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Preface

This book is framed in the context of remote sensing for Earth observation and
focuses on the research field of mathematical models and methodologies for the
analysis of two-dimensional remote sensing images. The objective is twofold. First,
the book is intended to conduct a broad analysis of the field of applied mathematics
for two-dimensional remote sensing image interpretation, encompassing passive
and active sensors, hyperspectral images, synthetic aperture radar (SAR), interfer-
ometric SAR, and polarimetric SAR data. Second, this book is meant to also discuss
very topical and advanced subjects, which involve various types of remote sensing
data (e.g., very high-resolution imagery, multiangular or multiresolution data, and
satellite image time series) or of processing and learning methodologies (e.g.,
probabilistic graphical models, hierarchical image representations, kernel machines,
data fusion, and compressive sensing) that are currently of primary importance in
the Earth observation area.

The book is organized into ten chapters. The first one is introductory. It is aimed
at recalling basic notions and terminology, and at providing an overview of the
most prominent families of mathematical models and techniques for remote sensing
image interpretation. All the other chapters are devoted either to specific typologies
of remote sensing images, along with their data analysis challenges, or to individual
methodological areas. Each of these nine chapters presents both a detailed review
of the previous literature on the related subject and a methodological and experi-
mental discussion of, at least, two advanced mathematical approaches to informa-
tion extraction from remote sensing images. This organization is kept consistently
throughout the book and allows both tutorial information and multiple on-the-edge
developments to be covered on each topic.

The chapters are written and organized so that they contribute to the book as a
whole and are self-consistent. Each chapter is authored by research scientists from,
at least, two distinct institutions to take benefit from multiple professional experi-
ences and perspectives on each subject. The chapter co-authors are highly promi-
nent research scientists in the remote sensing and image processing fields. In these
fields, many of them have been serving as Editors in Chief or Associate Editors in
the editorial boards of prestigious international journals and are actively involved in
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international scientific societies (e.g., the IEEE Geoscience and Remote Sensing
Society and the IEEE Signal Processing Society). The book is intended to be used
as a reference, to graduate and doctoral students and to remote sensing scientists
and practitioners, as well as possibly as a textbook.

We would like to take the opportunity to acknowledge and sincerely thank all
the chapter co-authors for their excellent contributions to this collective effort, their
insight, and their invaluable feedback. We also wish to thank the Springer staff for
their help and support along the editing and publishing process.

Genoa, Italy Gabriele Moser
Sophia Antipolis, France Josiane Zerubia
May 2017
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Chapter 1
Mathematical Models and Methods
for Remote Sensing Image Analysis:
An Introduction

Gabriele Moser, Josiane Zerubia, Sebastiano B. Serpico
and Jon A. Benediktsson

Abstract The current progress of remote sensing systems, based on airborne and
spaceborne platforms and involving active and passive sensors, provides an unprece-
dented wealth of information about the Earth surface for environmental monitor-
ing, sustainable resource management, disaster prevention, emergency response, and
defense. In this framework, mathematical models for image processing and analysis
play fundamental roles. Effectively exploiting the potential conveyed by the avail-
ability of remote sensing data requires automatic or semi-automatic techniques capa-
ble of suitably characterizing and extracting thematic information of interest while
minimizing the need for user intervention. The current development of mathemati-
cal models and methods for image processing and computer vision allows multiple
remote sensing information extraction problems to be addressed successfully, accu-
rately, and efficiently. In this introductory chapter, first, general characteristics of
sensors and systems for Earth observation are summarized to define the basic termi-
nology that will be used consistently throughout the book. Remote sensing image
acquisition through passive and active sensors on-board spaceborne and airborne
platforms is recalled together with the basic concepts of spatial, spectral, temporal,
and radiometric resolution. Then, an overview of the main families of mathematical
models and methods within the scientific field of two-dimensional remote sensing
image processing is presented. The overall structure and organization of the book
are also described.
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1.1 Introduction

The remote sensing discipline studies the instrumentation, the models, the meth-
ods, the computational algorithms, and the software architectures that address the
objective of retrieving information about a given “object” or “entity” by collect-
ing and processing observations without physical contact with the object or entity
itself [169]. In these terms, the definition is extremely general and encompasses very
diverse application scenarios including the extraction of environmental information
from data collected by satellite or aerial sensors [98], the identification of buried
objects through microwave sensors (the so-called ground-penetrating radar) [199],
the detection of underwater objects through acoustic signals and sonar [87], etc.
Indeed, all of these scenarios critically involve multiple challenging problems of
applied mathematics with the goal of formalizing and addressing recognition, clas-
sification, detection, tracking, estimation, inversion, and optimization tasks.

In this book, remote sensing is always intended as remote sensing for Earth
observation (EO) [98, 169]. This means that the target, object, or entity of
interest consists of a portion of the Earth surface or is located on the Earth
surface, and that the information to be extracted is generally related to envi-
ronmental applications. The sensor is on-board a satellite (spaceborne sensor
or satellite sensor) or an aerial platform (airborne sensor) such as an aircraft,
an unmanned aerial vehicle (UAV, also commonly called drone), or a balloon.
The interaction between the observed area and the sensor occurs through elec-
tromagnetic waves.

EO technologies andmethodologies have been acquiring a growing interest for the
past few decades because they provide repetitive geographical area coverage and an
increasing capability to observe the Earth surface at the desired spatial scale. Owing
to the numerous space missions for EO, which have been deployed by national and
international space agencies and by private industries, to the availability of airborne
image acquisitions at national institutions and service companies, and to the cur-
rently growing interest of airborne lightweight platforms (i.e., the aforementioned
UAVs), remote sensing currently provides a huge potential for environmental moni-
toring at global, regional, and local levels [98]. Remote sensing imagery represents
a valuable source of information for a variety of applications, including but not
restricted to vegetation-resource management and ecology (e.g., precision farming
and forest inventory), urban planning (e.g., cadastral mapping and urban sprawl mit-
igation), oceanography (e.g., water-quality assessment and ocean current studies),
hydrology (e.g., ice, snow, and drought monitoring), geology (e.g., stratigraphy stud-
ies), geophysics (e.g., crustal-dynamic monitoring and Earth magnetic field studies),
renewable energy (e.g., biomass, irradiation, or wind speed resource assessment),
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meteorology, climate change studies, defense, and security [91, 98]. EO also pro-
vides critical information in the framework of natural disasters (e.g., forest fires,
floods, landslides, and earthquakes), both for prevention purposes (i.e., vulnerability
assessment) and as a support to crisis management and post-crisis damage assess-
ment [71].

This book addresses the broad field of the mathematical models and methods for
the processing and the analysis of remote sensing images.Both tutorial aspects and the
latest advances are discussed. Specifically, the objective of this introductory chapter
is twofold. First, a summary of the fundamentals of remote sensing is presented
to recall general concepts and basic terminology that will be used in the whole
book (see Sect. 1.2). This discussion will be concise on purpose: More details on
the major categories of two-dimensional remote sensing images will be provided in
later chapters. Furthermore, the interested reader can find in the literature excellent
textbooks on the fundamentals of remote sensing [29, 94, 117, 118, 169, 179, 180,
191, 207], on the physical bases and the instrumentation [45, 60, 61, 167, 176, 187,
199, 208, 209], on the applications [14, 42, 61, 78, 98, 106, 146, 164, 172], and on
data processing and analysis [31, 34, 105, 151]. Second, an overview of the main
families of mathematical models and methods for two-dimensional remote sensing
image analysis is presented to provide the reader with a broad view of this scientific
area before the other chapters focus on individual classes of models and algorithms
(see Sect. 1.3).

1.2 Basics of Remote Sensing Imagery

1.2.1 The Notion of Remote Sensing Image

The data collected by EO sensors that will be considered in this book are formatted
as two-dimensional (2D) digital images of a given geographic area and are named
remote sensing images or EO images [169]. The goal of remote sensing image analy-
sis methods is the extraction of geospatial information of interest from these images.
Indeed, what is “of interest” (or what is not) is an application-dependent dilemma.
It includes but is not limited to the mapping of land cover, land use, and of geophys-
ical or biophysical properties of the observed surface, statically at a single time or
dynamically along a temporal series.

It is well known that a digital image is a 2D table of points, named pixels (abbre-
viation of “picture elements”), which are associated with one or more discrete values
(pixel intensities) [90, 203]. Given a digital image collected by a certain sensor, the
meaning of the pixel intensities in terms ofmeasurements of physical quantities sub-
stantially depends on the sensor itself [60]. The main physical quantities of interest
for 2D remote sensing will be summarized in Sect. 1.2.3 and discussed in depth in
later chapters.
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From a signal-processing viewpoint, it is customary to consider an image as a
realization of a 2D stochastic process (also often named random field) defined on
the discrete lattice of the pixel grid [100]. This perspective is especially convenient
whenever probabilistic and statistical modeling are necessary, a frequent situation
when processing and analysis tasks have to be addressed [39, 163, 198]. Strictly
speaking, remote sensing data are always discrete because they originate from a
digitization process while they are collected by the sensor. Nevertheless, models
and processing methods conveniently involve both discrete and continuous random
processes. Numerous examples will appear throughout the book.

Scalar-valued and vector-valued random fields are used in the cases of a unique
intensity or of multiple intensities associated with each pixel, respectively. From
a computational standpoint, a scalar-valued image is actually a rectangular matrix
whose numbers of rows and columns correspond to the height andwidth of the image,
respectively. Analogously, a vector-valued image can be pictured as a data cube,
whose sizes correspond to the width, the height, and the number of components of
the vector-valued pixel intensities [31]. Such a data cube can be indirectly associated
with a third-order tensor.

These three viewpoints on how to formalize what a remote sensing image is—
a collection of physical measurements, a realization of a stochastic process, and a
matrix or data cube—will be used consistently and interchangeably throughout the
book.

1.2.2 Platforms for Remote Sensing

The acquisition of EO data is performed by one or more sensors that collect images
on the observed scene and operate from one or more platforms. Both airborne and
spaceborne platforms are used for remote sensing.

Major examples ofairborneplatforms include aircrafts, balloons, andUAVs [169].
Aircrafts that can be equipped with EO sensors are usually available at national or
international organizations (e.g., military authorities) and at specialized companies.
Balloons are overall less frequently employed for EO, but their use is steadily grow-
ing and may probably increase in the future. UAVs have been getting increasingly
popular lately because of their low cost although they usually exhibit limitations on
the maximum weight of the sensors they can carry. With both aircrafts and UAVs,
altitude and orientation affect the geometry of the image, and acquisitions occur
through ad hoc flights. Helicopters are also sometimes used for airborne remote
sensing especially for specific applications. Processing examples using images from
airborne platforms will be presented in Chaps. 2, 4, 5, 6 and 10.

A spaceborne platform is generally an artificial satellite orbiting around the
Earth [169]. Exceptions include missions, such as the Spaceborne Imaging Radar-C /
X-bandSyntheticApertureRadar (SIR-C/X-SAR) and the ShuttleRadar Topography

http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_10
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Mission (SRTM), in which sensors were put on-board NASA Space Shuttles [85].
Using the language of satellite missions, in a spaceborne EO system, the satellite
represents the space segment while the ground segment is the infrastructure on the
Earth surface that receives, validates, and pre-processes the acquired data. The space
segment of an EO mission includes the mission payload, i.e., the sensor(s) that
the satellite is designed to carry, and all necessary infrastructures for power, orbit
management, on-board pre-processing, recording, and transmission to the ground
segment [130].

It is well known that the path of a satellite along its orbit is an ellipse. The
plane that includes this ellipse is named orbital plane. The orbits used for EO are
geostationary or near polar. A geostationary orbit (or geosynchronous equatorial
orbit, GEO) is circular, its orbital plane is the plane of the Earth Equator, and the
orbiting period around the Earth is 24 hours [180]. Therefore, a sensor on-board
a geostationary platform (geostationary sensor) always observes the same portion
of the Earth surface. Simple calculations based on Newton’s gravitation law imply
that the altitude of a geostationary orbit is approximately 36000km above the Earth
Equator (for comparison purposes, recall that the mean Earth radius is estimated
as 6371km). Weather satellites (e.g., Meteosat Second Generation, MSG) are most
often geostationary.

In the case of a near polar orbit, the angle between the orbital plane and the
plane of the Equator is slightly larger than 90◦ (approximately 95–100◦). Altitude is
generally 400–1000 km—a range that is included within the broader family of low
Earth orbits (LEO) [180]. Owing to the combination of the motion of the satellite
around the Earth and of the rotation of the Earth itself on its axis, a sensor on-board a
near polar satellite (near polar sensor) collects data over almost all the Earth surface.
The projection of the satellite path on the Earth surface is usually named satellite
ground track.

A special—and very often used—case of near polar orbit is the Sun-synchronous
orbit (also known as heliosynchronous orbit). In this case, the angle between the
orbital plane and the segment joining the centers of the Earth and the Sun is nearly
constant in time [180]. Therefore, a sensor on-board a Sun-synchronous satellite
(Sun-synchronous sensor) observes a given ground area at approximately the same
time of the day on each consecutive overpass. This contributes to minimizing the
differences in Sun illumination conditions across different observation times, an
important property for the passive sensors that will be recalled in the next section.
Examples of processing results using satellite images will be shown in almost all the
chapters of the book.

1.2.3 Acquisition of Remote Sensing Images

Remote sensors for EO applications can be broadly categorized into two classes, i.e.,
passive sensors and active sensors. The latter transmit a signal toward the considered
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surface and receive the resulting “echo” return. The former do not transmit any signal
and directly receive the radiation incoming from the considered surface.

1.2.3.1 Passive Sensors for EO

A passive sensor receives the electromagnetic radiation that comes from the
considered portion of the Earth surface either because it originates from the
reflection of incident solar radiation or because it is spontaneously emitted by
the surface itself.

Details on passive sensors and on the physical meaning of the quantities they collect
can be found in Chaps. 2 and 3 and in textbooks such as [29, 167, 180]. Here, we
only recall that the physical quantity measured by a passive EO sensor is the spectral
radiance (or specific intensity). It is a radiometric quantity that characterizes the
distribution of radiation in space, it represents the power per unit wavelength that
travels in a unitary solid angle centered on a given direction through a unitary surface,
and it is measured in [W · m−2 · sr−1 · µm−1] [180, 194].

In the case of radiation in the visible portion of the electromagnetic spectrum
(i.e., with wavelength between approximately 0.4 and 0.7µm), in the near infrared
range (NIR, 0.7–1.1µm), and in the short-wave infrared range (SWIR, 1.1–1.35µm,
1.4–1.8µm, and 2–2.5µm), spontaneous thermal emission from the Earth surface
is negligible as compared to reflected solar radiation. Therefore, the spectral radi-
ance received by a passive sensor operating in these ranges depends on the reflective
properties of the observed surface, i.e., the reflectance [adimensional] and the bidi-
rectional reflectance distribution function [sr−1] that will be discussed in detail in
Chap.3 [105, 180].

Vice versa, in the case of radiation in the thermal infrared (TIR, also known as
long-wave infrared, LWIR) portion of the spectrum (i.e., approximately 8–9.5µm
and 10–14µm), reflected solar radiation is negligible as compared to Earth thermal
emission [103, 180]. Therefore, the received radiance depends on the properties of
the observed surface that characterize its capability to spontaneously emit radiation:
Because of the well-known Planck’s law, these quantities include the surface tem-
perature [K] and emittance [adimensional] [105, 180]. In the intermediate case of
mid-wave infrared radiation (MWIR, i.e., around 3–4µm and 4.5–5µm), reflection-
based and emission-based contributions are comparable, and their reciprocal weights
generally depend on all the aforementioned surface properties.

In all such cases, the spectral radiance that reaches the sensor first has to propagate
through the portion of the atmosphere that is in between the surface and the sensor
itself. In the case of reflected solar radiation, propagation through the atmosphere
occurs twice, first downward from the direction of the Sun along the path from the

http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_3
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top of the atmosphere to the surface and then upward from the surface to the sen-
sor. Propagation through the atmosphere, which is composed of a large number of
particles, affects a spectral radiance field due to (i) the thermal emission of radiation
by the atmosphere itself and (ii) the extinction of the propagated radiance field due
to absorption (i.e., conversion of part of the energy associated with the radiation to
heat) and to scattering from one propagation direction to another (i.e., redistribu-
tion of the energy associated with the radiation through different directions) [194].
These phenomena are quantitatively well described by the so-called radiative trans-
fer equation, which is an integro-differential equation that can be explained in terms
of conservation of energy [194] and of scattering in random media [143]. The solu-
tion is generally a complex problem for which specific numerical techniques have
been developed [143, 188, 194].

A passive EO sensor is most often designed to be multispectral, i.e., it collects
data simultaneously from multiple wavelength ranges, named bands or chan-
nels [105]. In particular, one speaks of a hyperspectral sensor if a large number
(usually hundreds) of channels with narrow bandwidths are collected [129].
Vice versa, a sensor designed to acquire only one channel, which usually
encompasses the whole visible (and possibly NIR) range, is named panchro-
matic [6].

Multispectral acquisition can be accomplished using prisms and optical filters,
which split the incoming radiance into different wavelength ranges, or using sepa-
rate cameras that operate in distinct wavelength ranges directly [180]. Figures1.1
and 1.2 show a multispectral image acquired in 2004 by the IKONOS sensor over
Metaponto, Italy, and several channels of a hyperspectral image collected on August
23, 1995, by the airborne HYDICE sensor over Washington DC, USA.1 The former
is composed of four channels, approximately corresponding to the blue, green, red,
and NIR wavelength ranges. Examples of color composites, in which the R, G, and
B components of a displayed color image [203] are associated with three of the
available channels of the multispectral remote sensing images, are also shown in
Fig. 1.1e, f. The hyperspectral image of Fig. 1.2 is composed of 210 channels across
the visible, NIR, and SWIR ranges. One can note the strong impact of atmospheric
extinction [194] in certain wavelength ranges. More generally, it is worth noting
that, because of the aforementioned physical processes that lead to image formation,
data collected by passive sensors are obviously affected by atmospheric (e.g., cloud
cover) and Sun-illumination conditions.

1This hyperspectral image can be downloaded from the Purdue University Web site at https://
engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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(a) Blue (b) Green (c) Red

(d) NIR (e) True color composite (f) False color composite

Fig. 1.1 Example of amultispectral image acquired by the passive IKONOSsensor overMetaponto,
Italy (1250 × 1250 pixels): spectral channels corresponding to blue (a), green (b), red (c), and NIR
radiation (d); the true color composite (e), in which the R, G, and B components of the displayed
image are associated with the red, green, and blue channels of the multispectral image, respectively;
and a false color composite (f), in which the R, G, and B components of the displayed image are
associated with the NIR, red, and green channels of the multispectral image, respectively

1.2.3.2 Active Radar Sensors for EO

An active sensor transmits an electromagnetic pulse toward the considered
portion of the Earth surface and receives the resulting “echo” signal. For the
purpose of 2D remote sensing image acquisition, microwave signals are typi-
cally used, and the imaging system is based on a radar (RAdio Detection And
Ranging) instrument [168, 199, 209].

A laser source can also be used for active remote sensing in a LiDAR (LightDetection
And Ranging) instrument, also known as airborne laser scanning (ALS) or LaDAR
(Laser Detection And Ranging) [68]. LiDAR is a most prominent technology for
3D mapping through remote sensing. As this book is focused on 2D remote sensing
image analysis, LiDAR will not be discussed any further.
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Fig. 1.2 Example of channels from a hyperspectral image taken by the airborne HYDICE sensor
over Washington DC, USA (307 × 1280 pixels, 210 bands in the 0.4–2.4µm wavelength range—
visible, NIR, and SWIR). Very dark bands are obtained in wavelength ranges in which severe
atmospheric extinction occurs

A detailed discussion of radar systems for remote sensing image acquisition can
be found in Chap.4. Here, we recall that a radar imager for EO periodically emits a
short-duration microwave pulse that is irradiated by a directive antenna as an electro-
magnetic wave in space [12]. Part of the irradiated energy hits the considered surface
that re-irradiates it in multiple directions, a phenomenon known as scattering [194].
The portion of the re-irradiated signal that is backscattered in the direction of the
antenna is received by the antenna itself. In the application of radar to positioning, the
backscattered signal can be used for detecting the presence of a given target object

http://dx.doi.org/10.1007/978-3-319-66330-2_4
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(e.g., an aircraft), for measuring the distance of this target through the time taken by
the pulse to reach the target and get back to the antenna and for estimating the speed
of the target through the Doppler effect [199].

In the case of remote sensing image acquisition, the antenna is put on-board an
airborne or spaceborne platform, and the goal is to use the backscattered signal
to measure electromagnetic properties of the considered portion of the Earth sur-
face in the microwave range. In the basic configuration of a single-frequency and
single-polarization radar system for EO, the main property that is measured is the
backscattering coefficient [adimensional], which is related to the average power of
the return signal (see [199] and Chap.4). It is affected by numerous factors, including
the roughness of the surface, its moisture content if it is a soil area, the presence on
the surface of 3D structures (e.g., buildings), the carrier frequency of the microwave
pulse, and the radar polarization. Polarization properties will be discussed in Chap. 5.

Regarding the carrier frequency and the corresponding wavelength, we recall
that, in general, the word “microwave” broadly refers to electromagnetic waves with
frequency between 1 and 100 GHz, although precise definitions may vary [168].
Specifically using the IEEE Std 521 standard for radar frequency bands [1], we can
mention the L-band (i.e., 1–2GHz of carrier frequency or equivalently 15–30 cm
of wavelength), the C-band (i.e., 4–8 GHz or 3.75–7.5cm), and the X-band (i.e.,
8–12GHz or 2.5–3.75cm) among the most common ranges for radar EO.

The pulse signal used by a radar for EOexhibits a narrowband spectrum in a neigh-
borhood of the carrier frequency and is most usually a linearly frequency-modulated
signal known as chirp [168]. This choice, together with appropriate filtering of the
return signal, makes it possible to achieve high spatial resolution along the looking
direction of the radar (named the range direction) [199].

The synthetic aperture radar (SAR) technique makes use of the motion of the
platform along its path to simulate a long antenna, which, in turn, makes it
possible to achieve high spatial resolution along the flight direction (named
the azimuth direction) from both airborne and spaceborne platforms [66, 135,
199].

Details on SAR processing and its implications can be found in Chap. 4. Four
examples of SAR images are shown in Fig. 1.3. Images acquired by the C-band
Sentinel-1A sensor over Marseille, France, on April 14, 2017, by the C-band
RADARSAT-2 sensor over Port-au-Prince, Haiti, on December 8, 2011, by the X-
bandCOSMO-SkyMedmission over the aforementioned area ofMetaponto, Italy, on
March 3, 2011, and by the L-band PALSAR-2 sensor on-board the ALOS-2 satellite
over Panama on September 1, 2015 are shown in Fig. 1.3a, b, c, and d, respectively.

It is worth noting that a radar system for EO operates regardless of Sun illumi-
nation, because it makes use of its own source of transmitted energy, and that the
resulting data are almost insensitive to cloud cover and atmospheric conditions [168].
Therefore, unlike passive instruments, radar sensors for EO provide day-and-night

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_4
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Fig. 1.3 Examples of SAR images: a Sentinel-1A image acquired over Marseille, France (2100 ×
2400 pixels; ©ESA); b RADARSAT-2 image acquired over Port-au-Prince, Haiti (1536 × 781
pixels; ©MDA); c COSMO-SkyMed (COnstellation of small Satellites for Mediterranean basin
Observation) image acquired over the same area of Fig. 1.1 shortly after a flood (2000 × 2000
pixels; ©ASI); d PALSAR-2 (Phased Array type L-band Synthetic Aperture Radar 2, on-board the
Advanced Land Observing Satellite 2, ALOS-2) image of a vegetated area and of Lake Bayano in
Panama (9228 × 3471 pixels; ©JAXA, distributed by Pasco Corporation)

and all-weather acquisition capability. Indeed, the complementarity between the
properties of passive multispectral and active radar imagery will be discussed in
more detail in Chap.7.

In addition to the basic single-frequency and single-polarization mode, other
configurations of radar EO also exist. Polarimetric SAR (PolSAR), which will be
discussed in Chap. 5, collects (usually complex-valued) measurements associated
with multiple polarizations simultaneously [41, 111]. Interferometric SAR (InSAR),
which will be analyzed in Chap.4, exploits measurements of the phase of the radar
return (and not only of its power) to extract 3D information on the observed sur-
face [66]. Differential InSAR (DInSAR) further extends InSAR to map slow move-
ments of the surface (e.g., due to seismic phenomena) [135]. SAR tomography uses
measurements taken from different altitudes (e.g., different orbits) to characterize
the vertical structures of the targets [168].Multifrequency SAR uses multiple anten-
nas on-board the same platform to collect data at multiple carrier frequencies [85].

http://dx.doi.org/10.1007/978-3-319-66330-2_7
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_4
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Bistatic SAR uses distinct antennas for transmittance and reception to investigate the
scattering behavior in multiple directions [199].

1.2.4 The Notions of Resolution

Theword “resolution” has alreadybeenused a couple of times in the previous sections
and intuitively refers to the precision with which a given instrument captures details
on the observed surface.More precisely, the specificmeaning of “resolution” depends
on the domain it is referred to.

First, spatial resolution is the size of the smallest spatial detail that can be dis-
tinguished in a remote sensing image [169]. It is obviously related to the size of the
ground area associated with a pixel, although it can be—and generally is—at least
slightly coarser than this size because of blurring effects within the acquisition chain.
In the case of a passive sensor, the spatial resolution depends on the sensor optics and
on the altitude of the platform [180]. In the case of a SAR instrument, it is possible to
prove that the spatial resolution resulting from chirp processing, and SAR technology
is independent on the platform altitude [168, 199]. The spatial resolutions of current
satellite sensors for civil applications are approximately a few kilometers in the case
of geostationary sensors (e.g., 3 km for the TIR bands of the SEVIRI sensor on-board
MSG [178]), a few tens of meters in the case of moderate resolution sensors (e.g., the
Landsat series of satellite missions [120]), and up to 30cm–1mwith recent very high
resolution (VHR) near polar sensors (e.g., WorldView-2 and -3 [148], Pléiades [22],
COSMO-SkyMed [205], and TerraSAR-X [213]; see Chaps. 3 and 4). Spatial reso-
lutions up to a few centimeters can usually be obtained using airborne acquisitions.
For example, Fig. 1.4 displays portions of six remote sensing images with the same
size in pixels (400 × 400 pixels) and with very different spatial resolutions (3km,
500m, 30m, 10m, 2m, and 5cm). The difference in the spatial details that can be
appreciated in these images is visually evident.

The temporal resolution of a spaceborne sensor is the frequency with which a
given ground area is repetitively observed. It is generally expressed in terms of
the revisit time, i.e., the time between two consecutive satellite overpasses [169].
Typical values range from a few tens of minutes for geostationary sensors (e.g.,
approximately 15 min for MSG [178]) to a few days or weeks for near polar sensors
(e.g., one day for theModerate Resolution Imaging Spectroradiometer,MODIS [95],
and 16 days for Landsat-8 [120]; see also Chap.9). The use of multiple satellites in
a constellation favors shorter revisit time (e.g., up to 12 hours for the COSMO-
SkyMed constellation composed of four satellites [205]). It is also worth noting that
current near polar sensors often exhibit a pointing functionality, i.e., their observation
directions can be steered upon agreement with the agency or company in charge of
mission operations. This allowsmore frequent observations to be obtained on a given
area but could sometimes make revisit times no more periodical and less predictable.

http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_9
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(a) 3 km (b) 500 m (c) 30 m

(d) 10 m (e) 2 m (f) 5 cm

Fig. 1.4 Color composites of channels from six multispectral images of size equal to 400 × 400
pixels: a MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) image of South Africa
(©ESA); b Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) image of the south
coast of France (Occitanie and Provence-Alpes-Cote d’Azur regions; ©ESA); c Landsat-8 Oper-
ational Land Imager (OLI) image of Nice, France (©USGS); d Sentinel-2 image of Genoa, Italy
(©ESA); and e Pléiades image of Venice, Italy (©CNES distribution Airbus DS); and f image
collected by an airborne sensor over Zeebruges, Belgium ([grss_dfc_2015] data set [2]). The spatial
resolution is indicated below each image

The spectral resolution is associated with passive multispectral sensors and is the
precision with which the incoming radiation is sampled along the electromagnetic
spectrum. It is usually expressed in terms of the number of channels of the sensor
and of the widths of the corresponding wavelength ranges. Current sensors for civil
applications range from a few bands of moderate width (70–100nm each) to the
case of hyperspectral sensors with a few hundreds narrow bands (2–10nm each; see
Fig. 1.2 and Chap.2). For reasons associated with signal-to-noise ratio, a trade-off
usually exists between the spectral and the spatial resolutions of a given passive
sensor [105]. Therefore, several current satellite passive systems carry both a mul-
tispectral sensor, with several bands in the visible and NIR range, and an additional
panchromatic sensor, which has obviously poorer spectral resolution but achieves
finer spatial resolution than the multispectral bands [105, 148] (see also Chaps. 6
and 7). For example, Fig. 1.5 shows the panchromatic band at 1-m spatial resolution
and a color composite of three spectral channels at 4-m spatial resolution collected
simultaneously by IKONOS over Alessandria, Italy.

http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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Fig. 1.5 Portion of an IKONOS image collected over Alessandria, Italy: a panchromatic channel
at 1-m spatial resolution; b color composite of the red, green, and blue multispectral channels at
4-m spatial resolution

Finally, radiometric resolution is related to the precisionwithwhich differences in
the considered physical quantities can be appreciated and measured in the recorded
image [169]. It is related to the signal-to-noise ratio of the sensor [105] and to the
digitization process that is included in the acquisition chain. The intensity of a pixel
in a digital image (or in each band of a multispectral digital image) is encoded with
a finite number of bits, which correspond to a finite number of levels in a predefined
discrete set (named quantization levels in the signal processing literature and often
digital numbers in the remote sensing literature). The radiometric resolution of a
sensor is generally expressed in terms of the number of bits that are used to encode
each quantized intensity and are associated with each pixel (number of bits per pixel,
bpp, sometimes also named bit depth). Typical values range from 8 bpp (256 levels)
to 12 bpp (4096 levels) and 16 bpp (65536 levels).
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1.3 Mathematical Modeling for Remote Sensing Image
Analysis

1.3.1 General Comments

The main functional stages of a general system for the interpretation of remote
sensing imagery can be described by the block diagram in Fig. 1.6 [105, 118]. After
the acquisition phase, whose main ideas were recalled in the previous sections, pre-
processing operations are generally necessary before the data are used to extract
thematic, biophysical, or geophysical information. They may include calibration,
registration, as well as radiometric and geometric correction. Georeferencing (also
known as geocoding) is also necessary to relate the pixel coordinates in an image
to geographical coordinates in a cartographic system. Overviews of remote sensing
image pre-processing are reported in [34, 129, 151, 169], and a comprehensive
treatment of registration methodologies can be found in [109]. Calibration aspects
associated with multispectral sensors will also be discussed in Chap. 3.

The resulting pre-processed imagery can be fed to the analysis stage, which aims
at extracting, from the image data, the information of interest to a given end user.
This information typically consists of a set of maps or of further transformed images
associated with the considered geographical area. The meaning of this output varies
substantially as a function of the objective of the analysis task and of the type of
input imagery. Customary examples include but are not restricted to the following
cases:

• In an output classificationmap, each pixel is assigned to one of a finite number of
classes corresponding, for example, to land-cover or land-use categories [18, 34,
50, 128] (see Chaps. 2 and 10).

• In the case of an output regressionmap, the input imagery is used to retrieve indirect
measures of biophysical or geophysical parameters of the observed portion of the
Earth surface (e.g., land surface temperature, chlorophyll concentration in sea
water, or wind speed over ocean areas) [4, 103] (see Chap.10).

• In the case of a segmentation map, the input image is partitioned into a finite set
of homogeneous, often connected, regions (also named segments or superpixels)
[39, 50];

Fig. 1.6 Block diagram of a generic system for the interpretation of remote sensing imagery

http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_10
http://dx.doi.org/10.1007/978-3-319-66330-2_10
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• In an object detection (possibly target detection) result, the presence and locations
of specific objects or structures in the imaged scene are determined [44, 53, 129,
162, 184].

• If input images taken at different times are available, a change detection result char-
acterizes whether and how the ground area related to each pixel has changed [13,
34, 104] (see Chaps. 8 and 9).

• If input hyperspectral imagery is used, unmixing results, in which the observed
spectral behaviors are decomposed into a collection of “pure” components, can be
derived as well [162] (see Chap. 2).

• If the input imagery originates from multiple data sources, the output is often
intended as a data fusion result [3, 169] (see Chaps. 6 and 7).

• If an entire database of input images is available, then data mining results, which
generally aim at discovering knowledge in the database, can be considered [112]
(see Chaps. 3 and 9).

Although both the pre-processing and the analysis stages are usually meant to be
as automatic as possible, human interaction can generally be involved, for example,
to incorporate prior knowledge about the considered area into the processing chain.

The necessary methodological basis for developing effective and computa-
tionally efficient solutions to problems of 2D remote sensing image analysis
derives from pattern recognition,machine learning, and image processing [31,
38, 105]. These disciplines are rooted in or related to numerous areas of applied
mathematics including probability theory, statistics, random process theory,
graph theory, functional analysis, numerical analysis, operations research, and
information theory.

With regard to terminology, pattern recognition and machine learning, although
they derived from different fields—i.e., signal processing and computer science,
respectively—can essentially be considered as two facets of the same scientific dis-
cipline [21]. For the fundamentals of pattern recognition and image processing, we
refer the reader to well-known textbooks such as [21, 69, 90, 160, 203]. Neverthe-
less, in all chapters of the present book, not only advanced mathematical models and
methods based on these disciplines will be presented but also basic concepts will be
reviewed.

In the next subsections, major families of mathematical models and methods,
which are prominent for 2D remote sensing image analysis and are rooted in pattern
recognition and image processing, are recalled. Computational techniques and case
studies based on these families of methods will appear in all other chapters of the
book.

http://dx.doi.org/10.1007/978-3-319-66330-2_8
http://dx.doi.org/10.1007/978-3-319-66330-2_9
http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_7
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_9
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1.3.2 Mathematical Models for Image Data Representation

While classical statistical pattern recognition methods often work under the assump-
tion of independent and identically distributed (i.i.d.) samples [21, 69], the analysis
of remote sensing images normally requires models that can represent dependen-
cies among the data. For example, relationships in the spatial domain are of pri-
mary importance, especially when VHR data are concerned, because of the strong
correlation among neighboring pixels, the presence of textures, or the dependen-
cies among regions and objects in the scene [50]. Furthermore, in a remote sensing
image, each pixel is most often associated with a vector of pixel intensities, because
multiple measurements are simultaneously collected by multispectral and polari-
metric SAR sensors and because additional features can also be computed from the
measured data. Therefore, multivariate dependency models for data in multidimen-
sional vector spaces, possibly even supporting the case of high dimensionality (e.g.,
with hyperspectral images), are necessary [31, 105]. Image representation methods
are also required for data mining purposes and to move from statistical to more
semantic-oriented descriptions of the content of an image [112]. Within this frame-
work, mathematical models and methods that provide effective tools for image data
representation are especially relevant.

A major family of methods for data representation is based on graph the-
ory [55]. A graph is a natural model for a set of dependent entities, which are
identified with the vertices (or nodes) of the graph and are linked with edges as
a function of the dependency structure to be described. A special case, which is
involved in numerous remote sensing image analysis techniques, occurs when
the graph is a tree. In this case, the graphical model intrinsically describes hier-
archical relationships from the root to the leaves of the tree. The meaning of
the nodes and edges of a graphical model vary according to the kind of depen-
dencies that are being represented (spatial, multiscale, semantic, etc.). Special
cases of image data representationmodels that are generally based on or related
to graphs include probabilistic graphical models (see next Section) [99], multi-
scalewavelet decompositions [127], tree models associated withmathematical
morphology [93, 185], and manifold learning approaches [125].

For instance, the nodes may be pixels, regularly or arbitrarily shaped regions,
objects, etc., and the edges may indicate spatial neighborhood relationships, tempo-
ral correlations, multiscale dependencies, semantic interconnections, etc. Graphical
models have been applied in numerous remote sensing data analysis methods to char-
acterize spatial, region-based, temporal, multiscale, or multiresolution information
among others [5, 49, 74, 84, 122, 197] (see also Chaps. 2, 3, 4, 6, and 7). Further
generalizations that make use of hypergraphs, in which edges are replaced by sub-
sets of more than two vertices to capture more general relationships, have also been
considered [92].

http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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In particular, hierarchical tree-based image representations are naturally obtained
when multiscale image transforms are applied. Rooted in harmonic analysis [171],
wavelets allow transformed images that capture information at different spatial scales
to be computed and multiscale image representations to be constructed. They orig-
inate from the theory of multiresolution signal decompositions of continuous-time
signals in the L2 space [126] and generalize the Fourier transform by mapping to
a transformed domain in which temporal localization and scale-dependent behav-
iors are studied [141]. In the discrete case of digital images, they are formalized
through the combination of appropriate low-pass and high-pass filters and down-
sampling operations on the pixel lattice, which result in a tree representation of the
input image (see also Chaps. 7 and 8) [127]. Many approaches that use these hier-
archical representations for image processing, analysis, and fusion tasks have been
proposed in the remote sensing literature [6, 9, 27, 84, 109, 211]. Analogously, time-
frequency analysis provides linear operators that allow analyzing a continuous-time
signal simultaneously in the time and frequency domains [127, 141]. The short-time
Fourier transform, the Gabor transform, and the Wigner distribution function are
major examples and have been applied in remote sensing as well [59, 70, 114] (see
also Chap.5).

Furthermore, tree representations can also be related to mathematical morphol-
ogy [183]. In this framework, which generalizes Minkowski’s set theory, a powerful
set of nonlinear operators (named morphological operators), which favor sensitivity
to shape and size properties and contribute to characterizing objects in the imaged
scene, is introduced. They include erosion, dilation, opening and closing operators,
geodesic transformations, and operators by reconstruction among others [183, 185].
They can also be formulated so that they provide a multiscale decomposition of
the imaged scene in terms of morphological profiles (see Chaps. 6 and 7) [159]. A
recent generalization is also given by attribute filters, whose result depends on the
evaluation of a predicate on connected image components, and which provide multi-
scale representation capability (attribute profiles) [18, 163, 185] in association with
component trees and trees of shapes (see Chaps. 3 and 7) [35, 76, 93].

Image representationmethods based onmanifold learning are also especially rele-
vant for high-dimensional data [125]. In the language of topology, anm-dimensional
manifold is a subset of a topological space that is locally homeomorphic to an open
subset of an m-dimensional Euclidean space [110]. Classical examples are simple
regular curves and surfaces in a 3D space. In the case of a remote sensing image
composed of a large number n of bands, the n-dimensional data samples most typ-
ically belong, up to noise, to some lower-dimensional subset that can be identified
with an m-dimensional manifold (m < n). For example, in the case of a hyperspec-
tral image, an explanation is that in general, the relationships among the bands are
highly nonlinear because of the complex interactions among the spectral radiance
field, the Earth surface, and the atmosphere [163]. Manifold learning methods for
remote sensing image analysis aim at capturing themanifold structure by nonlinearly
projecting the high-dimensional data to a lower-dimensional space in such a way to
preserve the local topology [11]. A graph such that the nodes are the data points
and the edges are based on local distances (e.g., through the k nearest neighbors

http://dx.doi.org/10.1007/978-3-319-66330-2_7
http://dx.doi.org/10.1007/978-3-319-66330-2_8
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_7
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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algorithm) is typically used as a discrete sampling of the manifold. Then, spectral
graph theory, which characterizes the properties of a graph in terms of suitablematri-
ces and of their eigenvalues and eigenvectors, can be used to capture the embedding
of the manifold into the n-dimensional space (see Chap.10) [121, 125, 195].

We also recall important approaches to data representation based on sparse
models and compressive sensing (or compressed sensing). The key idea is that
most signals actually exhibit a substantial degree of redundancy, or equiva-
lently, they can be mapped to some transformed domain in which they are
sparse. Sparse models and methods aim at representing data as sparse linear
combinations of elements (named atoms) drawn from a finite overcomplete
dictionary [158].

From a signal processing perspective, the redundancy property is intuitively con-
sistent with common properties (extensively used for compression purposes) of
audio, image, and video signals and of Fourier-like and wavelet transforms [127,
160]. More precisely, it has been proven that given suitable knowledge of the sparsity
of a signal, substantially fewer samples than those implied by the Nyquist-Shannon
sampling theorem can actually be enough to reconstruct the signal itself [33, 56]. In
the specific case of remote sensing images, redundancy is intrinsically favored by
the aforementioned high resolutions in the spatial and/or spectral domains. Sparse
and compressive sensing models have been found useful in remote sensing image
analysis problems with multispectral [6, 72, 119], SAR [9, 212], and especially
hyperspectral data [20, 147, 196]. Comments on their computational aspects are
reported in Sect. 1.3.5 and in Chap.9.

1.3.3 Probabilistic Modeling and Bayesian Methods
to Learn from Image Data

As mentioned in Sect. 1.2.1, it is customary to think of a remote sensing image as
a realization of a 2D random field. From a modeling perspective, this is consistent
with the approach used in many (1D, 2D, and nD) fields of signal processing. More
specifically, remote sensing data should be considered as intrinsically characterized
by measurement uncertainty. For instance, the spectral radiance measured by a pas-
sive sensor is affected by the state of the observed surface, the individual objects
included in the ground region corresponding to each pixel, the atmospheric effects,
and the instrumentation noise. All such contributions cannot be characterized deter-
ministically and require stochastic modeling. Similar comments obviously hold with
regard to SAR imagery as well [65].

http://dx.doi.org/10.1007/978-3-319-66330-2_10
http://dx.doi.org/10.1007/978-3-319-66330-2_9
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Many approaches to remote sensing image analysis are formulated in terms
of probabilistic modeling through stochastic processes [100]. From this per-
spective, a natural class of mathematical techniques to formalize learning and
recognition tasks includes Bayesian methods, ranging from the well-known
decision theory [200] to more recent approaches such as Gaussian process
regression [166] and marked point processes [54], and often involving proba-
bility density estimation [21] problems and estimation theory concepts [200].

A consolidated approach in statistical pattern recognition, Bayesian learning is
rooted in statistics and probability theory and is at the basis of numerous methods of
image classification [105, 151], change detection [28, 79], target and anomaly detec-
tion [136, 147], unmixing [20], data fusion [79, 186], and bio/geophysical parameter
regression [32] (see Chaps. 4, 5, 7, 9, and 10). In particular, the Bayesian decision
theory is a general-purpose mathematical model to formalize decision problems in
a probabilistic framework; classification and detection problems are stated as spe-
cial cases of decision. The well-known maximum a-posteriori (MAP), maximum
likelihood (ML), minimum risk, minimax, Neyman-Pearson, and marginal posterior
mode (MPM) rules are formalized within this theory and are endowed with remark-
able properties of optimality (e.g., MAP and MPM minimize suitable probabilistic
functionals related to the classification errors, given a model for the data statistics;
see also Chap.7) [132, 200].

Indeed, the probabilistic standpoint used by the Bayesian approach implies that
data distribution is assumed to be perfectly known. In the application to image analy-
sis, it is usually not and has to be estimated from the available image data [105]. This
issue relates Bayesian approaches to estimation theory meant as the class of mathe-
matical methods for estimating the parameters of a given family of distributions from
a set of samples [200] and more generally to probability density estimation [21, 69].
Specifically, when a parametric model (e.g., Gaussian, Gamma, Fisher, or Gaussian
mixture) is postulated for the unknown distribution of a random vector, the estima-
tion theory provides both theoretical bounds on the estimation performances (e.g.,
the Cramér-Rao bound) and computational parameter estimation algorithms. The
well-knownML, MAP, minimummean square error, method of moments [200], and
expectation-maximization (EM) [52] approaches have been applied, along with sev-
eral extensions (e.g., the stochastic EM [36]), within numerous processing and analy-
sis techniques for multispectral, hyperspectral, and SAR data (see also Chaps. 7 and
9) [9, 23, 51, 67, 72, 105, 115, 182, 193, 202]. The method of log-cumulants, which
extends the well-known method of moments by using Mellin transforms (instead of
the usual Laplace transforms) to define a new kind of moment generating functions,
has even been initially developed for parameter estimation tasks in the SAR field
(see Chaps. 4, 5, and 7) [8, 101, 149, 198].

When a nonparametric density estimation method is used, no prescribed model
is assumed for the unknown distribution, and a density estimate is computed using
the available samples directly. Well-known approaches include the Parzen window

http://dx.doi.org/10.1007/978-3-319-66330-2_4
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http://dx.doi.org/10.1007/978-3-319-66330-2_9
http://dx.doi.org/10.1007/978-3-319-66330-2_10
http://dx.doi.org/10.1007/978-3-319-66330-2_7
http://dx.doi.org/10.1007/978-3-319-66330-2_7
http://dx.doi.org/10.1007/978-3-319-66330-2_9
http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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algorithm [21], the k nearest neighbors method [69], and truncated orthogonal poly-
nomial expansions (e.g., the Gram-Charlier and Edgeworth expansions [97]). While
they generally enhance modeling flexibility as compared to parametric models, they
are also more prone to overfitting and may include, in turn, additional internal para-
meters (sometimes named hyperparameters) to be optimized as well. Nonparametric
density estimators have been used in remote sensing not only for classification [49]
or change detection [23] but also in conjunction with information-theoretic function-
als [3, 89].

In general terms, information theory is a well-known mathematical formalization
for source and channel coding in communication systems and allows the information
conveyed by a given random source to be quantitatively measured on a probabilistic
basis [10].Methodological results from information theory, which have been used for
remote sensing data modeling and mining [3, 37, 89, 139], also allow quantifying
the distance between probability distributions as well as the mutual information,
the dependency, and the complexity associated with multiple random sources (see
Chaps. 8 and 9) [10].

Among the Bayesian nonparametric methods, Gaussian process regression has
recently been found attractive in various applications to biophysical and geophysical
parameter retrieval [32, 156]. This approach models the relationship between the
quantity to be estimated and the input data as a multidimensional Gaussian stochas-
tic process [166] whose autocovariance function can be defined to incorporate the
desired spatial, spatiotemporal, or stationarity behavior [32]. Regression is formu-
lated according to a Bayesian MAP criterion, while estimation-theory methods are
applied to determine the hyperparameters of the method (see Chap.10).

Theuse ofBayesian formulations togetherwith graphmodels for imagedata repre-
sentation leads to probabilistic graphical models [99]. In this framework, Bayesian
rules are formalized in accordance with the graph topology and generally in con-
junction with suitable Markovianity assumptions. The resulting models have proven
powerful and flexible for characterizing spatial, spatiotemporal, multiresolution, and
multisensor information [86, 113, 115, 144, 175, 177, 186, 198].Major examples are
represented by Markov random fields (MRF) and conditional random fields (CRF).
An MRF characterizes, in terms of local relationships, the prior information associ-
atedwith the latent (or hidden) randomfield to be estimated (e.g., the field of the class
memberships of the pixels in a classification problem; see also Chaps. 4 and 7) [73,
96, 116, 132]. In the case of a CRF,Markovianity is assumed for the posterior distrib-
ution directly [190]. In both cases, Bayesian rules are expressed as the minimization
of suitable energy functions. Other examples include pairwise and triplet Markov
models, which are especially useful to characterize non-stationary image behav-
iors [161], and Bayesian networks (or belief networks), which make use of directed
acyclic graphs to relate a set of random variables [48]. From a machine learning
perspective, these models fall under the family of structured output learning, which
includes techniques whose output is composed ofmutually dependent samples [150].
From amathematical viewpoint, they are at the crossroad among inferential statistics,
graph theory, and combinatorial optimization (see also Sect. 1.3.5).
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Finally, an even more general family of probabilistic models for complex spa-
tial relationships is given by marked point processes. Originated from stochastic
geometry, they are advanced and mathematically elegant models for populations of
objects that can be randomly distributed across the imaged scene [54]. They have
been found especially effective for the simultaneous detection of multiple objects
(e.g., trees, cars, buildings, or boats) in VHR optical images [17, 44, 53, 152, 192].
In a marked point process model, a 2D Poisson process, which is meant to localize
the objects in the image, is augmented with further random variables that parameter-
ize geometrical properties of the objects [54]. Similar to the cases of MRF and CRF,
methods based on marked point processes generally use Bayesian minimum-energy
rules. However, unlike a probabilistic graphical model, a marked point process is
not attached to a prescribed graph—a remarkable property when it is necessary to
capture irregular and complex arrangements of objects whose number is originally
unknown.

1.3.4 Non-Bayesian Methods for Learning from Image Data

Besides the approaches recalled in the previous section, image interpretation prob-
lems involving remote sensing data can also be formalized and successfully addressed
by resorting to other families of methods, which do not make use of Bayesian for-
mulations and sometimes do not even explicitly involve any probabilistic model for
the data [21]. On the contrary, they build on top of concepts drawn from other areas
of applied mathematics, such as Hilbert space theory, functional approximations, or
set and logic theory. Among the main families of non-Bayesian learning methods,
we recall the neural, kernel, tree, and fuzzy approaches.

Initially inspired by biological modeling, neural networks have evolved into a vast
and powerful class of methods for classification and regression [21, 58]. They have
recently become particularly prominent because of the outstanding performances
provided by deep neural networks [80, 107] in computer vision applications.

Artificial neural networks are characterized by (oftenmassively) parallel archi-
tectures, which ensure adaptivity and nonparametric learning capability. The
input–output relationship of the network is determined by a cascade of inter-
connected layers, each composed of a finite set of parallel nonlinear processing
units named neurons [58]. This relationship can be used as a nonparametric
functional approximator of a generic function and of a posterior probability
distribution in the cases of regression and classification, respectively.

The architecture of a neural network can be related again to a graphical model,
in which the number of layers is a measure of the “depth” of the network. Optimal
values for the parameters that determine the input–output relationship are learned
on the basis of input data (see also Sect. 1.3.5). From a mathematical viewpoint, it
has been proven that, under mild assumptions, the subspace of the neural functional
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approximators is dense in the Banach space of continuous functions on a compact
set, i.e., neural networks can approximate arbitrary continuous functions uniformly
on compact sets—a statement often named universal approximation property [47].
Similar results and bounds also hold in other metric spaces (e.g., L p) [15]. Major
examples, which differ in the network topology and learning processes and which
have been applied to remote sensing image analysis [7, 43, 64, 154, 204], include the
multilayer perceptron, radial basis function, Kohonen self-organizingmaps, adaptive
resonance theory, Hopfield, Boltzmann machine, associative memory, and recurrent
networks among others [58].

While shallow networks, which are composed of only a few layers, were mostly
used for some decades, deep networks, which include many layers in cascade, have
lately been attracting strong attention in the learning and recognition community and
in remote sensing aswell [80, 107]. The intuitive rationale is that, across the numerous
layers, the network generates representations of the input data at progressively more
and more abstract levels, which are not only customized to a specific processing task
but are also directly learned from a large data set. Although these concepts have been
known methodologically since the 1980s and 1990s, they became prominent when
high-performance computing architectures (e.g., graphical processing units) [162]
made it possible to operate with large networks and millions of input data sam-
ples in affordable times [107]. The resulting deep learning architectures turned out
to be effective at capturing intricate structures in possibly high-dimensional data.
With regard to the analysis of images or data cubes, a major case is represented
by convolutional neural networks (CNN), which were recently found successful in
remote sensing image processing, classification, and mining [131, 134, 153, 170,
206]. They include case-specific layers that apply convolution operators and pooling
procedures to capture spatial information and favor translation invariance [80]. The
resulting number of network parameters is typically huge, which requires very large
data sets for learning purposes. Case-specific procedures that combine pre-training
with general-purpose image databases and fine-tuning with application-specific data
are often used [131]. Other deep architectures that have recently been applied in
remote sensing [40, 83, 123, 210] are based on deep belief networks, deepBoltzmann
machines, long short-termmemory networks, and stacked auto-encoders among oth-
ers [80].

Kernel machines also are a well-established class of learning methods [46] that
have been applied to multiple problems of remote sensing image analysis. They are
the result of the combination of methodological contributions from Hilbert space
theory [189], statistical learning theory [201], and quadratic optimization (see also
Sect. 1.3.5).

A kernel function is a function of two vectors that is equivalent to evaluating
an inner product in a separable Hilbert space [189]. A key idea common to
all kernel machines is to make use of such kernel functions to nonlinearly
generalize linear algorithms that can be entirely formulated in terms of dot
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products in the Euclidean n-dimensional space—a procedure named kernel
trick. These nonlinear extensions are methodologically equivalent to the appli-
cation of the original linear techniques in a nonlinearly transformed (possibly
infinite-dimensional) Hilbert space, thus gaining in flexibility and in robustness
to curse-of-dimensionality [46, 201].

Analytical conditions for a function to be a kernel are well known from the theory
of integral equations in functional analysis [46]. Support vector machines (SVM) are
a well-known example of kernel machines that have been widespread and successful
in remote sensing applications for over a decade [30, 46]. SVMs integrate kernels
with learning criteria that optimize generalization capability and that are related to
the Vapnik-Chervonenkis [201] and probably approximately correct (PAC) learning
theories [46]. Numerous approaches based on the kernel and SVM frameworks have
been developed in remote sensing for classification, regression, data transforma-
tion, change detection, target detection, and nonparametric density estimation [16,
30, 138, 147, 182]. Specific kernel functions and methods devoted to incorporat-
ing probabilistic graphical models, multisource information, manifolds, and sparsity
were also proposed (see also Chap.10) [79, 121, 195]. Moreover, the Gaussian
process regression, which was recalled in Sect. 1.3.3 among the Bayesian nonpara-
metric techniques, can also be interpreted as a kernel method whose kernel is the
autocovariance function of the considered multidimensional Gaussian process and
which formalizes a mean-square-error regression in a suitable Hilbert space [166].

Futhermore, graph-theoretic concepts, besides their relevance for data represen-
tation, are also at the basis of a further important family of methods for classification
and regression with remote sensing imagery [35, 133, 145].

A tree classifier is determined by a finite set of decision rules that are con-
nected and sequentially applied according to a tree topology [26]. The rule
associated with each node of the tree determines a “split” of the classification
procedure into two or more branches. The intuitive idea is that even though the
individual splits are often very simple rules, their overall arrangement in the
tree can provide flexible and powerful decision criteria.
A further topical extension is the random forest classifier, which has been
extensively used in remote sensing. It brings tree classifiers together with the
ensemble learning approach, in which the outputs of multiple, possibly weak,
methods are combined into a unique, stronger, technique [102]. Specifically, a
random forest is a finite ensemble of tree classifiers that have been parameter-
ized in an independent and identically distributed way [25].
Formulations of the tree and random forest approaches for regression have
been developed as well [25, 26].

http://dx.doi.org/10.1007/978-3-319-66330-2_10
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Empirically defined tree classifiers, in which the tree structure and the splits are
indicated by human prior knowledge on the considered problem, have been used in
operational applications of satellite image analysis for long (e.g., for cloud screen-
ing or snow cover mapping) [98]. However, a tree classifier can also be constructed
automatically on the basis of the input data. In this case, impurity measures defined
in probabilistic or information-theoretic terms are typically used to determine the
split in each node. Tree pruning may also be applied. Examples of well-known tree
classifiers include ID3 (iterative dichotomiser 3), C4.5, and CART (classification
and regression tree) [26, 102]. When multiple trees are used in a random forest to
classify in an n-dimensional space, appropriate random samplings of both the data
samples and the n variables are used to favor diversity among the trees—a property
that positively affects the overall performance of the ensemble (see Chap.3) [25,
102]. Other tree ensemble methods have also been proposed, including the rotation
forest, extra tree, and gradient boosted tree approaches among others [18, 140].More
generally, ensemble approaches, regardless of the specific use of tree methods, repre-
sent a well-established field of machine learning [102] and are of primary importance
in the framework of remote sensing data fusion (more comments on this aspect can
be found in Chap.7) [18, 173].

Finally, a further relevant class of mathematical models and methods for non-
Bayesian learning from remote sensing imagery is rooted in fuzzy logic and fuzzy set
theory [19]. They generalize the usualBoolean algebra and set theory to better capture
uncertain behaviors. The notion of uncertainty plays a primary role in many contexts
in relation, for example, to the inaccuracies in the measurements of deterministic
quantities or to the qualitative descriptions of specific scenarios. As an alternative to
probabilistic reasoning, fuzzy modeling has proven to be a useful mathematical tool
to provide both qualitative and quantitative characterizations of uncertain scenarios.

Unlike classical set theory, in which an element either belongs or does not
belong to a given set, fuzzy set theory allows for an element to belong to various
sets with different degrees of membership (ranging in [0, 1]) [19]. A similar
generalization is operated in terms of truth values by fuzzy logic as compared to
Boolean logic. These key ideas have led to remarkable developments in pattern
recognition including fuzzy classification and segmentation methods [19] as
well as uncertainty models for the implementation of fuzzy reasoning rules
into expert systems and knowledge representation techniques.

Many applications to image classification, segmentation, and fusion have been
proposed in the remote sensing literature [7, 29, 63, 137, 155, 180]. The neural and
fuzzy approaches have also been combined into neuro-fuzzy hybrid systems (e.g.,
fuzzy-ARTMAP) that incorporate fuzzy rules into neural architectures to benefit
from both universal approximation and uncertainty modeling capabilities [7, 155].
From a mathematical perspective, the fuzzy approach has also been combined with

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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measure-theoretic concepts to introduce fuzzy measures and fuzzy integrals [165],
which can be related to the plausibility and belief functions used for data fusion by
Dempster-Shafer’s theory of evidence (see Chap. 7).

1.3.5 The Role of Optimization Methods

In the previous sections, numerous maximization and minimization problems have
been mentioned with regard to the decision rules, parameter estimations, hyperpara-
meter optimizations, etc., that are involved in various image analysis tasks.

The family of the mathematical optimization methods that are used in pattern
recognition and image processing for remote sensing is vast and involves com-
putational algorithms drawn from several areas of operations research, numer-
ical analysis, and discrete mathematics. They include but are not restricted
to linear, quadratic, convex, and non-convex programming, graph-theoretic,
stochastic, and multiobjective optimization, bioinspired metaheuristics, and
calculus of variations.

To name a fewmajor examples, we recall that the learning process of an SVMwith
moderate to large input data sets is made possible by efficient case-specific quadratic
programming algorithms, which were developed on purpose for SVM-related prob-
lems, and by linear programming methods in some special cases [46]. The same
comment holds for many other kernel machines (see Chap. 10). The learning of sev-
eral neural network architectures (e.g., multilayer perceptrons) can be formalized as
theminimization of non-convex cost functionswith respect to the network parameters
through iterative algorithms such as gradient descent, conjugate gradient, Newton,
and quasi-Newtonmethods [58]. Sparse compressive sensing representations would
involve, in principle, NP-hard optimization problems based on �0 pseudo-norms, but
tractable approximations have been introduced using �1 norms, linear, and convex
programming [33, 158] (see Chap. 9).

The minimization of the energy functions of MRF and CRF models are challeng-
ing combinatorial problems with a huge number of variables. They are typically
addressed using stochastic minimization techniques, such as simulated anneal-
ing [73], or optimization methods on graphs, such as graph cuts (based on the
max-flow/min-cut theorem; see Chap.4) [24, 82] and belief propagation [88]. In
the case of marked point processes, energy minimization is again very challeng-
ing and is usually tackled through advanced stochastic methods involving reversible
jump Monte Carlo Markov chains [54, 81, 152] and birth-death algorithms [17, 53,
75]. Hyperspectral unmixing problems (see Chap.2) and fuzzy classification are typ-
ically formalized as constrained optimization problems in suitable multidimensional
Euclidean spaces [19, 124].

http://dx.doi.org/10.1007/978-3-319-66330-2_7
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Multiobjective optimization methods address problems in which multiple objec-
tive functions have to beminimized simultaneously. They allow appropriate optimal-
ity conditions (the so-called Pareto front) to be defined and the trade-off among the
possibly conflicting objectives to be studied [137, 142]. Examples of applications
in remote sensing include classification, regression, and unmixing techniques [119,
157].

Metaheuristics make use of ideas inspired by biological, ecological, and evo-
lutionary concepts to address difficult non-convex problems [57]. They have been
applied tomany optimization tasks involved in classification, registration, and regres-
sion [18, 108, 137, 155, 181]. Well-known examples include genetic and memetic
algorithms, particle swarm optimization, ant colony optimization, and artificial bee
colony algorithms [57]. Convergence properties are analytically known in a rela-
tively few cases, but these methods have been found effective in several complex
minimization problems nonetheless.

Variational methods usually operate in a deterministic continuous-variable frame-
work, formalize images as functions defined on subsets of a 2D Euclidean space,
and formulate image processing problems as the minimization of suitable integral
functionals (e.g., total variation functionals). Methodological concepts from the cal-
culus of variations (e.g., thewell-knownEuler-Lagrange equations) often allow these
methods to be expressed in terms of partial differential equations (e.g., anisotropic
diffusion equations) [77], which are discretized and numerically solved on the pixel
lattice. Examples of applications in remote sensing can be found in problems of
restoration of degraded images, of segmentation, and of multisource data fusion and
assimilation [62, 72, 174].

1.4 Structure and Organization of the Book

The remainder of the book is organized in nine chapters. Each chapter first provides
an overview of the basic concepts, current literature, and main challenges related
to the corresponding topic. Then, it presents at least two advanced remote sensing
image analysis methodologies with examples of experimental results.

Chapters2 through 5 focus on the main types of 2D remote sensing data and on
related processing and analysis techniques. Chapter 2 is about hyperspectral image
analysis with a special focus on models and optimization methods for unmixing and
on binary partition trees for object-based classification. The review of the fundamen-
tals of supervised classification that is presented here also sets the basic terminology
used in the other chapters involving classification tasks. Chapter3 is dedicated to
VHR optical images and especially focuses on image data representation through
graph-theoretic models for data mining and on tempo-angular anisotropic models for
multiangular spectral signatures. In Chap. 4, VHR SAR imagery and InSAR data are
addressed, probability density estimation for SAR data is discussed, and Markov-
ian and patch-based models for SAR image estimation, denoising, and InSAR phase
unwrapping are presented. Chapter5 is dedicated to PolSAR and especially discusses
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probability density estimation for matrix-valued PolSAR data through Mellin trans-
forms and time-frequency decompositions of PolSAR images.

Chapters6 and 7 are devoted to data fusion problems with multisource remote
sensing imagery. In Chap.6, the signal-level multiresolution fusion of panchromatic
and hyperspectral images and the fusion of spectral, spatial, and elevation features are
accomplished using guided filtering and graph-theoretic methodologies. In Chap. 7,
multilevel feature extraction and multiresolution, multiscale, and multisensor image
classification are addressed through tree image representations associated withmath-
ematical morphology and hierarchical Markov random fields.

In Chaps. 8 and 9, the analysis of multitemporal remote sensing images is dis-
cussed.Chapter8 is about change detectionwithmultitemporal images and especially
focuses onSARchange detectionmethodologies based on information-theoretic con-
cepts and multiscale wavelet transforms. In Chap.9, satellite image time series are
considered, models for time series data representation and mining are described, and
estimation-theoretic and compressive sensing techniques for missing data recon-
struction are presented.

Finally, Chap. 10 is dedicated to kernel machines for classification and regression
with remote sensing imagery. In particular, classification through multiple kernel
learning, image representation based on manifold alignments, and biophysical para-
meter retrieval using Gaussian process regression are described.

As the chapters cover a broad range of subjects, specific notations will be intro-
duced on a case-by-case basis. Among the few notations that are common to all
chapters, we recall that N,Z,Q,R, and C will indicate as usual the semigroup of
natural numbers, the group of integer numbers, and the fields of rational, real, and
complex numbers, respectively. If z ∈ C, then z∗ will denote the conjugate of z. Bold-
face font will be used for vectors and matrices (with either real- or complex-valued
entries). The superscripts “T ” and “-1” will indicate matrix transpose and inverse,
respectively, and the determinant of a square matrix A will be denoted |A| or detA.
Given a probability space, the probability measure and the expectation operator will
be written P(·) and E{·}, respectively. However, P(·) and E{·} will also be used
sometimes to avoid ambiguities with respect to chapter-specific symbols.
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Chapter 2
Models for Hyperspectral Image Analysis:
From Unmixing to Object-Based
Classification

Emmanuel Maggiori, Antonio Plaza and Yuliya Tarabalka

Abstract The recent advances in hyperspectral remote sensing technology allow
the simultaneous acquisition of hundreds of spectral wavelengths for each image
pixel. This rich spectral information of the hyperspectral data makes it possible to
discriminate different physical substances, leading to a potentially more accurate
classification and thus opening the door to numerous new applications. Throughout
the history of remote sensing research, numerous methods for hyperspectral image
analysis have been presented. Depending on the spatial resolution of the images,
specific mathematical models must be designed to effectively analyze the imagery.
Some of these models operate at a sub-pixel level, trying to decompose a mixed spec-
tral signature into its pure constituents, while others operate at a pixel or even object
level, seeking to assign unique labels to every pixel or object in the scene. The spec-
tral mixing of the measurements and the high dimensionality of the data are some of
the challenging features of hyperspectral imagery. This chapter presents an overview
of unmixing and classification methods, intended to address these challenges for
accurate hyperspectral data analysis.

2.1 Introduction

Hyperspectral remote sensors allow the simultaneous acquisition of hundreds of spec-
tral bands with narrow bandwidths for each image pixel. For example, the AVIRIS
sensor (airborne visible/infrared imaging spectrometer) provides images with 224
contiguous bands with a bandwidth of 10 nm each, and the ROSIS sensor (reflec-
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tive optics system imagining spectrometer) provides 115 bands with a bandwidth
of 4 nm each. In the spectral domain, pixels are represented as vectors for which
each component is a measurement corresponding to specific wavelengths. The size
of the vector is equal to the number of spectral bands that the sensor collects. For
hyperspectral images, over a hundred of bands are typically available, while for con-
ventional multispectral images up to ten bands are usually provided (see Chap. 3).
This detailed spectral information increases the possibility of more accurately dis-
criminating materials of interest [35]. The capabilities of hyperspectral sensors go
beyond the identification of land cover, facilitating also the characterization of min-
erals [37], soils [17] and biodiversity [43]. Due to the increasing amount of data,
the automatic analysis of hyperspectral images is then of paramount importance in
remote sensing. One of the ultimate goals of remote sensing image analysis is to
construct a thematic map associated to the image. Such a map indicates the elements
present in the image, at every location, out of a set of possible classes of interest.
These could go from physical substances to higher-level semantic objects, depending
on the application.

While the spectral signatures collected at every pixel of a hyperspectral image are
very detailed, they are usually a mixture of the signatures of the various materials
found in their spatial vicinity [14]. Thus, if the spectrum is not pure, comparing a
pixel’s spectral signature with a set of reference signatures to identify the material
is not an effective approach. In the earliest sensors, spatial resolution was low and
the size of objects was comparable to the size of pixels. In such a low spatial res-
olution setting, spectral mixing compromises the key feature of the sensors: their
ability to discriminate materials based on their spectral responses [13]. This drove
much attention of the research community to the so-called unmixing of the spectral
signatures, i.e., decomposing a mixed spectral signature into pure components. This
can be seen as a sub-pixel analysis of the data. In hyperspectral images, the number
of bands typically exceeds the amount of components in the mix, allowing to express
the unmixing problem as an over-determined system of equations [47]. This chapter
reviews one of the most common unmixing models, linear spectral unmixing, which
assumes that the spectrum in a hyperspectral image is a linear combination of pure
spectra.

As technology evolved, the spatial resolution of hyperspectral imagery increased,
and objects of interest started to be composed of multiple pixels. Spectral mixing
being less of a hassle, the assignment of a unique label to every pixel became an
active research area, a process known as classification [13]. Since the assumption of
classification is that pixels are pure, an unmixing technique is preferable if that prop-
erty does not stand. The high-dimensional nature of hyperspectral imagery imposes
certain challenges to perform classification, and conventional algorithms for multi-
spectral images do not adapt well [68]. When there is a limited number of reference
samples to train a classification system, as the number of dimensions increases (i.e.,
the number of spectral bands) the accuracy of the classification tends to drop. This
is because the reliable estimation of statistical class parameters becomes more and
more difficult as dimensionality increases. This phenomenon, the Hughes effect [59],
is often referred to as the curse of dimensionality. A vast number of classification

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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techniques for hyperspectral imagery have been presented in the literature, which
share the goal of attenuating the Hughes effect and accurately identifying the pixels’
classes.

The first classification techniques were pixelwise, i.e., considering every pixel as
an isolated entity and classifying it based solely on its spectrum. The next generation
of techniques introduced the notion of a spatial arrangement of the pixels, with some
interaction between spatially neighboring pixels at the time of classifying. This family
of methods are known as spectral-spatial and tend to outperform purely pixelwise
approaches [41]. The overall principle is to introduce a certain spatial regularity in
the pixel label assignment, by incorporating information of the spatial neighbors.
A third category is the so-called object-based analysis, which naturally emerged
from the increase in the amount of pixels per object [15]. Object-based methods are
spectral-spatial methods that seek to delineate readily usable objects to incorporate
into other systems (such as geographic information systems). These techniques both
segment the image into significant regions and label each of the segments. This
chapter reviews pixelwise and spectral-spatial techniques, and described in detail a
recent object-based model based on binary partition trees.

2.2 Unmixing

Spectral unmixing has been an alluring exploitation goal since the earliest days of
hyperspectral image and signal processing [1, 14, 44, 106]. No matter the spatial
resolution, the spectral signatures collected in natural environments are invariably a
mixture of the signatures of the various materials found within the spatial extent of
the ground instantaneous field view of the imaging instrument. For instance, the pixel
vector labeled as “vegetation” in Fig. 2.1 may actually comprise a mixture of vegeta-
tion and soil, or different types of soil and vegetation canopies. In this case, several
spectrally pure signatures (called endmembers in hyperspectral imaging terminol-
ogy) are combined into the same (mixed) pixel. The availability of hyperspectral
imagers with a number of spectral bands that exceeds the number of spectral mixture
components [47] has allowed to cast the unmixing problem in terms of an over-
determined system of equations in which, given a set of endmembers, the actual
unmixing to determine apparent abundance fractions can be defined in terms of a
numerical inversion process [16].

A standard technique for spectral mixture analysis is linear spectral unmixing
[55, 90, 92], which assumes that the collected spectra at the spectrometer can be
expressed in the form of a linear combination of endmembers weighted by their
corresponding abundances. It should be noted that the linear mixture model assumes
minimal secondary reflections and/or multiple scattering effects in the data collection
procedure, and hence the measured spectra can be expressed as a linear combination
of the spectral signatures of materials present in the mixed pixel (see Fig. 2.2a).
Although the linear model has practical advantages such as ease of implementation
and flexibility in different applications [28], nonlinear spectral unmixing may best
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Fig. 2.1 Mixed pixels in hyperspectral imaging

Fig. 2.2 Linear versus nonlinear mixture models: single versus multiple scattering

characterize the resultant mixed spectra for certain endmember distributions, such as
those in which the endmember components are randomly distributed throughout the
field of view of the instrument [49, 95]. In those cases, the mixed spectra collected
at the imaging instrument is better described by assuming that part of the source
radiation is multiply scattered before being collected at the sensor (see Fig. 2.2b). In
this case, interactions can be at a classical, or multilayered, level or at a microscopic,
or intimate, level. Mixing at the classical level occurs when light is scattered from
one or more objects, is reflected off additional objects, and eventually is measured
by hyperspectral imager. A nice illustrative derivation of a multilayer model is given
by Borel and Gerstl [18] who show that the model results in an infinite sequence
of powers of products of reflectances. Generally, however, the first order terms are
sufficient and this leads to the bilinear model. Microscopic mixing occurs when
two materials are homogeneously mixed [52]. In this case, the interactions consist
of photons emitted from molecules of one material and absorbed by molecules of
another material, which may in turn emit more photons. The mixing is modeled
by Hapke [52] as occurring at the albedo level, i.e., the fraction of solar energy
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reflected from the Earth, and not at the reflectance level (for more details on the
physical quantities acquired by passive cameras see Chap. 3). The apparent albedo
of the mixture is a linear average of the albedos of the individual substances but
the reflectance is a nonlinear function of albedo, thus leading to a different type of
nonlinear model.

In the following, we focus on describing recent advances in the linear spectral
unmixing domain. The reason is that, despite its simplicity, it is an acceptable approx-
imation of the light scattering mechanisms in many real scenarios. Furthermore, in
contrast to nonlinear mixing, the linear mixing model is the basis of a plethora of
unmixing models and algorithms spanning back at least 25 years. A sampling can
be found in [12, 27, 54, 56, 58, 63, 64, 78, 85, 87, 90, 92, 105, 107, 130], see also
[14] and references therein. As shown in Fig. 2.2a, the linear mixture model assumes
that mixed pixels are a linear combination of the endmembers. This scenario holds
when the mixing scale is macroscopic [108] and the incident light interacts with just
one material, as is the case in checkerboard type scenes [36, 51]. In this case, the
mixing occurs within the instrument itself. It is due to the fact that the resolution
of the instrument is not fine enough. The light from the materials, although almost
completely separated, is mixed within the measuring instrument.

In order to define the linear mixture model in mathematical terms, let us assume
that Y ∈ R

l×n is a hyperspectral image with l bands and n pixels. In this case the
matrix Y = [y1, . . . , yn] represents a hyperspectral image in a matrix form, in which
the columns of the matrix Y are the spectral signatures of the image pixels yi , and
the rows of Y are the bands of the hyperspectral image. Under the linear mixture
assumption, we can model the hyperspectral data as follows:

Y = MA + N, (2.1)

where M ∈ R
l×p,M = [m1, . . . ,mp] is a matrix containing endmembers mi in

columns andA ∈ R
p×n,A = [a1, . . . , an] contains the abundance fractionsa j,k asso-

ciated to each endmember in each pixel. Finally, N ∈ R
l×n is a matrix which rep-

resents the noise introduced in the model by the acquisition process. Usually two
constraints are imposed to the abundance fractions in the linear mixture model. The
first one is the abundance non-negativity (ANC), which enforces to all the abundances
fractions to be non-negative [31], i.e. a j,k ≥ 0, j = 1, . . . , p, k = 1, . . . , n. The sec-
ond constraint is the abundance sum-to-one (ASC), which enforces the abundances of
a given pixel to sum to one, i.e.

∑p
j=1 a j,k = 1, k = 1, . . . , n. The unmixing process

which considers both constraints is called fully constrained linear spectral unmixing
(FCLSU). The linear mixture model can be interpreted graphically by using a scatter
plot between two bands or, more generally, between two non-colinear projections
of the spectral vectors. For illustrative purposes, Fig. 2.3 provides a simple graphi-
cal interpretation in which the endmembers are the most extreme pixels defining a
simplex which encloses all the other pixels in the data, so that we can express every
pixel inside the simplex as a linear combination of the endmembers. As a result, a
key aspect when considering the linear mixture model is the correct identification of
the endmembers, which are extreme points in the l-dimensional space.

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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Fig. 2.3 Graphical
interpretation of the linear
mixture model

The solution of the linear spectral mixture problem described in (2.1) relies on
two major requirements:

1. A successful estimation of how many endmembers, p, are present in the input
hyperspectral scene Y, and

2. the correct determination of a set M of p endmembers and their correspondent
abundance fractions at each pixel.

In order to address these issues, a standard spectral unmixing chain consisting of
three steps is generally applied. In a first step, an (optional) dimensionality reduction
step is conducted. This step is strongly related to the estimation of the number of
endmembers present in the hyperspectral scene, p. Once the number of endmembers
has been determined, an endmember extraction step identifies the pure spectral sig-
natures present in a scene. Finally, the abundance estimation step requires as input the
endmember signatures obtained in the endmember extraction process and produces
as output the set of abundance maps associated to each endmember. Figure 2.4 shows
the different steps involved in the processing chain, which are briefly summarized
next and described in more detail in the following subsections (discussing specific
implementation options for each step).

1. Dimensionality reduction. The dimensionality of the space spanned by spectra
from an image is generally much lower than the available number of bands.
Identifying appropriate subspaces facilitates dimensionality reduction, improving
algorithm performance and data storage complexity. Furthermore, if the linear
mixture model is accurate, the signal subspace dimension is one less than the
number of endmembers, a crucial figure in hyperspectral unmixing.

2. Endmember extraction. This step consists in identifying the endmembers in
the scene. Geometrical approaches exploit the fact that linearly mixed vectors
are in a simplex set or in a positive cone. Statistical approaches focus on using
parameter estimation techniques to determine endmembers. Different techniques
may or may not include spatial information and assume or not the presence of
pure pixels in the original data set.
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Fig. 2.4 Spectral unmixing chain

3. Abundance estimation. Given the identified endmembers, the abundance estima-
tion step consists in solving a constrained optimization problem which minimizes
the residual between the observed spectral vectors and the linear space spanned
by the inferred endmembers in order to derive fractional abundances which are,
very often, constrained to be nonnegative and to sum to one (i.e., they belong
to the probability simplex). There are, however, some hyperspectral unmixing
approaches in which the endmember determination and inversion steps are imple-
mented simultaneously.

2.2.1 Dimensionality Reduction

The number of endmembers p present in a given scene is, very often, much smaller
than the number of bands l. Therefore, assuming that the linear model is a good
approximation, spectral vectors lie in or very close to a low-dimensional linear sub-
space. The identification of this subspace enables low-dimensional yet accurate rep-
resentation of spectral vectors. It is usually advantageous and sometimes necessary to
operate on data represented in the signal subspace. Therefore, a signal subspace iden-
tification algorithm is often required as a first processing step in the spectral unmix-
ing chain. Unsupervised subspace identification has been addressed in many ways.
Projection techniques seek for the best subspaces to represent data by optimizing
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objective functions. For example, principal component analysis (PCA) maximizes
the signal variance; singular value decomposition (SVD) maximizes power; mini-
mum noise fraction (MNF) and noise-adjusted principal components (NAPC) min-
imize the ratio of noise power to signal power. NAPC is mathematically equivalent
to MNF [70] and can be interpreted as a sequence of two principal component trans-
forms: the first applied to the noise and the second applied to the transformed data
set.

The identification of the signal subspace is a model order inference problem to
which information theoretic criteria come to mind. These criteria have in fact been
used in hyperspectral applications [30] adopting the approach introduced by Wax
and Kailath [127]. In turn, Harsanyi, Farrand, and Chang [53] developed a Neyman-
Pearson detection theory-based thresholding method to determine the number of
spectral endmembers in hyperspectral data, referred to as virtual dimensionality
(VD). This method is based on a detector built on the eigenvalues of the sample
correlation and covariance matrices. A modified version includes a noise-whitening
step [30]. The hyperspectral signal identification with minimum error (HYSIME)
adopts a minimum mean squared error based approach to infer the signal subspace.
The method is eigendecomposition based, unsupervised, and fully-automatic (i.e.,
it does not depend on any tuning parameters). It first estimates the signal and noise
correlation matrices and then selects the subset of eigenvalues that best represents
the signal subspace in the least square error sense.

2.2.2 Endmember Extraction

Over the last decade, several algorithms have been developed for automatic or semi-
automatic extraction of spectral endmembers by assuming the presence of pure pix-
els in the hyperspectral data [92]. Classic techniques include the pixel purity index
(PPI), N-FINDR, iterative error analysis (IEA), convex cone analysis (CCA), ver-
tex component analysis (VCA), and orthogonal subspace projection (OSP), among
many others [14]. Other advanced techniques for endmember extraction have been
recently proposed [9, 26, 32, 33, 81, 89, 126, 132], but none of them considers spa-
tial adjacency. However, one of the distinguishing properties of hyperspectral data
is the multivariate information coupled with a two-dimensional (pictorial) represen-
tation amenable to image interpretation. Subsequently, most endmember extraction
algorithms listed above could benefit from an integrated framework in which both
the spectral information and the spatial arrangement of pixel vectors are taken into
account. An example of this situation is given in Fig. 2.5, in which a hyperspec-
tral data cube collected over an urban area (high spatial correlation) is modified by
randomly permuting the spatial coordinates of the pixel vectors, thus removing the
spatial correlation. In both scenes, the application of a spectral-based endmember
extraction method would yield the same analysis results while it is clear that a spatial-
spectral technique could incorporate the spatial information present in the original
scene into the endmember searching process.
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Fig. 2.5 Example illustrating the importance of spatial information in hyperspectral analysis

To the best of our knowledge, only a few attempts exist in the literature aimed at
including the spatial information in the process of extracting spectral endmembers.
Extended morphological operations [93] have been used as a baseline to develop
the automatic morphological endmember extraction algorithm (AMEE) for spatial-
spectral endmember extraction. Also, spatial averaging of spectrally similar endmem-
ber candidates found via SVD was used in the development of the spatial-spectral
endmember extraction algorithm (SSEE). In the following, we describe in more detail
three selected spectral-based algorithms (N-FINDR, OSP and VCA) and two spatial-
spectral endmember extraction algorithms (AMEE and SSEE) that will be used in our
comparisons in this chapter. The reasons for our selection are: (1) these algorithms are
representative of the class of convex geometry-based and spatial processing-based
techniques which have been successful in endmember extraction; (2) they are fully
automated; (3) they always produce the same final results for the same input para-
meters; and (4) the number of endmembers to be extracted, p, is an input parameter
for all algorithms, while AMEE and SSEE have additional input parameters related
to the definition of spatial context around each pixel in the scene. This section con-
cludes with a description of algorithms that, as opposed to the previously mentioned
ones, do not assume the presence of pure pixels in the hyperspectral data. Techniques
in this category comprise minimum volume simplex analysis (MVSA) and a vari-
able splitting augmented Lagrangian approach (SISAL). Also, we deliberately do
not cover sparse unmixing methods [60], which are detailed in other chapters of this
book.

2.2.2.1 N-FINDR

This algorithm looks for the set of pixels with the largest possible volume by inflating
a simplex inside the data. The procedure begins with a random initial selection of
pixels (see Fig. 2.6a). Every pixel in the image must be evaluated in order to refine
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(a) Initialization (b) Replacement (c) Final result

Fig. 2.6 Graphical representation of the N-FINDR algorithm

the estimate of endmembers, looking for the set of pixels that maximizes the volume
of the simplex defined by selected endmembers. The volume of the simplex is calcu-
lated with every pixel in the place of each endmember. The corresponding volume is
calculated for every pixel in each endmember position by replacing that endmember
and finding the resulting volume (see Fig. 2.6b). If the replacement results in a an
increase of volume, the pixel replaces the endmember. This procedure is repeated
until there are no more endmember replacements (see Fig. 2.6c). The mathematical
definition of the volume of a simplex formed by a set of endmember candidates is
proportional to the determinant of the set augmented by a row of ones. The determi-
nant is only defined in the case where the number of features is p − 1, p being the
number of desired endmembers [29]. Since in hyperspectral data typically l � p, a
transformation that reduces the dimensionality of the input data is required. Often,
the PCA transform has been used for this purpose, although another widely used
alternative that decorrelates the noise in the data is MNF. A possible shortcoming
of this algorithm is that different random initializations of N-FINDR may produce
different final solutions. In this chapter, we consider an N-FINDR algorithm imple-
mented in an iterative fashion, so that each sequential run is initialized with the
previous algorithm solution, until the algorithm converges to a simplex volume that
cannot be further maximized.

2.2.2.2 Orthogonal Subspace Projection (OSP)

This algorithm starts by selecting the pixel vector with maximum length in the scene
as the first endmember. Then, it looks for the pixel vector with the maximum absolute
projection in the space orthogonal to the space linearly spanned by the initial pixel,
and labels that pixel as the second endmember. A third endmember is found by
applying an orthogonal subspace projection to the original image [54]. This is done
by selecting the signature that has the maximum orthogonal projection in the space
orthogonal to the space linearly spanned by the first two endmembers. This procedure
is repeated until the desired number of endmembers, p, is found [98]. A shortcoming
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of this algorithm is its sensitivity to noise, since outliers are good candidates to be
selected in the iterative process adopted by OSP. The VCA method discussed in the
following subsection addresses this issue.

2.2.2.3 Vertex Component Analysis (VCA)

This algorithm also makes use of the concept of orthogonal subspace projections.
However, as opposed to the OSP algorithm described above, VCA exploits the fact
that the endmembers are the vertices of a simplex, and that the affine transformation
of a simplex is also a simplex [84]. As a result, VCA models the data using a
positive cone, whose projection onto a properly chosen hyperplane is another simplex
whose vertices are the final endmembers. After projecting the data onto the selected
hyperplane, the VCA projects all image pixels to a random direction and uses the
pixel with the largest projection as the first endmember. The other endmembers are
identified in sequence by iteratively projecting the data onto a direction orthogonal
to the subspace spanned by the endmembers already determined, using a procedure
that is quite similar to that used by OSP. The new endmember is then selected as the
pixel corresponding to the extreme projection, and the procedure is repeated until a
set of p endmembers is found [84]. For illustrative purposes, Fig. 2.7 shows a toy
example depicting an image with three bands and three endmembers. Due to the
mixing phenomenon, all the data is in the plane S. If we project the data onto that
plane we can represent the same data in two dimensions instead of three. Then we
can apply OSP to the projected dataset in order to obtain the endmembers.

A possible shortcoming of the VCA algorithm can be illustrated by the following
example: if there are two endmembers with similar spectral signatures and the power
of noise is high, then the subspace identification step could miss one of the two
similar endmembers. This problem could be avoided by using spatial information as
follows. The idea is that, although the endmembers are very similar in the spectral
domain, they may be located in different areas in the spatial domain. As a result,

Fig. 2.7 Toy example
illustrating the impact of
subspace projection on
endmember identification



48

spatial information could help in the distinction of the endmembers. In the following
subsections we describe different algorithms which make use of spatial information
in order to solve some of these potential problems in the endmember identification
process.

2.2.2.4 Automatic Morphological Endmember Extraction (AMEE)

The AMEE [91] algorithm runs on the full data cube with no dimensional reduction,
and begins by searching spatial neighborhoods around each pixel vector in the image
for the most spectrally pure and mostly highly mixed pixel. This task is performed
by using extended mathematical morphology operators [93] of dilation and erosion,
which are graphically illustrated in Fig. 2.8. Here, dilation selects the most spectrally
pure pixel in a local neighborhood around each pixel vector, while erosion selects the
most highly mixed pixel in the same neighborhood. Each spectrally pure pixel is then
assigned an eccentricity value, which is calculated as the spectral angle (SA) [28, 64]
between the most spectrally pure and mostly highly mixed pixel for each given spatial
neighborhood. This process is repeated iteratively for larger spatial neighborhoods
up to a maximum size that is predetermined. At each iteration the eccentricity values
of the selected pixels are updated. The final endmember set is obtained by applying a
threshold to the resulting greyscale eccentricity image, which results in a large set of
endmember candidates. The final endmembers are extracted after applying the OSP
method to the set of candidates in order to derive a final set of spectrally distinct
endmembers M, where p is an input parameter to the OSP algorithm.

Fig. 2.8 Extended morphological operations of erosion and dilation
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2.2.2.5 Spatial Spectral Endmember Extraction (SSEE)

The SSEE algorithm uses spatial constraints to improve the relative spectral contrast
of endmember spectra that have minimal unique spectral information, thus improving
the potential for these subtle yet potentially important endmembers to be selected.
With SSEE, the spatial characteristics of image pixels are used to increase the relative
spectral contrast between spectrally similar but spatially independent endmembers.
The SSEE algorithm searches an image with a local search window centered around
each pixel vector and comprises four steps [100]. First, the SVD transform is applied
to determine a set of eigenvectors that describe most of the spectral variance in the
window or partition (see Fig. 2.9). Second, the entire image data are projected onto the
previously extracted eigenvectors to determine a set of candidate endmember pixels
(see Fig. 2.10). Then, spatial constraints are used to combine and average spectrally
similar candidate endmember pixels by testing, for each candidate pixel vector, which
other pixel vectors are sufficiently similar in spectral sense (see Fig. 2.11). Instead
of using a manual procedure as recommended by the authors in [100], we have used
the OSP technique in order to derive a final set of spectrally distinct endmembers M,
where p is an input parameter to the OSP algorithm.

At this point, it is important to note that SSEE includes spatial information in a
different way as AMEE does. The SSEE method uses first a spectral SVD method to
extract some candidate endmembers and then includes the spatial information. On
the other hand, AMEE combines the spatial and spectral information at the same
time using extended morphological operations, and then uses a spectral endmember
extraction technique in order to select the final endmember set. In both cases (as it
is also the case of all endmember identification algorithms discussed thus far) the
assumption is that pure spectral signatures are present in the original hyperspectral
data. In the following subsection we describe methods which operate under the
assumption that pure spectral signatures may not be present at all in the original
hyperspectral scene.

Fig. 2.9 First step of the SSEE algorithm.AOriginal data.BSubset data after spatial partitioning.C
Set of representative SVD vectors used to describe spectral variance. (Figure reproduced from [100])
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Fig. 2.10 Second step of the SSEE algorithm. A Original data. B Spectral distribution in
2-dimensional space. C Projection of data onto eigenvectors. D Set of candidate pixels. (Figure
reproduced from [100])

Fig. 2.11 Third step of the SSEE algorithm. A Set of candidate pixels. B Updated candidate pixels
after including pixels which are spectrally similar to those in the original set. C Spatial averaging
process of candidate endmember pixels using a sliding window centered on each candidate. D First
iteration of spatial-spectral averaging. Averaged pixels shown as thick lines, with original pixels
shown as thinner lines. E Second iteration of spatial-spectral averaging. F Continued iterations
compress endmembers into clusters with negligible variance. (Figure reproduced from [100])

2.2.2.6 Algorithms Without the Pure Pixel Assumption

This section describes endmember identification techniques which do not operate
under the pure pixel assumption [57, 94]. In this case, the algorithms do not need the
presence of pure pixels in the dataset in order to generate the endmembers. Figure 2.12
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scriptsize

(a) True endmembers (b) With pure pixel assumption

(c) Without pure pixel assumption (d) With pixels at the simplex facets

Fig. 2.12 Illustration of different strategies for endmember extraction

shows a graphical interpretation of the difference between algorithms that assume
and do not assume the presence of pure pixels in the dataset. Specifically, Fig. 2.12a
represents the true endmembers. In this case, there is no pixel at the simplex vertices
so the endmembers are not present in the original data. Figure 2.12b represents a
possible solution of an algorithm which does not assume the presence of pure pixels
in the dataset. As we can see in Fig. 2.12b, there are two pixels outside of the simplex,
which are outliers in this particular case. Figure 2.12c represents a possible solution
of a method which does not assume the presence of pure pixels in the data. In this
case, the algorithm tries to estimate a set of endmembers by enclosing the whole
dataset. This approach does not guarantee the correct identification of endmembers
in the case that the data are highly mixed and there are no pixels in the facets of the
simplex. However, if there are pixels in the simplex facets, the true endmembers can
be correctly identified even if there are no pixels at the simplex vertex, as depicted
in Fig. 2.12d.

Most of the techniques in this category adopt a minimum volume strategy aimed
at finding the endmember matrixM by minimizing the volume of the simplex defined
by its columns and containing the endmembers. This is a non-convex optimization
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problem much harder than those considered in the previous subsection in which the
endmembers are assumed to belong to the input hyperspectral image.

Craig’s seminal work [38] established the concepts regarding the algorithms of
minimum volume type. Most of these algorithms formulate the endmember estima-
tion as the nonnegative matrix factorization of the mixing and abundance matrices
[9, 73, 81, 96, 131, 133], with a minimum volume constraint imposed on M. Non-
negative matrix factorization is a hard non-convex optimization problem prone to get
stuck in local minima. Aiming at obtaining lighter algorithms with more desirable
convergence properties, the works [2, 10, 25, 71] sidestep the matrix factorization
by formulating the endmember estimation as an optimization problem with respect
to Q = M−1. The MVSA and SISAL algorithms implement a robust version of the
minimum volume concept. Robustness is introduced by allowing the ANC to be
violated. These violations are weighted using a soft constraint given by the hinge
loss function, hinge (x), an elementwise operator that returns 0 if xi ≥ 0 and −xi if
xi < 0, for every element xi in x. After reducing the dimensionality of the input data
from l to p − 1, MVSA/SISAL aim at solving the following optimization problem:

Q̂ = arg max
Q

log (| det (Q) |) − λ1Tphinge (QY) 1n

s.t.: 1TpQ = qm,
(2.2)

where Q ≡ M−1, 1p and 1n are column vectors of ones of sizes p and n, respec-
tively, qm ≡ 1TpY

−1
p with Yp being any set of linearly independent spectral vectors

taken from the hyperspectral data set Y, and λ is a regularization parameter. Here,
maximizing log(|det(Q)|) is equivalent to minimizing the volume of M.

2.2.3 Abundance Estimation

Once a set of endmembers M have been extracted, their correspondent abundance
fractions A can be estimated (in least squares sense) by the following unconstrained
expression [28]:

A ≈ (MTM)−1MTY. (2.3)

However, it should be noted that the fractional abundance estimations obtained by
means of Eq. (2.3) do not satisfy the ASC and ANC constraints. As indicated in [30],
a non-negative constrained least squares (NCLS) algorithm can be used to obtain
a solution to the ANC-constrained problem in an iterative fashion [31]. In order
to take care of the ASC constraint, we replace the hard constraint 1TA = 1 by the
soft constraint

√
δ||1TA − 1||22 added to the quadratic data term ||Y − MA||22. This

is equivalent to using a new endmember signature matrix, denoted by M′, and a
modified version of the abundance estimates A, denoted by A′, are introduced as
follows:
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M′ =
[
M
δ1T

]

,A′ =
[
A
δ1

]

, (2.4)

where 1 = (1, 1, · · · , 1
︸ ︷︷ ︸

p

)T and δ controls the impact of the ASC constraint. Using the

two expressions in (2.4), a fully constrained estimate can be directly obtained from
the NCLS algorithm by replacing M and A with M′ and A′. The fully constrained
(i.e., ASC-constrained and ANC-constrained) linear spectral unmixing model is
referred to as FCLSU.

2.2.4 Experimental Validation

In this section we will describe the experiments performed with a real hyperspectral
dataset collected by the airborne visible infrared imaging spectrometer (AVIRIS)
over the Cuprite mining district. The scene, available online in reflectance units after
atmospheric correction,1 is characterized by the availability of some very reliable
reference information available from the United States Geological Survey (USGS).
Specifically, the portion used in experiments corresponds to a 350 × 350-pixel sub-
set of the sector labeled as “f970619t01p02_r02_sc03.a.rfl” in the online data. The
scene comprises 224 spectral bands between 0.4 and 2.5 µm, with full width at half
maximum of 10 nm and spatial resolution of 20 m per pixel. Prior to the analysis,
several bands were removed due to water absorption and low signal-to-noise ratio
(SNR) in those bands, leaving a total of 188 reflectance channels to be used in the
experiments. The Cuprite site is well understood mineralogically, and has several
exposed minerals of interest, all included in the USGS library considered in experi-
ments, denoted “splib06” and released in September 2007.2 In our experiments, we
use spectra obtained from this library to validate endmember extraction algorithms.
For illustrative purposes, Fig. 2.13 shows a mineral map produced in 1995 by USGS,
in which the Tricorder 3.3 software product was used to map different minerals
present in the Cuprite mining district.3 It should be noted that the Tricorder map is
only available for hyperspectral data collected in 1995, while the publicly available
AVIRIS Cuprite data was collected in 1997. Therefore, a direct comparison between
the 1995 USGS map and the 1997 AVIRIS data (as well as a comparison in terms of
fractional abundances) is not possible.

We show a comparison of the results obtained for the endmember extraction
algorithms in terms of accuracy and also in terms of computational complexity.
Accuracy is measured in terms of the spectral angle (SA), i.e., the angle between
two spectral signature vectors. Table 2.1 tabulates the SA scores, in degrees, obtained
after comparing the USGS library spectra of alunite, buddingtonite, calcite, kaolinite

1http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
2http://speclab.cr.usgs.gov/spectral.lib06.
3http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://speclab.cr.usgs.gov/spectral.lib06
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Fig. 2.13 USGS map showing the location of different minerals in the Cuprite mining district in
Nevada. The map is available online at: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
The white rectangle depicts the area used in our experiments

andmuscovite, with the corresponding endmembers extracted by different algorithms
from the AVIRIS Cuprite scene. In all cases, the input parameters of the different
endmember extraction methods tested have been carefully optimized so that the best
performance for each method is reported. The smaller the SA values across the
five minerals in Table 2.1, the better the results. It should be noted that Table 2.1
only displays the smallest SA scores of all endmembers with respect to each USGS
signature for each algorithm. As a reference, the mean SA values across all five
USGS signatures is also reported. The number of endmembers to be extracted was

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Table 2.1 Spectral similarity scores (in degrees) between USGS mineral spectra and their corre-
sponding endmembers extracted by several algorithms from the AVIRIS Cuprite scene

Algorithm Alunite Buddingtonite Calcite Kaolinite Muscovite Mean

GDS84 GDS85 WS272 KGa-1 GDS107

N-FINDR 4.81 4.29 7.60 9.92 5.05 6.33

OSP 4.81 4.16 9.52 10.76 5.29 6.91

VCA 6.91 5.38 9.53 9.65 6.47 7.59

MVSA 12.72 8.41 5.69 15.04 5.36 9.44

SISAL 9.78 5.13 12.78 13.53 8.00 9.84

AMEE 4.81 4.17 5.87 8.74 4.61 5.64

SSEE 4.81 4.16 8.48 10.73 4.63 6.57

N-FINDR OSP VCA MVSA SISAL
(0.090) (0.129) (0.081) (0.025) (0.025)

AMEE (0.265) SSEE (0.101)

Fig. 2.14 Errors measured for various endmember extraction algorithms after reconstructing the
AVIRIS Cuprite scene

set to p = 19 in all experiments after the consensus reached between HYSIME [11]
and the VD concept [30], implemented using PF = 10−3 as the input false alarm
probability. In this experiment, the best performance (in terms of SA) was obtained
by the endmember extraction algorithms AMEE which include both spatial and
spectral information.

