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PREFACE 

This book has been written for students without science A-levels who 
are entering an engineering degree or Higher National Diploma 
course via a foundation year. Very little scientific background is 
assumed and only an elementary knowled,ze of mathematics, which 
need extend no further than the simple properties of the right-angled 
triangle. Calculus is not required. 

The book is divided into three parts, which may be taken either in 
series or in parallel. Emphasis has been placed on clarity and crisp­
ness of presentation, and on the provision of appropriate worked 
examples and practice questions. (The data supplied are approximate 
and are for illustrative purposes only.) 

I have selected those topics which seem to me to provide the 
essential core material for any engineering foundation course. Prac­
tical work is not covered: the inclusion of instructions for safe and 
effective laboratory exercises over the whole range of topics would 
have lengthened the book considerably, and, furthermore, the needs 
of individual courses and the resources of individual institutions tend 
to determine their particular selection of specific exercises. 

I am indebted to many colleagues here at Portsmouth for advice 
and comments on various parts of the manuscript; in particular, I 
should like to thank Dr Ray Batt, Professor Trevor Crabb, Michael 
Devane, Derek Hunter, Dr Tom NeveU, Bob Otter, Ron Parvin and 
Vic Riches- also Professor Brian Lee for his support. I am especial­
ly grateful to Kerry Lawrence of The Macmillan Press for her pati­
ence and encouragement, and to Professor John Wilson of the Uni­
versity of Northumbria at Newcastle, who reviewed the manuscript 
and made many helpful suggestions. Last, but not least, I thank my 
wife for her powers of endurance. 

Portsmouth, 1992 KLW 

vii 



Part 1 
Force, Matter and Motion 



TOPIC 1 QUANTITIES 

COVERING: 

• SI units; 
• base and derived units; 
• scalar and vector quantities; 
• vector addition. 

1.1 SI UNITS 

Engineering quantities (pressure, temperature, power, and so on) 
need to be expressed in terms of an agreed system of units. SI units 
(Systeme International d'Unites) have been adopted in the UK and 
in many other countries, so we shall use them in this book. The 
system is founded on seven base units and two supplementary units 
from which all the others are derived. 

The base units which are going to be of most interest to us are 
shown in Table 1.1 together with some of the derived units. We shall 
add to the list as we go along. 

Derived units can be construed in terms of independent dimensions 
(such as length, mass and time) that are provided by the base units. 
Let us consider the unit of power as an illustration. Don't worry if 
you are unable to follow the scientific arguments too well at this 
stage. We shall go over them much more thoroughly later. The 
important thing to appreciate is that we can analyse the relationship 
between quantities in terms of their constituent base units. 

First, velocity is a measure of change of position in unit time and its 
magnitude is given in metres per second (m s-1). Acceleration is a 
measure of the rate at which velocity changes and its magnitude is 
given in metres per second per second (m s-2). 

The unit of force is called the newton (N). As we shall see later, it is 
defined as the force needed to give a mass of 1 kg an acceleration of 1 
m s-2 • The relationship between these quantities is given by F = ma, 
where F represents force, m represents mass and a represents accel­
eration. The constituent base units of force are therefore those of 
mass times acceleration and 

1 N = 1 kg m s-2 

3 
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Table 1.1 

Name 

Some base units: 

Length metre 
Mass kilogram 
Time second 
Electric current ampere 
Temperature kelvin 

(For our purposes oc = K - 273: see Topic 16) 

Some derived units: 

Force newton 
Energy joule 
Power watt 
Pressure pascal 
Electric charge coulomb 

Symbol 

m 
kg 
s 
A 
K 

N 
J 
w 
Pa 
c 

Taking this a step further, the joule ( J) is the SI unit of energy. This 
is equal to the amount of work done when the point of application of 
a force of 1 newton moves through a distance of 1 metre in the 
direction of the force. If W is the work done and s is the distance 
moved in the direction of the force F, then W = Fs. The constituent 
base units of energy are therefore those of force times distance and 

Finally, power is the rate at which work is done or energy ex­
pended. The SI unit of power is called the watt (W), which corres­
ponds to a rate of 1 joule per second. The base units of power are 
therefore those of energy divided by time and 

So, starting with the base units of mass, length and time, we have 
derived the unit of power. 

Units often require prefixes to adjust them to an appropriate scale 
of magnitude for a particular measurement. For instance, we use 
kilometres (km, a thousand metres) for large distances and mil­
limetres (mm, a thousandth of a metre) for small ones. Table 1.2 
shows the prefixes that we shall be using in this book. 

1.2 SCALAR AND VECTOR QUANTITIES 

Scalar quantities are those that are completely specified by their 
magnitude (e.g. length, speed and mass) and can be manipulated 



Table 1.2 

Prefix Symbol Factor 

gig a- G X 109 (a thousand million) 
mega- M X 106 (a million) 
kilo- k X 1()3 (a thousand) 
deci- d x w-1 (a tenth) 
centi- c x w-2 (a hundredth) 
milli- m x w-3 (a thousandth) 
micro- !.1. x w-6 (a millionth) 
nano- n x w-9 (a thousand millionth) 
pi co- p x w-12 (a million millionth) 

by simple arithmetic operations such as addition and multiplication. 
Vector quantities have both magnitude and direction (e.g. displace­
ment, velocity and force). This makes them more complicated to 
handle, because angles are involved. 

Let us start with displacement, i.e. change of position. This can be 
defined in terms of distance in a particular direction. But, as we can 
see from the example in Figure 1.1, there is another approach. Figure 
1.1(a) shows a displacement of 5 units at an angle of 37° measured 
anticlockwise from the positive x-axis (i.e. from the 3 o'clock direc­
tion). Figure 1.1(b) shows the same displacement as the resultant 
of moving a distance of 4 units in the 0° direction, then 3 units in the 
90° direction. Since tan 37° = 3/4 and, from Pythagoras' theorem, 
5 = v'42 + 32 , we can see that both methods give the same result. 

/ 
(a) (b) / 

/ 
/ 3 

/ 
/ 

4 

Figure 1.1 

Vector quantities are often expressed in terms of distances and 
angles as in Figure 1.1(a), but sometimes we need to resolve them 
into perpendicular components as in Figure 1.1(b). From the figure 
we can see that the vertical component, equal to 3, is given by 5 sin 37 
and the horizontal component, equal to A, is given by 5 cos 37. This is 
useful when we need to find the resulta'nt of two vector quantities. 

For example, Figure 1.2(a) shows a displacement OA at an angle a 
followed by a second 4isplacement AB at an angle ~· Figure 1.2(b) 
shows the resultant OB in the direction 8. The total vertical displace­
ment y is equal to (OA sin a + AB sin ~) and the total horizontal 
displacement xis equal to (OA cos a+ AB cos~). So, knowing the 
magnitude and direction of the two original displacements, we can 

Quantities 5 
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(a) 

141•---0A cos a---1+-- AB cos ~--1 

(b) 

"' "' "' "' 

"' "' 
"' 

s., 

"' "' 

~"' "'e l - - - - -
X 

Figure 1.2 

T 
AB sin~ 

t 
OA sin a 

l_ 

T 
y 

1 
calculate y and x. We can then calculate the magnitude of OB from 
Pythagoras' theorem and its direction from tan e = ylx. 

Clearly we can use this method to obtain the resultant of as many 
displacements as we wish by plotting vectors head to tail. If the 
vectors form a closed loop, then the resultant (hence, the net dis­
placement) is zero. Taking Figure 1.2 as an illustration, if we 
travelled from 0 to A, then from A to B, and finally from B back to 
0, the three displacement vectors would form a closed triangle and 
we would end up where we started. This is an obvious but important 
idea that we shall need to use later. 

Note that velocity is a measure of displacement in unit time and 
that it is a vector quantity that can be manipulated in the same way as 
displacement. Later we shall use similar methods to handle forces. 

Before tackling the questions at the end of the topic, make sure 
that you understand the following worked examples. And remember 
that, unless stated otherwise, angles are measured anticlockwise from 
the positive x-axis. 



Worked Example 1.1 

Find the magnitude and direction of the resultant of a displacement 
of 103m at 62° followed by another of 59 mat 28°. 

The displacements are shown in Figure 1.3. 

119 

Figure 1.3 

The total vertical displacement is equal to 

103 sin 62 + 59 sin 28 = 119 m 

The total horizontal displacement is equal to 

103 cos 62 + 59 cos 28 = 100 m 

The magnitude of the resultant R is equal to 

V1192 + 1002 = 155 m 

The direction of the resultant R is equal to 

tan- 1 119/100 = 50° 

Quantities 7 
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Worked Example 1.2 

Find the magnitude and direction of the resultant of successive dis­
placements of 25 m at 90°, 30 m at 45° and 20 m at 300°. 

The displacements are shown in Figure 1.4. 

t.l~----31----~ .. , 
Figure 1.4 

The total vertical displacement is equal to 

25 sin 90 + 30 sin 45 + 20 sin 300 = 29 m 

The total horizontal displacement is equal to 

25 cos 90 + 30 cos 45 + 20 cos 300 = 31 m 

The magnitude of the resultant R is equal to 

V292 + 312 = 42 m 

The direction of the resultant R is equal to 

tan-1 29/31 = 43° 



Worked Example 1.3 

If a boat is being rowed due north at 2 m s- 1 and there is a current 
flowing due east at 1.5 m s-1 , what is the true velocity of the boat 
relative to the earth? 

The velocity diagram is shown in Figure 1.5. 
The magnitude of the resultant R is equal to 

The direction of the resultant R is equal to 

1.5 
tan- 1 -.- = 37° east of north 

2 

i.e. 53° anticlockwise from the positive x-axis. 

Questions 

1. Find the magnitude and direction of the resultants of 
the following pairs of successive displacements: 

(a) 42 mat 31°, 53 mat no; 
(b) 117m at 28°, 67 mat 147°; 
(c) 331m at 47°, 158m at 238°; 
(d) 97 mat no, 84 mat 163°. 

2. A car climbs a hill at a road speed of 10 m s-1 • If the 
slope of the hill is 6° above the horizontal, what are 
the horizontal and vertical components of the car's 
velocity? 

3. An object travels eastwards at 5 m s- 1 for 7 s, then 
northwards at 7.5 m s- 1 for 12 s, then westwards at 
10 m s-1 for 15 s. Find how far and in what direc­
tion it must travel to return to its starting point. 

4. A ship steers north at 5.0 m s-1 with a current flowing 
towards the south-east at 2.0 m s- 1 • With what velocity 
must a man cross the deck to maintain a fixed position 
relative to the seabed? 

5. An object travels 52 min the 1 o'clock direction, then 
71 m in the 5 o'clock direction, then 103 m in the 8 
o'clock direction, then 43 min the 11 o'clock direction. 
What is its resultant displacement? 

6. A boat heads due north across a river 300m wide which 

2.0 m s- 1 

. . 
. . . 

Figure 1.5 

. . . . 

Quantities 9 

1.5 m s-1 

. . . . 
. 
. . . . 

R 

. . . . 
. 
. . . . 
. . 
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flows from west to east at 1.5 m s-1 • If the boat moves 
at 5.0 m s-1 relative to the water: 

(a) how long does it take to cross the river? 
(b) how far downstream does it land? 
(c) in what direction should it have headed to have 

crossed in the shortest possible distance, and 
(d) how long would this have taken? 



TOPIC 2 FORCES AND 
MATTER 

COVERING: 

• mass and gravitational force; 
• internal forces and elastic behaviour; 
• friction. 

Isaac Newton (1642-1727) put forward three propositions concerning 
the relationship between the motion of a body and the forces acting 
upon it. These are known as Newton's laws of motion. For the 
moment we shall confine ourselves to the first. (We shall deal with the 
others in Topic 6.) 

Newton's first law tells us that a stationary body remains at rest, or, 
if in motion, it moves in a straight line at constant speed, unless it is 
acted upon by a force (or the resultant of a number of forces). In 
mechanical terms, a force may therefore be regarded as an influence 
that tends to change a body's state of motion. 

Scientists believe that there are only four fundamental types of 
force that operate in the universe. Two of these need not concern us, 
because they operate over extremely small distances and are of much 
more interest to nuclear physicists than to engineers. Of the remain­
ing two, one stems from the gravitational interaction that arises 
between bodies because of their mass, and the other from the electro­
magnetic interaction due to the effects of electric charge. 

2.1 MASS AND GRAVITATIONAL FORCE 

The mass of a body is the quantity of matter that it contains. The SI 
unit of mass is the kilogram (kg). 

Mass is formally defined in terms of inertia - that is to say, resist­
ance to change of state of motion. We notice the inertia of our bodies 
when we are in a car that is changing speed or direction. We can feel 
the car forcing us to accelerate or decelerate against our natural tend­
ency to remain at rest or move at constant speed in a straight line. 

In practice, gravitation provides us with a much more convenient 
way of measuring mass. The law of universal gravitation, also named 
after Newton (who discovered it), is expressed by the equation 

11 
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(2.1) 

where F is the gravitational force of attraction between two masses of 
magnitude m1 and m2 that are separated by a distance r. G is known 
as the gravitational constant and has the value 6.7 x w-u N m2 kg-2 • 

Note that this law is an inverse square law- that is to say, the force is 
proportional to the reciprocal of the square of the distance between 
the masses. If the distance is doubled, the force is reduced to a 
quarter of its original magnitude; if the distance is halved, the force is 
quadrupled; and so on. Also note that we can verify the units of G by 
rearranging Equation (2.1) to give 

which has the units of 

From a gravitational point of view, we can assume that the earth be­
haves as though its mass is concentrated at its centre. If we substitute its 
mass (6.0 x 1024 kg) for m1 and its radius (6.4 x 1()6 m) for r in Equa­
tion (2.1), and if we give m2 the value 1.0 kg, then we obtain the gravita­
tional force between the earth and a 1 kg mass at its surface as follows: 

11 (6.0 X 1024)(1.0) = 9_8 N 
F = 6.7 X 10-

(6.4 X 106 ) 2 

This means that there is a gravitational field of influence around the 
earth which causes any object at its surface to have a weight of 9.8 N 
per kilogram mass. (As a rough guide to magnitude, a medium-sized 
apple weighs about 1 N.) 

9.8 N kg- 1 is the gravitational field strength at the earth's surface 
and, if we give it the symbol g, we can write 

W=mg (2.2) 

where W is the weight experienced by a mass m. (Engineers normally 
tend to interpret g in a different way, as we shall see in Topics 5 and 
6.) Note that the weight of a given object will be different in places 
where the gravitational field strength is different. For example, a 1 kg 
object would weigh 1.6 N at the surface of the moon. 

The gravitational interaction between objects on the human scale is 
very small. For instance, Equation (2.1) shows us that the force 



between two 1 kg masses 1 m apart is 6. 7 x 10-u N. Gravitational 
forces become large where astronomical masses (e.g. the earth) are 
involved, so that m1 x m2 on the top line of Equation (2.1) becomes 
big enough to offset the tiny value of G. 

Note that the centre of gravity of a body is the point at which its 
entire weight may be considered to act- for instance, the centre of a 
sphere or the mid-point of a ladder (assuming they are both uniform). 

2.2 INTERNAL FORCES 

A solid object will tend to resist being compressed or stretched 
because of opposing internal forces between its constituent atoms. 
These forces have electrical origins, which we shall discuss in some 
detail in Topic 15. For the time being, we can think of solid materials 
as consisting of atoms which are held together by chemical bonds that 
behave like tiny springs. A compressive force acting on a solid tends 
to push its constituent atoms together and a tensile force tends to pull 
them apart. In either case the deformation of the bonds results in the 
generation of an equal and opposite internal force that tends to 
restore the atoms to their original positions. If we remove the applied 
force, then the restoring force will return the solid to its original 
shape. This behaviour, called elasticity, is shared by all solids, even 
materials such as steel or concrete, although the deformation may not 
be obvious (for example, the deformation of a railway bridge sup­
porting a train or a desk supporting a book.) Thus, a force can change 
the shape as well as the state of motion of a body. 

Figure 2.1 represents the elastic behaviour of a steel wire. Let us 
imagine that the wire is suspended vertically from one end and that 
we stretch it by hanging a mass from the other. Figure 2.1 shows the 
relationship between the tensile force in the wire and the extension 
(increase in length) as the mass is increased. The chemical bonds in 
the wire stretch just far enough to provide an equal and opposite 
force to support the mass. The figure shows that if we double the 
mass so that the bonds have to provide twice the support, then the 
extension is doubled. If the force is trebled, the extension is trebled, 
and so on. 

This is an example of Hooke's law, which tells us that elastic 
materials deform in proportion to the force causing their defor­
mation. We shall consider this in more detail in Topic 20 (and we 
shall see that Hooke's law is not valid for all materials). In the 
meantime we should note that the argument can be broadened to 
state that, for the many materials that obey Hooke's law, strain is 
proportional to the stress which causes it. Strain E is the amount of 
extension or compression per unit length and is given by E = !::J..l/10 

where fl./ is the change in length and 10 is the original length. (fl. is a 
symbol that is used to represent a change in a quantity.) Note that 
strain is a dimensionless quantity, since it is obtained by dividing a 

Forces and Matter 13 
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Figure 2.1 

length by a length. It is sometimes expressed as a simple ratio and 
sometimes as a percentage. 

Stress o is the force per unit cross-sectional area and is given by o = 
FIA, where F is the force (sometimes called the load) and A is the 
cross-sectional area. The unit of stress, N m-2 , is sometimes called 
the pascal (Pa). 

The advantage of using stress and strain, as opposed to force and 
extension, is that we eliminate the effect of the dimensions of the 
specimen. (Under a given tensile load, the extension of a thick wire 
would be less than that of a thin one and the extension of a long wire 
would be greater than that of a short one.) A graph of stress against 
strain therefore represents the behaviour of the material alone and its 
slope E (=olE), called the Young's modulus, gives a measure of the 
material's stiffness. We shall deal with stress/strain relationships in 
Topic 20. In the meantime, the following worked example uses the 
graph in Figure 2.1 to obtain Young's modulus directly. 

Worked Example 2.1 

Figure 2.1 (above) is a graph of load against extension for a wire of 
length 1.72 m and 0.40 mm diameter. Find the Young's modulus of 
the material. 

From the discussion above we obtain the following expression 

o F lo lo F 
E=-=-X-=-X-

E A 111 A 111 



From the figure we see that the graph is a straight line which passes 
through both the origin and the point where F = 60 N and 111 = 4.3 
mm. Its slope (FI 11{) is therefore equal to 

The radius r of the wire is equal to 0.2 x 10-3 m. 
Substituting the values for /m A ( = :n:r2 ) and Fl 111 in the expression 

for E that we obtained above, 

1.72 60 
x = 1.9 x 1011 N m-2 

(4.3 x w-3 ) 
E=------

:n:(0.2 x w- 3y 

therefore, 

E = 190 GPa 

If we unload the stretched wire represented in Figure 2.1, it will 
return to its original length. And we can repeat the loading/unloading 
cycle as many times as we like (within the limits imposed by metal 
fatigue, which we shall not be considering in this book). It is im­
portant to recognise that we must not use too great a load, otherwise 
the wire will deform plastically (i.e. stretch permanently) or even 
break. We shall discuss this in more detail in Topic 20. In the 
meantime, we shall confine our general discussion to stresses below 
the elastic limit (i.e. the stress level at which deformation ceases to be 
entirely elastic). 

Note that our suspended mass is ultimately supported by the 
ground. If the wire is attached to the ceiling, then the mass and the 
wire are supported by an upward force generated by the slight bend­
ing of the joist to which the wire is fastened. (Bending of the joist is, 
in effect, a combination of tension and compression, where its bottom 
face tends to lengthen and become convex and its top face tends to 
shorten and become concave.) The joist is supported by an upward 
force generated by the compression of the wall which supports it. 
Finally, the wall is supported by an upward force generated by the 
deformation of the ground. 

2.3 FRICTIONAL FORCE 

Frictional forces arise through contact between objects and become 
apparent when we try to slide one surface over another. 

Figure 2.2 shows a body lying on a horizontal plane. The weight W 
of the body is supported by the normal (i.e. perpendicular) force N 
exerted on it by the plane. Even the flattest surfaces are rough to 
varying degrees, so there will be high spots in the contact area Figure 2.2 

Forces and Matter 15 
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between the body and the plane which tend to interlock when they 
move relative to one another. The applied horizontal force P, acting 
towards the right, will therefore be opposed by a frictional resistance 
which will tend to prevent the body from sliding. In effect, P is 
opposed by a frictional force F which is the sum of all the tiny 
horizontal forces generated at the contact points where the surface 
irregularities push against one another. If we increase P, then, in­
itially, F will increase to match it and the body will not move. 
Eventually P will reach a value just large enough to break down the 
interlocking between the surface irregularities. At this stage, when 
the body is just at the point of sliding, the frictional force F is given by 
the relationship 

(2.3) 

The constant Its is called the coefficient of static friction and depends 
on the nature of the surfaces. The greater the friction between them 
then the greater will be the value of Its· Depending on conditions, the 
value for metals on certain plastics can be as low as 0.04, compared 
with around 1 for rubber on dry concrete. 

As Equation (2.3) suggests, if we increase the normal force N by 
pressing the contact surfaces harder together, then the friction be­
tween them becomes proportionally greater. 

Once sliding begins, the frictional force F usually falls slightly, 
then tends to remain at a constant value that is independent of P. We 
therefore distinguish between the coefficients of static and kinetic (or 
dynamic) friction, J..ls and J..lk, respectively. J..lk (hence, F) tends to 
remain constant over a fairly wide range of sliding velocities and in 
many instances the values of J..lk and J..ls are not very different. The 
relationship between F and Pis summarised in Figure 2.3. 

From the figure we can see that: 

F ( = P) < JA.sN under static conditions 

F ( = P) = JA.sN at the point of sliding 

F = J..l.kN ( < P) under sliding conditions 

Equation (2.3) and its dynamic counterpart (F = !-lkN) are approxi­
mate but, within their range of validity for a given system, they 
indicate that the frictional force is independent of the contact area. 

Friction is a very complex phenomenon and it is impossible to 
devise a single physical model to cover all cases. Nevertheless it is 
worth making some general observations. 

It is believed that, because of roughness, the points of real contact 
between two solid surfaces pressed together are usually few and far 
between. This means that the actual contact area is much smaller 
than the apparent area suggested by the overall dimensions of the 
surfaces involved. A normal force N will therefore be concentrated 



into regions of intense localised pressure at the contact points. It is 
believed that at these points some materials, particularly metals, tend 
to flow plastically, thereby causing an increase in the actual contact 
area (where the contact points are deformed) and even localised 
adhesion. 

It appears that an increase in the value of N causes an increase in 
the actual contact area and, hence, an increase in frictional resist­
ance. Also, for a given value of N, the sum of the areas of all the 
contact points appears to remain more or less the same whether they 
are spread out over a large apparent surface area or concentrated into 
a relatively small one. Furthermore, under sliding conditions, the F 

areas of contact between the surfaces are being continually broken 
and remade. The fact that Ilk tends to be less than !ls seems to suggest 
that, under sliding conditions, a proportion of the potential contact 
points across the interface are not connected at any given moment. 

Another measure of frictional resistance is the angle of friction, 

Forces and Matter 17 

which is illustrated in Figure 2.4. If the plane on which a body rests is Figure 2.4 
tilted to an angle 8 where the body is on the point of sliding down-
wards, then 8 is the angle of friction, where 

1-ls = tan e (2.4) 

Equation (2.4) is easy to verify. If the body is on the point of 
slipping, then its weight W is balanced by the normal force N support­
ing it perpendicular to the plane plus the frictional force F just 
stopping it from sliding down. Nand F, in effect, are combined in an 
upward resultant force R (that is equal and opposite to W), as shown 
in Figure 2.5(a). 

(a) 

Figure 2.5 

I 
I 

I 
I 

I 

If' 
' . ' ' 

:R 

(b) 

Note that, since they are vector quantities, we treat the forces N 
and Fin the same way as the displacements in the last topic. We 
represent them by arrows indicating their direction, with length pro­
portional to their magnitude. It is sometimes helpful to represent two 
forces acting at a point as the sides of a parallelogram (a rectangle in 
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this particular case) where the diagonal from the point at which the 
forces meet represents the resultant (Figure 2.5b). 

As Figure 2.5(b) shows, the angle between Rand N must be e. (F 
and N are mutually perpendicular, so they must make an angle e with 
the horizontal and vertical respectively, as shown.) From the right­
angled triangle in Figure 2.5(a) we can see that 

F=Rsine 

and 

N=Rcose 

So, from Equation (2.3), 

F R sine 
I-ts= N = Rcose =tane 

as in Equation (2.4). 
Rather than combine N and F to find the resultant force R, we 

could equally well tackle the problem by resolving the weight W into 
components parallel and perpendicular to the plane, as in Figure 2.6. 
These two components can then be equated to F and N, respectively, 
and 

F Wsin e 
f.ts=N= Wcose =tane 

Friction is sometimes reduced by lubrication. Putting oil between 
metal contact surfaces tends to keep them apart, so that frictional 
forces are reduced. Another approach is to mount things on wheels. 
This does not entirely solve the problem, because of rolling friction 
between the wheel and the surface over which it is running. The 
wheel tends to create a slight depression out of which it continuously 
tries to climb and, at the same time, it tends to flatten where it 
touches the surface. 

Note that, in the present context, the term 'smooth' is sometimes 
used to describe a surface that is frictionless or that can be considered 
to be frictionless as an approximation. 

Worked Example 2.2 

(a) Assuming that I-ts = 0.55, what is the minimum horizontal force 
needed to start a 50 kg box sliding across a horizontal floor? (b) What 
force is required if it is applied to the box by means of a rope inclined 
at 25° above the horizontal? 



(a) The forces involved are shown in Figure 2.2 (page 15). The 
weight W of the box is supported by the normal force N, so that 

N = W = 9.8 X 50= 490 newtons 

Therefore, from Figure 2.3 (page 16), to start the box sliding, 

P = F = !J.sN = 0.55 X 490 = 270 newtons 

(b) Figure 2. 7 shows that the applied force Q has a horizontal 
component Q cos 25 and a vertical component Q sin 25. 

Considering the horizontal forces, we have 

F=Qcos25 

Considering the vertical forces, and remembering that W = 490 
newtons, 

N + Q sin 25 = 490 

Therefore, 

N = 490 - Q sin 25 

When the box is on the point of sliding, 

F = !LsN = 0.55 x N 

and, substituting for F and N, 

Q cos 25 = 0.55 (490 - Q sin 25) 

which gives 

Q = 237 newtons 

Questions 

(Where necessary assume that g = 9.8 N kg-1.) 

1. Estimate the mass of the moon, given that its diameter 
is 3500 km and that a 1.0 kg mass weighs 1.6 N (new­
tons) at its surface. (G = 6.7 x 10-n N m2 kg-2.) 

2. A cable, 50 m long, experiences a strain of 0.05%. By 
how many mm has its original length increased? 

3. A 0.4 mm diameter wire supports a mass of 2.5 kg. 

Forces and Matter 19 
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(a) What is the tensile stress in the wire? 
(b) What is the percentage strain if the value of 

Young's modulus is 2 x 1011 N m-2? 

4. A body of 25 kg mass is resting on a level floor. If 
!J.s = 0.4, what is the frictional force? 

5. A body of 25 kg mass lying on a level floor has a 
steadily increasing horizontal force applied to it. If 
!J.s = 0.4, what is the maximum frictional force 
reached? 

6. A body of 25 kg mass is sliding down a 45° slope. If 
Ilk = 0.6, what is the frictional force? 

7. For Figure 2.7, calculate the magnitude of Q if its 
direction is reversed (so that the box is being pushed by 
a force inclined at 25° below the horizontal). 

8. A 50 kg box is placed on a ramp inclined at 25° to the 
horizontal. 

(a) Find the angle of friction; hence show that the box 
will not slide downwards. 

(b) Find the minimum force parallel to the ramp 
needed to start the box (i) sliding downwards and 
(ii) sliding upwards. (Assume !ls = 0.55.) 



TOPIC 3 EQUILIBRIUM 

COVERING: 

• translational and rotational equilibrium; 
• the components of forces; 
• the moments of forces. 

A body is in equilibrium when the forces acting on it balance each 
other so that it either remains at rest or, if it is moving, remains in a 
state of uniform motion (i.e. constant speed in a straight line). To 
understand equilibrium we need to recognise that forces can in­
fluence the motion of a body in two ways: they can affect its trans­
lational motion from one place to another (with all its parts moving in 
the same direction) and they can affect its rotation. 

Two equal and opposite forces meeting at the same point in the 
body do not affect its state of motion at all, because they are in both 
translational and rotational equilibrium. If the two forces are sep­
arated so that their lines of action are parallel, as at the opposite ends 
of bicycle handlebars, then they are still in translational equilibrium, 
because they cancel each other out and their resultant is zero. 
However, they are no longer in rotational equilibrium, because they 
tend to cause the handlebars to turn. 

We shall only consider coplanar forces here - that is to say, forces 
that act in the same plane. First we shall think about translational 
equilibrium in terms of the components of forces; then we shall move 
on to rotational equilibrium. 

3.1 COMPONENTS OF FORCES 

In the last topic we met simple cases of combining forces into a 
resultant and of resolving forces into components. We can very easily 
extend this to more complex systems, as we did with displacements. 
We can even plot force vectors head to tail on a scale drawing and 
find the resultant graphically, just as we can with displacements 
on a map. 

If the vectors representing a system of forces form a closed loop, 
then the resultant is zero and the forces are in translational equilib­
rium. And if they are concurrent (i.e. if they meet at a point), then 

21 
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they are in rotational equilibrium too. For instance, Figure 3.1(a) 
shows a weight W being supported by two fixed strings which carry 
tensile forces SandT, respectively. Note that the values of the angles 
a and ~ are dictated by the lengths of the strings and the distance 
between their fixing points on the ceiling. The system is at rest and 
therefore in equilibrium. 

How can the values of S and T be found? We could do it with a 
ruler and a protractor. In Figure 3.l(b) the length W is drawn to 
represent the weight. The angles a and ~ are then marked off at 
either end to give the directions of S and T. The point where the lines 
representing Sand T intersect can then be found, and, hence, their 
lengths and the corresponding magnitudes. 

Alternatively, since the forces are in equilibrium, the sum of all 
their horizontal components and of all their vertical components must 
separately be zero (since there can be no resultant); therefore, 

Tsin~=Ssina 

and 

Scosa+ Tcos~=W 

Knowing the values of W, a and ~ (and assuming the strings have 
negligible mass), we can find S and T as in the following worked 
example. 

Worked Example 3.1 

Two strings (of negligible mass) support a weight of 80 N, as in Figure 
3.1. If a = 35° and~ = 60°, find the tension in each string. 

Resolving horizontally, 

S sin 35 = T sin 60 

which gives 

S = 1.5T 

Resolving vertically, 

80 = S cos 35 + T cos 60 

and, since S = 1.5T, this gives 

S = 69 N and T = 46 N 



What happens if we disconnect the right-hand string from the 
ceiling and pull it horizontally, as in Figure 3.2, so that the left-hand 
string still makes the same angle a with the vertical as before? The 
triangle of forces is shown in Figure 3.2(b ). T no longer has a vertical 
component. This means that S has to support all of W, which results 
in an increase in its vertical component and, hence, in its horizontal 
component. The increase in the latter is supported by T. 

Worked Example 3.2 

If, in Figure 3.2, a = 35° and W = 80 N, find the tension in each 
string. 

From the triangle of forces in Figure 3.2(b), 

S = Wlcos a = 80/cos 35 = 98 N 

and 

T = W tan a = 80 tan 35 = 56 N 

Finally, if we let go of the right -hand string completely (so that T = 0 Figure 3.2 
and a= 0), then S = W. 

Figure 3.3 shows a variation on the same system. In Figure 3.3(a) 
we can see that the weight W is supported by two counterbalancing 
forces S and T supplied by masses suspended from the ceiling by 
pulleys. As long as there is no friction, the tension in each string can 
be assumed to be constant along its length, provided that its weight 
can be ignored. If we knowS, T and W, then we can find a and p by 
constructing arcs of radius S and T, respectively from the ends of a 
line of length W, as in Figure 3.3(b). The point where the arcs 
intersect completes the triangle and enables us to measure a and ~ 
with a protractor. (Alternatively, these angles could be calculated by 
use of the cosine rule.) 

(a) (b) 

s 

s w T 

Figure 3.3 
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Figure 3.4 

Note that in this case the values of S and Tare fixed and the strings 
are free to move, so that the angles adjust themselves to bring the 
system to equilibrium. (In the fixed-string arrangement the geometry 
dictates the angles; the values of Sand Ttherefore adjust themselves 
to bring the system to equilibrium.) 

A system of forces will be in translational equilibrium provided 
that there is no net force in each of two directions (often taken to be 
mutually perpendicular for convenience). However, if the forces are 
not concurrent, they will tend to cause rotation. In the cases above, 
the lines of action of the forces S, T and W pass through the same 
point (where the strings join) and there is no tendency to rotation. In 
Figure 3.4 the three forces are not concurrent and the system will 
tend to rotate in an anticlockwise direction, even though it may be in 
translational equilibrium. 

3.2 MOMENTS OF FORCES 

The turning effect, or moment, of a force about a point (sometimes 
called torque) is defined as the product obtained by multiplying the 
force by the perpendicular distance of its line of action from the 
point. The units are newton metres, N m (not to be confused with 
joules, which are units of energy). The moment of the force F about 
the point 0 in Figure 3.5(a) is therefore F x s newton metres. This is 
consistent with practical experience (using a spanner, for example); a 
turning moment is made greater by increasing either the force For its 
perpendicular distances from the point, or both together. Note that if 
the line of action of the force passes through the point, then s = 0 and 
its moment is zero, so there will be no rotation. 
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Figure 3.5(b) shows a couple, which consists of two equal and 
opposite parallel forces. This has a moment about 0 equal to the sum 
of the two individual moments. Each of these is equal to F x s/2, 
giving a total moment ofF x s. Thus, the moment of a couple is equal 
to the product of one of the forces and the perpendicular distance 
between them. A couple clearly has no resultant, so it causes pure 
rotation, as in turning a key or a tap. 

Figure 3.5(c) shows two equal parallel forces - for example, 
identical weights balanced at equal distances from the pivot of a 
see-saw. The anticlockwise moment of the left-hand force about 0 is 



equal to the clockwise moment of the right-hand force, so they 
balance each other- in other words, they are in rotational equilib­
rium. Two forces of different magnitude can be in rotational equilib­
rium provided that their respective values of F X s are equal and 
opposite- for instance, if one person twice the weight of the other is 
sitting half as far away from the pivot. 

In fact we can have as many forces in rotational equilibrium as we 
like provided that the sum of the clockwise moments equals the sum 
of the anticlockwise moments. And we can take moments (i.e. find 
their sum) about any point we choose, although it is best to select one 
through which a force passes, or several forces in more complex 
cases; this makes their moments zero about the point and reduces the 
amount of calculation needed. It also enables us to eliminate an 
unwanted unknown force from a calculation. 

Worked Example 3.3 

A 3 m uniform beam of unknown mass, pivoted in the middle, 
supports a weight of 800 N at one end and another of 400 N at the 
other. Where must a further weight of 800 N act in order to bring the 
system to equilibrium? 

Figure 3.6 shows the forces involved. The third weight must act 
between the 400 N weight and the pivot at some distance s from the 
pivot (which then supports a total weight of 2000 N plus the weight of 

400N BOON SOON 

!. 
!--

1.5m .! 1.5m 

2000N 
+ Weight of beam 

Figure 3.6 

the beam). For equilibrium, the sum of the anticlockwise moments 
must equal the sum of the clockwise moments about any point. 
Taking moments about the pivot (to eliminate the unknown weight of 
the beam), 

(400 X 1.5) + (800 X s) = (800 X 1.5) 

Therefore, 

s = 1200 - 600 = O. 75 m 
800 
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A (In fact it would not have mattered if we had assumed s to be on the 
wrong side of the pivot - giving the third weight a clockwise mo­
ment. In this case we would have found that s = - 0. 75 m, the minus 
sign indicating a distance of 0.75 m from the pivot on the opposite 
side from the one we selected.) 

Earlier we defined the moment of a force about a point as the 
product of the force and the perpendicular distance of its line of 
action from the point. In the examples we have considered so far the 
distance has been very obviously perpendicular to the line of action. 
Figure 3.7 shows a different case. In Figure 3.7(a), OA represents a 
lever arm pivoted at 0 with a body of weight W suspended from it at 
A. From our experience we would expect the moment of W about 0 
to be at a minimum value (zero in fact) when OA is vertical and at a 
maximum when it is horizontal. As we can see from the figure, the 
perpendicular distance of the line of action of W from 0 is given by 
OA cos 8, where 8 is the angle that OA makes with the horizontal. 
The moment of W about 0 is therefore W x OA cos e. If OA is 
vertical, then e = 90° or 270° and OA cos e = 0 (i.e. the line of action 
passes through 0, so W has no turning effect). If OA is horizontal, 
then e = 0° or 180°; therefore, cos e = 1 or - 1 and the perpendicular 
distance is OA, which is its maximum value and gives the maximum 
moment. 

Figure 3.7(b) shows an alternative approach where W is resolved 
into components perpendicular to and along OA, i.e. W cos 8 and W 
sin 8, respectively. The moment of W sin 8 about 0 is zero, since its 
line of action passes through 0, but the moment of the perpendicular 
component is OA x W cos 8, which gives the same result as above. 

3.3 EQUILIBRIUM CONDITIONS 

For a body to be in equilibrium, the forces acting upon it must 
balance and their clockwise and anticlockwise moments about any 
point must be equal. For translational equilibrium, we usually resolve 
the forces into two mutually perpendicular directions, typically verti­
cally and horizontally, or perpendicular and parallel to some con­
venient plane. And, as noted above, we usually take moments about 
a point through which at least one of the unknown forces passes. 

Worked Example 3.4 

A uniform ladder weighing 200 N rests against a smooth (frictionless) 
vertical wall and makes an angle of 70° with the ground, which is 
level. Find the force exerted on the bottom end of the ladder by the 
ground. 

Figure 3.8 shows the forces acting on the ladder. A frictionless 
surface can only exert a force perpendicular to itself; therefore, the 



only force the ladder experiences where it touches the wall is the 
normal force P. The ladder is uniform, so its weight acts half-way 
along its length I. It is at rest, so there is sufficient frictional force F 
between its bottom end and the ground to prevent it from slipping. N 
is the upward force exerted on the ladder by the ground. The force 
we require is the resultant of F and N. 

Vertically we find that 

N = 200 newtons 

and horizontally 

F=P 

We can find P by taking moments about the bottom of the ladder 
(eliminating F and N), as follows 

P x OB = 200 x OA 

Therefore, 

P x I sin 70 = 200 x (l/2) cos 70 

which, on rearranging, gives 

p 200 
36 N 

2 tan 70 

(Note that I cancels out, so we do not need to know the length of the 
ladder.) 

The magnitude of the resultant is equal to 

Y2002 + 362 = 203 N 

The direction of the resultant is equal to 

tan-1 200/36 = 80° 

(Be careful not to confuse the direction of the resultant (tan-1 N!F) 
with the angle the ladder makes with the ground.) 

Questions 

(Where necessary assume that g = 9.8 N kg-1.) 

1. Determine whether each of the following coplanar sys­
tems of concurrent forces is in approximate equilib­
rium. If not, then find the magnitude and direction of 
the counterbalancing force required to bring the system 
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15N 

+ 

to equilibrium. (Angles are measured anticlockwise 
from the x-axis.) 

(a) 5.0 Nat 20°, 6.0 Nat 60°, 10.3 Nat 222° 
(b) 28 Nat 32°, 34 Nat 214°, 56 Nat 313° 
(c) 125 Nat 27°, 240 Nat 137°, 530 Nat 270° 
(d) 35 Nat 47°, 43 Nat 116°,61 Nat 215°,54 Nat 327° 

·(e) 63 Nat 28°,47 Nat 128°,38 Nat 139°,34 Nat 203°, 
85 Nat 293° 

(f) 119 Nat 47°, 116 Nat 108°, 124 Nat 146°, 196 Nat 
233°, 207 N at 328° 

2. If, in Figure 3.3(a), S = T = W = 1 kg, what are the 
values of a and ~? 

3. A weightless beam, 10 m long and supported at either 
end, carries a 50 kg load 2.5 m from one end. Find the 
forces supporting the beam at either end. 

4. A 150 kg steel bar, 2.0 m long and of uniform cross­
section, is supported by two vertical wires, one fixed at 
one end of the bar and the second at a distance of 0.8 m 
from the other end. Find the tension in each wire. 

5. A weightless horizontal cantilever beam projects 5 m 
from a vertical wall. 

(a) If a 15 kg mass is placed on the end of the beam 
furthest from the wall, find the moment of its weight 
about the point where the beam enters the wall. 

