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Abstract Hsp70s and J-proteins, which constitute one of the most ubiquitous types of
molecular chaperone machineries, function in a wide variety of cellular processes. J-proteins
play a central role by stimulating an Hsp70’s ATPase activity, thereby stabilizing its inter-
action with client proteins. However, while all J-proteins serve this core purpose, individual
proteins are both structurally and functionally diverse. Some, but not all, J-proteins interact
with client polypeptides themselves, facilitating their binding to an Hsp70. Some J-proteins
have many client proteins, others only one. Certain J-proteins, while not others, are tethered
to particular locations within a cellular compartment, thus “recruiting” Hsp70s to the vicin-
ity of their clients. Here we review recent work on the diverse family of J-proteins, outlining
emerging themes concerning their function.

Introductory remarks

Molecular chaperones are a ubiquitous class of proteins that interact with short stretches
of hydrophobic amino acids typically exposed in partially unfolded proteins. Through such
interactions, chaperones function in a broad range of physiological processes, facilitating
protein folding, protein translocation across membranes, and remodeling of multimeric pro-
tein complexes. Hsp70s and J-proteins (often also referred to collectively as DnaJ-like pro-
teins or Hsp40s), which form obligate partnerships, are among the most ubiquitous of the
chaperones. In fact, most eukaryotic and prokaryotic genomes encode both multiple Hsp70s
and multiple J-proteins, reflecting the fact that they have evolved to function in such a wide
variety of processes. The number of J-proteins, particularly, has expanded with the com-
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plexity of the organism in which they are found. For example, the Escherichia coli genome
has 6 J-proteins, the yeast Saccharomyces cerevisiae genome, 22, and the human genome,
approximately 32.

Over the years most research has focused on the Hsp70 component of this chaperone
machinery (Bukau and Horwich 1998; Erbse et al. 2004; Slepenkov and Witt 2002). The
structure and amino acid sequence of Hsp70s from different organisms and different or-
ganelles are remarkably similar. All are composed of a highly conserved N-terminal ATPase
domain, followed by a less-conserved peptide-binding domain having a cleft in which hy-
drophobic stretches of approximately five amino acids interact. Binding and hydrolysis of
ATP in the N-terminus regulates the interaction of the C-terminus with unfolded or partially
unfolded client polypeptides. ATP hydrolysis stabilizes the interaction with these polypep-
tide substrates. The essence of all J-protein function is the ability to stimulate the ATPase
activity of Hsp70 upon the transient interaction of their highly conserved J-domains with
Hsp70’s ATPase domain.

In this review, meant to complement earlier reviews that also focused on J-protein func-
tion (Cheetham and Caplan 1998; Fan et al. 2003; Walsh et al. 2004), we first discuss the
J-domain that is obligatory for the in vivo function of all J-proteins. However, since all
J-proteins have domains in addition to their J-domain, the remainder of the review concen-
trates on recent work aimed at understanding the diverse roles played by these different
regions. Some, but not all, of these domains bind client proteins whose transfer to Hsp70s
is facilitated by the J-domain. Other domains of J-proteins serve to target the J-protein to
a particular location within the cellular compartment in which they function. Below we out-
line what is known about these additional domains, focusing on the yeast S. cerevisiae as
a model because of the availability of extensive genomic and genetic analyses.

The J-domain: the common denominator

J-proteins, by definition, contain a conserved, roughly 70-amino-acid signature region, the
J-domain, named after the well-studied E. coli protein, DnaJ. The DnaJ J-domain contains
four α helices, with helices II and III forming a coiled-coil motif around a hydrophobic
core (Pellecchia et al. 1996; Fig. 1a). The J-domains of two mammalian J-proteins, human
Hdj1 (Qian et al. 1996) and murine polyomavirus tumor antigen (Berjanskii et al. 2000), are
remarkably similar. Even the more divergent auxilin J-domain possesses these conserved
J-domain features, while also having an N-terminal helix and a long loop inserted between
helices I and II (Jiang et al. 2003).

The most highly conserved amino acids of J-domains, the histidine-proline-aspartate
(HPD) tripeptide located in the loop between helix II and III, has been shown to be critical
for ATPase stimulation in many systems, and thus in vivo function (Feldheim et al. 1992;
Tsai and Douglas 1996; Voisine et al. 2001; Wall et al. 1994; Yan et al. 1998). However, ad-
ditional residues, both within helices II and III and within the intervening loop, are required
for the in vivo function of DnaJ (Genevaux et al. 2002). The side chains of these residues and
those of the HPD tripeptide are solvent-exposed and oriented in the same direction, and thus
possibly form an Hsp70 interaction surface. Indeed, nuclear magnetic resonance (NMR)
perturbation mapping of the J-domain of DnaJ in the presence of DnaK indicated a simi-
lar negatively charged surface around helix II as the region involved in DnaK interaction
(Greene et al. 1998; Fig. 1b).
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Fig. 1a, b The interaction between the J-domain and the Hsp70 ATPase domain. Ribbon diagram (a) and
surface map (b) of the J-domain of DnaJ (PDB file: 1XBL) (Pellecchia et al. 1996), on the left, and the
ATPase domain of DnaK (PDB file: 1DKG) (Harrison et al. 1997), on the right. Based on the studies of
DnaK–DnaJ (Genevaux et al. 2002; Greene et al. 1998; Gässler et al. 1998; Suh et al. 1998) and Ssb-Zuo1
systems (Huang et al. 2005), the residues (or analogous residues in the case of the Ssb-Zuo1 system) found
to be important for the interaction between a J-domain and an ATPase domain are highlighted in orange
with the most critical HPD tripeptide highlighted in red. The structures are prepared using PyMOL software
(http://pymol.sourceforge.net/). Highlighted residues in DnaK include R167, I169, N170, and T215 (Suh et
al. 1998); Y145, N147, D148, E217, and V218 (Gässler et al. 1998), and analogous residues R76, P113, I168,
N170, V192, and F200 (Huang et al. 2005), all of which were isolated from genetic mutagenesis studies. The
residues highlighted in DnaJ include Y25, R26, H33, P34, D35, R36, N37, F47 (underlined is the HPD mo-
tif), from the mutagenesis study (Genevaux et al. 2002); and V12, S13, R19, E20, R22, A24, Y25, K26, R27,
L28, M30, Y32, H33, D35, Y54, and T58 that showed a shift greater than 10 Hz in NMR analysis when
DnaK was present (Greene et al. 1998)

Consistent with its ability to stimulate Hsp70’s ATPase activity, the J-domain of DnaJ
interacts with the ATPase domain of DnaK in the presence of ATP (Wittung-Stafshede et
al. 2003). However, as is the case with most J-domain:Hsp70 interactions, this association
is quite transient (Misselwitz et al. 1999; Suh et al. 1999). Although the exact contact sites
between any J-protein and Hsp70 are not known, a region of Hsp70 has been implicated
in J-domain interaction in studies of E. coli and S. cerevisiae. Allele-specific suppressors
of the phenotype of dnaJ-D35N, which encodes an alteration of the HPD signature motif
in its J-domain, were identified in dnaK. Three suppressors encoding alterations in subdo-
main IA of DnaK’s ATPase domain were isolated (Suh et al. 1998). In a similar approach,
suppressors of a mutation in ZUO1 (zuo1-H128Q), which encodes the J-protein partner of
Ssb, the yeast ribosome associated Hsp70, were isolated. Again, alterations were clustered
in the AI subdomain (Huang et al. 2005). In addition, site-directed dnaK mutant proteins
having amino acid alterations in this region were found to have defects in DnaJ interaction
(Gässler et al. 1998). Collectively, these residues form a surface on the ATPase domain of
Hsp70 (Fig. 1b) with a groove near the nucleotide binding cleft, making it easy to envision
binding of a J-domain causing stimulation of ATP hydrolysis by Hsp70.
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J-proteins in general protein folding: class I and II

DnaJ was the first J-protein identified and analyzed and still serves as a standard to which
other J-proteins are compared. Analysis of its sequence led to the grouping of other J-
proteins that contained a glycine-rich and cysteine-rich region adjacent to the J-domain as
class I J-proteins, and those that had a glycine-rich region, but lacked the cysteine-rich region
as class II (Cheetham and Caplan 1998). This definition was based on obvious sequence sim-
ilarities, with little understanding of the function of the glycine- and cysteine-rich regions.
Below we discuss the current state of understanding of the role of these domains in J-protein
function. Recent data also suggest that at least some J-proteins grouped as class I and II have
a very similar client protein-binding domain, as even though very low in sequence conser-
vation, they possess a very similar fold. This fold may be common to J-proteins that are
involved in general protein folding within the cell, and thus interact with a wide variety of
client polypeptides.

Substrate binding: a common fold for general protein folding?

J-proteins, with their Hsp70 partners, are involved in general folding of both newly synthe-
sized and partially unfolded proteins. Evidence exists for such a general function not only
for DnaJ working with DnaK in the E. coli cytosol, but also for J-proteins in several com-
partments of eukaryotic cells. For example, Ydj1 and Sis1 of the yeast cytosol work with
the Ssa Hsp70s (Aron et al. 2005; Kim et al. 1998; Lu and Cyr 1998a); Mdj1 of the mito-
chondrial matrix works with the major Hsp70, Ssc1 (Hermann et al. 1994; Krzewska et al.
2001; Rowley et al. 1994); Scj1 of the lumen of the endoplasmic reticulum works with Kar2
(Schlenstedt et al. 1995; Silberstein et al. 1998). Consistent with a general protein-folding
role, Ydj1, Sis1, and Mdj1, in cooperation with their Hsp70 partner, are competent to facil-
itate refolding of denatured substrates such as luciferase in vitro. Orthologs of each of these
yeast proteins exist in higher eukaryotes, suggesting that roles in protein folding have been
conserved, although as discussed throughout this article, significant functional differences
exist among different J-proteins.

Recently the structure of the 25-kDa and 19-kDa C-terminal regions of the class I
Ydj1 and class II Sis1 J-proteins, respectively, have been determined (Li et al. 2003; Sha
et al. 2000). Although having very limited sequence similarity, the two fragments are
remarkably alike in structure. Each contains two domains formed by a sandwich of two
β-sheets and a short α-helix, the second of which is followed by sequences important for
dimerization (Fig. 2a). Ydj1 was co-crystallized with the peptide GWLYEIS bound in
a shallow hydrophobic groove in the N-terminal β-sheet domain (domain I). Sis1 contains
a hydrophobic groove at the analogous position in the structure that had been predicted
to be the substrate-binding site prior to the determination of the Ydj1 structure (Sha et
al. 2000). Despite the similarities between the adjacent β-sheet domains, it is argued
that the more C-terminal one is not involved in interaction with client proteins, in part
because in the crystal structure the hydrophobic groove of this domain is occupied by
a residue from an adjacent β-strand, and thus not available for interactions with client
proteins.
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Fig. 2a–c Structural comparison of the substrate binding domains of different J-proteins. a Ribbon diagrams
of the C-terminal regions of yeast Ydj1 (PDB file: 1NLT) (Li et al. 2003), Sis1 (PDB file: 1C3G) (Sha et al.
2000), and full-length E. coli HscB (PDB file:1FPO) (Cupp-Vickery and Vickery 2000) prepared in PyMOL
(http://pymol.sourceforge.net/). The crystal structure of Ydj1 contains the bound substrate peptide highlighted
in red. The proposed substrate binding domains of all the proteins are indicated with the yellow brackets. The
dashed blue bracket indicates Ydj1’s cysteine -rich region; the dashed orange bracket indicates the J-domain
of HscB. The C-terminal end (C) of the shown structures of Ydj1 and Sis1 are immediately adjacent to their
dimerization domains that are not shown. b The low-resolution small-angle X-ray scattering (SAXS) mod-
els of monomeric (left) and dimeric (right) human DjA1, the class I J-protein ortholog of yeast Ydj1. The
cysteine-rich domain indicated by the arrow can have different angles towards the other domains as shown by
the asymmetric packing in the dimer. c The low-resolution SAXS model of dimeric human DjB4, the class II
J-protein ortholog of yeast Sis1 (b and c are reprinted from Borges et al. 2005). J-domains highlighted in red,
the analogous substrate binding domain indicated with brackets and glycine-rich regions indicated by dashed
lines. (Republished with permission of The Journal of Biological Chemistry)
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Fig. 3 Ribbon diagram of the Cys-rich domains of DnaJ (PDB file: 1EXK) (Martinez-Yamout et al. 2000)
and Ydj1 (PDB file: 1NLT) (Li et al. 2003). The cysteine-rich domains of DnaJ and Ydj1 contain two zinc
centers. Coordinated zinc atoms are highlighted in red. The cysteine residues involved in the coordination
with the zinc atoms are highlighted in green

The cysteine-rich zinc center, glycine-rich, and dimerization domains

While Sis1 and Ydj1 show structural similarity, they also differ significantly. Ydj1 has an
additional subdomain containing two zinc centers that protrudes from domain I of the C-
terminus (Li et al. 2003), such that it is predicted to project into the cleft between the two
subunits (Wu et al. 2005) (Figs. 2 and 3). This cysteine-rich domain, which is also present in
Scj1 and Mdj1, as well as DnaJ, is the defining feature, along with a glycine-rich region de-
scribed below, of J-proteins classified as type I (Cheetham and Caplan 1998). In all of these
proteins, this region includes four repeats of CXXCXGXG, suggesting a similar fold. In-
deed, the structure of the DnaJ subdomain is very similar to that of Ydj1 (Martinez-Yamout
et al. 2000). In both cases, two centers are formed, with repeats 1 and 4, and repeats 2 and
3, each coordinating a zinc ion, forming center I and center II, respectively (Fig. 3).

The most quantitative and thorough analysis of the importance of the cysteine-rich zinc
binding domains has been carried out with DnaJ (Linke et al. 2003), leading to the view
that these zinc centers play different roles: center I in binding to client proteins and center
II in facilitating the association of client proteins with DnaK. Disruption of center I by sub-
stitution of cysteines by serines dramatically affected binding to a client protein, denatured
luciferase, but had little effect on in vivo function. Disruption of center II did not substan-
tially affect luciferase binding or stimulation of DnaK’s ATPase activity, but had dramatic
effects on the ability of DnaK to bind luciferase and was critical for in vivo function. Sim-
ilarly, in Ydj1, center II was more important in vivo than center I, especially for substrate
transfer to Hsp70 (Fan et al. 2005).

While the function(s) of the cysteine-rich region is becoming clearer, that of the glycine-
rich region is still enigmatic, even though its presence is required for classification of a J-
protein as a member of class I or II. Typically the glycine-rich region also has a preponder-
ance of phenylalanine residues and thus often referred to as the G/F region. All the J-proteins
discussed above contain G/F regions. NMR studies demonstrate that the G/F region of DnaJ
(Huang et al. 1999) is very flexible, capable of occupying many different conformational
states. However, it does not simply serve as a flexible linker because, as described below, it
can include important determinants in the specificity of function of certain J-proteins.

Both Ydj1 and Sis1 are dimers, and in both cases the extreme C-termini are critical
for interaction. In the case of Sis1, dimerization occurs via hydrophobic interactions (Sha
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et al. 2000). Ydj1 has two modes of interaction between the monomers (Wu et al. 2005).
One interaction occurs via hydrophobic interactions very similar to those found for Sis1.
The second mechanism utilizes a C-terminal extension, not present in Sis1, which interacts
with the more C-terminal β-sheet domain of the other monomer. Conservation of sequences
across species suggests that these interactions exist in the orthologs of higher eukaryotes as
well.

J-protein/Hsp70 facilitated protein folding: in vitro

Based on extensive in vitro experiments, a model for the function of J-protein/Hsp70 part-
nership in protein folding has emerged: The J-protein first binds the partially unfolded sub-
strate protein and then to Hsp70, forming a transient tripartite complex dependent upon the
J-domain interaction with the Hsp70 ATPase domain. This initial interaction of the unfolded
substrate/client protein with the J-protein is predicted to have two functions: (1) prevention
of aggregation of the substrate protein, thus maintaining its availability for Hsp70 binding,
and (2) facilitating binding of the substrate protein to Hsp70. A broad study of J-protein
substrate specificity has only been carried out for DnaJ. Using membrane-bound peptide
libraries, a motif consisting of a hydrophobic core of approximately eight residues enriched
for aromatic, large aliphatic hydrophobic residues, and arginine was revealed (Rudiger et al.
2001). This binding motif is different from that of DnaK, with DnaJ binding to a broader
range of amino acid sequences with less restriction in backbone contacts, although both bind
to peptides that are hydrophobic in nature.

The placement of the substrate binding of the J-protein as an important first step in the
model of the chaperone cycle comes from the fact that both class I and II J-proteins can bind
to denatured proteins such as rhodanase or luciferase and prevent their aggregation (Langer
et al. 1992; Lu and Cyr 1998a, b). These experiments have also provided insight into the
regions of J-proteins important for substrate binding. For example, suppression of aggre-
gations requires the carboxyl terminus of Ydj1 (Lu and Cyr 1998a). Consistent with this
result, deletion of domain I of Sis1’s C-terminus is defective in binding denatured luciferase
(Aron et al. 2005), suggesting, in line with the structural information described above, that
this region is important for binding to unfolded polypeptides.

The ability of J-proteins to function with Hsp70s to promote refolding of denatured
proteins in vitro correlated with their ability to bind to the denatured protein. The mutant
proteins—defective in their interaction with denatured client protein—are also severely de-
fective in refolding assays. In addition, the fact that at least some class I and II J-proteins
are dimers could aid in increasing the affinity for unfolded proteins, as contacts with one
client polypeptide could be made by each monomer. Indeed, Sis1 lacking its dimerization
domain is unable to cooperate with Hsp70 to refold denatured luciferase, even though it is
still capable of stimulating the ATPase activity of Hsp70 (Sha et al. 2000).

If the model described above is correct, and J-proteins first bind to substrate polypep-
tide, and then target it to Hps70s, an Hsp70/J-protein/substrate complex should exist as an
intermediate. Such complexes have been isolated, and do facilitate substrate polypeptide
transfer from the J-protein to the Hsp70 (Han and Christen 2003; Gamer et al. 1996). Be-
cause of the transient nature of such complexes, the physical arrangement of the components
in them remains unclear. However, hints come from recent structural studies that have led
to much discussion concerning these interactions. The structure of the dimer formed by the
C-terminus of Sis1 suggests not only a bipartite interaction with a substrate protein, but the
orientation of the subunits forms a large cleft between them. This cleft has been suggested to
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be the docking site for Hsp70 that allows substrate transfer from the J-protein (Landry 2003;
Sha et al. 2000). Support for this idea comes from the determination that Sis1 has a second
site of interaction with its partner Hsp70 Ssa, in addition to the one via its J-domain. The
interaction occurs between the C-terminal 181 residues of Sis1 and the C-terminal 15 amino
acid residues of Ssa1, and thus is predicted to “anchor” Hsp70 to facilitate substrate transfer
from Sis1 to the peptide-binding domain of Hsp70 (Aron et al. 2005; Qian et al. 2002; Qian
et al. 2001). No similar contact has been found for Ydj1 or other type I J-proteins.

None of the high-resolution structures of Ydj1 or Sis1 described above, which were
determined by X-ray crystallography, include the J-domain and glycine-rich domain, thus
leaving open the question of the quaternary structure of the full-length dimers. Recently,
however, low-resolution structural models of the Ydj1 and Sis1 mammalian orthologs—
DjA1(Hdj2) and DjB4, respectively—have been generated using small-angle X-ray scatter-
ing (SAXS) and other biophysical techniques (Fig. 2b, c). The predicted quaternary struc-
tures of these two J-proteins are quite different (Borges et al. 2005). DjA1 forms a compact
monomer with both the N- and C-termini aligning with each other. On the other hand, the
N-terminal J-domains of the monomers of the DjB4 dimer are in the extremities of the
molecule, quite distant from one another, with only the C-termini having contact. There is
every reason to believe that Ydj1 and Sis1 have similar differences in structure. These struc-
tural models suggest that there is little space between the two substrate binding domains of
the class II dimer. Thus, the ability of the C-terminus of an Hsp70 to insert itself deep within
the dimer, as predicted based on the crystal structure (Landry 2003; Sha et al. 2000), may
not be possible.

J-protein/Hsp70 facilitated protein folding: in vivo

The results of the in vitro experiments described above coalesce into a coherent picture of
Hsp70/J-protein-facilitated protein folding requiring interaction of both partners with the
client protein. However, the picture in vivo is more complex. Unlike alterations in the J-
domain, deletion of the substrate binding domains does not typically result in a dramatic
loss of function in vivo. A DnaJ C-terminal truncation containing only the J-domain and
G/F region supports bacterial growth and is capable of stimulating DnaK’s ATPase activ-
ity (Wall et al. 1994), even though binding to substrate polypeptide is no longer detectable
(Liberek et al. 1995). In addition, both Ydj1 and Sis1 truncations that retain their J-domains
and glycine-rich regions are sufficient to substantially rescue the growth defects caused by
the absence of the respective full-length proteins (Johnson and Craig 2001; Yan and Craig
1999).

Interpretation of these results is complicated by the presence of more than one J-protein
in the cytosol of both E. coli and yeast. Analysis of the yeast system revealed that either the
substrate binding domain of Ydj1 or Sis1, but not both, was required for cell viability (John-
son and Craig 2001). Thus, substrate binding is likely critical for some roles that type I/II
J-proteins play within the cell. However, the in vivo results also suggest that there are many
roles for which substrate binding is dispensable (also see the following section). The estab-
lished protein folding assays likely place demands on the chaperone machinery that is quite
stringent, and not necessarily representative of all protein folding/remodeling chores they
encounter in the cell.
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Specificity of class I/II J-protein function: the Ydj1/Sis1 paradigm

Despite the discussion above that emphasizes similarities between type I and type II J-
proteins, we do not want to leave the impression that there are no functional differences
between them. The analyses in yeast of Ydj1, a type I, and Sis1, a type II J-protein, under-
line such differences and provide a window into the interrelationships among functionally
similar, but not identical, J-proteins. It has been known for some time that SIS1 is an essen-
tial gene, while YDJ1 is not, although cells lacking Ydj1 do grow very poorly, especially at
30°C and above (Caplan and Douglas 1991). Only moderate overexpression of Sis1 allows
robust growth of ∆ydj1 cells, but the reverse is not true (Caplan and Douglas 1991; Yan et
al. 1998). Overexpression of Ydj1 cannot rescue a ∆sis1 strain. Thus Sis1 can perform some
cellular function(s) that Ydj1 cannot. Remarkably, this specificity in function has been con-
served. The Ydj1 ortholog from human cells, Hdj2, can rescue ∆ydj1, but not ∆sis1 cells.
The Sis1 human ortholog, Hdj1, can rescue both ∆sis1 and ∆ydj1 cells (Lopez et al. 2003).

