and serum creatinine levels (input

variables) are measured in 20 individuals. The results of the study have been
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summarized in Table 7.2. Note that the gender (male/female) has been altered into

an indicator function (male, 0; female, 1).

We have run a multiple regression analysis to determine whether age, weight,

gender, and serum creatinine are predictors of creatinine clearance or not. The

parameter estimates are summarized in Table 7.3.

The results show that all the calculated regression coefficients for the input

variables are significant (i.e., they do not include 0 in their confidence interval). The

linear function for the prediction model can be written as

GFR ¼ 95:17� 26:17 serum creatinineð Þ þ 0:526 weightð Þ � 0:526 Ageð Þ
� 13:356 if femaleð Þ, ð7:9Þ

Table 7.2 The results for the study in Example 7.1

Sample

number

Serum creatinine

(mg/dL)

Weight

(kg)

Age

(years)

Gender

indicator

GFR

(mL/minute)

1 1.0 60 25 0 94

2 1.0 62 40 0 88

3 1.3 70 56 0 62

4 2.0 80 60 0 44

5 2.0 73 72 0 33

6 1.6 90 53 0 68

7 1.2 58 40 0 66

8 3.0 65 76 0 16

9 2.5 120 30 0 73

10 2.5 74 60 0 32

11 2.0 80 60 1 38

12 2.0 66 31 1 43

13 1.0 66 70 1 55

14 3.5 110 41 1 37

15 1.9 58 34 1 38

16 1.7 66 21 1 56

17 1.2 55 51 1 48

18 2.0 43 70 1 20

19 1.5 45 30 1 39

20 2.5 61 60 1 24

Table 7.3 The parameter

estimates for multiple

regression analysis of

Table 7.2

Parameter B Std. error t Sig.

Intercept 95.172 1.076 88.468 .000

Serum creatinine �26.317 .461 �57.095 .000

Weight .526 .016 33.875 .000

Age �.562 .013 �42.909 .000

Gender ¼ female �13.356 .480 �27.838 .000
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This predictor function is similar to the Cockcroft-Gault Formula used in

calculating GFR in patients. In fact, that formula was devised using a similar

statistical approach.

The R-squared measure for the model is 0.912 with adjusted R-squared of 0.911.

This shows that the model is a very good fit of the creatinine clearance with small

residuals. The F-test for the model returns a value of 38.85 with df1 of 4 and df2 of

15; this translates to a p-value of ~0.000, i.e., the model can be fitted into the data.

Residual Plots

Some of the measures of regression analysis can be plotted in what are known as the

“residual plots.” Among them “residual versus fit” plots are more important.

Residuals versus fit graph plots the residuals (Y-axis) for each fitted (predicted)

value (X-axis). Preferably, the points should fall randomly on both sides of 0. The

points should not have any recognizable patterns or fall on one side of the 0 line.

Outlier points are immediately recognizable in the plot and show that some of the

observations vary considerably from the predicted model. Also, patterns like

fanning of the points show that the variance is not constant throughout the model.

If any patterns are identified, then they should be investigated and the model

adjusted accordingly (e.g., outliers may indicate measurement or sampling error).

Figure 7.2 shows the residual versus fit plot for Example 7.1.

Fig. 7.2 The residual versus fits plot for Example 7.1. The points show no recognizable pattern

and fall on both sides of the 0
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Interaction and Collinearity

The assumption of linear regression is that the input variables are independent, i.e.,

they do not correlate with each other or the correlation of one variable with the

dependent variable is not affected by another of the input variables. The first

argument of independence can be restated as lack of collinearity and the second

argument can be stated as lack of interaction.

“Interaction” occurs if the changes in the dependent variable are affected not

only by an additive linear function (e.g., Y¼ β0 + β1x1 + β2x2) but also by multipli-

cative interaction between the input variables (e.g., Y¼ β0 + β1x1 + β2x2 + β3x1x2).
Thus, if any interaction exists, multiple linear regression model will not explain all

the variability in data and lead to underestimation of the effect of the predictors on

the dependent variables.

If an interaction is known to exist between the input variables, then alternative

model fitting processes like higher-order models should be used (e.g., a full

quadratic model can be used for a model with two variables assuming full interac-

tion between the predictors (i.e., each variable with itself as well as the two

variables with each other)). Alternatively, all possible interactions can be formed

and entered into a linear regression model (this will only work for small number of

predictors) to check if any of the interactions have a significant regression

coefficient.

Generally, it is advisable that, if an interaction is suspected, the data is tested for

interaction. Most statistical software have options for checking for interaction.

These tests are usually stated as either “R-squared change” or “F-test change.”

Simply stated, the software iteratively adds possible interaction terms and at each

step checks for changes in either R-squared measure or the F-value. If the changes

in these statistics are statistically significant from one iteration to the other, it shows

that the interaction term should be incorporated into the prediction model.

Collinearity occurs when one input variable has significant correlation with

another variable. For example, weight and body mass index are significantly

correlated. In general, collinear variables should not be included in the model

simultaneously and inclusion of one should exclude the other. While, the overall

prediction model may remain valid, the individual weight (coefficient) given to

predictors may be erroneous and lead to misinterpretation of the relation of the

predictor with the outcome. Despite the tolerance of overall model to collinearity,

multicollinearity can lead to decrease in model fit and should be avoided in

regression analysis. Statistical software can calculate a measure known as the

“variance inflation factor” (VIF) which is the inverse of the percent of variance in

the predictor that cannot be accounted for by the other predictors; hence large

values indicate that a predictor is redundant and can be excluded from the model

(VIF values of more than 10 should prompt you to investigate that predictor and

perhaps leave it out of the model).
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Logistic Regression

“Logistic regression” is a predictive model that predicts the relation of the indepen-

dent variables to a dependent variable: this dependent variable is either a nominal or

ordinal variable with distinct categories. If the dependent variable has only two

categories, then the model is called a “binary logistic regression.” For categorical

dependent variables with more than two responses, a “multinomial regression” is

used, and finally for ordinal variables, “ordinal regression” is used. Logistic regres-

sion in fact is a generalized linear model with binomial response [5].

Binary Logistic Regression

There are situations when we want to determine a binary outcome based on multiple

inputs. A common example in pathology is when multiple tests, inputs, or criteria

are used to predict whether the patient has a disease or not. For example,

combinations of size, nuclear grade, mitotic activity, invasion, and architectural

patterns are used for histopathologic diagnosis of many cancers. The design of such

criteria is a crucial aspect of anatomic pathology and allows for reproducibility of

diagnosis between different pathologists. In these situations, “binary logistic regres-

sion” can be used for modeling the data.

The input variables in binary logistic regression are also known as explanatory

variables. These can be used to estimate probability of one of the two events of the

binary response variable, e.g., combining multiple variables in order to determine if

cancer is present. Binary logistic regression is also useful in finding the relation of a

continuous independent variable and a binary categorical response variable. For

example, we can use binary logistic regression to determine the correlation of level

of serum procalcitonin with presence of sepsis.

For a single explanatory variable (x) and a binary response variable (y), the
logistic regression can be expressed as

y ¼ 1 β0 þ β1xþ ε > 0

0 else

�
, ð7:10Þ

where β0 (sometimes written as a) is a constant and is the intercept of the model. β1
is the “regression coefficient” and ε is the error. The purpose for running logistic

regression is to determine the constant and the coefficient.

Regression analysis using multiple explanatory variables is an extension of the

above expression:

y ¼ 1 β0 þ β1x1 þ β2x2 þ . . .þ βixi þ ε > 0

0 else
;

�
ð7:11Þ

Logistic regression is based on the “standard logistic function,” which is an

S-shaped probability distribution. In standard logistic function, the input (t) is a real
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number that can take any value from -1 to 1, yet the output (σ(t)) will always
assume a value between 0 and 1. The formula for the standard logistic function is

σ tð Þ ¼ 1

1þ e�t
, ð7:12Þ

The input for the logistic function can be a function as well. For logistic

regression, we can use β0 + β1x as the input and we can rewrite the formula as

F xð Þ ¼ 1

1þ e� β0þβ1xð Þ , ð7:13Þ

As the F(x) can only assume values between 0 and 1, we can treat this value as a

probability; in fact, this is the probability of the response event occurring given the

input value (e.g., the probability of a patient having sepsis given the value of the

serum concentration of procalcitonin).

The “logit function” (g) of the above expression is equal to the linear regression

expression:

g F xð Þð Þ ¼ ln
F xð Þ

1� F xð Þ ¼ β0 þ β1x, ð7:14Þ

The reasons for this transformation is that the logit function, unlike the proba-

bility expression, is not bound by the limits 0 and 1 and can assume any value

between -1 and1. Furthermore, logit function is a linear expression that is easier

to discover and interpret. Finally, the logit function can be exponentiated to give the

odds; the odds of the response event occurring given the input variable will be:

Odds ¼ Exp
�
g F xð Þð Þ ¼ F xð Þ

1� F xð Þ ¼ eβ0þβ1x ð7:15Þ

The regression coefficients can be estimated using the “maximum likelihood

estimator.” In general, there are no perfect solutions to this equation, and this model

tests different estimates generated by iterative algorithms (either Newton-Raphson

or iteratively reweighted least squares) to find the best estimates of the coefficients.

Thankfully, with advents of statistical software, this process is done by computers.

The calculation of coefficients is beyond the scope of this book.

Let us explore regression coefficients further. β0, as we said, is the intercept, and
it can be stated as the odds that the response event occurs if all the input variables

are zero. βi is the coefficient for input variable xi, and the odds of the response

variable change by βixi for changes in the input variable. If the βi> 0, then as xi
increases the odds of response event increase, and conversely if βi< 0, then as xi
increases the odds of response event decrease.
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Example 7.2

Q: A study was done in order to determine the utility of serum procalcitonin levels

(pct) in detection of sepsis (sep). The following logit expression is the result of the

study. Interpret the regression coefficients. If a patient has a procalcitonin level of

25 μg/L, calculate the odds and probability of that patient having sepsis.

g sepð Þ ¼ �2:7þ 0:15 pctð Þ, ð7:16Þ
A: The β0 is �2.7. This means that the odds of a patient having sepsis if the

procalcitonin level is zero equals:

baseline odds ¼ e�2:7 ffi 0:067, ð7:17Þ
This translates to a probability of 0.062, i.e., even if the procalcitonin level is

undetectable, there is still a 6% chance that the patient has sepsis.

The β1 is 0.15. This means that for every unit increase in procalcitonin level, the

logit function of sepsis increases by 0.15. We can calculate the change in the odds

ratio as well:

Odds Ratio ¼ eβ0þβ1 xþ1ð Þ

eβ0þβ1 xð Þ ¼ eβ1 ¼ e0:15 ffi 1:16, ð7:18Þ

The odds of sepsis for the patient with procalcitonin level of 25 μg/L is given by

Odds sepð Þ ¼ eβ0þβ1x ¼ e�2:71þ0:15 25ð Þ ffi 2:83, ð7:19Þ
The probability of the patient having sepsis is given by

Probability of sepsis ¼ 1

1þ e� �2:71þ0:15 25ð Þð Þ ffi 0:74, ð7:20Þ

This means that there is a 74% probability that a patient with procalcitonin level

of 25 μg/L has sepsis.

In cases where the input variables are all categorical or ordinal, we can test for

association between the input variables and the response variable using a

chi-squared test as well. However, the chi-squared test will only tell you if the

variables are related and do not provide a predictive result whereby, based on the

input variables (risk), the response can be predicted.

Testing for hypothesis in binary logistic regression is to test if each input

variable contributes to the model. In other words, the null/alternative hypothesis

for each input variable xi can be expressed as:

• H0: The variable does not contribute to the model and has no effect on outcome;

in other words, the regression coefficient of the variable is zero (Bi¼ 0).

• H1: The variable contributes to the model and exerts an effect on outcome; in

other words, the regression coefficient of the variable is non-zero (Bi 6¼ 0).
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The basis for hypothesis testing is that the distribution of estimates for the

regression coefficient produced by the maximum likelihood estimator follows a

(near) normal distribution. Thus, we can simply say that if the 95% confidence

interval of the estimated regression coefficient does not contain 0, then we have

rejected the null hypothesis with a significance level of 0.05.

This testing is either done using the “Wald test” or the “likelihood ratio test.”

Here, we will explain the Wald test as the latter is computationally intensive (the

likelihood ratio test, however, is considered more robust).

Wald test is the ratio of the squared regression coefficient to the squared standard

error of the coefficient regression:

Wi ¼ B2
i

SE

2

Bi

, ð7:21Þ

The standard error of the coefficient of regression can also be extracted from the

maximum likelihood estimator. Wald statistics follows a chi-squared distribution

with one degree of freedom. Thus, if the Wald statistics is greater than 3.84 (for

significance level of 0.05), then we can reject the null hypothesis.

Binary logistic regression for multiple input variables can be performed using

the likelihood ratio test or Wald test. It must be noted that choosing input variables

should be based on possible causality as random pairings may sometimes lead to

incorrect models. The model can be run in a stepwise hierarchical method or with

all input variables entered at the same time. The latter choice is often better since it

can provide a better model as well as provide meaningful statistical significance

information about each variable. In the stepwise approach, input variables are

added (or removed) one by one with model’s prediction power estimated at each

step, and improvements in the prediction power are then attributed to the input

variable changed.

Statistical software usually provides a summary table after running binary

logistic regression (Table 7.4). These tables usually include information such as

intercept, B coefficient, Wald score (or likelihood ratio score), significance levels,

and odds for each input variable (B coefficient exponentiated) [6, 7].

Table 7.4 Parameter estimates table for binary logistic regression

Input variable B SEB W p� value Odds (Exp(B))

x1 B1 SEB1 W1 p� value1 eB1

x2 B2 SEB2 W2 p� value2 eB2

. . . . . . . . . . . . . . . . . .

xi Bi SEBi Wi p� valuei eBi

Constant B0 SEB0 W0 p� value0 eB0
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Example 7.3

Q: In a study the association of mutations in three genes in endometrial tissue with

occurrence of endometrial cancer is evaluated. Table 7.5 provides the summarized

results of the study.

Our goal is to determine the association of these mutations in these genes with

endometrial cancer status. One approach will be to perform three univariate

analyses, one for association of each gene with cancer. Table 7.6 shows the results

of the univariate analyses.

Univariate analysis shows P53 and PIK3CA mutations to be significantly

associated with cancer status. This does not account for the fact that some cases

may have both mutations and the p-values do not reflect this. One way to correct

this is to run stratified chi-squared tests (in this case Fisher’s exact test since the

sample size for each stratum is very small), but there are too many strata, and

sample size in some strata is so small that prevents calculation of test statistic (e.g.,

P53-positive, PTEN-positive, PIK3CA-negative stratum with only 2 cases).

Our other option is to run a binary logistic regression. The results of this

regression are shown in Table 7.7.

Table 7.5 Summary of results for Example 7.3

Cancer

Total

No Yes

Count Count

P53 No PTEN No PIK3CA No 7 3 10

Yes 3 3 6

Yes PIK3CA No 5 2 7

Yes 1 2 3

Yes PTEN No PIK3CA No 4 7 11

Yes 1 7 8

Yes PIK3CA No 0 2 2

Yes 0 3 3

Total 21 29 50

Table 7.6 Univariate

analysis results for

Example 7.3

Gene Chi-squared value p-value

P53 8.489 0.004

PTEN 0.035 0.851

PIK3CA 3.955 0.047

Table 7.7 Binary logistic

regression parameter

estimates for example 7.3

Input variable B SEB W p� value

P53 1.965 0.710 7.658 0.006

PTEN 0.651 0.754 0.746 0.388

PIK3CA 1.267 0.702 3.260 0.071

Constant �1.198 0.604 3.934 0.047
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After running the logistic regression, we can see that only P53 has remained

statistically significant and in fact some of the association of PIK3CA has been

explained away because of co-occurrence of its mutations with mutations of the

other genes.

Goodness of Fit

Binary logistic regression creates a model that predicts the response variable using

the input variables. Consequently, one important piece of information that we need

from the model is how good is the model in predicting the response variable. In

other words, how well do the predictions fit the observed data.

The goodness of fit is usually measured using variations of the R2 statistic. We

previously mentioned how the R-squared statistic is calculated. One major problem

with R-squared statistic for multiple correlations is that it is always additive, i.e., as

you add input variables, the R-squared will increase. Take the above example; if the

model’s R-squared is calculated with intercept, P53, PTEN, and PIK3CA as part of

the model, the R-squared will be higher than a model with only P53 and intercept.

Yet, this increase in R-squared is false since we showed that PTEN and PIK3CA

should not actually be part of the predictive model. For this reason, the adjusted

R-squared statistic is usually used which adjusts the statistic as more variables are

included in the model.

Since binary regression has a binary response, direct calculation of R-squared is

not possible. In binary logistic regression, the goodness of fit is measured using the

following formula:

Dnull � Dfitted ¼ �2 ln
likelihood of the null model

likelihood of the fitted model
, ð7:22Þ

In this calculation, the nominator is the likelihood of the null model which means

the difference in likelihood between the null model (the response variable is only

dependent on the intercept) and a perfect model (saturated model), and the denomi-

nator is the difference in likelihood between the fitted model (with all the input

variables) and the saturated model. This can be used to calculate a pseudo-R-

squared for the model:

Likelihood ratio R2 ¼ Dnull � Dfitted

Dnull

¼ 1� Dfitted

Dnull

, ð7:23Þ

Let us interpret the above equation. If the fitted model is near the perfect model,

it means that the difference between the perfect model and the fitted model is small,

much smaller than the difference between the null model and the perfect model;

thus, the ratio of the differences is close to 0, and consequently, the R-squared will

be close to 1.

Other R-squared values that are usually reported include the “Cox and Snell

R-squared” and “Nagelkerke R-squared.” Interpretation of the Cox and Snell

R-squared is difficult since the value for R-squared even for a perfect fit does not
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reach 1. Statistical software also report p-values with goodness-of-fit statistics. For

the model to fit the observations, the p-value of the R-squared measures should not
be statistically significant.

Multinomial Logistic Regression

In previous section, we evaluated logistic regression with a binary nominal

response. What if the categorical response has multiple responses? For example,

we may wish to categorize a pathologic lesion into three or more diagnostic

categories using a series of input variables. In these situations, we can use “multi-

nomial logistic regression.” For multinomial regression, logistical and loglinear

models can be used. Generally, we recommend using logistical models as they are

easier to interpret and formulate.

Multinomial logistic regression (also known as polytomous logistic regression)

is an extension of the binary logistic regression. The basis of the binary logistic

regression is to calculate the logit function. In binary logistic regression, the logit

function is solitary, i.e., there is only one logit function for the model. In multino-

mial regression with a dependent variable with k number of response categories,

there will be k-1 non-redundant logit functions (out of a total of k(k� 1)/2 possible

logits).

The model predicts that observation i has the outcome k using a linear predictor

function ( f(k, i)) of M input variables. This predictor function can be stated as

f k; ið Þ ¼ B0,k þ B1,kx1, i þ B1,kx1, i þ . . .þ BM,kxM, i þ ε, ð7:24Þ
Thus, an independent variable (xm) will have a separate regression coefficient

(Bm , k) for each response category (Yk). The regression coefficient can be interpreted
as the increase in log odds of falling into category Yk versus all other categories,
resulting from a one-unit increase in the mth covariate (input variable), if other

covariates are constant.

In order to estimate the regression coefficient, an extension of the maximum

likelihood estimator called the “maximum a posteriori” estimation is used, which

provides the best estimates of the coefficient using iterative processes.

There are instances where we can change the multinomial responses into a

sequence of binary choices, and, instead of running a multinomial regression, we

can run k�1 binary logistic regressions. Figure 7.3 shows the multinomial

responses for histopathologic diagnosis of breast lesions in the left panel. The

right panel shows the multinomial response transformed into a sequence of binary

choices. This approach is only useful in instances where the multinomial responses

are sequential. For these models, each input variable will have k-1 regression

coefficients (one for each binary regression).

The multinomial regression provides two useful sets of information: first, the

model will provide the overall association of the independent variables with the

response variable. These are usually calculated using a likelihood ratio test and
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provide the test statistic (chi-squared with appropriate degrees of freedom) and the

corresponding p-value for each independent variable. The second information set

consists of regression coefficients for each independent variable as it pertains to a

response in the multinomial dependent variable.

The goodness of fit is measured usually using either a Pearson chi-squared test or

a deviance test; for both tests, if the resulting chi-square score is less than the

significance level for corresponding degrees of freedom, then it can be said that the

model fits the observations (i.e., no statistically significant difference between the

model and observed data is present). Pseudo-R-squared metrics such as “Cox and

Snell R-squared” and “Nagelkerke R-squared” will also be reported [8].

Example 7.4

A study aims to evaluate three immunohistochemical stains (CyclinD1, ER, and

CK5/6) in diagnosis of intraductal breast lesions (normal, usual ductal hyperplasia

(UDH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS)).

The results of the study are summarized in Table 7.8.

The table provides the regression coefficients for each independent variable for

each category. For example, the regression coefficients for CK5/6, for ADH, DCIS

and UDH, are, respectively, 3.267,3.840 and 0.168. The regression coefficients for

CK5/6 are only significant for DCIS and ADH. Since the input variables are all

categorical with binary responses, the model assigned regression coefficients only

to one of the responses, since the other response is redundant (hence, a regression

coefficient of 0).

Note that the normal response category is missing from the table as it has been

set as the reference response, i.e., the model is designed based on the ability to

distinguish each response category from the normal category. Looking at the UDH

Fig. 7.3 A multinomial variable can be transformed into a sequence of binary variables
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diagnosis, we can see that none of the IHC stains has a significant regression

coefficient, and this essentially means that the model will be ineffective in

separating UDH from normal breast tissue.

The overall significances assigned to each IHC stain based on the likelihood

ratio test are 0.006, 0.499, and 0.001 for CyclinD1, ER, and CK5/6, respectively.

This shows that overall CyclinD1 and CK5/6 are associated with diagnosis.

Ordinal Logistic Regression

“Ordinal logistic regression” also known as ordered logistic regression is a variation

of the multinomial regression that is used when the response variable is ordered. For

example, tumor pathologic stage is an ordered variable, and, if a researcher is

interested in designing a model where a set of input variables can predict the cancer

stage, then an ordinal logistic regression model can be used. While a multinomial

regression can be used is these instances, the ordering information will be lost and

usually the ordering information is important. For example, in case of tumor

staging, different stages of the tumor carry different weights in clinical decision

making, and thus the order of the stages is a very important information.

The ordinal logistic regression makes important assumptions about the data

which is that the orders of the response variable follow “proportional odds.” The

Table 7.9 Parameter estimates from multinomial regression analysis of Example 7.4

Diagnosis B Std. Error Wald Sig. Exp(B)

ADH Intercept .589 1.088 .293 .588

[CyclinD1 ¼ 0] �3.663 1.407 6.779 .009 0.026

[CyclinD1 ¼ 1] 0

[ER ¼ 0] �.331 1.064 0.097 0.756 0.719

[ER ¼ 1] 0

[CK5_6 ¼ 0] 3.267 1.358 5.789 0.016 26.228

[CK5_6 ¼ 1] 0

DCIS Intercept .566 1.131 0.250 0.617

[CyclinD1 ¼ 0] �3.704 1.436 6.655 0.010 0.025

[CyclinD1 ¼ 1] 0

[ER ¼ 0] -1.223 1.109 1.216 0.270 0.294

[ER ¼ 1] 0

[CK5/6 ¼ 0] 3.840 1.426 7.252 .007 46.541

[CK5/6 ¼ 1] 0

UDH Intercept 0.889 0.991 0.806 0.369

[CyclinD1 ¼ 0] �1.411 .999 1.996 0.158 0.244

[CyclinD1 ¼ 1] 0

[ER ¼ 0] 0.313 0.903 0.120 0.729 1.367

[ER ¼ 1] 0

[CK5/6 ¼ 0] 0.168 1.000 .028 .866 1.183

[CK5/6 ¼ 1] 0

Logistic Regression 177



proportional odds assumption means that the relationship between each pair of the

outcome categories is the same, e.g., in context of tumor staging, the relationship of

stage I to stages II, III, and IV is the same as the relationship of the stage II to stages

III and IV. This assumption is fundamental and allows for one set of coefficients to

be calculated for the input variables.

For example, in cancer staging (with four stages and the proportion of cancer

patients in each stage are represented by T1 ,T2 ,T3, and T4), the odds of these stages
must remain proportional, i.e., the number added to log of odds of each stage

compared to higher stages must remain constant:

log
T1 þ T2 þ T3

T4

¼ log
T1 þ T2

T3 þ T4

þ Q ¼ log
T1

T2 þ T3 þ T4

þ 2Q, ð7:25Þ

In fact, it is prudent to either test for this assumption before running an ordered

regression or most commonly check for the assumption as part of the ordered

regression. Many statistical software programs include an option with ordinal

regression to check for the proportional odds assumption (also known as parallel

lines assumption). When the software checks for this assumption, you need the null

hypothesis to be true, i.e., for odds to be proportionally distributed, the p-value for
the parallel lines test should be insignificant.

When the ordered logistic regression is run, statistical software will provide a

table which contains the regression coefficient for each input variable and its

corresponding p-value, as well as threshold levels for the different ranks in the

ordered response variable. These thresholds (cut points) show where the latent

variable (β0 + β1x1 + β2x2þ . . . þ βixi) is cut for each rank of the ordered response

variable.

The goodness of fit of the model is calculated like other regression models, i.e.,

using �2 log likelihood ratio as well as the R-squared statistic [9].

Example 7.5

In a study, the aim is to construct a predictive model based on the modified Bloom-

Richardson score (composed of nuclear, tubular, and mitotic activity scores) to

predict the stage of breast cancer. Each of the input variables can assume values of

1, 2, or 3. The response variable (cancer stage) can assume values of 1, 2, 3, or

4. Table 7.10 summarizes the results of the study.

In order to create a model, we can run an ordered logistic regression, the results

of which are provided in Table 7.11.

In Table 7.11 we see the regression coefficients for nuclei,” “tubules,” and

“mitosis,” as well as their standard errors, the Wald test, p-values, and the

exponents of the coefficients (i.e., odds). The interpretation of these numbers is

similar to what we explained in the binary logistic regression section. Both “nuclei”

and “mitosis” are statistically significant, while “tubules” is not. For example, for

nuclear grade, we can interpret the regression coefficient such that for a one-unit

increase in nuclear grade, we expect a 1.525 increase in the ordered log odds of
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being in a higher cancer stage, if all the other variables in the model remain

constant.

The thresholds are shown at the top of the parameter estimates. Threshold for

going from a stage I cancer to stage II cancer is 4.321, i.e., if the value of the latent

variable reaches 4.321, the stage increases from I to II. Similarly, if the threshold of

6.078 is reached, then the model will increase the stage of the cancer to III.

Internal and External Validity

One of the benefits of regression models is that they can be used to estimate

(or predict) the response variable using the input variables. This is very useful in

pathology where sets of diagnostic and/or prognostic criteria are needed to diagnose

as well as prognosticate the diseases. The use of regression models as diagnostic/

prognostic criteria, however, requires validation of the results.

Linear regression models make important assumptions about data, including

existence of a linear function that can fit the response variable with addition of

predictive variables and the distribution of the results. The first step in validation of

the model is to look at the fit of the model to the data that was used to estimate the

model. This is called, “apparent validation.” Ideally, if a model is to be used as

diagnostic criteria, there needs to be small residuals and high R-squared values. If

the model fit is subpar, then attempts at nonlinear model fitting or introduction of

interactions can be made. However, there might be predictors present that have not

been included in the model (or the study) that could have increased the model’s

efficacy. Thus, a first step would be to identify an acceptable regression model.

In Chap. 4, we introduced the concept of calibration. In regression models,

especially regression models with a response variable that is either continuous or

ordinal or follows a Poisson distribution, calibration can be employed to evaluate

models: the calibration line of the fitted model versus the observed variable should

form a straight line. The slope of the fitted line is equal to the R-squared metric of

the model. Figure 7.4 shows the correlation plot of the fitted model versus the

observations for Example 7.1.

For binary logistic regression, discrimination power of the model is of more

concern. The discrimination power can be shown using a receiver operating

Table 7.11 Parameter estimates from ordinal regression analysis for Example 7.5

Estimate Std. error Wald df Sig.

Threshold [Stage ¼ 1.00] 4.321 1.341 10.374 1 0.001

[Stage ¼ 2.00] 6.078 1.525 15.891 1 0.000

[Stage ¼ 3.00] 7.737 1.707 20.540 1 0.000

Location Nuclei 1.525 0.501 9.246 1 0.002

Tubules 0.434 0.451 .926 1 0.336

Mitosis 1.165 0.458 6.461 1 0.011
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characteristics (ROC) curve. The logit values for each observation can be used to

construct a ROC curve. Larger area under curve (AUC) indicates a better fit of the

model to the observed values, i.e., the combined sensitivity and specificity of the

model will be higher. Figure 7.5 shows the ROC curve for Example 7.3.

In the end, even the best fit models have been designed to fit the currently

observed data that was included in the design of the model. Thus, if a model was

found which fitted the data, then you would expect the model to pass the apparent

validity step. The real test of a model validity is to check for “internal” and

“external validity.” In fact, many models with apparent validity will later fail the

external validity step. Factors such as randomization, large study sample, and

controlling for bias can boost the chances of a model passing the validation step.

Internal validity refers to testing the model in new data drawn from the observed

population, i.e., the observations are randomly (or sometimes non-randomly)

divided into two or more blocks with one block for designing (training) and creating

the regression model and the rest of the blocks for testing (validating) the predicted

model. Internal validation should show the test data to have a prediction perfor-

mance as good as (or near) the performance of the model for the design

(training) data.

The simplest method for internal validation is a “split-sample method.” In split-

sample method, the observations are are divided into development and validation

datasets either randomly or using a variable not in the model. The model is

estimated using the development sample and then it is tested on the validation

sample. If the predictions of the model for the validation dataset matches the

observations of the validation sample, then we can claim internal validity of the

model. This approach, however, is the least robust of the internal validation

Fig. 7.5 ROC curve for Example 7.3. The area under curve is 0.778
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methods, especially since only part of the data is used for model development

decreasing its overall accuracy (unless the sample is large).