Additionally, Fig. 2.14 shows the root mean squared error (RMSE) maps obtained
after reconstructing the AVIRIS Cuprite scene using p = 19 endmembers extracted
by different methods. As shown by this experiment, MVSA and SISAL provide the
best results in terms of image reconstruction although they may provide unrealistic
endmembers, as described in the previous experiment. To conclude this section,
Table 2.2 reports the processing times of the compared algorithms.
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Table 2.2 Processing times
(in seconds) measured in a
desktop PC with intel core i7
920 CPU at 2.67 Ghz with 4
GB of RAM

Algorithm Total processing time

N-FINDR 466.08

OSP 136.09

VCA 31.12

MVSA 	25000

SISAL 170.40

AMEE 76.06

SSEE 1051.23

2.3 Classification

The general hyperspectral image classification problem can be described as follows:
At the input a B-band hyperspectral data cube is given, which can be considered as
a set of n pixel vectors X = {x j ∈ R

B, j = 1, 2, . . . , n}. Let Ω = {ω1, ω2, . . . , ωK }
be a set of information classes in the scene. Classification consists in assigning each
pixel to one of the K classes of interest. An information class can represent either a
physical substance (a ground cover material, for instance, snow, water, wheat), or a
specific group of objects which may be made of several different physical materials
(for instance, roof, shadows, trees).

In this chapter, we focus on supervised classification, which assumes that classes
are defined by a set of training samples. Unsupervised classification, or clustering
techniques have also been described in the literature. We refer the reader to [35]
for a survey on unsupervised methods. An important assumption for classification
techniques is that the spatial resolution of the image is high enough so that the data
contains mostly pure pixels, i.e., pixels representing a single information class. In
the opposite case, i.e., when the data is mostly composed of mixed pixels, spectral
unmixing methods are more appropriate for image analysis.

The first attempts to classify hyperspectral images would assign each pixel to
one of the classes based on its spectrum only [66]. These are often referred to as
pixelwise (or non-contextual) classification techniques. However, with the increase
of spatial resolution of hyperspectral sensors, objects in the image are typically large
compared to the size of a pixel. In the ideal case, all the pixels of these objects should
be assigned to the same class. It has then become then very important to simulta-
neously use spectral and spatial information for image classification [88]. Spectral-
spatial classification (also referred to as spatial-contextual) assigns each pixel to one
information class based on: (1) its own spectrum; (2) information extracted from
its neighborhood, i.e., the spatial information. A multitude of methods have been
proposed for this purpose, which differ in the ways of extracting spatial contextual
information from the image scene and in the ways of combining spectral and spatial
information.

The following sections review the keystone methods of pixelwise and spectral-
spatial classification. We also include a detailed explanation of a recently-proposed
mathematical model for spectral-spatial classification, based on a binary partition
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tree representation [76]. This method first constructs a hierarchical region-based
representation of the image stored in a tree structure, and then extracts objects of
interest from the tree.

2.3.1 Supervised Pixelwise Classification

Landgrebe et al. were seminal in exploring procedures for hyperspectral data analysis
and classification [66, 67]. They adapted pattern recognition procedures for this
purpose. A simplified version of their proposed classification scheme, widely used
until nowadays, is depicted in Fig. 2.15. There are two inputs to the system: the
hyperspectral image and a set of observations of the ground which are labeled into
classes of interest. From the hyperspectral image, there is first a process of feature
extraction and selection. Features can be seen as an abstraction layer with meaningful
descriptors derived from the raw input. This representation should me meaningful
in the sense that it must be useful for the classification problem, describing and
separating the classes of interest. Some input from the training labels themselves
might be used to decide which features are relevant. The features associated to every
pixel can be seen as a point in a high-dimensional space. The next step consists in
training a classifier based on the set of labeled samples, i.e., partitioning the entire
feature space into K exhaustive, nonoverlapping regions, so that every point in the
feature space is uniquely associated with one of the K classes.

In the pixelwise approach, each image pixel is seen as a pattern to classify. One
possibility is to use the pixel spectrum as the set of features that describe every
pixel. Since this is often redundant, it is common to perform a more sophisticated
feature extraction/selection step with the goal of reducing the dimensionality of the
feature set and maximizing separability between classes. Different feature extraction
techniques have been proposed and explored for this purpose, such as Discrimi-
nant Analysis Feature Extraction, Decision Boundary Feature Extraction and Non-
parametric Weighted Feature Extraction [39, 67]. Once this step is accomplished,
each pixel is classified according to its feature set.

The set of training samples is typically obtained by visually interpreting and
manually labeling a small number of pixels in the data set, or by performing an in
situ field campaign. The training data is used to define a model of the classes in the
feature space. Assuming that each class can be described by a normal distribution,

Fig. 2.15 Schematic diagram of the hyperspectral image classification process
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Gaussian Maximum Likelihood classification has been for many years the standard
thematic mapping procedure in hyperspectral remote sensing [99]. Essentially, it
assigns a given pixel to the class ωi that maximizes the posterior probability P(ωi |x)
in the Gaussian model. A serious drawback of this method consists in the primary
assumption about the shape of the class-conditional probability density functions. If
this assumption is wrong, classification results are no longer accurate. Furthermore,
the high number of features available, usually coupled with a limited number of
training samples, makes estimation of statistical class parameters unreliable. As a
result, with a limited training set, the classification accuracy tends to decrease as
the dimensionality increases, an issue often referred to as the Hughes phenomenon
[66, 88]. High-dimensional spaces are mostly empty [62], making density estimation
even more difficult.

In the 1990s, neural network approaches for classifying hyperspectral images
received a lot of attention [7, 80, 111, 129]. Neural network models have an advantage
over statistical methods in that they are distribution-free and thus no prior knowledge
about the statistical distribution of classes is needed. In a neural network, a set
of weighted sums and nonlinearities describe the function that classifies the input
features. The training procedure involves finding the appropriate weights, which is
done iteratively. The interest in such approaches greatly increased in the 1990s with
improvements in the training techniques [6]. Yet there has been a limited use of neural
networks for hyperspectral image classification primarily due to their algorithmic and
training complexity [99]. Genetic algorithms for classification of hyperspectral data
have also been presented [121], capable to deal with nonlinearly separable patterns
but computationally demanding.

Early in this century, kernel methods such as Support Vector Machines (SVMs)
have become very popular for hyperspectral image analysis, proving to be extremely
well suited to classify high-dimensional data when a limited number of training sam-
ples is available [22, 48]. The SVM method seeks to trace an optimal hyperplane that
linearly separates features into two groups with a maximum margin (see Fig. 2.16).
A soft margin is typically used, where misclassified samples (i.e., on the wrong side
of the hyperplane) are tolerated but penalized. To account for nonlinear separation
boundaries, the data points are mapped to a higher-dimensional space by using a
kernel function, and the linear SVM classification is performed on the transformed
space. More details on SVMs can be found in Chap. 10. For hyperspectral image
classification, two kernel functions have been widely used: the polynomial kernel
and the Gaussian radial basis function. While initially devised for binary classifica-
tion, the K -class problem can be solved by training K classifiers to distinguish each
class from all the rest (one vs all) or K (K − 1)/2 classifiers to distinguish every pair
of classes (one vs one) [104].

To conclude, SVMs directly exploit the geometrical properties of data, without
involving a density estimation procedure. This method can efficiently handle high-
dimensional data, exhibiting low sensitivity to the Hughes phenomenon [59, 79].
Therefore, it is an excellent approach to attenuate the usually time-consuming feature
extraction/selection procedure, thus simplifying the traditional pattern recognition
scheme of Fig. 2.15. In hyperspectral image classification with SVMs, the dimen-

http://dx.doi.org/10.1007/978-3-319-66330-2_10
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Fig. 2.16 Support vector
machines (SVMs) search for
an optimal hyperplane to
linearly separate the data
points with a maximum
margin. This SVM uses a soft
margin, adding robustness to
difficult samples

sionality reduction step is often skipped and the spectrum directly used as the feature
vector. Finally, SVMs exhibits a good generalization capability, fully exploiting the
discrimination capability of the relatively few training samples available. All these
advantages of the SVM method have made it the most widely used classifier for
hyperspectral data in the last decade [13].

To further boost up classification accuracies, ensemble classification systems have
been investigated for hyperspectral image classification. These approaches combine
multiple learning algorithms to improve the predictive accuracy. Ham et al. [50]
investigated the use of Random Forest framework and Ceamanos et al. [24] proposed
an SVM-based ensemble approach, where separate SVM predictions are performed
for subsets of spectral bands, and all outputs are used as the input for an additional
SVM classifier.

All the described approaches assign each pixel to one of the classes based on its
spectral properties alone, with no account being taken of how spatially adjacent pixels
are classified. In the following, we summarize the key concepts for spectral-spatial
classification of hyperspectral data.

2.3.2 Spectral-Spatial Classification

It is a proven fact that for images with high-spatial resolution, combining the spectral
and the spatial information improves significantly the performance of classification
methods. Surveys of spectral-spatial classification methods can be found in [13, 41].

A common spectral-spatial approach is to incorporate spatial information as part
of the pixelwise classification process. Some feature extraction is applied to the
surrounding area of a pixel and the result is integrated as part of the features associated
to the individual pixel, in addition to the usual spectral features. In order to perform
classification with a kernel method such as an SVM, the two sets of features must be
combined. This can be done in different ways, ranging from a naive stacking of the
feature vectors to more versatile methods. Different strategies of combining the two
sources of information have been reviewed and compared in [23, 88].
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To apply this scheme, one must define which is the neighborhood of a pixel from
where spatial features are extracted. An idea as simple as the use of a fixed window
already shows an improvement with respect to purely pixelwise approaches [88].
Benediktsson et al. [8] proposed to use morphological filters to obtain the spatial
neighborhoods in an adaptive manner. In this method, a so-called structuring element
is used to perform morphological opening and closing operations [109]. The effect of
applying these operations is that image structures smaller than the structuring element
are removed, otherwise preserved. These operations are applied with structuring
elements of different sizes to create the morphological profile. This idea was applied
in hyperspectral image classification [5] by computing the morphological profiles of
the first principal components of the data, and combining them to obtain the features
for classification.

Later on, Fauvel et al. [40] proposed to use the so-called self-complementary
filters [110] for spatial feature extraction, which remove small structures from the
image based on an area criterion, yielding a map of flat connected zones. This filter is
applied on the first principal component of the hyperspectral image to extract adaptive
spatial neighborhoods. The vector median [4] is then computed for each connected
zone of the filtered result, and used as the spatial feature vector for all the pixels within
the zone. Finally, SVM classification is performed with a weighted summation kernel
to combine spectral and spatial information. More advanced morphological filters,
called attribute filters, have been recently proposed to further enhance classification
performance [3, 74].

Another important approach to characterize pixel entities using the spatial and
the spectral information is the Markov random field (MRF) [42, 61]. MRFs (see also
Chaps. 4 and 7) are probabilistic models widely used to include spatial context into
image analysis schemes in terms of minimization of suitable energy functions [83].
The MRF energy function for image classification is commonly computed as a lin-
ear combination of a data term, which measures for each pixel the disagreement
between a prior probabilistic model and the observed data, and a spatial context
term, which expresses interaction between neighboring pixels. The first MRF-based
models employed time-consuming energy minimization algorithms, such as iter-
ated conditional modes and simulated annealing [82, 117]. More advanced methods,
such as graph-cuts [19, 20] provided powerful alternatives from both theoretical and
computational viewpoints, resulting in a growing use of the MRF-based models [72,
118]. For example, Tarabalka et al. [118] used probabilities derived from an SVM as
the data term of an MRF energy, and used the α-expansion graph cut algorithm [20]
to solve the K -class classification problem in hyperspectral imagery.

Finally, an important family of methods involves the segmentation of images and
the classification of each of the individual segments. Segmentation methods partition
an image into non-overlapping homogeneous regions with respect to some criterion
of interest or homogeneity criterion (e.g., based on the intensity or on the texture) [46].
Hence, each region in the segmentation map can be seen as a connected spatial neigh-
borhood for all the pixels within this region. One of the pioneering spatial-spectral
techniques belongs to this category: the well-known ECHO (Extraction and Classifi-
cation of Homogeneous Objects) classifier [65], which has been extensively used by

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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the remote sensing community. It is based on region growing to find homogeneous
groups of adjacent pixels, which are then classified as single objects by a Gaussian
maximum likelihood method. Since then, different techniques have been proposed
for hyperspectral image segmentation, such as watershed, partitional clustering and
Hierarchical Segmentation (HSeg) [112, 113, 116]. From a segmentation map, an
SVM classifier and majority voting can be applied to combine spectral and spatial
information: for every region in the segmentation map, all the pixels are assigned to
the most frequent class within this region, based on SVM classification results [113].
This method yields an improvement of classification accuracies when compared to
spectral-spatial techniques using local spatial neighborhoods.

It is however a challenging task to perform hyperspectral image segmentation
automatically. The performance is highly dependent both on the measure of region
homogeneity and on the algorithm parameters. Several alternatives have been pro-
posed to deal with this challenge. Tarabalka et al. [114, 115] proposed to perform a
marker-controlled segmentation for this purpose. The classification probabilities are
used to automatically select the most reliably classified pixels (i.e., pixels belong-
ing with the high probability to the assigned class). The classification map is then
obtained by building a minimum spanning forest from the image graph rooted on the
selected markers. Another alternative for automatic segmentation consists in build-
ing first a hierarchy of segmentations at different levels of details, and then selecting
from this hierarchy the regions at different scales that correspond to the objects of
interest. Valero et al. proposed to use a binary partition tree (BPT) model for this
purpose [122]. In this method, a BPT is first constructed by iteratively clustering
similar regions based on a criterion specifically designed for hyperspectral images.
Each BPT node is then modeled by its mean spectrum and classified by using an
SVM. A so-called misclassification rate is computed for each node, which can be
understood as the error incurred by assigning the entire node to the wrong class.
A spectral-spatial classification map is finally built in a bottom-up traversal of the
tree by extracting regions with a low misclassification rate. In the next section we
describe an energy minimization BPT-based model recently proposed in [76].

2.3.3 Object-Based Classification with Binary Partition Trees

The goal of classification is to convert the image data into tangible information that
can be interpreted and incorporated into other systems. The ultimate elementary
units which we want to identify are the objects present in the image. In the earlier
years of remote sensing research, the per-pixel or sub-pixel analysis were particu-
larly relevant given that pixel sizes were coarser than the objects themselves. The
boundary between pixel-based and object-based analysis was still vague. As sensors
improved their spatial resolution, objects started to be comprised of many pixels and
object-based analysis emerged as a natural consequence of this. While pixelwise and
spectral-spatial classification may constitute the first of a series of steps in the image
analysis pipeline, object-based methods aim at delineating readily usable objects
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from the image [15]. Contrary to the well-established pixelwise and spectral-spatial
approaches described before, this section presents a recent object-based classification
model for hyperspectral imagery, based on binary partition trees.

Binary partition trees (BPTs) were presented by Salembier and Garrido [103] as
a way of representing a set of meaningful image regions in a compact and structured
manner. The root node corresponds to the entire image, the following level represents
the subdivision of the entire image into two disjoint regions, and so on. It consti-
tutes then a hierarchical abstraction of an image, which can be navigated to extract
meaningful regions at different scales. The typical workflow involves an initial tree
construction stage, followed by a second stage of information extraction from the
tree. For example, once a tree is constructed, an exhaustive segmentation of the image
can be obtained by performing a horizontal “cut” on the structure (see Fig. 2.17). In
this procedure, commonly referred to as pruning, branches can be selected at different
scales, an inherent advantage of such hierarchical structure.

The construction of a BPT is done in a bottom-up fashion, by iteratively clustering
pairs of similar regions together. The starting point is an initial subdivision of the
image represented by a region adjacency graph (RAG), where every node conveys a
region and the edges link spatial neighbors (i.e., candidates for merging). The typical
initial RAG is the pixel grid, though nothing prevents the approach to be used with
other inputs too (e.g., a RAG of small regions containing similar pixels, known as
superpixel segmentation). Every edge in the RAG is labeled with a dissimilarity value
that compares the two associated regions.

BPTs are constructed by following a global mutual best fitting region merging
approach [69]: at each iteration, the two most similar regions in the current sub-
division are merged together (i.e., the least weighted edge out of all edges in the
RAG). When a merge occurs, a new region is added to the BPT, connected to its two
corresponding children, as illustrated in Fig. 2.18). The process finishes when there
are no more edges left in the RAG. A BPT constitutes then a record of the history of
merges that occurred during the execution of a region merging algorithm.

The overall process can be implemented efficiently by using an updatable priority
queue structure on top of the RAG edges to keep track of the highest priority element.
Such a structure is first constructed in linear time and every subsequent update incurs
in a logarithmic time cost. When two regions R1 and R2 are merged into a new

Fig. 2.17 A binary partition
tree (BPT) is a hierarchical
subdivision of an image. An
exhaustive partitioning can
be extracted by “cutting”
branches at different scales
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Fig. 2.18 A BPT is
constructed by iteratively
removing edges in a region
adjacency graph (RAG). The
resulting BPT encodes the
history of the merges

region R12, one must update the RAG (and the associated priority queue). The edge
connecting R1 and R2 must be removed, but let us also remark that all the edges
adjacent to R1 and R2 must also be eliminated from the RAG, since none of both
regions exists anymore. We must then add the adjacency relations of the new region
R12. The computation is straightforward: the neighbors of the new region R12 are
nothing but the union of the neighbors of the old R1 and R2 (with spatial care to
remove any duplicates that may arise). The dissimilarity value associated to each of
these edges must be computed and pushed to the priority queue. The complexity of
the overall BPT construction process is O(n log(n)M), n being the initial number
of nodes and M the maximum number of neighbors of a merged region during the
construction. Given that typically M 
 n, the algorithm is quasilinear in practice.

The final tree contains exactly 2n − 1 nodes, which is a very space-efficient repre-
sentation. Let us remark though that only a subset of all possible planar subdivisions
is represented by the tree, hence the research efforts to construct a good initial tree
that conveys meaningful objects of the underlying image.

The key elements to define the behavior of a BPT are the region model, i.e. how
regions are represented, and the dissimilarity function, i.e., the function to compare
the region models, used to define the priority of the merges during tree construction.
The next paragraphs review the contributions related to these two elements.

Region Model

The object-based nature of BPTs allows to have rich representations of the region
that go beyond pixel spectra. Every BPT node can convey regional information,
describing the region as a whole and not as a set of individual pixels. The standard
variation of the spectral signatures in the region or shape features such as compactness
are some of the regional data that can be associated to every node.

To represent the spectrum of a region (and then compare it to the spectra of other
regions) there are essentially two alternatives: parametric and non-parametric mod-
els. A parametric model makes assumptions about the homogeneity or Gaussian
distribution inside the regions. A typical parametric model is to represent the spec-
trum of a region as the mean spectrum of its pixels. Non-parametric models, on the
contrary, consist of per-band histograms of the pixel values, hence they represent the
real observed distributions. In hyperspectral imagery, non-parametric models have a
better performance since they can describe the internal variability of a region [122].
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For example, a texture might correspond to several peaks in the histogram. When
averaging spectra in regions with high variability, one might end up representing the
region with a “false” spectrum that is not present in any of the individual pixels.

In addition to spectral data, the model usually stores the area of the region, since
it is commonly used in the dissimilarity function. Other shape descriptors such as
solidity, rectangularity index, elongatedness and compactness can also be efficiently
stored and computed from the children nodes [77].

Dissimilarity Function

To establish a priority for merging during BPT construction, it is required to provide
a means to compare models of two regions. A dissimilarity function O(R1, R2)

typically used for this purpose comprises two factors as follows:

O(R1, R2) = min(|R1|, |R2|)βD(R1, R2), (2.5)

where |Ri | denotes the area of region Ri . The first part of (2.5), min(|R1|, |R2|)β ,
is the so-called area-weighting factor. This is an agglomerative force intended to
cluster regions that are very small compared to the rest of the elements in the RAG.
When no area-weighting is used (i.e., β = 0), the resulting BPT might isolate small
noisy areas and connect them to the rest only near the root of the tree. With moderate
values of β, small regions are merged at some point, forcing the trees to better look
like a hierarchical subdivision. When β is too large, the trees might be too biased to
be balanced, hampering their representation capabilities. Even though this parameter
is barely discussed in the literature, being mostly set to β = 0.5 or β = 1, we must
point out that it is indeed a parameter that has to be selected. In our experience, no
area-weighting leads to poor representations (e.g., the root containing two children:
one noisy pixel and all the rest of the image), while low values of β solve this
issue without biasing the trees too much. Alternatively, Calderero and Marques [21]
proposed to keep track of the out-of-scale regions and force their merging at some
point, while Valero et al. [122] used a weighted sum of pixel values in a window to
initialize the histograms, as a way of smoothing out outliers.

The second factor, D(R1, R2), compares both regions based on their spectra.
Kullback-Leiber divergence and Bhattacharyya distance are popular choices both
in hyperspectral imagery and other types of images [21, 122]. Spectra are seen as
probability distributions and compared using standard information theory concepts.
Every bin of one histogram is compared against the corresponding bin of the other
histogram. However, using cross-bin measures, which go beyond individual bins, has
proven to be more robust [122]. The average of Earth Mover’s Distances [101] among
histograms of all bands can be used as a robust and efficient cross-bin dissimilarity
function. Every distribution is seen as a pile of dirt, and the difference between two
distributions is seen as the amount of work required to turn one pile into the other one.



2 Models for Hyperspectral Image Analysis … 65

2.3.3.1 Multi-class Segmentation with BPTs

The problem of object-based classification can be seen as the simultaneous segmen-
tation of an image and the assignment of a label to every segment. This section first
formulates this problem as the minimization of an energy, and describes an algorithm
to extract the optimal segmentation with respect to that energy from a BPT. This algo-
rithm outputs the lowest-energy solution from all the segmentations represented by
the BPT, which are a subset of all possible image partitions. It is then a matter of high
importance to construct good BPTs whose solution space contains relevant candi-
dates for object-based analysis. For this we describe a supervised BPT construction
technique that incorporates class probabilities to cluster objects together.

Multi-class Segmentation as Energy Minimization

Let X = {xi ∈ R
B, i = 1, 2, . . . , n} be a B-band image seen as a set of n pixel vec-

tors. Multi-class segmentation consists in an exhaustive partitioning of the pixels
into a non-overlapping set of regions R = (R j ), with associated labels L = (L j ),
where every label L j belongs to the set Ω of available information classes. From
each object class, we suppose we are given training examples from which we can
derive posterior probabilities P(L j |xi ) of assigning a certain label L j after the spec-
tral observation xi is taken into account. Such posterior probability may be derived
from a support vector machine [128]. The negative log-likelihood − log P(L j |xi ) is
typically used to express a cost that penalizes the assignment of label L j to pixel xi .

Our task is to find the labeled partitioning (R, L) from a BPT that minimizes the
following energy:

E(R, L) = λ||R|| −
∑

R j∈R

∑

xi∈R j

log P(L j |xi ). (2.6)

Let us first observe that the same label L j is assigned to all pixels xi in region R j ,
since the entire segments take a single label. The first term is a regularizer on the
number of regions in the partition ||R||, and controls the coarseness of the output
through parameter λ. In the absence of this term (i.e., λ = 0), the optimal solution
is to create one segment per pixel and assign to it the lowest-cost label. To introduce
the notion of object we must then set λ > 0. We here set this parameter manually,
but let us mention that in recent work the regularization term was directly learned
from training samples [77].

From a BPT, the best possible labeled segmentation with respect to Eq. 2.6 can be
extracted efficiently [102]. This task can be interpreted as the extraction of a minimal
horizontal s-t cut on the tree (see Fig. 2.17), i.e., with a source at every leaf and a
sink at the root. Let us denote C(R) the energy of the cut on R with minimal (2.6)
among all possible cuts.

Considering that the branches in the tree are independent, the globally optimal
cut can be found by a dynamic programming algorithm. Let us denote E (R) =
min
L∈Ω

E({R}, {L}) the lowest possible energy of a region R (by assigning the label
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that incurs the lowest cost). The tree is traversed in a bottom-up manner. Whenever
a region R is visited, the following property is evaluated:

E (R) � C(Rle f t ) + C(Rright), (2.7)

where Rle f t and Rright are the children of R. If the property does not stand, we set
C(R) = C(Rle f t ) + C(Rright ) and keep the best cuts of both children. Otherwise,
we setC(R) = E (R) and replace the cuts by R with label L . This process is executed
recursively until reaching the root of the tree. The overall algorithm is linear in the
image size, since only one BPT traversal is required, and guarantees the optimal cut
in the space of solutions represented by the BPT.

Supervised BPT Construction

Even though the globally optimal cut on a BPT can be found efficiently, not all
the possible ways of segmenting an image are represented in the structure. In some
images, objects have considerable internal variability. For example, it is known that
the different parts of a roof often contrast more with each other than with other
surrounding objects [45]. This is more prevalent in high-resolution imagery and in
cluttered urban scenes.

In such images, it is common to observe objects that are split into different
branches of the tree instead of being contained in a single node. This behavior is
illustrated in Fig. 2.19, which shows a BPT built on an image of a non-uniform roof.
During BPT construction, a part of the roof (b) is merged first to something else (a)
than to the rest of the object (c-d-e) because it is more similar in terms of Eq. (2.5).
As a consequence, the entire building (b-c-d-e) cannot be extracted by selecting a
single node in the tree.

Figure 2.20 illustrates this phenomenon on real image data. Two fragments of the
Pavia Center image, which will be introduced in the experimental section, are shown
in Fig. 2.20a. The scene contains multiple buildings, streets and cars adjacent to
each other. A BPT with a non-parametric region model and Earth Mover’s Distance
was constructed for this image. The energy minimization scheme (2.6) was then
applied, and the objects labeled as tile isolated from the rest to aid the interpretation.
Figure 2.20b depicts the surface covered by tiles, as predicted by the BPT cut. This
way of illustrating the classification is purely pixelwise, since no distinction about
the objects extracted from the tree is made. This is a common way of illustrating
results in the literature, even when the goal is to perform object detection (e.g., [123]).

Fig. 2.19 Faulty BPT: the
object (bcde) is not
represented in a single node,
since a part of it (b) merged
first to something else
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However, observing the actual objects extracted from the BPT (Fig. 2.20c) we can
see that the regions hardly correspond to actual objects in the image. Even though the
surface covered by these objects might be satisfactory from a pixelwise perspective,
an object-based analysis would certainly be less impressive.

Let us recall that the use of non-parametric region models is to represent internal
variability. However, commonly used dissimilarity functions such as (2.5) penalize
the merging of dissimilar regions. In an unsupervised context, where there is no
notion of object class, there is little to do to deal with this, since there is no reason to
cluster dissimilar regions together. However, when class probabilities are available
we propose to include an additional force that clusters regions belonging to the same
class, despite being spectrally dissimilar. The new function is as follows:

O(R1, R2) = min(|R1|, |R2|)β
[
(1 − α)D(R1, R2) − α log P(LR1 = LR2)

]
.

(2.8)

As in the original dissimilarity function (2.5), there is an area-weighting factor and an
unsupervised term D(R1, R2), which is computed by comparing spectral histograms
of regions without any preliminary training. Equation 2.8 adds a supervised term
P(LR1 = LR2 |R1, R2), the probability of assigning the same label to both regions.
This way, while the unsupervised term penalizes spectral dissimilarity, the supervised
term will encourage merging regions that are likely to belong to the same class. The
trade-off between both terms is controlled by parameter α.

The term P(LR1 = LR2 |R1, R2) is computed by marginalizing over the classes as
follows:

P(LR1 = LR2 |R1, R2) =
K∑

j=1

P(L j |R1)P(L j |R2), (2.9)

(a) Color composition (b) Areas labeled tile (c) Extracted objects

Fig. 2.20 Analyzing classification from a pixelwise b vs object-based c perspective. Even though
the area covered by the tile objects might be satisfactory (b), the objects that constitute this area
often do not correspond to the real objects (c)
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where K is the number of classes and P(L j |Rk), with k ∈ {1, 2}, represents the
probability of assigning a certain label L j to segment Rk . We must now define a way
to compute P(L j |Rk) based on the posteriors of the individual pixels contained in
the region. One way to do this is to compute the probability of assigning the label
to all pixels, conditioned by the fact that all labels are known to be equal inside the
region:

P(L j |Rk) =
∏

xi∈Rk

P(L j |xi )/
⎡

⎣
∑

ωm∈Ω

∏

xi∈Rk

P(ωm |xi )
⎤

⎦ . (2.10)

Alternatively, one can estimate P(L j |Rk) by averaging the individual pixel proba-
bilities:

P(L j |Rk) = 1

|Rk |
∑

xi∈Rk

P(L j |xi ). (2.11)

While the first expression is closer to a strict Bayesian interpretation, we found the
second one to be a simple yet useful approximation.

By introducing (2.8) we expect to better cluster semantically significant objects
together. The advantage of such an outcome is two-fold: first of all, the classification
accuracy is improved. Secondly, there is a notion of object, which constitutes a
higher-level interpretation of the input image rather than mere pixelwise labeling.

2.3.4 Experimental Results

This sections describes two series of experiments to analyze and compare different
methods of hyperspectral image classification. We report results for the most repre-
sentative pixelwise and spectral-spatial methods discussed in the previous sections,
as well as the BPT model. The first set of experiments is performed on a dataset over
the University of Pavia, Italy. The goal of this evaluation is to compare the different
approaches in terms of per-pixel classification accuracy, with the particular goal of
verifying that the introduction of spatial information improves the results.

A second set of experiments is carried out on the Pavia center hyperspectral
dataset. The goal of these experiments is to evaluate the behavior of the techniques
from an object-based perspective, providing an object overlap measure between ref-
erence and detected objects. We compare the typical unsupervised BPT construction
approach and the supervised alternative introduced in Sect. 2.3.3.1.

Both images were acquired with the Reflective Optics System Imaging Spectrom-
eter (ROSIS-03). This optical sensor provides 115 bands with a spectral coverage
ranging from 0.43 to 0.86 µm and 1.3 m spatial resolution.
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Fig. 2.21 University of Pavia hyperspectral dataset

University of Pavia

This image is of size 610 × 340 and contains 103 spectral channels (after excluding
12 noisy bands). Figure 2.21a illustrates a false color composition of the hyperspectral
image. The reference data contains nine classes of interest, as depicted in Fig. 2.21b.

In the next paragraphs we summarize the classification methods that were executed
and compared on this dataset. As described in Sects. 2.3.1–2.3.3, these techniques
have become the standard in the remote sensing literature.

SVMA support vector machine (SVM) was trained on 50 randomly selected samples
for every class. A multi-class one vs one SVM with Gaussian kernel was used (with
parameters C = 128 and γ = 0.125, set by fivefold cross-validation).
Graph cut A graph cut with α-expansion [20] (which proved to be effective in
hyperspectral image classification [118]) was executed on probabilities derived the
SVM. Its regularity parameter was set empirically to optimize the accuracy.
HSeg The technique presented in [113] was also implemented, which consists in first
performing a segmentation and then labeling every segment. A recursive hierarchical
image segmentation (HSeg) is used, followed by a majority voting procedure in
which every segment is labeled as the majority class of the SVM predictions inside the
segment. Parameter ‘spclust_wght’ was set to 0.1, following the original publication.
BPT For the binary partition tree (BPT) model described in this chapter, the tree was
constructed by using a non-parametric model with 30 histogram bins per band, the
Earth Mover’s Distance to compare histograms and mild area-weighting (β = 0.1).
The coarseness parameter λ in (2.6) was empirically set to 40. Two variants were
tested: (a) totally unsupervised construction, i.e., setting α = 0 in (2.8), which is
equivalent to the old function (2.5); (b) supervised construction with equal contri-
bution from both terms in (2.8), i.e., α = 0.5.
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Table 2.3 Numerical evaluation on University of Pavia dataset (in %)

SVM Graph cut HSeg [113] BPTα=0 BPTα=0.5

AA 88.03 95.13 95.35 95.49 97.32

OA 80.38 91.69 90.75 94.45 93.13

Asphalt 77.66 94.58 95.40 97.83 99.15

Meadows 72.74 86.10 83.63 92.65 86.07

Gravel 79.55 86.58 98.98 84.87 99.17

Trees 95.95 97.38 96.28 91.44 96.72

Metal 99.61 100.0 99.15 99.07 99.92

Bare soil 89.38 98.39 94.86 97.99 98.31

Bitumen 94.37 95.55 95.23 99.92 97.19

Bricks 82.89 97.74 97.88 95.59 99.31

Shadows 100.0 99.89 96.77 100.0 100.0

The test dataset was created by excluding the pixel used from SVM from the
ground truth. To measure the performance we use the average accuracy (AA) and
overall accuracy (OA). The first one computes for every class the percentage of
correctly classified pixels from the test data, and averages these values over all the
classes. The latter is the proportion of correctly classified pixels. The pixels used for
SVM training are excluded in the evaluation. The numerical results are deployed on
Table 2.3. The accuracies for individual classes are also included in the table. We can
verify that purely pixelwise methods such as SVM have a lower performance than
spectral-spatial approaches. The BPT models (with α = 0 and α = 0.5) outperform
the other techniques. The inclusion of class probabilities in tree construction (α =
0.5) boosts the AA with a mild decrease of OA with respect to the unsupervised
construction.

The overall classification map for the BPTα=0.5 method is shown in Fig. 2.21c
and two fragments are amplified and compared with other methods in Fig. 2.22.
These results show that in general BPTs constitute an improvement with respect to
the other techniques. The benefit of supervised (α = 0.5) over unsupervised (α = 0)
construction is not entirely clear in this dataset. First of all, there are few objects of
every class in the reference data and the labeled pixels do not cover the entire surface
of the objects. Moreover, there seems to be a significant contrast between objects and
their surroundings, a situation in which the supervised term in (2.8) may not be very
relevant. While BPTs have proved to be competitive from a pixelwise perspective,
we require a different dataset to evaluate the performance of the methods from an
object-based perspective and compare the unsupervised vs supervised construction
models.

Pavia Center

This image has spatial dimensions 400 × 300 and contains 102 bands. A color com-
position of the image is shown in Fig. 2.23a. Compared to the University dataset, this
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Fig. 2.22 University of Pavia: closeups of classification maps with different methods

image presents a more cluttered scene with objects composed of dissimilar parts. As
illustrated previously in Fig. 2.20, BPT nodes may not correspond to entire objects
because parts of them grow into other adjacent objects during the construction.

A reference image that labels entire objects and not just isolated pixels was built,
including four classes (see Fig. 2.23b). This reference was constructed by combining
the labeling of isolated pixels provided with the original image, visual inspection
and official Italian records of building boundaries, which are available for this area
through the OpenStreetMap.org database. Since the boundaries of buildings are well
defined, there is a particular interest in analyzing the performance of BPTs to extract
buildings.
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Fig. 2.23 Experiments on Pavia Center hyperspectral image

An SVM is first trained on randomly selected samples (parameters C = 128,
γ = 2−5). The SVM classification is shown in Fig. 2.23c. A BPT is then con-
structed on top of the SVM probabilities, in a similar experimental setting as with
the University of Pavia dataset, and the classification map is extracted by setting
λ = 20 in Eq. (2.6). The resulting classification map with supervised tree construc-
tion (α = 0.5) is shown in Fig. 2.23d.

Figure 2.23e, f and the close-ups of Fig. 2.24 compare the results obtained by
applying the unsupervised and supervised approaches for BPT construction. These
figures isolate the tile objects from the rest and assign a random color to every
individual object. From these illustrations we can appreciate that including class
probabilities during BPT construction has the effect of better clustering the objects
together. To validate this numerically we compute the overlap between every build-
ing (belonging either to tiles or bitumen classes) in the reference data and the most
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Fig. 2.24 Unsupervised b versus supervised c BPT construction. In the supervised case, regions
are better clustered together to represent significant objects

Table 2.4 Numerical evaluation on the Pavia Center dataset

SVM Graph cut BPTα=0 BPTα=0.5

Building overlap 0.51 0.51 0.54 0.56

Overall accuracy 0.88 0.94 0.91 0.94

overlapping building region in the BPT output. The overlap is measured with Dice’s
coefficient defined as: 2|R1 ∩ R2|/(|R1| + |R2|). The resulting overlap coefficients
are averaged over all reference buildings to produce an estimation of how well the
BPT output matches the reference data from an object-based perspective. The numer-
ical results, together with the overall accuracy, are summarized in Table 2.4, which
also includes the values for SVM and graph cut. A first observation we can make
is that BPTα=0.5 performs better than BPTα=0, corroborating the visual impression
from Fig. 2.23e, f. Secondly, while graph cut is known to improve the SVM classi-
fication, we can see that this is true from a pixelwise perspective (in terms of OA)
but not from an object-based perspective (in terms of building overlap). Finally, the
use of BPTα=0.5 outperforms the other methods in terms of object overlap. This
validates the idea of including class probabilities during tree construction for a better
object-based analysis of hyperspectral imagery.

2.4 Challenges

The classification of hyperspectral imagery presents a number of challenges proper to
the nature of this image modality. The integration of spatial and spectral information
is one of the most widely addressed issues, as we have reviewed throughout this
chapter. This concern will certainly continue to intrigue the scientific community
and will remain an active research area. However, the imbalance between the high
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dimensionality of hyperspectral data and the low amount of training samples is still
probably one of the largest sources of difficulty.

There is a growing trend to study new training schemes to deal with the limited
availability of labeled data. Notably, semi-supervised algorithms are arising in the
hyperspectral literature (e.g., [97, 119]). These algorithms combine a low amount
of labeled training data with unlabeled samples, under the assumption that the latter
can be obtained with little effort. A smart combination of labeled and unlabeled data
may significantly improve the accuracy of classification. Among semi-supervised
algorithms,active learningmethods interact with the user to actively query for helpful
labels [86, 120, 125].

With the recent advent of deep learning in multiple application domains, it will
certainly gain increasing attention in the hyperspectral image analysis community.
Some first research efforts in this direction can be already identified in the litera-
ture [34, 75].

To conclude, we can say that hyperspectral remote sensing image analysis uses
and adapts frontier concepts, frameworks and algorithms from the fields of signal
and image processing, statistical inference and machine learning. The compendium
of techniques presented in this chapter reflects the increasing sophistication of a field
that is rapidly maturing at the intersection of many different disciplines.
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high spatial resolution optical data acquired by agile satellite platforms. Each method
aims at specific properties of the image information content and can be tailored to
address unique features in spatial, temporal, and angular acquisitions. Techniques
for the identification and characterization of surface structures and objects often
employ spatial and spectral features best represented in panchromatic and multi-
spectral images, respectively. In both cases, the vastness of the data space can only
be addressed effectively by means of some data representation structure that orga-
nizes the image information content in meaningful ways. The latter suggest that a
globally optimal representation of the object(s) of interest can be obtained through
interactions with a scale space as opposed to single-scale information layer. Two
examples, the Max-Tree and Alpha-Tree algorithms, are discussed in the context of
interactive big data information mining. Optical and structural properties of the sur-
face materials can be exploited by analyzing the tempo-angular domain by means of
anisotropic decompositions, which rely on the availability of surface reflectance data
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3.1 Introduction

During the last two decades, significant progress has been made in developing and
launching satellites with instruments, in both the optical/infrared and microwave
regions of the spectra, well suited for Earth observation with an increasingly finer spa-
tial, spectral, and temporal resolution. As an example, WorldView-3 is the first multi-
payload, super-spectral, very high spatial resolution commercial satellite. Operating
at an altitude of 617 km, WorldView-3 provides 31 cm panchromatic, 1.24 m visible
and near-infrared, and 3.7 m short-wave infrared imagery (up to 680,000 km2 per
day), with an average revisit time of less than 1 day.

Sensors with sub-metric resolution allow the detection of small-scale objects,
such as elements of residential housing, commercial buildings, transportation sys-
tems, and utilities. Spectral capabilities provide additional discriminative features for
classes that are spatially similar, due to their higher spectral resolution. The temporal
component, integrated with the spectral and spatial dimensions, provides essential
information, for example, on vegetation dynamics. Finally, newer classes of satellites
have high-performance camera control system capable of rapid re-targeting, allowing
the collection of dozens of images over a single target, each with a unique angular
perspective, opening a unique approach to multi-temporal/multi-angular imaging.
However, the current offering of imagery does not match the customer real need.
Users in all domains require information or information-related services that are
focused, concise, reliable, low cost, timely, and which are provided in forms and for-
mats compatible with the user’s own activities. The information extraction process
is generally too complex, too expensive, and too dependent on user conjecture to be
applied systematically over an adequate number of scenes. Therefore, there is the
need to develop fully automated techniques.

While spectral information allows the discrimination of many materials, very high
spatial resolution data enable the description of ground structures that are directly
linked to image segments. This mapping between image segments and ground struc-
tures can be further automatized with the use of image representation structures and
machine learning methods. The synergy of the two domains is challenged to address
the well-known problem of single-scale segmentation in capturing image structures
in their entirety when the latter are inherently multi-scale. Moreover, the computa-
tional complexity of the methods involved in relation to the number of pixels that
needs to be processed possesses the need for extremely efficient algorithms. The
temporal and angular domains significantly inflate the processing requirements of
very high spatial resolution imagery.

This chapter presents key methods and strategies for addressing both challenges.
In the object detection domain discussed in Sect. 3.2, image representations are data
structures that organize the image information content into hierarchies of nested con-
nected components or connected sets of maximal extent. Two known examples in
the field of satellite image analysis are the Max-Tree and Alpha-Tree structures.
The Max-Tree data structure is defined for scalar data layers such as panchro-
matic images and clusters isotone pixels according to some definition of spatial
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connectivity. Max-Trees can be utilized for the representation of multi-spectral
imagery using adequate dimension reduction or edge transforms. Alpha-Trees cap-
ture the plurality of radiometric information and provide highly granular represen-
tations of the image content. Progressive clustering of neighboring elements of the
spatial domain is subject to one or more spectral or other dissimilarity metrics. Tree
nodes in both representations coincide with connected components of the image.
Node nesting allows for the efficient computation of spectral and moment-based
shape features and further for the definition of efficient processes. The computation of
both trees has been optimized for sequential, cluster, and cloud environments, allow-
ing for rapid access to the structured/attributed image information content. Moreover,
both trees can be set to coincide with space-partitioning data structures such as the
kd-Tree for classification of connected components based on limited training data.
More specifically, Sect. 3.2.2 gives an overview of notions of connectivity employed
to define connected image regions as the first step to image content organization.
The Max-Tree and Alpha-Tree structures encoding hierarchical properties of con-
nected image regions over pre-defined intensity or dissimilarity ranges, respectively,
are presented in Sect. 3.2.3. The same section discusses the incremental collection
of auxiliary data for the computation of node attributes. A mathematical formula-
tion of spatial sampling facilitated by each tree separately is given in Sect. 3.2.4.
Section 3.2.5 discusses the classification based on tree pruning and further presents
the kd-Tree structure employed for this purpose. The capabilities of this hybrid pro-
tocol utilizing a Max-Tree and a kd-Tree are demonstrated over two data sets in
Sect. 3.2.6. Multi-temporal and multi-angular image sets can be analyzed in similar
ways using representation forests instead of individual trees. In the case where sur-
face materials are analyzed, image representations become pixel-based transforms,
examples of which are discussed in Sect. 3.3. In particular, in Sect. 3.3.2, the differ-
ences between non-physical and physical quantities are described in detail, including
the theoretical formulation to retrieve at-sensor radiance, at-sensor reflectance, and
surface reflectance, while the effects of surface anisotropy and two different angular
decomposition models are reviewed in Sect. 3.3.3. Both qualitative and quantitative
experimental results are discussed in Sect. 3.3.4 to illustrate the advantages of phys-
ical quantities and angular decompositions for the analysis of multi-temporal data
sets.

3.2 Interactive Image Information Mining Based
on Hierarchical Data Representation Structure
Coupling

3.2.1 Introduction

Methods for the analysis of very high spatial resolution (VHsR) remote sensing
optical imagery are often confronted with global inconsistencies that emerge from
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their dependence on sensor acquisition parameters, increased scene complexity, high
spatial resolution, and vast region coverage. In response to this, data organization
schemes and machine learning have been introduced that led to a new paradigm
of pixel- or object-based classification [1–3]. A key element in the success of this
paradigm is the robustness and efficiency of the semantic bridge built between auto-
matically derived image features and human knowledge [4]. The latter is often rep-
resented by limited subsets of class examples. Giving emphasis on improving the
classification accuracy while maintaining small training sets [5], a human–computer
interaction model has been proposed in which the user assigns manually class labels
on samples suggested by the computer [6, 7]. This makes it adaptive to the user’s
interests and allows for fine-tuning. Examples of this approach utilize complex mod-
eling schemes that generally scale up linearly with the number of image elements or
objects. Consequently, the application of the derived model to the full extent of the
image data often proves to be a bottleneck when analyzing massive image tiles. Re-
computing the model for fine-tuning or correcting inaccuracies in such cases tends
to be tedious and rather inefficient. Recent works showed that the use of structured
data representation by clustering techniques leads to considerable speedups in classi-
fication [8–11]. Raw clustering, however, often deviates from an objective semantic
representation and further requires a priori knowledge of the number of clusters. The
latter can be set automatically [12, 13] subject to some optimization criterion. This
shows up an improvement in the accuracy of the resulting semantic layers, yet the
data organization strategy remains rigid.

Improvements in the performance of the analysis methods based on this para-
digm are driven by two directives: efficient management of the input data and of the
respective pool of features that drives the classifiers. The input data can be managed
efficiently using image representation schemes. The objective is to reduce the number
of entities to be addressed by organizing pixels into homogeneous regions or com-
ponents based on similarity criteria. Image segmentation has been proposed in [14]
though its dependence on a scale parameter for determining the extent of the resulting
segments makes it a rigid approach that does not support reconfiguration on demand.
By contrast, hierarchical segmentation [15, 16] yields a customized reduction in the
number of components from some multi-scale representation of the image content.
Hierarchical image representations for multi-scale analysis of the image content and
segmentation have been investigated in [17–22] and rely on two popular structures:
the Max-Tree [23] also known as the Component-Tree [24] or the Alpha-Tree [16]. In
both structures, the node linkage matches the nesting order of connected components
from the corresponding image level sets or partitions, respectively. The tree nodes
rather than storing component features register a limited set of generic variables [25,
26] from which a rich set of structural, intensity, and connectivity attributes can be
computed on the fly. This functionality is valuable for exploring both the spectral
and geometrical information content of the image under study. Component features
can be exported and organized in a multi-dimensional space directly from the tree
structure. Image-to-tree and tree-to-feature space mapping protocols for both types
of trees have been presented in [26–29] and promote sets of compact feature spaces
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to be used in their entirety as feature vectors either to train decision tree classifiers
or to compute supervised segmentations.

Building on these developments, a new modular protocol was proposed in [30]
that utilizes a combination of the Max-Tree and kd-Tree structures. The Max-Tree
was employed for organizing the input image into meaningful components, and
for computing their features. Moreover, the Max-Tree itself was used as an efficient
interface between the image space and feature space [31] for managing the collection
of positive and negative examples in real time. The kd-Tree is a hierarchical clustering
algorithm employed for managing the feature space organization. It offers a structured
representation of this space from which a classification is computed directly. This
representation was configured with a trade-off parameter that allows the user to
select the extent of the clustering granularity. This makes the clusters adapted to the
classification problem, and further supports rapid and computationally efficient re-
adaptation. The classification is used for selecting the desired components/tree nodes
which are then mapped back to the spatial domain through the Max-Tree interface.

As opposed to the classical paradigm of interactive learning that is followed by a
time-consuming model application on the spatial domain, the approach in [30] shifts
the operational complexity to the structuring of the feature space. Following this
stage, interactive classification of massive image data sets can be launched in near real
time. Experiments reported in [30] that utilize the proposed protocol on gigapixel-
sized images were concluded in 33 min (Max-Tree and kd-Tree construction: 3 and
30 min., respectively), on an eight-core architecture (2.2 GHz Intel Xeon) and 64 Gb
RAM. Classification results were produced in approximately 10 s. allowing for an
interactive query of the information content. With the hierarchical image and feature
space data representation structures stored in memory, scene classification, subject
to different criteria, can be reiterated rapidly offering a dynamic view of the massive
image information content.

3.2.2 Image Content Organization

Organizing the image information content into meaningful entities requires two
preliminaries: the definition of the pixel properties to be explored and the set of con-
nectivity rules [32] based on which pixels can be clustered. Examples of the first pre-
liminary are frequency/reflectance values or vectors and spatial properties. Examples
of the second include set or lattice theoretic notions of connectivity [32–37], of hyper-
connectivity [33, 35, 38, 39], of attribute space connectivity [40], and others [37,
41]. For reasons of simplicity, the remaining discussion will focus on two notions
of set connectivity only, namely the standard morphological connectivity expressed
through the construct of connectivity classes [32] and a sub-connection of the canon-
ical path-wise connection on graph spaces referred to as alpha-connectivity [42].

The objective in both cases is to define connected components [32] or other-
wise connected sets of maximal extent within the image definition domain E . The
maximality condition ensures that for each connected component CC ⊆ E , there
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can be no other superset of it that adheres to the same connectivity rules. Sets of
maximal extent assign meaningful boundaries to the image information content and
allow for the explicit treatment of the regions they represent. Naturally, any two con-
nected components are strictly disjoint, and under the constraint that the empty set
is connected too, the set of all connected components constitutes a unique partition
of E .

Connected components can be accessed by a morphological operator (see also
Chap. 7 for a review of morphological operators) known as a connectivity opening
Γx [32, 43, 44]. Given a point x ∈ E , Γx returns the connected component contain-
ing x or the empty set otherwise. The plurality of pixels constituting each connected
component can be used for computing features best describing it or differentiating
it from others. Image operators that process connected components are called con-
nected attribute filters [45–47] and possess a valuable property; they can either retain
the component in question intact or remove it in its entirety depending on one or more
of its feature/attribute values.

Connected regions in panchromatic images can be defined using two further enti-
ties: the peak components and flat zones [23, 48]. Let f be a panchromatic image
with a definition domain E , i.e., f : E → Z2. A peak component Ph( f ) at level h
and marked by a point x is a connected component of the set of all pixels that have
intensity greater than or equal to h:

Ph
x ( f ) = Γx ({y ∈ E | f (y) ≥ h}). (3.1)

A flat zone at level h addresses a subset of the corresponding peak component.
It is a connected component marked by x , of the set of all pixels in E that have an
intensity strictly equal to h:

Fh
x ( f ) = Γx ({y ∈ E | f (y) = h}). (3.2)

If a peak component defines a single flat zone of the same extent, i.e., Fh
x ( f ) =

Ph
x ( f ), it is called a regional maximum. A regional maximum at level h has no

neighbors of intensity greater than or equal to h.
By contrast to the isotone connected image regions discussed so far, α connectivity

offers a different perspective that allows the clustering of non-isotone pixels into
connected components: the α-connected components [42].

Let δ be some dissimilarity measure between elements of E such that δ(x, x) =
0 ∀ x ∈ E . To evaluate δ between any two path-connected but not adjacent elements
xandy ∈ E , consider a path π between x, y to be a chain of pairwise adjacent
elements given by:

π(x � y) ≡ 〈x = x0, x1, . . . , xN−1 = y〉, (3.3)

in which, N is the number of elements in the path.
If Π 
= ∅ is the set of all possible paths between x and y, and Nπ is the number

of elements in each path, the minimum dissimilarity measure with respect to some

http://dx.doi.org/10.1007/978-3-319-66330-2_7
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pre-specified element attribute is the ultra-metric functional δ̂ [16] given by:

δ̂(x, y) = in fπ∈Π

{
supi∈[0,...,Nπ −1]

{
δ(xi , xi+1) | xi , xi+1 ∈ π

}}
(3.4)

In words, (3.4) states that the dissimilarity measure between any two path-
connected elements of E is the infimum among the set of values, each correspond-
ing to the maximal dissimilarity between pairwise adjacent elements along each
path [42]. This has been used to define single linkage and α connected components
accordingly:

An α connected component αCC(x) marked by x ∈ E is given by:

αCC(x) = {y | δ̂(x, y) ≤ α}. (3.5)

Following the analysis in [16], an α connected component is the union of the
marking singleton set {x} which is α connected to itself, with the family of all
elements y to which x is path-connected to such that the dissimilarity between any
two adjacent elements in each path separately is no greater than α. If the dissimilarity
between any two adjacent elements x and y is less than or equal to α, the two
are directly connected, i.e., there exists an edge between x and y, and thus are
members of the same αCC. The case in which δ̂(x, y) > α does not imply that
x and y do not belong to the same αCC but only that there is no direct linkage
between them. An example is shown in Fig. 3.1. Connected components that consist
exclusively of elements for any two of which δ̂(x, y) = 0 are called reference
connected components or 0-CCs. In the case in which the element attribute is the
intensity and the dissimilarity measure δ is the L p norm, a reference component
marked by x is equivalent to the respective image flat zone containing x , i.e., a
maximal connected iso-intensity image region.

Fig. 3.1 Top row A six-level test pattern and its threshold decomposition with respect to intensity;
second row the α-linkage of the test pattern for α = 0, 1, 2.Bottom row the corresponding Max-Tree
and Alpha-Tree structures
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The αCCs are equivalence classes on the image definition domain [42]; conse-
quently, the set of αCCs for all x ∈ E defines a partition of E , i.e., αCCs are both
collectively exhaustive and mutually exclusive in E . Moreover:

⋃
x∈E

αCC(x) = E . (3.6)

Evidently, greater values of α result in larger αCCs, i.e., produce coarser partitions
of E . Consider a point x ∈ E and a range A of α values. All respective αCCs
containing x are ordered with respect to α such that:

αiCC(x) ⊆ α jCC(x), ∀ αi ≤ α j , and αi , α j ∈ A. (3.7)

Figure 3.1 shows an example of a fine to coarse partition evolution for three α

levels. The red segments represent linkage relations between pixels for α = 0, 1, 2.
The nesting order of components with respect to α allows for the definition of a
structured representation that is referred to as the Alpha-Tree [16, 27] and is discussed
next.

3.2.3 Hierarchical Image Representation Structures

The image information content is often organized and managed efficiently using some
hierarchical representation structure. An example of the latter is a tree T which is
an acyclic graph having an entry node called the root R. The set of nodes defining
T is denoted by N = {Ni }. Following each root-path, the nodes found the furthest
away from the root are called the leaves. The set of leaves is denoted by L = {Li },
and L ⊂ N . Moreover, given a node N , the set of its children nodes is denoted by
CN = {CN

i }.
This section gives a brief overview of two popular tree types for hierarchical

image representation known as the Max-Tree and the Alpha-Tree. An example of
the latter is shown in Fig. 3.2.

3.2.3.1 The Max-Tree Representation

The Max-Tree [23] also referred to as the Component-Tree [24] is a hierarchical
image representation structure that was introduced in the context of attribute filter-
ing [45]. It is a rooted, uni-directed tree with its leaves corresponding to the regional
maxima of the image and its root corresponding to the single connected component
defining the background. The hierarchical ordering of the nodes encodes the nesting
of peak components with respect to the image grayscale range. Reversing the nest-
ing order, i.e., having the brightest component defining the background, and dark
components defining the leaves of the tree, leads to the Min-Tree representation.
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Fig. 3.2 A 3D fish-eye-view projection of an Alpha-Tree domain reduced to a minimum spanning
tree. Nodes represented by yellow dots are interconnected in a child-to-parent manner. Points of
attraction in this graph space seen here as the tips of various cone-like structures represent parent
nodes hosting all children nodes found at the base of each cone (color figure online)

An example of a Max-Tree for a simple six-level test pattern is shown in Fig. 3.1.
The top row shows the progressive threshold decomposition of the pattern for five
intensity threshold values. Each Max-Tree node Nh

κ associates (�) with a unique
peak component and contains all pixels that make up the set of its flat zones. The
tree nodes are addressed by their gray level h and the node-at-level index κ:

Nh
κ � Ph

κ , (3.8)

Nh
κ = {x ∈ Ph

κ | f (x) = h}. (3.9)
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The Max-Tree of the test pattern at the top left of Fig. 3.1 is shown at the bottom
left diagram. Note that only the peak components containing flat zones are mapped
into the tree.

Every node points to its parent which is the first ancestor node below the given
level, and the root points to itself. The node structure typically consists of four
members: the gray level h, the gray level after node processing h′, the parent address,
and a pointer to an auxiliary data structure. The latter is variable in size, and it is set
upon selecting the types of features to be supported by the tree for further processing.
The variables storing the auxiliary data of each node are updated in two separate ways:
incrementally after visiting each pixel member of the corresponding set of flat zones
and by inheritance from all the children nodes if the reference node is not a regional
maximum.

The Max-Tree [23] algorithm runs a three-stage process cycle in which the tree
construction is separate from image processing and restitution. The benefit of this
modular architecture is that operators may be reiterated without the need for re-
computing the tree structure each time.

3.2.3.2 The Alpha-Tree Representation

Consider the set of all αCC partitions, each given by a unique threshold value α on a
pre-defined increasing dissimilarity metric. As α increases, partitions turn from fine
to coarse following a nesting order. The Alpha-Tree structure [16, 27] is a hierarchical
projection of all unique αCCs from this set. Each tree level contains all α-CCs from
the corresponding partition at threshold α that appear for the first time. All α′CCs
for which α′CC = αCC with α < α′ are ignored as they only add redundancy. The
leaves of the Alpha-Tree correspond to cells of the finest partition, i.e., 0-CCs, and
its root to the single node corresponding to the entire image definition domain. An
example is shown in Fig. 3.1. The middle row shows the α linkage between elements
of the test pattern. For α = 0, there exist eight unique 0-CCs. For α = 1, there
exist four αCCs but only one of them is unique. For α = 2, all elements of the
definition domain of the test pattern are clustered into a single component defining
the root of the Alpha-Tree. Figure 3.2 shows a real Alpha-Tree in which all yellow
end-points represent the leaves of the tree. The existing algorithm for computing the
Alpha-Tree [16] is designed in the same modular approach as the Max-Tree to allow
the separation of the tree construction from the processing stage.

Each node of the tree maps to a unique α connected component from the stack of
α-partitions. The relation between α and the tree level h is retrieved from a lookup
table that is populated during the tree construction stage by the function α2h(). For
h = α2h(α):

Nh
κ � αCC, (3.10)

The subscript κ specifies the node ID at level h.
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N 0
κ = {x ∈ 0-CCκ}, and Nh>0

κ =
⋃
x∈E

α′CC(x) � Nh′
κ ′ | α′CC(x) � αCC(x),

(3.11)

in which, α′CC(x) � αCC(x) means that α′CC(x) is the largest subset of αCC(x)
containing the point x at α′ < α. Like with the Max-Tree, each node points to its
parent, i.e., the first superset of the given αCC at α′′ > α, and the root node points to
itself. The Alpha-Tree node structure consists of four members: the node offset that
is essentially a node identifier, the node parent address, the α level, and a pointer to
the auxiliary data structure.

3.2.3.3 Connected Component Attribution

The pool of auxiliary data associated with each Max-Tree or Alpha-Tree node
gives access to a rich set of component features that can be computed in advance
or upon accessing the node. Further to common features like area, perimeter, and
compactness, a wider range of more advanced metrics can be computed like Hu’s
moments [49], moment of inertia, variance. Emphasizing on the geometrical descrip-
tion of the image information content, an example of the spatial moments is discussed.

Let Nh
κ be a tree node representing a peak component Ph

κ in the case of a Max-Tree
or an αCC in the case of an Alpha-Tree. Moreover, let B be the number of children
nodes each at a level hβ > h (Max-Tree) or hq < h (Alpha-Tree), for β ∈ B. If Nh

κ

is a regional maximum (Max-Tree) or a reference component (Alpha-Tree), it has no
children nodes i.e., B = 0, and the spatial moments can be computed directly from
the set of pixels associated with the respective node:

Mp,q(N
h
κ ) =

∑
x∈Nh

κ

i px j
q
x , (3.12)

in which the pair (ix , jx ) specifies the spatial coordinates of the pixel x ∈ E , and
p and q are positive integers.

In the general case in which B ≥ 0, the respective feature for a Max-Tree node is
computed from the auxiliary data of all pixels associated with the node Nh

κ and the
respective data inherited from all children nodes C :

Mp,q(N
h
κ ) =

∑
x∈Nh

κ

i px j
q
x +

B∑
β=0

Mp,q(C
hβ

κ ′ ), (3.13)

in which κ ′ refers to the node index at level hβ .
For an Alpha-Tree node since it consists explicitly of a plurality of pixels all

pre-assigned to children nodes, for B > 0 Eq. (3.13) can be simplified to:
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Mp,q(N
h
κ ) =

B∑
β=0

Mp,q(C
hβ

κ ′ ). (3.14)

Inheritance of auxiliary data guarantees that each pixel will be accessed only once
for updating the respective members of each node structure, i.e., the process has a
linear complexity with respect to the image size. This is an integral step of the Max-
Tree/Alpha-Tree construction and does not require additional iterations. Computing
node features from the associated pool of auxiliary data reduces to simply substituting
the obtained values in each respective formula. Let k be the total number of features
supported by a given pool of auxiliary data. Moreover, let ct (p, q) | t ∈ [1, . . . , k]
be the complexity of computing a feature t for each node. If the total number of
nodes is n, then extracting a k-dimensional feature space has a complexity term∑k

t=1 ct (p, q) × n, i.e., O(kn).
In certain applications, further to component features computed directly from

the tree representation of the input image f , it is necessary to incorporate features
computed from separate sources or processes. Examples are elevation and color
properties following image pan-sharpening (see also Chap. 6).

Let g : E → R2 be some image representing the external source of information.
This information can be injected in a tree node by considering the average or the
variance of g from the pixels belonging to it. Denoting with Ag, Vg the accumulators
computed incrementally and with ag the average and vg the variance of the values of
g in the considered node, a recursive formulation similar to (3.13) can be adopted:

Ag(N
h
κ ) =

∑
x∈Nh

κ

g(x) +
B∑

β=0

Ag(C
hβ

κ ′ ), (3.15)

Vg(N
h
κ ) =

∑
x∈Nh

κ

g(x)2 +
B∑

β=0

Vg(C
hβ

κ ′ ), (3.16)

ag(N
h
κ ) = Ag(Nh

κ )

M0,0Nh
κ

, (3.17)

vg(N
h
κ ) = Vg(Nh

κ )

M0,0Nh
κ

− ag(N
h
κ )2. (3.18)

This process is introduced to allow ingesting other sources of information rep-
resented in the form of an image defined on the same grid E as f . It has a linear
complexity factor with respect to the number of pixels too.

http://dx.doi.org/10.1007/978-3-319-66330-2_6
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3.2.4 Spatial Sampling

The introduction of tree structures as intermediate modules between the image space
and the feature space [28–31, 50] improves the efficiency of spatial sampling by map-
ping selected connected components to tree labels and in turn to feature space entries.
This is done by selecting regions of interest in the original image and retrieving all
the components fully included within them. In this section, a brief mathematical
formulation of the image grid to tree mapping is presented for each of the two tree
types separately.

3.2.4.1 Spatial Sampling Based on the Max-Tree Structure

Given a gray-level image f , a threshold set of f at level h is a binary image is defined
as:

Th( f ) = {x | f (x) ≥ h} (3.19)

The membership of a pixel x ∈ E in Th( f ) is given by the characteristic func-
tion χ :

χ(Th( f ))(x) =
{

1, if x ∈ Th( f ), (3.20)

0, otherwise. (3.21)

For each threshold set Th( f ) with h ∈ hmin + 1, . . . , hmax , let {CCκ} be the set
of all its connected components, each mapped to a unique peak component Ph

κ . The
values hmin and hmax are the intensity extrema of the input image, and κ is an instance
of the component index set Kh .

A region of interest (ROI) marked on the input image can be represented by a
binary mask S ⊆ E . To extract the peak components fully contained within this
spatial subset, we employ connectivity openings Γx and closings Φx . This is for
addressing bright components with respect to a dark background, and the inverse,
respectively. The operator Γx returns the connected component marked by a point
x ∈ E or ∅ otherwise. The connected operator Γ S

x given by:

Γ S
x (Th( f )) =

{
Γx (Th( f )), if Γx (Th( f )) ⊆ S, (3.22)

∅, otherwise. (3.23)

returns the connected component of the threshold set that is marked by x , provided it
is a subset of or equal to the mask S, or ∅ otherwise. Reiterating Γ S

x for each threshold
set, with h in the image intensity range, yields the complete set of peak components
fully contained within the spatial subset. To address the intensity of each pixel within
S, the “component window” function [31] is defined as the mapping CW : E → R
given by:
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(a) (b) (c)

Fig. 3.3 An example of a 1D signal and its Max-Tree in a. The y-axis is the intensity axis, and the
x-axis is the spatial displacement axis. A ROI in transparent gray in b and the contents of the CW
and CWMT functions in c

(CWS( f ))(x) =
hmax∑

h=hmin+1

( ∑

κ∈K f
h

χ
(
Γ S
x (CCTh( f )

κ )
))

. (3.24)

In words, (3.24) states that the intensity of any point x ∈ S, i.e., contained within
the component window, can be obtained by initializing it to zero and updating it by
adding the value of 1 for each level h at which the connected component CCTh( f )

κ is
a subset of or equal to S and contains the point x .

Let I DMT () be a function that returns the Max-Tree node Nh
κ identifier. To retrieve

the identifiers of all the tree nodes that associate with peak components found within
S, the function CWMT

S ( f ) is introduced as:

CWMT
S (x) = I DMT (Nh

κ ) : x ∈ Ph
κ � Nh

κ and (CWS( f ))(x) > 0, (3.25)

i.e., for each point x ∈ E ,CWMT
S (x) returns the index of the node that associates with

a peak component containing x such that the component window function in x has a
response greater than 0. To compute (3.25), the respective operator is configured with
the subtractive filtering rule [26] and requires a double pass through the Max-Tree.
The method is described in greater detail in [31].

An example of both functions (3.24) and (3.25) applied over the component
window of a simple 1D signal is shown in Fig. 3.3. Image (a) shows six-level signal
and the corresponding Max-Tree with the nodes in red. The component window is
shown in red frame in image (b). The peak components of the signal that are fully
contained within the component window and the corresponding Max-Tree nodes are
shown in image (c).

3.2.4.2 Spatial Sampling Based on the Alpha-Tree Structure

The component window function in the case of an Alpha-Tree and for a given point
x ∈ E returns a unique node identifier directly that is given by the function I DAT ().
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In order to retrieve the maximal node fully contained within the mask S representing
the selected ROI, a spatial constraint [16, 51] on the hierarchy of αCCs is required.

Let P be a logical predicate of αCCs that is defined as:

P(αCC(x)) =
{

1, if αCC(x) ⊆ S, (3.26)

0, otherwise. (3.27)

The Alpha-Tree component window function is given by:

CW AT
S (x) = suph=α2h(αmax )

h=0 I DAT (Nh
κ ) : Nh

κ � αCC(x) and P(αCC(x)) = 1,

(3.28)

i.e., for each point x ∈ E , CW AT
S (x) returns the highest Alpha-Tree node index of

a node that associates with an αCC containing x (the largest αCC containing x) and
for which the spatial predicate is satisfied.

3.2.5 Efficient Classification by Tree Pruning

The representation of an image using either of the Max-Tree or Alpha-Tree structures
offers a rich characterization of image components through a limited set of auxiliary
data that are associated with each node. In the following, each feature of each compo-
nent defines an element. In application domains like remote sensing image analysis,
where the input data are often in the order of gigapixels, the resulting number of
objects becomes rather cumbersome to deal with. An example is in classification of
elements based on the classical paradigm, i.e., by training a model with a limited
subset of data along with the respective class labels and applying it to the full extent of
the pool of objects to be classified. In this section, a different paradigm is presented,
which profits from a pre-organization of the input elements and leads to a substantial
speedup in the classification. It is based on the assumption that any two elements that
are close enough with respect to some dissimilarity, i.e., in the same neighborhood,
are likely to be assigned the same class label. The class label of a single element can
be propagated to all other elements in the neighborhood at no further computational
cost, thus reducing the overall computational overhead.

3.2.5.1 Classification by Tree Pruning

This approach is known as classification by tree pruning and is inspired from [52].
Assume that we have a set of n k-dimensional elements {ai }ni=1 which are organized in
a hierarchical clustering structure, i.e., a tree T . In this analysis, the root is assumed
to be at the top of the tree and the leaves at its base. A node N associates with a
subset of {ai }ni=1. Given a node N , its children nodes are cover subsets of N that
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are not necessary disjoint and for which: N = ⋃
i C

N
i . The root R is the superset

containing all elements of {ai }ni=1.
Given a set of training examples {āi }li=1 associated with classes {yi }li=1, yi ∈

{1, . . . ,m}, the objective is to utilize the treeT in computing a classification. A naive
Bayesian classifier can be built for the elements of each node, where the posterior
probability of a random label Y is estimated by assuming a Dirichlet a priori [8, 53],
i.e.,

p(Y = q | N ) = h(yi = q | āi ∈ N ) + 1

|{āi ∈ N }| + m
. (3.29)

The term h(yi = q | āi ∈ N ) is the number of times the class q is rep-
resented by the training elements included in the node N . In this way, the ele-
ments of a set associated with a node are classified with maximum likelihood label:
q̃ = arg maxq p(Y = q | N ). This is a low complexity operation considering that
multiple elements are classified in a single step. It is a natural expectation that the
elements contained in a same node, being close enough to each other with respect
to some dissimilarity, are given the same class label. This modeling of posterior
probability has the advantage of being incremental. By maintaining class counters
h(yi = q | āi ∈ N ) for each node, each time a new training example becomes avail-
able (āl+1, yl+1), the corresponding element descends along the leaf-paths defined
by nodes it belongs to, and updates their counters with its class label yl+1.

To address an element ai that belongs to a set of nested nodes along a given
root-path, all these nodes need to be selected. Consequently, the hierarchical data
structure must coincide with a hierarchical data-partition representation. Since the
latter is a tree with any given node fully covered by its children, the latter must be
mutually disjoint, i.e., N = ⋃

i C
N
i and ∀i 
= j,CN

i

⋂
CN
i = ∅. In this case, any

pruning P of T represents a partition of the data set, such that any element ai
belongs to a unique leaf LP

j of P . Therefore, the element is uniquely classified, by
being assigned the class label of the leaf it belongs to.

In the following, a pruning criterion is proposed such that the empirical classifi-
cation error is minimized while the underlying partition remains coarse. The pruning
strategy consists of two stages:

• The tree T is pruned into PRD by following a parametrized rate-distortion crite-
rion which defines the finest partition embedded in PRD;

• PRD is further pruned into P to minimize the empirical classification error.

In order to minimize the classification error [54], a local criterion minimizing the
conditional entropy is suggested:

H(Y | N ) ≤
∑
i

∣∣CN
i

∣∣
|N | H(Y | CN

i ). (3.30)

In the above, H(Y | N ) = −∑
q p(Y = q | N ) log p(Y = q | N ). As the condi-

tional entropy reduces, the correct classification rate improves. In a leaf-to-root pass
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through the tree, if the local criterion (3.30) is verified, the subtree rooted at node N
is pruned. The pass-through terminates for the particular root-path as soon as a node
fails the criterion.

A drawback of this strategy, making it computationally inefficient, is that the entire
set of leaf nodes L needs to be considered in the pass through the tree. Moreover,
if a leaf contains a single element and this element is part of the training example
set, the leaf will be assigned a minimal entropy and will not be pruned. All other
leaf nodes having the same parent will not find an example from which classification
can be computed. To resolve this shortcoming, an intermediate pruning is performed
prior to the classification pruning, such that the intermediate tree leaves are populated
sufficiently.

To constrain the extent of the partition granularity, a pruning is performed using
a rate-distortion-based criterion [55, 56], justified in the Kolmogorov complexity
theory [57]. It is a compression scheme that maps the given elements into an implicit
set of feature space vectors, thus reducing the problem of feature selection [58]. A
node N consisting of |N | elements requires an average code length of l(N ) = log |N |

|R| .
Having a metric of the data space, the distortion of the elements belonging to the node
is denoted by d(N ), and can be approximated by the maximum variance computed
between them. If the distortion is small, all elements are very close to each other. As
the distance between a node and the root increases, the node distortion gets smaller.
The objective of the rate-distortion optimization is to find a balance between the
coding length and the average distortion, such that both are minimized. The rate-
distortion pruning criterion is given by:

β l(N ) + (1 − β)d(N ) ≤
∑
i

∣∣CN
i

∣∣
|N |

(
β l(CN

i ) + (1 − β)d(CN
i )

)
, (3.31)

where β is a trade-off scalar in the range [0, 1]. If β = 0, the parent node is privileged.
By contrast, if β = 1, the node’s children are privileged. The rate-distortion criterion
is applied on each node in a root-to-leaves pass through the tree. As soon as it is
verified, the subtree rooted at N is pruned. The advantage of utilizing this criterion
is that non-horizontal cuts of the tree can be computed. Moreover, the trade-off
parameter offers the option of selecting the maximal granularity of the pruned tree
PRD , before computation of the classification pruning P . Thus, the labeling of
all elements is obtained by the naive Bayes classification of the leaves of P . As
a remark, the hierarchical clustering structure T is pruned virtually such that the
full structure is maintained. Then, the classification can be re-tuned by considering
additional training examples or by modifying the trade-off parameter.

An efficient implementation of a hierarchical clustering algorithm is presented
hereafter and is used in the following for performing fast classification by tree
pruning.
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3.2.5.2 A Hierarchical Clustering Structure: The kd-Tree

Data organization schemes offer considerable advantages regarding the efficiency of
accessing elements in vast data spaces. Examples are the hierarchical data represen-
tation structures like the hierarchical linkage clustering [27, 59], the vantage-point
tree [60], the M-tree [61], or dyadic k-means [62]. An established space-partitioning
data structure for organizing elements of a k-dimensional space is the kd-Tree [63].
The tree organizes recursively n data elements of dimension k by applying the fol-
lowing recursion:

• Select the most variant dimension k̂(N ) among the k possibilities, considering the
elements in the current node N ;

• Compute the median m(N ) of data in N considering only the most variant dimen-
sion;

• Order the elements of the node in two children nodesCN
1 ,CN

2 , such that the element
under/above the median is in the first/second child, respectively;

• Process the children nodes CN
1 , CN

2 , except if they contain a single element.

This leads to a balanced kd-Tree, in which all leaves are approximately the same
distance away from the root. The two children resulting from each parent node contain
the same number of elements: −1 ≤ ∣∣CN

1

∣∣ − ∣∣CN
2

∣∣ ≤ 1. This means that a node at
depth h(N ) from the root contains at most 2log2 n−h(N ) elements.

An example of a kd-Tree-based space partitioning is shown in Fig. 3.4, for points
lying in a two-dimensional space. Initially, the root node is set to contain all the data
elements. In the second step, the horizontal dimension is selected for splitting the
elements of the root node in two children nodes. The splitting continues recursively
in the third and fourth steps, until the leaf nodes are reached, each containing a single

Fig. 3.4 The 4 steps illustrate the progressive construction of the kd-Tree from a data set consisting
of two-dimensional elements. It is a recursive process directed from the root to the leaves. In every
step, the data space is organized into a finer partition
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or a maximum of two data elements. The distortion of a kd-Tree node N is defined
as the volume of the hyperrectangle bounding its elements, and it is employed in the
computation of the rate-distortion criterion (3.31).

3.2.5.3 Classification Complexity Analysis

In this section, a complexity analysis is given for the proposed classification scheme
and a comparison is made against the complexity of the SVM [64] and C4.5 [54]
classifiers. It is assumed that the pool of input data contains n samples that have to
be classified, each represented by a k-dimensional feature vector. Moreover, a set of
m training samples is given.

The data are initially organized into a kd-Tree structure which has a quasi-linear
complexity factor of O(k.n log2 n). For each new training sample made available,
the nearest neighbour is computed and the sample descends from the root to the
closest leaf. The classification counter of each node visited along the given path is
updated. This operation has a complexity of O(log2 n) and is independent of the
data dimensionality. In total, the counter update from the set of m training examples
has a complexity of O(m log2 n). Given a trade-off scalar β, the tree T is virtually
pruned in top-down manner according to (3.31). The complexity of this process is
given by the number of nodes that are explored before meeting the pruning criterion.
For a well-balanced tree, this is approximated by O(nβ). The last stage, i.e., the
classification pruning (3.30), is implemented by a further virtual pruning of the
intermediate tree in which the class label of its node is propagated to its elements.
This has a complexity that is bounded by the number of nodes to be scanned and is
given by O(nβ).

By contrast to the kd-Tree, the training phase of an SVM (see also Chap. 10) or
C4.5 classifiers operated on the same data set have a complexity factor of O(m3) and
O(m.k. log2 m), respectively. To classify each data element according to the derived
optimal separation, each element is individually evaluated resulting in complexities
of O(n.m.k) and O(n. log2 m) for the SVM and C4.5 classifiers.

Assuming that m̄ training examples are added to the training set, retraining the
tree-based classifier requires only O(m̄ log2 n) operations, while retraining the SVM
or the C4.5 classifiers requires to relaunch the process from scratch. These complexity
figures are summarized in Table 3.1.

Table 3.1 The algorithmic complexity figures of the full learning process are given for n data
elements of dimension k, and for m training samples

Proposed SVM C4.5

Pre-computation O(k.n log2 n) O(1) O(1)

Training O(m log2 n) O(m3) O(m.k. log2 m)

Classification O(nβ) O(n.m.k) O(n. log2 m)

Incremental training O(m̄ log2 n) O((m + m̄)3) O((m + m̄).k. log2 (m + m̄))

http://dx.doi.org/10.1007/978-3-319-66330-2_10
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It is evident from the above that data pre-organization has a strong impact on
the classification complexity that reduces sharply compared to the SVM or the C4.5
classifiers. This holds for the case of incremental training too, making the tree-
based classification paradigm suitable for an interactive, thus incremental, learning
application.

3.2.6 Experiments and Applications

This section demonstrates the proposed classification protocol using a combination
of a Max-Tree and kd-Tree structures in two real exercises: the detection of build-
ings in Port-Au-Prince Haiti, following the Jan. 2010 earthquake, and the detection
of refugee camps in Sri Lanka. Both exercises were carried out using an eight-
core, 2.2 GHz Intel Xeon machine equipped with 64 Gb of RAM. All algorithms are
sequential, i.e., they run on a single core.

The first example makes use of GeoEye-1 image of Port-Au-Prince covering
16×10 km2 at 0.5 m spatial resolution. It is a panchromatic image acquired in 2010,
quantized to 11 bits/pixel and consisting of 33000×20000 pixels. We considered
spectral and moment-based features, computed from the complete set of bands avail-
able. The image and feature hierarchical representations were computed in 22 m, i.e.,
2 m for the Max-Tree and 20 m for the kd-Tree. Running an interactive classification
using the tree-based classifier required 3 s. With an adapted visualization strategy, the
classification result was mapped back into the image space in 5 s for each iteration
of the classifier. In this experiment, two classes were considered, one corresponding
to the objects of interest (buildings) and the second to everything else. The classifi-
cation/detection results obtained after several user–machine interactions are shown
in Fig. 3.5.

The second example makes use of a WorldView-1 panchromatic image of refugee
camps in Sri Lanka. It is 10000×10000 pixels in size at 0.5 m resolution. In this
example, we consider moment-based features alone. The Max-Tree and kd-Tree were
computed in approximately in 20 and 200 s., respectively. The classifier for each of
the family of targets concluded in 0.3 s, and each result was mapped back into the
image domain in 2 s. We classified three types of structures: small tents, big/long
tents and buildings and road infrastructure. The results are shown in Fig. 3.6.

To evaluate the accuracy of the tree-based classifier for the two test cases presented,
the proposed classification scheme was compared against the C4.5 classifier alone,
since the SVM classifier using the libSVM implementation required over an hour to
conclude. The C4.5 classifier was based on the J48 weka implementation [65]. It was
used for both the training and the classification part, only the latter was optimized
by making use of the query capabilities offered by the kd-Tree. That was done to
accelerate the C4.5-based query process.

The classification errors were computed by operating each classification scheme
on the training data set itself. The results are summarized in Table 3.2. The C4.5
maintained a small lead over the kd-Tree classifier in all cases. Note that since the



3 Very High Spatial Resolution Optical Imagery … 101

Fig. 3.5 Interactive classification of buildings from Port-Au-Prince, Haiti. a The top image shows
the original full scene, from which a subregion (the blue rectangle) is selected for training. The
bottom image shows classification result. b The query engine from which positive (green) and
negative (red) ROIs are selected interactively (color figure online)
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Fig. 3.5 (continued)

training data sets were highly imbalanced, the false-alarm errors were avoided at
the expense of more missed detections. As a remark, the reported accuracies were
not directly linked to the thematic accuracies; they only give a brief idea of the
performance of the proposed algorithm.

A further assessment of the accuracy of the kd-Tree classifier is made by a cross-
validation using the feature space projection of the small tents’ training data set.
The training set is divided in five subsets, such that the classifier training and testing
are performed on disjoint sets. The average classification accuracy is evaluated for
various values of the trade-off parameter and is shown in Fig. 3.7. It can be seen that
an optimal trade-off value exists for which the minimal error probability is obtained.

The error probability against query time is shown in Fig. 3.7. The term Pe decreases
sharply for short query times, thus giving an optimal accuracy for a query of no longer
than 0.22 s., i.e., 1.5 times the minimum query time. Following this break point, a
smooth decrease in the average classification accuracy is observed with respect to
the time. Overall, the proposed classifier is seen to operate with an accuracy level
close to one of the state-of-the-art algorithms, the C4.5, while being 90 times faster.

A complexity analysis for selected experiments on the full operation cycle of the
classification protocol is discussed thoroughly in [30].
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small bright
tents

long bright
tents

road networks

Fig. 3.6 Three interactive classification runs on the image of refugee camps in Sri Lanka. In each
of the three sets of images, the top left corresponds to the input scene with a region selection marked
by a blue polygon, the bottom left to the final result, and the right shows the interface for marking
positive and negative samples. The interface shows two views, the bottom that corresponds to the
selected region from the original image and the results of the classifier as it is fine-tuned by user
interaction (color figure online)
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Table 3.2 The probability of error Pe, false alarms Pf a , and missed detection Pmd are reported
for the two classifiers for each exercise. The query time is the sum of the learning time and the
classification of the full input scene consisting of 13,080,502 pixels. The training data set is made
of m examples among which Pm are positive

Small tents Pe Pf a Pmd Query time m examples P

kd-Tree
classifier

0.036 0.0061 0.37 0.26 s 90513 0.082

C4.5 0.027 0.0088 0.23 15.6 s 90513 0.082

Long tents Pe Pf a Pmd Query time m examples P

kd-Tree
classifier

0.16 0.023 0.83 0.52 s 239787 0.16

C4.5 0.159 0.031 0.79 46.4 s 239787 0.16

Fig. 3.7 a The evolution of the average five fold probability of error Pe with respect to the trade-off
parameter β, b The evolution of Pe with respect to the query time expressed in seconds

3.3 Mutli-temporal and Multi-angular Optical Image
Analysis

3.3.1 Introduction

Commercial availability of optical very high spatial resolution space-borne imagery
began more than ten years ago with the launch of IKONOS and QuickBird, which
led to an increasing interest in satellite data for mapping and precise location-based
service applications. Since then, a large amount of data have been acquired, includ-
ing images from newer and more complex platforms such as WorldView-1 and
WorldView-2, GeoEye-1, and the more recent Pléiades-1A and Pléiades-1B. Cur-
rently, the global capacity of the very high spatial resolution imaging satellites is
greater than 1.8 billion square kilometers per year (which corresponds to more than
12 times the land surface area of the Earth), and is expected to increase to more than
2.4 billion square kilometers per year (about 16 times the land surface area of the
Earth) in the near future. Much of this imagery is collected with a wide range of
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Fig. 3.8 A typical 30-day collection by the QuickBird, WorldView-1, and WorldView-2 constel-
lation

azimuth and elevation angles. Figure 3.8 shows a typical 30-day collection by the
QuickBird, WorldView-1, and WorldView-2 constellation.

The availability of sub-meter resolution data regularly acquired over the same
geographical region has proved to be effective in developing various monitoring
systems, from precision agriculture (including growing and harvesting of crops)
to disaster management and search and rescue operations in the case of natural
events (earthquakes, hurricanes, floods). In urban areas, multi-temporal data provide
information about newly built constructions or demolition of existing structures,
road conditions, and urban growth. Further, the WorldView class of satellites has
a high-performance camera control system capable of rapid re-targeting, allowing
collection within a few seconds of dozens of images over a single target, each with
a unique angular perspective. This capability opens a unique approach to multi-
temporal imaging whose applications have been discussed in [66].

Despite the large amount of data acquired and the progress of space technology in
designing and launching more sophisticated sensors, very little research addresses the
advantages and challenges of multi-temporal optical very high spatial resolution data.
This has been confirmed by a recent special issue on the analysis of multi-temporal
remote sensing data [67], where only one contribution is dealt with sub-meter optical
imagery [68].

In the remote sensing literature, two opposite approaches are generally considered
to analyze the data sequence in the context of land cover mapping: A set of indepen-
dent models is developed for each image, or a unique model is generated from the
entire set of images at once. The first approach does not guarantee that the temporal
information is fully exploited as each classifier is tailored to fit a specific subproblem.
On the other hand, a generalized model may suffer from different data distributions
in the image sequence, resulting in poor results. In [69], Heas and Datcu propose an
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unsupervised method to learn trajectories of dynamic clusters, followed by an inter-
active learning process. The trajectories in the feature space result in graphs coding
spatiotemporal structures contained in the data sequence. The information-bottleneck
principle is introduced in [12], which combines model selection with rate-distortion
analysis in order to determine the optimal number of clusters. In [70], Petitjean et
al. propose an approach to deal with irregularly sampled time-series based on the
dynamic-time-warping concept, while various similarity measurements are used to
model consecutive image-pairs in [71].

Very recently, there has been a large number of publications in the remote sensing
literature on domain adaptation, whose goal is to adapt a prediction function from
a source domain to a target domain, reducing the effects of shifts between different,
but related, data sets (such as one gathered from multi-temporal acquisitions). In
[72], Bruzzone and Prieto exploit the distribution of a new image to re-estimate the
parameters of a maximum likelihood classifier. In [73], a binary hierarchical classifier
is used in the target domain to leverage the information extracted from the existing
labeled data. In [74], the support vectors of a support vector machine classifier are
iteratively adapted to the distribution of a new domain. Active learning methods [75]
have also been considered in [76–78] to cope with data set shifts. While most of
the domain adaptation methods deal with adjusting the model to the target domain,
Tuia et al. propose a method described in [79], where data manifolds are deformed
through nonlinear transformations driven by a graph matching procedure aimed at
finding correspondences between domains, whereas Leiva-Murillo et al. introduce in
[80] the concept of multitask learning by jointly solving a set of prediction problems
by sharing information across different tasks. Examples of domain adaptation results
will be presented in Chap. 10.

In most remote sensing studies of optical very high spatial resolution imagery,
however, the analysis of time-series is limited to the use of pixel digital numbers,
ignoring the physical effects of atmospheric, viewing, and illumination changes
between image collections. The importance of radiometric calibration (and the need
to work with physical quantities) has already been suggested in [81] for the imple-
mentation of operational automated remote sensing image understanding systems.
As previously discussed in [82], results over the past few years have offered very
modest improvements with respect to one obtained from other methods (usually,
less than 1–2% in absolute terms) on a limited number of classes, which frequently
only include conventional targets, such as man-made structures, vegetation, soil, and
water, and number of images (two to three, in general). Often, the various results are
not even discussed in terms of their statistical significance leaving the reader won-
dering if the principles of the proposed technique are repeatable on different data
sets or if the improvements were rather obtained by strenuously exercising the data
samples to achieve the desired output.

Another limitation of current techniques is that multi-temporal data sets are gen-
erally analyzed only considering the temporal domain. Instead, the temporal infor-
mation should be coupled to the corresponding angular component to make the best
use of the available imagery. In fact, the radiometric differences in time-series may
often be corrected or accounted for by understanding the physics of the acquisitions.

http://dx.doi.org/10.1007/978-3-319-66330-2_10
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Table 3.3 Acquisition dates
of the time-series with the
corresponding day of the year

17-Jul-02 (198) 8-Jan-04 (008) 6-Sep-04 (249)

30-Oct-04 (303) 3-May-05 (123) 14-Jul-05 (195)

27-Jul-05 (208) 4-Sep-05 (247) 7-Oct-05 (280)

25-Nov-05 (329) 5-Feb-06 (036) 18-Mar-06 (077)

14-Jun-06 (165) 30-Jul-06 (211) 5-Nov-07 (309)

8-Nov-07 (312) 18-Mar-08 (077) 23-Mar-08 (082)

22-Aug-08 (234) 31-Jan-09 (031) 12-Aug-09 (224)

The objective of this section is not only to demonstrate that physical quantities are
necessary to consistently and efficiently analyze sub-meter optical imagery, but also
to bring attention to the research community that the angular information of the
acquisitions should not be neglected as unique features can be derived from it.

The data set used is composed of 21 images acquired between 2002 and 2009 by
QuickBird (QB) over the city of Denver, Colorado. The time-series covers part of
the downtown area and includes single family houses, skyscrapers, apartment com-
plexes, industrial buildings, roads/highways, urban parks, and bodies of water. The
acquisition dates are reported in Table 3.3, and the tempo-angular distribution (in
zenith and azimuth angles) of the image sequence is shown in Fig. 3.9 along with
the Sun position for the specific day of the year (also reported in Table 3.3). All
images were acquired within 30 degrees zenith angle and fairly evenly distributed
azimuth angles, while the Sun position exhibits the natural declination through the
year (being closer to twenty degrees in zenith during summers and to seventy degrees

Fig. 3.9 Tempo-angular distribution of the time-series along with the relative Sun position. All
images were acquired within 30 degrees zenith angle and fairly evenly distributed azimuth angles.
The day of the year of the acquisitions is reported next to the Sun positions
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during winters). All 21 images were converted to surface reflectance by AComp, an
automatic DigitalGlobe proprietary method designed for very high spatial resolu-
tion panchromatic or visible/near-infrared imagery [83] (whose performances are
discussed in detail in [84]).

3.3.2 Non-physical and Physical Quantities

The accurate analysis of multi-temporal remote sensing data depends upon the abil-
ity to distinguish between relevant and non-relevant changes on the Earth surface
through time [85]. At the same time, the capability to detect and quantify these
changes depends on consistent sensor measurements, which are generally distorted
by changing atmospheric conditions, solar illumination, and satellite viewing geome-
tries. Therefore, it is preferable to convert the raw image counts to physical quantities
that are capable of accurately describing the imaged surfaces before analyzing the
data from a single scene, between images acquired on different dates, or by different
sensors.

With reference to Fig. 3.10, optical remote sensing satellites measure photoelec-
tric signals that are equivalent to the radiance reflected by the Earth surface when
illuminated by the Sun and perturbed by the atmosphere, including the effect of
gaseous absorption and scattering by molecules and aerosols. These measured sig-
nals are not directly accessible to the end users as they are converted and stored as
digital numbers (DNs).

The DN values [counts] are proportional to the radiance L [Wm−2sr−1μm−1]
entering the telescope aperture according to [86]:

DN = L · GAI N + OFFSET (3.32)

Fig. 3.10 Schematic
representation of
non-physical and physical
quantities. In general, it is
preferable to convert the raw
image counts to physical
quantities that are capable of
accurately describing the
imaged surfaces before
analyzing the data from a
single scene, between
images acquired on different
dates, or by different sensors
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where GAI N is the absolute gain [counts/(Wm−2sr−1μm−1)] and OFFSET is
the instrument offset [counts]. This formulation assumes that the detectors have
a linear response as a function of input radiance. The appropriate gain and offset
settings are wavelength-dependent and are operationally selected based on:

• compression levels
• pixel aggregation
• line rate
• bit depth
• time delay integration (TDI), which increases the exposure provided by the basic

line rate
• seasonality (the TDI setting for a given image is selected based on the estimated

solar elevation angle)

This means that image DN counts are unique not only to the sensor, but also to the
very specific operational setting selected for the acquisition. Additionally, an ideal
object with a spectral signature that is invariant over time may show significant DN
differences in multi-temporal data sets acquired with similar operational settings due
to different atmospheric conditions and/or different viewing and solar geometries.
In this sense, DN data, which do not represent physical quantities, should not be
directly compared to DN imagery from other sensors, nor even between images
from the same sensor as collection settings, atmospheric effects, and viewing and
illumination geometries may be significantly different.

Calculation of at-sensor, also known as top of atmosphere (TOA), radiance is a
necessary step for converting the image into a physically meaningful common scale
[87]. Even though end users have access only to the image DN counts, pixel values
can easily be converted to at-sensor radiance by inverting Eq. 3.32 and using the
GAI N and OFFSET information provided in the image meta-data.

An additional reduction in scene-to-scene variability can be achieved by convert-
ing the at-sensor radiance L to TOA reflectance ρT OA [unitless] using:

ρT OA = L · d2
ES · π

Esun · cos(θS) (3.33)

where Esun is the mean exoatmospheric solar irradiance [Wm−2μm−1], θS is the solar
zenith angle [degrees], and dES is the Earth-Sun distance [astronomical units] as
derived in the Appendix. There are several benefits for using TOA reflectance with
respect to TOA radiance, such as the removal of the cosine effect of different solar
zenith angles, the compensation for different values of the exoatmospheric solar
irradiance arising from spectral band differences, and the correction for the variation
in the Earth-Sun distance between the different acquisitions [87].

To estimate surface reflectance ρ [unitless] from satellite data, TOA radiance
needs to be compensated for atmospheric absorption and scattering phenomena,
approximating what would be measured by a sensor held just above the Earth surface,
without any alterations from the atmosphere [88]. One of the advantages of surface
reflectance is the physically based normalization of the image values throughout the
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dates regardless of the different atmospheric conditions. Surface reflectance can be
derived as:

ρ = (L − Lup) · d2
ES · π

τup · (Esun · cos(θS) · τdown + Edown)
(3.34)

where Lup [Wm−2sr−1μm−1] is the upward radiance scattered by the atmosphere,
τup [unitless] is the atmospheric transmittance from the ground to the top of the
atmosphere, τdown [unitless] is the atmospheric transmittance from the top of the
atmosphere to the ground, and Edown [Wm−2μm−1] is the diffuse irradiance at the
surface [89, 90].

The upwelling radiance Lup is one of the major components of the atmospheric
spectral distortion. Being driven by Rayleigh scattering, its effect has a λ−4 depen-
dence on wavelength. In very high spatial resolution satellite imagery, Lup is closely
related to the minimum radiance measured by the sensor, which generally corre-
sponds to shadowed areas in the image with no direct solar illumination. This means
that even shadowed surfaces, regardless of the specific material, can show different
values of measured radiance (and, therefore, DN counts) at two different acquisition
times due to the dependence of Lup to the acquisition conditions (both in terms of
Sun-Earth-satellite geometry and/or atmospheric properties).

As a practical example, Fig. 3.11 illustrates spectral signatures of grass for both
TOA and surface reflectance (retrieved by the algorithm in [83, 84]) for four urban-
ized areas acquired by WorldView-2 just after its launch at the end of 2009. The use
of WorldView-2 imagery for this example is necessary because of the presence of
two relevant bands centered at 427 and 949 nm, which correspond to spectral regions
with higher Rayleigh scattering and water vapor absorption, respectively. For each
city, two different patches of grass were selected, one from sport facilities, such as
stadiums, and another from public parks, ideally corresponding to different levels
of vegetative health. It should be noted that each of these acquisitions represents
locations across the globe with different climates, seasons, and grass species. An
additional hyperspectral signature of grass as provided by publicly available libraries
[91] is reported with a red line for comparison.