While the existence of this functional specificity is clear, the biochemical explanation
of it is not. However, experiments from several laboratories have yielded intriguing clues.
First, surprisingly, the glycine-rich region of Sis1 is competent to define Sis1’s specificity.
The N-terminal 121 amino acids of Sis1 (Sis1–121) containing the J-domain and 53-amino-
acid G/F region is sufficient to rescue the inviability of ∆sis1 cells. A chimera between
the J-domain of Ydj1 and the Sis1 G/F segment is also sufficient (Yan and Craig 1999).
Comparison of the sequences between the G/F regions of Sis1 and Ydj1 revealed significant
similarities, but also two small—12- and 10-amino-acid—“insertions” within the Sis1 se-
quence. The 10-amino-acid region was found to be critical for function of the G/F region as
either its deletion or single amino acid alterations within Sis1–121 rendered it nonfunctional
in vivo (Lopez et al. 2003). The J-domain and glycine-rich region of Hdj1, a human class II
J-protein, is sufficient for rescue of a SIS1 deletion as well. However, it should be noted that
although the G/F region of Sis1 is sufficient (with a J domain) to carry out Sis1’s essential
function, other regions of the protein are competent as well (Fan et al. 2004; Yan and Craig
1999). A deletion of the G/F region, which leaves the extended glycine-rich region that has
a preponderance of glycine and methionine residues, is able to rescue a ∆sis1 strain.

What is the function of the glycine-rich regions, a hallmark of class I and class II J-
proteins? It is conceivable that, at least in the case of Sis1, the glycine-rich region is in fact
able to interact directly with substrate polypeptides, like the zinc-center domain of type I
J-proteins and the C-termini of both class I and II proteins. However, there are no data to
support this idea. A more intriguing possibility is that the glycine-rich region plays a more
indirect role in affecting Hsp70’s specificity for substrate, either by affecting the conforma-
tion of the J-domain itself, or by interacting directly with Hsp70. Consistent with this idea
is the fact that the structure of DnaJ’s J-domain is different in the presence and absence of
the G/F region (Huang et al. 1999). In addition, DnaJ’s glycine-rich region has been found
to be necessary to “activate” DnaK to bind a client protein, σ32 (Wall et al. 1995). The low-
resolution structural information on full-length proteins and information available about the
interaction between the C-terminus of Sis1 and Hsp70 described above are consistent with
these ideas, leaving open the possibility that via such interactions the glycine-rich regions
may help determine Hsp70 activity.
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Special folds for special substrates

Any J-protein that lacks a glycine-rich region is placed in class III. Not surprisingly, the
structure and function of class III J-proteins are very divergent, since membership is defined
only by the presence of a J-domain. However, the class I and class II proteins described
above are not the only J-proteins that bind directly to client proteins, as some class III J-
proteins do as well. The best-studied are the J-proteins involved in Fe-S cluster biogenesis
(HscB/Jac1 in E. coli and eukaryotes, respectively) and uncoating of clathrin-coated vesi-
cles (auxilin/Swa2 in higher eukaryotes and yeast, respectively). The role of these J-proteins
is likely biochemically similar to the type I proteins, since they stimulate Hsp70’s ATPase
activity, bind polypeptide substrates, and then—via interaction with Hsp70s—facilitate their
transfer to the Hsp70 upon ATP hydrolysis. However, in each of these cases, evidence sug-
gests that each binds only to a single substrate, and that the substrate is a folded protein.
Thus, in these cases, chaperone action is not involved in the general folding of client pro-
teins into their tertiary structure but rather in more specific conformational changes. Whether
this is also the case for other type III J-proteins that might bind client proteins remains to
be seen. Regardless, such specialized chaperones do provide easily accessible experimental
systems for sophisticated analyses of J-protein:Hsp70 chaperone machineries both in vitro
and in vivo.

Fe-S center biogenesis

Both eukaryotes and prokaryotes have specialized systems for the assembly of Fe-S centers,
an essential prosthetic group for certain proteins (Johnson et al. 2005; Lill and Muhlenhoff
2005). Specialized Hsp70:J-protein machineries, called Ssq1:Jac1 and HscA:HscB in yeast
and E. coli, respectively, are an important part of this process (Craig and Marszalek 2002).
Fe-S centers are transiently assembled onto a highly conserved scaffold protein Isu (IscU in
bacteria), prior to transfer to apoproteins. Isu/IscU is the only known substrate for this chap-
erone system. A peptide array performed with the E. coli system identified a short amino
acid sequence, LPPVK—situated in a loop between two α-helices in the folded protein—as
the Hsp70 interaction site (Hoff et al. 2002). This same highly conserved sequence is also
important for Hsp70 binding in the yeast system (Dutkiewicz et al. 2004; Ramelot et al.
2004). However, the study failed to identify any sequence of IscU that might be important
for binding to HscB, suggesting that HscB does not interact with a linear amino acid seg-
ment of Isu/IscU, but rather recognizes a structural motif present on the surface of the folded
protein (Hoff et al. 2002).

Despite the specialized nature of this system, the partnership of the Hsp70 and J-protein
in Fe-S center biogenesis has the hallmarks of the more general class I and II systems.
Jac1/HscB stimulates the ATPase activity of Ssq1/HscA. Jac1/HscB also increases the affin-
ity of Isu/IscU for its Hsp70 partner through formation of an Hsc20–IscU complex, sug-
gesting “targeting” of the client to Hsp70 as described above (“J-protein/Hsp70 facilitated
protein folding: in vivo”) (Dutkiewicz et al. 2003; Hoff et al. 2000). In vivo evidence for
such targeting comes from the yeast system. Overexpression of Jac is capable of overcom-
ing defects in the Hsp70/Isu interaction, suggesting that complex formation between Jac1
and Isu can be important in vivo (Knieszner et al. 2005). However, kinetic analysis of the
ability of Isu and Jac1 to stimulate Ssq1’s ATPase activity suggests that targeting is not nec-
essary under many conditions; Isu can also interact directly with Ssq1 without first forming
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a complex with Jac1 (Knieszner et al. 2005). This flexibility in the mode of interaction of
a J-protein, Hsp70, and client protein is reminiscent of the finding that the J-domain/glycine-
rich domain fragments of class I and class II J-proteins retain significant activity in vivo.

The structure of HscB has been determined, representing the only high-resolution struc-
ture of a full-length J-protein. In addition to a typical N-terminal J-domain, HscB has a C-
terminal domain consisting of a three-helix bundle in which two of the helices constitute
an anti-parallel coiled-coil (Fig. 2a). Thus, the substrate binding domain of HscB bears
no structural resemblance to the functionally analogous domain of class I and II J-proteins.
HscB does not appear to contain a hydrophobic pocket for binding substrate proteins (Cupp-
Vickery and Vickery 2000). Perhaps this absence of an obvious binding cleft is not surpris-
ing, as HscB interacts with a single folded polypeptide. Interestingly, the overall structure
of HscB appears to be very rigid, leading to predictions that HscB could position IscU pre-
cisely to foster interaction of the LPPVK of IscU with HscA, situated by the interaction of
the J-domain with the ATPase domain of HscA. Such rigidity is in stark contrast to the flexi-
ble nature of the glycine-rich regions that link the J-domain to the substrate-binding domain
in class I and II J-proteins.

Uncoating of clathrin-coated vesicles

Membrane vesicles provide an important means of transport of components across the
plasma membrane and within cells. Disassembly of the support lattice surrounding a vesicle
is an important step in vesicle trafficking. The coat of one important class of vesicles is
composed of clathrin heavy and light chains that interact to form three-legged (triskelion)
structures, which in turn interact to form the lattice (Brodsky 2004). The uncoating of
mammalian clathrin vesicles requires the J-protein auxilin partnering with the general
cytosolic Hsp70, Hsc70 (Holstein et al. 1996; Ungewickell et al. 1995). In addition to its
J-domain, auxilin contains a region that binds to the clathrin heavy chain. Like a typical
J-protein:Hsp70 partnership, the J-domain of auxilin stimulates the ATPase activity of
Hsc70, facilitating its binding to the clathrin/auxilin complex associated with the vesicle,
destabilizing the interaction between triskelia.

The fact that auxilin and Hsc70 can drive the uncoating of clathrin-coated vesicles
(CCV) has been known for some time (Braell et al. 1984; Ungewickell et al. 1995). Under-
standing the conformational changes that destabilize the interactions between the triskelia
of the lattice have been much more challenging. Recently, however, new structural infor-
mation further defines the lattice structure itself and the site of auxilin binding, allowing
more specific models about the mode of molecular chaperone action in uncoating to be put
forth (Fotin et al. 2004a, b; Gruschus et al. 2004; Smith et al. 2004). Auxilin binds near
the proposed vulnerable “ankles” of the clathrin triskelia, close to one site of interaction
between them. The relative orientation of these “ankles” in the triskelia is different when
auxilin is bound and when not, leading to the idea that this conformational change coupled
with the recruitment of Hsc70, which can also bind to the clathrin heavy chain, results in
destabilization of the lattice.

While the vast majority of the analysis of CCVs has been carried out in mammalian
systems, S. cerevisiae has an auxilin ortholog, Swa2/Aux1. Disruption of the SWA2 gene
has similar phenotypic effects to disruption of the gene encoding clathrin (Gall et al. 2000;
Pishvaee et al. 2000). Similar to auxilin, Swa2/Aux1 contains both a J-domain and a clathrin
binding domain. Although the J-domain sequences of auxilin and Swa2/Aux1 are conserved
(39% identity), no significant sequence similarity exists between their clathrin binding do-
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mains. Nevertheless, GST–Swa2/Aux1 fusions can pull down clathrin from yeast cytosolic
extracts, and Swa2/Aux1 can substitute for auxilin in recruiting Hsc70 to CCVs, and pro-
mote uncoating of these vesicles in vitro (Gall et al. 2000; Pishvaee et al. 2000). Swa2/Aux1
has also been shown to stimulate the ATPase activity of yeast cytosolic Hsp70 Ssa1, the
ortholog of mammalian cytosolic Hsc70, and thus is likely be its in vivo partner (Gall et al.
2000). Thus, Swa2/Aux1 likely functions in yeast, as auxilin does in mammals, in the dis-
assembly of clathrin from clathrin-coated vesicles budded off the plasma membrane, even
though the auxilin/Swa2 clathrin binding domains show little sequence similarity.

Tethering of J-proteins to particular subcellular locations

Some J-proteins can fulfill their biological function only if they are targeted to a particular
location within the cell. In some cases this simply means targeting to a particular cellular
compartment, similar to other nuclear encoded organellar proteins [i.e., the mitochondrial
matrix or the lumen of the endoplasmic reticulum (ER)]. However, there are a number of
examples of more precise localization within a cellular compartment. We discuss examples
of localization to two different cellular structures: membranes and ribosomes.

Membrane localization

J-proteins have been found to associate with specific cellular membranes by a variety of
means. In yeast there are J-proteins that are transmembrane proteins having globular do-
mains on both sides of the membrane. In addition, there is an example of a J-protein that
undergoes the post-translational addition of a farnesyl anchor that renders it membrane-
associated, as well as a J-protein having a tail-anchor that allows post-translational insertion
into the ER membrane.

Sec63 and Pam18 are examples of transmembrane J-proteins. Sec63 of the ER mem-
brane and Pam18 of the inner mitochondrial membrane are both involved in the transloca-
tion of proteins from the cytosol through the translocation channel of their respective mem-
branes. Both are not only transmembrane proteins but are physically associated with the
translocons, with their J-domains extending into the lumenal space of these compartments
(Corsi and Schekman 1997; D’Silva et al. 2003; Lyman and Schekman 1997; Mokranjac
et al. 2003; Truscott et al. 2003). Yeast mitochondria also contain a J-protein closely re-
lated to Pam18, Mdj2, which is a component of the mitochondrial inner membrane, and
thought to function in the import process as well (Westermann and Neupert 1997). The pre-
cise positioning of the J-domain allows efficient partnering with the respective organellar
Hsp70, Kar2 and Ssc1. In particular, the post-translational import of proteins puts excep-
tional demands on the chaperone system, requiring effective interaction of Hsp70 with the
translocating polypeptide at the import channel (D’Silva et al. 2004). In addition, Pam18
and Sec63 have domains that extend into a cellular space different from that occupied by
the J-domain: into the cytosol in the case of Sec63, and into the intermembrane space of
mitochondria in the case of Pam18 and Mdj2. Presumably these domains play roles in the
import process, helping to coordinate interactions across the membrane.

Ydj1 is an example of a J-protein that is post-translationally modified, having a farnesyl
group at its C-terminus (Caplan et al. 1992). This farnesyl group is added at a signal typical
for such modification, a CaaX box motif, with “a” indicating an aliphatic amino acid. Far-
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nesylated Ydj1 is associated with the cytosolic face of the ER membrane. This localization,
however, does not appear to be essential for Ydj1 function under normal growth conditions.
Alteration of the conserved cysteine in the CaaX box generated a mutant Ydj1 that cannot
be farnesylated in vitro and leads to a temperature sensitive phenotype in vivo (Caplan et al.
1992). In addition, E. coli DnaJ does not contain a farnesylation signal, and can substitute
for Ydj1 at 30°C, but not 37°C. Presumably, a function of Ydj1 at the membrane is more im-
portant at higher than at lower temperatures. Such functions could involve post-translational
translocation into the ER, facilitating folding of membrane proteins or degradation of mis-
folded proteins extruded from the ER (Becker et al. 1996; Huyer et al. 2004; McClellan and
Brodsky 2000; Meacham et al. 1999).

Hlj1p is a tail-anchored membrane protein (High and Abell 2004) with its J-domain
residing in the cytosol (Beilharz et al. 2003; Youker et al. 2004). Ydj1p and Hlj1p, both
of which have a cytosolic J-domain and are tethered to the ER membrane, were recently
found to function redundantly with the cytoplasmic Hsp70, Ssa, to facilitate the degrada-
tion of cystic fibrosis transmembrane conductance regulator (CFTR) (Youker et al. 2004),
underscoring the idea that localization of J-proteins to particular subcellular positions is
functionally important.

Ribosome association

Tethering molecular chaperones in close proximity to the site where they are extruded
from the ribosome during synthesis can serve to prevent aggregation and promote fold-
ing of these newly synthesized proteins. All organisms appear to have ribosome-associated
chaperones (Craig et al. 2003; Deuerling and Bukau 2004). Prokaryotes have a ribosome-
associated member of the peptidyl-prolyl isomerase family, trigger factor. During eukaryotic
evolution, ribosome-associated J-proteins have been conserved (Bukau 2005; Hundley et al.
2005), called Zuo1 in yeast and Mpp11 in human cells. Yeast Zuo1 is the J-protein partner
of the specialized ribosome-associated Hsp70 Ssb (Huang et al. 2005). Since Ssb can be
crosslinked to nascent polypeptide chains that extend only ten or so amino acids into the
cytosol beyond the polypeptide exit tunnel of the ribosome, both Ssb and Zuo must interact
with the ribosome in close proximity to the exit site (Hundley et al. 2002). Zuo1 likely binds
to the ribosome, at least in part, via interactions with ribosomal RNA (Yan et al. 1998). An
internal 80-amino-acid segment of Zuo1 has a high propensity of positively charged residues
that are required both for association with the ribosome and the ability to bind RNA in vitro.
Mpp11, the human ortholog of Zuo1, is also ribosome-associated, even when ectopically
expressed in yeast cells. Mpp11 also contains a positively charged region, and can com-
pete with Zuo1 for ribosome binding, indicating overlapping binding sites and a conserved
mode of ribosome association for the two proteins. In yeast, Mpp11 can partially rescue
phenotypes caused by the deletion of ZUO1 (Bukau 2005; Hundley et al. 2005).

Mtj1p is another particularly intriguing mammalian ribosome-associated J-protein. It
associates with membranes, as well as ribosomes (Dudek et al. 2002). Mtj1p, which has no
obvious ortholog in yeast, has a single transmembrane domain that spans the ER membrane.
Its J-domain, which extends into the ER lumen, interacts with the ER lumenal Hsp70, BiP.
The large cytosolic domain of Mtj1p interacts with both translating and nontranslating ri-
bosomes. Mtj1p is proposed to function during cotranslational protein transport into ER to
recruit both the ribosome and BiP to the translocon complex. Mtj1p could participate in fa-
cilitating the handover of nascent polypeptides from the signal recognition particle (SRP) to
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the translocon complex, transmitting signals from the ribosome to BiP, or regulating lumenal
gating of the translocon (Dudek et al. 2002).

Multiple J-proteins can function with a single Hsp70

In most organisms the number of J proteins exceeds the number of Hsp70s. Thus, at least
some Hsp70s must partner with more than one J-protein (Fig. 4). In the simplest examples,
different J-proteins function with the same Hsp70 because of their targeting to different
places within a cellular compartment. In such cases, there is no evidence that there are any
fundamental biochemical differences between the J-protein and Hsp70 activities. Simply,
the two proteins are able to be in the same place at the same time. The yeast mitochondrion
serves as an example. As discussed above (“Substrate binding: a common fold for general
protein folding?”), Ssc1 is the major Hsp70 of the mitochondrial matrix, making up about
1–2% of total mitochondrial protein. Approximately 10% of Ssc1 is tethered to the translo-
cation channel via interaction with the peripheral membrane protein Tim44, and functions
with the J-protein Pam18, which is independently tethered to the channel (Mayer 2004). The
remaining 90% is soluble in the matrix, where it partners with the class I J-protein Mdj1 in
protein folding and quality control of protein degradation (Liu et al. 2001; Wagner et al.
1994).

In some cases the J-protein itself is thought to be the “recruiting factor” for the Hsp70.
In the case of Sec63, the translocon-associated J-protein of the ER, the association of the
lumen Hsp70, Kar2, with the translocon is dependent upon Sec63 (Corsi and Schekman
1997). The yeast cytosol has similar examples. As discussed above (“Membrane localiza-
tion”), Hlj1, a tail-anchored J-protein of the ER membrane with its J-domain facing the
cytosol, functions with the general cytosolic Hsp70s of the Ssa class. There is no evidence
for direct targeting of Ssa to the ER membrane, so it is likely that the presence of the J-
domain itself is sufficient to recruit Hsp70. Similar statements can be made concerning the
portion of Ydj1 that is membrane localized due to its farnesylation.

The cytosol is more complex than either the mitochondria or ER in regards to Hsp70:J-
protein function, based simply on the sheer number of J-proteins: 11, with 5 of them being
class I or II J-proteins (reviewed in Walsh et al. 2004). Although the identity of their Hsp70
partners is currently unknown, it is likely that most, if not all, are eventually shown to work
with Ssa. Recently, it was reported that the human homolog of ribosome-associated Zuo1,
Mpp11, functions with Ssa1-the ortholog of mammalian Hsc70, but not Ssb1 when ex-
pressed in yeast (Hundley et al. 2005). Since Ssb orthologs are not present outside of fungi,
Mpp11 likely functions with Hsc70 in mammalian cells. Consistent with that idea, Mpp11 is
able to stimulate Hsc70’s ATPase activity. Therefore, it is possible that even more J-proteins
work with Hsc70 in higher organisms than work with Ssa in yeast.

The discussion in this section has emphasized the recruitment of Hsp70s to particular
sites within cellular compartments by different J-proteins. However, there is evidence that J-
proteins can play a more mechanistic role in determining the activity of the Hsp70:J-protein
machinery than merely helping to position Hsp70 at a particular site of action. The first hint
of such a possibility came from in vitro experiments indicating that interaction of a J-domain
with Hsp70 could allow binding of Hsp70 to client proteins to which they would not bind on
their own (Misselwitz et al. 1998). In vivo experiments also indicate mechanistic complex-
ity. As discussed above (“Substrate binding: a common fold for general protein folding?”
and “Specificity of class I/II J-protein function: the Ydj1/Sis1 paradigm”), both Ydj1 and
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Fig. 4 Multiple J-proteins function with a single Hsp70. Cellular overview representing some of the complex-
ity of Hsp70 and J-protein distribution in cellular compartments of S. cerevisiae (top). At least five J-proteins
are known to interact with the Hsp70 Ssa (bottom left), allowing it to function in a variety of cellular pro-
cesses. Of the five J-proteins, three (Ydj1, Djp1, and Hlj1) are at least partially membrane associated, with
their J-domain exposed to the cytosol and available to effectively interact with and stimulate the ATPase ac-
tivity of Ssa. Six other J-proteins, Apj1, Caj1, Jjj1, Jjj2, Jjj3, and Xdj1 are also possible Ssa partners, based on
their cellular localization and sequence similarity to the known J-protein partners of Ssa. The mitochondrial
matrix (bottom right) serves as another example of a single Hsp70 partnering with more than one J-protein.
Both the J-proteins Mdj1 and Pam18 interact with and stimulate the ATPase activity of the Hsp70 Ssc1. Mdj1
is a soluble protein of the mitochondrial matrix, and functions with Ssc1 in general protein folding. Pam18
spans the inner mitochondrial membrane with its J-domain exposed to the matrix lumen, and functions with
Ssc1 in translocation of proteins into the mitochondrial matrix. Another J-protein, not illustrated here, Mdj2,
is also localized to the inner membrane, with its J-domain exposed to the matrix lumen, and is predicted to
function with Ssc1. CCV clathrin-coated vesicle, ER endoplasmic reticulum, OM outer membrane, IM inner
membrane

Sis1 are soluble J-proteins of the cytosol that partner with Ssa, but Sis1 carries out distinct
functions from Ydj1. Importantly this specificity resides in a region of Sis1, the glycine-
rich region, not implicated in binding directly to client proteins (Yan and Craig 1999). How
common such specificity of function might be, independent of direct binding to substrate
proteins, remains to be seen. With the large number of J-proteins present, particularly in
higher organisms, more examples may be uncovered.
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Degenerate J-proteins

The presence of an HPD tripeptide is an obligate part of the definition of a J-domain be-
cause of the critical nature of these amino acids. However, genomes contain sequences that
show similarities to J-domains, but lack some or all of the amino acids of the conserved HPD
tripeptide. The S. cerevisiae genome has three such sequences, Pam16, Jpl1, and Jpl2 (Walsh
et al. 2004). Jpl1 and Jpl2 are uncharacterized, but recent work has begun to elucidate the
function of Pam16 (Frazier et al. 2004; Kozany et al. 2004; Li et al. 2004). Not surprisingly,
Pam16, which has orthologs in higher eukaryotes, appears unable to stimulate the ATPase
activity of Hsp70. Similar to Pam18, the J-protein partner of Ssc1, Pam16 has a membrane
association domain followed by a J-like domain that is exposed to the mitochondrial matrix.
Pam16, an essential protein, forms a heterodimeric complex with Pam18. The J-domain of
Pam18 and the J-like domain of Pam16 are sufficient for heterodimer formation, the only
known case in which J-domains dimerize. Heterodimer formation is essential, as its desta-
bilization has deleterious consequences on protein import (D’Silva et al. 2005).