(b) If an additional two masses are placed on the 
beam, 10 kg at 1 m and 5 kg at 3 m from the wall, 
respectively, find the total moment about the point 
where the beam enters the wall. 

(c) If the three masses are combined into a single 
mass, find how far from the wall it must be placed 
to provide the same moment as in (b). 

6. Seven coplanar forces act at the corners of a 1 m square 
as shown in Figure 3.9. 

10N 

+ 

1 
A 

-T~ _,, 
10N-+ t t 

10N 15N 

Figure 3.9 
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(d) 

T 

(b) (c) 

T 

(e) 

(a) Find the magnitude and direction of the resultant 
translational force. 

(b) Find the net moment about 0. 
(c) Find the net moment about A. 

7. Figure 3.10 shows a weightless rod, 1.5 m long, 
fastened to a vertical wall by a hinge at one end so that 
it can pivot vertically. A weightless wire is attached to 
the other end to enable it to support a 5.0 kg mass in 
the various arrangements shown. In each case (i) find 
the value of T, the tension in the wire, and (ii) find the 
vertical and horizontal components, and, hence, the 
magnitude and direction of the resultant force acting 
on the rod at the hinge. 

8. If, in Worked Example 3.4, the ladder is on the point 
of slipping, what is the value of J.ts between the ladder 
and the ground? 

9. If, in Worked Example 3.4, !ls = 0.5 between the 
ladder and the ground, what is the smallest angle the 
ladder could make with the ground (i.e. where it is on 
the point of slipping)? 
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TOPIC 4 PRESSURE AND 
UPTHRUST 

COVERING: 

• density and relative density; 
• absolute pressure and gauge pressure; 
• transmission of pressure; 
• floating and sinking. 

This topic is mainly concerned with forces that operate in liquids at 
rest, although some of it refers to gases as well. 

4.1 DENSITY 

First we need to recognise that the density of a substance is a measure 
of the mass it contains per unit volume. Expressing this in math­
ematical terms, 

m 
p v (4.1) 

where m represents mass (kg), Vvolume (m3) and p density (kg m-3). 

Density is sometimes given in grams per cubic centimetre, g cm-3 • 

(Note that 1000 kg m-3 is equal to 1 g cm-3.) 

Relative density (formerly called specific gravity) is a dimensionless 
quantity which, for a liquid or a solid, is obtained by dividing its 
density by the density of water. The maximum density of water (1000 
kg m-3 ) is commonly used, in which case the relative density of a 
substance is obtained by dividing its density in kg m-3 by 1000. 
Although the density of water varies with temperature (its maximum 
occurring at 4 oq, the variation is small over the normal range of 
room temperatures. 

In practice, the relative density of a liquid can be measured by 
dividing its mass by the mass of an equal volume of water. This can be 
done by weighing the liquids in a relative density bottle, which is a 
small flask with a special stopper that ensures a reproducible volume 
each time it is filled. 



4.2 PRESSURE 

Pressure is a measure of the normal (perpendicular) force acting per 
unit area on a surface. The SI unit of pressure is called the pascal (Pa) 
and 1 Pa = 1 N m-2 • (As we saw in Topic 2, the pascal can also be 
used as the unit of stress.) 

Worked Example 4.1 

A metal block, of relative density 8.90, measures 45 x 70 x 125 mm. 
How much does it weigh? What apparent pressure would each of its 
faces exert when resting on a level surface? (g = 9.8 N kg-1.) 

Substituting the data into Equation (4.1) (m = V x p), 

m = (0.045 X 0.070 X 0.125) X 8.90 X 103 

which gives 

m = 3.50 kg 

The block therefore weighs 3.50 x 9.8 = 34.3 N. Since pressure 
p = force/area, then, when the block stands on its end, 

34.3 4 
p = = 1.1 X 10 Pa 

0.045 X 0.070 

and when it lies on its side, 

34.3 3 
p = = 6.1 X 10 Pa 

0.045 X 0.125 

and when it lies flat, 

p 
34.3 

----- = 3.9 X 1Q3 Pa 
0.070 X 0.125 

Pressure exists at any point in the body of a liquid because of the 
weight of liquid above it. It therefore increases with depth. Figure 4.1 
shows an imaginary horizontal area ( = A) at a depth h below the 
surface of a liquid. In effect, the area A supports a column of liquid 
above it which has a volume h x A. Since m = V x p (from Equation 
4.1) the mass of liquid in the column will be h x A x p. Multiplying 
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this by g (9.8 N kg-1) gives its weight ash x A x p x g. Since weight is Figure 4.1 
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a force and the area over which it acts is A, the pressure p at A is 
given by 

force h x A x p x g p =--= = pgh 
area A 

(4.2) 

This means that, since g is constant, the pressure acting at any point 
in a liquid simply depends on its depth and the density of the liquid 
above it. In practice, liquids are normally subjected to atmospheric 
pressure. Taking this into account, the total pressure is given by 

P = pgh + Patm 

where Patm represents atmospheric pressure. This leads to a distinc­
tion between the absolute pressure relative to a perfect vacuum and 
the gauge pressure measured relative to atmospheric pressure. (Re­
member that gauge pressure is zero at atmospheric pressure.) 

The manometer, which is essentially a U-tube containing a liquid, is 
a device which measures gauge pressure (Figure 4.2). 

Patm Patm 

Patm l 
l 

(a) (b) 

Figure 4.2 
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pressure 
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Vacuum 

Patm 

l I 
h 

1 
In Figure 4.2(a) both ends of the tube are open and the liquid 

surfaces on each side are level, because they are both subjected to 
atmospheric pressure. In Figure 4.2(b) the right-hand side is con­
nected to a supply of gas under pressure. The liquid in the left-hand 
column will rise until the value of h is such that pgh + Patm balances 
the pressure of the gas supply. The difference in the height of the 
columns is therefore a measure of the gas pressure relative to the 
atmosphere- that is to say, pgh gives the gauge pressure of the gas. 

In Figure 4.2(c) the left-hand side has been sealed off with the 
space at the top under vacuum. The difference in the height of the 
columns now represents the absolute pressure at the open end com­
pared with the vacuum. This is the basis of the mercury barometer 
used to measure atmospheric pressure. Atmospheric pressure fluctu-



ates around 760 mmHg- that is to say, h equals 760 mm of mercury. 
(Hg is the chemical symbol for mercury.) 

Worked Example 4.2 

!f the air pressure is 758 mmHg at the bottom of a mountain 
and 618 mmHg at the top, find the height of the mountain. 
(Assume that p8 g = 13.6 x 1()3 kg m-3 and that the average value of 
Pair = 1.27 kg m-3 .) 

A column of air the same height as the mountain is equivalent to a 
mercury column of height equal to 

0.758- 0.618 = 0.140 m 

If pgh for air = pgh for mercury, then 

1.27 X g X hair = 13.6 X 1()3 X g X 0.140 

which gives 

hair= 1500 m 

Although the pascal is the SI unit of pressure, there are a number 
of others in use. 1 mmHg is a unit called the torr, which is often used 
in measuring low pressures. The atmosphere (atm), equivalent to 760 
mmHg, is convenient for high pressures. If we take the density of 
mercury to be 13.6 x 103 kg m-\ then Equation (4.2) tells us that 760 
mmHg is equivalent to 101 kPa. (The accurate value for 1 atm is 
101.325 kPa.) The bar is equal to 100 kPa and equivalent to 750 
mmHg. Meteorologists use the millibar, which is 100 Pa. The pound 
per square inch (14.7lb in-2 = 1 atm) was in common use at one time. 

Pressure values are occasionally expressed in terms of the height of 
a column of water. Since the relative density of mercury is 13.6, a 
water column is much higher than the equivalent mercury column 
and this makes it easier to measure small pressures. 

Liquids lack the rigidity of solids and have the ability to flow. This 
has important consequences when we think about applying pressure 
to a liquid at rest. First, the pressure at any point is the same in all 
directions. (Otherwise the liquid would not remain at rest.) Second, 
only normal forces can act between a liquid and a surface in contact 
with it. (Any parallel component would lead to relative movement 
between the two.) Third, a liquid will transmit an externally applied 
pressure uniformly throughout its volume, although there will still be 
the internal variation with depth. 

This leads us on to the idea of amplifying forces by means of the 
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Figure 4.3 

Figure 4.4 

Figure 4.5 

Piston 
area 
= A2 

pressure in a liquid. Figure 4.3 shows a simplified version of a 
hydraulic press. It consists of two liquid-filled interconnected cylin­
ders of different diameters, each fitted with a piston. If a downward 
force F1 , is applied to the smaller piston of area A 0 then the resulting 
pressure p transmitted by the liquid will be equal to F1/A 1 • The 
pressure will be converted to an upward force F2 by the larger piston 
of area A 2, so that FiA2 equals p. Since 

F2 Fl 
-=p=-
A2 At 

F2 A2 

The ratio between the output and the input force is therefore deter­
mined by the ratio between the areas of the output to the input 
piston. 

4.3 UPTHRUST 

From experience we recognise that an object placed in a liquid seems 
to get lighter. Archimedes' principle tells us that an object that is 
either totally or partially immersed in a fluid (liquid or gas) experi­
ences an upthrust equal to the weight of fluid it displaces. 

An object totally immersed in a liquid will displace a volume of 
liquid equal to its own. Figure 4.4 shows how the displaced liquid can 
be collected via a side arm fitted to the container from which it is 
displaced. If the object is suspended from a spring balance, the 
upthrust it experiences corresponds to the apparent reduction in its 
weight (T1 - T2 in the figure) as it is immersed in the liquid. And, 
from Archimedes' principle, we find that the upthrust is equal to the 
weight of liquid displaced. 

To help us understand this, Figure 4.5 shows a cylindrical solid 
object, of height h and cross-sectional area A, replacing part of the 
liquid column we considered earlier. The pressure acting on the top 
surface of the cylinder will be less than the pressure at the bottom, 
where the liquid is deeper. Since pressure acts perpendicularly to 
solid surfaces, the pressure at the top will act downwards and the 
pressure at the bottom will act upwards. The vertical pressure differ­
ence will be pgh (where p is the density of the liquid), so the net 
upward force or upthrust acting on the cylinder will be A x pgh, 
which is precisely the same as the weight of the liquid (Ah x pg) that 
it replaces. (The horizontal pressure acting on the sides of the cylin­
der will have no vertical effect.) 

If the density of the object is greater than the density of the liquid, 
its weight cannot be supported by the upthrust and it will sink. If its 
density is less than that of the liquid, the upthrust will exceed its 



weight and it will rise. If its density is the same, it will stay where it is. 
Archimedes' principle provides us with a very simple method of 

finding the relative density of a solid by dividing its weight in air by its 
apparent loss in weight in water. 

Worked Example 4.3 

A cube of density 2500 kg m-3 weighs 24.5 N in air. Find its apparent 
weight if it is 

(a) totally immersed in water (p = 1000 kg m-3); 

(b) half immersed in water; 
(c) totally immersed in liquid of density 800 kg m-3 ; 

(d) totally immersed in mercury (p = 13.6 x 103 kg m-3). 

(g = 9.8 N kg-1 .) 

The mass of the cube = 24.5/9.8 = 2.5 kg. The volume of the cube 
= 2.5/2500 = 1 X 10-3 m3 • 

(a) From Equation (4.1) (m = V x p), the mass of water displaced 
by the cube is equal to 

1 X 10-3 X 1 X 103 = 1 kg 

Therefore, the upthrust (weight of water displaced) is equal to 

1 X 9.8 = 9.8 N 

Therefore, 

apparent weight of cube = 24.5 - 9.8 = 14.7 N 

(b) The upthrust on half the cube = 4.9 N; therefore, 

apparent weight of cube = 24.5 - 4.9 = 19.6 N 

(c) The mass of liquid displaced by the cube is equal to 

1 X 10-3 X 0.8 X 103 = 0.8 kg 

Therefore, 

upthrust = 0.8 x 9.8 = 7.8 N 

Therefore, 

apparent weight of cube = 24.5 - 7.8 = 16.7 N 
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(d) The mass of mercury displaced by the cube is equal to 

1 X 10-3 X 13.6 X 103 = 13.6 kg 

Therefore, 

upthrust = 13.6 x 9.8 = 133.3 N 

Therefore, 

apparent weight of the cube = 24.5 - 133.3 = -108.8 N 

That is to say, the upthrust exceeds the weight ofthe cube by 108.8 N, 
which is therefore the force that would be needed to hold the cube 
beneath the surface of the mercury. 

If an object is floating, so that the upthrust supports its weight 
exactly, then it must displace its own weight of liquid. If it has the 
same density as the liquid, then it will be totally immersed. If it is of 
lower density, then it will only need to displace part of its volume, so 
only part of it will sink below the surface; and the higher the density 
of the liquid the less the object has to sink. A steel ship floats because 
it is hollow and its average density is lower than that of water. But the 
density of water varies with dissolved salts and with temperature; 
thus, the ship floats higher in sea-water than in fresh water and lower 
in warm water than in cold water. The hydrometer, used to measure 
the relative density of liquids (e.g. battery acid), works in a similar 
way. 

Worked Example 4.4 

A piece of wood, of density 650 kg m-3, measures 400 x 300 x 50 mm 
thick. How much of its thickness is immersed when it is floating in 
water? By how much does it sink if a 1 kg mass is placed centrally on 
top of it? 

m = Vx p 

Therefore, 

m = (0.4 X 0.3 X 0.05) X 650 = 3.9 kg 

This will displace 3.9 kg water, which occupies 

3.9/1000 = 3.9 X 10-3 m3 



If d is the thickness immersed, then 

d X 0.4 X 0.3 = 3.9 X 10-3 m3 

which gives 

d = 33 mm 

The 1 kg mass will displace a further 1.0 x 1o-3m3 of water, so the 
wood will sink a further distance equal to 

1.0 X 1o-3 8 ----m = mm 
0.4 X 0.3 

Questions 

(Where necessary assume that g = 9.8 N kg-1 and that 
Pwater = 1000 kg m-3.) 

1. What is the mass of air in a room measuring 7 x 3 x 3m? 
(Assume Pair = 1.3 kg m-3.) 

2. What is the volume of a sample of concrete that 
weighs 28.7 N and is known to have a density of 
2.39 x 103 kg m-3? 

3. Assuming the earth's mass to be 6.0 x 1<f4 kg and its 
radius to be 6.4 x 106 m, what is its average density? 

4. A bottle weighs 95.7 g when it is empty and 308.4 g 
when it is full of water. If 207.3 g of sand is placed in 
the empty bottle, then 133.6 g of water is required to 
fill it. Find the density of the sand, giving your answer 
in kg m-3 • 

5. The pistons of a hydraulic press have diameters of 
16 mm and 32 mm, respectively. What input force 
should be applied to the smaller piston to produce an 
output force of 1000 N, and what would be the corres­
ponding pressure? 

6. Convert the following to Pa: (a) 3.2lb in-2 , (b) 14 torr, 
(c) 998 mbar, (d) 765 mmHg, (e) 8.9 atm. 

7. An open-ended U-tube of uniform bore is partially 
filled with mercury. If 38.9 cm3 of liquid of density 800 
kg m-3 is poured into one side, what volume of water 
must be poured into the other to keep the mercury 
levels equal? 

Pressure and Upthrust 37 



38 Foundation Science for Engineers 

8. An irregularly shaped metal object weighs 15.6 N in 
air, 13.6 N in water and 14.0 N in an unknown liquid. 

(a) Find the density of the metal. 
(b) Find the density of the unknown liquid. 

9. A polythene block of mass 138 g is held under water by 
means of a thread fastened to the bottom of the con­
tainer. Find the tension in the thread. (p = 920 kg m-3 

for the polythene.) 



TOPIC 5 DISPLACEMENT, 
VELOCITY AND 
ACCELERATION 

COVERING: 

• accelerated motion in a straight line; 
• the equations of motion (kinematic equations); 
• acceleration due to gravity; 
• projectiles. 

So far our discussion has been about systems that are either at rest or 
in a state of uniform motion. This topic introduces the idea of 
accelerated motion but, for the moment, without any reference to the 
forces that cause it. 

There are two basic quantities that help us to define motion -
namely length and time. The first quantity derived from these is 
velocity, which is the rate at which displacement changes with time. 

Before going any further, it is important to make a careful distinc­
tion between speed and velocity. Speed is a scalar quantity measured 
in terms of magnitude alone- that is to say, it represents the rate of 
change of distance with time. Velocity is a vector quantity which has 
direction as well as magnitude. At any particular moment, the speed 
of a moving body represents the magnitude of its velocity. If a body 
travels along a curved path at constant speed, its velocity is changing 
because its direction is changing. 

To start at the simplest level, we shall consider motion in a straight 
line. (In effect, we can then think of any change in displacement in 
terms of change in distance alone.) Note that because they are both 
directional, displacement and velocity can have negative values sig­
nifying movement opposite to some reference direction already taken 
as being positive. For example, if we think of an object thrown 
straight upwards as having a positive velocity, then once it starts to 
fall it will have a negative velocity. 

Acceleration is the rate at which velocity changes. In terms of SI 
units, velocity is measured in metres per second (m s-1) and accelera­
tion in metres per second per second (m s-2). When velocity is 
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decreasing, acceleration has a negative value and is generally called 
either retardation or deceleration. 

These definitions of velocity and acceleration lead to some useful 
equations that describe the motion of a body undergoing uniform 
acceleration in a straight line. (Uniform acceleration means that 
velocity is changing at a constant rate. For example, a body starting 
from rest with a uniform acceleration of 2 m s-2 will have a velocity of 
0 m s-1 at 0 s, 2 m s-1 at 1 s, 4 m s-1 at 2 s, 6 m s-1 at 3 s, and so on.) 

If a body accelerates uniformly from an initial velocity u to a final 
velocity v in a period of timet, then the acceleration a is given by the 
change in velocity per unit time, as follows: 

v-u 
a=---

t 

which, on rearranging, becomes 

v=u+at (5.1) 

Since velocity is defined as displacement per unit time, the dis­
placement s of the body can be obtained by multiplying its average 
velocity, ( u + v )/2, by the time t over which the acceleration takes 
place. Thus, 

(5.2) 

By substituting (u +at) for the final velocity v (from Equation 5.1), 
Equation (5.2) becomes 

( u+u+at) s = t 
2 

Therefore, 

s = 

and 

2ut + at2 

2 

1 
s = ut +-at2 

2 
(5.3) 

Finally, by substituting 2s!(u + v) for t (from Equation 5.2), 
Equation (5.1) becomes 

2s v=u+a 
(u + v) 
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and, on rearrangement, 

2as = (v - u)(u + v) 

Therefore, 

and 

(5.4) 

This gives us four equations involving the five quantities u, v, t, a 
and s, as summarised in Table 5.1. Careful inspection of the table 
shows that we can calculate the value of any two quantities provided 
that we know the values of the other three. For example, given u, a 
and s, we can calculate v from Equation (5.4) and, quite indepen­
dently, t from Equation (5.3); given u, v and t, we can calculate a 
from Equation (5.1) and s from Equation (5.2)- and so on. 

Table 5.1 

Equation Involves Omits 

(5.1) v = u +at v, u, a, t s 

(5.2) s 
(u + v) 

s, u, v, t t a 
2 

1 
(5.3) s = ut +- at2 

2 
s, u, t, a v 

(5.4) v2 = u 2 + 2as v, u, a, s 

Worked Example 5.1 

An object is uniformly accelerated from rest to 25 m s-1 over a period 
of 10 s. Find: 

(a) the acceleration; 
(b) the distance travelled; 
(c) the extra time needed to reach 50 m s-1 ; 

(d) the uniform acceleration needed to bring it to rest from 
50 m s-1 in a distance of 250m. 

(a) u = 0, v = 25, t = 10, a = ? 
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From Equation (5.1) 

25 =a X 10 

Therefore, 

a= 2.5 m s-2 

(b) u = 0, v = 25, t = 10, s = ? 

From Equation (5.2) 

s = (O + 25) x 10 = 125 m 
2 

(c) u = 25, v = 50, a = 2.5, t = ? 

From Equation (5.1) 

50 = 25 + (2.5 X t) 

Therefore, 

t = 10 s 

(d) u = 50, v = 0, s = 250, a = ? 

From Equation (5.4) (where a is a retardation) 

0 = 502 + 2 X (- a) X 250 

Therefore, 

a= 5 m s-2 

Worked Example 5.2 

An object at rest experiences a uniform acceleration of 5 m s-2 for 6 s. 
It maintains constant velocity for 14 s and is then brought to rest in 5 s 
by a uniform retardation. How far has it travelled? 

Acceleration stage: 

u = 0, t = 6, a = 5, s = ? , v = ? 

From Equation (5.3) 



1 
S = 2 X 5 X 36 = 90 m 

From Equation (5.1) 

v = 5 x 6 = 30 m s-1 

Constant velocity stage: 

u = v = 30, t = 14, a = 0, s = ? 

From Equation (5.3) 

s = 30 x 14 = 420 m 

Retardation stage: 

u = 30, v = 0, t = 5, s = ? 

From Equation (5.2) 

s = (30 + O) x 5 = 75 m 
2 

Therefore, 

total distance travelled = 90 + 420 + 75 = 585 m 
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Note that all the four equations (5.1-5.4) contain u. If u is one of 
two unknowns, its value must be calculated first by using the ap­
propriate equation. Then it can be substituted into any of the others 
to find the value of the second unknown. For example, if u and v are 
unknown, the value of u must be obtained from Equation (5.3); then 
the value of v can be obtained from any of the others. 

Worked Example 5.3 

A moving particle experienced an acceleration of 10 m s-2 over a 
period of 8 s, during which time it travelled 400 m. What were its 
initial and final velocities? 

t = 8, a = 10, s = 400, u = ? , v = ? 

From Equation (5.3) 



44 Foundation Science for Engineers 

1 
400 = (u X 8) + ( 2 X 10 X 64) 

Therefore, 

u = 10m s-2 

From Equation (5.1) 

v = 10 + (10 x 8) = 90 m s-1 

Equations (5.1)-(5.4), which are called the equations of motion or 
kinematic equations, can be used for calculations that involve bodies 
moving under the influence of gravity. We shall begin by considering 
this in terms of motion in a vertical straight line. 

The first thing we need to recognise is that all objects allowed to 
fall freely close to the earth's surface experience the same downward 
acceleration. This fact may seem surprising and contrary to experi­
ence, because it tends to be obscured by the effects of air resistance 
and, for very light objects, the slight upthrust in air. A leaf or a 
feather seems to drift downwards at a more or less steady rate, and 
even a dense object reaches a steady terminal velocity when its weight 
is balanced by the effects of upthrust and air resistance (so that the 
resultant force is zero). But if an object of any mass or density is 
allowed to fall freely (i.e. with unimpeded motion, as in a vacuum), 
then it will accelerate uniformly. This acceleration due to gravity, 
sometimes called the acceleration of free fall, has the value 9.8 m s-2 • 

(There are slight variations over the earth's surface but we shall 
ignore them in this book.) 

As we shall see in the next topic, it is no coincidence that the 
strength of the earth's gravitational field has the same numerical 
value as the acceleration due to gravity. In fact, engineers tend 
to regard gas an acceleration (9.8 m s-2) rather than a field strength 
(9.8 N kg-1). So, provided that any effect due to the air is small 
enough to be ignored, a = g = 9.8 m s-2 in the equations of motion 
when they are applied to objects moving vertically under the in­
fluence of gravity. 

Sometimes the calculations are simplified by either u or v having 
the value zero. For example, if an object falls from rest (so that 
u = 0), then Equation (5.1) gives the relationship between its velocity 
and the time it has been falling (i.e. v = gt) and we can calculate the 
velocity after a given time or the time required to reach a given 
velocity. Similarly, Equations (5.3) and (5.4) give simple rela­
tionships between displacement and time and between final velocity 
and displacement, respectively, if the object falls from rest. 

If an object is thrown vertically upwards with a known initial 
velocity u, then, by setting v to zero, we can calculate the maximum 
heights it reaches (Equation 5.4) and the time tit takes to get there 
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(Equation 5.1). Note that if we take the upward direction as positive, 
then u and s have positive values and a = - g because it acts 
downwards. 

Worked Example 5.4 

An object is thrown vertically upwards with an initial velocity of 
20 m s-1 • What height does it reach, and what is the total time it takes 
to return to its starting point? 

u = 20, v = 0, a= g = 9.8, s = ?, t = ? 

From Equation (5.4) (taking upwards as positive) 

0 = 400 + (2 X (- 9.8) X s) 

which gives 

s = 20.4 m 

From Equation (5.1) 

0 = 20 + ((- 9.8) X t) 

which gives 

t = 2.04 s 

The object will take an equal time to return to its starting point, so 
the total time is 4.08 s. 

Now let us add a second dimension, Figure 5.1 shows the path of an 
object thrown horizontally from a height s above the ground. Its 
velocity is resolved into horizontal and vertical components along the 
x- andy-axes, respectively. Since the object is thrown horizontally, its 
initial velocity u has no vertical component (i.e. ux = u and uy = 0) 
but it immediately starts to fall, so at any subsequent moment its 
velocity v is the resultant of vx and vy. These components can be 
considered quite independently and the object takes the same length 
of time to hit the ground as if it had fallen from rest from the same 
height. Knowing the heights, we can calculate the time of flight t 
from Equation (5.3) (remembering that uy = 0). If we neglect air 
resistance, the horizontal component of the velocity will remain 
constant and equal to ux throughout the flight. This means that we 
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s 

f----------UxXt----------1 

Figure 5.1 

can calculate the horizontal distance the object travels by multiplying 
Ux by t. 

We can also calculate the magnitude and direction of its velocity by 
finding the vertical component vy at any time (Equation 5.1) or at any 
height (Equation 5.4) and combining it with the horizontal compo­
nent Vx ( = Ux)· 

If the object had been projected from the ground with an equal and 
opposite velocity to that with which it had landed, then its path would 
have been the same as in Figure 5.1, but, of course, traversed in the 
opposite direction. (In this case the figure only shows half the path if 
the object goes on to complete its trajectory and return to the 
ground.) 

Worked Example 5.5 

An object is thrown horizontally at 6.0 m s-1 from a height of 3.3 m 
above level ground. How far does the object travel horizontally, and 
what is the magnitude and the direction of its velocity when it hits the 
ground? 

Vertically 

Uy = 0, a= g = 9.8, S = 3.3, t = ?, Vy = ? 

From Equation (5.3) (taking downwards as positive) 

1 
3.3 = 2 X 9.8 X t 2 
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which gives 

t = 0.82 s 

Therefore, the horizontal distance travelled is equal to 

6 x 0.82 = 4.9 m 

From Equation (5.4) 

V/ = 2 X 9.8 X 3.3 

Therefore, 

The magnitude of the final velocity is equal to 

V6.02 + 8.02 = 10.0 m s~ 1 

The direction of the final velocity is equal to 
tan~ 1 8/6 = 53° below the horizontal 

Worked Example 5.6 

An object is projected at 10 m s~ 1 at an angle of 53° above the 
horizontal. What is the maximum height it reaches, and what hori­
zontal distance does it cover? 

f;l 
c: ·;;; 

The horizontal and vertical components of the initial velocity are ~ 
shown in Figure 5.2. First, note that 10 sin 53 = 8 and 10 cos 53 = 6. 

Vertically: 

uy = 10 sin 53, vy = 0, a = g = 9.8, s = ? , t = ? 

--------~~ 

I 
I 

I 
/. 

~ 
~ 

# 

10 cos 53 

I 

1ol I 
I 

From Equation (5.4) (taking upwards as positive) 
Figure 5.2 

0 = (10 sin 53)2 + (2 x (- 9.8) x s) 

which gives 

s = 3.3 m 

From Equation (5.1) 

0 = 10 sin 53 + ((- 9.8) x t) 
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which gives 

t = 0.82 s 

Horizontally: 

Ux = 10 COS 53, t = 0.82, S = ? 

From Equation (5.3) a = 0 if we ignore wind resistance, and 

s = 10 cos 53 x 0.82 = 4.9 m 

The object travels a further 4.9 m in returning to the ground therefore 
total horizontal distance = 2s = 9.8 m 

Questions 

(Apart from Questions 9 and 10, assume motion in a 
straight line. Where necessary, assume g = 9.8 m s-2 and 
neglect air resistance and upthrust.) 

1. An object is travelling at 12m s-1 • For what period of 
time must it be accelerated at 4 m s-2 in order to reach 
48 m s-1? 

2. What distance is taken for an object to reach 50 m s- 1 

from rest if it is accelerated at 2.5 m s-1? 

3. An object is projected vertically upwards from ground 
level at 49 m s-1 • Find its height after 1 s, 3 s, 5 s, 7 s 
and 9 s. What is its total time of flight? 

4. An object is travelling at 12 m s-1 • It experiences a 
uniform acceleration and covers the next 36 m in 6 s. 
What is its final velocity and its acceleration? 

5. An object initially at rest experiences an acceleration 
of 6 m s- 1 for 4.5 s. What acceleration is required to 
return it to rest in 9 s? 

6. An object that had fallen from a height of 128 m was 
found to have penetrated the ground to a depth of 
40 mm. Estimate its average deceleration. 

7. An object accelerates from 10m s- 1 to 50 m s- 1 over a 
distance of 120 m. Calculate the acceleration and the 
time taken. 

8. An object thrown vertically upwards reached a height 
of 28.8 min 1. 75 s. What maximum height did it reach 
and what time did it take to get there? 
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9. An object is dropped from an aircraft that is flying 
horizontally with a velocity of 100 m s-1 at a height of 
250m. What horizontal distance does the object cover 
before hitting the ground and what is the magnitude 
and direction of its impact velocity? 

10. An object is projected with a velocity u at an angle e 
above the horizontal. If g is the acceleration due to 
gravity, derive formulae giving (a) the maximum 
height to which it rises and (b) the time it takes to get 
there. 
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TOPIC 6 FORCE AND 
MOTION 

COVERING: 

• Newton's laws of motion; 
• force and acceleration; 
• action and reaction. 

Newton's first law tells us that an object will remain at rest or in a 
state of uniform motion unless a force acts on it. In effect, this defines 
force as an influence which tends to change the velocity of an object. 
(Remember that the force in question might be the resultant of two 
or more others.) 

Newton's second law tells us that, when an object is acted upon by 
a force, it will accelerate in accordance with the expression 

F= ma (6.1) 

where F is the force (measured inN), m is the mass of the object (in 
kg) and a is its acceleration (in m s-2). 

As we might expect, the acceleration lies in the same direction as 
that of the force. The equation tells us that the larger the mass the 
larger the force needed to produce a given acceleration. Or, looking 
at it another way, the magnitude of a force can be found by measur­
ing the acceleration that it gives to a known mass. Furthermore, if 
there is no force, then there can be no acceleration (which is another 
way of stating the first law). The equation also tells us that 1 N is 
the magnitude of the force that gives a 1 kg mass an acceleration of 
1m s-2 • (As we shall see in the next topic, the second law can also be 
stated in terms of momentum rather than acceleration.) 

In Topic 2 we saw that the force due to gravity acting on a mass m 
(i.e. its weight W) provides a measure of the gravitational field 
strength g. At the earth's surface g = Wlm = 9.8 N kg- 1 • If the mass 
is allowed to fall freely, then Equation (6.1) tells us that, since 
F = W, W /m also gives its acceleration. So we can regard g either as a 
gravitational field strength or as an acceleration equal to 9.8 m s-2 • As 
we noted in the last topic, engineers generally regard it as an accel­
eration, so we shall do the same. 

Note that Equation (6.1) does not tell us anything about the 
displacement or velocity of an object. If we need to know about 
these, and the force is constant, then we use the equations of motion. 



Worked Example 6.1 

A steady horizontal force of 12 N is applied to a 6 kg mass that is at 
rest on a smooth level surface. After 15 s (a) how far has the mass 
moved and (b) what is the magnitude of its velocity? 

(a) F =rna 

Therefore, 

a= Flm = 12/6 =2m s-2 

Now 

u = 0, t = 15, a = 2, s = ? 

so substituting in 

1 
s = ut +- at2 

2 

we obtain 

1 s = - X 2 X 152 = 225 m 
2 

(b) u = 0, t = 15, a = 2, v = ? 

Substituting in 

v = u +at 

we obtain 

v = 2 x 15 = 30 m s-1 

Worked Example 6.2 

A 15 kg mass is uniformly accelerated from 10m s-1 to 20m s-1 over a 
distance of 300m. What force is being exerted on it? 

u = 10, v = 20, s = 300, a = ? 
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Substituting in 

we obtain 

400 = 100 + (2 X a X 300) 

which gives 

a= 0.5 m s-2 

Therefore, 

F = rna = 15 x 0.5 = 7.5 N 

Worked Example 6.3 

A ball of 100 g mass fell from a height of 10 m and rebounded to a 
height of 5 m. Assuming that it remained in contact with the ground 
for 12 ms, what was the average force it exerted on the ground? 
(g = 9.8 m s-2 .) 

Considering the ball as it fell downwards, 

u = 0, a = 9.8, s = 10, v = ? 

Substituting in 

we obtain 

V 2 = 2 X 9.8 X 10 

which gives 

v = 14.0 m s-1 downwards at impact 

Considering the ball as it rebounded upwards, 

v = 0, a = - 9.8, s = 5, u = ? 

Substituting in 



we obtain 

0 = U 2 + (2 X (- 9.8) X 5) 

which gives 

u = 9.9 m s-1 upwards after impact 

The change in velocity due to the impact was therefore 23.9 m s-1 

(i.e. from 14.0 m s-1 downwards to 9.9 m s-1 upwards). This took 
place over a period of 12 x 10-3 s and corresponds to an average 
acceleration of 

23.9 - 2 0 X 103 -2 
12 x 10-3 - • m s 

Therefore, 

F = rna = 0.1 X 2.0 X 1Q3 = 200 N 

Newton's third law states that action and reaction are equal and 
opposite. In other words, if one object exerts a force on another, then 
the second object exerts an equal but opposite force on the first. For 
instance, viewing Newton's third law in terms of his law of gravitation 
(Equation 2.1 on page 12), we can say that the earth exerts a 
gravitational force on an apple above its surface and the apple exerts 
an equal and opposite gravitational force on the earth. If the apple is 
released, the second law tells us that 

force = rnapple X aapple = rnearth X aearth 

That is to say, the apple will fall towards the earth and, at the same 
time, the earth will fall towards the apple though its acceleration 
(aearth = force/rnearth) will be infinitesimal because its mass is so large. 

The third law applies equally well to objects in contact. If the apple 
is lying on the ground, it presses downwards with a force equal to its 
weight and the ground reacts with an equal and opposite force on the 
apple. When a motor car tyre pushes backwards on the road, there is 
an equal and opposite reaction as the road pushes forward on the tyre 
- and the car moves forwards. 

The laws of motion help us where vertical forces and acceleration 
are involved. Let us imagine an object of mass rn resting on the floor 
of a lift. If the lift is stationary or moving with uniform velocity (i.e. 
a= 0), then there can be no net vertical force acting on the object, 
because F =rna= 0. The object exerts a downward force rng on the 
floor and there is an equal and opposite reaction as the floor pushes 
upwards on the object. 
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If the lift starts to move upwards with a uniform acceleration a, 
then not only does it have to support the object's weight mg, it also 
has to support the additional force F = ma needed to make the object 
accelerate upwards. The floor of the lift therefore pushes upwards on 
the object with a total force (mg + ma) and the object experiences an 
apparent increase in weight. 

If the lift starts to move downwards with an acceleration a, then 
subsequent events depend on whether a is less than, equal to or 
greater than g, the acceleration due to gravity. 

If the lift is propelled downwards so that a is greater than g, then 
the object will be left behind and, neglecting the effects of the air, will 
fall freely with acceleration g (until the ceiling of the lift catches up 
with it). If the cable breaks, then a = g and the lift and the object will 
both fall freely together. 

If a is less than g, then the resultant force ma accelerating the 
object downwards will be its weight mg less the support it receives 
from the floor (i.e. its apparent weight), so that 

ma = mg - apparent weight 

Therefore, 

apparent weight = mg - ma 

We shall consider further consequences of Newton's laws in the 
next topic. 

Worked Example 6.4 

An object of 30 kg mass is being propelled across a horizontal surface 
with a horizontal force of 202 N. If the coefficient of kinetic friction is 
0.55, find the acceleration. (Assume g = 9.8 m s-2 .) 

frictional force = !J.kN = 0.55 x 30 X 9.8 = 162 N 

Therefore, 

resultant force = 202 - 162 = 40 N 

and 

a = Flm = 40/30 = 1.3 m s-2 



Worked Example 6.5 

A 6 kg mass is connected to a 3 kg mass by a string that passes over a 
frictionless pulley. Assuming that the string and pulley have no effect 
on the motion of the system, find the tension in the string and the 
acceleration of the masses. (Assume g = 9.8 m s-2 .) 

The weights experienced by the masses are 58.8 Nand 29.4 N, as 
shown in Figure 6.1. Since the pulley is frictionless, the tension Tin 
the string will be uniform along its length. Clearly the 6 kg mass will 
fall and the 3 kg mass will rise with the same acceleration. Taking this 
direction (with the pulley rotating anticlockwise) as positive, then the 
net force acting on the 6 kg mass is (58.8- T) and, from the second 
law, 

F (58.8- T) a = - = ...:...._ __ ____:. 
m 6 

Similarly, for the 3 kg mass 

F (T- 29.4) a = - = ...:...._ __ ___;_ 
m 3 

Since a is the same in both cases 

(58.8 - T) (T- 29.4) 
6 3 

which gives 

T = 39.2 N 

and, from above, 

a = (58.8 - T) = (58.8 - 39.2) = 3_3 m s_2 

6 6 

Questions 

(Where necessary assume that g = 9.8 m s-2 .) 

1. If an apple weighing 1.0 N falls to the ground, what is 
the acceleration of the earth towards the apple? (Mass 
of the earth = 6.0 x 1024 kg.) 

T 

58.8N 

Figure 6.1 

Force and Motion 55 

T 

29.4N 



56 Foundation Science for Engineers 

2. What is the acceleration of an 18 kg mass upon which 
a force of 27 N is being exerted? If it starts from rest, 
how long does it take to cover a distance of 50 m? 

3. A mass of 8 kg is being pulled by a force of 34 N in the 
3 o'clock direction and by a force of 18 N in the 9 
o'clock direction. If its initial speed is 15 m s- 1 , how 
long does it take for it to reach 30 m s- 1? 

4. A horizontal force of 247 N is applied to an object of 
25 kg mass resting on a level surface. Assuming f.ts = 
l-tk = 0.60, what distance does the object travel in 10 s? 

5. A 22 kg mass is subjected to three forces: 12 Nat 0°, 
18 N at 45° and 24 N at 90°. Find its acceleration. 

6. A 6 kg mass on a frictionless horizontal surface is 
subjected to two forces: 14 Nat 30° and 17 Nat 60°. If 
it starts at rest, what point will it reach after 12 s? 

7. An object of mass 4.5 kg accelerates at a rate of 
2.0 m s-2 when acted upon by a force of 35 N parallel 
to the horizontal surface which supports it. Find the 
coefficient of kinetic friction between the object and 
the surface. 

8. A catapult is used to throw a 50 g stone horizontally 
with a velocity of 14 m s-1 • If the catapult sling had 
been drawn back through a distance of 550 mm, esti­
mate the average force it exerted on the stone when it 
was released. 

9. A 10 kg mass hangs from a string which can support a 
maximum load of 200 N. What is the maximum accel­
eration that can be used to raise the mass vertically by 
pulling the string without breaking it? 

10. A 10 g projectile exerted an average force of 100 Non 
its target, which it penetrated to a depth of 0.5 m. 
Estimate its velocity on impact. 

11. A passenger of 60 kg mass stands in a lift which 
accelerates upwards at 0.5 m s-2 • Find (a) the passen­
ger's apparent weight, and (b) the tension in the lift 
cable. (The mass of the empty lift is 840 kg.) 



TOPIC 7 MOMENTUM 
AND IMPULSE 

COVERING: 

• linear momentum; 
• momentum, force and impulse; 
• the principle of conservation of momentum. 

Linear momentum is a physical quantity that provides another 
approach to the behaviour of objects in motion. It is a vector quantity 
obtained by multiplying the mass of an object by its velocity. It 
therefore has the unit kg m s-1 • Its direction is the same as that of the 
velocity of the object. The word linear is used to distinguish it from 
the angular momentum of a rotating body, which we shall meet later. 
The use of the word 'momentum' alone implies linear momentum, 
and that is the convention we shall adopt here. 