TOA reflectance signatures are consistently larger than surface reflectance values
at shorter wavelengths due to Rayleigh scattering, ranging from about 0.15 to 0.21
at 427 nm (to be compared with both the reference hyperspectral and the retrieved
surface reflectance signatures that range from about 0.02 to 0.04). On the other hand,
TOA reflectance values at 949 nm are smaller than both the reference hyperspectral
and the retrieved surface reflectance signatures due to water vapor absorption. It is
important to account for these spectral distortions. For example, the average of the
normalized difference vegetation index (NDVI) calculated from TOA reflectance
values is about 0.688, to be compared to 0.814 in case of surface reflectance, which
corresponds to a difference of more than 15%. Therefore, surface reflectance not
only provides consistent quantities across the various bands at different times, geo-
graphical locations, and atmospheric conditions, but it also minimizes the spectral
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Fig. 3.11 Spectral signatures of grass in TOA (blue lines) and surface (green lines) reflectance val-
ues for four urbanized areas acquired by WorldView-2 (each circle represents the center wavelength
of a spectral band). An additional hyperspectral signature of grass is reported with a red line for
comparison. TOA reflectance signatures are consistently larger than the surface reflectance values
at shorter wavelengths due to Rayleigh scattering. On the other hand, TOA reflectance values are
smaller than the surface reflectance signatures at 949 nm due to water vapor absorption features

distortions with respect to the reference hyperspectral signatures, making it a suitable
transformation for the analysis of large temporal data sets.

A comprehensive review of remote sensing quantities can be found in [92].

3.3.3 Accounting for Angular Variability

In the previous section, it was mentioned that the Sun-Earth-satellite geometry influ-
ences the measured at-sensor radiance, and therefore both DN and surface reflectance
values. While the Earth-satellite geometry can be kept constant with nadir-looking
sensors such as the Landsat series, commercial satellites operate with significantly
varying geometries due to their agility in rapid re-targeting of the camera. This is
especially important in the case of emergencies when the viewing geometries are
opened up to maximize the collection opportunities.

In this section, geometrical effects are discussed in terms of surface anisotropy
whose main mechanisms are illustrated in Sect. 3.3.3.1. In Sect. 3.3.3.2, two angular
decomposition models are reviewed in detail.
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3.3.3.1 Surface Anisotropy

A surface that reflects the incident energy equally in all directions is said to be
Lambertian, and its reflectance is invariant with respect to illumination and viewing
conditions. On the contrary, a surface is said to be anisotropic when its reflectance
varies with respect to illumination or viewing geometries. These changes are driven
by the optical and structural properties of the surface material [93]. In general,
both natural and man-made surfaces show some degree of spectral anisotropy, and
this behavior can be described by the bidirectional reflectance distribution function
(BRDF) [94, 95].

The fundamental components of surface anisotropy as described in [96] are illus-
trated in Fig. 3.12:

• surface scattering, which can be observed when forward scattering elements are
present and includes specular reflection

• radiative transfer-type volumetric scattering, which is due to the presence of finite
scatterers, such as leaves of plants

• geometrical-optical scattering, which is produced by casting shadow and mutual
obscuration of vertical surfaces.

Consequently, multi-angular acquisitions contain information about the physical
structure and characteristics of the observed target. Depending on the study, surface
anisotropy can be seen as a source of noise (e.g., when analyzing spectral signa-
tures of time-series) or, alternatively, as a source of information in addition to the
tempo-spectral dimensions [94].

To qualitatively show the effects of surface anisotropy across multi-temporal very
high spatial resolution data sets, two examples are discussed as follows:

(1) The two images in Fig. 3.13 were acquired over Denver only five days apart in
March 2008, but from opposite satellite azimuths, i.e., 150 and 339 degrees (see
Table 3.3 for details). As shown, some surfaces appear brighter when observed
from the backward direction, while others appear brighter when observed from

Fig. 3.12 Fundamental components of surface anisotropy: a surface, b radiative transfer-type
volumetric, and c geometrical-optical scattering. Surface scattering includes specular reflection and
can be observed when forward scattering elements are present; radiative transfer-type volumetric
scattering is due to the presence of finite scatterers, such as leaves of plants; geometrical-optical
scattering is produced by casting shadow and mutual obscuration of vertical surfaces
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Fig. 3.13 Effects of surface anisotropy on two images acquired in March 2008 from opposite
satellite azimuths (i.e., 150 and 339 degrees). As shown by the yellow arrows, (a) some surfaces
appear brighter from the backward direction, while (b) others appear brighter from forward direction.
The Sun illumination azimuth angle is approximately 158 degrees in both images (color figure
online)

the forward direction. Therefore, image matching techniques that do not account
for localized distributions will necessarily fail, possibly compromising the spec-
tral meaning of the data.

(2) Figure 3.14 illustrates two domain representations of the Denver baseball stadium
grass during only the summer acquisitions of the time-series. Fall or winter dates
were not considered to avoid spectral variations related to the state of grass
rather than to the different viewing conditions. This choice also minimizes the
Sun declination, assuring a quasi-consistent source of illumination, in terms of
position and intensity. Finally, it is worth mentioning that the grass of the stadium
is kept uniform through the season according to baseball regulations. This means
that this data set is suitable to illustrate the effects of different viewing conditions
when illumination and target are unchanged. Specifically, the multi-temporal plot
in Fig. 3.14a illustrates variations across the dates, with the near-infrared band
ranging from about 0.44 to 0.62 just in the summer of 2005. The polar plot in
Fig. 3.14b shows that these variations are consistent with the angular properties of
the surface and the different viewing geometries (with elements of the previously
discussed scattering mechanisms). In fact, observations in the backward direction
consistently appear brighter than that in the forward direction.
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(a)

(b)

Fig. 3.14 Two domain representations of the Denver baseball stadium grass during only the summer
acquisitions of the time-series: a multi-temporal signature and b near-infrared angular reflectance
(with non-constant illumination geometry). The multi-temporal plot in a illustrates variations in the
near-infrared band across the dates, ranging from about 0.44 to 0.65. The polar plot in b shows that
these variations are consistent with the angular properties of the surface and the different viewing
geometries. In fact, observations in the backward direction consistently appear brighter than that in
the forward direction



3 Very High Spatial Resolution Optical Imagery … 115

3.3.3.2 Angular Decomposition Models

The increasing availability of multi-angular measurements from space-borne sen-
sors, such as the Along-Track Scanning Radiometer-2 (ATSR-2), Polarization and
Directionality of the Earth’s Reflectances (POLDER), Multi-angle Imaging Spectro-
Radiometer (MISR), Compact High Resolution Imaging Spectrometer (CHRIS),
WorldView-1, and WorldView-2, or aerial cameras, has brought new and unique
opportunities to understand and exploit surface anisotropy. Several studies have
proven over the years that medium and high spatial resolution angular data sig-
nificantly improve the classification accuracy of various land covers as shown by
Kimes et al. [97], Sandmeier and Deering [98], Chopping et al. [99], Armston et al.
[100]. More recently, Su et al. [95], Verrelst et al. [101], Laurent et al. [102], and
Koukal and Atzberger [103] showed that angular data are useful for vegetation map-
ping as it provides information that is not available in the spectral domain. Some
studies addressing multi-angular observations were recently reviewed in a dedicated
special issue [66].

A number of techniques have been proposed to characterize and efficiently use
angular information. Two assumptions generally hold true [104]:

• Atmospheric effects should be removed
• A sufficient angular sampling should be available to provide robust retrievals

In particular, Koukal and Atzberger [103] found that angular observations should
cover both the backward and forward scattering directions. Otherwise, models will
over-fit the data, and the parameters retrieved will not represent the true anisotropy
of the target.

Angular models can be classified as physical or empirical [105]. Physical mod-
els rely on first-principle physics and require a complete and comprehensive model
parametrization (e.g., inputs such as surface roughness or complex refractive index),
which is often very difficult to obtain. On the contrary, empirical models rely exclu-
sively on measured angular values. A trade-off between these two techniques is rep-
resented by semiempirical models which incorporate measured data to elements of
physics-based principles. Semiempirical models can be applied without any knowl-
edge of the target complexity and composition, as they do not impose severe hypothe-
ses about the nature and structure of the surface being modeled [93]. Among the
various semiempirical models proposed, the kernel-driven Ross-Li [106] and the
Rahman-Pinty-Verstraete (known as RPV) [93] are some of the most widely used. The
former assumes that surface anisotropy can be described by the linear contribution
of a set of kernels that describe the basic mechanisms of surface anisotropy, whereas
the latter provides a representation of surface anisotropy by means of angular func-
tions [94]. In particular, the Ross-Li model is the basis for the MODIS BRDF/albedo
product, while the RPV model is used to generate the MISR BRDF/albedo product.
It was found in [107, 108] that both models provide comparable results, with errors
within 10% from observations [109].

Given the solar zenith angle, θs , the view zenith angle θv, and the relative view-
solar azimuth angle φ, the Ross-Li model decomposes the observed angular surface
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reflectance into three basic scatter mechanisms: isotropic, radiative transfer-type
volumetric, and geometrical-optical. This model combines these elements as:

ρRoss−Li (θs, θv, φ) = fiso + fvol · Kvol(θs, θv, φ)+
+ fgeo · Kgeo(θs, θv, φ)

(3.35)

where Kvol and Kgeo are the volumetric and geometric scattering kernels, and fiso,
fvol , and fgeo are the isotropic, volumetric, and geometrical kernel scaling factors.
The isotropic scattering has no dependency on incidence or viewing angle, and there-
fore does not have a geometrically dependent kernel. The angular behavior of the
volumetric kernel presents a minimum near the backward direction and bright limbs,
while the angular behavior of geometrical kernel shows a maximum in the backward
direction, where there are no shadows [104].

The RPV model decomposes the observed angular surface reflectance into three
independent components, representing the amplitude ρ0, the shape anisotropy k, and
the asymmetry factor Θ , according to:

ρRPV (θs, θv, φ) = ρ0 · cosk−1 θs cosk−1 θv

(cos θs + cos θv)1−k
·

· F(g,Θ) · H(G, ρ0)

(3.36)

with:

F(g,Θ) = 1 − Θ2

(1 + Θ2 + 2Θ cos g)3/2
(3.37)

H(G, ρ0) = 1 + 1 − ρ0

1 + G
(3.38)

cos g = cos θs cos θv + sin θs sin θv cos φ (3.39)

G(θs, θv, φ) = (tan2 θs + tan2 θv − 2 tan θs tan θv cos φ)1/2 (3.40)

The parameter ρ0 ∈ [0, 1] characterizes the intensity of the target, but it should
not be confused with the single-scattering albedo or the true reflectance of the target,
as it is independent of the angular variations. The parameter k ∈ [0, 2] indicates
the anisotropy of the target. Values of k smaller than 1.0 represent a bowl-shaped
anisotropy pattern, where k increases with the view zenith angle. In contrast, values
of k greater than 1.0 represent a bell-shaped anisotropy pattern, where k reaches its
maximum at the nadiral view. A Lambertian surface is represented by the ideal case
of k = 0. It is important to emphasize that k is influenced by the direction of the
illumination with respect to the target. Therefore, the values of k in multi-temporal
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data sets should be carefully interpreted not as an intrinsic property of the surface,
i.e., k may vary as a function of the season [94]. Finally, the asymmetry factor
Θ ∈ [−1, 1] controls the relative amount of forward, Θ ∈ (0, 1], and backward
scattering, Θ ∈ [−1, 0).

A more applicative discussion about the retrieval of the RPV model (the triplet ρ0,
k, and Θ) is discussed in Sect. 3.3.4.4. The interested reader can also refer to [103].

3.3.4 Experimental Results

In the previous sections, it was discussed how surface reflectance provides a consis-
tent feature space, and that an additional dimensionality can be exploited by including
angular information. The results of four different experiments carried out over the
Denver time-series are described in this section to support these concepts. The first
two exercises focus only on the temporal aspects of the data set and on the advantages
of working in the surface reflectance domain. In particular, Sect. 3.3.4.1 illustrates the
analysis of the tempo-spectral variations of a rooftop, while Sect. 3.3.4.2 addresses
the differences of two automated urban change detection methods over two sets
of raw DNs and surface reflectance image-pairs. The other two exercises discuss
the advantages of coupling temporal and angular information: In Sect. 3.3.4.3, the
tempo-angular spectral signatures of an “unknown object” are analyzed with the aim
of providing additional information about its characteristics, whereas Sect. 3.3.4.4
provides the results of a 22-class urban land cover exercise.

3.3.4.1 Analysis of Multi-temporal Spectral Signatures

The multi-temporal spectral signatures of a flat roof are shown in Fig. 3.15 in both
DNs (normalized to 1.0 for sake of comparison) and surface reflectance values. These
spectral signatures represent the average of all pixels over the roof. The aerosol optical
depth (AOD), which is inversely related to the visibility (i.e., the lower the AOD,
the higher the visibility), is also reported for completeness. The AOD is one of the
outputs provided by the method described in [83, 84].

The DN curves in Fig. 3.15a show that the green values are consistently higher
than the other spectral components, with very large variability in all bands through
the years. This leads to the conclusion that the color of the roof is consistent with
some shade of green, and no additional information can be reliably derived to explain,
for example, the nature of the temporal behavior.

On the other hand, three well-defined, fairly stable, temporal regions can be iden-
tified from the surface reflectance values shown in Fig. 3.15b. Specifically, there is a
relatively flat spectral plateau at about 0.35 reflectance, followed by a much darker
response between the winter of 2007 and the spring of 2008, and then by a highly
reflecting region in subsequent periods to the end of the time-series (about 0.70
reflectance). These relatively flat temporal regions, and their sharp transitions, may
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(a)

(b)

Fig. 3.15 Multi-temporal spectral signatures in a normalized DNs and b surface reflectance of a
remodeled flat roof. The temporal transition is illustrated in the image sequence in cwhich shows that
the roof was being remodeled between the end of 2007 and the beginning of 2008. The date-to-date
variability of the DN temporal signatures is related to the AOD values with a Pearson correlation
coefficient of 0.427, which is significant at the 0.05 confidence level. However, the date-to-date
variability of the surface reflectance temporal signatures is correlated with the AOD values with a
Pearson coefficient of 0.097, which is no longer significant at the 0.05 level
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(c)

Fig. 3.15 (continued)

indicate that the roof being investigated went through renovation during the years.
Also, there is a small difference between the bands at any date in the sequence (about
0.05 or less in absolute terms), suggesting that the roof is consistent with three dif-
ferent shades of gray, from a medium tone up to 2007, to a very bright shade after
2008, with a dark response in between.

The temporal behavior can be understood looking at Fig. 3.15c, which shows that
the roof was being remodeled between the end of 2007 and the beginning of 2008.
Therefore, a simple analysis of surface reflectance signatures indicates that a phys-
ical input space can be extremely helpful in understanding the temporal variability
and its sharp transitions, whereas a DN-based analysis failed to provide consistent
information. It is also worth mentioning that the date-to-date variability of the DN
temporal signatures in Fig. 3.15a is related to the AOD values with a Pearson correla-
tion coefficient of 0.427, which is significant at the 0.05 confidence level. However,
the date-to-date variability of the surface reflectance temporal signatures in Fig. 3.15b
is correlated with the AOD values with a Pearson coefficient of 0.097, which is no
longer significant at the 0.05 level. This emphasizes the fact that atmospheric condi-
tions significantly affect the DN input domain, whereas the date-to-date variability
of the surface reflectance curves can be attributed to the anisotropic nature of the
target. This is further discussed in Sect. 3.3.4.3, which illustrates the analysis of
multi-temporal spectral signatures coupled to their angular components.
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3.3.4.2 Automated Urban Change Detection

Several methodologies have been developed during the years in the context of auto-
mated change detection. Two widely used approaches are based on change vector
analysis (CVA) and principal component analysis (PCA). In the former, pixels are
represented by their vectors in the feature space and the changes are derived as
the difference of the feature vectors between the images [110–113]. In the latter,
the first principal component (which corresponds to the largest eigenvalue) reflects
the unchanged parts of a set of images, whereas changes can be depicted from the
components corresponding to smaller eigenvalues [114–117]. See Chap. 8 for more
details on change detection.

Two sets of raw DNs and surface reflectance image-pairs are used to qualitatively
and quantitatively investigate the differences of non-physical and physical domains
for change detection studies. The image-pairs correspond to a subset of the entire
scene, where several changes occurred between July 2002 and August 2008 (shown
in Fig. 3.16a, b, respectively). These changes include the construction and demolition
of several large buildings in the industrial area, and the remodeling of various roofs in
the residential district. The two dates were selected as the corresponding images were
acquired with similar viewing geometries and during similar time of year, minimizing
both stereoscopics and seasonal effects (which are not the focus of this analysis).
The near-infrared band was not considered to filter out changes in vegetation cover,
which are considered not relevant in this analysis.

Figure 3.16 shows the CVA and PCA change detection results derived using DN
counts as input (Fig. 3.16c and e, respectively) and using surface reflectance values
(Fig. 3.16d and f, respectively), where the magnitude of change is normalized to
the interval [−1.0,+1.0]. Extensive false alarms are visible, especially over paved
surfaces and rooftops, in both change maps that were produced from DN counts. On
the other hand, the change maps produced from surface reflectance values clearly
identify the changes due to the construction of new buildings (shown in cold colors)
and the demolition of older structures (shown in warm colors).

Despite the simplicity of both methodologies, the improvement obtained from the
use of surface reflectance data is evident. This is quantitatively illustrated in Table 3.4,
which reports the overall accuracy (OA), false alarms (FA), and missed alarms (MA)
for the four cases and six thresholds levels. As expected, the larger the threshold, the
smaller the FA and the larger the MA rates. The goal of automated, semiautomated,
and manual thresholding techniques is to find a value that maximizes the OA and
minimizes both the FA and the MA. For example, small thresholds can be used when
there is no bias between the average values of the two acquisitions, whereas larger
thresholds are necessary to account for differences in the data distributions. Table 3.4
shows that low thresholds (i.e., 0.05 and 0.10) provide high accuracy with low FA
and MA values only for the surface reflectance cases. It is interesting to point out
that for both CVA DN and PCA DN, only a large threshold (0.25 or 0.30) can result
in an acceptable FA rate, but at the price of a MA rate well above 30%.

http://dx.doi.org/10.1007/978-3-319-66330-2_8


3 Very High Spatial Resolution Optical Imagery … 121

Fig. 3.16 The two scenes used to generate the change detection maps were acquired on a July
2002 and b August 2008. The change detection maps in c and e were derived from DN counts as
input using the CVA and PCA approaches, respectively, whereas the change maps in d and f were
derived from surface reflectance values using the CVA and PCA approaches, respectively. Extensive
false alarms are visible, especially over paved surfaces and rooftops, in both change maps that were
produced from DN counts. On the other hand, the change maps produced from surface reflectance
values clearly identify the changes due to the construction of new buildings (shown in cold colors)
and the demolition of older structures (shown in warm colors)
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Table 3.4 CVA and PCA
change detection results

Threshold OA (%)

CVA DN PCA DN CVA
SURF

PCA
SURF

0.05 2.67 2.99 78.23 78.12

0.10 4.68 4.99 94.59 94.21

0.15 12.14 9.09 97.91 97.67

0.20 47.29 20.58 98.86 98.72

0.25 84.03 48.72 99.09 99.10

0.30 94.59 80.04 99.05 99.12

Threshold FA (%)

CVA DN PCA DN CVA
SURF

PCA
SURF

0.05 98.85 98.56 22.00 22.15

0.10 96.72 96.49 5.26 5.70

0.15 89.08 92.25 1.78 2.06

0.20 53.26 80.49 0.68 0.88

0.25 15.86 51.74 0.24 0.35

0.30 4.98 19.57 0.12 0.16

Threshold MA (%)

CVA DN PCA DN CVA
SURF

PCA
SURF

0.05 3.99 2.06 7.69 0.99

0.10 9.70 4.38 14.94 11.29

0.15 13.61 8.89 20.78 18.72

0.20 18.94 14.21 29.15 25.12

0.25 22.58 23.01 41.52 33.83

0.30 30.87 43.50 51.70 44.61

3.3.4.3 Combined Analysis of Multi-temporal and Multi-angular
Spectral Signatures

Similar to Fig. 3.15a, the AOD and the multi-temporal spectral signature in normal-
ized DNs of an “unknown object” are illustrated in Fig. 3.17a. With this plot, it is
very difficult to extract useful information on the nature of the surface being inves-
tigated. For example, there are evident variations in the near-infrared band between
winter and summer acquisitions (from about 0.16 to 0.36), which may be indicative
of a natural surface (such as vegetation). However, it is not possible to guess with
confidence the color of the object as the DN values are influenced by several factors
as discussed previously. In this particular case, one can believe that the object may
be yellow, as the red and green bands are very close in amplitude to each other. Also
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(a) (b)

(c) (d)

Fig. 3.17 Multi-temporal spectral signatures in a normalized DNs and b surface reflectance for
the pitched brick-red roof shown in background in c which illustrates its angular surface reflectance
of the red band (with natural, non-constant, illumination). The yellow circles represent the Sun
locations throughout the time-series in zenith and azimuth angles, whereas the black dots correspond
to the satellite positions. An additional angular plot for a blue pitched roof (shown in background)
is illustrated in d (color figure online)

in this case, it is worth mentioning that the date-to-date variability is related to the
AOD values with a Pearson coefficient of 0.538, which is significant at the 0.05 level.

On the other hand, from Fig. 3.17b, which represents the same plot as in Fig. 3.17a,
but in the surface reflectance domain, it is possible to deduce that the “unknown
object” has a smaller seasonal variability in the near-infrared band (from 0.26 to 0.35)
with peaks not necessarily corresponding to the warmer months (see, for example,
the image acquired on January 2009), which can lead to the conclusion that the object
may not be a natural surface. Further, the “unknown object” is red, as the green and
the blue spectral signatures are constantly below the red one. Therefore, using only
a multi-temporal analysis, it is possible to assess (with some degree of uncertainty)
that the “unknown object” is consistent with the assumptions of a red object, possibly
man-made. In this case, the date-to-date variability is related to the AOD values with
a Pearson coefficient of −0.013, which is not significant at the 0.05 level.



124

Figure 3.17c illustrates the angular surface reflectance of the red band for the
“unknown object” (with natural, non-constant, illumination). Similar to Fig. 3.14,
the yellow circles represent the Sun locations throughout the time-series in zenith
and azimuth angles, whereas the black dots correspond to the satellite positions. This
plot is particularly useful to extract additional information about the structure of the
surface being investigated. In fact, it clearly shows that the “unknown object” has a
consistent bimodal reflectance distribution (brighter on the acquisitions from East,
and darker from West), which is consistent with the structure of a pitched object
(where only the side on the East is directly illuminated by the Sun). For the sake
of completeness, Fig. 3.17c also shows, in background, the image of the “unknown
object,” which is a brick-red pitched roof.

Another example of angular surface reflectance for a non-constant illumination
geometry is reported in Fig. 3.17d, which represents a blue roof, as shown in the
background image. In particular, the angular surface reflectance shows a fairly con-
sistent plateau of about 0.18 in the azimuthal southern part of the plot, and two areas
with higher reflectance (about 0.25) in the Sun specular reflection. From this, it is
possible to understand that the roof is also pitched (because of the two disjoint areas
of higher reflectance).

It is worth mentioning that, as for Sect. 3.3.4.1, the analysis of the spectral signa-
tures represents the average of all pixels over each of the two roofs.

3.3.4.4 Urban Land Cover Classification

In order to quantitatively investigate the benefits of surface reflectance and angular
decompositions to improve urban land cover classification of image time-series, 22
non-common classes of interest were selected from the Denver data set. These classes
include different kinds of grass, water, soil, paved surfaces, and pitched or flat roofs
as shown in Table 3.5. The angular decomposition used for this experiment is RPV
[94].

Three representation domains of the time-series data set, DN, surface reflectance,
and RPV, were used in three independent classification experiments. The 21 images
were randomly sampled by 101 different cross-validation runs, where 11 dates were
retained for training and the remaining for validation. These independent sets were
used to create two, distinct RPV models (one for training and one for validation). A
random forest model with 100 trees was generated for each cross-validation run and
each input domain [90]. It is worth noting that the models for the DN and surface
reflectance domains assumed an input space composed by four features, derived
from the four QuickBird bands, whereas the RPV input space was composed of 3×4
features, as the RPV decomposition provides ρ0, k, and Θ for each spectral band.

The RPV decomposition was implemented by fitting the model to different lookup
tables (LUTs), one for each acquisition, as the illumination and viewing geometries
change for each date. In particular, the RPV parameters were sampled for the gener-
ation of the LUTs according to the following scheme:
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Table 3.5 Classes of interest

Natural surfaces Man-made surfaces

Grass type 1 (stadium) Parking lot type 1 (asphalt, bright)

Grass type 2 (golf-fairway) Parking lot type 2 (asphalt, dark)

Grass type 3 (golf-green) Roof type 1 (brown, dark, flat)

Grass type 4 (park 1) Roof type 2 (brown, bright, flat)

Grass type 5 (park 2) Roof type 3 (concrete, gray, flat)

Tree Roof type 4 (concrete, bright, flat)

Water type 1 (lake) Roof type 5 (concrete, dark, flat)

Water type 2 (river) Roof type 6 (red, brick, pitched)

Soil type 1 Roof type 7 (blue, pitched)

Soil type 2 (playground) Roof type 8 (metal, pitched)

Soil type 3 (baseball field) Shadow (of various man-made materials)

• ρ0 ∈ [0.0 : 0.01 : 1.0]
• k ∈ [0.0 : 0.01 : 2.0]
• Θ ∈ [−1.0 : 0.01 : 1.0]
Successively, for each class of interest, the 11 LUT entries that provided the smallest
root-mean-square error between the retrieved values and the one measured by the
sensor were retained, and their average value was considered as the solution of ρ0,
k, and Θ .

Figure 3.18 illustrates the retrieved near-infrared values of ρ0, k, and Θ for the
five types of grass. For the sake of completeness, the near-infrared values in DNs
and surface reflectance domains are also reported. As shown, it is not possible to
accurately define more than one single cluster of grass with DN values due to the
large degree of overlap between the five distributions. On the other hand, the surface
reflectance domain reduces the intra-class variability of the different types, allowing
the identification of two separate clusters of healthy and less healthy grass (grass type
1–2–3 andgrass type 4–5, respectively) with a threshold of 0.48. Finally, the triplet ρ0,
k, and Θ allows the discrimination of all five grass types with fairly good confidence
(as discussed later in more detail). In particular, the intensity ρ0 contains similar
information as that provided by the surface reflectance domain, making it possible to
cluster healthy and less healthy grass with a threshold of 0.31. The anisotropy factor
k has values smaller than 1.0 for all grass types but grass type 1, representing a bowl-
shaped pattern as found in [118]. The class grass type 1 shows an anisotropy factor
consistent with a bell-shaped pattern which can be explained by the renovations of
the stadium field during winter acquisitions, when the grassy surface is generally
converted to bare soil [119]. This also explains the larger variability of this class
with respect to the others in all domains. Further, as discussed earlier, the anisotropy
factor k is more sensitive to temporal changes [94] as shown by the larger intra-
class variability compared to ρ0 and Θ . Overall, k differentiates grass type 1 from
grass type 4, and the other grass types (with thresholds 1.0 and 0.8, respectively).
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(a) (b)

(c) (d)

(e)

Fig. 3.18 The near-infrared values in a DNs and b surface reflectance domains for the five types of
grass are reported in Table 3.5. The RPV retrieved near-infrared values of ρ0, k, and Θ are shown
in c, d, and e, respectively. As shown, it is not possible to accurately define more than one single
cluster of grass with DN values due to the large degree of overlap between the five distributions.
The surface reflectance domain reduces the intra-variability of the different types, allowing the
identification of two separate clusters of healthy and less healthy grass (grass type 1–2–3 and grass
type 4–5, respectively). The triplet ρ0, k, and Θ allows the discrimination of all five grass types
with fairly good confidence as reported by the F1 measure in Table 3.6
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Fig. 3.19 Box plots of the
101 cross-validation runs for
the three independent
experiments using DN,
surface reflectance, and RPV
values. The three results are
statistically significant
according to the McNemar’s
test

The asymmetry factor Θ is systematically below 0.0 for all types of grass, which
is consistent with the backward scattering behavior as also evinced from Fig. 3.14.
The use of Θ allows the discrimination of grass type 2 from grass type 3 (with a
threshold of −0.09).

Figure 3.19 illustrates the classification accuracies (in terms of Kappa coeffi-
cient) for the three domains. The box plots account for the variability of both the
different random forest model initializations and training/testing sets of the 101
cross-validation runs. The three results are statistically significant according to the
McNemar’s test. The average accuracy when DN values are used as input is about
0.477. This result is quite in line with initial expectations as some of the classes are
spectrally similar to each other, such as the five type of grass, or they may require
knowledge of the structure being analyzed, such as the pitched roof classes. The F1

measure of the various targets is reported in Table 3.6. As shown, the grass classes
are not differentiated, with a maximum F1 just slightly above 0.3. In general, the
remaining classes have an F1 value around 0.5. However, it is interesting to note how
roof type 6 and roof type 7 are actually quite well discriminated with an F1 value
of over 0.85. This may be due to the very distinct spectral components of these two
roofs (which appeared red and blue in the visible bands, respectively) with respect
to the other classes. An improvement over the DN case of about 49.1% is achieved
by considering surface reflectance values, corresponding to a Kappa coefficient of
0.711. Roughly, all classes show better accuracies even though the grass and soil
clusters are still not well differentiated, which can be explained by the spectral simi-
larity of these targets. Finally, a Kappa coefficient of 0.851 is achieved when surface
reflectance is combined to the RPV decomposition of the time-series, corresponding
to an improvement of 78.4% over the base case of DNs. The F1 values of the grass
and soil classes are all well above 0.70, which can be seen as a satisfactory result
due to the complex nature of this task.
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Table 3.6 F1 measure of the 22 classes of interest

Class DN Surface reflectance RPV

Grass type 1 (stadium) 0.324 0.682 0.923

Grass type 2 (golf-fairway) 0.182 0.524 0.808

Grass type 3 (golf-green) 0.350 0.585 0.740

Grass type 4 (park 1) 0.213 0.341 0.769

Grass type 5 (park 2) 0.095 0.341 0.714

Tree 0.650 0.829 0.976

Water type 1 (lake) 0.372 0.722 0.932

Water type 2 (river) 0.500 0.683 0.935

Soil type 1 0.488 0.432 0.701

Soil type 2 (playground) 0.489 0.681 0.920

Soil type 3 (baseball field) 0.537 0.632 0.884

Parking lot type 1 (asphalt, bright) 0.378 0.667 0.615

Parking lot type 2 (asphalt, dark) 0.458 0.844 0.905

Roof type 1 (brown, dark, flat) 0.591 0.889 0.926

Roof type 2 (brown, bright, flat) 0.421 0.694 0.889

Roof type 3 (concrete, gray, flat) 0.444 0.976 0.981

Roof type 4 (concrete, bright, flat) 0.533 0.682 0.737

Roof type 5 (concrete, dark, flat) 0.512 0.773 0.651

Roof type 6 (red, brick, pitched) 0.857 0.976 0.976

Roof type 7 (blue, pitched) 0.895 0.901 0.904

Roof type 8 (metal, pitched) 0.585 0.718 0.884

Shadow (of various man-made
materials)

0.558 0.870 0.917

3.4 Conclusions

The protocol for image information mining discussed in the first part of this chapter
was designed to offer a high level of interactivity and to be adaptive to the image
information content. The mining methodology consists of an interactive selection of
positive and negative samples from the image space that are mapped into the feature
space through the Max-Tree or Alpha-Tree structure. Both structures organize the
image information content hierarchically and offer efficient means for component
labeling and attribution/feature extraction. Feature spaces can be computed directly
from the either of the two trees rapidly. The kd-Tree manages them by organizing the
exported features in custom and application suitable ways from which accurate clas-
sifications can be computed. Typical performance figures for this protocol measured
for the hardware reported in Sect. 3.2.6 and operated on a gigapixel VHsR satellite
image are as follows: 3 min. for computing the Max-Tree, 3 min. for computing the
kd-Tree, and interactive querying of less than 10 s.
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The availability of sub-meter optical imagery regularly acquired over the same
geographical region has proved to be effective in a large number of applications,
from precision agriculture, to disaster management, to urban planning. Despite the
progress in space technology in operating more sophisticated sensors and the large
amount of data made available, very little research addresses the advantages and
challenges of multi-temporal and multi-angular optical very high spatial resolution
space-borne imagery. The second part of this chapter illustrated not only that physi-
cal quantities are necessary to consistently and efficiently analyze these kind of data
sets, but also that the angular information of the acquisitions should not be neglected,
as unique, additional features can be derived from it. More importantly, the temporal
and angular components should always be simultaneously considered as some of the
radiometric differences in the time-series (the so called data set shift in the machine
learning terminology) may often be leveraged or accounted for by understanding the
physics of the acquisitions. In this sense, it was shown that atmospheric and geo-
metric properties of the acquisitions largely affect the image values, and significant
correlation to AOD was found for the case of DN counts. Results of a 22-class urban
land cover experiment showed that an improvement of 0.374 in terms of Kappa coef-
ficient can be achieved over the base case of DNs when surface reflectance values
are combined to the angular decomposition of the time-series.
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Chapter 4
Very-High-Resolution and Interferometric
SAR: Markovian and Patch-Based Non-local
Mathematical Models

Charles-Alban Deledalle, Loïc Denis, Giampaolo Ferraioli, Vito Pascazio,
Gilda Schirinzi and Florence Tupin

Abstract This chapter is dedicated to very-high-resolution (VHR) SAR imagery,
including interferometric applications. First, the principles of SAR data acquisition
are presented as well as the different types of configurations. The widely adopted
Gaussian complex model of fully developed speckle is described as well as more
advanced statistical models for VHR SAR data that account for textures. The follow-
ing two parts are devoted to SAR image estimation and to image denoising within
two different frameworks. First, Markovian modeling is introduced and the associ-
ated optimization approaches are presented, including graph-cut-based optimization.
The second framework is the patch-based non-local modeling of SAR complex data.
Both frameworks are adapted to SAR images through the use of statistical models
specific to SAR imagery. Their applications to amplitude data, interferometry, and
fusion with optical data are illustrated. A special focus is given to phase unwrapping
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Fig. 4.1 Side-looking radar imagery: different time delays define different slices in 3D. Two frames
are used: the radar frame (azimuth and slant range) and the ground frame (azimuth, ground range,
and elevation)

applied to single- and multi-channel interferometry, showing the usefulness of local
and global contextual models.

4.1 Principles of SAR Imagery

4.1.1 Principles of SAR Acquisition

Synthetic aperture radar (SAR) is an active system that emits microwave radiations
toward the ground and measures the electromagnetic field backscattered by the illu-
minated area1. By means of a specific signal processing chain, the received signal is
transformed into a high-resolution image of the observed scene.

SAR, like real aperture radar (RAR) systems, is able to produce images from the
backscattered signal, starting from the measurement of time delays between trans-
mitted and received signals. The time delay is directly proportional to the distance
between the sensor and the scatterer.

The obtained images are available in the two radar conventional coordinates,
azimuth and range. The azimuth is the flight direction, while the range, which is
orthogonal to the first one, is the looking direction of the antenna (i.e., the direction
from the sensor to the scatterer). Radar acquisition geometry is shown in Fig. 4.1.

1The polarimetric case is mentioned in this chapter for completeness and to stress the generality of
the described methods; it will be discussed more in-depth in the following chapter.
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Real Aperture Radar Resolution

The acquisition geometry of RAR in the azimuth range plane is depicted in
the following figure.

The acquisition geometry can also be shown in the elevation-ground range
plane. The definition of the former is straightforward, while the latter is the
direction orthogonal to the azimuth on the ground. The acquisition geometry
in elevation-ground range plane is shown in the following figure.

RAR and SAR systems have different resolutions along the two directions
(azimuth and range). The resolution is defined as the minimum distance
between two scatterer points to be resolved (i.e., separated).

In the range direction, to achieve a higher resolution, a linear frequency-
modulated signal is transmitted, the chirp. Using a chirp, the energy of the
signal is spread over a larger bandwidth W . The range resolution is then a
function of the bandwidth (W ) of the transmitted signal and the achievable
range resolution is given by [1]:
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resr = c

2W
(4.1)

where c is the speed of light. The range resolution is independent to the distance
between the sensor and the scatterer points.

The given definition of the range is the one referred to as slant range. In
terms of spatial resolution in a ground frame, another definition of range is
used: the ground range. The relation between these two resolution definitions
is given by:

resg � resr
cosψ

(4.2)

where ψ is the so-called grazing angle, which is defined as the angle between
the radar line of sight and the horizontal plane at the point of the reflection
on the Earth (with plane Earth assumption). The ground range resolution is
coarser than the slant range resolution and varies along the line of sight.

The azimuth resolution at a given range R0 is given by [2]:

resa ∝ λR0

L
(4.3)

where λ is the wavelength and L is the antenna length. To increase the azimuth
resolution, it is thus necessary to use larger antennas or work at a smaller
distance from the scatterers. Another solution is to use a synthetic aperture as
done by the SAR systems.

The substantial difference between SARandRAR is the largely improved azimuth
spatial resolution of SAR systems. This better resolution is achieved by synthesizing
a larger antenna a posteriori while using a small antenna during radar measurements.
The system takes advantage of the fact that the response of a point scatterer (target) on
the ground is contained in more than a single radar echo and shows a typical history
of phase during the observation time. A scatterer point, in fact, remains inside the
antenna beam for a significant period of time and is observed by the SAR from differ-
ent positions during the movement of the antenna along the trajectory. By coherently
combining the different echos relative to the target, SAR realizes a synthetically
enlarged antenna, a synthetic array able to increase the azimuth resolution.

Let us now focus on the processing chain for the image formation starting from the
acquired data. Under the assumption that the electromagnetic interaction between the
incident wave and the observed surface is dominated by surface scattering, the SAR
system can be modeled as a linear model [3]. Let us consider the acquisition system
of Fig. 4.2. We assume that a single point scatterer (target) is located on the ground
with coordinates (x, r, θ ), for the azimuth, slant range and elevation, respectively, at
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Fig. 4.2 Geometry of SAR Systems

a distance R0 from the sensor. The sensor is moving in the azimuth direction with a
constant velocity.

Let us establish how the target is seen by the SAR sensor. Assuming that a chirp
modulation is adopted, the transmitted signal pulse at times tn − (τ/2) is given by
[4]:

dtx (t − tn) = exp
[
j2π f (t − tn) − j

a

2
(t − tn)

2
]
rect

(
t − tn

τ

)
(4.4)

where a is the chirp rate, f is the working frequency, τ is the duration of the pulses,
and rect() is the rectangular function. In Eq. (4.4), all the amplitude factors have
been neglected. The signal backscattered from the target and received at the sensor
position (neglecting the backscattering coefficient) is given by:

drx (x
′ − x, t − tn, r) = dtx

(
t − tn − 2R0

c

)
F
(
x ′ − x, r

)
(4.5)

where F is a function related to the gain pattern of the transmit antenna.
Changing the notations (t ′ = t−tn),moving from time to space (r ′ = ct ′

2 ), introducing
the wavelength λ, defining ΔR0 = R0 − r , and after suppressing the fast varying
term, we can define the unit response function g as:

g(x ′ − x, r − r ′, r) = drx (x
′ − x, r − r ′, r) exp

(
j
4π

λ
r

)
=

exp

[
− j

4π

λ
ΔR0

]
exp

[
− j

a

2

(
2

c

(
r ′ − ΔR0 − r

))2]
rect

(
r ′ − ΔR0 − r

τc
2

)
F
(
x ′ − x, r

)

(4.6)

Considering the backscattering coefficient γ (x, r) of the entire imaged area, the raw
received signal is given by the superimposition of all the elementary contributions
coming from the scene:
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h(x ′, r ′) =
∫∫

γ (x, r) exp

(
− j

4π

λ
r

)
g(x ′ − x, r ′ − r, r)dxdr =

∫∫
γ̄ (x, r)g(x ′ − x, r ′ − r, r)dxdr

(4.7)

where γ̄ (x, r) = γ (x, r) exp
(− j 4π

λ
r
)
. Moving to the frequency domain, the Fourier

transform (FT) of the raw signal is given by:

H(ζ, η) =
∫∫

h(x ′, r ′) exp(− j x ′ζ ) exp(− jr ′η)dx ′dr ′ (4.8)

where ζ and η are the Fourier domain variables corresponding to x ′ and r ′, respec-
tively. By using Eq. (4.7) and introducingG() as the FT of g(), it is possible to rewrite
Eq. (4.8) as:

H(ζ, η) =
∫∫

γ̄ (x, r)G(ζ, η, r) exp(− j xζ ) exp(− jrη)dxdr (4.9)

The SAR imaging problem consists in designing an appropriate filter able to recover
an optimal estimation of γ̄ from Eq. (4.9). The filter has to be able to properly filter
out the function G. To this aim, the analytical evaluation of the function is needed
[5]. The main problem to be faced out with the function G is related to its explicit
dependence on the range variable r .

Synthetic Aperture Radar Resolution

Let us focus on the case of a single point scatterer with coordinates (x0, r0).
The backscattering coefficient becomes γ̄ (x, r) = γ̄ (x0, r0)δ(x−x0)δ(r−r0).
Thus, exploiting the property of Dirac function δ, the raw received signal can
be written as:

h(x ′, r ′) = γ̄ (x0, r0)g(x
′ − x0, r

′ − r0, r0) (4.10)

and its FT:

H(ζ, η) =
∫∫

γ̄ (x0, r0)g(x
′ − x0, r

′ − r0, r0) exp(− j x ′ζ ) exp(− jr ′η)dx ′dr ′ =
γ̄ (x0, r0)G(ζ, η, r0) exp(− j x0ζ ) exp(− jr0η) (4.11)

Multiplying Eq. (4.11) by conjugate function G∗(ζ, η, r0) and by taking the
inverse FT of the result, it is possible to estimate the focused image.



4 Very-High-Resolution and Interferometric SAR … 143

γ̂ (x ′, r ′) =
∫∫

H(ζ, η)G∗(ζ, η, r0) exp( j x
′ζ ) exp( jr ′η)dζdη (4.12)

and exploiting the stationary phase method [5] for the approximation of the
G() function:

γ̂ (x ′, r ′) =
=
∫∫

γ̄ (x0, r0) rect

(
ζ

2e

)
rect

( η

2b

)
exp( j (x ′ − x0)ζ ) exp( j (r ′ − r0)η)dζdη =

γ̄ (x0, r0) sinc
(
(x ′ − x0)e

)
sinc

(
(r ′ − r0)b

)
(4.13)

where e = πX
L/2 and b = aτ 2/2, with X being the length of the synthetic

antenna and the others parameters previously introduced. Further details on
these definitions and on the approximation of the G() function can be found
in [3].

The result of Eq. (4.13) can be used in order to define the spatial resolution,
in both range and azimuth coordinates, of the SAR systems compared to RAR
ones. Following the approach of [3], the azimuthal and range normalized (with
respect to the RAR resolution) achievable resolutions are given by the distance
between the −3 decibel points of the two sinc functions:

resanorm = 2π

2e
= L2

2λR0
(4.14)

resrnorm = 2π

2b
= 2π

aτ 2
(4.15)

It is easy to verify that the two previous values are much smaller than the
unit, using typical SAR parameters. Moreover, by multiplying Eqs. (4.14) and
(4.15) by Eqs. (4.3) and (4.1), respectively, it is possible to obtain the SAR
achievable resolutions.

According to the previously explained formulation, a properly designed G∗()
function, calculated for each range coordinate, is mandatory to estimate the backscat-
tering signal. Its dependence to the range coordinate makes the processing complex
and not straightforward. Several solutions have been adopted in literature [5]. In the
following, we report one of them which is known as grid rectification approach. For
this aim, the G(ζ, η, r) is factorized as the product of two functions:

G(ζ, η, r) = G0(ζ, η)Λ(ζ, η, r) (4.16)

where only the second function depends on r . Using some approximations [5], the
function can be conveniently expressed as:
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Λ(ζ, η, r) = exp

(
j
λζ 2

8π
r

)
(4.17)

TheFTof the raw signal of Eq. (4.9) after substitutingEqs. (4.16) and (4.17) becomes:

H(ζ, η) =
∫∫

γ̄ (x, r)G0(ζ, η)Λ(ζ, η, r) exp(− j xζ ) exp(− jrη)dxdr (4.18)

Making a change of variables ηc = η + λζ 2

8π r , the previous equation can be written
as:

H(ζ, η) = G0(ζ, η)Γ̄ (ζ, ηc) (4.19)

where Γ̄ () is the FT of γ̄ (). Finally, by multiplying for the conjugate function
G0

∗(ζ, η), it is possible to estimate the FT of the focused image:

Γ̂ (ζ, η) = H(ζ, η)G0
∗(ζ, η) = Γ̄ (ζ, ηc) (4.20)

It is clear that the estimated function computed in the uniform rectangular grid (ζ, η)

corresponds to a function computed over a grid (ζ, ηc) which is parabolic in one
direction (there is a dependence on the square of ζ ). Thus, a final rectification of the
parabolic grid onto the rectangular one is mandatory. Details on this rectification can
be found in [5].

4.1.2 From 2D to 4D SAR Imaging

The term SAR interferometry (InSAR) refers to all methods that employ at least
two complex SAR images to derive more information about an object compared to
the information provided by a single SAR image [6]. Two possible configurations of
SAR interferometry exist: across track interferometry and along track interferometry.
In the across track configuration, two SAR sensors fly on two parallel flight lines
and look at the ground from slightly different positions. Across track interferometry
is used to reconstruct Earth topography, providing high-precision digital elevation
model (DEM) of Earth surface. In the along track configuration, the two sensors fly
on the same flight direction, looking the scene from the same position but with a
small temporal delay. This system is mainly used for measurement of ocean currents
[7] and for moving target detection [8]. In the following, the first configuration will
be analyzed.

The geometry of an interferometric SAR system is shown in Fig. 4.3. Two SAR
systems (SAR1 and SAR2) observe the scene from two different positions, acquiring
two complex images. From the analysis reported in the previous section, the two
focused, γ̂1(x ′, r ′) and γ̂2(x ′, r ′), differ for a phase term proportional to dR, which
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Fig. 4.3 Interferometric
SAR geometry. The point P
is observed from SAR1 and
SAR2 from two different
positions. The distance
between the sensors B is
called the baseline. The
height of the observed point
is inferred from the measure
of the additional range path
dR

is the additional range path of SAR2 with respect to the distance between the target
and SAR1.

By taking the angle of the conjugate product of the two complex images, it is
possible to define the so-called interferometric phase:

φ(x ′, r ′) = arg
[
γ̂1(x

′, r ′)γ̂ ∗
2 (x ′, r ′)

] = −4π

λ
dR (4.21)

From Eq. (4.21), it is clear that the phase difference between the two images (the
interferogram) provides an accurate measure of the difference in range [2, 6, 9]. The
additional range path −dR can be estimated with high precision.

Starting from the knowledge of interferometric phase φ, it is possible to infer the
height of the observed scene. Let us consider the geometry depicted in Fig. 4.3.

The distance B between the two sensors is the so-called baseline, the angle
between the line of sight and the vertical direction θ is the so-called look angle,
while σ is the angle between the horizontal direction and the baseline. Using some
geometrical relations and some approximations, it is easy to show that dR is related
to the baseline by the following relation:

dR = −B sin (θ − σ) (4.22)

while the height of the point can be computed from the evaluation of the look angle
θ using the relation:

z = zs − r cos(θ) (4.23)

where zs is the height of the sensor. It is interesting to evaluate the relationship
between a change in the scatterer heightΔz and the resulting change in the difference
in range to the two phase receivers ΔdR:
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Δz

ΔdR
= r sin(θ)

B cos (θ − σ)
(4.24)

Exploiting Eq. (4.21) and rearranging the terms, it is possible to evaluate the change
in the interferometric phase due to a change in height:

Δφ = 4πB cos (θ − σ)

λr sin θ
Δz (4.25)

This relation provides the interferometer height sensibility and provides the relation
between the measured phase and the height in the absence of noise.

An evolution of SAR interferometry is the differential interferometry (DInSAR),
which is a technique able to estimate not only the height of pixels but also their
possible displacements, occurred between two successive observations. Considering
a displacement of the pixel along the line of sight in two observations, it is possible
to rewrite Eq. (4.21) in the following way:

φ(x, r) = −4π

λ
dR = −4π

λ
dRd − φz (4.26)

where φz is the contribution corresponding to the target height while dRd is the range
variation corresponding to the displacement. The terms associated with the variation
of the wave propagation delay through the atmosphere and the phase noise have
been neglected [2]. DInSAR allows measuring the component of the displacement
with an accuracy of the order of fractions of the wavelength. A deeper analysis and
discussion on DInSAR can be found in [2].

4.1.3 Statistics of Speckle in SAR Imagery

4.1.3.1 Fully Developed Speckle Model

SAR data are represented by amatrix of complex numbers representing the backscat-
tered electromagnetic field. Both amplitude and phase can be useful depending on
the considered application. As we shown in the previous section, phase differences of
interferometric images are related to the scene geometry and provide information on
ground elevation or movement. On the other hand, amplitude (absolute value of the
complex field) represents the backscattering properties of the illuminated surfaces.
Besides, if different polarizations for wave emission and reception are used, a com-
plete characterization of the physical properties of the surface is provided through the
polarimetric scattering vector [10]. More details on polarimetric SAR can be found
in Chap.5.

Whatever the considered parameters (amplitude, phase, polarimetric scattering
vector,...), they present high fluctuations due to the speckle phenomenon. It is linked
to the coherent nature of radar illumination and to the interferences of elementary

http://dx.doi.org/10.1007/978-3-319-66330-2_5
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scatterers inside the resolution cells. This phenomenon has been deeply studied and
modeled by Goodman [11]. In the case of rough surfaces compared to the electro-
magnetic wavelength, it can be established that for a given surface of reflectivity R,
the complex electromagnetic field2 Z follows a circular Gaussian distribution with
zero mean defined by:

p(Z|R) = p(�(Z),�(Z)|R) = 1

πR
exp

(
−|Z|2

R

)
(4.27)

4.1.3.2 Speckle Model for Amplitude or Intensity Data

This complex circular Gaussian distribution implies an exponential distribution for
intensity (I = |Z|2):

p(I|R) = 1

R
exp

(
− I

R

)
I ≥ 0 (4.28)

a Rayleigh distribution for amplitude data (A = |Z|):

p(A|R) = 2A

R
exp

(
−A2

R

)
A ≥ 0 (4.29)

and a uniform phase distribution on the [−π;π ] interval.
To reduce speckle effects and the high variability of the signals, multi-look

processing is a widespread technique finding its grounding in the maximum likeli-
hood estimation.Multi-look intensity is obtained by averaging L incoherent intensity
data. The distribution is then given by a Gamma probability density function (pdf):

pL(I|R) = LL

RLΓ (L)
I(L−1) exp

(
− LI

R

)
(4.30)

with Γ representing the Gamma function [12]. A usual modeling of SAR amplitude
or intensity data is given by themultiplicativemodel separating the scene contribution
and the speckle fluctuation effect. It is written I = R×S where S represents the pure
speckle following the previously given distributions with R = 1, giving:

pL(S) = LL

Γ (L)
S(L−1) exp (−LS) (4.31)

2Corresponding to the backscattering coefficient γ (x, r) of the previous section but taking into
account the amplitude factors.
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for multi-look intensity data. This formulation shows why Rayleigh or Gamma-
distributed data have signal-dependent fluctuations (the variance depends on the
underlying R value).

A well-known transform when dealing with SAR images is the homomorphic
transform obtained when applying a logarithm to the data. This transform has many
advantages aswewill see in the following sections, since it converts themultiplicative
speckle to an additive one, thus isolating the noise contribution. The transformed
signal follows a Fisher–Tippett pdf [11] and has a stabilized variance σ 2 = ψ(1)(L)

depending only on the number of looks L and no more on the scene value (with ψ(1)

the polygamma function [12]).

4.1.3.3 Vectorial Speckle Model

If instead of considering a single complex value and associated quantities, a vector
of complex values is considered (for instance, a polarimetric scattering vector or an
interferometric vector), a zero mean complex circular Gaussian is followed:

p(k|�) = 1

πd det(�)
exp(−k∗t�−1k) (4.32)

with � the covariance matrix determining the imaged surface.
Although limited to rough and homogenous surfaces, Goodman’s model of fully

developed speckle is widely used to process SAR data and estimate the physical
parameters. It allows to predict the fluctuations of the parameters depending on the
considered surface characterized by R (the reflectivity) or � for single- or multi-
channel data, respectively.

In the same way as for intensity or amplitude, multi-looking is widely used
to reduce signal fluctuations. In the vectorial case, multi-looking of multivariate
Gaussian vectors of D dimension is done through the hermitian product, leading to
the empirical covariance matrix:

C = 1

L

L∑
i=1

kikt∗
i

It follows the Wishart distribution when L ≥ D:

p(C|�) = LLD|C|L−D exp
(−LTr(�−1C)

)

π
D(D−1)

2 Γ (L)Γ (L − D + 1) |�|L
(4.33)

The samples to apply multi-looking are usually taken in the surrounding neighbor-
hood, for instance, using a local window. A trade-off between the variance reduction
(with a high L value) and the bias introduction (caused when using samples from a
different underlying scene) is a critical issue that will be discussed in Sect. 4.3.
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4.1.3.4 Speckle Model for InSAR Data

A special case of vectorial data is given by interferometric data k = (Z1 Z2)
t . The

covariance matrix is then the following:

� =
[
E(|Z1|2) E(Z1Z∗

2)

E(Z∗
1Z2) E(|Z2|2)

]
(4.34)

with E denoting the expectation.3 A useful quantity is the complex correlation coef-
ficient:

Negative log-likelihood in SAR imagery:

Under Goodman’s model, the negative log-likelihood for a pixel value is given
below for the different considered SARmodalities (up to an additive constant).

• SAR Amplitude: �(A|R) = L logR + L
A2

R
.

• SAR Intensity: �(I|R) = L log R + L
I

R
.

• SAR Covariance Matrix:
�(C|�) = L log |�| + LTr(�−1C) .

ρc
12 = E(Z1Z∗

2)√
E(|Z1|2) E(|Z2|2)

= ρ e jϕ (4.35)

ρ being the coherence (scalar) denoting the correlation between the two complex
signals and ϕ representing the true interferometric phase.

Different distributions linking observed data and true values can be given [10].We
only present some of them. The joint distribution of the observed empirical elements
of C conditionally to the true values is expressed as:

p(I1, I2, φ|R1,R2, ρ, ϕ) = 1
π2R1R2(1−ρ2)

exp
(
− 1

1−ρ2

(
I1
R1

+ I2
R2

− 2
√
I1I2ρ cos(φ−ϕ)√

R1R2

)) (4.36)

3
E is used here for the expectation operator, differently from the other chapters, for clarity and to
avoid ambiguities.
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As seen before, in practice, some multi-looking is applied through the hermitian
product of L complex values to compute C. The following pdf can be deduced from
the Gaussian circular model:

p(φ|ρ, ϕ, L) = (1 − ρ2)L

2π

1

2L + 1
2F1

(
2, 2L; L + 3

2
; 1 + ρ cos(φ − ϕ)

2

)

(4.37)

where 2F1 is a hypergeometric function [12]. In the case of 1-look data, the phase
distribution can be expressed as [13]:

p(φ|ρ, ϕ) =
1

2π

1 − ρ2

1 − ρ2 cos(φ − ϕ)2

(
1 + ρ cos(φ − ϕ) cos−1(−ρ cos(φ − ϕ))

(1 − ρ2 cos(φ − ϕ)2)1/2

)

(4.38)

4.1.3.5 Taking Texture into Account

The usual complexmultivariate Gaussianmodel presented above is very efficient and
depends only on a few parameters (reflectivity or covariance matrix). Nevertheless,
to take into account texture information, more sophisticated distributions can be
introduced which are derived from the multiplicative model. Introduced in [14],
the Mellin transform dedicated to positive values, the Mellin convolution dealing
with product of positive random variables, and the log-cumulant framework provide
efficient tools to derive advanced models like the Generalized Gamma or Fisher
distributions for amplitude data [15–17] or the Kummer-U for polarimetric data
[18].

The Mellin framework will be discussed in more details in Chap. 5, especially
with focus on the polarimetric case, but we will introduce here the diagram of
log-cumulants of order 2 and 3 (κ̃2, κ̃3). Denoting m̃k = ∫ +∞

0 (log u)k p(u)du, the
log-cumulants are defined by:

κ̃2 = m̃2 − m̃2
1

κ̃3 = m̃3 − 3m̃2m̃1 + 2m̃3
1

They can be simply computed through the empirical mean of logarithmic data.
This diagram (Fig. 4.4) provides a graphical representation of the different distri-

butions that can be defined onR+ based on their log-cumulants of order 2 and 3 (i.e.,
not taking into account the reflectivity of the scene but the shape—head and tail—of
the associated pdf).

These advancedmodels are usefulwhendealingwith very-high-resolution data for
which the texture has to be taken into account. A unifying distribution, theMeijer pdf,
allows an almost full coverage of the log-cumulant diagram [19]. Nevertheless, the

http://dx.doi.org/10.1007/978-3-319-66330-2_5
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modeling improvement is earned at the price of higher-order parameter estimation. In
the following sections, we will focus on approaches exploiting the basic Goodman’s
model (Gamma and Wishart pdf) for the data but introducing textural information
through the spatial correlation of neighboring pixels.

4.2 Markovian Modeling and Its Applications

4.2.1 Markovian Modeling of Images

4.2.1.1 The Markovian Framework

Section4.1.3 described several statistical models to account for fluctuations due to
speckle or scene heterogeneity. Starting from a SAR image, many tasks require to
infer a spatial distribution of physical parameters (e.g., reflectivity, interferometric
phase, polarimetric properties) or of higher-level attributes (class index for classifi-
cation, indicator function for segmentation, change indicator for change detection).
Beyond the statistical modeling of fluctuations in the data, it is beneficial to also
capture the statistical dependency of the spatial distribution of interest. Indeed, when
it comes to inferring a parameter or attribute at a given location in a SAR image,
not only the observed SAR signal at that location should be used but also the spatial
context.

Modeling the statistical dependence between random variables is a very old topic
in science. The major difficulty here comes from the huge dimension of the random
vector4 u of parameters/attributes, each element ui of the vector defining a different
spatial location: from a few hundreds (one per image segment) to millions or billions
(several parameters per pixel). To alleviate this complexity issue, the probability
density function of the random vector5 u is generally supposed to factor into a
product of terms each involving only a small subset of elements of u:

p(u1, . . . , un) =
∏
k

fk
(
uI k1

, . . . , uI knk

)
, (4.39)

where indices I k1 to I knk define the kth subvector of dimension nk . Such a factorization
is often represented by a graph and each term in Eq. (4.39) is called a factor, see the
box “Graphical models used to capture statistical dependence” below.

4In the following, we will denote by u the parameters of interest and v the observations provided
by the data in a generic way. If useful, these notations will be replaced by the notations introduced
in Sect. 4.1.3 for SAR data.
5Since each element of the random vector can be assigned to a given spatial location, we will refer
to this random vector as a random field.



152

Fig. 4.4 Pdf positioning in the κ̃2 − κ̃3 diagram. Each pdf is represented by a point in the diagram
depending on its parameter. Pdf with one varying parameter (in addition to the mean value) covers
a curve in this diagram while 2-parameter pdf covers an area. Generalized Gamma covers the area
between blue curves excluding ordinate axis; Fisher, the area between dashed green curves; K pdf,
the yellow area; and lognormal distributions stand along the ordinate axis, while beta and inverse
beta are indicated in pink areas (color figure online)

In order to obtain a factorization of the form of Eq. (4.39), a (local) Markov
property is typically assumed. A random field u is said to fulfill a (local) Markov
property if and only if the conditional dependence is local:

∀i, p( ui
∣∣ u1, . . . , ui−1, ui+1, . . . , un

) = p
(
ui
∣∣ {uk |k ∈ N(i), k = i} ) (4.40)

where N(i) is the set of indices of all the neighbors of site i . In order to define
neighborhood relationships between sites, an undirected graph is associated with the
Markov random field. Each node of the graph represents a different site (i.e., an ele-
ment of the random vector, which also corresponds to a given spatial location). Two
sites that are neighbors are connected by an edge in the graph; hence, the neighbor-
hoodN(i) corresponds to all nodes that are connected to node i by an edge. Since the
notion of neighborhood is central to the Markovian property, subgraphs composed
of mutually connected nodes play an important role. By definition, cliques corre-
spond to complete subgraphs. Clifford–Hammersley theorem [20] states (provided
that no configuration of the random field is forbidden) that distributions that fulfill
the Markov property are members of the family of Gibbs distributions, i.e., they can
be written under the form:
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p(u) = 1

Z

∏
c∈C

ψc(uc) = 1

Z
exp

{−
∑
c∈C

θc(uc)
}

(4.41)

where Z is a normalization constant (the partition function), c is a clique from the
set C of all cliques of the graph, uc is the subvector obtained by restricting vector u
to the sites in the clique c, functionsψc are called potential functionswhile functions
θc(·) = − log(ψc(·)) are the clique energies.6

It is sometimes desirable to design clique energies θc that can be driven by the
data. For example, one may think of a clique energy that assigns a large value to
configurations in which two neighboring sites i and j take very different parameter
values ui and ui except if the observed values vi and v j are themselves very different.
Conditional random fields (CRFs) have been introduced [21] so that clique energies
can depend on the vector of observations. The probability density function of a CRF,
conditionally to the observations v, can be factored under a form similar to MRFs:

p(u|v) = 1

Z

∏
c∈C

ψc(uc, v) = 1

Z
exp

{−
∑
c∈C

θc(uc, v)
}

(4.42)

and the (local) Markov property is fulfilled, conditionally to the data:

∀i, p( ui
∣∣ v, u1, . . . , ui−1, ui+1, . . . , un

) = p
(
ui
∣∣ v, {uk |k ∈ N(i), k = i} )

(4.43)

We summarize here the three models discussed so far and illustrate their repre-
sentation by graphs (graphical models):

Graphical models used to capture statistical dependence:

Between spatial independence (left) and complete dependence (right), graph-
ical models describe conditional dependence of small subsets of the random
variables:

Three graphical models are widely used:

– factor graphs represent the factorization of the probability density function
by connecting groups of variables through the factors fk (see also Eq. (4.39))

6The vocabulary in use in Markov random fields theory comes from the field of statistical physics.
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–Markov random fields (MRFs) represent the factorization of the probabil-
ity density function as a product over cliques (see also Eq. (4.41))

– conditional random fields (CRF) may include an external field (e.g., obser-
vations) to define the probability density function (see also Eq. (4.42))

4.2.1.2 Applications in Remote Sensing

The Markovian framework is very popular for different tasks of image processing
like denoising and regularization, classification, segmentation, or object extraction.
Some of them will be described in details in the following sections. In the context of
remote sensing applications, due to the high level of variability of SAR data, it has
been widely used. The following references are only examples of such methods, but
many other works have been developed.

The segmentation of SAR data with a Markov random field has been proposed
in [22] with a dictionary of distributions and an automatic parameter learning, in
[17] with Fisher distributions for VHR data and urban areas, in [23, 24] with Triplet
Markov random field taking into account non-stationnarities, or hierarchical models
[25].



4 Very-High-Resolution and Interferometric SAR … 155

This framework is well adapted whatever the processed data like polarimetric
images [24, 26], or multi-temporal images [27, 28]. It has also been extensively
studied for change detection applications [29].

Markovian framework is also very powerful for object extraction like roads [30]
withMarkov random fields defined on graphs of segments or connected components.
An extension is provided by marked point processes [31], but these models are
beyond the scope of this chapter. MRFmodels for multi-source and especially multi-
resolution fusion will be discussed in Chap. 7.

In the next sections, applications ofMarkov randomfields for amplitude and phase
denoising with an auxiliary optic data will be described (Sect. 4.2.3), as well as phase
unwrapping applications with multi-channel interferometry (Sect. 4.2.4).

4.2.2 Inference in Markov Random Fields

Based on the statistical model of the observations v (Sect. 4.1.3) and of the spatial
distribution of parameters u (Sect. 4.2.1.1), application of Bayes rule leads to an
expression of the posterior distribution of the form:

p(u|v) ∝
∏
i

exp
{−�(vi |ui )

}∏
c∈C

exp
{−θc(uc)

}
(4.44)

where we considered the observations vi and v j at two different sites i and j to be
independent (conditionally to the parameters u), and �(vi , ui ) = − log p(vi |ui ) is
the so-called neg-log-likelihood function for parameter ui where p(vi |ui ) is one of
the pdfs introduced in Sect. 4.1.3.

Due to the coupling of all random variables ui of the random vector u induced
by the chaining of all cliques, estimation of u from the posterior distribution p(u|v)
is not easy. Two estimators are typically considered: the posterior mean estimator
û(PM) = ∫

u · p(u|v)du and the maximum a posteriori û(MAP) ∈ arg maxu p(u|v).
Computation of the posterior mean estimator requires to perform a high-dimensional
integration, which is typically done using sampling methods like Monte Carlo
Markov chains (MCMC) [32]. The computational complexity involved by these
approaches and the lack of relevance of the mean when the posterior distribution is
multimodal has led to favor the maximum a posteriori (MAP) estimation in many
works. For posterior distributions of the form of Eq. (4.44), MAP estimation requires
to solve an optimization problem:

û(MAP) ∈ arg min
u

Fv(u) , withFv(u) =
∑
i

�(vi |ui ) +
∑
c∈C

θc(uc) (4.45)

We discuss in the next paragraph how this optimization problem can be addressed;
then, we provide an introduction to combinatorial optimizationmethods based on the
computation of the minimum cut of an appropriate graph. Sections4.2.3 and 4.2.4

http://dx.doi.org/10.1007/978-3-319-66330-2_7


156

describe two applications ofMRFmodeling and these min-cut optimization methods
for SAR image regularization.

4.2.2.1 Mathematical Optimization Techniques for MAP Estimation

The nature of the minimization problem of Eq. (4.45) involved in the computation
of the MAP estimator depends on several factors:

• the domain of the vector of parameters u:
This domain may be a continuous range (e.g., ui ∈ C or ui ∈ R

+) or a discrete set
of labels (e.g., ui ∈ {1, . . . , L}). The former case involves continuous optimization
while the latter implies a discrete optimization (or combinatorial optimization).
The vector u may even have some of its elements in a continuous range while the
rest are in a discrete set, leading to the so-called mixed integer programming.

• the neg-log-likelihood function �:
Due to the presence of speckle in SAR imaging, the distribution of observations
is typically modeled with an heavy-tail. The neg-log-likelihood function � is thus
generally non-convex.

• the clique energy θc:
Depending on the task at hand (regularization, segmentation, classification), the
choice of a particular clique energy θc varies. The clique energy may be a smooth
function (e.g., θ(ui , u j ) = β (ui −u j )

2), a non-smooth function (e.g., θ(ui , u j ) =
β |ui − u j |) or a discontinuous function (e.g., θ(ui , u j ) = 0 if ui = u j and
θ(ui , u j ) = β otherwise).

Mathematical optimization is a very wide topic; depending on the domain of
the unknown parameters u, the neg-log-likelihood function � and the clique energy
θc, computation of the MAP estimator involves nonlinear programming methods
(for convex or non-convex optimization), non-smooth optimization or combina-
torial optimization. It is therefore not surprising that a wide range of algorithms
have been developed to address the MAP estimation problem in Markov random
fields. While stochastic methods like simulated annealing or Monte Carlo sam-
pling methods have been heavily investigated in the 1980s and 1990s [33], the suc-
cess of combinatorial optimization methods for MAP inference has driven much
of the effort since the end of the 1990s [34]. We report in the scheme on p. 157
some of the main deterministic methods in use to date. Those methods may be
broadly separated into continuous optimization methods and combinatorial (i.e.,
discrete) optimization methods. The nature of the unknowns u generally dictates
the choice of continuous or discrete methods. However, by quantization, unknowns
that lie in a continuous range may be turned into discrete unknowns (i.e., taking
one of a finite number of states) and combinatorial methods be then applied in
order to benefit from theoretical guarantees of identifying the global minimum
in some multimodal non-convex cases. Such an approach will be illustrated in
Sects. 4.2.3 and 4.2.4. Conversely, a problem originally formulated with discrete
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unknowns (e.g., ui ∈ {0, 1}) may be turned into a continuous problem by a process
called relaxation that consists of replacing integral constraintswith bound constraints
(e.g., ui ∈ [0, 1]). Efficient continuous optimization methods can then be applied, at
the cost of a loss of theoretical guarantees, except for some notable special cases [35].
When both the clique energy and the neg-log-likelihood are smooth (i.e., continu-
ously differentiable), the gradient of the objective function F provides information
to decide for a search direction. Gradient descent methods iteratively improve the
current solution u(k) by a step of length αk in the direction opposite to the gradient
evaluated at u(k): u(k+1) = u(k) −αk ·∇u[Fv](u(k)). Quasi-Newton methods improve
the convergence speed by choosing a more efficient search direction computed with
an approximation of the inverse of the Hessian matrix built iteratively from the suc-
cessive gradient vectors. Trust region methods restrict step sizes within a region in
which the second-order approximation ofFv is considered valid. Provided that step
lengths and search directions (or the size of the trust region) are carefully chosen,
global convergence7 to a global minimum can be proven, when F is convex [36].
WhenF is not convex, special care must be taken to ensure that the local quadratic
approximations used in quasi-Newton or trust region methods are positive definite.
Convergence can then be guaranteed only to a local minimum. It is worth to note that
given the large number of unknown parameters generally involved (the dimension
of vector u), limited-memory methods like L-BFGS [37] are considered, i.e., the
approximation of the Hessian is not explicitly stored but implicitly used based on
the last few gradient and iterate values.

Non-smooth objective functions F are very common owing to the success of
sparsity-inducing priors, e.g., clique energies involving L1 norms. Because of the
non-differentiability of F , continuous optimization methods do not directly apply.
Several efficient algorithms were derived based on smoothing methods: proximal
methods (see, e.g., reviews [38, 39]) or the augmented Lagrangian [40–42]. These
methods have guaranteed convergence to a global minimum, provided that F be
convex. Some of these methods also apply to non-convex objective functions F ,
with the guarantee to converge to a local minimum.

Three main families of methods have been considered to address discrete opti-
mization problems in MAP inference: graph-cuts, message passing algorithms, and
dual methods. We devote the next paragraph to the presentation of the principle of
graph-cuts and describe in Sects. 4.2.3 and 4.2.4 applications of graph-cuts to MRF
models in SAR imaging. Belief propagation (akamin-sum) [43] is a message passing
algorithm that leads to a global minimum when the graphical model has a tree struc-
ture. When the graph has loops, a variant called loopy belief propagation [44] can
be applied, without theoretical guarantee of convergence [34]. Finally, several dual
methods have been considered. Since the objective function F writes as a sum of
terms, it can be recast as an integer linear program by introducing indicator variables
that select the right terms among all possible likelihood terms and clique energies.

7By global convergence, it is meant that the algorithm converges even if the initial value u(0) is far
from the optimum.
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Since the resulting integer linear program is in general NP-hard to solve, it is relaxed
into a linear program, leading to an approximate solution.

The paper [45] compared 27 different methods on several MAP inference prob-
lems with discrete unknowns arising in computer vision. From their analysis, it
appears that depending on the structure and size of the problem, graph-cut methods,
dual methods, or message passing should be preferred.

4.2.2.2 Minimization Methods Based on Graph-Cuts

This section is intended to introduce the main minimization methods based on the
computation of minimum cuts. These methods will form the core of the SAR image
processing frameworks described in Sects. 4.2.3 and 4.2.4.

We begin by describing the historically first graph-cut method for MAP inference
in a MRF. This method, developed by Greig, Porteous and Seheult [46], applies to
binary MRF with pairwise terms that favor neighboring sites to share an identical
binary value: (attractive) Ising model.

Finding an optimal binary labeling by graph-cuts: Ising model

s

t

s

t

To find the optimal binary labeling u�, i.e., the solution to the combinatorial
problem:

arg min
u∈{0,1}n

∑
i

D(ui , vi ) +
∑
i∼ j

R(ui , u j ) , withR(ui , u j ) =
{
0 if ui = u j

β if ui = u j

the method of Greig et al. [46] performs three steps:

(a) it builds a graph with a node for each pixel of the image plus two terminal
nodes (the source s and the sink t ); edges of the graph connect each
node to the two terminal nodes and to their nearest spatial neighbors;

(b) a maximum flow/minimum cut is computed over the graph;
(c) the optimal labeling is derived by analyzing the minimum cut.

Our description only outlined the method. Before justifying that it can actually
provide the optimal labeling u�, we shall introduce the formal definition of the min-
imum s-t-cut of a graph.



160

A flow network8 G = (N ,E ) is a directed graph, defined by a set of nodes N
and a set of directed edges E . Each edge connecting a node x to a node y is given a
nonnegative value called capacity κ(x, y). If two nodes x ′ and y′ are not connected
in the graph, we set κ(x ′, y′) = 0. Two nodes play a special role: the source “s” and
the sink “t”. A flow on the graph is a real-valued function f : N × N → R that
verify the following two constraints:

• capacity constraint: ∀x ∈ N , ∀y ∈ N , 0 ≤ f (x, y) ≤ κ(x, y) (the flow never
exceeds edge capacities);

• flow conservation: ∀x ∈ N \ {s, t},
∑
y∈N

f (y, x) =
∑
y∈N

f (x, y) (the flux that

enters a node equals the flux that exits that node, there is no accumulation or loss
except at the source and sink nodes).

The value | f | of a flow f is defined as the difference between all flux that exits the
source and the flux that enters the source:

| f | =
∑
x∈N

f (s, x) −
∑
x∈N

f (x, s) (4.46)

The maximum flow problem is to find a flow f satisfying the above two constraints
and such that its value | f | be maximum.

An s-t-cut (S ,T ) is a partition of the set of nodes N into two sets S and T
such that the source s be in set S and the sink t in set T . The cost (or capacity) C
of the s-t-cut (S ,T ) is the sum9 of the capacities of all edges connecting a node in
S to a node in T :

C (S ,T ) =
∑
x∈S

∑
y∈T

κ(x, y) (4.47)

Max-flow/min-cut theorem [47]: The maximum flow value is equal to the minimum
cost10 among all s-t-cuts (max f | f | = minS ,T C (S ,T )). Moreover, all edges of
the minimum cut are saturated, the minimum cut can thus be readily obtained from a
maximumflow f by exploring the residual graph, i.e., the graph obtained by keeping
all nodes in N and, for each edge x → y, by creating a pair of edges x → y and
y → x with a residual capacity κr (x, y) = κ(x, y)− f (x, y) in the x → y direction
and a capacity f (x, y) in the y → x direction [48]. The setS is formed by all nodes
that can be reached in the residual graph from the source s.

There are several approaches to compute the maximum flow of a flow network:
(i) augmenting path algorithms that maintain a valid flow and search for paths in
the residual graph; (ii) push-relabel methods that maintain a preflow, i.e., a flow
that respects the capacity constraints but may accumulate some flux at some nodes

8Also called an s-t-graph.
9Note that edges connecting a node in T to a node in S do not enter the sum.
10Themaximumflowand theminimumcut problems can be formulated as two dual linear programs.
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(no flow conservation); (iii) Hochbaum’s pseudo-flow variants, i.e., methods that
consider a flow that respects the capacity constraints but not the flow conservation
(accumulation or deficit at some nodes). Several variants of each category have been
compared experimentally on computer vision problems in [49, 50]. Kolmogorov’s
implementation [51] of Boykov andKolmogorov algorithm [49] is probably themost
widespread to date.

Now that we have formally defined the minimum cut of graphs, we can return to
the graph-cut method for MAP estimation an Ising model and describe how to set
the capacities of edges in the associated graph described on p. 23.

Finding an optimal binary labeling by graph-cuts: Ising model (cont.)

A cut separating the graph described on p. 23 into a partition containing the
source s and another containing the sink t necessarily cuts, for each node,
either the edge connecting the node to the source or the edge connecting the
node to the sink. The set of all possible cuts is therefore in bijection with the
set of all possible binary labelings u ∈ {0, 1}n .

Capacities of the edges are set so that each of the 4 possible cuts
that would disconnect a portion of the graph containing two neighbor-
ing nodes i and j has costs matching the cost function in Ising model:

s

t

s

t

s

t

s

t

In words, the node associated with the i th pixel is connected by a downward
arc to the source, with capacityD(1, vi ), and to the sink by an arc with capacity
D(0, vi ). Furthermore, neighbor pixels i and j are represented in the graph by
a pair of arcs connecting nodes i and j , each with a capacity β.

Beyond the important but restrictive Isingmodel, onemaywonder if similar graph
constructions enjoy the property that all possible cut costs are in bijection with all
possible values of the objective function. In their seminal paper [52], Kolmogorov
and Zabih show that a class of pairwise11 binary energy minimization problems can
be solved by graph-cut:

arg min
u∈{0,1}n

∑
i

D(ui , vi ) +
∑
i∼ j

R(ui , u j ) (4.48)

11The class of MRF with cliques involving triplets is also covered in [52].
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withR a submodular function, i.e., a function such that

R(0, 0) + R(1, 1) ≤ R(0, 1) + R(1, 0) (4.49)

Solving the minimization problem for binary functionsR that are not submodular is
in general NP-hard [52]. Solutions can still be obtained by graph-cuts, but they are
only approximate [53].

The extension of graph-cut methods to multi-label MRFs (i.e., u ∈ {1, . . . , L}n)
can be done along two different paths: move-making methods and label-reduction.
Move-making are greedy approaches based on a sequence of binary subproblems.
At each step, the current solution is improved by finding the best solution within
a subset of the whole domain {1, . . . , L}n that includes the current solution. We
describe below the three most important moves.

Move-making graph-cut algorithms: α-expansion [54]

In the α-expansion algorithm, the elementary move considers which combi-
nation of pixels should optimally be either kept to their previous value or
changed to the new proposal α. Those pixels are marked as “changed” in the
binary image on the right-hand side of the illustration. Identifying those pixels
is a binary labeling problem which can thus be exactly solved, provided that
the submodularity constraint is fulfilled:

∀α, ∀b, ∀c, R(b, c) + R(α, α) ≤ R(b, α) + R(α, c)

which is guaranteed when the regularization is a metric, i.e., such that:

∀b, ∀c, R(b, c) = 0 ⇔ b = c (4.50)

∀b, ∀c, R(b, c) = R(c, b) ≥ 0 (4.51)

∀α, ∀b, ∀c, R(b, c) ≤ R(b, α) + R(α, c) (4.52)

The algorithm performs a sweeping of all labels 1, 2, …, L , each time per-
forming an α-expansion on the current label, until stability.
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Move-making graph-cut algorithms: α-β-swap [54]

In the α-β-swap algorithm, only pixels with labels α or β may change by
possibly swapping their labels. Finding the optimal labeling problem again
boils down to a binary labeling task that can be solved exactly, provided that
R is a semi-metric, i.e., verifies Eqs. (4.50) and (4.51). The algorithm performs
a sweeping of all pairs of labels until stability.

Move-making graph-cut algorithms: fusion move [55]

The fusion move generates an improved solution u(k+1) by fusion of two alter-
native approximative solutions u(k)

1 and u(k)
2 . Deciding which combination of

sites should optimally be given the labels from u(k)
1 and which should keep

labels from u(k)
2 is a binary labeling problem. Since the submodularity condi-
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tion is in general not fulfilled, an approximate solution of that binary problem
is computed using an algorithm such as in [53].

Several ways to compute the two proposals u(k)
1 and u(k)

2 can be consid-
ered. An approach called log-cuts [56] has been proposed to accelerate the
α-expansion algorithm by sequentially finding each bit of a binary coding
of the labels as �log L�-bit long words instead of considering all L labels at
each sweep. Another use of fusion moves is to merge solutions obtained by a
continuous optimization method [55].

The most prominent algorithm of the class of label-reductions is due to
Ishikawa [57]. It provides the global optimum even if D is not convex, at the cost
of building a large graph with n × L nodes. We describe here the constructed graph
when the regularization R takes the special form12:R(ui , u j ) = |ui − u j |.

Label-reduction with Ishikawa graph for exact minimization of convex
pairwise MRFs

s

t

The scheme illustrates the constructed graph to minimize an energy of the
form:

arg min
u∈{α1,...,αL }n

∑
i

D(ui , vi ) + β
∑
i∼ j

|ui − u j | (4.53)

whereD maybe non-convex and the second sumcorresponds to the anisotropic
total variation.

Like for Ising model, the method proceeds in three steps: (a) a graph is
associated with the pixel grid on which the MRF is defined; the graph has L
layers of n nodes and each node is connected to its spatial neighbors within
the layer and to its two corresponding nodes in the preceding and following
layers; (b) a minimum s-t-cut is computed; (c) the height (i.e., layer) at which
each column of node is cut defines the optimal label in the resulting solution.

12The method described in [57] applies to all convex pairwise terms R, see also [58, 59].
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We now illustrate how capacities are set to each arc so that cut costs are in
bijection with energies of the fields u.

s

t

s

t

s

t

Downstream arcs of the i th column of nodes are given a capacity correspond-
ing to values D(ui , αL) to D(ui , α1) (subfigure (d)). Arcs that connect spatial
neighbors, i.e., arcs with a given layer, all have a capacity β. As illustrated in
subfigure (e), when two neighboring sites take different labels the cut neces-
sarily includes as many arcs with weight β as label difference between sites,
thereby representing the energy of Eq. (4.53). Finally, upstream arcs with infi-
nite capacity are introduced to prevent from cutting twice a given column of
nodes (subfigure (f)). With this construction, all cuts with finite cost are in
bijection with all labelings of the MRF.

4.2.3 Application to SAR Image Denoising: Joint
Regularization and Fusion with Optical Data

In this section,we focus on the application of theMRF formalism to the regularization
of SAR images and illustrate how the graph-cut methods described previously can
apply to speckle reduction.

Amplitude regularization. Due to speckle phenomenon, the amplitude of a SAR
image suffers from strong fluctuations from a pixel to another. Hence, the magnitude
of the spatial gradient is large in most of the regions of the image (except dark areas
due to shadows or smooth surfaces that diffusemost of the incoming SARpulse in the
reflection direction, away from the radar antenna) as shown in Fig. 4.5(a). As shown
in Sect. 4.1.3, multi-looking done by incoherent averaging of SAR intensity within a
window reduces speckle fluctuations at the cost of a loss of resolution. Figure4.5(b)
shows the magnitude of the spatial gradient applied on a 100-looks image, i.e., a
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(a) (b) (c)

(d) (e) (f)

Fig. 4.5 SAR amplitude regularization by total-variation (TV) minimization: a the magnitude of
the spatial gradient of a single-look amplitude image is large and nonzero almost everywhere while
b the magnitude of the spatial gradient is much sparser on a 100-looks image; c the minimization
problem for TV minimization of the amplitude is non-convex. Similarly, d the magnitude of the
spatial gradient of the logarithm of the amplitude is nowhere zero with a single look, while e a
100-looks log-amplitude image has a very sparse gradient; f TV of the log-amplitude is convex, in
contrast to c

very-high-resolution image whose resolution was reduced by 10 in each direction in
order to mitigate almost all the speckle effect. It can be noticed that this radar scene
(suburban area of the city of Toulouse, France, at 1-m spatial resolution c© CNES
& ONERA) has a majority of spatial gradients close to zero. It is thus natural with
Markov random field framework to restore the amplitude (i.e., reduce speckle) by
introducing a sparse gradient prior: the MAP estimator amounts to find a trade-off
between data fidelity (accounted for via a data-fitting term derived from speckle
models) and regularity (measured via the total-variation semi-norm):

arg min
u

∑
i

�(vi |ui ) + β
∑
i∼ j

wi, j |ui − u j | (4.54)

where u is the image of restored amplitude (i.e., square root of the reflectivity ui =√
Ri ), v is the speckle-corrupted amplitude image (vi = Ai ), the notation i ∼ j

indicates that i and j are two pixels that are neighbors (i.e., they define clique of
order two on the graph associated with the MRF), β is a regularization weight, and
wi, j is used to weight differently pixels that are separated by a different distance
(i.e., left-right-top-bottom neighbors vs diagonal neighbors). The neg-log-likelihood
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function for SAR amplitude in L-looks images is �(vi |ui ) = L
(
v2i
u2i

+ 2 log ui
)

under the assumption of fully developed and uncorrelated speckle (see the box in
Sect. 4.1.3.4). Since this data term � is not convex, the MAP estimation problem
is more challenging than usual total-variation minimization problems [60–62]. We
illustrate in Fig. 4.5(c) this non-convexity. When the regularization is either very
weak or very strong, the posterior energy, though non-convex, becomes unimodal
(in this simple example involving a single pixel i and its neighbor j with given value
u j ). However, for intermediate regularization values (shown with a dashed curve),
there are local minima. After quantization, this non-convex problem can be solved
using the graph-cuts construction shown p. 28, or an approximateminimization based
on move-making techniques [61].

As presented in Sect. 4.1.3, the logarithm of the amplitude of a speckle-corrupted
SAR image displays a stationary variance (see Fig. 4.5(d)), a phenomenon called vari-
ance stabilization.While Gamma-distributed fluctuations are signal-dependent (their
variances depend on the underlying reflectivity), this transform turns the fluctuations
into an additive signal-independent perturbation with fixed variance σ 2 = Ψ (1, L).
Again, the magnitude of the spatial gradient of a log-transformed speckle-free 100-
looks image is very sparse: mostly zero (or close to zero), which justifies following a
total-variation (TV)minimization approachon the log-transformedvalues ṽi = log vi
(and ũi = log ui ). Considering the TV minimization in the log-domain has two
advantages: (i) Speckle is reduced equally in all regions (since the variations in the
log-transformed image are spatially homogeneous as shown in Fig. 4.5(d)) and (ii) the
problem becomes convex, as illustrated in Fig. 4.5(f). Nevertheless, this procedure is
known to be biased if a quadratic likelihood term is used as the log transform fluctua-
tions do not exactly follow a Gaussian distribution [63]. In this case, a bias correction
should be applied, leading to the inversion formula: ui = exp(ũi + log L − Ψ (L)).
If the adapted likelihood is used (based on the Fisher–Tippett distribution of ũi ), no
bias correction is needed. The homomorphic approach has been followed by several
authors [64–66].

Beyond regularization: joint estimation of the background and detection of
strong scatterers. A known drawback of TVminimization is the tendency to remove
isolated points, or to merge close pixels that have comparable values. To counter-
balance this drawback, Çetin et al. [67, 68] used both a total-variation term and a
sparsity-promoting term to favor isolated scatterers. Such an approach can be pushed
further by decomposing the radar scene into two components: a background (with
low total variation) and strong scatterers (with low �0 pseudo-norm) [27, 69].

Interferometric phase regularization. After proper regularization/correction for
plane Earth fringes, interferometric phase provides information on the elevation
of the structures of the radar scene. However, because of the strong fluctuations
due to speckle, this elevation information is too noisy to be directly usable. After
multi-looking (i.e., averaging in a small local neighborhood), phase can be further
regularized following a MRF approach. The likelihood after multi-looking is well
approximated by a (non-stationary) Gaussian model with a variance that depends
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on the local coherence [61]. Since in urban areas, the interferometric phase displays
strong discontinuities, total variation is once again a natural prior.

Joint regularization: contour co-localization. Rather than performing the regular-
ization of the interferometric phase independently of the amplitude, it is beneficial
to jointly regularize the two channels and favor the co-localization of edges. This
can be performed by penalizing the maximummagnitude of the two spatial gradients
(with proper scaling of the two images) [61]:

θi, j (u
a
i , u

ϕ

i , u
a
j , u

ϕ

j ) = wi, j max(|uai − uaj |, |uϕ

i − uϕ

j |) (4.55)

with uai the regularized amplitude at pixel i and uϕ

i the regularized interferometric
phase at the same pixel.

Fusion of edge information from an optical image. Optical images of the region
of interest are often available. It may be desirable to achieve a form of fusion of
optical and SAR information. More details on data fusion methods will be given in
Chaps. 6 and 7. A critical issue for optical/SAR fusion is that of registration of the
optical and SAR images since projecting from SAR geometry to optical geometry
requires knowledge of all sensor parameters and an estimate of the height at each
pixel of the SAR image. With SAR interferometry, this can be achieved. In [70], it
was proposed to extract edges from the optical image,13 and feed this information
into a conditional random field, namely by favoring edges in the regularized SAR
image where edges had been found in the optical image:

θi, j (u
a
i , u

ϕ

i , u
a
j , u

ϕ

j ) = wi, j max(0, 1 − αopt|uoi − uoj |) max(|uai − uaj |, |uϕ

i − uϕ

j |)
(4.56)

where uoi is the (independently regularized) optical image intensity at pixel i and αopt

is a parameter to control the weight of the optical image (setting αopt to zero cancels
all effect of the optical image). Figure4.6 illustrates the principle of this optical/radar
fusion approach.

4.2.4 Application to Phase Unwrapping of Multi-channel
Interferometry

SAR interferometric (InSAR) systems allow to reconstruct height profile starting
from the measure of the interferometric phase, using the relation (4.25). Consider-
ing that the interferometric phase is measured in the principal interval [−π.π), the
relation between height z and phase φ, in the absence of noise, can be written as [2]:

13A total-variation regularization was applied on the optical image to remove low-significance
textures.

http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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Fig. 4.6 Illustration of joint amplitude/interferometric phase regularization with information from
an additional optical image

φ = 〈4πB cos (θ − σ)

λr sin θ
z〉

2π
(4.57)

where 〈α〉2π denotes α modulo 2π evaluation. The relation is strictly nonlinear and
for retrieving the height, the absolute value of the phase has to be restored. This
problem is commonly known has phase unwrapping (PhU) [9]. This is, however,
an ill-posed problem, since it admits an infinite number of solutions, if no further
information is added. A regularization based on physical considerations is needed to
solve the problem.

In literature in the last decades, several approaches have been proposed to solve
PhU problem. These approaches mainly belong to three classes: path following,
minimum norm, and statistical estimation approaches.

Most PhU algorithms are effective only in case the Itoh condition [71] is satisfied.
This condition implies that the maximum phase difference between neighboring
pixels is smaller than π . In this case, the absolute phase can be easily determined,
up to a constant. Unfortunately, the condition is often not met in InSAR systems
mainly due to the presence of large height discontinuities in the observed scene
or due to the presence of the interferometric noise. In both cases, PhU operation
becomes a difficult task.

In literature, the expressionmulti-channel phase unwrapping (MCPhU) is adopted
to refer to a set of techniques able to solve PhU problem by exploiting several
interferometric data of the observed scene [72–75]. MCPhU is able to overcome
limitation of single-interferogram approaches and to retrieve the height of the scene
even in case Itoh condition is not met.
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Multi-channel interferograms can be obtained using mainly two different
approaches:multi-baseline andmulti-frequency acquisitions. In the former, the scene
is observed by more than two SAR systems (at least three) from slightly different
positions (i.e., with different baselines).We recall that the distance between SAR sen-
sors has been previously defined as baseline (Sect. 4.1.2). The latter, multi-frequency,
consists in using SAR sensors operating at different frequencies and/or by partition-
ing the Fourier spectrum in non-overlapped sub-bands.

Starting from the relation (4.57), in case of K -independent interferometric chan-
nels, the interferometric measured phase signal for the channel k can be written
as:

φk = 〈υk z〉2π (4.58)

where υk is defined as:

υk = 4πBk cos (θ − σ)

λr sin θ
(4.59)

υk = 4πB cos (θ − σ)

λkr sin θ
(4.60)

in case of multi-baseline and in case of multi-frequency, respectively. For the rest
of the chapter, υk will be considered without specifying the type of diversity (i.e.,
baseline or frequency), since the approach is mainly the same.

An effective way to combine the different available interferograms is to use sta-
tistical estimation theory, in particular exploiting MAP approach (Sect. 4.2.2). Let
us start from MAP solution of Eq. (4.45) and let us characterize the parameters for
the specific case of MCPhU. Let us start from the likelihood term. The likelihood
function for SAR interferometry in case of single channel for pixel i (Sect. 4.1.3) is:

p(φk,i |ρk,i , zi ) =
1

2π

1 − ρ2
k,i

1 − ρ2
k,i cos(φk,i − υk zi )2

(
1 + ρk,i cos(φk,i − υk zi ) cos−1(−ρk,i cos(φk,i − υk zi ))

(1 − ρ2
k,i cos(φk,i − υk zi )2)1/2

)

(4.61)

In case of multi-channel systems, exploiting statistical independence between inter-
ferograms [76] and supposing the coherence values ρk,i are given,14 the negative
log-likelihood function can be written as:

�((φk,i ){k}|zi ) = −
∑
k

log p(φk,i |ρk,i , zi ) (4.62)

14In practice, they are empirically estimated using local samples and Eq. (4.35).
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Moving to the a priori, different models can be used. In particular, one of the
most effective is the so-called local Gaussian MRF, which is a Gaussian MRF with
locally defined hyperparameters [77]. These hyperparameters, once estimated, can
help in properly tuning the MRF, by adapting it to the local behavior of the scene
under investigation [78].
Another effective model is to adopt the previously defined TV model (Sect. 4.2.3).
Using TV, the a priori can be written as

∑
i∼ j wi, j |zi − z j |. Thus, the MAP estimator

for the height estimation is given by:

arg min
z

∑
i

�((φk,i ){k}|zi ) + β
∑
i∼ j

wi, j |zi − z j | (4.63)

TheMCPhUwith total-variation (MCPhU-TV) approach [79] uses Ishikawamethod
(Sect. 4.2.3) for the optimization step of Eq. (4.63). Results of MCPhU-TV applied
to two different datasets (natural and urban scenario) are reported in Figs. 4.7 and
4.8.

An important point has to be highlighted when dealing with MCPhU approaches.
In order to correctly combine the different available interferograms and to restore the
correct relation between them, the so-called phase offset compensation procedure

Fig. 4.7 MCPhU-TV applied to urban scenario using six TerraSAR-XX-bandmulti-baseline inter-
ferograms (under ISPRS-DEM Project) of Barcelona (Spain): a and b two of the available interfer-
ograms; c 3D reconstruction of the observed scene using MCPhU-TV

Fig. 4.8 MCPhU-TV applied to natural scenario using six ERS C-band multi-baseline interfero-
grams of Serre-Pono̧n (France): a and b two of the available interferograms; c 3D reconstruction
of the observed scene using MCPhU-TV
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has to be carried out. These offsets arise as a combination of several factors such as
processing errors, atmospheric effects, and parallel-baseline uncertainty [80]. Dif-
ferent techniques have been proposed in literature to estimate and compensate such
offsets [81, 82].

An evolution of MCPhU-TV in the Markovian-MAP framework, based on the
joint exploitation of both amplitude and phase of the available complex data, able to
unwrap and simultaneously regularize the observed data has been proposed in [83],
named multi-channel phase and amplitude regularization (MCPAR). In particular,
MCPAR, bymeans of the exploitation of amplitude data within the unwrapping chain
as in Eq. (4.55), allows a better preservation of height discontinuities.

4.3 Patch-Based Models for SAR Imagery

Section4.2 described the benefit of capturing the statistical dependency of the spa-
tial distribution of physical parameters in a SAR image. In this section, we describe
two alternatives based on patches. Formally, a patch u�p is a m-dimensional vector
obtained by restricting the image u to the pixels located within a rectangular window
centered at pixel p. The square in the notation u�p is used to emphasize that the
dimension m of the patch is smaller than the dimension n of the whole image u,
typically m ranges from 3× 3 to 15× 15 pixels. While MRFs generally model con-
ditional dependencies within a local neighborhood, patches capture the configuration
of more extended neighborhoods, thereby encoding potentially complex geometri-
cal and textural features. The first strategy uses a prior model for the distribution of
patches and relies on the assumption that patchesmay have a compact representation.
The second one is free of prior modeling and simply reenforces the likelihood by
artificially increasing the number of local observations based on similar patches.

4.3.1 From Local Neighborhoods to Patches

An image or a collection of images (of natural scenes) always presents several repeat-
ing patterns such as edges, corners, crosses. While it is challenging to model directly
the distribution of large images, patches present much less variability because of their
smaller size and essentially because of this redundancy principle. As a consequence,
the distribution of these patches can be well represented with a statistical model of
low complexity. In particular, this opens the way toward statistical learning in order
to fit such a distribution on a large dataset of patches.

By defining the prior on large cliques of the size of a patch (i.e., typically involving
a hundred of pixels), variational patch-based approaches model the prior distribution
of u in terms of the prior distribution of all its patches:
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p(u) = 1

Z
exp

{−
∑
p∈P

θp(u�p)
}

(4.64)

where Z is a partition function (see Eq. (4.41)), P is the set of all central pixels of
the image patches, and the functions θp(·) are the patch energies.