A number of possible functions of Pam16 have been proposed, including a “structural”
function positioning Pam18 in the correct location for import, and/or a regulatory func-
tion, controlling the activity of Pam18 (Frazier et al. 2004; Kozany et al. 2004; Li et al.
2004). Some models, such as the idea that simply the modest reduction of Pam18’s ability
to stimulate Ssc1’s ATPase activity when in a heterodimer with Pam16 is a critical function
of Pam16, is likely to be incorrect. When an active J-domain is substituted for an inactive
“J-like” domain in Pam16, no in vivo effect is observed (D’Silva et al. 2005).

More likely, Pam16 serves to correctly position Pam18 at the translocon so that it can
effectively stimulate Ssc1’s ATPase activity, with the N-terminus playing this critical role.
PAM18 and PAM16 may have arisen from the duplication of a gene encoding a single J-
protein that functioned at the import channel as a homodimer. Over time, one retained an
active J-domain, the other maintained an N-terminal domain that correctly tethered the com-
plex to the import channel. Both, however, were co-selected to maintain the stability of the
heterodimer. It will be interesting to know whether Pam16 serves as a paradigm for other
J-like proteins, or whether they have evolved to fulfill very different functions.

Summary

Strides have been made in understanding the diversity of J-proteins and their partner Hsp70s,
and the roles they play within the cell. However, many questions remain. Why are there so
many different J-proteins? In the yeast cytosol there are three class I (Ydj1, Xdj1, Apj1) and
two class II (Sis1 and Djp1) J-proteins. How do they differ in function? Indeed, what are
the mechanistic differences between class I and class II J-proteins? Differences in substrate
binding are evident, but likely not the whole story, as analysis of Sis1 and Ydj1 indicate.

Three substrate binding domains have been defined, the ones found in class I/II general
protein folders and HscB/Jac1, and auxilin of the specialized class III (Table 1). Do others
exist? There are regions of many J-proteins whose role at this point remains completely
undefined and may well be substrate protein binding domains, such as the dispensable C-
terminal domain of Zuo1. Alternatively, are most class III J-proteins simply J-domains teth-
ered to particular locations within the cell? How common is targeting of client proteins by
J-proteins to Hsp70s in vivo, or is this activity more prevalent in the in vitro assays we com-
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Table 1 S. cerevisiae J-proteins classified according to predicted structure and related function1

J-protein Localization Hsp70 partner

Common fold/general substrate binding2

Sis1 Cytosol Ssa
Ydj1 Cytosol Ssa
Djp1 Cytosol/peroxisome Ssa
Apj1 Cytosol Ssa?
Xdj1 Cytosol Ssa?
Mdj1 Mitochondria Ssc1
Scj1 ER Kar2

Special fold/special substrate3

Swa2 Cytosol/CCV Ssa
Jac1 Mitochondria Ssq

Unknown substrate
Zuo1 Cytosol/ribosome Ssb
Jem1 ER Kar2

Predicted not to bind substrate
Pam18 Mitochondria Ssc1
Sec63 ER Kar2

1 Some J-proteins of S. cerevisiae have been omitted due to lack of information
2 Structures of the C-terminal domains of Sis1 and Ydj1 involved in substrate binding have been determined
(Li et al. 2003; Sha et al. 2000). Other J-proteins listed here are predicted to have protein-binding domains
with a similar fold to Sis1 and Ydj1
3 Clathrin is a substrate of Swa2. Isu is a substrate of Jac1

monly use? We await the answers to these and other questions concerning the function of
these intriguing and complex classes of chaperones. End Grabbed content
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Abstract Mediator is an evolutionarily conserved multisubunit protein complex that plays
a key role in regulating transcription by RNA polymerase II. The complex functions by
serving as a molecular bridge between DNA-bound transcriptional activators and the basal
transcription apparatus. In humans, Mediator was first characterized as a thyroid hormone re-
ceptor (TR)-associated protein (TRAP) complex that facilitates ligand-dependent transcrip-
tional activation by TR. More recently, Mediator has been established as an essential coacti-
vator for a broad range of nuclear hormone receptors (NRs) as well as several other types of
gene-specific transcriptional activators. A single subunit of the complex, MED1/TRAP220,
is required for direct ligand-dependent interactions with NRs. Mediator coactivates NR-
regulated gene expression by facilitating the recruitment and activation of the RNA poly-
merase II-associated basal transcription apparatus. Importantly, Mediator acts in concert
with other NR coactivators involved in chromatin remodeling to initiate transcription of NR
target genes in a multistep manner. In this review, we summarize the functional role of Me-
diator in NR signaling pathways with an emphasis on the underlying molecular mechanisms
by which the complex interacts with NRs and subsequently facilitates their action. We also
focus on recent advances in our understanding of TRAP/Mediator’s pathophysiological role
in mammalian disease and development.

Introduction

Initiation of transcription on eukaryotic protein-encoding genes involves the assembly of
RNA polymerase II (RNA pol II) and a group of general transcription factors (TFII-A, -B,
-D, -E, -F, and -H) into a functional preinitiation complex (PIC) at core promoter elements
(Roeder 2005). Activation of transcription by gene-specific activators involves the recruit-
ment of coregulatory factors that locally remodel chromatin and facilitate functional PIC
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assembly. The largest known family of eukaryotic activators comprises the nuclear hormone
receptors (NRs). NRs are ligand-activated transcription factors that play essential roles in
nearly every aspect of vertebrate development and adult physiology (Aranda and Pascual
2001; Mangelsdorf et al. 1995). In the presence of cognate ligand, NRs activate transcrip-
tion by recruiting distinct types of coactivator complexes to target gene promoters.

Some NR coactivators act by covalently modifying core histones (Tsai and Fondell
2004) while others rearrange higher ordered chromatin structure (Belandia and Parker 2003).
In contrast, the Mediator complex functions by directly facilitating the recruitment and ac-
tivation of RNA pol II and the general transcription apparatus at NR target genes. First
identified as a positive transcriptional activity that copurifies with the thyroid hormone re-
ceptor (TR) from mammalian cell extracts (Fondell et al. 1996), Mediator has since been
recognized as a broadly utilized coactivator complex for a wide range of NRs and other
types of transcriptional activators. In this review, we will summarize the physiological role
of Mediator in NR-mediated gene expression with an emphasis on: (1) how the complex
is targeted to NRs in the presence of ligand, (2) how the complex facilitates transcriptional
regulation of NR-target genes, and (3) the role of the complex in mammalian development
and disease.

Nuclear hormone receptor signaling pathways: an overview

NRs are “ligand-activated” transcription factors. The ligands for NRs are lipophilic com-
pounds that include steroids, retinoids, thyroid hormone (T3), and vitamin D3. NRs specif-
ically bind to DNA at promoter-proximal sequences termed hormone response elements
(HREs). In general, NRs activate transcription in the presence of cognate hormone, whereas
some NRs can also repress transcription in its absence. NRs have a modular structure that
consists of three functional domains (Fig. 1a). The first is a highly conserved DNA-binding
domain (DBD) composed of two “zinc finger” motifs that mediate specific HRE recognition
(Aranda and Pascual 2001). The second domain is a poorly conserved amino-terminal re-
gion that, at least for some NRs, contains an autonomous activation function 1 (AF1) (Tsai
and O’Malley 1994). The third is a carboxy-terminal ligand-binding domain (LBD) that
contains a dimerization surface and an additional activation function 2 (AF2). The latter is
essential for ligand-dependent transcriptional activation (Moras and Gronemeyer 1998). The
AF2 “core-domain” contains a highly conserved amphipathic α-helical motif that is present
in nearly all transcriptionally active NRs (Barettino et al. 1994; Danielian et al. 1992; Du-
rand et al. 1994; Saatcioglu et al. 1993) and serves as a binding site for coregulatory factors
(see below).

NRs can generally be divided into two classes based on their ligand-binding and DNA-
binding properties (Fig. 1b). Class I comprises receptors for known steroid hormones in-
cluding glucocorticoids, mineralocorticoids, progesterone, androgens, and estrogen (GR,
MR, PR, AR, and ER, respectively) (Tsai and O’Malley 1994). The steroid hormone recep-
tors function as ligand-induced homodimers that bind to HREs in which the DNA half-sites
are organized as inverted repeats. Class II includes receptors for nonsteroid ligands includ-
ing T3, retinoic acid, vitamin D3, prostanoids, and farnesoids (TR, RAR, VDR, PPAR, and
FXR respectively) (Aranda and Pascual 2001; Mangelsdorf and Evans 1995). In contrast
to the homodimerization observed with class I receptors, class II NRs heterodimerize with
the retinoid X receptor (RXR) and characteristically bind to direct repeats of the HRE core
half-site, AGGTCA, although some can bind to symmetrical repeats. In general, the spacing
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Fig. 1a, b The nuclear hormone receptor superfamily. a Schematic diagram showing the organization and con-
served domains of nuclear hormone receptors. The conserved DNA- and ligand-binding domains are shaded;
Activation functions 1 and 2 (AF1 and AF2) are indicated. b Some representative examples of members of the
nuclear hormone receptor superfamily. The nuclear receptors are subdivided into three types: class I (steroid),
class II (non-steroid) and orphan

between the direct repeats dictates NR-binding specificity (Naar et al. 1991; Umesono et
al. 1991). In addition to class I and II NRs, a third class of “orphan receptors” has been re-
ported, for which the existence or identity of a ligand has yet to be determined (Mangelsdorf
and Evans 1995).

A major breakthrough in our understanding of how NRs regulate gene expression comes
from the recent discovery of NR-associated coregulatory factors (reviewed in Aranda and
Pascual 2001; Glass and Rosenfeld 2000; McKenna and O’Malley 2002). NR-binding co-
factors that enhance transcriptional activation are termed coactivators. The p160/SRC family
of proteins is probably the best-characterized of the NR coactivators (Glass and Rosenfeld
2000). Each member of the p160/SRC family has a central NR-interaction domain that con-
tains three copies of a consensus leucine-rich motif, LXXLL (also termed NR box) (Heery et
al. 1997). Crystallographic and biochemical studies have revealed that the surface of a single
LXXLL motif directly contacts the ligand-activated AF2 domain of NRs, thereby providing
a molecular basis for NR-coactivator recruitment (Darimont et al. 1998; Nolte et al. 1998;
Shiau et al. 1998). The p160/SRC proteins can also bind histone acetyltransferases (HATs)
(Kamei et al. 1996), histone methyltransferases (HMTs) (Chen et al. 1999), and components
of the ATP-dependent SNF/SWI chromatin remodeling complex (Belandia et al. 2002) and
are thus thought to function by recruiting chromatin-modifying activity to NRs (reviewed in
Tsai and Fondell 2004).

In parallel to the identification and functional characterization of NR-coactivators, a dis-
tinct set of cofactors that bind NRs (e.g., TR and RAR) in the absence of ligand were also
identified. These cofactors were found to confer transcriptional repression, and were there-
fore termed corepressors (reviewed in Hu and Lazar 2000). Notably, two NR corepressors
N-CoR (Horlein et al. 1995) and SMRT (Chen and Evans 1995) associate in vivo with hi-
stone deacetylase (HDAC)-complexes and ultimately target this activity to promoter-bound
class II NRs in the absence of ligand. A general model of NR-regulated gene expression
has thus emerged in which the presence or absence of ligand differentially dictates NR-
recruitment of opposite types of chromatin-modifying enzymatic activities to target genes
(Glass and Rosenfeld 2000; McKenna and O’Malley 2002).
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Adding to the complexity of NR-dependent transcription, the human Mediator complex
was first discovered as a multimeric group of proteins that copurifies with TR in the presence
of T3 (Fondell et al. 1996). Indeed, the complex was originally termed TRAP for “TR-
associated protein” complex. In contrast to the p160/SRC coactivators, the TRAP/Mediator
complex possessed no intrinsic histone/chromatin-modifying activity. Nevertheless, the
complex significantly enhanced TR-dependent transcription in vitro on non-chromatin
templates (Fondell et al. 1996, 1999; Ito and Roeder 2001). This finding suggested that
TRAP/Mediator facilitated an activation step distinct from the chromatin-modifying/
-remodeling activity of p160/SRC complexes (outlined in more detail below, “Functional
role of Mediator complex in transcriptional regulation”). Additional evidence for a more
common Mediator coactivator role in NR-signaling pathways came from the isolation of
a similar, if not identical complex termed DRIP that associates with VDR and stimulates
VDR-dependent transcription in vitro (Rachez et al. 1999). The two complexes were later
found to comprise at least 30 subunits (Table 1). Of these, 22 subunits are homologs of yeast
proteins found within yeast Mediator, a large 25-subunit complex that directly associates
with yeast RNA pol II and is essential for yeast viability (reviewed in Kornberg 2005)
(see below, “Evolutionary conservation of Eukaryotic Mediator complexes”). End Grabbed
content

Since the initial discovery of Mediator as a coactivator for TR, several laboratories have
demonstrated that Mediator directly binds and coactivates transcription for a broad range
of both class I (steroidal) and class II (non-steroidal) NRs including ER, AR, GR, RAR,
RXR, PPAR, and FXR (Burakov et al. 2002; Ge et al. 2002; Hittelman et al. 1999; Kang
et al. 2002; Pineda Torra et al. 2004; Wang et al. 2002; Warnmark et al. 2001; Yuan et al.
1998; Zhu et al. 1997, 1999), as well as the orphan receptors retinoic acid receptor-related
orphan receptor (ROR) and hepatocyte nuclear factor 4 (HNF4) (Atkins et al. 1999; Malik
et al. 2002). Collectively, these findings implicate the Mediator complex in facilitating an
essential transcriptional activation step during NR-regulated gene expression in concert with
the chromatin modifying/remodeling activity facilitated by other types of NR-coactivators
and -corepressors.

Evolutionary conservation of eukaryotic Mediator complexes

The Mediator complex was originally identified in baker’s yeast Saccharomyces cerevisiae
using both biochemical and genetic methodologies (Gustafsson et al. 1997; Kim et al. 1994;
Thompson et al. 1993). The yeast complex was ultimately shown to be composed of 25 sub-
units (Fig. 2). Most of these subunits can associate, as a group, with the C-terminal domain
(CTD) of the largest subunit of yeast RNA pol II (reviewed in Kornberg 2005). Indeed, yeast
RNA pol II can be isolated as a holoenzyme containing the Mediator complex. This assem-
blage is thought to be a regulatory target for gene-specific activators (reviewed in Myer and
Young 1998; Myers and Kornberg 2000). Parallel studies further established a role for yeast
Mediator in gene-specific repression as well as activation (reviewed in Carlson 1997). Sig-
nificantly, a conditional mutation of the yeast MED17/Srb4 subunit completely abolishes all
RNA pol II transcription (Holstege et al. 1998). This finding thus demonstrated that Media-
tor is required for the transcription of virtually all protein-encoding genes in yeast.

In humans, a number of highly related complexes sharing conserved subunit ho-
mology with yeast Mediator were subsequently identified. The first such complex was
TRAP/Mediator, isolated by virtue of its ability to interact with TR in the presence of
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Fig. 2a, b Comparison of the human and yeast Mediator complexes. a Subunit comparison of human Me-
diator and yeast Mediator. Subunits shown in black are conserved in both species. Nonconserved subunits
specific to either humans or yeast are shown in red. b Modular organization of yeast Mediator and human
Mediator. The topological models for both complexes are based on a number of genetic, biochemical, and
structural studies (see text for references). Both complexes are organized in a similar modular structure con-
sisting of a head (red), middle (blue), and tail (green) domain. The Cdk8 module (shown in yellow) is variably
associated with the core complex, and its precise interaction site remains poorly defined. Recently identified
human Mediator subunits whose structural location within the core complex remains uncharacterized are not
shown

ligand (Fondell et al. 1996). This was followed by the isolation of other Mediator-like
complexes variously termed ARC, DRIP, CRSP, PC2, NAT, and human Mediator (Boyer
et al. 1999; Malik et al. 2000; Naar et al. 1999; Rachez et al. 1999; Ryu et al. 1999; Sun
et al. 1998). The composition of these independently isolated complexes initially appeared
to vary considerably. However, a recent sophisticated proteomic analysis suggests that all
human Mediator complexes share at least 30 subunits (Sato et al. 2004), 22 of which are
metazoan homologs of S. cerevisiae Mediator subunits (Table 1).

In addition to yeast and humans, conserved Mediator subunits have been genetically
identified in Caenorhabditis elegans and demonstrated to play a critical role in growth and
development (Kwon et al. 1999; Singh and Han 1995; Wang et al. 2004a). Furthermore, ge-
netic and biochemical analyses in Drosophila melanogaster have revealed a Mediator com-
plex that closely resembles the human complex with regard to size, complexity, and physio-
logical importance (Gim et al. 2001; Park et al. 2001; Table 1). The existence of conserved
Mediator complexes from such diverse eukaryotic species has led to a unified nomenclature
for eukaryotic Mediator subunits (Table 1, column 1; Bourbon et al. 2004). Of note, hu-
mans and other metazoans express eight Mediator subunits that are not conserved in yeast:
MED23, MED24, MED25, MED26, MED27, MED28, MED29, and MED30 (Fig. 2; see Ta-
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ble 1). Thus, it seems conceivable that these additional subunits in the metazoan complexes
likely evolved to facilitate Mediator integration into more complex signaling pathways.

In general, human Mediator complexes can be isolated as two distinct entities. The first
is a larger, approximately 2-MDa holocomplex termed TRAP/Mediator or ARC/DRIP. The
second is a smaller, approximately 0.7-MDa core complex termed PC2 or CRSP, which is
likely a derivative of the larger complex (Malik et al. 2005; Taatjes et al. 2002). The larger
TRAP/Mediator and ARC/DRIP complexes contain the subunits MED12, MED13, cyclin C,
and cyclin-dependent kinase 8 (Cdk8). By contrast, these four subunits are absent from the
smaller PC2 and CRSP complexes which additionally contain the subunit MED26/CRSP70.
While the larger TRAP/Mediator and ARC/DRIP complexes have been implicated in both
positive and negative transcriptional responses, the smaller PC2 and CRSP smaller com-
plexes appear to be exclusively involved in positive regulatory pathways (Akoulitchev et al.
2000; Fondell et al. 1996; Taatjes et al. 2002; Wang et al. 2004b; Wu et al. 2003; Taatjes et
al. 2002).

Electron microscopy and biochemical assays have revealed that both yeast and human
Mediator complexes are organized in a similar modular structure comprising a head, mid-
dle, and tail domain (Fig. 2; Asturias et al. 1999; Dotson et al. 2000; Guglielmi et al. 2004;
Taatjes et al. 2002). The head and tail domains appear to be direct targets for gene-specific
activators. For instance, the yeast activator Gal4 can interact directly with subunits MED3
and MED15 in the tail module or MED17 in the head module (reviewed in Boube et al.
2002). Similarly in humans, the transcriptional activators Elk-1 and E1A can directly con-
tact MED23 in the tail module (Stevens et al. 2002), whereas p53 can contact the MED17
subunit in the head module (Ito et al. 1999). Electron microscopy shows that the middle and
head modules of yeast Mediator can additionally directly contact yeast RNA pol II (Davis
et al. 2002) and that the overall structure of yeast Mediator can change, becoming more ex-
tended when it is associated with RNA pol II (Chadick and Asturias 2005). Similar studies
with human Mediator show that the complex can adopt different conformations upon bind-
ing distinct types of activators (Taatjes et al. 2004; Taatjes and Tjian 2004). Taken together,
these studies suggest that the Mediator complex is a dynamic entity and structurally flexible.