Newton's second law of motion is often stated in a form telling us 
that the rate at which the momentum of an object changes with time 
is proportional to, and in the same direction as, the net force acting 
upon it. If the velocity of an object of mass m changes from u to v, 
then the change of momentum is given by (mv - mu ). If this change 
is brought about by a net force F acting on the object for a period of 
timet, then, using SI units, the second law can be expressed in the 
form 

F = (mv- mu) 
t 

(7.1) 

Note that, in the case of retardation, u will be greater than v and 
that, in any case, u and v may have positive or negative values, 
depending on the reference direction chosen. F may therefore have a 
negative value, which simply means that it is acting in the opposite 
direction to that originally chosen as being positive. Also note that 
( v - u) It gives the acceleration a, so Equation (7 .1) can be reduced 
to the form we used in the last topic. Thus, 

(v- u) 
F= m = ma 

t 
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Rearranging Equation (7 .1), we find that 

Ft=(mv-mu) 

Ft represents the impulse given to the body which changes its 
momentum. Impulse is a vector quantity like momentum and has 
the unit N s, which is, as the equation suggests, equivalent to 
momentum. (Remember that, by definition, 1 N = 1 kg m s-2 , so 1 
N s = 1 kg m s- 1 .) Note that a small force exerted over a long period 
can provide the same change in momentum as a large force over a 
short period. (It is better to fall onto a mattress than a concrete floor, 
because the same change in momentum is spread over a longer period 
and the average retarding force is correspondingly smaller.) 

We now have three ways of viewing Equation (7.1): 

force = mass x acceleration 

force = change of momentum per unit time 

impulse = force x time = change of momentum 

The last of these leads us to a very important principle. Consider 
two objects which collide. According to Newton's third law, the force 
exerted by object A on object B will be equal and opposite to that 
exerted by B on A. Their respective impulses Ft must therefore be 
equal and opposite (since tis the same for both) and so must their 
respective changes in momentum. The total momentum of the system 
therefore remains constant. This principle, which is true for any 
system with any number of interacting objects, is known as the 
principle of conservation of momentum. It can be stated in the form 
that the total momentum of a system of interacting bodies remains 
unchanged as long as no external resultant force acts upon it. 

This applies to all types of collisions, either where the objects 
involved move apart afterwards or where they stick together. If two 
objects of mass m1 and m2 collide with initial velocities u1 and Uz, 
respectively, and then continue on their separate ways with velocities 
v1 and v2 , their total momentum remains constant. Thus, we have 

(7.2) 

If the objects stick together, then Equation (7 .2) becomes 

where vc is the velocity of the combined masses. 
The principle can also be applied to a bullet fired from a gun. The 

momentum of the bullet is equal and opposite to the momentum of 
the gun as it recoils, so the total momentum remains zero: 



Similarly, the thrust of a rocket motor results from the momentum of 
its exhaust gases. 

Worked Example 7.1 

An object of mass 9.0 kg moves in a straight line at 5.0 m s-1 and 
collides with another object of mass 5.0 kg moving at 3.0 m s-1 in the 
same direction. 

(a) If the 5.0 kg object moves on at 5.5 m s-t, find the velocity of 
the 9.0 kg object. 

(b) If the objects stick together, find the velocity of the combination. 

Taking the common direction of motion of the objects as positive and 
substituting the given values, 

(9.0 X 5.0) + (5.0 X 3.0) = (9.0 X V1) + (5.0 X 5.5) 

which gives 

v1 = 3.6 m s-1 (in the same direction). 

Taking the common direction of motion of the objects as positive and 
substituting the given values, 

(9.0 X 5.0) + (5.0 X 3.0) = 14.0 X Vc 

which gives 

vc = 4.3 m s-1 (in the same direction) 

Worked Example 7.2 

An object of 5.0 kg mass moving in the 9 o'clock direction at 10.0 
m s-1 collides with an object of 2.0 kg mass moving in the 3 o'clock 
direction at 7.5 m s-1 • What is their final velocity if they stick 
together? 
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Taking the 3 o'clock direction as positive and substituting the given 
values, 

(5.0 X (- 10.0)) + (2.0 X 7.5) = 7.0 X Vc 

which gives 

Vc = - 5.0 m S-1 

the minus sign indicating that v c is in the opposite direction to that 
chosen as positive. 

Worked Example 7.3 

A ball of 100 g mass fell vertically to the ground with an impact 
velocity of 14 m s-1 and rebounded at 10 m s-1 • Assuming that it 
remained in contact with the ground for 12 ms, what was the average 
force it exerted on the ground? 

F=m(v-u) 
t 

Taking the upward direction as positive and substituting the given 
values, 

F = 0.1 (10 - (- 14)) = 200 N 
12 x w- 3 

Worked Example 7.4 

If, in Worked Example 7.2, the 2.0 kg mass had been moving in the 
12 o'clock direction at 7.5 m s-t, what would the combined final 
velocity have been? 

Since the momenta of the objects are vector quantities, their 
resultant can be found from the momentum diagram in Figure 7 .1. 
From the diagram 

R = V50.<f + 15.<f = 52.2 kg m s-1 

Therefore, 



""""- --- -I --1 ..................... R 
------ 2.0kgx7.5ms-1 

- - 1 -- -c----- = 15.0 kg m s 

I (J ----.. --.. 
5.0 kg x 10.0 m s- 1 = 50.0 kg m s- 1 

Figure 7.1 

velocity= momentum/mass= 52.2/7.0 = 7.5 m s- 1 

and 

e = tan- 1 15.0/50.0 = 17° 

i.e. 163° anticlockwise from the positive x-axis. 

Questions 

(Where necessary assume that g = 9.8 m s-2.) 

1. What force is required to uniformly accelerate a 1000 
kg vehicle from 40 km per hour to 60 km per hour in 
10 s? 

2. A projectile of mass 10 g exerts an average force of 
20 N on its target as it is brought to a halt 0.05 s after 
its initial impact. Estimate the magnitude of its impact 
velocity. 

3. A bullet of 15 g mass leaves the muzzle of a 5 kg rifle 
at 450 m s-1 • Find the recoil velocity of the rifle. 

4. An object of 6000 kg mass, initially at rest, is sub­
jected to a steady force of 1000 N for a period of 2 
min. Assuming linear motion under frictionless condi­
tions, calculate the object's final velocity. Compare its 
momentum with that of a 2000 kg mass after they have 
both been subjected to the same 1000 N force for a 
period of 3 min. 

5. An object of 10 kg mass falls from a height of 10 m. 
Estimate the average retarding force acting upon it if 
it falls onto (a) a concrete floor which stops it in 0.01 s, 
and (b) a mattress which stops it in 0.06 s. 

6. Water emerging from a 12 mm diameter horizontal 
pipe at 4.0 m s-1 strikes a vertical wall normal to its 
surface. What is the force exerted on the wall, assuming 
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that all the momentum of the water is lost on impact. 
(Pwater = 1 X 1()3 kg m-3.) 

7. A 3.00 kg object, at rest on a smooth frictionless 
horizontal surface, is struck by a bullet travelling hori­
zontally at 370 m s-1 • The bullet is embedded in the 
object and they move off together at 4.27 m s-1 • 

Assuming motion in a straight line, find the mass of 
the bullet. 

8. A 10 kg object falls vertically onto a 25 kg object 
travelling at 20 m s- 1 in the 3 o'clock direction on a 
smooth horizontal frictionless surface. Find their com­
bined velocity. 

9. A 5 kg object is moving at 5 m s-1 in the 3 o'clock 
direction on a smooth horizontal surface. A 50 g 
bullet fired from the 6 o'clock direction strikes the 
object at 400 m s- 1 and becomes embedded in it. 
What is their joint final velocity? 

10. A rocket motor producing a thrust of 5.4 kN burns 
fuel at a rate of 3 kg s-1 • At what speed are the 
exhaust gases being ejected? 



TOPIC 8 WORK, ENERGY 
AND POWER 

COVERING: 

• energy as the capacity to do work; 
• potential energy (including strain energy); 
• kinetic energy; 
• the principle of conservation of energy; 
• power and efficiency. 

8.1 WORK 

When an object moves under the influence of a force, then work is 
done according to the equation 

W= Fx s (8.1) 

where W is the work done, Fis the force (N) and sis the displacement 
(m) in the direction of the force. The SI unit of work is the joule (J), 
which is a scalar quantity defined as the work done when the point of 
application of a force of 1 N moves 1 m in the direction along which it 
is being applied. If the force is applied at an angle to the displace­
ment, as in Figure 8.1, then we must use the magnitude of its 
component in the displacement direction, in which case Equation 
(8.1) becomes 

w = Fcos eX s (8.2) 

where e is the angle which the force makes with the displacement. 
If e = 0°, then cos e = 1 and we have Equation (8.1). If 8 = 90°, 
cos e = 0, so the force has no component and can do no work in the 
displacement direction. 

Worked Example 8.1 

A box is pulled a distance of 15 m across a level floor by a force of 237 
N applied to it via a rope inclined at 25° above the horizontal (as in 
Figure 2.7 on page 19). How much work is done? 

1----- s ---· 

:; ~---- ------ -)fJ--
'"- -' (J 

/// F 
/ 

OR 

:~/~---------- 1__ ·--' EJ~L 
Figure 8.1 
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W=Fxcos8xs 

and substituting the values given, 

W = 237 X COS 25° X 15 = 3.2 kJ 

Note that there must be both force and displacement for work to be 
done. If an object is moving with uniform velocity with no net force 
acting upon it, then there is no work being done on it or by it. Nor is 
any work being done if the object remains stationary, no matter how 
large a force there might be acting on it. 

8.2 ENERGY 

Energy, which is also a scalar quantity measured in joules, is the 
capacity to do work. It exists in many forms (electrical energy, 
mechanical energy, thermal energy, and so on) and is transformed 
from one form to another when work is done. (There is also energy 
associated with mass in accordance with Einstein's theory of relativity 
but we shall not consider it here.) 

In effect, we can regard energy as being stored by a system when 
work is done on it, or as being changed into another form, or forms, 
when work is done by a system. In the present context we shall 
consider potential energy and kinetic energy as representing mech­
anical work stored by an object by virtue of its position and motion, 
respectively. 

8.3 POTENTIAL ENERGY 

In the broadest sense, the potential energy of a system is derived 
from the relative position of its components. An apple hanging from 
a tree has potential energy. It has the capacity to do work by virtue of 
its position above the ground; it could, for example, be connected to 
a generator so that its.. potential energy is converted to electrical 
energy as it falls. In fact, the potential energy is possessed by the 
earth/apple system because of the gravitational force between them 
but, in view of the infinitesimal influence of the apple on the earth, it 
is more sensible to think in terms· of the apple's potential energy in 
the earth's gravitational field. 

The potential energy stored by an object by virtue of its height 
above the ground (or any other reference level) can be regarded as 
the work done in raising it against its weight mg through a vertical 
distance h. That is to say, 

potential energy ( = W = Fs) = mg X h (8.3) 



The potential energy of the object remains constant anywhere on an 
equipotential surface at any fixed height above a given reference level. 
It follows that, since horizontal movement has no effect on the 
potential energy, the route taken by an object to reach a given height, 
no matter how circuitous, has no effect on its final potential energy. 

It is often helpful to be able to view work and energy in pictorial 
terms. The plot of force against displacement in Figure 8.2(a) gives a 
graphical description of how potential energy is stored in raising an 
object of weight mg vertically to a height h. Since the force required 
( = mg) is constant, the plot is a horizontal straight line of length hat 
a distance mg above the x-axis. The rectangle under the line therefore 
has an area mg x h which, as Equation (8.3) shows, represents the 
work done and, hence, the final potential energy of the object. 

F F 

-- s-
(a) (b) 

Figure 8.2 

Strain energy, stored in a stretched wire, for example, can be 
treated in a similar way. Figure 8.2(b) represents the linear (i.e. 
proportional) relationship, following Hooke's law, between the 
stretching force F and the extension 1:1/ (see Topic 2). (In effect, the 
extension is the displacement of the point of application of the force 
at the free end of the wire.) Like the potential energy example in 
Figure 8.2(a), the work done in stretching the wire is represented by 
the area under the graph. 

We can think of this area as the sum of a very large number of 
extremely narrow strips (a few of which are shown in Figure 8.2b). 
Each strip is so narrow that it can be regarded as a rectangle where F 
is virtually constant. F, however, varies from one rectangle to the 
next, so we can regard the area under any force/displacement graph, 
no matter what its shape, as being made up of these narrow rec­
tangles each representing a tiny amount of work done. In the case of 
a wire to which Hooke's law applies, the heights of the rectangles 
increase uniformly to give a triangle under the graph with an area 
equal to Vz(F x 1:11) representing the work done and, hence, the 
strain energy stored in the wire. 
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Worked Example 8.2 

From Figure 2.1 (page 14) find the energy stored in the wire when it is 
stretched by a force of 60 N. 

Taking the extension to be 4.3 mm at 60 N, 

strain energy = ~ x F x ill= ~ x 60 x 0.0043 = 0.13 J 

8.4 KINETIC ENERGY 

From Equation (5.4) (page 41) we know that if an object is acceler­
ated from rest (i.e. u = 0) to a speed v, then v2 = 2as, so the 
acceleration it experiences is given by a = v2/2s. From Newton's 
second law of motion, the force required to produce this acceleration 
in a body of mass m is 

vz 
F=ma=mx-

2s 

and, rearranging, 

1 Fs =- mv 2 
2 (8.4) 

where Fs is the work done in accelerating the object to velocity v. 
V2mv 2 therefore represents the kinetic energy stored by an object by 
virtue of its motion. Since the kinetic energy of an object depends on 
v 2 , then doubling v will increase its kinetic energy by a factor of 4 and 
trebling v will increase it by a factor of 9, and so on. 

If the object had had an initial velocity u and, therefore, an initial 
kinetic energy 1/2mu 2 , then the work done to bring about the change 
in kinetic energy in accelerating or retarding it to velocity v would 
have been 

(8.5) 

Worked Example 8.3 

An object of mass 5.0 kg falls to the ground from a height of 10.0 m. 
Find its total energy (a) initially, (b) half-way down and (c) im­
mediately before impact. (Assume g = 9.8 m s-1 and that the air has 
no effect.) 



(a) Initially, at a height of 10.0 m, the object possesses only 
potential energy and 

mgh = 5.0 X 9.8 X 10.0 = 490 J 

(b) After falling 5.0 m, the velocity of the object (from Equation 
5.4) is given by 

v 2 = 2gs = 2 x 9.8 x 5.0 = 98 

so its kinetic energy is 

1 1 2 mv 2 = 2 x 5.0 x 98 = 245 J 

Its potential energy (5.0 m above the ground) is given by 

mgh = 5.0 X 9.8 X 5.0 = 245 J 

The total energy of the object is the sum of its kinetic energy and its 
potential energy, which is equal to 

245 + 245 = 490 J 

(c) Immediately before impact (after falling 10.0 m) the potential 
energy of the object is zero and its velocity is given by 

v 2 = 2gs = 2 x 9.8 X 10.0 = 196 

so its total energy is entirely kinetic energy, given by 

1 1 2 mv 2 = 2 x 5.0 x 196 = 490 J 

(Note that the total energy of the object remains constant as it 
falls.) 

Worked Example 8.4 

If, in Worked Example 8.3, the object penetrates the ground to a 
depth of 50 mm after impact, estimate the average retarding force. 

v = 0, s = 0.05 and, from Worked Example 8.3, u = v'I%. 

Fs = 1._ mv 2 - 1._ mu 2 
2 2 
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Therefore, taking downwards as the positive direction, 

mu 2 5.0 X 196 
F = - - = - - 9.8 kN 

2s 2 X 0.05 

(The minus sign indicates that the force acts upwards.) 

8.5 CONSERVATION OF ENERGY 

Although energy can be changed from one form to another, the 
principle of conservation of energy tells us that it cannot be created or 
destroyed. Worked Example 8.3 illustrates how the total energy of a 
falling object remains constant as its gravitational potential energy is 
traded for kinetic energy. Car engines change chemical energy (in 
petrol) into mechanical energy, electric generators change mechan­
ical energy into electrical energy, and so on. 

In practice, energy transformation always involves wastage. Much 
of the chemical energy stored in petrol is wasted in the form of heat as 
a by-product of providing a motor car with kinetic energy. Even a 
falling mass will not normally reach its theoretical velocity (hence, its 
theoretical kinetic energy) because of the air; and lifting the mass in 
the first place involves losses due to friction and raising moving parts 
of the lifting gear. Nevertheless none of the energy is truly lost, only 
changed into unwanted by-products. 

Some energy changes are not so obvious. In the last topic we saw 
that momentum is conserved in collisions. But some, or even all, of 
the kinetic energy may be transformed. A collision between steel 
ball-bearings will be almost perfectly elastic; any kinetic energy con­
verted to strain energy around the contact points will be recovered 
as the balls spring apart, although there might be slight losses in the 
form of heat or sound energy. At the other extreme, inelastic colli­
sions can involve total kinetic energy loss. Two identical lumps of 
putty colliding with equal and opposite velocities (and momenta) 
along the same line will stick to each other and come to rest, so that 
all their kinetic energy is lost as heat and sound. 

8.6 POWER 

Power is a scalar quantity which gives the rate at which energy is 
transformed or work is done. The unit of power is the watt (W), 
which is equivalent to one joule per second, so 

W (watts) = J s-1 = N m s-1 = N x m s-1 

N x m s-1 are the units of force times velocity. That is to say, if an 



object moves at a velocity v under the influence of a force F, then the 
mechanical power delivered to the object is F cos e X v' where e is 
the angle between the line of action of the force and the direction of 
motion. 

(Note that 1 horsepower is a unit of power that is equivalent to 
746 W.) 

8.7 EFFICIENCY 

The efficiency of a machine or a process is given by the ratio between 
the useful energy output and the energy input, commonly expressed 
as a percentage. A motor that requires 1.0 kW of electrical power to 
provide 0. 75 kW of mechanical power has an efficiency of 

0.75 
1.00 

X 100 = 75% 

Questions 

(Where necessary assume that g = 9.8 m s-2.) 

1. 735 J is available to raise an object off the ground. 
What is the largest mass that can be lifted to a height 
of 15m? 

2. An object of 12.5 kg mass rests on a smooth (friction­
less) horizontal surface. Calculate the work done if a 
50 N force is applied to the object for a period of 10 s 
(a) parallel to the surface, (b) vertically upwards. 

3. An object of 3 kg mass is travelling with a uniform 
velocity of 12m s-1 across a smooth horizontal surface 
when a force of 38 N is suddenly applied in the dis­
placement direction. What is the velocity of the object 
after it has travelled a further 30m? 

4. An object of 15 kg mass travels at 40 m s-1 across a 
smooth horizontal surface. Find the retarding force 
needed to bring it to a halt in a distance of 50 m. 

5. An object 15 m above the ground has a potential 
energy of 735 J and a kinetic energy of 12.25 kJ. What 
is its speed? 

6. What is the efficiency of a pump which uses 1.5 kW 
of electrical power in raising 85 litres of water 
through a height of 12m in 10 s? (1litre = 1000 cm3 

and Pwater = 1000 kg m -3 .) 

7. A ball-bearing suspended from a weightless thread 
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swings to and fro so that its highest point is 94 mm and 
its lowest point is 32 mm above the table top. Find its 
maximum velocity. 

8. An 80 kg man climbs a staircase 3 m high in 9.8 s. If he 
worked just as hard to drive a pedal-operated gener­
ator with an efficiency of 75%, how much electrical 
power would he produce? 

9. An object of mass 2.5 kg, resting on a horizontal 
surface, is subjected to a horizontal force of 20 N. If 
f.ls = f.lk = 0.49, find the velocity of the object after it 
has travelled 10 m. 

10. What is the power consumption when an object is 
pushed 16 m up a 26° slope in 12 s by a horizontal 
force of 50 N? 



TOPIC 9 MOTION IN A 
CIRCLE 

COVERING: 

• angular displacement, velocity and acceleration; 
• angular equations of motion; 
• centripetal force and acceleration. 

So far we have tended to think about objects that are either at rest or 
moving in straight lines. Now we need to consider circular motion 
and find angular equivalents of the linear parameters that we have 
already met. 

9.1 ANGULAR DISPLACEMENT, VELOCITY AND 
ACCELERATION 

Let us begin by assuming that an object is moving round a circular 
track at a constant speed. 

There are two easy ways of describing its displacement over a given 
period. As Figure 9.1 suggests, we can use the distances it has moved 
round the circumference from its starting point. Alternatively we can 
use the angular displacement 8, i.e. the angle through which the 
radius has moved. 

The SI unit for the measurement of angles is the radian (rad). In 
terms of Figure 9.1, the angle 8 in radians is given by the length of the 
arcs divided by the radius r. Thus, 

8 = _!__ rad 
r (9.1) 

It follows that 1 rad is the angle where s = r and that a linear (as 
opposed to angular) displacement round the circumference is given 
by s = r8. Note that for one complete lap of the circles = 2nr and 

2nr 
8 = --= 2n = 6.28 rad 

r 

/ ..... 
/ 

£':\ I 

I 

I 

I 

' / 

' / ..... / 

Figure 9.1 
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which is equivalent to 360°; therefore, 1 rad = 57.3°. Angular velocity 
w is the rate of angular displacement with time t and 

e w = - rad s-1 

t (9.2) 

This can also be written in terms of the object's linear speed v ( = sit) 
around the circumference of the circle, since by combining Equations 
(9.1) and (9.2) to eliminate ewe have 

s 
w=--­

r x t 

and because v = sit 

v w=-
r (9.3) 

Note that the object's linear speed is related to its period T (the time 
for one complete revolution) by the expression v = 21triT, i.e. the 
circumference divided by the time taken to travel round it. Substitut­
ing wr for v (Equation 9.3), 

21tr 
wr=--

T 

Therefore, 

21t 
T=­

w 
(9.4) 

Now let us imagine that the angular velocity of the object is varying 
uniformly with time. If w changes from W1 to w2 in timet, then the 
angular acceleration a is given by 

(9.5) 

From Equation (9.3), (w2 - W1) = (v2 - V1)1r, so that 

a= 

and, since the linear acceleration a round the circumference of the 
circle is given by (v2 - v1)1t, then 

a a=-
r (9.6) 



Thus, angular displacement, velocity and acceleration can all be 
obtained by dividing their linear counterparts by the radius r. 

9.2 ANGULAR EQUATIONS OF MOTION 

In Topic 5 we obtained four equations (5.1- 5.4) giving relationships 
between displacement (s), velocity (u and v), uniform linear accelera­
tion (a) and time (t). By using similar arguments (or by dividing each 
linear quantity by r) we can obtain four equivalent equations for 
motion in a circle where 8 replaces s, w1 and W2 replace u and v, 
respectively, and a replaces a. Thus, we have 

(02 = W 1 + at (9.7) 

8 
( W1 + W2) 

t (9.8) 
2 

1 
8 w1t + -at 2 (9.9) 

2 
(02 

2 w12 + 2a8 (9.10) 

Worked Example 9.1 

A car with 500 mm diameter wheels moves in a straight line at 85 km 
per hour. How fast do the wheels turn (a) in rpm (revolutions per 
minute), and (b) in rad s-1? 

Converting km per hour tom s-t, the linear speed of any point on 
the wheels' circumference is given by 

1000 
85 x -- = 23.6 m s-1 

3600 

and 

circumference = 2n x 0.25 = 1.57 m 

Therefore, 

(a) the number of revolutions per minute is given by 

linear speed 23.6 
---=--X 60 =-X 60 = 900 
circumference 1.57 

and 
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(b) from Equation (9.3) 

v 23.6 
oo = - = -- = 94 rad s -1 

r 0.25 

Worked Example 9.2 

A wheel initially at rest experiences a uniform angular acceleration of 
5 rad s-2 for 6 s. It maintains a constant angular velocity for 14 sand is 
then brought to rest in 5 s by a uniform angular retardation. Find the 
total angular displacement. 

Acceleration stage: 

(1}1 = 0, t = 6, a = 5, e = ? ' (1}2 = ? 

From Equation (9.9) 

1 1 9 = 001 t + 2 ae = 2 X 5 X 36 = 90 rad 

From Equation (9. 7) 

oo~ = oo1 + at = 5 X 6 = 30 rad s -1 

Constant velocity stage: 

(1}1 = (1}2 = 30, t = 14, a = 0, e = ? 

From Equation (9.9) 

9= 30 x 14 = 420 rad 

Retardation stage: 

oo1 = 30, oo2 = o, t = 5, e = ? 

From Equation (9.8) 

( (1}1 + 002) (30 + 0) 
9 = t = X 5 = 75 rad 

2 2 

Therefore, 

total angular displacement = 90 + 420 + 75 = 585 rad. 

(Now compare this with Worked Example 5.2 on page 42.) 
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9.3 CENTRIPETAL ACCELERATION AND FORCE ve 

For an object to move in a circle, there must be an inward force 
acting on it to overcome its natural tendency to follow a straight line. 
This centripetal (i.e. centre-seeking) force can be provided in many 
ways. For example, by gravitation, as in keeping the moon orbiting 
round the earth, or by the tension in a piece of string used to swing an 
object round in a circle. At any instant the object is moving in the 
direction given by the tangent to the circle at that point, so that, in 
the case of the second example, if the string breaks, the object will fly 
off along the tangent. The object is suddenly liberated from the 
centripetal force provided by the tension in the string, so it will 
continue in a straight line (or it would do in the absence of gravity). 
Centripetal force is also provided by friction between the tyres and 
the road when a car turns a corner. 

An object moving in a circle experiences a change of velocity, even 
though its linear speed might be constant, because of the continuous 
change in its direction. Change of velocity means acceleration, and 
for acceleration we need a force such as the tension in a string 
continuously pulling an object away from a straight path. This cen­
tripetal acceleration must be distinguished from the angular accelera­
tion a and its linear counterpart (which in any case would both be 
zero if w is constant). Let us consider how it can be quantified. 

Figure 9.2(a) shows the path of an object moving round a circle of 
radius r at constant linear speed. In moving through an angle 8 
(equivalent to a linear distances) its velocity changes from v A to vB in 
time t. Its change in velocity ( vB - v A) is represented vectorially in 
Figure 9 .2(b); note that the direction of v A is reversed to make it 
negative, so that 

(The angle between v A and vB is 8, since this is the angle between the 
respective radii which they meet perpendicularly in Figure 9.2a.) 

8 is shown as a large angle for clarity. If we make it very small, then 
the straight line representing the change of velocity (vB - v A) in 
Figure 9.2(b) will merge with the dotted curve which represents the 
arc of the circle of radius v (where vis the magnitude of v A and vB). 
Thus, if 8 is in radians, then, to a very close approximation, Equation 
(9.1) gives us the change of velocity (vB - vA) as v8, which, since 
8 = sir from Figure 9.2(a), is equal to vs/r. Since s = vt, 

v 2t 
change of velocity = -

r 

and the magnitude of the associated centripetal acceleration ac is 
therefore given by 

f) 

(a) 
I 

(b) 

Figure 9.2 
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change of velocity v 2t 1 a= =-X-
c t r t 

Therefore, 

v2 
a=-

c r 

Furthermore, since v 2 = ro 2r 2 (from Equation 9.3), 

v2 {1)2 ,2 

ac = - = - = {I) 2 r 
r r 

(9.11) 

(9.12) 

If e is made extremely small, so that v A and vB virtually overlap, then 
( vB - v A) is perpendicular to the tangent at that point and is therefore 
directed towards the centre of the circle along the radius. The instan­
taneous acceleration therefore acts towards the centre of the circle. 

If the mass of the object is m, then the centripetal force acting on it 
is given by Newton's second law as follows: 

v2 
F ( = mac) = m X r (9.13) 

or 

(9.14) 

where ac is obtained from Equations (9.11) and (9.12), respectively. 
As noted earlier, centripetal force can be provided in a number of 

ways. Figure 9.3 shows an object of mass m swinging round in a 
horizontal circle of radius ron the end of a string, fixed at the top, 
which makes an angle of qJ with the vertical. At a given linear speed v 

-----------
Figure 9.3 

I 
I 

-------"l 

I 
Tcos cp 

·------------
Tsin cp 

mg 



the horizontal component of the tension T in the string provides the 
centripetal force, so that 

mv 2 

Tsin qJ = -­
r 

The vertical component of T supports the weight of the object, so 
that 

Tcos qJ = mg 

Putting these together, 

~! T sin qJ ) mv 2 1 
tan~.p = =--x-

Tcos qJ r mg 

Therefore, 

vz 
tan~.p=­

gr (9.15) 

We can use a similar approach to banking a curved road to reduce 
the risk of skidding. Figure 9.4(a) shows the end view of a car of mass 
m travelling at a linear velocity v round a curve of radius r banked at 
an angle qJ. The horizontal component of the normal force N acting 
on the car provides the centripetal force, the vertical component 
supports the car's weight, and putting them together as above again 
gives tan qJ = v 2/gr. So, for a given curve (where qJ and rare fixed), 
there is a particular linear speed v, independent of the car's mass, 
where friction makes no contribution to the centripetal force. (Note 
that friction is still needed to prevent the car from slipping inwards at 
lower speeds and outwards at higher speeds.) 

As Figure 9 .4(b) suggests, the same equation applies to an aircraft 
making a banked turn; the vertical component of the lift force L 
experienced by the wings supports the aircraft's weight, while the 
horizontal component provides the centripetal force. 

Going back to the car, if the road is horizontal ( 1.p = 0°), then 
friction has to supply all the centripetal force. If the tyres are not 
slipping, then the contact area can be assumed to be instantaneously 
at rest. Therefore, the maximum possible centripetal force F corres­
ponding to the maximum possible linear speed v is given by 

so 

mv 2 

F = JJ..N = JJ..mg = -­
r 
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mv 2 1 V 2 

J.ls=--X--=--
r mg gr 

and the maximum possible linear speed to negotiate the curve of 
radius r without skidding is given by~-

Finally, let us briefly consider what happens when the object in 
Figure 9.3 moves through a vertical circle rather than a horizontal 
one. In this case the object, the string and its fixing point at the centre 
all lie within the plane of the circle. At the top of the circle the 
centripetal force is provided by the tension T in the string plus the 
object's weight, so that 

mv 2 

-=T+mg 
r 

and 

mv 2 

T=--mg 
r 

(9.16) 

Obviously there is a critical value of v where mg equals mv 2/r and the 
tension in the string is zero, so that the object only just manages to 
complete the circle. If v is even slightly below this value, the object 
will start to fall before it reaches the top. The same basic argument 
applies to swinging a bucket of water around vertically without spill­
ing it. 

At the bottom of the circle the weight of the object acts away from 
the centre, so T must provide the centripetal force and support the 
weight of the object, so that 

mv 2 

T=-+mg 
r 

(9.17) 

In this case v must not be too large; otherwise the string may break. 

Worked Example 9.3 

Find the period of rotation of an object swinging round in a horizon­
tal circle of 500 mm radius on the end of a string 1300 mm long (as in 
Figure 9.3). (g = 9.8 m s-2 .) 

The vertical distance of the plane of rotation below the suspension 
point is given by 

VL32 - 0.5 2 = 1.2 



Therefore, 

0.5 v 2 v 2 

tan <p = -- = -- = -----
1.2 gr 9.8 X 0.5 

which gives 

v = 1.43 m s-1 

but, since v = 2rcr!T, 

2rcr 2rc X 0.5 
T=-- = = 2.2s 

v 1.43 

Worked Example 9.4 

(a) Find the minimum linear velocity for the object in Worked 
Example 9.3 to maintain continuous circular motion in a vertical 
plane. (b) If the mass of the object is 250 g, and if its linear velocity 
remains the same as in (a), then find its apparent weight at the 
bottom of the circle. (g = 9.8 m s-2.) 

(a) The minimum value of vis where the tension in the string is 
zero, so that, from Equation (9.16), 

mv 2 

--=mg 
r 

Therefore, 

v = vrg = v'1.3 x 9.8 = 3.6 m s-1 

(b) Substituting vrg for v in Equation (9.17), 

mrg 
T = -- + mg = 2mg = 2 X 0.25 X 9.8 = 4.9 N 

r 

which is the apparent weight of the object exerted on the string (i.e. 
twice its actual weight). 
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Questions 

(Where necessary assume that g = 9.8 m s-2 .) 

1. If the minute hand of a clock is 115 mm long, find the 
linear speed at its tip. 

2. A record-player turntable takes 1.8 s to reach 33i­
rpm from rest. How many revolutions does this take? 

3. The moon's mass is 7.3 x 1022 kg and its orbit round 
the earth has an average radius of 3.8 x 108 m and a 
period of 27 days. Estimate the magnitude of the 
gravitational force between the earth and the moon. 

4. A truck travels round a circular track of 80 m radius at 
a uniform linear speed of 10 m s -1 • Find the angle to 
which the track would need to be banked to eliminate 
the need for radial friction. 

5. An object is turning through a vertical circle of 0.69 m 
radius on the end of a string. Find the minimum 
angular velocity required to maintain circular motion. 

6. If the mass of the object in the previous question is 0.1 
kg, estimate the minimum possible breaking strength 
of the string. 

7. Estimate the angle at which an aircraft should be 
banked to make a horizontal turn of 3.5 km radius at a 
speed of 450 km per hour. 

8. What is the tension in the string in Worked Example 
9.3 if the mass of the object is 190 g? 

9. A rotating shaft experienced an angular acceleration 
of 10 rad s-2 over a period of 8 s, during which time its 
angular displacement was 400 rad. What were its in­
itial and final angular velocities? 

10. An aircraft loops the loop with a radius of 750 m at a 
constant linear speed of 360 km h-1 • What is the mag­
nitude of the force exerted by the seat on a 70 kg pilot 
(a) at the top, and (b) at the bottom of the loop? 



TOPIC 10 ROTATION OF 
SOLIDS 

COVERING: 

• moment of inertia; 
• angular momentum; 
• rotational kinetic energy; 
• torque, work and power. 

In the previous topic we considered the translational motion of an 
object, treating it as a particle moving round a circular path. Now we 
shall consider a solid object, such as a shaft or a flywheel, rotating 
about an axis without necessarily moving from one place to another. 

We have already met the idea that an object resists change in its 
state of translational motion because of its inertia. In an analogous 
way, an object resists change in its rotational state because of its 
moment of inertia. 

10.1 MOMENT OF INERTIA 

Figure 10.1 represents a solid object rotating about a fixed axis 0 ( 
perpendicular to the page. Let us focus on a single component 
particle of mass m rotating about 0 at a distance r. If we want to 
change the speed of the particle, then, considering it separately from 
all the others, we would have to apply a tangential force to it (in the 
same direction as its motion) in accordance with Newton's second law Figure 10.1 

F= rna 

but, since a = ar (Equation 9.6 on page 72), then 

F= mar 

where a is the angular acceleration. 
In Topic 3 (Section 3.2) we saw that a torque about a point is found 

by multiplying the force producing it by the perpendicular distance of 
the line of action of the force from the point. The torque T needed to 
change the angular velocity of our particle is therefore given by 
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T = F X r = mar X r = mr 2a 

But the object consists of a large number of component particles, 
each with its own particular value of mr 2 , so the total torque needed 
to change the angular velocity of the object as a whole is given by 

where ~mr2 is the sum of the individual mr 2 values of all the 
component particles about the axis. (Note that ~ is simply a math­
ematical symbol meaning 'the sum of.) In fact, the quantity ~mr2, 
which is given the symbol I and has units of kg m2 , represents the 
moment of inertia of the object, so 

(10.1) 

This equation is the rotational version of Newton's second law where 
moment of inertia is analogous to mass. The greater the moment of 
inertia of a body the greater the torque needed to provide a given 
angular acceleration. 

Since the value of mr2 for each component particle in the object is 
the product of its mass and the square of its distance from the axis, it 
follows that the moment of inertia of a body depends on the way in 
which the total mass is distributed about the axis. Figure 10.2 shows 
some examples. If the total mass M is distributed in the form of a thin 

Rod 

Figure 10.2 

ML2 
1=-12 

I= MFf 
2 

I= MFf 
4 



hoop of radius R, and the axis of rotation passes through the centre of 
the hoop normal to its plane, then I= MR 2 , because all the component 
particles are at a distance R from the axis. For a given mass M, I 
increases as R 2 ; thus, the moments of inertia of a series of hoops of 
different sizes, but identical mass, increase rapidly with radius. For a 
solid disc rotating about the corresponding axis I = MR 212, which is 
less than for the hoop, because the mass is distributed closer to the 
axis. For this reason flywheels tend to have their mass concentrated at 
the rim, because this increases their moment of inertia. If the axis of 
rotation is changed, as on the right-hand side of Figure 10.2, then I 
changes, because the mass is distributed differently about it. For 
example, I= MR 2!4 for a thin solid disc with its axis of rotation along 
a diameter. 

10.2 ANGULAR MOMENTUM 

Angular momentum is the rotational counterpart of linear momen­
tum ( mv), which we met in Topic 7. Moment of inertia and angular 
velocity are the rotational counterparts of mass and linear velocity and 

angular momentum = Iw 

In Topic 7 we noted that Newton's second law can be expressed in 
terms of change of linear momentum. The same is true of angular 
momentum, since, from Equation (10.1), 

T = Ia = I ( Wz - wl) = lwz - /wl 
t t 

And, as with linear momentum, there is the principle of conservation 
of angular momentum, which states that the total angular momentum 
of a system remains constant if there is no net torque acting on it. 
Skaters make use of this principle to control the rate at which they 
spin. If they tuck their arms in close to their bodies, then their 
moment of inertia decreases, so their angular velocity increases in 
order to keep the value of Iw constant. Similarly, if they stretch their 
arms out, then their angular velocity decreases. 

10.3 ENERGY, WORK AND POWER 

A rotating object must possess kinetic energy, since its component 
parts are moving. As we might expect from its translational counter­
part (lfzmv 2), 

1 
rotational kinetic energy =- /w 2 

2 
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But this energy was originally provided in accelerating the object 
from an initial angular velocity of zero. Let us see how we can 
quantify the work done. 

Figure 10.3 shows a tangential force F that, in moving through the 
distances, has produced rotation through the angle H. In this case the 
work done W is given by 

W= Fx s 

and, since s = rH, 

W= FrO 

Therefore, since Fr = T (torque), we have 

W=TO 

If this is the work done in accelerating the object from rest to an 
angular velocity w, then 

1 
TO=- lw 2 

2 

Alternatively, TO might represent the energy transmitted over a 
period of time t through a rotating shaft, say from a turbine to an 
electric generator, in which case the power P transmitted is given by 

work Te 
P=--=-

time t 

and, since w = 0/t, 

P = Tw 

which is equivalent, in linear terms, to force times velocity. 
Finally, we should note that an object may possess both rotational 

and translational kinetic energy, as in the case of a round object 
rolling along the ground. 

10.4 SUMMARY 

The angular quantities that we have met in this topic are listed below 
(with their linear counterparts in parentheses): 

• moment of inertia I (mass m); 
• torque T = Ia (force F =rna); 
• angular momentum Iw (mv); 



• kinetic energy lfzloo 2 (Vzmv 2 ); 

• work T9 (Fs); 
• power Too (Fv). 

Worked Example 10.1 

Find the total kinetic energy of a 50 kg disc, 400 mm in diameter, 
rolling across a level surface at 70 rpm. 

Considering translational plus rotational motion, the total kinetic 
energy Ek is given by 

1 1 
E =- mv 2 + -Ioo 2 

k 2 2 

but since v = roo (Equation 9.3 on page 72) and I= lfunr 2 in this 
case 

then, on substituting, 

3 ( 70 ) 2 
Ek = 4 X 50 X (0.2)2 X 60x 2n: = 81 J 

Worked Example 10.2 

If the disc in the previous example is mounted as a flywheel, find the 
torque required to raise it from rest to 200 rpm in 5 revolutions. 

In this case I= Vzmr 2 and, on substituting, 

50 X (0.2)2 
I= = 1 kg m2 

2 

200 
200 rpm = -- x 2n: = 21 rad s-1 

60 

and 

001 = 0, 002 = 21, 9 = 5 X 231:, a = ? 
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so, from Equation (9.10) (page 73), 

(21)2 = 0 + (2 X a X 5 X 23t) 

which gives 

a= 7 rad s-2 

Therefore, 

T (=/a)= 1 X 7 = 7 N m. 

Worked Example 10.3 

The flywheel in the previous example, rotating freely (i.e. no external 
torque) at 21 rad s- 1 , is connected via a friction clutch of zero I to a 
second flywheel, with I= 2 kg m2 , that is at rest. Find (a) the final 
combined angular velocity, and (b) the heat energy dissipated in the 
clutch. 

(a) Angular momentum is conserved; therefore, 

and, substituting, 

(1 X 21) + 0 = (1 + 2) OOA + B 

which gives 

(b) Kinetic energy before engaging clutch is equal to 

Kinetic energy after engaging clutch is equal to 

1 1 
- JA+Boo A+B2 = - x 3 x 72 = 73.5 J 
2 2 

Therefore, the heat dissipated is equal to 

220.5 - 73.5 = 147 J 



Worked Example 10.4 

A shaft is being driven at a constant 200 rpm by a steady torque of 
7 N m. Find the power consumption. 