Similarly to the inference in MRFs, injecting this prior into the MAP estimation
requires to solve the following optimization problem:

û(MAP) ∈ arg min
u

Fv(u) , withFv(u) =
∑
i

�(vi |ui ) +
∑
p∈P

θp(u�p) (4.65)

4.3.1.1 Choice of Patch Energies

Asimple approach introduced in [84] consists inmodeling patches in natural image as
a sparse combinationof elements (the so-calledatoms) fromadictionaryof K patches
D = (d1, . . . ,dK ), where the atoms dk of the dictionary are all m-dimensional
normalized vectors (∀k, ‖dk‖ = 1). The sparse synthesis prior considers that a
dictionary D can be found such that all probable patches in natural images can be
synthesized as a linear combination of a few atoms and that the fewer atoms used in
the combination, the more probable is the patch:

θp(u�p) = min
a

‖a‖0 subject to u�p =
∑
k

akdk (4.66)

where ‖·‖0 is referred to as the �0 pseudo-norm counting the number of nonzero ele-
ments of its input vector. Inspired from a large literature regarding wavelet shrinkage
techniques, the authors of [84] have suggested using a dictionary whose atoms form
a redundant family, i.e., with K larger than m (typically K = 256 for patches of
size m = 8 × 8). The atoms are then necessarily linearly dependent which has been
shown to favor sparsity and reconstruction accuracy. More importantly, the authors
have suggested to adapt the dictionary to the noisy image v itself, leading to the K
singular value decomposition (KSVD) formulation:

û(KSVD) ∈ arg min
u

∑
i

�(vi |ui ) + min
D

∑
p∈P

(
min
a

β
∥∥u�p −

∑
k

akdk
∥∥2
2 + ‖a‖0

)

(4.67)

where β > 0 is a relaxation parameter of the constraint in (4.66). Minimizing (4.67)
is very challenging since the joint minimization on D and a is a combinatorial non-
convex problem which requires the use of suboptimal optimization strategies. In
practice, the minimization is performed alternatively in two steps. In the sparse
coding step, a is computed by orthogonal matching pursuit techniques [85]. In the
dictionary update step, the dictionary D is updated by using K -truncated singular
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value decomposition (SVD). The minimization with respect to u, for a given dictio-
nary and decomposition of all patches, is usually much simpler; it is often performed
only once, after a and D have been determined, but repeating the whole procedure
several times improves the solution [86].

Rather than synthesizing the patches, an alternative approach, named Fields of
Experts (FoE) [87, 88] or sparse analysis prior [89], models the distribution of
filtered versions of the patches, using different filters (called experts):

θp(u�p) =
K∑

k=1

ψ
(
f tk u�p; ak

)
(4.68)

where K is the number of experts and the function ψ is chosen to favor sparsity,
for example, the �1 norm (or a smoothed version of the �1 norm), or a non-convex
function like the neg-log-likelihood of Student distribution [88]:

ψ
(
f tk u�p; ak

) = ak · log
(
1 + 1

2
(f tk u�p

)2)
(4.69)

The filters fk arem-dimensional vectors learned from a large basis of natural images
and are generally high frequency (derivative-like).Weights ak balance the importance
of each expert and are learned jointly with the filters fk . Given the difficulty of the
learning step, only small patches are considered: 5×5 patches in [88], 7×7 patches
in [90].

A more recent alternative, inspired from [91], is to model the prior distribution of
patches with a Gaussian mixture model (GMM) as:

θp(u�p) = − log
K∑

k=1

wk · N (u�p; μk,Σk) (4.70)

where N (u�p; μk,Σk) = 1√
2π |Σk |1/2

exp
(
− 1

2

(
u�p − μk

) t
Σ−1

k

(
u�p − μk

))

leading to the expected patch log-likelihood (EPLL) formulation [92]:

û(EPLL) ∈ arg min
u

{∑
i

�(vi |ui ) +
∑
p∈P

min
z�

(
β
∥∥u�p − z�

∥∥2
2 + θp(z�)

)}
(4.71)

withβ > 0. As for KSVD algorithm, the relaxation termβ
∥∥u�p−z�

∥∥2
2 is introduced

in order to apply an alternating minimization strategy with respect to unknowns z�
and u. While the minimization with respect to the unknown image u is typically
smooth and rather simple, the optimization for z� is much more intricate as the
energy θp(·) is non-convex. This latter optimization problem is usually performed
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Fig. 4.9 a Original single-look intensity TerraSAR-X image ( c© DLR under project LAN-1746)
of Paris (France). b Estimation of the reflectivity by SAR EPLL [94]. c Illustration of the local
adaptivity of EPLL that uses different Gaussian models at each pixel location. Each color represents
a Gaussian model, such that similar colors correspond to similar Gaussian models and the lower
the saturation the more equally likely the models are

by approaching Eq. (4.70) with only one of the Gaussianmodels. In the seminal work
of [92], this selection is performed for each patch and is updated at each iteration.
Unlike the KSVD approach that adapts the dictionaryD to the content of each image,
EPLL learns the GMM offline from an external dataset of patches using the classical
expectation–maximization technique [93] (somedetails on this technique are recalled
in Chap.9).

Figure4.9 provides illustrations of the performance and local adaptivity of an
extension of EPLL for SAR intensity images [94] where the likelihood term is chosen
to fit the statistics of speckle as described in the Sect. 4.1.3 and below.

4.3.1.2 Choice of Likelihood Term

Variational patch-based approaches are usually defined with the square difference
fidelity term �(vi |ui ) = 1

2σ 2 (vi − ui )2, known to capture the statistics of additive
white Gaussian noise with variance σ 2. In this section, we explain how to adapt the
fidelity term to deal with the statistics of SAR images.

As mentioned in Sect. 4.1.3, under Goodman’s model, noise fluctuations in SAR
intensity images are multiplicative and Gamma distributed. A classical approach,
known as the homomorphic transform, is thus to consider the log transform of the
image in order to turn multiplicative fluctuations into additive ones as already stated
in Sects. 4.1.3 and 4.2.3.

As a consequence, the problem becomes similar to the Gaussian case, such that
the MAP problem can be expressed with �(ṽi |ũi ) = 1

2σ 2 (ṽi − ũi )2 where ṽi = log vi

http://dx.doi.org/10.1007/978-3-319-66330-2_9
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and ũi = log ui . The image of interest u can be obtained from ũ by taking the
exponential after the optimization is performed.

As alreadymentioned in the Sect. 4.2.3, bias correction should be applied, leading
to the inversion formula: ui = exp(ũi + log L − Ψ (L)). This strategy has been
extensively used, e.g., for wavelet prior in [95], for patch-based priors as in KSVD
[96] or for non-local filtering [97].

Instead of reducing the original problem to the Gaussian case, one can directly
consider the neg-log-likelihood function of Gamma random variables defined, up to
an additive constant, by (see box in Sect. 4.1.3.4):

�(vi |ui ) = L log ui + L
vi
ui

(4.72)

where L is the number of looks. However, unlike a square fidelity term, this neg-
log-likelihood term is a non-convex function of ui as illustrated in Fig. 4.5. As a
consequence, the subsequent optimization problems are more difficult to solve, all
the more since several patch-based priors previously described have a non-convex
energy. In order to alleviate this issue, several authors [64, 66] have suggested to
optimize not with respect to ui but by considering again its log transform log ui . In
fact, using the changes of variable ũi = log ui and ṽi = log vi , we obtain:

�(vi |ui ) = �̃(ṽi |ũi ) = Lũi + L exp (ṽi − ũi ) (4.73)

and we can easily check that this function is convex with respect to ũi . Remark
that �̃ is, up to an additive constant, the neg-log-likelihood of the Fisher–Tippett
distribution modeling the distribution of log transformed Gamma random variables.
Unlike the homomorphic approach, this procedure is free of approximation and then
free of systematic bias under Goodman’s assumptions, such that one can take the
exponential after the optimization is performed: ui = exp(ũi ). This was the approach
followed for adapting EPLL to SAR intensities in [94] and illustrated in Fig. 4.9.

It is important to keep in mind that such change of variable is usually applied only
on the likelihood term but not on the prior term, which subsequently changes the
optimization problem and the nature of the solution. While this technique simplifies
the optimization procedure, it changes the prior now expressed on the log transform
of the sought solution.

4.3.1.3 Parameter Tuning

Estimation of the parameters of interest u by maximization of the posterior probabil-
ity (i.e.,MAPestimation) depends on the tuning of several additional parameters. The
first parameter is the relative weight of the regularization (prior term) with respect to
the data fidelity term (likelihood). Patch-based priors also depend on the choice of
the size of patches, the size K of the dictionary or number K of components of the
Gaussian mixture, and more importantly, on the parameter β in the variable splitting
for the alternate minimization strategy (see Eqs. (4.67) and (4.71)).
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Patch-based MRF models capture complex textures and structures, thereby pro-
viding high-quality restorations with limited blurring of sharp features or textured
areas. These methods, however, require an heavy learning step (model learning typi-
cally requires a day—up to several days—on a single core) and the optimization step
to estimate an image once the model is learnt is also challenging (non-convex, high-
dimensional). Extension to multivariate SAR modalities (i.e., polarimetric, interfer-
ometric) is non-trivial.

4.3.2 Patch-Based Selection for Estimation in Polarimetric
or Interferometric SAR

With the polarimetric and interferometricmodalities, each pixel of a SAR image gath-
ers measurements from several polarimetric or interferometric channels. Modeling
the statistical dependence between channels and between pixels within a patch is
challenging because of the increased dimension and nonlinear relationship between
parameters of interest (radiometry, interferometric phase, polarimetric properties)
and the SAR measurements. Rather than defining a prior that models the complex
relationship within patches, an alternative still based on patches is to exploit patch
redundancy to select robustly similar pixels. Selection-based estimation has been
proposed long ago by Lee [98] and later extended by comparing patches to improve
the robustness of the selection by Buades et al. [99]. This latter approach is known as
the non-local means since selected pixels can potentially be far apart without being
necessarily connected.

Generalized likelihood ratio in SAR imagery:

Under Goodman’s model (see Sect. 4.1.3), the GLR between two (multivari-
ate) pixel values v1 and v2 is given below for the different considered SAR
modalities with number of looks L . When GLR is used on patches, these quan-
tities have to be summed over the pairs of corresponding pixels in both patches.

• SAR Amplitude: δ(A1,A2) = 2L log

[
1

2

(
A1

A2
+ A2

A1

)]
.

• SAR Intensity: δ(I1, I2) = 2L log

[
1

2

(√
I1
I2

+
√
I2
I1

)]
.

• InSAR (L = 1): δ(Z1,Z2) =
2 log

[
(|Z1|2 + |Z′

1|2 + |Z2|2 + |Z′
2|2)2 − 4|Z∗

1Z
′
1 + Z∗

2Z
′
2|2

|(|Z1|2 − |Z′
1|2)(|Z2|2 − |Z′

2|2)|
]

.
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• ScatteringVector (L = 1): undefined, use instead the next criterion with
C = kk∗t .

• SAR Covariance Matrix:
if L < D, use the next criterion with a full-rank

approximation of C.

otherwise, δ(C1,C2) = 2L log

(
1
2 |C1 + C2|√|C1||C2|

)
.

4.3.2.1 Patch Similarity

The estimators considered here rely on the detection of a large number of pixels j
sharing the same underlying physical parameters as pixel i , i.e., u j = ui . In practice
u is unknown, and this information should be measured by a robust dissimilarity
criterion depending only on the input noisy image v.
Choice of the dissimilarity measure. In light of detection theory, deciding that two
noisy observations v1 and v2 share the same noise-free value can be performed by
confronting a null-hypothesisH0 : u1 = u2 against an alternative oneH1 : u1 = u2.
The generalized likelihood ratio (GLR) is designed for this hypothesis test [100, 101]
and thus can be used to define a dissimilarity criterion as:

δ(v1, v2) = − log
supu1 p(v1|u1) supu2 p(v2|u2)
supu12 p(v1|u12)p(v2|u12)

(4.74)

In many situations of interest, GLR has a closed form derived directly from the
expression of the ML estimate (see the box “Generalized likelihood ratio in SAR
imagery” on p. 177). However, the GLR is not guaranteed to exist, for instance, in
multivariate SAR imagery with L < D. Performing diagonal loading of the ML
estimates before evaluating the GLR is a practical alternative explored in [102].

The GLR provides a method to measure similarities in a way that is adapted to the
distribution of noise; its performance is, however, limited for high noise levels since
a large dissimilarity can be equally ascribed to the noise or to an intrinsic difference.

From pixels to patches. Pixel-based comparisons being sensitive to the noise, the
authors of [99] have suggested exploiting the redundancy of patches by comparing
patches instead of pixels:

Δ(v�i , v� j ) = 1
m

m∑
k=1

δ
(
(v�i )k, (v� j )k

)
(4.75)
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where the notation (v�i )k stands for the kth pixel of the patch centered at pixel i
of image v. In general, the variance of Δ(v�i , v� j ) is m times smaller than that
of δ(vi , v j ). As a consequence, patch comparison is much more robust to noise and
large dissimilarities can reasonably be ascribed to intrinsic differences. Nevertheless,
patches should not be too large; otherwise, most of the pairs of patches v�i and v� j

will be dissimilar. The patch size should thus be chosen wisely regarding both the
noise level and the image content in order to reach a good trade-off in terms of
detection error.

Improving discrimination versus localization. There is an alternative to using
larger patches for reducing the variance of patch similarity Δ: pre-filtering (i.e.,
spatial averaging) the image before performing patch comparisons. This way, the
size of the patches can be kept small enough so that many similar patches can be
found in an extended neighborhood while limiting the variance of the dissimilarity,
hence preserving its selectivity. Such a pre-filtering improves the detection of low
contrasted structures at a price of a loss of its localization. The strength of the pre-
filtering should thus be again chosen wisely regarding both the noise level and the
image content.

4.3.2.2 Local Maximum Likelihood-Based Estimators

By construction patch similarity provides a measure of how much a patch v� j is
identically distributed with v�i , in particular it offers a robust statistical test for u j =
ui . From this measure, we can thus define a soft-assignment πi, j = ϕ(Δ(v�i , v� j )),
where ϕ : R+ → [0, 1] is a kernel function chosen such that πi, j gets closer to 1
when ui = u j becomesmore likely. The kernel is often chosen as ϕ(·) = exp(−·/h),
for h > 0, but other choices can be used [102]. These assignments provide a key
ingredient to artificially increase the number of observations available at each pixel
location i . While prior regularization is necessary when only one observation is
available at each pixel i , it can be avoided providing enough pixels are selected.

Weighted maximum likelihood in SAR imagery:

Under Goodman’s model (see Sect. 4.1.3). the WML estimator reads for the
different considered SAR modalities, with number of looks L , as

• SAR Amplitude: R̂(WML)
i =

∑
j

wi, jA
2
j .

• SAR Intensity: R̂(WML)
i =

∑
j

wi, j I j .
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• InSAR (L = 1):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R̂(WML)
i = 1

2

(∑
j

wi, j |Z j |2 +
∑
j

wi, j |Z′
j |2
)

,

ϕ̂
(WML)
i = arg

∑
j

wi, jZ
∗
jZ

′
j ,

ρ̂
(WML)
i =

∣∣∣∣∣
2
∑

j wi, jZ∗
jZ

′
j∑

j wi, j |Z j |2 +∑
j wi, j |Z′

j |2
∣∣∣∣∣ .

• Scattering Vector (L = 1): �̂
(WML)

i =
∑
j

wi, jk jk∗t
j .

• SAR Covariance Matrix: �̂
(WML)

i =
∑
j

wi, jC j , with wi, j = πi, j∑
j πi, j

.

Weighted maximum likelihood: The weighted maximum likelihood (WML) esti-
mator, introduced in [103], uses the assignment πi, j ∈ [0, 1], representing the con-
fidence that pixels j are identical to pixels i , in order to estimate u as:

û(WML) ∈ arg min
u

∑
i

∑
j

πi, j �(v j |ui ) (4.76)

The above optimization problem is clearly separable in i and the solution û(WML)
i is

often known in closed form (see the box “Weighted maximum likelihood in SAR
imagery” on p. 43). As soon as all assigned samples are identically distributed, this
estimator is unbiased meaning that it provides in average the sought physical para-
meters E[̂u(WML)] = u. The WML estimator is thus able to estimate u, without prior
regularization, providing a large number of independent and identically distributed
samples j is assigned to i . Indeed, in many situations, the WML estimation consists
in performing a weighted average of the selected pixels, for which the noise variance
is reduced at pixel index i by a factor:

L̂(WML)
i = Var[vi ]

Var[ûi (WML)] = (
∑

πi, j )
2

∑
π2
i, j

(4.77)

provided that the assigned samples are independent. For a hard assignment, i.e.,
πi, j ∈ {0, 1}, this quantity is exactly the number of selected pixels and this estimator
coincides with the ML estimator known to be efficient, i.e., its variance reaches
the so-called Cramer–Rao lower bound (see, e.g., [104]). Nevertheless, rather than
following an “all or nothing” selection strategy, the authors of [103] showed that
it is often safer to use real-valued weights πi, j ∈ [0, 1]. The soft-assignments πi, j

providemore flexibility by reducingmore the noise variance at a price of a larger bias
introduced by heterogeneous samples. It can thus be important to perform a weight
correction to limit such bias.

Reweightedmaximum likelihood:Anheterogeneous collection of samples presents
larger variations than those due only to the noise fluctuations. In SAR imaging,
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the noise is signal-dependent so that the noise variance can be predicted given the
underlying parameter ui by a function σ 2 : ui → Var[vi ], e.g., σ 2(ui ) = u2i /L for
the Gamma distribution. By comparing the predicted variance σ 2(ûi (WML)) with the
empirical variance of the (soft-) assigned samples:

σ̂
2(WML)
i =

∑
j

wi, j v
2
j − (∑

j

wi, j v j
)2

(4.78)

it can be checked if identical pixels have been selected. A mismatch indicates that
candidates belong to different populations and the WML estimation may be biased.
Inspired from [105], weights can be reevaluated as:

π̃i, j =
{

(1 − αi )πi,i + αi (
∑

j πi, j ) if i = j

(1 − αi )πi, j otherwise
(4.79)

with αi = max

[
σ̂
2(WML)
i − σ 2(ûi (WML))

σ 2(ûi (WML))
, 0

]
(4.80)

The original weights are thus kept when there is a perfect match between pre-
dicted and empirical variances (αi = 0), and their mass is redistributed on the pixel
index i when they completely mismatch (αi = 1). Provided that the WML estima-
tion coincides with the weighted average, the reweighted solution simply reads as
û(RWML)
i = (1 − αi )̂u

(WML)
i + αi vi , and the amount of noise reduction L̂(RWML)

i can
easily be updated from L̂(WML)

i [102]. The RWML estimator trades a reduction of
the bias of the WML estimator for an increase of residual variance. It follows that
the RWML estimator is nearly unbiased and the amount of noise reduction L̂(RWML)

i
becomes a local measure of its performance.

Adaptive reweightedmaximum likelihood. The quality of theweightsπi, j depends
on several parameters: the patch size, the pre-filtering strength but also the kernel
function ϕ and the size of the search window inside which the patches v� j are
extracted. The NL-SAR algorithm of [102] proposed a practical way to compute
efficiently results obtained with a hundred of different combinations of parameters.
For each of them, the measure of quality L̂(RWML)

i is used to decide at each pixel i
which solution should be preferred. The resulting estimator adapts its own internal
parameters automatically to the local content of the image. This has shown to be a
robust solution to deal with the high variability of SAR scenes, especially in mul-
tivariate contexts, and without requiring any manual parameter tuning. Figure4.10
gives an illustration of NL-SAR on an airborne polarimetric SAR image.

4.3.2.3 Selection-Based Collaborative Filtering

Unlike WML estimators using patch similarity to artificially increase the number of
local observations, patch similarity can be used to define a prior model promoting
the regularity of the stacks of similar patches.
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Fig. 4.10 a Original single-look polarimetric FSAR image ( c© DLR) of Kaufbeuren (Germany).
The three-dimensional complex scattering vectors ki are represented using an RGB representation
from the Pauli basis. b Estimation of the covariance matrices �̂i by NL-SAR [94], c From left to
right, three different windows located as highlighted in a, their corresponding weights (range [0, 1])
used to estimate the central pixel, and the final denoising result of these windows. Remark that the
selection adapts to the image content and the selected pixels do not form a connected component,
thus referred to as a non-local neighborhood. d Map of the equivalent number of looks L̂(RWML)

i
encoding the local amount of noise reduction (range [0, 100])

While a set of heterogeneous patches is difficult to model a priori, all the more
when the image is multivariate, a stack of similar patches has a high redundancy and
is thus much easier to model and regularize. In a variational stack-based approach,
the prior distribution of u can be expressed in terms of the prior distribution of all
its stacks of patches. Since patch similarity is measured on v, this prior is taken
conditionally to the observation v (in the same vein as for CRFs) leading to:
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p(u|v) = 1

Z
exp

{−
∑
p∈P

θs
(
u�p

)}
, (4.81)

whereZ is the partition function (see Eq. (4.41)), u�p = (u�q) is a stack of patches
of uwhose corresponding patches in v (or some pre-filtered version of it) are similar,
e.g., such that Δ(v�q , v�p) ≤ τ for some τ > 0 (usually the patches of the stacks
are sorted according to Δ and similar patches are sought within an extended search
area that is much smaller than the whole image domain) and the functions θs(·) are
the stack energies. The cube in the notation u�p is used to emphasize that the stack
is a three-dimensional signal with fewer pixels than the dimension n of the whole
image u. The MAP estimation can thus be formulated as:

û(MAP) ∈ arg min
u

∑
i

�(v j |u j ) +
∑
p∈P

θs(u�p) . (4.82)

This problem is difficult to tackle in the present form, and many studies have consid-
ered instead performing a collaborative filtering (CF). CF consists of computing the
solutions (i.e., estimates) of K smaller and independent optimization subproblems
expressed on stacks, and merging these solutions to reconstruct an image so that all
its stacks are in good agreement with the restored ones, for instance, as:

û(CF) = arg min
u

∑
p∈P

∥∥û�
(MAP)
p − u�p

∥∥2 , (4.83)

where û�
(MAP)
p = arg min

u
�

∑
k

�((v�p)k |(u�)k) + θs(u�) , (4.84)

with v�p the noisy stack formed by collecting noisy patches that are located at the
same position as those of u�p.

The block matching 3D (BM3D) [106] and the non-local Bayes [107] are par-
ticular examples of collaborative filters obtained from different stack energies: the
first one enforces regularity in a Fourier or wavelet domain, while the second uses
a Gaussian prior adapted to each stack. In these algorithms, CF is performed in two
steps by first defining stacks from v and next reupdating the stacks from the similarity
of patches in û(CF) obtained at the first step. The SAR-BM3D algorithm [108] is an
extension of BM3Dwith a data fidelity term suitable for the intensity of SAR images.
The extension of CF to multivariate SAR data still remains an open problem.

4.4 Conclusion

In this chapter, we have presented two powerful mathematical frameworks, Markov
random fields and patch-based approaches, to process very-high-resolution SAR
imagery. Although these models can be used for medium-resolution SAR images,
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they are specially adapted to high resolution since they are able to take into account
fine textural patterns in the images. We have seen that both models can be exploited
for different SAR modalities (amplitude, interferometry, polarimetry, multi-channel
SAR) thanks to the taking into account of the statistics of the SAR imagery. Both
models rely ondifferent assumptions (local smoothness and local redundancy, respec-
tively) that can be broken into different areas. For instance, some patches may be
very rare in the SAR images, and the signals can be locally discontinuous, both sit-
uations appearing specially in the surrounding of very bright scatterers. In this case,
the combination of both models may improve the results by taking the best part of
both of them. This is the case, for instance, in [109] for multi-channel 3D InSAR
reconstruction.

Further Readings

Concerning SAR acquisition systems and radar data synthesis, the following books
give detailed presentations [110, 111], the second focusing mainly on polarimetry.

Markov random fields have been the subject of many developments for more
than 30 years. The book [33] provides a general overview on the topic while the
survey [34] points recent advances. Optimization methods suited to inference prob-
lems in Markov random fields are compared in [45] on several representative cases.
The exploitation of MRFs in the framework of multi-channel phase unwrapping is
described and analyzed in [77].

The interested reader will find in the two review papers [112, 113] a detailed
presentation of speckle reduction methods for SAR imagery.
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Chapter 5
Polarimetric SAR Modelling: Mellin Kind
Statistics and Time-Frequency Analysis

Torbjørn Eltoft, Laurent Ferro-Famil, Stian N. Anfinsen
and Anthony P. Doulgeris

Abstract Polarimetric synthetic aperture radar (PolSAR) remote sensing refers to
measurement techniques that exploit the ability of a back scattering target to trans-
form the polarization state of incoming electromagneticwaves to extract information.
This field of remote sensing deals with complex, multi-dimensional data sets, requir-
ing multi-dimensional signal analysis strategies. Target information is in general
extracted from PolSAR data by an analysis approach referred to as polarimetric tar-
get decompositions, a field of research which has been successfully developed over
the last few decades. Low resolution SAR images of distributed natural scenes con-
tain a high number of scatterers within each resolution cell, resulting in Gaussian
signal statistics. Gaussian signal statistics and target decompositions found the basis
for classical analysis of PolSAR data. With the improving spatial resolution of cur-
rently operating SARs, the Gaussian assumption is frequently challenged and often
abandoned, in particular for scenes of urban environment, but also for natural surfaces
such as forest and sea. This development has stimulated research on non-Gaussian
models for representing the statistics of SAR and PolSAR signals. In particular, non-
Gaussian modelling of multi-dimensional SAR signals using the doubly stochastic
product model has received an increased attention in recent years. The chapter will
give a brief introduction to techniques for analysis of PolSAR data using statistical
signal processing. Here two axes will be explored: one that focuses on non-Gaussian
signals statistics, including sections on modelling, estimation, and classification; and
one that focuses on the signals time-frequency properties, discussing target detection
and discrimination.
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5.1 Introduction

APolarimetric Synthetic Aperture Radar (PolSAR) is a coherent imaging system that
achieves a high spatial resolution by coherently combining many individual pulsed
signals into one effective aperture as the sensor moves over the target area. These
are systems where images are produced by “object illumination with the particular
property that the phasor amplitudes at all object points vary in unison. Thus,while any
two objectsmay have different fixed relative phases, their absolute phases are varying
in time in identical fashions” [1]. A common feature of coherent imagery is the
presence of a signal phenomenon known as speckle. Speckle is generally explained to
be attributed to the random interference ofmany coherent wave components reflected
from different microscopic elements of the rough surface. Rough will in this regard
refer to coarseness of the surface layer that is large compared to the wave length
of the illumination. At a distant observation point, the various de-phased coherent
componentswill add andgive constructive or destructive interference,whichwill give
the image a noisy, granular appearance. Modelling the signal statistics of coherent
images has been a research area for several decades. There are several reasons why
this research area is important: Speckle is an consequence of the image formation
process in coherent imagery; it masks details and may complicate interpretations.
Hence, de-speckling, itself, is a goal, and someof the existing specklefilter algorithms
lend themselves on a Bayesian approach in which case accurate local statistical
models for the speckled and speckle-free images are essential [2, 3]. On the other
hand, speckle is an intrinsic property of the signal, and as such it carries important
information of the scattering target medium. The probability model contains this
information.

Thefirst part of this chapter is devoted to statisticalmodelling of focussedSARand
PolSAR images.We give a brief review of classical models for signal parameters like
the amplitude and in the intensity under the Gaussian signal assumption, and discuss
how these models can easily be adapted to a non-Gaussian regime under the product
model. We start by describing parametric models associated to single channel SAR
parameters, and subsequently extend the description to the multivariate polarimetric
case. This part of the chapter also includes a section on parameter estimation and
Mellin kind statistics (also referred to as second kind statistics, and brieflymentioned
in Chap.4), which has turned out to be particular efficient and useful when the
signal models are formulated as compound models. The final section of part one,
demonstrates how the statistical models can be used to enhance information retrieval
fromPolSARdata. The demonstration includes examples in supervised classification
and unsupervised segmentation of a full-polarimetric SAR scene.

The second part of the chapter describes a completely different approach to analy-
sis of polSAR data and delves deeper into the multi-pulsed construction of the syn-
thetic aperture signal. A time-frequency characterisation of complex polarimetric
features uncovers potential temporal variations of the signal during the multi-pulsed
SAR acquisition that affect feature estimates derived from the SAR/PolSAR data.
This section presents different techniques for detecting scatterers having a varying

http://dx.doi.org/10.1007/978-3-319-66330-2_4
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response during the SAR acquisition, and demonstrates how the underlying phys-
ical phenomenon can be characterised based on specific coherent Time-Frequency
(TF) decompositions applied on focused images. Both sections involve strong math-
ematical and statistical modelling that can be used separately or combined to better
interpret SAR and PolSAR images. Note that some of the basic material on SAR
imaging and speckle modelling in this chapter have some overlap with Chap. 5. We
have decided to include this for completeness.

5.2 Signal Modelling

Goodman [2] proposed the first statistical model for single-look, single polarization
SAR data in which the measured signal at each pixel in a SAR image is the vector
sum of backscatter from a multitude of individual scatterers. Hence, we may write
the detected signal from a given resolution cell as

S = X + jY = A exp( jΦ) =
N∑

k=1

ak exp( jφk), (5.1)

where N is the number of scatterers in the cell, ak is the amplitude and φk is the
phase of the k-th scatterer. X and Y are referred to as the in-phase (I) and quadrature
(Q) components, respectively. The scattering medium is modelled as a distribution
of mutually independent, statistically identical elementary scatterers.

In a locally homogeneous area (or volume), the population of random scatterers
can be modelled as a compound Poisson process, in which the scatterers are uni-
formly distributed in a large measurement space. The probability that a resolution
cell contains N scatterers obeys a Poisson probability law with mean number N̄ , i.e.,

p(N ) = N̄ N

N ! exp(−N̄ ). (5.2)

As the size of the resolution cells increases, implying that N̄ → ∞, the probability
of S in (1) becomes a complex Gaussian distribution. This is a consequence of the
central limit theorem, and is known as fully developed speckle. Speckle is considered
to be fully developed under the following conditions:

• The imaged surface is rough compared to the wavelength of the incident electro-
magnetic energy,

• A large number of independent scattering elements contribute to the measured
signal in a single resolution cell,

• There are no dominant scatterers in any resolution cell.

http://dx.doi.org/10.1007/978-3-319-66330-2_5
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Under the assumption of fully developed speckle, we can further deduce that
the complex return from each resolution cell is a circularly symmetricGaussian
random variable, meaning that X and Y in (5.1) are statistically independent
and identically distributed with zero mean. The corresponding distribution for
the magnitude, i.e., A = √

X2 + Y 2, is modelled by the Rayleigh probability
density function

p(A; σ) = A

σ 2
exp

(
− A2

2σ 2

)
, (5.3)

with σ 2 being the variance of X and Y .1 It readily also follows that the intensity
or power, I = X2 + Y 2, obeys the negative exponential distribution (e.g., [3]):

p(I ; σ) = I

2σ 2
exp

(
− I

2σ 2

)
. (5.4)

We note that the average intensity is E {I } = 2σ 2. In a distributed target, the
observed power is an estimate of an underlying radar cross section (RCS), whose
actual value is hidden by the interference between the individual scattering con-
tributions [4]. In high-resolution radars, the backscattered signal will deviate from
the Gaussian models. Non-Gaussian distributions are commonly observed, such as
when the number of scatterers in a resolution cell is small, the scatterers are organised
with some kind of periodicity, or when there are some dominant target components
present in the cell. Also, when the signals can be considered to be a mixture of con-
tributions from several distributed targets, the resulting statistical signal model will
be non-Gaussian.

5.3 The Product Model

There are a variety of distributions that attempts to model non-Gaussian signal sta-
tistics. One of the most commonly used non-Gaussian models is known as the K-
model. Its associated magnitude distribution was first introduced to describe the
spatial distribution of certain larvae in terms of a two-dimensional (2-D) random
walk model, coupled with an exponential stopping time distribution [5]. This result
was generalized by Yasuda [6] by using a Γ -distributed stopping time in a Rayleigh
random walk of Brownian motion type. The K model has subsequently been used as
a generic model for scattered radiation [7, 8], and non-Rayleigh microwave speckle

1Note that in this Chapter, we use the notation p(X; θ) to denote the pdf of a random variable X ,
parametrised by θ , and p(X |τ) to denote the pdf of X conditioned on τ . Both upper and lower case
letters are used to denote a random variable.
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[9–11]. The K-model is an example of a non-Gaussian distribution that can be gener-
ated according to the so-called product model. The product model represents a sim-
ple, generic method for generating non-Gaussian distributions with heavy tails. It is
theoretically founded on a paper by Andrews and Mallow [12], where it was shown
that if the probability density function (pdf) of some random variable Y , p(y), is
symmetric about zero, and the derivatives of p(y) satisfy

(
− d

dy

)k

p(y) ≥ 0 for y > 0, (5.5)

then there exist independent variables X and τ , with X being a standard normal
variable, such that

Y = √
τ X. (5.6)

The variable τ is allowed to take on only positive values. A random variable Y , which
can be expressed as in (5.6), accordingly is a product of two independent variables,
hence the name product model. It is also referred to as a normal variance mixture
model, or a scale mixture of Gaussians. If the mean of Y is non-zero, (5.6) may be
modified by adding a scalar μ corresponding to the actual mean value. The marginal
pdf of Y is accordingly obtained by integrating the conditional distribution p(y|τ)

over p(τ ; θ), i.e.,

p(y) =
∫ ∞

0
p(x |τ)p(τ ; θ)dτ, (5.7)

where θ is a parameter vector associated with the pdf of the texture. As mentioned in
Chap.5, the product model in Eq. (5.6) can easily be extended to the complex radar
signal in (5.1), in which case we write

S = √
τ X + j

√
τY. (5.8)

The stochastic variable τ is here referred to as the radar texture, and is used
to describe the case when the radar cross section of the target surface is inho-
mogeneous. This inhomogeneity will affect the signal statistics in such a way
that the resulting distribution becomes non-Gaussian, with a heavy tail. It is
readily seen that the quadrature components of S still maintain symmetry in
the sense that they are uncorrelated with the same pdf, and conditioned on τ , S
is still a circular symmetric Gaussian random variable. It is also easy to verify
that the magnitude and intensity distributions are given as:

p(A; σ, θ) =
∫ ∞

0

A

τσ 2
exp

(
− A2

2τσ 2

)
p(τ ; θ)dτ, (5.9)

http://dx.doi.org/10.1007/978-3-319-66330-2_5
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and

p(I ; σ, θ) =
∫ ∞

0

I

2τσ 2
exp

(
− I

2τσ 2

)
p(τ ; θ)dτ, (5.10)

respectively.

In the remainder, we will assume that the expected value E {τ } = 1, such that the
average power in the radar signal is not altered by the introduction of the texture
term. We will also use R = E {I } = 2σ 2 to denote the average signal intensity.

In multilooking, which is the simplest way to de-speckle a SAR image, the inten-
sity is averaged over several pixels within a window centred on a specific pixel.When
averaging L pixels, we will assume that all signals result from the same underly-
ing RCS, and that the pixel intensities are independent variables. We then get a
Γ -distributed multilooked intensity with a pdf given as

p(I ; L , R) = LL I

RLΓ (L)
exp

(
− L I

R

)
. (5.11)

When the product model is applied to describe multilooked data, the assumption
is that the RCS is constant within the averaging window, and hence the textured
multilook intensity distribution is obtained by using Eq. (5.11) in the integration
over the texture domain. In this case, for a given τ , the local average intensity will
be τ R. This integral is in many cases possible to express in closed form. Table 5.1
lists the pdfs for Γ and Fischer-distributed texture.

Table 5.1 Analytic expressions for the integrals defining the complete pdfs corresponding to
Gamma, and Fisher texture models. The letters B(x), Kα(x), and U (a, b, x), refer to the Beta
function, Modified Bessel function of second kind and order α, and Kummer’s U function with
parameters a and b, respectively

Model Texture pdf: f (τ ; θ) Compound pdf:
P(I ; L , θ) = ∫∞

0 P(I |τ) f (τ ; θ)dt

No
texture

pT (τ ) = δ(τ − 1) p(I ; L , R) = LL I
RLΓ (L)

exp(− L I
R ).

Gamma pT (τ ; α) =
αα

Γ (α)
tα−1 exp(−αt)

p(I ; L , R, α) = 2
Γ (α)Γ (L)

( Lα
R

) L+α
2 I

L+α
2 −1

×Kα−L

(
2
√

αL I
R

)

Fisher fT (τ ; α, λ) =
B−1(α, λ) α

λ−1

(
ατ
λ−1

)α−1

(
ατ
λ−1 +1

)α+λ

p(I ; L , R, α, λ) =B−1(α, λ)
(L
R

)L Γ (L+λ)
Γ (L)

(
α

λ−1

)L

× I (L−1) U (L + λ, L − α + 1, α
λ−1

L I
R )



5 Polarimetric SAR Modelling: Mellin Kind Statistics and Time-Frequency Analysis 197

5.4 Radar Polarimetry

Radar polarimetry dealswith the full vector nature of electromagneticwaves.General
introductory texts on radar and SAR polarimetry are found in e.g., [13–15]. When
the electromagnetic wave passes through a medium of changing index of refraction,
or when it interact with an object or a target surface and is reflected or scattered,
the characteristic information about the reflectivity, shape and orientation of the
reflecting body can be obtained by polarimetric analysis of the echoes [15]. This
information is only available if the radar system has full polarimetric capability. For
the linear polarization basis, this means the system is able to measure the backscat-
tered signal in four polarization channels. For example, in the horizontal and vertical
polarization basis, the four combinations of channels are HH, HV, V H, VV . This
is mathematically formulated by means of the Sinclair matrix (also referred to as the
scattering matrix), which relates the Jones vector of the backscattered wave to the
Jones vector of the incident wave, as shown in (5.12) below

[
Es
h

Es
v

]
= exp( jkr)

r

[
SHH SHV

SV H SVV

] [
Ei
h

Ei
v,

]
. (5.12)

Here k is wavenumber of the incident electromagneticwave, r is the distance between
the radar antenna and target, Ei

j and Es
j , j ∈ {h, v}, denote the j th linear polariza-

tion component of the incident and scattered waves, respectively, and the entries
of the S-matrix, i.e., SHH , SHV , SV H , SVV , define the channel wise complex scat-
tering coefficients. For practical analysis of polarimetric data, the S-matrix is often
vectorized; either as a lexicographic scattering or target vector

s = [SHH , SHV , SV H , SVV ]t , (5.13)

or as a Pauli scattering vector

k = 1√
2
[SHH + SVV , SHH − SVV , SHV + SV H , j (SHV − SV H )]t , (5.14)

where the superscript t denotes transpose, and the square-root factor in (5.14) main-
tains the total backscattered power. Data in this format is denoted single look complex
(SLC) polarimetric data. A scattering mechanism is defined as a normalized Pauli
scattering vector, and is used to characterize differences in polarized wave scattering
[14].

Statistically, the polarimetric target vector, following the description in the pre-
vious section, would be represented as a multivariate complex statistical variable.
Under the assumption of fully developed speckle, s (or k) would be multivariate
complex Gaussian, and the distribution given as:

p(s) = 1

π |Σ | exp(−s†Σ−1s), (5.15)
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where Σ defines the complex covariance matrix of s, i.e., Σ = E {ss†}, | · | is the
matrix determinant, and the superscript † refers to conjugate transpose.The individual
elements of the polarimetric covariance matrix carries information about channel-
wise correlations, and is an important source of information. If the speckle is not
fully developed, we will have deviation from Gaussian statistics, and we may adapt
the vector form of the product model to describe the statistics. Here, we will only
consider the simplest version of the multivariate product model, where it is assumed
that the radar texture is equal in all polarisation channels. The model for s then takes
the form:

s = √
τ [SHH , SHV , SV H , SVV ]t , (5.16)

where τ would be a scalar stochastic variable, with the same properties as above.
Multilooking in the polarimetric case is implemented using the outer product of the
s or k vectors, and results in the sample covariance matrix or sample coherence
matrix. These matrices are hence defined as

C = 1

L

L∑

i=1

si s
†
i and T = 1

L

L∑

i=1

kik
†
i , (5.17)

respectively, where L is the nominal number of looks being averaged. This data
format is known as multilook complex polarimetric data. When multilooking L
pixels, we will assume that all signals result from the same underlying channel-wise
RCSs, i.e., the pixel-wise scattering matrices are identical distributed, independent
random variables.

In the fully developed speckle case, in which case s is a multivariate Gaussian
variable, the sample covariance matrix C will be scaled complex Wishart distributed,
with a pdf given as

p(C; L;Σ) = LLd |C|L−d

I (L , d)|Σ |L exp(−L tr(Σ−1C)). (5.18)

In (5.18), Σ is the true covariance of s, d is the dimension of s, which in general
is 4, (but is 3 if reciprocity can be assumed), tr(·) is the trace of a matrix, and
I (L , d) = π

d(d−1)
2
∏d−1

i=0 Γ (L − i) is a normalisation constant.
Again, when the product model is applied to describe multilook polarimetric data,

the assumption is that the RCSs are constant within the averaging window, and hence
the textured multilook covariance matrix is given as

C = τW, (5.19)

where τ is the texture, and W here refers to complex scaled Wishart distributed
speckle. The pdf of C is then obtained by integrating over the texture distribution.
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Table 5.2 Analytic expressions for the integrated product models of (5.19) corresponding to Γ

and Fischer-distributed texture. As for Table 5.1, the letters B(x), Kα(x), and U (a, b, x), refer to
the Beta function, Modified Bessel function of second kind and order α, and Kummer’s U function
with parameters a and b, respectively

Model Texture pdf, f (τ )
Compound pdf:

p(C; L; Σ, θ) = ∫∞
0 p(C; L ,Σ |τ) f (τ ; θ)dt

No
texture

f (τ ) = δ(τ − 1) p(C; L; Σ) = LLd |C|L−d

I (L ,d)|Σ |L exp(−L tr(Σ−1C))

Gamma f (τ ; α) =
αα

Γ (α)
τα−1 exp(−αt)

p(C; L ,Σ, α) = 2 |C|L−d (Lα)
α+Ld

2

|Σ |L I (L ,d)Γ (α)

(
tr(Σ−1C)

)α−Ld
2

×Kα−Ld (2
√
Lα tr(Σ−1C))

Fisher fT (t; α, λ)=
B−1(α, λ) α

λ−1

(
ατ
λ−1

)α−1

(
ατ

λ−1+1
)α+λ

p(C; L ,Σ, α, λ)=B−1(α, λ)
LLd |C|L−d

I (L ,d)|Σ |L
(

α
(λ−1)

)

×Γ (Ld+λ)U (Ld+λ, Ld−α+1, L tr(Σ−1C)α

λ−1 )

These integrals are in many cases possible to express in closed form. Table 5.2 lists
the pdfs for Γ - and Fischer-distributed texture.

5.5 Parameter Estimation

Section5.3 presents the product model for single-polarisation amplitude and inten-
sity and Sect. 5.4 extends it to a product model for the polarimetric sample covariance
matrix. Depending on the choice of distribution for the texture parameter, this leads
to different distributions for the compound observable. In order to utilise these distri-
butions in model-based image analysis, such as classification, segmentation, change
detection or target detection, the distribution parameters must be estimated. This is
the scope of this section. It is assumed that the reader is familiar with maximum
likelihood estimation and the method-of-moments estimation.

Recall that the productmodel decomposes into two terms. The first term represents
fully developed speckle, or stochastic variations due to the interference phenomenon
which occurs when a theoretically infinite number of coherent radar echoes are
summed. The second term represents additional signal variation, which could stem
from a number of sources, such as a finite and fluctuating number of scatterers or
local variations in the radar reflectivity. These effects can be caused by various cir-
cumstances relating to sensor configurations or the imaged environment. Regardless
of the origin, the second term is referred to as texture.

In the multilook polarimetric product model, C = τ · W, the scaled complex
Wishart distributed speckle matrix,W, is parametrised by two parameters: the equiv-
alent number of looks, L , and the mean covariance matrix, Σ . The texture variable,
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τ , is generally parametrised by a parameter vector, θ . We shall look at some concrete
examples of texture parameters, after first discussing estimation of Σ and L .

5.5.1 Covariance Estimation

The population covariance Σ can either be estimated from a collection of scattering
vectors or a collection of sample covariance or sample coherency matrices, depend-
ing on which format is available. The vector sample is denoted S = {s1, . . . , sn}
when provided in the lexicographic basis and K = {k1, . . . , kn} in the Pauli basis.
The corresponding matrix samples are C = {C1, . . . , Cn} and T = {T1, . . . , Tn},
respectively.

5.5.1.1 Sample Mean Estimator for Matrix Sample

We have assumed that the texture variable is normalised, in the sense that E{τ } = 1.
By use of the independence of τ and W, it follows that E{C} = Σ , as a general
result irrespective of the distribution of τ . This proves that Σ can be estimated for
all distributions of τ with the well-known sample mean estimator (SME). Given a
sample C , the SME for the matrix sample C is defined as

Σ̂ SME = 1

n

n∑

i=1

Ci . (5.20)

The SME for the matrix sample T is identical, since the coherency matrix T is
simply the sample covariance of the scattering vector k on Pauli basis format.

5.5.1.2 Sample Mean Estimator for Vector Sample

The SME for a vector sample S is similarly given as

Σ̂SME = 1

n

n∑

i=1

si s
†
i , (5.21)

and equivalently for the sample K in the Pauli basis, with ki replacing si .
In the case of a circular complex Gaussian vector sample, meaning that τ ≡ 1 and

pτ (t) = δ(t − 1), then the SME is known to be the maximum likelihood estimator
(MLE) of Σ . In the general case, the formulation of a MLE is complicated and it
does not have an analytic expression. Gini and Greco [16] derived the general MLE
for the population covariance based on the product model for the complex scattering
vector. It is given as
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Σ̂
(k+1)
MLE = 1

n

n∑

i=1

hd+1

(
s†i (Σ̂

(k)
MLE )−1si

)

hd
(

s†i (Σ̂
(k)
MLE )−1si

) · si s
†
i , (5.22)

where k ∈ {1, . . . , K } is the iteration number and K is the number of iterations,
d is the dimension of the scattering vector, and hd(q) is the so-called nonlinear
memoryless function, which is defined as

hd(q) =
∫ +∞

0
t−d exp

(
−q

t

)
pτ (t) dt , (5.23)

and which involves the texture distribution pτ (t).
Equation (5.22) is an iterative solution of a transcendental equation. The estimate

at the (k + 1)th step is obtained from the estimate at step k. The process requires
prior knowledge of pτ (t), which includes the texture parameter vector θ , showing
that this becomes in practice a compound estimation problem where Σ and θ must
be estimated simultaneously. The iterative estimator must also be initialised with a
first guess, which can be provided by the SME.

As an example, let τ be a unit-mean Gamma distributed random variable. Then
the pdf of C becomes the matrix-variate K distribution given in Table5.2. After
evaluating Eq. (5.23), it is found [16] that the MLE for Σ becomes

Σ̂
(k+1)
MLE = 1

n

n∑

i=1

√
α

qi

Kα−d−1(
√
4αqi )

Kα−d(
√
4αqi )

· si s
†
i , (5.24)

where

qi = s†i (Σ̂
(k)
MLE )si . (5.25)

With Gamma distributed texture, the MLE is seen to contain the special function
Kν(q), known as the modified Bessel function of the second kind with order ν. This
gives an estimator with high computational cost. In addition, we note that the shape
parameter α associated with the texture variable is assumed known, which it is not
in most practical cases. The MLE is therefore seldom used in practice.

5.5.1.3 Robust M-Estimator

Due to the practical constraints of the MLE, the SME is often preferred also with
data that are known to contain texture. For moderate to low texture, meaning that
the shape parameter of the texture variable is relatively high, the performance loss
of the SME is small, as shown by Tao et al. in [17]. If the texture is significant, then
the so-called M-estimator can be an alternative.
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The M-estimator belongs to Huber’s general class of robust maximum likelihood
type estimators, hence the name. This approach was first applied to covariance esti-
mation by Tyler [18], and has later become popular in radar image analysis, after it
was rediscovered in [16, 19]. The M-estimator for Σ is defined as

Σ̂
(k+1)
M = d

n

n∑

i=1

si s
†
i

s†i (Σ
(k)
M )−1si

. (5.26)

As seen, the M-estimator must also be computed iteratively. However, it does not
require any prior information about the texture distribution. The computation is also
mathematically simple, which makes it a practical alternative to the SME. For these
reasons, a large interest in this estimator has been observed in the radar literature,
where it is commonly referred to as the fixed-point estimator.

Pascal et al. proved the existence and uniqueness of the M-estimator solution,
the convergence of its recursive scheme under any initialisation [20], and that it
is asymptotically complex Wishart distributed [21]. Many applications to analysis
of PolSAR data have followed, such as [22]. Despite the popularity, it has been
demonstrated [17] that the M-estimator suffers a significant performance loss in low
tomoderate texture and only supersedes the SMEwhen the texture level is higher than
what may be realistic to find in real PolSAR data. The robustness of the M-estimator
to outliers was not considered in this study.

5.5.2 Mellin Kind Statistics

As shown in previous sections, the doubly stochastic product model leads to math-
ematically complicated distributions. Hence, it becomes difficult to use a maximum
likelihood approach to estimate the population covariance matrix. The same is true
when we try to estimate the shape parameters of the texture distributions, referred
to as texture parameters of the overall distribution for C. The common solution has
been to resort to moment-based estimators.

The productmodel decomposes the polarimetric covariance (or coherency)matrix
into two factors, speckle and texture, that are statistically independent. It would be
desirable if we could find moment expressions that also separate the contribution of
speckle and texture, so that we can easily isolate speckle parameters from texture
parameters.Asmentioned inChap.4, it just so happens that this is possible. It requires
that we use logarithmic moments. It also proves helpful to introduce the Mellin
transform to derive the theoretical foundation for logarithmic statistics.

To provide some intuition about the appropriateness of logarithmic statistics in
this context, recall that the logarithm transforms the product model into an additive
one. From basic signal processing and linear system theory, we have the familiar
additive signal model with contributions from a statistically independent signal and
noise component. For this model, a certain type of moment expressions are known to
possess the desired property that moments of signal and noise decompose additively,

http://dx.doi.org/10.1007/978-3-319-66330-2_4
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namely cumulants. Cumulants can be retrieved from the so-called cumulant gener-
ating function, which is related to the pdf by the Laplace transform or, equivalently,
by the Fourier transform.

Moreover, note that the logarithmic sample mean is a sufficient statistic for the
shape parameter of a Gamma distributed population, meaning that it contains the
maximum amount of information about the shape parameter which can be retrieved
from any data sample drawn from this distribution. Even though the product model
modulates the Gamma distributed intensity or complex Wishart distributed sample
covariance with a texture variable, it still makes sense that logarithmic statistics
of the data should hold much information about the shape parameters involved.
We shall in the following see that the Mellin transform is effectively a Laplace
transform computed on logarithmic scale, and that it can be used to define logarithmic
cumulants.

5.5.2.1 The Mellin Transform

Before we indulge in logarithmic statistics, we must define the Mellin transform,
both for the univariate and the matrix-variate case. The Mellin transform is lesser
known than its close relatives, the Fourier and the Laplace transforms. Nonetheless,
its use of a polynomial transform kernel instead of an exponential one provides it
with a scale invariance property which has found many important applications in
signal processing, physics and other fields.

The Mellin transform of the real-valued function f (x) defined on R
+ is

F(s) = M { f (x)}(s) =
∫ ∞

0
xs−1 f (x) dx, (5.27)

where s ∈ C is a complex transformvariable.Under certain restrictions on f (x), F(s)
will be analytic in a strip parallel to the imaginary axis. The common interpretation
of the Mellin transform as a Laplace transform computed on logarithmic scale is
explained if we rewrite Eq. (5.27) as

F(s) =
∫ ∞

0
exp(s ln x) f (x)

dx

x
=
∫ ∞

0
exp(sy) f (ey) dy , (5.28)

by virtue of the substitution y = ln x .

A complex matrix-variate Mellin transform was introduced by Mathai [23],
who referred to it as theM-transform. Let f (X) be a real-valued scalar function
defined on a cone Σ+ of complex, positive definite and Hermitian matrices
with dimension d × d. Further let the function f be symmetric in the sense
that f (XY) = f (YX), where X, Y ∈ Σ+. The Mellin transform of f (X) is
then given by
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F(s) = M { f (X)}(s) =
∫

Ω+
|X|s−d f (X) dX . (5.29)

We can show that this is essentially a Laplace transform of the scalar ln |X|.

An important difference between the univariate and the matrix-variate Mellin
transform is that the former is bijective and associated with and inverse transform,
while the latter is surjective (or onto) and cannot be inverted.

5.5.2.2 Univariate Mellin Kind Statistics

Because of the domain of the Mellin transform integral, it can be directly applied
to amplitude and intensity distributions. This was exploited by Nicolas [24], who
introduced the Mellin kind characteristic function of the random variable X defined
on R+ as

φX (s) = E{Xs−1} = M {pX (x)}(s) (5.30)

by replacing the Fourier or Laplace transform with the Mellin transform in the defi-
nition of the classical characteristic function. The Maclaurin series expansion of the
exponential function is used to show

φX (s) =
∫ ∞

0
exp((s − 1) ln x)pX (x) dx

=
∞∑

r=0

(s − 1)r

r !
∫ ∞

0
(ln x)r pX (x) dx

=
∞∑

r=0

(s − 1)r

r ! μX {X} .

(5.31)

This proves thatφX (s) canbe expanded in termsof r th-order logarithmicmoments (or
log-moments) defined as μr {X} = E{(ln X)r }, provided they all exist. From (5.31),
it is also seen that the log-moments can be retrieved from φX (s) by

μr {X} = dr

dsr
φX (s)

∣∣∣∣
s=1

. (5.32)

The Mellin kind cumulant generating function of X is further defined as ϕX (s) =
ln φX (s). This function can be expanded as
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ϕX (s) =
∞∑

r=1

(s − 1)r

r ! κr {X} , (5.33)

with the coefficients κr {X} referred to as r th-order logarithmic cumulants (or log-
cumulants), provided that they all exist. This is equivalent to requiring that all log-
moments exist, since κr {X} is a polynomial in the log-moments up to the same order.
The log-cumulants are retrieved from (5.33) by

κr {X} = dr

dsr
ϕr {X}

∣∣∣∣
s=1

. (5.34)

The first three relations between log-moments and log-cumulants are

κ1 = μ1 , (5.35)

κ2 = μ2 − μ2
1 , (5.36)

κ3 = μ3 − 3μ1μ2 + 2μ3
1 . (5.37)

5.5.2.3 Matrix-Variate Mellin Kind Statistics

The domain of the complex matrix-variate Mellin transform cooincides with
the domain of the covariance and coherency matrix distributions. It can there-
fore be used to define a Mellin kind characteristic function for the complex
matrix-variate case:

φC(s) = E{|C|s−d} = M {pC(C)}(s) . (5.38)

This expression can be expanded into

φC(s) =
∞∑

r=0

(s − d)r

r ! μr {C} (5.39)

in terms of the matrix log-moments, μr {C} = E{(ln |C|)r }, provided they exist. The
matrix log-moments are retrieved from

μr {C} = dr

dsr
φC(s)

∣∣∣∣
s=d

. (5.40)

Againwe see that theMellin transform effectively analyses data on logarithmic scale,
in this case with the determinant condensing the information into a scalar.
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The Mellin kind cumulant generating function in the complex matrix-variate
case becomes ϕC(s) = ln φC(s), whose expansion is

ϕC(s) =
∞∑

r=1

(s − d)r

r ! κr {C} (5.41)

in terms of the matrix log-cumulants κr {C}, provided they exist. A matrix
log-cumulant (MLC) can be retrieved from

κr {C} = dr

dsr
ϕC(s)

∣∣∣∣
s=d

. (5.42)

5.5.2.4 Application to the Product Model

The Fourier and Laplace transforms play important roles in signal processing with
the additive signal model due to their convolution properties: A convolution in the
input domain corresponds to a multiplication in the Fourier or Laplace transform
domains. The Mellin transform has the exact same properties for the product model,
as we shall see.

Assume that single-polarimetric multilook intensity can be modelled as Y = τ ·
X , i.e., a product of a texture variable τ and the Gamma distributed speckle variable
X . We then have the following relations:

pY (y) = (pτ ∗̂pX )(y) =
∫ ∞

0
pτ (t)pX (y/t) dt , (5.43)

φY (s) = φτ (s) · φX (s) , (5.44)

ϕY (s) = ϕτ (s) + ϕX (s) , (5.45)

κr {Y } = κr {τ } + κr {X} . (5.46)

The pdf pY (y) is computed with a multiplicative convolution, as defined in (5.43),
which is the same operation we use to arrive at Eqs. (5.7) and (5.10). The multi-
plicative convolution operation is here denoted with the ∗̂ operator. This translates to
the factorisation of φY (s) shown in (5.44), which carries over to an additive decom-
position of ϕY (s) in (5.45). This leads directly to the desired property of the log-
cumulants, i.e., the additive decomposition of the texture and speckle contributions
in (5.46).
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By using results on the matrix-variate Mellin transform from [25], we find that
the product model for the polarimetric sample covariance matrix decomposes
in the same manner in the different domains:

pC(C) = (pτ ∗̂pW)(C) =
∫ ∞

0
pτ (t)pW (C/t) dt , (5.47)

φC(s) = φτ (d(s − d) + 1) · φW(s) , (5.48)

ϕC(s) = ϕτ (d(s − d) + 1) + ϕW(s) , (5.49)

κr {C} = drκr {τ } + κr {W} . (5.50)

The details of the derivations are omitted to focus on the applicative value of these
results.

We particularly want to make use of the log-cumulant decomposition in (5.50),
since it can be exploited to isolate speckle parameters from texture parameters. We
assume for the time being that the distribution of τ is unknown, and invoke the
following result for the speckle matrix W.

The MLCs of a scaled complex Wishart distributed random matrix are known as
[25]

κr {W} =
{

ψ
(0)
d (L) + ln |Σ | − d ln L r = 1 ,

ψ
(r−1)
d (L) r > 1 ,

(5.51)

where ψ
(r)
d (x) is the multivariate polygamma function, defined in [25] as

ψ
(r)
d (x) =

d−1∑

i=0

ψ(r)(x − i) , (5.52)

and where

ψ(r)(x) = dr+1

dxr+1
lnΓ (x), r ≥ 0 (5.53)

is the ordinary polygamma function of order r , which is an (r + 1)th order derivative
of the logarithm of Euler’s Gamma function.

When including the texture contribution, the general MLCs of C become

κr {C} =
{

ψ
(0)
d (L) + ln |Σ | − d(ln L − κ1{T }) r = 1 ,

ψ
(r−1)
d (L) + drκr {τ } r > 1 .

(5.54)



208

5.5.3 Shape Parameter Estimation

From the MLCs of C in (5.54), it should be observed that only κ1{C} depends on the
population covariance Σ . The higher-order MLCs, κr>1{C}, are invariant to scaling
and only depend on the shape parameters. This is useful when we want to estimate
the shape parameter L of the speckle variable W or the shape parameter(s) θ of
the texture variable τ . We also observe that the shape parameters of texture and
speckle are decoupled, unlike the relations we get with linear moments. We shall
take advantage of this in the sequel.

5.5.3.1 Estimation of the Equivalent Number of Looks

The shape parameter L is known in SAR literature as the equivalent number of looks
(ENL). It is a parameter ofmultilook SAR imageswhich describes the degree of aver-
aging applied to the SAR measurements during data formation and postprocessing.
Multilooking is performed in order to mitigate the noiselike effect of interference
resulting from coherent addition of a large number of radar echoes, and sometimes
also to reduce the data volume. In this process, correlated measurements are aver-
aged, which complicates statistical modelling of the resulting multilook data. The
pragmatic solution is tomodel the output as an average of independent measurements
and to replace the actual number of correlated samples by an equivalent number of
independent ones, i.e., the ENL.

We take as the ENL estimate the parameter value which produces a best match
between empirical moments of correlated data and theoretical moments of the data
model, which assumes independence. The ENL is therefore generally a noninteger
number.

5.5.3.2 Coefficient-of-Variation Estimator

Multilook intensity of fully developed speckle is known to follow a Gamma distrib-
ution [26], and the moments of a Gamma random variable X are given by

E{Xr } = Γ (L + r)

Γ (L)

(σ

L

)r
, (5.55)

where σ = E{X} is the mean intensity. The ENL is in the literature sometimes
defined as

L � E{X}2
Var{X} , (5.56)

since this particular combination of moments, which is known as the coefficient of
variation (CV), evaluates exactly to L forGammadistributed intensity data.However,
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this definition is found to be inadequate, both because its validity is restricted to
Gamma distributed intensity data and also since the given combination of moments
is not the only one which is equal to L .

An alternative definition could be to say that the ENL is the shape parameter
associated with a random variable representing fully developed speckle, which must
be solved for (froma chosenmoment expression) under the assumed statisticalmodel,
also considering the texture which may be incorporated explicitly or implicitly into
this model. Such a definition allows the ENL to be a distribution parameter for
different data formats, including those of polarimetric SAR.

The ENL has traditionally been estimated with samples collected from manually
selected windows where the radar reflectivity is assumed to be homogeneous and the
speckle fully developed, such that the sample can be assumed to follow a textureless
distribution. In the following,wewill accordingly assume that the samples used in the
ENL estimation represent Gamma distributed intensity or scaled complex Wishart
distributed sample covariance or coherency matrices.

5.5.3.3 Trace Moment Estimator

The expression in (5.56) can only be used to estimate the ENL for single-polarimetric
intensity data, but has also been used with PolSAR data by computing channel-
specific estimates and averaging them. We call this the coefficient of variation esti-
mator (CVE). A weakness of this type of approach is that it does not utilise the
complete information of the sample covariance matrices, only the intensities on the
diagonal.

As a remedy, a generalisation of the coefficient of variation to polarimetric data
was proposed in [27]. It builds upon moments of C involving the trace operator, that
have been derived in [28]:

E{tr(CC)} = tr(ΣΣ) + tr(Σ)2/L , (5.57)

E{tr(C)2} = tr(Σ)2 + tr(ΣΣ)/L . (5.58)

These can be used to show that

tr(Σ)2

E{tr(CC)} − tr(ΣΣ)
= L (5.59)

under the scaled complex Wishart distribution. This expression is used to form the
trace moment estimator (TME) [27]

L̂T ME = tr(〈C〉)2
〈tr(CC)〉 − tr(〈C〉〈C〉) , (5.60)

where the operator 〈·〉 denotes an average over the estimation sample.
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This also serves as an example of how moment-based estimators are constructed,
namely by replacing population moments with sample moments or, equivalently, by
exchanging the expectation operator E{·} with the sample average 〈·〉.

5.5.3.4 Maximum Likelihood Estimator

The performance of the TME is much improved with respect to the single-channel
CVE. It is also very computablewith its attractive closed form solution. Still, superior
performance is obtained by formulating an ENL estimator based on MLCs. One can
clearly solve for the ENL fromMLCs of different order, but simulations have proven
that the first-order MLC equation produces the best result. By assuming no texture,
this equation becomes

E{ln |C|} = ln |Σ | + ψ
(0)
d (L) − d ln L . (5.61)

This equation does not have an analytic solution and must be solved numerically,
which is easily implemented with a root finding algorithm. Notably, it is found that
this equation defines the MLE under the scaled complex Wishart distribution.

In order to turn (5.61) into an estimator, both ln |Σ | and Σ must be replaced
by empirical averages. With this in place, the MLE estimate L̂MLE is defined
as the root of

g(L̂MLE) = 〈ln |C|〉 − ln |〈C〉| − ψ
(0)
d (L̂MLE ) − d ln L̂MLE . (5.62)

Although the population covariance is a nuisance parameter, the MLE performs
very well in terms of its mean square error, as shown in [27].

TheENLvalue is an image constantwhich is determined by the processing scheme
chosen for the data set. It should therefore be estimated prior to any other distribution
parameter. TheENLvaluewill changewith the filters and processing parameters used
in the frequency domain multilooking performed during SAR focusing or in spatial
domain postprocessing of the focused image. It is therefore important to have a robust
and accurate algorithm for ENL estimation. An automatic algorithm is also preferred,
which avoids manual selection of the estimation sample. An unsupervised algorithm
which extracts the overall ENL estimate from small sample estimates computed in
local windows across the image is described in [27]. It is inspired by a previous
attempts at a similar procedure from [29].

The estimators presented above all assume that the estimation sample is homo-
geneous and represents fully developed speckle without any textural influence. The
associated unsupervised estimation procedure relies on the assumption that this holds
for a sufficient number of the windows where small sample estimates are computed,
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such that estimates produced under ideal circumstances will dominate the collec-
tion of estimates. It is evident that occurrence of texture, class mixtures and other
departures from the model assumption will bias the overall estimate. As a resort, a
texture invariant estimation procedure has been proposed in [30], whereas a mixture
eliminating procedure is presented in [31].

5.5.4 Estimation of Texture Parameters

We shall now demonstrate how theMLCs can be used to estimate texture parameters.
This will be done for a Gamma distributed texture variable with one shape parameter
and for a Fisher distributed texture variable with two shape parameters. These texture
distributions are shown in Table5.1, where both are normalised to unit mean.

The univariate log-cumulants of a Gamma distributed τ with shape parameter α

are

κr {τ } =
{

ψ(0)(α) − ln α r = 1 ,

ψ(r−1)(α) r > 1 .
(5.63)

For a Fisher distributed τ with shape parametersα andλ, the univariate log-cumulants
are

κr {τ } =
{

ψ(0)(α) − ψ(0)(λ) + ln
(

λ−1
α

)
r = 1 ,

ψ(r−1)(α) + (−1)rψr−1(λ) r > 1 .
(5.64)

The texture parameters of both these models can be estimated by the method of
matrix log-cumulants (MoMLC). In this method we set up as many MLC equations
as we have unknown distribution parameters. We then replace the population MLCs
with corresponding sample MLCs and solve for the unknown parameters. This must
be done numerically.

TheGamma distribution contains only one shape parameter and therefore requires
only one MLC equation. The Fisher distribution requires two. Low-order MLCs
are preferred, since the estimation variance generally increases with moment order,
although this also depends on the presence of nuisance parameters. For instance,
the first-order MLC contains the population covariance, but can still be used in the
MoMLC approach, both alone and together with other MLC expressions.

We have also proposed another estimation method which utilises more moment
orders than the MoMLC in order to capture more information about the unknown
parameters. This yields an overdetermined system of nonlinear equations. Let κ be a
vector of distinctMLCswith selected order and 〈κ〉 a vector containing certain sample
statistics of corresponding order. Specifically, the entries of 〈κ〉 must be a version of
the so-called k-statistics [32]. These are minimum-variance unbiased estimators of
the MLCs, to ensure that unbiasedness is fulfilled in terms of: E{〈κ〉} = κ .
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We must further use the covariance matrix K = E{(〈κ〉 − κ)(〈κ〉 − κ)T }, which
can be derived from the definition of the k-statistics and cross-covariance relations
between sample moments, all given in [32]. Knowing that κ depends on the tex-
ture parameters through τ , we define the maximum asymptotic likelihood (MAL)
estimator:

θ̂ = argmin
θ

{
n(〈κ〉 − κ)T K−1(〈κ〉 − κ)

}
. (5.65)

The efficiency of the MAL estimator is shown in [33].

5.6 Image Classification

The previous sections have detailed the potentially non-Gaussian statistical distrib-
utions that result from the polarimetric product model and the MoMLC estimation
techniques used to estimate their model parameters. We will now explain how to
use both of these concepts for non-Gaussian image classification. This is first done
for supervised classification into known classes with training data, and secondly
for unsupervised segmentation (clustering) into unknown segments without training
data.

We will study the case of multilook complex polarimetric covariance matrix data
assuming an underlyingFisher distributed texture parameter and thus amatrix-variate
U-distribution as model for the compound sample covariance matrix, as it is the most
flexible. The matrix-variate K -distribution and the complexWishart distribution will
be special cases of this model. Be aware that the statistical methods described here
could equallywell be applied to othermodels anddata, including single-look complex
vector data, with the appropriate choice of probability density function.

Both of these cases make rigorous statistical use of the model probability density
functions, which is essentially adding model specific information and constraints
into the decision-making process. This is distinctly different from non-model-based
methods, such as support vector machines (supervised, with training data only),
non-parametric or distance-based methods, that do not utilise or impose any model
information. Further discussion of these alternative methods is outside the scope of
this chapter.

5.6.1 Supervised Classification

For the case of supervised classification with the matrix-variate U-distribution,
we assume that each pixel Ci belongs to a class defined by the distribution
U (C; L ,Σ, α, λ) from Table5.2. We also have some amount of known training
data samples that can be used to define the different classes.
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Firstly, the parameters for each U-distributed class need to be estimated from the
data samples for that class. Let us define the N j training data samples for class j as
{CTj (k)

: k = 1, . . . , N j }. Then the estimates for the class conditional parameters are
determined by

Σ̂ j = 1

N j

N j∑

k=1

CTj (k)
(5.66)

α̂ j , λ̂ j = argmax
α j ,λ j

(
κ j − 〈κ〉 j

)
K−1

j

(
κ j − 〈κ〉 j

)
, (5.67)

where κ j is a vector of population log-cumulants that follow from the model, 〈κ〉 j
is the vector of corresponding k-statistics, which provides an unbiased estimate of
κ j , and K j is the covariance matrix of 〈κ〉 j . Both κ j and K j are functions of the
parameters α j and λ j , while 〈κ〉 j depends on the data sample. This method of (5.67)
was introduced in Sect. 5.5.4 as the MAL estimator [33].

In addition, we must decide whether we wish to include any class prior prob-
ability values (also known as mixing proportions), π j : j = 1, . . . , J , or take the
non-informative, equiprobable case, π j = 1/J . The former determines the maxi-
mum a posteriori probabilities, whilst the latter determines the maximum likelihood
probabilities. The choice depends onwhether you know that the classes ought to have
different overall abundances in the image and that you can reflect that knowledge
in the prior probability weights. If you do not know, then you should take the safer
maximum likelihood approach. In either case, Bayesian decision theory says that
you should label each pixel Ci to the class with the greatest posterior likelihood, that
is, assign the pixel to the class j such that

U (Ci |L ,Σ j , α j , λ j )π j > U (Ci |L ,Σk, αk, λk)πk ∀ k �= j . (5.68)

Since the model includes the non-Gaussian texture parameters for each class distri-
bution, then the decision is based upon non-Gaussian modelling and includes more
intensity variation for any highly textured classes, and less variation for the more
homogeneous classes.

It is important to realise some of the assumptions of this method. The probabilistic
decision will always find the single most-likely class out of those classes present.
Therefore, if you do not have fully complete training data, and are actually missing
some important classes, then the pixels will be assigned to the most similar class
of those present. To avoid this you would have to represent all possible classes, or
to make a sort of residual class with some specific probabilistic threshold. If the
probability is greatest for class j and it is above a certain threshold, then assign the
pixel to that class, otherwise assign it to the “unknown” or “uncertain” residual class.

The number of looks is an important parameter for non-Gaussian probability
density functions and does not cancel away in the relation in (5.68), as in the case
for the purely Gaussian/Wishart model. Hence, the equivalent number of looks must
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be estimated for the modelling and several approaches to do this are outlined in
Sect. 5.5.3.1. Most important for all of these non-Gaussian models is the concept of
class mixtures. The estimation routines based on the modelling theory will not be
appropriate if your samples are not from one uniform class with common parameters,
but frommixtures of several classes.Mixtureswill havemore variation than a uniform
class, since you get the speckle and texture variation, plus you get some component
of variation relating to the differences between the classes. This is often mistaken for
textural variation, and often leads to extreme degrees of texture in themodelling. This
concept of mixtures is compounded because the log-cumulant and moment based
methods are power based and will be severely influenced by outliers from class
mixtures. Furthermore, the probability density functions for extreme texture tend to
be very broad and likelihood based decisions are overly accepting of virtually all data
samples leading to poor class distinction. This sensitivity may be mitigated by either
taking care to have enough classes with pure uniform samples, or by suppressing a
small fraction of outliers before estimating the class parameters. The latter is an easy
way to improve the model fitting and still benefit from the fast and simple moment
or cumulant based estimation methods. Alternatively, you would need a numerical
approach that emphasises the peak values and is not so sensitive to outliers in the
tails, e.g., a numerical maximum-likelihood method.

For a data example, we will look at a RADARSAT-2 sample SAR scene from
Vancouver, Canada (available for free download from the MDA web-site [34]). This
scene includes some water, urban and vegetated areas in and around the city of
Vancouver, Canada. The original single-look complex data-set was spatially multi-
looked with a large window, 22 × 11 (azimuth × range), and strongly sub-sampled
to simplify the image segmentation into only a few regional (large-scale) land-cover
classes. To obtain training data, we manually selected polygon regions for five major
classes: (1) City centre; (2) Forest; (3) Agricultural fields; (4) Ocean; and (5) Urban.
These regions may be seen in the Pauli RGB representation in Fig. 5.1.

The supervised classification estimates the class parameters from the training
region with the ENL and texture parameters estimated by optimisation of an overde-
termined system of MLC equations, as explained in Sect. 5.5.4, i.e., by using the
maximum asymptotic likelihood estimator from [33]. Note that we included a prob-
abilistic outlier removal of 1% to reduce the influence of mixtures in the estimation.
The resulting class histograms and model fitting are shown in Fig. 5.1, where this
one-dimensional histogramdepicts trace(Σ−1C)which compacts thematrix-variate
data into a simple visualisation related to the texture distribution and the different
widths indicate the degree of texture in each class. The city class (1, red) has the
most texture, while the forest (2, green) has the least textural variation in this case.

The supervised maximum likelihood classification result is shown in Fig. 5.2, and
it is quite apparent that it separates the chosen training classes quite well, when
compared visually to the Pauli RGB image. There is some confusion in the upper
mountainous regions, but we have not applied any form of terrain incidence angle
correction to this highly sloping region, hence the terrain-slope brightness variations
are appearing as several different classes. One may also observe that some areas like
the darker runways at the airport are being classified to the nearest available class of
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Fig. 5.1 Pauli RGB image (R = HH − VV, G = HV, B = HH + VV), with five coloured training
regions marked, and the corresponding training class histograms with the fitted model curve in red
(color figure online)

Fig. 5.2 Supervised classification result for the five coloured training regions and their resulting
class histograms. Note that some mixed histograms now appear, due to too few classes
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the five supervised choices. The resulting class histograms show some clear mixing
with evident multiple peaks and poor fitting model curves.

5.6.2 Unsupervised Segmentation

For the case of unsupervised segmentation, or clustering, with the matrix-variate U-
distribution, we assume as before that each pixel Ci belongs to a class following the
U-distribution U (C; L ,Σ, α, λ) from Table5.2. Furthermore, the total probability
model for all J classes in the image is a finite mixture model described by

p(C) =
J∑

j=1

π j U (C; L ,Σ j , α j , λ j ) (5.69)

where each class j has a prior probability π j and class conditional parameters
Σ j , α j , λ j . This type of problem is known as finite mixture modelling and has many
hidden class parameters. It is generally solved with an expectation maximisation
algorithm (EM-algorithm) [35, 36]. The EM-algorithm is an iterative algorithm that
repeatedly calculates the expected posterior likelihood, given the data and the cur-
rent parameter values, and then updates the current parameter values given the class
posterior likelihoods. It must be initialised with some starting value (often randomly
assigned) and then iterates until some convergence criterion is met (often the change
in total log-likelihood). The end result is then the estimated set of all class parameters
and their mixing priors (or proportions). The posterior membership likelihoods may
also be extracted from the final iteration, or recalculated based on the class parame-
ters for all samples of interest and for each class. These posterior memberships can
then be used to make a Bayesian decision like the supervised case from (5.68), but
where the class parameters have been estimated automatically.

Note that although the resulting ‘classes’ have statistically distinguishable proper-
ties, they are essentially unknown ‘classes’, with a randomly assigned index label.We
often try to avoid using the word ‘classes’ here, and instead use the words clusters or
segments, to indicate this missing information. A true classification, into known and
named classes, may be subsequently made using auxiliary knowledge, like limited
training data or class physical properties.

This approach too has certain assumptions and limitations that affect the inter-
pretation and quality of the result, and yet it will always return a segmented image.
It assumes that the pdf model is a good shape for the real data, as this will guide
where it determines class boundaries. It requires the number of clusters to be set
in advance, and much like the supervised method needing representative samples,
a wrong number of classes will create some mixed clusters or some randomly split
clusters. The effect of this is often quite visible, and one practically useful strategy
is to perform unsupervised clustering to several different numbers of clusters, and
then pick the best looking image result visually. This sequential procedure has even
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been automated, by the chapter authors, by incorporating a goodness-of-fit test to
judge the appropriate number of clusters [37]. This is only achievable because the
model probability density function information gives us extra shape information.
Furthermore, the EM-algorithm is influenced by the choice of initial conditions and
random initialisation can lead to many different resulting images. The usual tricks of
performing multiple starts and picking the greatest likelihood score, or seeding with
a semi-supervised or simpler pre-classified result can help regularise the resulting
segmentation.

As an example for unsupervised segmentation, we will take the same image as the
supervised case and firstly set the number of clusters also to five, and subsequently
to a higher number of 9 classes. This will show some of the aspects to consider with
such clustering.

Firstly, if the number of classes is too few compared to the actual number of
distinctly different regions, then some mixed clusters must occur, in a similar way
as too few training classes in the supervised approach. However, for unsupervised,
you have no control over which clusters the algorithms mixes and it may not be the
same ones as your supervised choice. This has occurred in our five class example in
Fig. 5.3, where the blue training class 3 is not distinguished, and a new area of urban
is found instead. A visual check with the PauliRGB (Fig. 5.1) and we can easily
see that this new region is in fact representing a real area of much brighter pink
than the rest of the urban, but it doesn’t match our manual choice. Additionally, the

Fig. 5.3 Unsupervised segmentation into 5 classes and histograms
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Fig. 5.4 Unsupervised segmentation into 9 classes and histograms

histograms indicate that class 2 (green) and class 5 (pink) appear to be significantly
mixed, as the model curve does not match and there are even multiple peaks.

Secondly, we can break this mixed condition by allowing several more clusters to
adapt to these real distinct regions, thus reducing the mixed clusters and achieving
better cluster histogram fitting and better visual results. Figure5.4 shows an unsuper-
vised segmentation for nine clusters and their histograms. See how the histograms
better match the fittedmodel curves and that the distinguished regions can be visually
compared to different coloured regions in the Pauli RGB image of Fig. 5.1.

Finally, note that the clusters seem to have better matched the colour boundaries
in the Pauli RGB image than the unsupervised case. This is because the extra clusters
can fit tighter around the actual data histograms than the slightly mixed classes from
the training data polygons. If desired, the number of classes can be reduced after
segmentation by combining particular segments, for example the purple and yellow
water sub-classes.

These examples only scratch the surface of the possibilities for model-based non-
Gaussian image analysis and are only intended to reflect some of the major consid-
erations and to demonstrate that it achieves reasonable results.
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5.7 Coherent Time-Frequency Characterization
of Complex Polarimetric Features

The second part of this chapter goes deeper into the multi-pulsed synthetic acqui-
sition of a the PolSAR signal and explores sub-aperture consistency. Conventional
SAR image analysis and geophysical parameter retrieval techniques from SAR data
generally assume that scenes are formed of static scatterers observed in the direc-
tion perpendicular to the flight track and at a fixed frequency, equal to the emitted
signal carrier’s one. When imaging complex objects and media, potential variations
of the signal measured during the SAR acquisition may strongly affect feature esti-
mates derived from the resulting SAR data andmay lead to erroneous interpretations.
This kind of phenomenon, frequently encountered with moving objects [38], may
be observed with static objects with anisotropic geometrical structures or having a
frequency selective response. Their electromagnetic behavior may vary as they are
illuminated from different positions or at different frequency components during
SAR integration. The resulting SAR response being well described by the spatial
convolution of a conventional scene SAR image with specific functions accounting
for each effect, non ideal features can be easily detected and characterized in the
spectral domain.

This section presents different techniques for detecting scatterers having a varying
response during the SAR acquisition and characterizing the underlying physical
phenomenon that generates these variations. These approaches are based on specific
coherent Time-Frequency (TF) decompositions which can be applied on already
focused SAR images.

5.7.1 Coherent Time-Frequency Decomposition
of Polarimetric SAR Images

As depicted in Fig. 5.5, and explained in this chapter, a SAR measurement consists
in repeatedly emitting a signal, se(t), in the across track direction and receiving the
echo from the observed scene, sr (x, t), at different locations x along the acquisition
track. A scatterer P0 located at coordinates (x0, y0, 0) is observed for different values
of the azimuth look angle, φ, defined by sin(φ) = (x − x0)/d0(x), defined d0(x) =√
r20 + (x − x0)2 being the varying radar-scatterer distance. The range of the azimuth

angle is defined by the antenna aperture, whereas the emitted signal is characterized
by a bandpass spectrum centered around a carrier frequency fc, with bandwidth B f .

Under simplifying assumptions and considering ideal acquisition conditions [39],
a coherent SAR image may be formulated as a convolution of the scene coherent
reflectivity, γ (x, r) and the SAR 2-D impulse response, h(x, r) and may be repre-
sented in both spatial and spectral domains as:
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Fig. 5.5 Geometrical configuration of a SAR acquisition. Repeated emission-reception of signals,
with a rectangular antenna aperture (left). Observation of a scatterer P0 from different positions
along the acquisition track, with corresponding azimuth look angles

Fig. 5.6 Decomposition of a
plane wave propagating
along ω̂ into azimuth and
range components. A
spherical wave may be
represented as a sum of plane
waves with varying azimuth
orientation φ

s(x, r) = γ (x, r) ⊗ h(x, r) ≡ S(ωa, ωr ) = Γ (ωa, ωr ) H(ωa, ωr ) (5.70)

where ≡ denotes logical equivalence, S(ωa, ωr ) =
+∞∫
−∞

+∞∫
−∞

s(x, r)e− jωa xe− jωr rdxdr

is the 2-D Fourier transform of the SAR image s(x, r), and ⊗ represents the convo-
lution operator. The spectral coordinates (ωa, ωr ), representing two-way wavenum-
bers in range and azimuth, are illustrated in Fig. 5.6 and can be formulated as [40],
ωa = ω sin φ andωr = ω cosφ − ωc. whereω is the emitted signal wavenumber and

can be related to the electrical frequency using, f ∈ fc +
[
− B f

2 ,
B f

2

]
, through the

wave propagation velocity, c, as ω = 4π f
c .

For an ideal scene, whose reflectivity is uniformly distributed over the spectral
domain, the resolutions of the SAR image are driven by the impulse response of the
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SAR system and are given by

δx = 2π

Δωa
= c

4 fc sin(Δφ/2)
and δr = 2π

Δωr
= c

2B f
(5.71)

where Δφ stands for the processed azimuthal aperture, whose maximal value is set
by the acquisition antenna characteristics.

The T-F decompositions technique selected here is based on the use of a 2-D
windowed Fourier transform, or 2-D Gabor transform. This kind of transfor-
mation permits to decompose a two-dimensional signal, s(l), with l = [x, y]T
a 2-D location, into different spectral components, using a convolution with
an analyzing function g(l), as follows [41]:

s(l0;ω0) =
∫

s(l) g(l0 − l) exp(− jωT
0 (l0 − l))dl (5.72)

where ω0 = [ωx , ωy]T indicates a position in frequency, and s(l0;ω0) repre-
sents the decomposition result around the spatial and frequency locations l0
and ω0. The application of a Fourier transform to (5.72) shows that the spec-
trum of s(l0;ω0) is given by the product of the original signal spectrum and
the transform of the analyzing function g shifted around the frequency vector
ω0:

S(ω;ω0) = S(ω)G(ω − ω0) (5.73)

It is clear fromEqs. (5.72) and (5.73) that this time-frequency approachmay be
used to characterize, in the spatial domain, behaviors corresponding to particu-
lar spectral components of the signal under analysis, selected by the analyzing
function g. Among thewide variety of existing TF analysismethods, the simple
atomic decomposition selected in this study presents some interesting prop-
erties. It is linear, and hence preserves the coherence and energy of signals,
it is not affected by artifacts related to cross-terms and may be inverted, i.e.,
depending on the analyzing function g, s(l) may be reconstructed from a set
of TF samples s(l;ω0), provided that some sampling conditions in spatial and
spectral domains are satisfied. The resolutions of the analysis in space and
frequency are not independent, and their product is fixed by the Heisenberg–
Gabor uncertainty relation, given in 1-D by [41], δl δω = ug .

In practice the simple SAR image model given in (5.70) needs to be com-
pleted in order to account for additional weighting terms, mainly due to the antenna
pattern and side-lobe reduction functions, as [42] S(ω) = Γ (ω) H(ω)W (ω) with
ω = [ωa, ωr ]T . The synopsis of the TF decomposition based on the spectral defini-
tion on (5.73) is given in Fig. 5.7.
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Fig. 5.7 Synopsis of the proposed Time-Frequency decomposition of a mono-dimensional SAR
signal

The first step consists of correcting for potential spectral imbalances, represented
by W (ω), in the original, full-resolution SAR image. This can be achieved by cal-
culating average image spectra in range and azimuth and then multiplying the full-
resolution spectrum S(ω) by the inverse of the estimated 2-D weighting function.
The TF decomposition is then conducted by multiplying the corrected spectrum
by the Fourier transform of the analyzing function and going back to the spatial
domain. The resulting still focused SAR image s(l;ω0) has a lower resolution than
the original SAR data and depicts the scene behavior over the 2D frequency domain
located in the neighborhood of ω0. In order to emphasize the physical interpretation
of coherent SAR image analysis, one may simplify the wavenumber expressions
given previously using narrow and bandwidth approximations

ωa ≈ ωc sin φ, ωr ≈ ω − ωc (5.74)

It is worth noting that the direct relation between a SAR image and the reflectivity of
scene in (5.70), as well as the physical meaning of the spectral coordinates in (5.74)
are valid when dealing with coherent Single Look Complex (SLC) SAR data sets,
i.e., each pixel of the SAR image corresponds to a complex number whose modulus
is proportional to the focused reflectivity and whose absolute phase depends on
the observed medium as well as on the measurement phase history. Transforming
an SLC image to an incoherent one, like an intensity image I (x, r) = |s(x, r)|2,
involves an irremediable loss of information and interpretation. This kind of analysis
can be applied to detect objects or media with anisotropic behaviors, like scatterers
with complex geometrical structures, human-made objects, or natural media having
periodic structures in the case of agricultural areas, or linear alignments of strong
scatterers [42]. In the range direction, TF analysis permits to compare the response of
a scene observed at different frequencies, containedwithin the emitted signal spectral
domain, and can be used to detect and characterize media with frequency-sensitive
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responses, like resonating spherical or cylindrical objects, periodic structures, or
coupled scatterers with interfering characteristics [43, 44].

Polarimetric SLC SAR images can be easily decomposed by applying the pre-
sented approach independently over each polarization channel. Usual polarimetric
representations may then be reconstructed to study the polarimetric behavior of a
scene around specific spectral locations.

k(ω0) = 1√
2

⎡

⎣
Shh(ω0) + Svv(ω0)

Shh(ω0) − Svv(ω0)

2Shv(ω0)

⎤

⎦ and T(ω0) = e
[
k(ω0)kH(ω0)

]
(5.75)

where spatial locations, l, have been omitted.

5.7.2 Characterization of Natural Environments with
Non-stationary Polarimetric TF SAR Responses

5.7.2.1 Non-stationary TF POLSAR Responses

The TF decomposition scheme is applied onto polarimetric SAR data acquired by
the DLR E-SAR sensor, at L band, over the Alling test site in Germany. The original
image resolution is 2m in range and 1 m in azimuth, corresponding to an azimuthal
variation of the look angle of approximately 7.5◦ and a chirp bandwidth of 75 MHz.
Figure5.8 shows the full-resolution span image corresponding to the total polarimet-
ric backscattered power. The considered scene is mainly composed of agricultural
fields and forest. An urban area is located at the bottom left corner of the image. The
decomposition results obtained in both range and azimuth directions over an area

Fig. 5.8 Full resolution span
image of the Alling test site
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Fig. 5.9 Polarimetric parameters at full resolution (center) and after 1-D TF analysis in the azimuth
(left) and range (right) directions

corresponding to plowed fields, are shown in Fig. 5.9, under the images formed of the
span, H, and α parameters derived from subspectra centered around different spectral
locations and for the full-resolution case. The entropy, H, represents the degree of
randomness of the polarimetric information. H equals 0 for a deterministic response
and reaches 1 in case of polarimetric white noise, i.e., for uncorrelated polarimet-
ric channels with equal intensity. The parameter α is an indicator of the nature of
the scattering mechanism. A value close to 0 indicates a single bounce reflection,
characteristic of scattering by rough surfaces, α = π/4 corresponds to the scattering
from anisotropic objects, whereas an α value close to π/2 denotes double-bounce
scattering [14]. It can be observed in Fig. 5.9 that large variations in both parame-
ters occur while the azimuth look angle or the illumination frequency change. For
particular observations conditions, some fields show a sudden change of behavior:
the span reaches a maximum value, whereas the polarimetric indicators H and α are
characterized by low values. Such a kind behavior was found to be characteristic of
Bragg resonant scattering over periodic surfaces in [42, 43].

Bragg resonance is due to the coherent summation of simultaneously constructive
contributions from a set of scatterers and is likely to happen during the observation of
periodic surfaces or randomly irregular surfaces with a strong periodic component,
as described in 1-D in Fig. 5.10 A random surface, h(x, y), with a quasi-periodic
component in the y direction, can be described as

h(x, y) = B cos

(
2π

P

)
+ ψ(x, y) (5.76)



5 Polarimetric SAR Modelling: Mellin Kind Statistics and Time-Frequency Analysis 225

Fig. 5.10 Example of randomly perturbed periodic surface (left) and its associated backscattering
coefficient, at L-band, with B = 10cm, P = 1m, ε = 9, and σh = 1mm

where P and B are the spatial period and amplitude, respectively, of the periodic
component of h(x, y), and the random perturbation term,ψ(x, y), corresponds to an
isotropic stationary random rough surface. This component is fully described by σh ,
the standard deviation of its zero mean Gaussian height probability density function,
and ϕψ , its correlation function. The Bragg resonance condition can be written as a
function of the incident wavelength, λ, as

ωy = n
2π

P
or sin θ0 cosφ0 = nλ

2P
(5.77)

where ωy = ω sin θ0 corresponds to the local amplitude of the ground wave vector at
the surface, n is an unknown integer number indicating the mode of the resonance, θ0
is the local angle of incidence and φ0 the azimuthal angular difference between the
observation position and the normal to the rows of the periodic surface. In the case
of SAR measurements, φ0 can be decomposed as φ0 = φt + φ, where φt represents
the orientation of the surface with respect to the normal to the SAR platform flight
track, and φ with the angle of observation in the azimuthal spectrum, as defined in
(5.74). Yueh [45] developed several approaches to model the scattering of electro-
magnetic waves from randomly perturbed periodic surfaces. Their study reports that
the influence of the resonating modes on the total backscattering response varies
significantly with the surface parameters. As it can be seen in Fig. 5.10, for a large
surface correlation length, lc, and for low values of the azimuth orientation angle,
φ0, almost all the intensity peaks corresponding to different resonance modes can
be discriminated. As lc increases, the scattering pattern becomes smoother and only
a few dominant resonance peaks can be observed. In the presence of resonance,
the co-polarization returns SHH and SVV have almost identical values, character-
ized by a high intensity. As the resonant effect decreases, i.e., for high values of
φ0, these polarimetric channels have distinct responses, with a significantly reduced
amplitude.According to the resonance condition enounced in (5.77) similar anisotropic
fields with different locations in range, θ0, or differently oriented, i.e., with different
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Fig. 5.11 Location of
resonance peaks in the
( f rg, f az) plane. The solid
line indicates the location of
a resonance peak for a
periodic surface
characterized by P = 0.6m
and observed at L band. Grey
areas indicate the location of
potential resonance areas for
each range-azimuth
sub-spectrum

φt values may resonate at different azimuthal frequencies. If the resonance condi-
tions cannot be satisfied for any azimuthal angle within the antenna aperture or if the
surface scattering characteristics do not show a resonance peak, they also might not
resonate at all [43].

Moreover, some fields may have parts resonating at different positions in the
azimuthal frequency domain due to the joint dependence of the resonance condition
on the incidence and azimuth angles, as seen in (5.77). This phenomenon is illustrated
in Fig. 5.11, where the location of a resonance peak is plotted as a function of the
range and azimuth frequencies. As the azimuthal look angle, φ, varies, the set of
incidence angles θ0 satisfying Eq. (5.77) changes, leading to the apparition of sliding
resonating stripes in the ( frg, faz). The width of the resonating stripes is fixed by the
width of the analyzing function in the azimuth and range directions, (Δgωr ,Δgωa)

or equivalently (Δg f,Δgφ).
For the purpose of identifying Bragg resonance, a range-azimuth continuous time-

frequency analysis is performed over three points (P1, P2, P3), located at different
range positions inside a plowed field [43]. As depicted in Fig. 5.12, results can be
represented, for each point, in the range-azimuth frequency plane. The results of the
time-frequency analysis, as shown in Fig. 5.12, demonstrate that all three points under
investigation do not have a stationary range and azimuth scattering behavior. Some
(ωr , ωa) pairs show high span values corresponding to low H and α. These obser-
vations agree with the predictions of the scattering model developed by Yueh [45].
As the surface resonates, the co-polarization signals tend to be similar, involving a
low α value, typical for surface reflection. This scattering mechanism is weighted by
a strong intensity and dominates secondary intensities, potentially corresponding to
multiple scattering terms, and results in a very low entropy value. This nonstationary
behavior was found to have a preponderant influence on the polarimetric properties
of resonating field at full resolution. Here,α and H values are significantly lower than
those for similar fields that remained unaffected by Bragg resonance. The oblique
resonating stripes, shown in the different range-frequency planes in Fig. 5.12, illus-
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Fig. 5.12 Location of test points P1, P2, and P3 and range-azimuth frequency representation plane
(left) and representation of polarimetric characteristics in this domain

trate well the dependence of the resonance condition on both range and azimuth
frequencies, as shown in Fig. 5.11. It can also be observed that as the incidence angle
increases, from P1 to P3, the oblique resonating stripe slides from low azimuth
frequencies to higher ones. This displacement of the resonance locations is due to
the dependence of the Bragg condition on the incidence angle and corroborates the
analysis of the Bragg resonance as presented in Fig. 5.11. Polarimetric indicators of
pixels that do not belong to resonating stripes are unaffected by the Bragg resonance
and have values similar to those observed over stationary fields.

5.7.2.2 Detection of Non-stationary Polarimetric TF Behaviors

Each pixel of the SAR scene is associated with a set of R independent target vec-
tors, k(ωi ) with i = 1, . . . , R, derived from independent range-azimuth subspectra,
i.e., subspectra selected using non-overlapping functions G(ωi ). Under the classi-
cal speckle affected scattering hypothesis, these target vectors follow independent
complex Gaussian multivariate distributions, f (k(ωi )) = NC (0,Σ i ). The station-
ary aspect of the scattering behavior of each pixel may then be studied by comparing
the second order statistics of k(ωi ) for different spectral locations, i.e., by testing the
following hypothesis:

H : Σ1 = · · · Σ R = Σ (5.78)

As it is shown in [42] this hypothesis can be tested easily using sample coherency
matrices obtained from ni independent realizations or looks of each TF target vector,
k(ωi ):

Ti = 1

ni

ni∑

l=1

kl(ωi )kH
l (ωi ) f (Ti |Σ i ) = WC (ni ,Σ i ) (5.79)
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The TF stationary behavior of k(ωi ) is evaluated bymeans of aMaximumLikelihood
(ML) ratio, Λ, built from the R independent sample coherency matrices as follows:

Λ = max p(T1, . . . , TR|H true)

max p(T1, . . . , TR|H false)
=

max
Σ

p(T1|Σ, . . . , TR|Σ)

max
Σ1,...,Σ R

p(T1|Σ1, . . . , TR|Σ R)
(5.80)

Replacing the likelihoods in (5.80) by their expression and the expectations by their
ML estimates, on gets the following simple expression [42]

Λ =

R∏
i=1

det(Ti )
ni

det(Tt )nt
with Tt = 1

nt

R∑

i=1

niTi and nt =
R∑

i=1

ni (5.81)

The hypothesis is accepted and the pixel under test is considered to have a stationary
polarimetric TF behavior, with an arbitrarily chosen probability of false alarm P f a,
if Λ > cβ , where the relation between the threshold value and the probability of
false alarm, Pf a(cβ) = β, has been derived in [42]. The ML ratio and nonstationary
pixel map shown in Fig. 5.13 indicate that a significant number of pixels have a
nonstationary behavior during the duration of the SAR acquisition. Most of the
varying scatterers belong to agricultural fields affected byBragg resonance. Complex
targets and diffracting edges, whose scattering characteristics highly depend on the
observation position, are discriminated over built-up areas and linear alignment of
scatterers.