In addition to the head, middle, and tail modules, the subunits MED12, MED13, cyclin
C, and Cdk8 are thought to constitute a fourth distinct module referred to simply as the Cdk8
module (Fig. 2). The Cdk8 module is variably associated with the core Mediator complex
in both yeast and humans, and in yeast can be purified as a separate entity (Borggrefe et
al. 2002). Genetic evidence in yeast suggests that the Cdk8 module is involved in negative
regulation of gene expression (Carlson 1997; Hengartner et al. 1998; Holstege et al. 1998).
In humans, Mediator complexes containing the Cdk8 module have been demonstrated to be
transcriptionally inactive in vitro (Taatjes et al. 2002) or implicated in transcriptional repres-
sion (Akoulitchev et al. 2000; Mo et al. 2004; Sun et al. 1998) (see below, “Functional role of
Mediator complex in transcriptional regulation”). Nonetheless, human Mediator complexes
containing the Cdk8 module (e.g., TRAP/Mediator) are clearly recruited to target gene pro-
moters by distinct activators both in vivo and in vitro and suggest that this module may,
under certain conditions, play a functional role in some aspect of transcriptional activation
prior to dissociating from the core complex (Cantin et al. 2003; Malik et al. 2005; Wang et
al. 2004b).
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Targeting Mediator to nuclear receptors

The initial observation showing that Mediator copurifies with TR from human cells cul-
tured in T3 suggested that the complex associates with TR and other NRs in a ligand-
dependent manner (Fondell et al. 1996). Protein binding assays using purified Mediator
have confirmed this notion and showed that TR specifically bound to the 220-kDa subunit
(MED1/TRAP220) in the presence of T3 (Yuan et al. 1998). Similarly, association of the
Mediator complex with VDR in the presence of ligand was also found to be dependent
on MED1/TRAP220 (Rachez et al. 1998). In parallel yeast two-hybrid cloning studies using
PPAR as bait, mouse MED1/TRAP220 was identified and shown to bind PPAR, RAR, RXR,
and TR in vitro in a ligand-dependent fashion (Zhu et al. 1997). Interestingly, sequence
analysis of both the mouse and human MED1/TRAP220 proteins revealed the presence of
two centrally located LXXLL signature motifs or NR boxes (Fig. 3a). As noted earlier, NR
boxes are commonly found in a number of NR coactivators including the p160/SRC fam-
ily of proteins (Heery et al. 1997). Given that NR boxes act as direct binding surfaces for
ligand-activated AF2 domains of NRs (Darimont et al. 1998; Nolte et al. 1998; Shiau et al.
1998), their presence in MED1/TRAP220 provided a key clue as to how NRs target Media-
tor.

The presence of two NR boxes (termed NR box 1 and box 2) in the MED1/TRAP220
open reading frame (Fig. 3a) suggested that each motif (or box) might act as an equally
potent NR-binding site, or alternatively, each motif might confer different binding affinities
for distinct NRs. Several studies have demonstrated the latter. For example, a clear bind-
ing preference of class II NRs (e.g., TR, VDR, and PPAR) for NR box 2 is evident when
the interactions are studied in the absence of DNA (Rachez et al. 2000; Ren et al. 2000;
Yuan et al. 1998). Interestingly, mutagenesis of the amino acid residues immediately flank-
ing NR box 2 revealed a cluster of basic/polar residues N-terminal to the core LXXLL motif
(K640, N641, H642) (Fig. 3b) whose presence was shown to be essential for TR, VDR,
and PPAR binding (Ren et al. 2000). A similar cluster of basic residues is found N-terminal
to NR box 2 in the p160/SRC coactivator GRIP1 (Fig. 3b) and, similar to the situation
with MED1/TRAP220, both TR and VDR selectively bind to this NR box (Darimont et al.
1998; Ding et al. 1998). These findings suggest that preferential binding of class II NRs
at MED1/TRAP220 NR box 2 is due, at least in part, to conserved basic/polar residues N-
terminal to the core LXXLL motif. Indeed, crystallography studies with TR and GRIP1 sug-
gest that these conserved residues electrostatically interact with conserved acidic residues
in the AF2 domain of NRs, presumably serving to stabilize the NR-coactivator interaction
(Darimont et al. 1998).

When NR-MED1/TRAP220 binding studies are performed using DNA-bound class II
NRs heterodimerized with RXR, both NR box 1 and box 2 are required (Rachez et al.
2000; Ren et al. 2000). Indeed, point mutation of either NR box 1 or 2—or deletion
mutations changing the conserved spacing between the two NR boxes—significantly
disrupts MED1/TRAP220 binding to DNA-bound RXR–TR or RXR–VDR heterodimers
(Ren et al. 2000). Furthermore, when binding studies are performed using class II
NR heterodimers with opposite DNA-binding polarity (e.g., PPARγ-RXR), a selective
requirement for NR box 1 is observed (Yang et al. 2000). Finally, in vitro transcription
studies using MED1/TRAP220 point mutants confirm the notion that both NR box 1 and
2 are required for efficient RXR–TR-mediated gene activation (Malik et al. 2004). Taken
together, these findings suggest that both NR boxes 1 and 2, properly spaced, are necessary
for MED1/TRAP220 to functionally interface with a DNA-bound RXR–NR heterodimer
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Fig. 3a–c MED1/TRAP220 targets the Mediator complex to NRs. a Schematic depiction of the
MED1/TRAP220 protein showing the location of the two LXXLL motifs (black bars) and regions rich in
basic, serine, and charged amino acid residues. b Comparison of the core LXXLL motif plus immediate
flanking residues of MED1/TRAP220 NR box 2 with the corresponding NR box 2 of the p160/SRC family
member GRIP1. Identical consensus residues are shown in bold; similar residues are indicated by a colon
(:). Basic/polar residues flanking the core LXXLL motif of MED1/TRAP220 NR box 2 that are essential for
NR binding (Ren et al. 2000) are indicated by an asterisk. c Model for Mediator binding to class II NRs. In
the presence of thyroid hormone (T3), DNA-bound RXR–TR heterodimers simultaneously contact both NR
boxes of MED1/TRAP220, with the AF2 domain of RXR contacting NR box 1 and the AF2 domain of TR
contacting NR box 2. Additional AF1-dependent interactions between class I and orphan NRs are mediated
via the MED14 subunit

and further suggest that NR box 1 might be a specific interaction site for RXR (Coulthard
et al. 2003; Ren et al. 2000; Fig. 3c).

In addition to MED1/TRAP220, other Mediator subunits have been implicated as NR-
binding targets. For instance, a yeast two-hybrid screen using the N-terminal AF1 domain of
GR as bait led to the isolation of MED14 (Hittelman et al. 1999). Given that the C-terminal
AF2 domain of GR can still bind MED1/TRAP220 in a ligand-dependent manner, a model
has been proposed in which MED14 and MED1/TRAP220 serve as a molecular bridge func-
tionally linking the N- and C-terminal GR activation functions AF1 and AF2. These findings
also suggest that the mechanism by which class I (steroid) NRs interact with Mediator may
be fundamentally different from that required for class II NRs. Interestingly, a similar inter-
action model has been proposed for the orphan receptor HNF4, involving a primary AF2-
dependent interaction with MED1/TRAP220 and a secondary, presumably AF1-dependent,
interaction with MED14 (Malik et al. 2002). A recent report has also implicated MED14 as
an interaction target for the ER (Lee et al. 2005), although several other studies have clearly
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established MED1/TRAP220 as the primary Mediator-binding target for ER in the presence
of ligand (Acevedo et al. 2004; Burakov et al. 2000; Kang et al. 2002; Warnmark et al. 2001;
Zhu et al. 1999).

Functional role of Mediator complex in transcriptional regulation

Several lines of evidence support the idea that Mediator functions, at least in part, by binding
RNA pol II and facilitating its recruitment to target gene promoters (Fig. 4). First, yeast ge-
netic suppressors of an RNA pol II CTD deletion (termed suppressors of RNA polymerase
B or SRBs) were found to be Mediator subunits (Kim et al. 1994; Liao et al. 1995; Myers
et al. 1998). Second, yeast Mediator can be purified from cellular extracts tightly associated
with RNA pol II (Hengartner et al. 1995; Kim et al. 1994; Thompson et al. 1993) and muta-
tions in the CTD of RNA pol II, or in the Mediator subunits MED17, MED18, or MED20,
disrupt recruitment of RNA pol II to a promoter in vitro (Ranish et al. 1999). Similarly, hu-
man RNA pol II-Mediator complexes have also been isolated (Malik et al. 2005; Sato et al.
2004) and distinct human Mediator subcomplexes (e.g., CRSP) have been found to directly
interact with the CTD of human RNA pol II (Naar et al. 2002). Third, activator-dependent
recruitment of human Mediator to a promoter in vitro was found to enhance the subsequent
recruitment of RNA pol II in a highly purified reconstituted transcription system (Wu et al.
2003). Fourth, chromatin immunoprecipitation (ChIP) assays (in which the temporal recruit-
ment of RNA pol II and other specific coregulatory factors to native gene promoters can be
measured in vivo) show that recruitment of Mediator to ER-target genes occurs concomi-
tantly with, or is followed shortly thereafter by, the recruitment of RNA pol II (Metivier et
al. 2003; Shang et al. 2000). These studies thus suggest that Mediator can be recruited to tar-
get genes as a preformed RNA pol II-associated holocomplex, or alternatively, as a separate
entity that subsequently facilitates the recruitment of RNA pol II.

In addition to RNA pol II recruitment, other studies suggest that Mediator can facilitate
the recruitment and binding of the basal transcription factor TFIID at the core promoter. For

Fig. 4 T3-dependent transcriptional activation via the Mediator complex. RXR–TR heterodimers bound to
a T3-response element (TRE) bind MED1/TRAP220 in the presence T3 thereby recruiting Mediator to the
promoter. Direct interactions between the C-terminal domain of RNA pol II and head (red) and middle (blue)
modules of the Mediator complex are indicated. Mediator-dependent recruitment of the TATA-binding protein
(TBP) and/or TFIID are indicated by solid and dashed arrows. A coactivator role for Mediator in transcrip-
tional reinitiation is indicated by a dashed red circular arrow. A potential coactivator role for the variably
associated Cdk8 module has been suggested by some studies but remains undefined
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example, immobilized DNA template assays show that Mediator and TFIID bind coopera-
tively on test promoters and that high levels of transcription are achieved only after activator-
TFIID-Mediator intermediates are formed at the promoter (Johnson et al. 2002). Similarly,
other in vitro transcription studies show that Mediator can facilitate promoter recognition
by the TATA-binding protein (TBP) component of TFIID in the presence of specific tran-
scriptional activators (Wu et al. 2003; Fig. 4). Important in this regard, this study and others
suggest that Mediator can coactivate transcription independently of the TBP-associated fac-
tors (TAFs) found within TFIID (Fondell et al. 1999; Wu et al. 2003).

While the precise mechanisms remain undefined, Mediator also appears to be required
for transcription initiation steps subsequent to RNA pol II-preinitiation complex recruitment
(Malik et al. 2002; Wang et al. 2005). One clue as to how Mediator might facilitate this
action comes from studies in yeast in which purified Mediator was shown to stimulate the
RNA pol II CTD-kinase activity of the basal transcription factor TFIIH (Kim et al. 1994), an
activity that triggers transcriptional initiation. These studies raise the intriguing possibility
that TRAP/Mediator remains functionally active at the promoter following the recruitment
of RNA pol II and the basal transcription machinery. Along these same lines, Mediator has
also been implicated in transcriptional reinitiation. In yeast, mutation of the Mediator sub-
unit MED3 leads to defects in transcriptional reinitiation in vitro (Reeves and Hahn 2003).
Similarly, another study using immobilized DNA templates and an in vitro transcription as-
say showed that following transcriptional initiation, a subset of basal transcription factors
(TFII-A, -D, -F, and -H) and yeast Mediator remain at the core promoter, presumably acting
as a platform for the subsequent assembly of a reinitiation complex (Yudkovsky et al. 2000).
Interestingly, the platform can be stabilized by distinct types of activators, yet not by others.
Recently in humans, the formation of a similar reinitiation platform complex containing the
Mediator complex was proposed for ER-mediated transcription (Acevedo and Kraus 2003).

Finally, and as alluded to earlier, Mediator has also been implicated in transcriptional
repression, primarily via the variably associated Cdk8 module (Figs. 2 and 4). Three pos-
sible mechanisms might account for this negative regulation. First, studies in both human
and yeast Schizosaccharomyces pombe systems suggest that association of the Cdk8 module
with the core Mediator complex may occlude interactions with RNA pol II (Naar et al. 2002;
Samuelsen et al. 2003). Indeed, in yeast S. cerevisiae, the Cdk8 module can phosphorylate
the CTD of RNA pol II in vitro (Borggrefe et al. 2002) and the yeast Mediator core com-
plex preferentially interacts with the unphosphorylated form of RNA pol II (Myers et al.
1998). Second, in humans, Cdk8 has been shown to phosphorylate the cyclin H subunit of
TFIIH which then inactivates both the CTD kinase activity of TFIIH and its ability to initiate
transcription (Akoulitchev et al. 2000). Third, both yeast and mammalian Cdk8 are able to
phosphorylate gene-specific transcriptional activators, thus targeting them for ubiquitination
and proteasome-based degradation (Chi et al. 2001; Fryer et al. 2004).

Despite these findings, human Mediator complexes containing the Cdk8 module are
clearly recruited to target genes in an activator-dependent manner and appear to support
transcriptional activation under certain conditions (Fondell et al. 1996; Malik et al. 2005;
Rachez et al. 1998; Wang et al. 2004b; Wu et al. 2003). Important in this regard, recent stud-
ies in yeast indicate that the presence of the Cdk8 module is essential for Gal4-dependent
activation of the GAL1 gene in vivo (Larschan and Winston 2005). Taken together, these
studies demonstrate multiple positive and negative roles for the Mediator complex at target
gene promoters that are likely manifested in an activator- and/or gene-specific manner.
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Multistep model of nuclear receptor regulated transcription

The packaging of eukaryotic genomic DNA into a higher ordered chromatin structure
acts as a barrier to transcription by inhibiting accessibility of RNA pol II and associated
factors. This condensed chromatin structure has a major influence on the mechanisms
by which NRs activate and repress target gene expression. Therefore, in addition to
coactivators or corepressors that directly interface with the basal transcription apparatus
(e.g., Mediator), NRs must also recruit coregulatory factors that modify and structurally
remodel chromatin. Key examples of such cofactors include HATs, HDACs, HMTs, and
the ATP-dependent SNF/SWI chromatin remodeling complex (Belandia and Parker 2003;
Tsai and Fondell 2004). As noted earlier, HATs, HMTs, and some components of the
SNF/SWI complex can all directly associate with the p160/SRC family of proteins, which
in turn directly contacts NRs in a ligand-dependent manner. Hence, p160/SRC cofactors
serve as pivotal adaptor molecules in NR signaling pathways (Glass and Rosenfeld 2000;
McKenna and O’Malley 2002). Pertinent to this review, the question arises as to how
chromatin-modifying/-remodeling cofactors temporally and functionally cooperate with the
Mediator complex at specific NR-target genes.

One possible answer comes from MED1/TRAP220 versus p160/SRC competitive bind-
ing studies with NRs. Although the binding of both types of cofactors to most NRs is mu-
tually exclusive and competitive, in vitro binding assays and surface plasmon resonance
(SPR) analyses revealed a higher T3-dependent TR affinity for p160/SRC cofactors than
for MED1/TRAP220 (Moore and Guy 2005; Treuter et al. 1999). Similarly, SPR analyses
and electromobility shift competition assays showed a higher estrogen-dependent ER affin-
ity for p160/SRC proteins than for MED1/TRAP220 (Acevedo et al. 2004; Burakov et al.
2002; Warnmark et al. 2001). Taken together, these data suggest that competition between
p160/SRC proteins and TRAP220/MED1 for ligand-dependent NR binding might act as
a regulatory step in establishing a sequential activation cascade. Consistent with this notion,
coimmunoprecipitation studies demonstrated that TR–p160/SRC–HAT complexes assemble
in HeLa cells immediately following T3 stimulation, whereas formation of TR–Mediator
complexes occurs later (Sharma and Fondell 2000).

The ChIP assay represents a powerful approach for investigating the temporal recruit-
ment kinetics of distinct NR-coregulatory factor complexes to NR target genes in situ. Ac-
cordingly, ChIP assays were used to investigate the recruitment of TR–Mediator and TR–
p160/SRC–HAT complexes to the T3-responsive genes Dio1 and SERCA in vivo using hu-
man HeLa cells and rat GH3, respectively (Sharma and Fondell 2002). Interestingly, these
studies showed that following T3 stimulation, TR recruits the different types of coactivator
complexes in at least two sequential steps. p160/SRC proteins in association with the HAT
p300 are recruited first and rapidly induce histone acetylation at the promoter. Shortly there-
after, TR–Mediator complexes are recruited. Importantly, significant levels of transcription
from both the Dio1 and SERCA genes was not observed until after the recruitment of Media-
tor (Sharma and Fondell 2002). These findings have led to a model of T3-dependent gene ac-
tivation by TR (Fig. 5). Consistent with these findings, ChIP assays using the human ER(+)
breast cancer cell line MCF7 demonstrated a sequential ER recruitment of p160/SRC-HATs
followed by Mediator on estrogen-responsive genes in vivo (Burakov et al. 2002; Metivier
et al. 2003; Shang et al. 2000). Interestingly, these studies further showed a cycling of the
different coactivators on and off the estrogen-regulated promoters, and strikingly, there was
an inverse correlation between p160/SRC and MED1/TRAP220 promoter occupancy (Bu-
rakov et al. 2002; Metivier et al. 2003). Furthermore, one of the studies clearly implicated
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Fig. 5 A multistep model of T3-dependent transcriptional regulation. In the absence of thyroid hormone
(T3), RXR–TR heterodimers are constitutively bound to T3-response elements (TREs) in association with
the corepressors N-CoR/SMRT and histone deacetylases (HDACs) which lead to condensed chromatin and
gene silencing. In the presence of T3, HDACs and corepressors disassociate from RXR–TR, and p160/SRC
cofactors are then recruited in association with histone acetyltransferases (HATs; e.g., CBP) and histone
methyltransferases (HMTs; e.g., CARM1), which covalently modify promoter proximal histones. This step
likely involves the ATP-dependent chromatin-remodeling activity of the SWI/SNF complex. In a temporally
subsequent step, the p160/SRC cofactors, HATs, and HMTs disassociate and RXR–TR recruits the Mediator
complex, which effectively interfaces with the RNA pol II-basal transcription apparatus to initiate transcrip-
tion. It is hypothesized that chromatin modifications in the initial step (e.g., acetylation or methylation) may
promote the recruitment of TRAP/Mediator to the promoter in the subsequent step (Sharma and Fondell
2002)

SNF/SWI as the first coregulatory complex recruited to an estrogen-responsive promoter
following ligand stimulation, where it presumably facilitates the subsequent recruitment of
other coactivators (Metivier et al. 2003).

Finally, recent studies suggest that in some instances, Mediator may be poised at specific
NR-target genes in the absence of ligand. For example, at the human RARβ2 gene promoter,
which itself is retinoic acid-responsive, Mediator resides pre-bound even in the absence of
ligand (Pavri et al. 2005). Upon addition of ligand, corepressor complexes are dismissed and
RAR interacts more productively with Mediator in a manner that additionally requires the
novel coregulatory factor, poly (ADP-ribose) polymerase-1 (PARP-1). Although the precise
mechanism remains ill-defined, it appears that PARP-1 associates with RAR in a ligand-
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and promoter-specific manner to trigger the release of the Mediator Cdk8 submodule, which
then transcriptionally activates the complex. These findings suggest that other gene-specific
cofactors (like PARP-1) may play an important regulatory role in activating the Mediator
complex post-promoter recruitment.

The Mediator complex in development and disease

Given the essential role played by the Mediator complex in regulating transcription from
eukaryotic protein-encoding genes, a recent focus has been directed toward understanding
its physiological importance in mammalian development and disease-related processes. Be-
low we summarize a number of recent studies examining the pathophysiological role of
Mediator in mammals with an emphasis on the MED1/TRAP220 subunit and NR signaling
pathways.

Genetic ablation of the MED1/TRAP220 subunit in mice results in embryonic lethal-
ity at around day 11. The causes of embryonic death are manifold and include hepatic
necrosis, defects in hematopoiesis, hypoplasia of the ventricular myocardium, impaired
neuronal development, and defects in the development of the placental vasculature (Craw-
ford et al. 2002; Ito et al. 2000; Landles et al. 2003; Zhu et al. 2000). Intriguingly, the
MED1/TRAP220–/– null embryos exhibit severe retarded cell growth (Ito et al. 2000; Zhu
et al. 2000), whereas primary mouse embryonic fibroblasts (MEFs) isolated prior to em-
bryonic death further display impaired cell-cycle progression (Ito et al. 2000). These find-
ings thus suggest that, in addition to mediating embryonic development, MED1/TRAP220
may also play a key coregulatory role in facilitating fundamental mitotic cellular growth.
Importantly, TR- and PPAR-dependent gene expression is markedly attenuated in MEFs
derived from MED1/TRAP220–/– null mutants, but can be restored on transfection with
ectopic MED1/TRAP220 (Ito et al. 2000; Zhu et al. 2000). These data thus confirm that
MED1/TRAP220 acts as a major physiological coactivator for NRs.

While the genetic ablation studies clearly demonstrated a role for MED1/TRAP220 dur-
ing embryonic development, a targeted Cre-loxP strategy was used to selectively inhibit
MED1/TRAP220 expression in the postnatal mouse liver (Jia et al. 2004). Conditional dele-
tion of MED1/TRAP220 in liver parenchymal cells resulted in abrogation of PPARα ligand-
induced peroxisome proliferation and liver cell proliferation, as well as the induction of
PPARα-regulated hepatic gene expression (Jia et al. 2004). In essence, these findings show
that the absence of MED1/TRAP220 in hepatocytes in vivo mimics the absence of PPARα,
thus demonstrating that MED1/TRAP220 is essential for PPARα-mediated gene expres-
sion in the liver. Whereas PPARα is crucial for liver function, PPARγ is a key regulator
of transcriptional pathways essential for adipogenesis (Lowell 1999). Interestingly, it was
found that MED1/TRAP220–/– null MEFs are refractory for PPARγ-stimulated adipogene-
sis, but the defect could be restored upon expression of exogenous MED1/TRAP220 (Ge et
al. 2002). Taken together, these findings indicate that MED1/TRAP220 acts in vivo (via the
Mediator complex) as a PPARα- and PPARγ-specific coactivator in liver and adipose tissue.

A conditional Cre-loxP strategy was also used to examine the role of MED1/TRAP220
during mammary gland development in mice (Jia et al. 2005). MED1/TRAP220-deficient
mammary glands exhibited retarded ductal elongation during puberty and decreased alve-
olar density during pregnancy and lactation. Furthermore, the MED1/TRAP220-deficient
mammary glands could not produce milk and failed to respond proliferatively to estro-
gen and progesterone treatment (Jia et al. 2005). Therefore, and similar to the conditional
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MED1/TRAP220 ablation in the liver, the absence of TRAP220/MED1 in mammary tissue
mimics the absence of ER and PR, thus demonstrating once again that TRAP220/MED1 is
essential for NR-mediated gene expression in mammary glands. Important in this regard,
MED1/TRAP220 is overexpressed in ER-positive primary human breast cancers and breast
cancer cell lines and has been thus been proposed to play an important role in breast cancer
progression (Zhu et al. 1999).