200 X 2Jt 
power= Tw = 7 x = 147 W 

60 

Questions 

1. A 5 kg disc, 200 mm in diameter, is mounted as a 
flywheel and rotates at 300 rpm. Find (a) its moment 
of inertia, (b) its kinetic energy, (c) its total kinetic 
energy, if it is allowed to roll across a level surface 
with the same angular velocity. 

2. A 12 g coin 30 mm in diameter is tossed so that it spins 
at 300 rpm about an axis along its diameter. Estimate 
its rotational kinetic energy. 

3. A steady torque of 12 N misapplied to a flywheel at 
rest that has a moment of inertia of 6 kg m2 • After 15 s 
what is (a) the angular displacement, (b) the angular 
velocity, (c) the work done, (d) the power consump­
tion and (e) the kinetic energy of the flywheel? 

4. Find the moment of inertia about the axis of rotation 
of an object, initially at rest, which is accelerated to an 
angular velocity of 180 rad s-1 in 15 s by a torque of 
15 N m. 

5. What is the angular acceleration of a flywheel with a 
moment of inertia of 18 kg m2 upon which a torque of 
27 N m is acting? If the flywheel starts from rest, how 
long does it take to turn through 50 rad? 

6. A 200 mm diameter flywheel rotating at 200 rad s-1 is 
brought to rest in 125 revolutions by a braking torque 
of 0.26 N m. Find the mass of the flywheel, assuming 
that it is a disc. 

7. A shaft, with I= 5 kg m2 , freely rotating clockwise at 
50 rad s-t, is connected via a friction clutch to a shaft 
with I = 10 kg m2 that is freely rotating anticlockwise 
at 100 rad s- 1• Find (a) their combined angular veloc­
ity and (b) the kinetic energy lost. 

8. A rod of negligible mass rotates horizontally about its 
centre with two identical masses attached, one at each 
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side, at equal distances from the axis of rotation. 
Assuming free rotation with no external torque ap­
plied, and an angular velocity of 40 rad s- 1 with the 
masses 500 mm apart, find the new angular velocity if 
the masses move to a position 550 mm apart as they 
rotate. 

9. Shaft A, driven at a constant 150 rad s-\ is connected 
via a friction clutch to shaft B, which has a moment of 
inertia of 0.04 kg m2 • Shaft B accelerates uniformly to 
the same angular velocity as shaft A over a period of 
0. 75 s. By consideration of the kinetic energy acquired 
by shaft B and the torque acting upon it, find the heat 
energy dissipated in the clutch. 

10. A round object of 2 kg mass and 750 mm diameter, 
starting from rest, takes 3.8 s to roll15 m down a 25° 
slope. Find (a) the object's final total kinetic energy 
and (b) its moment of inertia about the axis of rota­
tion; hence (c) establish whether it is a disc or a hoop. 



TOPIC 11 SIMPLE 
HARMONIC 
MOTION 

COVERING: 

• a mathematical model; 
• the simple pendulum; 
• vertical oscillation of a mass hanging from a spring; 
• damping. 

Having considered linear, circular and rotational motion, we now 
move on to vibrational motion, or oscillation, such as that of a 
pendulum, where an object is displaced from some central equilib­
rium position, then released so that it oscillates backwards and 
forwards about it. Such behaviour can often be described in terms of 
simple harmonic motion, which is characterised by an acceleration 
towards the equilibrium position that has a magnitude proportional 
to the displacement from it. 

11.1 A MATHEMATICAL MODEL 

Figure 11.1 provides the basis of a mathematical model of simple 
harmonic motion. 

The figure shows a point P moving round a circle of radius r with a 
constant linear speed v ( = wr). As P makes successive revolutions, 
the point X, i.e. the vertical projection from P onto the horizontal 
diameter, moves to and fro along it with simple harmonic motion 
about the centre. 

Before examining this idea more closely, note that the positive 
direction runs along the positive x-axis from the centre of the circle. 
The displacement X of the point X from the centre is given by r cos e. 
When X is to the left of centre, then the value of xis negative, since 
cos e is always negative on that side. Since X = r cos e and e = wt 
(Equation 9.2 on page 72), Figure 11.1 

x = r cos wt (11.1) 

We have implied here that e = 0 at t = 0, which is not necessarily 
true. If there is already an angular displacement, say <p, at timet= 0, 
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then 8 = (oot + <p). Also note that the maximum displacement, x = r 
or - r, is called the amplitude. 

Figure 11.2 illustrates how displacement varies with time. T, the 
unit of time used in the figure, is the period T = 2rt/oo that corre­
sponds to one complete oscillation (Equation 9.4 on page 72). As 
Figures 11.1 and 11.2 both imply, X is moving at its fastest through 
the central position, then it slows down until it stops and reverses 
direction at the maximum displacement, then it accelerates towards 
the centre- and so on. 

"j~ 
--Time~ 

Figure 11.2 

From Topic 9 we know that P must experience a centripetal 
acceleration(= oo 2r) inwards along the radius (Equation 9.12 on page 
76). The acceleration a of X is given by the horizontal component of 
the centripetal acceleration as follows: 

and, since x = r cos 8, 

(11.2) 

This means that, since oo is constant, the acceleration of X is pro­
portional to its displacement x. The negative sign indicates that the 
acceleration is directed towards the centre (i.e. in the negative 
direction when X is to the right of centre and xis positive, and in the 
positive direction when X is to the left of centre and x is negative). X 
therefore executes simple harmonic motion in accordance with the 
characteristics noted at the beginning of the topic. 

Now let us consider the force involved where a mass is moving with 
simple harmonic motion. If an object of mass m experiences an 
acceleration -oo 2x, then, from Newton's second law, it will experi­
ence a force F, given by 

Since m and oo are both constants, 

F=-kx (11.3) 

where the constant k ( = moo 2) represents the force per unit displacement. 
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This tells us that, in simple harmonic motion, the object experi­
ences a restoring force acting towards the central equilibrium point, 
which, like the acceleration, is proportional to the object's displace­
ment from it. Note that any oscillating mechanical system with a 
proportional relationship between the restoring force and the dis­
placement will execute simple harmonic motion. Now since oo = v'7diri 
(from above), the period of oscillation is given by 

2rr 2rr 
T=-=--

w Vk!m 

and therefore 

T = 2rr vm!k (11.4) 

The energy of the object is the sum of its potential and kinetic 
energies, which are continuously interchanging from 100% potential 
energy at the extreme positions to 100% kinetic energy at the centre. 
For example, Figure 11.3 shows how the total energy of a mass 
swinging to and fro at the end of a weightless string is its potential 
energy (mgh) at its extreme positions, where it is stationary, and its 
kinetic energy (lfzmv 2) at the central position, where it is at the lowest 
point of its travel. 

First let us consider the general case. The total energy of any object 
undergoing simple harmonic motion can be viewed in terms of the 
initial work done in displacing it from its central equilibrium position 
to one of the extreme positions prior to releasing it in the first 
instance. The work is done against the restoring force F, which, as we 
saw earlier, must increase proportionally to the displacement x. The 
potential energy stored by this process is therefore given by the area f 
1/zFx under the plot of displacing force (of magnitude F) against x in 
Figure 11.4. When the object is at its maximum displacement, where 

F 

Figure 11.3 

x ~ r, :hen its total energy E is given by I 

E =-Fr 
2 

and since the magnitude ofF is given by kr = mw 2r (see Equation 
11.3), then Figure 11.4 

(11.5) 

When the object is released and starts to move, its potential energy 
is traded for kinetic energy. Its potential energy at any given displace­
ment x is then given by lfzmoo 2x 2 , since this would have been the 
work needed to displace the object from rest at equilibrium to that 

--x--
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position. The kinetic energy of the object at that point will be the 
difference between its total energy and its potential energy 

1 1 1 
- mv 2 = - mOJ 2r 2 - - mOJ 2x 2 

2 2 2 

Therefore, 

so the magnitude of the velocity is given by 

(11.6) 

Equation (11.6) confirms our earlier observations about the vel­
ocity, i.e. that v is zero where x = r at the maximum displacement, 
and v has its greatest magnitude (OJr) at the centre. (In general, we 
shall try to avoid any possible confusion with the sign convention -
positive to the right for our model - by using the magnitudes of the 
quantities involved and specifying their directions where necessary.) 

Note that the rate at which a system oscillates is often expressed in 
terms of the frequency f, which is the reciprocal of the period T: 

1 
!=­

T 
(11.7) 

Frequencies are expressed in hertz (Hz), where 1 Hz is 1 cycle per 
second. Also note that, since OJ = 21t/T (Equation 9.4 on page 72), 
then 

OJ= 2rr,f (11.8) 

Worked Example 11.1 

A 950 g mass moves in simple harmonic motion with a frequency of 
20 Hz and an amplitude of 100 mm. Find 

(a) its maximum and minimum speeds and where these occur; 
(b) its maximum and minimum accelerations and where these occur; 
(c) its speed and acceleration 30 mm from the extreme positions; 
(d) the maximum restoring force acting upon it. 

(a) Since v = OJ V r2 - x 2 (Equation 11.6), the maximum speed 
occurs where x = 0 (at the central position); hence, v = OJr and, since 
OJ = 21tf (Equation 11.8), 



v = 2rtfr 

Substituting, 

v = 2rt x 20 x 0.1 = 12.6 m s-1 

The minimum speed, v = 0, occurs where x = r (at the extreme 
positions). 

(b) Since a = oo 2x towards the central point (Equation 11.2) and 
oo = 2rtf (Equation 11.8), the maximum acceleration occurs where 
x = r (at the extreme positions) and is given by 

a= 4rt2J2r 

Substituting, 

a = 4rt 2 x (20)2 x 0.1 = 1580 m s-2 (inwards) 

At the central position x = 0, therefore, a = 0. 
(c) From Equations (11.6) and (11.8) 

Therefore, 30 mm from the extreme positions, where x = 0.07 m, 

v = 2rt X 20 X Y O.F- 0.07 2 - 9 m s-1 

Furthermore, 

and, substituting, 

a = 4rt 2 x (20)2 x 0.07 = 1105 m s-2 (inwards) 

(d) Since the maximum acceleration occurs at the extreme posi­
tions, then so does the maximuin restoring force, which is given by 

and, substituting, 

F = 0.95 X 4rt 2 X (20)2 X 0.1 = 1500 N 

Now let us consider some practical examples of simple harmonic 
motion. 
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11.2 THE SIMPLE PENDULUM 

The simple pendulum consists of a mass m that swings through a 
small angle on the end of a string of negligible mass hanging from a 
fixed point (Figure 11.5). 

The figure shows the pendulum at a moment when the string makes 
an angle e with the vertical and the mass is displaced a distance x 
along an arc of radius L (where L is the length of the string). The 
weight mg is resolved into two components: mg cos e, supported by 
the tension in the string, and mg sine, which is the magnitude of the 
force F restoring the mass to the central position. If e is small, then 
sine is very close toe in radians (for example, 10° = 0.1745 rad and 
sin 10° = 0.1736). Thus, 

F = mg sine 

and, if e rad is small, 

F= mge 

and since, from the figure, e = x/L rad, 

mgx mg 
F=--=-Xx 

L L 

Therefore, 

F = kx, where k = constant= mg!L 

So, provided that the amplitude is small, the restoring force is 
proportional to the displacement and the pendulum will execute 
simple harmonic motion. Furthermore, since k = mg!L and therefore 
mlk = Llg then, from Equation (11.4), 

T ( = 2n vmik) = 2n YUg (11.9) 

which means that the period of oscillation of the pendulum depends 
only on its length, assuming that g is constant. 

Worked Example 11.2 

A 20 g bullet is fired at a 20 kg stationary target suspended by a rope. 
The bullet becomes embedded in the target, which subsequently 
swings to and fro in simple harmonic motion with period 4 s and 
amplitude 255 mm. Assuming the mass of the rope may be ignored, 
estimate the impact velocity of the bullet. 



Equation (11.6) tells us that the magnitude of the velocity of the 
swinging target is at its maximum value v = oor at the central position. 
Since oo = 23tf (Equation 11.8) and f ( = liT) = 1/4 = 0.25 Hz, and 
r = 0.255 m, then, at the central position, 

v = 2Jtfr = 2Jt x 0.25 X 0.255 = 0.40 m s-1 

Assuming the system is undamped (see below), this value of vis the 
combined velocity following the impact of the bullet on the target. 
The impact velocity of the bullet may therefore be obtained by 
consideration of the conservation of momentum. Where the sub­
scripts b, t and c refer to the bullet, the target and their combination, 
respectively, 

and, substituting, 

(0.02 X vb) + 0 = (20 + 0.02) X 0.40 

which gives 

11.3 A MASS HANGING FROM A SPRING 

Let us assume that the spring in Figure 11.6(a) obeys Hooke's law 
and is of negligible mass. If an object of mass m is suspended from the 
lower end and extends the spring by a distance d, then, at the 
equilibrium position in Figure 11.6(b), the tension in the spring is 
given by 

mg = kd 

(a) (b) (c) (d) 

T -------

Equilibrium----

Figure 11.6 
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where k ( = mg/d) is the stiffness of the spring (i.e. force per unit 
extension). 

If the object is raised slightly, then released so that it oscillates 
vertically, then at any subsequent displacement x the restoring force 
towards the equilibrium position will be the resultant of the object's 
weight pulling it downwards and the tension in the spring pulling it 
upwards. 

If the object is above the equilibrium position, as in Figure 11.6(c), 
then the tension in the spring is k(d- x) and the downward restoring 
force Rct is given by 

Rct = weight of object - tension in spring 

Therefore, 

Rct = mg - k(d - x) 

and, since mg = kd (from above), 

Rct = kd - kd + kx = kx 

If the object is below the equilibrium position, as in Figure 11.6(d), 
the tension in the spring is k(d + x) and the upward restoring force Ru 
is given by 

Ru = tension in the spring - weight of object 

Therefore, 

Ru = k( d + X) - mg 

and, since mg = kd, 

Ru = kd + kx - kd = kx 

Thus, the restoring force acts towards the equilibrium position and 
is proportional to the displacement, so the object will execute simple 
harmonic motion. 

Furthermore, since mlk = dig (from above), then Equation (11.4) 
gives 

T ( = 2n: Ymif) = 2n: v'd/g (11.10) 

Thus, the period of the oscillation depends on d, the extension at 
equilibrium, which can be varied by changing m. 



11.4 DAMPING 

There are many other examples of simple harmonic motion: for 
example, the oscillation of a vertical float of uniform cross-section in 
a liquid or of a liquid in a U-tube of uniform cross-section, or the 
rotational oscillation of a torsion pendulum (e.g. an object twisting 
about the vertical axis of a wire from which it is suspended). 

Many practical systems are more complex than our discussion 
might seem to suggest. For instance, restoring forces may not be 
proportional to displacement, and damping may be an important 
factor. 

So far we have assumed that the energy of the oscillating system 
remains constant and that we are dealing with free oscillations that 
continue indefinitely with constant amplitude. Damping causes the 
amplitude to decay, as in Figure 11.7, for example, because energy is 
lost to the surroundings. Even a simple pendulum will come to rest 
eventually because of the damping loss due to the frictional effect of 
air resistance. Mechanical energy is converted to heat energy and the 
temperature of the surrounding air increases. The pendulum in a 
clock loses energy by friction in the mechanism as well as to the air, 
and the damping losses are topped up by mechanical energy stored in 
a spring or a raised weight. 

l 
X 

! --Time___. 

Figure 11.7 

Damping is often deliberately introduced into mechanical systems. 
For instance, shock absorbers are used in a motor car to damp the 
suspension and minimise oscillation. 

Questions 

(Where necessary assume that g = 9.8 m s-2 • Assume free 
(undamped) oscillations.) 

1. Find the length of the simple pendulum with a period 
of (a) 1 s, (b) 2 sand (c) 4 s. 
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2. A spring is extended by 25 mm because of a load of 
500 g suspended from it. If the load is increased to 1 
kg and allowed to oscillate vertically, find the period 
of its oscillation. 

3. If the length of a simple pendulum is reduced by 1.2 m 
with the result that its frequency is doubled, what was 
its original length? 

4. A spring is extended by 20 mm because of a mass 
suspended from it. Find the frequency if the mass is 
allowed to oscillate vertically. 

5. Find (a) the maximum speed and (b) the maximum 
acceleration of an object moving in simple harmonic 
motion with a period of 2 s and an amplitude of 95 mm. 

6. If the period of vertical oscillation of a 0.80 kg mass 
suspended from a spring is 0.75 s, find the stiffness of 
the spring. 

7. An object is placed on a horizontal surface which 
oscillates vertically with simple harmonic motion. 
When the frequency is increased to 7 Hz, the object is 
on the point of losing contact with the surface. At 
what point of the cycle does this occur and what is the 
amplitude of the oscillation? 

8. A point that is moving with simple harmonic motion 
has a velocity of 5 m s- 1 at a distance of 12 m from its 
central position, and 12m s-1 at a distance of 5 m from 
it. Find the frequency of its oscillation. 

9. A 2.5 kg mass moves with simple harmonic motion at 
a frequency of 15 Hz and with an amplitude of 50 mm. 
Find (a) its total energy, (b) its maximum speed and 
(c) the maximum restoring force. 

10. The period of a torsion pendulum is given by the 
rotational analogy of Equation (11.4), where m is 
replaced by the moment of inertia and k by the 
torsional stiffness (i.e. torque per unit angular dis­
placement, N m rad-1). 

A rod, 1200 mm long, is suspended from its centre 
by a wire. A torque of 0.175 N m is required to turn 
the rod 10° about its suspension point. If the period of 
oscillation is 1.5 s, then, with reference to Figure 10.2 
(page 82), estimate the mass of the rod. 



TOPIC 12 MECHANICAL 
WAVES 

COVERING: 

• the description of mechanical waves; 
• reflection, refraction, diffraction and interference; 
• wave speed; 
• standing waves; 
• resonance. 

In the previous topic we considered the continuous interchange of 
potential and kinetic energy in oscillating systems where the total 
energy remains trapped or would remain trapped in the absence of 
damping. Figure 11.2 (page 90) shows a wave-like relationship be­
tween displacement and time for an isolated oscillating system of this 
kind. 

In this topic we shall consider wave motion via oscillations in a 
continuous medium which enables energy to be carried from one 
place to another. 

12.1 THE NATURE OF WAVE MOTION 

Figure 12.1 shows a rope, stretched horizontally, that is being forced 
to oscillate vertically at one end. The figure represents snapshots 
taken at intervals of a quarter of a period. The energy fed into one 
end of the rope is transferred from one part to the next in a progress­
ive (i.e. travelling) wave that moves towards the other end. 

The amplitude is half the total wave height from trough to crest. 
The wavelength is the distance between any two adjacent points along 
the wave train that are in phase, i.e. exactly 360° apart, such as from 
crest to crest or from trough to trough. If the frequency of the 
oscillation initiating the wave motion is f hertz, then the number of 
waves passing any particular point along their path is f per second. If 
the wavelength is A. metres, then the wave speed v (m s-1) is given by 

v =fA 

This is sometimes expressed in the form v 
period. 

(12.1) 

A.JT, where T is the 
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f Later 

f Later 

f Later 

Figure 12.1 

The type of wave in Figure 12.1 is described as transverse, because 
the oscillations are perpendicular to the direction in which the wave is 
travelling. By contrast, longitudinal waves involve oscillations which 
are parallel to the direction of travel, as shown in Figure 12.2. This 
figure might represent, say, a snapshot of successive pulses of tension 
and compression passing down the coils of a stretched spring as one 
end is forced to oscillate along its longitudinal axis. 

-+HI H-H- ~ I -1-1-1-H I ~1-1-1- ~ I 
..------Wavelength------.1 

Figure 12.2 

It is important to note that Figure 11.2 (page 90) represents 
displacement against time for a particular point, whereas Figures 12.1 
and 12.2 represent displacement against distance at a particular time. 

We shall use sound as one illustration of mechanical wave motion. 
Sound travels through air as longitudinal waves consisting of success­
ive compressions and rarefactions moving at about 340 m s-1 at 
frequencies in the range 20-20 000 Hz. Corresponding wavelengths 
therefore range from about 17m down to 17 mm. (Note that the pitch 
of musical notes is related to their frequency, based on 440 Hz for the 
A above middle C.) 



Forgetting the sensitivity of a listener's hearing, the loudness of a 
sound is determined by its intensity. This is measured in terms of the 
amount of energy that sound waves would carry in 1 second through a 
1 m2 aperture perpendicular to their direction of propagation. The 
unit of intensity is therefore W m-2 • (As a rough guide to magnitude, 
the threshold of hearing is about 10-12 W m-2 , conversation is about 
10-6 W m-2 and the threshold of pain about 1 W m-2 .) 

Sound waves normally tend to spread out in all directions from 
their source. A point source in a uniform medium lies at the centre of 
a series of expanding spherical wavefronts (i.e. surfaces of constant 
phase) rather like the ripples spreading out when a stone is dropped 
into a pond. This means that the intensity progressively decreases as 
the surface area of the wavefronts increases with their expansion. At 
a distance r from a sound source of power P watts the energy is 
distributed over the area of a sphere of radius r, which is equal to 
4:rtr2, so the intensity I at that distance is given by the inverse square 
relationship 

p 
I=-4:rtr2 (12.2) 

Surface waves on water depend on a combination of transverse and 
longitudinal motion. Figure 12.3 shows how individual water mol­
ecules move in circular orbits, completing one lap for each wave that 
passes. The figure represents a snapshot of one complete wavelength. 
As well as moving vertically, each molecule moves forwards with the 

Figure 12.3 

wave on the crest and backwards in the trough. Similar orbits occur 
below the surface, rapidly becoming smaller with depth. In shallow 
water these orbits interact .. with the bottom and the wave speed 
decreases as the depth decreases. If the waves continue to arrive with 
the same frequency, then the wavelength decreases in accordance 
with Equation (12.1); that is to say, if/= vlf... andfremains constant, 
then f... must decrease if v decreases. 

12.2 WAVE BEHAVIOUR 

Wave behaviour is conveniently demonstrated in a device called a 
ripple tank, which has a transparent bottom and contains a shallow 
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Figure 12.5 

Figure 12.6 

layer of water. Waves, or ripples, travelling across the surface of the 
water are viewed on a screen by passing light through the bottom of 
the tank. Figure 12.4(a) represents an overhead view of straight, 
parallel waves being generated by means of a horizontal bar, just 
dipping into the water, which is made to oscillate vertically. If a small 
sphere is used instead of the bar, as in Figure 12.4(b), then circular 
waves diverge from it like those from a stone dropped into a pond. 
The movement of the waves can be frozen with a stroboscope. 

(a) Bar_/ 

Figure 12.4 

---+ 
J\J'v 

)( 
Wave crests 

spreading outwards (b) 

Reflection, refraction, diffraction and interference are important 
aspects of wave behaviour which can be demonstrated with the ripple 
tank. 

Figure 12.5 shows reflection demonstrated by placing a barrier 
diagonally across the path of a train of straight, parallel waves. 

Echoes are simply reflections of sound waves. Sound is reflected 
from hard, flat surfaces in a similar way to light from a mirror (see 
Figure 13.3 on page 112); the angle of reflection is equal to the angle 
of incidence. 

The reflection of ultrasonic waves (i.e. those above the frequency 
range of the human ear) is used at sea for echo-sounding and in 
engineering for non-destructive testing, e.g. "for locating cracks. It is 
also used in medicine for forming images of the inside of the body. 

Figure 12.6 shows refraction, which is the change of direction a 
wavefront experiences when it passes obliquely through the interface 
between two media in which it has different speeds. This can be 
demonstrated in the ripple tank by placing a flat sheet of glass on the 
bottom so that the depth of water (hence, the wave speed and the 
wavelength) changes abruptly. It is important to remember that 
the frequency remains constant as long as the bar continues to oscil­
late at the same rate. 

Refraction explains why waves tend to reach the beach parallel to 
the shoreline. When a wave approaches at an angle from deep water, 



then the part of the wavefront closest to the beach slows first as it 
encounters shallow water, while the parts further out are unaffected 
and tend to catch up. As these start to slow, the part closest to the 
shore slows even further and the process continues as progressive 
refraction along the wavefront tends to turn it parallel to the shore. 

As we shall see in the next topic, refraction is an important aspect 
of the behaviour of light. 

Figure 12.7 

Figure 12.7 shows an example of diffraction in the ripple tank, 
where a straight, parallel wavefront passes through an aperture with a 
width that is similar to the wavelength. Waves passing through the 
aperture are diffracted - that is to say, they spread out from it with 
circular wavefronts just as though they had originated there. If the 
aperture is large compared with the wavelength, then the wavefronts 
pass through, straight and parallel, more or less unaltered apart from 
bending at the ends, where they are diffracted round the edges of the 
aperture. Because of their wavelength, sound waves are diffracted 
round the corners of buildings and by apertures such as doorways. 
The diffraction of light waves, which have wavelengths of less than a 
thousandth of a millimetre, operates on a much smaller scale, as we 
shall see in the next topic. 

Before moving on to interference, we need to take note of the 
principle of superposition, which tells us that, where two or more 
waves meet, the total displacement at any given point is the sum of 
their individual displacements. This general idea applies to any waves 
of the same type but not necessarily of the same shape or wavelength. 
Figure 12.8(a) shows two waves, identical in this case, which are 
exactly in phase and superpose constructively to give increased dis­
placement where they meet. On the other hand, Figure 12.8(b) shows 
that if the same two waves are exactly out of phase, they superpose 
destructively and cancel each other. Note that if two waves pass 
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(a) 

~-
'"XX.----------
Figure 12.8 

through each other, they will continue on their separate ways un­
affected by their temporary superposition where they met. 

Interference occurs as a result of the superposition of two or more 
coherent wave motions of comparable amplitude, such as those in 
Figure 12.8. (Coherent waves are those that have a constant phase 
relationship.) 

Figure 12.9 

Figure 12.9 shows waves originating from two small apertures so 
that their wavefronts overlap. 

Constructive interference occurs along the dotted lines where the 
two wave trains are exactly in phase; crest meets crest where the 
wavefronts cross and trough meets trough between the crests, to give 
correspondingly higher crests and deeper troughs, as in Figure 
12.8(a). 



Destructive interference occurs at those angles in between the dot­
ted lines, where the waves are exactly out of phase, i.e. where 
troughs meet crests and the waves cancel each other out, as in Figure 
12.8(b). 

12.3 WAVE SPEED 

Now we need to consider the speed of mechanical waves passing 
through matter. In the last topic we met the idea that mechanical 
oscillations involve the interconversion of potential and kinetic en­
ergy and depend on mass and on some kind of restoring force. These 
factors are also involved in the propagation of mechanical waves. For 
instance, the speed of a wave passing down a taut string is given by 

v= 1-£ (12.3) 

where v (m s-1) is the wave speed, F (N) is the tension in the string 
and mil (kg m-1) is the mass per unit length of string. If the tension is 
increased, then the force restoring any displacement in the string will 
be greater and will tend to return the string to its equilibrium position 
more quickly. A heavier string, with a greater mass per unit length, 
has greater inertia and will therefore be returned more slowly. 

Similar arguments apply to sound waves passing through matter. 
The speed of sound can generally be expressed in terms of the elastic 
behaviour and density of the medium as follows: 

v= 
elastic modulus 

density 
(12.4) 

Young's modulus (Topic 2) is used for the elastic modulus where 
longitudinal waves pass down a solid rod of small diameter relative to 
the wavelength. The stiffer the chemical bonds in the material the 
more rapid its response to the displacement of its constituent atoms. 
The less dense the material the less its inertia and the faster its 
response to restoring forces. 

In fluids, sound is transmitted by pressure changes, so the bulk 
modulus is used. Bulk modulus is a measure of the volume elasticity 
of a substance, as we shall see in Topic 20. 

The speed of sound in air at 1 atm is about 331m s-1 at 0 oc and 344 
m s-1 at 20 oc and, by comparison, about 1500 m s-1 in water and 
about 5000 m s-1 in steel. 

Interesting things happen when a sound source moves at a speed 
that is significant relative to the speed of sound. For example, the 
pitch of a car horn appears to drop as it passes a stationary observer. 
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Figure 12.10 

This is an example ofthe Doppler effect. Figure 12.10(a) shows that a 
stationary sound source remains at the centre of the spherical wave­
fronts that it produces, but in Figure 12.10(b), where the source is 
moving from left to right, it tends to catch up with the wavefronts 
ahead and leave behind those at the rear. Owing to the effective 
squashing and stretching of the wavelengths, a stationary observer 
hears a frequency that appears to be higher than the actual frequency 
as the source approaches and lower as it moves away. The Doppler 
effect also occurs if the source is stationary and the observer is 
moving. 

As the velocity is further increased, the wavefronts crowd closer 
together until at the speed of sound (Figure 12.10c) they can no 
longer outrun the source and so form a barrier which the source must 
penetrate to achieve supersonic speeds. Above the speed of sound, as 
in Figure 12.10(d), the source outstrips the wavefronts, leaving a 
conical shock wave behind it that is defined by the tangential en­
velope enclosing the wavefronts. This is the source of the sonic boom 
from supersonic aircraft. 

12.4 STANDING (STATIONARY) WAVES 

Standing or stationary waves, as opposed to progressive or travelling 
waves, are so called because they do not appear to move. They occur, 
for example, when a progressive wave is reflected straight back along 
its own path, so that it interacts with the wave moving forwards in the 
opposite direction. Under the right conditions the superposition of 
two identical progressive waves moving in opposite directions will 
cause a standing wave to be set up. 
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Standing waves are formed in taut strings where progressive trans­
verse wave trains move in opposite directions and are continuously 
reflected at either end to give patterns such as those illustrated in 
Figure 12.11. The figure represents the times when the displacements 
are at their maxima. There are points of zero displacement called 
nodes, which never vibrate, and points of maximum amplitude called 
antinodes. The solid and dotted lines indicate how the amplitude 
varies in between. The simplest mode of vibration, called the fun­
damental mode, has one loop corresponding to half a wavelength, so 
that A. = 2/, where I is the length of the string. For the first overtone, 
with two loops, A.= I; for the second overtone A.= 21/3; and so on. We 
can see that, in general, A. = 21/n, where n is the number of loops. The 
corresponding frequencies are given by f(= viA.)= vn/21, where vis 
the speed of the transverse waves in the string. 

These various frequencies, sometimes referred to as harmonics, 
are therefore simple multiples of the fundamental frequency; thus, 
the fundamental frequency is referred to as the first harmonic ( n = 1), 
the first overtone (n = 2) as the second harmonic, the second over­
tone (n = 3) as the third harmonic, and so on. 

Musical instruments produce mechanical standing waves (trans­
verse in strings and longitudinal in air columns) which cause progress­
ive longitudinal waves to spread through the surrounding air to the 
listener's ears. Although the predominant mode is usually the fun-
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damental, overtones are produced as well - and the combination of 
different amplitudes of the various overtones give different instru­
ments their characteristic sound quality. 

From above, the fundamental frequency of a taut string is given by 
f = v/21 (since n = 1), so, substituting for v from Equation (12.3), 

1 "(I? 
!= 21 V-;;;n (12.5) 

Thus, a string may be tuned to a particular fundamental frequency by 
varying its tension. The equation also suggests why long, heavy 
strings are used for low notes, and short, light strings for high ones. 

12.5 RESONANCE 

If an object is subjected to vibrations of a frequency that coincides 
with one of its own natural frequencies, then resonance occurs. Thus, 
a note sung near a piano will cause some of the strings to resonate or 
vibrate in sympathy. 

Resonance is of great interest to engineers. Sometimes it merely 
causes irritating vibrations, but sometimes it can be destructive, 
particularly when the energy supplied by the source exceeds the 
damping losses, so that the amplitude builds up. (As we know from 
experience, the amplitude of a pendulum or a swing can be greatly 
increased by pushing it quite gently in time with its own natural 
frequency.) Powerful singers are said to be able to break wine glasses 
by hitting a resonant frequency, and marching soldiers break step 
crossing bridges to avoid the same basic type of problem. Machinery 
can cause resonance in the floor that supports it, and some readers 
will have seen the famous film of the Tacoma Narrows suspension 
bridge collapsing because of resonance effects due to the wind. 

Questions 

1. A thin card produces a musical note when it is held 
lightly against the spokes of a rotating wheel. If the 
wheel has 32 spokes, how quickly must it rotate, in 
revolutions per minute, in order to produce the A 
above middle C (i.e. 440 Hz)? 

2. Assume the speed of sound in air to be 340m s-1 • 

(a) A clap of thunder arrives 5 s after the lightning 
flash. Assuming that light travels at infinite speed, 
how close is the storm? 

(b) Find the wavelength in air of the musical note C 
with the frequency 262 Hz. 



(c) How long does it take for the echo to reach a 
person who fires a gun while standing 68 m from 
the base of a cliff? 

(d) The wavelength of sound ranges from 17 mm up 
to 17 m in air. Find the corresponding frequency 
range. 

3. A person stands between two parallel cliffs and fires a 
gun. The first echo arrives after 1 s and the second 
after 2 s. How far apart are the cliffs? (Assume the 
speed of sound is 340m s- 1.) 

4. Two people are standing 85 m from the base of a 
straight cliff. One fires a gun and the other hears two 
reports, 0.75 sand 0.90 s after seeing the smoke. Find 
(a) the speed of sound and (b) the distance between 
the two people. 

5. Find the power output of a sound source which pro­
duces a sound intensity of 1.4 x 10-4 W m-2 at a 
distance of 25 m. 

6. An underwater sound source is operating at 256 Hz. 
Find the wavelength of the sound (a) under the water 
and (b) after it has passed through the surface into the 
air above. (Assume the speed of sound is 1460 m s-1 in 
the water and 340m s-1 in the air.) 

7. If the speed of transverse waves is 384 m s- 1 along a 
taut string 0.75 m long, find the fundamental frequen­
cy of the string and the frequency of its second and 
third harmonics. 

8. The length l of a wire under constant tension was 
adjusted by varying the distance between its two sup­
ports in order to tune it to various frequencies, as 
follows: 

f!Hz 250 300 350 400 450 500 

lim 0.877 0.730 0.629 0.549 0.490 0.440 

Manipulate the data to give a straight line relationship 
and, from a plot, read off the frequency correspond­
ing to l = 0.500 m. 

9. (a) If it takes 1. 9 ms for a sound pulse to travel down a 
steel rod of length 9.5 m and density 7.8 x 1()3 kg m-\ 
estimate the Young's modulus of the steel. 
(b) If E represents Young's modulus and p represents 
density, show that the base units of VEJP can be 
reduced to those of velocity. 
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10. A sound pulse enters one end of a lead rod and of 
an aluminium rod at the same moment. What must 
be the relative lengths of the rods if the pulse is 
to emerge from both simultaneously? (For lead E = 
1.6 x 1010 N m-2 and p = 1.1 x 104 kg m-3 , and 
for aluminium E = 7.0 x 1010 N m-2 and p = 2.7 x 103 

kg m-3 .) 



TOPIC 13 ELECTRO­
MAGNETIC 
WAVES 

COVERING: 

• the nature of electromagnetic waves; 
• reflection and refraction; 
• total internal reflection; 
• diffraction and interference; 
• polarisation. 

An electromagnetic wave can be considered as a progressive trans­
verse wave that consists of a fluctuating electric field coupled with a 
fluctuating magnetic field at right angles to it, as shown in Figure 
13.1. Don't worry if this seems a difficult idea at this stage; it will 
become clearer when we discuss electric and magnetic fields in later 
topics. For the moment the important thing to remember is that, 
unlike mechanical waves, electromagnetic waves do not necessarily 
require a medium for their propagation. They travel through empty 
space (vacuum) at a speed of very nearly 3 x 108 m s-1 , commonly 
called the speed of light (symbol c), and their frequency can be 
obtained from their wavelength via Equation (12.1) (v =fA). The 
speed of light in air is very slightly less than in vacuum but consider­
ably less in some other materials, as we shall see later. 

Figure 13.1 

Electric 
field 
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The electromagnetic spectrum (Figure 13.2) is divided into various 
types of waves (X-rays, light, radio waves, etc.) which we recognise 
from everyday experience. These have different names, because they 
are produced in different ways and have different effects, but the 
essential difference between them is their wavelength. The bound­
aries in the figure are approximate, since there are regions of overlap. 

In this topic we shall use light to illustrate the nature of electro­
magnetic waves. Like mechanical waves, they exhibit reflection, re­
fraction, diffraction and interference. And when they fall on the 
surface of an object they may be reflected by it, transmitted through 
it, absorbed by it, or some combination of the three. (They may also 
be scattered, but this is beyond the scope of our discussion.) 

Light occupies a narrow band of wavelengths between infrared and 
ultraviolet. Note that, in a similar way to pitch and sound frequency, 
colour is a sensation attributable to different wavelengths of light 
ranging across the colours of the rainbow from about 700 nm (1 nm = 
1 x 10-9 m) at the red end down to about 400 nm at the violet end. 
White light is a mixture of all these wavelengths. In white light a red 
object appears red because it reflects red light and absorbs the other 
colours; similarly, a red filter transmits red light. In white light white 
objects appear white because they reflect all the wavelengths and 
black objects appear black because they absorb them all. (The 
absorbed energy serves to increase the internal energy of the object, 
i.e. the kinetic and potential energy of its component particles (Topic 
16), and this usually results in a temperature rise.) 

13.1 REFLECTION 

Objects are made visible by light reflected from their surface. If the 
surface is rough, then it will appear dull because the reflected light is 
diffuse, i.e. reflected in all directions by surface irregularities. On the 
other hand, a smooth, fiat, shiny surface like a mirror will reflect a 
beam of light more or less intact. 

Figure 13.3 shows a ray representing the direction in which the 
waves are travelling in a beam of light that is being reflected by a 
mirror. (Note that the direction of a ray is normal to the wavefronts 
which it represents.) There are two laws governing reflection. One 
tells us that the incident ray and the reflected ray lie in the same plane 
with the normal to the reflecting surface where they meet. The other 
tells us that the angle of reflection is equal to the angle of incidence 
relative to the normal. 

Figure 13.4 illustrates how light rays diverging from an object form 
an image in a mirror which gives the impression that the object lies 
behind the reflecting surface. The direction of the rays changes where 
they are reflected by the mirror, but the observer interprets them as 
travelling in straight lines. 



Figure 13.4 

13.2 REFRACTION 

Figure 13.5 shows how light is refracted when it passes obliquely 
through the interface between two media in which it has different 
speeds. The first thing to note is that the incident ray, the refracted 
ray and the normal all lie in the same plane but, unlike reflection, the 
angle of refraction r is different from the angle of incidence i. 

The figure illustrates the case where the speed of light cis greater in 
medium 1 than in medium 2, i.e. c1 > c2 • Figure 13.5(b) enables us to 
find the relationship between i, r, c1 and c2 • This is less complicated 
than it might seem. Just follow the argument very carefully, a step at 
a time. 

(a) 

Incident 
ray 

Medium 1 
Medium 2 

Figure 13.5 

(b) 

Two parallel rays through X and Y approach the interface between 
the media at an angle of incidence i. Since C1 > c2 , any point on the 
wavefront XY slows down immediately it crosses the interface. If the 
wavefront travels from Y toY' in timet, then the distance YY' equals 
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c1t (i.e. speed x time). During the same interval the other end of the 
wavefront travels the correspondingly shorter distance XX', equal to 
Ci, through medium 2. The wavefront at X'Y' has therefore changed 
direction and the refracted rays are bent inwards towards the normal 
so that the angle of refraction r is less than the angle of incidence i. 
The greater the difference between c1 and c2 the greater the change of 
direction. 

Since the ray approaching X is perpendicular to the wavefront XY, 
and since the normal at X is perpendicular to the interface, then 
YXY' = i. By a similar argument XY'X' = r. It follows that 

YY' = XY' sin i = c1t 

and 

XX' = XY' sin r = C2t 

Therefore, dividing one equation by the other, 

sin i c1 (13.1) 
sin r C2 

Note that the rays in the figure are reversible and that light will travel 
along the same path in the opposite direction. In other words, Equa­
tion (13.1) still applies where c2 > cl> but in such cases r > i and 
refracted rays are bent away from the normal. 

13.3 REFRACTIVE INDEX 

Equation (13.1) is the basis of Snell's law, which tells us that, for two 
given media, sin i/sin r is a constant. This constant ( = c/c2) is called 
the relative refractive index 1n2 for waves passing from medium 1 to 
medium 2. 

The absolute refractive index n of a particular medium is given by 
the ratio between the velocity of light in vacuum, c, and the velocity 
of light in the medium, em, so that n = clcm. Therefore, C1 = cln1 and 
C2 = cln2 , so 

C1 c n2 n2 -=-X-=­
C2 n 1 c n 1 

and, substituting n2 1n1 for c1 /c2 in Equation (13.1), 

sin i n2 

sin r nl 
(13.2) 



At ordinary temperature and pressure the absolute refractive index 
of air has a value of 1.0003, so if medium 1 is air, then, to a very close 
approximation, Equation (13.2) reduces to sin i/sin r = n2 • 

To take a few examples, the absolute refractive index of water is 
1.33 and that of glass is typically about 1.5-1. 7, depending on its type, 
while that of diamond is about 2.44. 