An alternative approach is the “cross-validation method,” whereby the training

and testing datasets are alternated, i.e., a subset is used for developing the model

and then the model is tested on the other subset(s), and then the other subset is used

for developing a model and the model is tested on the remaining data. In the end, the

estimated model that has the best fit (or an average of calculated regression

coefficients is used to calculate the final regression coefficient) is chosen as the

internally valid model for the data. Common cross-validation methods include

k-fold cross-validation where the sample is broken into k subsets; one subset is

used for validation and the remaining subsets are used for developing data, and this

process is iterated k times, each time a different subset being chosen as the

validation sample. Common number for subsets is 10, but researcher may choose

different numbers based on the data they have.

An extreme form of cross-validation is called “leave-one-out-approach.” In this

method, all the samples minus one are used for estimating the model, and that

model is tested on the left-out sample, and this is then repeated for each observation

(each observation gets to sit out from the development once).

The best approach to internal validation, however, is “bootstrapping.” While in

cross-validation and split-sample methods, the sample chosen for development or

validation is not replaced and the data is effectively split into two or many parts, in

bootstrapping, the sample chosen for development is drawn with replacement. This

essentially means that one patient can be drawn for model development sample up

to N times (with N being the sample size) because bootstrapping is done with

replacement. Each time a sample is drawn and a model is fitted. This process is

repeated many times (at least 100 times) until a stable regression model emerges.

The final model (which is a combination of all iterations) is then validated using the

entirety of the original sample (with each observation only represented once).

Bootstrapping is a robust approach to model estimation and internal validation

and it is highly recommended in design of diagnostic/prognostic criteria.

True validation of the model can only be achieved through testing the model on

new data (i.e., new patients). This is the concept behind external validation: to use a

new set of observations, a separate study setup for the validation of the model is

needed. A perfect validation would show the model estimations of the external

validation data to be as good as the estimations for the internal validation data.

External validation can be in the form of temporal validation, whereby the same

researchers use data obtained at a different time from the original observations to

validate their model. It can also have a spatial validation form, where the same

investigators validate their model in a different setting (perhaps another laboratory

or hospital). The best form of external validation, however, is the fully external

form, where a different set of investigators in other centers validate the results. It is

recommended that the sample size for external validations studies is at least as large

as the original study.

The external validation is relatively simple once the new data is obtained. For

binary dependent variables, a 2 � 2 contingency table can be formed, and false
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negative, false positive, true negative, and true positive rates can be determined,

and the specificity and sensitivity of the model should be recalculated. Measures of

agreement such as Kappa coefficient can determine whether the model should be

validated based on the new data or not. For continuous dependent variables,

correlation tests can be used with the model expected to have high positive

correlation with the new observations [10–12].

Summary

As pathologists, we employ many criteria in diagnosing pathologic conditions.

Some of these criteria are arbitrarily set by expert panels which may sometimes

lack clinical relevance. However, many criteria are designed using statistical

methods that combine several observations and form models that can help deter-

mine disease states, measure physiologic or functional status of the patient, or

predict prognosis. Many of these criteria are designed using generalized linear

models (GLMs). As such, the knowledge of GLM not only allows you to better

understand how criteria that you use were designed but also guide you in designing

models of your own.

Here we introduced you to more commonly used GLMs including binary logistic

regression, multinomial regression, ordinal regression, and multiple linear regres-

sion. For each we discussed how a model is designed and what are the parameters of

a model. In the last section, we briefly explained the concept of validation which is

essential if a model is to become clinically applicable.
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Imputation and Missing Data 8

Introduction

Many statistical tests assume that the dataset is complete and the variables don’t

have missing values. The presence of missing data is a big challenge, especially if

the distribution of the missing values is not completely random. For example, if a

point-of-care device can measure blood glucose concentration, but cannot return

values higher than 400 mg/dL, then any sample with a blood glucose of more than

400 mg/dL will be returned as missing or as an error term; in this case running

statistical tests on the results, while ignoring the missing values introduces a

considerable bias into the data that can lead to wrong interpretation of the data.

Missing data is a common occurrence in the field of pathology and laboratory

medicine as most analyzers have multiple points of failure which can lead to errors

or measurement failures. This is usually offset by repeat measurements or use of

backup analyzers. However, there are still situations where datasets have missing

data, and dealing with missing data is a necessary skill for a pathologist.

There are different solutions for dealing with missing data. They can be as

simple as dropping the observation with missing data to more complex solutions

such as “imputing” the missing data. In this chapter, we will explain some of these

solutions [1].

Missing Data

A general definition for missing data is a variable for an observation that has no

value assigned. In other words, the cell for the variable for that observation is either

empty or contains terms such as N/A, missing, or so on.

Missing data may occur because of a general unresponsiveness of the observa-

tion or subject. For example, a clotted blood sample from a patient can lead to a

general unresponsiveness where multiple tests on the clotted sample may fail to

return values or when the genomic material extracted from a paraffin-embedded
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material is degraded to an extent that many genomic studies may fail. In laboratory

medicine and as part of preanalytical checks, general unresponsiveness is rare as

such samples or observations will be filtered out with a repeat sample being tested.

In general, the solution for observations with multiple missing values is to drop that

observation; even variables for such observations that have values may represent

significant error as the sample generally may have failed the required quality

metrics.

The missing values can occur vertically as well, i.e., a variable may commonly

have missing values. This is a common occurrence with less robust and extremely

sensitive instruments. It may also occur because of the nature of the test. Again,

systematic failures of a test or instrument are critical, and a decision regarding

exclusion of the variable from analysis (or using an alternative metric or repeating

measurement using a new instrument) should be made.

More common occurrences are instances where a single or few variables have

missing values. These missing values if infrequent and random have a limited effect

on the inferences from the dataset, and these are the types of missing data that we

will focus on. These missing data points can have three main types: “missing not at

random,” “missing at random,” and “missing completely at random.” Missing not at

random can itself be broken down to “missingness” that depends on unobserved

predictors or “missingness” that depends on the missing value itself.

Types of Missing Data

Understanding the type of missing data we have in the dataset is the first step in

dealing with these missing data. Many of the solutions used for missing data are

dependent on the type of missing data.

Nonrandom Missingness

When the missing values have a pattern, or occupy a defined portion of a distribu-

tion that is not identifiable by the data in the dataset, then we have missing that is

not at random. Nonrandom missingness introduces serious bias into the

observations and causes inferential problems.

Nonrandom missingness can occur when the missing values depend on unob-

served predictors. For example, assume that we are studying the serial brain

natriuretic peptide (BNP) measurements in outpatients in regular 1-month intervals.

Then patients with worsening heart failure especially if they become

decompensated are less likely to be seen in an outpatient setting or to show up for

their regular interval check. The missing data on BNP are then dependent on the

severity of heart failure, and, if we have failed to measure and account for the

severity of heart failure, then our missing data represent a nonrandom missingness

depending on an unobserved predictor. If the reason for this study is to assess the

effectiveness of a new drug, then we will have a bias introduced in our data in favor

of the new drug which can have serious healthcare implications. Or, for example, if

in a study of immunohistochemical (IHC) staining pattern of a tumor on biopsy,
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when no tumor cells are seen on the IHC slide, then the value is recorded as missing.

If this is dependent on the size of the biopsy and this is not recorded, then a

nonrandom missingness has occurred.

There are times when the nonrandom missingness is dependent on the missing

value itself. This is a serious problem and is often difficult to identify or to solve.

For example, if point-of-care analyzers are more likely to show “N/A” or fail to

show a result for glucose measurements for patients with high glucose levels, then

this type of missingness has occurred. If this missing is absolute, e.g., all patients

with glucose levels more than 400 mg/dL will have missing values, then we can say

that “censoring” has occurred.

Censoring is common in laboratory medicine since many measurement

instruments have an effective range, and values outside the range are not recorded.

This concept is also common in survival studies, and, in fact, many survival

statistics take censoring into account. We will talk about censoring in survival

studies in the next chapter.

Please note that censoring should not be confused with “truncation” which is

also a form of bias and is especially problematic in medicine. Truncation occurs

when the measurement device returns values that are always within its measure-

ment range. For example, a glucose measurement device with an effective range of

400 mg/dL will return serum glucose concentrations of 400, 500, and 1000 mg/dL

as 400 mg/dL. While in censoring, the presence of missing data can alert you to the

possibility of values outside of the effective range, in truncation this does not

happen which can lead to serious clinical implications.

Random Missingness

Missingness at random implies that the missing value is not random, but the missing

value is only dependent on the available, observed, and recorded data. For example,

if in a study on glucose measurement, men are 20% less likely to show up for

glucose measurement and gender is recorded in the dataset and the only missing

values are for men, then a random missing has occurred. Many statistical software

programs, when dealing with missing data, assume that missingness is random

(either random or completely random).

To identify random missingness, a binary logistic regression is employed. The

dependent binary response variable will be whether the data is missing or

non-missing. If the other recorded variables can account for the missing values in

the dataset, then the model predicted by the binary logistic regression will have a

very good fit (i.e., very high R-squared value). Despite the results of the binary

regression, we cannot be sure that the missing data is truly random. In fact, it is

nearly impossible to ascertain if the missing data is random because the data is

missing and we can only make an assumption about the nature of those missing

data. In general, it is advisable that the binary logistic regression model be as

inclusive as possible with many predictors to have a higher possibility of fitting the

missing data [2].
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Example 8.1
Q: Table 8.1 lists the results of a study for measurement of brain natriuretic peptide

(BNP) in outpatient setting. Some of the values for BNP are missing. Is the

missingness at random?

A: We can run a binary logistic regression (see Chap. 7) with the response

variable being the last column and the gender and NYHA class being the inputs.

The results show that NYHA class is a significant predictor of missingness (B,

2.39; p-value, 0.023). The model also has a respectable Nagelkerke R-squared of

0.546, yet still the model’s classification table makes a classification error in 4 out

of 30 cases. This suggests some nonrandom element in missingness.

The researchers then looked up the age of the patient from the charts and added

them to the table (Table 8.2).

Table 8.1 Summary of

results for Example 8.1.

The right column indicates

whether the BNP variable

has missing values

Case number Gender NYHA class BNP Missing

1 0 1 210 0

2 0 1 130 0

3 0 1 160 0

4 0 1 200 0

5 0 2 180 0

6 0 2 200 0

7 0 2 320 0

8 0 2 300 0

9 0 2 360 0

10 0 3 372 0

11 0 3 1

12 0 3 510 0

13 0 3 1

14 0 4 1

15 0 4 500 0

16 1 1 221 0

17 1 1 154 0

18 1 1 203 0

19 1 2 220 0

20 1 2 210 0

21 1 2 330 0

22 1 2 320 0

23 1 2 300 0

24 1 2 320 0

25 1 3 400 0

26 1 3 430 0

27 1 3 410 0

28 1 4 1

29 1 4 1

30 1 4 600 0
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Running the binary logistic model with age included as a predictor causes the

Nagelkerke R-squared to equal 1. All the missingness is accounted for by the

variables in the dataset. This implies that the missingness is random.

Completely Random Missingness

For missing values to be completely random, they should be independent of both

observed and unobserved data, i.e., they should be truly random. Completely

random missingness does not introduce a bias and thus minimally affects statistical

inferences. This form of missingness, however, rarely happens in real life.

Table 8.2 Summary of results for Example 8.1 with age included

Case number Gender NYHA class Age BNP Missing

1 0 1 60 210 0

2 0 1 54 130 0

3 0 1 58 160 0

4 0 1 70 200 0

5 0 2 82 180 0

6 0 2 70 200 0

7 0 2 62 320 0

8 0 2 48 300 0

9 0 2 54 360 0

10 0 3 61 372 0

11 0 3 88 1

12 0 3 65 510 0

13 0 3 87 1

14 0 4 78 1

15 0 4 60 500 0

16 1 1 54 221 0

17 1 1 58 154 0

18 1 1 70 203 0

19 1 2 82 220 0

20 1 2 70 210 0

21 1 2 62 330 0

22 1 2 48 320 0

23 1 2 54 300 0

24 1 2 61 320 0

25 1 3 82 400 0

26 1 3 60 430 0

27 1 3 56 410 0

28 1 4 78 1

29 1 4 75 1

30 1 4 61 600 0

Missing Data 189



Graphical Visualization of Missing Data

Graphical visualization of missing data can always provide insights into the nature

of missing data and how to effectively deal with that missing data. The easiest step

is to employ the abilities of many statistical software programs (including

Microsoft Excel) that allow for conditional formatting and sorting of the columns.

In Excel, for example, apply conditional formatting in the format of color scales to

each column. Sorting the columns may let you find a pattern in the missing data. For

example, we have used this approach for the table from Example 8.1 (Fig. 8.1).

Another visualization tool that can help is to create a missing value pattern

matrix along with a bar chart showing the frequency of each pattern. This is

especially helpful in situations where more than one variable has missing values.

For example, Table 8.3 shows missing values in multiple variables.

Each pattern in the pattern analysis matrix shows the variables that have missing

values with the first row usually being no missing values. The corresponding bar

chart should show that the non-missing pattern should be the most common

followed by patterns with one variable missing, then two variables missing, and

so on. If one pattern has a high frequency, then it should be investigated since it may

be due to nonrandom missing. The visual inspection of these graphics will give you

clues for how to deal with the missing data. Figure 8.2 shows the matrix and bar

chart for Table 8.3 [3].

Fig. 8.1 Conditional formatting of Table 8.2 with color scales. The left panel shows the color

scales applied to the table (darker colors indicate larger numbers within column). In the middle
panel, the data has been sorted based on NYHA class. You can start to see the missing values of

BNP cluster where NYHA class is higher, suggesting a correlation between NYHA class and

missingness in BNP values. In the right panel, a second layer of sorting by age is added (first

sorting based on NYHA class and then cases within each NYHA class sorted by age). Now you can

see a better clustering of missing BNP values. The color pattern also suggests that a combination of

high age and high NYHA class may account for the observed missingness
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Dealing with Missing Data

Currently, there isnoconsensusondealingwithmissingdata.Manypapers fail to report

missing data or how themissing datawas dealtwith, and this can be a cause for concern

asmissingdatacan introducebias in the studies.Overall, it seems that a smallproportion

of missing data (5% or less) especially random missing can be ignored in statistical

inferences.When the proportion reaches 10%, noticeable bias will be introduced in the

inferencesunless themissingdata ismissingcompletelyat random.As theproportionof

missing values increase, the statistical power and reliability of the statistical test

decrease. Databases with missing data proportions of 20% and more should be exam-

ined carefully with acknowledgment of the possibility for major bias in the data.

In this section, we will discuss solutions for dealing with missing data starting

with the concept of “robust statistics.”

Table 8.3 Table of results

from the BNP study with

more variables having

missing values

Case number Gender NYHA class BNP Age

1 0 1 210 60

2 0 1 130 54

3 0 1 160 58

4 0 1 200 70

5 2 180 82

6 0 2 200 70

7 0 2 320

8 0 2 300 48

9 0 2 360 54

10 0 3 372 61

11 0 3 88

12 0 3 510 65

13 87

14 0 4 78

15 0 4 500 60

16 1 1 221 54

17 1 1 154

18 1 1 203

19 1 2 220 82

20 1 2 210 70

21 1 2 330 62

22 1 2 320 48

23 1 2 300 54

24 1 61

25 1 3 400 82

26 1 3 430 60

27 1 3 410 56

28 1 4 78

29 1 4

30 1 4 600 61

Dealing with Missing Data 191



Robust Statistics

When the dataset has missing data, statistical inference should use statistical tests

that are less prone to be affected by the missing data. It is important to remember

that it is nearly impossible to know the exact nature of the missing data. For

example, if we are measuring troponin levels from 100 healthy individuals and

we have one missing value, the assumption is that, since the individuals are healthy,

the missing value is within the distribution of the observed values (especially if the

results follow a normal or near-normal distribution). However, the missing value

may in fact be a significant outlier. Thus, tests that are less likely to be affected by

outliers are more robust in dealing with missing data.

The more assumptions a statistical test makes about the nature of the data, the

less robust it will be in dealing with missing data. Parametric tests, for example,

make many assumptions about the data and are especially affected by outliers, and

nonparametric tests are more robust in dealing with missing data.

Thus, while it is possible to identify and account for missing data in a dataset, it

is still advisable to apply robust statistical measures to further reduce the possible

bias in the statistical inference process.

Data Discarding Solutions

If the proportion of missing data is small and the sample size is large enough, then

one solution to the missing data problem is to disregard observations that have

missing value. Especially if the missingness has occurred at random, then the

missing data can be “ignorable.” One problem with discarding methods is that the

Fig. 8.2 Missing value pattern matrix and associated bar chart for Table 8.3

192 8 Imputation and Missing Data



sample size will decrease leading to the loss of statistical power and increase in the

standard errors of measurement. Furthermore, a principle in clinical trials is to do

statistical analysis on an intention-to-treat basis, i.e., analyzing all the patients who

were enrolled in the study. Dropping observations with missing data violates this

principle.

On the other hand, data discarding solutions are often the easiest way for dealing

with missing data, and, as such, they are widely employed. Most statistical software

will employ data discarding solutions by default unless the user opts for an

alternative approach to missing data. Data discarding includes two main solutions:

“complete-case analysis” and “available-case analysis.”

Complete-Case Analysis

In this approach (also known as “list-wise deletion”), only observations (or cases)

that are complete with no missing data are analyzed. As we said before, this can

introduce significant bias if the excluded cases would have had values that were

statistically different from the complete cases. Also, this approach has the potential

of excluding a big portion of the data and distorting the results of the statistical

analysis.

Nonresponse Weighting

One way to reduce the bias in the list-wise deletion of cases is to make the

remaining cases more representative of the entire set (to give them high weights).

This is done through nonresponse weighting. The principle is that the difference

between complete cases and cases with missing values can be used to calculate a

weight for the remaining cases with the variables reweighted based on this calcu-

lated weight.

There are different weighting approaches; here we will briefly discuss a

weighting approach called “propensity cell method.” As we mentioned in the

previous section, for missing at random, a binary logistic regression using an

indicator missingness variable can be formed with all the remaining variables

serving as predictors. We can ask the binary logistic regression to assign a log

probability of responding (being complete) for each case. The weighting adjust-

ment (or inflation) factor is then calculated as the inverse of this value. Many

statistical software programs allow for inclusion of this weighting adjustment factor

into the statistical test (e..g., WLS weight option in the commercially available IBM

Statistical Package for the Social Sciences or SPSS for general linear models).

Available-Case Analysis

This approach is also known as “pair-wise deletion.” In this approach, the observa-

tion is only excluded for the analytical test that uses that variable. For example, if

we have three variables and observation ith has a missing value for the second

variable, in pair-wise deletion, the ith observation is still included for comparison of
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the first and third variable. For example, if we have three variables and there are ten

samples, the data for variable 1 is complete, the data for variable 2 is missing for

first sample, and data for variable 3 is missing for the last sample. In this case if you

are comparing variables 1 and 2, then you can use observations 2 through 10.

However, for comparison of variables 1 and 3, we can use observations 1 through

9. The problem with this approach is that different statistical tests in this context

will use different subsets of the data, and thus the results may not be consistent or

even comparable with each other.

While this approach addresses loss of statistical power to an extent, it still has the

potential to introduce bias into the inferences.

Imputation

Discarding missing data, while simple, is often problematic. Another option for

dealing with missing data is to “impute” their value or, in other words, fill in their

value. These approaches are attractive since they do not change the sample size and

avoid some of the bias introduced by case exclusion. They, however, may introduce

some bias of their own.

Single Imputation

Single imputation implies that the missing value is filled in using data from other

variables and the analysis is done on the completed dataset. There are different

methods of single imputation which we will discuss below. It must be noted that

single imputation tends to have small standards of error for the imputed value, but

conversely this does not imply that the filled-in value is accurate; it only reflects the

fact that we are making significant assumptions about the data and the missing values.

Adjacent Value

One way to fill in the missing values is to use previously available data for the subject.

For example, if in a study of serum sodium levels, one of the subject’s test result is

missing but we have a result from the same patient from a previous observation, then

we may fill in the missing value with that result. This approach is especially useful in

longitudinal studies where a test subject may have multiple results over time, and thus

the nearest temporal result can be used to fill in the missing value.

This approach is a conservative method which often underestimates the treat-

ment (or exposure) effect, but in some situations, it can have an opposite effect.

A variation of this approach is to calculate the mean of the two adjacent

measurements and use it as the missing value, but this requires that an observation

is made before and after the missing observation.

Mean Imputation
This is perhaps the easiest imputation method and involves replacing the missing

value with the mean of that variable for all cases (and not within group). This can lead
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to reduced statistical power as the imputed value is the same across groups and any

differences between them will be attenuated by the inclusion of mean imputation.

Random Imputation

In this approach, the missing value is replaced with a randomly drawn value of the

variable from the dataset. One of the random imputation approaches is known as a

“hot-deck” approach. In this approach the observations are ordered based on the

variables with non-missing values, and the variable value for the observation next

to the missing value is carried over to the missing value. This approach while

simple has minimal utility as again it erodes the statistical power of the test and may

also introduce bias.

Regression Imputation

“Regression imputation” involves fitting a regression model to the data with the

response variable being the variable with the missing data and the predictors being

all the other variables in the dataset. The regression is performed only on the

complete cases. If a model with good fit is found, then the model can be used to

estimate the missing values. If the values predicted are deterministic and the

associated uncertainty with regression modeling is not included in the estimates

created by the model, then this model tends to overestimate the statistical effects

between groups since the data fits perfectly along the regression line, augmenting

any difference between the groups. To address this, stochastic regression is used

where an error term is introduced in the regression estimates (usually the average

regression variance). This reduces the overestimation bias but still does not nullify

it. Hence, more complex approaches such as multiple imputation are needed [4].

Example 8.2
A study has been conducted looking at different variables to determine that the

patient has an acute coronary event (ACS). The occurrence of myocardial infarction

was determined using coronary angiography. The results of the study are

summarized in Table 8.4.

From the 30 patients in the study, five patients did not undergo coronary

angiography, and, as a result, their group variable value is missing. We can use

regression modeling to impute their values based on the other predictors. Since the

missing variable is binary, we will run a binary logistic regression on the observa-

tion with complete values. The predicted values for observations 18, 19, 20, 26, and

27 based on regression are 1, 1, 1, 2, and 1, respectively. A closer look at the data,

however, may cause you to question the findings of the regression model; for

example, case number 27 has a troponin value of 0.74 μg/L, in the study, and the

laboratory cutoff for troponin was 0.04 μg/L, hinting that the patient might indeed

have had a myocardial infarction. Yet the regression model determined that the

patient did not have a myocardial infarction.

Thus, regression is not always the best solution to imputing the missing values,

especially in cases like our example where either the size is small for a model with

good fit to be found or there are no predictors in the data.
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In fact, in some situations (like our example), there may be proxy measures

based on which missing value can be guessed. Thus, in our example, the missing

values that have a troponin level of more than 0.04 μg/L can be given a value of

2 with the rest given a value of 1.

Multiple Imputation

In regression imputation, the imputed values lack the variance that the actual data

could have had; this approach will only serve to reinforce the underlying patterns of

data that the non-missing values had and thus leads to an overestimation of

Table 8.4 Summary of results for Example 8.2. Notice that five patients have missing values for

group (highlighted in red)

Case 
Number

Group 
(1 : No 
ACS, 2: 
ACS) 

Troponin 
level 
(μg/L)

Chest 
Pain

Swea�ng Dyspnea History 
of 
coronary 
disease

Hyperten
sion

Conges�
ve heart 
failure

Diabetes

1 1 .02 1 0 0 0 1 0 1

2 1 .02 0 0 0 0 1 0 1

3 1 .02 0 0 0 0 1 0 1

4 1 .02 1 1 1 0 0 0 0

5 1 .02 1 0 0 0 1 0 0

6 1 .02 1 0 0 0 1 0 0

7 1 .02 0 0 1 0 0 0 0

8 2 15.65 1 0 0 1 1 1 0

9 2 .03 0 0 0 1 1 1 0

1 0 2 19.08 1 1 1 0 1 1 1

1 1 2 .19 1 1 1 0 1 0 0

1 2 2 .07 0 0 1 0 1 1 1

1 3 2 .19 1 1 0 1 1 1 0

1 4 1 .04 1 0 0 1 1 1 1

1 5 1 .02 0 0 0 0 1 0 1

1 6 1 .02 0 0 0 0 0 0 0

1 7 1 .02 0 0 1 0 1 0 0

1 8 .24 0 0 0 0 1 0 1

1 9 .07 0 0 0 0 0 0 1

20 .02 0 0 1 0 1 0 1

21 1 .02 1 0 0 0 0 0 0

22 1 .02 1 0 0 0 0 0 0

23 1 .02 1 0 1 0 1 1 0

24 1 .02 1 0 0 0 1 1 0

25 1 .02 1 1 1 0 1 0 1

26 .02 0 0 1 1 1 1 1

27 .74 0 0 0 0 1 0 1

28 1 .02 1 0 0 0 1 0 0

29 1 .02 0 0 0 1 1 0 0

30 1 .02 0 0 0 0 1 0 1
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statistical tests. An effective way to handle missing data, which minimizes bias, is

called “multiple imputation.” This method has three steps: imputation, analysis, and

pooling. As the name implies, this method imputes multiple probable values for the

missing data and each time runs the test statistic with one set of the imputed values.

Thus, multiple sets of statistical tests will be run, each with their own test statistic.

The next step will be to reconcile these multiple tests and summarize them into a

single test statistic: this step is called pooling.

The main challenging step in this approach is the imputation whereby multiple

completed datasets are created. Most statistical software currently employ “multi-

ple imputation by chained equations method” (MICE) or “Markov chain Monte

Carlo method” (MCMC) for this step. This method assumes that the missingness is

at random. For the MCMC an additional assumption is that the missingness is

monotonous. This means that if a variable is missing a value for an observation, all

subsequent variables are also missing values for that observation. Other approaches

employ multivariate regression, propensity scoring, or combinations of these to

calculate the missing values for each imputation run.

The statistical test is then run on each completed dataset. The statistical tests do

not need to adjust for missing values anymore and for each completed dataset; a test

value as well as significance level will be recorded. The pooling of these tests is

simple and involves calculating the mean of the test statistic over the multiple

completed sets as well as its variance and p-value.

The variance and subsequently standard error of the test statistic (b) is calculated
using the within-imputation variance (Ub) and between-imputation variance (Bb).

These two measures are combined to form total variance (Tb) from which the

pooled standard error of the test statistic (SEb) is calculated.

The within-imputation variance is calculated by summing the mean of squared

standard error of test calculation for each imputation averaged over the number of

imputations (m):

Ub ¼
Pm
i¼1

SEbi
2

m,
ð8:1Þ

where m is the number of imputation runs and SEbi is the calculated standard error

of test statistic in each run.

The between-imputation variance is calculated from the variation of the statistic

in the different imputation runs:

Bb ¼
Xm
i¼1

b� �bð Þ2
m� 1

, ð8:2Þ

where b is the test statistic for each run (e.g., t-test statistics for each run) and �b is the
average test statistic over the multiple runs.
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The total variance can be calculated as

Tb ¼ Ub þ 1þ 1

m

� �
Bb, ð8:3Þ

And the SEb is the square root of the total variance.

In order to calculate the p-value, the average test statistic (�b) is divided by its

overall standard error (SEb). This value is a t-value that follows a t-distribution with

the degrees of freedom calculated from the following formula:

df ¼ m� 1ð Þ 1þ mUb

mþ 1ð ÞBb

� �2

, ð8:4Þ

This number is truncated to the nearest integer. An important decision in

multiple imputation is how many imputation runs are needed. Usually, 3–5 impu-

tation runs are enough to produce robust statistical inferences. It has been shown

that after the first few imputations, possible gains in efficiency of multiple imputa-

tion diminish, and thus higher number of imputations are deemed unnecessary. The

efficiency of the imputation model can be calculated:

Efficiency ¼ 1

1þ γ
m,

ð8:5Þ

where γ is the fraction of missing information:

γ ¼
rþ2=dfþ3

r þ 1
, ð8:6Þ

where r is the relative increase in variance due to nonresponse and can be calculated
using the following equation [5–8]:

r ¼ 1þ 1
m

� �
Bb

Ub
, ð8:7Þ

As the number of imputations increase, the fraction of missing information

becomes smaller, and thus the gains in efficiency will become smaller. However,

if the number of missing values is high, then more imputations are needed, and the

efficiency of the model must be checked to see if additional imputations will lead to

better efficiency or not [9, 10].

Example 8.3

Going back to Table 8.4, now we run a multiple imputation with ten imputations, to

calculate the missing values. The model predictions for the missing values for each

imputation are shown in Table 8.5.

Now, we can run 10 binary logistic regressions (Chap. 7) to determine if the

measured variables can be a predictor of whether the patient has had an acute
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myocardial infarction. For each binary logistic regression run, one set of imputed

values is used. Finally, the results from the 10 runs are pooled into a single

statistical output. In this case, the pooled data showed that none of the input

variables are good predictors of the outcome.

Summary

Most statistical tests assume completeness of the data and will ignore observations

with missing data. Missing data is a major source of bias in statistics and can result

in incorrect inferences from the data. The missing data can be dealt with by

discarding the observations with missing value which, unless the sample size is

sufficiently large, can lead to significant loss of statistical power and bias. Another

solution is to impute the missing data. Single imputation is relatively easy and

imputes the missing values based on the other values in the dataset. This, however,

will lead to increased bias of the test results. A more attractive solution is to use

multiple imputations where multiple completed datasets are created and the tests

are run on each with the results pooled into a single statistical value.

The question of how missing data affects the statistical validity of results is very

important, and appraising studies and literature require the reader to be able to

identify in a paper how missing data was handled and whether the assumptions of

the authors for missing data were valid. We will address in further depth appraisal

of the literature in Chap. 12.
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Survival Analysis 9

Introduction

While pathology and laboratory medicine are the cornerstones of diagnostic medi-

cine, they also play a crucial and central role in prognostication. The role of

anatomic pathology in determining disease stage and prognosis is well known.

Clinical pathology also contributes greatly to the prognostication process: Many

clinical decisions and predictive models depend on laboratory values, for example,

the Childs-Pugh score used for assessment of prognosis of chronic liver disease uses

a combination of clinical criteria (ascites and hepatic encephalopathy) with labora-

tory criteria (total bilirubin, serum albumin, and prothrombin time). Practicing

pathologists’ design and analysis of survival data may not occur in your routine

clinical practice; however, many of the clinical decisions that you make are based

on survival analysis data, and this requires you to understand the fundamental

basics of survival statistics. In this chapter, we will explain some of the pertinent

subjects relating to survival analysis. We will start with defining incidence.