Paget’s disease is a chronic bone disorder that is characterized by increased osteoclastic
bone resorption, excessive bone formation, and hypersensitivity to physiological vitamin D3
concentrations (Hosking 1981). Interestingly, expression of MED1/TRAP220, a direct coac-
tivator for VDR, is amplified in osteoclast precursors in patients with Paget’s disease (Kuri-
hara et al. 2004). These findings thus suggest that the pathophysiology underlying this bone
disorder may involve increased vitamin D3-dependent transcription via increased levels of
VDR coactivators like Mediator.

Immunohistochemistry studies show that MED1/TRAP220 is differentially expressed
in the neurons of the granular layer of the cerebellar cortex, piriform cortex, and hippocam-
pus in brains of developing mice and rats (Galeeva et al. 2002). These findings support the
notion that MED1/TRAP220 plays an important role in the growth and differentiation of
the central nervous system and may have specific functions in certain areas of adult brain.
Consistent with an important role for the Mediator complex in the development of the cen-
tral nervous system, mutations in the MED12 subunit correlate with human schizophrenia,
dementia, hypothyroidism, and mental retardation (Philibert et al. 2001). Furthermore, a re-
cently identified component of the complex, MED13L, was found to be mutated in patients
with both mental retardation and congenital heart defects (Muncke et al. 2003). Interest-
ingly, the Drosophila homologs of MED12 and MED13, blind spot and kohtalo, are re-
quired for proper eye-antennal development (Treisman 2001). Similarly, several labs have
demonstrated that the C. elegans homologs of MED12 and MED13 are essential for neurod-
ifferentiation, development, and embryogenesis (Moghal and Sternberg 2003; Wang et al.
2004a). Taken together, these studies suggest that Mediator plays an important and highly
conserved role during metazoan development of the central nervous system.

Future directions

The Mediator complex clearly plays a central role in regulating NR-dependent transcrip-
tion from mammalian protein-encoding genes. Nevertheless many questions must still be
answered before we can fundamentally understand how the complex works and how its ac-
tivities are controlled. In this regard, a better understanding of the functional and enzymatic
activity of the Cdk8 module, its nuclear targets, and how its association with the core Me-
diator complex is regulated will be key to appreciating how the Mediator complex activates
and/or represses messenger RNA synthesis. The mechanisms by which regulated chromatin
remodeling and histone modifications dictate Mediator recruitment to specific target genes
also remain poorly defined. Future studies addressing these issues will be crucial in terms
of defining more precisely the specific temporal steps of transcriptional initiation and reini-
tiation facilitated by the Mediator complex. Another major question concerning Mediator is
how specific cellular signal transduction pathways influence the overall functional activity
of the complex. It is hypothesized that extracellular growth factors or signals likely trigger
specific posttranslational modifications (e.g., phosphorylation, acetylation, methylation) of
distinct Mediator subunits that ultimately regulate the functional activity of the complex and
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the expression of specific target genes. Finally, and in light of the myriad of recently identi-
fied mammalian Mediator subunits, a major challenge ahead will be sorting out the specific
functional roles of these various polypeptides and investigating how they interact with other
Mediator subunits as well as other types of transcriptional coregulatory factors.
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Abstract Gastric acid secretion is a complex process that requires hormonal, neuronal,
or calcium-sensing receptor activation for insertion of pumps into the apical surface of the
parietal cell. Activation of any or all these pathways causes the parietal cell to secrete con-
centrated acid with a pH at or close to 1. This acidic fluid combines with enzymes that are
secreted from neighbouring chief cells and passes out of the gland up through a mucous
gel layer covering the surface of the stomach producing a final intragastric pH of less than 4
during the active phase of acid secretion. Defects in either the mucosal barrier or in the regu-
latory mechanisms that modulate the secretory pathways will result in erosion of the barrier
and ulcerations of the stomach or esophagus. The entire process of acid secretion relies on
activation of the catalytic cycle of the gastric H+,K+-ATPase, resulting in the secretion of
acid into the parietal cell canaliculus, with K+ being the important and rate-limiting ion in
this activation process. In addition to K+ as a rate limiter for acid production, Cl– secre-
tion via an apical channel must also occur. In this review we present a discussion of the
mechanics of acid secretion and a discussion of recently identified transporter proteins and
receptors. Included is a discussion of some of the recent candidates for the apical K+ re-
cycling channel, as well as two recently identified apical proteins (NHE-3, PAT-1), and the
newly characterized calcium-sensing receptor (CaSR). We hope that this review will give
additional insight into the complex process of acid secretion.
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Introduction

Gastric acid plays a primary role in digestion as well as in the sterilization of food and water.
Gastric juice contains the most concentrated physiological acid solution (pH~1) as a result
of H+ and Cl– ion secretion [hydrochloric acid (HCl) production] by parietal cells in the
oxyntic mucosa of the stomach. The combined output of the parietal cells leads to the secre-
tion of 1–2 l of HCl at a concentration of 150–160 mmol/l into the interior of the stomach.
In order to facilitate the production of acid, the parietal cell relies on the generation of a high
concentration of H+ ions that are transported into the lumen of the gland. This process is fa-
cilitated by activation of the gastric H+,K+-ATPase, which translocates to the apical pole of
the parietal cell. K+ as well as ATP hydrolysis and Cl– all play critical roles in the activation
of gastric H+,K+-ATPase and are essential for the functioning of the enzyme (Reenstra and
Forte 1990).

This review will examine the classical proteins that have been linked to acid secretion
as well as some recently identified proteins that may modulate gastric acid secretion, in ad-
dition we discuss the known secretagogues, and their receptors including a new receptor,
which upon stimulation can lead to acid secretion.

The gastric H+,K+-ATPase

During the secretory phase of acid secretion, the gastric H+,K+-ATPase is located in the
apical membrane or pole of the parietal cell and actively transports H+ into the parietal
cell canaliculus in exchange for K+ at the expense of one ATP molecule per exchange.
The cations exchange in a 1:1 ratio thereby maintaining electroneutrality. This enzyme
is a member of the P-ATPase family, which includes: Na+,K+-ATPase, Ca2+-ATPase and
colonic H+,K+-ATPase (Maclennan et al. 1985) (Shull et al. 1985; Crowson and Shull 1992).
The gastric H+,K+-ATPase shares many features, including structure and enzymatic identity,
with other members of the family (Rabon et al. 1982; Malinowska et al. 1988; Mendlein et
al. 1990; Hersey and Sachs 1995; Munson et al. 2000; Vagin et al. 2004). A common feature
of the P-ATPase family is that energy necessary for the translocation of ions is provided by
ATP.

Due to the amount of energy released on hydrolysis of an ATP molecule, the concentra-
tion gradient that can be created by a P-ATPase enzyme is effectively limited. In this same
regard the transport of ions is also constrained if ionic exchange results in the generation of
a charge. As the translocation of H+ and K+ is electroneutral, the gastric H+,K+-ATPase can
achieve an approximate 3–4 million-fold ion concentration gradient (difference in H+ con-
centration between plasma and parietal cell canaliculus) that is among the highest observed
in the mammalian body (Mangeat et al. 1990; Crothers Jr. et al. 1995; Thangarajah et al.
2002; Yao and Forte 2003).

To generate such a concentrated acid solution during the active process of acid secretion
it is also necessary to move other ions. In the classical model of gastric acid secretion, it has
been proposed that for each H+ ion transported into the canaliculus by the H+,K+-ATPase,
the basolateral Cl–/HCO3

– exchanger would deliver an HCO3
– molecule into the plasma

and a Cl– ion into the cytosol (Fig. 1). This exchange would allow for sufficient Cl– ions to
enter the cell replacing the Cl– ions released from the cell during secretion into the canalicu-
lus. This Cl– exit step is thought to occur via Cl– channel(s) in the apical membrane of the
parietal cell, and there is a good possibility that more that one type of channel is involved,
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Fig. 1 A simplified model for the secretion of gastric acid by the parietal cell

as is more than likely the case with K+ channels, based on recent findings (Grahammer et
al. 2001; Forte 2004). For Cl– there has been little direct experimental evidence, and only
a ClC-2 channel (Malinowska et al. 1995) has been suggested to play a role in acid secretion.
It is essential to have active Cl– secretion into the lumen of the gland to act as the counter ion
for both the flux of K+ ions and also to balance the charge during H+ secretion and thereby
ensure electroneutral HCl secretion.

Similar to most other cells in the body, the levels of K+ in the cytosol are higher than in
the plasma. The higher intracellular levels of K+ are dependent on the activity of the Na+,K+-
ATPase (see Fig. 1). This enzyme is located on the basolateral membrane of the cell where
it exchanges intracellular Na+ for extracellular K+. The levels of K+ within the cell are also
regulated by K+ channels that allow ion movement across the basolateral membrane. These
channels have a particularly important role in generating negative cell membrane potential.

Gastric H+,K+-ATPase activation by K+

During the resting/non-secretory state, parietal cell H+,K+-ATPase is situated along the
tubulovesicular elements within the cell (Smolka et al. 1983). In this dormant phase the
concentration of K+ in the tubulovesicular elements is low and the vesicular membranes are
impermeable to K+. As a result, the enzyme is incapable of being activated and transport-
ing H+ ions (Reenstra and Forte 1990). During stimulation by neuronal, hormonal, or the
recently identified CaSR, a morphological change ensues which causes the tubulovesicular
elements to fuse with the apical membrane of the cell. During this phase of vesicular fusion
the H+,K+-ATPase does not appear to undergo any chemical modifications, rather, as a result
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Fig. 2 Post–Albers catalytic cycle of gastric H+, K+-ATPase

of the membrane fusion events, the enzyme is now exposed to K+-containing luminal fluid,
and can thus start the active exchange of H+ for K+.

To accomplish the exchange of ions, there are several conformational changes that need
to occur in the three-dimensional structure of the H+,K+-ATPase (Fig. 2). By using the Post–
Albers model for the Na-K ATPase, a functional model has been developed to demonstrate
the various conformational states that the protein goes to when exposed to increasing levels
of ATP. These conformational changes can be summated into two important conformational
states that the protein exists in: (1) state 1, which is referred to as E1, in which the ion-
binding site faces the parietal cell cytoplasm and has a high affinity for H+ and low affinity
for K+; (2) state 2 or E2, where the ion-binding site faces the extracellular canaliculus and
has a low affinity for H+ and high affinity for K+. It has been postulated that the shape of the
K+ binding site or the path through which K+ can access the binding site is different for the
E1 and E2 forms (Vagin et al. 2003). This model would help to elucidate the relative affinity
of the two forms for K+.

While in the E1 form, the enzyme takes up H+ and converts to the E2 form by hy-
drolysing ATP (see Fig. 2). In addition to providing energy for the shift between these
conformational states, ATP hydrolysis also results in the phosphorylation of the enzyme
(typically referred to as E2~P). Transformation to the E2 form results in the translocation of
H+ from the parietal cell membrane into the secretory canaliculus. As a result, the phospho-
rylated E2 form binds K+ that is required for the dephosphorylation of the H+,K+-ATPase.

During this cycling of the enzyme, K+ becomes temporarily occluded within the trans-
membrane segments and as a result prevents the cations from having free access to the cyto-
plasm or canaliculus. While in this phase of the cycle, the cation causes dephosphorylation of
the H+,K+-ATPase (Rabon et al. 1982). The mechanism responsible for this process has not
been fully elucidated. It is, however, likely that K+ does not stimulate dephosphorylation of
the phosphorylated intermediate directly, but rather acts by neutralizing the inhibitory effect
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of a negative charge in the membrane (Swarts et al. 1998). Following dephosphorylation,
the enzyme returns to the E1 form and releases K+ into the cell cytoplasm.

The actual amount of H+ and K+ that is exchanged during a single cycle remains con-
troversial as some investigators have reported that one H+ and one K+ are exchanged for
each ATP hydrolysed, while others have found that there is reciprocal exchange of two pairs
of ions per ATP hydrolysis(Rabon et al. 1982; Skrabanja et al. 1984). The case for a one
H+ swapped for one K+ ion has been strengthened by recent modelling work which demon-
strated that the gastric H+,K+-ATPase has a single K+ binding site (Koenderink et al. 2004).
Additional evidence for the 1:1 exchange is shown in other P-type ATPases, such as yeast
and plant H+-ATPase (Bukrinsky et al. 2001). Moreover, it has been proposed that one sin-
gle binding site could more easily explain the ability of the H+,K+-ATPase to transport H+

against a high concentration gradient (Koenderink et al. 2004).

The K+ binding site in gastric H+,K+-ATPase

A great deal of work has been focused on elucidating the identity of the K+ binding site (or
sites). To date, potential sites have been identified within the transmembrane segments M4,
M5, M6 and possibly M8 of the α-subunit of the enzyme (Munson et al. 2000; Swarts et al.
1996; Vagin et al. 2001; Asano et al. 1996). Due to the physiological role and location of
K+ (i.e. in the parietal cell canaliculus), it would suggest that the site is located in the direc-
tion of the luminal face of the membrane domains (Munson et al. 2000). When K+ occupies
this binding site, it seems to affect the conformation of a large intracellular loop in which
phosphorylation occurs(Swarts et al. 1998). Moreover, K+ has been shown to be required for
stabilization of a tight loop or ’hairpin’ between M5 and M6 (Gatto et al. 1999). This hair-
pin appears to have a direct link with the phosphorylation domain on the intracellular loop
containing the ATP binding site, suggesting that it is involved in coupling ATP hydrolysis
with cation transport (Gatto et al. 1999).

As discussed earlier, recent work indicates that there is one high-affinity cation binding
site in the gastric H+,K+-ATPase (Koenderink et al. 2004). This K+ binding site is formed by
amino acids from M4, M5 and M6, with the K+ ion being held in place by six oxygen atoms
provided by these domains (Koenderink et al. 2004). Within the pocket (at residue 820),
there is a negative charge that is thought to be important for enzyme function (Koenderink
et al. 2004)

This model of the likely structure of the K+ site and its interaction with the phosphory-
lation domain has promoted a theory on how K+ activates the enzyme. This model suggests
that the negative charge in the ion-binding pocket may exert an indirect inhibitory effect
on the phosphorylated intermediate form of the enzyme and thereby prevent its hydroly-
sis(Swarts et al. 1998). When the cation-binding pocket is occupied by K+, the negative
charge is neutralized. This loss of charge causes a signal to be transferred to the nearby
phosphorylation domain of the enzyme, possibly via a lysine amino acid residue, resulting
in enzyme dephosphorylation (De Pont et al. 2003) causing the subsequent translocation of
K+ from the parietal cell canaliculus to the cytoplasm.

K+ selectivity of the H+,K+-ATPase

The cation selectivity of the enzyme appears to be generated through its interactions with the
residues of the transmembrane segments of the α-subunit and the flanking loops that connect
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these transmembrane domains (Mense et al. 2002). The degree of K+ affinity, along with AT-
Pase activity of the gastric H+,K+-ATPase, also appears influenced by a salt bridge from M5
to M6 that exists only when the enzyme is in the E2 form (Koenderink et al. 2004). What
appears to be important is that this salt bridge only allows space for a single K+ binding site,
thereby preventing the formation of another K+ binding site within the enzyme (Koenderink
et al. 2004).

The β-subunit has also been implicated in determining K+ affinity of gastric H+,K+-
ATPase (Koenderink et al. 1999; Hermsen et al. 2000), as shown in a recent study comparing
the pig and rat gastric H+,K+-ATPase. The different K+ affinity of the enzymes from the two
species was modulated by both the lipid matrix in which the enzymes were embedded and
the identity of the β-subunit (Hermsen et al. 2000).

Role of K+ channels in K+ recycling

At resting (i.e. unstimulated, basal) levels of parietal cell activity, gastric juice consists
mainly of NaCl with only small amounts of K+ and H+. Upon stimulation of the parietal
cell there is a sharp drop in pH. When the pH falls to approximately 1 during stimulation,
the canaliculus of the parietal cell will contain 150–160 mmol/l HCl. Given the initial low
concentration of K+ ions in the unstimulated state, achieving such a low pH would appear
to be difficult through a 1:1 exchange of H+ for K+. However, parietal cell stimulation actu-
ally elevates the K+ concentration (measured as KCl) in the gastric milieu (to 10–20 mmol/l
KCl). However, even at these levels there would be rapid K+ depletion unless there was
a mechanism for replenishing K+ levels in the parietal cell canaliculus.

The source therefore of K+ ions that are exchanged with H+ by the H+,K+-ATPase is the
cytosol of the parietal cell, this equilibrium is thought to occur via the Na+,K+-ATPase en-
zyme on the basolateral membrane which accumulates K+ into the parietal cell in exchange
for Na+. Recently there has been evidence for a NaK2Cl transporter on the basolateral mem-
brane of the cell that would potentially provide both K and Cl for acid secretion (McDaniel
and Lytle 1999; McDaniel et al. 2005). This transporter would, however, be linked to the
activity of the apical Cl and K channels that are active during acid secretion (McDaniel and
Lytle 99)

There have been a variety of candidates to act as an apical K+ recycling channel, and
to date three different types of K+ channels that may contribute to K+ recycling, and which
have been postulated to be at the apical membrane of the parietal cell, have been investigated
in detail.

One of these candidates is the K+ channel KCNQ1 (formerly known as KvLQT1) which
was found to co-localize with gastric H+,K+-ATPase and to be abundantly expressed in hu-
man and mouse gastric mucosa (Dedek and Waldegger 2001; Grahammer et al. 2001). Using
an expression system and an electrophysiological assessment of the KCNQ1 channel it was
confirmed that it still had sustained activity at low pH (Dedek and Waldegger 2001; Gra-
hammer et al. 2001). An essential property of any of the apical ion channels involved in acid
secretion is their ability to maintain a high open probability when faced with a low pH on
the extracellular domain, which occurs during the secretory phase of acid secretion. There
is evidence that the subunit KCNE2 (and possibly KCNE3) appears to co-assemble with
KCNQ1 to form a functional version of the K+ channel in the apical membrane of parietal
cells (Grahammer et al. 2001). It is postulated that this subunit is thought to determine the
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voltage dependence of KCNQ1 and its activation in response to extracellular acidification
(Grahammer et al. 2001).

For these reasons as well as recent gene chip identification and amplification of the
KCNQ1 protein (Lambrecht et al. 2005), it has been proposed as an important K+ channel
in the apical membrane. Additional evidence of its role in gastric acid secretion came from
inhibition studies using the ’specific’ KCNQ1 channel inhibitor, chromanol 293B (Graham-
mer et al. 2001). However, it has since been suggested that chromanol 293B may have an
alternative, unidentified target in the parietal cell (Malinowska et al. 2004). In addition there
have been conflicting reports as to suppression of acid secretion in knock-out mice, with
both positive and negative effects on acid secretion being reported (Lee et al. 2000).

In addition to the KCNQ1 channel, several members of another type of K+ channel fam-
ily, the inward rectifying K+ (Kir) family, have been shown to be expressed in rat gastric
mucosa (Fujita et al. 2002). To date, the following Kir channels were detected and they in-
clude: Kir4.1, 4.2 and 7.1, although only Kir4.1 and Kir 2.1 have been found in parietal cells
(Malinowska et al. 2004).

An additional member of the Kir family may also be involved in gastric acid secretion
(Malinowska et al. 2004). In rabbit gastric mucosa, high levels of Kir2.1 were detected along
with lower levels of Kir4.1 and 7.1. Kir2.1 was expressed in parietal cells from rabbit gastric
mucosa and appeared to co-localize with H+,K+-ATPase and ClC-2 Cl– channels. These K+

channels were more likely to be open (i.e. allow K+ transit) when obtained from stimulated
stomachs than from resting stomachs. Similarly, a reduction in pH also tended to increase the
likelihood of channel openings, which suggests that these channels are regulated in a similar
fashion to ClC-2 Cl– channels. As with KCNQ1 it is not possible to ascribe K+ conductance
in the parietal cell to Kir2.1 alone, since the electrophysiological properties were studied in
rabbit gastric vesicles. As with the Kir4.1 channel, the Kir2.1 channel associates with four
subunits to form a functional K+ channel.

Studies thus far have produced evidence for a variety of potassium channels (i.e.
KCNQ1, Kir2.1 and Kir4.1), albeit in a variety of different species, in the apical membrane
of the parietal cell. All three of the channels described have properties that would be
consistent with a K+ recycling channel. However, it remains uncertain which of these
channels, if any, plays the major role in K+ efflux. As with the Cl– channel(s), a complete
understanding of the K+ channel(s) involvement has yet to be attained. Additional studies
in both native tissues and in transgenic animals may allow a more definitive answer. In
addition to the candidates mentioned above as the apical recycling channel(s), a variety of
K+ channels have also been identified on the basolateral membrane of parietal cells, each
with distinctive properties (Supplisson et al. 1991). For this reason it is not unreasonable
to assume that more than one type of K+ channel in the apical membrane of the parietal
cell may be involved in recycling the cation. In addition, as previously noted, alongside
this potential diversity of K+ channels, different subunits may exist in a single cell, which
may affect the properties of the channels (Raap et al. 2002; Wulfsen et al. 2000) This
observation raises the possibility of a variety of functional channels with subtly different
electrophysiological properties, thereby making elucidation of the relative contribution of
different K+ channels extremely difficult. From the evidence presented there are positive
indications that more than one channel protein localizes to the apical region of the gland;
as a result, the elimination of one channel could lead to the up-regulation of an alternative
channel. This also may be the reason that knock-out mice have not led to a definitive answer
as to which channel is the apical recycling channel.

Caution must be applied in attempting to extrapolate the findings in animal studies to
man. Until detailed studies are carried out in humans to determine the identity and com-
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position of K+ channels, it will be impossible to determine which channel or channels are
important in apical membrane K+ flux. It also remains to be ascertained whether these chan-
nels are constitutively active or are regulated upon cell activation.