Refractive index varies slightly with wavelength, so values are 
often quoted for monochromatic light (i.e. a single wavelength), 
commonly A. = 58g.3 nm, which is in the yellow part of the spectrum. 

Figure 13.6 illustrates how refraction accounts for the fact that 
objects submerged in water appear to be closer to the surface than 
they really are. Light rays from the object bend away from the 
normal where they leave the water but the observer interprets them 
as travelling in straight lines. This is also the reason why straight 
objects appear to bend upwards where they are partly under water. 

When light passing through one medium meets the interface with 
another of lower refractive index, then total internal reflection may 
occur. Figure 13.7 shows that at zero or relatively low angles of 
incidence ((a) and (b)) a light ray will pass through the interface and, 
except at i = oo, will be refracted away from the normal. When the 
angle of incidence is increased to the critical angle ic, as in (c), the 
refracted ray passes along the interface and r = goo. When the angle 
of incidence is greater than ic, as in (d), total internal reflection 
occurs, i.e. the ray is reflected from the interface. (Weak internal 
reflections may be seen for angles of incidence less than ic; hence the 
term total internal reflection for greater angles.) Substituting ic for i 
and goo for r in Equation (13.2), we have 

(13.3) 

If medium 2 is air, then, to a close approximation, the absolute 
refractive index of medium 1 is given by 1/sin ic. 

(a) (b) 

Figure 13.7 
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Figure 13.9 

Figure 13.8 

Figure 13.8 illustrates how total internal reflection traps light inside 
glass fibres so that it can be piped from one place to another. It also 
shows how prisms can be used for reflecting light in optical equipment 
such as periscopes and binoculars. 

13.4 PRISMS AND LENSES 

Figure 13.9 illustrates the deviation of light by refraction through a 
prism. Figure 13.9(a) shows a ray passing through a rectangular block 
of material. The path by which the light emerges from the block is 
parallel to the path by which it enters, because the deviation it 
experiences on entry is cancelled by the equal and opposite deviation 
on leaving. In the case of the prism in Figure 13.9(b), the angles are 
such that the ray is bent twice in the same direction and the deviation 
on leaving the prism is added to the deviation on entering it. 

Figure 13.10 shows how the behaviour of a lens can be viewed in 
terms of a series of prisms. Convex lens~s (thicker at the centre) are 
called converging lenses because they bend a parallel beam of light 
inwards so that it converges to a point called the principal focus (at F 
in Figure 13.10a). Concave lenses (thinner at the centre) are called 
diverging lenses because they bend a parallel beam of light outwards 
so that it seems to diverge from a principal focus (at F in Figure 
13.10b). 

(a) 

Figure 13.1 0 

.... _ 
..... -­..... ..... 

D 

(b) 

A prism will disperse a beam of light into a spectrum consisting of 
its component wavelengths. Dispersion is a consequence of the varia­
tion of refractive index with wavelength mentioned earlier. For many 



substances, refractive index increases with decreasing wavelength; 
thus, the violet end of the spectrum will be refracted through the 
greatest angle when white light is dispersed by a glass prism (Figure 
13.11). Raindrops disperse sunlight to form rainbows, and simple 
lenses produce images with coloured fringes because they focus diffe­
rent wavelengths at slightly different positions. 

Red 

Violet 

Figure 13.11 

13.5 DIFFRACTION AND INTERFERENCE 

If monochromatic light passes through a fine slit to illuminate two 
other fine slits, closely spaced and parallel to the first, then the double 
slit behaves as a pair of coherent sources which produce interference 
patterns, as represented in Figure 12.9 (page 104). The effect of 
constructive and destructive interference may be seen as alternate 
light and dark bands, parallel to the slits, that are known as Young's 
fringes (after Thomas Young, who demonstrated them in 1801). 

A diffraction grating consists of many uniformly spaced parallel 
slits, normally up to about 1000 per mm. These are made by ruling 
extremely fine lines on suitable materials such as glass, or more 
commonly (and more cheaply) by casting plastic replicas. (Reflection 
gratings are opaque and work with reflected rather than transmitted 
light.) 

Figure 13.12(a) represents light waves passing through a transmis­
sion grating with the diffracted wavefronts emerging from the slits. 
(Only some of the diffracted wavefronts are shown.) The dotted 
diagonal line represents the tangential envelope to a series of dif- d 

fracted wavefronts in which each is exactly one wavelength out of step 
with its neighbours. All the wavelengths along this line are therefore 
exactly in phase and reinforce one another. This produces a beam of 
diffracted light which deviates from the direction of the original beam 
by an angle 8. 

In Figure 13.12(b) d represents the distance between centres of 
adjacent slits. 8 is the angle of deviation of the beam, which is found 
when the path difference between adjacent wavefronts is equal to A, 

Electromagnetic Waves 117 

----- :7C 
\ 
\ 
\ y 

\ 
\ 
\ 

~ 
\ 

~~ 
(a) 

(b) 

the wavelength of the light. Simple trigonometry gives A = d sin 8. Figure 13.12 
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Hence, by knowing d and measuring 8, the wavelength can be calcu­
lated. If white light is used instead of monochromatic, then each 
component wavelength deviates to the angle given by the equation, 
with the result that a spectrum is obtained. As the equation tells us, 
the deviation will be greatest for the longer wavelengths towards the 
red end of the spectrum (as opposed to the case of the prism, where 
the shorter wavelengths suffer the greatest deviation). 

(a) 

Figure 13.13 

(b) 

Light 

Diffraction 
grating 

n=3 

As Figure 13.13(a) indicates, there are other tangential envelopes 
corresponding to path differences of 2/..., 3/..., and so on. In general, 
therefore, we have 

nA. = d sine (13.4) 

where n is the integral number of wavelengths that constitutes the 
path difference. This gives rise to first-, second- and third-order 
angles of diffraction where n equals 1, 2, 3, and so on, as indicated in 
Figure 13.13(b). Note that there will be a zero-order beam along the 
centre line where the path difference is zero and e is therefore zero. 
On the other side of this there will be a second series of diffraction 
angles, symmetrical with the first, arising in precisely the same way 
but with the tangential envelopes facing the other direction, as 
shown. If white light is used, then corresponding orders of spectra 
will be seen (apart from a zero-order band of white light along the 
centre line, where n = 0 and e = 0). 



Note that, since sine cannot exceed 1, nJ... cannot exceed d, which 
places a limit on the number of orders which can be obtained. 

13.6 POLARISATION 

The polarisation of light is best explained by a mechanical analogy 
using the rope in Figure 12.1 (page 100). Normally transverse waves 
of any orientation would travel along the rope, but if it is threaded 
through a vertical slot, then only vertical waves will be able to pass 
through. Similarly, a horizontal slot will only transmit horizontal 
waves. A vertical slot followed by a horizontal slot will stop any 
transverse waves but would have no effect on longitudinal waves (for 
example, those passing along a stretched spiral spring threaded 
through them). 

Polaroid, the material used in certain types of sunglasses, acts as 
the optical equivalent of a slot, and two pieces of Polaroid crossed at 
90° will stop light passing through. In a beam of unpolarised light the 
electric field vibrates at all angles within the plane perpendicular to 
the direction in which the light is travelling. In polarised light these 
vibrations are confined to one particular direction. As the nature of 
longitudinal waves suggests, they cannot be polarised. 

Polarisation occurs on reflection from certain surfaces and Polaroid 
sunglasses can be used to cut down glare from the reflected light. 
Some transparent plastics will polarise light when they are under 
stress; these can be used to make models of engineering components 
which enable internal stress patterns to be made visible. 

Questions 

(Assume that c = 3.00 x 108 m s-1 .) 

1. If an electromagnetic wave has a period of 
1.96 X 10-15 s, in what part of the spectrum does it lie? 

2. Find the wavelengths transmitted by radio stations 
broadcasting on (a) 97.6 MHz and (b) 1215kHz. 

3. A source produces light of frequency 4.57 x 1014 Hz. 
What is the wavelength of the light (a) in air and (b) in 
water. (Assume nwater = 1.33.) 

4. (a) If a light beam enters the surface of a smooth pond 
at 55° to the normal, by how much will it be deflected 
from its original path? 
(b) If a light beam emerges from under the surface 
of a smooth pond at 55° to the normal, by how much 
has it been deflected from its original path? (Assume 
nwater = 1.33.) 
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5. What is the refractive index of a substance for which 
the critical angle in air is 49°? 

6. The refractive index of diamond was found to be 2.44, 
using monochromatic light of frequency 5.09 x 1014 

Hz. Find (a) the speed of light in diamond, (b) the 
wavelength of the monochromatic light in diamond, 
and the critical angle for internal reflection of 
diamond (c) in air and (d) in water. (Assume nwater 

= 1.33.) 

7. A fish's eye view concentrates everything above the 
water surface into a circle of light which subtends an 
angle of 98° at the eye. (a) Explain this by assuming 
nwater = 1.33. (b) What happens outside the circle? 

8. A source of monochromatic light gave a third-order 
angle of deviation of 48.6° with a particular diffraction 
grating. Find the first-order angle of deviation. 

9. Find the wavelength of monochromatic light giving a 
first -order angle of deviation of 17 .1 o using a diffrac­
tion grating with 500 lines per mm. 

10. What is the angular spread of (a) the first-order spec­
trum and (b) the third-order spectrum of visible light, 
from 390 nm to 740 nm, using a diffraction grating 
with 250 lines per mm? 
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TOPIC 14 ATOMIC 
STRUCTURE 
AND THE 
ELEMENTS 

COVERING: 

• the electron, the proton and the neutron; 
• the nucleus; 
• the electronic structure of atoms; 
• the elements and the periodic table; 
• atomic mass. 

So far our everyday general knowledge of gases, liquids and solids 
has provided us with sufficient background for our discussion. Now 
we have reached the point where we need to concern ourselves with 
the internal structure of matter. We shall start with atoms and see 
how differences in atomic structure lead to the various chemical 
elements such as hydrogen, carbon, oxygen, and so on. 

14.1 THE CONSTITUENT PARTICLES OF ATOMS 

Atoms are extremely small, with radii of about I0-10m. We can view 
their structure in terms of three constituent fundamental particles -
the electron, the proton and the neutron. These can be distinguished 
from one another by their mass and their charge (Table 14.1). 

Table 14.1 

Particle Mass/kg Mass/u Charge/C 

Electron 9.11 x w- 31 5.5 x w-4 -1.60 x w- 19 

Proton 1.67 x w- 27 1.0 + 1.60 x w- 19 

Neutron 1.67 x w-27 1.0 0 

Because these particles are so small, it is sometimes convenient 
to express their mass in terms of atomic mass units (symbol u), where 
1 u = 1.66 x I0-27 kg. (We shall see how we arrive at this value later in 
the topic.) Note that the mass of the electron can often be considered to 
be negligible compared with that of the proton and the neutron. 
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Most of us are aware of the fact that we can electrically charge 
certain objects such as plastic combs and pens by rubbing them on 
cloth so that they attract scraps of paper and hairs or even a thin 
stream of water running from a tap. There are two types of charge, 
positive and negative, and we need to remember that like charges 
repel each other, whereas opposite charges attract. The force be­
tween two charges obeys an inverse square law, called Coulomb's 
law, that is analogous to Newton's law of gravitation, which we met in 
Topic 2. In Topic 21 we shall see that this force, whether attractive 
or repulsive, is proportional to Q1Q/r, where Q1 and Q2 represent 
the magnitudes of the charges and r the distance between them. 
The unit of charge, which we shall define in Topic 24, is the coulomb 
(symbol C). 

As Table 14.1 shows, the charge on the electron is opposite but 
equal in magnitude to that on the proton. Atoms contain equal 
numbers of each and are therefore electrically neutral. (Neutrons are 
neutral, so they make no contribution to the balance of charge in the 
atom.) 

Now we need to give some thought to how these particles are 
arranged. 

14.2 THE NUCLEUS 

At the centre of the atom lies the nucleus, which contains all the 
protons and neutrons and therefore all the positive charge and most 
of the mass. The number of protons characterises the nucleus as 
being that of a particular element and is called the atomic number 
(symbol Z). Obviously there must also be Z electrons in a neutral 
atom. To take a few examples, hydrogen has an atomic number of 1, 
carbon 6, chlorine 17 and iron 26. The protons and neutrons are held 
together by an extremely powerful nuclear force that we shall not 
consider here other than to note that it is very much stronger than the 
repulsive coulombic force between protons. 

Light elements tend to have about equal numbers of neutrons and 
protons, but the neutron/proton ratio increases with atomic number 
to about one and a half for heavy elements. However, the number of 
neutrons varies for nuclei of the same element. This gives rise to 
isotopes, which are atoms with the same atomic number but which 
differ in the number of neutrons their nuclei contain. Thus, chlorine-
37 has 17 protons and 20 neutrons, whereas chlorine-35 has 17 
protons but only 18 neutrons. Note that the mass number (symbol A) 
is the total number of protons and neutrons in the nucleus (37 and 35 
in the case of these two examples). It follows that the number of 
neutrons in the nucleus is given by (A - Z). The convention for 
representing a particular atom, say of element X, is ~X. For example, 
the carbon-12 isotope is represented 1~C, where C is the chemical 
symbol for carbon (see Table 14.2 on page 127). 
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Nuclei have radii of approximately 1o-14 - 1o-15 m and are there­
fore tiny compared with the overall size of the atoms which contain 
them. Since they contain most of the mass, they are of extremely high 
density. 

14.3 THE ELECTRONIC STRUCTURE 

The relative size of the nucleus means that the atom is mostly empty 
space. Early models of the atom suggested that the electrons revolve 
in orbits around the nucleus like the planets round the sun, the 
attractive force between the positive nucleus and the negative elec­
trons providing the centripetal force. The total energy of the electron 
was viewed in terms of its potential energy due to its distance from 
the nucleus and its kinetic energy due to its motion. More recent 
developments have led to the idea of three-dimensional orbitals 
representing regions within the atom where the probability of finding 
an electron is high. 

Rather than try to picture the atom, we shall simply think of the 
electrons as being arranged in energy levels. These are traditionally 
called shells (numbered 1, 2, 3, etc.) and are divided into subshells. 
The first and lowest energy shell has one subshell (labelled 1s), the 
second shell has two subshells (2s and 2p), the third has three (3s, 3p 
and 3d) and the fourth has four (4s, 4p, 4d and 4!). (The use of the 
letters s, p, d and f has an historical basis.) Figure 14.1 shows these 
and higher subshells arranged in columns according to which main 
shell they belong. They are plotted vertically in order of increasing 
energy. Note that, from the 4s upwards, the subshell energy levels 
overlap between the main shells. 
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Figure 14.1 
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Each of the circles in the figure corresponds to one of the orbitals 
mentioned above and, in effect, represents an 'address' that can 
accommodate two electrons. Each s subshell can accommodate two 
electrons in one orbital, each p subshell can accommodate six in three 
orbitals, each d can accommodate ten in five orbitals and each f 
fourteen in seven. Note that two electrons occupying the same orbital 
must be of opposite spin. (In some respects an electron behaves as if 
it is spinning on its axis like a top; in terms of our simple model, it is 
as though the two electrons must spin in opposite directions, clock­
wise and anticlockwise, in order to coexist in the same orbital). 

We shall now make use of Figure 14.1 as the basis of a paper 
exercise where we picture the chemical elements as a series, built up 
by successively adding electrons to the subshells. As we might expect, 
the lowest energy levels are filled first. (We should bear in mind that 
there must be an equal number of protons and the appropriate 
number of neutrons added to the nucleus at the same time.) 

Table 14.2 shows the first thirty-six elements. Hydrogen has a 
single electron in the 1s subshell. The completion of this subshell with 
a second electron gives helium, whereupon the first main shell has its 
full complement of two electrons. The third electron enters the next 
lowest subshell, the 2s, to give lithium, and the fourth electron 
completes it, to give beryllium. The 2p subshell fills next to give the 
six elements from boron to neon. With neon the second main shell 
has its full complement of eight electrons. 

Complications begin in the third shell. The 3s and 3p subshells fill 
first to give the elements from sodium to argon. But, as Figure 14.1 
shows, the 4s subshell lies at a lower energy level than the 3d and 
therefore fills next to give potassium and calcium. The 3d follows 
then, at gallium, the 4p. This is as far as we need to go to get the 
general idea of viewing the elements in terms of filling subshells in 
order of increasing energy. 

A very important consequence of the overlap between energy 
levels is that the outermost main shell of any atom cannot contain 
more than eight electrons; as Figure 14.1 shows, d andfsubshells do 
not begin to fill until there are electrons present in a higher main 
shell. 

The actual number of electrons in the outermost main shell is of 
enormous importance in determining the properties of an atom. For 
example, Figure 14.2 shows the ionisation energy of the first twenty 
elements in order of increasing atomic number. The ionisation energy 
is simply the amount of energy that would be required to completely 
remove an outermost electron from an atom against the attractive 
force due to the positive charge on the nucleus. 

First, we can see that helium (He), neon (Ne) and argon (Ar) have 
high ionisation energies. This means that atoms of these elements are 
resistant to the removal of an outer electron and therefore have 
particularly stable electronic structures which make them extremely 
reluctant to combine chemically with other elements. This is reflected 
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Table 14.2 

Element Chemical Atomic ls 2s 2p 3s 3p 3d 4s 4p 
Symbol Number 

Hydrogen H 1 1 
Helium He 2 2 

Lithium Li 3 2 1 
Beryllium Be 4 2 2 
Boron B 5 2 2 1 
Carbon c 6 2 2 2 
Nitrogen N 7 2 2 3 
Oxygen 0 8 2 2 4 
Fluorine F 9 2 2 5 
Neon Ne 10 2 2 6 

Sodium Na 11 2 2 6 1 
Magnesium Mg 12 2 2 6 2 
Aluminium AI 13 2 2 6 2 1 
Silicon Si 14 2 2 6 2 2 
Phosphorus p 15 2 2 6 2 3 
Sulphur s 16 2 2 6 2 4 
Chlorine Cl 17 2 2 6 2 5 
Argon Ar 18 2 2 6 2 6 

Potassium K 19 2 2 6 2 6 1 
Calcium Ca 20 2 2 6 2 6 2 
Scandium Sc 21 2 2 6 2 6 1 2 
Titanium Ti 22 2 2 6 2 6 2 2 
Vanadium v 23 2 2 6 2 6 3 2 
Chromium Cr 24 2 2 6 2 6 5 1 
Manganese Mn 25 2 2 6 2 6 5 2 
Iron Fe 26 2 2 6 2 6 6 2 
Cobalt Co 27 2 2 6 2 6 7 2 
Nickel Ni 28 2 2 6 2 6 8 2 
Copper Cu 29 2 2 6 2 6 10 1 
Zinc Zn 30 2 2 6 2 6 10 2 
Gallium Ga 31 2 2 6 2 6 10 2 1 
Germanium Ge 32 2 2 6 2 6 10 2 2 
Arsenic As 33 2 2 6 2 6 10 2 3 
Selenium Se 34 2 2 6 2 6 10 2 4 
Bromine Br 35 2 2 6 2 6 10 2 5 
Krypton Kr 36 2 2 6 2 6 10 2 6 

in their name, the inert gases, sometimes called the noble gases. 
Table 14.2 shows that the outermost main shells of neon and argon 
contain the maximum number of eight electrons. Later we shall see 
that there are heavier elements with this outer octet which are mem­
bers of the same family. Note that helium is also an inert gas but can 
only possess two outer electrons, because the first main shell has no 
p subshell. 
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Lithium (Li), sodium (Na) and potassium (K) have low ionisation 
energies, which means that their outermost electrons are loosely 
held. Each of these elements has one more electron than the preced­
ing inert gas, and Table 14.2 reminds us that the extra electron starts 
a new main shell. This makes these elements particularly susceptible 
to chemical combination with others. This family, of which these are 
the lighter members, is called the alkali metals. 

Figure 14.2 shows that there is an increase in ionisation energy in 
building up from one alkali metal to the next inert gas. For example, 
it increases fourfold from lithium to neon, corresponding to atomic 
numbers from 3 to 10. This is hardly surprising, since the outer 
electron in lithium is attracted to the nucleus by the positive charge 
due to only three protons; the outer electrons in neon are attracted by 
ten protons, so we would expect them to be much more strongly held. 

Note that there is an overall decrease in ionisation energy from the 
first 'octave' of elements (lithium to neon) to the second (sodium to 
argon). This is due to a larger 'screen' of inner electrons shielding the 
outer electrons from the attraction of the nucleus and making them 
easier to remove. We can regard the electrons in hydrogen and 
helium as being in direct sight of the nucleus (and helium has the 
highest ionisation energy of all the elements). From lithium to neon 
there are two screening electrons in the first main shell. From sodium 
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to argon there are a total of ten, two in the first main shell and eight in 
the second, and there is a general reduction in ionisation energy. 

The abrupt decrease in ionisation energy from an inert gas to the 
succeeding alkali metal is due to the sudden increase in the number of 
screening electrons accompanying an increase of only one proton in 
the nucleus. 

14.4 THE PERIODIC TABLE 

The cyclical, or periodic, variation in ionisation energy that we see in 
Figure 14.2 is reflected in the periodic table, which is used to classify 
the elements. Table 14.3 shows the first 36 elements arranged in 
groups, corresponding to the vertical columns, according to the num­
ber of outer electrons they possess. The group I elements have one 
outer electron, the group II elements have two, and so on. By 
convention, the inert gases in column 8 are given the group number 0. 

· The s and p blocks dividing the first four horizontal rows corre­
spond to filling the sand p subshells in the first four main shells. Note 

Table 14.3 
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NUMBER 

Sc 
21 

I II III IV v VI 

s-BLOCK p-BLOCK 

------- I 

H I 
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l 1 I 
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Na Mg Al Si p s 
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K Ca Ga Ge As Se 
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Ti 
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v 
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Cr Mn Fe 
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Co Ni 
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-.. He .. 
2 

F Ne 
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Table 14.4 

I II 

H 
1 
Li Be 
3 4 METALS 
Na Mg 
11 12 

K Ca Sc Ti 
19 20 21 22 

Rb Sr y Zr 
37 38 39 40 

Cs Ba Hf 
55 56 72 

Fr Ra 
87 88 

that there are no p subshells in the first main shell and, although 
helium can only have two electrons, it is properly regarded as an inert 
gas and therefore placed in column 8. 

As we have already seen, following calcium (Z = 20), the 4p 
subshell does not fill until the 3d is complete. So, although the 
d-block elements from scandium to zinc (21 to 30) belong between 
calcium and gallium, they do not readily fit into the fourth row as it 
stands. Instead they form the first row of an inner series, called the 
transition elements, which fits in between groups II and III. 

Table 14.4 shows the full periodic table, which includes the sub­
shells above the 4p. Further transition elements occur where the 
higher d sub!'hells are being filled, and more complications begin with 
the lanthanide series, where the 4/ subshell fills before the 5d. 

We needn't concern ourselves with the detailed structure of the full 
periodic table here other than to note that we can still view it in terms 
of filling subshells in order of increasing energy. 

The elements below and to the left of the heavy line in Table 14.4 
are metals. Be careful to note that this division is not precise, because 
some elements close to the line show behaviour that is partly metallic 
and partly non-metallic. Before we can appreciate the distinction, we 
need some basic understanding of the chemical bonds that occur 
between atoms. But first let us take a closer look at atomic mass. 

VII 0 

He 
2 

B c N 0 F Ne 
5 6 7 8 9 10 

AI Si p s Cl Ar 
TRANSITION ELEMENTS 13 14 15 16 17 18 

v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 
23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 
41 42 43 44 45 46 47 48 49 50 51 52 53 54 

Ta w Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 
73 74 75 76 77 78 79 80 81 82 83 84 85 86 
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14.5 ATOMIC MASS 

As we noted earlier, mass on the atomic scale is measured in atomic 
mass units. By convention 1 u is taken to be equal to one-twelfth of the 
mass of the carbon-12 atom, which gives it the value 1.66 x 1o-27 kg. 
(For carbon-12, A = 12 and Z = 6, so this atom contains six neu­
trons and six protons in the nucleus and six electrons to balance the 
protons.) 

The relative atomic mass (atomic weight) of an element is the 
average mass per atom expressed in atomic mass units; it is relative to 
one-twelfth of the mass of the carbon-12 atom and it is an average 
value, since elements occur naturally as mixtures of their isotopes. 
Table 14.5 gives some examples. 

Table 14.5 

Element Symbol Atomic no. Relative atomic mass 

Hydrogen H 1 1.0 
Carbon c 6 12.0 
Nitrogen N 7 14.0 
Oxygen 0 8 16.0 
Sodium Na 11 23.0 
Aluminium Al 13 27.0 
Chlorine Cl 17 35.5 
Calcium Ca 20 40.1 
Iron Fe 26 55.8 
Copper Cu 29 63.5 
Zinc Zn 30 65.4 
Silver Ag 47 107.9 
Gold Au 79 197.0 

Although mass is measured in kg, the SI base unit for amount of 
substance is the mole (symbol mol), which is the amount containing 
a fixed number of the 'entities' that constitute the substance under 
consideration. This number, called the Avogadro constant, is 6.02 x 
1023 mol-1 whatever the substance happens to be. The entities might 
be atoms, or ions or molecules (which we shall meet in the next 
topic). Thus, 1 mol of water contains 6.02 x 10Z3 water molecules and 
1 mol of carbon contains 6.02 x 1023 carbon atoms. The mole is useful 
where the relative number of entities is important- for example, in 
studying a chemical reaction. 

It is a simple matter to convert moles to mass. For example, carbon 
has a relative atomic mass of 12.0 and carbon atoms therefore have 
an average mass of (12.0 x 1.66 x 1o-27) kg each. The mass of 1 mol 
of carbon, i.e. 6.02 x 1023 carbon atoms, is therefore given by 

6.02 X 1023 X (12.0 X 1.66 X 1o-27) kg 
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which is equal to 

0.012 kg = 12 g 

1 mol is actually defined as the amount of substance that contains 
as many of the specified entities as there are atoms in 0.012 kg of 
carbon-12. For our purposes we can say that the mass of 1 mol of 
carbon or of any other element is equal to its relative atomic mass 
expressed in grams. Looking at this another way, 6.02 x 1023 atomic 
mass units have a mass of 1 g, because 

6.02 X 1Q23 X 1.66 X 10-27 = 0.001 kg = 1 g 

Note that, although the SI unit of mass is the kilogram, scientists 
often work in grams (g). Remember that 1 g = 1 x 10-3 kg. 

Questions 

(Where necessary assume that 1 u = 1.66 x 10-27 kg or 
that the Avogadro constant = 6.02 x 1Q23 moi-1 .) 

Making use of the information tabulated in this topic: 

1. Identify by name the elements with the following ato­
mic numbers and state which are metals: 3, 7, 10, 16, 
19, 21, 25 and 35. 

2. Find the number of neutrons contained in each of the 
following atoms: helium-4, nitrogen-14, carbon-14, 
oxygen-16, argon-40, potassium-40 and calcium-40. 

3. Find the mass in kg of the following atoms: carbon, 
oxygen and iron. 

4. Find the mass of silver that contains the same number 
of atoms as (a) 63.5 g of copper, (b) 3 g of carbon and 
(c) 4925 kg of gold. 

5. Find the number of atoms in 1 kg of each of the 
following: hydrogen, copper and silver. 

6. An 18 carat gold ring weighs 8.72 g. How many gold 
atoms does it contain? (18 carat gold contains 75% 
gold by weight.) 

7. Find the number of atoms in a 1 mm cube of copper. 
(Pcopper = 8900 kg m-3 .) 

8. The smallest entity identifiable as water is the water 
molecule, which contains two atoms of hydrogen and 
one of oxygen. If 180 g of water is completely decom-
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posed into hydrogen and oxygen, what mass of hy­
drogen is produced? 

9. What is the volume in mm3 of a piece of copper 
containing 5 X l<F atoms? (Pcower = 8900 kg m-3.) 

10. In a certain silver/copper alloy 12.1% of the total 
number of atoms is copper. Find the percentage of 
silver by weight. 

11. Assuming the value of the Avogadro constant and 
using the data in Table 14.5, (a) suggest what ele­
ment it is that has atoms with an average mass of 
9.27 x 10-26 kg; (b) find the mass of the oxygen atom; 
and (c) estimate the volume of the copper atom if 
Pcower = 8900 kg m-3. 
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TOPIC 15 CHEMICAL 
BONDING 

COVERING: 

• ionic, covalent and intermediate types of bond; 
• metallic bond; 
• intermolecular forces; 
• relative molecular mass. 

We need to have a basic understanding of chemical bonding, because 
it plays a central role in determining the behaviour of all substances, 
including engineering materials. 

15.1 IONIC BONDING 

In the last topic we saw that the inert gases have an outer octet of 
electrons, or a pair in the case of helium, that represents a particu­
larly stable electronic structure. As we shall now see, other elements 
tend to behave in such a way that they achieve these stable configura­
tions by losing or gaining electrons. 

An atom of sodium (Na in group I) will tend to get rid of the single 
3s electron in its outer shell, thereby achieving the neon configuration 
and becoming a positively charged sodium ion (Na+) in the process. 
(Note that it does not become a neon atom, because the nucleus 
remains the same.) In chemical shorthand 

Na = Na+ + e-

where e- represents the electron. This tendency to form positive ions 
is characteristic of metallic elements. 

By contrast, chlorine, a non-metal from the opposite side of the 
periodic table ( Cl in group VII), is one electron short of the argon 
configuration. If it can gain an electron from elsewhere, it becomes a 
negatively charged chloride ion, thus 

Cl + e- = CI-

Both these tendencies are satisfied when sodium and chlorine are 
combined in sodium chloride, i.e. common salt, as follows: 

Na + Cl = Na+ + CI-



Sodium chloride is a crystalline solid held together by ionic bonds. 
Ions formed from single atoms can be regarded as charged spheres. 

A sodium ion and a chloride ion will be drawn together by the 
attractive force between them due to their opposite charge. The 
closeness of their approach, however, is limited by their outer or­
bitals, which cannot interpenetrate, because they would then exceed 
their quota of two electrons where they occupy the same space. 
Furthermore, any interpenetration would result in reduced screening 
of the two nuclei, which would cause repulsion between them. The 
overall effect is that any attempt to squeeze the ions together results 
in a repulsive force and the outer shell of each ion behaves rather like 
a spherical elastic skin. 

Figure 15.1 indicates how the attractive and repulsive forces vary 
with separation. The attractive force predominates at larger separa­
tions and the repulsive force only becomes important at smaller 
separations, where the outer shells approach closely. By summing the 
two relationships we obtain the net force/separation curve. 
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There is a point where the two component forces balance so that 
the net force is zero; this represents the equilibrium separation r0 , 

where the ions would naturally come to rest in the absence of any 
external forces. If we pull the ions apart from their equilibrium 
position, then the balance between the component forces is upset and 
an attractive force arises as we move up the net force/separation 
curve; the ions will move just far enough to generate an equal but 
opposite force resisting our effort in pulling them apart. Similarly, if 
we push the ions together, then the compressive force we apply to 
them will be opposed by an equal and opposite resistance due to the 
repulsive force that arises between them as we move down the net 
force/separation curve. So, as we noted in Topic 2, it is the deforma­
tion of chemical bonds that enables materials to resist tension and 
compression. The portion of the net force/separation curve close to 
the equilibrium position (corresponding to small deformations) is 
very nearly straight where it crosses the horizontal axis in Figure 15 .1. 
This provides us with the fundamental basis of Hooke's law, namely 
that deformation is proportional to load and hence, Young's modulus 
(which is equal to the stress/strain ratio, as discussed in Topic 2). 
Furthermore, since the proportionality is maintained across the hori­
zontal axis, Young's modulus applies to both tensile and compressive 
stresses in materials which follow this model. 

Figure 15.2 shows part of a simple ionic crystal structure in 'ex­
ploded' form for clarity. In general terms, ionic crystal structures are 
regular, extended lattice arrangements in which oppositely charged 
ions are drawn together but like-charged ions stay apart. In this 
particular case (named the rocksalt structure after naturally occurring 
sodium chloride) each positive ion is surrounded by six negative 
neighbours, and vice versa, so there are equal numbers of each overall . 

Note that group II elements form ions by losing two electrons and 
group VI elements by gaining two; for example, magnesium oxide 
(Mg2+Q2-) is an ionic substance (which, incidentally, also adopts the 
rocksalt structure.) 

Many ionic structures are more complex. Electrical neutrality must be 
preserved; therefore, ions occur in different proportions where their 
charge magnitude differs. In calcium fluoride, for example, we need 
twice as many p- ions as Ca2+ ions. The relative size of the ions is also an 
important factor in determining the way in which they pack together. 
Furthermore, there are many ions which contain more than one atom; 
for example, the sulphate ion (SO/-) and the nitrate ion (N03-). 

15.2 COVALENT BONDING 

In the absence of metallic elements, non-metals can achieve stable 
inert gas configurations by sharing electrons to form covalent bonds. 
For example, two hydrogen atoms can pool their single electrons to 
form a pair that is shared between them, effectively giving each the 



helium configuration. The two half-filled atomic orbitals combine to 
give a single molecular orbital, containing both electrons, which 
encloses both nuclei as indicated in Figure 15.3. 

The electrons spend much of their time in between the nuclei and 
exert attractive forces on each which serve to tie them together. 

00 
H atom + H atom H, molecule 

Figure 15.3 

There is also an opposing repulsive force between the nuclei because 
of their like charges. The combination of these two forces gives a net 
force/separation curve of a similar form to that of the ionic bond. This 
means that the smallest entity of hydrogen that normally maintains an 
independent existence is the hydrogen molecule, H2 , in which two 
hydrogen atoms are joined by a covalent bond. Hydrogen molecules 
tend to remain separate under normal conditions and exist as a gas 
rather than coalesce to form a liquid or a solid. 

Chlorine is also one electron short of its neighbouring inert gas 
configuration (argon), so, like hydrogen, two chlorine atoms share 
a pair of electrons to form a covalent bond, and the resulting Cl2 

molecules exist as a gas under normal conditions. (Note that electrons 
involved in forming chemical bonds are called valence electrons.) 

Carbon is a particularly important element because it forms the 
basis of a vast number of covalently bonded molecules. As a member 
of group IV, each atom shares four pairs of electrons with other 
atoms and achieves the neon configuration. Since carbon forms four 
covalent bonds, we say it has a valency of 4. (The term 'valency' is 
also applied to the number of charges on an ion; thus, for example, 
Mg2 + has a valency of 2 and CI- has a valency of 1.) 

Figure 15.4 shows some examples of carbon-based molecules that 
happen to be hydrocarbons, i.e. compounds containing only hy­
drogen and carbon. Compounds are substances which result from the 
chemical combination of elements. They should not be confused with 
mixtures, which contain more than one individual chemical substance 
and can be separated by physical methods. 

Covalent bonds are often represented by straight lines between the 
atoms sharing the valence electrons. Figure 15.4(a) shows methane 
(CH4), which is the main constituent of natural gas. (Natural gas is a 
mixture of gases, mostly hydrocarbons.) The four C-H bonds are 
identical and repel each other because of their identical charge dis­
tribution. They spread apart as far as possible, with the result that the 
methane molecule (i.e. the smallest entity of methane) has a tetra­
hedral form with equal angles between all the bonds. Figure 15.4(b) 
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Figure 15.5 

shows ethane (C2H6), which is also found in natural gas. Figure 
15.4(c) shows ethene (C2H4), or ethylene, which is an import­
ant raw material in the chemical industry. Both ethane and ethene 
molecules contain two carbon atoms. 

In ethane the bonds are distributed round each carbon atom in a 
tetrahedral configuration, as in methane, and one end of the mol­
ecule can rotate relative to the other, like a propeller, about the C-C 
axis. Ethane (CH3-CH3) is the smallest of a family of chain-like 
molecules which continues with propane (CH3-CH2-CH3 ) and 
butane (CH3-CH2-CH2-CH3 ) and extends to higher members of 
great length. Ordinary rubber and many plastics consist of enormously 
long molecules based on covalently bonded carbon chains. (As we shall 
see in Topic 20, the elasticity of rubber depends on bond rotation about 
the axes of the -C-C- bonds along the length of the chains.) 

In the ethene molecule the carbon atoms are joined by a double bond, 
where they share two pairs of electrons. This means that, because of its 
valency of 4, each carbon atom can only bond with two hydrogen 
atoms. The double bond pulls the carbon atoms closer together than 
the single bond; furthermore, it is stiffer and stronger, and requires 
more energy to break it. It also prevents rotation, and all the atoms in 
the ethene molecule lie in the same plane. (Triple bonds between 
carbon atoms are also possible but we shall not discuss them here.) 

Now we can begin to see important differences between ionic and 
covalent bonding. The number of covalent bonds an atom can form is 
dictated by its valency and the bonds are formed specifically between 
those atoms sharing the valence electrons. This leads to the formation 
of individual molecules which have definite shapes and sizes and 
which are capable of existence as separate entities. On the other 
hand, ionic structures are simply formed from ions packed together, 
like charged spheres, to form extended crystal structures of no fixed 
size and in which individual molecules cannot be identified. 

Having said this, covalent bonding can also lead to extended crystal 
structures. For instance, Figure 15.5 shows the structure of diamond, 
where carbon atoms are joined together so that each has four neigh­
bours arranged around it in a tetrahedral configuration. Like an ionic 
crystal, this structure has no fixed size and it is not possible to identify 
an individual diamond molecule. 

15.3 INTERMEDIATE BONDING 
(IONIC-COVALENT) 

Compounds of the types we have been considering are seldom 100% 
ionic or 100% covalent- most lie somewhere in between. The best 
way of approaching this idea is to consider ionic bonds with covalent 
character and covalent bonds with ionic character. 

Ions are of different sizes. Table 15.1 shows that there is a decrease 
in radius along the series from 0 2- to AP+. All these ions have the 



Table 15.1 

Ion Atomic no. Radius/om 
Q2- 8 0.14 
F- 9 0.13 
Na+ 11 0.10 
Mg2+ 12 0.07 
AP+ 13 0.05 

neon configuration and the decrease is associated with the increasing 
positive charge on the nucleus (from 8 to 13) as it holds the skin of 
outer electrons progressively more tightly. Thus, a highly charged 
positive ion tends to have a 'hard', compact skin. On the other hand, 
a highly charged negative ion tends to have a larger, 'soft', more 
deformable skin with the electrons less under the influence of the 
nucleus. As Figure 15.6 suggests, if we let two such ions come close 
together, then the negative ion will be distorted, or polarised by the 
positive ion, so that its centre of negative charge is displaced from its 
centre of positive charge at the nucleus. The outer electrons will 
therefore tend to spend more time between the two nuclei. In other 
words, the ionic bond will take on covalent character. The larger the 
size and the greater the charge on the negative ion the greater will be 
its susceptibility to polarisation. The smaller the size and the greater 
the charge on the positive ion the greater will be its polarising power. 

Polarisation can also occur in covalent bonds and this gives them 
ionic character. It occurs where the bonded atoms differ in their 
electro negativity, which is their tendency to attract electrons and to 
form negative ions. (As we might expect from the previous topic, 
electronegativity tends to increase from left to right across the 
periodic table and to decrease from top to bottom.) 

If two different atoms are joined by a covalent bond, then the 
valence electrons will tend to be drawn towards the more elec­
tronegative atom. That end of the bond will therefore tend to acquire 
a negative bias, leaving the other end with a positive bias, thereby 
giving the bond partial ionic character. The greater the difference in 
electronegativity the greater the polarisation of the bond and the 
greater its ionic character. We shall meet an example of a polarised 
covalent bond below, when we discuss the water molecule. 

15.4 METALLIC BONDING 

Metallic elements are described as electropositive because they tend 
to form positive ions by losing electrons. In the absence of non­
metallic elements with which to form ionic bonds, the valence elec­
trons join forces to form a negative 'sea' or electron gas. This serves 
to bind the ions together to form a regular extended crystal structure, 
as suggested in Figure 15.7(a). 
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(a) (b) 

Figure 15.7 

The electrons move randomly in between the positive ions, thus 
providing an attractive force that draws them together. Repulsion 
effects increase as the ions approach one another and, as before, we 
can view the bond in terms of a balance between attractive and 
repulsive forces. The separation between the nuclei of two neigh­
bouring metal ions corresponds to the equilibrium position on the net 
force/separation curve in Figure 15.1 (page 135). This makes it poss­
ible to view metal atoms as elastic spheres and metal crystal structures 
in terms of three-dimensional geometrical patterns formed by pack­
ing spheres together, as in Figure 15.7(b), though without the same 
charge constraints that apply to ionic structures. (In fact, models of 
metal crystal structures can be constructed by glueing table tennis 
balls together.) 