Incidence

“Incidence” is the number of cases of a disease or condition that occurs in a defined

area, over the course of a defined time period, usually 1 year. For example, a

statement such as “10 cases of malaria were recorded last year” is stating an

incidence of malaria in a 1-year period. However, such statements can be better

stated as a probability or proportion; stating the number of occurrences without

stating the denominator does not allow you to judge the magnitude of the health

outcome. Taking the above statement, for example, if we rephrase the statement as

“10 cases of malaria were recorded last year in a 100-person village,” then it

becomes a more meaningful statement.

Understanding incidence concepts is important in survival analysis, because

incidence is a general term relating to the probability of an event occurring
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(which can be metastasis, cirrhosis, etc.). Thus, “death” can also be an event that

can be expressed as an incidence.

The “cumulative incidence” (incidence proportion) is a better outcome measure

than incidence alone which is expressed using “incidence rate”: The number of new

cases per population at risk in a specified time period is called incidence rate. The

denominator is the size of the population at risk at the beginning of the time period,

and the numerator is the number of occurrences of the disease in that population

during that time period. For example, the above statement can be stated as “Malaria

has an incidence rate of 10 per 100 in a year.”

It is important to know that with the exception of population-based epidemio-

logic studies, where it is possible to follow an entire population for occurrence of a

disease, for most small-scale studies, it is better to use “incidence density rate” also

known as the “person-time incidence rate.” Here, the denominators will not be “per

person” but “per person-time.” This denominator can be calculated using:

Person-time ¼
XN
i¼1

ti ð9:1Þ

where N is the number of at-risk people in the population who were observed and ti
is the amount of time that person was observed (or followed). This is especially

useful in cases where people were not followed up for equal amounts of time; for

example, person A was followed for 6 months and person B was followed for a

year. Thus, incidence density rate statement will be something like “10 malaria

cases per 1000 person-years were reported.”

It must be noted that incidence density rate assumes a constant rate of occurrence

of an event over time, i.e., the statement of “10 malaria cases per 1000 person-

years” can be interpreted as 10 cases occurring in a population of 1000 in a 1-year

period or 100 cases occurring in a population of 100 over a 10-year period. This

basic assumption is sometimes wrong. For example, in survival statistics of cancer,

stating 10 deaths in a population of 1000 in a 1-year period is not the same as

10 deaths in a population of 100 over a 10-year period; if 100 individuals with

cancer are followed for 10 years and only 10 deaths occur in 10 years, then that

cancer has a very indolent almost benign course. In fact, cancer survival statistics

show that as time passes by, the probability of mortality caused by the cancer

increases. For example, in the first year of follow-up, 10 people out of each 1000

individuals with cancer die, but in the second year of follow-up, 30 people out of

each 1000 individuals with cancer die.

Thus, survival statistics in general benefits from a cumulative incidence

approach. However, we must still account for different lengths of follow-up in

patients, and this is solved through a concept known as censoring which we will

discuss later in this chapter.
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Example 9.1

Q: Figure 9.1 shows incidence of disease X in a population of ten who were

followed up to a year. What are the cumulative incidence and incidence rate for

this disease?

A: Four patients developed disease X during a 1-year period. Thus, the cumula-

tive incidence is four per ten persons in a year.

The sum of all the follow-up time in these groups was 95 months (7.91 years).

Consequently, the incidence density rate can be stated as 4 cases per 95 person-

months or 50.56 cases per 100 person-years.

Survival Analysis

Survival is the time from onset of a disease (or more commonly from time of

diagnosis) to the patient’s death. While survival statistics generally refers to

mortality, it may also refer to other events such as recurrence, metastasis, readmis-

sion, and so on. Thus, a better term for designating the events related to survival

analysis is “failure.” Survival analysis then is a study of time to failure data. In this

sense, survival analysis needs at least two measures (variables) for each individual:

event variable (showing whether the outcome has occurred or not) and time variable

(either stored as duration or stored as a start date and an event date).

Survival analysis uses sets of statistical tests different from the usual linear

regression models that we introduced in previous chapters; survival data is depen-

dent on time thus making simple regressions less accurate. Furthermore, survival

data tends to be incomplete (have censoring), making simple regression even

further unreliable.

In this chapter, we will discuss three statistical methods used in survival analy-

sis: Kaplan-Meier curves, Log-rank test, and Cox-proportional hazards regression.

Before that, however, we need to explain the concept of “censoring” and “survival/

hazard functions.” These two functions are the theoretical basis for many of the

statistical methods used in survival analysis. However, you may skip them and

move to the next sections of this chapter where we have focused more on the

practical aspects of survival analysis.

Fig. 9.1 Incidence and follow-up time of ten patients for Example 9.2. The orange bars signify

the patients in whom disease X occurred
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Censoring

As we saw with incidence density rate, the length of follow-up or observation is not

uniform among all subjects of a study. For close-ended survival analysis (i.e.,

5-year survival), ideally all patients are followed either for the entirety of the

study period or until the time the event occurs. For example, if we are studying

the 5-year survival of colon cancer, then, ideally, we would like all our patients to

be followed for 5 years or until the time of their death. In other words, an ideal

dataset would be complete without any dropouts. If we follow a cancer patient for a

year and then he/she is lost to follow-up, then we cannot be sure whether the patient

has survived for the remainder of the 5 years or whether he/she has died. Unfortu-

nately, most survival studies will not have complete datasets.

Subjects who have incompletely observed responses are called “censored.”

Censoring is similar to missing data (see Chap. 8). In censoring, time to the last

observation is recorded instead of time to event.

Censoring is usually right sided; that is, it is known that the time of event in the

patient is after a certain date, but until the last follow-up date, the event has not

occurred. For example, in survival analysis, we know that an alive subject who was

lost to follow-up will inevitably die, yet we do not know the exact time it will occur,

only that it should happen sometime after the last follow-up (called random type I

censoring). Close-ended survival analysis is a type of right-sided censoring (called

fixed type I censoring) in which the study is designed to end after a certain amount

of time of follow-up; thus, anyone who does not experience the failure event and

completes the study is said to be censored at N years (with N being number of years

of follow-up). Another survival study design follows a type II censoring where the

study ends after a specified number of failure events have occurred.

There are instances where censoring is left sided: for example, when a subject’s

lifetime is known to be less than a certain amount, but the exact time is unknown.

For example, if we want to study time to metastasis in patients and if a patient has

metastasis at the onset, then that patient is left-censored, i.e., the event has occurred

sometime before the beginning of the study.

Censoring is noninformative, i.e., we cannot assume anything about the patient

after the patient is censored. For censored observations, we can only use the data up

to the point of censoring.

Another concept is truncating; in truncation, we are not aware that an event has

occurred. For example, in a study of cancer survival, we study the survival from the

time of diagnosis to death. If a patient dies from cancer before a diagnosis is even

made, then that patient is truncated.

Survival Data

Survival data consists of four parameters (variables): For each patient, time to

failure event and/or time to censoring is recorded (sometimes failure event is not

death; thus, the patient is actually not censored after the event occurs, and you may
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have both censoring time and failure time). The smaller of these two times is the

observed response time. For each patient, an indicator variable is also needed: This

variable assumes a value of 1 if the event has occurred or a value of 0 if the patient

is censored before the event occurred. The survival analysis is usually performed

using the observed response time and indicator variable [1, 2].

Survival Function

“Survival function” (S(t)) is the probability that a patient survives for more than a

specified time (t). t or time is a positive continuous variable with a range of [0,1].

At the beginning, the patient is alive (t¼ 0 , S(t)¼ 1) as the time increases toward

1, and the probability of survival decreases toward 0 (t¼ 1 , S(t)¼ 0). The

survival function can be stated as:

S tð Þ ¼ P T > tf gð Þ ¼
Z 1

t

f uð Þdu ¼ 1� F tð Þ ð9:2Þ

T here represents event time; thus, the probability that the patient is alive at t is the
same as the probability that T> t. This can be restated as 1 minus the cumulative

distribution function of t (F(t)). As you may recall from Chap. 3, cumulative

distribution function (or distribution function) is the probability that a value (t) is
smaller than a set value (T ). That is, the cumulative probability of survival at each

t translates to the probability that the patient has died before that time (T> t). This
means that at each moment, the probability of a patient surviving is 1 minus the

cumulative probability of dying up to that point.

The survival function can be shown as a graph, where the Y-axis shows

probability of survival and the X-axis shows time. As time increases, the probability

of survival always decreases (Fig. 9.2).

Hazard Function

“Hazard function” (h(t)) is the instantaneous rate of occurrence of the failure event.
In simple terms, the hazard function is determined by calculating the changes in

failure rate in ever smaller intervals:

h tð Þ ¼ lim
Δt!0

S tð Þ � S tþ Δtð Þ
S tð Þ � Δt

ð9:3Þ

Probability of survival is a continuous probability distribution that is highest at

the start of the time period and continually decreases (see Chap. 3). In fact, survival

probability follows what is known as “exponential distribution” which is a type of

gamma distribution. Thus, just like any other continuous probability, it has a

probability distribution function ( f(t)) and a cumulative distribution function F(t):
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f tð Þ ¼ λe�λt for t � 0 ð9:4Þ
where λ is the gamma which determines the shape of the distribution, e is the

mathematical constant (approximately equal to 2.71828), and t is time.The cumu-

lative distribution function of survival can be given by:

F tð Þ ¼
Z t

0

λe�λtdt ¼ 1� e�λt ð9:5Þ

We can actually state the hazard function using these two terms: The hazard

function is the ratio of the probability distribution function of time ( f(t)) to the

survival function (S(t)):

h tð Þ ¼ f tð Þ
S tð Þ ¼

f tð Þ
1� F tð Þ ð9:6Þ

Combining Eqs. 9.4, 9.5, and 9.6, we can see that the shape of survival distribu-

tion (λ) is actually the hazard function. Thus, in simple terms, hazard rate (hazard

function) determines the shape of the survival distribution curve:

Fig. 9.2 The survival distribution function for a disease is plotted in this figure
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h tð Þ ¼ f tð Þ
S tð Þ ¼

f tð Þ
1� F tð Þ ¼

λe�λt

1� 1� e�λtð Þ ¼ λ ð9:7Þ

Hazard function can also be derived directly from the survival function

(Fig. 9.3):

h tð Þ ¼ �∂log S tð Þð Þ
∂t

ð9:8Þ

Where ∂ log(S(t))/∂t is the partial derivative of the logarithm of survival function

with respect to time.

Next is the cumulative hazard function (H(t)) which is the accumulated risk of

failure up to the time t. The cumulative hazard function has a reverse logarithmic

relation with survival:

H tð Þ ¼
Z t

0

h vð Þdv ¼ �log S tð Þð Þ ð9:9Þ

As you can see, all components of survival including survival function, hazard

function, and cumulative hazard function are related and can be derived from each

other. Thus, if only one of the functions is known, the others can be calculated using

the known function.

Fig. 9.3 Hazard function corresponding to the survival distribution function plotted in Fig. 9.2
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The importance of these functions is that they are the foundations of survival

statistics. In fact, survival analysis involves using statistical methods to estimate the

survival and hazard functions (assuming that every observation or patient follows

the same survival function) [3, 4].

Kaplan-Meier Estimator

The goal of survival analysis is to estimate the survival function of the patients; it is

usually important to know the probability of survival at different intervals as well as

changes in survival statistics based on some parameters (e.g., cancer stage) or

interventions.

If the observations are complete without any censoring (i.e., we know the time of

failure for all patients), then we can estimate the survival function by calculating the

cumulative distribution function of the data (F(t)) and use that as a non-parametric

estimator of the survival function (S(t)¼ 1�F(t)).
In reality, however, most survival datasets have some patients who are censored.

In these instances, we can use “Kaplan-Meier estimator” (product limit estimator)

statistics to estimate the survival probability function. This method can show the

proportion of patients surviving for a certain amount of time after an initiating event

(e.g., after a diagnosis of cancer is made).

The Kaplan-Meier estimator is usually shown as a plot with a series of stepwise

declining horizontal lines which resemble a survival distribution function plot in

that the Y-axis is the proportion of patients alive and the X-axis is time. The right-

censored patients are shown as small vertical tick marks on the survival curve. If the

observations are grouped, then the Kaplan-Meier estimator can be used to show the

estimated survival function for each group [1].

Example 9.2

Q: The survival data of ten patients who were diagnosed with pancreatic cancer and

were followed for up to a year is shown in Table 9.1. What is the Kaplan-Meier

estimator corresponding to these data?

Table 9.1 Survival data

for Example 9.2. Event

indicator variable shows

whether patients died (1) or

were censored (0)

Patient number Event indicator Observed response time

1 1 3

2 1 4

3 0 12

4 1 2

5 0 12

6 1 5

7 1 8

8 0 10

9 0 12

10 1 10
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A: To draw the Kaplan-Meier estimator, first, we need to order the observed

response times and estimate the proportion of patient surviving at each observed

time. The results are shown in Table 9.2.

In this table, note that the first observed response time is one (1) patient who

survived for only 2 months. Thus, right after 2 months, the cumulative survival rate

is 0.9 (nine of ten patients are still alive). Right after 3 months (observed response

time 3), another patient expired, leaving eight out of the original ten patients or a

cumulative fraction of survivors that is 0.8.

Now we can use the cumulative proportion of surviving and the observed

response time to draw the survival estimator (Fig. 9.4). Censored observation will

be shown by a vertical tick on the plot.

Kaplan-Meier survival curves are easy to interpret and understand. The rate of

decline and curve median (the point where half of the patient have failure events)

are some of the useful metrics that can be extracted from the curve. For example, in

Fig. 9.4, we can see that the median survival is 8 months: That is, half of the patients

will die within 8 months of diagnosis, i.e., the cumulative survival (cum survival on

the Y-axis) of 0.5 corresponds to an observed response time of 8 months on the

X-axis. This means that, just after 8 months, only half of the patients are still alive.

Kaplan-Meier is a non-parametric estimator of survival function, and as such it

makes no assumption about the data or its distribution. While this is advantageous

in that it can be globally applied to survival data, it also prevents us from extracting

some useful information from the estimator. For example, if we want to estimate the

expected failure time for a patient, then we must use parametric estimators.

Parametric estimators provide smoothed survival curves in comparison with the

stepwise survival curves of Kaplan-Meier estimators and can be more accurate than

non-parametric approaches if the assumptions of parametric distribution are

correct.

Parametric survival estimators include Weibull, exponential, log-normal, and

logistic methods. Out of these, the exponential model is the simplest form and is

Table 9.2 The cumulative proportions of survival, for example, are shown in this table. Values

with “a” indicate that the observations were censored

Event

indicator

Observed response time

(months)

Cumulative proportion surviving at the

time

1 2 0.90

1 3 0.80

1 4 0.70

1 5 0.60

1 8 0.50

1 10 0.40

0 10 0.40a

0 12 0.40a

0 12 0.40a

0 12 0.40a
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easiest to compute. The exponential model assumes that the hazard function is a

constant (h(t)¼ λ) (an assumption that may be wrong). We explained in the

previous section how we can derive the survival function from just knowing the

hazard constant (see Eq. 9.9). Table 9.3 shows three common parametric

distributions used in survival estimation and the corresponding equations for

survival function and hazard function.

In Weibull and log-logistic models, in addition to the λ, we also have a p which

determine the distribution of survival and its shape. For example, for the Weibull

estimation, we can state that time (t) is a continuous variable that has a Weibull

distribution with parameters λ and p (W(λ, p)).
Weibull distributions are continuous and have two parameters: a scale parameter

(λ) and a shape parameter ( p). Based on these two parameters, the Weibull

distribution can have different curves (Fig. 9.5). This distribution is especially

well suited for description of survival functions, since it allows us to define how

Fig. 9.4 Kaplan-Meier curve for Example 9.2

Table 9.3 Different parametric models used in survival estimation

Parametric model Survival function (S(t)) Hazard function (h(t))

Exponential e�λt λ

Log-logistic 1
1þλtp

λptp�1

1þλtp

Weibull e�λtp λptp� 1
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hazard changes over time by using the shape parameter. In Weibull estimators if the

shape parameter ( p) equals to one, then it means that the failure rate is constant over

time; if the shape parameter is between 0 and 1, it means that the failure rate

decreases over time (e.g., infant mortality rate); and if the shape parameter is

greater than 1, then failure rate increases over time.

Another important property of the Weibull estimation is that the following

equation holds true for Weibull distributions:

logð�logðSðtÞÞ ¼ logðλÞ þ plogðtÞ ð9:10Þ
In other words, log(� log(S(t)) has a linear correlation with logarithm of time. We

can use this property to check the fit of the Weibull estimator by plotting the log

(� log(S
0
(t)) versus the logarithm of time and check for linearity (where S

0
(t) is a

Kaplan-Meier survival estimate) (an example is shown in Fig. 9.6).

Log-Rank Test

One of the goals in survival analysis is to compare the survival functions between

two or more groups. For example, we may ask questions such as “Is prognosis

different between patients with endometrial endometrioid carcinoma and patients

with endometrial serous carcinoma?” Answering such questions requires compari-

son of the survival functions for each group.
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Fig. 9.5 Weibull distribution with different shape and scale parameters

Log-Rank Test 211



One of the most common approaches to comparison of survival functions is the

“log-rank test” which is also known as “time-stratified Mantel-Haenszel test” (see

Chap. 5). This test computes the difference using a contingency table for those at

risk at each event time.

For example, if we want to compare survival between two groups, then the first

step is to order all the event times (any time a failure event occurs). Now for each ti
which is the ith ordered event, we can form a contingency table (Table 9.4).

The null hypothesis will be that the survival function is the same in two groups;

thus, the proportion of individuals in each group having a failure at each ti should be
the same. Based on this, we can calculate the expected value of failure events for

each group (be):
be1i ¼ din1i

ni
and be2i ¼ din2i

ni
ð9:11Þ

If there are more than two groups, this equation can be generalized to:

beji ¼ dinji
ni

ð9:12Þ

2.00

1.00

-1.00

-2.00

-3.00

-4.00

-5.00
.00 1.00 2.00 3.00 4.00

LogTime

L
o

g
(-

L
o

g
(S

u
rv

iv
al

 D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

)

5.00 6.00 7.00

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 100 200

daysurv

Survival distribution function

300 400 500 600 700 800 900 1000

.00

Fig. 9.6 The panel on the left plots the log(-log(survival distribution function)) versus the log

(time) which shows a linear relation between the two; this signifies that the survival distribution

follows a Weibull distribution. The panel on the right shows the survival distribution function (and

the fitted Weibull distribution)

Table 9.4 Contingency group for ti for two groups

Group 1 Group 2 Total

Failure event has happened at ti d1i d2i di
Failure event has not happened at ti n1i� d1i n2i� d2i ni� di
Total n1i n2i ni
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The variance of the expected value will be:

Var be1ið Þ ¼ Var be2ið Þ ¼ n1in2idi ni � dið Þ
ni2 ni � 1ð Þ ð9:13Þ

These calculations should be made for all the observed event times. Using these

values, we can calculate the log-rank test:

Q ¼
Pn

i¼1 d1i �
Pn

i¼1 be1i� �2Pn
i¼1 Var be1ið Þ ð9:14Þ

Q statistics follows a chi-squared distribution with (k�1) degrees of freedom

(k being the number of groups). Thus, for two groups if the Q statistics is more

than 3.84, then the test is significant at alpha level of 0.05. That is, it shows that

survival of the two groups is different.

Often, we face stratification within our groups; in pathology, a common context

where stratification is seen is in tumors which can be stratified based on their

clinical stage (or histologic grade). For example, running an unstratified log-rank

test, we might see a statistically significant difference between two cancers; how-

ever, this difference may occur because the clinical stages of these tumors were

different leading to the observed difference. In these situations, running a stratified

analysis will account for the difference in clinical stage. As we mentioned in

Chap. 5, stratification has its own problems as well; mainly, stratification reduces

the statistical power of the test requiring a larger sample size.

For a stratified log-rank test, the denominator remains the same as the unstrati-

fied test. For the numerator, the difference between observed values and expected

values (d1i � be1i) is calculated and summed up within each stratum, and then the

results are pooled (summed) across all strata and squared.

Example 9.3

Q: A study compared the survival of 20 patients in a 12-month period, 10 with

endometrioid endometrial carcinoma (END, d2i) and 10 with serous endometrial

carcinoma (SER, d1i). The results are shown in Table 9.5. Is survival different

between the two cancer types?

A: To calculate the log-rank statistics, we can rewrite the table to show the

number of events per ordered time for each cancer type (Table 9.6). We can then

calculate the expected number of failure events for each ordered time.

Now we can calculate the log-rank test:

Q ¼
Pn

i¼1 d1i �
Pn

i¼1 be1i� �2Pn
i¼1 Var be1ið Þ ¼ 7� 4:497ð Þ2

2:299
¼ 2:725 ð9:15Þ

Since 2.725 is less than the critical value (the critical value for a chi-squared

distribution with one degree of freedom is 3.84 (See Chap. 5.)), then we conclude
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that survival in two cancer types is not different. The Kaplan-Meier survival curves

are shown in Fig. 9.7. As you may notice, the survive curves look different, yet the

log-rank test failed to show a statistical significance. Part of the reason for this can

be the small sample size. In fact, if the sample size increases, we may observe a

statistically significant result.

Cox-Proportional Hazards Regression

There are instances where we want to estimate the effect of some predictor

variables on survival (just as regression analysis (Chaps. 4 and 7) where we have

a dependent variable and a number of predictors). For example, we may want to

determine the effect of histologic grade on the survival of cancer patients.

In survival statistics, we can fit a regression model to survival; this is usually

achieved through a so-called Cox regression model. You may recall that, in logistic

Table 9.5 Table of results for Example 9.3

Patient

number

Cancer

type

Follow-

up time

Event

indicator

Patient

number

Cancer

type

Follow-

up time

Event

indicator

1 SER 2 Dead 11 END 12 Censored

2 SER 12 Censored 12 END 4 Dead

3 SER 4 Dead 13 END 10 Censored

4 SER 6 Dead 14 END 12 Censored

5 SER 10 Censored 15 END 8 Censored

6 SER 4 Dead 16 END 12 Censored

7 SER 12 Dead 17 END 12 Censored

8 SER 8 Dead 18 END 6 Censored

9 SER 8 Censored 19 END 6 Dead

10 SER 10 Dead 20 END 8 Dead

Table 9.6 Reformulated results for Example 9.3. The expected values and variance for each

ordered time are included

Time

Number of

failure events

Number at

risk

Expected failure

events Variance of expected values

ti d1i d2i n1i n2i be1i be2i Var be1ið Þ
2 1 0 10 10 0.5 0.5 0.250

4 2 1 9 10 1.421 1.579 0.665

6 1 1 7 9 0.875 1.125 0.459

8 1 1 6 7 0.923 1.077 0.456

10 1 0 4 5 0.444 0.556 0.247

12 1 0 2 4 0.333 0.667 0.222

Total 7 3 4.497 5.503 2.299
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regression, we use odds ratio for fitting a model and calculating the contribution of

each predictor to the regression model. In Cox regression, we use hazard ratio

instead (ratio of incidence rates).

Cox regression is a non-parametric model, and thus it does not make

assumptions about the probability distribution of the survival data; this makes

Cox regression a robust approach to fit a model to survival data. Predictors in

Cox regression can be nominal and ordinal.

A general formula for regression models is provided below:

y ¼ αþ βxþ E ð9:16Þ
In Cox-proportional hazards model, we can write the regression equation as:

log
λ tjx1i; x2i; . . . ; xkið Þ

λ0 tð Þ
� �

¼ β1x1i þ β2x2i þ . . .þ β1xki ð9:17Þ

where λ(t| x1i , x2i , . . . , xki) is the hazard function for the ith individual at time t, and
x1i , x2i , . . . , xkiare the corresponding predictors for that individual. λ0(t) is the

baseline hazard function at time t (i.e., x1i¼ x2i¼ . . . ¼ xki¼ 0).

The hazard ratio represented in the left side of the Eq. 9.17 is the relative risk of

the failure event occurring at time t, i.e., the ratio of the risk of the event for a

Fig. 9.7 Kaplan-Meier curves for Example 9.3
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patient where all predictors contribute to the hazard and the risk of the event for a

patient where all predictors are zero. A linear regression model can be fitted to the

logarithm of the hazard ratio using the predictors and a Beta-coefficient for each

predictor. In this model, changes in the predictors have a multiplicative effect on the

baseline risk of the patients:

λ tjx1i; x2i; . . . ; xkið Þ ¼ λ0 tð Þ � e β1x1iþβ2x2iþ...þβ1xkið Þ ð9:18Þ
Thus, in Cox regression, the β-coefficient for each predictor is the logarithm of

the hazard ratio attributable to that predictor:

HRx1 ¼ eβ1 ð9:19Þ
An important assumption regarding the Cox-proportional hazard model is that

the attributable hazard ratio of the predictors is constant through time. For example,

if a high nuclear grade doubles the risk of death in the first year after diagnosis of a

cancer, it also doubles the risk of death in the second year after the diagnosis.

For each predictor, the statistical software will report a p-value which will

determine if the predictor is a statistically significant contributor to the hazard

ratio or not. The p-value is calculated using the Wald test (see Chap. 7) using the

estimated Beta-coefficient and its standard error (in simple terms, the 95% confi-

dence interval of the Beta-coefficient should exclude 0 for the associated p-value to

be statistically significant) [5, 6].

Example 9.4

Twenty patients with pancreatic adenocarcinoma were followed up for 1 year to

determine the effect of clinical stage on survival. The results are shown in

Table 9.7. A Cox-proportional model was fitted. Interpret the results.

Here is the Cox-regression model:

LogHR ¼ 4:194� Stage ð9:20Þ
The p-value for the Beta-coefficient is 0.008. This means that stage is a signifi-

cant contributor to the hazard ratio. In fact, we can calculate the relative risk (hazard

ratio) of stage:

HRStage ¼ e4:194 ¼ 66:287 ð9:21Þ
This means that, at any time, if a patient has a tumor which is one clinical stage

greater than another patient, then that patient is 66.287 times more likely to die

compared to the patient with lower stage.
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Summary

In this chapter, we reviewed survival statistics; these concepts form the fundamen-

tal concepts underlying many decision-making tools and algorithms in pathology.

Many of the features that a surgical pathologist is required to report are because

they have been shown to have a significant effect on the survival of the patients.

Understanding of these concepts is required for most pathologists to interpret and

analyze the literature regarding prognostication of survival of patients with specific

diseases. Furthermore, some pathologists may actively participate in the design and

conduct of prognostic studies which necessitate an understanding of survival

statistics. The statistical tests introduced in this chapter are the main tests used in

survival analysis and include Kaplan-Meier estimator, Log-rank test, and

Cox-proportional hazards model.
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Validation of New Tests 10

Introduction

Pathology and laboratory medicine is an active and dynamic field where new tests

and modalities are discovered and invented on a regular basis. The field of diagnos-

tic medicine has a high rate of innovation and the laboratories need to adapt and

implement new tests to address clinical needs and remain relevant.

Adding new tests usually starts with needs assessment; the process of needs

assessment should be a continuous periodical review of the clinical needs with

participation of the lab director, supervisors, and clinicians where needs are

assessed based on the input from the stakeholders and new evidence obtained

from literature review [1].

The next step in this process is to review all the tests (or instruments) that can

address the needs highlighted in the need assessment process. This review will

involve critical appraisal of the manufacture’s claims and supporting evidence for

the test. Technical and clinical specifications and parameters of the tests should be

reviewed and compared with the needs highlighted.

The next step is to define the performance standards of the test and determine if

they are compatible with the lab’s resources. Some of these parameters and

performance standards are related to financial cost which requires cost and cost-

effectiveness analysis. However, some of the performance standards relate to the

physical space, labor, and infrastructure needed for the test. Other concerns that

should be considered at this stage include preanalytic considerations and

turnaround time.

After a decision is made for adding a new test, the next step is to validate the test

before full implementation. Validation ensures that the test performs as expected

and satisfies the requirements of the lab, manufacturer, and regulatory bodies. The

process of adding a new test is summarized in Fig. 10.1 [2–4].

In this chapter, we will focus on the process of test validation.
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Test Validation

Regulatory bodies such as the Clinical Laboratory Improvement Amendments

(CLIA) and College of American Pathologists (CAP) require laboratories to vali-

date each new test that they add to their repertoire. Some states regulatory bodies

(e.g., New York state) may have additional regulatory requirements before a test

can be added to a laboratory’s list of approved tests. Many of the new tests will

already be technically approved by federal or state oversight bodies like the Food

and Drug Administration; however, their adoption at a laboratory requires

validation.

We introduced the concept of test assessment in Chap. 2. Every test needs to

undergo assessment, this assessment will answer questions such as clinical useful-

ness, precision, accuracy, and cost-effectiveness. If after test assessment, a decision

is made to add the test to the laboratory’s test menu, then the test should be

validated before the laboratory can bill for the test and report the results to the

patients. Most regulatory bodies have a set of common or similar guidelines for test

validation which we will describe in this chapter. It must be noted that sometimes

instead of test assessment, a new test is added because of the recommendations of

professional organizations (such as CAP), even in these situations, the added test

needs validation before full adaptation.

The term “method evaluation” is used to describe the process of validating a new

test. This process requires three elements: test assessment, validation, and verifica-

tion. These elements are not necessarily sequential: part of the process of validation

requires technical test assessment and verification is satisfied through documenta-

tion of the validation process.

– Test assessment refers to determination of analytical and clinical performance

characteristics and was discussed extensively in Chap. 2. Here we will provide a

brief review of test assessment.

– Validation requires that the test is shown, through objective measures, to fulfill

the requirements of its specific intended use. Not only the tests need to satisfy

Fig. 10.1 Process of adding new tests
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these requirements, but they need to do this consistently. Validation is required

for all laboratory developed tests and modified FDA-approved tests.

– Verification is the objective evidence that the validation requirements are

satisfied. Verification is required for all FDA-approved tests.

In the United States, tests generally fall into three regulatory categories: non-

FDA-approved tests, FDA-approved non-waived tests, and FDA-approved waived

tests. The first two categories require that the laboratory fulfills all the three

elements mentioned above.

The method evaluation needs three steps: define performance goals, assess error,

and finally compare the error with the goals. Here, we will walk you through each of

these steps [5, 6].

Defining Analytical Goals

The purpose of a test is to diagnose a condition or assess an analyte with acceptable

accuracy and precision. The term “acceptable” is used because in measurement

there will always be a degree of inaccuracy and imprecision or in other words there

will always be a degree of error. In defining analytical goals, we must determine

what degree of error is acceptable to us, i.e., what level of precision and accuracy do

we require. Setting the goals can be alternatively stated as setting the “acceptability

criteria.”