K+ as a target for stopping gastric acid production

As shown in the previous sections of this review, K+ plays an essential role in the produc-
tion of gastric acid and therefore makes it a logical potential target for therapeutic interven-
tion. If the K+ channel(s) responsible for the flow of K+ ions across the parietal cell apical
membrane are inhibited, then gastric H+,K+-ATPase will cease to function. An alternative
pharmacological approach is to compete with K+ at the level of the gastric H+,K+-ATPase.

K+ channel blockers

K+ channel(s) in the apical membrane of the parietal cell represent a target for pharmacolog-
ical modulation. Recent studies showing the inhibition of gastric acid secretion by exposure
to the ’specific’ KCNQ1 K+ channel blocker, chromanol 293B, indicate the potential of such
an approach (Grahammer et al. 2001). However, even if a K+ channel blocker did prevent
H+,K+-ATPase activity, other challenges hinder the development of a therapeutic K+ chan-
nel blocker: first and foremost, the identity of the channel(s) involved in K+ recycling in
the parietal cell will require further investigation. From recent data presented in this review,
and some additional yet unpublished observations, there is an increased likelihood that more
than one channel is involved in cation flux (which would then require either several block-
ers or a drug that could inhibit a variety of channels). Without selectively blocking these
additional channels one can speculate that the remaining channels could transport sufficient
K+ to allow the H+,K+-ATPase to continue to function. An additional problem facing this
approach is the fact that many of the identified gastric K+ channels can also be found in
a variety of tissues [e.g. Kir4.1 is found on brain astrocytes (Higashi et al. 2001) as well as
in the apical membrane of parietal cells]. Due to this multi-organ distribution for the chan-
nel proteins identified to date, the development of a specific compound or compounds will
require the generation of agents that are organ specific, which may be an almost impossible
task given the degree of cross-tissue homology that K+ channel proteins exhibit.

Potassium-competitive acid blockers

In order to distinguish potassium-competitive acid blockers (P-CABs) from proton pump
inhibitors (PPIs), a new anachronism has been employed: P-CABs, since this group of com-
pounds competes for the K+ binding site on the H+,K+-ATPase. This class of mechanisti-
cally similar developmental compounds was identified as a potential therapeutic option for
gastro-esophageal reflux disease and other acid-related disorders(Vakil 2004). Members of
this class inhibit gastric H+,K+-ATPase by binding ionically to the enzyme and thus prevent-
ing proton extrusion and activation by the K+ cation. It is probable that P-CABs bind at or
near the K+ binding site and so prevent access of the cation to the site.

The oldest member of this group that exemplifies the mode of action is SCH28080. This
agent could successfully inhibit gastric acid production in healthy volunteers (Ene et al.
1982) and although clinical development was not continued, the compound has been used
extensively to explore the mechanisms of inhibition of gastric H+,K+-ATPase.
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The large molecular size of SCH28080 compared with K+ ions suggests that the ion-
binding site and inhibitor-binding site are not identical. Furthermore, a mutational analysis
of the gastric H+,K+-ATPase suggests that there are separate binding sites for SCH28080 and
K+. Examples of this point have been shown by mutations of several amino acid residues
in the membrane domains that reduced the affinity for SCH28080 but had no effect on K+

affinity (Lambrecht et al. 2000; Asano et al. 2004). A mutational analysis also demonstrates
that the binding site of SCH28080 appears closer to the luminal surface of the parietal cell
than the ion-binding site (Vagin et al. 2003).

It has been proposed that SCH28080 gains access to its binding site and competes with
K+ when the gastric H+,K+-ATPase is in the phosphorylated E2 form (Keeling et al. 1989;
Mendlein and Sachs 1990). P-CAB binding to the H+,K+-ATPase stabilizes the enzyme
in the E2 conformation and, thereby, prevents movement of H+ ions into the parietal cell
canaliculus. Studies using mutational data suggest that SCH28080 binds near the loop be-
tween M5 and M6, and at the luminal end of M6, about two helical turns away from the
ion-binding site (Vagin et al. 2003). When examined using homology modelling, it has been
suggested that SCH28080 interacts with residues in the M1 to M6 domains (Yan et al. 2004),
and, more specifically, SCH28080 (and another P-CAB, SPI-447) docks in a cavity formed
by the M1, M4, M5, M6 and M8 transmembrane segments and by loops formed by M5/M6,
M7/M8 and M9/M10 (Keeling et al. 1991). The P-CAB molecule is unable to occupy its
binding pocket when the enzyme is in the E1 form due to rearrangement of the loop be-
tween M3 and M4, which alters the shape of the P-CAB binding cavity (Asano et al. 2004).

Studies employing animal models as well as early clinical studies have demonstrated
that P-CABs appear highly selective for gastric H+,K+-ATPase and inhibit gastric acid se-
cretion with a fast onset of action (Keeling et al. 1989; Tsukimi et al. 2000). One interesting
observation is that the gastric isoform of the H+,K+-ATPase has only been identified in two
organs: the stomach and the kidney. Drugs that are targeted directly at the H+,K+-ATPase
have shown no adverse effects on renal function in either animal models or in humans fol-
lowing prolonged use.

Cl– entry from the basolateral membrane

The pathway for Cl– entry into the parietal cell has always been thought to occur via acti-
vation of a Cl/HCO3 exchange pathway located on the basolateral membrane of the parietal
cell (Paradiso et al. 1987; Nyberg et al. 1998; Thomas and Machen 1991; Flemstrom and
Garner 1982). This pathway was generally accepted as it not only allowed Cl– to enter the
cells, but at the same time provided a means to excrete HCO3

–, which would in turn cause
the cell interior to become acid and provide a continuing supply of protons for acid secretion.
Recently, Lytle and colleagues identified an additional protein on the basolateral membrane
the NKCC-1 using both immunofluorescence and functional studies (McDaniel et al. 2005;
McDaniel and Lytle 1999) that could provide a source for Cl– ions as well as K+. In these
studies the NKCC1 appeared to be active in the resting phase, and it was proposed to act
as a salt loader at rest and could help the gland create a ’flushing’ effect following acid
secretion. Additional mouse data from this group support this idea (McDaniel et al. 2005)



54 Rev Physiol Biochem Pharmacol (2006)

Classical pathways for activation of gastric acid secretion

The classical or conventional pathways associated with acid secretion involve either hor-
monal or neuronal stimulation. Activation of either of these pathways results in activation
of the H,KATPase and secretion of HCl from the gland.

Hormonal

In order for the parietal cell to secrete acid, a combination of ’activating hormones’ must be
released that will eventually lead to activation of the cell. The mode of action of these hor-
mones (gastrin, histamine) has been the focus of a great deal of research (Sachs et al. 1997;
Andersson et al. 1998; Waldum et al. 1998; Friis-Hansen 2002; Dockray et al. 2005). At
present it is felt that in response to a food stimulus, G cells release gastrin that then has two
effects: (a) the primary effect is to stimulate the enterochromaffin-like cell (ECL) to release
histamine, which in turns binds to receptors on the basolateral membrane of the parietal cell
and causes acid secretion, by translocation of the H+,K+ ATPase to the apical pole of the
cell; (b) it has also been postulated that gastrin can also have some direct effects on acid
secretion (Hersey and Sachs 1995; Sachs 2003; Forte and Nauss 1963; Forte et al. 1980),
namely that a similar activation of acid secretion would occur at higher concentrations of
serum gastrin.

Neuronal

In addition to hormonal stimulation of acid secretion, the stomach is also under the control
of neuronal-induced acid secretion (Kasbekar et al. 1969; Zhou et al. 2003). In response to
either olfactory stimulus or stretch-induced activation, neuronal receptors along the surface
of the stomach release acetyl choline that directly acts on the parietal cells to increase cyclic
AMP concentration and cause insertion and activation of the H+,K+ ATPase (Zhou et al.
2003).

Novel pathways for activation of gastric acid secretion

As discussed in the previous sections, the classical pathways for gastric acid secretion in-
volved either hormonal (histamine, gastrin) or neuronal (acetyl choline) stimulation, which
leads to a series of events that would induce acid secretion. Recently, an additional pathway
has been identified that can induce acid secretion in a resting cell, or can lead to prolonged
acid secretion in a stimulated parietal cell (Cheng et al. 1999; Geibel et al. 2001; Hebert et
al. 2004; Dufner et al. 2005; Busque et al. 2005).

Calcium-sensing receptor

The calcium-sensing receptor CaSR belongs to a class of G protein coupled receptors that
was originally identified in the parathyroid gland (Riccardi et al. 1996; Bai et al. 1996;
Brown et al. 1993) whose activation could modulate calcium levels within these tissues.
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Following the initial discovery, this receptor has been identified in a wide variety of species
and tissues (Hebert et al. 2004; Brown and Hebert 1997; Hebert et al. 1997; Riccardi et
al. 1996; Bai et al. 1996). We originally identified this protein in the parietal cells of the
stomach (Cheng et al. 1999) and later showed that stimulation or inhibition of the receptor
could directly modulate acid secretion either in the presence or absence of secretagogues
(Geibel et al. 2001). During this same time period, Rutten and colleagues identified (Rutten
et al. 1999) this same receptor in human G cells and demonstrated that activation of this
protein leads to gastrin release. These two pieces of data show that the receptor is not only
expressed in rats, mice and humans, but that it has at least two points of action: (a) parietal
cells where its activation leads directly to acid secretion, and (b) G cells where activation of
the receptor leads to gastrin release. Recently, we have evidence that an allosteric activation
of the receptor occurs in the presence of certain amino acids (Busque et al. 2005) resulting
in a prolonged and enhanced secretion of acid. These data are suggestive that as absorption
of nutrients occurs, levels of blood amino acids will continue to rise thereby stimulating the
receptor and prolonging the acid secretory phase after hormonal stimulation diminishes.

System L amino acid transporter

Recently we have identified another pathway that can modulate acid secretion, the system L
amino acid transporter on the parietal cell. This transport protein allows the direct exchange
of amino acids from the basolateral surface to the cytosol of the parietal cell with the end
result being increased proton secretion in the absence of secretagogues.

The identification of these two additional pathways may further help to explain the diffi-
culty in controlling the production of acid and the continuing increase in numbers of patients
suffering from hypersecretory disease. These data strongly suggest that diets rich in protein
and amino acid would lead to extended periods of the production of gastric acid, and could
be partially responsible for the increase in gastro-esophageal reflux disease in the world
population.

Other apical transport proteins

For many years the apical pole of the parietal cell was thought to only contain a Cl– channel,
K+ channel, and the H+, K+-ATPase. As we have illustrated in other sections of this review,
this has now been shown to no longer be the case. In addition to having identified multiple
K+ channels and potentially additional Cl– channels, two other transport proteins have now
been identified.

NHE-3

For many years there has been discussion of whether the parietal cell contained an addi-
tional apical protein that could act to flush the gland at the end of the secretory cycle of acid
secretion. Recently we were able to provide evidence for this protein on the apical surface
of parietal cells from rats (Kirchhoff et al. 2003). In this study we were able to show that
the sodium–hydrogen exchanger type 3 (NHE-3) was active in resting cells and could move
protons across the cell membrane. In these studies we showed that the protein was capable
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of moving H+ ions either out or into the cell in exchange for Na+. As the electrochemical
gradient following a cycle of acid secretion (lumen pH 1.0) would favour H+ ions entering
the cell in exchange for Na+ ions, a removal of H+ ions would occur from the lumen of the
gland with an accumulation of Na+ during the resting phase. The fact that intracellular pH is
always slightly acidic in the parietal cell (pHi 7.2–7.3) (Geibel et al. 2001; Kirchhoff et al.
2003), and that NaCl content in the lumen of the stomach, as well as pH, increases during
the inactive phase would add credence to this theory.

PAT-1

Another interesting and controversial apical protein is the localization of a Cl/HCO3 ex-
changer PAT-1 (SLC26A6) at the apical surface of the parietal cell (Petrovic et al. 2002).
The authors of this study presented evidence via immunolocalization that PAT-1 is located
in close proximity to the gastric H+,K+-ATPase at the apical pole of the parietal cell. Fur-
thermore they postulate that the protein may act to buffer the secretory vesicles when they
are re-internalized following acid secretion.

Conclusion

Gastric acid secretion is and remains a complex process involving a variety of transport pro-
teins and receptors. When the parietal cell goes from a resting mode to the secretory phase
a dynamic remodelling of the epithelium (Forte et al. 1977; Duman and Forte 2003; Forte
2004; Duman et al. 2004) occurs which allows the cell to secrete a highly concentrated acid
into the lumen of the gastric gland where the pH can fall to as low as ~1.0. It is interesting
to note that in this caustic environment the parietal cell maintains the ability to recycle ions
and to excrete ions without allowing for destruction of the cell. With recent advances in
techniques, we are now able to determine that the apical recycling pathway for potassium
may be composed of multiple K+ channels allowing for the continuing entry and exit of K+

in the parietal cell. In addition to these K+ channels, there is now evidence that the apical
surface also contains at least two other ion exchange proteins (NHE3, PAT1), although the
exact role for either of these proteins is not completely understood.

The identification of the CaSR at the basolateral membrane has now highlighted an ad-
ditional receptor pathway that can modulate acid secretion. Activation of this receptor by
amino acids (Busque et al. 2005) provides evidence of an allosteric feedback loop in which
receptor activation can maintain acid secretion and provide for a more complete ionization
of calcium and other ions to aid in their absorption. This receptor may play an important
role as an additional target to prevent the secretion of acid (see Fig. 3).

With the identification of these new channels, transporters, and receptors the possibility
of developing new therapies against these additional targets may improve the chances of
developing more effective long-term treatments of hypersecretory states of acid secretion,
and potentially help to manage those individuals who are resistant to conventional therapies.
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Fig. 3 A current model for the secretion of gastric acid by the parietal cell
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Abstract Transient receptor potential (TRP) channels are involved in the perception
of a wide range of physical and chemical stimuli, including temperature and osmolarity
changes, light, pain, touch, taste and pheromones, and in the initiation of cellular responses
thereupon. Since the last decade, rapid progress has been made in the identification and
characterization of new members of the TRP superfamily. They constitute a large super-
family of cation channels that are expressed in almost all cell types in both invertebrates
and vertebrates. This review summarizes and discusses the current knowledge on the TRP
protein structure and its impact on the regulation of the channel function.

Introduction

Discovery of the first Drosophila transient receptor potential (TRP) channel involved in the
response to light (Cosens and Manning 1969) led to the characterization of a large superfam-
ily of cation channels that constitute important cation influx machinery in most vertebrate
and invertebrate cell types. They are directly involved in thermo-, mechano-, chemo-, and
nociception, responding to a wide variety of different physical and chemical stimuli (for
recent reviews see Nilius and Voets 2005; Pedersen et al. 2005; Voets et al. 2005). Using
structural homology as the criterion, the TRP channels have been classified into s127even
subfamilies: TRPC (classical or canonical), TRPV (vanilloid), TRPM (melastatin), TRPP
(polycystin), TRPML (mucolipin), TRPA (ANKTM1 homologues) and TRPN (NOMP-C
homologues) (Fig. 1) (Clapham 2003; Clapham et al. 2001, 2003; Vriens et al. 2004a).

TRP channels are intrinsic membrane proteins with six putative transmembrane spans
(TM) and a cation-permeable pore region formed by a short hydrophobic stretch between
TM5 and TM6 (Fig. 2). The length of the intracellular amino (N) and carboxy (C) termini
and structural domains they encompass vary significantly between members of the TRP

G. Owsianik · D. D’hoedt · T. Voets · B. Nilius (�)
Katholieke Universiteit Leuven, Laboratorium voor Fysiologie,
Herestraat 49, 3000 Leuven, Belgium
e-mail: bernd.nilius@med.kuleuven.be · Tel.: +32-16-345937 · Fax: +32-16-345991
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Fig. 1 Phylogenetic analysis of channels of the TRP superfamily; if not, annotated sequences of human chan-
nels were used for analysis. TRPC2 is a pseudogene in human and therefore the mouse channel sequence was
used. The scale represents the evolutionary distance expressed in the number of substitutions per amino acid.
Dr, Danio rerio; Dm, Drosophila melanogaster; Ce, Caenorhabditis elegans

channel subfamilies (Clapham 2003; Vriens et al. 2004a) (Table 1). These cytoplasmic parts
play important roles in the regulation and modulation of channel function and trafficking.
Functional TRP channels consist of four identical or similar TRP subunits (Garcia-Sanz et
al. 2004; Hoenderop et al. 2003b; Kedei et al. 2001; Kuzhikandathil et al. 2001; Lintschinger
et al. 2000; Strubing et al. 2001). In this review, we will discuss the current knowledge of
the structure of TRP channels, with particular emphasis on structural elements involved in
channel permeation and regulation. End Grabbed content

TRPs, a versatile superfamily of cation channels

The TRPC channel subfamily comprises the closest homologues of Drosophila TRP. There
are seven TRPC channels in mammals. They are mainly phospholipase C (PLC) -dependent
Ca2+ permeable cation channels formed by four either identical or different TRPC chan-
nel subunits (Clapham 2003; Clapham et al. 2003; Gudermann et al. 2004; Harteneck et al.
2000; Hofmann et al. 2002; Nilius 2003; Schilling and Goel 2004; Vazquez et al. 2004; ).
It is still controversial whether TRPCs are regulated by the depletion of intracellular Ca2+

stores (Grimaldi et al. 2003; Gudermann et al. 2004; Hofmann et al. 1999; Nilius 2003,
2004; Putney 2005; Strubing at al. 2001). Depending on the combination of TRPCs in the
functional tetrameric channel, they play an important role in pheromone sensing (TRPC2;
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Fig. 2 Schematic representation of the structural topology of channels from the TRP-related subfamilies. The
transmembrane segments are similar in all TRP channels. The putative pore region is localized between TM5
and TM6 and its length and amino acid composition are variable in different subfamily members. Only the
most representative domains are annotated and lengths of the N- and C-termini are approximated

note that the human TRPC2 is a pseudogene), vasoregulation (TRPC3/4/5), signaling in the
central nervous system (TRPC1/3/4), and functioning of smooth muscle cells (TRPC3/6/7)
(Freichel et al. 2001; Kim et al. 2003; Lucas et al. 2003; Sakura and Ashcroft 1997; Stow-
ers et al. 2002; Strubing et al. 2001; Tiruppathi et al. 2002). TRPC1 may also function as
a stretch-activated channel involved in cellular mechanosensitivity (Maroto et al. 2005).

In the subfamily of TRPV channels, six mammalian homologues have been classified.
TRPV1/2/3/4 are permeable to Ca2+ with a rather low selectivity for divalent and monova-
lent cations (Benham et al. 2002; Gunthorpe et al. 2002; Voets and Nilius 2003; Voets et al.
2002). The vanilloid receptor, TRPV1, mediates nociception and is involved in the detec-
tion and integration of thermal and diverse chemical stimuli (e.g., vanilloids, endovanilloids,
and anandamide) (Caterina et al. 2000; Jordt and Julius 2002). TRPV2 and TRPV3 are ac-
tivated in the noxious and warm heat range, respectively (Kanzaki et al. 1999; Peier et al.
2002b; Smith et al. 2002; Xu et al. 2002). TRPV4 contributes to nociception and osmo- and
warmth sensation, and is activated by ligands such as α-phorbols or endogenous agonists
such as epoxyeicosatrienoic acids (Liedtke et al. 2000; Liedtke and Friedman 2003; Nilius



Rev Physiol Biochem Pharmacol (2006) 69

et al. 2004b; Vriens et al. 2004b; Watanabe et al. 2002a, 2003). TRPV5 and TRPV6, the
only highly Ca2+-selective TRP channels, play an important role in Ca2+ reabsorption in
kidney and intestine (den Dekker et al. 2003; Hoenderop et al. 2002a, 2002b, 2003a, 2003b;
Nijenhuis et al. 2003; Vennekens et al. 2000, 2001a, 2001b).

A third subfamily of TRP-related channels includes close homologues of melastatin.
Melastatin was originally identified based on its higher expression in nonmetastatic com-
pared to highly metastatic melanoma cells (Duncan et al. 1998). The TRPM subfamily in
mammals comprises eight members that are involved in processes as different as Mg2+

homeostasis (TRPM6, TRPM7 [Nadler et al. 2001; Schlingmann et al. 2002; Voets et al.
2004c; Walder et al. 2002]), taste detection (TRPM5 [Perez et al. 2002; Zhang et al. 2003]),
cell proliferation (TRPM7 [Nadler et al. 2001]), and noxious cold sensing (TRPM8 [McK-
emy et al. 2002; Peier et al. 2002a; Voets et al. 2004a]). Except for TRPM1, the permeation
properties of TRPMs are relatively well described. The Ca2+-activated TRPM4/5 channels
are the only Ca2+-impermeable TRPs identified so far (Hofmann et al. 2003; Launay et al.
2002; Nilius et al. 2003a; Prawitt et al. 2003). TRPM2/3 and TRPM8 are Ca2+-permeable
with rather low Ca2+ selectivity (Grimm et al. 2003; Hara et al. 2002; Lee et al. 2003; McK-
emy et al. 2002; Peier et al. 2002a; Perraud et al. 2001; Sano et al. 2001), whereas TRPM6/7
are relatively highly permeable for divalent cations, especially for Mg2+ (Monteilh-Zoller et
al. 2003; Nadler et al. 2001; Voets et al. 2003; Voets and Nilius 2003).

The polycystin subfamily, TRPP, is named after its founding member, PKD2, which was
discovered as one of the genetic determinants of autosomal dominant polycystic kidney dis-
ease (ADPKD) (Mochizuki et al. 1996). There are three mammalian TRPP channels: TRPP2
(PKD2), TRPP3 (PKD2L1), and TRPP5 (PKD2L2) (Cai et al. 1999; Guo et al. 2000; No-
mura et al. 1998; Veldhuisen et al. 1999; Wu et al. 1998). Functional expression of human
TRPP2 channel in the plasma membrane depends on the interaction with PKD1, a large
plasma membrane protein with 11 putative TMs (Hanaoka et al. 2000; Qian et al. 1997;
Tsiokas et al. 1997). This interaction may occur via a putative coiled-coil domain in the C
terminus of TRPP2. In the absence of PKD1, TRPP2 may function as an intracellular Ca2+

release channel (Koulen et al. 2002). There is evidence that TRPP channels may function as
mechano-sensors in ciliated epithelial cells and might be important for organogenesis (Nauli
et al. 2003; Stayner and Zhou 2001).