As this suggests, metal crystals are of no fixed size and individual 
molecules cannot be identified within them. Note that the metal ions 
do not all have to be of the same kind, so alloys can be formed in 
which different metals - copper and nickel, for example - are 
combined on the same crystal lattice. 

As we shall see later, it is the freedom of movement of the valence 
electrons through the crystal lattice that makes metals good conduc­
tors of heat and electricity. 

15.5 INTERMOLECULAR FORCES 

Summarising very broadly, we have seen that ionic bonds are formed 
between metallic atoms and non-metallic atoms, covalent bonds are 
formed between non-metallic atoms, and metallic bonds are formed 
between metallic atoms. But this does not explain why molecules 
tend to stick together. For instance, water molecules form a coherent 
liquid or solid, depending on the temperature. To understand why 
they do this, we need to examine their structure. 



Oxygen is a group VI element and an oxygen atom shares a pair of 
electrons with each of two hydrogen atoms. This gives oxygen the 
neon configuration and hydrogen the helium configuration. The re­
sulting H20 molecule is a stable entity capable of independent exist­
ence (Figure 15.8). The four outer electrons of the oxygen atom that 
are not involved in bonding form two so-called lone pairs. As far as 
the shape of the molecule is concerned, each lone pair occupies a 
non-bonding orbital of a similar form to that of the orbitals constitut­
ing the covalent bonds. The result is a tetrahedral molecule with an 
overall shape not unlike that of methane. 

Figure 15.8(b) is a simplified representation of the charge distribu­
tion in the water molecule. The two lone pairs form negative regions 
in which there are no nuclei to balance their charge. The two bonding 
orbitals have a positive bias, because the central oxygen atom is 
electronegative and draws the valence electrons inwards from the 
hydrogen nu<;lei to leave a net positive bias at the outer ends of the 
bonds. Since there are no screening electrons round the hydrogen 
nuclei, the effect of this is particularly strong. 

A charged plastic comb will attract a thin stream of water running 
from a tap, because the water molecules orientate themselves so that 
the orbitals that are oppositely charged to the comb tend to point 
towards it; the resulting attractive force will bend the stream of 
water. In a similar way, two water molecules that are close together 
and free to rotate will tend to orientate themselves so that oppositely 
charged orbitals point towards one another, with a resulting attrac­
tive force that holds the molecules together. This type of inter­
molecular force, involving hydrogen atoms covalently bonded to 
strongly electronegative atoms, is called hydrogen bonding. It pro­
vides a network of attractive forces within a collection of water 
molecules, and it is this that gives water its coherent nature. In fact, 
hydrogen bonding is a special case of the attractive forces that gener­
ally arise between any polar molecules (i.e. those that are perma­
nently polarised). 

But inert gases and non-polar molecules (e.g. H2 , Cl2 and 0 2 , 

where the valence electrons are equally shared) will liquefy and 
solidify if the temperature is low enough. (Oxygen is a group VI 
element, so 0 2 molecules are held together by a double bond 0=0.) 
In such cases there can be no permanent polarisation. Figure 15.9(a), 
which represents a helium atom, suggests the reason. 

The electrons are in perpetual motion, so that at any instant, unless 
they happen to be diametrically opposite to one another, the atom 
will be temporarily polarised. The magnitude and direction of the 
polarisation continuously changes as the displacement of the centre 
of negative charge fluctuates about the nucleus. The atom will tend to 
induce polarisation in its neighbours, as in Figure 15.9(b); in this case 
the nucleus of the left-hand atom is attracting the electrons in the 
right-hand atom or, looking at it the other way, the electrons in the 
right-hand atom are repelling the electrons in the left-hand atom. 
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Thus, temporary polarisation in the two atoms will tend to fluctuate 
in sympathy, so that the dipoles are orientated similarly and an 
attractive force arises between them. 

Such forces are called van der Waals forces. They arise wherever 
atoms and molecules are close together, in addition to any other 
types of bonding that may be operating. van der Waals forces are 
extremely weak in the case of helium but stronger with larger atoms 
and with molecules where there are more electrons involved. To take 
an extreme case, polythene consists of very large chain-like hydrocar­
bon molecules where attraction between the chains is provided by 
van der Waals forces. 

As a broad generalisation, ionic and covalent bonds are the 
strongest, followed by metallic bonds, then hydrogen bonds, with van 
der Waals forces the weakest. 

15.6 RELATIVE MOLECULAR MASS 

The mass of a molecule is expressed in terms of its relative molecular 
mass (molecular weight). This is equal to the sum of the relative 
atomic masses of all the atoms it contains. For example, using the 
values from Table 14.5 (page 131), the relative molecular mass of 
water (H20) is 18.0 (i.e. (2 x 1.0) + 16.0) and of ethane (C2H6) is 
30.0 (i.e. (2 x 12.0) + (6 x 1.0)). And following on from the last 
section of the previous topic, the mass of 1 mol of water is 18.0 g and 
of ethane 30.0 g. 

Although molecules cannot be identified in ionic structures, it is 
still helpful to use the chemical formulae of such compounds in a 
corresponding way. Thus, 1 mol of sodium chloride (NaCl) has a 
mass of 58.5 g (i.e. 23.0 g + 35.5 g). 

Relative molecular mass values, or their ionic counterparts, enable 
us to quantify chemical reactions in terms of the masses of the 
substances involved. For example, the complete combustion of methane 
in oxygen yields carbon dioxide (C02) and water. In order to form a 



properly balanced chemical equation, the number of atoms of each 
element must be the same on each side. In this case the equation is 
balanced by having two oxygen molecules and two water molecules: 

CH4 + 202 C02 + 2H20 
16.0 2 X 32.0 44.0 2 X 18.0 

The relative molecular masses underneath enable corresponding 
quantities to be calculated in whatever units are required. Thus, 
160 kg of methane needs 640 kg of oxygen for complete combustion. 
1.00 g of methane yields (36.0/16.0 =) 2.25 g of water. 22 mg of 
carbon dioxide is produced by 8 mg of methane, and so on. 

Questions 

(Use any previously tabulated data as required.) 

1. Deduce the general type of chemical structure of the 
following: caesium chloride (CsCl), carbon tetra­
chloride (CC14), ice, solid argon, carbon dioxide, liquid 
ammonia (NH3). 

2. Find the relative molecular mass (or ionic counterpart) 
of each of the following: ethane, calcium carbonate 
(CaC03), ethanol (C2H50H), silver nitrate (AgN03), 

chloroform (CHC13). 

3. One compound contains 75% carbon and 25% hy­
drogen by weight and another contains 80% carbon 
and 20% hydrogen. Suggest what each might be. 

4. Find the aluminium content of alumina (Al20 3) ex­
pressed as a weight percentage. 

5. Find how much carbon dioxide results from the com­
plete combustion of 4.5 g of propane (C3H8) if the 
reaction follows the equation 

6. The thermal decomposition of calcium carbonate 
(CaC03) yields CaO and C02 • How much calcium 
carbonate would be needed to give 1 kg of carbon 
dioxide? 

7. Write the balanced chemical equation for the complete 
combustion of ethyl alcohol (C2H50H) to carbon diox­
ide and water, and hence find how much alcohol yields 
14.35 g of carbon dioxide. 
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TOPIC 16 HEAT AND 
TEMPERATURE 

COVERING: 

• heat and internal energy; 
• heat capacity and latent heat; 
• thermal expansion and contraction; 
• thermal stress. 

Whether a particular substance exists as a solid, a liquid or a gas at a 
given temperature and pressure depends upon the strength of the 
forces of attraction between its constituent atoms, ions or molecules. 
Thus, at atmospheric pressure and room temperature the van der 
Waals forces between the oxygen molecules in air are not strong 
enough to make them stick together, nor are the hydrogen bonds 
between water molecules strong enough for them to form ice. On the 
other hand, nearly all metallic and ionic/covalent materials are solids. 
Furthermore, simple solids tend to turn to liquids, and liquids to 
gases, if they are heated. These observations seem to point to the 
idea that the cohesion due to the forces of attraction between atoms, 
ions and molecules is opposed by the effect of heat. 

Heat is the energy that is transferred between two bodies as a result 
of a temperature difference between them. Heat will flow from the 
hotter to the colder body; therefore, temperature is the property 
which determines the direction in which the heat will flow. 

First we must recognise that the heat absorbed by a body may 
increase its internal energy (associated with its temperature and 
physical state) and enable it to do external work on its surroundings, 
as, for example, in raising the temperature of a body of gas, enabling 
it to expand and drive a piston. It follows that the increase in the 
internal energy of a body equals the heat added to it less any external 
work that may be done by it. On the other hand, it is possible to 
increase the internal energy of a body simply by doing work on it 
without supplying any heat at all. For example, in braking a car, 
kinetic energy is transformed into an increase in the internal energy 
of the brakes, thereby raising their temperature. The increased 
temperature of the air compressed in a bicycle pump is a result of an 
increase in its internal energy due to work done on it. When a falling 
body hits the ground, its original potential energy is transformed into 



increased internal energy of the body and of the ground, and to some 
extent the air through which it fell, plus some sound energy. 

These are all examples of the principle of conservation of energy 
which we met in Topic 8. They illustrate the need to view any change 
in the internal energy of a body as an exercise in accountancy: work 
and heat both represent energy in the process of being transferred 
either to or from the body. In this topic we shall consider the internal 
energy changes in a body as it absorbs or emits heat and, for the 
purposes of this discussion, we shall generally assume that conditions 
are such that a negligible amount of work is done. 

First, we need to recognise that the atoms, ions or molecules that 
constitute a particular substance are in a state of continual thermal 
agitation which becomes more energetic if the temperature of the 
substance is increased. For simplicity we shall base our discussion on 
the general case of an unspecified model substance consisting of 
chemically bonded atoms. 

In the solid state the atoms vibrate about fixed positions on the 
crystal lattice, where they are trapped between their neighbours. The 
thermal energy associated with their vibrations is insufficient to over­
come the cohesion due to the forces of attraction between them. If 
the temperature is raised, the vibrations become more vigorous until, 
at the melting point, the atoms have sufficient energy to escape from 
their fixed positions and the substance changes from a solid to a 
liquid. Although the atoms still remain in contact with their neigh­
bours, they now have the capacity for translational motion relative to 
one another- hence, liquids can flow. In the gaseous state the atoms 
have sufficient energy to overcome the forces of attraction and they 
fill the entire volume of the container they occupy irrespective of how 
large that might be. At normal pressures the atoms are widely sep­
arated and they move randomly and independently of one another, 
only interacting when they collide. Although the velocity of indi­
vidual atoms will vary greatly, their mean velocity remains constant 
at a given temperature and increases as the temperature is raised. 

Let us examine these ideas more closely. 

16.1 A SIMPLE MODEL 

We shall begin with the assumption that the general form of the net 
force/separation curve in Figure 15.1 (page 135) can be used to 
represent the behaviour of any of the types of bond that we met in the 
previous topic, including that between the atoms in our model sub­
stance. Figure 16.1 shows the way in which the corresponding poten­
tial energy varies. As before, the horizontal axis gives the position of 
the centre of one atom relative to the other. The equilibrium posi­
tion, where the net force between the atoms is zero, corresponds to 
the potential energy minimum at the bottom of the trough. The 
shape of the trough reflects the effect of the attractive and repulsive 
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Figure 16.1 

components of the net force/separation curve and is correspondingly 
asymmetric. 

As we saw in the previous topic, any deformation of the bond 
results in an opposing force. The system will therefore tend to return 
to its equilibrium position in much the same way as the pendulum and 
the spring in Topic 11. The linear net force/separation relationship 
close to the equilibrium position suggests that if the atoms are dis­
placed slightly and then released, they will oscillate with simple 
harmonic motion. 

As we noted earlier, the atoms in a solid are normally in a continuous 
state of oscillation, and this provides us with a picture of the way in 
which the temperature of a body increases when it absorbs heat. There is 
a continuous interchange of kinetic and potential energy as the atoms 
oscillate to and fro between the points A1 and B1 in Figure 16.1 at a 
temperature T1• The potential energy follows the curve throughout the 
cycle and is at a maximum at A1 and Bl> where the kinetic energy is zero 
and the system is on the point of changing direction. From Topic 11 (see 
page 91) we would expect the sum of the potential energy and kinetic 
energy to remain constant throughout the cycle, in which case the 
horizontal line A 1B1 represents the total energy. The kinetic energy at 
any point is therefore equal to the vertical distance between the horizon­
tal line and the potential energy curve. 

If heat is added to the system to raise the temperature to T2 , then 
the total energy increases to a higher level represented by the horizontal 
line A2B2 • Conversely, if the system cools from T1 to Tl> then the 
difference in internal energy is released to the surroundings as heat. 

If the temperature is lowered to T0 , corresponding to the bottom of 
the trough, the system has no kinetic energy and the atoms come to 
rest; this represents absolute zero, which is the lowest temperature 
that is theoretically possible. The vertical distance of any one of the 
series of horizontal lines AnBn above the trough can be viewed in 
terms of the kinetic energy associated with the thermal motion of the 
system at a particular temperature and the potential energy associ-



ated with the interaction between the vibrating atoms. The quantity 
of heat which a body absorbs in increasing its temperature is known 
as its heat capacity. We shall define this more carefully very shortly. 
(Readers who know about quantum theory will have noticed that our 
simple model is valid for an 'average' oscillating atom but not for 
individuals, and that we have ignored the fact that the system must 
possess some residual kinetic energy at absolute zero.) 

Let us assume that the mid-point of each horizontal line AnBn 
represents the average separation between the centres of the atoms. 
Because the potential energy curve is not symmetrical, this distance 
increases as the temperature is raised (following the dotted line in the 
figure). The substance of which the atoms form a representative part 
therefore undergoes thermal expansion. Conversely, it undergoes 
thermal contraction as it cools. 

The addition or removal of heat does not always change the 
temperature of a substance. At the melting point the amplitude of the 
oscillations is large enough for the atoms to move past their neigh­
bours and escape from their fixed positions on the crystal lattice. In 
effect, the breaking down of the crystal structure and the freedom of 
the atoms amounts to an increase in potential energy. The substance 
pays for this by absorbing heat from its surroundings at constant 
temperature until it has completely melted. This heat, called the 
latent heat of fusion, is returned to the surroundings if the substance 
resolidifies. Thus, ice must be supplied with latent heat for it to melt 
at 0 oc, and this heat is returned if the water refreezes at 0 oc. (The 
word 'latent' means 'concealed' in this context, because the heat 
transfer is not revealed as a temperature change.) 

In the liquid state the forces of attraction are still able to maintain 
overall cohesion. The liquid still has a definite volume which is 
contained within its boundary surface (unlike a gas, which is diffuse 
and expands to fill its container). The liquid can flow, because its 
constituent atoms can readily change position relative to one another. 
If it is heated, the atoms move more vigorously, and if the tempera­
ture is raised to the boiling point, they will have enough energy to 
climb out of the potential energy trough and become independent of 
one another - thus, the forces of attraction are overcome and the 
substance changes from a liquid to a gas. During this change of state 
the temperature of the liquid remains constant as it absorbs its latent 
heat of vaporisation. Because the latent heat of vaporisation of a 
substance represents the energy required to completely separate the 
constituent atoms, it is generally considerably greater than the latent 
heat of fusion absorbed during the melting process. 

Note that liquids tend to evaporate below their boiling points and 
some, such as alcohol and water, can become noticeably cooler in 
doing so. This is because molecules with sufficiently high kinetic 
energy are able to escape from the liquid surface. This has the effect 
of reducing the average kinetic energy of those remaining behind -
hence, the liquid becomes cooler. 
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16.2 HEAT CAPACITY AND LATENT HEAT 

Now we need to quantify the amount of heat involved as the tempera­
ture or physical state of a substance is changed. For example, how 
much heat must be supplied to cold water to raise its temperature to 
boiling point? And how much heat is required to change the boiling 
water to steam? 

Figure 16.2 is an idealised plot of temperature against time which 
summarises the quantities involved as a substance is heated from the 
solid right through to the gaseous state. 

I 
Heat capacity (gas) 

Latent heat (vaporisation) 

Heat capacity (liquid) 

Heat capacity (solid) 

---Time---

Figure 16.2 

For measuring temperature we shall use the Celsius scale (formerly 
called the centigrade scale), where the values 0 oc and 100 oc are 
assigned to the freezing and boiling points of water at 1 atmosphere. 
(1 atmosphere is specified because the freezing and boiling points 
vary with pressure.) On this basis, absolute zero turns out to be 
-273.15 °C. The SI unit of temperature is the kelvin (symbol K) but 
this is much less commonly used than the degree Celsius. 0 K repre­
sents absolute zero and a temperature interval of 1 K is the same as 
1 oc, so for our purposes oc = K - 273. 

Different substances have different heat capacities, in other words, 
they require different quantities of heat to raise their temperature by 
the same amount. In general, provided that no change of state 
occurs, 

Q = mce (16.1) 

where Q joules of heat are required to raise m kilograms of the 
substance through a temperature interval of 8 K (or 8 °C), c is called 



the specific heat capacity and is defined as the heat required to raise 
the temperature of 1 kg of the substance by 1 K (1 °C); its units are 
therefore J kg-1 K-1 • Note that c is often assumed to be constant, 
although it can vary quite considerably with temperature, depending 
on the substance and the temperature range involved. Table 16.1 
shows some typical approximate mean values. Water has a particu­
larly high value, making it a useful heat transfer medium for heating 
and cooling purposes. 

Table 16.1 

Substance 

Aluminium 
Brass 
Ice 
Iron 
Lead 
Mild steel 
Water 

Specific heat capacity/J kg- 1 K -l 

900 
380 

2100 
460 
130 
480 

4200 

Molar heat capacity (symbol Cm) is sometimes used instead of 
specific heat capacity. This is based on the mole rather than the 
kilogram and is obtained by multiplying the specific heat capacity by 
the mass of one mole (kg mol-1) of the substance. The units are 
therefore 

For many simple solid substances the molar heat capacity is approx­
imately 25 J mol- 1 K- 1 (Dulong and Petit's law). For gases the specific 
and molar heat capacities at constant volume are less than at constant 
pressure, where extra heat is needed to enable the gas to expand to 
keep its pressure constant. The specific heat capacity of dry air, for 
example, is about 0.7 kJ kg-1 K-1 at constant volume, compared with 
about 1 kJ kg- 1 K- 1 at constant pressure. 

Used on its own, the term heat capacity (symbol C, with units of 
J K- 1) is applied to particular objects. In terms of Equation (16.1), 
C = me for an object of mass m made from a material with a specific 
heat capacity c. 

The latent heat absorbed or emitted by a substance as it changes 
state at constant temperature is given by 

Q = ml (16.2) 

where Q joules of heat are absorbed or emitted by m kilograms of the 
substance, and I is the specific latent heat in J kg- 1• (Note that latent 
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Table 16.2 

Latent heat of 

Fusion (ice-water) 
Vaporisation (water-steam) 

Specific latent heat/J kg- 1 

3.3 X lOS 
2.3 X 106 

heat is sometimes expressed as molar latent heat, i.e. J mol- 1 .) Table 
16.2 gives approximate values for the specific latent heats of fusion 
and vaporisation of water, which we shall need below. 

Worked Example 16.1 

Estimate the difference in water temperature between the top and the 
bottom of a waterfall 86 m high. (Assume g = 9.8 m s-2.) 

Assuming that the potential energy of the water at the top of the 
waterfall (mgh) is all used to raise its temperature, then, from Equa­
tion (16.1), 

Q = mce = mgh 

Therefore, since c = 4200 (Table 16.1), 

0 = gh = 9.8 x 86 = 0.20 oc 
c 4200 

Worked Example 16.2 

Calculate the power required to maintain the temperature of a house 
that is losing heat at a rate of 28.8 MJ per hour. 

A heat loss of 28.8 MJ per hour is offset by a heat input equal to 

28.8 X 106 = 8 X 103 J s-t = 8 kW 
3600 

Worked Example 16.3 

Starting with 2 kg of ice at -5 oc, find the heat required at each stage 
to effect the following changes: (a) heat the ice to 0 °C; (b) change the 
ice to water at 0 oc; (c) heat the water to 100 oc; (d) change the water 
to steam at 100 o C. 



Using data from Tables 16.1 and 16.2: 

(a) Q = mc8 = 2 X 2100 X 5 = 21 kJ 
(b) Q = ml = 2 X (3.3 X lOS) = 660 kJ 
(c) Q = mc8 = 2 X 4200 X 100 = 840kJ 
(d) Q = m[ = 2 X (2.3 X 106) = 4600 kJ 

Worked Example 16.4 

500 g of boiling water is poured into a 1.25 kg aluminium saucepan at 
20 oc. Find the final temperature, assuming no heat losses. 

Let the final temperature = T. The heat gained by the saucepan is 
given by 

mce = 1.25 x 900 x (T - 20) 

This is equal to the heat lost by the water, which is given by 

mc8 = 0.5 X 4200 X (100 - n 
Hence, 

16.3 EXPANSIVITY 

Thermal expansion and contraction, if unrestrained, can generate 
large enough stresses to cause problems in engineering structures 
such as bridges and railway lines unless proper allowance is made to 
relieve or accommodate them. 

We can calculate the length change of a material from its linear 
expansivity, a. This is the fractional length increase per unit tempera­
ture rise as given by 

(16.3) 

where the length L 1 increases to L 2 as the result of a temperature rise 
of 8. This equation can be rearranged to give 

(16.4) 

There are corresponding expressions for area and volume expansion: 
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A 2 = A 1 (1 + l38) 

V2 = V1 (1 + y8) 

(16.5) 

(16.6) 

where A and V represent area and volume, respectively, and 13 is the 
area or superficial expansivity and y the volume or cubic expansivity. 
(As a reasonable approximation, 13 = 2a and y = 3a.) Note that the 
values of all three expansivities generally vary to some extent with 
temperature, although they are often taken to be constant unless 
accurate results are needed. Some typical approximate mean values 
of a at normal temperature are shown in Table 16.3. 

Table 16.3 

Substance 

Aluminium 
Brass 
Copper 
Glass 
Steel 

Linear expansivity/K -l 

24 X 10-6 

19 X 10-6 

17 X 10-6 

9 X 10-6 

12 X 10-6 

Obviously we cannot measure a or 13 for liquids, because they flow; 
instead we measure their volume expansivity in a container. But this, 
of course, expands too. The volume of the space within a solid 
container changes just as though it is made from the same material as 
the container itself (i.e. as though the container is solid throughout). 
Liquids generally expand more than solids; hence, they generally 
expand more than the space inside their containers. The apparent 
expansion of a liquid is therefore less than its absolute (i.e. real) 
expansion by an amount corresponding to the expansion of the space 
it occupies inside the container. The volume expansivities are related 
approximately as follows: 

Y absolute = Y apparent + Y container 

The thermal expansion of a material obviously results in a decrease 
in its density. In the case of liquids and gases, which can flow, this 
leads to natural convection, which we shall discuss in more detail in 
the next topic. 

Water behaves in a special way. Ice has a very open crystal struc­
ture, where each molecule is surrounded tetrahedrally by four others; 
each of its orbitals attracts an oppositely charged orbital from each of 
its four neighbours. When ice melts, the open, rigid crystal structure 
is disrupted and tends to collapse. This allows the molecules to move 
closer together, effectively increasing the average number of neigh­
bours per molecule. Water therefore occupies less volume in the 
liquid state and is more dense than ice (hence, icebergs float and 



frozen water pipes burst). The density continues to increase as the 
temperature is raised above 0 oc but by 4 oc the normal thermal 
expansion starts to win and water expands from a maximum density 
value at 4 oc as its temperature is raised further. As we noted in 
Topic 4, the maximum density of water is 1000 kg m-3 ( = 1 g cm-3). 

To a very close approximation, this is equivalent to 1 kg per litre. 
Although the litre is not an SI unit, it is very widely used for volume 
measurement. (The former definition of the litre was the volume 
occupied by 1 kg of water at 4 oc but now it is 1 cubic decimetre (i.e. 
1 x 10-3 m3), which is not quite the same.) 

Worked Example 16.5 

What is the volume at 89 oc of a glass flask which has a capacity of 
1.000 1 (litre) at 15 °C? 

For glass y = 3a = 3 x (9 x 10-6 ) = 27 x 10-6 K-1 • From Equation 
(16.6), 

v2 = v1(1 + ye) 

Therefore, 

V2 = 1.000(1 + (27 X 10-6 X 74)) = 1.002 1 

16.4 THERMAL STRESS 

Before leaving this topic, let us consider the stress that arises in a 
solid material, say a metal bar, if it is restrained from expanding when 
it undergoes a temperature increase 8. From Equation (16.3), the 
unrestrained expansion of the bar from L1 to L 2 , expressed as a 
fractional length increase, would have been (L2 - L 1)1L1 = a8. In 
effect, the restraint acting on the bar compresses it from L 2 to L1 , 

thereby producing a strain E = (L2 - L 1)1L2 • To a close approxima­
tion (L2 - L 1)1L1 = (L2 - L 1)1L2 , because L 1 and L2 will generally 
have very similar values. It follows that the effective compressive 
strain E is given by ae. But we know from Topic 2 that E = alE, where 
E represents Young's modulus and a the stress. The thermal stress in 
the bar is therefore given by 

a ( = E X E) = Ea8 (16.7) 

Thermal stress is the reason why an ordinary drinking-glass is liable 
to crack when hot water is poured into it; the inside of the glass tries 
to expand before the outside. (Heat-resistant glass with low expansiv­
ity is much less susceptible to thermal stress.) 
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Worked Example 16.6 

A steel bar is restrained from expansion while its temperature is 
raised from 3 octo 28 °C. (a) Find the resulting thermal stress, and 
(b) find the corresponding restraining force if the bar has a diameter 
of 70 mm. (Assume Esteei = 2 X 1011 N m-2.) 

(a) From Equation (16.7), 

o = Eae 

Therefore, since a = 12 x 10-6 (Table 16.3), 

o = (2 X 1011) X (12 X 10-6) X (28 - 3) = 60 MN m-2 

(b) force = stress x cross-sectional area, which is equal to 

(60 X 106) X n:(0.035)2 = 0.23 MN 

Questions 

(Use any previously tabulated data as required.) 

1. In each case find the temperature rise if the heat 
produced by a 70 W heater over a period of 1 min is 
absorbed by 1 kg of the following: (a) water, (b) ice, 
(c) aluminium, (d) iron and (e) lead. 

2. Find the heat evolved as 5 kg of water at each of the 
following temperatures is changed to ice at 0 oc; (a) 0 
oc, (b) 5 oc, (c) 50 oc. 

3. Estimate what the theoretical minimum velocity of a 
snowball at 0 oc would have to be for it to completely 
melt on impact. 

4. A continuous-flow water heater is required to raise 
the temperature of a water supply from 5 oc to 25 oc 
at a flow rate of 1.25 litres per minute. Assuming no 
heat losses, what must the power output of the heater 
be? 

5. A 2 kW electric kettle contains 1.5 kg of water at 10 
°C. Assuming the heat capacity of the kettle is 200 
J K- 1 , and ignoring any heat losses, (a) find the time 
that would be required for the water to come to the 
boil, and (b) find the extra time required to change a 
third of the water into steam. 



6. (a) How much water at 0 oc must be added to cool 
2.5 kg of water from 40 octo 20 °C? 

(b) How much ice at 0 oc would have had the same 
effect? 

7. A copper tube is 0.500 m long at 20 °C. Its length 
increases by 0.68 mm when steam at 100 oc is passing 
through it. Find the linear expansivity of the copper. 

8. A steel measuring tape, correctly calibrated at 10 oc, 
gives the distance between two points as 30.000 m at a 
temperature of 30 °C. Find the true distance. 

9. At 17 oc a brass sphere has a diameter of 49.95 mm 
and a steel tube has an internal diameter of 50.00 mm. 
At what temperature is the sphere an exact fit inside 
the tube? 

10. If a steel strut is 1.6 m long at -10 oc, to what 
temperature must it be heated to increase its length by 
0.5 mm? If this expansion is restrained completely, 
what would be the magnitude of the compressive 
stress in the strut? (Assume Esteel = 2 X 1011 N m-2 .) 

11. A steel drum, filled to the brim, holds 200 litres of 
liquid at 5 °C. If the liquid has a cubic expansivity of 
8.7 X 10-4 K-I, how much overflows if the tempera­
ture rises to 35 °C? 

12. At 20 oc the difference in length between a steel rod 
and a brass rod is 175 mm. Find the length of each rod 
if this difference is to remain constant at any normal 
temperature. 
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TOPIC 17 HEAT 
TRANSFER 

COVERING: 

• conduction, convection and radiation. 

There are three principal mechanisms involved in heat transfer. 
These are conduction, convection and radiation. (Note that other 
processes such as evaporation and condensation can also be signifi­
cant.) Heat transfer is central to many areas of engineering, from 
domestic refrigerators to nuclear power stations, and very important 
in others. 

Conduction involves heat transfer from a hotter to a colder part of 
a body - for example, through the base of a heated saucepan. 
Natural convection involves the movement of a fluid, such as air or 
water, which becomes less dense and tends to rise as it is heated. 
Forced convection involves an external agency such as a fan or a 
pump to move the fluid. Radiated heat, from the sun, for example, is 
carried by electromagnetic waves (Topic 13) and requires no transfer 
medium at all. 

In practical situations all three processes may operate simultaneously 
but, to keep things simple, we shall consider them separately. 

17.1 CONDUCTION 

Heating one end of a solid bar will cause its constituent atoms to 
vibrate more vigorously about their fixed positions on the crystal 
lattice. Some of the vibrational energy will be passed on to neigh­
bouring atoms via the chemical bonds and, as the process continues, 
heat is transferred along the rod from the hot end towards the cold. 

Let us assume that a bar of length L has a cross-sectional area A 
and that its end faces are parallel and maintained at temperatures 81 

and 82 , respectively, where 81 < 82 as in Figure 17.1. Let us also 
assume that the bar is lagged along its length to prevent any heat loss 
from its sides and that the system has been given sufficient time to 
reach a steady state. ('Steady state' implies that, although the 
temperature differs at different points within the body, it remains 
constant at any given point.) The graph at the bottom of the figure 



I " o, Cross-sectional ' .. ' Oz 
area= A 

\ / 
/ 

L 

f Oz t------------------------
Temperature 

I 
o, 

---Length--+ 

Figure 17.1 

shows that the temperature gradient along the bar is (92 - 91)/L The 
rate at which heat flows through the bar (from right to left) will be 
proportional to its cross-sectional area and to the temperature gra­
dient, so that 

(17.1) 

where Q!t is the rate of heat flow in J s-1 (or W). k, the coefficient of 
proportionality, is the thermal conductivity of the material and has 
the units W m-1 K- 1 (Le. J s-1 m-1 K- 1). Table 17.1 shows some 
typical values. They tend to vary with temperature and other factors 
such as moisture content. They may vary considerably for differeht 
varieties of the same material. For example, the value for concrete 
ranges from below 0.2 to above 3.5 W m-1 K-1 , depending on type 
and moisture content. 

Equation (17.1) tells us that the heat flow is proportional to the 
temperature difference (92 - 91) and inversely proportional to L/kA. 
The quantity LlkA is called the thermal resistance of the material; as 
we shall see from Topic 25, it is the thermal analogy of electrical 
resistance. 

Remember that, in practice, the surface temperature of a conduc­
tor may not be the same as that of its surroundings. For example, the 
inside surface temperature of a window pane may be significantly 
different from room temperature because of the insulating effect of 
the layer of air immediately adjacent to the glass. Such effects can 
reduce heat flow very considerably. 

Metals generally seem to feel colder than other materials at the 
same temperature, because they are better at conducting heat away 
from the body. Their high thermal conductivity stems from the free­
dom of movement of the valence electrons that maintain the metallic 

Heat Transfer 157 



158 Foundation Science for Engineers 

Table 17.1 

Material 

Metals: 
Aluminium 
Copper 
Steel 

Non-metals: 
Concrete 
Brick 
Glass 
Ice 
Plaster 
Wood (parallel to grain) 
Wood (perpendicular to grain) 
Water 

Thermal insulators: 
Air 
Glass wool 
Polystyrene (expanded) 

Thermal conductivity/W m- 1 K - 1 

210 
400 
50 

1.5 
0.6 
1 
2.1 
0.13 
0.38 
0.15 
0.58 

0.02 
0.04 
0.03 

bond throughout the metal crystal structure. The free electrons in the 
hot part of the metal gain kinetic energy and rapidly transfer it to the 
colder parts as they migrate there. Some heat is still transferred via 
the vibrations of the crystal lattice but much less than by the free 
electrons. There tend to be no free electrons in ionic and covalent 
substances, so these have to depend on the lattice vibrations; hence, 
they generally have low thermal conductivity values compared with 
metals. 

Air has very low thermal conductivity, because its constituent 
molecules are widely separated and can only pass kinetic energy from 
one to the other during their relatively infrequent collisions. If con­
vection currents can be prevented, then air is a very good thermal 
insulator. Glass wool contains air trapped between the fibres, which 
gives it its very low thermal conductivity. Expanded polystyrene 
relies on the same basic principle and the insulating properties of 
some of the non-metals in Table 17.1 benefit from small quantities of 
trapped air. (Note that a vacuum is an ideal insulator in that it allows 
no possibility of conduction or convection; however, it will not stop 
the transmission of radiant heat.) 

Equation (17.1) tells us that the heat flow through a material is 
inversely proportional to its thickness. This leads us to an important 
point about thermal insulation. Let us assume that a 1 m2 sheet of 
expanded polystyrene 10 mm thick has one face maintained at 
-10 oc and the other at 30 °C. The equation tells us that the heat flow 



through the sheet is 120 W (see Worked Example 17.1 below). If we 
successively double the thickness of the sheet to 20 mm, 40 mm and 
80 mm, the heat flow falls to 60 W, 30 Wand 15 W, respectively; in 
other words, the first increase of 10 mm saves 60 W, a further 
increase of 20 mm saves an extra 30 W, but the final increase of 40 
mm saves only another 15 W. Obviously the law of diminishing 
returns is operating: there is a critical thickness beyond which the 
heat saved over a given period of time does not justify the cost of the 
extra polystyrene used and the space wasted. 

In many practical situations it is necessary to consider heat passing 
through successive thicknesses of different materials- for example, the 
three layers in a double-glazed window (two of glass and one of air). 

Let us consider a simple example where a composite sheet built up 
from two layers has a thermal gradient between its faces. Since sheets 
tend to be flat and thin, lateral heat loss to the surroundings through 
the edge is confined to a relatively small strip round the periphery. 
Away from the edge, a section through the thickness of the sheet can 
be regarded in the same way as a lagged bar, because it is surrounded 
by material with an identical thermal gradient and there is no tend­
ency for lateral heat loss. Figure 17.2 represents such a section 
through a composite of two materials, A and B. Heat will flow 
through both materials at the same rate Q!t, so if the temperature at 
the interface between them is 8 AB• and if 81 < 82, then, from Equa­
tion (17.1), 

Figure 17.2 

Worked Example 17.1 

I 

I 
\ 

I 

' / ----

(17.2) 

A sheet of expanded polystyrene, 1 m2 in area, has one face main­
tained at -10 °C and the other at 30 °C. Find the heat flow through 
the sheet as its thickness is successively doubled from 10 mm to 20, 40 
and finally 80 mm. 
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From Table 17.1, k = 0.03 W m-1 K- 1 , and, substituting the data 
into Equation (17.1), 

Q 0.03 X 1 X 40 
t L 

which gives 

120 W for L = 0.01 m, 
60 W for L = 0.02 m, 
30 W for L = 0.04 m, and 
15 W for L = 0.08 m. 

Worked Example 17.2 

A composite sheet consists of a 30 mm thickness of material A and a 
10 mm thickness of material B. (a) Find the heat flow through a 9 x 9 
m panel of the composite when the exposed surface of A is main­
tained at 5 oc and the exposed surface of B at 25 °C. (b) Find the heat 
flow if the temperatures are reversed. (c) Sketch the temperature 
gradient in each case. (Assume kA = 0.1 and kB = 0.3 W m-1 K-1.). 

(a) Letting 8AB represent the temperature at the interface, and 
substituting the data into Equation (17.2), 

Q = 0.1 X 32 (8 AB - 5) = 0.3 X 32 (25 - 8 AB) 
t 0.03 0.01 

which gives 

8AB = 23 oc 
and, substituting for 8 AB above, 

Q = 0.1 X 32 (23 - 5) = 540 W 
t 0.03 

(b) Q = 0.1 X 32 (25 - 8AB) = 0.3 X 32 (8AB - 5) 
t 0.03 0.01 

which gives 

8 AB = 7 °C; hence, Q/t = 540 W 
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Figure 17.3 

Worked Example 17.3 

A lake is covered with a thickness of 20 mm of ice which is increasing 
by 6 mm per hour. Assuming that the water underneath the ice is at 0 
°C, estimate the air temperature. (Assume Pice = 920 kg m-3 .) 

An increase in thickness of 6 mm over an area of 1 m2 of ice is a 
volume increase of 1 x 0.006 = 0.006 m3 • The mass of 0.006 m3 of ice 
is equal to 

0.006 m3 x 920 kg m-3 = 5.52 kg 

To produce 5.52 kg of ice from water at 0 oc requires the removal of 
Q = ml joules of heat, where m = 5.52 kg and, from Table 16.2 (page 
150), l = 3.3 x lOS J kg- 1 • ml joules are removed in 1 h; therefore, the 
rate of removal is 

5.52 X 3.3 X lOS = 506 J s-1 
Q ml - = ---- = -------------
t 3600 3600 

From Table 17.1 (page 158) kice = 2.1 W m-1 K-I, and, substituting in 
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Equation (17.1), where 81 is the air temperature, 

which gives 

17.2 CONVECTION 

Newton's law of cooling is an empirical law telling us that the rate at 
which a body loses heat is proportional to its excess temperature over 
that of its surroundings. The discussion above suggests that the law 
should be valid for a hot body connected to cooler surroundings via a 
thermal conductor. However, it is normally viewed in the context of 
forced convection, although it works fairly well for natural convec­
tion if the excess temperature is small. 

Let us assume that the temperature of a hot body is 82 and that of 
the surroundings is 81 • The rate of heat loss Q/t from the body will be 
roughly proportional to its surface area A and, under conditions 
where Newton's law of cooling applies, 

(17.3) 

k', the constant of proportionality, depends on the shape, orientation 
and surface characteristics of the body, and on the nature and flow 
characteristics of the cooling fluid. 

It is useful to remember that if a body loses Q joules of heat, then 
its temperature will fall by Q!mc °C, where m is its mass and c is the 
specific heat capacity of the substance from which it is made (see 
Equation 16.1, page 148). (This implies that the temperature will 
remain uniform throughout the body as it cools, but in practice there 
may well be significant temperature variation through a given cross­
section at any moment.) 

17.3 RADIATION 

If a body is completely surrounded by vacuum, then it can only 
exchange energy with its surroundings by radiation. Thus, the earth 
receives radiated energy from the sun in the form of heat and light. 

In Topic 13 we noted that the essential difference between the 
various types of electromagnetic radiation is their wavelength. We 



also noted that black objects appear black because they absorb all the 
visible wavelengths. Physicists talk about a hypothetical body called a 
black body which has no ability to reflect incident radiation but will 
absorb it all completely. As a corollary of this property, a black body 
is the best possible emitter of thermal radiation. This is the radiation 
emitted by all objects by virtue of their temperature and is of particu­
lar interest to us in the present context. If the temperature of a black 
body is increased, it will emit more thermal radiation and, at the 
same time, the wavelength of the most intense radiation will de­
crease. Obviously, a black body will cease to appear black when it is 
so hot that it emits light. 

Stefan's law gives the total radiant energy emitted by a black body 
per unit time (i.e. total radiant power) per unit surface area, as 
follows: 

(17 .4) 

where P represents the radiant power emitted by a black body of 
surface area A, and Tis the absolute temperature (K) of its surface. o 
is a constant, called Stefan's constant, which has the value 5.67 x 
w-s W m-2 K-4 • The equation tells us that the body will emit 
radiation at all temperatures greater than absolute zero. 

If the surroundings of the black body are at some lower tempera­
ture T., then it will receive radiant energy from them at a rate 
proportional to Ts 4 and its net rate of radiant energy loss P net will be 
proportional to (r- T54). If (T- T5 ) is small, it is a fairly simple 
mathematical exercise to show that (r - Ts 4) is approximately equal 
to 4 T53(T- Ts); thus, the net rate of radiant energy loss is approx­
imately proportional to the temperature difference if this is small. So. 

(17.5) 

and 

Pnet = o x 4 T/( T - Ts) 
A 

(17.6) 

provided that (T- Ts) is small. 
Clearly there will be a net loss of energy from the black body until 

its temperature reaches that of its surroundings. It will still continue 
to radiate energy when this happens, but it will then be absorbing it 
from the surroundings at the same rate. 