Laboratories can set their own requirements and goals; however, they must at

least ensure that the level of error for a test is compatible with patient care (i.e., the

error is small enough to have minimal impact on clinical decision making), is

consistent with manufacturer’s specifications, and is within the allowable error set

by regulatory bodies (usually CLIA).

The acceptability criteria should state clear goals for levels of accuracy and

precision. As we will discuss later, accuracy and precision goals are defined

differently for qualitative and quantitative tests. For quantitative tests, the criteria

should also include reportable range and reference intervals. These latter

parameters are usually set based on the manufacturer’s guidelines and are later

verified by data collected from the population served by the laboratory.

Acceptability Criteria for Qualitative Tests
Qualitative tests usually return a binary response (e.g., detected vs. not detected or

positive vs. negative), and rarely have more than two categorical responses. In

laboratory medicine, semi-quantitative tests are also considered as qualitative tests

for validation purposes. These semi-quantitative tests measure a quantitative

value but report a categorical result based on set cutoffs (e.g., when levels of

HBS antigen are measured but the result is reported as positive or negative based

on a set cutoff).
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The first goal in the criteria is accuracy which is concerned with how true is the

result of the test when compared to the condition status of the test subjects.

Accuracy is related to systematic error (bias). Accuracy for qualitative tests can

be defined by going back to the 2 � 2 contingency table (see Table 10.1); accuracy

is the ratio of all true results to all results:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð10:1Þ

The second goal in acceptability criteria of qualitative tests is precision which is

also known as reproducibility. Simply stated, precision means that if the test is

repeated multiple times the results should remain constant. Precision is related to

random error. Precision has three components: within-run precision, between-run

precision, and total precision. It is usually required that precision goals are set for

all three components.

Reportable range is the range of values that the test (instrument) can detect

directly before concentration or dilution. Reportable range for qualitative criteria

depends on method criteria for a positive result. If the test is semi-quantitative and

requires a cutoff for calling a positive result, then the cutoff and validation of cutoff

become validation goals (as required by CAP). However, this depends on whether

there is an actual quantitative output from the instrument or not.

Analytical sensitivity (detection limit) and specificity are other goals for quali-

tative test validation. While CLIA does not require laboratories to validate and

verify sensitivity and specificity, CAP requires sensitivity validation for all tests

and specificity validation for some tests (e.g., modified FDA-approved tests and

laboratory developed tests).

Analytical sensitivity and specificity are different from diagnostic sensitivity and

specificity; analytical sensitivity refers to the lowest concentration of analyte which

the test can reliably detect as positive, while diagnostic sensitivity is the proportion

of the test subjects with the target condition whose test result is positive

(TP/TP þ FN).

Analytical specificity refers to the ability of the test to only detect the analyte for

which it was designed. Diagnostic specificity on the other hand is the proportion of

individuals without the target condition who test negative (TN/TN þ FP).

For non-FDA-approved tests, laboratories are required to establish the diagnos-

tic specificity and sensitivity, while for FDA-approved tests, the requirement is only

for analytical sensitivity and specificity as the process of FDA approval has already

established the diagnostic sensitivity and specificity.

The final goal of the acceptability criteria for qualitative tests is “interference.”

The lab must either through interference studies or by review of literature

Table 10.1 2 � 2

contingency table for

qualitative tests

Condition positive Condition negative

Test positive True positive (TP) False positive (FP)

Test negative False negative (FN) True negative (TN)
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(or manufacturer’s guidelines) determine the common interfering substances that

can lead to inaccurate test results.

Acceptability Criteria for Quantitative Tests
Quantitative tests usually return a value within a range. The acceptability criteria

for quantitative tests includes accuracy, precision, reportable range, and reference

interval.

Accuracy for quantitative tests measures how close the measured analyte is to

the true value of that analyte. Establishing accuracy requires method comparison

experiments where either the test results are compared with a gold standard method

or the test performance is measured for calibrators or reference material with known

values of the analyte.

The accuracy for quantitative tests is achieved if linear correlation can be

established between the test results and the true values of the analyte.

Precision for quantitative tests has two components: “repeatability” and “repro-

ducibility.” Repeatability is the degree of within-run agreement, while reproduc-

ibility is the degree of between-run agreement. Precision is established using F-test

(analysis of variance), where the ratio of the measured variance to the expected

variance should not be statistically significant (explained in detail later). For

FDA-approved tests, reproducibility (long-term precision) is more critical, while

for non-FDA-approved tests, the sequence of establishing precision requires testing

for repeatability (short-term precision) followed by reproducibility.

Reportable range, as with qualitative tests, is the range of values that the test

(instrument) can detect directly before concentration or dilution. For

FDA-approved tests, the lab needs to verify that analyte levels at near critical levels

of the manufacturer’s reportable range can be measured and reported correctly (i.e.,

measuring sample with near low end and near high end values). For non-FDA-

approved tests, establishment of reportable ranges requires a linearity experiment

with serial dilutions (explained later).

Reference range or normal values are the expected values of the test on normal

(non-affected) individuals. The reference range should either be established for the

laboratory’s target population or verified in cases where the target population is like

the manufacturer’s (or literature) sample population.

For non-FDA-approved test, analytic specificity and sensitivity should also be

established.

In the next section, we will explain the experiments needed for validation or

verification of a new test.

Validation Experiments

After goals are defined, a series of experiments must be undertaken to establish if

the new test satisfies the requirements set by the acceptability criteria. These

experiments must be well planned, documented, and reported. These experiments

are not one-time experiments and should be repeated in predefined intervals as well
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as whenever a critical component of the test (e.g., critical reagents, instruments,

etc.) is changed. It is recommended that the laboratory have a written plan for

performance of validation experiments.

Important considerations before validation include reagents, sample size, instru-

ment, etc. It is important that experiment setup is exactly as the setup under which

the test will be implemented, i.e., reagents and instruments should be the same with

real patient samples (in some circumstances control samples are also acceptable).

One general concern for validation experiments is when running side-by-side

experiments (e.g., method comparison experiment using a gold standard), the tests

should be run on the same sample within a short timeframe or otherwise steps

should be taken (e.g., refrigeration) to ensure that the sample quality does not

change between the two tests.

We will explain the following validation experiments: accuracy and precision

experiments for qualitative tests, method comparison experiments, F-test for preci-

sion, linearity experiments, total allowable error, and detection limit experiments.

The first step for validation experiments, however, is to determine the sample

size needed [7–9].

Sample Size Calculations

For calculation of sample size, you have the choice of either following the

established guidelines set by regulatory bodies or to calculate the sample size

using sample size formulas. Table 10.2 shows the commonly agreed upon minimum

sample sizes for different validation experiments.

Sample size calculations for quantitative tests. The following general sample

formula can be used:

n ¼ Zα þ Zβ

� �2
S2

Δ2
ð10:2Þ

where n is the sample size; Zα is the Z-score for the rate of acceptable type I error
(false negative rate) which is usually set for a type I error rate of 0.05 (with

corresponding two-sided Z-score of 1.96); Zβ is the corresponding Z-score for the

rate of acceptable type II error (false positive rate) which is usually set at 0.01, 0.05,

or 0.10 (with corresponding Z-scores of 2.326, 1.645, and 1.282 respectively); S2 is
the variance of data (determined using population data, or manufacturer’s data);

and Δ is the minimum clinically significant difference in the test results (e.g., for

potassium concentration differences of 0.1 mEq/L might be considered clinically

significant, but for sodium the 0.5 mEq/L might be considered clinically

significant).

Another formula that can be used for both quantitative and qualitative tests is

based on set levels of confidence and reliability. Confidence (accuracy) is the

difference between 1 and type I error rate. Reliability is the degree of precision.

For this formula, the failure rate must be decided as well, i.e., how many incorrect
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results are we allowing for our validation process. For a failure rate of 0, the

equation can be stated as:

n ¼ ln 1� confidenceð Þ
ln reliabilityð Þ ð10:3Þ

Usually the confidence level is set at 0.95 and reliability at 0.90 or 0.80 with zero

failure rate which translates to a sample size of 29 and 14, respectively.

For failure rates other than 0, the results follow a binomial distribution (see

Chap. 3). The calculation of the sample size is based on the following equation:

1� Confidence ¼
Xf

i¼1

n
i

� �
1� Reliabilityð ÞiReliabilityn�i ð10:4Þ

where f is the failure rate and n is the sample size. Many statistical software

programs have tools that will calculate the sample size using the above equation

with given confidence and reliability levels.

It is important to note that the sample size does not necessarily mean the number

of subjects or specimens. For example, in precision experiments, if a sample size is

calculated using the above equation, the number signifies the number of

experiments needed rather than the number of specimens.

Table 10.2 Sample size guidelines for test validation

Validation

experiment FDA-approved test

Laboratory developed test or

modified FDA-approved test

Qualitative tests

Accuracy

experiments

40 specimens (CLIA requirement:

at least 20)

40 specimens (CLIA requirement:

at least 20)

Precision

experiments

Minimum of 2 negative samples

and 2 positive samples

Minimum of 2 negative samples

and 2 positive samples

Reportable range At least 3–5 low and 3–5 high

positive samples

At least 3–5 low and 3–5 high

positive samples

Reference range At least 20 known normal samples At least 120 reference samples

Quantitative tests

Method

comparison

experiments

At least 20–40 samples At least 40 samples

F-test for precision At least 2–3 samples near each

clinically important level

At least 2–3 samples near each

clinically important level

Reportable range At least 4–5 samples (low end,

mid point, high end)

At least 5 dilution levels

Reference range At least 20 known normal samples At least 120 reference samples
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Accuracy Experiment for Qualitative Tests

Accuracy experiment for qualitative tests is a method comparison method where

the test is compared with either the gold standard or the test is used on known

samples. The test is compared on 20 (or more) samples for five consecutive days

and the accuracy is calculated using Eq. (10.1). If the accuracy levels obtained

meets the acceptability criteria, the experiment is ended. However, if discrepancies

are found, the experiment is extended for another 5 days.

Example 10.1
Q: A test is validated using 10 known positive samples and 10 known negative

samples. The following results are obtained over the course of 5 days (Table 10.3).

The acceptability criteria call for an accuracy of 95%. Determine if the test can be

validated with the results obtained.

A: Using Eq. (10.1), we will obtain the following results:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
¼ 48þ 45

48þ 45þ 5þ 2
¼ 93

100
¼ 0:93 ð10:5Þ

The validation results show that the test has failed to fulfill the accuracy

criterion. In this situation, an extension of the experiment for another 5 days is

warranted. If after the extension, the test still has not fulfilled accuracy criterion,

then the validation has failed.

Precision Experiment for Qualitative Tests

For precision experiments, a minimum of two positive and two negative samples

should be tested in triplicates for five consecutive days. Agreement of test results is

measured as within-run agreement and between-run agreement. Total precision is

also reported which is calculated from the sum of all between-run agreement

results.

Example 10.2
Q: The precision of a new test with positive and negative results is being tested.

Two known positive and negative samples are used for the testing. The samples are

run in triplicates for five consecutive days with the Table 10.4 showing the results.

Calculate the within-run, between-run agreements, and total precision.

Table 10.3 Results of validation experiment for Example 10.1

Day 1 Day 2 Day 3 Day 4 Day 5 Total

True positive 10 9 9 10 10 48

False positive 0 2 1 2 0 5

True negative 10 8 9 8 10 45

False negative 0 1 1 0 0 2
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A: The within-run agreement is the ratio of number of results in agreement

within a run to the total number of results within that run. Table 10.5 shows the

within-run agreement for different days of the validation experiment.

The between-run agreement is the ratio of number of results in agreement for a

sample to the total number of results for that sample. Thus, the between-run

agreements for samples 1–4 are 13/15 (86%), 14/15 (93%), 14/15 (93%), and

14/15 (93%), respectively. The total precision based on this experiment is 55/60

(91%).

For quantitative tests the precision is determined by a similar method: a replica-

tion study is performed where an analyte concentration is measured multiple times.

However, the amount of pure error is now quantified using standard deviation.

Method Comparison Experiments for Quantitative Tests

The general approach for method comparison for quantitative tests involves either

running 20–40 samples with known values or concurrently running 20–40 samples

on the validated test and a gold standard test. The method comparison is

recommended to be run over a period of at least five consecutive days. The results

are then compared by running a linear correlation test. These results can also be

inspected visually using a comparison plot which is essentially a linear correlation

plot (see Chap. 4). The comparison plot can show linearity, outliers, and the range

of results (Fig. 10.2a).

If the results have high linearity with a one-to-one agreement, then an alternative

approach is to use a “difference plot” which shows the difference of the test versus

the comparison on the Y-axis and the results of comparative method on the X-axis.

The difference points should scatter around 0 on the Y-axis (Fig. 10.2b).

Any significant differences or outliers should prompt an investigation of the

cause. Usually the first step is to repeat the measurement for that sample.

The linear correlation allows us to check for systematic error. Linear correlation

will return a regression equation which will include the intercept (or constant (C))

Table 10.4 Results of validation experiment for Example 10.2

Sample Day 1 Day 2 Day 3 Day 4 Day 5

Positive + + � + + + + + + + � + + + +

Positive + + + + + + + � + + + + + + +

Negative � � � � � � � � � � � � � + �
Negative � � � � � � + � � � � � � � �

Table 10.5 Within-run agreement for Example 10.2

Day 1 Day 2 Day 3 Day 4 Day 5

Within-run

agreement

11/

12 ¼ 92%

12/

12 ¼ 100%

10/

12 ¼ 83%

11/

12 ¼ 92%

11/

12 ¼ 92%
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and slope (B). The linear regression equation is usually calculated using the “best fit
line” method (see Chap. 4). The best fit line approach finds the slope and intercept

of a line where the sum of squared differences of the points from the line is

minimum:

minQ C;Bð Þ for Q C;Bð Þ ¼
Xn
i¼1

yi � C� Bxið Þ2 ð10:6Þ

Fig. 10.2 Comparison plot of a new test versus the comparative method (a) with a fitted line. The
difference plot is shown in the right panel (b)
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The regression equation can be stated as follows:

Comparative method result ¼ B� New test resultð Þ þ Constant ð10:7Þ
The constant is indicative of constant systematic error, i.e., if the slope is 1, then

the new test is different from comparative method result by a constant amount

throughout its range of results. The slope in the equation shows proportional

systematic error, i.e., the difference between the comparative test value and the

new test value differs throughout the range.

Running a linear correlation on the results will also provide you with the

standard deviation of the points around the fitted line, the confidence interval of

the slope, the “correlation coefficient” (also known as “Pearson’s r coefficient”),
and a p-value.

A significant p-value is needed to say that there is linear correlation. In other

words, a significant p-value is the first thing you should look at in the method

comparison experiment which will tell you if the new test is useful for measuring

the target analyte. Thus, a significant p-value is what you need for validation.

The next step is to look at the correlation coefficient to determine if there is any

systematic error. Pearson’s r coefficient shows how well the compared results

change together and can have values of between �1 and 1.

Pearson’s r statistics can be stated as:

r ¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � �yð Þ2

q ð10:8Þ

where n is the size of the sample, x is the test variable, and y is the comparison

variable.

A perfect linear relationship between the two results will result in a Pearson’s

r coefficient of 1. A perfect correlation coefficient (r � 0.99) means that there is

minimum systematic error. However, if r < 0.975, then a systematic error exists; in

such situations, you need to run a t-test and a F-test to determine the source of

the bias.

Of note, the correlation coefficient tends to be affected by random error as well.

If the range of the analyte measures is narrow, the effects of random error on the

correlation coefficient will be larger (thus, Pearson’s r coefficient tends to be

smaller for such analytes (e.g., electrolytes)). For analytes with a wider range of

values, the effects of random error will be smaller and thus they tend to have higher

correlation coefficients.

Example 10.3
A method comparison experiment is run comparing a new test with a gold standard

test. The results of the experiment are provided in Table 10.6.
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The linear regression equation for the above results is:

Comparative Method ¼ �0:676þ 1:04 New Test ð10:9Þ
The calculated p-value for the regression equation is <0.001 which means that

the test is highly correlated with the comparison method. The Pearson’s

r coefficient is 0.99 showing that there is no significant systematic error.

T-Test for Method Comparison Experiments
The t-test (see Chap. 6) should be run to determine if the mean of the two sets of

results is the same or in other words t-test can determine if there is any systematic

error (bias) in the mean of the two sets of values. In most method comparison

experiments, it is best to use a paired t-test, since the same sample is being

compared using two different methods (and thus a degree of similarity of the

means expected and running an unpaired t-test will fail to detect the bias). If the

t-test returns a nonsignificant value, then there is no systematic error.

If the t-test returns a significant p-value, then it shows that there is a significant

bias (systematic error) in the mean of the two sets of values. If the t-test is

significant, then you should go back to the linear regression equation to determine

whether the source of the bias is the constant or the slope. Constant error is easily

remedied by adding the constant to the new test results. However, for proportional

errors, “recovery experiments” are needed.

Table 10.6 Results of the

method comparison

experiment for Example

10.3

New test Method comparison

14.45017 14.5

13.39091 12

12.73093 12.8

12.03 11.15634

12.3 12.5

10.43 10.59877

16.1 15.7

11.91149 12

5 5.2

7 7.5

3 2.8

20.1 21

10.66921 9.847511

14 14.2

10.42656 9.726387

17 17.3

10.3011 9.10431

10.21318 9.03637

4.5 3.8

8.87772 8.364023
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Recovery experiments allow us to estimate the proportional systematic error. In

these experiments a patient’s specimen is divided into two equal aliquots and the

concentration of the target analyte is measured in both. Then, a standard solution of

the target analyte with known concentration is added to one aliquot (aliquot A), and

an equal amount of diluent (e.g., water) is added to the other aliquot (aliquot B). The

target analyte is measured again in the two aliquots. The expectation is that the

difference between the two aliquots be the same as the amount of target analyte

added to one of the tubes. The recovery percent is calculated as:

Recovery% ¼ Analyte amount in aliquot Að Þ � Analyte amount in aliquout Bð Þ
Amount of analyte added to aliquote A

� 100

ð10:10Þ
Note that the terms in the formula are “amount” rather than “concentration.”

However, most instruments and tests measure “concentration”; thus, before recov-

ery percent is calculated, you need to calculate the amount of analyte using the

measured concentrations and sample volumes.

These experiments should be run at least in duplicates. The sample size is

dependent on the type of systematic error suspected and may vary from a few to

20 patients.

The difference of recovery percent from 100 is the proportional error percent.

This measure should be smaller than the total allowable error set in the acceptability

criteria of the lab and the CLIA requirements.

Example 10.4
A method comparison experiment is run comparing a new test with a gold standard

test. The results of the experiment are provided in Table 10.7.

The linear correlation returned a Pearson’s r coefficient of 0.971. A paired t-test

was performed which returned a t-score of �2.827 with 19 degrees of freedom

which translates to a significant p-value of 0.011. The results indicate that some

form of systematic error (bias) exists. A recovery experiment was performed.

A sample with 10 mg/L of the test analyte was split into two aliquots of 10 ml

(in tubes A and B). To tube A, 10 ml solution with a concentration of 100 mg/L of

the target analyte was added. To tube B, 10 ml of distilled water was added. The

concentration of the target analyte was measured again with results for tubes A and

B being 40 mg/L and 5 mg/L, respectively. Calculate the proportional error and

determine if the proportional error is less than the total allowable error of 1 mg/L at

the middle of the range (10 mg/L is the middle of the range for this analyte).

First, let us calculate the amount of target analyte in the aliquots before the other

solutions were added:

Each tube had 10 ml of a 10 mg/L solution. This can be written as 10 � 10=1000Þð ;

thus, the amount of analyte in each aliquot is 0.1 mg. In the same manner, the 10 ml

of the 100 mg/L solution has 1 mg of target analyte. The tube A sample after adding
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the solution has 20 ml of 40 mg/L solution which translates to 0.8 mg of target

analyte. The tube B sample after adding water has 20 ml of 5 mg/L solution which

means that tube B has 0.1 mg of the target analyte (which equals the amount before

the experiment since only water was added).

Now we can calculate the recovery percent:

Recovery% ¼ 0:8� 0:1

1
� 100 ¼ 70% ð10:11Þ

So, the proportional error percent is 30%. The total allowable error at 10 mg/L is

1 mg/L for this analyte which translates to a 10% allowable error; however, the

proportional error percent is 30% which is much larger than the allowable error.

This means that we have failed to validate the test as we have exceeded the

allowable error.

F-Test for Precision

“F-test” or analysis of variance (see Chap. 6) compares the variance of the test

method with the comparative method. In simple terms, F-test shows whether the

variation observed in the test values is different from the variations observed for the

comparative value. If no random error exists, you would expect the variations of the

two sets of results to be similar, i.e., any variation observed in the test result is

Table 10.7 Results for

Example 10.4
New test (mg/L) Method comparison (mg/L)

14.45 14.5

13.39 15

12.73 14

12.03 13

12.3 12.5

10.43 11

16.1 15.7

11.91 12

5 7

7 8

3 2.8

20.1 23

10.67 9.85

14 14.2

10.43 13

17 17.3

10.3 9.1

10.21 11

4.5 6

8.88 9

232 10 Validation of New Tests



caused by actual variation of the sample value rather than due to error. F-test for

two variances is a simpler form of the ANOVA equation introduced in Chap. 6 and

can be stated as:

F ¼ S21
S22

where S21 > S22 ð10:12Þ

with S2 being the variance of the values. The critical values can be looked up in a

F-table (Appendix D) with (N�1,N�1) degrees of freedom where N is the

sample size.

If the p-value shows no significance, then we can state that the random error in

the test is not more than the random error of the comparison method, and con-

versely, a significant p-value signifies the existence of significant random error in

addition to the random error of the comparison method.

An important measure here is the standard deviation of the test values which is

the square root of the variance. The standard deviation (SD) is used as an indicator

of random (pure) error in calculation of the total allowable error.

Example 10.5
Going back to Table 10.7, let us calculate the F-statistic for the method comparison

experiment. The variance of the new test results is 17.982 and the variance of the

comparative method results is 19.714. Now, we can calculate the F statistics:

F ¼ S21
S22

¼ 19:714

17:982
¼ 1:096 ð10:13Þ

Looking at the F-table for (19,19) degrees of freedom for the right tail of a

two-tailed significance level of 0.05, we can see that the critical value is approxi-

mately 2.16. Since the calculated F-statistic is less than the critical, then we can say

that the result is insignificant and no additional random error is present.

Linearity Experiments for Reportable Range

As part of the validation process, either the reportable range of a test should be

established or the reportable range claimed by the manufacturer should be verified.

This is done through “linearity experiments” also known as “analytical measure-

ment range experiments.” For linearity experiments, at least 5 samples with known

concentrations of the target analyte are needed. These samples should have at least

one sample near the low end of detection (detection limit), one sample near the high

end of detection, one sample near the concentration of clinical interest (e.g.,

population average for electrolytes), and one or more samples with concentrations

between the high and low end. Ideally, the sample concentrations of the target

analyte are equally spaced. The measurements of these samples should preferably

be made in triplicates or more.
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After repeated measurements, the mean measured value for each of the samples

should be plotted along with the actual concentrations on a scatterplot with Y-axis

being the measured values scale and the X-axis being the actual concentration scale.

Each consecutive pair of points is then connected with a line and a best fit line is

then drawn for the points in the scatterplot. This allows for visual inspection of the

connected points line with the best fit line: ideally, the best fit line and the connected

points line should be the same, and the reportable range of the test would be areas

where the fitted line and the connected line have the most overlap (Fig. 10.3).

Visual inspection, however, has limitations and ideally a least squares linear

regression line should be calculated for the data (as in method comparison, see

Chap. 4). After fitting the regression line, the “lack-of-fit error” should be calcu-

lated; this is essentially the sum of squared difference between the measured value

for each actual value with the value predicted by the regression line for that point.

Since we have performed the experiment in triplicates, for each measurement

point (which is the mean of triplicate measurements), we can calculate the sum of

random error for the points which is the sum of squares of all the deviations of

measured points from their average.

The sum of lack-of-fit error and random error is the total error of the linearity

experiment.

To determine linearity, a lack-of-fit F-test (G test) is run; this test is essentially a

variation of the F-test in which the ratio of the lack-of-fit error to random error is

calculated:

G ¼ Sum of Squares of Lack-of-fit error

Sum of Squares of Random error
ð10:14Þ

Fig. 10.3 Connected points line and the best fit line of a linearity experiment. The best fit line (red
dotted line) has the most overlap with connected points line in the 30–90 range with deviations

more visible at 10 and 110
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The G is then multiplied by the ratio of degrees of freedom of the pure error and

lack-of-fit error. The degrees of freedom of pure error equals to total number of

measurements minus the number of actual values. The degrees of freedom of lack-

of-fit error equals the total number of actual values minus 2:

DF ratio ¼ DF of Random error

Df of Lack-of-fit error
¼ n� c

c� 2
ð10:15Þ

where n is the total number of measurements and c is the number of actual values.

The F-score can be constructed as:

F ¼ G� DF ratio ð10:16Þ
The critical values for the F-test can be looked up in a F-table with (n� c, c� 2)

degrees of freedom. If the p-value is not significant, then there is linearity. Con-

versely, a significant p-value rejects linearity. In these situations, if the test has been

performed for verification, then we have failed to verify the reportable range of the

manufacturer.

For laboratory developed tests, there are two solutions: either new samples

should be added (for instances, where few samples were tested) which are further

from the low end and high end. Or in cases where sufficient points were measured,

the most extreme pair of points is removed and the F-test is calculated again (this

process can be continued while there are more than five points remaining until a

reportable range can be calculated for the test).

A big shortcoming of the least squares method is that outlier exert considerable

influence on the fitted line and consequently it is best to visually inspect the data

before the regression line is fitted and address the significant outliers (usually by

repeating the experiment for that sample). F-test is also highly affected by precision

(random error) and can sometimes assume linearity when the points form a nonlin-

ear correlation.

For these reasons, CAP has proposed using the polynomial method. In polyno-

mial approach, the first step is to check for nonlinearity (either quadratic or cubic).

If no nonlinear correlation is identified, then the measurement points are assumed to

be linear and are called “Linear 1.” If a significant nonlinearity is identified, then

this nonlinearity is checked to determine if it is clinically significant (by testing the

data against clinically relevant allowable error). If the nonlinearity is not clinically

significant, then a value of “Linear 2” is returned, which essentially means that the

data is treated as if it was linear. If there is nonlinearity that is also clinically

significant, then the polynomial method returns a value of “nonlinear” which means

that the validation has failed for the reportable range. Explanation of the

calculations for the polynomial method is beyond the scope of this current book.

Example 10.6
A linearity experiment has been performed for a new test. The results are reported

in Table 10.8. Determine if the reportable range of the test can be validated.
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To calculate the G value, we need to divide the sum of lack-of-fit errors of the

points by the sum of pure (random) error:

G ¼ Sum of Squares of Lack-of-fit error

Sum of Squares of Random error
¼ 10:218

7:14
¼ 1:43 ð10:17Þ

We have 18 total measurement and 6 actual values; thus, we can calculate the DF

ratio:

DF ratio ¼ n� c

c� 2
¼ 12

4
¼ 3 ð10:18Þ

Consequently, the F statistic will be:

F ¼ G� DF ratio ¼ 1:43� 3 ¼ 4:29 ð10:19Þ
The critical value of F for (12,4) degrees of freedom is 5.91. Because

4.29 < 5.91, we have failed to reject the null hypothesis, thus showing that test is

linear throughout its reportable range.

Allowable Total Error

“Total error” or “total analytical error” (TAE) is the sum of systematic error and

random error. It has been shown that total error is a more accurate measure of

diagnostic error than bias (systematic error) alone. The systematic error will be

calculated from a method comparison study and the random error is calculated from

a replication study (which can be a part of the method comparison study). Total

analytical error is then defined as:

TAE ¼ Biasþ 2SD for two-tailed estimates or

TAE ¼ Biasþ 1:65SD for one-tailed estimates ð10:20Þ

Table 10.8 Results for linearity experiment in Example 10.6

Actual

values

Repeated

measure

1

Repeated

measure

2

Repeated

measure

3

Average

for the

point

Fitted

line

value

Sum of

squares

of pure

error

Sum of

squares

of lack-

of-fit

error

10 12 11.75 13 12.25 10.46 0.875 3.200

30 28.7 29.5 30.7 29.63 30.60 2.026 0.943

50 50 49 51 50.00 50.74 2 0.559

70 70 70 70.1 70.03 70.89 0.006 0.735

90 90.2 90.3 89.3 89.93 91.03 0.606 1.212

110 113 112.2 114 113.07 111.17 1.626 3.567

Total 7.141 10.218
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Simply stated, the measured value can be different from the true value not only

by the amount of systematic error but also by random error (random error can

alleviate or aggravate the bias) (Fig. 10.4).

For verification purposes the total error should be assessed for 20 patients;

however, for laboratory developed tests, the current requirement is to check at

least 120 patients (or samples) or preferably 120 patients for each decision-level

concentration.

“Allowable total error” (ATE) is the amount of total error that is acceptable for

the intended use of the test. CLIA and other regulatory bodies have set requirements

for ATE of different analytes, and these requirements are the baseline ATE that

laboratories need to follow. However, they may choose to adopt more stringent

ATE based on their clinical setting. This is called the clinical allowable error.

In Six Sigma concepts, there are four levels of ATE: biasþ2SD, biasþ4SD, bias

þ5SD, and bias þ6SD. Each Sigma can be defined as ((Level of ATE – bias)/SD).

The 6S or Six Sigma is the tolerance limit of the test (this translates to running two

levels of controls per analytic run (see next chapter)).

After the laboratory sets an ATE for a test, the next step is to draw a “method

decision chart.” The method decision chart has the allowable bias percent on the

Y-axis with a scale from 0 to ATE and the allowable random error (imprecision)

percent (described as percentage of SD or CV) on the X-axis with a scale from 0 to

0.5 ATE. The next step is to draw Sigma lines, which are drawn by connecting the

y-intercept at ATE and the x-intercept at (corresponding level ATE/SD (or CV)).

For example, Fig. 10.5 shows a method decision chart for a test with ATE of 10%

and SD of 1.

The next step would be to chart the operating point (total error) of the test on the

chart (using the measured bias and imprecision). Depending on where on the chart

the test is performing, you canmake decisions on the quality of the test. The regions on

the chart correspond to different levels of performance; from right to left

Fig. 10.4 Total error is a

combination of bias and

random error
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these performance levels are unacceptable, poor, marginal, good, excellent, and world

class, each corresponding to different levels of Sigma (2–6S and finally better than

6S).