Mutations to TRPML1 (mucolipin-1; MCOLN1) lead to mucolipidosis type IV (MLIV),
an autosomal recessive, neurodegenerative, lysosomal storage disorder characterized by psy-
chomotor retardation and ophthalmological abnormalities, including corneal opacities, reti-
nal degeneration, and strabismus (Bargal et al. 2000; Bassi et al. 2000; Berman et al. 1974).
Human TRPML1 expressed in Xenopus laevis oocytes functions as a Ca2+-permeable cation
channel that is modulated by changes in Ca2+ concentrations (LaPlante et al. 2002). Muta-
tions of mouse TRPML3 (MCOLN3) lead to deafness and defects of hair cell and pig-
mentation (the varitint-waddler mouse) (Di Palma et al. 2002). There are some indications
that mutations in genes encoding TRPML2 (MCOLN2) and TRPML3 may be involved in
hereditary and/or sporadic neurosensory disorders in humans (Di Palma et al. 2002; and for
a general review see Nilius et al. 2005d).

TRPA and TRPN subfamilies are very closely related and poorly represented in verte-
brates. ANKTM1 or TRPA1 is the only TRPA subfamily member characterized in verte-
brates so far (Corey 2003; Story et al. 2003). Mammalian TRPA1, a Ca2+-permeable, nons-
elective cation channel, is activated by noxious cold, bradykinin, cannabinoids, and several
pungent compounds such as the isothiocyanates that are present in wasabi and mustard, cin-
namaldehyde, and allicin (Bandell et al. 2004; Jordt et al. 2004; Macpherson et al. 2005;
Story et al. 2003). It is highly expressed in hair bundles of sensory hair cells where it may
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function as a mechanosensory transduction channel involved in the hearing process (Corey
et al. 2004; Lin and Corey 2005).

The TRPN subfamily is named after the no mechanoreceptor potential C (NOMP-C)
channel from Drosophila, which plays a crucial role in mechanosensation in processes such
as hearing, balance, proprioception, and touch (Kernan et al. 1994; Walker et al. 2000). No
obvious homologues of NOMP-C are present in the human genome. So far, the only verte-
brate TRPN family member that has been identified is NOMP-C from zebrafish (Sidi et al.
2003). Mutations in NOMP-C of zebrafish larvae lead to impaired hair cell mechanotrans-
duction and the loss of microphonic potentials (Sidi et al. 2003).

Transmembrane segments: a functional backbone of TRP channels

The transmembrane segments are the most conserved structures in all TRP channels. Al-
though the number of hydrophobic regions can vary from one TRP channel to another, it
is generally believed that only six α-helices are able to span membranes. By analogy to K+

channels, TM5 and TM6 seem to play a central role and directly contribute to formation of
the channel pore (see “Functional insights into the pore region of TRP channels”). In con-
trast to classical voltage-gated cation channels, TM4 contains only a few positively charged
residues, which complicates determination of the residues responsible for voltage-dependent
activation of TRP channels.

Relatively few reports describe the functional impact of TM1–4 segments in regulation
of the TRP channel function. The first insight in the functional role of TM2–4 came from
a study on TRPV1 aiming at molecular determination of the specific sites that bind vanil-
loid compounds such as capsaicin or the endogenous TRPV1 agonist, anandamide (Gavva
et al. 2004; Jordt and Julius 2002). Jordt and Julius (2002) showed that substitutions of
a conserved tyrosine residue (Y511), which is located within or adjacent to TM3, by pheny-
lalanine, alanine or cysteine led to either a selective loss of capsaicin sensitivity or reduced
capsaicin-activated currents. Similar effects were also induced by mutations to a neighbor-
ing seine (S512) or R491 in the TM2. Thus, a proposed model of vanilloid binding pocket
comprises an aromatic residue, Y511, which interacts with the vanillyl-moiety of capsaicin
on the cytosolic face of the membrane. The other residues, such as polar S512 or R491,
may interact with capsaicin via hydrogen bonds, whereas lipophilic residues in TM3 can
be involved in stabilization via hydrophobic interactions with the aliphatic moiety of cap-
saicin within the plane of the membrane (Jordt and Julius 2002). This model was partially
confirmed by Gavva et al. (2004), who investigated mechanisms of capsaicin insensitivity
of rabbit TRPV1. Using either human/rabbit or rat/rabbit chimeras, they demonstrated that
apart from Y511 additional residues in TM4, M547, and T550 directly contribute to vanil-
loid binding. In contrast to Jordt and Julius, they propose that T550, W549, and M547 may
be involved in interaction with the vanilloid moiety, whereas the aliphatic tail of capsaicin
binds to Y511 (Gavva et al. 2004). This alternative model suggests that observed differences
in affinity of ligands with longer (higher affinity) and shorter (lower affinity) aliphatic tails
may be explained by their abilities to interact with Y511. Both models are still preliminary
and require additional biochemical and structural data for validation. Moreover, they do not
explain why mutations of N- and C-terminal residues, R114 and D761, in TRPV1 result in
loss of capsaicin sensitivity (Jung et al. 2002; Vlachova et al. 2003).

Using sequence homology to TRPV1, a tyrosine important for ligand activation (Y555)
in TM3 has also been identified in TRPV4, a channel that is activated by a broad range
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of stimuli such as osmotic cell swelling, heat, phorbol esters, and arachidonic acid (AA)
(Vriens et al. 2004b; Watanabe et al. 2002a, 2002b, 2003). Mutation of Y555 to nonaro-
matic residues resulted in a strong decrease of TRPV4 activation by 4α-phorbol 12, 13-
dideconoate (4αPDD) and heat, but does not affect activation by cell swelling or AA (Vriens
et al. 2004b). This suggests that activation of TRPV4 by phorbol esters and heat both oc-
cur via a pathway that critically depends on an aromatic residue in TM3. Very likely other
residues in TM2 or TM4, which remain to be identified, may also be involved in ligand
binding in TRPV4.

Functional insights into the pore region of TRP channels

Ion channels are pore-forming transmembrane proteins that allow permeation of ions
through biological membranes. The structure of the channel pore is crucial for determina-
tion of the ion permeation and selectivity properties of particular channels. In contrast to
other families of ion channels, data concerning structure and localization of TRP channel
pores are rather limited and only concerns TRPV, TRPC, and TRPM subfamilies (Fig. 3).
Nevertheless, all available functional and theoretical data strongly support the general
notion that the linker region between TM5 and TM6 is the pore-forming part in all channels
of the TRP superfamily (Owsianik et al. 2006).

TRPVs

The structure–function analysis of TRPV channel pores is the most advanced among all TRP
subfamilies. In all mammalian TRPVs, TM5–6 linker regions show significant sequence ho-
mology with the selectivity filter of the prokaryotic potassium channel KcsA, whose crystal
structure has been determined at 2-Å resolution (Doyle et al. 1998; Zhou et al. 2001a). Mu-
tations to negatively charged residues, D546 of TRPV1 and corresponding D682 of TRPV4,
strongly reduce the permeability for Ca2+ and Mg2+ and decrease the affinity of the channels
to the voltage-dependent pore blocker Ruthenium Red (Garcia-Martinez et al. 2000; Voets et
al. 2002). Additionally in TRPV4, mutation of neighboring residue D672 further reduces the
selectivity for divalent and also changes the relative permeability for monovalent cations,
whereas the substitution of M680 with a negatively charged amino acid abolishes Ca2+ and
Mg2+ permeability (for predicted localization of these residues see the scheme in Fig. 3B).
Mutation of the only basic pore residue in TRPV4, Lys675, did not significantly change the
permeation properties of the channel (Voets et al. 2002). These results indicate that the puta-
tive TRPV1/2/3/4 pore motif, GM(L)GD, determines permeation properties of the channels
and is functionally homologous to the GYGD signature sequence in the selectivity filter of
K+ channels.

Permeation properties of TRPV5/6 are also determined by the aspartate residues in the
putative selectivity filter (Hoenderop et al. 2003b; Nilius et al. 2001; Voets et al. 2001, 2003).
Aspartate-to-alanine mutations at position D542 of TRPV5 and D541 of TRPV6 result in the
loss of Ca2+ permeation, Ca2+-dependent current decay, and block by extracellular Mg2+

or Cd2+, whereas permeation of monovalent cations remains unchanged. Other negatively
charged residues in the pore region of TRPV5, E535 and D550, have less impact on pore prop-
erties, whereas E522, located N-terminal of the pore helix, functions as a putative pH sensor,
regulating pH-dependent permeation properties of TRPV5/6 (Vennekens et al. 2001a; Yeh et
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Fig. 3A, B Predicted topologies of the pore region of TRPV, TRPM and TRPC channels. A Structural model
of the TRPV6 pore region, looking sideways at two opposite subunits (left) or looking down from the external
solution to the complete homotetrameric channel. At the narrowest point, the pore is formed by the acidic
side chain of Asp541 (orange) and has a diameter of 5.4 Å. Blue residues correspond to the residues in TM5
and TM6 and amino acids that were subjected to SCAM analysis (residues P526 to N547) are colored in green,
yellow, red, or gray. Residues in red reacted rapidly to Ag+ (reaction rate >5.106 M–1s–1), residues in yellow
reacted with Ag+ at a rate <5.106 M–1s–1, and residues in green did not show significant reactivity to Ag+.
Residues where cysteine substitution resulted in nonfunctional channels are colored in gray. (Adapted from
Voets et al. 2004b, with copyright permission from The American Society for Biochemistry and Molecular
Biology). B Schematic representation of crucial residues in putative selectivity filters of TRPV4, TRPM4, and
TRPC5 channels (see text for details)
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al. 2003). Using the substituted cysteine accessibility method (SCAM), a more detailed pore
structure of TRPV5/6 has been obtained (Dodier et al. 2004; Voets et al. 2004b). Cysteines
introduced in residues that are N-terminal to D542/541 show a cyclic pattern of reactivity,
indicating that these residues form a pore helix similar to that in the KcsA crystal structure
(Doyle et al. 1998; Zhou et al. 2001a). In TRPV6, the pore helix is followed by the selectivity
filter with a diameter of approximately 5.4 Å at its narrowest point, as assessed by measure-
ments of permeability to cations of increasing size (Voets et al. 2004b). The apparent pore
diameter of TRPV6 increases significantly when D541 is substituted by amino acids with
a shorter side chain, demonstrating that this aspartate residue shapes the narrowest part of
the selectivity filter and contributes to the sieving properties of the pore (Voets et al. 2004b)
(Fig. 3A). Thus, these results strongly indicate that selectivity and permeation properties
of TRPV5/6 depend on a ring of four aspartate residues in the channel pore, similar to the
ring of four aspartates and/or glutamate residues in the pore of voltage-gated Ca2+ channels
(Heinemann et al. 1992; Talavera et al. 2001; Yang et al. 1993).

TRPCs

Unlike TRPV channels, the TM5–TM6 region of TRPCs does not share significant sequence
homology with the pore region of K+ channels. The most direct evidence for the location of
the pore region of TRPC channels comes from functional identification of TRPC1 as a store-
operated Ca2+ channel (SOCC) (Liu et al. 2003) and studies of La3+ potentiation of TRPC5
(Jung et al. 2003).

TRPC1 can potentially form eight hydrophobic α-helices but only six of them are be-
lieved to span the membrane (Dohke et al. 2004). One of the non-membrane-spanning α-
helices is located in the region between TM5 and TM6 (note that the TMs are numbered
differently than proposed in Dohke et al. 2004) and seems to form a pore helix similar to
that in KcsA and TRPV5/6. Mutations to all seven negatively charged residues in the TM5–
TM6 region of TRPC1 (D to N and E to Q) result in decreased Ca2+ but intact Na+ currents
through TRPC1, and induce shifts in the reversal potential (Liu et al. 2003). Interestingly,
the crucial residues, E576, D581, and E615, are located in the distal parts of the putative pore
mouth, suggesting a different pore structure than that of the TRPV subfamily.

In analogy to TRPC1, neutralization of 3 of the 5 glutamates in the loop between TM5
and TM6 of TRPC5, E543, E595, and E598, lead to a loss of La3+ potentiation (Jung et
al. 2003). Moreover, the E595/E598 double mutant shows altered single channel properties.
Surprisingly, mutations of either E559 or E570 located in the central part of this loop do
not affect the channel properties. More recently, Obukhov and Nowycky (2005) demon-
strated that D633, which is situated intracellularly between the end of TM6 and the TRP
box, is a crucial residue for current block by intracellular Mg2+ in TRPC5 homotetrameric
channels. Mutations of D633 to either noncharged or positively charged residues display
markedly reduced inward currents and decreased voltage-dependent Mg2+ block (Obukhov
and Nowycky 2005). In summary, all these results indicate that negatively charged residues
that appear to be located close to but exterior of the pore region control permeation properties
of TRPC1/5 channels (for predicted location of these residues see the scheme in Fig. 3B).
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TRPMs

In all members of the TRPM subfamily, the TM5–TM6 region is highly conserved and
shares limited homology to pore regions of KcsA and TRPVs channels. It consists of a pu-
tative hydrophobic pore helix, followed by an invariant aspartate, which seems to be located
in the selectivity filter (Perraud et al. 2003). Other conserved negatively charged residues be-
tween the putative pore helix and the fully conserved aspartate may form a cluster of negative
charges that contributes to the pore properties of TRPM channels. Recently, taking advan-
tage of the theoretical prediction of the putative pore region of TRPM channels, Nilius et al.
identified several residues responsible for the permeation properties of the TRPM4 pore and
its blockade by intracellular spermine (Nilius et al. 2005a). Substitution of E981DMDVA986

residues of TRPM4 with the selectivity filter of TRPV6 (T538IIDGP543) results in a func-
tional channel that combines the gating hallmarks of TRPM4, such as activation by Ca2+ and
voltage dependence, with TRPV6-like sensitivity to channel block by extracellular Ca2+ and
Mg2+. Furthermore, neutralization of E981 by alanine abolishes TRPM4 affinity to block by
spermine, strongly indicating that E981 is placed in the inner part of the pore where it is ex-
posed to intracellular spermine (Nilius et al. 2005a). Mutations of the neighboring aspartates,
D982 and D984, strongly affect the rundown and voltage dependence of the channel, whereas
substitution of Gln977 by a glutamate, the site occupied by a negatively charged residue in
divalent cation-permeable TRPMs, modifies monovalent cation permeability and leads to
the channel with moderate Ca2+ permeability (for predicted location of these residues, see
the scheme in Fig. 3B). These experiments provide, so far, the strongest direct proof that the
TRPM4 selectivity filter is located between TM5 and TM6.

Additional information on the pore region of TRPM channels comes from functional
analysis of TRPM3 splice variants. TRPM3α1–5 differ in the length of the putative pore
region as one splice site is located in the TM5–TM6 loop (Oberwinkler et al. 2005).
TRPM3α1, a variant that encompasses an optional stretch of 12 amino acids following the
invariant aspartate, forms a channel with low permeability for divalent cations, whereas
TRPM3α2, which lacks this stretch of amino acids, has more than tenfold higher permeabil-
ity to Ca2+ and Mg2+ and is sensitive to block by extracellular monovalent cations. Again,
these data indicate that TM5–TM6 region covers the pore region of the TRPM channels.

Intracellular determinants implicated in function of TRP channels

TRP domain

Discovery of mammalian members of the TRPC subfamily revealed the existence of a highly
conserved structure localized in the C terminus close to TM6 (Bhave et al. 2003; Clapham
et al. 2001; Minke and Cook 2002; Montell et al. 2002a; Prescott and Julius 2003). This
so-called TRP domain consists of 25 amino acids, six of which are referred to as a TRP box.
This TRP box has been postulated to serve as a putative signature of the TRP channel super-
family, but in view of the latest TRP channel classification (Clapham et al. 2003; Montell et
al. 2002b), the use of the TRP box as a hallmark of the TRP superfamily has to be revised,
as it is not conserved in TRPP, TRPML, TRPA, and TRPN subfamilies.

In TRPC channels, the TRP box is fully conserved and characterized by the specific
amino acid sequence, EWKFAR. In TRPVs and TRPMs, the conservation of the TRP box is
very low, going from IWxLQx (with x = K, R, or W) for TRPV1–4 and LWRAQx (with x =
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V or I) for TRPV5–6, to xWKFQR (with x = I, V, or F) for TRPM1–3/5/7–8, YWKAQR for
TRPM4, and LWKYNR for TRPM6. Surprisingly, nothing is known about functional role of
the TRP box in TRPC channels. It has been recently shown that in TRPV1 the putative TRP-
box motif (amino acids from D684 to R721) may function as an association domain involved
in oligomerization of the channel (Garcia-Sanz et al. 2004). Biochemical and immunolog-
ical analysis indicate that self-association of recombinant C-termini of TRPV1 as well as
of full-length TRPV1 monomers is blocked when the segment between D684 and R721 is
deleted. Additionally, such deletion in a poreless TRPV1 mutant subunit suppressed its ro-
bust dominant-negative phenotype. These data suggest that the TRP-box region may act as
a molecular determinant responsible for tetramerization of TRPV1 subunits into functional
channels (Garcia-Sanz et al. 2004).

Another interesting insight in the function of the TRP box comes from the study of phos-
phatidylinositol 4,5-bisphosphate (PIP2) -dependent activation of TRP channels (Rohacs et
al. 2005). Mutations at conserved positively charged amino acid residues in the TRP-box,
K995, R998, and R1008 of TRPM8 decrease the sensitivity of the channel to PIP2 and en-
hanced channel inhibition by PIP2 depletion. Similar results were obtained when analogue
mutations were introduced into the TRP domain of TRPM5 (R1006) and TRPV5 (R599) (Ro-
hacs et al. 2005). All these observations suggest that the positively charged residues in the
TRP box are important determinants for interaction with PIP2 and that regulation by PIP2 is
a common feature of members of the TRP channel family.

Ankyrin repeats

Most of the TRP channels contain N-terminal ankyrin (ANK) repeats, which are 33-residue
motifs consisting of pairs of antiparallel α-helices connected by β-hairpin motifs (for review,
see Sedgwick and Smerdon 1999). ANK repeats are involved in specific protein–protein in-
teractions and can interconnect membrane proteins with the spectrin-actin-based membrane
skeleton (Denker and Barber 2002). The number of ANK repeats in the N terminus of TRP
channels varies between different members of the same subfamily. TRPCs and TRPVs typ-
ically possess three or four ANK motifs, compared to 14–15 in TRPAs and approximately
29 (!) in TRPNs.

The role of ANK repeats in TRP channels is still unclear and controversial. In TRPC1,
deletion of the region containing all three ANK repeats had no effect on dimerization of the
channel, as shown by the yeast two-hybrid analysis (Engelke et al. 2002). Although such
mutant channels are inserted correctly in the membrane, they do not form functional TRPC1
channels, suggesting that ANK repeats may interact with interaction partners that are needed
for the correct assembly of the quaternary channel structure or regulation of channel func-
tion (Engelke et al. 2002). In contrast, a similar N-terminal deletion of the region comprising
all three ANK repeats of TRPC3 results in retention of the truncated channel in intracellular
compartments. Truncation of the N terminus up to the first ANK repeat does not influence
channel function or targeting to the plasma membrane, indicating that these motifs may be
involved in channel trafficking (Wedel et al. 2003). In TRPV6, which contains six ANK
repeats (Peng et al. 2000), only the third ANK motif is a key determinant of tetrameriza-
tion (Erler et al. 2004). It may serve as an initiator of the molecular zippering process that
proceeds after the fifth ANK repeat, creating an intracellular anchor that is necessary for
a functional assembly of TRPV6 subunits (Erler et al. 2004). Surprisingly, complete dele-
tion of the TRPV4 N terminus including three ANK repeats had no effect on targeting the
channel to the plasma membrane (Liedtke et al. 2000). Electrophysiological measurements
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also show no significant differences in the responses of the TRPV4 N-terminal truncants
to hypotonic stimulation, except that cells expressing the truncated protein respond less ro-
bustly than intact TRPV4 in the first 60 s after hypotonic stimulation (Liedtke et al. 2000).

More recently, an interesting hypothesis for a functional role of ANK repeats in TRPA
and TRPN channels has been proposed. In mechanosensitive TRPA1 and TRPN1 channels,
mechanical stress may be transduced to these channels via their cytosolic tails, which may
be connected to cytoskeletal elements (Corey et al. 2004; Howard and Bechstedt 2004; Lin
and Corey 2005; Sotomayor et al. 2005). Crystallographic studies have shown that multiple
ankyrin repeats can form a helical structure, which may act as a gating spring. Theoreti-
cal calculations of the stiffness of such an ankyrin helix yield values of around 1–5 mN/m,
which is on the same order of magnitude as the experimentally deduced stiffness of gating
springs in vertebrate hair cells (Howard and Bechstedt 2004; Sotomayor et al. 2005).

Coiled-coil domain

Coiled-coil domains are protein oligomerization motifs that consist of two or more alpha
helices that twist around one another to form a supercoil (Burkhard et al. 2001). Peptides
with the capacity to form coiled coils are characterized by a heptad repeat pattern in which
residues in the first and fourth position are hydrophobic, and residues in the fifth and seventh
position are predominantly charged or polar. Analysis of TRP channel sequences reveals the
presence of putative coiled-coil domains in TRPCs and TRPMs, but the function of these
predicted motifs has not yet been extensively studied. Using yeast two-hybrid experiments,
it has been shown that the N-terminal coiled-coil structure of TRPC1 facilitates a homomer-
ization process (Engelke et al. 2002). Although the mutant lacking the coiled-coil region
can be correctly inserted in the membrane, Ca2+ influx in cells expressing this mutant is
significantly reduced compared to wild-type TRPC1. These data suggest that the N-terminal
coiled-coil region is involved in regulation of the TRPC1 channel function via interaction
with other proteins (Engelke et al. 2002).