Real objects are not perfect absorbers and emitters like black 
bodies - in fact, some are rather poor. The emissivity, e, of a 
non-black body can be defined as the power emitted per unit area 
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expressed as a fraction of that radiated by a black body at the same 
temperature, E ranges from 1 for a perfect emitter down to 0, and 
Stefan's law can be expressed in the form 

p - = CJET' 
A 

Worked Example 17.4 

(17.7) 

A 25 mm diameter solid metal sphere is cooling under conditions 
such that there are negligible heat losses by conduction and convec­
tion. If the sphere behaves as a black body, with a net rate of heat loss 
of 100 W where its surroundings are maintained at 15 oc, then 
estimate (a) its temperature and (b) the rate at which this is falling. 
(Assume that the density of the metal p = 9 x 103 kg m-3 and that its 
specific heat capacity e = 400 J kg-1 K-1 • Assume that Stefan's 
constant = 5.67 x w-s W m-2 K-4 .) 

(a) The surface area of a sphere of radius r is 4Jtr2 • Substituting the 
data into Equation (17.5), where T (K) is the temperature of the 
sphere, 

100 ---- = 5.67 x lo-s (T' - 2884) 
4Jt(0.0125)2 

which gives 

T = 975 K = 702 oc 

(b) The volume of a sphere of radius r is given by 

Therefore, its mass m is given by 

4 
m=-Jtr3 Xp 

3 

and its thermal capacity me is given by 

4 
me = - Jtr3 x p x e 

3 

and, substituting the data, 



4 me = - 3t(0.0125)3 X (9 X 1Q3) X 400 = 29.5 J K-1 

3 

An object with a thermal capacity of 29.5 J K-1 losing 100 J in 1 swill 
experience an average fall in temperature of 

100 J s-1 

---- = 3.4 K s-1 

29.5 J K- 1 

Questions 

(Use any previously tabulated data as required. Assume 
that Stefan's constant = 5.67 x 1~ W m-2 K-4.) 

1. For each of the following materials estimate the thick­
ness that would provide equivalent thermal resistance 
to that of 12 mm of expanded polystyrene: 

(a) glass wool; 
(b) plaster; 
(c) solid glass; 
(d) steel. 

2. Two cylinders of identical shape and size, one copper 
and the other steel, are joined end to end and lagged 
along their length. The exposed copper face is main­
tained at 0 oc and the exposed steel face at 100 °C. 
Under steady state conditions, (a) what is the tempera­
ture at the interface, and (b) what would the relative 
lengths of the cylinders have to be for an interface 
temperature of 50 °C? 

3. A water tank, made from steel sheet 5 mm thick, has a 
layer of scale inside that is 0.6 mm thick. When the 
tank contains water at 90 oc, it loses heat at a rate of 
35 kW m-2 through its sides. Estimate the temperature 
of the outside surface of the metal. (Assume that the 
thermal conductivity of the scale is 1.2 W m-1 K-1.) 

4. A sheet of aluminium 3 mm thick is sandwiched be­
tween two sheets of steel each 1 mm thick. What 
would be the heat flow per unit area through the 
thickness of the composite if one face is maintained at 
0 oc and the other at 100 °C? 

5. An object, hanging from an insulating thread, is cool­
ing in a steady breeze at an air temperature of 15 °C. 
When it reaches 55 oc, it is losing heat at a rate of 30 
W. Assuming negligible radiation losses, estimate the 
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rate at which it will lose heat when it reaches 35 °C. 

6. The temperature of each of the following is falling at a 
rate of 0.75 oc per minute. In each case estimate the 
rate of heat loss: 

(a) a metal object with a heat capacity of 200 J K-1 ; 

(b) a metal object of mass 0.5 kg and specific heat 
capacity 400 J kg-1 K-1 ; 

(c) a 47.5 mm diameter solid metal sphere with a 
density of 8900 kg m-3 and a specific heat capacity 
of 400 J kg-1 K-1 • 

7. The temperature of a mild steel can of mass 0.525 kg 
containing 0.240 kg of water was found to fall at a rate 
of 1 °C in 2 min 45 s. A sufficient quantity of hot water 
was added to the can to return it to its original tempera­
ture and, under the same cooling conditions, the 
temperature was found to fall at a rate of 1 oc in 8 min 
15 s. Estimate how much water was added to the can. 

8. Two ball-bearings, one twice the diameter of the 
other but otherwise identical, and both at the same 
temperature, are allowed to cool under identical con­
ditions where Newton's law of cooling is valid. Find 
their relative initial rates of (a) loss of heat and (b) 
loss of temperature. 

9. A black body, completely isolated in space, is cooling 
from 650 oc. 
(a) At what temperature does it radiate energy at half 

its initial rate? 
(b) At what rate does it radiate energy when it has 

cooled to 0 °C? 

(Assume space is at absolute zero.) 

10. A 100 m diameter sphere, completely isolated in 
space, is radiating energy at a rate of 22.8 MW. If its 
surface temperature is 127 oc, estimate its emissivity. 
(Assume space is at absolute zero.) 



TOPIC 18 GASES 

COVERING: 

• ideal gas; 
• Boyle's law, the pressure law and Charles' law; 
• the ideal gas equation; 
• real gas and vapour. 

In Topic 16 we noted that the constituent particles in a gas are free to 
move around independently of one another. The constituent particles 
of most ordinary gases are molecules. For instance, air consists of 
roughly 80% N2 and 20% 0 2 molecules with small quantities of C02 

and other molecular substances. (The minor constituents also include 
the inert gases, which exist as single atoms because of their stable 
electronic configurations.) 

At 0 oc and atmospheric pressure a litre of gas contains approx­
imately 2. 7 x 1022 molecules; this means that the average distance 
between two neighbours is about 3 nm (3 x 10-9 m), which is roughly 
ten times the size of a small molecule. Gas molecules move around at 
high speed in a random and disordered fashion, continually colliding 
with one another and the walls of their container. At ordinary 
temperatures the molecules in air travel at hundreds of metres per 
second, with a typical mean free path (average distance between 
collisions) of around 100 nm. The random nature of their motion and 
their frequent collisions means that at any instant the molecules have 
a wide range of speeds. However, their average kinetic energy is 
constant at a given temperature and proportional to the absolute 
temperature. 

With this simple picture in mind, we can regard the addition of 
thermal energy to a gas as resulting in an increase in the translational 
kinetic energy (hence, the speed) of its constituent molecules. 

18.1 IDEAL GAS 

Scientists use the hypothetical concept of an ideal gas in which the 
individual molecules are assumed to have no volume and experience 
no intermolecular forces of the kind that we discussed in Topic 15. 
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I -·- I 
Figure 18.1 

Their collisions with one another and with the walls of their container 
are assumed to be perfectly elastic. 

Air at ordinary temperatures and pressures behaves more or less 
like an ideal gas. Anyone who uses a bicycle pump is familiar with the 
'springy' nature of air. This is quantified in Boyle's law, which relates 
the volume V and pressure p of a given mass of ideal gas by 

vex: 1/p 

or 

p V = constant 

Thus, the pressure of the gas is inversely proportional to its volume. 
That is to say, if its volume is halved, its pressure is doubled, and if its 
volume is doubled, its pressure is halved, and so on. It is most 
important to remember that Boyle's law only holds at constant 
temperature and that it is only strictly valid for an ideal gas. 

The pressure that a gas exerts on its container is due to the force 
arising from the change of momentum as the molecules bounce off 
the container walls. Because of the enormous numbers of molecules 
involved, these collisions result in a steady pressure (force per unit 
area). 

Figure 18.1 shows a simple one-dimensional model where the gas 
in its container is represented by a single molecule moving to and 
fro perpendicularly between two parallel walls. At a given temper­
ature the molecule moves at a constant speed corresponding to the 
constant average kinetic energy of the actual gas molecules. If the 
distance between the walls is halved, the frequency of the collisions is 
doubled and therefore the pressure is doubled; and if the distance is 
doubled, the frequency is halved- hence, in one-dimensional terms, 
pV = constant. 

If the temperature is raised, there will be a corresponding increase 
in the kirretic energy of the gas molecules. This is represented by 
an increase in the speed of the molecule in our model. There will be 
an increase in the force as it collides with the walls and, assuming 
the walls are fixed (constant volume), there will be an increase in 
the frequency of its collisions - hence, there will be a pressure in­
crease. The relationship between the pressure and absolute tempera­
ture T of a given mass of ideal gas at constant volume is given by the 
pressure law 

or 

piT = constant 



In other words, the pressure of a given mass of an ideal gas at 
constant volume is proportional to its absolute temperature. 

If the gas is allowed to remain at constant pressure, by letting it 
expand as its temperature is raised, then the relationship between its 
volume and absolute temperature is given by Charles' law as follows: 

Vcx::T 

or 

VIT = constant 

That is to say, the volume of a given mass of ideal gas at constant 
pressure is proportional to its absolute temperature. 

These three laws are combined in the ideal gas equation 

pV = nRT (18.1) 

where V is in m3 and p is in Pa. (Remember that the SI unit of 
pressure is the pascal (Topic 4) and that 1 Pa = 1 N m-2.) Tis the 
absolute temperature (K), n is the amount of gas in moles (mol) and 
R is the universal molar gas constant (often abbreviated to gas con­
stant), which has the value 8.31 J mol-1 K-1• 

From Equation (18.1), 

(18.2) 

where the subscripts 1 and 2 denote the pressure, volume and 
temperature of a given quantity of a gas under two different sets of 
conditions. 

If T1 = T2 , then Equation (18.2) reduces to Boyle's law: 

and if VI = v2, then it reduces to the pressure law: 

and if p 1 = p 2 , it reduces to Charles' law: 

Furthermore, a plot of p against 1/V at constant temperature will be a 
straight line of slope nRT, and so on. 
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Worked Example 18.1 

An air bubble trebles in volume as it rises from the bottom of a 
lake to the surface. Estimate the depth of the lake. (Assume that 
g = 9.8 m s-2 , atmospheric pressure is 101 kPa and the density of 
water Pwater = 1000 kg m-3 .) 

If Patm and Vatm are the pressure and volume of the bubble at 
atmospheric pressure at the surface of the lake and Ph and Vb are the 
corresponding values at the bottom then, from Boyle's law, assuming 
the water temperature is constant, 

but 

Therefore, 

and 

But Ph results from the pressure due to the depth of water plus 
atmospheric pressure; therefore, the pressure due to the depth of 
water alone is equal to 

Pb - Patm = 3patm - Patm = 2Patm 

and, from Equation (4.2) (page 32), this is equal to Pwatergh, where h 
is the depth of the lake. 

Rearranging Pwatergh = 2Patm gives 

h = 2Patm = 2 X 101 X 103 = 20.6 m 
Pwaterg 1000 X 9. 8 

Worked Example 18.2 

A vertical glass tube, sealed at its bottom end, contains a 144 mm 
column of air trapped beneath a 126 mm column of mercury. Find the 
atmospheric pressure if, when the tube is laid horizontally, the air 
column is 168 mm long. 



Vertical position: 
The pressure acting on the trapped air column is (Patm + 126) mmHg. 
Assuming, for simplicity, that the tube is of unit internal cross­
sectional area, then 

pV = (Patm + 126) X 144 

Horizontal position: 
The pressure acting on the trapped air column is Patm mmHg. There­
fore, 

pV = Patm X 168 

From Boyle's law 

(Patm + 126) X 144 = Patm X 168 

which gives 

Patm = 756 mmHg 

Worked Example 18.3 

The followingp-V data was obtained using 1.88 x 10-3 moles of gas at 
26 oc; 

Pressure/kPa 100 150 200 250 300 

Volume/cm3 46.6 31.1 23.3 18.6 15.5 

By non-graphical means (a) confirm that the gas obeys Boyle's law 
and (b) estimate the value of the universal molar gas constant. 

(a) If Boyle's law is obeyed, then pV should be constant. For each 
pair of values, 

pV = 4.66, 4.67, 4.66, 4.65 and 4.65 (average 4.66) 

(Remember that 1 kPa = 1 x 103 Pa and 1 cm3 = 1 x 1~ m3 .) 

(b) From Equation (18.1) (page 169) 

R = p V = 4.66 8.3 J mol-l K-1 
nT 1.88 X 10-3 X 299 

Note that the units of R are easily derived as follows: 
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pV N m-2 x m3 
R =-= N m mol-1 K-1 = J mol-1 K-1 

nT mol x K 

Figure 18.2 is a plot of p against V for a given mass of ideal gas at 
temperatures T1 and T2 , where T2 > T1 • Boyle's law is obeyed along 
each isotherm (constant temperature line). The vertical and horizon­
tal arrows, at constant V and constant p, represent changes following 
the pressure law and Charles' law, respectively. 

--Volume-

Figure 18.2 

Charles' law can be expressed approximately by 

V = V0(1 + 8/273) (18.3) 

where V0 is the volume of gas at 0 oc and V is its volume at 8 oc. 
(Compare this equation with Equation 16.6 (page 152), noting that, 
although the expansivity of different solids and different liquids can 
vary considerably, the volume expansivity for an ideal gas at 0 oc is 
approximately 1/273 K-1.) 

Figure 18.3 shows Equation (18.3) plotted as a graph. This again 
draws our attention to the significance of -273 °C as the lowest 
possible temperature (absolute zero). Of course, the atoms in a real 
gas would not have zero volume at absolute zero as the figure seems 
to suggest; they would form a solid. 

The equivalent equation for the pressure law is 

p = p 0(1 + 8/273) (18.4) 

and this gives a corresponding graph of the same form as Figure 18.3. 



-273 oc 0 oc 100 oc 
---Temperature--+ 

Figure 18.3 

There are two further points that we should note about ideal gases. 
Avogadro's hypothesis states that equal volumes of ideal gases at 

the same temperature and pressure contain the same number of 
molecules. At standard temperature and pressure (S.T.P.) 1 mol of an 
ideal gas occupies about 22.4 x 1o-3 m\ or 22.4litres. S.T.P., which 
is fixed at 0 oc and 1 atm pressure (760 mmHg), is a standard 
condition that makes a useful baseline to which any quantity of ideal 
gas at any temperature and pressure can be reduced. 

Dalton's law of partial pressures states that the total pressure of a 
mixture of gases equals the sum of the partial pressures of its compo­
nents. (The partial pressure of each component is the pressure it 
would exert if it was the only occupant of the volume containing the 
mixture.) 

Real gases deviate from ideal behaviour because real atoms and 
molecules have significant volume and, as we saw in Topic 15, they 
have forces operating between them. 

18.2 REAL GASES 

The behaviour of real gases was investigated last century by 
Andrews. Figure 18.4 gives a broad picture of the relationship be­
tween pressure and volume based on his results with carbon dioxide. 
We shall use this to illustrate our discussion. 

At relatively high temperatures, represented by the uppermost 
isotherm in Figure 18.4(a), the cohesive effect of the attractive forces 
between the gas molecules is small compared with the disruptive 
effect of thermal energy, and the isotherm is similar to that of an ideal 
gas. As the temperature is lowered, the effects of intermolecular 
forces become more significant and the isotherm becomes correspon­
dingly distorted. Before we consider the critical isotherm correspon­
ding to the critical temperature Tc, let us see what happens as we 
compress the gas along the isotherm XYY'Z corresponding to some 
temperature below Tc. 

From X toY it behaves as a gas but at Y it starts to condense. From 
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Y to Y' the pressure remains constant while the volume is reduced, 
and the gas progressively condenses until at Y' it has entirely 
liquefied. Y' to Z represents the compression of the liquid; liquids are 
obviously much less compressible than gases, because the molecules 
are close together, and the graph is correspondingly steep. 

The critical temperature Tc is the temperature above which a gas 
cannot be liquefied by increasing its pressure. The critical isotherm at 
Tc therefore represents a boundary above which the substance must 
exist in gaseous form irrespective of pressure, as shown in Figure 
18.4(b). Of course, the gas molecules can still be forced very close 
together by using high pressure, but above Tc this produces a highly 
compressed gas, not a liquid. 

As Figure 18.4(b) suggests, a vapour is a substance in the gaseous 
state but below its critical temperature; thus, it can be liquefied by 
pressure alone. 

In Topic 16 we noted that liquids evaporate because molecules with 
sufficiently high kinetic energy escape from the surface. And, as we 
might expect, if the temperature of the liquid is raised, the number of 
sufficiently energetic molecules will increase and the evaporation rate 
will increase. If we enclose a liquid under a vacuum, the molecules 
which escape will form a vapour above the surface. A number of the 
vapour molecules will condense back into the liquid as they collide 
with its surface and an equilibrium will be established when the 
condensation rate is equal to the evaporation rate. Under these 
conditions the vapour is described as saturated and the vapour press­
ure (the pressure exerted by the vapour) is called the saturated vapour 
pressure (s.v.p.). The saturated vapour pressure increases with 
temperature as the kinetic energy of the molecules is increased; 
however, it does not depend on the volume of the space above the 
liquid, because if this is changed and the temperature remains the 
same (as between Y' and Y in Figure 18.4), then an imbalance 



between the evaporation and condensation rates restores the vapour 
pressure to its original saturated value. If the volume is so large that 
the liquid evaporates completely before the saturated vapour press­
ure is reached, then the vapour is described as unsaturated (as be­
tween Y and X in the figure). 

The dotted curve in the figure encloses an area within which liquid 
and saturated vapour coexist; it encloses the horizontal parts of all 
the isotherms below Tc. The pressure corresponding to each of these 
represents the saturated vapour pressure at that temperature. If the 
temperature is raised or lowered, the saturated vapour pressure will 
increase or decrease accordingly. If the temperature is raised to the 
point where the saturated vapour pressure is equal to the external 
pressure, then evaporation will occur throughout the body of the 
liquid; in other words, the liquid will boil. The boiling point normally 
quoted for a liquid is that at standard atmospheric pressure; it gener­
ally occurs somewhere about two-thirds of the critical temperature on 
the absolute scale. 

If an unsaturated vapour is cooled to the point where it reaches its 
s.v.p., then it will normally start to condense, like moisture on a cold 
window, for example. Relative humidity is a measure of the extent to 
which air is saturated with water vapour. Thus, '60% relative humid­
ity' means that the air contains 60% of the moisture that it would 
contain if it was saturated. The dew point is the temperature where 
the water vapour in the air is just saturated. 

Questions 

(Use any previously tabulated data as required. Assume 
ideal gas behaviour. Where necessary, assume atmospher­
ic pressure = 101 kPa and R = 8.3 J mol-1 K-1 • Assume 
absolute pressure as opposed to gauge pressure (Topic 4) 
unless otherwise stated or implied. g = 9.8 m s-2 .) 

1. The temperature of 2400 mm3 of gas is increased from 
27 oc to 57 °C. What volume change must be made to 
keep its pressure constant? 

2. The pressure inside a 12 litre gas cylinder fell from 
0.82 MPa to 0.21 MPa, owing to a leaky valve. Esti­
mate the volume of escaped gas at atmospheric 
pressure. 

3. A pressure gauge, used to measure tyre pressures 
before and after a journey, gave readings of 190 kPa 
and 210 kPa, respectively. If the initial temperature 
was 18 oc (and the volume of the tyres remained 
constant), estimate the air temperature in the tyres 
after the journey. 

4. 7.5 litres of gas at 27 oc and 505 x 1Q3 Pais allowed to 
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expand to atmospheric pressure. Find its volume at 
7 °C. 

5. Calculate the volume of 1 mol of N2 at standard 
temperature and pressure. 

6. If a sample of gas occupies 1.20 m3 at 27 oc and 1950 
mmHg pressure, find (a) its volume at s.t.p. and (b) 
its amount in moles. 

7. A cylinder with internal dimensions of 100 mm length 
and 50 mm diameter contains gas at 14 oc and a 
pressure of 2 atmospheres. Estimate how many gas 
molecules the cylinder contains. 
(Avogadro constant = 6.02 x 10Z3 moi-1.) 

8. Assuming that air consists of 80% nitrogen (N2) and 
20% oxygen (02) by volume, estimate its density at 
s.t.p. 

9. A device like that in Worked Example 18.2 contained 
a mercury column 120 mm long. When the tube was 
held vertically, the length of the air column was (a) 79 
mm with the open end upwards and (b) 109 mm with 
the open end downwards. Calculate the atmospheric 
pressure at the time. 

10. Use a graphical method to answer Worked Example 
18.3. 

11. A device like that in Worked Example 18.2 contained 
a column of air trapped by water (rather than mer­
cury). With the tube horizontal and atmospheric 
pressure equal to 759 mmHg, the length of the air 
column is 235 mm at 10 oc and 340 mm at 60 °C. 
Assuming that the saturated vapour pressure of water 
is 9 mm at 10 oc (and that Dalton's law applies to the 
trapped air/water vapour mixture), estimate the satu­
rated vapour pressure of water at 60 °C. 



TOPIC 19 LIQUIDS 

COVERING: 

• non-viscous behaviour (Bernoulli's equation); 
• viscous flow (Poiseuille's formula); 
• motion in a viscous fluid (Stokes's law); 
• surface tension. 

We have seen that the forces of attraction operating in a liquid are 
able to withstand the disruptive effect of thermal energy to the extent 
that the constituent particles form a coherent mass but remain 
capable of movement relative to one another. A liquid therefore has 
a more or less fixed volume contained within its boundary surface and 
is capable of flowing. 

In this book we shall confine ourselves to laminar flow. This is flow 
that can be viewed in terms of the movement of layers (laminae) of 
liquid where successive particles passing the same point follow the 
same path (as indicated by the arrows in Figure 19.1). By contrast, in 
turbulent flow, which tends to occur at higher velocities, the flow 
pattern is broken and irregular, and eddies are formed. 

Cross-sectional area = A A, 

~"~ ...... r .............. 
I \ :-

(b) 1- l 
' --L -::;;... ' .;; • 

(a) 

Velocity v v, 

Figure 19.1 

Reynolds demonstrated the difference between laminar and turbu­
lent flow in a classic experiment towards the end of the last century. 
He introduced a 'thread' of liquid dye via a fine nozzle into water 
flowing through a glass tube. He found that as long as the velocity of 
the water remained low (where the flow is laminar), the thread of dye 
remained intact as it was carried along. At higher velocities (where 
the flow becomes turbulent) the thread broke up and the dye mixed 
with the water. 

A2 
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,... 

~ \ • 
""' 

.. .. - v2 

177 



178 Foundation Science for Engineers 

Figure 19.1(a) represents laminar flow through a uniform pipe. If 
the cross-sectional area of the pipe is A and liquid is flowing through 
it with an average velocity v, then the flow rate, expressed as the 
volume of liquid passing a given point in one second, will be A v. If 
the cross-sectional area of the pipe varies, as in Figure 19.1(b), then 
the velocity varies to maintain a constant flow rate and, assuming the 
liquid is incompressible, 

(19.1) 

This equation, called the continuity equation, tells us that, as the pipe 
narrows, the liquid velocity increases. 

19.1 IDEAL (NON-VISCOUS) LIQUIDS 

The next step is to consider Bernoulli's equation, which describes the 
behaviour of an ideal liquid. For the purposes of our discussion, an 
ideal liquid is incompressible and non-viscous and has flow properties 
that depend only on its density. (As we shall see in the next section, 
viscosity is a measure of the internal friction in a fluid that gives it 
resistance to flow.) To identify the parameters involved in Bernoulli's 
equation, let us consider the case of a liquid flowing through the 
curiously shaped pipe in Figure 19.2. At any position in the system, p 
represents the pressure, v represents the velocity of the liquid and h 
represents the height above some reference level. Let us assume that 
the liquid is flowing from position 1 to position 2 because of a 
pressure difference between them. The work done on the fluid by the 
net force due to the pressure difference results in an increase in its 
potential energy as it moves uphill and in its kinetic energy because of 
the increased velocity where the pipe narrows. 

-T---p, 
h, 

_1 ______ ~------------------
Figure 19.2 

Bernoulli's equation tells us that for any small volume anywhere in 
an ideal liquid the sum of the three parameters involved (pressure, 



potential energy and kinetic energy) is a constant. In mathematical 
terms 

p + pgh + ! pv2 = constant 

and applying this to Figure 19.2 

P1 + pgh1 +! PV12 = Pz + pghz + ! PVz2 

(19.2) 

(19.3) 

where p is the density of the ideal liquid and g is the acceleration due 
to gravity. 

Bernoulli's equation is essentially a statement of the law of con­
servation of energy, where each term is expressed as energy per unit 
volume. If this idea is difficult to grasp, just think about what happens 
if we multiply both sides of Equation (19.3) by unit volume (1 m3). 

The potential and kinetic energy terms contain density rather than 
mass, but 

density x m3 = kg m-3 x m3 = kg = mass 

which returns them to their more familiar form (mgh and ~mv 2). 
Furthermore, multiplying pressure by unit volume gives units of 
energy 

pressure x m3 = N m-2 x m3 = N m = J = energy 

In theory Bernoulli's equation is valid for all fluids (liquids and 
gases), provided that they are incompressible and have zero viscosity. 
Real fluids are, of course, compressible, particularly gases. They are 
also viscous, particularly liquids, and the mechanical work done in 
overcoming the viscosity of a liquid appears as heat, with the result 
that there is a decrease in the quantity (p + pgh + ~pv 2). Neverthe­
less Bernoulli's equation is extremely important and has wide ap­
plications. 

In some cases one or other of the parameters may be eliminated. 
For instance, p 1 and p 2 are both equal to atmospheric pressure in 
Worked Example 19.1 (below). In this example we find that the 
theoretical velocity with which liquid escapes from a small hole in the 
side of a tank is given by v'2ih, where the hole is a distance h below 
the liquid surface (Torricelli's theorem). This turns out to be the 
same velocity as that which a body reaches by falling freely from rest 
through the same distance. In Question 1 you are asked to use 
Bernoulli's equation to derive the expression for the pressure at a 
given depth below the surface of a stationary liquid (Equation 4.2 on 
page 32). Provided that the liquid is stationary, then v1 = v2 = 0. 

The potential energy term is eliminated for the case shown in 
Figure 19.3, where a liquid encounters a constriction in a horizontal 
pipe through which it is flowing. The vertical tubes are simply mana-
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1 
h 

1 

v, 
Figure 19.3 

meters (see Topic 4) to indicate the gauge pressures p 1 in the pipe and 
p 2 in the constriction, where the velocity has increased from v1 to v2 , 

owing to the reduction in cross-sectional area from A 1 to A 2 • Since the 
pipe is horizontal, the potential energy terms cancel and Equation 
(19.3) becomes 

+ 1 2- +1 2 P1 2 pvl - P2 2 PV2 

and, on rearranging, 

(19.4) 

(19.5) 

Contrary to what we might expect, the manometer levels in the figure 
show that the pressure falls where the liquid velocity increases in the 
constriction, and the equation tells us that the greater the velocity 
change the greater the pressure drop. 

This effect has many applications. For instance, an aircraft wing is 
designed so that the air flow over the top surface is faster than that 
over the bottom and the resulting pressure difference provides a lift 
force. (This example departs from our simple model, because air is 
compressible.) 

In Worked Example 19.2, Equation (19.5) is used as the theoreti­
cal basis for the Venturi meter, which is a device used for measuring 
flow rate through a pipe. Worked Example 19.3 uses Equation (19.4) 
for the Pi tot tube, which is a device used for measuring flow velocity. 

Worked Example 19.1 

Find an expression for the theoretical velocity v with which liquid 



escapes from a small hole in the side of a large tank at a distance h 
below the liquid surface. 

Let pH h1 and v1 be the pressure, height and velocity of the liquid at 
its upper surface, and p 2 , h2 and v2 the corresponding values where it 
escapes from the hole at a distance h below (see Figure 19.4). 

v, = 0 

h P1 = P2 = Patm 

h2=0-L-_______ lc_=_h_, __ ~~2=V 
Figure 19.4 

The liquid experiences atmospheric pressure Patm at its upper sur­
face and where it emerges from the hole; therefore, p 1 = p 2 = Patm· 

If we take the level of the hole to be the reference level, then h2 = 0 
and h = h~" 

If the cross-sectional area of the tank is large compared with that of 
the hole, then we can assume that the surface level falls at a negligible 
rate as the liquid escapes; therefore, V1 = 0. 

If the liquid density is p, then, substituting in Equation (19.3), 

Patm + pght + 0 = Patm + 0 +! pv/ 

Therefore, 

and, since v = V2 and h = hH 

v = Viiii 

(This is the same as the speed of a body of mass m that has fallen from 
rest at a height h where its potential energy was mgh; in this case 
1/zmv 2 = mgh.) 

Worked Example 19.2 

The device illustrated in Figure 19.3 can be used to measure flow 
rate. Find an expression giving flow rate in terms of the height 
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difference h between the levels in the manometer tubes and the 
cross-sectional area of the pipe (A1) and of the constriction (A2). 

From Equation (19.1) 

Therefore, 

2 A/v22 
v =---

1 A2 
1 

and, substituting for V12 in Equation (19.5), 

and 

which rearranges to give 

v - A v 2(p1 - p2) 
2 - 1 p(A/ - A/) 

Since the flow rate is equal to A 2v2, then, substituting for v2 from 
above, 

flow rate = A 2 x A 1 '\ I 2(p1 - p 2) 

V p(A/- A/) 

But if h is the height difference between the manometer levels, then 

(pl - P2) = pgh 

and 

(pl- p2) = gh 
p 

Therefore, 



Note that we have assumed an ideal liquid. In practice this device, 
and the device in Worked Example 19.3 below, would be calibrated 
(Topic 26) to take into account the effect of friction and other 
complicating factors associated with real liquids. 

Worked Example 19.3 

The device illustrated in Figure 19.5 can be used to measure flow 
velocity through a pipe. Find an expression giving flow velocity v in 
terms of the height difference h between the levels in the vertical tubes. 

The left-hand tube indicates the pressure pl> where the liquid flows 
through the pipe with velocity V1 • 

The bottom end of the right-hand tube faces into the moving 
liquid, which is forced up to a height h above the level in the other 
tube. The liquid at the bottom end is stationary; therefore, v2 = 0 
with a corresponding pressure p 2 • 

Since the liquid flow through the pipe is horizontal, we can ignore 
the potential energy term in Bernoulli's equation and, from Equation 
(19.4), 

P1 + ! PV12 = Pz + 0 

and 

! pv/ = Pz- P1 

But 

Pz- P1 = pgh 

Therefore, 

19.2 REAL (VISCOUS) LIQUIDS 

Until now, the only property of a fluid that we have considered is its 
density. Now we have reached the point where we need to take 
viscosity into account. 
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Figure 19.6 

Viscosity is the frictionlike resistance to flow that arises from the 
cohesive forces between the constituent particles in a liquid. If the 
temperature is raised, the thermal energy of the constituent particles 
is increased and relative movement between them becomes easier. 
Thus, the viscosity of most liquids decreases with temperature. 

In the absence of viscosity the velocity of a liquid flowing through a 
pipe would be uniform over the entire cross-section. For a real 
viscous liquid the velocity profile looks something like that in Figure 
19.6, where the length of the arrows represents speed. The liquid 
molecules in immediate contact with the pipe adhere to its surface 
and tend to remain stationary. The stationary layer provides resist­
ance to the movement of the layer of molecules adjacent to it and this 
in turn provides resistance to the movement of the next layer, and so 
on, giving a velocity profile similar to that in the figure. (Note that the 
work done in overcoming viscosity ultimately raises the total kinetic 
energy of the molecules and therefore appears as heat.) 

(Area=A 

Figure 19.7 

Viscosity can be quantified in terms of the friction-like force acting 
between adjacent layers of liquid moving relative to one another. 
In Figure 19.7 both layers are moving from left to right but the up­
per layer moves faster, so that their relative velocity v is equal to 
(vupper - V1ower). The lower layer therefore exerts a retarding force F 
on the upper layer and experiences an equal and opposite reaction 
force in the forward direction. F is an example of a shear force and 
the resulting shear stress is given by FIA, where A is the area of 
contact between the layers. (We shall look at shear in more detail in 
the next topic; for the time being, just think of shear forces as acting 
parallel to a plane, unlike tensile and compressive forces, which act 
perpendicularly to it.) If d is the distance between the two layers, 
then for the purposes of our discussion we can say that, for many 
liquids, F is given by 

TjAv 
F=-

d 
(19.6) 

where lJ is the coefficient of dynamic viscosity, often simply called 
viscosity. The SI unit of viscosity is pascal seconds, Pas (i.e. N s m-2). 

(Viscosity is sometimes measured in non-SI units called poises, where 



10 poises = 1 Pa s.) Some approximate values ofT] at 20 °C are given 
in Table 19.1. 

Table 19.1 

Substance 

Air 
Water 
Machine oil 

Viscosity/Pa s at 20 oc . 
1.8 x w-s 
1.0 x w-3 

1 - 6 x 10-l 

From Equation (19.6) we see that, for the liquids to which it 
applies, the shear stress FIA is proportional to the velocity gradient 
vld and T] is the constant of proportionality; thus, a large shear stress 
coupled with a small velocity gradient indicates a liquid of high 
viscosity (for instance, machine oil compared with water). 

There are two important laws governing viscous flow. Poiseuille's 
formula gives the flow rate through a cylindrical pipe. If the pipe has 
an internal radius r and a length l, and the pressure difference 
between its ends is (p2 - p 1), then the volume flow rate Vof a fluid of 
viscosity T] is given by 

:1tr4 
( P2 - Pt ) v = - .::__::__---=--=-

81] l 
(19.7) 

Thus, flow rate is proportional to the pressure gradient (p2 - p 1)/l 
and inversely proportional to the viscosity of the fluid. Somewhat 
more surprisingly, it is also proportional to r\ so, all other things 
being equal, doubling the radius of the pipe increases the flow rate 
sixteenfold! Another way of looking at the equation is to say that flow 
rate is proportional to the pressure difference (p2 - p 1) and inversely 
proportional to the resistance to flow as given by 8T]l/rrr4 • 

Before moving on to the other important law, we should note that 
the type of flow under given conditions can be predicted with the aid 
of the Reynolds number, Re. This is a dimensionless quantity given by 

vpl 
Re=-

TJ 
(19.8) 

where v, p and TJ are the velocity, density and viscosity of the fluid 
and lis a linear dimension that is characteristic of the system. If, for a 
straight uniform pipe, we take v as equal to the volume flow rate 
divided by the cross-sectional area and l as equal to the internal 
diameter, then we can normally expect laminar flow if the value of Re 
is below about 2000 and turbulent flow if it is above about 4000. 
Either may be possible between 2000 and 4000. Thus, Equation 
(19.8) tells us that laminar flow is favoured by low values of v, p and l 
and by high viscosity. 
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The second important law is Stokes's law. This gives the viscous 
resistive force F that acts on a sphere of radius r moving with velocity 
v through a fluid of viscosity TJ as follows: 

F = 6:rtTJrv (19.9) 

Thus, the resistance experienced by the sphere is proportional to TJ, r 
and v. Worked Example 19.4 (below) shows how Stokes's law can be 
used to determine the viscosity of a liquid by measuring the terminal 
velocity of a sphere falling through it under gravity (e.g. a small ball 
bearing falling through oil); note that for Stokes's law to agree closely 
with experimental results Re should be less than 0.1, where 1 is taken 
to be the diameter of the sphere and v its terminal velocity. Further­
more, the liquid container needs to be large, so that the walls and the 
bottom have an insignificant effect on the velocity of the sphere. 

Worked Example 19.4 

Assuming Stokes's law, find an expression whereby the viscosity TJ of 
a fluid of density Pt may be obtained from the terminal velocity v1 of a 
sphere of radius r and density Ps falling through it under gravity. 

The downward force acting on the sphere (i.e. its weight) is 
opposed by the upthrust due to the fluid it displaces and by the 
viscous resistive force it experiences. When the sphere has reached its 
terminal velocity vt> where its acceleration is zero (Topic 5), then the 
net downward force acting on it is zero (because F = ma = m X 0). 
Now 

mass of sphere = volume X density = ~ :rcr 3 x Ps 

and 

mass of displaced fluid = ~ :rcr 3 X Pt 

and, from Equation (19.9), 

viscous resistive force = 6:rcwv 

At terminal velocity v, the net downward force is equal to 

weight of sphere - upthrust - resistive force = 0 

Therefore, 



which rearranges to 

2r2 (p. - Pr)g 
TJ= 

19.3 SURFACE TENSION 

Surface tension is the property that makes a liquid behave as though 
it has an elastic skin. It is the reason why water forms drops and why 
its surface can support small objects such as sewing needles whose 
density would otherwise cause them to sink. 

Surface tension has a molecular basis. A molecule in the body of a 
liquid is completely surrounded by neighbours and therefore experi­
ences attractive forces more or less uniformly in all directions. But a 
surface molecule experiences a net attractive force into the body of 
the liquid, since it only has neighbours on that side (apart from a few 
in the surrounding vapour). Because the surface molecules tend to be 
pulled inwards, the liquid will tend to adjust its shape to minimise its 
surface area. Since the sphere is the geometric shape with the smal­
lest surface area for a given volume, liquids tend to form spherical 
drops, although factors such as gravity and the effect of other surfaces 
normally prevent this. 

Surface tension is given the symbol y and can be defined as the 
force in the liquid surface acting perpendicularly to a line of unit 
length lying in the same plane. The units are therefore N m-1 (and for 
water at ordinary temperatures y is about 0.073 N m-1). To make this 
idea clearer, Figure 19.8 shows a film of liquid, such as a soap 
solution, stretched across a wire frame which has one side, of length/, 
that can be moved without any frictional resistance. Because the film 
tries to retract in order to reduce its surface area, a force F must be 
applied to the movable side to hold it stationary. By our definition 
above F = 21 x y. (The factor 2 is necessary because the film has two 
surfaces, an upper and a lower, both of which are pulling on the 
frame.) 

If we stretch the film by pulling the movable side against the 
surface tension through a distanced, then the work done, equal to 
2/y x d, is stored as surface energy. Surface energy is given the sym­
bol a and has units of J m-2 • In terms of Figure 19.8, the area of the 
newly created surface is 2/d; therefore, 

2/yd 
a=--=y 

2/d 

soy and a have the same numerical value. (Note that a = J m-2 = 
N m m-2 = N m-1 = y.) 
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Concave 
meniscus 

(a) 

Convex 
meniscus 

(b) 

Figure 19.9 

When a liquid comes into contact with a solid, forces of attraction 
between the liquid molecules and the solid surface cause adhesion 
between the two. A detailed discussion is beyond the scope of this 
book, but we need a broad picture of some of the ideas involved. 

The adhesion between water and clean glass is much greater than 
the cohesion between water molecules themselves. Water therefore 
tends to form as large an interface with glass as possible, and spreads 
out over its surface and wets it. If the glass is vertical, then the water 
will tend to climb up it and form a concave meniscus similar to that in 
Figure 19.9(a). By contrast, the adhesion between mercury and clean 
glass is smaller than the cohesion in liquid mercury. Mercury there­
fore forms discrete drops on a horizontal glass surface, and a convex 
meniscus on a vertical one, as in Figure 19.9(b), in order to minimise 
the area of its interface with the glass. 

The angle of contact, e in the figure, is the angle measured through 
the liquid between the liquid and solid surfaces where they meet. The 
smaller the value of e the greater the tendency of the liquid to wet the 
solid surface. In fact, e is zero for water on clean glass and about 140° 
for mercury on clean glass. 

Wetting agents are used to reduce e for many purposes: for 
example, fluxes are used to promote the wetting of metal surfaces 
with molten solder. Surfaces are sometimes waterproofed by treat­
ing them with substances to increase their contact angle with water. 
Capillarity, which causes liquids to rise in narrow tubes where 
e < 90°, is due to surface tension. 

Questions 

(Use any previously tabulated data as required. Pwater = 
1000 kg m-3 • g = 9.8 m s-2 .) 

1. The gauge pressure p at a depth h below the surface of 
a stationary liquid of density p is given by the expres­
sion p = pgh, where g is the acceleration due to gravity. 
Derive this expression from Bernoulli's equation. 

2. A large steel tank floating in water has a 24 mm diam­
eter hole sealed with a plug 250 mm below the water 
line. Estimate the initial flow rate into the tank if the 
plug is removed. 

3. Express the flow rate from the previous question in 
terms of molecules per minute. 
(Avogadro constant = 6.02 x 10Z3 mol-1.) 

4. By consideration of the units on their respective right­
hand sides confirm that (a) Equation (19.7) gives a 
volume flow rate, (b) Equation (19.8) gives a dimen­
sionless number and (c) Equation (19.9) gives a force. 



5. An oil drop of density 900 kg m-3 and of radius 
2.5 x 10-6 m fell a distance of 10.0 mm through air in 
14.7 s. Estimate the viscosity of the air, assuming that 
its density may be ignored. 

6. An open-ended horizontal tube 500 mm long with an 
internal diameter of 2 mm was sealed into the bottom 
of a water tank. 139 cm3 of water flowed from the tube 
over the course of 1 min. (a) Check whether the water 
would have experienced laminar flow through the tube 
and (b) estimate the depth of water in the tank. 