The ML ratio based detection approach may be further developed to determine
nonstationary scattering behavior position in the range-Doppler spectrumby compar-
ing the contributions of each subspectrum image in the global ML ratio information
[42]. It can be observed from the localization results displayed in Fig. 5.14 on many
fields affected by Bragg resonance that some groups of pixels, belonging to the same

Fig. 5.13 Discrimination of non-stationary scatterers. Image of the ML ratio in log-scale (left),
non-stationary pixel map (right). Non stationary pixels are represented in white



5 Polarimetric SAR Modelling: Mellin Kind Statistics and Time-Frequency Analysis 229

Fig. 5.14 Spectral location of the least stationary component among 12 range-azimuth subspectra
for each nonstationary pixel

field, have a maximum anisotropic behavior in different subapertures. This is a con-
sequence of the sliding effects of Bragg resonance on periodic structures, that is
described in the next section.

5.7.3 TF Polarimetric Characterization of Complex Scenes

5.7.3.1 Polarimetric Time-Frequency Features

Figure5.15 shows a color-coded polarimetric SAR image of the city of Dresden
acquired by DLR’s E-SAR sensor data at L-band. The scene is mainly composed of
built-up areas including vegetation spots. A forest and a park can be seen on the left
part of the image and a river with smooth banks is located on the right part.

Polarimetric properties of media are generally investigated through a decomposi-
tion of second order multivariate polarimetric representations. The resulting parame-
ters provide information on the media geometrical structure and on the underlying
scattering mechanisms. Two parameters, obtained from the well known eigenvector-
based decomposition introduced in [46] are displayed in Fig. 5.16.

The entropy image shown in Fig. 5.16 reveals that the polarimetric behavior of
most of the scene is highly random. Over urban areas, the polarimetric response is
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Fig. 5.15 Color coded image of the Dresden test site (Pauli basis)

Fig. 5.16 Polarimetric parameter images, α (left) and H (right)

composed of a large number of different polarimetric contributions originating from
complex building structures as well as from surrounding vegetation. The resulting
high entropy implies that an interpretation of polarimetric indicators may not be
relevant. Over buildings aligned with the flight track direction, the entropy has inter-
mediate values and the α parameter reveals the presence of dominant single and
double bounce reflexions. Buildings that do not face the radar track are characterized
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Fig. 5.17 Continuous TF analysis in the azimuth direction (SPAN in red, α in blue) (color figure
online)

by a strong cross-polarization component and high entropy and can hardly be dis-
criminated from vegetated areas.

Figure5.17 presents a continuous TF analysis in the azimuth direction of three
different media: a building facing the radar, an oriented building, and a forested area.
The SPAN, corresponding to the sum of the intensities in all polarimetric channels,
and the polarimetric α angle are computed for the different media at each frequency
location and mean values are then estimated over pixels belonging to the object.

A non stationary behavior is clearly visible in Fig. 5.17 with a sudden large vari-
ation of both SPAN and α levels with the observation angle in azimuth φ. This
anisotropic behavior is due to the highly directional patterns of coherent scattering
mechanisms which may occur as the radar faces a large artificial structure, such as
a building [47]. This particular effect can only be observed if the building orienta-
tion with respect to the radar flight track falls within the processed antenna azimuth
aperture.

On the contrary, oriented buildings and vegetated areas, like forest patches, show
stationary behaviors. The identification of buildings from their TF response thus
requires an additional criterion to complement the stationarity information. It is
known that man-made objects are likely to have a coherent response, whereas natural
media may be considered as random. The discrimination of such responses can be
achieved by studying the coherence of the backscattered polarimetric signal in the
Time-Frequency domain and requires the use of an adequate TF polarimetric SAR
(PolSAR) signal model.
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5.7.3.2 PolSAR TF Signal Modeling and Analysis

The proposed TF signal model [44, 48] is given by the following expression, where
the spatial coordinates, l, have been omitted:

s(ω) = t(ω) + c(ω) (5.82)

The signal s(ω) contains the full coherent polarimetric polarization information and
can be associated to a well-known scattering vector [46]:

k(ω) = 1√
2
[Shh(ω) + Svv(ω), Shh(ω) + Svv(ω), 2Shv(ω)]T (5.83)

where Spq(ω) represents an element of the (2 × 2) scattering matrix S sampled at
the frequency coordinates ω.

The signal described in (5.82) is composed of two contributions:

• The term t(ω) is highly coherent and can be associated to a deterministic
or almost deterministic target response. Depending on the structure of the
observed object, the response can remain constant during the SAR acquisi-
tion, or can be non-stationary if the backscattering behavior is sensitive to
the azimuth angle of observation or illumination frequency.

• The second term, c(ω), represents the response of distributed environments.
It is uncorrelated, but may follow a non-stationary behavior in particular
cases, e.g., vegetated terrains with a strong topography, very dense environ-
mentswhose response results from the sumof a large number of uncorrelated
contributions.

This composite model may be tested using s(ω) second order statistics:

• The coherence of s(ω) can be used to determine the dominant component
within the pixel under consideration. A high value indicates that t(ω) is the
most important term in (5.82), and a low one corresponds to scattering from
an incoherent, distributed, medium.

• The stability of the dominant component can then be tested by studying the
stationarity of the variance of s(ω)

Due to the signal high dimensionality, usual scalar tools are not well adapted to
the study of second-order TF polarimetric statistics. A polarimetric TF target vector
is built by gathering the PolSAR information sampled at R spectral coordinates ωi ,
i = 1, . . . , R.
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kTF = [
kT (ω1), . . . , kT (ωR)

]T
(5.84)

The sampling coordinates, ωi , and the frequency domain resolution of the analyzing
function g are chosen so that the R sub-spectra do not overlap and span the whole
full resolution spectrum [43]. A polarimetric TF sample covariance matrix, TTF−Pol,
is then computed as follows

TTF−Pol = 〈
kTFkTF

†
〉 =

⎡

⎢⎣
T11 · · · T1R
...

. . .
...

TR1 · · · TRR

⎤

⎥⎦

where Tij = 〈
k(ωi )k(ω j )

†
〉

(5.85)

Stationarity is assessed by testing the fluctuations of the variance of the signal at
the different spectral locations [42, 43] as shown in (5.81).

Figure5.18 presents a log-image of the Λ parameter on the Dresden test site,
obtained with 4 spectral coordinates in the azimuth direction over the Dresden test
site.

The Λ parameter reached high values over natural areas indicating a stationary
spectral behavior. Over buildings, Λ decreases, pointing out the invalidity of the
stationary hypothesis over such objects. Highly anisotropic pixels, such as those cor-
responding to the wall-ground dihedral reflection or specular reflection from oriented
roofs are clearly identified in Fig. 5.18 due to their very low stationary aspect.

In [49], the eigenvalues of a single-polarization covariance matrix have been
used to derive a coherency indicator. These eigenvalues carry information on the

Fig. 5.18 Non stationary TF behavior indicator, ΛT F , computed separately for different polari-
metric channels (left) and simultaneously using the whole polarimetric information (right)
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correlation structure, but are also sensitive to potential PolSAR fluctuations due to
non-stationarity. A solution has been proposed in order to overcome this limitation
and to jointly use all the polarimetric channels [48]. Under the hypothesis of uncor-
related spectral responses, the off-diagonal terms of the TF covariance matrix verify:

Hθ : Σ i j = 0 ∀i �= j (5.86)

The corresponding ML ratio is given by:

Θ = maxΣ i i L(Σ11, . . . ,Σ RR)

maxΣT F L(ΣT F )
= |TT F |ni
∏R

i=1 |Ti i |ni
(5.87)

This ML ratio expression can be rewritten as Θ =
∣∣∣T̃T F

∣∣∣
ni
with

T̃TF−Pol =

⎡

⎢⎢⎢⎢⎣

I Γ12 · · · Γ1R

Γ
†

12 I
...

...
. . .

...

Γ
†

1R · · · · · · I

⎤

⎥⎥⎥⎥⎦
where Γi j = Tii

−1/2TijTjj
−1/2 (5.88)

The normalized covariance matrix, T̃TF−Pol results from the whitening of the TF
polarimetric covariance matrix by the separate polarimetric information at each fre-
quency location. This representation is then insensitive to spectral polarimetric inten-
sity variations and is characterized by its off-diagonal matrices Γi j which can be
viewed as an extension of the scalar normalized correlation coefficient to the polari-
metric case. TheML ratio in (5.87) is a function of the eigenvalues of T̃TF−Pol, which
reflect the correlation structure: flat for decorrelated responses (T̃TF−Pol → Id), het-
erogeneous for correlated ones. Taking into account T̃TF−Pol peculiar form, a corre-
lation indicator, named TF-Pol coherence, can be defined as [48]:

ρT F−Pol = 1 −
∣∣∣T̃TF−Pol

∣∣∣
1
3R

(5.89)

Figure5.19 presents an image of ρT F−Pol over the Dresden test site, computed from
4 spectral locations in the azimuth direction.

As expected, the TF-Pol coherence is high over buildings due to the presence
of strong coherent reflectors. It can be also noticed that buildings are identified
independently of their orientation.

5.7.3.3 Scene Analysis Using TF Stationarity and Coherence

The stationarity and coherence indicators derived above can be merged to classify
the scene. Both ρT F−Pol and Λ parameters are thresholded and combined into four
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Fig. 5.19 TF coherence indicator, ρT F , computed separately for different polarimetric channels
(left) simultaneously using the whole polarimetric information (right)

Fig. 5.20 TF polarimetric classification. Classification scheme (left) and results obtained over
Dresden (right)

classes. The application of the fusion strategy over the Dresden site is shown in
Fig. 5.20.

The resulting map permits a good estimation of building locations. A physical
interpretation can be given for each of the four classes:

• Coherent and stationary pixels (white class): The t term in (5.82) is dominant
and constant during the SAR acquisition. This kind of behavior corresponds
to strong scatterers with an isotropic response, like oriented buildings, lamp-
posts, ….
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• Coherent and non stationary pixels (yellow class): The t contribution dom-
inates but varies during the measure, causing fluctuation of the signal with
the azimuth angle of observation. This anisotropic effect is characteristic of
buildings facing the radar track, whose response is affected by a strong and
highly directive pattern, mainly due to double bounce reflections or specular
single bounce reflection over roofs tilted toward the radar.

• Incoherent and stationarity pixels (green class): The uncorrelated component
c dominates and has stable second order statistics. This class corresponds to
natural environments (forests, fields, grass areas, …) of distributed artificial
media such as roads, roof tops, terraces, …

• Incoherent and non-stationary pixels (red class): This class indicates the
presence of complex scattering contributions, which change during the SAR
integration, and sum-up in an incoherent way, like in layover areas.

As itwas shown in Fig. 5.16, the full resolution PolSAR information can’t really be
used to analyze the scene geophysical properties due to a very high entropy inherent
to the study of dense environments. The proposed PolSAR TF analysis technique
can also be used to improve in a significant way the interpretation of polarimetric
indicators. The most coherent TF scattering mechanisms is described by the first
eigenvector of T̃TF−Pol, which can be transformed back to the H-V polarimetric
basis using a matrix P, satisfying T̃TF−Pol = PTTF−PolP†. From this eigenvector,
one can extract an αT F parameter which shows a much more contrasted and relevant
information than the original full resolution parameter α. Figure5.21 shows different
images of a building of the scene. A comparison between the T-F classification results
and the optical image reveals that the double bounce reflection is considered as both
a non-stationary and coherent scattering mechanism, whereas the roof layover is
seen as non-stationary and uncorrelated, due to the superposition of the roof and
ground contributions. A thresholding of αT F with respect to π/4, permits us to easily
separate these two different mechanisms and could be used to get a rough estimate
of the building height. Such information might be useful to interformetric phase
unwrapping algorithms which generally face ambiguity issues over urban areas.

5.7.3.4 Target Detection Using Polarimetric SAR Images Acquired by
Spaceborne Sensors

The proposed polarimetric TF characterization techniquemaybe used to discriminate
targets from their background by detecting and extracting coherent components in
complex random SAR responses acquired by spaceborne sensors. It is known that
SAR devices operating from space generally:

• have a very narrow antenna beam in the azimuth direction in order to maintain the
pulse emission frequency to a low value

• emit signals over a restricted spectral bandwidth
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Fig. 5.21 Application of the classification scheme to building characterization: over the whole
image (top), over the an isolated building (bottom)

Due to the resulting very small domain of variation of ω, such SAR data sets may
not be used to detect scatterers having a non-stationary TF scattering behavior. Nev-
ertheless, several studies [42, 44, 50–53] have shown that various kinds of artificial
environments, such as built-up structures, vehicles, lamp posts, barriers, and so on,
had a partially coherent SAR response due to the presence of deterministic compo-
nents, generally associated with specular single- or multiple-scattering terms. This
property may be exploited in order to detect targets using the polarimetric TF coher-
ence indicator presented in (5.89), computed in both azimuth and range directions
with an arbitrary number of spectral locations. We present the case for ship detection
using a Constant False Alarm Rate (CFAR) detection approaches.

A case study of a complex sea area containing ships, imaged by theRADARSAT-2
sensor operating at C band in Fine-Quad (FQ) polarization mode, is investigated here
and is illustrated in Fig. 5.22a,which shows a color-coded full-resolution polarimetric
SAR image of the sea harbor area of Vancouver city, Canada, onto which some target
(T) and ghost (G) focused echoes are indicated. This image indicates that in coastal
areas and harbors,man-made structures over sea and landmay cause significant range
artifact features, like the ghost indicated asG1 caused by the ship labeled T1 or ghosts
G2a and G2b resulting from a specific scattering structure noted T2 which is located
in the urban area. Moreover, some potentially metallic structures and ships (such as
ships T3 and T5) may have highly energetic responses whose side-lobe intensity lies
well above the level of reflectivity of the sea. Such artifacts and scattering patterns
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Fig. 5.22 Full resolution polarimetric features of a RADARSAT-2 image acquired over the Van-
couver harbor area (Canada). a Polarimetric color-coded image (HH + VV,HV + VH,HH − VV).
b polarimetric entropy H. c polarimetric α angle. Some ships Ti and ghosts Gi are indicated by
rectangles and ellipses, respectively

are susceptible to generate numerous false alarms if classical detection approaches
based on contrasts are applied on such a complex data set. The entropy image shown
in Fig. 5.22b reveals that for this scene the polarimetric behavior of most of the
sea background is highly random, i.e., its polarimetric covariance matrix tends to be
isotropic or white, and polarimetrically adaptive detection schemesmay have limited
performance. Some ships, such as T1, T4, T6, T7, T8, and T9, also have a high degree
of polarimetric randomness, due to the mixing of different polarimetric contributions
originating from their complex structures as well as from the surrounding sea area
and to potentially superimposed artifacts. Due to their high entropy and intermediate
α value, they can hardly be discriminated from the surrounding sea. Other ships,



5 Polarimetric SAR Modelling: Mellin Kind Statistics and Time-Frequency Analysis 239

Fig. 5.23 Polarimetric TF coherence γT F−Pol - evaluated over the Vancouver harbor data set in
both range and azimuth directions simultaneously. Whole image (left) Closeup view (center) 3-D
closeup plot (right)

such as T3 and T5, with a heading direction perpendicular to the azimuth direction,
show a low entropy value and their α parameter reveals the presence of dominant
double bounce reflections. This almost deterministic polarimetric behavior, due to
a scattering level much higher than the one of their environment, is well adapted
to contrast-based detection. Nevertheless, the resulting widespread side-lobes may
cause false alarms.Onemay remark that the ship labeledT1and its ghostG1havevery
similar, very deterministic polarimetric features and hence cannot be discriminated
using polarimetric diversity only.

The polarimetric TF coherence analysis is applied to the Vancouver harbor data
set presented in Fig. 5.22 for a spectral sampling performed in both azimuth and range
directions. The corresponding TF coherence map, obtained from sub-spectra sam-
pled at two frequency locations in each direction, each spectrum occupying 25% of
the total available 2D domain is given in Fig. 5.23. Compared with the full-resolution
polarimetric features depicted in Fig. 5.22, the γT F displayed in Fig. 5.23 show the
power of discrimination of the proposed TF analysis technique for ship discrimina-
tion in severe backgrounds, especially for the ships T1, T4, T6, T7, and T8 which
are mixed with different polarimetric contributions originating from their complex
structures as well as from the surrounding sea area. Distributed environments like
the sea and continental ground have small TF coherence values, whereas ships are
recognized as highly coherent scatterers. Moreover, these results indicate that this
approach can effectively mitigate artifacts related to SAR ambiguity, as widespread
ghosts with high entropy are filtered out due to their incoherent behaviors and point-
like ones, such as ghosts G1 and G2a, shown in Fig. 5.22, which could have easily
been misinterpreted as ships by conventional discrimination techniques, have been
cancelled too. One may note that this technique can reduce cross-shaped side-lobes
generated by the ships T3 andT5,which could have been alsomisclassified as targets.
In addition, as shown in Fig. 5.23, besides the larger ships (T3–T8), the smaller ship
(T9) can be detected and localized, despite the fact that TF analysis techniques may
degrade the spatial resolution. Therefore, the proposed indicator permits to detect
ships, even though the sea environment is complex due to ghost echoes and highly
random polarimetric behavior of the scene.
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5.8 Conclusion

In this chapterwe have introduced the fundamental statisticalmodelling of polarimet-
ric synthetic aperture radar image data at the pixel-variate level and followed some
of its mathematical consequences through parameter estimation and Bayesian clas-
sification. Furthermore, we explored a deeper level of sub-aperture time-frequency
analysis to detect signalswith time or angular varying properties. The two approaches
are complementary and both involve strong mathematical modelling that helps us
interpret SAR and PolSAR images.
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Chapter 6
Remote Sensing Data Fusion: Guided
Filter-Based Hyperspectral Pansharpening
and Graph-Based Feature-Level Fusion

Wenzhi Liao, Jocelyn Chanussot and Wilfried Philips

Abstract Recent advances in remote sensing technology have led to an increased
availability of a multitude of satellite and airborne data sources, with increasing
resolution. The term resolution here includes spatial and spectral resolutions. Addi-
tionally, at lower altitudes, airplanes and Unmanned Aerial Vehicles (UAVs) can
deliver very high-resolution data from targeted locations. Remote sensing acquisi-
tions employ both passive (optical and thermal range, multispectral, and hyperspec-
tral) and active devices such as Synthetic Aperture Radar (SAR) and Light Detection
and Ranging (LiDAR). Diverse information of the Earth’s surface can be obtained
from these multiple imaging sources. Optical and SAR characterize the surface of
the ground, LiDAR provides the elevation, while multispectral and hyperspectral
sensors reveal the material composition. These multisource remote sensing images,
once combined/fused together, provide a more comprehensive interpretation of land
cover/use (urban and climatic changes), natural disasters (floods, hurricanes, and
earthquakes), and potential exploitation (oil fields and minerals). However, auto-
matic interpretation of remote sensing data remains challenging. Two fundamental
problems in data fusion of multisource remote sensing images are (1) differences in
resolution hamper the ability to fastly interpret multisource remote sensing images
and (2) there is no clear methodology yet on combining the diverse information
of different data sources. In this chapter, we will introduce our recent solutions for
these two problems, with an introduction on signal-level fusion (hyperspectral image
pansharpening) first, followed by feature-level fusion (graph-based fusion model for
multisource data classification).
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6.1 Introduction

Recent advances in the sensor technology of remote sensing have led to an increased
availability of acquiring multisource data from the same area. It is obvious that no
single data source can always suffice for reliable Earth observation. Multisource
data fusion is a technology to exploit the integration (or fusion) of data from multi-
ple sources, in order to improve the decision making that is difficult to achieve by
a single data source alone. Fusion of information with different physical character-
istics from multiple sources enables improved analysis and interpretation of remote
sensing scenes, and has been also applied more widely to other disciplines, such
as computer vision, medical imaging, sensor networks, robotics, intelligent system
design, etc.Multisource data fusion is also known asmultimodal data fusion, includes
multisensor data fusion, and is a subset of information fusion.

The current and upcoming Earth observation satellite missions, e.g., ESA Sen-
tinels, NASA A-Train satellite constellation and Jilin constellation of China, allow
us to acquire massive remote sensing images of different spatial, spectral, tempo-
ral resolutions. In addition, unmanned aerial vehicles (UAVs) can deliver extremely
high-resolution data from targeted locations. This huge amount of remote sensing
data exacerbate the need to develop techniques for multisource data fusion (the phe-
nomenon that is also referred to as “BigData” in various fields of science). Generally,
multisource data fusion can enhance data authenticity and enable improved detection,
confidence, and reliability, as well as reduction in data ambiguity. Meanwhile, fusion
of multisource data improves data availability, extending their spatial and temporal
coverages.

A general introduction of multisensor data fusion and its applications was pro-
vided by Hall and Llinas [1]. A review paper on multiple sensors data fusion tech-
niques [2], explained the concepts, methods, and applications of image fusion as a
contribution to multisensor integration-oriented data processing. Since then, image
fusion has received increasing attention. Zhang [3] discussed optical panchromatic
and multispectral data fusing methods, and reviewed current techniques of multi-
source remote sensing data fusion, and discusses their future trends and challenges
through the concept of hierarchical classification, followed by an overview [4] on
data fusion techniques for urban remote sensing. Dalla Mura et al. [5] summarized
the Data Fusion Contest of the IEEE Geoscience and Remote Sensing Society since
2006, gave an overview of the current trends, opportunities, and challenges related
to the exploitation of multimodal data for Earth observation. Lahat et al. [6] pro-
vided general ideas, perspectives, and guidelines as to how to approach data fusion.
Gomez–Chova et al. [7] overviewed the current methodologies to integrate multiple
and heterogeneous image sources (e.g., multispectral, hyperspectral, radar, multi-
temporal, and multiangular images) for data classification.

The information from multiple sources can be fused at different levels of repre-
sentation, depending on the correlations among the sensors, as well as the needs of
the system. Generally, multisource data fusion takes place at four different levels of
representation [8]: signal-level, pixel-level, feature-level, and symbol- (or decision-)
level. Signal-level fusion aims at combining signals from multiple sources to pro-
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vide a signal that is typically the same type as the original source but with improved
quality. Pixel-level fusion is used to increase the information registered in each pixel
of an image, combining multiple images for example. Feature-level fusion employs
various features extracted from multisource data to perform fusion. Decision-level
fusion typically refers to the combination of decisions from each data source to
produce a final decision.

This chapter will first focus on signal-level multisource data fusion: i.e., com-
bining multisource of raw data to produce a new enhanced raw data, which is more
informative and synthetic than the original sources, in Sect. 6.2. Section6.3 will
investigate graph-based feature-level fusion models to integrate multisource data for
improved performances on remote sensing image classification.

6.2 Hyperspectral Image Pansharpening

The main advantage of hyperspectral (HS) image with respect to multispectral/RGB
ones is the more accurate spectral information they provide, which clearly benefits
many applications such as unmixing, change detection, object recognition, scene
interpretation, and classification (see also Chap.2). However, imaging systems are
designed to balance two competing constraints, namely the spatial resolution and the
signal-to-noise ratio (SNR). Hyperspectral systems have reduced bandwidths which
require a coarser instantaneous field of view (IFOV) in order to collect enough pho-
tons to maintain an acceptable SNR. Panchromatic/RGB color sensors usually have
broader spectral bandwidths, which allow for finer spatial resolution by increasing
the SNR over a broad spectral band. Thus, to increase either spectral or spatial res-
olution, one of the two must be sacrificed. As a special branch of multisource data
fusion, pansharpening is an image processing technique that might allow analysts to
circumvent this trade off, as well as permit preservation of fine resolution and spectral
integrity. Hyperspectral image pansharpening aims at improving the spatial quality
of a low spatial resolution (LR) MS/HS image by fusing it with a high-resolution
(HR) panchromatic/RGB image.

Many pansharpening methods have been developed over the last two decades. In
[9], these methods were divided into four categories: component substitution (CS),
multiresolution analysis (MRA), Bayesian, and variational. The CS approach relies
on the substitution of a component (obtained, e.g., by a spectral transformation of the
data) of the multispectral (subsequently denoted as MS) image by the panchromatic
(subsequently denoted as PAN) image. The CS class contains algorithms such as
intensity-hue-saturation (IHS) [10, 11], principal component analysis (PCA) [12,
13]. TheMRAapproach is based on the injection of spatial details,which are obtained
through a multiscale decomposition of the PAN image into the MS data. The spatial
details can be extracted according to several modalities of MRA: decimated wavelet
transform (DWT) [14], undecimated wavelet transform (UDWT) [15], Laplacian
pyramid [16], nonseparable transforms, either based on wavelets (e.g., contourlets
[17]) or not (e.g., curvelets [18]). TheBayesian approach relies on the use of posterior

http://dx.doi.org/10.1007/978-3-319-66330-2_2
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distribution of the full resolution target image given the observed MS and PAN
images. This posterior, which is the Bayesian inference engine, has two factors:
(a) the likelihood function, which is the probability density of the observed MS
and PAN images given the target image, and (b) the prior probability density of
the target image, which promotes target images with desired properties, such as
being spatially piecewise smooth. The selection of a suitable prior allows us to cope
with the usual ill-contourlets of the pansharpening inverse problems. The variational
class is interpretable as a particular case of the Bayesian one, where the target image
is estimated by maximizing the posterior probability density of the full resolution
image. The works [19–21] are representative of the Bayesian and variational classes.

With the increasing availability of HS systems, the pansharpening methods are
now extending to the fusion of HS and panchromatic images [22, 23]. Pansharpening
ofHS images is still an open issue, andvery fewmethods are presented in the literature
to address it. Several of the methods designed for HS pansharpening were originally
designed for the fusion of MS and HS data [24–30], the MS data constituting the
high spatial resolution image.

However, a universal pansharpening technique does not yet exist, leaving end-
users of the technology with an increasingly difficult task selecting a suitable
approach. Challenges remain in: (1) co-registration of multisource data; (2) balance
between spectral and spatial preservations; (3) high computational cost.

This section will introduce our recent hybrid method for hyperspectral image
pansharpening, which is superior to the above challenges, with a specific applica-
tion to fuse thermal hyperspectral and visible color images. Hybrid methods have
been also proposed [28, 29] which use both component substitution and multiscale
decomposition, such as guided filter and PCA.

6.2.1 Hybrid Method to Fuse Thermal Hyperspectral
and Visible Color Images

Multisource data used in the experiments includes a thermal infrared (TI) hyperspec-
tral data and a visual RGB image,1 which were acquired by Telops Inc. onMay 2013
over an urban area near Thetford Mines in Québec, Canada. The TI HS image has
84 spectral bands that cover the wavelengths between 7.8 to 11.5 µm with approx-
imately 1-m spatial resolution. The visible RGB image is a series of color images
acquired during separate flight-lines with approximately 20-cm spatial resolution.
The whole scene of both data contains 7 classes, but with different spatial size of
which the TI HS consists of 874× 751 pixels while RGB of 4386× 3769. Figure6.2
shows an RGB composition with the labeled classes highlighted, for details, see [28].

Pansharpening thermal infrared HS data is much more complex than pansharpen-
ing general HS data. The spectral range of RGB/Pan and general HS images is typi-
cally within 0.4–2.5 µm, while thermal infrared HS image in the range 3.5–20 µm

1http://www.grss-ieee.org/community/technical-committees/data-fusion/2014-ieee-grss-data-
fusion-contest/.

http://www.grss-ieee.org/community/technical-committees/data-fusion/2014-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2014-ieee-grss-data-fusion-contest/
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(e.g., Telops Inc. acquires thermal infrared HS data in the range 7.8–11.5 µm, which
is out of the visible spectral range). Challenges remain for conventional pansharpen-
ing methods to yield good performances, where the original HS data and RGB/Pan
image have no overlap spectral ranges.

6.2.1.1 Hybrid Fusion Method by Using Guided Filter in PCA Domain

One of the main challenges of the fusion of a low spatial resolution HS and a high-
resolutionRGB to get a high spatial resolutionHS is tomake a balance on spectral and
spatial preservations. Recently, the guided filter [31] has been widely used in many
applications (e.g., edge-aware smoothing, detail enhancement, etc.), as its efficient
and strong abilities to transfer the structures of the guidance image to the filtering
output.

The presented hybridmethod [28, 29] enhances the spatial resolution of HS image
by using guided filter [31] in PCA (principal component analysis) domain. We will
introduce a two-stage hybrid pansharpening method [29] for HS image, Fig. 6.1
shows the corresponding flowchart (same in caption of Fig. 6.1). To fully exploit the
spatial structures of HR RGB image and better co-register multisource data, in the
first stage, we first downsample the HR RGB image to the same spatial resolution of
LR HS image and use PCA to decorrelate the original LR HS images and separate
the information content from the noise. The first k PCA channels contain most of
the total energy of an HS image (i.e., most information of the HS image), and the
remaining B − k PCA channels (where B is the number of spectral bands of HSI and
B � k) mainly contain noise. We use guided filter [31] to transfer the image details
(e.g., edge) of the downsampled RGB image to the first k PCA channels only. We
remove the noise (without guided filtering) in the remaining PCA channels using a
soft-thresholding scheme. The improved LR HS image can be obtained by inverse
PCA. In the second stage, we use the guided filter [31] in PCA domain to transfer
the image details from the original HR RGB to the first few PCs of the improved LR
HS image (we get from the first stage), same as we did in [28].

Let PCi denote the i-th (i ≤ k) PC of the original LR HS image, I ′
RGB the RGB

image downsampled by cubic interpolation to the same spatial resolution of the orig-
inal LR HS image. The filtering output PC′

i can be represented as a linear transform
of guided image I ′

RGB in a local window ω of size (2r + 1) × (2r + 1) as follows:

Fig. 6.1 Framework for hyperspectral image pansharpening using two-stage guided filter in PCA
domain
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PC ′
i = a j I

′
RGB + b j ,∀i ∈ ω j (6.1)

The above model ensures that the output PC′
i has an edge only if the guided image

I ′
RGB has an edge, as ∇PC ′ = a∇ I ′

RGB. The following cost function was used to find
the coefficients a j and b j :

E(a j , b j ) = Σi∈ω j ((a j I
′
RGB + b j − PCi )

2 + εa2j ) (6.2)

where ε is a regularization parameter determining the degree of the blurring for the
guided filter. For more details about guided filter, we refer the readers to [31]. In
the cost function, the PC′

i = a j I ′
RGB + b j should be as close as possible to the PCi ,

which enforces the preservation of the original spectral information. The remaining
B − k PCA channels (where B is the number of spectral bands of HSI and B �
k) mainly contain noise. If guided filtering is performed on these noisy and high-
dimensional B − k PCs, then it will amplify the noise of the data cube and cause
high computational cost in processing the data, which is undesirable. Therefore, we
remove the noise (and without guided filter) in the remaining PCA channels using
a soft-thresholding scheme. After the first stage, we can see from Fig. 6.2 that the
improved LR HS image becomes sharper and contains less noise than the original

Fig. 6.2 Part of enhanced TI HS image. a HR visible RGB image; b downsampled RGB image to
the same spatial resolution of TI HS image; c three bands composition by original LR HS image;
d improved LRHS image (in the first stage); e enhanced HS image by GFPCA [28]; and f enhanced
HS image by the two-stage hybrid fusion method
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Fig. 6.3 Preservation of the spectral information. a The original spectra; and its difference with b
improved LR HS image; c GFPCA [28]; and d the two-stage hybrid fusion method

LR HS image. Moreover, the first stage ensures better co-registration of multisource
data for the following spatial enhancement.

In the second stage, we perform upsampling on the improved LR HS image
from the first stage by combining the original HR RGB image and guided filter
[31] in PCA domain, same as we did in [28]. For more details about our previous
hyperspectral pansharpeningmethod by guided filter in PCA domain, the readers can
find relevant information in [9, 28]. Figures6.2 and 6.3 show the effectiveness of the
two-stage hybrid hyperspectral image pansharpening method in spectral and spatial
preservations. From a visual analysis, the fused image produced by the two-stage
hybrid fusion method appears to be sharper than our previous method [28], where
only one stage of guided filtering was performed in PCA domain. Moreover, the
spectral preservations of the two-stage hybrid fusion method and [28] are similar,
and spectrally consistent with respect to the original HS image. With only one-stage
fusion, GFPCA [28] mistook some big bright objects in the original LR HS as an
object in the enhanced HS, leading to poor preservation of spatial information.

6.2.1.2 Experimental Results and Analysis

Toevaluate the quality of the enhanced imageproducts, hereweuse them for a specific
application (e.g., classification). The proposed method is applicable to general HS
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pansharpening tasks with no restrictions related to specific classification problems.
However, typical image quality assessments require a reference image, which is
very difficult to obtain in real applications. We used a support vector machines
(SVM) [32] classifier, as it performs well even with a limited number of training
samples, limiting the Hughes phenomenon. The SVM classifier with radial basis
function (RBF) kernels in MATLAB SVM Toolbox, LIBSVM [33], is applied in
our experiments. SVM with RBF kernels has two parameters: the penalty factor C
and the RBF kernel widths γ . We apply a grid-search on C and γ using fivefold
cross-validation to find the best C within the given set {10−1, 100, 101, 102, 103}
and the best γ within the given set {10−3, 10−2, 10−1, 100, 101}. We compare the
two-stage hybrid (Hybrid2) hyperspectral pansharpening method with the schemes
of (1) Simply enlarging the original HS image by cubic interpolation (Cub); (2)
Only using the visible RGB image (RGB); (3) PCA component substitution method
(PCA), similar as [13]; (4) Our previous method using guided filter in PCA domain
(GFPCA) [28]. For quantitative comparisons, we randomly select 1000 samples
per class from training set for training, the results are averaged over five runs. The
classification results are quantitatively evaluated by measuring the Overall Accuracy
(OA), the Average Accuracy (AA), and the Kappa coefficient (κ) on the test samples.
The experiments were carried out on 64-b, 3.40 GHz Intel i7-4930K (1 core) CPU
computer with 64 GB memory, the consumed time includes image fusion, feature
fusion, and classification. Table6.1 shows the accuracies and consumed time (hours)
obtained from the experiments, Fig. 6.4 shows the best result of each method.

It is obvious that using single data source is not enough for reliable classification.
By using only the spatial information fromHRRGB image, we produce better results
than simply upsampling the original HS image by cubic interpolation. However,
the remote sensing data from urban area was a mix between man-made structures
and natural materials, different objects may share similar spatial information. For
example, the spatial information of ‘Red roof’ and ‘Grey roof’ or ‘Bare soil’ is
similar, objects from ‘Red roof’ are misclassified as soil by only using RGB image.
Image fusion by Cub cannot preserve the spatial information, leading to spatial
distortions in the final classification map; whereas the PCA component substitution
suffers from spectral distortions. By using the guided filter, the GFPCA performs
better on both spectral and spatial preservations, and this is reflected in classification
accuracy 20% higher than Cub and PCA, respectively.

Table 6.1 Average classification accuracies and consumed time (hour) obtained according to the
described scheme

Cub RGB PCA GFPCA Hybrid2

OA (%) 52.6 77.2 59.9 79.0 84.3

AA (%) 35.1 77.9 54.6 66.8 78.5

κ (%) 34.7 67.5 46.3 68.7 76.7

Time (hours) 3.81 0.28 2.82 1.17 1.23
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(a) Ground truth (b) RGB (c) GFPCA (d) Hybrid2

Fig. 6.4 Part of classification maps obtained by each method

By using the two-stage hybrid pansharpening method, we have more than 5%
improvements in accuracies over the others fusion schemes. Although consuming a
little bit more time than one-stage pansharpening method [28],the two-stage hybrid
hyperspectral image pansharpening method benefits better preservations of image
edges in its classification map.

6.3 Graph-Based Feature Fusion Model for Multisource
Data Classification

Diverse sensor technologies and image processing algorithms allow us to measure
different aspects of objects on theEarth: spectral characteristics in hyperspectral (HS)
images, height in Light Detection And Ranging (LiDAR) data, geometry in image
processing technologies like Morphological Profiles (MPs) (see also Chap. 7). It is
obvious that no single technology can always suffice for reliable image interpretation.
A key potential of multiple imaging sources is in their complementarity: each source
can bring to the light some information that cannot be deduced from the other data
sources. Hyperspectral (HS) images provide a detailed description of the spectral
signatures of ground covers, whereas LiDAR data gives detailed information about
the height of the same surveyed area. Multisource data, once combined, can provide
a more comprehensive interpretation of objects on the ground. For example, HS
spectral signatures could not be used to differentiate objects madewith samematerial
(e.g., roofs and roads made with the same asphalt), while LiDAR data can. On
the other hand, LiDAR data alone could not be used to differentiate objects with
same elevation (e.g., grassy areas and roads on the same flat surface), while HS
spectral signatures can.NeitherHSnorLiDARdata could separateman-made objects
made with same material and with the same elevation (e.g., roads and parking lots),
while they can often be easily distinguished by their geometry. Due to the increased
availability of multisource data, the fusion of these remote sensing data has been of
great interest for many practical applications [34–39, 39–48].

http://dx.doi.org/10.1007/978-3-319-66330-2_7
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In the literature, feature- and decision-level fusion are two of the most popular
methods that can be used to increase the capabilities of pattern recognition. Gunati-
laka and Baertlein [49] compared the performances of feature-level and decision-
level fusion algorithms for multisource data acquired by a metal detector, a ground-
penetrating radar, and an infrared camera. They found that decision-level fusion
does not always perform significantly better than the best available sensor. The per-
formance of feature-level fusion is significantly better than the individual sensors.
Feature-level fusion was reported to utilize the complementary information (from
functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and elec-
troencephalography (EEG)) to provide additional insight into connectivity across
brain networks and changes due to disease. For example, joint independent com-
ponent analysis [50] was proposed to explore associations across multiple feature
sources (generated from fMRI, sMRI, and EEG) through variations across individu-
als [51], providing new information about the brain. Canonical correlation analysis
was exploited for feature fusion of fMRI and sMRI dataset (as well as fMRI and EEG
data) [52], showing an interesting joint relationship between fMRI and gray matter.
In the field of biometric which concerns about security, privacy, and forensics, the
information integration at the feature-level reportedmore reliable recognition perfor-
mances than other levels of fusion [53, 54]. For example, Nagar et al. [55] proposed a
feature-level fusion framework based on fuzzy vault and fuzzy commitment to inte-
grate multiple biometric data of fingerprint, iris, and face, reporting higher security
and matching performance than their unibiometric counterparts to the application of
cryptosystems.

For the tasks of remote sensing scene classification, Koetz et al. classified fuel
composition from fusedLiDARandHSbandsusingSupportVectorMachines (SVM)
[36], showing the classification accuracies from fusion were higher than from either
sensor alone. The joint use of HS and LiDAR remote sensing data for the classi-
fication of complex forest areas was investigated in [37]. They proposed a novel
classification system, based on different possible classifiers that were able to prop-
erly integrate multisource information. In [35], Swatantrana et al. explored fusion of
structural metrics from the LiDAR data and spectral characteristics from HS data for
biomass estimation in the Sierra Nevada. Naidooa et al. [38] classified eight common
savanna tree species in the Greater Kruger National Park region, South Africa, by
fusing HS and LiDAR data in an automated Random Forest modeling approach. For
multiple feature fusion, some of these approaches employ the so-called composite
kernel methods [43, 44, 56–60] or their generalization [45]. Others define spatial
information through morphological profiles and concatenate spectral and spatial fea-
tures in a stacked architecture for classification [34, 39]. For example, Camps–Valls
et al. [56] applied kernel methods to fuse different sources of information in a very
natural way for a multitemporal image classification task. Multiple kernel learning
was used in multimodal studies for combining spectral and spatial information [57],
optical and radar data [43, 58], data form the same satellite but completely different
locations [59], or optical data from different satellites [60]. These kernel methods
typically generate a kernel matrix from each data source, and then fuse all the source-
specific kernel matrices by linear combination into a multimodal similarity matrix.
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Fauvel et al. in [34] concentrated multiple feature sources extracted from HS data
for a classification task. The approach of [39] applied morphological attribute pro-
files (EAPs) [61] to both HS and LiDAR data for a classification task. Their method
jointly considered the features extracted by EAPs computed on both HS and LiDAR
data, and fused spectral, spatial, and elevation information in a stacked architecture.

While such methods (that simply concatenate several kinds of features together)
are appealing due to their simplicity, they may not perform better (or may even per-
form worse) than using a single feature, see Fig. 6.5. Dalla Mura et al. [62] showed
examples where the classification accuracies after stacking different morphological
attributes even dropped compared to the case of considering a single one. This is
because the information contained by different features is not equally represented
or measured. The value of different components in the feature vector can be signifi-
cantly unbalanced. Furthermore, stacking several kinds of feature sources may yield
redundant information. In addition, the increase in the dimensionality of the stacked
features, as well as the limited number of labeled samples may in practice pose the
problem of the “curse of dimensionality,” consequently increasing the risk to overfit
the training data.

Recently, the graph-based fusion method of [42, 63] fuses multisource data using
a combination of morphological and spectral features. Markov modeling formal-
izes spatial and multimodal fusion through global minimum energy concepts [46].
Domain adaptation and manifold alignment [47] combine multisource data at a geo-
metrical level in a latent space, regardless of the different nature and dimensionality of
the sources. Sparse dictionary learning conducts fusion at the signal or information-
theoretic level [48]. Multiple feature learning was applied to integrate multiple mor-
phological features generated from both HS and LiDAR data [40]. An adaptive joint
sparse representation classification model was presented for fusion of multisource
remote sensing data in [41].

In this section, we will present graph-based feature-level fusion model to couple
dimensionality reduction and data fusion of multisource data for a classification task,
where the advantages of each data source are considered.

6.3.1 Graph Fusion of Hyperspectral and LiDAR Data

In this subsection, a graph-based fusion method is presented to couple dimension-
ality reduction and data fusion of multiple feature sources (generated from both
HS and LiDAR data) together for a classification task. First, morphological opera-
tions are used to model spatial and elevation information from HS and LiDAR data,
respectively. Then, a fusion graph is built where only the dimensional normalized
feature points with similar spectral, spatial, and elevation characteristics are con-
nected. Finally, the problem of multisource data fusion is solved by projecting all
the features into a low-dimensional subspace, on which neighborhood relationships
among data points (i.e., with similar spectral, spatial, and elevation characteristics)
in the original space are maintained.
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(a) HS image (b) MPs of HS image

(c) MPs of LiDAR data (d) Fusion by simply stacking all feature sources

Fig. 6.5 Classification by using multisource data. Each data source has its advantages, fusion of
multisource data by simply stacking them together does not always perform better than using single
source

6.3.1.1 Morphological Features

Feature extraction is a critical step for multisource data fusion. With advanced mod-
ern imagers (e.g., hyperspectral), the resulting spatial, spectral, and temporal resolu-
tions are intractably high. Feature extraction aims at reducing the information redun-
dancy while preserving the most important information of the original data. Auto-
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mated information extraction employs either object-based or pixel-based approaches.
Object-based methods first group the image pixels in a meaningful way via image
segmentation [64]. This approach provides a natural way to incorporate geometrical
information by calculating different shape characteristics of the segmented objects.
However, the segmentation process typically relies on parameters that are highly
dependent on the image data at hand and on the specific tasks [64]. Pixel-based
approaches often employ mathematical morphology [65] ranging from, low-level
feature extraction (size and shape features) using morphological profiles [66], over
middle-level attribute profiles [67] to high-level feature extraction with semantic
information indexes [68]. Recent works demonstrate benefits of using mathematical
morphology in modeling and extracting geometrical information from remote sens-
ing images for classification, change detection, urban planning, and risk assessments
[67–70].

Morphological features are generated by either applying morphological openings
or closings by reconstruction on the image, using a structural element (SE) of pre-
defined size and shape. For example, the morphological profile (MP) with disk SE
carries information about the minimum size of objects, whereas directional MP indi-
cates the maximum size of objects [71, 72]. An opening acts on bright objects (for
LiDAR data, the bright regions are actually areas with the high elevation, such as the
top of the roof) compared with their surrounding, while closings act on dark (low
height in the LiDAR data) objects. For example, an opening deletes bright objects
that are smaller than the SE. By increasing the size of the SE and repeating the previ-
ous operation, a complete morphological profile (MP) is built, carrying information
about the size and the shape of objects in the image. More details on morphological
operators will be presented in Chap.7.

In our experiments, morphological features are generated by applying morpho-
logical openings and closings with partial reconstruction [71, 72] on both LiDAR
data and the first 2 principal components (PCs) (representing more than 99% of the
cumulative variance) of original HS image. The effect of using morphological fea-
tures with partial reconstruction for classification of remote sensing data from urban
areas has been discussed in our previous work [71, 72]. For disk-shaped SE, MPs
with 15 openings and closings (ranging from 1 to 15 with step size increment of 1)
are computed for both LiDAR data and the first 2 PCs of HS image. For linear struc-
turing elements, MPs with 20 openings and closings (ranging from 5 to 100 with
step size increment of 5) are constructed for both LiDAR data and the first 2 PCs
of HS image. Figures6.6 and 6.7 show the results of MP with partial reconstruction
for both LiDAR data and the first PC of HS image in different scales. As the size
of the SE increases in openings, we can see that more and more bright objects (i.e.,
objects with high elevation) disappear in the dark background of LiDAR data. More
and more dark objects disappear in the closings of the first PC of HS image.

http://dx.doi.org/10.1007/978-3-319-66330-2_7
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Fig. 6.6 Openings on a part of LiDAR data with disk-shaped SEs of increasing size (1, 3, and 5)

Fig. 6.7 Closings on a part of the 1st PC of the HS image with disk-shaped SEs of increasing size
(1, 3, and 5)

6.3.1.2 Feature Dimension Normalization

Different features may have different dimensionalities and characteristics. The dif-
ferences in feature space and scaling make it difficult to homogenize features from
multiple sources. For example, in our experiments, the original hyperspectral image
with 144 bands contains the spectral information of the ground covers. The mor-
phological features of LiDAR data with 70 bands (with 30 bands disk-based MP
and 40 bands directional MP) carry the elevation information of the same surveyed
area, and the morphological features of HS image with 140 bands contain the spa-
tial information. Before fusing the features, we first need to normalize the feature
dimension and reduce the computational cost and the noise throughout the given
feature space. An effective way is to use Kernel Principal Component Analysis [73]
for dimensionality reduction on each feature separately. The normalized dimension
of each feature space can be chosen as the smallest dimension of all these features.
Without losing generality, in this paper, we assume the dimension of each feature is
already normalized to D = 70.

6.3.1.3 Graph-Based Feature Fusion Method

LetXSpe = {xSpei }ni=1,X
Spa = {xSpai }ni=1 andX

Ele = {xElei }ni=1,wherex
Spe
i ∈ R

D ,xSpai ∈
R

D and xElei ∈ R
D denote the spectral, spatial, and elevation features, respectively,
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after normalization to the same dimension.XSta = {xStai }ni=1 = [XSpe;XSpa;XEle] and
xStai = [xSpei ; xSpai ; xElei ] ∈ R

3D denote the vector stacked by the spectral, spatial, and
altitude features. {zi }ni=1, and zi ∈ R

d denote the fusion features in a lower dimen-
sional feature space with d ≤ 3D. The goal of this paper is to find a transformation
matrix W ∈ R

3D×d , which can couple dimensionality reduction and feature fusion
in a way of zi = WT xi (xi is a variable, which can set to be xStai , xSpei , etc.). The
transformation matrix W should not only fuse different features in a lower dimen-
sional feature space, but also preserve local neighborhood information and detect the
manifold embedded in the high-dimensional feature space. A reasonable way [74]
to find the transformation matrix W can be defined as follows:

arg min
W∈R3D×d

⎛
⎝

n∑
i, j=1

||WT xi − WT x j ||2Ai j

⎞
⎠ (6.3)

where the matrix A encodes the edges of a graph G with nodes X. We assume that
the edge (between data point xi and x j ) Ai j ∈ {0, 1}; Ai j = 1 if xi and x j are “close”
and Ai j = 0 if xi and x j are “far apart”. The “close” here is defined by finding the
k nearest neighbors (kNN) of the data point xi . The kNN is determined first by
calculating the distance (we use Euclidean distance here) between data point xi and
all the data points, then sorting the distance and determining nearest neighbors based
on the k-thminimumdistance.Minimizing the objective function of Eq. (6.3) ensures
that if xi and x j are “close” then zi and z j are close as well.

When thegraph is constructedby spectral features (i.e.,G = GSpe = (XSpe,ASpe)),
the k nearest neighbors (i.e., ASta

i j = 1, j ∈ {1, 2, · · · , k}) of the data point xSpei indi-

cate the spectral signatures of these kNN data points xSpej , which are the most sim-
ilar in terms of Euclidean distance. We propose a fusion graph which we define
GFus = (XSta,AFus) as follows:

AFus = ASpe � ASpa � AEle (6.4)

where the operator ‘�’ denotes element-wise multiplication, i.e., AFus
i j = ASpe

i j

ASpa
i j AEle

i j . Note that A
Fus
i j = 1 only if ASpe

i j = 1, ASpa
i j = 1 and AEle

i j = 1. This means
that the stacked data point xStai is “close” to xStaj only if all individual feature points
xI ndi (I nd ∈ {Spe, Spa, Ele}) is “close” to xI ndj . The connected data points xStai and
xStaj have similar spectral, spatial, and altitude characteristics. If any individual fea-
ture point xI ndi is “far apart” from xI ndj , then AFus

i j = 0. In real data, the data points
from the football fields made by real grass (xStai ) and by synthetic grass (xStaj ) have

similar spatial and altitude information (ASpa
i j = 1, AEle

i j = 1), but different spectral

characteristics (ASpe
i j = 0), so these two data points are not “close” (i.e., AFus

i j = 0).
By reformulating the objective function of Eq. (6.3), we obtain:
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n∑
i, j=1

||WT xStai − WT xStaj ||2Ai j = 2

⎛
⎝

n∑
i=1

WT xStai Dii (xStai )TW −
n∑

i, j=1

WT xStai Ai j (xStaj )TW

⎞
⎠

= 2WTXSta(D − AFus)(XSta)TW

= 2WTXStaLFus(XSta)TW

where D is a diagonal matrix with Dii = ∑n
j=1 A

Fus
i j , LFus = D − AFus is the fusion

Laplacian matrix. Larger Dii (corresponding to zi ) indicates more important of zi .
To avoid degeneracy, we impose a constraint, similar as [75]:

zTDz = 1 ⇒ WT (XSta)D(XSta)TW = I

Therefore, the objective function of Eq. (6.3) with the imposed constraint is:

minimize
W

WTXStaLFus(XSta)TW

subject to WT (XSta)D(XSta)TW = I (6.5)

Finally, we can obtain the transformation matrix W = (w1,w2, · · · ,wr ) which is
made up by r eigenvectors associatedwith the least r eigenvaluesλ1 ≤ λ2 ≤ · · · ≤ λr

of the following generalized eigenvalue problem:

(XSta)LFus(XSta)Tw = λ(XSta)D(XSta)Tw. (6.6)

6.3.1.4 Experimental Results and Analysis

To assess the quality of the fusion products, we here use them for a specific classifica-
tion task. Experiments are done on a hyperspectral image and a LiDARdata set which
were acquired by the NSF-funded Center for Airborne Laser Mapping (NCALM) on
June 2012 over the University of Houston campus and the neighboring urban area.
The hyperspectral imagery has 144 spectral bands with wavelength range from 380
to 1050 nm. Both datasets have the same spatial resolution (2.5m). The whole scene
of the data,2 consisting of the full 349 × 1905 pixels, contains 15 classes. Available
training and testing set are given in Table6.2, and Fig. 6.8 shows false color image
of HS data and LiDAR image. Note that the color in the cell of Table6.2 denotes
different classes in the classification maps in Fig. 6.8. For more information, please
refer to [76].

We keep the same settings for SVM classifier as in Sect. 6.2.1.2, and compare
graph-based data fusion method (GDF) with the schemes of (1) Using raw HS image
(RawH ); (2) Using the MPs computed on the first 2 PCs of original HSI (MPsH ); (3)
Using the MPs computed on the LiDAR data (MPsL ); (4) Stacking morphological
features computed from both LiDAR data and the first 2 PCs of original HS image

2http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-
fusion-contest/.

http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-contest/
http://www.grss-ieee.org/community/technical-committees/data-fusion/2013-ieee-grss-data-fusion-contest/
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Table 6.2 Training and test samples for multisource data on Houston University areas
Class Name # Training set # Test set Class Name # Training set # Test set Class Name # Training set # Test set
Grass Healthy 198 1053 Grass Stressed 190 1064 Grass Synthetis 192 505

Tree 188 1056 Soil 186 1056 Water 182 143
Residential 196 1072 Commercial 191 1053 Road 193 1059
Highway 191 1036 Railway 181 1054 Parking Lot 1 192 1041

Parking Lot 2 184 285 Tennis Court 181 247 Running Track 187 473

(MPsH+L ), similarly as [39]; (5) Stacking all dimensional normalized features, i.e.,
XSta, we call it Sta; (6) Stacking all the features extracted by PCA from each indi-
vidual features which represents more than 99% of the cumulative variance (PCA);
(7) Stacking all the features extracted by nonparametric weighted feature extraction
(NWFE) [77] from each individual feature, as [34] fused the spectral and spatial
information (NWFE); (8) Features fused by using the graph constructed by stacked
features XSta(i.e., locality preserving projection [75]) (LPP).

The classification results are quantitatively evaluated by measuring the Overall
Accuracy (OA), theAverageAccuracy (AA), and theKappa coefficient (κ) on the test
samples. Table6.3 shows the accuracies obtained from the experiments. For visual
comparison, we show the classification maps in Fig. 6.8.

Experimental results show that the objects in the cloud-covered regions are not
well classified by only using HS data or the MPs of HS data, see the bottom of both
the false color composite image of HS image and the classification maps in Fig. 6.8.
Using theMPs of LiDAR performs better in these regions, see the accuracies of class
‘Commercial’ and ‘Highway’ in Table6.3, most test samples of these two classes
are in these cloud-covered regions. The elevation features alone are not enough to
differentiate objects with same elevation (e.g., grassy areas and roads on the same flat
surface), see the accuracies of class ‘Grass Healthy,’ ‘Road,’ and ‘Running Track’
in Table6.3. By stacking morphological features computed both from LiDAR data
and HS data, the overall accuracies are improved. The graph-based feature fusion
method performed the best, with more than 8–20% improvements compared to the
results of only using single features, and with 2–5% improvements with respect to
the other fusion schemes. The schemes of (6) and (7) are similar to (5) in terms of a
stacked architecture. The differences are that each individual feature is represented
by different aspects, e.g., the features extracted by PCA represent most of the cumu-
lative variance in the data, while the features extracted by NWFE respect the class
discriminant. The cloud-covered regions in original HS image are not classified well
by fusing features in a stacked architecture, the schemes of (5), (6), and (7) produced
lower accuracies of ‘Commercial’ than only using the MPs of LiDAR, because the
elevation information contained in the morphological features of LiDAR data is not
well represented in such away of data fusion. The spectral and the spatial information
of the cloud-covered regions are not related to real ground cover. The LiDAR sensor
can penetrate clouds and its morphological features contain the elevation informa-
tion of the real ground cover in this cloud-covered region. When stacking all features
together, the element values of different features can be significantly unbalanced, and



260

Fig. 6.8 Classification maps (part) produced by the described schemes. a False color image of HS
data; b LiDAR data; and thematic maps using c raw HS data; d MPs of HS data; e MPs of LiDAR
data; f the stacked features XSta; g the features fused by LPP on XSta; h graph-based data fusion
method
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Table 6.3 Classification accuracies for multisource data obtained by the described schemes on
Houston University areas

No. of features RawH MPsH MPsL MPsH+L Sta PCA NWFE LPP GDF

144 140 70 210 210 35 42 26 26

OA (%) 80.72 82.43 69.39 86.39 87.49 85.28 87.96 87.81 90.30

AA (%) 83.40 84.99 68.42 88.48 88.94 87.29 88.76 88.88 91.30

κ (%) 79.23 81.02 66.79 85.31 86.42 84.02 86.92 86.80 89.48

Grass healthy 82.15 80.25 35.61 82.43 81.10 78.63 81.29 81.10 73.31

Grass stressed 81.58 80.64 67.11 82.61 84.87 81.77 83.27 82.80 97.84

Grass synthetis 99.80 100.00 79.60 100.00 100.00 100.00 100.00 100.00 100.00

Tree 92.80 84.09 72.92 91.10 95.45 93.75 89.49 97.73 97.82

Soil 97.92 100.00 83.52 99.91 99.91 99.91 99.81 98.77 99.24

Water 95.10 95.10 66.43 100.00 95.80 95.80 95.80 95.10 99.30

Residential 76.21 87.31 76.59 80.97 86.94 84.70 86.38 84.24 88.15

Commercial 54.51 45.58 91.45 63.06 59.54 66.95 76.07 79.20 96.20

Road 78.47 91.03 59.21 91.88 90.37 83.66 93.58 91.41 86.59

Highway 60.04 60.42 64.86 64.67 65.44 57.53 62.16 61.49 76.83

Railway 79.51 87.10 88.24 93.45 99.24 97.34 98.39 92.51 92.41

Parking lot 1 82.90 86.84 70.89 97.89 99.33 91.74 99.90 72.98 85.69

Parking lot 2 72.63 76.49 55.09 79.30 77.19 77.54 65.26 76 76.49

Tennis court 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Running track 97.25 100.00 14.80 100.00 98.94 100.00 100.00 97.25 99.58

the information contained by different features is not equally represented. The same
problems happen when using the stacked features to build a graph in LPP method.
By considering the graph-based fusion method, better accuracies are obtained, and
the cloud-covered regions of HS image are better classified.

6.3.2 Local Graph Fusion Model for Fusion
of Multisource Data

The above graph-based data fusion method (GDF) [76] proved to overcome the
conventional approach of stacking different feature sources together in terms of clas-
sification accuracy. The effectiveness of using such graph to fuse multiple feature
sources for classification has been discussed in the very recent studies [42, 76].
However, the GDF can cause some problems on storage resources and computa-
tional load especially when using large training data sets. This is because finding k
nearest neighbors to build a graph is very intensive in both computation and memory
consumption. Random sampling was used to speed up the GDF in [76]. However,
random sampling can lead to poor representation of the whole area if large areas
are not sampled, which will lead to unstable performances. This is even worse if the
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study area is very large and the number of samples fixed. Moreover, image degrada-
tion cannot be avoided during the hyperspectral data acquisition, which will lead to
poor performances on finding k nearest neighbors for building a graph on the whole
original data or randomly selected samples.

To overcome the above-mentioned limitations, this subsection will focus on local
graph fusion of multisource data. Specifically, the local graph fusion model (LGF)
[63] is used to couple dimensionality reduction and the fusion ofmultisource features
(e.g., the original spectral feature and spatial features computed from the HS image).
Themain contributions of the local graph fusionmodel can be summarized as follows:

• First and foremost, the local graph fusion model builds the local fusion graph on
the whole data by employing a sliding window. This way we introduce a differ-
ent approach with regard to GDF [76], where the fusion graph was built glob-
ally on randomly selected samples. The local spatial neighborhood information is
very important for remote sensing, especially for high-resolution remote sensing
imagery. Specifically, manymethods [78–81] demonstrated notable improvements
on the performances of dimensionality reduction, classification, and segmentation,
by exploiting the local spatial neighborhood information. In typical remote sensing
scenes (especially for high-resolution remote sensing images), pixels in a small
spatial neighborhood usually share similar properties (e.g., very similar spectral
characteristics). If we build a fusion graph globally, pixels from different objects
may become the nearest neighbors of each other, if they share similar spectral
characteristics. For example, pixels belonging to a roof of a building may get con-
nected in the graph to pixels of parking lots, because they have very similar spectral
characteristics even though they might not be spatially adjacent. Within a small
spatial window, LGF better employs the local spatial neighborhood information to
represent objects in the feature space. This way, local graph fusion model enables
better performances on classification, and better constraints in terms of local con-
nectivity reduce a risk of erroneously selected nearest neighbors even when the
spectral characteristics are affected by noise.

• In addition, the local fusion graph reduces computational complexity from O(N 2),
which holds for the global fusion graph on the whole data to only O(NS2), where
N denotes the total number of spatial pixels, S 
 N is the size of the sliding
window.

• Last but not least, the local graph fusionmodel admits a fast implementation by just
spatially downsampling the original data, while keeping the performances stable.
As shown in the experiments, for the high-resolution remote sensing images, spa-
tially downsampling will not affect much the main spatial structure of the objects
(i.e., leading to similar classification performances obtainedwithout subsampling),
but can efficiently reduce the computational complexity by a factor equal to the
square of the spatial downsampling ratio.

Suppose XSpe = {xSpei }Ni=1 and XSpa = {xSpai }Ni=1 denote the spectral and spatial
features after normalization of their values to the same interval (e.g., [0,1]), where
xSpei ∈ R

B , with B the number of bands and xSpai ∈ R
D (with D = p(2M + 1) being

generated by an EMP built on p PCs and with M filters), and N is the total number
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of spatial pixels in a HS image. Further on, we denote the stacked spectral and spatial
features by XSta = {xStai }Ni=1 = [XSpe;XSpa], where xStai = [xSpei ; xSpai ] ∈ R

B+D .
For calculating the pairwise distance matrix to find kNN for constructing the

graph, the complexity on storing the data and computational time are of O(N 2) and
O(BN 2).3 In this case, even in conventional remote sensing images, the pairwise
distance matrix will exceed the memory capacity of ordinary personal computer.
For example, an image of N = 512 × 512 pixels, the size of the distance matrix
is N × N = (512 × 512) × (512 × 512) elements. Therefore, in GDF [76], a small
number of samples (e.g., n = 5000) was selected from the whole original data to
build the global graph. However, random sampling may not always well represent
the full data, especially for the data with large study area, which will lead to unstable
performances of the global fusion graph. Moreover, image degradation cannot be
avoided during the data acquisition, which will lead to poor performances on finding
kNN globally from the randomly selected samples to build global fusion graph.

The local graph-based fusion model (LGF) probes an image with a S × S sliding
window, calculates the kNNof the current pixel considering the neighboring samples
included by the window, and builds the fusion graph within this sliding window.
Figure6.9 illustrates an example considering a 7 × 7 sliding window centered at one
pixel xSpei . This way we reduce the computational complexity of calculating pairwise
distancematrix toO(BNS2) (S
N ), aswell as a significant reduction inmemory use.

Here, we leverage the fact that pixels within a spatial neighborhood are likely
to share similar properties. This assumption is particularly valid when dealing with
images of very high spatial resolutions. If we consider the spectral features (original
HS image), we define the “spectral neighbors” within a spatial neighborhood of a
pixel with spectrum xSpeci as those k pixels whose values are closest to it in terms of
spectral signatures (i.e., nearest neighbors). Let N Spec

k (i) denote the set of values
of the k nearest neighbors of xSpeci within the neighborhood, N Spec

k (i)={xSpecim }km=1

Fig. 6.9 An illustration of the 7 × 7 sliding window centered at pixel xi

3With faster algorithms (e.g., K-D trees) than direct nearest neighbours searching, the complexity
can be reduced. More details on efficient representation and search techniques for large data sets
can be found in Chap.2.

http://dx.doi.org/10.1007/978-3-319-66330-2_2
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Fig. 6.10 An illustration of local fusion graph building within a 7 × 7 sliding window centered at
pixel. The value ‘1’ means connection (i.e., Eim = 1), while the blank grid means the data point
xim is not in the kNN of the current pixel xi (i.e., Eim = 0)

and m �= i , |N Spec
k (i)| = k (| · | being the cardinality of the set). Then the edges in

the graph ESpec
im = 1 for m ∈ N Spec

k (i) and ESpec
im = 0 otherwise, m ∈ {1, · · · , S2}.

Similarly, for the spatial features (i.e., EMP built on the HS image), the k nearest
neighbors of the data point with values xSpati are those of the neighborhood that
are most similar to it in terms of the spatial characteristics. Analogously, N Spat

k (i)
denotes the k nearest spatial neighbors of xSpati , |N Spat

k (i)| = k, and thus ESpat
im = 1

if m ∈ N Spat
k (i) and ESpat

im = 0 otherwise. LGF [63] constructs the fused kNN for
the stacked features XSta within a spatial window as follows:

N Fus
k (i) = N Spec

k (i) ∩ N Spat
k (i) (6.7)

where the operator ‘∩’ denotes the intersection, i.e., the kNN of the stacked vector
xStai :N Fus(i) = {xStaim ,m ∈ N Spec

k (i) ∧ m ∈ N Spat
k (i)}. The fused edgeEFus

i for the
stacked data point xStai must satisfy:

EFus
i,m = 1, iff m ∈ N Spec

k (i) ∧ m ∈ N Spat
k (i) (6.8)

For instance, within the 7 × 7 sliding window centered at pixel xi (when the
sliding window is close to the image boundary, the symmetric padding is utilized
to deal with the margin effect [82]), suppose the 6 nearest neighbors of spectral
feature point xSpeci is N Spec

6 (i) = {xSpecim : m ∈ [2, 6, 11, 15, 23, 36]}, see Fig. 6.10.
While the 6 nearest neighbors of spatial feature point xSpati is N Spat

6 (i) = {xSpatim :
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m ∈ [2, 7, 13, 28, 36]}. Therefore, we can get the kNN of fusion graph N Fus
6 (i) =

{xFusim : m ∈ [2, 36]} according to Eq. (6.7). Then, we set their corresponding edges
EFus
im = 1, for m ∈ N Fus

6 (i); EFus
im = 0 if m /∈ N Fus

6 (i), 1 � m � 49.
This means that the stacked data point xStai is “close” to xStaim only if they have

similar both spectral and spatial characteristics within a spatial window. If any indi-
vidual feature point xspeci (or xSpati ) is “far apart” from xSpecim (or xSpatim ), then EFus

im = 0.
For example, suppose that the data point xStai belongs to a road and xStaim belongs to
a flat roof. Since, in practice, roads and roofs are often made with similar materi-
als (e.g., asphalt), the corresponding data points are likely to have similar spectral
characteristics (ESpec

im = 1), but different spatial information (e.g., shape and size)
(ESpat

im = 0), so these two data points are not “close” (i.e., EFus
im = 0). Similarly, if

xStai and xStaim are taken from the grass areas and parking lot, respectively, they will
have different spectral characteristics (ESpec

im = 0), and even if they might be similar
spatially (ESpat

im = 1), the resulting EFus
im = 0 characterizing these two data points as

“far apart”. If the fusion graph was globally constructed by using the whole hyper-
spectral image or randomly selected samples like [76], one may find the kNN of a
pixel belonging to a roof (e.g., shopping mall) xFusi in pixels belonging to parking
lots, because they have very similar spectral and spatial information even though
they might not be spatially adjacent. By building a local fusion graph within a spatial
window, the proposed LGF overcomes this limitation, and better models the local
spatial neighborhood information. In addition, the proposed LGF is robust to image
degradation (e.g., noise), which cannot be avoided during the hyperspectral image
acquisition (especially when the spectral bands are in correspondence to windows
in the electromagnetic spectrum in which the absorption of the atmosphere is high).
The spectra of the same land cover type might exhibit a high variability. This is due
to different factors such as the intrinsic variability of the reflectance, differences in
illumination and image artifacts. However, typically the spectra of pixels belonging
to the same object are correlated even if they might differ to those of objects of the
same thematic class but located in other parts of the image for the above-mentioned
reasons. Thus, by looking for the kNN within a spatial neighborhood can enforce to
establish among pixels relations that are meaningful (in terms of representation of
the objects). In a similar fashion, the approaches in [81, 83] showed better denoising
results and efficient target detection by considering a local neighborhood.

Then, we can rearrange the edge of each stacked data point EFus
i into a sparse

matrix AFus by using:

AFus
i j =

{ EFus
i j , if j ∈ N Fus(i), j ∈ [1, · · · , N ]

0, otherwise,
(6.9)

The matrixAFus ∈ R
N×N represents the adjacency relation of all data points (e.g.,

full edge) built on the stacking features (i.e.,GFus = (XSta,AFus)). We can obtain the
transformation matrix to couple data fusion and dimension reduction of multisource
data by solving the generalized eigenvalue problem similar as Eqs. (6.5) and (6.6).
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The size of the sliding window has significant influence on the preservation of
local spatial neighborhood information (e.g., texture). On the one hand, when the
window size is too small, the neighborhood contains too few samples for properly
modeling the local spatial information, andN Fus

k (i) is composed of almost all data
points within the window. On the other hand, if the window is too large, then the local
spatial informationmight not be retrieved. In the case limit inwhich the neighborhood
is thewhole image, LGFequals toGDF (thus,GDFcanbe considered as a special case
of LGF). In our experiments, we set the sliding window with a fixed intermediate
size and change k nearest neighbors to obtain a satisfying result. By building a
local fusion graph within a sliding window, we not only reduce both memory cost
and computational complexity, but also increase the preservation of local spatial
neighborhood information.

Whendealingwith high-resolutionhyperspectral data,we can fast implementLGF
by spatially downsampling the original HS image and EMP to the same ratio. The
main spatial structure of the objects in a high-resolution remote sensing imagewill be
preserved after spatially downsamplingwithin a certain value of downsampling ratio.
This way LGF will keep stable on the classification performances while reducing the
computational complexity. The computational complexity can be reduced by a factor
equal to the square of the spatial downsampling ratio. For example, if we downsample
originalHS image by a factor of R (e.g., R = 4) along both spatial directions, the total
number of spatial pixels can be reduced to N/R2, thus the computational complexity
is reduced to O(BNS2/R2).

6.3.2.1 Experimental Results and Analysis

The hyperspectral data of ‘Pavia University’ is used to evaluate the performances of
fusion approaches, as it has been widely used as a benchmark dataset for a classifi-
cation task. The data was acquired by the ROSIS (Reflective Optics System Imaging
Spectrometer) sensor over an urban areas in the city of Pavia, Italy, with 115 spectral
bands in the wavelength range from 0.43 to 0.86µm and very fine spatial resolution
of 1.3 meters by pixel. The image composed of 610 × 340 pixels contains 103 spec-
tral channels after removal of noisy bands. This data set includes 9 land cover/use
classes, see Fig. 6.11. Note that available training and testing set are given in Fig. 6.11
(# number of training samples /# number of test samples).

Prior to applying the morphological profiles to hyperspectral images, principal
component analysis (PCA)was first applied to the original hyperspectral data set, and
the first few principal components (PCs) (the first 3 PCs) were selected (representing
99% of the cumulative variance) to construct the EMP. A circular SE ranging from
1 to 10 with step size increment of 1 was used. 10 openings and closings were
computed for each PC, resulting in an EMP of 63. We keep the same settings for
SVM classifier as in Sect. 6.2.1.2 and compare the local graph fusion method LGF
with the schemes of (1) Using original HS image (Raw); (2) Using EMP computed
on the first 3 PCs of the original HS image (EMP); (3) Stacking all feature sources
together, i.e., XSta (Sta); (4) Stacking all the features extracted by PCA from each
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Fig. 6.11 Training and test data for Pavia University hyperspectral image

individual feature source (PCA); (5) Stacking all the features extracted by NWFE
[77] from each individual feature source (NWFE), similar as [34]; (6) The GDF
[76] with its extension to fuse two feature sources. The consumed time reported in
our experiments includes both feature fusion and parameters optimization for SVM
classification.

In order to make fair comparisons, for the approaches of PCA and NWFE in
all our experiments, we use the best combination of the extracted spectral and the
extracted spatial features for the classification. We search the best combination of
the spectral and the spatial dimensions using the cross-validation according to the
OA, with both the spectral dimension and the spatial dimension ranging from 2 to 40
(with step size increment of 2). The best combination is obtained when OA reaches
the maximum. 5000 samples were randomly selected to build the global fusion graph
in GDF, similar as we did in [76]. For the LGF, we first downsampled both original
HS image and EMP of factor 5 on both spatial directions to speed up the processing
time, and set the size of sliding window to 15 × 15. Table6.5 reports the accuracies
and consumed time as the downsampled size changes. The classification results using
the best combination are shown in Table6.4 and Fig. 6.12.

The results confirm that the integration of multisource features can improve the
classification performance on HS images. Compared to the situation with single
spectral or spatial feature source, the OA of stacking spectral and spatial features
has 8.68–13.54% and 8.54–13.4% improvements for PCA and NWFE, respectively.
The improvements of simply stacking original spectral and spatial features (Sta)
over only using the single spectral/spatial feature source are not significant, while
increasing both the dimensionality and computational time. The LGF produced the
better results, with OA improvements of 13.68–18.54% over only using the single
spectral/spatial feature source, with OA improvements of 5–13.25% over stacking
both the spectral and the spatial features by PCA, NWFE, and Sta, and with 4.13%
improvement over GDF.
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Table 6.4 Classification accuracy for Pavia University hyperspectral data with SVM classifier. We
built the local fusion graph of the proposed LGF on both the downsampled original HS image and
EMP of factor 5

Number of Features Raw EMP Sta PCA NWFE GDF LGF

103 63 166 42(2,40) 40(8,32) 36 28

OA (%) 79.75 84.61 85.04 93.29 93.15 94.16 98.29

AA (%) 88.26 91.25 91.93 92.51 93.92 94.68 98.66

κ 0.747 0.802 0.809 91.05 0.909 0.923 0.977

Consumed Time (s) 65.05 27.28 75.42 25.67 876.78 22.69 20.46

Asphalt 84.17 95.04 93.14 98.45 97.74 93.89 98.45

Meadows 67.42 76.79 75.82 95.79 94.71 93.77 97.95

Gravel 73.70 82.18 80.51 77.99 82.28 77.94 98.67

Trees 94.78 96.77 97.10 84.86 97.94 93.24 93.77

Metal Sheets 99.63 99.93 99.93 99.85 99.93 99.78 99.78

Soil 92.30 71.72 82.04 80.25 73.61 95.67 99.88

Bitumen 91.20 99.77 99.77 99.92 99.85 99.25 99.92

Bricks 91.47 99.27 99.29 99.40 99.27 99.32 99.51

Shadows 99.68 99.79 99.79 96.09 100 99.26 100

From the class-specific accuracies, the EMP approach performed much better for
most classes than the Raw approach, especially for the classes ‘Asphalt’ and ‘Mead-
ows,’ with more than 10% improvement in accuracy. However, the EMP approach
produced much worse accuracy in class ‘Soil,’ dropping by 20% compared to the
Raw approach. By stacking spectral and spatial features extracted by PCA/NWFE,
better accuracies were produced in class ‘Meadows’ (with improvements of 19–
28.37% and 17.92–27.29%, respectively, over Raw and EMP); but the performance
dropped significantly on classes ‘Soil’ compared to Raw. By building the fusion
graph on randomly selected samples, the GDF approach consumes less time and per-
formed much better than both Raw and EMP on classes ‘Meadows’ and ‘Soil’ (with
OA improvements of 16.98–26.35% and 3.37–23.95%); but worse on class ‘Gravel’
compared to only using the spatial features. The LGF demonstrated better perfor-
mance on almost all the classes than the methods that use single feature source (Raw
and EMP), stacked multisource features (i.e., PCA, NWFE, and Sta) and the GDF,
and produced much better results on classes ‘Gravel’ and ‘Soil’. For class ‘Gravel’,
LGF had improvements of 16.49–24.97%, 16.39–20.68%, and 20.73% compared to
the approaches using single feature source, stacked multisource features, and GDF,
respectively.

The hyperspectral remote sensing data contains a wealth of spectral and spatial
information. Only using single feature source is not enough for a reliable classifica-
tion.When stackingmultisource features extracted bymethods like PCA andNWFE,
it is not easy to select the optimal combination of the spectral and the spatial dimen-
sions, as was also discussed by Fauvel et al. in [34]. These optimal combinations
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Fig. 6.12 Classification maps produced by different schemes. a Test samples, and thematic maps
using b original HS data; c EMP of HS data; d PCA; e NWFE; f the stacked features Sta; g GDF
[76]; h the proposed LGF

of spectral and spatial dimensions are different for different data sets. Even for the
same data set, when the training sample size changes, the combination of spectral
and spatial dimensions will change.

Many approaches selected the optimal combination of spectral and the spatial
dimensions according to the cumulative variance [34]. However, these approaches
do not always work well. For example in PCA, the number of PCs which represent
more than 99% of the cumulative variance depends on the statistical distribution of
the data. The extracted PCs which represent 99% of the cumulative variance may
not contain enough information of the data, resulting in a worse performance. When
the data contain non-Gaussian noise, the number of PCs needed to reach 99% of the
cumulative variance is higher, which may contain redundant information. Although
some algorithms (e.g., cross-validation) can be used to find the best combination of
dimensions, it increases the processing time. In our experiments, the elapsed time of
searching the best combination is 7.99 and 7.63 h for PCA and NWFE, respectively.
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Table 6.5 The accuracies and consumed time as the downsampled size of original feature sources
increases. DS3×3 means we downsample both the original HS image and EMP of a factor 3 on both
spatial directions

DS1×1 DS2×2 DS3×3 DS4×4 DS5×5

OA (%) 97.11 98.23 97.56 97.63 98.29

AA (%) 97.04 98.58 98.12 98.11 98.66

κ 0.962 0.977 0.968 0.969 0.977

Consumed time (s) 1551.5 136.7 32.1 14.3 8.5

The performances of the LGF are less sensitive to the values of the free parame-
ters. We keep the parameters (the number of nearest neighbors and the number of
extracted features) the same for feature sources with different downsampling ratios,
see Table6.5. We get very similar classification results for Pavia University, with
processing time dropping from 1551.5 to 8.5 s. Downsampling might cause a reduc-
tion of the intraclass heterogeneity (i.e., objects belonging to the same class will
be more spectrally similar). If the training samples are taken far from the objects’
edges, they will likely correspond to areas of an unique thematic class (i.e., they do
not correspond to mixed pixels) leading to a simpler classification problem. Over-
all, local graph fusion technique effectively employs the local spatial information
of different feature sources within a spatial window. This allows to obtain better
performances in classification in particular with respect to the GDF approach which
is global. In addition, with respect to this latter, we reduce both memory cost and
computational complexity for graph building and increase robustness to image noise
thanks to considering a small sliding window.

6.4 Discussion and Conclusions

We enter an era where multisource data is associated with high-impact commercial,
social, biomedical and environmental datasets. Developing techniques for multi-
source data fusion can improve data quality, reduce information redundancy, extend
the spatial and temporal coverages of the data, etc.Multisource data fusionhas already
benefited many disciplines, such as computer vision, medical imaging, sensor net
works, robotics, intelligent system design, etc. This chapter focused on signal-level
(e.g., pansharpening) and feature-level fusion of multisource remote sensing data.
We introduced guided filter-based methods for hyperspectral image pansharpening,
as well as exploited the use of graph-based fusion method to fuse multisource data
to improve classification performances.

The objective of pansharpening is to fuse a Pan/RGB image with a multi-/hyper-
spectral one, to obtain an enhanced image with the high spatial resolution of the
former and the high spectral resolution of the latter. The presented guided filter-
based pansharpening method combines both component substitution and multiscale
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decomposition, making a good balance on both spectral and spatial preservations.
The presented pansharpening method is robust to image co-registration. By tak-
ing classification as an example to evaluate the quality of fused data, we found
that fusion of multisource data enables improved classification performances by
providing complementary information. However, developing effective methods for
automatic pansharpening remains challenging, due to the fast development of sen-
sor technologies, e.g., extremely high-resolution optical, SAR, and LiDAR sensors
from airborne or UAVs platforms. Precise co-registration and new pansharpening
techniques are required to improve the spatial resolution, as well as retain the spec-
tral fidelity of original hyperspectral data, during pixel-level fusion.

Feature-level fusion aims at optimizing the complementary information frommul-
tisource data to achieve better decision than using single data source. Feature-level
fusion requires feature extraction from different sources. Taking land cover/use clas-
sification as an example, the most straightforward way to perform this fusion may be
to concentrate all data source together and use this concentrated data as the input of
a classifier. However, such fusion methods do not take into account the differences
between feature sources and may lead to problems like the curse of dimensionality
and excessive computation time. The presented graph-based fusion methods coupled
dimension reduction and data fusion together for multisource data. Our graph-based
methods combined multiple feature sources through a fused graph, which explains
the relations between data points in different data sources and can be seen as a way
to model the embedding in the manifold in which the data lie. The graph-based
feature-level fusion methods proved to overcome the conventional approaches of
stacking different feature sources together in terms of classification accuracy. How-
ever, developing effective methods for automatic fusion and interpretation of the
multisource data is still very difficult. ‘Big data’ from remote sensing requires new
techniques on both feature extraction and fusion which are in computation efficiency
and effectiveness.

The discussion on remote sensing data fusion will continue in the next chapter,
where the focus will be on mathematical models for supervised classification of
multisensor, multiscale, and multiresolution imagery.
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Chapter 7
Remote Sensing Data Fusion: Markov
Models and Mathematical Morphology
for Multisensor, Multiresolution,
and Multiscale Image Classification

Jon A. Benediktsson, Gabriele Cavallaro, Nicola Falco, Ihsen Hedhli,
Vladimir A. Krylov, Gabriele Moser, Sebastiano B. Serpico
and Josiane Zerubia

Abstract Current and forthcoming sensor technologies and space missions are pro-
viding remote sensing scientists and practitioners with an increasing wealth and
variety of data modalities. They encompass multisensor, multiresolution, multiscale,
multitemporal, multipolarization, and multifrequency imagery. While they represent
remarkable opportunities for the applications, they pose important challenges to the
development of mathematical methods aimed at fusing the information conveyed
by the input multisource data. In this framework, the present chapter continues the
discussion of remote sensing data fusion, which was opened in the previous chapter.
Here, the focus is on data fusion for image classification purposes. Bothmethodolog-
ical issues of feature extraction and supervised classification are addressed. On both
respects, the focus is on hierarchical imagemodels rooted in graph theory. First, mul-
tilevel feature extraction is addressed through the latest advances in Mathematical
Morphology and attribute profile theory with respect to component trees and trees of
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shapes. Then, joint supervised classification of multisensor, multiscale, multiresolu-
tion, and multitemporal imagery is formulated through hierarchical Markov random
fields on quad-trees. Examples of experimental results with data from current VHR
optical and SAR missions are shown and analysed.

7.1 Multisource Data Fusion for Image Classification

As pointed out in the previous chapters, current remote sensing systems allow a
remarkable variety of data typologies to be collected. These data differ in sensor
technology (passive: optical and thermal; and active: radar and laser), spatial reso-
lution (from a few kilometers with weather satellites to below a meter with satellite
VHR missions – see Chaps. 3 and 4 – or a few centimeters with drones and other
aerial platforms – see Chaps. 5 and 6), and spectral resolution (from one panchro-
matic channel to multispectral or hyperspectral channels – see Chaps.2 and 6) [76].
Jointly exploiting these data represents a crucial and challenging opportunity. Crucial
because data from different sources often convey complementary information, there-
fore a proper joint use may allow more complete and accurate results to be obtained
than using the single sources separately. Challenging because multisource data (also
named multimodal data) are often heterogeneous, therefore advanced mathematical
methods for modelling, learning, and merging are necessary to take benefit from
them.

The fusion of multisensor and multiresolution remote sensing data has been
addressed in the previous chapter with a focus on signal-level techniques that gen-
erate enhanced image products [83, 86]. In the present chapter, the discussion is
continued by addressing how to exploit images associated with different sensors
and/or spatial scales to generate classification products.

As mentioned in several of the previous chapters, land cover or land use classifi-
cation methodologies play a major role in remote sensing. Thorough discussions of
classification concepts can be found in pattern recognition textbooks [14], and the
basics have also been recalled in Chap.2. Here, we shall assume that the reader is
familiar with these concepts and focus on the case of the classification of multisource
remote sensing images. Consistently with the usual pattern-recognition pipeline, we
shall discuss both (i) classification techniques that operate with multisensor or mul-
tiscale features as inputs, and (ii) feature extraction methods that derive multiscale
descriptors from the input imagery. The next subsections will review the main liter-
ature approaches related to (i) and (ii). Then, examples of advanced mathematical
methods for multilevel feature extraction throughmorphological operators, and then,
multisensor, multiresolution, and multitemporal classification through hierarchical
Markov models will be discussed in Sects. 7.2 and 7.3, respectively. Similar to the
approaches described in Chap.3 with regard to VHR optical image analysis, both
families of methods substantially rely on graph-theoretic hierarchical image repre-
sentations through suitable tree topologies. Further, more focused, analysis on the
specific case of multitemporal data can also be found in Chaps. 8 and 9.

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_8
http://dx.doi.org/10.1007/978-3-319-66330-2_9
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7.1.1 Multiscale Feature Extraction

On one hand, in high resolution images, the high geometrical detail of the captured
scenes results in a substantial increase in information, allowing for detailed analysis
of complex structures that characterize the scene under investigation. On the other
hand, the improved spatial resolution adds a certain spectral variability to the pix-
els that belong to the same object or class. Therefore, approaches that exploit the
spectral information at single pixel level are poorly effective for the characterization
of scenes in which heterogeneous structures are composed by several pixels, while
strategies that include contextual information represented by pixels and their spatial
neighbourhood systems become necessary.

In the last decade, several advances have beenmade in exploringmultiscale strate-
gies based on image processing to describe patterns such as shape and texture at
different levels of abstraction. Scale is indeed an important aspect since it directly
contributes to the effectiveness in modelling the spatial context [93]. However, when
in presence of heterogeneous structures, the identification of an optimal scale is far
from being trivial [4]. However, a multiscale strategy allows the pixel neighbourhood
system to be defined adaptively. A simple and effective strategy for including spatial
information is to enlarge the feature space, which is used as input to a learning algo-
rithm, by adding features that provide information on the spatial arrangement [25].

Spatial features can be computed by exploiting image segmentation and object-
based image analysis [15, 16] procedures by partitioning an image into non-
overlapping regions/objects according to a homogeneity criterion. Several segmen-
tation procedures have been introduced in the literature, including hierarchical and
multiscale clustering strategies [23, 79]. In a hierarchical segmentation, a region of
interest can be represented bymultiple sub-regions (segments) in finer levels of detail
andmerged to the surrounding regions at coarser levels of detail,where themerging of
segments is usually performed based on similarity measures. Optimized approaches
based on the integration of spatial and spectral information through spectral cluster-
ing are also available in the literature [140], and recently exploited in hyperspectral
image classification [138, 157].

A different approach to obtain spatial feature is through filtering. In the literature,
a wide range of filters can be found [34]. In particular, filters based on statistical
measures [141], which focus on the spatial distribution of grey values, have been
extensively exploited for texture feature extraction. Statistical measures refer to first-
order statistics (i.e. average intensity) [141] and second-order statistics, including the
grey-level co-occurrence matrix (GLCM) [62]. By varying the window parameters,
such as direction and size, GLCM was effectively exploited for the extraction of
multiscale features for urban characterization in SAR image [45] and high resolution
panchromatic images [110].

Another category of filters is represented by those based on signal processing,
such as wavelet transforms [91, 122]. Wavelet decompositions produce a multireso-
lution representation of the original scene and have been successfully exploited for
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numerous image processing and analysis tasks, including SAR image classification
[55, 132] and optical image restoration [67].

A different typology of filters is represented by those defined as structural filters,
such as morphological filters. They have been proposed within the Mathematical
Morphology framework based on non-linear operators [130] and are an extension of
Minkowski’s set theory [130]. Erosion and dilation are considered the basic morpho-
logical operators, which are based on amovingwindow (or kernel), called structuring
element (SE). In general, dilation causes objects to dilate or grow in size, whereas
erosion causes objects to shrink. The effect of the filtering, i.e., the way objects dilate
or shrink, depends upon the choice of the SE, i.e., shape and size. By combining dila-
tion and erosion we obtain the closing and opening operators. Those operators are
used to remove objects that cannot contain the SE, while preserving objects with a
similar shape as the SE.However, this filtering process also yields distortions andmay
degrade the geometrical characteristics of the objects. Operators by reconstruction,
which are based on geodesic transformations, were introduced to prevent this issue,
allowing the preservation of the geometrical properties of those regions not affected
by the filtering. By defining a family of increasing values corresponding to the size
of the SE, it is possible to obtain a vector (morphological profile) of filtered images
that provides a multiscale decomposition of the scene under investigation. Morpho-
logical profiles have been exploited for multiscale analysis in different applications,
such as image segmentation, object extraction [1, 116], VHR image classification
[10, 144], as well as hyperspectral image analysis and classification [9, 117, 148].

More recently, attribute filters have been introduced as an extension of morpho-
logical filters [20]. Attribute filters are connected operators, whose filtering is based
on the evaluation of an attribute (i.e., a measure) computed on connected regions
[133]. The filtering results in a simplification of the image, in which regions that
do not fulfill a given predicate are merged to the surrounding regions. In contrast to
SE-based filters, filters based on attributes allow the extraction of complementary
contextual information according to the chosen attribute, and are more flexible in
terms of spatial modelling. As for morphological filters, a multiscale image repre-
sentation can be obtained by sequential application of attribute filters according to
a pre-defined set of thresholds [30, 40]. Such structures can be further extended to
multi-channel images [29, 39]. In this case, attribute profiles are computed for all the
available channels or a subset of them. Due to their aforementioned properties, these
operators have proven their efficiency in addressing crucial remote sensing tasks,
ranging from image classification [41, 50, 120] to change detection [51]. Further-
more, in addition to their multiscale fusion capabilities, morphological and attribute
filters have also proven successful for feature-level fusion (e.g., in combination with
the local graph model described in Chap.6), multisensor fusion [113, 139], and
multitemporal fusion [33].

More information on the effectiveness of these operators can also be found in the
recent literature, where comparison between different approaches for spatial feature
extraction are provided [25, 53, 81].

http://dx.doi.org/10.1007/978-3-319-66330-2_6
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7.1.2 Multisensor and Multiresolution Image Classification

The complementary properties of panchromatic andmultispectral data have been dis-
cussed in depth in the previous chapter. Another major example of complementarity
among remote sensing data sources is represented by passive and active sensors.
Through passive sensors, the incoming spectral radiance, indirectly related to the
reflectance, emittance, and temperature of the observed surface, is measured in sev-
eral bands of the visible and infrared wavelength ranges (see Chaps. 2 and 3). Noise
variance in the resulting data is small in the case of recent sensors, and visual pho-
tointerpretation is relatively easy, but acquisition capability is strongly affected by
Sun illumination and cloud cover. An active SAR sensor transmits amicrowave pulse
toward the target area and collects the backscattered return (see Chaps. 4 and5). The
resulting data are determined by the scattering mechanism on the imaged area and
influenced by roughness, soil moisture, and presence of strong scatterers. Day-and-
night acquisition is feasible with little to no impact of cloud cover but photointerpre-
tation is substantially more difficult than with optical images, and automated analysis
is made complicated by speckle. Thus, the properties of these two data sources are
intrinsically complementary. Active LiDAR sensors transmit laser pulses and again
receive the backscattered signals (see Chap.1). Terrain elevation features are typi-
cally extracted from LiDAR returns, thus providing a further complementary source
of information with respect to 2D data. In this book, the focus is on 2D remote sens-
ing image analysis, so here we shall not discuss the fusion of 2D and 3D data and
we shall address the fusion of multimodal 2D imagery, specifically with the primary
purpose of supervised classification.

Joint classification of multisource data has a long tradition in remote sensing, and
many mathematical models and methods, including evidential, statistical, kernel,
neural, decision fusion, and Markovian approaches, have been proposed [61].

First, when a probabilistic Bayesian formulation [14] is used for classification,
a major difficulty in the case of multisource data is that, while accurate parametric
models are known for the marginal statistics of the data originating from the indi-
vidual sources (e.g., multivariate Gaussian for optical data [76] or Gamma and more
sophisticated models for SAR data [73]), parametric models for their joint statistics
are usually unavailable, except in special cases (e.g., [85]). A simple workaround
might be to assume that the features associated with distinct sources are indepen-
dent when conditioned to each class, but with this choice, mutual dependencies are
neglected [112]. Alternately, advanced statistical tools are used to combine estimates
of the marginal distributions of single features or subsets of features with models
of their dependence. These include the theory of copula functions [72], dependence
trees [43], or meta-Gaussian distributions [136].

In contrast to parametrically modeling the class-conditional statistics, fully non-
parametric classifiers [14] have also been widely used for multisource image classi-
fication. After the features extracted from all data sources are collected in a unique
vector, the resulting “stacked vector” can be fed as input to non-parametric classifiers
because they are applicable to data with arbitrary joint statistics. Many formulations

http://dx.doi.org/10.1007/978-3-319-66330-2_2
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_1
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have been proposed in this framework, involving multilayer perceptron neural net-
works [99], adaptive resonance theory [57], neurofuzzy architectures [3], support
vector machines [42], k nearest neighbor classifiers [111], Parzen density estima-
tors [43], logistic regression [158], and composite kernel functions with associated
Hilbert spaces (see also Chap. 10) [24]. These methods have been used to classify
in stacked feature spaces originating from optical, SAR, hyperspectral, and LiDAR
data. More recently, deep learning and convolutional neural networks [78], which
have been increasingly popular in remote sensing lately, have also been applied to
classification problems involving multiscale [89], multifeature [94], and multisen-
sor [142] fusion.

A further approach is Dempster-Shafer’s mathematical theory of evidence, which
quantifies the contributions of the individual sources in terms of appropriate mass of
evidence, belief, and plausibility functions, and introduces a set of algebraic rules
to combine these quantities into the output inference result [18]. Evidential methods
have been proposed for the classification of multisensor optical-LiDAR data [123],
multisensor optical-SAR images [84], multiresolution optical imagery [77], as well
as for the fusion of remote sensing and ancillary data [121].

Whereas the previous approaches providemathematical formulations for a unique
classifier with multiple input sources, the decision fusion approach is based on
the idea of first separately applying distinct classifiers to individual sources and
then combining the classifier outputs. This multiple-classifier or classifier-ensemble
approach moves the complexity of the fusion process to the output combination
rule. Mathematical models for this rule have been proposed on the basis of voting
schemes [100], consensus theory [7], Bayesian criteria [13], kernel functions [31],
neural networks [49], fuzzy logic [52], graph theory [5], and attractor dynamics [17].
They have been applied to multisensor data sets including multispectral, hyperspec-
tral, SAR, and LiDAR sources. Applications to multiscale optical imagery can also
be found [48]. Hybrid approaches that integrate decision fusion and kernel learning
have also been developed [156]. Random forest [21], which is a currently popular
classifier because of its robustness to overfitting and low computational burden, and
which has been applied to multisensor image classification as well [150], is a deci-
sion fusion method in itself because it combines the outputs of a random ensemble
of tree classifiers. Extensions of random forest and alternate tree ensembles can be
found in [100, 153].

When high spatial resolution is involved, multisource fusion methods based on
probabilistic graphical models can be used as an alternative to the approach of con-
textual feature extraction described in the previous section. MRF models, which
have already been discussed in Chap.4, play a prominent role in this regard [82].
The opportunity to incorporate multiple terms, each associated with one input infor-
mation source, into the energy function of an MRF model, makes MRFs powerful
data fusion tools [129]. This approach has been applied to the fusion of both multi-
sensor [60] and multiscale [103] data. Furthermore, the opportunity to define MRFs
on hierarchical graphs, such as quad-trees [75], binary partition trees [118], or more
irregular topologies [128], also makes Markovian models into natural multiscale and
multiresolution fusion tools. Indeed, recent approaches based on hierarchical MRFs

http://dx.doi.org/10.1007/978-3-319-66330-2_10
http://dx.doi.org/10.1007/978-3-319-66330-2_4
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have been formulated for classifying data collected at multiple input spatial reso-
lutions at the same time [102], in a multitemporal series [64], or even by different
optical/SAR sensors [63, 65].

An extension of MRFs is represented by conditional random fields (CRFs) [137],
whichpostulate aMarkovian formulation for the global posterior distributiondirectly,
with the aimof gaining additional flexibility as compared toMRFs. Pixelwise (unary),
pairwise (binary), and possibly higher order pixel dependencies are usually charac-
terized through case-specific parametric models. In [66], a CRF is proposed for the
joint multiscale and multitemporal classification of optical satellite images. Tech-
niques integrating MRFs or CRFs with the aforementioned approaches have also
been developed, including combination with neural networks [98], composite ker-
nels [151], theory of evidence [18], and decision fusion [106].

Additional information on multisource data classification can also be found in the
recent reviews [61, 119] and in the special issue [143].

7.2 Multilevel Feature Extraction Through Mathematical
Morphology

7.2.1 Introduction to Mathematical Morphology

Mathematical Morphology emerged in 1960s from the pioneering work of Georges
Matheron [97] and Jean P.F. Serra [130], who introduced the first formalisms to
address the challenges in analysing geometrical structures via transformations and
random set modelling with several applications, in particular in the mining indus-
try. Ever since, Mathematical Morphology keeps evolving and has become a well-
established discipline in image processing, while the span of application domains
that exploit Mathematical Morphology has grown rapidly in recent years. Examples
include among others biological and medical image analysis, document processing
and remote sensing image analysis. Mathematical Morphology has recently gained
an increasing popularity in the remote sensing field that coincided with the increased
availability of remotely sensed images with high spatial resolution. Mathematical
Morphology provides in this context a series of powerful region-based filtering tools,
denoted as connected operators, which are edge-preserving filters that operate by
merging connected components or flat zones [126] (i.e., regions composed by iso-
level pixels) – see also Chap.3.