More recently, Nilius et al. showed that deletion of the R1136ARDKR1141 region in the
putative C-terminal coiled-coil domain of TRPM4 eliminates the effect of decavanadate on
TRPM4 activation (Nilius et al. 2004a). Interestingly, this site also shows some similarities
with the pleckstrin domain of PLC (K-X3–11-R/K-X-R-Hyd-Hyd; where Hyd corresponds
to any hydrophobic amino acid), which mediates interaction with second messenger lipids
such as PIP2 (Harlan et al. 1994, 1995).

PDZ-binding domain

PDZ domains (named after the three proteins in which this motif was first described: the
postsynaptic density protein PSD, disc-large tumor suppressor, and the tight junction protein
ZO-1) are protein interaction domains that are often found in multidomain scaffolding pro-
teins. PDZ-containing scaffolds assemble specific proteins into large molecular complexes
at defined locations in the cell. They are specialized in binding to short peptide motifs, PDZ-
binding motifs, at the extreme C-termini of other proteins (Kim and Sheng 2004). In the TRP
channel superfamily, putative PDZ-binding domains have only been found in TRPC and
TRPV subfamilies. In the Drosophila TRPCs, TRP and TRP-like (TRPL), the C terminus
interacts with the PDZ domain-containing protein INAD (Tsunoda and Zuker 1999), which
enables heteromultimerization of these channels in the signaling complex (Chevesich et al.



Rev Physiol Biochem Pharmacol (2006) 77

1997; Huber et al. 1998; Leung et al. 2000; Li and Montell 2000; Xu et al. 1998). The PDZ-
binding motif of TRPC4 and TRPC5 is formed by a C-terminal stretch of five amino acids,
VTTRL. The presence of the TRL sequence in this motif is essential for the interaction of
TRPC4/5 with PDZ domain-containing proteins such as hydrogen exchanger regulating fac-
tor (NHERF) or ezrin/moesin/radixin-binding phosphoprotein 50 (EBP50) (Lee-Kwon et al.
2005; Mery et al. 2002; Tang et al. 2000). As shown by co-precipitation experiments, TRPC4
and TRPC5 are able to co-assemble with NHERF as well as with NHERF-interacting part-
ner, PLC-β1, suggesting that this interaction forms an important mechanism for allocation
and regulation of the channels (Tang et al. 2000). Furthermore, it has been also shown that
deletion of the PDZ-binding motif in TRPC4 strongly reduces expression of the channel at
the cell surface and also changes its general distribution in the cell membranes to a predom-
inant expression in cell outgrowths (Mery et al. 2002).

No evident PDZ-binding domains have been identified in the C terminus of TRPVs,
but coexpression studies in Xenopus oocytes revealed that TRPV5 conductance is activated
by the scaffold protein NHERF2 by increasing the channel abundance at the plasma mem-
brane. This stimulatory effect requires the presence of the serum and glucocorticoid in-
ducible kinase SGK1 (Embark et al. 2004). The interaction of NHERF2 and TRPV5 is
a Ca2+-independent process that requires the second PDZ domain of NHERF2 and the C-
tail of TRPV5. Deletion of the second but not the first PDZ domain in NHERF2 abrogates
the stimulating effect of SGK1/NHERF2 on TRPV5 activity and abundance at the plasma
membrane. Thus, these data indicate that the C-terminal tail of TRPV5 interacts with the
second PDZ domain of NHERF2 and this interaction is required for TRPV5 stabilization at
or TRPV5 targeting to the plasma membrane (Palmada et al. 2005).

Modulation by Ca2+ signaling and calmodulin binding

Calmodulin (CaM) controls many Ca2+-dependent cellular processes and is an important
modulator of various types of ion channels. Several studies have been conducted to dis-
sect specific CaM-binding domains (CaMBD) and determine their function for regulation
of TRP channel activity (for recent review, see Zhu 2005). The first indication of functional
interaction between CaM and TRP channels comes from a study devoted to isolation of
CaM-binding proteins in Drosophila (Phillips et al. 1992). This study resulted in isolation
of TRPL, a close homologue of Drosophila TRP. CaM-binding assays showed that TRPL
has two CaMBDs in the C terminus, CaMBD1 (anino acids 710–725) and CaMBD2 (amino
acids 859–871) (Phillips et al. 1992). CaMBD1 binds calmodulin in a Ca2+-dependent way,
while binding of CaM to CaMBD2 is Ca2+-independent. Interaction between CaMBD1 and
CaM is regulated by phosphorylation of two serine residues, S721 and S722 (Trost et al.
1999; Warr and Kelly 1996). Phosporylation of S721 by protein kinase A (PKA) abolishes
the CaM binding, whereas phosporylation of the adjacent S722 by PKC results in modulation
of phosphorylation by PKA.

Binding studies performed on TRPC3 revealed that the inositol 1,4,5-triphosphate (IP3)
receptor (IP3R) and CaM interact directly with so-called CaM/IP3R binding region (CIBR)
at the C terminus of the channel (Boulay et al. 1999; Zhang et al. 2001). Interaction of
CaM with TRPC3 has an inhibitory effect on the TRPC3 channel function. This inhibition
is reversed in the presence of IP3R, which competes for the binding to the CIRB region, re-
sulting in displacement of CaM from the CIRB domain and activation of the channel (Zhang
et al. 2001). Interestingly, TRPC3 mutants lacking the CIBR domain are predominantly lo-
calized in intracellular compartments, suggesting that CaM/ IP3R binding can be involved
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in trafficking of the channel to the plasma membrane (Wedel et al. 2003). By sequence ho-
mology analysis, the CIRB domain has been identified in all TRPC channels. However, the
sensitivity and responses to CaM and IP3Rs vary between different TRPC channels (Tang
et al. 2001). In TRPC4, interaction with CaM also depends on two regions in the C termi-
nus between residues 688–759 and 786–848, which bind CaM in Ca2+-dependent manner
(Trost et al. 2001). The C terminus of TRPC1 can interact with CaM in the two regions local-
ized between animo acids 719–749 (CaMBD1) and 756–793 (CaMBD2) (Singh et al. 2002).
Deletion of CaMBD1 region did not alter either thapsigargin-stimulated increase of the intra-
cellular calcium level ([Ca2+]i) or Ca2+-dependent feedback inhibition of the store operated
calcium entry (SOCE). On the other hand, deletion of CaMBD2 of TRPC1 increases SOCE
and decreases Ca2+-dependent inactivation of the channel (Singh et al. 2002). Interestingly,
it has been shown that the adaptor protein Homer facilitates a physical TRPC1–IP3R asso-
ciation and is required for the TRP channel to respond to signals. The TRPC1-Homer–IP3R
complex is dynamic and its disassembly parallels TRPC1 channel activation (Yuan et al.
2003).

CaM-dependent regulation of the channel activity has also been assessed for several
TRPV channels. TRPV1 exhibits two CaM binding sites. Disruption of CaMBD in the
C terminus prevented TRPV1 desensitization (Numazaki et al. 2003), whereas binding of
CaM to the N-terminal CaMBD decreases the capsaicin-activated currents (Rosenbaum et
al. 2004). In TRPV4, CaM binds to a stretch of basic amino acids in the C terminus of the
channel starting at position 814. Neutralization of positive charges in this region results in
the loss of Ca2+-dependent potentiation and of the spontaneous opening of TRPV4 in the
absence of an agonist. The TRPV4 CaMBD also exhibits a consensus sequence for protein
serine/threonine kinase phosphorylation, but mutations to these residues did not alter the
Ca2+-dependent potentiation (Strotmann et al. 2003).

In the case of TRPV5/6, two conserved CaMBDs have been identified in both the N and
C termini (Lambers et al. 2004; Niemeyer et al. 2001). Interestingly, an additional CaM-
binding site is present in the transmembrane region of TRPV6 (Lambers et al. 2004). The
C-terminal CaMBD of TRPV6 overlaps with a consensus sequence for protein kinase C
(PKC) phosphorylation. PKC-dependent phosphorylation of the site alters CaM binding and
delays channel inactivation (Niemeyer et al. 2001). Co-expression of TRPV6 together with
a CaM variant in which all four Ca2+-binding sites (CaM1234) are mutated significantly
reduces inward Ca2+ currents upon hyperpolarization. No such effect can be observed for
TRPV5-expressing cells (Lambers et al. 2004). Remarkably, Ca2+-dependent inactivation
of TRPV5 and TRPV6 are dramatically different; the initial inactivation of TRPV6 is much
faster than that of TRPV5. Mutagenesis studies in TRPV6 show that residues L409, V411,
and T412 in the intracellular loop located between TM2 and TM3 are responsible for the
fast inactivation behavior of this channel (Nilius et al. 2002). In contrast, Ca2+-dependent
inactivation of TRPV5 is determined by two domains in the C terminus (Nilius et al. 2003b).

More recently, Nilius et al. found that overexpression of the CaM1234 mutant dramati-
cally reduced TRPM4 activation (Nilius et al. 2005b). In vitro binding assays identified five
short regions, two at the N terminus and three at the C terminus of TRPM4, which interact
with CaM in a Ca2+-dependent manner. Under Ca2+-free conditions, four TRPM4 fragments
display no binding and one shows weak binding to CaM. However, all CaM-binding frag-
ments associate much more strongly with CaM in the presence than in the absence of Ca2+.
Interestingly, these CaM-binding sites appear to be multifunctional, as deletions of the C-
terminal but not the N-terminal sites affected the Ca2+ sensitivity of TRPM4. Thus, all these
data suggest that CaM binding to the C-terminal sites is vital for Ca2+ sensitivity of TRPM4
in the physiological range of intracellular Ca2+ concentrations (Nilius et al. 2005b).
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Modulation by phosphorylation

Phosphorylation by protein kinases is a recurring and reversible post-translational modi-
fication that can regulate properties of ion channels. Studies of phorbolester- and Ca2+-
dependent protein phosphorylation in Drosophila demonstrate that, apart from the PDZ do-
main protein INAD, the TRP channel is a substrate of eye-specific PKC in isolated signaling
complexes. This mechanism can be a part of a negative feedback loop that regulates Ca2+

influx through the channel (Huber et al. 1998).
TRPC3 can be phosphorylated by cGMP-dependent protein kinase G (PKG). Muta-

tions at two consensus PKG phosphorylation sites, T11 and S263, markedly reduce the in-
hibitory effect of cGMP on TRPC3-mediated store-operated Ca2+ influx. Treatment with
PKG inhibitors had a similar effect (Kwan et al. 2004). More recently, it has been shown
that TRPC3 is negatively regulated by PKC-dependent phosphorylation of S712, a residue
that is conserved in all mammalian TRPC channels. This mechanism is mediated by PLC-
generated diacylglycerol, which serves both as a signal for TRPC3 activation and as a signal
for negative feedback via PKC-mediated phosphorylation (Trebak et al. 2005).

Relatively limited data are available for other TRPCs. It has been shown that TRPC6 is
directly phosphorylated by Src family protein-tyrosine kinases (PTKs) and this mechanism
regulates TRPC6 channel activity (Hisatsune et al. 2004). TRPC5 can be phosphorylated by
PKC. PKC inhibitors prevent TRPC5 desensitization after activation by G protein-coupled
receptor, and the mutation of T972 to alanine dramatically slows this desensitization pro-
cess. Thus, these results strongly suggest that desensitization of TRPC5 occurs via PKC-
dependent phosphorylation of T972 (Zhu et al. 2005).

The functional role of phosphorylation on TRP channel function is probably best de-
scribed in TRPV1. Early work on capsaicin and heat activation of TRPV1 revealed that this
channel is a target for PKC-dependent phosphorylation (Chuang et al. 2001; Crandall et
al. 2002; Hu et al. 2002; Numazaki et al. 2002; Premkumar and Ahern 2000; Tominaga et
al. 2001; Vellani et al. 2001; Zhou et al. 2001b). Mutation of S800 to alanine significantly
reduces phorbol 12-myristate 13-acetate (PMA)-induced enhancement of capsaicin-evoked
currents and the direct activation of TRPV1 by PMA. In contrast, mutation of S502 to alanine
reduces PMA enhancement of capsaicin-evoked currents with no effect on direct activation
of TRPV1 by PMA, whereas mutation of T704 to alanine does not affect PMA enhancement
of capsaicin-evoked currents but dramatically reduces direct activation of the channel by
PMA. These results suggest that PKC-mediated phosphorylation modulates TRPV1 but does
not directly gate the channel (Bhave et al. 2003; Numazaki et al. 2002; Vlachova et al. 2003).
More recently, experiments conducted on a C-terminal truncated TRPV1 channel suggest
that the distal C terminus of TRPV1 has an inhibitory effect on PKC phosphorylation-
induced potentiation of the TRPV1 channel (Liu et al. 2004; Vlachova et al. 2003). TRPV1
can also be subjected for PKA-dependent phosphorylation. PKA-dependent phosphoryla-
tion of the N-terminal S116 interferes with the desensitization capsaicin-evoked whole cell
currents (Bhave et al. 2002). Two other PKA phosphorylation sites in the C terminus, S774

and S820, are also involved in regulation of TRPV1 channel desensitization (Mohapatra and
Nau 2003). In contrast to TRPV1, a specific tyrosine residue localized in the first ankyrin
motif of TRPV4 is phosphorylated upon hypotonic stress. This swelling-induced phosphory-
lation at Y253 is mediated via a member of Src family PTKs, the Lyn kinase, demonstrating
that TRPV4 can be regulated by tyrosine phosphorylation (Xu et al. 2003). However, this
mechanism of activation seems to be controversial since in a more recent study it has been
shown that mutation of Y253 to phenylalanine does not affect hypotonic-induced activation
of TRPV4 (Vriens et al. 2004b).
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In the TRPMs, the effects of channel phosphorylation have only been described for
TRPM4 and TRPM7. The Ca2+ sensitivity of TRPM4 is modulated by PKC-dependent
phosphorylation. In the presence of ATP, PMA sensitizes Ca2+-dependent activation of
TRPM4. This effect is abolished when either of the two C-terminal serines, S1152 and S1145,
which are predicted to have the highest probability for PKC phosphorylation, are mutated
(Nilius et al. 2005b). Mutation of these two serines to glutamates to mimic the phosphory-
lated state of the channel results in a delayed deactivation of TRPM4 and shifts the activation
curves toward more negative voltages (Nilius et al. 2005c).

An interesting feature of TRPM7 is the presence in its C terminus of an atypical protein-
kinase domain, the so-called phospholipase C interacting kinase (PLIK) domain (Runnels et
al. 2001). The crystal structure of this protein kinase domain has been determined. In its cat-
alytic core, it shows unexpected similarity to eukaryotic α-kinases (Yamaguchi et al. 2001).
It has been shown that TRPM7 activity can be up- and down-regulated via the PLIK domain
in a cAMP- and PKA-dependent manner (Takezawa et al. 2004). However, the importance
of the PLIK domain for the TRPM7 channel function is still controversial. Inactivation of
PLIK kinase activity by site-directed mutagenesis and/or changes in intracellular ATP in-
dicated that the endogenous kinase activity is essential for channel function (Runnels et al.
2001).

Deletion of the region that comprises the kinase domain resulted in a functional channel
with increased sensitivity to Mg2+ and MgATP. These data suggest that the structural kinase
domain alters the sensitivity of TRPM7 to extracellular Mg2+ (Schmitz et al. 2003). More
recently, it was shown that the PLIK domain autophosphorylates TRPM7 at serine residues,
S1511 and S1567. Mutation of these two sites or of the catalytic site that abolished kinase
activity (kinase-dead mutants) did not affect the channel function and inhibition by inter-
nal Mg2+ but abolished the kinase activity. Divalent cations such as Mg2+, Zn2+, and Ca2+

inhibit the channel activity. In contrast, the kinase activity is enhanced by Mg2+, decreased
by Zn2+ and in the case of Ca2+ no effects have been observed (Matsushita et al. 2005).
In contrast to Schmitz et al. (2003), the authors of this latest study did not see functional
expression of TRPM7 lacking the full kinase domain. Therefore, they suggested that neither
current activity nor regulation by internal Mg2+ is affected by kinase activity or autophos-
phorylation, but that the kinase domain may play a structural role in channel assembly or
subcellular localization (Matsushita et al. 2005).

Modulation by PIP2 and possible PIP2 binding sites

The first example of PIP2-dependent modulation of a TRP channel was described for
TRPV1, whose function is inhibited by PIP2. Hydrolysis of PIP2 by stimulation of PLC
reverses the TRPV1 inhibition (Chuang et al. 2001). The molecular determinant for the PIP2
interaction in TRPV1 channels is localized in the C terminus of TRPV1 between amino
acids 777–820 (Prescott and Julius 2003). Similar effects are also observed for Drosophila
TRPL channels. In excised inside-out patches, the spontaneous TRPL channel activity is
strongly reduced upon application of PIP2. Surprisingly, this effect is not observed in all
patches. The reasons why PIP2 is unable to inhibit TRPL in all patches is not known, but it
is possible that there could be a state dependence of the TRPL channel necessary for the
effect of PIP2, or that some of the excised patches lack a specific protein (Estacion et al.
2001).

As already mentioned in the section entitled “Modulation by phosphorylation”, TRPM5,
TRPV5, and TRPM8 are activated by interaction with PIP2 to specific consensus residues in
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the TRP domain (Liu et al. 2005; Liu and Liman 2003; Rohacs et al. 2005). Similar effects
of PIP2 have also been shown for activation of the TRPM7 channel, which becomes inactive
upon stimulation of PLC activation and PIP2 hydrolysis (Runnels et al. 2002). Recovery of
carbachol induced TRPM7 current inhibition is accelerated after wash out in the presence of
PIP2. Furthermore, application of PIP2 to inside-out patches after rundown results in a full
restoration of TRPM7 single-channel activity (Pedersen et al. 2005; Runnels et al. 2002).
For TRPM5, it has been shown that PIP2 reverses the desensitization of the channel caused
by a sustained exposure to Ca2+, resulting in a partial recovery of the channel activity (Liu
and Liman 2003). Interestingly, the closest TRPM5 homologue, TRPM4, contains a putative
PIP2-binding domain, which shares homology with pleckstrin domains (Nilius et al. 2006).
Mutation of this putative PIP2-binding domain of TRPM4 prevents activation of the chan-
nel by PIP2 and decavandate, a compound with six negative charges, which may mimic the
PIP2 action (Nilius et al. 2004a, Nilius et al. 2006). In TRPM8, channel activation causes an
influx of Ca2+, which activates Ca2+-sensitive PLC-dependent hydrolysis of PIP2, resulting
in closure or desensitization of the channel (Liu et al. 2005).

Endogenous enzymatic activities

The presence of a full enzyme in the C terminus is not only found in TRPM7 (see “Modula-
tion by phosphorylation”). A similar α-kinase domain is also found in TRPM6, the closest
homologue of TRPM7 (Chubanov et al. 2004; Schlingmann et al. 2002). Another TRPM
member, TRPM2, contains a Nudix hydrolase domain in its C terminus, which functions
as an ADP-ribose (ADPR) pyrophosphatase (Kuhn et al. 2005; Perraud et al. 2001; for re-
view see Perraud et al. 2003). The TRPM2 Nudix domain shares 39% identity with NUDT9,
a human ADPR pyrophosphatase. A characteristic feature of many members of the Nudix
enzyme family is the presence of the conserved Nudix box, GX5EX7REuXEEXu (X any
amino acid residue and u a large hydrophobic residue). In TRPM2, some of the key posi-
tions in Nudix box are altered. Introduction of these different amino acids into the NUDT9
causes a strong decrease in the ADPR activity, similar to that obtained for TRPM2. The
crystallographic data show that unlike its closest functional homologue, homodimeric Es-
cherichia coli ADPRase, NUDT9 is active as a monomer with the substrate binding site
located in a cleft between the N-terminal and the C-terminal catalytic domain (Shen et al.
2003).

It has been shown that ADPR activates the TRPM2 channel, suggesting that the enzy-
matic activity of the Nudix domain is an essential component of the gating mechanism of
the channel (Perraud et al. 2001). The C-terminal splice variant of TRPM2, which contains
a deletion of 34 amino acids in the region (between amino acids 1292–1325) distant from
the Nudix box (DeltaC-strech), can still be activated by H2O2 but does not respond to ADPR
(Wehage et al. 2002). Mutants lacking 19, 25, and 29 amino acid residues in the N-terminal
part or having substitutions of amino acid residues in the remaining C-terminal part of the
DeltaC stretch displays typical ADPR-induced currents. However, deletion or substitution
of the amino acid residue N1326 immediately downstream of the DeltaC stretch abrogates
ADPR gating. These data suggest that amino acid residues in the DeltaC stretch are not di-
rectly involved in ADPR gating but may act as a spacer segment stabilizing a conformation
necessary for the essential N1326 residue to interact with other channel regions. Interest-
ingly, prolonged binding rather than degradation of ADPR is required for the modulation of
TRPM2 function, since enhancement of Nudix box activity abolishes the ADPR gating of
the channel (Kuhn and Luckhoff 2004).
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More recently, it has been shown by structure-guided mutagenesis that TRPM2 gating
by ADPR and both oxidative and nitrosative stresses requires an intact ADPR binding cleft
in the C-terminal NUDT7 domain (for a recent review, see Kuhn et al. 2005). The oxida-
tive/nitrosative stress-induced TRPM2 gating can be inhibited by blocking ADPR produc-
tion and by suppressing ADPR accumulation by cytosolic or mitochondrial overexpression
of an enzyme that specifically hydrolyzes ADPR (Perraud et al. 2005).

Concluding remarks

In this review we have given an overview of the most recent data on the structure–function
relationship of TRP channels. A broad range of thus far identified structural domains and
motifs strongly emphasizes the diversity of functions and regulatory mechanisms in the TRP
superfamily. However, it has to be stressed that despite the rapid progress made in the last
few years, a detailed view on the role of particular domains in regulation of the channel
function is still elusive. Continuation of scientific efforts will be required to further clarify
the structural basis for the functioning of the fascinating superfamily of TRP channels.
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