The test should perform at a marginal performance level or better to be allowed

for regular operational use. At marginal performance level, the implementation of

the test requires 4–8 quality control samples per analytical run and stringent quality

monitoring strategy. A test with good performance needs 2–4 quality control

samples per analytical run whose measured values should fall within 2.5 standard

deviations of their actual value. Excellent performance requires 2 quality control

samples per run with an acceptability range of 2.5–3 standard deviations. Finally,

world class performance only needs 1 or 2 quality control samples per run with an

acceptability range of 3–3.5 standard deviations.

Detection Limit Experiments

“Detection limit experiments” are needed for determination of analytical sensitiv-

ity. These experiments are based on the results of the test on a blank and a spiked

sample. The blank sample should have a zero concentration of the target analyte.

The spiked sample should have a low concentration of the target analyte

(corresponding to manufacturer’s claim for detection limit); usually several spiked
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Fig. 10.5 Method decision chart for a test with ATE of 10% and SD of 1. Lines represent

different levels of Sigma
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samples are required with progressively higher concentrations of the target analyte.

The basis of the experiment itself is a replication study where both the blank sample

and the spiked sample are measured repeated times to establish a mean concentra-

tion as well as standard deviation. The recommended number of repetitions is

20 times for verification purposes and 60 times for validation purposes.

The first estimate determined is called the “limit of blank” (LoB) which is the

highest concentration that is likely to be observed for a blank sample with a

one-sided confidence interval of 95%. This corresponds to mean blank concentra-

tion plus 1.65 standard deviations of the blank measurement.

“Limit of detection” (LoD) is the next estimate of the experiment; this limit is

lowest amount of target analyte that can be detected with a probability of 95%. This

corresponds to limit of blank plus 1.65 standard deviations of the spiked measure-

ment. While LoD shows the analytical sensitivity, it does not show how accurate

are the measurements at that concentration. In fact, usually measurements at LoD

are unreliable and should not be part of the reported operational range.

Thus, the next estimate needed which will set the operational limit of the test

should be measured. This estimate is called “limit of quantification” (LoQ) and

refers to the lowest concentration of the target analyte that can be detected with

acceptable accuracy and precision. Limit of quantification needs multiple spiked

samples to be measured; LoQ will be mean spiked concentration where the total

error (bias plus 2 standard deviation) is less than the allowable total error set for that

test by the laboratory or regulatory bodies.

A similar concept to LoQ is the “functional sensitivity” which is the lowest

concentration at which the coefficient of variation (CV) is 20%. However, as CV is

the ratio of standard deviation to mean, then functional sensitivity only represents

the precision of the test.

For verification purposes, the laboratory needs to establish that the test meets the

specifications of the test set by the manufacturer [8, 10–13].

Notes on Validation of Immunohistochemical Tests

In anatomic pathology, one of the critical tests that needs validation and verification

is immunohistochemical staining. Immunohistochemical stains are often used to

guide important diagnostic and/or prognostic decisions (e.g., HER2/neu status in

breast carcinomas), as such issues of accuracy and precision are significant. Fur-

thermore, sensitivity and specificity are also relevant issues that need to be

established before a diagnostic decision is based on immunohistochemical stains.

To establish sensitivity and specificity, a review and critical appraisal of literature is

needed (see Chap. 12). Here, we will briefly discuss issues regarding validation of

immunohistochemical (IHC) stains.

The steps in validation of IHC stains include assay optimization, establishment

of analytical sensitivity and specificity, and concordance studies. Assay optimiza-

tion is a critical step in IHC validation and aims to develop an IHC protocol that

addresses the issues of antigen retrieval and detection. Based on the manufacturer’s
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guidelines, the assay needs to be optimized to ensure that the quality and pattern of

IHC stain is comparable with the manufacturer’s specification. While automation

has greatly helped with assay optimization, there is still need for changes and

tweaks to IHC protocols to ensure optimal IHC results.

Concordance studies are the crucial step in IHC assay validation. There are

different approaches to concordance studies: the simplest form of concordance

study is to compare the results with the expected results based on morphology or

tissue origin. The Human Protein Atlas project (www.proteinatlas.org) is a com-

prehensive resource that can be used for choosing appropriate tissue controls for

IHC validation.

Another method is to use a gold standard or previously validated test and test the

same tissue using both the new test and the validated test. The results can then be

compared. For IHC this occasionally means validation using non-IHC methods

such as fluorescent in situ hybridization (FISH), flow cytometry, molecular studies,

or even clinical outcomes. An alternative to this approach is to test the tissue in

another laboratory that has already validated the new IHC test.

Ideally, IHC validation studies need to use pertinent positive and negative

appropriate for the intended clinical use. Laboratories need to test at least ten

positive and ten negative tissues for non-predictive IHC markers. In cases where

the degree and pattern of positivity is part of the clinical decision making, the

concordance study needs to include samples with different expression levels or

patterns as well. For predictive IHC markers, the initial validation needs 20 samples

for each staining pattern. As the sample size increases, the confidence interval for

the overall concordance narrows; for 1 discordant result, the confidence interval of

concordance for 10 and 20 samples is 57–100% and 75–100%, respectively.

The intended use of the IHC assay is important in the sample size calculations:

IHC assays that will act as stand-alone clinical decision-making tools need more

stringent validation with a larger sample size. However, when IHC is used as part of

a panel, the requirements for validation are less stringent reducing the number of

samples needed for validation.

It is suggested that each time the protocol changes for an IHC assay or one of the

components of the test is changed, the laboratory needs to confirm assay perfor-

mance using two samples for each staining pattern.

Current guidelines recommend an overall concordance (agreement) of 90%

between the new test and the comparison method for validation of the new test. If

overall concordance is less than 90%, a McNemar test should be run to establish

whether the discordant results are statistically significant. If no statistical signifi-

cance is found and the overall concordance is sufficiently high (e.g., >80%), then

we can still accept the validation study results.

Unfortunately, IHC validation has a subjective analytical component, i.e., inter-

pretation of results is dependent on the pathologist. To minimize this, often it is

recommended that the results are interpreted by more than one pathologist and

consensus results are used in validation. However, major discrepancies and dis-

agreement between the raters should be addressed.

240 10 Validation of New Tests

http://www.proteinatlas.org


Currently, there are no recommendation on measuring inter-observer and inter-

method agreement (usually it is based on overall agreement with no statistical

comparison). However, we purpose that an agreement statistical test is applied:

Kappa’s D for binary results (e.g., positive/negative), Spearman’s rho for ordinal

variables (e.g., scores 1–3 for HER2/neu staining), and Pearson’s r for continuous
variables (e.g., number of tumor infiltrating lymphocytes).

Recent advances in computerized image analysis have meant that currently there

are many commercial and open-source software available that can allow for

objective evaluation of the IHC assay. This can help in validation studies by

reducing the human error bias [14].

Summary

Adding a new test requires a vigorous validation and verification process. Even if

regulatory bodies approve a test, this does not mean that test will have a similar

performance in the laboratory setting as the original validation setting. The process

of validation/verification requires that goals (acceptability criteria) are set and

experiments are run to test whether the test meets the goals that are set. These

goals and experiments need to address issues such as accuracy, precision, sensitiv-

ity, and specificity. Many of these criteria should be periodically checked to ensure

that the test performance is still at the level required by acceptability criteria. We

will address some of the statistical concepts in pathology and laboratory medicine

in the next chapter.
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Statistical Concepts in Laboratory Quality
Control 11

Introduction

In the previous chapter, we discussed test validation. However, once a test is

validated, continuous monitoring of quality metrics is needed to ensure that the

test performance is within the limits set by validation experiments as well as the

requirements by the lab and regulatory bodies. This requires periodic quality

control experiments and occasional corrective actions to address possible problems.

As with validation, thorough documentation of the process is needed. The process

of quality control has at its roots many statistical underpinnings and assumptions; in

fact, the process of quality control is also called “statistical process control.” The

goal of quality control is to minimize variability and maximize accuracy and

precision; this requires measurements of quality metrics and interpretation and

analysis of these quality metrics by statistical methods.

Laboratory quality control has two strategies: internal quality control and exter-

nal quality control. Internal quality control refers to quality control procedures that

are performed on a routine (per run or daily) basis within the laboratory. The main

aim of internal quality control is to check for precision. The external quality control

is performed periodically (e.g., through proficiency testing) and compares the

performance of the laboratory with an external quality control (either other

laboratories or a reference center).

Quality control experiments require control materials or samples. These samples

are close to the sample matrix of the patients and contain the target analyte of a test;

the concentration of the analyte is near the clinical decision limits, and this usually

means that quality control samples have different levels of target analyte (e.g., low,

normal, high). Quality control samples are either standardized samples produced by

the test manufacturer, or they can be developed in-house.

It must be noted that most statistical tests used in quality control assume that

almost all testing results follow a normal (Gaussian) or near-normal distribution.

Understanding of the concepts of this chapter therefore requires a basic understand-

ing of statistical terms including mean, standard deviation, coefficient of variation,
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and normal distribution (and Z-scores) which we have previously discussed in

Chaps. 2 and 3.

Detailed discussion of procedures and methods in quality management requires a

textbook of its own. For reference purposes, an excellent text in quality control and

statistical methods in laboratory medicine is Dasgupta et al. [1]. In this chapter, we

will discuss some of the statistical concepts fundamental to the process of labora-

tory quality control [1–3].

Control Limits

In simple terms, “control limits” are the upper and lower limits of allowed control

values, i.e., the results of the control samples can fluctuate between these limits.

Thus, control limits have an upper and lower control limit (UCL and LCL,

respectively) and a center value (CL) around which the results fluctuate. For each

analytical run (or each day), quality control samples must be tested before patient

samples, and the laboratory must ensure that the control results are within the

control limits; any results outside of quality control limits require corrective actions

(e.g., repeat measurement).

The calculation of the control limits is done using a replication study; this

requires that a control sample (one control sample per control level) is repeatedly

tested (20–30 times, the exact sample size can be calculated using Eq. 10.3 in

Chap. 10 for zero outliers or Eq. 10.4 in Chap. 10 for one or more outliers). Then,

the mean and standard deviation of the control sample levels are established. The

mean plus or minus three standard deviations (μ� 3σ) forms the “trial limits.” If

any of the replication study results is outside of the trial limits, then that result is

rejected, and the mean and standard variation are calculated again using the

remaining values, and a new “trial limit” is set. This process is repeated until no

results fall outside the trial limits. The final trial limits are then set as the UCL and

LCL, and the final mean is set as the CL.

The basis of control limits is that 99.7% of random fluctuations of the control

sample value fall within the control limit. Thus, if a measurement falls outside of

the limits, a very rare event has occurred (with a probability of less than 3/1000)

warranting an intervention.

Control limits only address random error. For systematic error measurement, a

comparison method is needed to identify systematic error. Any systematic error

found needs to be corrected using a recovery experiment and calibration (see

Chap. 4). In fact, periodic check for accuracy is needed (e.g., through proficiency

testing or running calibrators) to allow for identification and rectification of bias in

the test.

244 11 Statistical Concepts in Laboratory Quality Control

http://dx.doi.org/10.1007/978-3-319-60543-2_10#Equ3
http://dx.doi.org/10.1007/978-3-319-60543-2_10#Equ4


Levey-Jennings Charts

A “Levey-Jennings chart” allows us to visually inspect the quality control process

of the laboratory. Inspection of this chart helps with identification of random and

systematic errors without the need for advanced mathematical computations. The

basis for this chart is to show the fluctuations of control samples around their mean,

and, in fact, these charts are a visual graph of quality control samples over time. The

X-axis of the chart is the time (or runs) of the test, and usually 10–20 data points

(corresponding to the most recent runs) are plotted on the X-axis. The Y-axis shows

the value of the target analyte with CL, �1 standard deviation (SD) through �3 SD

marked by horizontal lines. The measured values of the quality control sample for

each run are then plotted on the chart (Fig. 11.1).

If the quality control value points fluctuate around the average (i.e., no two

consecutive points fall on the same side of the CL), then there is only random error

in the chart. On the other hand, if two or more points fall on the same side of CL

then it may show a systematic error or bias (as the number of consecutive points on

the same side of CL increases, the probability that a bias has occurred will

increase).

Evaluation of Quality Control Results and Levy-Jennings Charts Thus far, we

have discussed the fundamentals of Levy-Jennings chart evaluation. Since these

charts are plots of the results of the assays of controls for a given analyte, the

question arises as to how to evaluate the validity of the results of these controls

themselves. In general, all results should lie within �2 standard deviations of the

mean (cl) value that has been determined for the control. However, there are more

Fig. 11.1 Levey-Jennings plot of an analyte with CL of 0.23 and standard deviation of 0.03

Levey-Jennings Charts 245



specific rules as to how to perform these evaluations. In addition, there are rules for

determining the validity of the results of Levy-Jennings plots. Both sets of rules are

called the Westgard rules as we now discuss.

Westgard Rules

In most clinical laboratories, controls for each analyte are assayed once per eight-

hour shift so that three controls for each analyte level are analyzed every 24 h. The

normal number of controls for each analyte is three; high, normal or intermediate,

and low. More recently, it has become customary to use two rather than three

controls. Depending on the number of controls used for each analyte, a set of rules,

known as the Westgard rules, established by Dr. James O. Westgard of the

Department of Pathology at the University of Wisconsin, has been adopted univer-

sally as the criteria for accepting or rejecting quality control results.

The rules are as follows:

1. If three controls are used for a given analyte, if two control values lie within

�2 standard deviations of the mean (cl) value, and the third control is found to

have a value that is >2 standard deviations from the mean but is <3 standard

deviations from the mean, the results are acceptable.

2. If three controls are used for a given analyte, if two control values lie within

�2 standard deviations of the mean (cl) value, and the third control is found to

have a value that is >3 standard deviations from the mean, the results are

unacceptable.

3. If three controls are used for a given analyte, if two control values lie outside of,

i.e., are greater than, 2 standard deviations of the mean (cl) value, and the third

control is found to have a value that is within 2 standard deviations from the

mean, the results are unacceptable. This rule applies even if the two outlying

results are within 3 standard deviations of the mean.

4. If two controls are used for any given analyte and if either or both controls are

found to lie outside of 2 standard deviations from the mean (cl), the results are

unacceptable. This rule applies even if one or both outlying results are within

3 standard deviations of the mean.

These rules are the basic ones that govern all quantitative quality control. There

are several further rules relating to trends in quality control as revealed by Levy-

Jennings plots:

13S Rule

If one control value falls beyond the 3 standard deviations limit. This is a criterion

used for random error detection. This means that the test has failed QC and

corrective actions are needed (Fig. 11.2).
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22S Rule

If two consecutive control values fall between the 3 standard deviations and

2 standard deviation limits. This is a criterion used for systematic error detection.

This means that the test has failed QC and corrective actions are needed (Fig. 11.3).

R4S Rule

If two consecutive control values are more than 4 standard deviations apart. This is

a criterion used for random error detection. This means that the test has failed QC,

and corrective actions are needed (Fig. 11.4). Alternatively, if high and low control

samples are run and if the sum of deviations of the two samples is more than 4, then

the QC has failed.

41S Rule

If four consecutive control values fall on the same side of the CL and are at least one

standard deviation away from CL then QC has failed. This is a criterion used for

systematic error detection (Fig. 11.5).

10x Rule

If 10 consecutive control values fall on the same side of the CL then QC has failed.

This is a criterion used for systematic error detection (Fig. 11.6).

Corrective Actions for Results That Are Out of Range If quality control results

for an analyte are rejected, patient results for this analyte cannot be reported. It is

therefore necessary to investigate the reason for the out-of-range result(s) for the

control(s). The first action is simply to repeat the assay on the control in question to

Fig. 11.2 The 13S rule. Sample 9 has fallen outside the 3 standard deviations limit
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test whether the error was a random error. If the result is now in range, the control

result is acceptable, and the out-of-range result is considered to be a random error.

This repeat value is recorded on the Levy-Jennings chart. If the repeated result is

still out of range, the assay can be repeated one more time to determine if the result

Fig. 11.3 The 22S rule. Samples 9 and 10 have values that are more than 2 standard deviations

higher than the CL

Fig. 11.4 The R4S rule. Samples 9 and 10 are more than 4 standard deviations apart
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becomes within range. If the second repeat assay still gives an unacceptable result,

the next action is usually to recalibrate the assay on the analyzer. Once recalibra-
tion is performed, all controls must be re-assayed.

Fig. 11.5 The 41S rule. Samples 7 through 11 have values that are more than 1 standard deviation

away from the CL

Fig. 11.6 The 10x rule. Sample 1 through 10 have values that fall on one side of the CL

Levey-Jennings Charts 249



If, after recalibration, one or more controls are out of range, it is best to contact

the manufacturer of the analyzer and have the analyzer, reagents, and controls

checked. Some operators choose to evaluate new assay reagents to determine if the

“old” assay reagents have deteriorated and/or to evaluate new controls since the

“old” controls may have themselves deteriorated. Performing the latter steps is

time-consuming and may not be appropriate for a busy laboratory service. If either

the reagent or the control is changed, validation procedures must be implemented.

For example, if the reagent is changed, a calibration must be performed. Then, the

controls must be assayed. It is advisable to assay the controls 20 times to obtain a

new mean and standard deviation with the new reagent. These should be tested

using the Student’s t-test (Chap. 6) against the former mean and standard deviation

with the “old” reagent to determine if the means and standard deviation are

the same [2, 4–7].

Average of Normals

“Average of Normals” (AoN) is another internal quality control method that uses

patient results as controls for the quality control process. The basic principle behind

this approach is that normal individual results are expected to be near the population

normal value of the target analyte. Thus, if the target analyte of multiple normal

patients is measured, we would expect the results to fluctuate around that popula-

tion average. The AoN method can only be used to detect systematic error.

One of the methods used in AoN is called the Hoffman and Waid method. In this

method, the mean value of normal samples is compared to a mean reference value.

While mean population values for many analytes are known, it is recommended that

the laboratory calculates the mean value using its own patient population. Usually

as part of the validation process, experiments are performed to establish the

reference range of the analyte (see Chaps. 2 and 10). In these experiments, the

target analyte is measured in a sample of normal patients, and a reference range is

established. We can also extract the mean (μ) and standard deviation (SD) of the

reference value from these experiments [8].

The next step is to calculate the standard error (SE) of the normal results which is

given by

SE ¼ SDffiffiffiffi
N

p ð11:1Þ

with N being the sample size.

Now we can calculate the 95% confidence (95% CI) interval of the normal

results:

95%CI ¼ μ� 1:96� SE ð11:2Þ
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This confidence interval represents the upper and lower limits of normal for the

target analyte.

Every day (or every workshift) a sample of normal results that are reported as

part of the routine laboratory operation is extracted (recommended sample size is at

least ten patients). These patients will form the control sample of the AoN method,

and the mean value of the target analyte in these patients is calculated. If the

average of normals is beyond the limits of normal of the target analyte, then we

have detected a systematic error (bias) in the results requiring corrective action.

Size calculations are important in AoN method. As the size of the control sample

increases, the effectiveness of this method increases. The size is determined by the

ratio of the biological variance of the target analyte (CVb) versus the variance of the

method (CVa), i.e., (CVb/CVa). The Cembrowski nomogram shows the correlation

of this ratio with sample size and probability of bias detection (Fig. 11.7).

Another approach is to use a t-test (see Chap. 6) to determine if there is any

statistically significant difference between the daily normal average and the average

value obtained from the mean reference value. Using this approach, obtaining a

p-value less than 0.05 signifies the presence of a substantial bias. However, running

a t-test requires that the size of the two samples (sample used for calculation of daily

average and sample used for calculation of the mean reference) be equal [9–11].

Delta Check

“Delta check” refers to the comparison of a patient’s current result to a previous

result from the patient. It is one of the quality metrics that can be used in the

laboratory and allows for identification of random error. The concept behind delta

check is that, if the two tests are performed over relatively brief periods (2–5 days),

then the difference in the values of a patient should be minimal (unless a major

physiologic/pathologic event has occurred). Delta check is of importance in

Fig. 11.7 Cembrowski

nomogram correlating the

CVb/CVa with the sample size

and probability of bias

detection
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checking for possible preanalytical errors as well and can possibly point out sample

mislabeling if a particularly discordant result is found.

Delta check or intraindividual variability can be expressed as the absolute

difference of two values, or alternatively as the ratio of the two values. Delta can

also be expressed as the percent of change from previous ratio.

Δ% ¼ j Current value� Previous value j
Previous value

� 100 ð11:3Þ

Δ should be less than the “delta check limit.” These limits set the boundaries for

allowable random variation of the test value in a patient; identification of a delta

value beyond this limit either shows a significant error or a major physiologic

change (sometimes warranting result flagging or notification of clinicians).

Delta check limits or “reference change value” can be derived from the analyti-

cal and biological variation of the target analyte. Each measured analyte has a

degree of acceptable variation within an individual (CVI) (values for the within-

individual variation can be found at www.westgard.com/biodatabase1.htm) and an

analytical variation (CVA) which is the coefficient of variation of the test as

determined in the lab (calculated at verification or validation). The reference

change value can be given by

Reference Change Value ¼ 1:414� Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVA

2 þ CVI
2

q
ð11:4Þ

Z is the corresponding Z-score for the degree of significance of the difference.

The degree of significance is either set at 95% or 99% with corresponding

two-tailed Z-scores of 1.96 and 2.58, respectively [12, 13].

Example 11.1

Q: Creatinine in a laboratory has been found to have a control mean of 1.5 mg/dL

and a standard deviation of 0.3. A patient, who had a creatinine level of 1 mg/dL last

week, was tested again today and was found to have a creatinine level of 2 mg/dL.

Does the delta check in this patient show a significant change at a level of signifi-

cance of 95% (within-individual variability of creatinine is 5.95)?

A: First let us calculate the coefficient of variation of creatinine in our lab:

CVA ¼ σ

μ
¼ 0:3

1:5
¼ 0:2 ð11:5Þ

Now we can calculate the reference change value:

Reference Change Value ¼ 1:414� 1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:22 þ 5:952

p
¼ 16:49% ð11:6Þ

The next step is to calculate the delta percentage:
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Δ% ¼ 2� 1

1
� 100 ¼ 200% ð11:7Þ

Since the delta percent (200%) is considerably bigger than the reference change

value (16.5%) then we can say that the change in the result is significant.

Delta checks are not suitable for all analytes; electrolytes and glucose benefit

less from delta checks for error detection, while enzymes generally benefit from

delta checks. Part of the rationale for this is explained below; however, for a more

detailed explanation, you can read Sampson et al. [2].

Part of the ability of delta checks to identify errors for a test stems from a concept

called the “index of individuality.” This index is the ratio of within-subject

variability (CVI) of a test to between-subject variability (CVG) of the test. If this

index is low (usually<0.6), it shows that there is variation between individuals that

is more than the variation of test in a subject. In such tests the target analyte usually

has narrow variation for each person, yet the reference interval (between-subject

variation) is usually wide. Thus, changes in the analyte level may not push the

patient out of the reference range, yet these changes (e.g., a patient with alkaline

phosphatase level (normal range 44–147 IU/L) of 40 IU/L now has an alkaline

phosphatase level of 80 IU/L) can still be greater than the expected within-subject

variability. In these situations, it is advisable to use delta checks to see if a real

change has occurred. The next step will be for the lab to understand whether a

significant delta check signifies error or it is due to a clinical status change in the

patient.

Tests with high index of individuality are less likely to need delta checks for

changes to be noticed since they usually represent narrow reference intervals and

significant changes in the analyte level usually lead to an abnormal result flag for

that analyte [14].

Moving Patient Averages

“Moving patient averages” can also be used to detect systematic error. Moving

average is a series of averages of different patient values; these subsets partially

overlap as the shifting forward is smaller than the size of the subset. For example,

an average is calculated on the first ten patients, then the next average is calculated

by skipping the first patient and calculating the average for patients 2 through

11 and so on.

One of the methods for moving average calculations is called the exponentially

weighted moving average (�XM, i), i.e., the average of each batch is weighted down by

previous averages. This can be stated as

�XM, i ¼ r �Xi þ 1� rð Þ�XM, i�1 ð11:8Þ
where �XM, i is the current moving average, r is the weight for current values (with
possible values of 0< r< 1, usually it is set between 0.05 and 0.25 with
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recommended value of 0.1), and �XM, i�1 is the previous moving average. �XM,0 is the

target value for the analyte (mean of reference samples).

The next step is to compare the exponentially weighted average with control

limit for that batch. The control limit is given by

Control limits of exponential moving average

¼ �XM,0 � Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

2� r
1� 1� rð Þ2i
h i��� ���

r
ð11:9Þ

Where L is a constant set based on the confidence level (for 95% CI, L equals 2),

and σ is the standard deviation of the current batch.

The exponential moving average should be within the control limits of the

exponential moving average. Otherwise a drift or shift in values has occurred

(systematic error) requiring corrective action.

An alternative to the exponentially weighted moving average is the “Bull’s

algorithm.” In Bull’s algorithm, the moving average ( �Xb ) is based on subsets of

20 samples with 19 representing patient values and one representing the previous

moving average. However, the weights assigned to these values are different.

The general formula for Bull’s moving average can be written as

�Xb, i ¼ 2� rð Þ�Xb, i�1 þ rD ð11:10Þ
where �Xb, i is the current moving average, r is the weight for current values (with

possible values of 0< r� 1, usually set to 1), �Xb, i�1 is the previous moving average,

and D is calculated from the value of current measurements in the batch. Bull’s

algorithm is usually used in hematology analyzers, and different companies use

different equations for calculation of D. Here we will provide a simple equation for

Bull’s moving average that assumes a value of 1 for the weight.

�Xb, i ¼ �Xb, i�1 þ
PN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xj � Xb, i�1

p
N

 !2

ð11:11Þ

where N is the number of results in the batch.

The control limits of Bull’s moving average are set as �Xb, 0 � 3%�Xb, 0 with �Xb, 0

being the target value for that analyte.

The advantage of Bull’s algorithm is that it’s not just based on normal values but

actually all measurements in a run participate in the calculation of the moving

average with outliers’ effect usually filtered out by the formula used for calculation

of D [15–18].
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Statistical Concepts for External Quality Control

Part of the quality control process requires periodic comparison of laboratory

performance with external quality measures. This often means comparison of a

test result of a sample with a known accurately determined concentration of an

analyte or comparison of the test results with the results for the same sample from

other laboratories. In the latter case, the comparison is made between the test result

in the lab and a consensus mean and standard deviation.

There are two main indices that determine the performance of the laboratory in

comparison with other laboratories: “standard deviation index” (SDI) and “coeffi-

cient of variation ratio” (CVR).

Standard deviation index is a measure of accuracy and compares the result

acquired by the laboratory with the mean results of the peer group. The SDI is

given by

SDI ¼ Laboratory test result�mean result for peer group

Standard deviation of peer group
ð11:12Þ

The interpretation of the SDI is like Z-scores with 95% confidence interval

corresponding to an SDI of approximately �2. In simple terms, the performance

of the laboratory should be within 95% confidence interval of the mean result

obtained by the peer group. Any values beyond �2 show a significant discrepancy

and require investigation and possible corrective actions. However, there are

caveats to this approach that are discussed in Chap. 4.

Regulatory agencies use four main rules based on SDI for laboratories for

significant systematic error:

1. One SDI value exceeding �3.

2. The addition of the two SDI scores for high- and low-level analyte is greater than

4 (this is a warning and does not mean that the lab has failed the proficiency test).

3. Two SDI values from five consecutive proficiency tests are greater than 1 (this is

a warning and does not mean that the lab has failed the proficiency test).

4. The average of five successive SDI values is greater than 1.5 (this is a warning

and does not mean that the lab has failed the proficiency test).

The coefficient of variation ratio (CVR) on the other hand is a measure that

better reflects precision and is the ratio of CV obtained by the lab to the consensus

CV.

CVR ¼ Laboratory CV

Consensus CV
ð11:13Þ

CVR >1.5 signifies a need for investigation of the cause of imprecision with

values greater than 2 requiring corrective action.
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SDI and CVR can be showed together in an SDI/CVR chart (a chart of total

error) which plots SDI on the Y-axis and CVR on the X-axis. The plot has three

regions (a, b, and c) with ideal performance expected to be in region a. Performance

in region b is a warning sign and requires investigation. Performance in region c

means that the lab has a total error greater than that allowed by the external quality

control (i.e., the lab has failed the proficiency test) and requires corrective actions

(Fig. 11.8) [4].

Summary

In this chapter, we reviewed the statistical concept that is used in laboratory quality

management. Quality management is an ongoing effort that ensures that the labo-

ratory is performing satisfactorily and that test results are accurate and precise. This

requires frequent monitoring of quality metrics and application of statistical tools to

identify possible performance problems.
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Critical Appraisal of Diagnostic Studies 12

Introduction

It has been shown that diagnosis utilizes approximately 5% of healthcare costs, yet

60% of the clinical decision-making process is dependent on the diagnosis. Reduc-

tion of misdiagnosis is now being recognized as a major goal in patient safety

efforts. Approximately 40,000–80,000 hospital deaths per year in the United States

are attributed to misdiagnosis; many of these deaths are preventable deaths that can

be avoided if a correct and timely diagnosis is made. Pathology and laboratory

medicine in their major roles as a source of diagnosis or a major contributor to the

diagnostic process require a push toward more accurate and precise testing and

diagnosis, and this requires integrating the best available evidence into the every-

day practice of pathology.

Practice of medicine has evolved into a concept known as “evidence-based

medicine” (EBM) where the decisions of the physicians are made based on a

combination of best available evidence, experience, and patient needs and values;

in the field of pathology and diagnostic medicine, this implies that the pathologist

can formulate a relevant question regarding their practice, find the evidence that

answers the question, appraise the evidence, and apply it to their practice.

A significant part of the evidence-based practice of medicine is determining

what best evidence is; very often, the practicing pathologist is faced with a flurry of

new diagnostic studies that make claims that can alter the current practice of

pathology. However, before the findings of the diagnostic studies are implemented,

there needs to be a thorough review of the evidence with possible sources of bias

and inaccuracy identified and addressed. This process is known as critical appraisal

of evidence. Critical appraisal requires that the quality of the evidence is assessed

especially regarding claims of benefit, effectiveness, and applicability. It must be

noted that the process of critical appraisal is often intertwined with a systematic

review of evidence, where findings of one study should be assessed and interpreted

alongside findings from similar studies. Such review of evidence is often reported

as systematic reviews and/or meta-analysis [1. 2].
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In this chapter, we will focus on critical appraisal as it applies to diagnostic

studies and tests and introduce the concepts of systematic review and meta-analysis

in the context of diagnostic studies.