InMathematicalMorphology, connectedoperators canbe implementedbyexploit-
ing operators by reconstruction, such as closing and opening by reconstruction. They
are filters that perform image transformations by removing or preserving flat zones
according to the interaction between an input image and a structuring element, which
is a set of neighbouring pixels and is defined according to its shape (e.g., line, circle,
etc.) and centre. These operators are based on geodesic transformations and permit
the preservation of geometrical characteristics of those objects that are not removed

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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by the filtering. An alternative approach to efficiently implement connected operators
is based on the exploitation of hierarchical representations [127], such as tree-based
structures. In a tree representation, regions that compose the image are identified by
nodes, which represent the leaves of the tree. In the literature, two main categories of
tree representations exist [104]: (i) hierarchies of segmentation (hierarchy of image
partitions) and (ii) threshold decompositions (hierarchy of regions). In hierarchies of
segmentation, a horizontal cut of the tree results in a set of non-overlapping regions,
whose union covers the entire image domain. Examples of representations that belong
to this category are minimum spanning tree (MST) [71], alpha-tree [108] (discussed
in detail in Chap.3) and binary partition tree (BPT) [124]. In particular, a BPT allows
the image to be decomposed into a collection of regions endowed with suitable inclu-
sion relations, and is constructed and pruned by defining appropriate similarity mea-
sures and misclassification rate models [147]. Examples of recent papers using BPTs
for hyperspectral and polarimetric SAR image classification include [2] and [147].

In the second category, threshold decompositions, a horizontal cut leads to a set of
regions that represent a partial partition. Representations that belong to this category
are tree components (i.e., min-tree,max-tree – see alsoChap.3) [68, 69, 125] and tree
of shapes (ToS) [27].Aparticular family of connected operators that can efficiently be
implemented by exploiting threshold decompositions are attribute filters [20, 130].
Attribute filters, being connected operators, have edge-preservation capabilities and
perform image simplification by removing flat zones according to a given criterion
and attribute. An attribute is any arbitrary measure that can be computed on a flat
zone with the goal of describing its geometrical or semantic properties. Given a tree
structure, it is possible to compute an attribute for each node of the tree structure.
The filtering of the tree is performed by pruning those nodes whose attribute value
does not satisfy a predefined criterion, usually defined by a threshold. It is worth
mentioning that while the tree structure of an image is fixed, the emerging image
simplification may vary depending on the specific attribute chosen for the filtering.
The high flexibility of attribute filters and the possibility to perform multi-attribute
analysis on a scene allow the extraction of complementary information regarding the
spatial arrangement, which can be exploited to improve the discrimination between
structures.

The following sections present an overview on recent developments inMathemat-
ical Morphology devoted to the extraction of multiscale features for remote sensing
image classification, focusing on connected operators built on tree structures based
on threshold decompositions. Such operators are attribute filters computed on tree
components and tree of shapes. Note that the backgroundmaterial recalled in the next
section about tree-based image representations is also partially covered in Chap.3,
yet it is included here to ensure that the chapter is self-contained.

http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_3
http://dx.doi.org/10.1007/978-3-319-66330-2_3
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7.2.2 Theoretical Background

7.2.2.1 Connected Operators

Let a one-channel grey-scale digital image f (see Fig. 7.1a) be defined as a mapping
of a set of vertices V ⊆ Z

2 into a set of scalar values H ⊆ Z:

f : V → H, (7.1)

a partition Π f of f can be defined as a division of the space V into a set π f of non-
empty and disjoint connected components (or flat zones) CCi , formally expressed
as in [131]:

π f = {CC1, . . . ,CCn} , (7.2)

and fulfilling the following property:

CC1,CC2 ∈ π f =⇒ CC1,CC2 �= ∅ ∧ CC1 ∩ CC2 = ∅ |
⋃

i

CCi = V .

(7.3)

An example of partition is shown in Fig. 7.1c. Let a flat zone be a region of connected
pixels characterized by the same intensity according to the classic 4 or 8-connectivity
rule [133] (see Fig. 7.1b). The connectivity property relies on the concept of path in
graph theory. The image f can be seen as an undirected graph G = (V, E) where
V is a set of vertices representing the pixels, and E is a family of non-ordered pairs
of vertices (vi , v j ) which model the connectivity [133]. A graph G is said to be
connected if, for any p, q ∈ V , there exists a path from p to q, which is a sequence
of n > 1 vertices (i.e., p = p1, ..., pn = q) such that every pi ∈ V , and any two
successive pixels of the sequence are adjacent epi ,pi+1

∈ E .
Starting from this definition, a level set of f is defined as Fh = {p ∈ V | f (p) = h}

with h ∈ H . At each level set Fh , there may be N connected components CCk
h( f ),

with k ∈ {1, ..., N }. They are defined as level h components of F (i.e., flat zones
[126]), and their union within the image f forms a partition Π f . An operator ψ that
acts on an image f is considered connected if it provides a coarser partition πψ (i.e.,
containing less flat zones) than the initial one π f : π f 
 πψ( f ), meaning that for each
pixel p ∈ V , π f (p) ⊆ πψ( f )(p) [105]. Consequently, the regions composing the
output partition πψ are created by merging the regions of π f .

Connected components can either be removed or fully preserved, and con-
nected operators are therefore edge-preserving operators since they preserve
the geometrical detail of the regions that are not processed.
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(a) (b)

(d) (e) (f)

(c)

Fig. 7.1 Example of threshold decompositions: a Grayscale image with levels of intensity ranging
from 0 to 5; b 4-connectivity relation induced by the equality of gray levels; c partition of a into
connected components; d min-tree; e max-tree and f tree of shapes (color figure online)

These operators are usually considered as filtering tools; the coarseness of the
partition generated (i.e., filtered image) is determined by a size-related filter para-
meter. One of the most successful implementations of connected operators relies on
the tree-based image representations, which are defined next.

7.2.2.2 Threshold Decompositions

A set of partitions π f of the space V can be organized hierarchically in a tree struc-
ture if inclusion relations among the components can be established. For instance,
connected components can be organized hierarchically: CC1,CC2 ∈ π f are either
nested (i.e., CC1 ⊆ CC2 or CC2 ⊆ CC1) or not.
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Starting from this definition, there are three main threshold decompositions [12]
developed in the Mathematical Morphology framework: the component trees (min-
tree and max-tree [68, 125]) and the tree of shapes [27]. In the case of component
trees, the hierarchy between nodes is driven by an ordering criterion of their grey-
levels, whereas, in the case of tree of shapes, the ordering criterion follows the inclu-
sion relationship of the regions according to a saturation operator [101], where bright
and dark components are simultaneously represented. The tree of shapesmerges the
information of themin-tree andmax-tree into a single structure, leading to a self-dual
representation of the image.

7.2.2.3 Component Trees

Component treeswere introduced by Jones [68, 69] as efficient image representations
that enable the computation of advanced morphological operators in a simple way.
They are hierarchical structures that encode the threshold sets and their inclusion
relationship, e.g., min-tree and max-tree, which is shown in Fig. 7.1d, e respectively.

Themin-treemodels the inclusion of regions according to the grey-level order-
ing criterion (≤), thus the tree contains only the shapes that are darker than
their neighbourhood (i.e., the grey-level of each region is lower than the one
of their neighbourhood). The root of the min-tree is the entire image domain
at the greatest grey-level value, while the leaves are the regional minima. The
max-tree is dual, and it contains only the regions that are brighter with respect
to their neighbouring pixels. In this case, the root is the whole image at the
lowest grey-level and the leaves are the regional maxima.

More formally, let the set of scalar values H ⊆ Z be characterized by an ordering
relation ≤. For any h ∈ H , a lower [ f ≤ h] and an upper [ f ≥ h] threshold sets are
defined by:

[ f ≤ h] = {p ∈ V | f (p) ≤ h}, (7.4)

[ f ≥ h] = {p ∈ V | f (p) ≥ h}. (7.5)

Let P(V ) be the power set of V , i.e., the set of all the possible subsets of V . Given
X ∈ V , the set of connected components of X is denoted as CC(X) ∈ P(V ). The
lower Lλ( f ) and the upper Uλ( f ) peak components at level h are determined by:

Lh(F) = {X, X ∈ CC([ f ≤ h])}, (7.6)

Uh(F) = {X, X ∈ CC([ f ≥ h])}. (7.7)

Finally, the sets of lower L( f ) and upperU ( f ) connected components are defined
by:
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L( f ) = ∪h Lh( f ), (7.8)

U ( f ) = ∪hUh( f ). (7.9)

If ≤ is a total relation, any two connected components CC1,CC2 ∈ L( f ) or
CC1,CC2 ∈ U ( f ) are either nested or not. The inclusion relations of the connected
componentswithin the set L(f) andU (f) ismodelled by themin-tree and themax-tree,
respectively. If Lh( f ) = {X, X ∈ CC([ f = h])} and Uh( f ) = {X, X ∈ CC([ f =
h])} is the set of N connected components at a fixed grey-level h ∈ H , a node of
the min-tree and max-tree represents a unique connected component Nk

h ( f ), with
k ∈ {1, ..., N }.

Component trees have been widely used for computing attribute filters [20, 145],
pattern spectra [109, 145], and multi-scale decompositions [107]. A complete com-
parison of the different (sequential and parallel) algorithms proposed in the literature
for their computation are detailed in [26].

7.2.2.4 Tree of Shapes

The tree of shapes (also known as topographic map) is a hierarchical representation
of the connected components within a grey-level image (i.e., zones enclosed by an
isolevel line).

The tree of shapes is self-dual representation since it makes no assumption
about the contrast of objects (either light object over dark background or the
contrary). The tree of shapes can be interpreted as the result of merging the
min-tree and max-tree [125] into a single tree, as shown in Fig. 7.1f.

It was firstly introduced by Monasse et al. [101], where the structure was com-
puted by exploiting the fast level line transform (FLLT) algorithm: it first computes
the pair of dual component trees and then obtains the tree of shapes bymerging them.
Caselles et al. [28] introduced the fast level set transform algorithm (FLST), which
is based on a region-growing approach to decompose the image. An operation called
saturation is applied to the connected components aiming at filling holes, result-
ing in flat regions (or shapes) obtained by progressively merging nested regions.
Specifically, the algorithm extracts each branch of the tree starting from the leaves
and growing them up to the root until only a single flat region is obtained. Song
et al. [135], proposed to retrieve the tree of shapes by building the tree of level lines
and exploiting the interior of each level line. Recently, Geraud et al. [59] proposed
a new algorithm to compute the tree of shapes in order to reduce the computational
complexity and overcome the restriction to only 2-D images of the previousmethods.
The algorithm computes the tree of shapes with quasi-linear time complexity when
data quantification is low (typically 12 bits or less) and it works for n-D images. The
first parallel algorithm to compute the tree of shapes, which is based on the algorithm
proposed in [59], is presented in [35].
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More formally, given the set X ∈ V , let ∂X be the border of X and X̄ the
complementary of X . The hole-filling operator H : P(V ) → P(V ) is defined by:

H(X) = V \ CC(X̄ , ∂X), (7.10)

where CC(X̄ , ∂X) is the connected component of X̄ linking with the image border.
Given the operator H , a shape is any element of the set:

S = {H(L)}h ∪ {H(U )}h . (7.11)

If ≤ is total, any two shapes are either disjointed or nested, hence the cover of
S,⊆ makes the tree of shapes.

The definition of the shapes as hole-filled connected components of the lower
L(f) and upper U (f) threshold set proves that the tree of shapes can be seen
as a merge of the min-tree and max-tree. However, the hole-filling operation
creates shapes within neither the min-tree nor the max-tree.

7.2.2.5 Attribute Filters

Component trees and trees of shapes are very attractive since they allow edge-
preserving operations.Accordingly, amongdifferent types of classicalmorphological
operators, originally developed in [130, 131], attribute filters [20] have been largely
diffused.

Attribute filters are connected operators that act on connected components
according to an attribute criterion. By attribute we mean any measure that
could be computed on a connected component.

Therefore, an attribute can be related to the geometry and shape (e.g., area, bound-
ing box, image moments), to the texture (e.g., standard deviation, entropy), contour
and context (such as the context-based energy estimator [154]). In detail, given a
tree representation, the value of an attribute A is evaluated on each node Nk

h ( f ) and
compared with a reference threshold λ in a binary predicate Tλ:

Tλ := A
(
Nk
h ( f )

) ≥ λ. (7.12)

In general terms, if the predicate is true, the node is preserved, otherwise it is
removed. In literature, different strategies of remove/preserve decisions have been
defined [145]. According to the type of predicate and the property of A, the result-
ing connected operator can be defined as increasing or non-increasing. In the con-
text of a tree structure, this characteristic is related to the criterion assessed for
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each node. An operator is considered increasing when the predicate is in the form
Tλ = A(Nk

h ( f )) ≥ λ or Tλ = A(Nk
h ( f )) ≤ λ and the attribute is increasing, mean-

ing that the attribute computed on a node is always bigger than those computed on
its descendant nodes in the tree. An example of increasing attributes are those that
in some way are related to the scale of the region, such as the area, defined as the
number of pixels composing the connected region. Vice versa, when the attribute
is not increasing, the attribute value computed on a node can be smaller than those
computed on its descendants in the tree. Examples of non-increasing attributes are
those related to the analysis of shape, texture, energy, such as standard deviation and
moment, which are independent of the dimension of the connected component.

Regarding the filtering strategies, two general approaches might be used: pruning
and non-pruning strategies. The former strategy consists in removing entire branches
of the tree. A single cut is made along each path from leaf to root, and all nodes leaf-
side of the cut are collapsed onto the highest surviving ancestor. This strategy is
simple to apply especially when the chosen attribute is increasing since all nodes
for which the criterion is not verified are organized in entire branches (i.e., if a node
has to be removed, all of its descendants also have to be removed). Examples of
pruning strategies are the min and max rules [146]. Non-pruning strategies provide
solutions for such cases where the simplification approach is not straightforward, as
it is for non-increasing attributes, where the descendants of a node to be removed
have not necessarily been removed). For instance, the simplification of the tree is not
limited to the removal of entire branches but also isolated nodes might be removed
along a root path. Many approaches have been proposed in the literature, such as the
Viterbi algorithm [54, 125], optimization methods [155], the direct rule [146] and
the subtractive rule [145].

7.2.3 Multilevel Image Representation

The joint use of spectral and spatial information has become a standard procedure
in image classification, especially in high resolution remote sensing image analysis,
where the extraction of contextual information allows us to deal with the increase of
within-class spectral variability introduced by the high geometrical detail (see also
Chap.3).

An efficient strategy for the extraction of contextual information is represented
by multilevel analysis, where the spatial relations between pixels belong-
ing to homogeneous regions or structures are modelled at different levels of
abstraction, from pixel-level (i.e., high resolution) to region-level (i.e., low-
resolution).

Considering the exploitation of both increasing and non-increasing attributes, the
term“multiscale” needs to be replacedby themoregeneral term“multilevel.” Starting

http://dx.doi.org/10.1007/978-3-319-66330-2_3


7 Remote Sensing Data Fusion: Markov Models and Mathematical Morphology … 291

from the definition of attribute filters, a multilevel representation of an image can
be obtained by performing a sequential morphological filtering considering coarser
filtering thresholds, resulting in a vector of filtered images, denoted as profile. More
formally, given a family of L either increasing or decreasing criteria T = {TΛ},
where Λ = {λi }Li=1 identifies a set of scalar values used as reference thresholds, a
profile is defined as a vector of filtered images resulting from a sequential application
of a connected operator ψ , where a criterion Tλi is evaluated at each filter step:

Pψ := {
ψλi

}L
i=1 . (7.13)

Such structure was introduced in [116], where amorphological profilewas defined as
the concatenation of the morphological closing profile and morphological opening
profile obtained by exploiting operators by reconstruction. In this case, the use of
operators by reconstruction, which are based on a SE and thus increasing operators,
led to a multiscale decomposition of the scene. In [40], the same concept was applied
to attribute filters, introducing the attribute profiles. By considering themax-tree and
themin-tree representations, the computed attribute opening profile, Pγ , and attribute
closing profile, Pφ , are respectively defined as:

Pγ = {
γ T0 , γ Tλ1 , . . . , γ TλL

}
, (7.14)

Pφ = {
φT0 , φTλ1 , . . . , φTλL

}
, (7.15)

where γ T and φT represent the attribute opening and attribute closing, respectively,
{Ti } is a criterion evaluated on the set of thresholds Λ and φT0( f ) = γ T0( f ) = f
represents the original image. An attribute profile (AP) is defined as a vector of
filtered images resulting from the concatenation of the attribute closing profile taken
in reverse order, P−

φ , such that each entry is greater than or equal to the subsequent
one, with the attribute opening profile:

AP = {
P−

φ /φT0 , Pγ

}
. (7.16)

The resulting multilevel structure is composed of 2L + 1 filtered images, given by
L closings, the original image and L openings). Analogously, when considering
the contrast invariant operator ρ based on the tree of shapes, the profile Pρ , named
self-dual attribute profile [30, 41], is obtained as:

Pρ = {
ρT0 , ρTλ1 , . . . , ρTλL

}
, (7.17)

with ρT0( f ) = f . In the case of self-dual attribute profile (SDAP), the resulting
feature vector counts L + 1 filtered images.
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7.2.4 Multi-channel and Multi-attribute Representations

As attribute filters and their multilevel representations are defined for 2D images, any
of their extensions to amultivariate scenario is an ill-posedproblem.Asimple strategy
to extract multilevel representations in a multi-channel scenario relies on performing
image decompositions considering each channel separately, obtaining a vector of
profiles. However, such strategy is feasible when the number of channels is relatively
small, while it becomes unattainable when high dimensional data are considered, as
it is in case of hyperspectral data (see Chap.2). To mitigate this issue and to be
able to extract features to model the contextual information in high-dimensional
data, in [9], morphological profiles were built on a sub-set of features obtained
via principal component analysis (PCA). The concatenation of each morphological
profile provided a new structure named extended morphological profile (EMP). A
similar strategy was adopted to create multi-channel structures exploiting connected
operators based on tree representations. In [39], extended attribute profiles (EAPs)
were introduced as the concatenation of attribute profiles:

E AP =
{
AP(C1), AP(C2), . . . , AP(CR)

}
. (7.18)

As a general strategy, a subspace of R features, Ci , with i = 1, . . . , R, is extracted
from the original high-dimensional data via feature dimensionality reduction and
used as input to the morphological analysis. In literature, several studies can
be found focusing on the impact of different feature extraction approaches. In
[41, 50], independent component analysis (ICA) was considered as feature extrac-
tion for dimensionality reduction. Comparison of extended attribute profiles built
on subsets of features extracted by using PCA, kernel-PCA, discriminant analysis
feature extraction (DAFE), decision boundary feature extraction (DBFE) and non-
parametric weighted feature extraction (NWFE) [76] can be found in [11, 36, 96,
114]. Wavelet transform was also exploited in the context of hyperspectral image
classification in [120].

Due to the higher flexibility in modelling contextual information, such operators
have been proven to bemore effective in image classification with respect to morpho-
logical filters based on structuring elements and their extensions. In case of self-dual
operators, the multi-channel extension of self-dual attribute profileswere introduced
in [30], resulting in the definition of extended self-dual attribute profiles (ESDAPs):

ESDAP =
{
SDAP(C1), SDAP(C2), . . . , SDAP(CR)

}
. (7.19)

Considering the flexibility of attribute filters in modelling the filter criterion, a
further extension is defined by the concatenation of extended profiles obtained by
considering different attributes, resulting in the definition of extended multi-attribute
profile (EMAP) [39], which is defined as follows:

http://dx.doi.org/10.1007/978-3-319-66330-2_2
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EMAP =
{
E APA1 , E APA2 , . . . , E APAQ

}
, (7.20)

where Ai represents the i-th chosen attribute, with i = 1, 2, . . . , Q. In order to avoid
multiple presence in the final structure, the original input feature C1 is included once
only in the first E AP .

Both EAPs and ESDAPs (and their multi-attribute extensions) can be seen as rich
descriptors of the contextual domain of the investigated scene. On the other hand,
filters based on dual representations process regions independently on the contrast
information. This characteristic makes the ESDAPs more versatile in modelling the
spatial context [37] as compared to non-dual operators, especially for those images
characterized by a prevalence of dark or bright regions.

7.2.5 Automatic Filter Parameter Selection

Suitable sets of filter parameters (i.e., thresholds) need to be identified to extract mul-
tilevel features able to represent the contextual domain of the scene under investiga-
tion. Empirical searching based on field-knowledge and visual inspection represents
the common approach, often requiring multiple filtering tests, causing unfavourable
effects in terms of time and computational efficiency. Automatic approaches aimed
at minimizing the manual intervention were recently proposed in literature. In [90],
a large vector of attribute values was derived by computing a chosen attribute on
objects extracted from a preliminary classification of the investigated scene. The
final threshold set was obtained by clustering the vector of values and selecting the
minimum attribute values of each cluster as a candidate threshold. The method pro-
vided better or similar results to the manual selection. In [95], the threshold set was
automatically identified based on a statistical analysis of the available training sam-
ples. The procedure was defined for attribute profiles based on the standard deviation
attribute in a supervised classification scenario. Due to the high dimensionality of
the obtained profiles, a further dimensionality reduction procedure was required in
order to avoid the raising of the Hughes’ phenomenon (see Chap.2). In [56], the
automatic selection was based on the analysis of the characteristic function of the
pattern spectrum [92, 145], which corresponds to the probability density function
of the granulometric curve of the attribute profile, i.e., a curve related to the size
distribution of the structures in the image [133]. The selected thresholds were those
whose characteristic function best approximated the one obtained by considering a
larger set of thresholds. The method required an initial set of thresholds, which was
manually defined prior to the filtering.

Aiming at exploiting the inner properties of hierarchical representations of the
image, the authors in [29] have proposed a methodology for the automatic selec-
tion of thresholds based on the concept of granulometric characteristic functions
(GCFs) [29], suitable for representations obtained by using components trees and
trees of shapes.

http://dx.doi.org/10.1007/978-3-319-66330-2_2
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(a)

(b) (c)

Fig. 7.2 Example of a GCF and threshold selection. a Rome data set (panchromatic channel).
b GCF derived for Rome data set considering the number of changed pixels as measure of interest
(GCFpix ). The GCFpix is computed on the max-tree representation considering the attribute area.
The estimated GĈF is represented by the red line, while the yellow circles identify the breakpoints,
which are used to derive the final set of thresholds. c Estimation error showing the number of
threshold chosen (red point)

GCFs are descriptive functions that derive directly from the tree representation
of the image and are used to describe a particular behaviour of the multi-level
decomposition according to a global measure of interest.

Following this definition, a GCF can be formulated as:

GCF(Pψ( f )) = {M(ψi )}Li=1, (7.21)

where M(ψ) represents a measure of interest computed at level (threshold) i . In
particular, three measures were defined:

• Sum of grey-level values: Similarly to the conventional granulometry, this measure
quantifies the global change in grey-level caused by the filtering.
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Fig. 7.3 Example of opening attribute profile (based on max-tree representation) computed for the
Rome data set by using the attribute area. The thresholds are obtained by analysing the GCFpix
depicted in Fig. 7.2b obtained by considering the number of changed pixels as measure of interest:
a λ = 1658; b λ = 32691; c λ = 84485; d λ = 809471. e–h Residual between adjacent features
(DAP)

• Number of changed pixels: This measure quantifies the filtering effect in terms of
total number of pixels that have changed grey-value. The obtained GCF is more
sensitive to changes in the spatial extent of the regions rather than in grey-levels.

• Number of changed regions: This measure quantifies the filtering effect in terms
of total number of connected components that are affected. This measure is topo-
logically invariant to both the spatial extent and grey-level variations induced by
the filtering.

An example of a GCF computed according to the number of changed pixels and
derived from a max-tree representation is shown in Fig. 7.2b. For this example, the
Rome data set represented by a panchromatic image (see Fig. 7.2a) is considered.
The max-tree representation of the image counts 268004 nodes with 5337 unique
values for the attribute area, representing the whole set of possible thresholds. The
GCF is obtained by computing the measure of interest for the whole set of values.

Once theGCF is computed, an iterative procedure is performed to identify the sub-
set of thresholds that best approximate the global behaviour of the GCF. In particular,
at each iteration the approximated, GĈF (see Fig. 7.2b) is computed by employing a
piecewise linear regression model [80] for an increasing number of thresholds and
evaluated in terms of estimation error. To this purpose, the normalized root mean
squared error (NRMSE) is used, shown in Fig. 7.2c. Considering the monotonically
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Fig. 7.4 Classification results for Rome data set: a original panchromatic image; b reference data:
a buildings, a apartment blocks, a roads, a railway, a short vegetation, a trees, a bare
soil, a soil, a towers; c classification map obtained by using the panchromatic channel alone;
d–f results obtained by using the attribute area; g–i results obtained by using the attribute standard
deviation

decreasing behaviour of the estimation error, the algorithm stops when the point of
maximum curvature of the NRMSE function is found, which provide information
on the number of thresholds that will compose the final threshold set. The subset
of threshold values is then derived by the segments that constitute the GĈF (see
Fig. 7.2b), excluding the extreme values, which correspond to the original input
image and to the final filtered image with a constant grey-scale value, respectively.
An example of opening attribute profile and relative differential attribute profile
(DAP), which shows the residual between adjacent features due to the filtering, are
depicted in Fig. 7.3, showing an effective multi-level representation of the original
input scene.
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Fig. 7.5 Classification results for Reykjavik data set: a original panchromatic image; b reference
data: a small buildings, a open areas, a shadows, a large buildings, a large roads, a streets;
c classification map obtained by using the panchromatic channel alone; d–f results obtained by
using the attribute area; g–i results obtained by using the attribute standard deviation

7.2.6 Experimental Study

In this section, we present experimental results of image classification based on
multilevel feature extraction on two high resolution data sets:

D1 The data set is composed of a panchromatic image acquired by the QuickBird
satellite sensor on 19th July 2004 over the city of Rome, Italy. The data size is
1188 × 973 pixels with spatial resolution of 0.65 m. The acquired scene is a
dense heterogeneous urban area, which includes nine ground reference classes,
namely: buildings, apartment blocks, roads, railway, short vegetation, trees,
bare soil, soil, towers. The data set and the related reference map are shown in
Fig. 7.4a, b respectively.

D2 The data set is composed of a panchromatic image acquired by the IKONOS
satellite sensor on 9th August 2001 over the city of Reykjavik, Iceland. The data
size is 975× 639 pixels with spatial resolution of 1 m. For this scene, six classes
of interest are defined: small buildings, open areas, shadows, large buildings,
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Table 7.1 Classification results obtained for the Rome data set. Each profile is built on the panchro-
matic image considering the attribute

Panchromatic Pρ area

GCFval GCFpix GCFreg
No features 1 6 3 4

Buildings 57.97% (1.31) 95.34% (0.11) 92.95% (0.23) 81.80% (0.24)

Apartment blocks 1.47% (0.92) 87.45% (0.36) 85.34% (0.78) 66.86% (0.66)

Roads 86.87% (0.85) 84.10% (0.53) 80.56% (0.31) 86.48% (0.34)

Railway 0% (0) 91.75% (0.22) 30.40% (2.97) 57.78% (0.68)

Short vegetation 22.31% (4.41) 82.38% (0.25) 77.70% (0.31) 68.64% (0.52)

Trees 1.06% (0.88) 50.71% (0.52) 35.21% (0.76) 49.37% (0.31)

Bare soil 69.64% (2.14) 97.81% (0.10) 89.05% (0.90) 88.21% (0.77)

Soil 0% (0) 73.66% (0.89) 56.48% (1.43) 74.45% (1.00)

Towers 0.44% (0.19) 79.96% (0.76) 58.53% (1.96) 76.71% (0.34)

AA 26.64% (0.18) 82.57% (0.14) 67.36% (0.32) 72.26% (0.12)

OA 41.53% (0.06) 84.27% (0.06) 76.59% (0.15) 75.41% (0.04)

k 28.06% (0.12) 81.25% (0.07) 71.90% (0.19) 70.63% (0.05)

Pρ standard deviation

GCFval GCFpix GCFreg
No features 4 5 7

Buildings 86.87% (0.77) 92.54% (0.16) 88.86% (0.24)

Apartment blocks 77.52% (1.24) 80.89% (0.53) 79.41% (0.48)

Roads 82.82% (0.72) 80.33% (0.27) 82.36% (0.29)

Railway 90.51% (0.56) 91.27% (0.43) 91.56% (0.21)

Short vegetation 73.67% (0.30) 76.46% (0.33) 85.22% (0.21)

Trees 34.56% (1.30) 47.36% (0.69) 54.62% (0.46)

Bare soil 95.26% (0.41) 96.05% (0.27) 96.04% (0.15)

Soil 58.90% (1.36) 63.35% (0.96) 76.30% (0.58)

Towers 60.82% (1.58) 74.28% (0.50) 66.83% (0.33)

AA 73.44% (0.25) 78.06% (0.14) 80.13% (0.12)

OA 76.18% (0.17) 80.22% (0.05) 81.02% (0.09)

k 71.53% (0.21) 76.44% (0.06) 77.39% (0.11)

large roads and streets. The data set and reference map are shown in Fig. 7.5a,
b respectively.

The experimental analysis focuses on the use of self-dual attribute profiles for
image classification. Self-dual attribute profiles are derived by tree of shape, which
are self-dual connected operators that act simultaneously on bright and dark regions.
In literature, several studies can be found focusing on the impact of different fea-
ture extraction approaches. In [41, 50], ICA was considered as feature extraction for
dimensionality reduction. Comparison of EAPs built on subsets of features extracted
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Table 7.2 Classification results obtained for the Reykjavik data set. Each profile is built on the
panchromatic image considering the attribute

Panchromatic Pρ area

GCFval GCFpix GCFreg
No Features 1 5 6 4

Small buildings 39.18% (1.72) 81.45% (0.53) 81.94% (0.46) 74.67% (0.64)

Open areas 47.27% (1.34) 77.06% (1.12) 77.18% (0.85) 66.72% (0.91)

Shadows 93.62% (0.69) 94.61% (0.61) 94.74% (0.38) 94.25% (0.46)

Large buildings 45.42% (1.82) 92.48% (0.40) 93.38% (0.37) 76.73% (1.32)

Large roads 61.25% (1.33) 88.29% (3.11) 90.04% (1.54) 72.37% (2.49)

Streets 39.14% (0.54) 72.55% (1.11) 77.81% (1.15) 66.25% (2.44)

AA 54.31% (0.14) 84.41% (0.60) 85.85% (0.19) 75.17% (0.75)

OA 52.62% (0.13) 83.57% (0.63) 85.04% (0.20) 73.88% (0.76)

k 42.75% (0.16) 80.17% (0.76) 81.95% (0.25) 68.45% (0.92)

Pρ standard deviation

GCFval GCFpix GCFreg
No Features 4 4 6

Small buildings 58.54% (1.01) 62.64% (1.10) 73.98% (0.46)

Open areas 55.74% (2.33) 71.09% (1.56) 79.16% (1.10)

Shadows 92.75% (0.19) 92.54% (0.54) 93.81% (0.29)

Large buildings 84.00% (0.99) 83.88% (0.57) 91.72% (0.40)

Large roads 75.72% (3.71) 81.01% (1.60) 87.46% (0.58)

Streets 49.84% (2.82) 57.05% (0.65) 63.11% (1.93)

AA 69.43% (0.18) 74.70% (0.16) 81.54% (0.18)

OA 67.70% (0.16) 73.75% (0.15) 80.84% (0.16)

k 60.99% (0.20) 68.25% (0.19) 76.84% (0.20)

by using PCA, kernel-PCA, DAFE, DBFE and NWFE [76] can be found in [11,
36, 96, 114]. Wavelet transform was also exploited for hyperspectral image clas-
sification in [120]. Further experimental analysis that focus on the exploitation of
attribute profiles can be found in [8, 38, 40, 152]. Several strategies have also been
defined for improving the spatial information extracted from attribute profiles and
their extensions [46, 50, 134, 159].

Self-dual attribute profiles are extracted by employing the automatic filter parame-
ter selection and considering the three measures defined in Sect. 7.2.5. The obtained
multilevel representation is then used as input to a supervised learning algorithm. An
ensemble random forest classifier was chosen as supervised learning algorithm, in
which the minimum out-of-bag (OOB) error was exploited to estimate the optimum
number of trees. For each experiment, a tenfold cross-validation was performed and
means and standard deviations of class accuracies, overall accuracies (OA), average
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accuracies (AA) and kappa coefficients (k) are reported in Tables7.1 and 7.2. Train-
ing sets were built based on random selection to be 10% of the reference samples,
while the remaining samples were used as test sets.

For the Rome data set, it can be seen that some of the classes of interest can
not be discriminated when the panchromatic image is used alone (see Table7.1). In
particular, the classes apartment blocks, railway, trees, soil, and towers are poorly
detected. This is mainly due to insufficient spectral information that characterizes
panchromatic images. On the other hand, the use of spatial features to enrich the
feature space allows a better classification performance. From the quantitative results
shown in Table7.1, the best classification accuracy was obtained by considering the
attribute area and selecting GCFval as global descriptor for the image decomposition
(seeFig. 7.4d. In the case ofReykjavik data set, the highest classification accuracywas
obtained by using the attribute area and GCFpix as global descriptor (see Fig. 7.5e).
It can be seen in Table7.2 that some of the combinations of attribute-GCF provide
lower classification results. This is due to the fact that GCFs are global descriptors
of certain properties of the multiscale image decomposition, which is highly scene
dependent. Therefore, for a given attribute, the resultingGCF can provemore suitable
than other GCFs. This in turn improves the attribute profile, since it contains salient
structures of the scene under investigation.

7.3 Hierarchical Markov Models for Multisource Image
Classification

In this section we develop a general method for multitemporal, multiresolution, and
multisensor classification of remotely sensed images based on a hierarchicalMarkov-
ian model. The general concepts of MRF models have been discussed in Chap. 4.
Here, we build on a Markovian formulation to fuse multitemporal, multiresolution,
and multisensor data for classification purposes. In particular, our objective is to sat-
isfy two major requirements: (i) the method should be parallelizable to handle large
amounts of input data, and (ii) the method should provide a structure simplifying the
interactions between the images in the input data set. Parallel multi-grid (or pyrami-
dal) schemes are one of the possible approaches satisfying the first requirement.

The hierarchical pyramid structure is a type of signal representation in which
images are organized according to their resolutions (see Fig. 7.6). Specifically,
apyramidP is a stack of imagesIn with the scale parametern ∈ {0, 1, . . . , R}
and R denotes the height of the pyramid. An element of this pyramid is called
a node and may correspond to a pixel or a group of pixels.

To address the second requirement, for each node of the pyramid we define a
set of links to other nodes to model interscale interactions. The theory of multiscale
signals has been widely studied [91], and their representations naturally lead to tree-

http://dx.doi.org/10.1007/978-3-319-66330-2_4
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Fig. 7.6 Hierarchical pyramid structure for image processing: a images are organized according to
their resolutions in a pyramid structure; b upward shift (δ), forward shift (β), and interchange (α)
operators associated with the relations among a node s in the pyramid, its parent s−, its children
s+, and its descendants d(s)

based models [88]. In particular, dyadic trees and quad-trees have been considered
for modeling these inter-scale interactions in 1D and 2D signals, respectively [88].
The selection of these structures is justified by their causality properties over scale
and by the availability of fast optimization methods. Specifically, we refer to the
Markovian causality with respect to scale, i.e., the probability of observing a label
at any tree node conditioned on the labels of all the node’s ancestors reduces to the
dependence on the label of the parent node.

Let us denote a generic node of a quad-tree as s and the set of all nodes as
S (s ∈ S ⊆ Z

2). Each node is a pixel in an image located at the corresponding
level of the tree. The set of nodes is then hierarchically partitioned, (i.e., S = S0 ∪
S1 ∪ . . . ∪ SR) where Sn indicates the subset of nodes associated with the nth level
(n = 0, 1, . . . , R); n = R denotes the root of the tree (coarsest resolution) and n = 0
indicates its leaves (finest resolution). In this structure, a parent-child relationship
can be defined: an upward shift operator δ such that s− = δ(s) is the parent of node
s. The operator δ is not one-to-one, but four-to-one because each parent has four
offspring in the quad-tree structure. We define the forward shift operator β such that
s+ = β(s) is the set of the descendants of s, the interchange operator α is defined
as between the nodes in the identical scale, and d(s) is the set including s and all its
descendants as illustrated in Fig. 7.6. This framework allows data from sensors with
different resolutions and spectral band compositions to be integrated in the same
processing mainframe.

A novel aspect of the approach described here is the multitemporal component
(see also Chaps. 8 and 9). We employ multiple pyramids and quad-trees in a cascade,
each pyramid being associated with the set of images available at a specific date to
characterize the temporal correlations associated with distinct images in the input
time series. We build new operators to link between the nodes across different dates.

http://dx.doi.org/10.1007/978-3-319-66330-2_8
http://dx.doi.org/10.1007/978-3-319-66330-2_9
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Therefore, we define a multitemporal upward shift operator ω such that s= = ω(s)
is the parent of node s in the previous date of the time series. Furthermore, to char-
acterize the temporal correlation between images given at different dates, we define
a multitemporal interchange operator τ such that s# = τ(s) is the node in the same
scale and position as s but in the previous date.

The proposed multitemporal hierarchical structure allows supporting the joint
classification of both multitemporal and multiresolution images. In case when only
one image is available at one of the acquisition dates, then such image is included
in the finest resolution layer of the corresponding quad-tree. If multiple images with
distinct resolutions are available, then the images are included at different quad-tree
levels. In this case, the quad-tree underlying assumption requires that the resolutions
of the input images are related as powers-of-2. This condition is satisfied with minor
approximations by most current multiresolution spaceborne optical sensors, so it is
operatively only a mild restriction. After the input images are included in the layers
corresponding to their resolutions, level 0 of the quad-tree corresponds to the finest-
resolution input image, while some intermediate levels may generally lack data and
are filled using wavelet transforms [91] of the images on the lower (finer resolution)
layers.

The hierarchical structure allows, in a natural way, the use of an explicit statistical
model through a hierarchical MRF. This formulation is based on a set of random
fields, which are associated with the different scales, and exploiting the operators
defined above on the quad-tree structure. Let us denote the class label of site s as a
discrete random variable xs . If there are M classes in the considered classification
scenario, then the labels take values from the set Λ = {0, 1, . . . , M − 1}, xs ∈ Λ.
The class labels of all pixels can be collected in a set X = {xs}s∈S of random fields
Xn

t = {xs}s∈Snt associated with each scale n and time t , where Snt is the related set
of lattice points. The configuration space Ω = Λ|S| is the set of all global discrete
labellings (i.e., X ∈ Ω).

A hierarchical Markov model on the quad-tree structure is determined by the
following assumptions:

(i) The sequence of random fields from coarse to fine scales forms a Markov
chain over scale and time:

P
(
Xn

t |Xq
p, p < t, q > n

) = P
(
Xn

t |Xn+1
t ,Xn+1

t−1

)

(ii) The transition probabilities of this Markov chain factorize so that the com-
ponents (nodes) of Xn

t are mutually independent given Xn+1
t and Xn+1

t−1 :

P
(
Xn

t |Xn+1
t ,Xn+1

t−1

) =
∏

s∈Snt
P (xs |xs− , xs=) .
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The quad-tree structure benefits from causality and parallelizability properties dis-
cussed above, but also allows non-iterative algorithms. The latter results in a decrease
of computational time compared to iterative optimization required for graphs [75].

7.3.1 Bayesian Classification

The aim of the classification is to estimate the value of the hidden label fieldX given
a realization of a random field of observations Y = {ys}s∈S attached to the set of
nodes S. In this context, we consider the problem of inferring the “best” configuration
X̂ ∈ Ω . The standard Bayesian formulation of this inference problem consists of
minimizing the appropriate risk functions:

X̂ = arg min
X′∈Ω

E
{
C(X,X′)|Y}

, (7.22)

where C is the cost function penalizing the discrepancy between the estimated con-
figuration and the “ideal” random configuration, and E{·} is the expectation operator.

Among the different classification algorithms employed on a quad-tree structure
in the literature, two have been widely used. The first algorithm aims to estimate
exactly the maximum a posteriori (MAP) configuration with the following cost:

CMAP(X,X′) = 1 − δ(X,X′) = 1 −
∏

s∈S
δ
(
xs, x

′
s

)
, (7.23)

where δ (·) is the Kronecker delta (i.e., δ (a, b) = 1 for a = b, and δ (a, b) = 0
otherwise). This function implies the same cost for all pairs of configurations that
differ in, at least, one site. From Eqs. (7.22) and (7.23), the MAP estimator of the
label field is:

X̂MAP = argmin
X∈Ω

P (X|Y) (7.24)

This combinatorial optimization problem can be resolved with: (i) a Kalman-like
filter, due to the formal similarity betweenMRFmodels and the spatio-temporalmod-
els used in Kalman approaches for optical flow [87], or (ii) a Viterbi algorithm [54].
The extension of the Viterbi algorithm, which computes the exact MAP estimate of
X given Y on the quad-tree has been first introduced in the context of probabilistic
expert systems [44], and then in the context of image classification by proposing
a non-iterative algorithm on the quad-tree. However, these algorithms are affected
by underflow problems because of the small probabilities involved [115]. Moreover,
according to (7.23), theMAP cost function penalizes the discrepancies between con-
figurations regardless of their corresponding scales [70]. Specifically, an error at a
coarser scale will be paid the same cost as an error at a finer scale whereas it is desir-
able to have a higher cost for errors at coarser levels because they may generally
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lead to the misclassification of groups of pixels at level 0 (e.g., one pixel at the root
corresponds to 4R pixels at the finest scale, when considering a 2-by-2 hierarchical
grid).

The marginal posterior mode (MPM) rule is based on a criterion function
that aims at segmentation accuracy and allows errors on distinct scales to be
penalized differently. The cost function of MPM is:

CMPM(X,X′) =
∑

s∈S

[
1 − δ

(
xs, x

′
s

)]
, (7.25)

which is related to the number of sites in which two label configurations differ.
The MPM criterion penalizes errors according to their number, consequently
to the scale at which they occur. The related Bayesian estimator is given by:

∀s ∈ S, x̂s = argmax
xs∈Λ

P(xs |Y), (7.26)

which produces the configuration that maximizes at each site s the a posteriori
marginal distribution of xs conditioned to all observations Y.

Furthermore, as shown in [19], MPM adapts well to the quad-tree topology.
Indeed, because the tree is acyclic, the labels are estimated recursively by MPM
through a forward-backward algorithm similar to the classical Baum andWeiss algo-
rithm for Markov chains [6].

7.3.2 Multitemporal MPM Inference

In this section we extend the classical MPM to the described multitemporal hierar-
chical structure with the goal of supporting the joint classification of input images
coming at multiple spatial resolutions on different times. As will be exemplified in
Sect. 7.3.5 and has been mentioned in Sect. 7.1.2, multisensor input data can also be
supported by resorting to copula functions.

The posterior marginal P(xs |Y) of the label of each spatio-temporal node s can
be recursively expressed as a function of the posterior marginal P(xs− |Y) of
the parent node s− in the corresponding quad-tree and the posterior marginal
P(xs= |Y) of the parent node s= in the quad-tree associated with the previous
date, to characterize the temporal correlations associated, at different scales,
with distinct images in the input time series. Indeed, the posterior marginal can
be written as follows:
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P(xs |Y)︸ ︷︷ ︸ =
∑

xs− ,xs= ∈Λ

P(xs |xs− , xs= ,Ys) · P(xs− |Y)︸ ︷︷ ︸ · P(xs= |Y)︸ ︷︷ ︸, (7.27)

where underbraces denote the marginal posteriors of interest to the MPM and
Ys = {ys ′ }s ′∈d(s) collects the observations of all descendants of site s.

This equation involves two conditional independence assumptions:

A1 The label xs , given the labels of its parents xs− and xs= on the same and the
previous dates, depends only on the observationsYs of site s and its descendants
but not on those of the other sites, i.e., P(xs |Y, xs− , xs=) = P(xs |Ys, xs− , xs=);

A2 Given the observations, the label of the parent s− of a site s on the same
date is independent on the label of the parent s= on the previous date, i.e.,
P(xs− |xs= ,Y) = P(xs− |Y).

These assumptions are analogous to the conditional independence assumptions
that are commonly accepted in hierarchical and single-scaleMRF-based image analy-
sis. These assumptions lead to the expression (7.27) for the posterior marginals.

This formulation allows calculating recursively the posterior marginal P(xs |Y) at
each spatio-temporal node s. Indeed, using arguments similar to [75], the following
statement can easily be derived:

P(xs |xs− , xs= ,Ys) ∝ P(xs , xs− , xs=|Ys) = P(xs |xs− , xs= )P(xs−|xs= )P(xs=)P(xs |Ys)

P(xs)
,

(7.28)

Note that this statement holds under the following additional assumption:

A3 The distribution of the labels s− and s= of the parents of a site s are independent
on the observations Ys of the descendants of s, when conditioned to the label xs
of s, i.e., P(xs− , xs= |xs,Ys) = P(xs− , xs= |xs).

In (7.28), the first factor on the right hand side P(xs |xs− , xs=) corresponds to
the child-parent transition probability; P(xs) is the prior probability; P(xs− |xs=) is
the temporal transition probability in the same scale; and P(xs |Ys) is the partial
posterior marginal probability. To compute these probabilities, we benefit from the
hierarchical structure defined above and use three recursive passes on the quad-tree,
including one “bottom-up” and two “top-down” passes described in the following.
For brevity, only the steps associated with a pair of images acquired on two different
times (t = 0 and t = 1) are explained, see Fig. 7.7. The recursive extension to more
than two acquisition times is straightforward.

I. Time t = 0: single-date MPM. According to the cascade approach, first, classi-
fication is performed at time t = 0 using a single-date MPM as in [75], where the
segmentation is obtained recursively over scales through a top-down and a bottom-
up stages. Details of this single-date formulation can be found in [75]. We only
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Fig. 7.7 Multitemporal recursive formulation of the MPM criterion on two quad-trees of depth
R = 2 corresponding to two acquisition dates. Blue, green, and red arrows indicate the calculations
performed by the first top–down, the bottom–up, and the second top–down passes. For each pass,
numbers 1 and 2 indicate initialization and recursive computation, respectively

recall that the process is initialized by predefining the pixelwise prior probability
distribution on the root of the corresponding quad-tree, i.e., P(xs), s ∈ SR

0 . This
initialization is required to begin a top-down recursion and compute the priors in all
levels of the quad-tree at time 0.A simple initialization strategy is to use a uniform
prior distribution on Λ. Here, to incorporate spatial contextual information and mit-
igate possible blocky artifacts [115], a case-specific initialization strategy is applied
that makes use of a spatial MRF model: a neighborhood system is defined on the
lattice SR

0 in the root at time 0, and for each pixel s ∈ SR
0 , the unconditional prior

P(xs) is replaced by the local conditional prior P(xs |x ′
s, s

′ ∼ s, s ′ ∈ SR
0 ), where

s ∼ s ′ denotes that the sites s and s ′ are neighbors. This choice generally provides
a biased prior-probability estimate but favors spatial adaptivity, a desired property
when working with high resolution images in which spatial details are common.

The well-known Potts MRF model, which favors the same labelling in homoge-
neous image regions, is used [70], i.e.:

p
(
xs |xs ′ , s ′ ∼ s, s ′ ∈ SR

0

) ∝ exp

[
−β

∑

s∼s ′
δ (xs, xs ′)

]
, (7.29)

where β is a positive spatial smoothness parameter. Several methods have been
proposed to optimize the value of this parameter including the maximization of
the pseudo-likelihood function over the training set [58]. As a result of single-time
processing at time t = 0, the posterior marginal P(xs |Y) is known for each pixel of
the corresponding quad-tree; P(xs |Ys) is also derived as a by-product (s ∈ Sn0 , n =
0, 1, . . . , R), see in [75].

II. Time t = 1: first top-down pass. In the proposed method, the recursive top-
down / bottom-up formulation used for the single-time case in [75] is extended to
the multitemporal classification at time t = 1. In this case as well, first, the prior
distribution on the root lattice, i.e., P(xs), s ∈ SR

1 , has to be defined to initialize a top-
down pass. Following the cascade approach, we take advantage of the processing



7 Remote Sensing Data Fusion: Markov Models and Mathematical Morphology … 307

conducted at time t = 0: for each pixel s ∈ SR
1 the unconditional prior P(xs) is

initialized as the posterior marginal P(xs# |Ys# ), which corresponds to the same pixel
location s# ∈ SR

0 in the root lattice SR
0 at t = 0 (blue arrow labeled ‘1’ in Fig. 7.7)

and has been computed as a by-product of the single-date MPM application at time
t = 0.

After initializing the prior in the root, a top-down pass (blue arrow labeled ‘2’ in
Fig. 7.7) is performed for each finer level n < R at time t = 1. The prior distribution
is derived as a function of the prior distribution at the parent level and of the transition
probabilities from the parent to the current level (s ∈ Sn1 , n = 0, 1, . . . , R − 1):

P(xs) =
∑

xs− ∈Λ

P(xs |xs−)P(xs−). (7.30)

This derivation favours an identical parent-child labelling and models the statis-
tical interactions between consecutive levels of the quad-tree. We model the tran-
sition probability in the form introduced by Bouman et al. [19], i.e. (s ∈ Sn1 , n =
0, 1 · · · , R − 1):

P(xs |xs−) =
{

θ, xs = xs−
1−θ
M−1 , xs �= xs−

, (7.31)

where θ is a parameter ranging in [1/M, 1]. As a result of the first top-down pass,
the prior P(xs) is derived for each pixel s ∈ Sn1 , with n = 0, 1, . . . , R at time t = 1.

III. Time t = 1: bottom-up pass. A bottom-up pass recursion is then performed
to estimate the joint probabilities P(xs, xs− , xs= |Ys) starting from the leaves of the
quad-tree at t = 1 and proceeding until the root is reached based on (7.28).

In addition to priors, which have been computed in the previous top-down pass,
three sets of probabilities are required to compute this factorization: (i) the set of tem-
poral transition probabilities at the same scale P(xs− |xs=); (ii) the child-parent tran-
sition probability P(xs |xs− , xs=); and (iii) the partial posterior marginals P(xs |Ys).
We will present the derivations for the quantities (i) and (ii) in the next subsection.

The partial posterior marginals P(xs |Ys) are proven to satisfy (s ∈ Sn1 , n =
1, 2, · · · , R) [75]:

P(xs |Ys) ∝ p(ys |xs)P(xs)
∏

s ′∈s+

∑

xs′ ∈Λ

P(xs ′ |Ys ′)P(xs ′ |xs)
P(xs ′)

, (7.32)

which recursively relates the value on a node to those on the offspring nodes.

The bottom-up pass proceeds recursively starting at the leaves of the quad-tree
with P(xs |ys) ∝ p(ys |xs)P(xs) (green arrow labeled ‘1’ in Fig. 7.7) all the way until
the root is reached using (7.32) (green arrow labeled ‘2’ in Fig. 7.7). Calculation of
(7.32) involves the pixelwise class-conditional PDFs p(ys |xs), whose derivation we
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also present in the next subsection. As a result of the bottom-up pass, we can now
compute P(xs, xs− , xs= |Ys) at each level of the quad-tree.

IV. Time t = 1: second top-down pass. According to (7.27), first, the posterior
marginal is initialized at the root of time t = 1 (red arrow labeled ‘1’ in Fig. 7.7). For
this purpose, we initialize P(xs |Y) as P(xs |Ys) for s ∈ SR

1 , as in the usual single-
date formulations of MPM [75]. Then, the posterior P(xs |Y) at each pixel s for all
other levels at time t = 1 (s ∈ Sn1 , n = 0, 1, . . . , R − 1) can be easily computed
recursively in a top-down pass (red arrow labeled ‘2’ in Fig. 7.7) using (7.27).

V. Combination with MMD. At each time t ∈ {0, 1}, the above steps lead to
the computation of the posterior marginal P(xs |Y) on each pixel s ∈ Snt , n =
0, 1, . . . , R. In principle, the class label xs that maximizes P(xs |Y) over Λ could be
selected and assigned to s. This is often avoided in the literature of hierarchicalMRFs
because of its computational burden (linear with respect to the number of classes
and the number of sites in all scales and times) and of possible blocky artifacts,
see in [115]. As an alternate approach, here, a case-specific hybrid of the iterated
conditionalmode (ICM)andmodifiedMetropolis dynamicsmethods forMRFenergy
minimization [70] is applied separately for each scale and time. This hybrid employs
random sampling for the site selection and label proposal and uses a deterministic
rule for the new label acceptance. We will refer to this algorithm as MMD.

In the case of the root layer of the quad-tree corresponding to each time t , MMD
is used to minimize the following energy with respect to the label configurationXR

t :

U (XR
t |Y) = −

∑

s∈SR
t

ln P(xs |Y) − β
∑

s,s ′∈SR
t ,s∼s ′

δ(xs, xs ′), (7.33)

where the first term is expressed in terms of the pixelwise posteriors computed by
MPM and the second contribution is due to the Potts model on the root of the tree.
MMD is iterative and is initialized with a randomly generated configuration of the
label fieldXR

t . At each iteration, it randomly draws one pixel s ∈ SR
t and a candidate

label for s using a uniform distribution: if this label yields a decrease in U (XR
t |Y),

then it is assigned to s; otherwise, it is discarded [70].
In the case of each other layer n = 0, 1, . . . , R − 1, no Potts model is used and

MMD is applied to minimize:

U
(
Xn

t |Y
) = −

∑

s∈Snt
ln P(xs |Y), (7.34)

i.e., in this case, MMD is equivalent to iteratively selecting a random subset of
pixels for which random replacements in class membership are attempted. In all
cases, the iterative procedure of MMD is repeated until the difference in energy on
consecutive iterations goes below a predefined threshold (set to �Umin = 10−4 in
the experiments).

In the case of the root layer, the solutions obtained using MMD and maximizing
P(xs |Y) directly intrinsically differ because the former takes into account spatial
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context through the Potts model while the latter does not. In the case of the other
layers, MMD acts as a randomized and computationally faster version of the maxi-
mization of P(xs |Y) in every pixel.

7.3.3 Transition Probabilities

The transition probabilities between consecutive scales and dates determine the
properties of the hierarchical MRF because they formalize the causality of the sta-
tistical interactions involved. In the proposed method, two types of probabilities
involve time. The first is the set of temporal transition probabilities at the same scale
P(xs− |xs=), which are estimated using a specific formulation of the expectation-
maximization (EM) algorithm [47]. An iterative fixed-point EM-like algorithm is
performed to estimate the prior joint probabilities P(xs− , xs=) for each scale n,
and the temporal transition probabilities are then derived [22]. The probabilities
J�m = P(xs− = �, xs= = m) (�,m ∈ Λ = {0, 1, . . . , M − 1}) are regarded as the
elements of an M × M matrix J , which is computed by maximizing the following
pseudo-likelihood (n = 0, 1, . . . , R):

L(J ) =
∏

s∈Sn1

M−1∑

�=0

M−1∑

m=0

J�m p(ys− , ys= |xs− = �, xs= = m). (7.35)

The recursive equation to be used to maximize (7.35) writes as:

J new
�m ∝

∑

s∈Sn1

J�m p(ys− |xs− = �)p(ys=|xs= = m)
∑M−1

h,k=0 Jhk p(ys− |xs− = h)p(ys=|xs= = k)
, (7.36)

and is initialized flatly with J�m = 1/M2 for all �,m = 0, 1, . . . , M − 1.
The second type of transition probabilities that involve time is the child-parent

transition probability P(xs |xs− , xs=). To our best knowledge, a case-specific for-
mulation of EM is not available for inter-scale transition probabilities. However,
parametrically modelling these probabilities have demonstrated an effective choice
in the case of single-date classification [75].We extend here the model in [19], which
favours the identity between the children and parents (in the current and previous
dates), all other transitions being unlikely:

P(xs |xs− , xs=) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ, xs = xs− = xs=

ϕ, (xs = xs− or xs = xs=) and xs− �= xs=

1−θ
M−1 , xs �= xs− and xs �= xs= and xs− = xs=

1−2ϕ
M−2 , xs �= xs− and xs �= xs= and xs− �= xs=

(7.37)
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with the parameters θ > 1/M and 1/M < ϕ < 1/2. Here, θ has the same meaning
as in (7.31), and the same value is used in both transition probabilities.

7.3.4 Pixelwise Class-Conditional PDFs

Given a training set for each input date, for each classm, scale n and acquisition time
t we model the corresponding class-conditional marginal PDF p(ys |xs = m) using
finite mixtures of independent distributions:

p(ys |xs = m) =
Kmnt∑

k=1

πmnt
k Fmnt

k

(
ys |ψmnt

k

)
, ∀s ∈ Snt , (7.38)

where πmnt
k are the mixing proportions, ψmnt

k is the vector of the parameters of the
kth PDF mixture component of class m at scale level n and time t , and Fmnt

k (·) is the
corresponding parametric family (n = 0, 1, . . . , R;m = 0, 1, . . . , M −1; t = 0, 1).

When the data at scale n and time t are multispectral or SAR, each class-
conditional marginal PDF p(ys |xs = m) is modeled by a multivariate Gaussian
mixture [76] or a generalized Gamma mixture [73], respectively. These assump-
tions, especially when combined with finite mixtures, are widely accepted for these
types of data. The use of finitemixtures instead of single PDFs offers the possibility to
consider heterogeneous PDFs, usually reflecting the contributions of different mate-
rials present in each class. This class heterogeneity is relevant when we address VHR
images. The parametersψmnt

k and πmnt
k are estimated through the stochastic expecta-

tion maximization (SEM) algorithm [32], which is an iterative stochastic parameter
estimation algorithm developed for problems characterized by data incompleteness
and approaching, under suitable assumptions, maximum likelihood estimates. For
each scale and time, SEM is separately applied to the training samples of each class
to estimate the related parameters. We note that SEM also automatically estimates
the number of mixture components Kmnt [74]. Only the maximum number of such
components has to be predefined (and, in our experiments, was fixed to 10).

7.3.5 Experimental Study

In this section, we present several results of the developed hierarchical classifier on
two datasets:

D3 A three-date time series of panchromatic and multispectral Pléiades images
acquired over Port-au-Prince (Haiti) in 2011, 2012, and 2013, provided by the
French Space Agency (CNES).
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D4 A multisensor optical-SAR dataset consisting of one pansharpened GeoEye
image provided by GeoEye Inc. and Google crisis response, and one HH-
polarised COSMO-SkyMed acquisition of Port-au-Prince (Haiti) in 2010 pro-
vided by the Italian Space Agency (ASI).

More experimental analysis with these and other datasets is reported in [64, 149].
Five land cover classes have been considered for both data sets: urban, water, veg-
etation, bare soil, and containers. These classes represent semantically high level
land covers. The spatially disjoint training and test samples have been annotated
manually inside homogeneous areas. In the case of the Pléiades images, the finest
resolution of the multiresolution pyramid (level 0) was set equal to the finest res-
olution of the panchromatic data (i.e., 0.5 m). Co-registered multispectral images
(at 2 m) were integrated in level 2 of the pyramid. To fill level 1, a wavelet decompo-
sition of the panchromatic image was used. As a preliminary experiment, the exper-
imental analysis of the appropriateness of various wavelet transforms have been
performed. It has demonstrated Daubechies 10 wavelets as the most appropriate, see
in [64].

The proposed method depends on four parameters which have the following val-
ues: β = 0.8 in Eqs. (7.29) and (7.33), θ = 0.85 in Eqs. (7.31) and (7.37), ϕ = 0.48
in Eq. (7.37), and R = 2. The value of β was automatically optimized by applying
the pseudo-likelihood method to the training samples [70]. For (7.37) to define a
probability distribution, θ and ϕ can take values in [0, 1] and [0, 0.5], respectively,
in the case of M = 5 classes. The experimental study performed in [64] reported
that the overall accuracy of the method grows with the larger values of these two
parameters until approximately θ = 0.8 and ϕ = 0.4, where the accuracy reaches a
plateau.

In this section, we present the classification maps and discuss the corresponding
classification accuracies that were obtained on the test set. Figure7.8 and Table7.3
report the results obtained on the multitemporal optical dataset D3, and Fig. 7.10
and Table7.4 present those obtained on the multisensor dataset D4. The reported
computation times refer to a C++ implementation on an Intel i7 quad-core (2.40
GHz) 8-GB-RAM 64-bit Linux system. The analysis of the classification maps has
suggested that the proposed hierarchical method leads to accurate results. To allow
for a better evaluation of the obtained results we report several comparisons with
benchmarkmethods exploitingmultiresolution, multisensor or multidate techniques.

Multitemporal D3 dataset. The results of the proposed technique were compared
to the separate hierarchical classification results obtained at individual dates using
the multiresolution single-time method in [75]. This comparison suggests the higher
effectiveness of the proposed hierarchical model in fusing the temporal, spatial,
and multiresolution information associated with the input data, see Table7.3. In
practice, the use of one quad-tree structure with the MPM criterion yields “blocky”
segmentation, see Fig. 7.9. This phenomenon can be explained by the fact that two
neighboring sites at a given scale may not have the same parent. In this case, a
boundary appears more easily than when they are linked by a parent node. These
blockiness is avoided by the introduction of causalilty over both time and scale.
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(a) Pléiades 2011 ( c©CNES) (b) Pléiades 2012 ( c©CNES) (c) Pléiades 2013 ( c©CNES)

(d) Laferté et al. MPM [75] (e) Laferté et al. MAP [75] (f) Melgani et al. [98]

(g) Proposed method (h) K-NN + MRF (i) K-means

Fig. 7.8 Classification maps obtained on a temporal series of multiresolution Pléiades images,
(© CNES distribution Airbus DS; displayed after histogram equalization). Classes: a urban, a
water, a vegetation, a bare soil, and a containers.

Table 7.3 Classification accuracies on the multitemporal optical Port-au-Prince dataset

Method Urban
(%)

Water
(%)

Vegetation (%) Bare soil
(%)

Containers (%) Overall (%) Time (%)

Proposed
method

81.62 100 90.69 92.82 62.82 85.59 480 s

Laferté et
al. MPM

77.45 88.62 72.59 86.02 57.02 76.34 160 s

Laferté et
al. MAP

56.14 100 81.90 87.02 73.21 79.65 220 s

Melgani
et al.

80.63 100 86.33 87.61 69.61 84.83 ≈ 1h

K-NN +
MRF

96.84 92.42 47.15 71.83 16.75 64.99 90 s

K-means 12.37 98.63 59.18 91.66 29.42 58.25 20 s
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Table 7.4 Classification accuracies on the multisensor optical-SAR Port-au-Prince dataset

Method Water
(%)

Urban
(%)

Vegetation
(%)

Bare soil
(%)

Containers
(%)

Overall
(%)

Proposed
SAR+opt.

100 75.24 87.16 98.89 49.31 82.12

Proposed
opt.

100 67.12 86.89 98.83 41.90 78.95

Single-
scale
MRF

100 100 81.42 99.94 59.62 88.20

Storvik
et al. [136]

99.95 79.32 90.81 96.22 37.25 79.44

GML [14]
+ MRF

99.99 84.51 93.24 99.68 58.64 86.28

K-means 100 39.01 91.19 82.32 6.54 57.30

Fig. 7.9 Zoom-ins of two classification maps from Fig. 7.8: blocky artefacts obtained using the
Laferté et al. [75] MPM formulation (left), and reduction of these artefacts using the proposed
method (right)

As expected, the MAP criterion was strikingly less efficient when applied to the
considered hierarchical structure because errors were propagated from the root to
the leaves and led to severe misclassification, especially regarding the classes that
most strongly overlap in the feature space (e.g., “urban” and “containers”).

The proposed classifier was further compared to the multitemporal single-
resolution MRF-based method in [98]. It uses the mutual approach and consists
in performing a bidirectional exchange of the temporal information between the
(non-hierarchical) single-time MRF models associated with consecutive images in
the sequence. The accuracy comparison shows a better exploitation of the spatio-
temporal information by the proposed approach.More generally, themutual approach
reduces the risk of propagating the classification error between consecutive dates,
while the use of the hierarchical schema provided more accurate and faster (due to
its non-iterative nature) classification maps. Next, the classical k-nearest neighbours
(k-NN) was used as a benchmark non-parametric classifier with k = 30 estimated
by cross-validation. It is non-contextual, so to perform a fair comparison between
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(a) Optical 2010 ( c©GeoEye) (b) SAR 2010 ( c©ASI) (c) Proposed method

(d) Storvik et al. [136] (e) GML [14] + MRF (f) K-means

Fig. 7.10 Classification maps obtained on a multisensor GeoEye 2010 (optical, © GeoEye) +
COSMO-SkyMed 2010 (SAR, © ASI) Port-au-Prince dataset (displayed after histogram stretching
and equalization). Same color legend as in Fig. 7.8

the proposed method and a spatial-contextual technique, it was combined with an
isotropic PottsMRFmodel. It is immediate that this single-scaleMRF leads to severe
spatial oversmoothing. Finally, a further comparison was performed with K -means
initialized with K = 5. As expected, the clusters obtained by K -means do not match
well with the thematic classes of the considered problem.

Multisensor D4 dataset. The GeoEye image resolution comes at the 0.5 m resolu-
tion, and the COSMO-SkyMed image with 2.5m pixel spacing. To fit with the dyadic
decomposition imposed by the quad-tree, we slightly resampled the optical image
to obtain the 0.625 = 2.5/4 m resolution that was put at the finest resolution of the
pyramid. We apply copula functions to model dependence between optical and SAR
data, whose marginals are estimated using mixtures of Gaussian and generalized
Gamma distributions, see [149]. Since all the data correspond to the same date, the
images are integrated into a single pyramid comprised of three levels.

The proposed hierarchical MPM-based method, see Fig. 7.10, leads to a detailed
classificationwith an adequate level of classificationmap regularity. Themain source
of misclassification is the “container” class, where the asphalt is erroneously clas-
sified as vegetation. In Table7.4 we compare numerically the results obtained with
the proposed hierarchical method when considering either only optical, or both SAR
and optical images. We observe an improvement related to the combination of the
two images, in particular in the urban areas for which the SAR acquisition repre-
sents a significant source of discriminative information. More specifically, we have
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observed that the optical image has a relevant effect in the “bare soil” discrimination,
and the SAR acquisition is particularly helpful to identify the “containers”.

Numerical results suggest that the single-scale MRF-based method leads to the
highest accuracy. However, this comes at the price of severe oversmoothing. This is
a result of selecting the β parameter maximizing the classification accuracies. Con-
sequently, the localization of the ground truth within homogeneous regions brought
to an excessive oversmoothing of the edges. The second best result is demonstrated
by the GML+MRF method. The visual inspection suggests that the resulting clas-
sification map is highly fragmented, especially as compared with the map reported
by the proposed method. A closer look into the “container” area reveals a better
structured and (visually) more accurate classification with a spatially more precise
characterization of the geometrical structure reported by the proposed approach.
We then compare the proposed method with the single-scale multi-sensor approach
in [136]; in this case, the SAR image is upscaled and the likelihood term is con-
structed by merging the two generalized Gamma marginals into a meta-Gaussian
distribution. The classification is obtained by maximum likelihood with an isotropic
3-by-3 Potts-model MRF with optimization by ICM with β = 1.70. This method,
as well as K -means (grouped version, with K = 10 initialization) demonstrate a
considerably more noisy output and perform worse with the “containers” class.

7.4 Conclusions

The present chapter was the second of a pair of chapters dedicated to remote sensing
data fusion. The methodological issues associated with multiple information sources
within the processing pipeline for image classification have been addressed. With
regard to the feature extraction stage, the problem of the computation of descriptors
associated with distinct spatial scales have been discussed, generalized to the frame-
work of multilevel feature extraction, and formalized through advanced methods
rooted in the theories of Mathematical Morphology and attribute profiles. Concern-
ing the classification stage, the task of the joint supervised classification of multisen-
sor, multiresolution, multiscale, and/or multitemporal images has been addressed by
recalling the main methodological strategies and by focusing on advanced models
based on hierarchical Markovian formalizations on quad-trees.

In both cases, the examples of experimental results have suggested the effective-
ness of the morphological and Markovian approaches to the extraction and fusion
of multilevel and multisource information for classification purposes. Following up
on the conclusions of the previous chapter, these results further confirm that current
mathematical models for remote sensing data fusion, stemming from the fields of
pattern recognition, stochastic modelling, and graph theory, represent powerful, flex-
ible, and computationally efficient tools that allow taking benefit from the variety of
remote sensing data sources available nowadays.



316

Acknowledgements Thisworkwas partly supported by the FrenchSpaceAgency (CentreNational
d’Etudes Spatiales, CNES) through contract no. 8361. The authors would like to thank CNES, the
ItalianSpaceAgency (ASI), andGeoEye Inc. andGoogleCrisisResponse for providing thePléiades,
COSMO-SkyMed, and GeoEye imagery used for experiments.

References

1. Akcay, H.G., Aksoy, S.: Automatic detection of geospatial objects using multiple hierarchical
segmentations. IEEE Trans. Geosci. Remote Sens. 46(7), 2097–2111 (2008)

2. Alonso-Gonzalez, A., Valero, S., Chanussot, J., Lopez-Martinez, C., Salembier, P.: Processing
multidimensional SARandhyperspectral imageswith binary partition tree. Proc. IEEE 101(3),
723–747 (2013)

3. Amici, G., Dell’Acqua, F., Gamba, P., Pulina, G.: A comparison of fuzzy and neuro-fuzzy data
fusion for flooded area mapping using SAR images. Int. J. Remote Sens. 25(20), 4425–4430
(2004)

4. Atkinson, P.M., Aplin, P.: Spatial variation in land cover and choice of spatial resolution for
remote sensing. Int. J. Remote Sens. 25(18), 3687–3702 (2004)

5. Bakos, K., Gamba, P.: Hierarchical hybrid decision tree fusion of multiple hyperspectral data
processing chains. IEEE Trans. Geosci. Remote Sens. 49(1), 388–394 (2011)

6. Baum, L., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. pp. 164–171
(1970)

7. Benediktsson, J.A.: Classification of multisource and hyperspectral data based on decision
fusion. IEEE Trans. Geosci. Remote Sens. 37(3), 1367–1377 (1999)

8. Benediktsson, J.A., Bruzzone, L., Chanussot, J., Dalla Mura, M., Salembier, P., Valero, S.:
Hierarchical analysis of remote sensing data:morphological attribute profiles and binary parti-
tion trees. In:MathematicalMorphology and Its Applications to Image and Signal Processing,
vol. 6671 LNCS, pp. 306–319. Springer, Berlin (2011)

9. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data From
urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens.
43(3), 480–491 (2005)

10. Benediktsson, J.A., Pesaresi,M., Arnason, K.: Classification and feature extraction for remote
sensing images from urban areas based on morphological transformations. IEEE Trans.
Geosci. Remote Sens. 41(9), 1940–1949 (2003)

11. Bernabe, S., Marpu, P.R., Plaza, A., Mura, M.D., Benediktsson, J.A.: Spectral-spatial clas-
sification of multispectral images using kernel feature space representation. IEEE Geosci.
Remote Sens. Lett. 11(1), 288–292 (2014)

12. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transfor-
mation. Opt. Eng. 34, 433–481 (1993)

13. Bigdeli, B., Samadzadegan, F., Reinartz, P.: A decision fusion method based on multiple
support vector machine system for fusion of hyperspectral and LIDAR data. Int. J. Image
Data Fusion 5(3), 196–209 (2014)

14. Bishop, C.: Pattern Recognition And Machine Learning. Springer, Berlin (2006)
15. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote

Sens. 65(1), 2–16 (2010)
16. Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R.,

van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D.: Geographic object-based image
analysis - towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–191 (2014)

17. Bogdanov, A.: Neuroinspired architecture for robust classifier fusion of multisensor imagery.
IEEE Trans. Geosci. Remote Sens. 46(5), 1467–1487 (2008)



7 Remote Sensing Data Fusion: Markov Models and Mathematical Morphology … 317

18. Boudaren, M.E.Y., An, L., Pieczynski, W.: Dempster-Shafer fusion of evidential pairwise
Markov fields. Int. J. Approx. Reason. 74, 13–29 (2016)

19. Bouman, C.A., Shapiro, M.: A multiscale random field model for Bayesian image segmenta-
tion. IEEE Trans. Image Process. 3(2), 162–177 (1994)

20. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image
Und. 64(3), 377–389 (1996)

21. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
22. Bruzzone, L., Prieto, D.F., Serpico, S.B.: A neural-statistical approach to multitemporal and

multisource remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 37(3),
1350–1359 (1999)

23. Burnett, C., Blaschke, T.: A multi-scale segmentation/object relationship modelling method-
ology for landscape analysis. Ecol. Model. 168(3), 233–249 (2003)

24. Camps-Valls, G., Gomez-Chova, L., Munoz-Mari, J., Rojo-Alvarez, J., Martinez-Ramon, M.:
Kernel-based framework formultitemporal andmultisource remote sensing data classification
and change detection. IEEE Trans. Geosci. Remote Sens. 46(6), 1822–1835 (2008)

25. Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A.: Advances in hyperspectral image
classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag.
31(1), 45–54 (2014)

26. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms.
IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

27. Caselles, V., Coll, B., Morel, J.M.: Topographic maps and local contrast changes in natural
images. Int. J. Comput. Vision 33(1), 5–27 (1999)

28. Caselles, V., Monasse, P.: Geometric Description Of Images As Topographic Maps, 1st edn.
Springer, Berlin (1984)

29. Cavallaro, G., Falco, N., Dalla Mura, M., and J. A. Benediktsson.: Automatic Attribute Pro-
files. IEEE Trans. Image Process. 26(4), 1859–1872 (Apr 2017)

30. Cavallaro, G., DallaMura, M., Benediktsson, J. A., Bruzzone, L.: Extended self-dual attribute
profiles for the classification of hyperspectral images. IEEEGeosci. Remote Sens. Lett. 99(8),
1–5 (2015)

31. Ceamanos, X., Waske, B., Benediktsson, J.A., Chanussot, J., Fauvel, M., Sveinsson, J.: A
classifier ensemble based on fusion of support vector machines for classifying hyperspectral
data. Int. J. Image Data Fusion 1(4), 293–307 (2010)

32. Celeux, G., Chauveau, D., Diebolt, J.: Stochastic versions of the EM algorithm: an experi-
mental study in the mixture case. J. Stat. Comput. Sim. 55(4), 287–314 (1996)

33. Chanussot, J., Mauris, G., Lambert, P.: Fuzzy fusion techniques for linear features detection
in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 37(3 I), 1292–1305 (1999)

34. Coburn, C.A., Roberts, A.C.B.: A multiscale texture analysis procedure for improved forest
stand classification. Int. J. Remote Sens. 25(20), 4287–4308 (2004)

35. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes
of nD Images. In: Proceedings of the IEEE International Conference on Image Processing,
pp. 2933–2937 (2014)

36. Dalla Mura, M., Benediktsson, J.A., Bruzzone, L.: Classification of hyperspectral images
with extended attribute profiles and feature extraction techniques. In: Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium, pp. 76–79 (2010)

37. Dalla Mura, M., Benediktsson, J.A., Bruzzone, L.: Self-dual attribute profiles for the analysis
of remote sensing images. In: Mathematical Morphology and Its Applications to Image and
Signal Processing, pp. 320–330. Springer, Berlin (2011)

38. Dalla Mura, M., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: The evolution of the mor-
phological profile: From panchromatic to hyperspectral images. In: Optical Remote Sensing:
Advances in Signal Processing and Exploitation Techniques, pp. 123–146. Springer, Berlin
(2011)

39. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Extended profiles with mor-
phological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 31(22),
5975–5991 (2010)



318

40. DallaMura,M., Benediktsson, J.A.,Waske, B., Bruzzone, L.:Morphological attribute profiles
for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10),
3747–3762 (2010)

41. Dalla Mura, M., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification
of hyperspectral images by using extended morphological attribute profiles and independent
component analysis. IEEE Geosci. Remote Sens. Lett. 8(3), 542–546 (2011)

42. Dalponte, M., Bruzzone, L., Gianelle, D.: Fusion of hyperspectral and LIDAR remote sensing
data for classification of complex forest areas. IEEETrans.Geosci. Remote Sens. 46(5), 1416–
1427 (2008)

43. Datcu, M., Melgani, F., Piardi, A., Serpico, S.B.: Multisource data classification with depen-
dence trees. IEEE Trans. Geosci. Remote Sens. 40(3), 609–617 (2002)

44. Dawid, A.: Applications of a general propagation algorithm for probabilistic expert systems.
Stat. Comput. 2(1), 25–36 (1992)

45. Dell’Acqua, F., Gamba, P.: Discriminating urban environments using multiscale texture and
multiple SAR images. Int. J. Remote Sens. 27(18), 3797–3812 (2006)

46. Demir, B., Bruzzone, L.: Histogram-based attribute profiles for classification of very high res-
olution remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(4), 2096–2107 (2016)

47. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Stat. Soc. Ser.B 39(1), 1–38 (1977)

48. Dos Santos, J., Gosselin, P.H., Philipp-Foliguet, S., Torres, Da S.R., Falcao, A.: Multiscale
classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 50(10), 3764–
3775 (2012)

49. El-melegy, M., Ahmed, S.: Neural networks in multiple classifier systems for remote-sensing
image classification. Stud. Fuzziness Soft Comput. 210, 65–94 (2007)

50. Falco,N., Benediktsson, J.A., Bruzzone, L.: Spectral and spatial classification of hyperspectral
images Based on ICA and reduced morphological attribute profiles. IEEE Trans. Geosci.
Remote Sens. 53(11), 6223–6240 (2015)

51. Falco, N., Dalla Mura, M., Bovolo, F., Benediktsson, J.A., Bruzzone, L.: Change detection
in VHR images based on morphological attribute profiles. IEEE Geosci. Remote Sens. Lett.
10(3), 636–640 (2013)

52. Fauvel, M., Chanussot, J., Benediktsson, J.A.: Decision fusion for the classification of urban
remote sensing images. IEEE Trans. Geosci. Remote Sens. 44(10), 2828–2838 (2006)

53. Fauvel,M., Tarabalka,Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.:Advances in spectral-
spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

54. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
55. Foucher, S., Bénié, G.B., Boucher, J.M.: Multiscale MAP filtering of SAR images. IEEE

Trans. Image Process. 10(1), 49–60 (2001)
56. Franchi, G., Angulo, J.: Morphological principal component analysis for hyperspectral image

analysis. ISPRS Int. J. Geo-Inf. 5(6), 83 (2016)
57. Gamba, P., Houshmand, B.: An efficient neural classification chain of SAR and optical urban

images. Int. J. Remote Sens. 22(8), 1535–1553 (2001)
58. Geman, S.,Geman,D.: Stochastic relaxation,Gibbs distributions, and theBayesian restoration

of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)
59. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree

of shapes of nD images. In: Mathematical Morphology and Its Applications to Signal and
Image Processing, pp. 98–110. Springer, Berlin (2013)

60. Gerke, M., Xiao, J.: Fusion of airborne laser scanning point clouds and images for supervised
and unsupervised scene classification. ISPRS J. Photogramm. Remote Sens. 87, 78–92 (2014)

61. Gomez-Chova, L., Tuia, D., Moser, G., Camps-Valls, G.: Multimodal classification of remote
sensing images: A review and future directions. Proc. IEEE 103(9), 1560–1584 (2015)

62. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804
(1979)

63. Hedhli, I., Moser, G., Serpico, S.B., Zerubia, J.: New hierarchical joint classification method
of SAR-optical multiresolution remote sensing data. In: Proceedings of the IEEE European
Signal Processing Conference, pp. 759–763 (2015)



7 Remote Sensing Data Fusion: Markov Models and Mathematical Morphology … 319

64. Hedhli, I., Moser, G., Serpico, S.B., Zerubia, J.: A new cascade model for the hierarchical
joint classification of multitemporal and multiresolution remote sensing data. IEEE Trans.
Geosci. Remote Sens. 54(11), 6333–6348 (2016)

65. Hedhli, I., Moser, G., Zerubia, J., Serpico, S.B.: New cascade model for hierarchical joint
classification of multitemporal, multiresolution and multisensor remote sensing data. In: Pro-
ceedings of the IEEE International Conference on Image Processing, pp. 5247–5251 (2014)

66. Hoberg, T., Rottensteiner, F., Feitosa, R., Heipke, C.: Conditional random fields for multitem-
poral and multiscale classification of optical satellite imagery. IEEE Trans. Geosci. Remote
Sens. 53(2), 659–673 (2015)

67. Jalobeanu,A., Blanc-Feraud, L., Zerubia, J.: Satellite image deblurring using complexwavelet
packets. Int. J. Comput. Vision 51(3), 205–217 (2003)

68. Jones, R.: Component trees for image filtering and segmentation. In: Proceedings of the IEEE
Workshop on Nonlinear Signal and Image Processing. Mackinac Island (1997)

69. Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image
Und. 75(3), 215–228 (1999)

70. Kato, Z., Zerubia, J.: Markov random fields in image segmentation. Found. Trends Signal
Proc. 5(1–2), 1–155 (2012)

71. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Am. Math. Soc. 7, 48–50 (1956)

72. Krylov, V.,Moser, G., Serpico, S.B., Zerubia, J.: Supervised high-resolution dual-polarization
SAR image classification by finite mixtures and copulas. IEEE J. Sel. Top. Signal Process.
5(3), 554–566 (2011)

73. Krylov, V., Moser, G., Serpico, S.B., Zerubia, J.: On the method of logarithmic cumulants
for parametric probability density function estimation. IEEE Trans. Image Process. 22(10),
3791–3806 (2013)

74. Krylov, V., Moser, G., Serpico, S.B., Zerubia, J.: Enhanced dictionary-based SAR amplitude
distribution estimation and its validationwith very high-resolution data. IEEEGeosci. Remote
Sens. Lett. 8(1), 148–152 (2011)

75. Laferté, J.M., Pérez, P., Heitz, F.: Discrete Markov image modeling and inference on the
quadtree. IEEE Trans. Image Process. 9(3), 390–404 (2000)

76. Landgrebe, D.A.: Signal theory methods in multispectral remote sensing. JohnWiley & Sons
Inc., (2003)

77. Le Hegarat-Mascle, S., Richard, D., Ottle, C.: Multi-scale data fusion using Dempster-Shafer
evidence theory. Integr. Comput.-Aid. Eng. 10(1), 9–22 (2003)

78. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
79. Lee, S., Crawford, M.M.: Unsupervised multistage image classification using hierarchical

clustering with a Bayesian similarity measure. IEEE Trans. Image Process. 14(3), 312–320
(2005)

80. Lemire, D.: A better alternative to piecewise linear time series segmentation. 2007, 545–550
(2006). arXiv:cs/0605103v8

81. Li, M., Zang, S., Zhang, B., Li, S., Wu, C.: A review of remote sensing image classification
techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 47(1), 389–411
(2014)

82. Li, S.: Markov Random Field Modeling In Image Analysis, 3rd edn. Springer, Berlin (2009)
83. Liao, W., Pizurica, A., Bellens, R., Gautama, S., Philips, W.: Generalized graph-based fusion

of hyperspectral and LiDAR data using morphological features. IEEE Geosci. Remote Sens.
Lett. 12(3), 552–556 (2014)

84. Liu, Z.G., Mercier, G., Dezert, J., Pan, Q.: Change detection in heterogeneous remote sensing
images based on multidimensional evidential reasoning. IEEE Geosci. Remote Sens. Lett.
11(1), 168–172 (2014)

85. Lombardo, P., Oliver, C., Pellizzeri, T.,Meloni,M.: A newmaximum-likelihood joint segmen-
tation technique for multitemporal SAR and multiband optical images. IEEE Trans. Geosci.
Remote Sens. 41(11), 2500–2518 (2003)

http://arxiv.org/abs/cs/0605103v8


320

86. Loncan, L., DeAlmeida, L., Bioucas-Dias, J., Briottet, X., Chanussot, J., Dobigeon, N., Fabre,
S., Liao, W., Licciardi, G., Simoes, M., Tourneret, J.Y., Veganzones, M., Vivone, G., Wei, Q.,
Yokoya, N.: Hyperspectral pansharpening: a review. IEEE Geosci. Remote Sens. Mag. 3(3),
27–46 (2015)

87. Luettgen, M., Karl, W., Willsky, A.: Efficient multiscale regularization with applications to
the computation of optical flow. IEEE Trans. Image Process. 3(1), 41–64 (1994)

88. Willsky, A.: Multiresolution Markov models for signal and image processing. Proc. IEEE
90(8), 1396–1458 (2002)

89. Luus, F., Salmon, B., Van Den Bergh, F., Maharaj, B.: Multiview deep learning for land-use
classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2448–2452 (2015)

90. Mahmood, Z., Thoonen, G., Scheunders, P.: Automatic threshold selection for morphological
attribute profiles. In: Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, pp. 4946–4949 (2012)

91. Mallat, S.: A Wavelet Tour Of Signal Processing, 3rd edn. Academic press, Dublin (2008)
92. Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal.

Mach. Intell. 11(7), 701–716 (1989)
93. Marceau, D.J.: The scale issue in social and natural sciences. Can. J. Remote Sens. 25(July),

347–356 (1999)
94. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observation classification

using ImageNet pretrained networks. IEEEGeosci. Remote Sens. Lett. 13(1), 105–109 (2016)
95. Marpu, P.R., Pedergnana, M., Dalla Mura, M., Benediktsson, J.A., Bruzzone, L.: Automatic

generation of standard deviation attribute profiles for spectral-spatial classification of remote
sensing data. IEEE Geosci. Remote Sens. Lett. 10(2), 293–297 (2013)

96. Marpu, P.R., Pedergnana, M., Dalla Mura, M., Peeters, S., Benediktsson, J.A., Bruzzone, L.:
Classification of hyperspectral data using extended attribute profiles based on supervised and
unsupervised feature extraction techniques. Int. J. Image Data Fusion 3(3), 269–298 (2012)

97. Matheron, G.: Random Sets And Integral Geometry. John Wiley & Sons, Newyork (1975)
98. Melgani, F., Serpico, S.B.: A Markov random field approach to spatio-temporal contextual

image classification. IEEE Trans. Geosci. Remote Sens. 41(11), 2478–2487 (2003)
99. Melgani, F., Serpico, S.B., Vernazza, G.: Fusion of multitemporal contextual information by

neural networks for multisensor remote sensing image classification. Integr. Comput.-Aid.
Eng. 10(1), 81–90 (2003)

100. Merentitis, A., Debes, C.: Many hands make light work - on ensemble learning techniques
for data fusion in remote sensing. IEEE Geosci. Remote Sens. Mag. 3(3), 86–99 (2015)

101. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation.
IEEE Trans. Image Process. 9(5), 860–872 (2000)

102. Moser, G., De Giorgi, A., Serpico, S.B.: Multiresolution supervised classification of panchro-
matic and multispectral images byMarkov random fields and graph cuts. IEEE Trans. Geosci.
Remote Sens. 43(8), 1901–1911 (2016)

103. Moser, G., Serpico, S.B., Benediktsson, J.A.: Land-cover mapping by Markov modeling of
spatial-contextual information in very-high-resolution remote sensing images. Proc. IEEE
101(3), 631–651 (2013)

104. Najman, L., Cousty, J.: A graph-based mathematical morphology reader. Pattern Recogn.
Lett. 47, 3–17 (2014)

105. Najman,L., Talbot,H.:Connected operators based on tree pruning strategies. In:Mathematical
Morphology: FromTheory toApplications, pp. 177–198. JohnWiley&Sons,Newyork (2010)

106. Nishii, R.: AMarkov random field-based approach to decision-level fusion for remote sensing
image classification. IEEE Trans. Geosci. Remote Sens. 41(10), 2316–2319 (2003)

107. Ouzounis, G.K., Pesaresi, M., Soille, P.: Differential area profiles: decomposition properties
and efficient computation. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1533–1548 (2012)

108. Ouzounis, G.K., Soille, P.: The Alpha-tree Algorithm. Publications Office of the European
Union, EUR 25500 EN (2012)

109. Ouzounis, G.K., Wilkinson, M.H.F.: Partition-induced connections and operators for pattern
analysis. Pattern Recogn. 43(10), 3193–3207 (2010)



7 Remote Sensing Data Fusion: Markov Models and Mathematical Morphology … 321

110. Pacifici, F., Chini, M., Emery, W.J.: A neural network approach using multi-scale textural
metrics from very high-resolution panchromatic imagery for urban land-use classification.
Remote Sens. Environ. 113(6), 1276–1292 (2009)

111. Palau, A., Melgani, F., Serpico, S.B.: Cell algorithms with data inflation for non-parametric
classification. Pattern Recogn. Lett. 27(7), 781–790 (2006)

112. Park, N.W., Moon, W., Chi, K.H., Kwon, B.D.: Multi-sensor data fusion for supervised land-
cover classification using Bayesian and geostatistical techniques. Geosci. J. 6(3) (2002)

113. Pedergnana,M.,Marpu, P.R.,DallaMura,M.,Benediktsson, J.A.,Bruzzone, L.:Classification
of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J. Sel. Top.
Signal Process. 6(7), 856–865 (2012)

114. Peeters, S., Marpu, P.R., Benediktsson, J.A., Dalla Mura, M.: Classification using extended
morphological attribute profiles based on different feature extraction techniques. In: Proceed-
ings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 4453–4456
(2011)

115. Pérez, P., Chardin, A., Laferté, J.M.: Noniterative manipulation of discrete energy-based
models for image analysis. Pattern Recogn. 33(4), 573–586 (2000)

116. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of
high-resolution satellite imagery. IEEE Trans. Geosc. Remote Sens. 39(2), 309–320 (2001)

117. Plaza, A., Martinez, P., Plaza, J., Perez, R.: Dimensionality reduction and classification of
hyperspectral image data using sequences of extended morphological transformations. IEEE
Trans. Geosci. Remote Sens. 43(3), 466–479 (2005)

118. Poggi, G., Scarpa, G., Zerubia, J.: Supervised segmentation of remote sensing images based
on a tree-structuredMRFmodel. IEEE Trans. Geosci. Remote Sens. 54(9), 5054–5070 (2005)

119. Pohl, C., van Genderen, J.: Remote sensing image fusion: An update in the context of digital
Earth. Int. J. Digital Earth 7(2), 158–172 (2014)

120. Quesada-Barriuso, P., Arguello, F., Heras, D.B.: Spectral-spatial classification of hyperspec-
tral images using wavelets and extendedmorphological profiles. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 7(4), 1177–1185 (2014)

121. Ran, Y., Li, X., Lu, L., Li, Z.: Large-scale land cover mapping with the integration of multi-
source information basedon theDempster-Shafer theory. Int. J.Geogr. Inf. Sci.26(1), 169–191
(2012)

122. Ranchin, T., Wald, L.: The wavelet transform for the analysis of remotely sensed images. Int.
J. Remote Sens. 14(3), 615–619 (1993)

123. Saeidi, V., Pradhan, B., Idrees, M., Latif, Z.: Fusion of airborne LiDAR with multispectral
SPOT 5 image for enhancement of feature extraction using Dempster-Shafer theory. IEEE
Trans. Geosci. Remote Sens. 52(10), 6017–6025 (2014)

124. Salembier, P.,Garrido,L.:Binary partition tree as an efficient representation for imageprocess-
ing, segmentation, and information retrieval. IEEE Trans. Image Process. 9(4), 561–576
(2000)

125. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and
sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

126. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction.
IEEE Trans. Image Process. 4(8), 1153–1160 (1995)

127. Salembier, P., Wilkinson, M.: Connected operators. IEEE Signal Process. Mag. 26(6), 136–
157 (2009)

128. Scarpa, G., Gaetano, R., Haindl, M., Zerubia, J.: Hierarchical multiple Markov chain model
for unsupervised texture segmentation. IEEE Trans. Image Process. 18(8), 1830–1843 (2009)

129. Schistad Solberg, A., Taxt, T., Jain, A.: A Markov random field model for classification of
multisource satellite imagery. IEEE Trans. Geosci. Remote Sens. 34(1), 100–113 (1996)

130. Serra, J.: Image Analysis And Mathematical Morphology. Academic Press, Dublin (1982)
131. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances. Serra, J.

(ed.), vol. 2. Journal of Microscopy (1988)
132. Simard, M., Saatchi, S.S., De Grandi, G.: The use of decision tree and multiscale texture for

classification of JERS-1 SAR data over tropical forest. IEEE Trans. Geosci. Remote Sens.
38(5), 2310–2321 (2000)



322

133. Soille, P.: Morphological Image Analysis: Principles And Applications, 2nd edn. Springer,
Berlin (2004)

134. Song, B., Dalla Mura, M., Li, P., Plaza, A.J., Bioucas-Dias, J.M., Benediktsson, J.A., Chanus-
sot, J.: Remotely sensed image classification using sparse representations of morphological
attribute profiles. IEEE Trans. Geosci. Remote Sens. 52(8), 5122–5136 (2014)

135. Song,Y.:ATopdownalgorithm for computation of level line trees. IEEETrans. ImageProcess.
16(8), 2107–2116 (2007)

136. Storvik, B., Storvik, G., Fjortoft, R.: On the combination of multisensor data using meta-
Gaussian distributions. IEEE Trans. Geosci. Remote Sens. 47(7), 2372–2379 (2009)

137. Sutton, C.,McCallum, A.: An introduction to conditional randomfields. Found. TrendsMach.
Learn. 4(4), 267–373 (2011)

138. Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.:Multiple spectral-spatial classifi-
cation approach for hyperspectral data. IEEETrans. Geosci. Remote Sens. 48(11), 4122–4132
(2010)

139. Thoonen, G., Mahmood, Z., Peeters, S., Scheunders, P.: Multisource classification of color
and hyperspectral images using color attribute profiles and composite decision fusion. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 510–521 (2012)

140. Tilton, J.C.: Analysis of hierarchically related image segmentations. In: Proceedings of the
2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data
00(C), 60–69 (2004)

141. Tuceryan, M., Jain, A.K.: Texture analysis. In: The Handbook of Pattern Recognition and
Computer Vision, 2nd edn., pp. 207–248. World Scientific (1998)

142. Tuia, D., Flamary, R., Courty, N.: Multiclass feature learning for hyperspectral image classifi-
cation: sparse and hierarchical solutions. ISPRS J. Photogramm. Remote Sens. 105, 272–285
(2015)

143. Tuia, D., Moser, G.: Foreword to the special issue on data fusion in remote sensing. IEEE
Geosci. Remote Sens. Mag. 3(3), 6–7 (2015)

144. Tuia, D., Pacifici, F., Kanevski, M., Emery, W.: Classification of very high spatial resolution
imagery using mathematical morphology and support vector machines. IEEE Trans. Geosci.
Remote Sens. 47(11), 3866–3879 (2009)

145. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra
for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal.
Mach. Intell. 29(2), 272–285 (2007)

146. Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape filters. In:
Mathematical Morphology and Its Application to Signal and Image Processing - Proceedings
of the 6th International Symposium onMathematicalMorphology, vol. 6, pp. 305–314 (2002)

147. Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image representation and processing
with binary partition trees. IEEE Trans. Image Process. 22(4), 1430–1443 (2013)

148. Velasco-Forero, S., Angulo, J.: Classification of hyperspectral images by tensor modeling and
additive morphological decomposition. Pattern Recogn. 46(2), 566–577 (2013)

149. Voisin, A., Krylov, V.,Moser, G., Serpico, S.B., Zerubia, J.: Supervised classification ofmulti-
sensor and multiresolution remote sensing images with a hierarchical copula-based approach.
IEEE Trans. Geosci. Remote Sens. 52(6), 3346–3358 (2014)

150. Waske, B., Van Der Linden, S.: Classifying multilevel imagery from SAR and optical sensors
by decision fusion. IEEE Trans. Geosci. Remote Sens. 46(5), 1457–1466 (2008)

151. Wu, J., Jiang, Z., Luo, J., Zhang, H.: Composite kernels conditional random fields for remote-
sensing image classification. Electron. Lett. 50(22), 1589–1591 (2014)

152. Xia, J., Dalla Mura, M., Chanussot, J., Du, P., He, X.: Random subspace ensembles for
hyperspectral image classificationwith extendedmorphological attribute profiles. IEEETrans.
Geosci. Remote Sens. 53(9), 4768–4786 (2015)

153. Xia, J., Liao, W., Chanussot, J., Du, P., Song, G., Philips, W.: Improving random forest with
ensemble of features and semisupervised feature extraction. IEEEGeosci. Remote Sens. Lett.
12(7), 1471–1475 (2015)



7 Remote Sensing Data Fusion: Markov Models and Mathematical Morphology … 323

154. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Efficient computation of attributes and saliency
maps on tree-based image representations. In: Mathematical Morphology and Its Applica-
tion to Signal and Image Processing - Proceedings of the 12th International Symposium on
Mathematical Morphology, vol. 9082, pp. 693–704. Springer, Berlin (2015)

155. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: applications using
tree-based image representations. Proceedings of the 21st International Conference on Pattern
Recognition 5, 2–5 (2012)

156. Zhang, Y., Yang, H., Prasad, S., Pasolli, E., Jung, J., Crawford, M.: Ensemble multiple kernel
active learning for classification of multisource remote sensing data. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 8(2), 845–858 (2015)

157. Zhang, Z., Pasolli, E., Crawford, M.M., Tilton, J.C.: An active learning framework for hyper-
spectral image classification using hierarchical segmentation. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 9(2), 640–654 (2016)

158. Zhao,W., Guo, Z., Yue, J., Zhang,X., Luo, L.: On combiningmultiscale deep learning features
for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 36(13),
3368–3379 (2015)

159. Zhong, Z., Fan, B., Duan, J., Wang, L., Ding, K., Xiang, S., Pan, C.: Discriminant ten-
sor spectral-spatial feature extraction for hyperspectral image classification. IEEE Geosci.
Remote Sens. Lett. 12(5), 1028–1032 (2015)



Chapter 8
Change Detection in Multitemporal Images
Through Single- and Multi-scale Approaches

Bruno Aiazzi, Francesca Bovolo, Lorenzo Bruzzone, Andrea Garzelli,
Davide Pirrone and Claudia Zoppetti

Abstract This chapter presents an analysis of the current status and the challenges
in change detection techniques for the analysis of multitemporal SAR images. Algo-
rithms and methods based on validated statistical models for SAR data are investi-
gated,which adopt advanced information-theoretic andmulti-scale signal-processing
methodologies. After a brief review of the recent literature on general change detec-
tion methods, the chapter investigates the specific problem of change detection in
SAR images. Themain properties of the change detection problem in SAR images are
explored and discussed. Then, recent change detection techniques for high-resolution
(HR) and very high-resolution (VHR) SAR data are presented and critically analyzed
from the theoretical viewpoint. Finally, examples of application of these techniques to
real problems are presented by using simulated image pairs and Enhanced Spotlight
COSMO-SkyMed images.
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8.1 Introduction

Change detection (cd) in remote sensing is defined as the process of identifying
changes in the features of the scene by means of the joint analysis of a pair of images
acquired at different times over the same geographical area. CD has several applica-
tions in environmental monitoring, such as damage assessment or urban expansion
monitoring.