Levels of Evidence

Evidence can come in many forms and formats from letters to the editor to

systematic reviews. Each of these formats has associated criteria for publication

and dissemination; based on this, the different forms and formats of evidence can be

categorized into hierarchical quality levels. As we move up through the hierarchy,

due to increasingly stringent conditions for conduct of the study as well as reporting

the study, the quality of the evidence tends to increase and the possibility of bias

decreases. This, in turn, means that evidence from a higher level is more reliable

and can be adopted more easily into the practice of medicine.

Unfortunately, much of the evidence in pathology, especially anatomic pathol-

ogy, is of lower quality and leads to recommendations that lack strength: many of

the papers are from cross-sectional case-control studies or from limited cohorts

with inadequate statistical power. Thus, every pathologist needs to know how to

assess the quality of the evidence and identify sources of bias in the literature.

Based on the recommendation from “Center for Evidence-Based Medicine”

(CEBM, www.CEBM.net), in diagnostic medicine, the highest level of evidence

(level 1a) is a systematic review of homogeneous level 1 diagnostic studies; the

term homogeneity means that the findings of all diagnostic studies were consistent

with each other with no conflicting finding reported. Another type of study/evi-

dence that also has the highest quality level is a clinical decision rule based on

multiple level 1 studies from different clinical centers.

“Systematic reviews” are studies that employ strategies to pool the evidence

relating to a subject to limit bias. These studies require evidence assembly, critical

appraisal, and synthesis of all relevant studies. These studies follow strict rules for

assessing evidence and including them in the final evidence synthesis. Systematic

reviews have the potential to provide high-quality recommendations if the rules

were strictly followed. Meta-analysis is a quantitative summation of results

provided in a systematic review.

Level 1 “clinical decision rules” (CDRs), also known as clinical decision

support, are evidence-based, externally validated clinical decision guidelines that

address a specific question. Clinical decision rules are often collated and produced

using expert panels based on the best available evidence. In pathology and labora-

tory medicine, clinical decision rules often define diagnostic criteria for diagnosis

of a disease condition.

We will elaborate the concepts of systematic review and clinical decision rules

later in this chapter.

The next evidence level (1b) includes clinical decision rules that are tested and

validated within one institute. This level also includes evidence from validating

cohort studies with satisfactory reference standards (controls).
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Validation cohorts are studies which are conducted to confirm the findings of a

derivation cohort. This often involves checking to see if the findings from one

cohort can be replicated in another patient sample (ideally conducted in a different

institute by different researchers). For example, a derivation cohort has found out

that maternal level of protein X is a predictor of fetal abnormalities. A validation

cohort will then be if protein X is measured in another group of pregnant women,

and they are followed to see if there will be any fetal anomaly. A good validation

cohort requires good reference standards. We discussed the statistical concepts

relevant to external validation in Chap. 7, and we will further explain the conduct

and design of cohort studies in Chap. 13.

The third high-quality evidence level (1c) includes studies with results showing

“absolute specificity rule in (absolute SpPin) and/or sensitivity rule out (Absolute

SnNout).” As you may recall from Chap. 2, as the specificity of a test for a disease

increases, the probability that a positive test result rules in the disease increases. An

absolute SpPin result means that a study has found a test to have a very high

specificity that a positive test equals having the disease: this often requires speci-

ficity in excess of 95%. An absolute SnNout requires a test to have a sensitivity of

more than 95% so that a negative test result effectively rules out the disease.

The second level of evidence has two sublevels: 2a and 2b. Level 2a evidence is

a systematic review with homogeneity which summarizes level 2 (or a mix of level

2 and level 1) evidence. Level 2b evidence includes exploratory cohorts and clinical

decision rules that are only validated internally. Exploratory cohorts are cohort

studies that follow two (or more) groups of individuals with and without an

exposure (or test result) and document the incidence of a target outcome. For

example, a study that follows patients with normal and high PSA levels and

documents the incidence of prostate cancer in the two groups is an exploratory

cohort. For exploratory cohorts to be included as a level 2b evidence, they need to

have good reference standards.

Third level of evidence also has two sublevels, 3a and 3b, with 3a being a

systematic review of 3b studies. Level 3b evidence includes a nonconsecutive

cohort study or a cohort study without satisfactory reference standards. The term

“nonconsecutive cohort” refers to a study where all eligible patients are not

included in the study.

Level 4 evidence is evidence obtained from case-control studies or from cohort

studies with non-independent or poor reference standards.

Finally, level 5 evidence consists of expert opinion or inferences from bench

results, physiology, etc.

Levels of evidence as it pertains to diagnostic studies are summarized in

Table 12.1.
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Evidence-Based Recommendations

The end goal for any review of evidence is to formulate recommendations that can

guide the everyday practice of the pathologist. Evidence-based recommendations

are made using the best available evidence and information. Furthermore,

recommendations consider factors such as relative importance of outcomes, base-

line risks of outcomes, magnitude of relative risk (or odds ratio), absolute magni-

tude of effect, precision of the findings, and associated costs. These are summarized

in Table 12.2. We have explained many of these factors in previous chapters, and

consequently in this chapter we will focus more on quality metrics of the evidence.

The quality levels of the evidence are of utmost importance since the strength of

recommendations derived from the evidence is dependent on the quality level of

evidence. Generally, the recommendations have four strength grades: A, B, C, and

D. Grade A recommendations are guidelines or recommendations that are based on

solid evidence and have been shown to be consistently valid in different populations

or practice settings. Grade A recommendations are generally based on level 1 evi-

dence. In these recommendations, the benefits clearly outweigh the risks (or vice

versa), and these recommendations can be applied in most clinical settings.

Pathologists should follow a grade A recommendation unless strong evidence or

rationale for an alternative approach exists.

Grade B recommendations draw from consistent level 2 or 3 evidence (i.e., no

heterogeneous or contradictory studies) or are extrapolations from level 1 evidence.

Extrapolation refers to situations where the findings of a study are applied to a

different setting with clinically important distinctions, for example, if the recom-

mendation of a level 1 study regarding the use of a test for inpatients is used for an

outpatient setting. Grade B recommendations should be followed in the right

clinical context in combination with the clinical judgment of the pathologists.

Grade C recommendations are based on level 4 evidence or are extrapolations of

level 2 or 3 evidence.

Grade D recommendations are based on level 5 evidence or are derived from

evidence with significant inconsistency.

Table 12.1 Levels of diagnostic evidence

Level Type of study

1a Systematic review with homogeneity or clinical decision rules based on level 1 studies

1b Validation cohort study (with good controls) or CDR validated within one institute

1c Accuracy studies with very high sensitivity or specificity

2a Systematic review of level 2 (or a mix of level 1 and 2) studies

2b Exploratory cohorts with good controls and internally validated CDRs

3a Systematic review that includes level 3 studies

3b Non-consecutive cohort

4 Case-control studies, cohorts with poor reference standards

5 Expert opinion
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In general, clinical decision making should rely on grade A recommendations. In

situations where grade A recommendations do not exist, grade B recommendations

can be used. Decision making should not be based on grade C recommendations as

they are likely to have significant bias and usually cannot be the sole basis for

decision making. Grade D recommendations should be avoided and alternative

recommendations or approaches sought [3].

Table 12.2 Factors to be considered in making an evidence-based recommendation

Factor Approach to evaluation of evidence

Quality of evidence Strong recommendations require high-quality evidence. Possible

sources of bias should be assessed with compensations in quality

level of evidence for the degree of bias. Questions about accuracy

and validity of tests should be answered before considering other

factors

Relative importance of

the outcomes

The evidence should be clinically significant as well as being

relevant to the practice setting of the pathologist. For example, a

cutting-edge high-cost test may not be appropriate for a laboratory

providing service to a small population

Baseline risks of

outcomes

Knowing the baseline risks or, in diagnostic terms, the pretest

probability is an important factor in the decision-making process.

Also, factors such as the burden associated with the disease should

also be considered. For example, thalassemia screening is a

low-yield test, but since thalassemia major is a considerable health

burden, then screening is still justified

Magnitude of relative

risk

In diagnostic medicine, this translates to likelihood ratio; the larger

the likelihood ratio of a test, the stronger is a recommendation

based on that test. For example, cardiac troponins have a very high

positive likelihood ratio: if they are positive, it is highly likely that

the patient has myocardial infraction

Absolute magnitude of

effect

Sometimes absolute effect is more important than relative risk. For

example, why should we adopt a new high-cost test to differentiate

two cancer subtypes if the current treatment and prognosis for them

are the same?

Precision Precision in terms of both repeatability and replicability is

important in diagnostic tests: If a test is repeated multiple times,

will the results remain the same? If a test is run in a different

laboratory or is used for a different population, will the results

remain the same? Imprecision decreases the strength of a

recommendation

Cost Cost usually has an inverse relationship to strength of

recommendation, with high cost issues of generalizability and

accessibility arising. However, cost alone is not always a good

metric for financial burden of a test, and one should also examine

the cost-effectiveness of a test
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Evidence-based recommendations are not solely made based on the level of evi-

dence. To make these recommendations, the actual quality of evidence should be

assessed first. Level 1a evidence can still suffer from major bias if the methodology

or conclusions have bias (the nature of bias in systematic reviews is different, and it

will be explained in a separate section). Thus, after determining the level of the

evidence, the evidence should be analyzed for possible errors, inconsistencies, or

biases (we will discuss the possible error forms in the next section). Many EBM

organizations have checklists or questionnaires that allow a quick assessment of the

evidence (e.g., British Medical Journal EBM Toolbox available at http://

clinicalevidence.bmj.com/x/set/static/ebm/toolbox/665061.html).

Generally, these questionnaires aim to answer three questions: Are the results

accurate? Does the test have acceptable discrimination power? (i.e., Is the test

capable of distinguishing affected individuals from unaffected individuals?) Are

the results applicable to your practice setting?

Accuracy of results means that the diagnostic study is valid, i.e., it is measuring

what it is supposed to measure, and it is measuring it correctly. Studies that

establish the accuracy of a test are unimaginatively called “diagnostic accuracy

tests”: In these tests a series of patients are tested using the target (index) test as well

as a reference standard, and a blinded comparison is made between the results of

two tests. Alternatively, for conditions that do not have a reference standard, a

cohort with case and control groups is studied, for example, individuals who tested

positive for a test and individuals who tested negative are followed up for a period

to determine the development of the target condition.

Thus, checking for validity requires answering questions such as:

– Was an appropriate spectrum of patients studied? For example, a molecular test

was found to rule out thyroid malignancy in cytology specimens. If the diagnos-

tic accuracy study was performed on a group of patients with very low pretest

probability, then the study has spectrum bias.

– Was everyone tested using the reference standard? Sometimes the reference

standard is used as a confirmatory test only in cases where the index test was

positive; for example, in study of cervical Pap smears (index test), biopsies

(reference test) were only performed if the Pap smear was positive. This is

sometimes due to the possible harm or cost associated with the reference test.

Selective testing of patients with the reference standard can lead to a significant

overestimation of the accuracy of the diagnostic test (this is known as

verification bias).

– Was there an objective and blinded comparison between the results of the two

tests? Blinded comparison means that interpretation of the results should be

blinded to the results of the other test or to the existence of the target condition in

the patient. For example, in case-control studies, we choose a known group of

affected patients and a known group of healthy individuals and compare the test

performance in the two groups versus a reference standard. This introduces
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significant bias. The index test and the reference test should be performed in the

same group of individuals blinded to their disease status.

– Were the results confirmed in a second study? In other words, was there external

validation of the results? The findings from each exploratory cohort need to be

confirmed using a validation cohort.

If a study fails to satisfy any one of these questions, then an assessment should be

made of whether the associated bias is large enough to make the results of the study

invalid. Even if the results remain valid, some people consider downgrading the

level of evidence if any bias exists (even inconsequential bias). We have

summarized the sources of bias in diagnostic studies in Table 12.3.

In fact, part of the evaluation of a diagnostic study involves finding the answers

to the above mentioned questions. Readers should always get a clear understanding

of the aim of the study, the spectrum of patients, the index test performed, the

reference standard performed, and whether blinding was performed. If any of these

elements is lacking or the relevant bias question cannot be answered, then there

should be a suspicion of bias in the data presented.

Another important factor in evaluating diagnostic tests is to determine what type

of results is being reported for the study. We have explored the types of answers

relevant to study of accuracy in Chap. 2. The aim of some studies is to establish

sensitivity and specificity of a test, i.e., to determine the test accuracy. Other

studies, however, aim to measure the performance of the test in a population;

these measures are called predictive values (including likelihood ratio) and usually

are not generalizable to other populations. Distinguishing between these accuracy

goals is very important and can (or should) influence the decision of a pathologist to

adopt a test.

Finally, considering all the other factors mentioned earlier in this section, the

pathologists should decide whether a test is applicable to their clinical practice

setting [4].

Table 12.3 Sources of bias in diagnostic studies

Bias Definition

Spectrum

bias

Spectrum bias is present when a study uses a highly selective sample. The

spectrum of patients in a study thus may not be reflective of the true clinical

setting

Verification

bias

Verification bias occurs when only a selected number of patients tested with the

index test get the reference test. This usually tends to overestimate the

effectiveness of the index test. Another type of verification bias, known as

differential verification, occurs when some patients are verified with one test,

and some are verified with another test. Yet another type of verification bias,

known as incorporation reference bias, occurs when the index test is part of the

reference test or contributes to the reference test

Observer

bias

This bias occurs when the comparisons are not blinded, objective, or

independent and usually leads to an overestimation of the effect. Studies have

shown observer bias to be one of the main contributors to overall bias

Critical Appraisal of Diagnostic Studies 265

https://doi.org/10.1007/978-3-319-60543-2_2


Systematic Reviews

Systematic reviews are summary evidence that are developed using systematic

methods to identify, select, critically appraise, and collate primary studies relevant

to a specific question. Systematic reviews can also incorporate a quantitative

collation of the results known as meta-analysis where the findings and results of

the studies are combined to provide a single statistical measure. For example,

likelihood ratio of a test from multiple studies can be combined to provide a single

likelihood ratio.

The overall aim of a systematic review is to minimize bias and summarize the

evidence in order to facilitate development of practice guidelines or

recommendations. Different guidelines exist regarding the conduct of a systematic

review; we recommend “Cochrane Handbook for Diagnostic Test Accuracy

Reviews” accessible at http://methods.cochrane.org/sdt/handbook-dta-reviews.

Regardless of the guideline followed, the general steps for conducting a system-

atic review remain the same. The process of writing a systematic review requires six

steps (Table 12.4):

The process starts by forming a research question and setting the goals for a

systematic review. The questions should have clinical relevance and relate to a

diagnostic challenge. Usually the questions and objectives are formatted based on

the “PICO framework”. This framework breaks the question into four main

components:

1. Patients (P): What is the target population? For example, the target population

can be women older than 20 years requiring cervical cancer screening.

2. Index test (I): What is the test being evaluated? For example, HPV DNA testing.

3. Comparator (C): What is the reference standard? For example, cervical Pap

smear.

4. Outcome (O): What is the outcome? For example, sensitivity.

Thus, following the PICO framework and using the examples above, we can

define the research question: “Sensitivity of HPV DNA testing in comparison with

cervical Pap smear for screening of cervical lesions.”

A more complete framework also includes study design in defining the question

(hence PICOS). This will determine what types of study will be included in the

systematic review process. As part of the PICO framework, for each question,

Table 12.4 Steps in

conducting a systemic

review

Step 1: Formulating the question and establishing the

eligibility criteria

Step 2: Conducting systematic search and evidence selection

Step 3: Evidence quality assessment and critical appraisal

Step 4: Extracting data from individual studies

Step 5: Analysis and synthesis of data

Step 6: Preparing the report
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subtopics may also be considered; for example, for HPV DNA testing, the technol-

ogy and the method or analyzer used can also be considered.

Usually it is recommended that after the initial formulation of the research

question, a limited search is conducted and the research question revised based

on the findings from the limited search for evidence.

Defining the question is followed by developing the inclusion/exclusion criteria.

These criteria determine the evidence to be included in the review based on

relevance of the studies to the research question as well as the quality of evidence.

The inclusion criteria should be set so that all relevant evidence is included in the

review process and is usually derived from the PICO framework. The exclusion

criteria, on the other hand, should be set to exclude studies with unsatisfactory

quality or significant bias.

Step two will be to conduct a systematic search: this should be an exhaustive

process that searches for evidence in multiple databases in order to identify as many

studies relating to the research question. All systematic reviews require thorough

documentation of this step. The searching process starts with defining a “search

phrase” and “search terms”: this can be aided by thesaurus-based databases (e.g.,

MEDLINE/PubMed). The search phrase is a logical statement formed by search

terms with Boolean operators (e.g., “AND,” “OR,” “NOT”). Remember that

adjustment of search phrase for different databases is sometimes needed.

This is followed by selection of databases for conducting the search; it is

recommended that more than one database is used for the search. The next phase

is to conduct the search and extract the evidence that meet the inclusion criteria.

It is important to know that systematic search is a multiphase process: the initial

search may yield a limited number of studies, and thus expansion of the search is

often needed. Different methods are recommended for search expansion. One is

called “snowballing” and refers to searching the reference list or bibliography of the

studies obtained in the initial search to identify possible studies that were left out. It

is also important to search for “gray” literature: these are study results that may not

have gone through the vigorous peer review process and are presented as confer-

ence abstracts or reports. This so-called gray evidence forms an important part of

the search as they may represent “publication bias” (explained later). The

researcher may also consider searching in alternative languages.

The extracted evidence should then be screened to select the relevant studies;

this process should be conducted by at least two researchers with disagreements

either resolved through consensus or by involving a third reviewer. There are

different guidelines for the selection process. We suggest using the guidelines

presented in Chap. 7 of the Cochrane handbook (see above). The screening process

starts by review of titles and abstracts which can allow a quick review of the

evidence and exclusion of studies that do not meet the research question or

eligibility criteria. For some studies, you may be required to review the full text

of the evidence to make this determination. A record of excluded evidence with

reasons for exclusion should be kept. The results of the selection process should be

summarized in a “PRISMA-P flowchart” (Fig. 12.1).
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The next step is to critically appraise the evidence and identify bias and variation

in the selected evidence. Variation refers to the differences in the design and

conduct of the studies. Sometimes the variation may be significant enough to render

the findings of a study irrelevant to the research question of the systematic review.

Bias refers to any systematic error in the data due to flawed study design or conduct

that may render the diagnostic accuracy reported in the study unreliable and

inaccurate. We explained some of the major biases in diagnostic accuracy tests in

the previous section; if a major bias has occurred, then that study should be

excluded from the systematic review process or alternatively the effect of that

article on the outcome can be explored as part of the meta-analysis. For critical

appraisal of diagnostic accuracy studies, we suggest using the revised “Quality

Assessment of Diagnostic Accuracy Studies” (QUADAS-2) tool available at http://

www.bristol.ac.uk/social-community-medicine/projects/quadas/quadas-2.

The QUADAS-2 tool appraises the evidence with regard to risk of bias and

applicability. For each of these concerns, different domains are checked: For bias,

patient selection, index test, reference standard, and flow and timing are assessed.

For applicability, patient selection, index test, and reference standard are assessed.

For each study, each one of these domains is ranked as high risk, low risk, or unclear

risk. This tool should be modified based on the research question and requirements

of the systematic review.

After completion of selection and appraisal, the information required to answer

the research question should be extracted from the studies by two (or more)

Fig. 12.1 The PRISMA flowchart
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independent researchers. The degree of agreement between the researchers at this

stage is important and is usually reported as a Kappa coefficient (see Chap. 5) in the

final results. There is a set of standard information that should be extracted from all

studies; however, for diagnostic accuracy studies, the 2 � 2 contingency table

information should also be extracted (Table 12.5).

Other information that should be recorded are cutoff values and the rationale for

the chosen cutoff value. In studies where the information needed for the 2 � 2

contingency table is not available, then the researchers are required to calculate the

information from the other available information in the report (e.g., if the number of

patients with the disease and healthy patients are known and sensitivity and

specificity are provided, then TP, TN, FP, and FN can be calculated).

The results can then be summarized and used for qualitative synthesis where

individual results are provided but no pooling of data occurs. This can be helpful to

draw generalized conclusions about the research question. However, while it is

often preferred if the data are pooled and a quantitative synthesis is performed, this

is contingent on high degree of homogeneity between the studies. Unfortunately,

due to the “threshold effect” (explained later) and the fact that many diagnostic

studies are low-level evidence, the risk of bias in these studies is high, and thus

performing a meta-analysis can sometimes lead to erroneous conclusions drawn

from the data. We will discuss the statistical concepts related to meta-analysis in the

next section [4, 5].

Meta-analysis

Meta-analysis involves a quantitative summation of the findings of a systematic

review. Meta-analysis requires the extraction of quantitative results from all the

studies included in the systematic review. For diagnostic meta-analysis, informa-

tion such as sensitivity, specificity, positive likelihood ratio and negative likelihood

ratio, and overall diagnostic accuracy should be extracted (see Chap. 2).

The calculated descriptive statistics of the individual studies can be used to draw

a descriptive forest plot and a summary receiver operating characteristics (SROC)

plot and curve.

Forest Plot
Forest plots show the calculated descriptive statistics (e.g., sensitivity) of all

individual studies in one plot. The Y-axis shows the individual primary studies.

The studies are ordered based on their sample size (usually in decreasing order with

Table 12.5 2 � 2 contingency table for diagnostic accuracy studies

Index test

Positive Negative

Comparator positive True positive (TP) False negative (FN)

Comparator negative False positive (FP) True negative (TN)

Systematic Reviews 269

https://doi.org/10.1007/978-3-319-60543-2_5
https://doi.org/10.1007/978-3-319-60543-2_2


studies with smaller sample size being higher on the Y-axis). The first line of the

Y-axis is usually used to show the summary of the descriptive measure. The X-axis

shows the calculated descriptive statistics along with its 95% confidence interval.

There are different approaches to calculating the summary measure. The sim-

plest approach is called “separate pooling with fixed effect” where each accuracy

measure is pooled separately.

In this approach, the summary measure is calculated using a concept known as

“inverse variance weighting.” The rationale behind this concept is that the noisier

the results from one study are (i.e., their variations are more or in other words their

95% confidence interval is larger), the less they should contribute to the calculation

of the 95% confidence interval of the summary measure. Based on this rationale, for

calculation of the mean summary measure, each calculated descriptive statistics is

weighted down by its variance. Thus:

ωi ¼ 1

σi2
ð12:1Þ

where ωi is the weight of a study and σi
2 is the variance of the calculated descriptive

statistics. For sensitivity and specificity, the variance can often be calculated based

on sample size and observed sensitivity (or specificity):

σi
2 ¼ Xi 1� Xið Þ

mi
ð12:2Þ

where mi is the sample size of the study and Xi is the descriptive statistic (e.g.,

sensitivity) reported as a proportion (e.g., 0.95).

Consequently, the weighted mean (bμ) can be calculated using:

bμ ¼
Pn

i¼1 ωiXiPn
i¼1 ωi

ð12:3Þ

where n is the number of studies in meta-analysis and Xi is the calculated descrip-

tive statistics for each study.

The variance of the weighted mean is given by:

Var bμð Þ ¼ 1Pn
i¼1 ωi

ð12:4Þ

Example 12.1

Q: A systematic review was performed to determine the sensitivity and specificity

of test A for a disease. The systematic review identified ten studies that met the

eligibility criteria. The accuracy data from these ten studies were extracted and are

summarized in Table 12.6. What is the summary sensitivity and specificity for this

study? Derive the forest plot for the sensitivity from the systematic review.
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A: Using the Eq. (12.3) and based on the calculated sensitivity and specificity of

the studies and their respective weights (1/variance), we can calculate the summary

sensitivity and specificity:

ð12:5Þ

ð12:6Þ

Thus, the meta-analysis shows that the pooled (summary) sensitivity and speci-

ficity of test A for diagnosis of the target disease is 0.89 and 0.65, respectively. The

forest plot for sensitivity is shown in Fig. 12.2.

Fig. 12.2 Forest plot of sensitivity for Example 12.1. The blue squares are the sensitivity of each
diagnostic test. The size of the squares reflects the sample size of the study. The 95% confidence

intervals are also shown. The red rhombus reflects the summary sensitivity
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While separate pooling is easy to perform and is the most commonly reported

pooled statistic measure in meta-analysis, it has a major flaw: separate pooling

ignores the fact that sensitivity and specificity are related, i.e., there is always a

trade-off between sensitivity and specificity. This is part of the phenomenon known

as threshold effect.

Many dichotomous tests (i.e., with positive and negative results) are actually

quantitative measures that were dichotomized based on a numerical threshold. This

threshold is usually defined using a ROC curve (Chap. 2). Changing the threshold

value then can lead to changes to the sensitivity and specificity of the test: if the

threshold is lowered, the sensitivity increases and specificity decreases. An opposite

effect is observed when the threshold is increased. When studies in a systematic

review use different threshold values, it can be said that a “threshold effect” exists.

In fact, part of the heterogeneity and lack of correlation between different studies

may be due to the threshold effect.

For this reason, SROC especially a variant known as hierarchical SROC

(HSROC) is preferred for calculation of the summary measures. It is recommended

that separate pooling approach is used for diagnostic odds ratio instead of sensitiv-

ity and specificity.

Summary Receiver Operating Characteristics Plot

When the possibility of threshold effect exists, it is better to use summary receiver

operating characteristics plot and curve to summarize the data of the systematic

review. The SROC allows us to visually inspect for threshold effect, and it can also

help us to visualize the overall correlation of studies and the trade-off between

sensitivity and specificity.

As in regular ROC plot, the X-axis represents the specificity (1 - false positive

rate) and the Y-axis represents sensitivity (true positive rate). The actual SROC

curve can be obtained using different statistical models with Moses-Littenberg

approach and hierarchical approach being more common.

In the Moses-Littenberg approach, the logits of sensitivity and false positive rate

of each study are calculated:

Difference of logits Dð Þ ¼ logit sensitivityð Þ � logit false positive rateð Þ
¼ ln

True Positive Rate

1� True Positive Rate
� ln

False Positive Rate

1� False Positive Rate

ð12:7Þ

Sum of logits Sð Þ ¼ logit sensitivityð Þ þ logit false positive rateð Þ
¼ ln

True Positive Rate

1� True Positive Rate
þ ln

False Positive Rate

1� False Positive Rate

ð12:8Þ

Sum of logits tends to increase as the overall proportion of positive test results

increase; due to this the sum of logits can be used as a proxy for the test threshold.
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The next step is to fit a linear regression line to these values using ordinary least-

squares approach (see Chap. 4) (with difference of logits being the dependent and

the sum of logits being the predictor):

D ¼ β0 þ β1Sþ ε ð12:9Þ
The next step is to calculate the sensitivity for different levels of specificity (i.e.,

calculate the expected sensitivity):

Expected Sensitivity ¼ 1

1þ 1

eβ0= 1�β1ð Þ
False Positive Rate

1�False Positive Rate

� �1þβ1
1�β1

ð12:10Þ

Different false positive rates (e.g., 0.1, 0.2, 0.3, etc.) are fed into the formula to

calculate the corresponding expected sensitivity. The next step is to draw the curve

using the expected sensitivities and their corresponding false positive rates.

The problem with this approach is that it tends to underestimate the accuracy.

For this reason, hierarchical SROC models are preferred. The explanation of these

models is beyond the scope of this book, but those interested can read the following

article: “Wang et al. Hierarchical models for ROC curve summary measures:

Design and analysis of multi‐reader, multi‐modality studies of medical tests. Sta-

tistics in medicine. 2008 Jan 30;27(2):243–56.[1].”

Testing for Heterogeneity

If the results between different studies vary, we should always ask ourselves “why

do the results vary?” Is the variation purely due to random variation? Is it due to the

threshold effect? Or is there some bias or some unexplained variation present?

Thus, as part of the meta-analysis, it is important to perform a “test for heterogene-

ity” to understand whether there is variation and whether it is random or

nonrandom.

Testing for heterogeneity is either done using the “Cochran’s Q statistics” or the

“Higgins I2 statistics.” We have previously explained the principles of Q statistics

in Chaps. 5 and 9. The Q statistics is a chi-squared measure that assesses whether

the proportions of true positive, true negative, false positive, and false negative are

the same across multiple groups (here multiple studies). The critical levels for Q

statistics are determined based on the alpha level and degrees of freedom (which are

number of studies minus 1). Generally, if the p-value for Q statistics is less than 0.1,

then there is significant heterogeneity between the studies.

The Higgins I2 statistics is calculated using the Q statistics:

I2 ¼ Q� DF

Q� 100%
ð12:11Þ
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where Q is calculated from the Cochran Q test and DF is the number of studies

minus one. If the I2 measure is more than 50%, then substantial heterogeneity exists

with values of between 75% and 100% showing considerable heterogeneity.

To judge the heterogeneity, both the I2 and the p-value from the Q test are

needed: the p-value shows whether there is nonrandom heterogeneity, and the

Higgins I2 shows the degree of heterogeneity [6–12].

Publication Bias

Unfortunately, it has been shown that studies that have a positive finding are far

more likely to be published than studies that have a neutral or negative finding. This

has caused a significant bias in the literature. Thus, an important part of systematic

review is to assess “publication bias.”

The visual assessment of publication bias is done using a “funnel plot.” In this

study the diagnostic odds ratio of the study is shown on the X-axis, and the standard

error (or precision) is shown on the Y-axis. Furthermore, “Egger’s test” or the

“Begg test” are used to assess whether there is significant publication bias by

assessing the asymmetry of the plot.

Egger’s test fits a linear regression line to a normalized odds ratio (odds ratio

divided by its standard error) against the precision (inverse of the standard error)

using ordinary linear regression:

Standard Normal Deviate ¼ Odds Ratio

Standard Error of Odds Ratio
ð12:12Þ

Precision ¼ 1

Standard Error of Odds Ratio
ð12:13Þ

Standard Normal Deviate ¼ β0 þ β1 Precision ð12:14Þ
When fitting a line, both the intercept (β0) and the slope (β1) will have a

confidence interval associated with them.

The interpretation of the Egger’s test is based on the intercept of the fitted line. If

there is no publication bias, then the intercept of the fitted line (β0) will be equal to
zero (the 95% confidence interval of the β0 includes 0). To determine whether the

intercept equals zero or not, we can run a one-sample t-test. The value of the t-test

can be calculated by dividing the intercept by its standard error (with the degrees of

freedom being the number of studies minus 2). If the p-value is smaller than 0.1,

then we can deduce that a significant publication bias exists [9].