Applications of changedetection fromspaceborneplatformsprogressivelymigrate
from slowly changing phenomena (land-cover dynamic analysis, deforestation con-
trol) to rapidly mapping observations of natural or anthropic disasters, such as land-
slides, floods, earthquake damages, fires, and oil pollution. Polar orbiting satellites,
however, do not provide adequate revisit time to monitor unpredictable and excep-
tional events. Therefore, making a direct comparison between post-event and pre-
event data having identical acquisition parameters is almost unfeasible [29]. Hence,
change detection is performed by comparing the first available data acquired after
the event and previously archived acquisitions of the same scene.

One of the main challenges for a change detection algorithm is that the changes
produced by the event under observation cannot be easily modeled. Actually, the
same kind of event exhibits different signatures, depending on the region where it
occurred, e.g., an urban or an agricultural area, and on the characteristics of the
imaging sensor. Furthermore, when the time interval between two observations is
large, changes to be identified are often mixed to seasonal or incidental changes that
may be the majority, even if they usually have a minor extent and are often less
relevant from the application viewpoint.

Several different approaches to change detection have been proposed in the liter-
ature [4, 10–22, 24–28, 30, 34–36, 43–46, 48–50, 53–55, 57–59, 62, 64–69].

Several examples can be found of (semi)supervised [18, 20, 22, 49, 64, 65, 69],
and unsupervised [4, 10–17, 19, 21] methods as well. Labeled samples for each or
some of the considered multitemporal acquisitions are required when supervised or
semi/partially supervised methods are considered, whereas they are not for unsu-
pervised ones. Thus the possibility of gathering reference samples for the training
phase is an element that drives the kind of method to employ. Since the training
sample collection is complex or even unfeasible, unsupervised approaches are often
preferred. On the other side, application requirements should be considered as well.
In fact, unsupervised methods do not provide a “from-to” information about the kind
of change. Furthermore, unsupervised methods are specifically designed to handle
multitemporal images acquired from either active SAR sensors [4, 11, 14, 25–27,
30, 34, 36, 43, 46, 48, 55, 57, 62], or optical passive ones [10, 12, 13, 16, 17, 19,
21, 35, 44, 50, 53, 54, 58, 59].

Other methods are more general and are able to handle multi-sensor information
[15, 18, 20, 22, 49, 50, 64–69]. However, due to the scarce sensitivity of SAR to
atmospheric and weather conditions, the available post-event data are likely to be
SAR images [37]. Furthermore, the potentials of SAR sensors in change detection
applications are strengthened by the high spatial resolution and the short revisit time
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provided by the new generation SAR-based missions, such as COSMO-SkyMed
(CSK), TerraSAR-X (TSX), Radarsat Constellation Mission (RCM), and Sentinel-
1. The improvement in spatial resolution, which can reach 1m for Spotlight products,
is of fundamental importance in case of urban or suburban scenes [56]. In addition,
the four-satellite constellation of the CSK system increases the possibility of moni-
toring the temporal evolution of an environmental disaster effectively. A worst-case
minimum revisit time of 12h is guaranteed.

This chapter starts with an analysis of the state of the art considering change detec-
tion methods for both optical passive and SAR active images. After that, attention
is devoted to recent change detection techniques for high-resolution (HR) and very
high resolution (VHR) SAR, with specific attention to the trade-off between effective
speckle reduction from SAR data (see also Chaps. 4 and 5) and good preservation of
the fine spatial details provided by the new generation of spaceborne SAR missions.
Both simulated data and COSMO-SkyMed image pairs are considered for experi-
mental evaluation and performance comparison among single-scale and multi-scale
approaches.

8.2 State of the Art

8.2.1 Change Detection in Multitemporal Spaceborne Images

Asmentioned in the introduction, the literature is plenty ofmethods for change detec-
tion both for optical passive and active SAR images. At a given level of abstraction,
most of them follows similar philosophies. However, they strongly differ in the
implementation details. This is because the statistical model of the two kinds of
data is different: Optical passive image processing relies on an additive Gaussian
noise model, whereas SAR image processing relies on a multiplicative speckle noise
model.

Among supervised methods, three macro groups can be identified:
post-classification comparison [65], supervised direct multidate classification [49,
65], and compound classification [20, 22, 23, 64, 69]. Post Classification Compar-
ison (PCC) (also referred to as delta classification [65]) performs change detection
by comparing the classification maps obtained by classifying two images indepen-
dently. Multitemporal images are independently classified, thereby minimizing the
problem of radiometric calibration, but ground truth is required for each of them.
Although PCC has been used in several applications extensively, its performance
strongly depends on the classification accuracy of the classifier applied to each sin-
gle image. Supervised direct multidate classification (DMC) [49, 65] characterizes
pixels by stacking the feature vectors related to the images acquired at the two differ-
ent times. Each class transition is considered as a single class, thus the training pixels
should represent the proportions of all the transitions in the whole area of interest
accurately. This represents a serious drawback as, in real applications, it is difficult to

http://dx.doi.org/10.1007/978-3-319-66330-2_4
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obtain training sets with such characteristic. A more realistic approach is compound
classification (CC) [22], since it allows the temporal correlation between images to
be considered in the change detection process. When ground truth is not available for
each multitemporal acquisition, partially supervised classifiers can be used. They are
able to update the classifier parameters estimated based on the ground truth available
for one multitemporal image and match them to the statistical properties of multi-
temporal images for which the ground truth is not available. These methods, recently
referred to as domain adaptation (DA) methods [18, 24, 31], have been investigated
with novel interest because of the use of active learning (AL) [38–40]. All the afore-
mentioned methods are based on classifiers like Maximum Likelihood classifier [42,
61], Neural Networks [23, 51], Fuzzy Classifiers [9, 39, 71], and Support Vector
Machines [33, 70], which are either the most widely used or the most effective ones
(the reader is referred to the literature for more details on the behaviors and mathe-
matical details of each single classifier. An example of multitemporal classification
of optical images is shown in Chap.7). Because of this, such approaches are intrin-
sically suitable to process data acquired from either passive optical or active SAR
systems, as well as to solve multi-sensor/multisource data problems. This becomes
even more true when distribution-free non-parametric classifiers are considered.

Unfortunately, in several situations and applications, ground truth information
cannot be collected, or the process becomes too expensive. In such situations, unsu-
pervised methods become the only opportunity. This is the reason why the scientific
community is still very active on this topic even if the literature is extensive. Once
multitemporal images have been radiometrically and geometrically corrected, unsu-
pervised change detection information extraction requiresmainly two steps: (i) image
comparison that results in a change feature (CF): this step aims at highlighting the
presence of changes and accounts for the temporal correlation among acquisitions;
(ii) analysis of the change feature. This step aims at isolating the change from the
no-change information. The first step is the one that mostly depends on the kind of
considered data.

When dealing with optical passive sensor images, comparison mainly relies on
the difference operator. This is because the noise model in optical images is additive
and the natural classes tend to have a Gaussian distribution. The simplest way to
use the difference operator is to apply it to one or multiple corresponding spectral
bands from multitemporal images [65], leading to the definition of Spectral Change
Vectors (SCVs). The latter option is referred to as Change Vector Analysis and has
been effectively employed with multispectral and hyperspectral images, and low
to high-resolution images as well [12, 16, 19, 53, 54]. Under the assumption of
Gaussian-distributed natural classes and being the difference a linear operator, classes
of change and no change in the SCV feature space result to be Gaussian distributed
as well [12]. Non-linear features are commonly extracted from SCVs [12, 53, 54,
72] like the magnitude and direction variables. The magnitude of changed samples
presents significantly higher values than those of pixels associated with unchanged
areas [19, 65]. Thus, the magnitude allows for a simple binary detection separating
change and no change. On the other side, the direction variable is highly relevant for
distinguishing among different kinds of changes as they assume preferred directions

http://dx.doi.org/10.1007/978-3-319-66330-2_7
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[12, 53, 54, 65]. The difference operator can be applied in feature spaces other
than the original spectral band one. Examples can be found that apply it to posterior
probabilities [28], vegetation indexes [65], Tasselled Cap Transformation features
[66], Multivariate Alteration Detection features [59], non-linear combinations of
spectral bands, etc.

8.2.2 SAR Change Detection

When dealing with SAR images the commonly accepted noise model is multiplica-
tive. Under this assumption, it is possible to show that after subtraction the statistical
distribution of the resulting image depends on both the relative change between the
intensity values in the two images and a reference intensity value (i.e., the intensity
before or after the change). This leads to a higher change detection error for changes
occurred in high-intensity regions of the image compared to that in low-intensity
regions. Thus, the ratio operator (Image Rationing) [65] is more indicated for SAR
multitemporal image comparison since its distribution depends only on the relative
change in the average intensity between the two dates and not on a reference intensity
level [8, 60]. Furthermore, it allows to reduce common multiplicative-error compo-
nents [60]. In the literature, the ratio image is usually expressed in a logarithmic
scale. Thus the log-ratio operator is typically preferred [8, 30, 36, 60, 62]. Another
set of comparison operators widely used with SAR (but valid for optical data as well
[57]) is the one based on the use of information theoretical similarity measures: the
Kullback–Leibler (KL) divergence [48], the Mutual Information [4], and combina-
tions of them. Recently the multi-scale/-resolution concept has been introduced in
the multitemporal image analysis. This need emerged because of the complexity of
SAR data and because of the intrinsic multi-resolution information available in the
images acquired by the new generation high-resolution sensors. To properly model
multi-scale/-resolution information, different approaches have been used. Among the
others, we recall the Wavelet decomposition [11, 27], the Contourlet transform [52],
and multi-scale feature profiles computed on varying windows size (Sect. 8.2.3.3),
multi-scale segments [10, 45], and morphological profiles [35, 44]. More sophisti-
cated approaches for the representation of multi-resolution information have been
developedwhen very high spatial resolution (VHR) images are analyzed. Theymodel
the high-level semantic information in VHR images [14, 16, 50] and thus become
intrinsically suitable for multi-sensor analysis [15].

The typical methodological approach for SAR images considers a direct pixel-
based comparison of the two images, that generates a change feature (CF), which
is taken as input for the decision step. Typically, many approaches in the literature
consider an unsupervised thresholding of CF [4, 27]. Nevertheless, the analysis
is affected by the multiplicative speckle noise present in the SAR images, and its
compensation implies a degradation in terms of spatial resolution. In order to deal
with this issue, CD methods were designed that achieve different trade-offs in terms
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of both accuracy by the compensation of the speckle effect and preservation of the
high-resolution geometrical information.

Scale-driven analysis [11, 48], among them, considers different scale levels in
the CD analysis. It is based on the multi-scale decomposition of the CI image,
on the selection of the reliable scales for each pixel and subsequent image fusion
and decision. In particular, the multi-scale decomposition considers the use of two-
dimensional filtering (e.g., stationary wavelet transform) on the imagewhich applies,
in both row-wise and column-wise, either low-pass or high-pass filtering.

8.2.3 Change Detection Methods for VHR SAR Images

Concerning VHR remote sensing images, the high geometrical information content
requires both accurate definition and modeling of the concept of change, which is
often associated with the specific goal of the application. The complexity is increased
by the need to take into account all the specific issues related to the properties of
VHR data. Standard unsupervised change detection techniques in the remote sensing
literature often do not perform a detailed analysis of the concept of change. Usually,
they compare two images acquired on the same geographical area at different times
by assuming that their radiometric properties are similar except for the presence of
changes occurred on the ground [16].

When application-oriented prior information is not available, change can be
detected from the image radiometric properties only. For VHR amplitude SAR
images, a single-scale approach is rarely effective, while multi-scale approaches
can improve the detection performance through the analysis of different scales of
representation of the change signal, where each scale is characterized by a different
trade-off between speckle reduction and preservation of geometrical details [11].

Let us consider two SAR images Xk , of size I × J , acquired over the same
geographical area at two different times tk , with k = 1, 2. Let us assume that the bi-
temporal images are co-registered, geo-referenced, and radiometrically corrected.
Let ωnc, ωc be the set of classes associated with unchanged and changed pixels,
respectively.

Here,we investigate the capabilities of both single-scale andmulti-scale approaches
in detecting changes in bi-temporal SAR acquisitions X1 and X2. Three selected
algorithms are described in the following subsections.

8.2.3.1 Information-Theoretic Feature

The mean-shift information-theoretic change detection (MS-ITCD) method relies
on a feature capturing the structural change between X1 and X2. It is robust to the
statistical change that may be originated by speckle and co-registration inaccuracies.
The method starts from the scatter plot of the amplitude levels in the two images and
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applies the mean-shift (MS) algorithm to find the modes of the underlying bivariate
distribution [4].

The rationale of the algorithm is that the negative of the logarithm of the
probability of a mean amplitude level in one image conditional to the mean
amplitude level of the same pixel in the other image measures the amount of
information associated to the pixel change and hence the amount of change,
which may be related to the conditional information of couples of symbols
emitted by two information sources [32].

Let x1(i, j) and x2(i, j) be the symbols emitted by the two information sources
X1 and X2, respectively, where i = 0, . . . I − 1 and j = 0, . . . J − 1. The average
information content of the two sources is given by their entropy, H(X1) and H(X2).
In general, a part of such information is common to the two sources. This common
information is called mutual information and is a measure of the statistical depen-
dency between X1 and X2, i.e.,

I (X1; X2) = H(X1) − H(X1|X2) (8.1)

or, equivalently,

I (X1; X2) = I (X2; X1) = H(X2) − H(X2|X1) (8.2)

where H(X2|X1) is the conditional entropy of X2 to X1 and represents the fraction
of H(X2) that cannot be inferred from the knowledge of the reference source X1,
because it is due to unpredictable changes.

Given the conditional information between x2(m, n) and x1(m, n), that is,

I (x2(i, j)|x1(i, j)) � − log [p(x2|x1)] (8.3)

the conditional entropy is the expected value of (8.3),

H(X2|X1) � −
∑

X1

∑

X2

p(x1, x2) log [p(x2|x1)] (8.4)

where p(x1, x2) and p(x2|x1) are the joint probabilities of x1(i, j) and x2(i, j) and
the conditional probabilities of x2(i, j) to x1(i, j), respectively.

The method, which features a fast version of mean-shift (MS), and its earlier
version are summarized in the following procedure:

1. Given two co-registered amplitude SAR images x1(i, j) and x2(i, j) taken on
the same scene at different times, estimate their local means at each pixel,
x1(i, j) and x2(i, j), over a (2r + 1) × (2r + 1) sliding window with Gaussian
weighting.
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2. Cross-calibrate x̄2 over x̄1 by matching the global mean and variance of the
former to those of the latter; hereafter, let x̄2 denotes the histogram-matched
version of x̄2.

3. Scale the values of both x̄1 and x̄2 by maxi, j {x̄1, x̄2}; hereafter, let x̄1 and x̄2
denote the scaled version of the former x̄1 and x̄2.

4. Draw the scatter plot of x2(i, j) against x1(i, j); thus, the scatter plot is contained
in a square of unity side and unchanged pixels lie along its main diagonal.

5. Multiply x̄1 and x̄2 by an integer L , whichwill denote the size of the 2Dhistogram
obtained from the binning of the scatter plot. Hereafter, (x̄1, x̄2) ∈ {[0, L] ×
[0, L]}.

6. Calculate the L×L joint histogram h(m, n),m = 0, . . . , L − 1, n = 0, . . . ,
L − 1, by counting all points (x̄1, x̄2) such that n < x̄1 ≤ n + 1 and m < x̄2 ≤
m + 1.

7. Estimate thediscrete joint probability density function (PDF), p(m, n)= p(�x̄2�,
�x̄1�), by normalizing h(m, n) to the overall number of points and convolving it
by a normalized triangular kernel of length (2t + 1), according to Parzenwindow
method.

8. Divide p(m, n) by its maximum along x̄1, maxn p(m, n), so that its value is one,
and hence the logarithm is zero (no change) when p(m, n) attains its maximum
over n:

q(m|n) = p(m, n)

maxn p(m, n)
= p(m|n) · p(n)

pmaxn (m)
. (8.5)

9. Pre-calculate a lookup table (LUT) of the information-theoretic change detection
(ITCD) feature for each pair of (m, n) that indexes q(m|n) as:

C(m, n) = − log{q(m|n)} (8.6)

10. To calculate a map of plain ITCD feature, for each pixel (i, j), calculate x̄1 =
x̄1(i, j) and x̄2 = x̄2(i, j), as in Step 5, then ITCD(i, j) = C(�x̄2�, �x̄1�).

11. To calculate a map ofMS-enforced ITCD (MS-ITCD) feature, theMS clustering
algorithm is applied to the “binned” scatter plot obtained at the end of Step 5,
with a uniform kernel of radius R,

• perform migration of the scatterpoints belonging to an original bin (m, n):
start from the center of the bin and move all scatterpoints at the same time
toward the center of the attracting cluster.

• let (m,n) denote the integer valued stop coordinates of MS applied to the
bin (m, n); the change feature C(m,n) is associated with all scatterpoints
originally belonging to (m, n).

• for each pixel (i, j), calculate the bin (m, n) in which the pixel falls, replace
(m, n) with (m,n) found through MS, set MS-ITCD(i, j) = C(m,n).

The effect of MS is moving the scatterpoints contained in each bin toward the
attracting center corresponding to a mode of the underlying PDF, as defined at Step
7. Unchanged pixels produce scatterpoints that are likely to be moved toward one of
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the modes along with the main diagonal; conversely, changed pixels will be moved
toward one of the modes far from the main diagonal.

The main difference of the MS-enforced ITCD, originally introduced in [3] from
its earlier version, ITCD, [2, 5, 6], is that the presence of MS makes the feature to
follow a clustered approach: The information-theoretic feature is calculated from the
values of conditional probabilities roughly corresponding to the modes of the joint
PDF.

The resulting MS-ITCD feature is considered and tested here in two configura-
tions: as an example of high-performance single-scale change feature, and as the
change feature adopted by the multi-scale strategy described in the next section.

8.2.3.2 Multi-scale CD Strategy Based on Wavelet Decomposition

A detailed description of the scale-driven CD approach, originally presented in [11],
is provided in this section. The technique takes as input X1 and X2 and consists
in four main steps: (i) change feature extraction by means of image comparison;
(ii) multi-resolution decomposition; (iii) adaptive scale identification on the basis of
local statistics of both the full and lower resolution data; and (iv) adaptive fusion
based on the optimal scale level and generation of the final CDmap. A general block
scheme of the approach is represented in Fig. 8.1.

In the first step, image comparison is performed to compute a change feature
(CF) that highlights backscattering variations. Among the operators presented in the
literature, the log-ratio XLR (see Eq. (8.7)) is used here to illustrate the method [8,
11, 63]. However the method can be applied to other CFs as well (e.g., ratio [7],
KL divergence [48], difference). Accordingly, in the experiments, results will be
illustrated both on the log-ratio and the ITCD features.

XLR = log
X2

X1
= log X2 − log X1. (8.7)

Fig. 8.1 Block scheme for the wavelet-based approach
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The choice of the log-ratio allows to reduce the effect of the speckle noise and
to have a statistical distribution of the CF centered on the zero value, with the two
classes of interest assuming each a more symmetrical distribution.

The multitemporal information in XLR is still affected by residual undesired
speckle. Therefore, the second step aims at reducing the residual speckle effect
on the log-ratio image, while preserving the geometrical details. For this reason, a
decomposition of the log-ratio image at different scale levels is computed by creating
a set of images Xms = {

X0
LR, ..., X

N−1
LR

}
, where Xn

LR indicates the n-th level decom-
position level, n = 0, 1, . . . , N−1. To this end, a dyadic decomposition is applied, so
that the scale corresponding to each resolution level is given by 2n , and the image for
n = 0 corresponds to the original log-ratio image. Among the possible approaches
presented in the literature for the two-dimensional image decomposition, such as
Laplacian pyramid decomposition [47] or recursively upsampled bicubic filter [41],
we consider the two-dimensional stationary wavelet transform (2D-SWT) [11, 27].

This filtering approach applies level-dependent filters to the considered signal at
each resolution level, by working separately along rows and columns, respectively.
Typical filters for this kind of applications are 4th-order Daubechies filters [11].

This approach presents the advantage of avoiding down-sampling and possible
aliasing impairments. At each step of the 2D-SWT, the image of the low-resolution
component is taken as input and filtered, both row-wise and column-wise, with low-
pass and high-pass filters, in order to separate lower resolution components (LL) and
detail components on vertical (LH), horizontal (HL), and diagonal (HH) direction,
respectively. They are defined as:

XLL(n+1)
LR (i, j) =

Dn−1∑

p=0

Dn−1∑

q=0

ln[p]ln[q]XLL(n)
LR (i + p, j + q) (8.8)

XLH(n+1)
LR (i, j) =

Dn−1∑

p=0

Dn−1∑

q=0

ln[p]hn[q]XLL(n)
LR (i + p, j + q) (8.9)

XHL(n+1)
LR (i, j) =

Dn−1∑

p=0

Dn−1∑

q=0

hn[p]ln[q]XLL(n)
LR (i + p, j + q) (8.10)

XHH(n+1)
LR (i, j) =

Dn−1∑

p=0

Dn−1∑

q=0

hn[p]hn[q]XLL(n)
LR (i + p, j + q) (8.11)

The filter coefficients at level n + 1 are obtained with a dilation of the coefficients
of the filter at level n by a factor of 2.After the decomposition and by skipping the high
resolution components, the approximation images at each scale level are retrieved
by applying the inverse two-dimensional stationary wavelet (2D-ISWT) transform.
Because of both the assumption on the additive noise model in the logarithmic scale
and the computational cost of the processing, the wavelet strategy is applied directly
on the log-ratio image, generating the set of images Xms = {

X0
LR, . . . , X

N−1
LR

}
.
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Each of the wavelet outputs is used for generating a corresponding CD map,
where the thresholds can be selected either manually or automatically, i.e., Bayesian
approach based on the EM algorithm (see also Chaps. 4, 5, and 9), or Kittler-
Illingworth thresholding, which is a computationally efficient solution to the problem
of minimum error thresholding for normally distributed variables.

The final step of the algorithm is the fusion of the information in the products
at different wavelet scales and the generation of the final CD map. Different fusion
strategies are available in the literature, applying the fusion at the decision level
and considering different choices for the thresholds. Fusion at the feature level on all
reliable scales (FFL-ARS) [11] considers a reliable scale depending on the individual
pixel and operates a fusion at feature level. Conversely, the fusion at the decision level
on all reliable scales (FDL-ARS) [11] still considers a reliable scale depending on
the individual pixel, but it operates the fusion at the decision level. The literature has
proven that the best performance in terms of overall accuracy is obtained by the FFL-
ARS approach, because of the best trade-off between the reduction of the speckle
level and the details preservation. This fusion strategy is based on the generation of

a new set of images, namely Xms = {
X

0
ms, ..., X

N−1
ms

}
, derived from Xms , in which

each image X
n
ms is computed as an average of the wavelet decomposition up to the

level n, as described in (8.12):

X
n
ms = 1

n + 1

n∑

h=0

Xh
LR, n = 0, 1, . . . , N − 1 (8.12)

In the FFL-ARS approach, for each pixel, reliable scale levels are determined
according to whether the considered pixel belongs to either a border or a homo-
geneous region. In particular, for each of the scales it evaluates two coefficients:
a global coefficient of variation (CVn), defined on the whole image, and a local
coefficient of variation (LCVn(i, j)), defined on slidingwindowof user-defined
size centered on the pixel (i, j).

These coefficients are expressed as:

LCVn(i, j) = σn(i, j)

μn(i, j)
(8.13)

CVn = σn

μn
(8.14)

where μn,σn represent the mean and the standard deviation on the corresponding
areas, respectively.

The coefficient of variation cannot be computed on the multi-scale log-ratio
images, so the computation of these two coefficients is done on the multi-scale ratio
image sequence, derived by inverting the logarithm operation for each of the scale

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_9
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levels. For a given pixel (i , j), the decomposition scale Ri j is defined as reliable if
the following condition is satisfied for all the resolution levels (l = 0, 1, ..., Ri j ):

M(i, j) ∈ ωk ⇐⇒ Ml(i, j) ∈ ωk, ωk ∈ {ωc,ωnc}, ∀l, 0 ≤ l ≤ Ri j , Ri j ≤ N − 1
(8.15)

Ml(i, j) ∈ ωk ⇐⇒ LCV l(i, j) ≤ CV l , ∀l, 0 ≤ l ≤ Ri j , Ri j ≤ N − 1 (8.16)

The final CD map is obtained from the set of multi-resolution maps by applying
a standard thresholding procedure to the fused images and recombining them by
selecting the most reliable scale level for each pixel, as

M(i, j) =
{

ωnc if x = X̄
Ri j
ms (i, j) ≤ T Ri j

ωc if x = X̄
Ri j
ms (i, j) > T Ri j

(8.17)

where T Ri j is the decision threshold optimized for the considered fused image X
Ri j

ms
and (i, j) is the spatial position of the considered pixel.

For the set Xms , the value at the reliable scale X
Ri j

ms (i, j) and the related threshold

T
Ri j
ms (i, j) are associated for each pixel (i, j). As described above, the threshold val-

ues, derived for the different wavelet levels, can be either manually or automatically
set, according to any of the different strategies in the literature.

8.2.3.3 Combination of Multi-scale Change Features

Let rw denote the bounded ratio image (0 < rw < 1) computed from twoco-registered
amplitude SAR images X1 and X2 acquired on the same scene at different dates:

rw = min

{
X

(w)
1

X
(w)
2

,
X

(w)
2

X
(w)
1

}
, (8.18)

where X
(w)
k indicates the k-th image averaged over a w × w sliding window.

The bounded ratio image is computed for different oddwindow sizes in the interval
S = [wmin,wmax ], and the resulting Nw = (wmax − wmin)/2 + 1multi-scale features
are finally combined into the single geometric-mean bounded-ratio (GMBR) change
feature RS:

RS =
(

∏

w∈S
rw

)1/Nw

. (8.19)
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The GMBR feature RS has the important property of being intrinsically nor-
malised, which is convenient for unsupervised clustering, it is easy to com-
pute, robust to speckle impairments, and shows good capability of spatial detail
preservation, thanks to its multi-scale nature.

The interval S of the window sizes should be selected according to the number
of looks of the SAR images (or equivalently, their resolution), and possibly to the
expected size of the regions of change. Typical values are S = [5, 25] for 1-look data
and S = [3, 11] for 4-look data.

The GMBR feature can be properly clustered into the two classes of unchanged
pixels,ωnc, and changed pixels,ωc, by applying the unsupervisedK-means algorithm
with K = 2. An example of RS is reported in Fig. 8.4b, and the resulting change map
obtained by K-means clustering is shown in Fig. 8.10b.

8.3 Experimental Results

This section presents the experimental results obtained on two different datasets, a
simulated and a real one. In the next subsections, each dataset is described, and the
performance analysis on four different change detection strategies is derived:

1. TheMS-ITCD feature is first testedwith optimal window sizew and radius
R (i.e., w = 9 pixels, R = 30 quantized amplitude levels) for best change
mapping performance (see steps 1 and 11 of the MS-ITCD algorithm) by
means of two-class k-means clustering.

2. The GMBR feature is computed and then clustered for change mapping.
3. Thewavelet-based approach adopting the FFL-ARS fusion strategy driven

by the log-ratio change feature, referred as FFL-ARS1 (see Fig. 8.1), is
tested.

4. The FFL-ARS fusion strategy driven by theMS-ITCD featurewith smaller
window and radius (w = 5 pixels, R = 10 quantized amplitude levels),
referred as FFL-ARS2, is finally applied.

8.3.1 Simulated Data

We have considered two different datasets of SAR images, on which different change
events were simulated. In particular, these changes are related to four regions of
backscattering increase and one of backscattering decrease. Two synthetic image
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pairs with known patches with different shapes, sizes, and change levels have been
produced from an optical remote sensing image, a panchromatic Ikonos image of
Toulouse, France, with 12-bit dynamic range. Nakagami-distributed speckle patterns
[1] have been generated with different equivalent number of looks L and spatial
correlation values ρs , specifically, L = 1 and ρs = 0.3 for the first dataset, and L = 4
and ρs = 0 for the second dataset. It should be recalled that Nakagami-distributed
speckle in the SAR amplitude domain is equivalent to Gamma-distributed speckle in
the SAR intensity domain (see also Chaps. 4 and 5). The first dataset has 1m spatial
resolution and 1m pixel spacing, thus simulating a CSK Enhanced Spotlight image
pair, while the second dataset simulates Sentinel-1 Stripmap Mode images having
9m spatial resolution and 4m pixel spacing.

Fig. 8.2 a, b: Simulated 720 × 720 1-look image pair; ground truth change image (c)

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
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Fig. 8.3 a, b: Simulated 180 × 180 4-look image pair; ground truth change image (c)

The two datasets represent the same geographical area of about 0.5km2, through
a 720 × 720 image pair for the 1-look dataset (Fig. 8.2), and a 180 × 180 image
pair for the 4-look dataset (Fig. 8.3). The simulated change patches are regions with
modified backscattering, specifically a 30% reduction of the amplitude level in the
second date with respect to the first date in the R1 region, deterministic cover changes
through pasting image values in the R2, R3, and R4 regions, and a constant increase
of 80 amplitude levels on the R5 region (see Fig. 8.2c; corresponding regions are
represented in Fig. 8.3c).

Fig. 8.4 Change features for the 1-look image pair: MS-ITCD (a); GMBR (b)
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Fig. 8.5 Change features for the 4-look image pair: MS-ITCD (a); GMBR (b)

8.3.1.1 Quantitative Performance Assessment

The four change detection strategies are first compared in terms of the receiver
operator characteristics (ROC).MS-ITCD andGMBR are directly compared in order
to give evidence to the different characteristics of single-scale MS-ITCD and multi-
scale GMBR features (Figs. 8.4 and 8.5).

FFL-ARS1 and FFL-ARS2 are not reported in the same graph since they cannot
be considered as CD features, but as fusion strategies of multiple wavelet features.
As previously stated, the FFL-ARS1 strategy relies on the log-ratio computation,
while FFL-ARS2 is based on the MS-ITCD change index.

On the other hand, all the four CD methods can be straightly compared in terms
of final binary CD maps, as reported in Sect. 8.3.1.2.

Figure8.6 shows that MS-ITCD outperforms GMBR only for high values of false
positive rate (FPR). However, since the optimal change maps, corresponding to the
highest values of the Cohen’s kappa coefficient (8.20), are obtained for lower values
of FPR, as evidenced by Fig. 8.7, the best mapping performance for both 1-look and
4-look image pairs are provided by GMBR.

By comparing Fig. 8.6a, b, the GMBR ROC curve for the 1-look case is quite
surprisingly higher than the ROC curve for the 4-look case (red curves in the two
figures). This is due to the characteristics of GMBR which is more sensitive to the
degradation of the spatial resolution rather than to the signal-to-noise reduction due
to speckle.

For FFL-ARS1 and FFL-ARS2 experiments, ROC curves obtained at different
wavelet decomposition levels are reported in Figs. 8.8 and 8.9, respectively. In order
to have a suitable number of pixels at all decomposition levels, maximum decompo-
sition levels N = 5 and N = 3 have been considered for the analysis of the 1-look
and the 4-look image pairs, respectively.

For the FFL-ARS1 strategy, the set of images Xms , i.e., starting from the log-ratio
image, has been derived. Each image in Xms has been separately thresholded, and the



8 Change Detection in Multitemporal Images … 341

Fig. 8.6 ROC of the
MS-ITCD and GMBR
change features for the
1-look (a) and 4-look (b)
simulated data. The asterisks
highlight the optimal
operating points (see also
Fig. 8.7)
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CD performance of each decomposition level has been evaluated by tracing ROCs.
Figure8.8 shows the ROC curves obtained at the different wavelet decomposition
levels of the log-ratio feature. It should be noted that for the single-look case in
Fig. 8.8a, as the wavelet decomposition level n increases, the ROC curves show
higher true positive rate (TPR) and better CD performance, with an optimal number
of decomposition levels equal to 4. This can be explained by the inclusion of the low-
resolution information in the average products Xms . In these image components, the
speckle effect is mitigated, and classification over homogeneous areas is improved.

At the highest decomposition level N = 5 this trend is not confirmed, due to an
extreme degradation of the spatial resolution. Figure8.8b shows that, for the 4-look
case, by using only 2 or 3 levels of decomposition, depending on the required false
positive rate, we get good CD performance. This is because of the lower geometric
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Fig. 8.7 Cohen’s kappa of
the feature-based change
map with respect to the true
change map as a function of
the threshold applied to each
feature. Top 1-look; down
4-look simulated data. The
asterisks indicate the
maximum values obtained by
applying k-means clustering
with K = 2 to GMBR (in
red) and MS-ITCD (in blue)

resolution of the 4-look image with respect to the 1-look one. Thus, higher level of
decomposition shows a too low geometrical resolution, with a degradation of the
overall CD capabilities.

Concerning the FFL-ARS2 strategy, the set of images Xms , i.e., starting from the
MS-ITCD feature, has been derived. Again, each Xms image has been separately
thresholded to produce a ROC curve. Figure8.9 shows the ROC curves obtained at
different wavelet decomposition levels by this method. For the single-look case in
Fig. 8.9a, as the wavelet decomposition n increases, the ROC curves show higher
TPR and better CD performance, with best performance for N = 5. Similarly to the
FFL-ARS1 strategy, also for the FFL-ARS2 approach, Fig. 8.9b shows that, for the
4-look case, 2 or 3 levels of decomposition provide the best performance, depending
on the required false positive rate. Therefore, the FFL-ARS algorithm can benefit
from the different characteristics of the CD features at different scales.
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(a)

(b)

Fig. 8.8 ROC of the multi-scale change feature used by FFL-ARS1 for the 1-look (a) and 4-look
(b) simulated data
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(a)

(b)

Fig. 8.9 ROC of the multi-scale change feature used by FFL-ARS2 for the 1-look (a) and 4-look
(b) simulated data
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Table 8.1 Cohen’s kappa
values of the CD maps
obtained from the 1-look
image pair

Algorithm Cohen’s kappa

MS-ITCD 0.860

GMBR 0.903

FFL-ARS1 0.612

FFL-ARS2 0.779

Since the ground truth is available for the two-simulated scenarios, the confusion
matrix C can be computed to provide a quantitative performance assessment. The
columns of the matrix represent the instances in the predicted classes (ω′

nc, i.e., no-
change, in the first column, and ω′

c, i.e., change, in the second column), while the
rows represent the instances in the true classes (ωnc or ωc).

Starting from the confusion matrix, it is possible to compute the Cohen’s kappa
which compares the accuracy of the classification system to the accuracy of a random
system:

κ = po − pe
1 − pe

= 1 − 1 − po
1 − pe

(8.20)

where po is the overall accuracy and pe is the accuracy of a random classifier. Differ-
ently from the confusion matrix, κ is a unique scalar value that provides a straight-
forward comparison among change maps obtained by different change detection
algorithms.

For the 1-look image pair, we have:

CMS-ITCD =
[
497292 2337
2696 16075

]
CGMBR =

[
498287 1342
2114 16657

]

CFFL-ARS1 =
[
497672 1957
9412 9359

]
CFFL-ARS2 =

[
493331 6298
2478 16293

]
(8.21)

corresponding to the Cohen’s kappa values reported in Table8.1.
We recall that the MS-ITCD result has been obtained with optimal window size

and radius (w = 9 pixels, R = 30 quantised amplitude levels) for best change map-
ping performance by means of two-class k-means clustering, while the FFL-ARS2
fusion strategy on a 3 × 3 window has been driven by theMS-ITCD feature obtained
with smaller window and radius, i.e., w = 5 pixels and R = 10 quantised amplitude
levels.

For the 4-look image pair, we have:

CMS-ITCD =
[
31025 198
196 981

]
CGMBR =

[
31097 126
223 954

]

CFFL-ARS1 =
[
31154 69
510 667

]
CFFL-ARS2 =

[
31089 134
318 859

]
(8.22)

corresponding to the Cohen’s kappa values reported in Table8.2.
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The best performance, i.e., the highest κ values, are provided by the GMBR
algorithm for both 1-look and 4-look data, thanks to an outstanding capability of
rejecting false alarms with respect to FFL-ARS1 and, to a lesser extent, with respect
to FFL-ARS2 and MS-ITCD. This advantage of GMBR is confirmed by Fig. 8.7,

Table 8.2 Cohen’s kappa
values of the CD maps
obtained from the 4-look
image pair

Algorithm Cohen’s kappa

MS-ITCD 0.826

GMBR 0.840

FFL-ARS1 0.689

FFL-ARS2 0.798

Fig. 8.10 Change maps for the 1-look case: MS-ITCD (a); GMBR (b); FFL-ARS1 (c); FFL-
ARS2 (d)
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Fig. 8.11 Change maps from the 4-look image pair: MS-ITCD (a); GMBR (b); FFL-ARS1 (c);
FFL-ARS2 (d)

which also shows that the K-means clustering provides the optimal threshold values
corresponding to the maximum values of κ.

Concerning the FFL-ARS method, detection performance depends on the choice
of the window size parameter for the CV computation. In particular, for the FFL-
ARS1 case, the overall performance increases, both in terms of κ coefficient and
misclassified pixels for large windows, while for FFL-ARS2 a small window size is
preferred. In general, the FFL-ARS strategy aims at keeping the edge information of
the changed regions. This is clear by observing the left central change in Fig. 8.10d
when compared to the ground truth region R2 in Fig. 8.2c.

The advantage of adopting a robust change feature such as MS-ITCD instead of
the log-ratio image in the FFL-ARS fusion strategy is evident for both 1-look and
4-look data, as shown by numerical and visual results.
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Fig. 8.12 Original pre- and post-event Spotlight acquisitions of L’Aquila test site: a April 5, 2009;
b; September 12, 2009; manually generated ground truth of change, (c)

8.3.1.2 Qualitative Performance Assessment

Figure8.10a and b show the final change maps computed by clustering, through K-
means with K = 2, the single-scale feature MS-ITCD (Sect. 8.2.3.1) and the multi-
scale feature GMBR (8.19), respectively. Bothmaps confirm the objective evaluation
given by the confusionmatrices and theκ values, with excellent detection capabilities
in the 1-look case. Themulti-scale nature ofGMBRalso provides a higher false alarm
rejection, as shown in Fig. 8.10b.

The comparison between the change detectionmaps obtainedwith FFL-ARS1 and
FFL-ARS2 (with w = 5 and R = 10) (Fig. 8.10c, d) points out that the former one
presents several misclassification errors, while the latter is much more accurate. An
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interesting characteristic of the FFL-ARS2 approach is its capability of preserving
the spatial details of the changed regions, even better than the best performingGMBR
algorithm.

Similar considerations apply for the change maps in the 4-look case reported
in Fig. 8.11. The GMBR method provides the best change maps and shows very
good false alarm rejection, while MS-ITCD seems to suffer from the poor spatial
resolution of 4-look data. FFL-ARS, in its MS-ITCD driven version, and FFL-ARS2
can provide a good quality CD map, as in Fig. 8.11d, although at the expense of an
increased false alarm rate.

8.3.2 COSMO-SkyMed Images

For the real dataset, two COSMO-SkyMed images have been considered and
processed for assessing change detection capabilities in a true scenario. The consid-
ered change between the two acquisitions (April 5, 2009 in Fig. 8.12a and September
12, 2009 in Fig. 8.12b, i.e., before and after the destructive earthquake on April 9) is
the construction of a tent camp set up for earthquake survivors near a shopping mall
about 7km west of the City Center. Both 1-look acquisitions have been taken with
right look-side, ascending pass, HH polarization, and 58◦ incidence angle. The two
images have 1m2 pixel size and are 1000 × 1000 pixels.

A manually generated ground truth of the tent camp built after the earthquake is
reported in Fig. 8.12c.

Fig. 8.13 Change features from the CSK image pair of Fig. 8.12: a MS-ITCD; b GMBR
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Fig. 8.14 Change maps obtained from the L’Aquila test site: aMS-ITCD; bGMBR; c FFL-ARS1;
d FFL-ARS2

The MS-ITCD and GMBR change features computed on the image pair of
Fig. 8.12 are reported in Fig. 8.13 showing similar responses to structural and statis-
tical changes, but different dynamic ranges.

The final change maps obtained by applying MS-ITCD, GMBR, FFL-ARS1, and
FFL-ARS2 are shown in Fig. 8.14. The two original images have been preprocessed
to equalize their histograms, and the analysis has been focused on the regions with
increased backscattering at the second date. All methods provide a clear description
of the changed region with different results in terms of detection capability, false
alarm rejection, and geometrical accuracy.

The analysis of the confusion matrices and the Cohen’s kappa values provides
an objective assessment of the characteristics of the three algorithms. The confusion
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Table 8.3 Cohen’s kappa
values of the CD maps
obtained from the CSK image
pair

Algorithm Cohen’s kappa

MS-ITCD 0.685

GMBR 0.622

FFL-ARS1 0.527

FFL-ARS2 0.672

matrices are the following:

CMS-ITCD =
[
934874 17202
12799 35125

]
CFFL-ARS1 =

[
940501 7172
30054 22273

]

CFFL-ARS2 =
[
936092 11581
18827 33500

]
CGMBR =

[
922963 24710
15780 36547

]
(8.23)

which can be synthesized by the unique index κ in Table8.3.
The relatively low κ values are due to inaccuracies of the ground truth which

reports changes in the tent camp area only.
FFL-ARS2 and MS-ITCD show the highest κ values, thanks to the MS-ITCD

accurate detection of distributed scatterers, which provides a very good preservation
of small spatial features in the changed regions. FFL-ARS1 suffers from severe miss-
detection due to its underlying log-ratio feature, while GMBR, although its change
map appears clean and accurate at a first sight, is not capable of precisely locate the
small distributed scatterers which characterize the change regions of the tested CSK
image pair.

8.4 Concluding Remarks

The capabilities of both single-scale andmulti-scale approaches of detecting changes
from two-date SAR acquisitions have been investigated and experimentally assessed
on 1-look and 4-look simulated images and onCOSMO-SkyMedSpotlight SARdata.
It has been shown that when application-oriented prior information is not available
for modeling different kinds of changes, multi-scale approaches can be profitably
applied to detect changes directly from the image radiometric properties at different
dates. Among the tested algorithms, the single-scale MS-ITCD method has shown
very accurate detection of distributed scatterers. The multi-scale FFL-ARS algo-
rithm, when driven by advanced change features such as MS-ITCD, has evidenced
good shape preservation, while the multi-scale GMBR algorithm has demonstrated
the best trade-off, for both simulated and true data, between speckle reduction and
preservation of geometrical details.
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Chapter 9
Satellite Image Time Series: Mathematical
Models for Data Mining and Missing Data
Restoration

Nicolas Méger, Edoardo Pasolli, Christophe Rigotti, Emmanuel Trouvé and
Farid Melgani

Abstract One of the exceptional advantages of spaceborne remote sensors is their
regular scanning of the Earth surface, resulting thus in Satellite Image Time Series
(SITS), extremely useful to monitor natural or man-made phenomena on the ground.
In this chapter, after providing a brief overview of the most recent methods pro-
posed to process and/or analyze time series of remotely sensed data, we describe
methods handling two issues: the unsupervised exploration of SITS and the recon-
struction of multispectral images. In particular, we first present data mining methods
for extracting spatiotemporal patterns in an unsupervised way and illustrate this
approach on time series of displacement measurements derived from multitemporal
InSAR images. Then we present twomethods which aim to reconstruct multispectral
images contaminated by the presence of clouds. The first one is based on a linear
contextual prediction mode that reproduces the local spectro-temporal relationships
characterizing a given time series of images. The second method tackles the image
reconstruction problem within a compressive sensing formulation and with different
implementation strategies. A rich set of illustrations on real and simulated examples
is provided and discussed.
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9.1 Introduction

In the last few years, Satellite Image Time Series (SITS) has gained particular inter-
est in the remote sensing community as a relevant resource for Earth monitoring.
Actual spaceborne remote sensors are characterized by growing spatial and spectral
resolutions and permit a regular scanning of the Earth’s surface, which is extremely
useful to understand relationships between natural and man-made phenomena in
order to promote better decision making. For example, in terms of optical sensors,
the Taiwanese Formosat-2 satellite is already providing images with high-temporal
resolutions, but with only four spectral bands and with a limited coverage of the
Earth’s surface. Additionally, the European Space Agency’s (ESA) Sentinel-2 mis-
sion is producing global cover every five days with 13 spectral bands and with 10
to 60m spatial resolution. Several different applications can take advantage from
this kind of data, which can be especially utilized to monitor and detect changes
over time. A summary of the most investigated applications based on SITS includes
land-use and land-cover changemapping; forest and vegetation changemapping; for-
est mortality, defoliation, and damage assessment; deforestation, regeneration, and
selective logging mapping; wetland change mapping; forest fire and fire-affected
area detection; landscape change mapping; urban change mapping; environmental
change mapping including monitoring of drought, flood, and coastal marine envi-
ronments, desertification and landslide area detection; crop and shifting cultivation
monitoring; road mapping. In order to efficiently analyze the typical large amount
of data associated with SITS, appropriate processing methods have to be developed.

SITS acquired by active sensors usually comes from Synthetic Aperture Radar
(SAR) operated on repeated orbits, which provides large regular time series thanks
to the all-weather capability of this sensor: acquisitions are independent from the
presence of clouds and sun illumination. As mentioned in Chap.4, the amplitude
and the phase of those complex images can be used to monitor the two main kind of
“temporal evolution”: changes on the land cover (abrupt or progressive changes) and
surface displacements by offset tracking or by differential interferometry (D-inSAR)
to measure up to millimeter deformations due for instance to seismic activity (see
example in Sect. 9.2).

The main difficulties in the use of the amplitude information come from the
speckle effect due to coherent imagery and the presence of distributed scatterers in
the resolution cells. As discussed in Chaps. 4 and 5, this phenomenon is often mod-
eled as a multiplicative noise with non-gaussian statistical distributions (Rayleigh,
Gamma, Fisher, Nakagami, etc.) depending on the “number of looks” averaged to
reduce this noise and the presence of texture on the ground [1]. One of the advantage
of using SAR time series is the possibility to reduce this noise by multitemporal
filtering in order to preserve as much as possible the spatial resolution. Different
approaches have been developed [2], including 3D region growing techniques [3]
and optimal noise reduction [4] or multiplicative wavelets along the temporal axes
[5]. One of the drawback of such approaches is the risk of merging (blurring) the
temporal information which is useful for change analysis. To avoid this effect, some

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_5
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authors propose to combine change detection and multitemporal filtering techniques
to give priority to temporal neighborhoods made of pixels belonging to the same
statistical population [6, 7]. In most of those approaches, statistical models are used
to describe the variability of the SAR amplitude, to measure the homogeneity of
the populations, or to derive parameters [8] or metrics used to detect changes or to
weight and aggregate pixels.

The phase information is also used either with polarimetric data to characterize
the scattering mechanisms (surface, double bound, volume scattering, etc.) by the so
called PolSAR decomposition techniques (see Chap.5), or with interferometric data
(see Chap.4) to measure distance differences by the phase difference, or a combined
use of those techniques (PolInSAR data) to retrieve more advanced information such
as forest, crop, or snow/ice volume thanks to the radar penetration. Such applications
also benefit from the use of multitemporal data set either to improve the estimation
of physical parameters thanks to the use of spatiotemporal neighborhoods, or to
discriminate the sought after signal (usually deterministic models) from the ran-
dom behavior of some sources of uncertainty. In the case of SAR interferometry,
the atmospheric artifacts due to the different meteorological conditions at different
dates, the lack of precision in orbits and elevation models, and the phase unwrap-
ping problem are the main sources of difficulty. Several multitemporal techniques
have been developed to combine interferograms in order to minimize those error
sources, with two main approaches. The permanent scatterers approach [9] consists
in selecting only specific targets which are less affected by temporal and baseline
decorrelation and to separate topographic errors from the displacement signal on the
phase difference time series measured on those points. The small baseline subset
(SBAS) approach consists in using only small temporal or spatial baseline to build
a redundant network of interferograms, to correct and unwrap them in an iterative
process which allows the temporal series of displacement to be inverted [10]. The
use of mathematical inversion techniques combined with appropriate models is often
the key issue to make those approaches successful.

The analysis of SITS acquired by optical sensors can be subdivided into threemain
groups, depending on the use of the time dimension [11–13]. In the first category, the
time is used just as an attribute identifier, i.e., the different images are concatenated
into a single data structure without taking into account the real order between the
images. For example, some strategies are based on a linear transformation of the
data such as principal component analysis or maximum auto-correlation factor [14].
Other methods are based on classification algorithms, which can be applied directly
on the concatenated image or by classifying independently each image and then by
combining the different classification maps [15]. The second category consists in
using the temporal information as a partial ordering. These methods were initially
proposed for bi-temporal images, but can be extended to multitemporal analysis by
concatenating them. Basic strategies combine the values of the image at time t1
and those at time t2 by simple [16] or more advanced operators [17]. Other widely
used methods are represented by change vector analysis [18] or linear regression
[19], in which the values at time t1 are supposed to be linearly correlated with those
at time t2. In the last category, the entire ordering associated with the temporal

http://dx.doi.org/10.1007/978-3-319-66330-2_5
http://dx.doi.org/10.1007/978-3-319-66330-2_4
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information is considered. For example, it includes frequent pattern mining [20], in
which frequent sub-sequences of radiometric evolutions are extracted, and frequency
analysis [21], in which radiometric series are processed with Fourier or wavelet
decompositions. Although the large amount of approaches proposed for the analysis
of SITS, a common assumption is that the considered images are not affected by the
presence of clouds. However, this represents a frequent problem for passive sensors,
which are high sensitivity toweather conditions during the image acquisition process.
The presence of clouds can be viewed as a source of contamination that makes the
images partly or completely useless for assessing landscape properties. A solution
to this issue is given in [13], in which the authors have proposed an approach able
to deal with irregularly sampled SITS. The problem of reconstructing areas of the
images contaminated by the presence of clouds will be analyzed in detail in the rest
of the chapter.

In this chapter, two important issues related to the analysis of SITS are considered
and handled by different approaches. The first issue deals with knowledge discovery
in SITS and can be applied to any kind of physical or statistical parameter (time
series of optical albedo, SAR radiometry, displacement fields, etc.) while the second
issue deals with the reconstruction of missing data in multispectral images. In par-
ticular, we first present data mining methods for extracting spatiotemporal patterns
in an unsupervised way and illustrate the potential of this approach on time series
of displacement measurements derived from multitemporal InSAR images. For the
reconstruction of multispectral images contaminated by the presence of clouds, two
methods are presented: the first one is based on a linear contextual prediction model
that reproduces the local spectro-temporal relationships characterizing a given time
series of images, whereas the second one tackles the image reconstruction prob-
lem within a compressive sensing formulation and with different implementation
strategies. A rich set of illustrations on real and simulated examples is provided and
discussed.

9.2 Data Mining Methods for Spatiotemporal Pattern
Extraction

9.2.1 Objectives and Originality of the Approach

Besides techniques for refining measurements and getting more precise estimates
such as those presented in this book, a new kind of technique for processing Satel-
lite Image Time Series (SITS) arises. These techniques are data mining ones: they
sift through large data sets in an automated way to achieve Knowledge Discov-
ery in Databases (KDD). KDD is defined as “the non-trivial extraction of implicit,
unknown, and potentially useful information from data” [22]. Used in a first a place,
they produce descriptions of the data sets which can be further assessed in a more
application-oriented way with dedicated tools such as ad-hoc statistical tests or clas-



9 Satellite Image Time Series: Mathematical Models … 361

sification systems. These descriptions can also be employed for SITS indexing and
retrieval. A number of techniques have been proposed so far, such as searching for
image/object/region evolutions (e.g., [23] or [24]) or directly extracting pixel-based
spatiotemporal objects that are defined with respect to the temporal dimension (e.g.,
[25] or [26]) and also the spatial one (e.g., [27] or [28]). Complementarily to such
extractions, we present data mining methods1 for summarizing optical or radar SITS
with the aim of assisting end users in browsing a SITS in a rapid, unsupervised,
and human readable manner. The first one relies on an unsupervised data mining
technique for finding pixel evolutions affecting a minimum number of pixels with
sufficiently high spatial connectivity. Using these evolutions, namely Grouped Fre-
quent Sequential patterns (GFS-patterns), we build summaries of SITS by means
of SpatioTemporal Localization maps (STL-maps). These maps show the location of
pixel evolutions in space and time, providing a characterization of the data set spa-
tially and dynamically. The selection of a set of representative STL-maps is achieved
using a second method exploiting a randomization procedure and a Normalized
Mutual Information (NMI)-based scoring. In practice, it turns out to be effective in
finding interesting groups of pixels, sharing common temporal evolutions, and that
would not have been exhibited by other approaches. This part is organized as fol-
lows: Sect. 9.2.2 presents GFS-patterns while Sect. 9.2.3 details STL-maps and their
NMI-based scoring procedure. Finally, Sect. 9.2.4 concludes this part of the chapter.

9.2.2 Grouped Frequent Sequential Patterns

In this section, a data mining pattern for exploring SITS is presented: the Grouped
Frequent Sequential Pattern (GFS-Pattern). Some preliminary definitions are given
to define a SITS as a set of temporal sequences from which a common kind of
data mining pattern, the sequential pattern, can be extracted. Then, the connectivity
measure used to define the GFS-patterns is introduced and examples of GFS-patterns
are given. Finally, the extraction of GFS-patterns is detailed.

9.2.2.1 Preliminary Definitions

Let us consider a SITS that covers the same area at different dates.Within each image,
each pixel is associated with a value, for example, the reflectance intensity or the
phase difference of the geographical zone that it represents. We can transform those
pixel values into values belonging to a discrete domain, using labels for encoding
pixel states. Those labels can correspond to ranges obtained by image quantization
or to pixel classes resulting from an unsupervised classification (e.g., using K-means
or EM-based clustering).

1The authors wish to thank the ANR EFIDIR and ANR FOSTER projects for funding the works
presented in this chapter.
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Definition 1 (label and pixel state) Let L = {i1, i2, . . . , is} be a set containing s
distinct symbols called labels, used to encode the values associated with the pixels.
A pixel state is an ordered pair (e, t) where e ∈ L and t ∈ N, such that t is the
occurrence date of e. The date t is simply the time stamp of the image from which
the value e has been obtained.

Subsequently, we define a symbolic SITS as a set of pixel evolution sequences,
with each sequence describing the states of a pixel over time/at different dates.

Definition 2 (pixel evolution sequence and symbolic SITS) For a pixel p, the pixel
evolution sequence is a pair ((x, y), seq), where (x, y) are the coordinates of p, and
seq is a tuple of pixel states seq = 〈(e1, t1), (e2, t2), . . . , (en, tn)〉 containing the
states of p ordered by increasing dates of occurrences. A symbolic SITS (or SITS
when clear from the context) is then a set of pixel evolution sequences.

For a typical symbolic SITS, we thus get a set of millions of pixel evolution
sequences, each sequence containing the discrete descriptions of the acquisition
values of a given pixel.

9.2.2.2 Sequential Patterns

An important and active datamining research area is themining of bases of sequences
to extract sequential patterns [29]. This domain is now mature and provides effi-
cient techniques for extracting such patterns. A typical base of sequences is a set of
sequences of discrete events, in which each sequence has a unique sequence identi-
fier. For SITS, if we consider the pairs (x,y) of coordinates of the pixels as identifiers
of their evolution sequences, then a symbolic SITS is a base of sequences, and the
standard notions [29] of sequential patterns and sequential pattern occurrences can
be adapted as follows:

Definition 3 (sequential pattern) A sequential pattern α is a tuple 〈α1,α2, . . . ,αm〉
where α1, . . . ,αm are labels in L , and m is the length of α. Such a pattern is also
denoted as α1 → α2 → . . . → αm .

Definition 4 (occurrence and support) Let S be a symbolic SITS, and α = α1 →
α2 → . . . → αm be a sequential pattern. Then, ((x, y), 〈(α1, t1), (α2, t2), . . . ,
(αm, tm)〉), where t1 < t2 < . . . < tm , is an occurrence of α in S if there exists
((x, y), seq) ∈ S such that (αi , ti ) appears in seq for all i in {1, . . . ,m}. Such a
pixel evolution sequence ((x, y), seq) is said to support α. The support of α in S,
denoted by support (α), is simply the number of sequences in S that support α.

Example 1 A mock symbolic SITS containing the states of four pixels.

((0, 0), 〈(A, 1), (B, 2), (C, 3), (B, 4), (D, 5)〉),
((0, 1), 〈(B, 1), (A, 2), (C, 3), (B, 4), (B, 5)〉),
((1, 0), 〈(D, 1), (B, 2), (C, 3), (B, 4), (C, 5)〉),
((1, 1), 〈(C, 1), (A, 2), (C, 3), (B, 4), (A, 5)〉)
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(a) Representation of Example 1.

(b) Another representation of Example 1.

Fig. 9.1 Two equivalent representations of Example1

This data set, as shown by Fig. 9.1, describes the evolution of four pixels through
five images acquired at time 1, 2, 3, 4, and 5 and using L = {A, B,C, D}.

For example, the successive discrete labels associated with the values of the pixel
located at (0, 0) are A, B,C, B, and D. In this data set, the sequential pattern A →
C → B has the following four occurrences (notice that the elements in an occurrence
do not need to be contiguous in time):

((0, 0), 〈(A, 1), (C, 3), (B, 4)〉),
((0, 1), 〈(A, 2), (C, 3), (B, 4)〉),
((0, 1), 〈(A, 2), (C, 2), (B, 5)〉),
((1, 1), 〈(A, 2), (C, 3), (B, 4)〉)

The pattern has four occurrences but appears in only three different pixel evolution
sequences: its support is support (A → C → B) = 3. Finally, it should be pointed
out that a label can be repeated within a pattern: patternC → C has two occurrences,
one in the third and one in the fourth sequence.

The number of different patterns occurring in a data set can be high. Therefore,
only the frequent ones are selected by using a support threshold.
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Definition 5 (frequent sequential pattern) Let σ be a strictly positive integer termed
as support threshold. Let α be a sequential pattern, then α is a frequent sequential
pattern if support (α) ≥ σ. The support threshold can also be specified as a relative
threshold σrel ∈ [0, 1]. Then, a pattern α is frequent if support (α)/|S| ≥ σrel ,
where S is the data set and |S| is the number of sequences in S.

Such a support constraint is used by sequential pattern extraction algorithms to
reduce the search space and to achieve reasonable execution times.

9.2.2.3 Spatial Connectivity

Sequential patterns SITS analysis leads to a natural interpretation of the notion of
support. For a pattern α, the support of α is simply an area, i.e., the total number of
pixels in the image having an evolution in which α occurs. These pixels are said to
be covered by α.

Definition 6 (covered pixel) A pixel having the evolution sequence ((x, y), seq) is
covered by a sequential pattern α if α has at least one occurrence in seq. The set of
the coordinates of the pixels covered by α is denoted by cov(α).

Therefore, for a frequent pattern α, the threshold σ (resp. σrel) can be interpreted
as the minimum area (resp. relative area) that must be covered by α. However, a
threshold on the covered area is not sufficient because, most of the time, interesting
parts in images are made of pixels forming regions. An additional criterion, the aver-
age connectivity measure, is thus introduced. It is based on the 8-nearest neighbors
(8-NN) convention. Using this measure, the algorithm extracts patterns that cover
pixels forming groups which can be defined as follows:

Definition 7 (local connectivity) For a symbolic SITS S, let occ((x, y),α) be a
function that, given the spatial coordinates (x, y) and a sequential patternα, indicates
whether α occurs in S at location (x, y). More precisely, occ((x, y),α) is equal to
1 if and only if there is a sequence seq in S at coordinates (x, y) and α occurs in
((x, y), seq). Otherwise occ((x, y),α) is equal to 0. Ifα occurs in ((x, y), seq), then
its local connectivity at location (x, y) is LC((x, y),α) = [∑i=1

i=−1

∑ j=1
j=−1 occ((x +

i, y + j),α)] − 1.

The value LC((x, y),α) is simply the number of pixels in the 8-neighborhood of
(x, y) having an evolution supporting α. The sum is decremented by one, so as not
to count the occurrence of α at location (x, y).

Definition 8 (average connectivity) The average connectivity of α is defined as:

AC(α) =
∑

(x,y)∈cov(α) LC((x, y),α)

|cov(α)|
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For the pixels supporting α, this measure gives the average number of neighbors
in their 8-NN that also support α. In Example1, AC(A → C → B) = 6/3 = 2 and
AC(C → C) = 2/2 = 1.

In addition to the average connectivity, the notion of super-pattern is also required
to define grouped frequent sequential patterns. For the simple form of sequential
patterns used in this book, the notion of super-patterns can be defined as follows.

Definition 9 (super-pattern) A sequential pattern β = β1 → β2 → . . . → βm is a
super-pattern of a sequential pattern α = α1 → α2 → . . . → αn if m > n and if
there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m such that α1 = βi1 , α2 = βi2 , . . .,
αn = βin .

Finally, grouped frequent sequential patterns are defined as follows.

Definition 10 (grouped frequent sequential pattern (GFS-patterns)) LetS be a sym-
bolic SITS. Given a sequential pattern α frequent in S, and a positive real number κ
termed average connectivity threshold,α is said to be aGrouped Frequent Sequential
pattern (GFS-pattern) if AC(α) ≥ κ in S and if �β such that β is a super-pattern of
α, with β a frequent sequential pattern with AC(β) ≥ κ.

For instance, in Example1, if σ = 2 and if κ = 2, then A → C → B is a
GFS-pattern while C → C is not: its average connectivity measure does not exceed
κ. Though A → B could be retained with respect to σ and κ, it is not a GFS-pattern:
A → C → B is a super-pattern of A → B. This maximality constraint makes it
possible to focus on the most specific patterns [30].

The concept of GFS-pattern has been defined in [31] without any maximality
constraint. Nevertheless, when assessing the results from qualitative point of view,
in [31] and in all following papers, we mainly focused on patterns that are maximal
ones. Subsequently, in this book, we include this constraint into the definition of
GFS-patterns themselves.

Finally, it is worth noting that:

• the different pixel states of the occurrence of a GFS-pattern are not neces-
sarily consecutive,

• pixels sharing a same pattern do not need to be synchronized in time,
• no timing constraint is set,
• the shape of the observed phenomena is not set beforehand,
• a wide range of scales can be taken into account (all surfaces greater or equal
to σ),

• pixels sharing a samepattern formobjects that are coherent spatially (average
connectivity greater or equal to κ),

• a same pixel can be covered by zero, one ormoreGFS-patterns (GFS-pattern
extraction is not another segmentation technique).
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(a) Pattern #1. (b) Pattern #2.

Fig. 9.2 Localization (white pixels) of 2 GFS-patterns. Pixels are a getting closer to the satellite
and b away from the satellite

9.2.2.4 Examples of GFS-Patterns

In [31] and in [32], experiments on optical SITS show the potential of GFS-patterns
for applications such as agriculture monitoring. As reported in [31] or in [33], GFS-
patterns can also be extracted from SAR SITS. For example, in [33], an InSAR
time series of 24 images (701 × 701 pixels) containing the cumulated phase evolu-
tion/displacement for each acquisition dates was mined. Both ground deformation
and atmospheric turbulences contribute to the phase evolution/displacement2. The
series was built from 25Environmental Satellites (ENVISAT)3; SAR images acquired
over the 2004–2009 period and covering the Haiyuan seismic fault in the north-
eastern boundary of the Tibetan plateau (about 50km × 50km). Once again, the
quantization was done using the 33rd and the 66th percentiles and threshold κ was
set to 6. Since end users are interested in phenomena covering large areas, threshold
σ was then set to 20%.

Among the extracted GFS-patterns, the two following ones were reported:

• pat. #1: 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1;
• pat. #2: 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3;

Pattern #1 indicates that some areas tend to get closer to the satellite (symbol “1”)
while pattern #2 shows that other areas are getting away from the satellite (symbol
“3”). With regard to symbol “2”, it is associated with very weak displacements. As
it can be observed in Fig. 9.2 which focuses on the center part of the zone, these
patterns are spatially complementary.

A creep phenomenon is thus revealed by these two patterns. It is coherent with
the motion of the northern part of the studied zone (upper part of the image) that
has been reported by the experts. Furthermore, the localization of the seismic fault
that is due to this creep phenomenon can be inferred by looking at the crisp frontier

2We thank Romain Jolivet (California Institute of Technology-CALTECH, Seismological labora-
tory) and Cécile Lasserre (Centre National de la Recherche Scientifique-CNRS, ISTerre laboratory)
for computing and providing this InSAR time series.
3We thank the European Space Agency (ESA) for providing this ENVISAT SAR series (Dragon
project ID5305).
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between affected and non-affected pixels, especially on the upper-left to lower-right
diagonal of the images.4

All of these results show that GFS-patterns are quite general and can be extracted
from different types of SITS (optical data, radar data, different resolutions). Appli-
cations range from agricultural monitoring to military surveillance or to ground
deformation monitoring. Though no advanced preprocessing such as cloud masking
was performed, it should be noted that GFS-patterns offer end users the possibility
of exploring huge time series and discovering temporal evolutions which could be
hidden by random uncertainty such as atmospheric turbulences. In addition, no GFS-
pattern expressing such phenomena was extracted during the various experiments
we reported so far. Indeed, the conjunction of the different constraints (minimum
surface, minimum average connectivity, maximality) discards phenomena that are
dispersed over time and space. Finally, all the experiments reported so far show that
GFS-patterns can be extracted on standard PCs (e.g., Intel Core 2 @3GHz, 4GB
RAM, Linux kernel 2.6) within reasonable amount of time. This can be achieved by
pushing the constraints set on the support and the average connectivity in the extrac-
tion process, which leads to an efficient pruning of the search space. The reader is
referred to [32] for more details.

9.2.3 STL-Maps and NMI-Based Scoring of STL-Maps

This section presents a method for assessing GFS-patterns. It relies on SpatioTempo-
ral Localization maps (STL-maps). These maps show the location of GFS-patterns
occurrences in space and time, providing a characterization of the data set spatially
and dynamically. They are defined in Sect. 9.2.3.1. The most representative STL-
maps, and thus GFS-patterns, are selected using a randomization procedure and a
scoring based on the Normalized Mutual Information (NMI) measure which are
detailed in Sect. 9.2.3.2.

9.2.3.1 SpatioTemporal Localization Maps (STL-Maps)

Once a GFS-pattern has been extracted, a convenient way to assess it is to build
an image where all pixels are set to black except those that are covered by the
pattern. This localization gives the spatial information at a glance while the temporal
evolution is given by the pattern itself. For non-black pixels, a refinement consists
of using several colors giving access to a complementary temporal information such
as the time spans or the ending dates of the pattern occurrences. In order to check

4We thank Romain Jolivet (California Institute of Technology-CALTECH, Seismological labora-
tory), Cécile Lasserre (Centre National de la Recherche Scientifique-CNRS, ISTerre laboratory),
and Catherine Pothier (Institut National des Sciences Appliquées de Lyon-INSA Lyon, LGCIE
laboratory) for this interpretation.
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whether a pattern propagates or not in space,wepropose to use a color scale associated
with the ending dates (or ending image numbers) of the earliest pattern occurrences.
As reported in [33, 34], such an image of dates brings very useful information as
it summarizes the occurrences of a pattern, spatially and dynamically. If the ending
date are linearly linked to the color palette shown in Fig. 9.3d, the spatial localizations
presented in Fig. 9.2 can be refined into the STL-maps given by Fig. 9.3a, b. As it can
be observed, pattern #1 and pattern #2 propagate in time and space. The propagation
of pattern #1 is not radial w.r.t. to the creeping zone, and creep migration along the
fault could explain such patterns.5

9.2.3.2 Swap Randomization of SITS and NMI-Based
Scoring of STL-Maps

Each STL-map being related to a single GFS-pattern, depending on the SITS, one
may obtain numerous STL-maps. For example, in Sect. 9.2.2.4, 1673 GFS-patterns
were extracted from the SAR SITS. In order to draw attention to the most promising
patterns, we propose to select a set of representative STL-maps. To this end, we
propose to target two kinds of STL-maps. Either they will be required to convey
more information than what could be expected when considering a randomized SITS
with the same structure in terms of symbols frequencies, or they should contain the
most prominent phenomena with respect to the spatiotemporal distribution of the
symbols. The SITS randomization is achieved by a swap randomization technique
adapted from a Boolean matrix randomization one. It is presented in Sect. 9.2.3.2.
The comparison between the STL-maps obtained on the original and the randomized
SITS relies on the Normalized Mutual Information (NMI). The latter will be used
as a measure to score STL-maps and produce an NMI-based ranking of STL-maps.
This ranking will make possible to draw attention to the two kinds of STL-maps that
are targeted.

Swap Randomization of SITS

Randomization is aimed at hypothesis testing andnumerousworks such as [35] shows
their importance. With regard to swap randomization as proposed in [36] or [37], it is
basically applied to Booleanmatrices. The bottom line is to compare results obtained
for a given data set against the results obtained for a set of randomized data sets having
the same structure in terms of row and column margins (sums). In other words, the
information conveyed by these margins is not what is studied: it is the arrangement of
the data set itself, which can be expressed by patterns such as rectangles of 1’s. In [38],
we adapted the swap randomization of Boolean matrices to the swap randomization
of symbolic matrices and showed that randomized data sets are still equiprobable.
Let S be the original SITS and S′ the randomized one. S′ is generated from S by

5We thank Romain Jolivet (California Institute of Technology-CALTECH, Seismological labora-
tory), Cécile Lasserre (Centre National de la Recherche Scientifique-CNRS, ISTerre laboratory)
and Catherine Pothier (Institut National des Sciences Appliquées de Lyon-INSA Lyon, LGCIE
laboratory) for this interpretation.
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applying a series of symbol swaps, each swap being applied to the latest matrix that
has been obtained. Each swap is defined as follows: let us consider a SITS as am×n
symbolic matrix where each row denotes a pixel position and where each column
corresponds to an acquisition date. Each cell of the matrix is thus a pixel state. Pixel
states are described using the symbols defined by end users (cf. Sect. 9.2.2.1). Let D
be such a symbolic matrix. Let u and v be two pixel positions chosen at random. Let i
and j be two dates also chosen randomly. If Du,i = Dv, j = α and Du, j = Dv,i = β
with α and β two distinct symbols describing the latter pixel states, then pixel states
are changed so that Du,i = Dv, j = β and Du, j = Dv,i = α: symbols α and β
are swapped. When dealing with SITS, this kind of swap can be interpreted as a
spatiotemporal swap. By construction, as for Boolean matrices, symbol frequencies
are maintained both temporally (columns) and spatially (rows). In other words, an
acquisition expressing the presence of vegetation is not transformed into an image
of a desert. Similarly, a pixel evolution showing variations between snow and rocks
will not be transformed into a urban sprawl pattern. The spatiotemporal nature of the
acquisitions is maintained. Following the swap randomization procedure of Boolean
matrices established in [36] or [37]:

• all pixel positions and all dates have the same probability of being chosen and can
be chosen more than once,

• swaps are not final and can be undone by other swaps.

In practice, and so as to adopt conservative settings, the minimum number of
swaps to be applied is set to be in the order of 10 times the number of pixel states
that are contained in the SITS to be randomized.

NMI-Based Scoring of STL-Maps

How to compare the STL-map C , obtained on the original SITS for a pattern
P , with C ′, the STL-map obtained for P on the swap-randomized SITS? At
this stage, it should be recalled that we are interested by the following two
settings:

• C and C ′ share little information: the informational content of C is singular
as it can not be obtained for a randomized data set with the same structure
in terms of symbols frequencies,

• C andC ′ share a lot of information: the swap randomization does not destroy
the occurrences of P , which means that it expresses a prominent phenom-
enon.

Another question arises: would it be possible to distinguish the latter two
settings using a single measure without making any assumption about the
relation between C and C ′?

LetΩ be the sample space containing all ending dates. Let us consider each ending
date x of C as the realization of a discrete random variable X and each ending date
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y of C ′ as the realization of a discrete random variable Y . In order to assess the
information content shared by X and Y with values in the range[0; 1], we proposed
in [38] to use a normalized version of the mutual information as defined in [39], the
Normalized Mutual Information (NMI):

NMI (X; Y ) =
∑

x,y∈Ω2 P(x, y) log P(x,y)
P(x)P(y)

min(H(X), H(Y ))
(9.1)

where P(x, y) represents the probability of co-occurrence of the two ending dates
x and y at the same pixel position, in C and C ′. The NMI quantifies the information
content shared by two random variables. In other words, knowing the realizations
of two random variables X and Y , it measures the extent to which the realizations
of variable X can be deduced from the ones of Y , and vice versa. Therefore, it can
been seen as a measure of the mutual dependance of X and Y . By relying on the
NMI, no assumption about the relation between the ending dates is done. Instead of
using, for example, a Pearson correlation coefficient to check whether there exists
a linear relation, the ending dates are just evaluated as labels by considering their
co-occurrences. In addition to GFS-patterns extraction, this allows us to produce
summaries which are as unsupervised as possible. Once the NMI is computed for X
and Y , thenC is scored using this quantity. Scoring is done for every STL-mapwhich
is thus ranked with other STL-maps according to its NMI-based score. As a result,
each STL-map being related to a single GFS-pattern, GFS-patterns are also ranked.
The NMI-based rankings that are obtained can be easily browsed. If one is interested
by STL-maps/GFS-patterns showing phenomena that cannot be obtained on a swap-
randomized SITS, then one has to look to STL-maps, and thus GFS-patterns, with
lowNMI scores. Conversely, if one is interested by STL-maps/GFS-patterns showing
prominent phenomena that are still present in a swap-randomized SITS, then one has
to consider STL-maps with high NMI scores. In order to build a summary containing
the most representative STL-maps, both ends of the rankings have to be considered
by picking up the STL-maps with the lowest and the highest NMI scores. Beside
building up a summary, it has been shown in [38] that using the NMI and focusing on
the ends of the ranking allows to consider a single randomized data set, as opposed
to standard swap randomization methods that require thousands of randomized data
sets to be generated. The implementation of the whole method has been done in
Python 2.7 and in C, using our own data structures. All the experiments reported
in [38] show that GFS-patterns can be extracted on standard PCs (e.g., Intel Core 2
@3GHz, 4GB RAM, Linux kernel 2.6) within reasonable amounts of time.

STL-maps and ranking examples

Back to Sect. 9.2.2.4 and the results obtained for the SAR SITS, we ranked the STL-
maps of the 1673 extracted GFS-patterns by randomizing the SITSwith 10, 000, 000
swaps. The average NMI score is 0.03 with a very weak standard deviation of 0.009.
The maximum NMI score is 0.226 and the minimum one is 0.021. Among the 20
most prominent phenomena/STL-maps/GFS-patterns to be reported, i.e., the STL-
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(a) Pattern #1. NMI score: 0.212. (b) Pattern #2. NMI score: 0.226.

(c) Pattern #3. NMI score: 0.024. (d) Color palette.

Fig. 9.3 STL-maps of 3 GFS-patterns built using the color palette shown in d. Pixels are a getting
closer to the satellite, b away from the satellite, c away and then closer to the satellite (colour figure
online)

maps having the highest NMI scores, pattern #1 and pattern #2 are found. Their
STL-maps as well as their NMI scores are presented in Fig. 9.3a, b.

If end users are interested by rare phenomena, i.e., those that are destroyed by swap
randomization, then STL-maps with lowNMI values are to be examined. Among the
20 most rare phenomena, GFS-pattern #3: 2 → 3 → 2 → 2 → 1 → 2 → 2 is of
interest. As it can be seen in Fig. 9.3c, its STL-map directly shows the localization of
the seismic fault that was inferred with pattern #1 and pattern #2 (upper-left to lower-
right diagonal). These results show that STL-maps and their rankings can produce
meaningful and useful summaries of SITS. Similar results on radar SITS have been
reported in [40]. Encouraging results on optical SITS have been also reported in [41]
and in [38].

9.2.4 Discussion

The unsupervised data mining technique presented in this section of the chapter
can be summarized as shown in Fig. 9.4: starting from a symbolic SITS that can be
built without any advanced preprocessing (no cloud masking, no calibration, etc.);
GFS-patterns are extracted using only two intuitive parameters: σ, the minimum
surface/support threshold and k, the minimum average connectivity. A randomized
symbolic SITS is also generated from the same symbolic SITS. Only one parameter
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Fig. 9.4 GFS-patterns extraction and assessment

is required: the number of swaps, which can be inferred from the amount of pixel
states. Then, the STL-maps of the extracted GFS-patterns are generated for both the
symbolic SITS and the randomized one. Finally, the latter are used to compute the
NMI for each STL-map/GFS-pattern. According to the scores that are obtained, a
STL-maps/GFS-patterns ranking is produced. It makes it possible to browse a SITS
in a human readable manner by having a closer look at prominent phenomena as
well as rare ones. All the data mining methods presented in this section are made
available for free through the SITS-P2MINER prototype [42]. It is written in C and
in Python 2.7 and can be run on x64 platforms (Mac OS, Linux, Windows).

9.3 Reconstruction Methods for Multispectral Images

9.3.1 Survey

One of the major limitations of passive sensors is their high sensitivity to weather
conditions during the image acquisition process. The resulting images are frequently
subject to the presence of clouds, whose extent depends on the season and the geo-
graphic position of the study region. For instance, in Canada, from 50 to 80% of
the Earth’s surface can be obscured by clouds in mid-morning [43]. Depending on
the application and the end-user requirements, clouds can be viewed: as a source of
information for measuring important parameters such as cloud liquid water useful in
meteorological forecasting and hydrological studies [44, 45]; or as a source of con-
tamination that makes the image partly useless for assessing landscape properties. In
the latter case, which represents the focus of this chapter, clouds distort the spectral
response of land covers, thereby resulting in missing data for high-frequency passive
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sensors including multispectral optical sensors and microwave radiometers. Several
methodologies have been developed in the past in order to cope with this problem.
Generally, the common approach first detects the contaminated regions and in a sec-
ond instance, it attempts to remove the clouds by substituting them with cloud-free
estimations.

Cloud detection is generally based on the assumption that clouds are colder (i.e.,
they emit less infrared radiation to space) and brighter (i.e., they reflect more solar
radiation to space) than the ground. Other assumptions like their spatiotemporal
variation in the visible and infrared ranges, which is higher than that of the surface,
can also be exploited in the cloud detection process. Cloud detection consists of
discriminating between clouds and the surface. In the literature, several approaches
have been proposed to carry out this task, which has been referred to in many ways,
including cloud masking and cloud screening. The common characteristic of cloud-
masking approaches is that they reduce the cloud–noncloud classification problem to
a problem of defining multiple thresholds optimized for the selected spectral bands
[46–50].

The cloud removal problem, which is the focus of this part of the chapter, can be
viewed as an image reconstruction/restoration issue, in which it is aimed at recov-
ering an original scene from degraded or missing observations. Image reconstruc-
tion/restoration has been intensively and extensively studied in various application
fields, such as radio astronomy, biomedical engineering, andmachine vision, because
of its practical importance as well as theoretical interest [51, 52]. In the remote sens-
ing field, significant attention has been devoted to the reconstruction/restoration of
images subject to various problems, such as acquisition blur and geometric distor-
tions [53], phase distortions [54], resampling problems [55], or problems related to
applications like buried object detection [56].

By contrast, less attention has been paid to the specific problem of cloud removal.
Among the relatively few works available in the literature, one can find the simple
image compositing technique, which consists of selecting the best measurement (i.e.,
the most cloud-free pixel) among a set of measurements acquired over a limited time
period to represent the consideredmultitemporal pixel over that time period [57]. The
main drawbacks of this technique are three: (1) it requires a high-temporal resolution
acquisition over a short-time period; (2) it loses temporal resolution over the consid-
ered time period; and (3) it does not guarantee a cloud-free result since some areas
may be cloudy on the whole image sequence. An interesting alternative adaptive
reconstruction system was proposed in [58]. The authors assume that the temporal
signature of a given pixel is contaminated by residual effects caused by imperfect
sensing of the target and by spatially autocorrelated noise due to atmospheric atten-
uation. The system combines four different filters in an iterative way: a least-squares
linear predictor for estimating missing or corrupted data at a specified time from
previous history, two filters for determining, respectively, the spatial parameters and
the mean intensity modeled by a Gibbs random field, required by the fourth fil-
ter to carry out a Bayesian reconstruction of the original intensity image. Though
particularly effective, the system exhibits a high computational complexity and is
not easily applicable to the general case of non-stationary temporal image series.
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In [59], in order to circumvent the non-stationarity problem, the same authors pro-
pose to improve their adaptive system by substituting the linear predictor with an
adaptive polynomial filter to track a better trend in the mean intensity process. In
[60], another method is presented for recovering Advanced Very High Resolution
Radiometer (AVHRR) measurements that are modified by the effects not only of
clouds but also of cloud shadows. The method is based on the idea of detecting
the contaminated pixels by analyzing their temporal NDVI profile and substituting
them by interpolated values of individual channels or channel transformations. The
method is simple and effective but presents the drawback of being limited to data
acquired over vegetated areas. Some algorithms, like the second highest (SH) [61]
and themodifiedmaximum average (MMA) [62] have been developed specifically to
remove cloud effects from Special Sensor Microwave/Imager (SSM/I) images. Both
algorithms aim to produce a composite cloud-free image from a sequence of SSM/I
images acquired over a short-time period. While the former is based on the idea of
representing each image pixel by the second-highest value in the considered vector of
multitemporal measurements as an alternative to the mean or median values, the lat-
ter removes cloud noise by averaging only part of the measurements contained in the
vector. Selection of the MMA subset of measurements is carried out by considering
all the measurements above the vector mean except the one with the highest value. In
[62], the authors show that a hybrid algorithm that implements MMA in the presence
of clouds and averages the measurements in their absence can significantly improve
the quality of the composite image compared to the MMA and the SH algorithms. In
[63], a mathematically well-founded method is proposed to remove the distortions
caused by a particular kind of clouds from visible channels, namely cirrus clouds usu-
ally found above the 10km altitude. The authors base their method on the fact that the
measurements acquired at the 1.38 μm band are essentially due to cirrus reflectance
attenuated by the absorption of water vapor contained in the uppermost layer of the
atmosphere (above cirrus clouds) and develop a mathematical model for correcting
those attenuation effects. They exploit this result to derive and then remove the true
cirrus cloud reflectance from contaminated measurements in visible channels. This
interestingmethodwas assessed successfully on data acquired by twodifferent hyper-
spectral sensors: the Moderate Resolution Imaging Spectro-Radiometer (MODIS)
and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensors. In [64],
an ecosystem classification-dependent temporal interpolation technique is proposed
for reconstructing surface reflectance forMODIS data. It is based on the computation
of pixel-level and regional ecosystem-dependent phenological curves. Missing tem-
poral data associated with a given pixel are reconstructed from the most appropriate
curve among the available pixel-level and regional curves. In [65], the authors pro-
pose a method to correct radiometric inconsistencies of cloud-contaminated images
and their corresponding temporal images by generating a cloud-free mosaic image
for a multitemporal SPOT data set. In order to ameliorate the transition between
two mosaic parts, a wavelet-based fusion is adopted. More recently, a cloud removal
method based on information cloning was developed [66]. The authors propose to
clone cloud-free information from a set of multitemporal images, adopting a patch-
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based reconstruction method formulated as a Poisson equation and solved using a
global optimization process.

The main drawbacks that can be identified from the above-described cloud
removal algorithms are: sensor-dependence, very-high-temporal resolution, ground
cover-type dependence, cloud-type dependence, high methodological complexity,
or/and limitation to composite image generation (i.e., incapability to reconstruct
each image of a sequence separately). Two alternative approaches (based on linear
contextual prediction [67] and compressive sensing [68], respectively) that aim to
circumvent most of these drawbacks are presented in the following subsections of
the chapter.

9.3.2 Problem Formulation

We consider a set of multitemporal multispectral images I (i) acquired over the same
geographical area by an optical sensor at times ti (with i ∈ S = {1, 2, , T }). Let
us suppose that the images have been registered. We assume that (1) the images
of the sequence may convey changes in the spectral appearance of objects on the
ground and (2) they are characterized by an almost similar spatial structure. The
last assumption can be considered realistic if the acquisition dates are close to each
other (i.e., high-temporal resolution) or if the spatial dynamics of the geographical
area under analysis is slow compared to the total time interval of the sequence (e.g.,
forest, mountainous, and urban areas). Moreover, we assume that the images have
first been processed to generate a sequence of cloud/noncloud classification maps
M (i) (i ∈ S) by using an automatic cloud-masking method or simply by photo
interpretation. Given M (i), cloudy and non cloudy areas are represented by Ω(i) and
Φ(i), respectively, subject to I (i) = Ω(i) ∪Φ(i). The specific problem of the detection
of clouds (and their shadow) is not dealt with in this chapter. The objective of the
investigated methods is to reconstruct any area contaminated by clouds (or by cloud
shadows) for each image of the sequence. Therefore, each classification map M (i)

will be used to guide the cloud removal process.
For the first investigated method based on linear contextual prediction, image

channels are processed separately. Let us denote by X (i) (i ∈ S) one of the available
sequences of T single-channel temporal images. We denote by C , a cloudy area of
the image X (i).

The reconstruction problem of C in X (i) can be expressed as a problem of
generating an image Y (i) such that:

Y (i)(u, v) =
{
X (i)(u, v) if (u, v) /∈ C

f
[
X (k)(u, v)

]
, k ∈ SC , otherwise

(9.2)
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Fig. 9.5 Illustration of the reconstruction principle under a CS perspective

where (u, v) denotes pixel coordinates, f [·] represents a contextual predic-
tion function, and Sc stands for the subset of indices corresponding to images
X (k) (k 
= i) that are cloud-free in the spatial area N (C) including C and its
neighborhood.

In other words, any image of the sequence obscured by the presence of a cloud
in N (C) will not contribute to the reconstruction process of C . In each image X (k)

(k ∈ Sc), the spatial area N (C) can be subdivided into two cloud-free areas C and
C such that N (C) = C ∪C and C ∩C = ∅, where C represents the spatial area that
corresponds to the cloudy area in X (i) and C stands for the neighboring spatial area.

For the second strategy based on compressive sensing, we simplify the problem
by supposing to have just two images (T = 2) and we relax the above channel-based
processing constraint (all channels are processed together). At this level, we make
the hypothesis that the image I (2) has clouds, while the image I (1) is cloud-free. We
assume that any pixel x (1) ∈ Ω(1) can be expressed as a linear combination of pixels
in region Ω(1) of I (1) (see Fig. 9.5).

In other words, in I (1), we have:

x (1) = Φ(1) · α,∀x (1) ∈ Ω(1) (9.3)

where α is an unknown weight vector associated with the considered pixel x (1)

and having the same dimension as the number of pixels belonging toΦ(1). The
problem at this point is to infer α = f

(
Φ(1), x (1)

)
.

Onceα is computed, if we assume that I (1) and I (2) are temporally close, it will be
possible to reuse the α coefficients to reconstruct the spatially corresponding pixel in
the missing areaΩ(2), adopting the previous formulation for I (2), i.e., x̂ (2) = Ω(2) ·α
(see Fig. 9.5). In other words, for each pixel x (1) ∈ Ω(2), we evaluate α, and in a
second moment, we reuse this weight vector to return an estimation of x (2) ∈ Ω(2):
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From I (1) : α = f (Φ(1), x (1))

To I (2) : x̂ (2) = Φ(2) · α
(9.4)

where f (·) represents an estimation function. We recall that, differently from the
first method, all image channels are processed simultaneously.

9.3.3 Linear Contextual Prediction Method

In the first investigated reconstruction method, given a contaminated image of the
sequence, each area of missing measurements (i.e., cloudy or shadowed area) is
recovered by means of a contextual prediction process that reproduces the local
spectro-temporal relationships. These are deduced from the cloud-free areas in the
spatial neighborhood of the contaminated region over the available series of tem-
poral images. The contextual prediction process is carried out in two steps. First,
a prediction system is trained to learn over C ; the temporal relationships between
the set of available images X (k) (k ∈ Sc) that are cloud-free in N (C) on the one
hand and the image X (i) on the other. This is done by implementing an ensemble of
linear predictors, each trained in an unsupervised way over a local temporal region
spectrally homogeneous in each temporal image of the sequence. In order to obtain
such regions, each temporal image is locally classified in an unsupervised way by
the Expectation–Maximization (EM) algorithm [69, 70] (already mentioned in the
previous chapters with regard to various estimation tasks) assuming that the data
(natural) classes are Gaussian. The number of data classes is estimated automati-
cally by minimizing the Minimum Descriptive Length (MDL) criterion [71]. Once
the training is completed, the prediction system is used to provide an estimate of
each contaminated pixel of image X (i) in C , based on the spatially corresponding
pixel values in images X (k) (k ∈ Sc).

9.3.3.1 Contextual Prediction Process

The complexity of the relationship between images X (k) (k ∈ Sc) and image X (i) in
N (C) will depend mainly on the complexity of their statistical distribution, which is
conditioned by the quantity and quality of ground-cover classes in N (C) at each date
tk (k ∈ Sc ∪ {i}). In multispectral imagery, the assumption that the distribution of
images can be approximated as amixture of normally distributed samples is generally
well-accepted. Accordingly, the probability distribution function (pdf) of each image
X (k) (k ∈ Sc) in N (C) can be written as:

pk(x) =
Mk∑

m=1

P(ωk
m) · p(x |ωk

m) (9.5)
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where P(ωk
m) = Pk

m and p(x |ωk
m) = N (μk

m,σk
m) are the prior probability and the

conditional pdf associated with the mth gaussian mode in the N (C) region of the
kth image, respectively. Constant Mk stands for the number of modes characterizing
the related pdf pk(x), while μk

m and σk
m are mean and standard deviation parameters,

respectively. It is worthmentioning that a ground-cover class can bemade up of more
than one mode, each representing a spectral class of the data.

Given a multitemporal pixel vector x = [x1, x2, , xK ] (K is the cardinality of
Sc), such that x j represents the pixel value in the j th image of the temporal
sequence X (k)[k ∈ Sc; k = p( j), where p(·) is a mapping of the integers
{1, 2, . . . , K } into Sc] and x j ∈ ω

j
n j (n j ∈ {1, 2, . . . , Mj }), the contextual

prediction function f [·] can be expressed as follows:

y = f [x] = f̃ [x1, x2, . . . , xK |x1 ∈ ω1
n1, x2 ∈ ω2

n2, . . . , xK ∈ ωK
nK ] (9.6)

where f̃ [·] is a multitemporal mapping associated with the combination of
modes (ω1

n1,ω
2
n2, . . . ,ω

K
nK ). Accordingly, for each possible multitemporal

combination of modes, a prediction function f̃ [·] needs to be defined.
The contextual prediction function f̃ [·] can be expressed as a linear or non-

linear combination of the components of the vector of multitemporal observa-
tions x . While the latter ensures a more accurate prediction process, the former
is usually preferred for its simplicity. In our case, another reason for adopting
the linear prediction model is the fact that the prediction problem has been
decomposed into easier prediction tasks for which a simple linear model could
be sufficiently accurate.

Under a linear prediction model, the function f̃ [·] associated with the multitem-
poral combination of modes (ω1

n1,ω
2
n2, . . . ,ω

K
nK ) can be written as:

y = f̃ [x1, x2, . . . , xK |x1 ∈ ω1
n1, x2 ∈ ω2

n2, . . . , xK ∈ ωK
nK ] =

K∑

j=1

β j · x j (9.7)

where β j stands for the weight assigned to the j th mode of the combination. In
linear prediction, the determination of weight values represents the sole problem to
face. This issue can be addressed in different ways. A simple solution widely used in
the literature is based on the minimum square error pseudo-inverse technique [72].
This consists of solving the following system of R linear equations with K unknown
variables (R > K ):

⎡

⎢
⎢
⎣

x11 x12 ... x1K
x21 x22 ... x2K
... ... ... ...

x R
1 x R

2 ... x R
K

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

β1

β2

...

βK

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

y1
y2
...

yR

⎤

⎥
⎥
⎦ ⇔ P · β = Y (9.8)
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where R represents the number of multitemporal vectors xr = [xr1, xr2, . . . , xrK ] (r ∈
{1, 2, . . . , R}) observed in C and collected in P, such that xr1 ∈ ω1

n1, x
r
2 ∈ ω2

n2, . . . ,

and xrK ∈ ωK
nK . The corresponding observations yr (r ∈ {1, 2, . . . , R}) in the cloudy

image X (i) (to be reconstructed) are gathered in the target vector Y. The estimate
of the optimal weight vector fi∗ is given by the following equation based on the
pseudoinverse P# of the matrix P:

β = (Pt · P)−1 · Pt · Y = P# · Y (9.9)

The prediction system involved in the contextual multiple linear prediction (CMLP)
method is thus made up of an ensemble of linear predictors, each trained to learn the
relationship between images X (k) (k ∈ Sc) and image X (i) over a possible multitem-
poral combination of classes (ω1

n1,ω
2
n2, . . . ,ω

K
nK ) in N (C). In addition, we integrate

the ensemble with an additional linear predictor, termed global predictor, which is
trained over all samples of C independently of their class membership. The motiva-
tion behind such an integration is that the global predictor is useful to deal with one
of the following two possible situations: (1) a combination of classes in C does not
exist in the set of feasible combinations of classes identified in C ; or (2) the number
of samples collected in P and Y for a given multitemporal combination of classes
available in C is not enough to apply in Eq.9.9.

9.3.3.2 Unsupervised Classification with the EM Algorithm

EM Algorithm

As mentioned in the above algorithm, the first step of the contextual prediction
process is that of classifying the region N (C) of each image X (k) (k ∈ Sc) into a set
of Mk data classes. This can be done in an unsupervised way (i.e., without the need
of training samples) by means of any multilevel thresholding algorithm available in
the literature, such as the basic minimum-error thresholding and the histogram peak
selection algorithms [73, 74], or by usingmore sophisticated thresholding algorithms
[75, 76].

However, for histograms characterized by Gaussian mixtures, a particularly
effective algorithm to detect the different modes accurately is the Expectation–
Maximization (EM) algorithm [69, 70]. The EM algorithm is an iterative pro-
cedure that converges to local but usually good Maximum Likelihood (ML)
estimates of mixture parameters.

Its convergence behavior is particularly well-studied for the classical case of
Gaussianmixtures [77]. It is basedon the interpretationof X̃ (k) = {x(u, v) : x(u, v) ∈
X (k), k ∈ Sc, (u, v) ∈ N (C)

}
as incomplete data where the missing part is Z (k), i.e.,

its classification map. Assuming that L is the number of pixels in X̃ (k), the missing
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part can be evaluated as a set of L labels Z (k) = {z(1)
k , z(2)

k , . . . , z(L)
k } associated with

the L pixels, indicatingwhich class is at the origin of each pixel realization. Each label
is a binary vector z(i)

k = [z(i)
k,1, z

(i)
k,2, . . . , z

(i)
k,Mk], such that z(i)

k,r = 1 (r ∈ 1, 2, . . . , Mk)

if the i th pixel xik of X̃
(k) belongs to the r th data class ωk

r , and z
(i)
k,r = 0 otherwise. The

complete log-likelihood function, from which it would be possible to estimate the
vector of parameters Θk = [Pk

1 , Pk
2 , . . . , Pk

Mk
,μk

1,μ
k
2, . . . ,μ

k
Mk

,σk
1,σ

k
2, . . . ,σ

k
Mk

] if
the complete data Ψ (k) = {X̃ (k), Z (k)} were observed, is given by:

log p(Ψ (k)|Θk) = �(Ψ (k)|Θk) =
L∑

i=1

Mk∑

r=1

z(i)
k,r log[Pk

r p(x
i
k |θkr )] (9.10)

where θkr = [μk
r ,σ

k
r ].

The quantity z(i)
k,r can be estimated as the conditional expectation of z(i)

k,r given

the observation z(i)
k,r and the set of parameters Θk [77]. The EM algorithm consists

of expectation and maximization steps, which are iterated up to convergence. The
expectation step is represented by the computations of z(i)

k,r (i = 1, 2, . . . , L and
r = 1, 2, . . . , Mk) using the current estimates of the set of parameters Θk . The
maximization step allows updating such parameter estimates. It is possible to show
that the equations related to these steps are as follows [77]:

1. E-step: compute z(i)
k,r given the parameter estimates from the previous M-step:

z(i)
k,r = Pk

r · N (xik |μk
r ,σ

k
r )

Mk∑

j=1
Pk
j · N (xik |μk

j ,σ
k
j )

(9.11)

2. M-Step: obtain new parameter estimates (denoted by the prime):

P’kr = 1

L

L∑

i=1

z(i)
k,r (9.12)

μ’kr =

L∑

i=1
z(i)
k,r x

i
k

L∑

j=1
z( j)
k,r

(9.13)

σ’kr =

√
√
√
√
√
√
√
√

L∑

i=1
z(i)
k,r (x

i
k − μ′k

r )
2

L∑

j=1
z( j)
k,r

(9.14)
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The values of the vector of parameters Θk used to start the EM algorithm can be
chosen in different heuristic ways. In this work, we adopted a simple procedure that
consists in dividing the histogram of X̃ (k) into Mk regions of equal width fixed to:

Δ =
Max

i=1,...,L
{xik} − Min

i=1,...,L
{xik}

Mk
(9.15)

Then, the samples comprised in the r th histogram region bounded by the values
xrle f t = Min

i=1,...,L
{xik} + (r − 1) · Δ and xrright = xrle f t + Δ are used to compute

the initial values of the three parameters [Pk
r ,μk

r ,σ
k
r ] associated with the r th class

(r = 1, 2, . . . , Mk).
At convergence of the EM algorithm, the final parameter estimates will define

completely the Gaussian data classes (modes) available in X̃ (k) . The latter is then
transformed into a classificationmapwithminimumerror by adopting themaximuma
posteriori probability (MAP) decision rule. Since the final estimates of z(i)

k,r represent
the estimates of the posterior probabilities P(ωk

r |xik) (i = 1, 2, . . . , L and r =
1, 2, . . . , Mk), one can assign to each pixel xik of X̃ (k) the optimal class label ω̂ ∈
Ω = {ωk

r : r = 1, 2, . . . , Mk}, such that:

ω̂ = argmax
ωk
r ∈Ω

P(ωk
r |xik) (9.16)

Estimation of the Number of Classes

As the number of data classes Mk is not known a priori and therefore needs to be
estimated, we have to resort to a technique that deals with this important issue, which
is typical of mixture modeling problems.

Indeed, the selection of the number of components in a mixture raises a tricky
trade-off, since on the one hand the higher the number of components, the
higher the risk of data overfitting, while on the other, the smaller the number of
components, the lower the model flexibility. In the literature, the most popular
methods for estimating automatically the number of data classes are based on
approximate Bayesian criteria or on information theory concepts [77].

In this work, we will use the Minimum Description Length (MDL) criterion,
which takes origin from the information theory and is defined as [78]:

MDL(Mk) = −�̃(Ψ (k)|Θk) + γ · κ · log(L) (9.17)

where �̃(Ψ (k)|Θk) represents the log-likelihood function value found at convergence
of the EM algorithm, κ is the number of parameters inΘk , and γ is a constant. In our
case, since there are three parameters to estimate (prior,mean, and standard deviation)
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to define the Gaussian distribution associated with each data class completely, κ is
given by:

κ = 3 · Mk − 1 (9.18)

The “−1” term in Eq.9.18 is explained by the fact that the constraint
Mk∑

i=1
Pk
i = 1

allows saving a free parameter. For the setting of γ, different values are used in the
literature. According to [79], γ = 5/2 seems the most appropriate choice.

The optimal number of data classes M̂k in X̃ (k) is estimated by minimizing the
MDL criterion, i.e.,

M̂k = argmin
Mk=1,...,Mmax

{MDL(Mk)} (9.19)

where Mmax is a predefined maximal number of data classes.

9.3.4 Compressive Sensing Reconstruction Strategies

The second reconstruction method is based on compressive sensing (CS). CS relies
on the idea to exploit redundancy (if any) in the signals and represent them in a
sparse way [80, 81]. Usually, signals like images are sparse, as they contain, in some
representation domain, many coefficients close to or equal to zero. CS starts taking
a weighted linear combination of pixels in a basis in which the signal is assumed to
be sparse.

The fundamental of the CS theory is the ability to recover with relatively few
measurements x = D · α by solving the following �0-minimization problem:

min ||α||0 subject to x = D · α (9.20)

where D is a dictionary with a certain number of atoms, x is the original signal
which can be represented as a sparse linear combination of these atoms, and
the minimization of || · ||0, the �0-norm, corresponds to the maximization of
the number zeros in α, following this formulation: ||α||0 = #{i : αi 
= 0}.

Equation9.20 represents a NP-hard problem, which means that it is computation-
ally infeasible to solve. Following the discussion of Cands and Tao [82], it is possi-
ble to simplify the evaluation of Eq.9.20 in a relatively easily linear programming
solution. They demonstrate that, under some reasonable assumptions, minimizing
�1-norm is equivalent to minimizing �0-norm, which is defined as ||α||1 = ∑

i |αi |.
Accordingly, it is possible to rewrite Eq.9.20 as:
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min ||α||1 subject to x = D · α (9.21)

In the literature, there exist several algorithms for solving optimization problems
similar to the one expressed in Eq.9.21. In the next subsection, we briefly introduce
two of them, which represent the most common solutions from the literature.

9.3.4.1 CS Solutions

A well-known solution for problem expressed in Eq. 9.21 is the basis pursuit
(BP) principle [82, 83]. It suggests a convexification of the problem by using
the �1-norm instead of �0.

This means that the best approximation of the problem becomes equal to a support
minimization problem. BP finds signal representations in overcomplete dictionaries
by convex, nonquadratic optimization technique, solving problem in Eq.9.21. It can
be reformulated as a linear programming (LP) problem, and solved using modern
interior-point methods, simplex methods, or other techniques, such as homotopy
techniques [84]. Given that, it is possible to rewrite the �1-norm in Eq.9.21 as:

||α||1 =
∑

i
|αi | =

∑

i
μi + vi where

{
αi = ui , vi = 0 if αi ≥ 0

αi = −vi , ui = 0 if αi ≤ 0
(9.22)

Substituting it in Eq.9.21, it allows to perform a linear minimization problem. Note
that, if the original signal x is sufficiently sparse, the recovery via BP is probably
exact.

One of the easiest and fastest alternative technique is the orthogonal matching
pursuit (OMP), an improved version of the matching pursuit (MP) method.
MP finds the atom that has the highest correlation with the signal. It subtracts
off the correlated part from the signal and then iterates the procedure on the
resulting residual signal [85, 86].

The algorithm approximates the signal x , considering these two decomposi-
tions [83]:

x =
∑

d∈D αdφd =
∑m

i=1
αdi φdi + R(m) (9.23)

where the dictionary D is a collection of atom vectors {φd}d∈D and R(m) is a residual.
Starting from an initial approximation x (0) = 0 and residual R(0) = x , it builds up a
sequence of sparse approximations stepwise. At stage k, it identifies the dictionary
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atom that best correlates with the residual and then adds to the current approximation,
a scalar multiple of that atom, so that x (k) = x (k−1)+αkφdk , whereαk = 〈

R(k−1),φdk

〉

and R(k) = x − x (k). After m steps, one has a representation of the form of Eq.9.23,
with residual R = R(m), where the original signal x is decomposed into a sum of
dictionary elements that are chosen to best match its residues. Unfortunately, the
convergence speed of this algorithm is not fast. To overcome this drawback, an
improved solution called orthogonal MP (OMP) was developed. Differently from
MP, OMP updates the coefficients of the selected atoms at each iteration so that the
resulting residual vectors are orthogonal to the subspace spanned by the selected
atoms. When stopped after only few iterations, it generally yields a satisfactory
approximation, using only few atoms [85, 86].

From the literature [87, 88], it comes out that BP and OMP algorithms provide in
general good performances in reconstruction problems. Nonetheless, BP is consid-
ered more powerful than OMP, since it can recover with high probability all sparse
signals and is more stable. On the contrary, OMP results attractive for its fast con-
vergence and in its ease of implementation.

9.3.4.2 Genetic Algorithm-Based CS Solution

A third CS strategy that we investigate in this part of the chapter is based on genetic
algorithms (GAs).

GAs are a part of evolutionary computationwhich solves optimization problem
by mimicking the principles of biological evolution [89, 90]. A genetic opti-
mization algorithmperforms a search by regenerating a population of candidate
solutions (or individuals) represented by chromosomes. From one generation
to the next, the population is improved following biological rules, adopting
deterministic, and nondeterministic genetic operators.

In general, a common GA involves the following steps. First, an initial population
of chromosomes is randomly generated. Then, the goodness of each chromosome
is evaluated according to a predefined fitness function representing the aim of the
optimization. Evaluating the fitness function allows to keep or discard chromosomes
by using a proper rule based on the principle that the better the fitness, the higher the
chance of being selected. Once the selection of the best chromosomes is done, the
next step is devoted to the reproduction of a new population. This is done by genetic
operators such as crossover and mutation operators. All these steps are iterated until
some predefined condition is satisfied (e.g., maximum number of generations or
fitness value limit).

Several multiobjective GA-based approaches have been proposed in the literature
[91], such as SPEA-II [92], PAES [93], and NSGA-II [94]. We will adopt the non-
dominated sorting solution (NSGA-II) for its low computational requirements, its
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aptitude to distribute uniformly the optimal solutions along the Pareto front [94], and
its successful application to different remote sensing problems [95–97]. NSGA-II is
based on the concept of nondominance. A solution s1 is said to dominate another
solution s2 if s1 is not worse than s2 in all objectives and better than s2 in at least
one objective. A solution is said to be nondominated if it is not dominated by any
other solution. As GA does, NSGA-II starts by generating a random parent popula-
tion. Individuals (chromosomes) selected through a crowded tournament selection
undergo crossover and mutation operations to form an offspring population. Both
offspring and parent population are then combined and sorted into fronts of decreas-
ing dominance (rank). After the sorting process, the new population is filled with
solutions of different fronts starting from the best one. If a front can only partially fill
the next generation, crowded tournament selection is applied again to ensure diver-
sity. Once the next generation population has been completely filled, the algorithm
loops back to create a new offspring population and the process continues up to
convergence.

The design of a multiobjective GA optimization relies upon two components,
the chromosome structure and the fitness functions, which encode the consid-
ered optimization problem and show the direction to obtain the best solution,
respectively.

Concerning the first component, we consider a population of M chromosomes
αm ∈ �, m ∈ {1, . . . , M}, where each chromosome is a real vector composed of
genes corresponding to the weight vector α defined above in the previous sections.
The length w of the chromosome is thus equal to the one of the dictionary D. Chro-
mosomes can be randomly initialized or, to obtain a faster and better convergence,
it could be envisioned to add a priori information coming from more simple CS
techniques, i.e., OMP and BP algorithms. In other words, one could exploit OMP
and BP solutions to generate an initial population by perturbing these solutions.

Regarding the fitness function, we investigate separately and jointly two fitness
functions, i.e., those defining the optimization problem in Eq.9.20. The first one aims
to maximize the sparsity level by minimizing the �0-norm of the weight vector α,
which corresponds to minimize the number of almost nonzero coefficients in α:

f1 = min ||α||0 (9.24)

An almost nonzero coefficient is a coefficient exhibiting a value less than a predefined
small threshold value (th). The second fitness function is derived from the constraint
in Eq.9.20. It points to a perfect reconstruction of the considered pixel (at position
[k, l]). In other words, it is expressed using the 2-norm as:

f2 = min ||Dα − x ||2. (9.25)
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NSGA-II returns several optimal (nondominated) solutions along the Pareto front.
Since a single solution has to be selected from the nondominated set, different
strategies can be adopted. In this study, we suggest to choose the median solution as
typically performed in the literature. In such a way, we expect to get a compromise
solution with respect to what could be obtained by OMP and BP, i.e., a trade-off
between reconstruction model sparseness and reconstruction error.

9.3.5 Illustration Examples

9.3.5.1 Data set Description and Experimental Design

The two investigated reconstruction methods have been evaluated experimentally
on real multitemporal multispectral remote sensing images. The first data set comes
from the Taiwanese optical high resolution FORMOSAT-2 satellite, which permits to
acquire repeat imagery of an area of interest every day, from the same angle and under
the same light conditions [98]. These images represent part of the Arcachon basin
in the south region of Aquitaine, in France. The images are composed of 400× 400
pixels, 4 spectral bands (blue, green, red and near-infrared) with a spatial resolution
of 8 meters. They were acquired on the June 24 and the July 16, 2009, respectively
(see cropped version in Fig. 9.6). The second data set comes from the SPOT-5 French
satellite, whose images represent part of the Reunion Island [99]. The images are
characterized by a size of 450× 450 pixels, 4 spectral bands (blue, green, red and
near-infrared), a spatial resolution of 10 meters and were taken on the 2nd of May
and the 18th of June 2008, respectively (data not shown). The two data sets present

Fig. 9.6 Data set 1: Crop of the FORMOSAT-2 images acquired in the Arcachon area on a the
24th of June and b the 16th of July, 2009
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several differences such as sensor type, spatial resolution, and types of land covers.
Indeed, the first one is dominated by vegetation areas, while the second one presents
more urban areas. In terms of comparisons, we considered also a recent work based
on multiresolution inpainting (MRI) [100].

In order to quantify the reconstruction accuracy, the experiments were done in this
way: (1) a cloud-free image I (1) is considered; (2) the presence of clouds is simulated
by partly obscuring the other image I (2); and (3) the reconstructed image is compared
with the original cloud-free image. The simulation study is aimed at understanding
the sensitivity of the five investigated methods (i.e., the MRI, the CMLP, the OMP,
the BP, and the GA) to two aspects: (1) the kind of ground covers obscured and (2)
the size of the contaminated area. In order to obtain a detailed assessment of the
reconstruction quality, we adopt the well-known peak signal-to-noise ratio (PSNR)
measure [100]. Another quantitative criteria is the computational time (in seconds).
Regarding the dictionaries, we collected directly training samples from the image,
by sampling pixels in the source region Φ. For the GA setup, we used the following
parameters: chromosome number M = 50, threshold value th = 10−4, probability
of crossover Pc = 0.8, and probability of mutation Pm = 0.005.

9.3.5.2 Simulation Experimental Results

Contamination of Different Ground Cover

Different masks with different positions were considered in a way to simulate the
obscuration of different kinds of ground cover. In particular, for data set 1, mask A
covered a region that included mainly a urban area, mask B obscured an industrial
zone, and mask C covered a vegetation area. For data set 2, mask A covered mainly
a rural area, and mask B a vegetation region. The experiments were carried out by
considering each mask at a time, where each mask was composed by around 2000
pixels and the dictionary by 300 pixels.

Table9.1 reports the results of the different reconstruction techniques over differ-
ent obscured land covers. In greater detail, MRI generally reconstructs the missing
data with a good PSNR level, but the corresponding reconstructed images appear
visually of poor quality since it does not capture satisfactorily the textural properties
of the missing areas. In general, MRI can return visually satisfactory results only
when the missing area refers to a uniform region such as vegetation region. This is
the case for mask C in data set 1 and mask B in data set 2. CMLP method provides
generally satisfactory results in terms of reconstruction error and computation time.
To obtain better results, it would need more than two temporal images. Coming
now to the CS-based implementations, OMP algorithm produces very sparse recon-
struction solutions (around 3 nonzero coefficients). On the one hand, this may be
an advantage in terms of computation time. On the other hand, OMP is potentially
subject to underfitting problems. On the contrary, BP algorithm may be subject to
overfitting problems due to the fact that most of the time it selects a large number
of weight coefficients (in general around 300 coefficients). Comparing OMP and
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Table 9.1 Quantitative results obtained in the first simulation experiments for (a) the first and (b)
the second data set

(a)

Mask A Mask B Mask C

Method PSNR Time [s] PSNR Time [s] PSNR Time [s]

l1 l2 l1 l2 l1 l2

BP 80.59 22.22 66 77.10 24.74 59 98.53 30.67 60

CMLP - 20.99 1 - 20.11 1 - 24.05 1

GA 42.09 23.78 68621 43.38 23.15 26312 45.62 32.01 43193

MRI - 22.54 2856 - 16.05 2517 - 33.77 2898

OMP 39.41 23.96 4 36.33 20.60 4 44.28 31.97 4

(b)

Mask A Mask B

Method PSNR Time [s] PSNR Time [s]

l1 l2 l1 l2

BP 86.22 26.45 61 99.62 31.63 91

CMLP - 24.61 1 - 27.69 1

GA 50.70 26.72 69231 56.30 31.28 38475

MRI - 24.27 2995 - 29.54 3614

OMP 46.53 26.36 5 54.49 30.43 5

BP in terms of computation time, the latter is far less efficient, whereas in terms of
PSNR, both methods return similar reconstruction values, outperforming CMLP and
MRI. Lastly, GA can be viewed as a compromise between the two previous methods.
Despite the very long time needed to estimate the reconstruction model, it results
sparser than BP, but less parsimonious to OMP. Its reconstruction error is almost all
the time the best or the second best.

Contamination with Different Sizes

Another important test for the five methods consists of assessing their performances
by varying the amount of missing data. Three different masks were adopted to sim-
ulate increasing cloud cover sizes. In particular, mask 1 was the same as the mask A
adopted in the previous experiments, i.e., it covered about 2000 pixels. To buildmasks
2 and 3, we multiplied the previous size by 3 and by 6. Also in these experiments,
the adopted dictionaries were composed of 300 pixels belonging to the Φ region.
Table9.2 reports the results achieved by the different reconstruction techniques and
by varying the amount of missing data.

From a quantitative viewpoint, in terms of PSNR, we have similar results as in the
previous experiments. MRI still presents problems in reconstructing satisfactorily
complex textures. CMLP competes seriously with MRI in terms of computation
time and PSNR. However to get higher PSNR values, one needs to resort to CS
techniques. Indeed, the CS-based implementations return better results in term of
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Table 9.2 Quantitative results obtained in the second simulation experiments for (a) the first and
(b) the second data set

(a)

Mask A Mask B Mask C

Method PSNR Time [s] PSNR Time [s] PSNR Time [s]

l1 l2 l1 l2 l1 l2

BP 80.59 22.22 66 80.18 22.89 145 79.53 21.47 865

CMLP - 20.99 1 - 21.13 1 - 20.83 2

GA 42.09 23.78 68621 45.46 23.85 99072 45.13 23.03 275394

MRI - 22.54 2856 - 21.35 6938 - 19.63 14774

OMP 39.41 23.96 4 42.45 23.21 6 42.00 25.01 19

(b)

Mask A Mask B Mask C

Method PSNR Time [s] PSNR Time [s] PSNR Time [s]

l1 l2 l1 l2 l1 l2

BP 86.22 26.45 61 87.49 26.82 143 86.60 28.25 972

CMLP - 24.61 1 - 24.43 2 - 25.46 2

GA 50.70 26.72 69231 50.63 27.10 103342 51.14 28.15 259459

MRI - 24.27 2995 - 22.85 10176 - 23.82 22353

OMP 46.53 26.36 5 46.89 26.42 16 47.49 27.39 21

PSNR in all the simulations and present the advantage for not depending on the size
of the missing area. The best solution in these experiments in terms of PSNR comes
from GA, which outperforms all other methods in three cases, and in the other three,
it is the second best choice. About the computation time, as expected, it increases
as the amount of missing data increases. Results from this viewpoint underline the
main weakness of the GA solution, i.e., its expensive computational needs.

Figure9.7 shows qualitative reconstruction results in RGB composites obtained
in the most critical reconstruction scenario, i.e., the largest simulated cloud mask
3, for the first data set for all reconstruction methods. As mentioned before, MRI
reconstruction exhibits the worst reconstruction case. CMLP method is capable to
obtain a good reconstruction compared with MRI. Regarding the CS reconstruction
techniques (OMP, BP, and GA), good reconstructions are obtained where it is not
simple to find significant differences comparing the reconstructions with the original
(cloud-free) image.

Reconstruction Impact on Image Classification

Since the generation of classification maps represents one of the most widespread
applications of remote sensing images, it was also worth to evaluate the quality of the
reconstruction process in terms of classification error. The latter was computed first
by generating a classificationmap of the original images that served as reference clas-
sification maps by means of the popular k-means classifier. Then, each reconstructed
image was given in input to the k-means classifier to provide a reconstruction classi-
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Fig. 9.7 Data set 1. Color composite images (bands 1, 2, and 3) a of the original image and the
same image reconstructed after the contamination with the largest simulated mask 3 by b MRI, c
CMLP, d OMP, e BP, and f GA methods (colour figure online)

fication map. For each reconstruction method, it was possible to evaluate the overall
number of classification errors (OE) inside the reconstructed cloud-contaminated
area by a simple comparison of both the reconstruction and the original classifica-
tion maps. We repeated this exercise with different numbers of clusters (from 3 to
7 clusters). The results confirm what previously observed, i.e., CS methods behave
better than the other methods. As example, we have reported in Fig. 9.8 the clustering
results (with k = 5) obtained for the FORMOSAT-2 image with mask A. The best
classification is achieved from the reconstruction with OMP (OE of 6.3%), followed
by GA (OE = 8.7%), BP (OE = 19.6%), MRI (OE = 25.2%), and CMLP (OE =
29.4%).
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Fig. 9.8 Unsupervised classification maps obtained by the k-means algorithm (k = 5) a for the
original FORMOSAT-2 image and the same image reconstructed after contamination with mask A
by b MRI, c CMLP, d OMP, e BP, and f GA methods

9.3.6 Discussion

In this part of the chapter, we have dealt with the complex and important problem of
the removal of clouds from sequences of multitemporal multispectral optical images.
Given a contaminated image of a sequence, each area of missing measurements is
reconstructed. Two main approaches have been investigated.

The first method is based on a contextual prediction system, which is trained in
an unsupervised way to reproduce the local spectro-temporal relationships between
the considered image and an opportunely selected subset of the remaining temporal
images. The prediction system characterizing the CMLP method is based on an
ensemble of contextual linear predictors, each associatedwith a local temporal region
spectrally homogeneous in each image of the selected subset. These regions are
identified by an EM-based unsupervised classifier. Themain properties of themethod
are the following: (1) it relies on the assumptions that spectral non-stationarity is
allowed, while the spatial structure of the image should be almost identical over
the image sequence; (2) it is not ground cover-dependent; (3) it is not based on the
compositing principle, i.e., it allows the reconstruction of each image of the sequence
separately; (4) it is completely unsupervised; (5) it is conceptually simple, easy to
implement, and relatively fast to run; (6) it achieves a satisfactory reconstruction
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quality with regard to the complexity of the faced ill-posed problem; (7) it can be
used to recover measurements that may be due not only to clouds but also to shadows.

The experimental results point out the kind of ground cover obscured and the size
of the contaminated area onlymarginally affect the performance of the reconstruction
method. The latter depends more directly on the representativeness of the samples
extracted from the spatial neighborhood of the contaminated area and used to train
their predictor(s). In other words, if a ground cover is contaminated and it is not
represented in the neighborhood of the contamination area, the contextual prediction
process will not be capable of dealing suitably with such a situation. The assessment
of the method in terms of classification accuracy, considered by the remote sens-
ing community as a fundamental criterion for quality evaluation, confirms that the
reconstruction process is capable of capturing with satisfactory accuracy the trends
of the true statistical model associated with missing data. Furthermore, results show
that the impact of the recovered samples on the statistical structure of the remaining
part of the image is very limited, thus underlining the high statistical compatibility
between the recovered samples and the uncontaminated ones.

In order to improve the accuracy of the reconstruction process, different aspects
of the method deserve to be investigated including, for instance, the problem of
the independent reconstruction of single-channel images. In this context, the second
approach, which is based on compressive sensing (CS), overcomes this issue through
the implementation of a joint multichannel reconstruction process. In particular,
three different strategies have been investigated. First, we have shown how two
common CS solutions, the orthogonal matching pursuit (OMP) and the basis pursuit
(BP) algorithms, can be formulated for a cloud-contaminated image reconstruction
problem. Then, we have seen a solution for solving the CS problem under a L0-
norm perspective, exploiting the capabilities of genetic algorithms (GAs). The main
properties of the methods are: (1) they rely on the assumptions that spectral non-
stationarity is allowed, while the spatial structure of the image should be almost
identical between the two images; (2) they are not ground cover-dependent; (3) they
are unsupervised; (4) differently fromCMLP, they need just one reference cloud-free
image and, as mentioned above, the reconstruction of each pixel is performed in all
spectral bands simultaneously.

9.4 Conclusion

In this chapter, we have described two main issues related to the processing of Satel-
lite Image Time Series and proposed different approaches to deal with them. The first
part of the chapter is focused on data mining methods for extracting spatiotemporal
patterns in an unsupervised way. A data mining technique which can handle various
kind of SITS is illustrated on time series of displacement measurements derived from
multitemporal InSAR image. It requires only three parameters and has been shown
to be useful to extract phenomena that could not be unveiled by other approaches.
In particular, GFS-patterns can refine one another spatially and temporally: they can
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overlap one another both in time and in space. Segmentation or clustering techniques
cannot give access to such descriptions. Another interesting property is the ability of
the method to discard random uncertainty such as atmospheric turbulences. Numer-
ous experiments such as those reported in [31, 32, 34, 38, 40, 41] confirm these
properties. Besides human interpretation, the proposed technique can also be used
for SITS indexing and retrieval.

In the second part of the chapter, we have investigated two approaches to deal
with the removal of clouds from sequences of multitemporal multispectral optical
images. The first strategy is based on a contextual prediction system, while the
second is based on CS. The experimental results point out the superiority of the CS
approach. Comparing the CS solutions, OMP has the advantage to be sparser and
significantly faster than BP and GA, but it is the less robust method. Indeed, since
the reconstruction of each pixel depends typically on 3 coefficients and thus 3 other
pixels of the image, it is enough that one of them is missing (covered by a cloud) to
render the reconstruction model inaccurate. This problem is much less important to
BP as it is much less sparse than OMP. GA represents a good compromise between
OMP and BP methods, mainly because it is more robust than OMP and more sparse
than BP. Another empirical conclusion is that the kind of ground cover obscured
may be an important factor to take in consideration for the reconstruction, while
the size of the contaminated area only marginally affects the performance of the
explored reconstruction methods, which depend more on the information available
outside the missing area. In other words, if a ground cover is contaminated and it is
not represented outside of the contaminated area, the reconstruction process will not
deal with such a situation correctly.
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Chapter 10
Advances in Kernel Machines for Image
Classification and Biophysical Parameter
Retrieval

Devis Tuia, Michele Volpi, Jochem Verrelst and Gustau Camps-Valls

Abstract Remote sensing data analysis is knowing an unprecedented upswing fos-
tered by the activities of the public andprivate sectors of geospatial and environmental
data analysis. Modern imaging sensors offer the necessary spatial and spectral infor-
mation to tackle a wide range problems through Earth Observation, such as land
cover and use updating, urban dynamics, or vegetation and crop monitoring. In the
upcoming years even richer information will be available: more sophisticated hyper-
spectral sensors with high spectral resolution, multispectral sensors with sub-metric
spatial detail or drones that can be deployed in very short time lapses. Besides such
opportunities, these new and wealthy information sources also come with a price: the
analysts are confronted with data showing large and complex feature characteristics.
To deal with these new challenges, kernel methods have emerged as a valid, robust
and successful framework. The intrinsic regularization implemented in these meth-
ods and their low sensitivity to data dimensionality make them natural candidates
to solve current remote sensing problems. The flexibility offered by kernel meth-
ods allows us to treat heavily nonlinear tasks with elegant methodologies, while still
using linear algebra. In the last decade, kernel methods in general, and support vector
machines for classification and Gaussian processes for regression in particular, have
become standard tools for geospatial data analysis. In this chapter, we first review the
main concepts about kernelmethods and their use in remote sensing. Then, we review
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examples of kernel methods for remote sensing image classification and biophysical
parameter retrieval.

10.1 Introduction

Analyzing remote sensing data has become more challenging in recent years. As
mentioned in previous chapters, the volume of data to be processed has increased con-
siderably. Secondly, the resolution (both in spectral and spatial terms) has improved,
thus allowing to study more interesting problems, but also of higher complexity.
Third, the diversity of the data has also increased, in the sense that several sensors
are nowadays available to the general public, each one with its own characteris-
tics and (dis)advantages. In the area of modern remote sensing, there is a need for
new processing methods capable of handling data from different sensors, with high
complexity and coming at a high spectral, spatial and temporal resolutions.

Among the different families of statistical methods that can be considered to
process remote sensing data, kernel methods [1] have gained popularity in the
last decades. Kernel methods are theoretically sound, reduce to linear operators
while providing nonlinear solutions to the problem at hand, and cast processing
problems in terms of the estimation of similarities between data samples. In this
sense, kernel methods are generally non-parametric methods, i.e. they learn the
dependencies between the inputs and the outputs in a data-driven way, without
assuming a parametric model generating the data.

The fact that kernel methods (and most generally non-parametric methods) rely
only on the labeled data might lead to problems, since, on one hand, learning from
data would imply the necessity of large data sets, while on the other hand the reduced
availability of labeled samples implies the risk ofmissing the general structure of data
(sincewe stay too close to these training data). To leverage these critical issues, kernel
methods employ regularization strategies limiting the complexity of the resulting
models: by favouring simpler models over more complex ones relying massively on
the training data, kernel methods achieve remarkable generalization ability [1]. This
is even further increased when enforcing other types of regularity or sources of prior
knowledge about the data at hand: priors such as sparsity [4] or smoothness [5] have
been employed successfully in remote sensing image processing and will also be
reviewed in this chapter.

The first task we will review in this chapter is pixel classification, i.e. the act of
classifying every pixel (or region) of the image in a specific semantic class: in this
task, kernel methods have shown excellent generalization abilities [6–9], robustness
to small sample scenarios [10, 11] and flexibility related to the possibility of design-
ing kernel functions specific to the problem [12, 13]. Support vector machines are
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nowadays one of the most used methods in remote sensing and have imposed them-
selves as the golden standard for land cover and land use classification [14–17] (see
also the various applications of SVMclassifiers in previous chapters). In Section 10.3
we will review some recent advances in multi-sensor classification of remote sens-
ing data, and describe in detail two approaches: a multi-kernel approach to integrate
multi-temporal sequences, and a manifold alignment approach to perform domain
adaptation, i.e. adapt amodel based on existing training samples to predict effectively
the classes in a new image acquisition (thus acquired under different illumination,
seasonal and atmospheric conditions).

The second task we will review in this chapter is the estimation of biophysi-
cal parameters by means of statistical machine learning. Spatio-temporally explicit
and quantitative retrieval of the characteristics of the surface of the Earth or of its
atmosphere have become a requirement in a variety of Earth observation applica-
tions. Optical sensors mounted on-board Earth observation (EO) satellites are being
endowed with high temporal, spectral and spatial resolutions, and thus enable the
retrieval and monitoring of climate and bio-geophysical variables [18, 19]. With
the super-spectral Copernicus Sentinel-2 (S2) [20] and the forthcoming Sentinel-3
missions [21], among other planned space missions, an unprecedented data stream
for land, ocean and atmosphere monitoring will soon become available to a diverse
user community. Such vast data streams require enhanced processing techniques and
statistical inference methods might play an important role in this area of research.
Over the last few decades a wide diversity of bio-geophysical retrieval methods
have been developed, but only a few of them made it into operational processing
chains. Essentially, we may find two main approaches to the inverse problem of esti-
mating biophysical parameters from spectra: parametric physically-based models
and non-parametric statistical models. Lately, machine learning has attained out-
standing results in the estimation of climate variables and related bio-geophysical
parameters at local and global scales [22]. For example, leaf area index (LAI) [23]
and Gross Primary Production (GPP) [24, 25] are currently derived with neural
networks, while multiple regression is used for retrieving biomass [26] or sun-
induced fluorescence [27]. Support vector methods were also proposed to study
ocean chlorophyll [28] and vegetation parameters [29–31]. The family of Bayesian
non-parametrics, and of Gaussian processes in particular [3], have been payed wide
attention in the last years in remote sensing data analysis, especially for tasks of
vegetation properties estimation [32]. We will review the main developments in GPs
for EO data analysis in this chapter (Section 10.4). We review new algorithms that
respect the signal characteristics, that provide feature rankings automatically, and
that allow applicability of associated uncertainty intervals to transport GP models in
space and time.

10.2 Introduction to Kernel Methods

In this section, we review the main properties of kernel methods. By drawing from
linear algebra and functional analysiswediscuss valid operations onkernels functions
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[33, 34]. Furthermore, we present two methods in details: support vector machines
for classification and Gaussian processes for regression.

10.2.1 Feature Maps and Kernels

Kernel methods are learning algorithms that extrapolate rules for inference
by learning the structure between training examples. The rules are based on
similarities between samples. They rely on and extend the well known theory
of linear algorithms, so that nonlinear models can be achieved by using linear
algebra.

The simplest solution to make linear algorithms deal with nonlinear problems is to
map the input samples S = {xi ∈ R

d}ni=1 ∈ X into a higher dimensional Hilbert
space H , the feature space, endowed with the dot product operation. The solution
obtained by learning the linear model in this space will be nonlinear with respect
to the original input space X . The nature of X is unimportant, as long as we can
define a mapping function φ : X → H , x �→ φ(x). This mapping step is very
important, since it allows to build valid kernel functions also over non-conventional
input spaces such as strings or histograms: the similarity among data instances will
be measured by the inner product 〈·, ·〉H inH .

However, computing explicitly the optimal φ(·) guaranteeing low generalization
error is a computationally very expensive task, since the whole transformation must
be estimated from the data. Kernel methods circumvent this problem elegantly by
defining a kernel function returning directly the value of the pairwise inner product
in H by only taking as argument the samples in their original input space K :
X × X → R, such that (x, x′) �→ K (x, x′). A kernel function is defined to be:

K (x, x′) = 〈φ(x),φ(x′)〉H . (10.1)

10.2.2 Positive Definite Kernels and the Kernel Trick

Using the kernel function in Eq. (10.1) in all sample pairwise combinations, we
can construct a square symmetric kernel matrix of real numbers, K ∈ R

n×n , which
contains the similarity between all available data points in its entries K (xi , x j ).
This matrix is positive semi-definite if, for any two scalars ci , c j ∈ R,

∑
i j ci c j

K (xi , x j ) ≥ 0. If the equality occurs only at ci = c j = . . . = 0, the kernel matrix
is strictly positive definite. A kernel function is valid if and only if the associated
kernel matrix K is positive semi-definite.
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Theorem 1 There exists a Hilbert space H and a feature map φ : X → H for
all (x, x′) ∈ X so that K (x, x′) = 〈φ(x),φ(x′)〉H if and only if K (x, x′) gives rise
to a positive definite kernel matrix K ∈ R

n×n.

The above definition gives rise to the kernel trick [35]: Any algorithm that
depends on data samples only in the form of dot products can be “kernelized”
by replacing the inner products with valid kernel functions.

Note that many algorithms not explicitly depending on dot products between
data can be reformulated so that kernels can be applied, e.g., principal component
analysis and least squares regression, to name a few. By doing so, the algorithm will
run by implicitly depending on inner products in H without needing the explicit
form of φ(·).

10.2.3 Operations with Kernels

The feature space in which data samples are mapped is endowed with a dot product
and basic algebraic operations. Thus, there exist a set of basic operations that can be
applied inH by means of kernels.

Translation. A translation by a vector Γ ∈ H corresponds to the modified map-
ping function φ̃(x) = φ(x)+Γ . If Γ lies in the span of the mapped data samples,
the dot product between translated mapped samples can be readily computed as:

〈φ̃(x), φ̃(x′)〉H = 〈φ(x) + Γ ,φ(x) + Γ 〉H
Centering. The fact that translations exist in H allows us to center data directly

in the feature space. The mean of a data set in H can be computed as φμ =
1
n

∑n
i=1 φ(xi ), which lies in the span of the φ(x), since the mean is a convex

combination of data samples. Centeredmappings φ̄(x) correspond to a translation
with the data mean: φ̄(x) = φ(x) − φμ. Thus, the dot product between centered
data inH is:

〈φ̄(xi ), φ̄(x j )〉H = 〈φ(xi ) − φμ,φ(x j ) − φμ〉H
= K (xi , x j ) − 2

n

n∑

i=1

K (xi , x j ) + 1

n2

n∑

i=1

n∑

j=1

K (xi , x j )

(10.2)

Computing Distances. Another direct application of the translation operation
allows to compute distances in the feature space. It is evaluated entirely in terms
of kernel functions:



404

d(x, x′)H = ‖φ(x) − φ(x′)‖H = √
K (x, x) + K (x′, x′) − 2K (x, x′)

Subspace Projections. Geometrical operations in H are fully defined. Conse-
quently, given two vectors Ψ ,Γ ∈ H , the projection of Ψ onto the subspace
spanned by Γ is

Ψ ′ = 〈Γ ,Ψ 〉H
〈Γ ,Γ 〉H Γ .

By applying properties seen above, one can express the dot product between
projections Ψ ′ entirely by kernel evaluations.

Normalization. From the definition of subspace projections, it results that comput-
ing dot products between normalizedmapped samples φ̂(x) to unit normbecomes:

〈φ̂(x), φ̂(x′)〉H =
〈

φ(x)
‖φ(x)‖ ,

φ(x′)
‖φ(x′)‖

〉

= K (x, x′)√
K (x, x)K (x′, x′)

. (10.3)

10.2.4 Kernels Functions

In kernel methods, the choice of the kernel function and the corresponding hyper-
parameters (model selection) plays a very important role. The kernel implements a
functional prior, in the sense that the kernel function and its hyperparameter set must
fit the data in order to encode their relationships. In other words, the choice of the
kernel function implicitly specifies the form of the mapping function φ(·) and the
dot product (i.e., the similarity) between mappings.

In general, there exist three widely used kernel functions: linear, polynomial, and
radial basis functions (RBF). The three most famous instances are as follows:

Linear kernel: K (x, x′) = 〈x, x′〉 (10.4)

Polynomial kernel: K (x, x′) = (〈x, x′〉 + 1
)p

, p ∈ N
+ (10.5)

Gaussian RBF kernel: K (x, x′) = exp

(

− 1

2σ 2
‖x − x′‖2

)

, σ ∈ R
+, (10.6)

The hyperparameters b, p, σ above specify a specific kernel among the corre-
sponding function family. Running the kernelized algorithm with the linear kernel
corresponds, up to some numerical differences, to running the original algorithm in
the original space. For the polynomial, p correspond to the degree of the polynomial
expansion (thus a mapping of p+1 dimensions) and with the 1 allows to account for
different monomials of the power. Note that linear kernels are a particular instance
of polynomial kernels with p = 1 and no bias term.

For the Gaussian RBF, σ controls the bandwidth. This hyperparameter controls
the degree of locality of the Gaussian RBF kernel, weighting the distance between
sample pairs. For this reason, it belongs to the family of local kernels. The ratio
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inside the exponential grows towards large negative numbers for very small σ (and
thus the exponential tends towards 0). On the opposite, for very large σ , the ratio
tends towards 0 and the exponential towards 1. When σ becomes arbitrarily large,
the RBF kernel roughly behave like a linear kernel under some mild assumptions.
This is readily seen by expanding the Euclidean norm in the exponential. By Taylor
series expansion, the Gaussian RBF kernel approximates to a polynomial of infinite
degree, corresponding to dim(H ) → ∞. This kernel function is probably the most
widely used, as it offers an easy interpretation (local similarity with bounded output)
and it tends to outperform other basic kernel functions in practice.

The problem of finding an explicit feature map is now reduced to select a
kernel function and to tune the corresponding hyperparameters.

These tasks are purely data dependent and can be performed by model selection
strategies (cross-validation) or by optimization routines (such as the multiple kernel
learning, see Sect. 10.3 for SVM and Sect. 10.2.8 for GPR).

10.2.5 Kernel Combinations

One of themost interesting aspects of kernel functions is that they can also be derived
from other kernel functions. As illustrated by linear algebra and function analysis
key properties [33, 34], new kernels can be built by taking advantage of a set of
rules, which define the validity of some operations between kernels [35]. Let us now
assume K1(·, ·) and K2(·, ·) two positive definite kernel functions on X × X , A
a symmetric positive semidefinite matrix (e.g., a covariance matrix or an inducing
metric), M(·, ·) a metric function fulfilling the triangle inequality and finally f (·)
any continuous function. The rules are as follows:

K (x, x′) = K1(x, x′) + K2(x, x′) (10.7)

K (x, x′) = μK (x, x′), μ > 0 (10.8)

K (x, x′) = K1(x, x′) · K2(x, x′) (10.9)

K (x, x′) = x�Ax′ (10.10)

K (x, x′) = exp(−M(x, x′)) (10.11)

K (x, x′) = K ( f (x), f (x′)) (10.12)

It results that, by choosing appropriate kernel functions and combining them
we can develop new similarity measures that better encode data/problem char-
acteristics, making our priors closer to data modeling needs.
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For instance, let assume that we are dealing with a multi-source classification
problem (cf. Chap. 7). We know from the problem that some sources of data are gen-
erally more important than others, but even less informative sources give important
information for some classes. We also know that one important source of data is very
noisy and we would like to utilize a smoothed version of the image without knowing
which smoothing function is best. By the above rules, we can build a kernel that
accounts for these aspects simultaneously: we can weight (by a convex combination)
the kernel function for each data source together with the different smoothing for the
noisy data source. By learning these weights from the data (e.g., by minimum error
cross-validation) we end up in having a kernel matrix optimized for the problem at
hand. A detailed example of this reasoning will be given in Sect. 10.3, and a Bayesian
perspective will be presented in Sect. 10.4.

10.2.6 A Note on the Kernel Metric

Kernel methods may appear elusive because the mapping φ is not explicitly
defined, and the vector coordinates in the new feature spaces are not accessible.
However, the framework allows to compute distances, angles, displacements,
averages, and covariances implicitly inH from the available data [36].

In addition, and very importantly, we show here that one can compute the metric
associated to the used kernel.

For any positive definite kernel, we assume that the mapped data inH are distrib-
uted in a surface S smooth enough to be considered a Riemannian manifold [37].
The line element of S can be expressed as:

ds2 = gabdφ
a(x)dφb(x) = gμνdx

μdxν,

where superscripts a and b correspond to the vector space H , gμν is the induced
metric, and the surface S is parametrized by xμ. Note that Einstein’s summation
convention over repeated indices is used. Computing the components of the (sym-
metric) metric tensor only needs the kernel function:

gμν = (1/2)∂xμ
∂xν

K (x, x) − {∂x ′
μ
∂x ′

ν
K (x, x′)}x′=x. (10.13)

For the RBF kernel with a given σ parameter, this metric tensor becomes flat, gμν =
δμν/σ

2, and the squared geodesic distance between φ(x) and φ(x′) becomes:

‖φ(x) − φ(x′)‖2H = 2

(

1 − exp

(

− ‖x − x′‖2X
2σ 2

))

= 2(1 − K (x, x′)). (10.14)

http://dx.doi.org/10.1007/978-3-319-66330-2_7
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Note that the metric solely depends on the original data points (e.g., spectra) yet
computed implicitly in a higher dimensional feature space H , whose notion of
distance is controlled by the parameter σ : the larger σ the smoother (linear) is the
space. Actually, σ → ∞ reduces the RBF kernel to approximately compute the
Euclidean distance between vectors, which reduces the metric tensor to gμν = 1.

10.2.7 Support Vector Machine for Classification

SupportVectorMachine is a linear classifiermaximizing amargin between data
instances belonging to different classes. This stems directly from an implemen-
tation of the structural risk minimization, as dictated by the statistical learning
theory [38]. In few words, SVM minimizes the regularized empirical loss on
training data, by finding a solution jointly minimizing the error on training
data (empirical risk) and selecting the model with the optimal complexity
(regularization loss).

The SVM is defined as follows. We dispose of a set of data-label pairs {(xi , yi )}ni=1,
where xi ∈ R

d and yi ∈ {−1, +1}. To obtain a nonlinear SVM,we solve the problem
in H by applying to the data samples the mapping function φ(·). Then, the SVM
primal optimization problem is:

min
w,ξi ,b

{
1

2
‖w‖2 + C

n∑

i=1

ξi

}

(10.15)

constrained to:

yi (〈φ(xi ),w〉H + b) ≥ 1 − ξi ∀i = 1, . . . , n (10.16)

ξi ≥ 0 ∀i = 1, . . . , n (10.17)

The optimal w and b define the (primal) model, that is simply a linear classifier
in the feature space for some test sample x∗ as y∗ = sign (〈x∗,w〉 + b). The ξi
are positive slack variables allowing the optimization to deal with training errors,
typically caused by noise and data errors which do not allow to learn a perfect
separation. The regularization hyperparameter C controls the capacity of the SVM,
by penalizing (small C) or encouraging (large C) complex models, defined by the
smoothness of the weights w.

As discussed above, the form of the optimal mapping φ(·) is impossible to be
explicitly computed. We know that we can circumvent the problem by applying the
kernel trick and select the appropriate mappings by only tuning kernel hyperpara-
meters. To obtain a formulation only dependent on dot products between mapped
samples the above primal problem is often reformulated via its dual counterpart.
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It is obtained by equating partial derivatives of the model to 0, and replacing the
optimal points in Eq. (10.15). The dual optimization corresponds to the following
maximization with respect to the dual Lagrange multipliers α [35]:

max
α

⎧
⎨

⎩

n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiα j yi y j K (xi , x j )

⎫
⎬

⎭
(10.18)

subject to:

0 ≤ αi ≤ C ∀i = 1, . . . , n (10.19)
n∑

i=1

yiαi = 0 ∀i = 1, . . . , n (10.20)

Once the optimal model parameter αi are obtained, the final (dual) decision on
some test example x∗ can be made by taking the sign of the linear regression between
labels defined by w = ∑n

i=1 αi yiφ(xi ) and b = 1/k
∑k

i=1(yi − 〈φ(xi ),w〉). For the
latter, k is the number of unbounded Lagrange multipliers (0 < αi < C) and the
sum is taken over the corresponding samples. The dual solution for a test sample x∗
is then formulated as:

y∗ = sgn

(
n∑

i=1

yiαi K (xi , x∗) + b

)

(10.21)

Note that inferring a new label with a SVM requires that the training samples
with an associated αi �= 0 are stored in memory, in order to compute the kernel
matrix at test time. There exist some ways to reduce the computational load of
kernel methods, such as kernel decompositions based on Nyström approximations
[39] or on Landmark selection [40]. Other strategies suggest to solve directly the
primal problem using for instance approximate mappings, such as random feature
sinks [41].

StandardSVMis binary in nature.Multi-class extensions to solve c-class problems
usually train several SVM, one per binary problem, by two main splitting strategies:
one against one and one against all. The former trains c(c − 1)/2 SVM while the
latter only c. SVM directly solving a multi-class optimization problem are usually
more efficient when solving the primal problem (scaling linearly with the number
of examples), but become more expensive when solving the kernel counterpart. A
typical instance of this problem can be easily formulated by structured SVM, known
as the Crammer and Singer SVM [42].
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10.2.8 Gaussian Processes for Regression

Gaussian Processes (GPs) belong to the family of Bayesian nonparametric
methods [3]. Under a pure discriminative perspective, they can be actually
seen as a kernel method performing least squares regression in a reproducing
kernel Hilbert space (RKHS): dual weights can be estimated easily involving
the inverse of the (regularized) training kernel matrix, and predictions for new
test data involve the computation of a kernel matrix containing the similarities
between training and test data. In the GPs literature, the kernel matrix is called
the covariance matrix.

GPs find a regression model of the type f (x) = 〈w,φ(x)〉H + ε, where ε is
a zero mean σ 2

r standard deviation Gaussian white noise, by defining a distri-
bution over the functions, i.e. a Gaussian Process, f (x) ∼ GP(m(x), K (x, x′))
fully specified by a mean function m(x) = E[ f (x)] and covariance (kernel)
K (x, x′) = E[( f (x) − E[ f (x)]) ( f (x) − E[ f (x)])]. The mean function, for the
sake of simplicity will be assumed to be zero. This would not limit the modeling
power, as long as the data is centered.

We dispose of a labeled training data set with outputs (real numbers) {(xi , yi )}ni=1,
where xi ∈ R

d and yi ∈ R. To infer theGPmodel, we only have to compute the kernel
matrix K which now fully specifies the distribution over functions. Practically, this
distribution models the outputs of each sample from the GP. The covariance matrix
K specifies that estimated training set outputs f(x) ∼ N (0,K). Thus, the form of
this covariance function and in particular of its hyperparameters will define the form
of variation across functions.

Let us define the vectorized training labels as y = [y1, . . . , yn]�, the evaluation
of kernel between training and test data x∗ as k∗ = [K (x1, x∗), . . . , K (xn, x∗)]�,
and the one between test samples as k∗∗ = K (x∗, x∗). All the kernel values can be
seen as specific entries from a joint train-test kernel matrix. The output values are
distributed according to:

(
y

f (x∗)

)

∼ N

(

0,
(
K + σ 2

r I k∗
k�∗ k∗∗

))

(10.22)

To predict the output f (x∗) we derive the posterior distribution of the outputs by
conditioning on training data, given the test sample, as

f (x∗)|y, {x1, . . . , xn}, x∗ ∼ N
(
k∗(K + σ 2I)−1y, k∗∗ − k∗(K + σ 2I)−1k∗

)
.

Therefore, predictions from aGP are simply themean of this distribution conditioned
on the observations, with an associated uncertainty given by the standard deviation
of this conditional distribution.
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To train the GP, we, therefore, have to optimize two sets of hyperparameters: the
kernel function and the noise variance. Both can involve the optimization of one or
more hyperparameters, depending on the kernel function and on the noise model. We
will assume that noise is homoscedastic (i.e. roughly speaking the noise variance is
independent of the input sample).

An alternative optimization procedure to cross-validation to choose the hyperpa-
rameters consists of using gradient descent over the negative logmarginal likelihood.
Actually, it is possible to obtain the likelihood of the output data by marginalizing
the GP over function values, hence obtaining:

− log p(y|x, θ) = 1

2
y�(K + σ 2

n I)
−1y + 1

2
log

(
det(K + σ 2

n I)
) − n

2
log(2π).

Then, the gradient updates are computed by taking partial derivatives of the hyper-
parameters θ :

∂ log p(y|x, θ)

∂θ j
= 1

2
y�K−1

r

∂Kr

∂θ j
K−1

r y − 1

2
Tr

{

K−1
r

∂Kr

∂θ j

}

= 1

2
Tr

{

(αα� − Kr )
−1 ∂Kr

∂θ j

}

,

(10.23)

where α = K−1
r y and Kr = K + σ 2

r I, which are computed just once. The above
strategy can be used in general conjugate gradient-based optimization routines.

10.3 Multi-modal Data Classification

In this section, we focus on the challenging problem of multimodal remote sensing
data classification [43]. Therefore, we will consider cases, where we perform image
classification (or semantic classification/labeling) to provide a thematic class to each
sample considered. The samples might be, for instance, pixels, regions, voxels or 3D
points in a point cloud.

We will study two frameworks that have been recently applied in remote sensing
image processing: multiple kernels classification and manifold alignment. We will
provide examples on high and very high resolution image classification.Wewill then
conclude by briefly reviewing recent emerging trends.
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10.3.1 Multi-source Pixel Classification with Multiple
Kernels

As they have been defined in Sect. 10.2, kernels are functions representing similar-
ity between samples. If we focus on the definition given in Eq. (10.1), a kernel is
evaluated with the same metric over the whole input space. Taking the example of
the Gaussian kernel, K (xi , x j ) = exp(−||xi − x j ||2/(2σ 2)), we can note that the
same single bandwidth parameter, σ , is applied to all the features. This means that
we assume that all the data distribution is isotropic, and that each feature deserves
the same importance in the computation of the final similarity between samples. The
metric used is therefore flat as seen in Sect. 10.2.6.

This can be sub-optimal, for example when some of the features available are
noisy or strongly correlated between each other: in the first case, we would like their
contribution to beminimal (i.e. a σ as small as possible), while in the latter, wewould
like to have a larger σ parameter, but also to be able to exclude the redundant features
and account for the useful information only once. Note that this is independent from
the data normalization: even if features are normalized to share the same range, one
feature could be more discriminative than another one, requiring more weight in the
computation of the similarity. To achieve these objectives simultaneously, we can
take advantage of the kernel summation property stated in Eq. (10.7).

We can build a single kernel per feature (or group of features) and then combine
all the kernels into a new one by linear combination. Learning such a combina-
tion of kernel functions is known in the literature as multiple kernels learning
(MKL [44]). Such a solution is more flexible and would directly account for
data relationships in themodel, andwill also perform implicit feature selection.

MKL has been recently successfully applied in remote sensing data processing
tasks, going from multisource image classification [45], to unmixing [46, 47], SAR
segmentation [48] feature selection for hyperspectral image classification [49], or
to combine spatio-spectral indices [50]. Sparse selection [51] and discriminative
feature selection [52] were also considered. In [53], authors obtain the kernel by
repeated nonlinear mappings. MKL was also combined with other machine learning
frameworks such as active learning [54] or domain adaptation [55], thus going beyond
the simple framework of kernel construction for classification. In the next section,
we review the main ingredients of MKL.

10.3.1.1 From Composite to Multiple Kernels

The idea of combining kernels referring to different sources of data was previously
explored in the composite kernels framework [12]: Combining the kernel summation
(10.7) andkernel scaling (10.8) properties (seeSect. 10.2.5), one can formulate a valid
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kernel as:

K (xi , x j ) = μ1K1(xi , x j ) + μ2K2(xi , x j ),

and tune the importance of the kernels involved by tuning the scalings μ1,2 > 0.
This idea was exploited for spatio-spectral classification originally in [12] for hyper-
spectral image classification, and further exploited for VHR [13, 56], multitemporal
classification [14], and semisupervised kernel deformation [57]. Composite kernels
work well in practice, as they provide an intuitive way of trade-off the importance
of the different feature sets used to compute each kernel, or even to discover the
best kernel function with a fixed feature set. However, they are not suitable for cases
involving more than a few kernels, since the tuning of a set ofμweights heuristically
(e.g., cross-validation) would become computationally expensive. The MKL frame-
work answers to this call, as it aims at learning (i.e. via optimization) the optimal
linear combination of μ weights.

The idea of MKL is summarized in Fig. 10.1: we have V = [1, . . . ,m, . . . , M]
views of the same data (M blocks of features), which can be spectral bands,
groups of bands, image time sequences, or spatial filters of different scale or nature
[45, 52]. For each view, we build a separate kernel indexed by m, each one of the
most appropriate type and with the most appropriate parameters. We aim at finding
the best combination of the form:

K (xi , x j ) =
M∑

m=1

μmKm(xi , x j ),

s.t. μm ≥ 0
M∑

m=1

μm = 1. (10.24)

MKL aims at optimizing a convex linear combination of kernels, i.e., theμm weights,
at the same time as it trains the classifier. In the case of the SVM introduced in
Sect. 10.2.7, the optimization of the μm weights involves gradient descent over the
SVM objective value [58]. Globally, we adopt a minimization strategy aternating

MKL-SVMK(xi
w, x j

w) K(xi
r, x j

r) K(xi
c, x j

c) K(xi
s, x j

s)

K(xi , xj)

d1 d2 d3 d4

dm

σm

Fig. 10.1 General idea behind multiple kernel learning. Given different sources of registered data,
a linear combination of the different similarity matrices (the kernels) is found. (adapted from [45])
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two steps: first, we solve an SVM with the composite kernel defined by current μm

and then we update μm by gradient descent.
If we use the kernel in Eq. (10.25), and then plug it into the SVMdual formulation,

we obtain the following problem:

max
α

⎧
⎨

⎩

n∑

i=1

αi − 1

2

n∑

i, j=1

αiα j yi y j

M∑

m=1

μmKm(xi , x j )

⎫
⎬

⎭
(10.25)

constrained to 0 ≤ αi ≤ C ,
∑

i αi yi = 0, ∀i = [1, . . . , n],∑m μm = 1 andμm ≥ 0.
The dual corresponds to a standard SVM in which the kernel is composed of a linear
combination of sub-kernels as in Eq. (10.25). One can show (see [58] for details)
that maximizing the dual problem in (10.25) is equivalent to solving the problem:

min
μ

J (μ) such that
M∑

m=1

μm = 1, μm ≥ 0 (10.26)

where

J (μ) =

⎧
⎪⎪⎨

⎪⎪⎩

minw,b,ξ
1
2

∑M
m=1

1
μm

‖wm‖2 + C
∑n

i=1 ξi

s.t. yi (
∑M

m=1〈wm,Φm(xi )〉 + b) ≥ 1 − ξi

ξi ≥ 0

(10.27)

and wm represents the weights of the partial decision function of the subproblem m
with associated kernel mapping Φm(xi ). In other words, we have now an objective
to optimize by gradient descent over the vector of possible μm values. We therefore
alternate the solution of an SVM (providing the current error) and the optimization
of μm . The �1 norm constraint on the kernel weights forces some dm coefficients to
be zero, thus encouraging sparsity of the solution and natural feature selection.

10.3.1.2 Multitemporal Image Classification with Multiple Kernels

Here, we assess the effectiveness of multi-temporal image classification using SVM
andMKL.Potentially interesting information could be obtained from theMKLmodel
related to the temporal relevance of each image and of its features.

In this experiment, we study the potential of MKL for multitemporal image clas-
sification with synthetic data. For the generation of realistic synthetic hyperspectral
images, we used data from the Compact High Resolution Imaging Spectrometer
(CHRIS), which is mounted on board the small satellite platform PROBA (PRoject
for On Board Autonomy). The CHRIS sensor provides hyperspectral images in the
spectral range from 400nm to 1050nm (62 spectral channels for acquisitionMode 1)
[59]. The selected imagewas acquired in the AgriSAR 2006 campaign over the Dem-



414

min site (Germany) [60]. This image was selected for the study in order to take into
account different surface types, patterns, and spatial textures.

From the original image, we generated a time series of 5 synthetic labeled hyper-
spectral images of size 200 × 200 pixels containing four classes (‘forest’, “rural
urban area”, “winter crops”, and “summer crops”) that vary along time. Details of
data simulation can be found in [14]. Two kinds of changes in the spectral signa-
ture were simulated: (i) natural spectral variability of the class accounted by the
covariance matrix and the random generation of the samples for the different dates
and (ii) changes of the class distributions between dates (e.g., due to illumination
or atmospheric effects) simulated with a multiplicative factor over the distribution
parameters (μt = δtμ and Σ t = δ2t Σ , where δt = 0.01t + 0.94, t = [1, . . . , 4]
for all classes). This way, we simulate the situation where a series of images taken
in a short time period is available (for instance at different times of the year) and
we integrate the different images to avoid problems related to noise, illumination
changes and atmospheric effects.

Three experiments using MKL have been run on this data set:

• GA (grouped features + model selection by kernel alignment): we use 5 kernels,
each one encoding similarity for one of the 5 images of the simulated data. There-
fore, each kernel is built on 62 features. Kernel parameters are estimated as those
maximizing the kernel alignment [61] between the resulting kernel, K, and the
ideal kernel, yy�, that contains values of 1 among samples in y of the same class
and 0 otherwise (normalized using Eq.10.3):

A = 〈K, yy�〉F
√〈K,K〉F 〈yy�, yy�〉F

. (10.28)

In the equation, 〈·, ·〉F stands for the Frobenius dot product between matrices,
that is, 〈M,N〉F = ∑

i, j mi j ni j . The RBF kernel bandwidth σi that maximizes
Eq. (10.28) leads to the kernel for group i maximally correlated with the output
vector.

• GM (grouped features + model selection as in [58]): in this experiment we use
four kernels per image.: Instead of optimizing each σi using Eq.10.28, we consider
four values of the bandwidth for each group and use each value to build a separate
kernel. This leads to 20 kernels (four bandwidths and five images) and therefore
to a 20-dimensional weights vectors μ.

• SA (single features + model selection by kernel alignment): each one of the 62×
5 = 310 features is encoded into a separate kernel, with bandwidth σi optimized
by kernel alignment, as described for the GA experiment above.

In all the experiments, the features from the five images have been used to predict the
classes of common labels. All the images share the same ground truth. MKL is com-
pared against standard SVMs: On the one hand single models using a single image
with a single kernel and, on the other hand, a SVM where all the 310 features have
been used into a single kernel. In order to analyze the performance of the proposed
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Fig. 10.2 Overall accuracy curves for the experiments considered

methods under realistic ill-posed situations, we varied the number of training sam-
ples per class (n = [5, 10, 15, 20, 30, 40, 50]) and measured the overall accuracy
and the estimated kappa statistic on an independent test set of 15′374 pixels.

Figure10.2 illustrates the numerical results: the first striking observation is that
all single models (shown in Fig. 10.2b) provide unsatisfactory results in terms of
accuracy. The performance’s gap with the models built using the five images (shown
in Fig. 10.2a) increases when the number of labeled samples grows, showing that
accounting for several sources of information improves the classification perfor-
mance. The standard SVM is the model resulting in the highest accuracy for this
example, outperforming the MKL models by 4–5% in the experiments using 5 pix-
els per class. But when the number of training pixels grows, the gap is reduced and,
from 20 pixels per class, the difference becomes numerically insignificant: MKL
seems to need a higher number of pixels to converge to a stable solution. The McNe-
mar’s tests confirm this hypothesis: When using 5pixels per class, SVM always
outperforms MKL (z̄ = 38.78 for all experiments), but when increasing the number
of training pixels to 10, z̄ falls to 13.7 and in two experiments over ten, the maps
are not significantly different. (|z̄| < 1.96). The trend continues with 20 pixels per
class, where z̄ = 4.5, a result is statistically the same andMKL outperforms SVM in
two of the runs. Using 50 pixels per class, the SA experiment even results in the best
mean accuracy of all the experiments, but z̄ = 0.01, showing identical solutions on
the average (specifically, 3 solutions are identical, 3 times SVM outperforms MKL,
and 4 times MKL results in the best solution).

The classification maps shown in Fig. 10.3 confirm these hypotheses: The use
of one image only (Fig. 10.3a, b) results into a noisy classification map and the
increase of training pixels does not solve the problem of the poor quality of input
information. On the contrary, multitemporal approaches show a strong increase of
the quality of the classification maps for both standard SVM (Fig. 10.3c, d) andMKL
(Fig. 10.3e, f). Moreover, the higher noise level that can be seen in the MKL solution
using 10pixels per class (Fig. 10.3e) is removed when we increase the number of
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training examples (Fig. 10.3f). This behavior may be related to the better estimation
of the kernel alignment when using a greater number of training pixels.

Even if they perform similarly numerically, MKL has the advantage over SVM
of the interpretability of the features importance. This is achieved via the analy-
sis of the μ weights, which shows the most important images among the five
images used (GA experiment) or the features that mostly contribute to the
solution (SA experiment).

Looking at the results reported in Fig. 10.4a, all the images participate equally to
the solution, maybe with the exception of the image at t3: on the average, no image
is discarded from the final solution. This behavior was expected, because spectral
variability has been added to all the images, so that all of them contain a part of
useful information for the final solution.

Regarding single features’ ranking (Fig. 10.4b), three main groups of features
emerge around bands #3, 33, and 53 (centered at 452, 722 and 895nm, respectively).
Interestingly, the same features are selected for the different images (in the barplot of
Fig. 10.4b each color corresponds to one of the 5 images): The most important bands
(#33, 53) are around the red edge and the NIR zones of the spectrum, and account
for the vegetation cell structure, thus helping in characterizing the crops and forest.
Bands around #3 account for the blue (tone) of images thus helping in classifying
different tonalities in the scene. An important secondary cluster in the band ranking is
observed in the red region of the spectrum (between bands #20–30), and around band
#60. The first group essentially accounts for the chlorophyll content with red-edge
bands. The fact that these bands show relatively lower relevance may be due to the
fact that chlorophyll contribution saturates and is transferred to red-edge channels.
The secondary subgroup (around #60) characterizes the water content and can be
very useful to discriminate between rural urban areas and natural vegetation.

10.3.2 Making Image Representations More Similar
with Manifold Alignment

A typical problem in remote sensing classification is to make the algorithms robust
to acquisition conditions (e.g., illumination, seasonality, atmosphere), since it is not
always possible to run proper atmospheric correction [62, 63] on the data (mainly
by the lack of precise ancillary data) and improper correction can harm the results
more than improve them. Moreover, atmospheric correction does not solve all prob-
lems of discrepancies between acquisitions, since, for instance, local angular effects
(BRDF) and seasonal phenological changes still remain and are unknown by a clas-
sifier trained on another acquisition (see also Chap.3). Synergies between physical
correction and data driven approaches have proven to be very effective [64].

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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When physics-based correction is not possible, one must resort to relative
normalizationmethods, which are data driven and end up providing amatching
between the data distributions, but also lose the original physical meaning of
the data.

Traditional means for relative-data normalization are histogram matching
[65, 66], graph matching [67], and projection methods such as canonical correla-
tion analysis [68].

A second challenging problem in multi-temporal classification is to make classi-
fiers portable across sensors (i.e., be able to reuse a classifier trained on spectra from
one sensor to process images acquired by another similar sensor). Such a flexibility
is required for many applications, but becomes a necessity when dealing with post-
catastrophe intervention, where one cannot wait for the next cloud free acquisition
of a specific sensor to run the analysis. A family of methods allowing for such flexi-
bility is again the projective methods based on canonical correlation: methods such
as the canonical correlation analysis [68] or the kernel-based canonical correlation
analysis [69] allow to align spaces of different dimensionality, because they define
a common space where the projections are mostly correlated with the data in their
original spaces. These methods never compare the data spaces directly, only the cor-
relations of similarities across the modalities: For this reason, they do not need a true
multi-modal metric, which is difficult to obtain in practice.

If CCA-like methods seem to be the answer to the multi-temporal/multi-source
problem, they come with a restriction, which is the need of co-registration of all
the images to be aligned: (k)CCA are based on the assumption that, at least when
defining the projections, each data sample is represented in all the modalities, i.e.,
each pixel is present and identifiable in all the images. These methods cannot be



10 Advances in Kernel Machines for Image Classification … 419

Fig. 10.5 Principle of manifold alignment. Two images from different sensors acquired over dif-
ferent areas are aligned spectrally in a common latent space (in the middle) that maximizes dis-
crimination

used when this requirement is not fulfilled; for example, when considering images
of spatially disconnected areas or when dealing with strong geometrical distortions.

Recently,manifold alignment [70] has been proposed as a valid alternative to these
methods: Instead of using geographical correspondences across pixels to define the
projections, the semi-supervisedmanifold alignment (SSMA [71]) registers the spec-
tral spaces by using spatially loose registration points: labels. This comes at the price
that some labels are required in every domain. In [72], SSMA was successfully used
to align sequences of multi-temporal and multi-source (QuickBird andWorldView2)
images (Fig. 10.5). Recently, manifold alignment-based methods have known a great
success in remote sensing, includingmethods to account for spatial information [73],
to include global and local alignment for classification [74], for correction of illumi-
nation effects in hyperspectral images [75] or also for visualization [76]. Despite their
success, these methods all work with linear projection functions. The first attempt
to use kernel methods with this type of methods is found in [77] and is described
below.

10.3.2.1 From Linear to Kernel Manifold Alignment

In this section, we present the KErnel Manifold Alignment method (KEMA) [77].
To explain it in detail, we first review the SSMA method [71]. In the following, we
consider a set of M domains, each one of dimensionality dm (possibly different from
one domain to the other), to be aligned. SSMA aligns data from all M domains by
projecting them into a common latent space. The latent space has two properties: it is
discriminant for classification and it respects the original geometry of each manifold
(each image in our case). To do so, SSMA minimizes a cost function with three
terms: (1) a geometry-preservation term, GEO, forcing the local geometry of each
manifold to remain unchanged; (2) a similarity term, SIM, mapping samples of the
same class close to each other; and (3) a dissimilarity term, DIS, projecting pixels
of different classes far from each other. Loosely speaking, the cost function aims to
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maximizeL = (
(1−μ)SIM+μGEO

)
/DIS, which involves extracting the smallest

eigenvalues from the following generalized eigenproblem [71]:

X(LGEO + μLSIM)X�ϕ = λXLDISX�ϕ, (10.29)

where ϕ is the researched common projection matrix of size d×d, with d = ∑
m dm .

The rows of ϕ contain a block of projectors for each domain, scaled by
√

λ. The
matrix X is a (d × n) block-diagonal matrix containing the data from the different
domains to be aligned, with n = ∑

m nm being the number of pixels from all domains
available to define the projections.

In Eq. (10.29), LGEO, LSIM and LDIS are graph Laplacians issued from the simi-
larity matrices G, S and D, corresponding to the GEO, SIM and DIS terms, respec-
tively [72]. TheGmatrix is a block-diagonal matrix containing values 1 if two pixels
of a same domain are neighbours in the spectral space and 0 otherwise. Neighbour-
hood is defined by a proximity graph considering pixels of the same domain only
(we do not want to preserve the geometry across domains, only within each domain).
The S matrix summarizes class similarity and contains the value 1 if the pixels are
of the same class and 0 otherwise (across all domains). The dissimilarity matrix D
assigns the value 1 if two pixels belong to different classes and 0 otherwise (again,
across all domains).

Now, let us kernelize SSMA into KEMA: in the multi-domain setting considered
here, we would have to map the M data sets to M Hilbert spaces Hm of dimension
Hm , φm : x �→ φm(x) ∈ Hm , m = [1, . . . , M]. The derivation of the kernelized
SSMA is presented here with regard to the case Hm < ∞ (i.e. m = [1, . . . , M]).
Then, we replace all the samples with their mapped feature vectors, to obtain:

Φ(LGEO + μLSIM)Φ
�U = λΦLDISΦ

�U,

whereΦ is a block-diagonalmatrix containing the datamatricesΦm = [φm(x1), . . . ,
φm(xnm )]� and U contains the eigenvectors organized in rows for the particular
domain defined inHilbert spaceHm ,U = [u1,u2, . . . ,uH ]� where H = ∑M

m=1 Hm .
Note that Φ andU live in a high dimensional space that might be very costly or even
impossible to compute. Therefore, we express the eigenvectors as a linear combi-
nation of mapped samples using the Representer’s theorem [66], um = Φmαm (or
U = ΦΛ in matrix notation):

K(LGEO + μLSIM)KΛ = λKLDISKΛ, (10.30)

where K is a block-diagonal matrix containing the kernel matrices Km . Now the
eigenproblem becomes of size n×n instead of d×d, and we can extract a maximum
of n components.

This dual formulation is advantageous when dealing with very high dimensional
data sets, d � n, for which the SSMA problem is not well-conditioned. Projection
to the latent space requires first mapping the data into the latent space by computing
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Prilly Montelly Malley

Fig. 10.6 The WorldView-2 images used in the remote sensing image classification experiments.
Color legend: residential, meadows, trees, roads, shadows, commercial building, railway, bare soil

the corresponding kernel Kim and then applying the projection vector αm defined
therein:

x∗
i = u�

mΦ im = α�
mΦ�

mΦ im = α�
mKim, (10.31)

whereKim is a vector of kernel evaluations between sample xi and all samples from
domain m used to define the projections αm .

10.3.2.2 Multi-temporal Transfer of Classifiers at Very High Resolution

In this application, we consider the problem of classifying pixels from a series of
multispectral remote sensing images into a limited number of land cover classes.
The images in this experiment are three subsets taken from twoWorldView-2 scenes
with spatial resolution of 2.4m and eight spectral channels in RGB and infrared
wavelengths. All regions imaged are located in the city of Lausanne, Switzerland:
the Montelly and Malley images are subsets of images acquired the September 29,
2010, while the Prilly subset is part of a scene acquired the August 2, 2011. All
scenes have been pan sharpened using the Gram-Schmidt transform to reach a 0.6m
resolution. Figure10.6 illustrates the RGB composites and the exhaustive ground
truth of these data sets.
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We consider the following standard domain adaptation scenario: We assume that
one of the images has sufficient label information and we consider it in turn as the
leading domain with l1 = 100 labelled pixels per class. The objective is to have a
classifier that can predict well on all three images with minimal effort in terrestrial
campaigns or photo-interpretation on the new acquisitions, i.e., the least number of
new labelled pixels from these (new) incoming domains. Therefore, the two other
domains provide less labelled pixels, with l2 = l3 = [10, . . . , 90]. Each domain also
provides 500 unlabeled pixels. All domains are aligned together with either SSMAor
KEMA (with a RBF kernel with the parameter σm set as half of the median Euclidean
distance between all pixels in domain m) and then a linear SVM is trained on the
aligned domain using the same labelled pixels used to define the projections. The
SVM regularization parameter was tuned by tenfold cross-validation on the training
set.

Table10.1 shows the results. We compared KEMAwith the following competing
approaches: the casewhere no adaptation is performed (‘Raw’), the SSMAalgorithm,
and the case where only labelled pixels from the domain to be predicted are used
to train the linear SVM (“Test”). In the table, each row block corresponds to an
image used as the leading one for training and each column to the domain used for
validation.

First, the case without adaptation is related to a sharp loss in accuracy (up to 30%
with respect to the “Test” case), which shows the data set shift in the data and the
need for adaptation strategies. The results observed in the rest of the table confirm
that KEMA improves the results of SSMA in almost all cases, with an increase of
up to +4% in accuracy with respect to SSMA and of up to +8% with respect to
the case without adaptation. As for SSMA, KEMA always outperforms the results
without adaptation and is insensitive to the presence of labelled samples from other
domains, when predicting in the source domain itself. Note that the “Test” baseline is
often surpassed, indicating the ability to extract discriminative (SSMA, KEMA) and
nonlinear (KEMA) features allowing for precise pixelwise land-cover categorization.
An extension of this study to the alignment multi-source images can be found in [75]
and also shows the potential of KEMA as a nonlinear feature extractor aligning
heterogeneous domains.

10.3.3 New Challenges

In this section, we reviewed two frameworks to perform multi-modal image classi-
fication: the multiple kernel learning (MKL), where a kernel function over multiple
data sources is learned as a linear combination of kernels specializing over single
sources, and the manifold alignment, where data spaces are made more similar by
projecting them into a common latent space. Of course, the new cutting edge research
areas in kernel methods for classification exceed these two topics.

The inclusion of spatial information has always played amajor role in remote sens-
ing image analysis: some examples on how to include such information have been
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presented above, when introducing themultiple kernel learning framework [12], both
approaches basedonMarkov and conditional randomfields (cf.Chaps. 4 and7) canbe
deployed for enforcing a prediction consisted in the space of outputs (these methods
are also known as structured output models): in [78, 79], contrast-sensitive condi-
tional random fields models are used to enforce the smoothness on the classification
map, where the contrast sensitivity is actually defined by a Gaussian kernel between
pixels. In [80], the Markovianity assumption is directly encoded in the kernel.

Another new research avenue pushing the structured outputs logic is to learn
the parameters of the structure model: Instead of enforcing smoothness or contrast
sensitivity assumptions on the output space, one could learn the correlation ranges in
the outputs spaces [81], the dependencies between classes (e.g., as a hierarchy [82])
or learn a whole conditional random field model based on classes co-occurrence
structure [83]. Models such as the structured SVMs are well suited to the task and
are gaining momentum in the remote sensing community.

Subspace learning using kernel methods has also emerged as a new challenger to
discriminative models such as the support vector machine: the subspaces where the
data live do not have to be linear and kernel methods are a natural way of describing
complex manifold geometries (nonlinear, intersecting, and multimanifold) via ker-
nel projection-then-linear description strategies. Classifiers based on collaborative
representation [84, 85] and subspace-regularized graphs [86] are only few of the
recent examples of advances in kernel methods exploring the approximation of data
manifolds via the use of kernel functions.

10.4 Biophysical Parameter Estimation

In this section, we review some recent advances in Gaussian processes regression
especially suited for biophysical parameter retrieval from optical remote sensing
data. In particular, we will review the main aspects to design covariance functions
that capture non-stationarities and multiscale time relations, as well as GPR that can
learn signal-to-noise relations, rank features, and derive confidence intervals for the
predictions.

10.4.1 Covariances in Gaussian Processes

10.4.1.1 Structured, Non-stationary and Multiscale

Commonly used kernels families include the squared exponential (SE), periodic
(Per), linear (Lin), and rational quadratic (RQ) [87]. Figure10.7 shows the base
kernels and drawings from the GP prior. These base kernels can be actually com-
bined following simple operations: summation, multiplication, or convolution (see
Sect. 10.2.5). This way onemay build sophisticated covariances from simpler ones as

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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seen before in the MKL framework. Note that the same essential property of kernel
methods apply here: a valid covariance function must be positive semidefinite. In
general, the design of the kernel should rely on the information that we have for each
estimation problem and should be designed to get the most accurate solution with
the least amount of samples.

In Fig. 10.7a–d, one-dimensional base kernels are presented.Nevertheless, kernels
over multidimensional inputs can be actually constructed by adding and multiplying
kernels over individual dimensions. See [87] for the explicit functional form of
each kernel. Some simple kernel combinations are also represented in Fig. 10.7: a
linear plus periodic covariances may capture structures that are periodic with a trend
(Fig. 10.7e), while a linear plus squared exponential covariance can accommodate
structures with increasing variation (Fig. 10.7f).

By summing kernels, we can model the data as a superposition of independent
functions, possibly representing different structures in the data. For example,
in multitemporal image analysis, one could, for instance, dedicate a kernel for
the time domain (trying to capture trends and seasonal effects) and another
kernel function for the spatial domain (equivalently capturing spatial patterns
and auto-correlations).

In time-series models, sums of kernels can express superposition of different
processes, possibly operating at different scales: very often changes in geophysical
variables through time occur at different temporal resolutions (hours, days, etc.),
and this can be incorporated in the prior covariance with those simple operations. In
multiple dimensions, summing kernels gives additive structure over different dimen-
sions, similar to generalized additive models [88]. Alternatively, multiplying kernels
allows us to account for interactions between different input dimensions or different
notions of similarity. In the following section, we show how to design kernels that
incorporate particular time resolutions, trends, and periodicities.

Lin SE RQ Periodic Lin+Per Lin+SE

(a) (b) (c) (d) (e) (f)

Fig. 10.7 Base kernels (top) and two random draws from aGPwith each respective kernel (bottom)
(adapted from [87])
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10.4.1.2 Time-Based Covariance for GPR

Signals to be processed typically showparticular characteristics,with time-dependent
cycles and trends. One could include time ti as an additional feature in the definition
of the input samples. This stacked approach [12] (cf. Chaps. 6 and 7) essentially
relies on a covariance function k(zi , z j ), where zi = [ti , xi ]�. The shortcoming is
that the time relations are naively left to the nonlinear regression algorithm, and
hence no explicit time structure model is assumed. To cope with this, one can use a
linear combination (or composite) of different kernels: one dedicated to capture the
different temporal characteristics and the other to the feature-based relations.

The issue here is how to design kernels capable of dealing with non-stationary
processes. A possible approach is to use a stationary covariance operating on the vari-
able of interest after being mapped with a nonlinear function engineered to discount
such undesired variations. This approach was used in [89] to model spatial patterns
of solar radiation with GPR. It is also possible to adopt a squared exponential (SE)
as stationary covariance acting on the time variable mapped to a two-dimensional
periodic space z(t) = [cos(t), sin(t))]�, as explained in [3]:

k(ti , t j ) = exp

(

− ‖z(ti ) − z(t j )‖2
2σ 2

t

)

, (10.32)

which gives rise to the following periodic covariance function:

k(ti , t j ) = exp

(

− 2 sin2[(ti − t j )/2]
σ 2
t

)

, (10.33)

where σt is a hyperparameter characterizing the periodic scale and needs to be
inferred. It is not clear, though, that the seasonal trend is exactly periodic, so we
modify this equation by taking the product with a squared exponential component,
to allow a decay away from exact periodicity:

k2(ti , t j ) = γ exp

(

− 2 sin2[π(ti − t j )]
σ 2
t

− (ti − t j )2

2σ 2
d

)

, (10.34)

where γ gives the magnitude, σt the smoothness of the periodic component, σd

represents the decay-time for the periodic component, and the period has been fixed
to one year. Therefore, our final covariance is expressed as:

k([xi , ti ], [x j , t j ]) = k1(xi , x j ) + k2(ti , t j ), (10.35)

which is parameterized by only three more hyperparameters collected in θ . Note that
this kernel function allows us to incorporate time easily, but the relations between
time ti and signal xi samples is missing. Some approximations to deal with this
issue exist in the literature, such as cross-kernel composition [12, 90] or latent force
models [91].

http://dx.doi.org/10.1007/978-3-319-66330-2_6
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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Table 10.2 Results for the estimation of the daily solar irradiation of linear and nonlinear regression
models. Subscript METHODt indicates that the METHOD includes time as input variable. Best
results are highlighted in bold, the second best in italics

METHOD ME RMSE MAE R

RLR 0.27 4.42 3.51 0.76

RLRt 0.25 4.33 3.42 0.78

SVR [92] 0.54 4.40 3.35 0.77

SVRt 0.42 4.23 3.12 0.79

RVM [93] 0.19 4.06 3.25 0.80

RVMt 0.14 3.71 3.11 0.81

GPR [3] 0.14 3.22 2.47 0.88

GPRt 0.13 3.15 2.27 0.88

TGPR 0.11 3.14 2.19 0.90

We show the advantage of encoding such prior knowledge and structure in the rel-
evant problem of solar irradiation prediction using GPR. Noting the non-stationary
temporal behaviour of the signal, we develop a particular time-based composite
covariance to account for the relevant seasonal signal variations. Data from the
AEMET radiometric observatory of Murcia (Southern Spain, 38.0◦ N, 1.2◦ W) were
used. Table10.2 reports the results obtained with GPR models and several statistical
regression methods: regularized linear regression (RLR), support vector regression
(SVR), relevance vector machine (RVM), and GPR. All methods were run with and
without using two additional dummy time features containing the year and day-of-
year (DOY).Wewill indicate the former case with a subscript t , e.g., SVRt . From the
numerical results, we come to three observations. First, including time information
improves all baseline models. Second, the best overall results are obtained by the
GPR models, when including time information or not. Third, the proposed temporal
GPR (TGPR) outperforms the rest (includingGPR andGRPt ) in all qualitymeasures.

10.4.2 Ranking Features Through the Automatic Relevance
Determination (ARD) Covariance

One of the advantages of GPs is that during the development of the GP model, the
predictive power of each single band is evaluated for the parameter of interest through
calculation of the ARD [3], which is expressed a

K (xi , x j ) = ν exp

(

−
d∑

m=1

(x f
i − x f

j )
2

2σ 2
f

)

+ σ 2
n δi j ,

where x f
i represents the feature (band) f of the input vector xi , ν is a scaling factor,

σn is the standard deviation of the (estimated) noise, and a σ f is the length scale
per input features, f = 1, . . . , d. This is a very flexible covariance function that
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Fig. 10.8 Estimated σ f values for one GP model using 62 CHRIS bands (left). The lower the σ f
the more important the band is for regression. Chl r and standard deviation (SD) of training and
validation for GP fittings using sequential backward band removal (right) (adapted from [94, 95])

typically suffices to tackle most of the problems. However, note that a SE typically
can approximate smoothly varying functions, which may not be the case in particular
problems.

Specifically, band ranking through σ f may reveal the bands that contribute the
most to the development of a GP model. An example of the σ f ’s for one GP model
trained with field leaf chlorophyll content (Chl) data and with 62 CHRIS bands is
shown in Fig. 10.8 (left) [94]. The band with highest σ f is the least contributing to the
model. It can be noted that a relatively few bands (about 8) were evaluated as crucial
for Chl estimation, while the majority of bands were evaluated as less contributing.
The figure also suggests that the most relevant spectral region is to be found between
625 and 1000nm. Most contributing bands were positioned at the red and the red
edge, at 625 and 730nm respectively, but not all bands within the red edge were
evaluated as relevant. This is due to when having a large number of bands available
then neighbouring bands do not provide much additional information and can thus
be considered as redundant.

This does not necessarily mean that other bands are obstructing optimized accura-
cies. By applying a simple iterative backward greedy algorithm, in which the impact
of the inputs on the prediction error is evaluated in the context or absence of the
other predictors, the most informative bands and the least numbers of bands that
preserve optimized accuracies are identified. Practically, at each iteration, the least
significant band was removed, i.e., the one with the highest σ f , and a new GPR
model was trained with the remaining bands only. This sequential backward band
removal (SBBR) algorithm is similar to the one often applied in classification using
SVM, referred to as recursive feature elimination (RFE). In RFE, the feature with
the smallest ranking score is eliminated in order to recursively remove insignificant
features. However, RFE is merely interested in determining optimized classification
results [96–98], while in SBBR we remove backwards until only one band is left.
When subsequently plotting goodness-of-fit statistics over the iterations (here r ) it
can be inspected that results kept stable starting from using all bands until a few
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Fig. 10.9 Frequency plots of the top eight ranked bands with lowest σ f values in 20 runs of GPR
prediction of Chl based on upward fluorescence (Fup) emission. An emission curve is given as
illustration (from [100])

bands were left. Only when less than 4 bands were left accuracies started to degrade
rapidly, as observed in Fig. 10.8 (right).

Consequently, the SBBR algorithm proved to be a valuable tool to detect the
minimum number of most sensitive bands of a sensor towards a biophysical
parameter.

A similar analysis was applied by sorting simulated Sentinel-2 bands on their
relevance and counting the band rankings over 50 repetitions. In [32], the four most
relevant bands were tracked for Chl, LAI and fCOVER and for different Sentinel-2
settings. It demonstrated the potential of Sentinel-2, with its new band in the red
edge, for vegetation properties estimation. Also in [99], σ f were used to analyze
band sensitivity of Sentinel-2 towards LAI. A similar approach was pursued on
analyzing leaf Chl based on tracking the most sensitive spectral regions of sun-
induced fluorescence data [100], as displayed in Fig. 10.9.

The SBBR algorithm has recently been automated into theGPR band analysis tool
(GPR-BAT, Fig. 10.10) [101]. GPR-BAT is implemented within the framework of
the free ARTMO’s MLRA (machine learning regression algorithms) toolbox [102],
which is dedicated to the transformation of optical remote sensing images into bio-
physical products.1 The main purpose of GPR-BAT is to identify how many bands
are minimally needed in order to retain robust results and what are the most sensitive
wavelengths. Although emphasis is on vegetation properties, essentially GPR-BAT
can be applied to any measured (or modeled) surface biophysical or geophysical
variable when associated with spectral data.

1http://ipl.uv.es/artmo/.

http://ipl.uv.es/artmo/
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Fig. 10.10 Schematic flow diagram of GPR-BAT within ARTMO’s MLRA toolbox (from [101])

To illustrate the utility of GPR-BAT, two hyperspectral data sets were analyzed to
highlight the most informative bands: (1) a field hyperspectral data set (400–1100nm
at 2nm resolution: 301 bands) with leaf chlorophyll content (LCC) and green leaf
area index (gLAI) collected for maize and soybean (Nebraska, USA); and (2) an
airborne HyMap data set (430–2490nm: 125 bands) with leaf area index (LAI) and
canopy water content (CWC) collected for a variety of crops (Barrax, Spain). For
each of these biophysical variables, optimized retrieval accuracies can be achieved
with just 4–9 well-identified bands, and performance was improved over using all
bands, as displayed in Fig. 10.11.

Especially when many bands are involved, as in case of the field hyperspectral
data set, improvements are significant: using all bands performed almost as
poor as when using only one band. Generally, entering all hyperspectral bands
into a regressionmodel performs poorly due tomulti-collinearity and inclusion
of noisy bands. To overcome this, either band selection or spectral reduction
techniques are recommended.

GPR-BAT results suggest that band redundancy is less an issue when reducing to
superspectral data (typically <50 bands), and using all those bands can equally lead
to top-performing regression models. Accordingly, from a GPR point of view, for
multispectral and superspectral sensors it seems to be enough to have the spectral
bands rightly located along the spectral range. Interestingly, for none of the tested
variables using only the two best-performing bands led to optimal results. This sug-
gests that applying two-band indices to hyperspectral data is suboptimal in exploiting
the embedded information content and is therefore not recommended.
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LCC gLAI CWC LAI

(a) field spectroradiometer (b) airborne imaging spectrometer

Fig. 10.11 Cross-validation R2
CV statistics (mean, standard deviation, and min-max ranges) for a

field LCC and gLAI and b airborne CWC and LAI. The plots show the sequential removal of the
least contributing band using GPR-BAT (from [101])

10.4.3 Uncertainty Intervals

In this section, we use GPR models for retrieval and portability in space and time.
For this, we will exploit the associated predictive variance (i.e., uncertainty interval)
provided by GPR models. Consequently, retrievals with high uncertainties refer to
pixel spectral information that deviates from what has been represented during the
training phase. In turn, low uncertainties refer to pixels that were well represented
in the training phase.

The quantification of variable-associated uncertainties is a strong requirement
when remote sensing products are ingested in higher level processing, e.g., to
estimate ecosystem respiration, photosynthetic activity, or carbon sequestra-
tion [103].

The application of GPR for the estimation of biophysical parameters was initially
demonstrated in [94]. A locally collected field data set called SPARC-2003 at Barrax
(Spain) was used for training and validation of GPR for the vegetation parameters of
LAI, Chl, and fractional vegeatation cover (fCOVER). Sufficiently high-validation
accuracies were obtained (r2 > 0.86) for processing a CHRIS image into these
parameters, as shown in Fig. 10.12. Within the uncertainty maps, areas with reliable
retrievals are clearly distinguished from areas with unreliable retrievals. Low uncer-
tainties were found on irrigated areas and harvested fields. High uncertainties were
found on areas with remarkably different spectra, such as bright, whitish calcare-
ous soils, or harvested fields. This indicates that the input spectrum deviates from
what has been presented during the training stage, thereby imposing uncertainties
to the retrieval. It also suggests that those non-vegetated areas would benefit from
additional sampling in order to make the GPR model more generally applicable.
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LAI Chl fCOVER

Fig. 10.12 Prediction maps (top) and associated uncertainty intervals (bottom), generated with GP
and four bands of the CHRIS 12-07-2003 nadir image (adapted from [94])

GPR models were subsequently applied to the SPARC data set, but after
re-sampling to different Sentinel-2 band settings and uncertainties were inspected
[32]. On the whole, adding spectral information from 4 bands at 10 m to 10 bands at
20 m led to reduction of uncertainties and thus more meaningful biophysical para-
meter maps. The locally trained GP models were applied to simulated Sentinel-2
images in a follow-up study [104]. Time series over the local Barrax site as well
images across the world were processed. Also the role of an extended training data
set by adding spectra of non-vegetated surfaces were evaluated. Subsequently the
uncertainty values were analyzed. By using the extended training data set not only
further improved performances but also allowed a decrease in theoretical uncertain-
ties. The GPR models were successfully applied to simulated Sentinel-2 images
covering various sites; associated relative uncertainties were on the same order as
those generated by the reference image.

The generally low uncertainty intervals over vegetated surfaces suggest that
the locally trained GPR models are portable to other sites and conditions.

Remaining large uncertainties within images were due to surface heterogeneity,
and associated spectral heterogeneity increased with a finer spatial resolution (i.e.,
Sentinel-2 provides images with a resolution of 10m). It appeared that at 10m reso-
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lution, there is a greater problem of portability within an image than to other images
with vegetation cover. Hence, from a practical perspective, this implies that uncer-
tainty maps serve as a useful quality layer that allows masking out surfaces that fall
beyond an acceptable uncertainty.

As afinal example, uncertainty estimateswere exploited to assess the robustness of
the retrievals at multiple spatial scales. In [95], retrievals from hyperspectral airborne
and spaceborne data over the Barrax area were compared. Based on the spareborne
SPARC-2003 data set, GPR developed a model that was excellently validated (r2:
0.96). The SPARC-trained GPR model was subsequently applied to airborne CASI
flightlines (Barrax, 2009) to generateChlmaps. The accompanying uncertaintymaps
provided insight into the robustness of the retrievals. In general similar uncertain-
ties were achieved by both sensors, which is encouraging for upscaling estimates
from field to landscape scale. The high-spatial resolution of CASI in combination
with the uncertainties allows us to observe the spatial patterns of retrievals in more
detail. Some examples of mean estimates and associated uncertainties are shown in
Fig. 10.13. The GPR uncertainty maps immediately highlighted the areas where the
user should be careful with the obtained Chl estimates, such as over man-made sur-
faces, due to irrigation or variations in soil properties. It is expected that in the near
future this extra source of information freely offered by GPR will become increas-
ingly important when GPR-delivered vegetation properties estimates will become
operationally available, e.g., into a smartphone app [105].

10.4.4 New Challenges with GPR

Research on GPR is still very active and challenging new questions remain. A new
research avenue using GPR models involves the development of meta-models also
named emulators. Emulation is a technique used to estimate simulations outcomes
when the computer model under investigation is too computationally costly to be
run a sufficient number of times [106]. Emulators approximate the functioning
of deterministic (physical) models through statistical learning regression methods.
Because of their computational efficiency and outstanding accuracy, GPRs have been
a first choice in developing emulators [106–108]. Although the concept of emula-
tors is known within statistical and computer sciences [109–111], their use is only
at its infancy in optical remote sensing. Recent pioneer studies [112, 113] showed
that emulators can successfully approximate physical vegetation and atmosphere
radiative transfer models (RTMs). RTM emulation functions essentially the same as
retrieval through machine learning regression, but instead of delivering biophysical
variables as outputs they are used as input in the regression model, and spectral data
is generated as output. Probably the most significant advantage of emulators is the
tremendous gain in processing speed, in the orders of tens to ten thousands depending
on the speed of the original RTM. At the same time, they hardly require memory
space, since only a few model coefficients are stored for prediction. Consequently,
emulators can become an attractive technique for a diversity of remote sensing appli-
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Fig. 10.13 Four examples of CASI RGB snapshots [left], Chl estimates [middle], and related
uncertainty intervals [right] (adapted from [95])

cations, for instance applying global sensitivity analysis (GSA) on computationally
expensive RTMs such as Monte Carlo ray tracing models. GSA typically requires
many thousand simulations, which caused that so far only computationally cheap
RTMs were evaluated. In turn, GSA can be applied to an RTM-like emulator and
deliver results quasi-instantly [114].

Emulators can also become highly beneficial with respect to biophysical parame-
ter retrieval through inversion of physical models. RTMs are traditionally used in



10 Advances in Kernel Machines for Image Classification … 435

inversion schemes against optical images through iterative optimization or through
look-up tables (LUTs). The optimization consists in minimizing a cost function,
which estimates the difference between measured and estimated variables by suc-
cessive input variable iteration. Such iterative optimization algorithms are computa-
tionally demanding on a pixel-by-pixel basis, and hence time-consuming when large
remotely sensed images are inverted. Accordingly, when replacing the original RTMs
by their emulated counterparts, numerical inversion schemes can again become an
efficient alternative. It would bypass the need to invest in large and heavy LUTs
and instead open opportunities to include emulators of advanced, computationally
expensive RTMs into retrieval schemes. To conclude with, emulation emerge as a
promising method to fully aboard the problem of developing flexible statistical mod-
els that discover and incorporate physical knowledge about the problem. We expect
more exciting developments in that area of intersection between physics andmachine
intelligence.

10.5 Conclusions

In this chapter, we provided an introduction to kernel methods for remote sensing
image analysis and presented some new developments in this area of research. We
focused on the challenging problems of multimodal semantic image labeling (i.e.,
the act of assigning each pixel to a semantic (land cover) class by using a variety
of data sources) and retrieval of biophysical parameters using different Gaussian
processes regression models accounting for structures and prior information about
the data. For both classification and regression, we presented recent research efforts,
underlying the role of kernel methods in the improvement of the performances and
interpretability of the modelling stage by explicitly modelling data and problem
specificities.

We believe that such inclusion of domain knowledge, along with the ability to
reuse existing field data across several images acquisition is key to the success of
modern remote sensing data analysis tasks, where analysts are confronted with data
coming at high speed and volume, but also from heterogeneous sources.
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