Example 12.2

Q: Table 12.7 shows the results of a systematic review. Derive the funnel plot, and

based on the Egger’s test determine whether a significant publication bias exists.

A: The funnel plot for the example is shown in Fig. 12.3.
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The fitted Egger’s regression line has a slope of 2.95 and intercept of�9.08. The

standard error of the intercept is 9.606 with the 95% confidence interval being

[-28.292 to 10.124]. Since the confidence interval includes 0, then we can say that

no significant publication bias exists. The calculated p-value will be 0.344 again

confirming that no significant publication bias exists.

Table 12.7 Results of the

systematic review for

Example 12.2

Study name Diagnostic odds ratio Standard error

Study 1 2.20 0.25

Study 2 1.80 0.21

Study 3 1.90 0.27

Study 4 2.05 0.14

Study 5 0.05 0.20

Study 6 �0.60 0.21

Study 7 2.00 0.22

Study 8 1.80 0.21

Study 9 0.40 0.22

Study 10 2.10 0.16

Study 11 �0.40 0.21

Study 12 �0.50 0.20

Fig. 12.3 Funnel plot for Example 12.2
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Summary

In this chapter, we discussed the process of critical appraisal of evidence and briefly

covered the topic of systematic review and meta-analysis. It is very important that

pathologists don’t accept the studies at their face value; many diagnostic studies

have a degree of bias that can significantly distort their outcomes. As a result, every

pathologist needs to know how to evaluate the study for quality and possible

sources of bias. Furthermore, as part of the decision-making process, the patholo-

gist should be able to interpret systematic reviews and meta-analyses; these studies

can potentially be more informative than primary studies.
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Designing Diagnostic Studies 13

Introduction

Research and investigation are important components of the practice of pathology.

Pathologists are mainly involved in two types of clinical research: diagnostic or

prognostic. Diagnostic research is conducted to improve diagnostic procedures and

tests with the aim of improving diagnostic accuracy. Prognostic research mainly

aims to identify and quantify factors that dictate the prognosis in patients [1].

Research conducted in pathology follows two general design strategies; the

research is either descriptive where usually a series of patients or cases are chosen

or pathologic or laboratory characteristics are measured in these patients. Alterna-

tively, the research can be analytic where the relationship between two factors (e.g.,

two tests) is quantified. Analytic research can either be experimental or observa-

tional. Observational analytic research usually involves comparing a test or diag-

nostic procedure between a case group and a control group. Analytic research in

diagnostic accuracy studies involves comparing an index test with a comparator

(the so-called gold standard) to establish the accuracy of the index test. Observa-

tional analytic research in diagnostic medicine is performed as cohorts or case-

control studies. Analytical studies can also be experimental; the individuals are

randomized to two groups with one receiving an intervention (or test) and the other

receiving an alternative intervention. This randomized trial design in diagnostic

medicine is usually limited to studies of effectiveness (including cost-

effectiveness).

In this chapter, we will explain diagnostic research design.

Diagnostic Research Design

Diagnostic research like all other forms of research requires a sound design to limit

the bias and ensure that the study can achieve its intended goal. The design should

be appropriate for the objective of the study. The research design should address
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questions such as rationale, objectives, methodology and design, sample size, data

collection, bias minimization strategies, data analysis, cost, and ethical

considerations. The design process should be documented in a “research protocol.”

There are several important decisions that should be made before the process of

research design is begun. The first decision is about the objective and level of the

diagnostic study. The research should clarify whether the research goal is to

perform test research or diagnostic research; test research refers to the research

that is performed to determine the technical accuracy and precision of a test. Test

research is essentially a validation study where the technical characteristics of a test

are determined. Diagnostic research, on the other hand, aims to determine the

applicability of the test for diagnosis of a condition and determine elements of

diagnostic accuracy (e.g., diagnostic sensitivity and specificity). Levels of diagnos-

tic research are shown in Table 13.1.

For diagnostic research, it is important to know where, in the clinical diagnostic

pathway, the test will be utilized (see Chap. 2). The test will either replace an

existing test (replacement) in the pathway or it will be a screening tool upstream of

the pathway (triage test), or it will be a new test in the pathway that can either

subclassify a diagnostic condition or lead to a more accurate diagnosis (add-on test)

(Fig. 13.1).

We are required to answer three broad questions for every new test in clinical

pathways: What is the diagnostic accuracy of the test? How will patient outcomes

be affected by using this test? How cost-effective is the test? Different study

designs answer these questions for different locations of the pathway, for example,

diagnostic accuracy testing for a triage test (emphasis on sensitivity) is different

from diagnostic accuracy testing for an add-on test (emphasis on specificity).

In diagnostic accuracy studies, the aim is to show that either the new test has a

better sensitivity or specificity compared to the existing test or that it has compara-

ble sensitivity and specificity, but it costs less (or is safer).

Table 13.1 Levels of diagnostic research

Level of

research Type of research Study objectives

1 Technical accuracy and

feasibility research

Technical validity, precision, cost, proof of concept

2 Diagnostic accuracy

research

Sensitivity, specificity, predictive values, likelihood

ratio

3 Diagnostic decision

research

Changes in diagnosis, misdiagnosis, clinician

decision-making impact

4 Therapeutic choice

research

Changes in treatment choices or treatment practice by

clinicians

5 Patient outcome

research

Changes in patient-related outcomes (e.g., survival,

quality of life, remission, disease control, etc.)

6 Population impact

research

Cost-effectiveness, disease burden, public health

measures
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It is important to note that improved diagnostic accuracy does not necessarily

impact patient outcomes, or, when it impacts patient outcomes, it may cause more

harm than good. Often when the relation between the diagnostic accuracy and

patient outcomes is not clear, there is a need to conduct a randomized trial to

determine the impact of the new test on patient outcomes.

In randomized trial design, a random group from the target population is tested

with the new test (case group), and a random group is tested with the reference

standard test (control group). The patients will then receive treatment based on the

outcomes of their respective tests, and the patient outcomes are compared between

the two groups.

If previous randomized trials have shown clear benefit in treating patients

affected by a condition (i.e., evidence for improved patient outcomes with treat-

ment exists), then, for a test that diagnoses that condition, testing diagnostic

accuracy suffices, and there is no need to determine patient outcomes or directly

assess cost-effectiveness. In other words, there is no need to conduct a randomized

trial to determine the benefit of the test for patients especially if the new test has

clear positive attributes (such as safety, cost, etc.). In these situations, a diagnostic

accuracy study, where the index test is compared with the reference test to deter-

mine test accuracy, is conducted. For example, cytology evaluation of fine needle

aspiration of a pancreatic lesion is far safer (and more cost-effective) than an

intraoperative biopsy and frozen section diagnosis, and, since, based on randomized

trials, clear treatment guidelines exist for neoplastic lesions identified in the

Fig. 13.1 Intended purpose of a test determines the objective of the diagnostic research
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pancreas, then determining the diagnostic accuracy of fine needle aspiration

suffices for establishing its role in the diagnostic decision-making pathway [2].

Phases in Clinical Diagnostic Studies

Following technical research that is conducted to develop a new test and define its

technical characteristics in a controlled laboratory environment, the next step is to

study the test in real patients and assess diagnostic accuracy, applicability, safety,

and clinical outcome of the new test. This is achieved through clinical diagnostic

studies.

Clinical trials for new interventions have four phases. The first phase trials have

low complexity and cost, and, as the researchers move to the next phases of trial, the

complexity and cost increase. The reason for a phase-by-phase approach to clinical

trials is to limit the risk to the pharmaceutical companies and establish safety and

utility characteristics of the intervention before moving on to a large-scale trial

which requires considerable investment and time.

While trial phases are much more common for interventions and drugs, a similar

concept also exists for pathology and laboratory medicine. In commercializing a

new diagnostic test, a good strategy would be to perform the necessary research in

phases in order to limit the possible risks and add structure to the process of

diagnostic research.

The phase I diagnostic research is performed to establish the normal range of

results in a healthy group of individuals. The sample size for phase I research

should be randomly drawn and be large enough to account for possible confounders

or interactions such as age, gender, race, etc. Phase I studies are usually cross-

sectional observational studies with random sampling of a normal population.

Phase II studies are either case-control or cohort studies and aim to establish the

diagnostic accuracy of a test. In this phase, comparisons are made between a group

of individuals with the target condition and a group of healthy individuals. Phase II

studies aim to determine accuracy measures such as sensitivity, specificity, and

predictive values. They are also used to determine cutoffs (using perhaps ROC

curves) for quantitative tests to distinguish diseased and healthy states.

Phase IIA studies establish the diagnostic accuracy of the test by comparing the

diseased and healthy individuals. In phase IIA studies, the disease status of the

participants is known (i.e., case-control study), or a reference standard is used to

establish the disease status of the participants. Comparisons are made either

between the healthy and diseased group, or they are made between the results of

the index test and the comparator.

Phase IIB studies determine whether there is a correlation between a quantitative

test result and severity of the disease. Many tests are only useful to dichotomize

individuals to healthy and diseased states and as such have single cutoff values. But

there are other tests that can predict the severity of the disease and either have no

cutoff (i.e., direct interpretation of quantitative result is needed) or have multiple

cutoffs corresponding to different severity levels of the disease. For example,
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creatinine level is a quantitative measure that relates to the severity of the renal

disease with higher values indicating lower glomerular filtration rate. Phase IIB

studies aim to establish and quantify the correlation of test result and severity and

ideally fit a regression model that can predict the severity based on the test.

Phase IIC studies usually are prospective studies (cohorts) that are conducted to

establish the predictive value of the test in a group of individuals with unknown

disease status. These studies consist of exploratory cohorts where the test is

performed in a randomly selected group of individuals whose disease status is

unknown (or the researchers are blinded to it) and then either following the patients

to determine the presence or incidence of the disease or performing a reference

standard test to establish the disease status. The findings of an exploratory cohort

need to be confirmed by running a validation cohort where the test is repeated in

another group of individuals.

Phase III studies aim to evaluate the clinical impact of a new test, namely, the

benefit and harm to the patient. Phase III studies are randomized trials where the

individuals are randomized to receive either the index test or the comparator, and

the treatment decision depends on the results of the tests. The patient outcomes are

then compared between the two groups. In cases where a clear clinical benefit exists

for better diagnosis (or a less costly or a safer test), sometimes phase III studies are

not needed. Randomized diagnostic trials are difficult to design, implement, and

analyze. These trials are often very costly and may face many complications. For

example, sample size calculations require adjustment for discordance rates because

the only results that matter are those that arise due to discordance between the index

test and comparator.

Most stand-alone tests that are to be marketed as platforms for diagnosis of a

disease or condition are required by regulatory bodies to have completed phase III

diagnostic trials.

Phase IV studies are performed to evaluate the actual impact of introducing a test

in clinical practice; these studies are based on evidence emerging from the different

practice settings using the new test and are usually conducted following a system-

atic review of phase II and phase III studies. Phase IV studies are also concerned

with changes in the testing conditions and sample matrix, to evaluate factors such as

storage and handling of specimens on the test results.

Table 13.2 shows the different phase of diagnostic research. For the sake of

comparison, we include, alongside, the phases for therapeutic (also termed treat-

ment or intervention) research. Both are required steps by the US Federal Drug

Administration (FDA).

In the next sections of this chapter, we will focus on phase II diagnostic accuracy

studies.
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Diagnostic Accuracy Studies

Perhaps the most important step in diagnostic research is to determine the diagnos-

tic accuracy of the test; diagnostic accuracy is the major determinant of the

adoption of a new test. Furthermore, pathologists in academic or community

practice settings are more likely to take part in diagnostic accuracy studies than

other phases of clinical diagnostic research. The aim of these studies is to determine

how well a test can discriminate between diseased and healthy states. This requires

the evaluation of the index test versus a reference standard (comparator). The

results of the test can be dichotomous requiring analysis using a 2 � 2 contingency

table and extraction of diagnostic accuracy metrics such as sensitivity, specificity,

positive predictive value, negative predictive value, and likelihood ratio, or alter-

natively, the results of the two tests can be evaluated using a quantitative scale

requiring correlation and regression analysis.

The common element in these types of study is that the index test and compara-

tor should be compared for all patients with selective performance of the compara-

tor leading to verification bias. Diagnostic accuracy studies are either conducted on

known patients (case-control design) or unknown patients (cohort design). The

case-control design is relatively simple to conduct, yet it suffers from bias: in fact, it

has been reported that case-control design can overestimate the diagnostic accuracy

by two to three folds [3–6].

Before we introduce some of the designs used in diagnostic accuracy testing, we

must explain “index test” and “reference standard.”

Table 13.2 Phases of clinical diagnostic research compared with intervention research

Phase Diagnostic research Therapeutic (intervention) research

Phase I Studies on normal population to

determine normal range of the test

Safety evaluation of the intervention/

drug in a small group (including

determination of safe dosage range)

Phase II Studies to establish the diagnostic

accuracy of the test, usually using a

comparator test

Evaluation of effectiveness and

determination of therapeutic dosage by

extending phase I trials to a larger group

of individuals

Phase III Clinical impact studies; randomized

trials to determine the clinical effect of

the test

Randomized clinical trials with large

sample size to evaluate the efficacy and

side effects and compare the

intervention/drug with other treatment

options

Phase IV Follow-up studies to determine the

actual clinical effect of the test in

different practice settings

Long-term follow-up studies performed

after release of a drug to monitor for

long-term adverse effects and benefits
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Index Test

Index test is the target approach or methodology that is being studied in a diagnostic

accuracy study. Index test is not necessarily a single diagnostic test: It can also be a

combination of diagnostic tests. For example, in anatomic pathology, a panel of

immunohistochemical antibodies can be an index test.

A diagnostic accuracy study does not necessarily aim to evaluate all accuracy

aspects of the index test; based on the clinical application of the test, the diagnostic

study can focus on one or more accuracy measures. For example, an index test that

is going to be used for triage/screening will require an evaluation of the test’s

sensitivity.

The index test results should also be interpretable in light of its probable clinical

application. For example, if it is to be used as a rule-in/rule-out test for a disease,

then its results should be dichotomized (see Chap. 2). As tests are often quantitative

measures, pilot studies (usually observational cross-sectional studies) are needed to

determine the cut-off values for the test.

Reference Standards

“Ground truth” refers to the true disease status of an individual. For many diseases,

it is often very difficult to establish the ground truth with a 100% certainty because

either no test exists that can have 100% accuracy or the perfect test is not practical

to perform. Thus, proxy measures and benchmarks are often used to establish the

disease status of individuals.

Reference standard is a benchmark that is available under reasonable conditions;

this means that the reference standard is not necessarily the perfect test, but it is the

closest test to the ground truth that can be practically performed. For example,

cardiac troponins can be considered as the reference standard for myocardial

infarction because the ground truth can only be truly revealed by histopathologic

examination of the heart. Commonly, the reference standard is a well-established

testing methodology that has been thoroughly tested, and its accuracy and reliabil-

ity have been confirmed. While ideally a reference standard should have a very high

sensitivity and specificity, in choosing a reference standard, we should consider

what aspect of accuracy we are interested in: If the index test is to be used for triage/

screening, then the reference standard should have a very high sensitivity. For

add-on tests, specificity of the reference standard is often more important.

Reference standard and index test should be independent with no residual

measurement effects, i.e., measuring one test should not affect the results of the

other test. For example, in comparison of digital rectal examination with serum

PSA level, if the rectal examination precedes the PSA level determination, it will

cause an increase in the serum PSA level. The issue of independence is particularly

problematic when the index test is an improved version of the reference test.

The problem with reference standards is the existence of “reference standard

bias”: if the results of the reference standard test do not mirror the ground truth, then
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comparing the index test with the reference standard introduces a bias in interpre-

tation of the index test.

If the reference standard is perfect, then the naı̈ve accuracy estimate which is the

calculated sensitivity and specificity of the index test (based on the results of the

diagnostic accuracy experiment) equals to the true accuracy of the test. However, if

the reference test is imperfect, then the naı̈ve estimates of accuracy are always

underestimates of the true values. In fact, the index test may have a better accuracy

than the reference standard, and we will fail to show it.

In dealing with imperfect reference standards, we can use several solutions. The

simplest solution would be to calculate the naı̈ve estimates of accuracy knowing

and reporting the imperfection of the reference standard. Such qualification allows

the readers of the report to know the possibility of reference standard bias.

Alternatively, adjustments of the naı̈ve accuracy estimates can be made to

account for the reference standard bias. This requires advanced statistical modeling

and knowledge of parameters such as true sensitivity and specificity of the reference

standard test.

Another option is to perform a randomized patient outcome study instead of the

diagnostic accuracy tests and compare the patient outcomes using the index test

versus using the reference standard. This is by far the best solution since it

circumnavigates the issue of accuracy and focuses on patient outcome (which, in

reality, is the end goal of all testing).

Yet another option would be to measure concordance (agreement) between the

two tests instead of accuracy measures such as sensitivity and specificity. In this

approach, the degree of agreement between the tests can be stated using statistical

measures such as Cohen’s Kappa coefficient (see Chap. 5). For continuous

measures, however, usual measures of agreement such as ordinary least squares

method are not applicable since both the reference standard and index test have

variability and noise (in the least squares model, it is assumed that one of the values

is the true value, i.e., the value of the reference method, and does not have any error,

or in other words, it is fixed as discussed in Chap. 4). Thus, other statistical

regression models should be used to account for variability in results of both the

index test and the reference standard.

In ordinary least squares regression, the slope of the fitted line changes if we

interchange the axes, i.e., if we plot the index method values on the X-axis and the

reference method values on the Y-axis. In this case, the least squares best-fit

correlation line is used to produce a regression line with the lowest overall error

(S in Eq. 4.18 in Chap. 4).

Alternatively, another method, called major axis regression, can be used for each

estimated regression function relating the values of one variable (e.g., reference test

results) to the values of another variable (e.g., index test results). In this method, a

loss function is defined and calculated. The loss function is the product of

Y-distance and X-distance of the observations from the fitted line, and this product

is minimized (unlike least square models where only one distance (usually the

vertical distance) is minimized), i.e., the best-fit line is found by minimization of the

sum of areas of the triangles formed between the observation value and the line.
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For example, a linear regression model can be shown as:

Y ¼ β0 þ β1X ð13:1Þ
For ordinary least squares model, the loss function (L ) depends on residuals and

is calculated using:

L ¼
Xn
i¼1

Y � β0 þ β1Xð Þð Þ2 ð13:2Þ

(see Eq. 4.4 in Chap. 4). In these models, the best-fit line is found by minimizing the

loss function. However, in major axis regression, the loss function for the linear

model will be:

L ¼
Xn
i¼1

Y � β0 þ β1Xð Þð Þ2
1þ β1

2
ð13:3Þ

Another approach would be to use “Bland-Altman plots” (also known as Tukey

mean-difference plots). This method allows a visual inspection of the correlation of

the two measures (index test results and reference standard results) throughout their

range of measurement. This measure is different from agreement: It shows that as

one variable changes, the other changes as well; however, it does not necessarily

mean that the two variables are measuring the same thing. For example, in compar-

ing PSA level with prostate volume (measured from MRI), there is high correlation

between the measures. However, in measuring mean corpuscular hemoglobin

concentration using colorimetric versus light scatter methodology, the high corre-

lation between results also implies agreement (since they are both measuring the

same thing).

In Bland-Altman graphs, the difference between the values of the index test and

the reference standard is the Y-axis, and the average of the two values is the X-axis.
A solid line is drawn at the mean of the difference between the two values with two

dotted lines representing the upper and lower bounds of the 95% confidence

interval. The points representing S X; Yð Þ ¼ S1þS2
2

; S1� S2
� �

are then plotted on

the graph. For high correlation, all the points should fluctuate around the mean with

variations from the mean being contained within the 95% confidence interval limit

(Fig. 13.2) [7–9].

Examples of Diagnostic Accuracy Study Designs

In this section, we will introduce some of the designs used in diagnostic accuracy

studies and briefly discuss the advantages and disadvantages of each one.
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Observational Studies

The simplest type of diagnostic studies is observational studies such as case series

where a test or feature is measured in a series of patients/samples with known

disease condition. These studies can be prospective or retrospective and cross-

sectional. Observational studies are single-arm studies and have no control group.

Thus, no inference can be made about the discrimination power of the test.

However, these studies can be used as pilot studies before diagnostic accuracy

studies to determine the potential of the test as a diagnostic tool. Findings that will

support further evaluation of the test include consistent results in a considerable

proportion of the cases.

Case series is one of the observational studies that are commonly used in

pathology. This study design has serious associated bias. For example, since the

status of the patients is known, the researcher might (intentionally or unintention-

ally) opt to choose cases where a favorable test result is more likely (selection bias).

Furthermore, since many case series lack random sampling, they usually have

spectrum bias which makes the comparison of the case series studies difficult.

In observational studies, attempts in comparing with other observational studies

should be avoided. Also the researchers should avoid making causal or diagnostic

inferences based on the results of a case series. The data from an observational

study, at best, should be treated as a prevalence (for cross-sectional, retrospective

designs) or an incidence (for prospective designs) measure.

Fig. 13.2 Bland-Altman plot
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Paired Comparative Accuracy Studies

These groups of studies have a study arm and a control arm; the test is measured in

both groups and the results are compared. Case-control studies and cohorts are

some of the diagnostic accuracy study designs that follow a paired comparative

approach.

Case-Control Studies
Case-control studies are retrospective studies where the test or feature is measured

in a group of patients with a known diagnosis of the target condition, and these

results are compared with the results from a group of individuals without the target

condition. The group of healthy individuals is chosen so that they match the

baseline characteristics of the diseased group. Usually an attempt is made to

match the groups for known interferences or confounders (e.g., age, gender, etc.).

Ideally, the groups should be similar in every aspect but the presence of disease.

However, in reality, controlling for every possible source of interference or

confounding factor might prove impossible. Case-control studies, just as with

observational studies, suffer from selection bias.

The outcome of choice in case-control studies is the odds ratio: These studies can

provide us with general notion of the diagnostic odds ratio. The odds ratio (defined

in Chap. 2) is a measure of association, and a high odds ratio essentially means that

the test results are different for the two groups. This does not allow us to make a

causal inference about the test, but it can still show the possible discrimination

power of the test (subject to bias).

These studies are generally easy to conduct and interpret and are best suited for

diseases with low prevalence. In rare diseases, it has been shown that the odds ratio

is a good approximation of the relative risk and can be used for causal inference.

Cohort Study
In cohort studies, the status of the patient is unknown and only becomes known

through follow-up. In these studies, the individuals undergo a test, and the inci-

dence of the disease (or other outcomes) between the patients who tested positive

and those who tested negative is compared. In diagnostic accuracy studies, this

means that the individuals are tested with the index test (with positive test results

considered as exposed group and the negative test results considered as unexposed

group), and then they are tested with the reference standard to check for their

disease status. To control for selection bias, cohort studies must follow a “consecu-

tive sampling,” i.e., all the patients who meet the eligibility criteria (inclusion/

exclusion criteria) within the time frame of the study should be included in the

study. The researchers should not interfere in case selection in any way as it will

produce selection bias.

Furthermore, in cohort designs, the reference standard should always follow the

index test to avoid possible selection bias based on the results. Also, all patients

tested with the index test should also be tested with the reference standard (other-

wise we are introducing verification bias into the results).

Examples of Diagnostic Accuracy Study Designs 289



In cases where the aim is to use the index test to replace a current test, both the

index test and the current test are measured in all cases, and all the results are

compared with the reference standard results. In some cases, it is acceptable to

compare the accuracy of the index test with the accuracy data of the current test

extracted from a comprehensive systematic review; however, this approach should

be avoided if possible.

Cohort studies are the standard design for diagnostic accuracy studies.

Randomized Comparative Accuracy Studies

Sometimes performing both the index test and the reference standard in the same

patients is difficult. For example, if one of the tests is invasive, then performing

both tests on the same patient can be unethical. Other situations which make paired

comparative studies impractical or problematic include when the two tests interfere

with each other or when the aim is to assess the clinical impact of the test. Thus, we

have to use a randomized comparative design.

In randomized comparative designs, individuals are randomized either to the

index test group or to the reference standard group. In each arm, all the clinical

decisions are made based on the results of the test for the patients in that arm, and a

clinical outcome related to that disease is measured and compared between the two

arms. In this design, the diagnostic accuracies of the tests are not directly compared,

but their impact on clinical outcomes is compared.

As we mentioned earlier, these designs are often expensive and difficult to

conduct. However, they provide valuable information that is often needed for

inclusion of a test in diagnostic pathways [9, 10].

Sample Size Calculations

One of the major concerns in design of diagnostic studies is to ensure that the

sample size is adequate. Small sample size increases the possibility of type II error

(i.e., reduces the power of the study) which means that the probability of finding a

true effect decreases. On the other hand, as the sample size increases, the cost and

complexity of the study increase. Thus, finding the optimal sample size is one of the

priorities of clinical researchers.

For case-control studies where the true status of the individuals is known, we can

use the following equation for sample size calculation when the aim is to evaluate

either sensitivity or specificity:

n ¼
Z2

α
2

bP 1� bP� �
d2

ð13:4Þ
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where n is the sample size, Z2
α
2
is the squared value of the Z-score corresponding to

our desired confidence interval of the sensitivity (or specificity) (usually, 95%

confidence interval is desired; thus, α will be 0.05), bP is the expected sensitivity

(or specificity) (based on prior studies or the expectations of the clinicians), and d2

is the squared maximal margin of error estimate. The maximal margin of error

estimate is usually set as 0.05 or 0.02. However, the margin of error can be

calculated if the standard deviation of the sensitivity (or specificity) is known in

the population:

d ¼ Zα
2
� Standard Deviation ð13:5Þ

If the true disease status is not known in the cases (e.g., in cohort studies) but the

prevalence of the disease in a given population is known, then the sample size

calculated in Eq. (13.4) should be adjusted for the prevalence. If the study aims to

examine sensitivity, the adjustment will be:

nadjusted ¼ n

prevalence
ð13:6Þ

If the study aims to examine specificity, the adjustment will be:

nadjusted ¼ n

1� prevalence
ð13:7Þ

If the study aims to examine both specificity and sensitivity, then the larger of

the adjusted sample sizes is used.

As you can see, for rare diseases where prevalence is low, the sample size

increases considerably; thus, a case-control study is preferred (because the sample

size remains the same irrespective of prevalence).

Other formulas can be used if the aim of the diagnostic accuracy test is to

determine other accuracy measures (e.g., likelihood ratio) [11].

Reporting of Diagnostic Accuracy Studies

Reporting of diagnostic accuracy studies should follow a standard format so that the

readers can extract the relevant information needed for evaluation of the diagnostic

test. The standard reporting also allows the readers to identify the possible sources

of bias in the study and obtain essential information about the design of the study.

To this end, a standardized format was proposed by the EQUATOR network called

the “Standards for Reporting of Diagnostic Accuracy Studies” (STARD). STARD

provides a checklist that includes all the necessary information that should be

reported in diagnostic accuracy studies. Some investigative journals require the

researchers to submit the STARD checklist along with their manuscript to the

journal. Based on STARD, the information that should be reported include
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elements such as study design, eligibility criteria, enrollment flowchart, test

methods (including detailed descriptions of the tests to allow replication), reference

standard chosen and rationale for the choice, and statistical analysis methods.

STARD also requires the researchers to include the 2 � 2 contingency table of

the index test versus the reference standard in their manuscript. The complete

STARD checklist can be found at www.stard-statement.org [12].

Summary

In this chapter, we introduced the concept of the diagnostic accuracy study and

discussed the considerations of such studies. We also provided a brief introduction

to different designs used for diagnostic accuracy studies.
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Introduction

The main purpose of pathology is to diagnose diseases. Pathologists classify

patients into affected and unaffected classes, and they also further subclassify the

affected individuals based on additional information. Pathologists try to give

patients accurate diagnoses based on the most probable disease. To do this, they

gather information (from clinical to morphological to molecular), summarize the

information, and compare the information against a list of possible entities. How-

ever, as technology has advanced, the amount of information available has expo-

nentially increased as well. Current technology allows us to fully sequence the

genome of a tumor and evaluate the transcriptome and even protein expression of

the tumor. This exponential growth in information makes it next to impossible for

humans to be able to use most of this information in a meaningful way. Thus,

computer algorithms and statistical models have been developed that can deal with

this so-called big data.

Clustering performed for understanding is an attempt at classification of the data.

As pathologists, we have long used data to cluster diseases into different classes.

For example, we use the morphologic characteristics of a tissue to classify it as

benign or malignant and even further subclassify it into meaningful disease

categories.

However, clustering can be performed to summarize the data as well; the data

may be multidimensional or have many variables and components which make its

understanding or analysis very difficult. In these situations, cluster analysis allows

us to summarize the data for clusters and use these summary cluster prototypes for

analysis. For example, direct comparison of RNA expression profiles of tumors

may prove very difficult, but through clustering we can identify prototypes of the

cancers in the data and compare their expression profile [1].

While in-depth explanation of the concepts behind clustering and classifying

algorithms and models is beyond this current book, in this chapter we will briefly
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introduce two of the most common clustering approaches used in classifying and

clustering patients.

Clustering Algorithms

The aim of clustering is to use the information contained in the data to divide that

data into clusters or groups. This clustering is performed either to find natural

clusters that are present in the data or to summarize the data to facilitate its analysis

and understanding. In general, the success of clustering (the ability to clearly

distinguish clusters) depends on the homogeneity of the data within each cluster

and difference between the clusters. A major issue with clustering is defining the

cluster: what constitutes a cluster, what are its boundaries, and how many clusters

are we looking for in a dataset? If clustering is based on previous classifications, the

answer to these questions is simple. For example, in pathology a successful

clustering might be a binary distinction between a benign and malignant state.

However, the answers to these questions are not always straightforward. In recent

years in pathology, we have observed an ongoing attempt at further subclassifying

tumors into different entities: while this has sometimes been successful and useful,

in other times it has led to increasing confusion because of the lack of distinction

between the entities.

Classification algorithms can be “supervised” or “unsupervised”. In supervised

clustering, a classification model is developed using data with known class labels;

this is very similar to the regression models we discussed in Chap. 7. Clustering

algorithms are mainly unsupervised classifiers, in that they use unlabeled data and

use its structure to divide it into clusters (classes). For example, if we have the data

from a group of normal individuals and a group of patients and use a binary logistic

regression to differentiate between the diseased and normal individuals, then we are

using supervised classification. However, if we have the mutational data from

patients with a tumor and use hierarchical clustering to identify different mutation

patterns in the tumor, then we are using unsupervised classification.

Here we will discuss two clustering approaches: K-means clustering and hierar-

chical clustering.

K-Means Clustering

“K-means clustering” in simple terms clusters the data into “K” number of classes.

To do this, the clustering algorithm defines a prototype (also known as a centroid)

for each cluster: this prototype is the mean of a group of points and assigns points to

a group based on their proximity to the centroid. The number of classes is defined

by the users based on their clustering needs. For example, a pathologist looking to

cluster patients into high risk and low risk will set the K as 2. The general concept

for a K-means clustering is as follows:
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1. “K” initial centroids are chosen.
2. The points are assigned to the closest centroid, with all the points assigned to the

centroid considered as a cluster.

3. The centroid (mean of the group) is updated based on the points assigned to

cluster.

4. The points are again assigned to the closest centroid, with all the points assigned

to the centroid considered as clusters.

5. The process is repeated until no points change clusters (in other words, the

centroids don’t change anymore).

We have shown this process in Fig. 14.1.

The assigning of the points to a cluster is based on their proximity to the centroid

of that cluster. Different methods exist for defining the proximity. One approach is

based on Euclidean (L2) distance. This distance is the straight-line distance between
two points in Euclidean space. Euclidean distance is easily determined in two

dimensions. For example, if we are clustering the data based on only two continu-

ous variables X and Y, then the distance between a centroid ( p(x1,y1)) and a data

point ( p(x2,y2)) can be defined as:

Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2 þ y2 � y1ð Þ2

q
ð14:1Þ

A very common application of K-means clustering in pathology is in

automatized hematology analyzers and flow cytometry where two parameters for

each cell are measured: forward light scatter and side light scatter. Using K-means

clustering, we can cluster the cells into our defined classes; the assignment will be

based on the two-dimensional Euclidean distance of the points from centroids

(in hematology analyzers the initial centroids are often predefined).

The Euclidean distance can be measured in N dimensions as well. For two N-
dimensional points p and q, (with dimension p1,q1 through pn,qn) the Euclidean

distance can be calculated by:

Fig. 14.1 K-means clustering is shown in this figure. In this case, we want to find three clusters in

the data. The initial data points are shown in panel (a); the algorithm chooses three random initial

centroids (red crosses) and assigns the points to the groups (b); the centroids are adjusted and the

points are reassigned (c); the process continues until the centroids are fixed (d)
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Euclidean distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 � p1ð Þ2 þ q2 � p2ð Þ2 þ . . .þ qn � pnð Þ2

�r
ð14:2Þ

The main component affecting the clusters in K-means clustering is where the

initial centroids are placed. Thus, the choice of where the centroids are is often

important; one approach is to choose multiple random initial centroids where the

clustering is performed in different iterations, and for each iteration a different set

of initial points is chosen, and the “sum of squared error” (SSE) is measured to

determine the best initial starting centroids and the best cluster definitions.

For each point, the Euclidean distance of the point to the centroid of its cluster is

measured, and the value is squared (in order to place more emphasis on outliers that

are far from the cluster centroid). Then the squared Euclidean distances of all points

are summed up: this sum is called the sum of squared error. Models with smaller

sum of squared error are usually preferred since they show that the points are more

concentrated around their centroids (less scatter).

SSE ¼
XK
i¼1

X
x2ci

Euclidean distance ci; xð Þ2
�

ð14:3Þ

where K is the number of clusters, and ci is the centroid for cluster i.
Based on this, it can be shown that the best centroid for a cluster is the mean of

the points in that cluster:

ci ¼ 1

mi

X
x2ci

x ð14:4Þ

where mi is the number of points in the cluster i.
Other approaches used for point assignment in K-means clustering include

squared Euclidean distance, cosine proximity, Manhattan distance, and Bregman

divergence. Each of these is suited for different applications. The explanation of

these approaches is beyond the scope of this book.

Hierarchical Clustering

Another common clustering approach is “hierarchical clustering” where a nested

approach to clustering is followed to build a hierarchy of clusters. We commonly

encounter hierarchical clustering in medical taxonomy and in the way diseases are

structured. For example, the diseases are first clustered by their site and then

clustered by their pathologic mechanism (inflammatory, neoplastic, etc.), and the

classification continues until we reach a single disease entity. The advantage of this

approach to K-means clustering is that we don’t need to define the number of

clusters.
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The hierarchical clusters can be built using a top-down divisive approach or an

agglomerative bottom-up approach. Here, we will focus on the agglomerative

approach where each point is considered as its own cluster and then clusters are

merged as we move further up the hierarchy. The process continues until only one

cluster remains (Fig. 14.2).

The merging of clusters is performed based on cluster proximity. At each level,

the two closest clusters are identified using a proximity matrix and they are merged.

The proximity matrix is then updated to account for the merged clusters, and the

process is repeated until only one cluster remains.

There are different ways for defining the proximity between clusters. One

approach is to use the minimum distance (e.g., Euclidean distance) between the

points of clusters, and the two clusters with the smallest minimum distance are

merged together, and the process is repeated until only one cluster remains.

Alternatively, the maximum distance between the points of the clusters or the

average distance can also be used. We can also use cluster centroids and measure

proximity between the centroids of the clusters and merge the clusters with closest

centroids.

The results of hierarchical clustering can be shown in a treelike graph known as a

“dendrogram” (Fig. 14.3).

Example 14.1

Two-dimensional data for five points are provided in Table 14.1. Using a minimal

Euclidean distance method, apply hierarchical clustering to these points.

The proximity matrix of the Euclidean distances between these points is shown

in Table 14.2.

In the first step, we have to find the smallest minimum distance between the

points. Looking at Table 14.2 we can see that Point 1 and Point 5 have a Euclidean

distance of 3.6. Point 2 and Point 4 also have a Euclidean distance of 3.6. Thus, the

first step is merging of Point 1 and Point 5 into one cluster and Point 2 and Point

4 into another cluster. At this stage, we are left with three clusters: Cluster 1 (Point

1 and Point 5), Cluster 2 (Point 3), and Cluster 4 (Point 2 and Point 4).

Fig. 14.2 A set of points (a) are clustered using agglomerative hierarchical clustering. The

clustering begins with each point being a cluster (b), then the nearest clusters are merged leading

to three clusters (c), and the nearest clusters are again merged (d) leaving only two clusters. The

process continues until one cluster containing all the points is obtained
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The next step is to merge these clusters. We can see that the minimum Euclidean

distance between the points of the clusters is equal between Cluster 1 and Cluster

2 (where the distance between Point 3 and Point 2 is 4.12) and Cluster 2 and Cluster

3 (where the distance between Point 3 and Point 5 is 4.12). As we have a tie, we will

randomly merge either Cluster 1 with Cluster 2 or Cluster 3 with Cluster 2.

Fig. 14.3 Dendrogram for Example 14.1

Table 14.1 Two-

dimensional data for five

points

X Y

4 9

6 4

2 3

8 1

1 7

Table 14.2 Proximity matrix for Example 14.1

Point 1 Point 2 Point 3 Point 4 Point 5

Point 1 0 5.385165 6.324555 8.944272 3.605551

Point 2 5.385165 0 4.123106 3.605551 5.830952

Point 3 6.324555 4.123106 0 6.324555 4.123106

Point 4 8.944272 3.605551 6.324555 0 9.219544

Point 5 3.605551 5.830952 4.123106 9.219544 0
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Now we have reached a point where we have two clusters: Cluster 1 (which

includes Point 1, Point 5, and Point 3) and Cluster 2 (Point 2 and Point 4). Now we

can merge the two clusters to form our final inclusive cluster that includes all points.

Figure 14.3 is the dendrogram for this example.

The main implication of hierarchical approach is that as you move down the

hierarchy, the homogeneity of the clusters increases, i.e., points belonging to the

same bottom-level cluster are much more similar to each other than points in a

top-level cluster.

The main application of hierarchical clustering is in molecular pathology where

tumors are hierarchically clustered based on their mutational pattern or RNA

expression pattern. This has been helpful in identifying different subgroups of

tumors which have distinct mutational patterns. These results in turn have been

quite useful in understanding the progression of tumors as well as paving the way

for possible targeted therapies [2–4].

Summary

In this chapter, we discussed clustering and introduced two of the main clustering

approaches employed in diagnostic medicine: K-means clustering and hierarchical

clustering. These algorithms are often computationally intensive (especially when

dealing with multidimensional data) requiring advanced statistical software and

high computing capacity. For a complete discussion of these approaches as well as

other clustering approaches, we recommend the interested readers to read Statisti-
cal Modeling and Machine Learning for Molecular Biology by Alan Moses, CRC

Press 2017.
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Appendix A

Z-scores table: the values in the cells show the area under the curve to the left of Z

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5 0.504 0.508 0.512 0.516 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.695 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.758 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.791 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.834 0.8365 0.8389

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9842 0.9846 0.985 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
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Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999

3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Appendix B

Chi-square distribution table: the values in the cell are chi-square critical values corresponding to

the alpha levels and degrees of freedom

DF

α ¼
0.995

α ¼
0.990

α ¼
0.975

α ¼
0.950

α ¼
0.900

α ¼
0.100

α ¼
0.050

α ¼
0.025

α ¼
0.010

α ¼
0.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
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DF

α ¼
0.995

α ¼
0.990

α ¼
0.975

α ¼
0.950

α ¼
0.900

α ¼
0.100

α ¼
0.050

α ¼
0.025

α ¼
0.010

α ¼
0.005

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169
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T-score distribution table: the values in the cell are t-score critical values corresponding to the alpha

levels and degrees of freedom

DF

One-tailed α

0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62

2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924

4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768

24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690

(continued)



DF

One-tailed α

0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674

29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551

60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460

80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390

1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

Two-

tailed

α

1 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001
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F-score distribution table: the values in the cell are f-score critical values corresponding to the

degrees of freedom with alpha level of 0.05

DF 1 2 3 4 5 6 7 8 9 10

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.39 19.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.97 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.10 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.97 2.81 2.70 2.61 2.55 2.49 2.45

18 4.41 3.56 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.33 3.47 3.07 2.84 2.69 2.57 2.49 2.42 2.37 2.32

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.38 2.32 2.28

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.26

25 4.24 3.39 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

(continued)
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DF 1 2 3 4 5 6 7 8 9 10

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.17

31 4.16 3.31 2.91 2.68 2.52 2.41 2.32 2.26 2.20 2.15

32 4.15 3.30 2.90 2.67 2.51 2.40 2.31 2.24 2.19 2.14

33 4.14 3.29 2.89 2.66 2.50 2.39 2.30 2.24 2.18 2.13

34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 2.12

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11

36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15 2.11

37 4.11 3.25 2.86 2.63 2.47 2.36 2.27 2.20 2.15 2.10

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09

39 4.09 3.24 2.85 2.61 2.46 2.34 2.26 2.19 2.13 2.08

40 4.09 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

41 4.08 3.23 2.83 2.60 2.44 2.33 2.24 2.17 2.12 2.07

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.07

43 4.07 3.21 2.82 2.59 2.43 2.32 2.23 2.16 2.11 2.06

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05

45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.15 2.09 2.04

47 4.05 3.20 2.80 2.57 2.41 2.30 2.21 2.14 2.09 2.04

48 4.04 3.19 2.80 2.57 2.41 2.30 2.21 2.14 2.08 2.04

49 4.04 3.19 2.79 2.56 2.40 2.29 2.20 2.13 2.08 2.03

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03

F-score distribution table: the values in the cell are f-score critical values corresponding to the

degrees of freedom with alpha level of 0.01

DF 1 2 3 4 5 6 7 8 9 10

1 4052.19 4999.52 5403.34 5624.62 5763.65 5858.97 5928.33 5981.10 6022.50 6055.85

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05

6 13.75 10.93 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10

14 8.86 6.52 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.90 3.81

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69

(continued)
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DF 1 2 3 4 5 6 7 8 9 10

17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59

18 8.29 6.01 5.09 4.58 4.25 4.02 3.84 3.71 3.60 3.51

19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26

23 7.88 5.66 4.77 4.26 3.94 3.71 3.54 3.41 3.30 3.21

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09

27 7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.15 3.06

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03

29 7.60 5.42 4.54 4.05 3.73 3.50 3.33 3.20 3.09 3.01

30 7.56 5.39 4.51 4.02 3.70 3.47 3.31 3.17 3.07 2.98

31 7.53 5.36 4.48 3.99 3.68 3.45 3.28 3.15 3.04 2.96

32 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 3.02 2.93

33 7.47 5.31 4.44 3.95 3.63 3.41 3.24 3.11 3.00 2.91

34 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98 2.89

35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88

36 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05 2.95 2.86

37 7.37 5.23 4.36 3.87 3.56 3.33 3.17 3.04 2.93 2.84

38 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.92 2.83

39 7.33 5.19 4.33 3.84 3.53 3.31 3.14 3.01 2.90 2.81

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80

41 7.30 5.16 4.30 3.82 3.50 3.28 3.11 2.98 2.88 2.79

42 7.28 5.15 4.29 3.80 3.49 3.27 3.10 2.97 2.86 2.78

43 7.26 5.14 4.27 3.79 3.48 3.25 3.09 2.96 2.85 2.76

44 7.25 5.12 4.26 3.78 3.47 3.24 3.08 2.95 2.84 2.75

45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74

46 7.22 5.10 4.24 3.76 3.44 3.22 3.06 2.93 2.82 2.73

47 7.21 5.09 4.23 3.75 3.43 3.21 3.05 2.92 2.81 2.72

48 7.19 5.08 4.22 3.74 3.43 3.20 3.04 2.91 2.80 2.72

49 7.18 5.07 4.21 3.73 3.42 3.20 3.03 2.90 2.79 2.71

50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70
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Index

A
Accuracy and precision

CI, 12, 13

error, 8, 10

reference intervals, 14, 16, 17

SD, 11, 12

Agglomerative bottom-up approach, 297

Allowable total error (ATE), 237

Analytical measured range (AMR), 89

Analytical measurement range experiments,

233

Analytical sensitivity, 222

Analytical specificity, 222

ANOVA

F-distribution, 145

“Fisher’s least significant difference”

(LSD) test, 145

F-statistics, 143, 144

means, groups, 142

null/alternative hypotheses pair, 143

one-way ANOVA, 142

post hoc tests, 145

Scheffé’s method, 146

serum concentration, 144

serum levels, drug A, 144

“Tukey’s test”, 146

two-way ANOVA, 142

variance calculation, 144

ANOVA equation, 233

Apparent validation, 180

AUC calculation, 26, 27

Automatized hematology analyzers, 295

Average of normals (AoN), 250, 251

B
Bayesian probability

Bayes theorem, 47, 48

diagnostic medicine, 49

measures, 47

Beer’s law, 87

Begg test, 275

Best fit line method, 228

Bias, 87

Big data, 293

Bland-Altman plots, 287, 288

Bonferroni correction, 100

Bootstrapping, 183

C
Calibration, 89, 90

Case-control design, 284

Categorical variables, 93, 98, 161

Censoring, 203, 204

Center for Evidence-Based Medicine (CEBM),

260

Centroid, 294

Childs-Pugh score, 201

Chi-squared distribution, 104, 110

Chi-squared test

defined, 103

degrees of freedom, 104

distribution, 105

expected value, 103

PDF, 106

Clinical decision rules (CDRs), 260

Clinical Laboratory Improvement

Amendments (CLIA), 220

Clustering algorithms

description, 294

hierarchical clustering, 296–299

K-means clustering, 294–296

pathology, 294

proximity matrix, 298

supervised/unsupervised, 294
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Cochran’s Q statistics, 274

Cochrane Handbook for Diagnostic Test

Accuracy Reviews, 266

Cochran–Mantel–Haenszel Test, 112–114

Coefficient of variation (CV), 239

Cohen’s Kappa, 117, 118

Cohen’s Kappa coefficient, 286

College of American Pathologists (CAP), 75,

220

Collinearity, 167

Colorimetric vs. light scatter methodology, 287

Conditional probability

axioms, 46

2 � 2 confusion matrix of disease, 45

diagnostic medicine, 45

event, 44

law of unions, 46

measures, 45

multiplication rule, 46, 47

sensitivity, 45

test measures, 45

Confidence interval (CI), 12–14

Contingency tables, 94, 95, 113, 116–118

Continuous data analysis, 133–152

accuracy, 121

discrete variables, 121

effect size (see Effect size)
mean and median, 122, 123

non-parametric Tests (see Non-parametric

Tests)

null/alternative hypotheses pair, 156

ordinal variables, 152–156

parametric (see Parametric tests)

parametric vs. non-parametric tests, 124–

134

quantitative outcomes, 121

range of values, 121

statistical tests, 156

variance, skewness, and kurtosis, 123, 124

Control limits, 244

Correlation coefficient, 84–86

components, 81

correlation versus closeness, fit to straight

line, 82

degree of closeness, 81

error in intercept (Sint), 86, 87

error in slopes

confidence interval, 85, 86

definition, 84

error of the intercept, 85

and intercepts, 83–84

regression least squares best fit line

values, 84

regression plot, 82

slopes and intercepts, 83

Correlation plots, 76–78

Cost-effectiveness analysis, 31–33

Cox regression model, 214

Cox-proportional hazards regression, 203,

214–216

Cox-regression model, 216

Critical appraisal of evidence

absolute specificity rule in (absolute SpPin)

and/or sensitivity rule out (Absolute

SnNout), 261

anatomic pathology, 260

description, 259

diagnosis, 264, 265

evidence-based recommendations,

262, 263

external validation, 261

levels of evidence, 262

meta-analysis, 260

prostate cancer, 261

protein X, 261

systematic reviews

forest plot, 269, 270, 273

funnel plot, 276

heterogeneity testing, 274, 275

inclusion/exclusion criteria, 267

Kappa coefficient, 269

meta-analysis, 266, 269–275

multiphase process, 267

PICO framework, 266

publication bias, 267, 275, 276

search phrase/terms, 267

snowballing, 267

SROC plot, 272, 274

steps, 266

threshold effect, 269

systematic reviews/meta-analysis, 259

Cross-validation method, 183

Cumulative distribution function (CDF), 54

Cumulative incidence, 202

D
Data discarding solutions

available-case analysis, 193–194

complete-case analysis, 193

Decision-making process, 259

Delta check, 251–253

Dendrogram, 297–299

Detection limit experiments, 238, 239

Diagnostic accuracy measures, 22

Diagnostic accuracy tests, 264
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Diagnostic research design, 289, 290

cytology evaluation, 281

index test, 285

levels, 280

new test, 280

observational studies, 288

paired comparative accuracy studies

case-control studies, 289

cohort studies, 289, 290

phases, 282–284

randomized comparative accuracy studies,

290

reference standard test (control group), 281

reference standards, 285–287

research protocol, 280

sample size calculations, 290, 291

technical accuracy and precision of a test,

280

Diagnostic tests

accuracy and precision

AUC, 26, 27

CI, 12, 13

error, 8, 10

predictive values, 20, 21

reference intervals, 14, 16, 17

ROC, 23, 24, 26

SD, 11, 12

sensitivity and specificity, 19, 20

clinical applicability

absolute probability difference, 29

clinical benefit, 29

feasibility, 31

test qualities, 28

transferability, 30

triage/screening tests, 28

cost-effectiveness analysis, 31–33

quantitative clinical laboratory test, 3

sensitivity, 3

specificity, 3, 4

Distribution plots

Boxplot graphs, 71

cumulative, 69

histogram, 69

normal, 68

Quantile-Quantile, 69

subjective and rapid assessment data, 68

E
Effect size

Cohen’s d, 151
Cohen’s f, 152
high statistical power, 151

pathology and laboratory medicine, 151

p-value, 151
t-test, 151

Egger’s test, 275

EP-Evaluator, 83

Error

random error, 8, 9

systematic error, 10

Euclidean (L2) distance, 295
Euclidean distance method, 297

Evidence-based medicine (EBM), 259

Explained variation, 81

Explanatory variables, 168

Exponential distribution, 205

External Quality Control, 255, 256

External validation, 183

F
Fisher’s Exact Test, 114–116

Fleiss’s Kappa, 118, 119

Flow cytometry, 295

F-test (analysis of variance), 164, 223, 232, 233

Functional sensitivity, 239

G
Gamma distribution, 105

Gaussian distribution, 65

Gaussian probability, 39

Generalized linear models, 160

Glomerular filtration rate (GFR), 160, 164, 283

Ground truth, 285

H
Hazard function, 205–208

Hierarchical clustering, 296–299

Hierarchical SROC (HSROC), 272

Human Protein Atlas project, 240
Hypothesis testing

Bonferroni Correction, 100

defined, 97

error, 98

null and alternative, 97

p-value, 99, 100

statistical error, 98

statistical power, 98, 99

statistical tests, 98

I
Immunohistochemical (IHC) stains, 239–241

Imputation

mean, 194
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Imputation (cont.)
multiple, 196–200

random, 195

regression, 195

single, 194

Incidence density rate, 202

Incidence rate, 202

Index test, 285

Interaction, 167

Interference, 222

Internal validation, 182

Inverse variance weighting, 270

K
Kaplan-Meier curves, 203, 210, 215

Kaplan-Meier estimator, 208–211

Kappa coefficient, 117

K-means clustering, 294–296

Kruskal-Wallis Test, 150

L
Laboratory quality control

AoN, 250, 251

control limits, 244

delta check, 251–253

external, 243, 255

internal, 243

Levey-Jennings chart, 245

moving patient averages, 253, 254

out-of-range, 247

Westgard rules, 246–250

Leave-one-out-approach, 183

Levey-Jennings chart, 245

Likelihood ratio (LR), 50, 51, 171

Limit of blank (LoB), 239

Limit of detection (LoD), 239

Limit of quantification (LoQ), 239

Linear correlations

correlation plots, 76–78

least square, 79–81

least squares best fit line, 77

serum BUN plot, 77

testing volume, 75

two-tailed T-test, 75, 76

Linearity, 87, 89

Logistic regression, 168–173

binary

explanatory variables, 168

logit function, 169

parameter estimates, 171, 172

pathology determine, 168

procalcitonin level, 170

R-squared, 173

standard logistic function, 168

Wald test, 171

multinomial, 174, 175, 177

ordinal, 177, 178, 180

Log-rank test, 211–214

Lowest sum of squares of deviations, 78

M
Major axis regression, 286

Mann-Whitney test

assumptions, 147

AST value, 148

calculation of U-value, 147

distribution of values and histogram for

AST values, 149

and KS test, 147

non-parametric, 147

outcomes, 148

two sets data, 147

U-distribution, 149

U-statistic, 147

U-values, 147

values of AST, chronic hepatitis and

healthy groups, 148

Mann-Whitney U Test, 147–150

Markov chain Monte Carlo method (MCMC),

197

McNemar’s Test, 111, 112

Mean

and median, continuous data

calculation, 122

measures, 122

skewed distribution, 123

values, 122

Mean and variance, 60–62

probability distribution

characteristics, different random

distributions, 61

MGF, 60, 61

Poisson, 61, 62

Mean corpuscular volume (MCV), 23

Measures of Association, 110–111

Measuring agreement, 117

Median

continuous data, 122, 123

Method decision chart, 237, 238

Method evaluation, 220

Missing data

BNP, 188

completely random missingness, 189
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definition, 185

graphical visualization, 190, 191

nonrandom missingness, 186, 187

random missingness, 187, 189

Moment-generating functions (MGF), 60, 61

Monoclonal antibody, 83

Moses-Littenberg approach, 272

Moving patient averages, 253, 254

Multinomial logistic regression, 174, 175, 177

Multiple imputation by chained equations

method (MICE), 197

Multiple regression analysis

collinearity, 167

F-Test, 164

interaction, 167

linear predictor function, 161

OLS, 161

parameter estimates, 165

residual plots, 166

R-squared, 163, 164, 166

SD error, 161

t-value, 162

Multivariate analysis

advantages, 159

defined, 159 (see also Multiple regression

analysis)

N
New tests

analytical goals

acceptable, 221

patient care, 221

qualitative tests, 221, 222

quantitative tests, 223

cost-effectiveness analysis, 219

need assessment process, 219

pathology and laboratory medicine, 219

process, 220

test validation, 220, 221

Nonconsecutive cohort, 261

Non-parametric test

assumptions, 146

Kruskal-Wallis test, 150

Mann-Whitney U Test, 147–150

Nonrandom missingness, 186, 187

Normal distribution curve, 101

O
Observational analytic research, 279

Ordinal logistic regression, 177, 178, 180

Ordinal variable, continuous data analysis

Kendall’s Tau Test, 153, 154

non-parametric tests, 152

pathology, 152

ranked variables, 152

Ordinary least squares (OLS), 161

Outcomes and Variables, Pathology and

Laboratory Medicine, 1–3

P
Parametric test, 142–146

assumption, 134

CAD, 134

hypothesis, 134

means, 142, 143

One-Way ANOVA (see ANOVA)
population-sized samples, 135

statistical power, 133

t-test, student’s (see Student’s t-test)
Parametric vs. non-parametric tests

ANOVA, 125

assumption, 124

central limit theorem, 125

continuous data, 125

dispersion (spread) of the data, 125

group means, 124

group medians, 124

Kruskal-Wallis test, 125

Mann-Whitney test, 125

normality

AST and ALT values, 132

AST outcomes, 128, 130

central limit theorem, 128

distribution, 128

EDF values, AST and ALT, 133

EDFs, AST and ALT, 134

K�S test value, 133

outcomes, AST and ALT values, 132

pathology and laboratory medicine, 128

Q-Q plot, 128

“q values”, 129

statistical tests, 128

W/S test, 128

one-tailed vs. two-tailed, 126, 127
outliers

“delta check”, 125

determination, 125

measurement error, 125

pathology and laboratory medicine, 128

sodium concentration, serum, 126

values, 125

t-test and ANOVA, 124

Passing-Bablok method, 85
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Pathologists

clustering, 293

RNA expression, 293

transcriptome and protein expression, 293

Pearson Chi-Squared Test, 107–111

Pearson’s r coefficient, 229
Person-time incidence rate, 202

PICO framework, 266

Polyclonal antibody, 83

Posttest Probability, 49–51

Predictive values, 20, 21

Pretest Probability, 49–51

PRISMA flowchart, 268

PRISMA-P flowchart, 267

Probability

Bayesian (see Bayesian Probability)

calculations and measurements, 71

components of interest, 39

concepts, 39

conditional (see Conditional probability)
distribution (see Probability distribution)

events, 40, 41

measures and axioms

diagnostic medicine, 44

hemochromatosis, 44

inclusion-exclusion rule, 44

Kolmogorov axioms, 42

multiple rules and theorems, 42

outcomes, 40

parameters, 39

pathology and laboratory medicine, 39

Pretest and Posttest Probability, 49–51

and randomness, 40

Random Variable, 41

repeatability, 40

rules, 71

Set, 40

theory of, 39

Probability density function (PDF), 63

Probability distribution

binomial, 58

concepts, 52

continuous

CDF, 63

Log-Normal Distribution, 67, 68

non-zero probability, 63

normal, 65, 66

PDF, 63

random variables, 63

discrete

binomial, 56–58

CDF, 54, 55

geometric, 58, 59

negative binomial, 59, 60

PMF, 53–55

PMF and CDF, 56

PMF plot, 54

random variable, 53

mean and variance (see Mean and

Variance)

outcomes , random trial, 52

plots (see Distribution plots)

Probability mass function (PMF), 53

Proteolytic degradation, 83

p-value, 99, 100

Q
Quality Assessment of Diagnostic Accuracy

Studies (QUADAS-2), 268

Quantitative tests

correlation coefficient, 229

linear correlation test, 227

linear regression equation, 230

method comparison experiment, 230, 231

new test versus comparative method, 228

proportional error, 231

p-value, 229

regression equation, 229

t-test, 230–232

R
Random missingness, 187–189

Receiver operating characteristic curve (ROC),

23, 24, 26

Reference interval

CI and SD, 15

Gaussian normal distribution, 16

log-normal distribution, 16

sodium concentration, 18

WNL, 14

Regression line, 80

Regression models, 294

Repeatability, 223

Reproducibility, 222, 223

Risk ratios analysis, 102, 103

Robust Statistics, 192

R-squared, 163, 166, 173

S
Sensitivity and Specificity, 19, 20

Separate pooling with fixed effect, 270

Spearman’s Rho Test, 154–156

Standard deviation (σ), 11, 12
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Standard logistic function, 168

Standards for Reporting of Diagnostic

Accuracy Studies (STARD), 291

Statistical power, 98, 99

Statistical tests, 119

Statistics

diagnostic test, 3–5

laboratory tests, 1

pathology, 1–3

Student’s t-test, 135–137

determination, 135

independent sample, 139, 140

one-sample t-test, 136–139
paired t-test, 140–142

standardized variable, 135

t-distribution, 135

cutoff values, 136

cutoff values, two-tailed t-distribution,

137

different degrees of freedom, 135

normal, 135

parameters, 135

plots of t-distribution, 136

t-values, 135

two-tailed test, 135, 137

Sum of squared error (SSE), 296

Summary receiver operating characteristics

(SROC), 269, 272

Survival analysis

incidence, 201–203

linear regression models, 203

mortality, 203

prognostication process, 201

Survival data, 204, 205, 208

Survival distribution function, 206

Survival estimation, 210

Survival function, 205

Survival/hazard functions, 203

T
Test assessment, 220

Test Objectives, 4, 5

Threshold effect, 269, 272

Time-consuming process, 76

Time-stratified Mantel-Haenszel test, 212

Top-down divisive approach, 297

Total analytical error (TAE), 236

Total error, 236–238

True validation, 183

T-test, 230–232

Tukey mean-difference plots, 287

Two-tailed T-test, 75, 76

U
Unexplained variation, 81

Univariate analysis, 160, 172

V
Validation

accuracy experiment, qualitative tests, 226

experiment setup, 224

linearity experiments

best fit line, 234

F-score, 235

laboratory developed tests, 235

lack-of-fit error, 234, 235

least squares method, 235

polynomial method, 235

triplicate measurements, 234

visual inspection, 234

precision experiment, qualitative tests, 226,

227

sample size calculations, 224, 225

total error, 236–238

within-run agreement, 227

Variance. See Mean and Variance

Variance, Skewness, and Kurtosis, 123, 124

Verification, 221

W
Wald test, 171

Weibull distribution, 211

Weibull estimation, 211

Westgard rules, 246–250
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