7. A workman accidentally drilled a horizontal hole in a 
water pipe 3.29 m above ground level. The escaping 
water travelled a horizontal distance 4.92 m before 
hitting the ground. Find the gauge pressure in the pipe. 

8. A clean rectangular glass plate, measuring 75 x 16 mm 
and 1.9 mm thick, is suspended so that its long edges 
are horizontal, its faces are vertical and it just makes 
contact with a horizontal water surface. Assuming that 
Ywater = 0.073 N m-1 , estimate the force due to surface 
tension that must be overcome to separate the plate 
from the water. 

9. Estimate the energy required to divide a 2 mm di­
ameter raindrop into ten million identical droplets. 
(For a sphere of radius r, surface area = 4Jtr2 and 
volume = 4Jtr3/3. Assume Ywater = 0.073 N m-1.) 

Liquids 189 



190 

TOPIC 20 SOLIDS 

COVERING: 

• elastic deformation and modulus of elasticity; 
• stress/strain relationships; 
• plastic deformation; 
• brittle behaviour. 

We have already seen that the constituent atoms, ions or molecules in 
a solid material are trapped between their neighbours because they 
have insufficient thermal energy to escape. They are confined to fixed 
positions on a crystal lattice, held by a network of cohesive forces that 
tends to oppose any attempt to deform it, and it is this that gives 
crystalline solids their characteristic rigidity. We shall begin by con­
sidering elasticity, which is the property of a solid that tends to return 
it to its original dimensions when it has been deformed. 

20.1 ELASTIC DEFORMATION 

We shall start with a model solid in which the constituent atoms are 
held together by chemical bonds represented by the net force/ 
separation curve in Figure 20.1. In the absence of external forces the 
atoms will adopt the equilibrium separation r0 , where the attractive 
and repulsive components in the bond are balanced (see Topic 15). If 
we apply an external force to pull the atoms apart or push them 
together, then an opposing force of equal magnitude will be gener­
ated within the bond by the imbalance between the attractive 
and repulsive components as we move up or down the net force/ 
separation curve. At small displacements the net force/separation 
curve is virtually linear; hence, it provides the basis of Hooke's law, 
as we saw in Topic 15 (see page 136). If the external force is removed, 
then the atoms will return to their equilibrium separation r0 • 

Figure 20.2 represents the mechanical deformation of a model 
material. In tension and compression equal and opposite forces act 
along the same line and the length of the specimen changes accord­
ingly. In shear (to the right of Figure 20.2) the forces are out of 
alignment and this results in a twisted deformation of the specimen. 



Separation 

Compression 

Tension 

Figure 20.1 

Figure 20.2 

(Note that in this case, as the figure stands, additional forces that are 
needed to prevent rotation have been omitted for simplicity.) 

In Topic 2 we found the Young's modulus of a material as follows: 

stress FIA o 
£=--=-=-

strain lilllo E 
(20.1) 
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Figure 20.3 
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where !l.l represents the extension and /0 the undefonned length, as 
indicated in Figure 20.3(a). Some approximate Young's modulus values 
are given in Table 20.1. (Remember that 1 GPa = 1 x 109 N m-2.) 

(b) 

F 

Table 20.1 

Material 

Aluminium 
Brass 
Copper 
Glass 
Nylon 
Steel 

(c) 

F 

() 

"--Area A 

- - - -:;....-' Volume change 
~ =«iV 

I 

- - - - - - - ~Original volume 

Pressure p = Vo 

Young's modulus/GPa 

70 
110 
110 
70 

3 
200 

As Figure 20.3(a) suggests, materials stretched under tension tend 
to become thinner (fatter under compression) and in most cases there 
is a change in volume. The transverse strain Et accompanying the 
longitudinal strain e1 is given by the Poisson's ratio of the material, !J., 
where 

(20.2) 

The negative sign is needed because a positive longitudinal strain 
(extension) gives a negative transverse strain (contraction), and vice 
versa. 

Now let us consider the equivalent of Young's modulus in shear. In 
Figure 20.3(b) the shear stress (symbol 1:) is given by FIA, where Fis 
the tangential force along the plane of area A over which it is applied. 
The angle of shear e is a measure of the shear strain and xly = tan e = 
e radians if e is small. Thus, at small strains the shear modulus G is 
given by 

't 
G=-e (20.3) 



(If we think of G as FIA divided by xly, then we have a parallel with 
viscosity (see Equation 19.6 on page 184).) 

The third type of deformation, shown in Figure 20.3(c), is the 
change in volume 11 V which occurs when an object is subjected to 
hydrostatic pressure- for example, at the bottom of the sea. In this 
case the stress is the pressure p. (Remember that pressure is the 
normal force per unit area acting on a surface (Topic 4).) The volume 
strain is the fractional volume change 11 V/Vm where V0 is the original 
volume. In this case the modulus is the bulk modulus K, given by 

p 
K=---

11V/Vo 
(20.4) 

The negative sign is needed because a positive pressure change gives 
a negative volume change, and vice versa. 

Note that strain is a dimensionless quantity, so all three moduli 
have the units of stress, N m-2 (or Pa). 

For isotropic materials (i.e. those with uniform properties in all 
directions) the elastic moduli and Poisson's ratio are related by 

E 
G= 

2(1 + !l) 
(20.5) 

and 

E 
K= 

3(1 - 2!!) 
(20.6) 

Many solids have a value for Poisson's ratio of between about } 
and t, which, when substituted in the equations above, gives values 
for G of about 0.4£ and forK between about 0.7£ and 1.0£. 

Note that most solids behave elastically at only very low strains, 
generally less than 1%, above which they either break in a brittle 
fashion or deform plastically before fracture. Rubber is exceptional 
in that it remains elastic up to very large strains, sometimes several 
hundred per cent, although the stress/strain relationship is not linear, 
as we shall see later. 

Figure 2.1 (page 14) shows the load/extension plot for a particular 
wire that happened to be 1.72 m long and 0.40 mm in diameter. A 
more fundamental approach would be to present the stress/strain plot 
for the material from which the wire was made. In the worked 
example below, the original load/extension data for the wire is repro­
cessed and stress is plotted against strain. (Note that strain can be 
represented as a straightforward ratio, but it is often expressed as a 
percentage by multiplying it by 100. Since strains in real structures 
are often very small, engineers sometimes prefer to work in micro­
strain, which is strain multiplied by a million. Thus, an extension of 
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1 mm in 1m can be expressed as 0.001 strain, 0.1% strain or 1000 
microstrain.) 

Worked Example 20.1 

The following load/extension data was obtained for a wire 1. 72 m 
long and 0.40 mm in diameter. Convert the data into stress/strain 
form and plot it to obtain the Young's modulus for the material from 
which the wire was made. 

Load/N 10 20 30 40 50 60 

Extension/mm 0.7 1.5 2.1 2.9 3.6 4.3 

Table 20.2 

Load/N Extension/m X 10-3 Stress/MPa Strain/x 10-3 

10 0.7 80 0.41 
20 1.5 159 0.87 
30 2.1 239 1.22 
40 2.9 318 1.69 
50 3.6 398 2.09 
60 4.3 477 2.50 

1 

500 

400 

"' D.. 
:::!: 300 OJ 
Ill 

~ 
Ui 

200 

100 

0 
0 1.0 2.0 

--Strain/10-3 -

Figure 20.4 

Table 20.2 shows load divided by the original cross-sectional area 
(Jt x 0.00022) to give tensile stress, and extension divided by the orig­
inal length to give strain. Figure 20.4 shows stress plotted against 



strain. Since the graph is a straight line and passes through the origin, 
then, from the figure, estimating the stress to be 480 MPa at a strain 
of 2.5 X 10-3 , 

480 X 106 

E = = 190 GPa 
2.5 x w- 3 

Figure 20.5 shows a plot that was obtained in basically the same 
way as Figure 20.4 but, in this case, an ordinary rubber band was used 
instead of a metal wire. It is clear that it does not obey Hooke's law. 
Furthermore, we can see from the scales on the two figures (and, of 
course, we know from experience) that a rubber band stretches very 
much more easily than a metal wire. Clearly the mechanism of 
rubber-like elasticity is fundamentally different. 

0 100 200 

---Strain/%--+ 

Figure 20.5 

20.2 RUBBER-LIKE ELASTICITY 

Rubber consists of enormously long chain-like molecules which are 
randomly tangled together in a disordered mass rather like a plate of 
spaghetti. At normal temperatures there is sufficient thermal energy 
for rotation to occur about the covalent bonds along the length of the 
chains (see Topic 15). The result of this is that the chains are in a 
constant state of random wriggling motion, continuously changing 
their shape. On application of an external force to stretch the rubber, 
the chains tend to straighten by untwisting through bond rotation so 
that they are brought into partial alignment. On releasing the exter­
nal force, the chains wriggle back into their disorganised and more 
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(b) 

Figure 20.6 

' ' \ 
~ 
I 

compact configurations so that the rubber as a whole retracts. De­
formation by bond rotation processes of this kind is much greater, 
and much smaller forces are involved, than in the bond distortion 
mechanism we discussed earlier (Figure 20.1). 

20.3 PLASTIC DEFORMATION 

All solid materials subjected to a continuously increasing tensile 
stress break sooner or later. But before they do, many of them 
undergo a significant amount of plastic deformation, which is a 
permanent deformation that results from internal structural changes. 
For instance, many metals stretch elastically, so that, on unloading, 
they return to their original lengths, but if they have been stretched 
too far, they are left with a permanent length increase. In other 
words, they have an elastic limit corresponding to a stress level above 
which some of the strain is permanent. 

The detailed mechanisms of plastic deformation for different ma­
terials are complex. Nevertheless, in view of its importance in engin­
eering, we shall look at it briefly in terms of a very simple atomic 
model of a metal. This is based on the fact that adjacent planes of 
atoms in a metallic crystal structure can slip over one another under 
the influence of stress. This is illustrated in idealised form in Figure 
20.6(a). Provided that the stress is large enough to move each atom 
over its neighbour in the adjacent plane (Figure 20.6b ), then there is 
nothing in the nature of the metallic bond to prevent this process 
from continuing step by step. (The existence of such planes is implied 
in Figure 15.7 on page 140.) Bonding between the planes is not 
interrupted, so the force required is less than that needed to pull 
them apart completely. Our simple model therefore suggests that 
metals tend to deform plastically in this way rather then snap in a 
brittle fashion like glass. We cannot, of course, continue stretch­
ing the specimen indefinitely. Sooner or later, depending on the ma­
terial, it will break, although the fracture processes involved are 
complex and beyond the scope of our discussion. 

20.4 BRITTLE FRACTURE 

Brittle materials, like glass, are characterised by their inability to 
undergo plastic deformation. If a brittle material is fractured, the 
broken pieces can often be glued back together, so the repaired 
object is more or less restored to its original dimensions. 

This is consistent with our simple two-atom model of elasticity. If 
we apply stress to a material, it responds by deforming elastically. If 
the stress is increased, the chemical bonds are progressively de­
formed until those that are the most highly stressed cannot support 
the load and the material breaks. The bonds within the broken pieces 



are no longer subjected to external stress and they return to their 
equilibrium positions. We can therefore reconstruct the original ob­
ject by glueing the pieces back together. 

Ceramics are non-metallic inorganic materials that include, for 
example, glass and fired clay products. They often contain com­
pounds of metals and non-metals and they are inclined to be brittle 
because the ionic-covalent bonding on which they generally depend 
tends to resist the slip processes that readily occur in metals. At one 
end of the scale the covalent bond is rigid, directional and specific 
between the bonded atoms. And at the other end, as Figure 20.7 
indicates, relative movement between the planes in an ionic structure 
as shown would bring positive ions into contact with positive ions and 
negative with negative. This would lead to strong repulsive forces 
causing the planes to separate rather than slip over one another. 

Figure 20.7 

Glasses are amorphous solids - that is to say, they are non­
crystalline, as suggested in Figure 20.8. Like a liquid, their structure 
has no long-range regularity and such materials are sometimes called 
supercooled liquids. 

Rubber only exhibits its special elastic behaviour above its glass 
transition temperature. Below this, there is insufficient thermal energy 
for bond rotation and the chains are frozen into fixed configurations. 
The material loses its rubbery characteristics and behaves in a similar 
way to glass. A number of hard, brittle plastics are based on chain­
like molecular structures which have their glass transition tempera­
tures above room temperature. 

Questions 

(Use any previously tabulated data as required and 
assume that Hooke's law is obeyed. Assume that g = 
9.8 m s-2 and that Poisson's ratio for steel is 0.3.) 

1. A 1.5 mm diameter wire supports a 9 kg load. A 
column of 1.4 m square cross-section supports a 
10 x 1()6 kg load. Find the longitudinal stress in each 
case. 

2. An 8 kg load is suspended by a steel wire originally 

Crystalline 

Amorphous 

1 mm in diameter and 5 m in length before loading. Figure 20.8 
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Find (a) the tensile stress in the wire and (b) by how 
much the load has stretched it. 

3. Find the tensile stress in a steel rod originally 2m long 
that has been stretched by 1 mm. 

4. A 5.0 kg mass is to be suspended from a 2.0 mm 
diameter wire or thread, 3.0 m long, made from either 
(a) brass, (b) steel or (c) nylon. Predict the extension 
in mm in each case. 

5. A copper wire has a diameter of 2 mm and a length of 
6 m. An aluminium wire has a rectangular cross­
section 1.5 x 2.5 mm and a length of 7.5 m. Find the 
total extension if the wires are joined end to end and 
used to suspend a 10 kg load. 

6. A copper wire 2.2 m long and an aluminium wire 
1.4 m long, both 2 mm in diameter, are joined end to 
end. What tensile load would produce a total exten­
sion of 1 mm? 

7. An unstressed steel strip is 100.00 mm in width. Find 
the width of the strip when it is subjected to a longi­
tudinal tensile stress of 400 MPa. 

8. Find the percentage volume change of a steel cylinder 
after it has been subjected to a longitudinal tensile 
stress of 400 MPa. 

9. A solid steel object sinks to a depth of 5 km below the 
surface of the sea. Estimate the percentage volume 
change it experiences, assuming the density of sea­
water is 1030 kg m-3 • 

10. A bar made from an unidentified material is initially 
100.000 mm in diameter and 1000.00 mm long. When 
subjected to a longitudinal tensile force of 3.927 MN, 
its diameter becomes 99.925 mm and its length 
1002.50 mm. Estimate (a) the shear modulus and (b) 
the bulk modulus of the material. 



Part 3 
Electricity and Magnetism 



TOPIC 21 ELECTRIC 
CHARGE 

COVERING: 

• the nature of electric charge; 
• force between electric charges (Coulomb's law); 
• electrostatic induction. 

Electricity and magnetism both stem from electric charge. 
Charge, like mass, is a fundamental concept that lies at the limit of 

our absolute understanding of the physical world. We do not know 
precisely what it is, but we can describe its properties in terms of the 
effects it produces. 

We can deliberately charge certain objects, such as plastic combs 
or pens, by rubbing them with a cloth so that they attract scraps of 
paper or even a thin stream of water running from a tap. This 
demonstrates a fundamental similarity between charge and mass in 
that they both give rise to forces. 

In Topic 14 we saw that the electron and the proton carry equal but 
opposite charges (negative and positive, respectively) of 1.60 x 10-19 

C. It is helpful to bear in mind that, no matter how we choose to 
define charge, these two particles form its natural units. Matter 
normally contains electrons and protons in more or less equal num­
bers and is therefore generally electrically neutral. Charge only be­
comes apparent when electrons and protons become separated from 
one another - by friction, for example. 

If we rub certain objects with a cloth, then they become charged, 
either positively or negatively, depending on the materials involved. 
This can be explained in terms of the transfer of electrons from the 
cloth to the object, or vice versa, when they are rubbed together. The 
loss of electrons from one to the other leaves a positive charge due to 
the unbalanced protons left behind. 

It is important to note the principle of conservation of charge. 
Although positive and negative charges may be separated as above, 
or indeed combined to neutralise each other, the net charge within 
any particular system remains the same. 

We should also note that electric current is simply a flow of charge 
and that it is the freedom of movement of valence electrons through 
metals (see Topic 15) that makes them good electrical conductors. By 
contrast, ideal electrical insulators do not conduct electricity, because 
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they possess no free charge-carriers. For example, the valence elec­
trons in solid covalent and ionic substances are localised within their 
respective bonds or ions and are not free to carry current. It should 
be noted, however, that electrolytes contain ionic substances, either 
molten or in solution, that enable them to conduct electricity because 
of the freedom of movement of the ions. We shall see later (Topic 24) 
that semiconductors are intermediate between insulators and conduc­
tors in their electrical conductivity. (In practice, real insulators do 
allow some very slight movement of charge.) 

In this topic we shall confine our discussion to electrostatics - that 
is to say, the study of electric charge at rest. 

21.1 COULOMB'S LAW 

The force between electric charges was investigated in the eighteenth 
century by the French scientist Coulomb. In Topic 14 we briefly met 
the law named after him. This is expressed by the equation 

F=-1-x Q1Q2 

4Jt E0 r 2 
(21.1) 

F is the magnitude of the force in newtons between two charges and is 
repulsive or attractive depending on whether they are of like or 
opposite sign. Q1 and Q2 are the magnitudes of the charges in 
coulombs, r is the distance in metres between them and E0 is a 
constant with the value 8.85 x 10-12 C2 N-1 m-2• (The units for E0 are 
obtained here by consideration of Equation 21.1 but it is more usual 
to express them rather differently, as we shall see in Topic 23.) E0 is 
called the absolute permittivity of free space or the electric constant. 

Equation (21.1) only applies under vacuum conditions; the pres­
ence of a dielectric or non-conducting substance between the charges 
reduces the magnitude of the force and the equation becomes 

F= _1_ X Q1 Q2 

4Jt E r 2 
(21.2) 

where E is the absolute permittivity of the substance (often simply 
called the permittivity). The relative permittivity E., sometimes called 
the dielectric constant, is given by the ratio between the absolute 
permittivity of the substance and that of free space, so that Er = EIE0 • 

Table 21.1 gives some typical approximate relative permittivity 
values. For many practical purposes, air may be considered to have 
the same permittivity as that of free space. We shall discuss dielectrics 
in more detail in Topic 23. 

Coulomb's law is an inverse square law, like Newton's law of 
gravitation. The electric force acts along the straight line between the 
two charges and is a vector quantity like gravitational force. How-



Table 21.1 

Substance 

Air 
Polythene 
Glass 
Water 

Relative permittivity 

1.00 
2.3 
4-7 

80 

ever, there is an important difference in that gravitational force is 
always attractive, whereas electric force can be either attractive or 
repulsive. 

Before examining electric forces any further, let us put the magni­
tude of the coulomb into perspective. At the atomic level we know 
that an electron carries a charge of 1.60 x I0-19 C. This means that 
we need 6.25 x 1018 electrons (i.e. about 1 x w-s mol) to provide a 
total negative charge of one coulomb. In due course we shall see that 
the ampere is the basic unit used to measure electric current (Topic 
24). One coulomb is the amount of charge that is transported past any 
point in a conductor in one second by a current of one ampere. In 
everyday terms, one ampere would be the current drawn by a 240 volt 
lighting circuit with four 60 watt light bulbs. On this basis a coulomb 
seems to be a fairly modest amount of charge. 

Now let us consider the repulsive force between two like charges of 
one coulomb each if, for instance, we placed them 25 mm apart in air. 
Letting Q1 = Q2 = 1 C and r = 0.025 min Equation (21.1), 

1 1 X 1 
F = X = 1.44 X 1013 N 

4:rt X 8.85 X 10-12 (0.025)2 

A medium-sized apple weighs about 1 N, so the force between the 
charges is equivalent to the weight of over fourteen million million 
apples. This extraordinary figure tells us that, although the coulomb 
represents a modest charge in terms of electric current, it is a very 
large charge in terms of electrostatics. In practice, the magnitude of 
ordinary electrostatic charges is rarely more than a tiny fraction of a 
coulomb, although thousands of volts may be involved. 

You will find that Question 3 makes the interesting point that, on 
an atomic scale, the gravitational force between electrons and pro­
tons is negligible compared with the electrical force. Gravitational 
forces become important where very large masses, such as bodies on 
an astronomical scale, are involved. 

21.2 ELECTROSTATIC INDUCTION 

So far we have tended to think in terms of point charges of negligible 
volume, as opposed to charged objects on the human scale. The 
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Free electrons 
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charge on an insulator rubbed with a cloth would tend to be distri­
buted over the area covered by the cloth. 

In the case of metals, with their free valence electrons, it is possible 
to 'induce' a temporary unevenness in the charge distribution. If a 
piece of metal is brought close to a charged object, then an attractive 
force will arise between them. The explanation is simple. If the object 
is negatively charged, then it will repel the free electrons towards the 
far side of the metal, as in Figure 21.1. This will leave an equivalent 
surplus of protons behind. Thus, the metal nearest the charged object 
has a net positive charge, resulting in an attractive force between the 
two. If the object had been positively charged, then a surplus of 
delocalised electrons would have been attracted towards it, making 
the nearer side of the metal negative - again leading to an attractive 
force. 

Electrostatic induction, as this way of inducing charge separation is • 
called, is also responsible for the attractive force that pulls a thin 
stream of water towards a charged object. The water molecule is 
polar, as we saw in Topic 15, with two positively and two negatively 
biased orbitals. Any charged object nearby will tend to attract the 
orbitals of opposite charge, and repel those of like charge, so that the 
molecules will tend to orientate themselves accordingly, as in Figure 
21.2. This, in turn, will give rise to an attractive force between the 
charged object and the water. Similar electrostatic induction effects 
cause scraps of paper and hair to be attracted by charged objects. 

Questions 

(Use any previously tabulated data as required. Assume 
that E0 = 8.85 X 10-12 C 2 N-1 m-2 .) 

1. (What happens to the force between two separate 
charges if the distance between them is (a) halved, (b) 
trebled? 

2. Two positive charges of equal magnitude experience a 
repulsive force of 0.133 N between them when they are 
separated by a distance of 13 mm in air. 

(a) What is the magnitude of each charge? 
(b) What is the magnitude of the force if the charges 

are moved to a distance of 65 mm apart? 
(c) What is the magnitude of the force if the charges 

are separated by a 14 mm thickness of polythene? 

3. Assuming that the hydrogen atom consists of an 
electron orbiting around a proton at a distance of 
5.29 x 10-11 m, find (a) the electric force and (b) the 
gravitational force between them. (See Table 14.1 on 
page 123 and Equation 2.1 on page 12, and assume that 
G = 6.7 X 10-11 N m2 kg-2 .) 



4. Two identical charges, each of 15 g mass and negligible 
volume, are both suspended from the same point by 
non-conducting weightless strings 1500 mm in length. 
Find the magnitude of each charge if the angle between 
the strings is 5°. (g = 9.8 m s-2 .) 
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TOPIC 22 ELECTRIC 
FIELD 

COVERING: 
• electric field strength; 
• the analogy with gravitational field; 
• field lines; 
• uniform and non-uniform fields; 
• potential and potential difference. 

In the previous topic we saw that forces exist between electric 
charges. It follows that a charge must in some way influence the space 
around itself. This property can be described in terms of an electric 
field surrounding the charge. Where two or more charges are in­
volved, their fields interact with one another to produce forces. 

The idea of an electric field is nothing more than an imaginary 
device to help us picture how charges behave. The same idea is used 
where other types of force operate at a distance - for instance, 
gravitational force and, as we shall see later, magnetic force. Nuclear 
scientists think in terms of fields within the nucleus which are re­
sponsible for the forces that hold protons and neutrons together. 
Thus, the effects of field forces range in scale from the nuclear to the 
astronomical. 

22.1 FIELD STRENGTH 

Newton's law of gravitation (Topic 2) tells us that there is an attrac­
tive force between any two objects by virtue of their mass- between 
the earth and an apple, for example. For convenience we tend to 
think of the earth as having a gravitational field which causes any 
other mass close to its surface to experience a weight of 9.8 N kg-1 • 

We can therefore say that the earth has a gravitational field strength 
of 9.8 N kg-1 close to its surface. By contrast, the moon has a 
corresponding gravitational field strength of about 1.6 N kg--1• As this 
suggests, we could determine the strength of an unknown gravi­
tational field by measuring the force acting on a test mass. 

In a similar way we can determine the strength of an electric field 
by measuring the force acting on a test charge. The electric force F is 
given by 



F= qE (22.1) 

where E represents the electric field strength and q represents the 
magnitude of the charge used to measure it. (Note the close analogy 
with the gravitational force F = mg.) The electric field strength can 
be expressed as force per unit charge, N c-1 (since E = Flq), in just 
the same way that gravitational field strength can be expressed as 
force per unit mass. (The magnitude of our test charge would have to 
be very small to avoid the possibility of inducing charge separation in 
nearby objects, and, hence, altering the field that we are trying to 
measure.) 

In the previous topic we noted that electric force is a vector 
quantity. By convention, the field direction is taken to be that of the 
force acting on a positive charge within the field. 

Now let us use Coulomb's law to find an expression for the strength 
ofthe field due to a point charge of magnitude Q. We shall use a very 
small positive test charge q and place it at a distance r from Q. The 
force acting between the charges is given by Equation (21.1) (page 
202) as follows: 

1 Qq 
F=--X-

43tE0 r 2 

If we substitute the right-hand side of this expression for F in 
Equation (22.1), we get 

(22.2) 

Remember that, since q is positive, the direction of the field is 
towards Q if Q is negative, and away if it is positive. Also remember 
that the force acting on a negative charge will be in the opposite 
direction to that of the field. 

22.2 FIELD LINES 

At this stage it is useful to introduce another imaginary thinking aid 
- namely the electric field line. This helps us to picture the strength 
and direction of an electric field. A field line represents the direction 
of the force acting on a positive test charge at any given point; hence, 
it represents the field direction there. Figure 22.1 shows field lines 
around (a) a negative charge, (b) a positive charge and (c) a stronger 
positive charge. Field strength is indicated by the concentration of 
field lines; where they are closer together, the field is stronger. The 
greater the magnitude of the charge the greater the number of field 
lines entering it or emerging from it. And as the distance from the 
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Figure 22.1 

charge increases, the field lines diverge and the field becomes 
weaker. 

Figure 22.2(a) represents the pattern of field lines around two 
equal and opposite charges. Some readers will recognise the simi­
larity with the pattern that iron filings make in the magnetic field 
around a bar magnet (see Figure 27.1 on page 262). If the charges are 
alike and are of equal magnitude, as in Figure 22.2(b), then their 
overall pattern is similar to that around a single charge, particularly 
when they are close together. 

(a) 

Figure 22.2 

Since field lines reflect the force acting on a test charge, they are 
sometimes called lines of force. The nineteenth century scientist 
Michael Faraday pictured field lines as representing a state of strain, 
imagining them to be in tension (hence, tending to shorten), while at 
the same time repelling each other laterally. Thought of in those 
terms, the patterns in Figure 22.2 help us to picture the way in which 
force fields arise between charged objects. 

The fields that we have considered so far vary in magnitude and 
direction from point to point, and are therefore described as being 
non-uniform. By contrast, a uniform field has constant strength and 
direction throughout. Figure 22.3 represents the uniform electric field 
between two parallel, oppositely charged metal plates. The field lines 
are parallel and uniformly spaced, apart from at the edges, where 
they tend to escape to some extent and bulge outwards. We shall 
ignore the edge effect for the purposes of our discussion. 

Returning to the gravitational analogy, because the earth is so 
large the gravitational field over a small area of its surface is virtually 



uniform. Locally, the gravitational field lines, along which test masses 
would fall under gravity, can be regarded as parallel for most practi­
cal purposes. 

Figure 22.3 

22.3 POTENTIAL AND POTENTIAL DIFFERENCE 

Another aspect of the analogy between gravitational and electric 
fields is potential energy. In Topic 8 we saw that the work W needed 
to raise a mass m to a height h above the ground is equal to mgh 
joules (Equation 8.3 on page 64). This work is stored as mgh joules 
worth of potential energy so long as the mass remains at that height. 
Thus, the potential at any point in a gravitational field can be express­
ed in terms of (mgh)lm = gh joules of potential energy per kilogram 
mass. Furthermore, we can define an equipotential as a surface over 
which the potential has a constant value - for example, at a particu­
lar height above ground level. Obviously an object can move any­
where across an equipotential surface without its potential energy 
changing. (No component of the force due to the field can lie within 
the plane of the equipotential; therefore, any field line must cut an 
equipotential perpendicularly to its surface.) 

For practical purposes, we are often interested in the potential 
difference between two levels, as in lifting a mass from one height to 
another. It is important to remember that the potential difference 
between two levels corresponds to the distance between them in the 
field direction (e.g. vertically at the surface of the earth), irrespective 
of the actual route taken. 

Similar considerations apply to a charge in an electric field. Figure 
22.4 shows two oppositely charged parallel plates. A positive charge 
Q placed between the plates will be repelled by the positive plate and 
attracted towards the negative. To move the charge towards the 
positive plate, say from the equipotential at X to that at Y, we would 
need to apply a force F of QE newtons (Equation 22.1) in the 
opposite direction to that of the field. To move it a distance d in that 
direction, we would have to do QEd joules of work (just as we have 
to do mgh joules of work to lift a mass through a height h). Thus, we 
can express electric potential and define electric equipotentials in 
joules per coulomb (J c-1), just as we can express their gravitational 
counterparts in joules per kilogram. (Remember that electric poten­
tial decreases in the field direction.) 
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Figure 22.4 
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Figure 22.5 

Because of its size, it is convenient to regard the earth as represent­
ing the practical zero of electrical potential, since it acts as an enor­
mous reservoir of charge whose level is virtually constant. By earthing 
a charged object any excess or deficiency of electrons would flow to 
or from the earth to give the object zero potential relative to the 
earth. 

Later we shall find it necessary to consider potential differences in 
electrical circuits. For example, we shall regard the function of a 
battery as raising a charge through a potential difference in much the 
same way as a hoist raises a mass. 

22.4 THE VOLT 

Potential difference V is defined as the energy change involved in 
raising or lowering unit charge from one point to another; obviously, 
it could be expressed as joules per coulomb but potential difference 
and potential are given a special unit of their own - namely the volt 
(V). If the transfer of 1 coulomb of charge between two points 
involves an energy change of 1 joule, then the potential difference 
between them is 1 volt. For instance, a 1.5 volt battery will give 1.5 
joules of energy to each coulomb of charge that passes through it. 

Figure 22.4 helps to make this clear. If the work W required to 
move the charge Q from X toY is given by W =QEd joules, then V, 
the potential difference between X andY (i.e. the energy change per 
coulomb moved), is given by 

V = W!Q = (QEd)!Q = Ed(V or J c-1) 

This provides us with two useful relationships: 

W= QV (22.3) 

and 

V= Ed (22.4) 

Equation (22.3) gives us the energy change involved when a charge 
moves through a potential difference without our needing to know 
the field strength or the route taken by the charge. Later on we shall 
see that this equation can be put to use in various contexts - for 
example, in converting an electric current to heat, or in storing 
energy in an electric field. For the time being, as an illustration, let us 
use it to consider what happens if we release an electron in an electric 
field between two parallel plates, as in Figure 22.5(a). 

The electron will experience a force (hence, an acceleration) in a 
similar way to a mass in a gravitational field. (We assume that there is 



a vacuum between the plates; otherwise air molecules will get in the 
way of the electron and interfere with its acceleration.) As the 
electron falls through a given potential difference, it trades potential 
energy for kinetic energy, like a mass falling in a gravitational field. 
(Remember that an electron 'falls' in the opposite direction to a 
positive charge.) The kinetic energy (Vzmv2 ) acquired by the electron 
is equal to the work done on it (QV) by the electrostatic force due to 
the field. (Note that if a moving electron enters the field between the 
plates, then its path will be deflected accordingly, as in Figure 22.5b, 
for example.) 

The electron volt ( e V) is a non-SI unit of energy which is very 
convenient for dealing with events on an atomic scale. It can be 
defined as the kinetic energy an electron acquires as it falls freely 
through a potential difference of 1 volt. Its value in joules can be 
obtained from Equation (22.3) as follows: 

W = QV = 1.6 X 10-19 X 1.0 = 1.6 X 1(}-19 J 

(Since 1 Vis equivalent to 1 J c-1 , the units of Q x V are C x J c-1 = J.) 
Let us now consider Equation (22.4) (V = Ed). This relates the 

potential difference between two points in a uniform electric field to 
the distance between them. As an illustration, Figure 22.6 shows a 
uniform field (neglecting edge effects) between two parallel plates 
that are 0.25 m apart with a potential difference of 500 V between 
them. Equipotentials are drawn at 100 V (i.e. 0.05 m) intervals, and 
potential is plotted against distance in the lower half of the figure. 
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The plot is a straight line and the slope represents the electric field 
strength; thus, 

v 500 E =-=--=2000 V m-1 
d 0.25 

We now have two ways of regarding electric field strength: in terms 
of either force (N c-1) or energy (V m-1). We can readily show that 
N c-1 and V m-1 are equivalent to one another, as follows: 

1 v = 1 J c-1 

and because 1 J = 1 N m, 

1 V = 1 N m c-1 

Dividing both sides by m, 

The following worked example compares both viewpoints. 

Worked Example 22.1 

If an electron is released at the inner surface of the left-hand plate in 
Figure 22.6, find its velocity when it reaches the other plate (a) by 
force considerations and (b) by energy considerations. 

(a) The electron would experience a force of magnitude F towards 
the right-hand plate, given by 

F = QE = 1.6 X 10-19 X 2000 = 3.2 X 10-16 N 

The resulting acceleration a is, from F = ma (Equation 6.1 on page 
50), given by 

- F- 3.2 X 10-16-3 5 1014 -z a--- -. x ms 
m 9.1 x 10-31 

(The acceleration due to this tiny force is enormous because of the 
extremely low mass of the electron.) 

The final velocity v of the electron is given by Equation (5.4) (page 
41): 



Since u (the initial velocity) is zero and s (the distance between the 
plates) is 0.25 m, the magnitude of v is given by 

v = V2fii = V2 x 3.5 x 1014 x 0.25 = 13 x 1()6 m s-1 

(b) If we assume that all the work done on the electron (QV) is 
converted to kinetic energy (Vzmv2 ), then 

and 

_ \{i?-QV _ v2 X 1.6 X 10-19 X 500 _ 13 11"\6 _ 1 v- --- - x v ms 
m 9.1 x 10-31 

(Note that we have to be careful with classical dynamic calculations 
like this, since the mass of an object increases when it is moving close 
to the speed of light. This is a consequence ofthe theory of relativity, 
which we shall not consider here. In this particular case the speed is 
less than 5% of that of light and the mass increase is less than 0.1% of 
the electron's mass at rest.) 

Questions 

(Use any previously tabulated data as required. Where 
appropriate, assume vacuum conditions unless otherwise 
stated. Assume that g = 9.8 m s-2 and that the speeds H 
involved are too low to have a significant effect upon 
mass.) 

1. Figure 22.7 shows two parallel metal plates 60 mm 
apart with a potential difference of 300 V between 
them. 
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(a) What is the direction of the electric field between 
the plates? 

Figure 22.7 

(b) If a proton at rest is released from the mid-point 
between the plates, in which direction will it move? 

(c) What is the field strength between the plates (i) in 
N c-1 and (ii) in V m-1? 

(d) Find the energy required to move a proton from (i) 
0 to X, (ii) 0 to Y and (iii) 0 to Z. 

(e) Find the energy required to move an electron from 
X to 0. 

(f) If a proton is released from X, find its speed when 
it reaches 0. 

(g) If an electron is released from 0, find its speed 
when it reaches X. 
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2. A potential difference of 200 V exists between two 
parallel plates that are 50 mm apart. Find (a) the force 
and (b) the acceleration experienced by an electron in 
the electric field between the plates. 

3. What strength of electric field would just support the 
weight of a Ca2+ ion? 

4. A negatively charged droplet of 4.9 x 10-15 kg mass is 
suspended in the electric field between two parallel 
horizontal plates 6 mm apart with a potential difference 
of 450 V between them. Find the number of surplus 
electrons carried by the droplet. 

5. A 10 nC charge is moved 70 mm perpendicularly and 
then 50 mm parallel to the direction of a uniform 
electric field of 2000 V m-1 strength. Find the overall 
change in potential energy of the charge. 

6. An electron, initially at rest, is released in a uniform 
electric field 500 V m- 1 in strength. Estimate (a) its 
speed after it has travelled 400 mm and (b) how long it 
takes to travel this distance. 

7. Repeat Question 6, replacing the electron with a proton. 

8. An electrically charged droplet of 4 x 1o-15 kg mass 
falls vertically at a steady speed through air between 
two vertical parallel plates set 10 mm apart. A potential 
difference of 500 V is applied to the plates, whereupon 
the droplet falls at an angle of 31.5° to the vertical. 
Estimate the magnitude of the charge carried by the 
droplet. 

9. An electron, initially at rest, is accelerated through a 
potential difference of 285 V. It then passes midway 
between two parallel plates providing a uniform elec­
tric field perpendicular to the direction in which it is 
travelling. The plates are 50 mm long and 25 mm apart 
and there is a potential difference of 71 V between 
them. Find (a) the speed of the electron after its initial 
acceleration and (b) the transverse deflection experi­
enced by the electron as it emerges from between the 
plates. 



TOPIC 23 CAPACITANCE 

COVERING: 

• the parallel-plate capacitor; 
• dielectrics; 
• energy stored in a capacitor; 
• capacitors in parallel and in series. 

The creation of an electric field involves separating positive and 
negative charge. Work has to be done which is then stored in the field 
as potential energy. Figure 23.1 illustrates this in terms of an electric 
cell or battery connected across two parallel metal plates. The figure 
shows the conventional symbol for an electric cell (although the signs 
are usually omitted). A battery is simply a number of cells connected 
together to form a single unit. 

Electrons will flow towards the positive terminal of the cell from 
the plate to which it is connected. At the same time electrons will flow 
from the negative terminal of the cell onto the other plate. In effect, 
the cell transfers electrons from one plate to the other. The build-up 
of charge on the plates increasingly opposes the flow of electrons, 
which therefore decreases and eventually stops when the potential 
difference across the plates is equal to the voltage of the cell. If the 
cell is disconnected and the plates connected directly to one another, 
then electrons will flow from the negative plate to the positive until 
the potential difference between them is zero. 

A device such as this, capable ofstoring electric charge, is called a 
capacitor. Its ability to store charge is measured in terms of its 
capacitance C, given by 

C = Q!V, or Q = CV (23.1) 

where Q is the charge stored on either plate and V is the potential 
difference between them. The unit of capacitance is called the farad 
(symbol F) but, as it stands, this is much too large a quantity for many 
purposes, so the microfarad (1 !!F = 1 x 1o-<' F) and the picofarad (1 
pF = 1 x I0-12 F) are in common use. 

In this topic we shall confine ourselves to the so-called parallel­
plate capacitor of the type shown in Figure 23.1. 
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Note that capacitance is dependent on the area of the plates and on 
the separation between them. Assuming that they are each of area A 
and separated by a distanced, and that the non-uniformity of the field 
at the edges can be ignored, then Cis proportional to Ald. However, 
as we shall now see, capacitance is also increased by the presence of a 
dielectric material between the plates. 

Practical capacitors are normally of the basic parallel-plate type, 
although a variety of geometrical arrangements are used. For exam­
ple, metal foil ~nd thin sheets of dielectric material are stacked in 
layers or rolled up together like a swiss roll to provide high capaci­
tance in a small volume. Some capacitors have movable plates with 
adjustable overlap so that their effective area and, hence, their 
capacitance, can be varied. 

23.1 DIELECTRICS 

A dielectric is a non-conductor of electricity and can be used simply 
as an insulator. For this purpose it must have adequate dielectric 
strength - that is to say, it must not break down electrically and lose 
its insulating properties. Dielectric strength is generally expressed in 
terms of the maximum electric field the material will withstand. (Note 
that air normally has a dielectric strength of about 3 kV mm-1 • Some 
ceramics and polymers used as insulators have values well in excess of 
10 kV mm-1 .) 

Although dielectrics are insulators, they do respond to electric 
fields. In Topic 21 we saw that the force between two charges is 
reduced by the presence of a dielectric between them. Equation 
(21.2) (page 202) shows that this force is inversely proportional to the 
permittivity E of the dielectric. (Remember that E = ErE0 , where Er is 
the relative permittivity, or dielectric constant, and E0 is the permit­
tivity of free space.) 

The presence of a dielectric between the plates of a capacitor will 
increase its capacitance C in accordance with the expression 

(23.2) 

where C0 is the capacitance when there is a vacuum between the 
plates. From this it follows that relative permittivity can be defined as 
the ratio C/C0 • 

Now let us consider what actually happens when a dielectric is 
inserted into the space between a pair of charged plates separated by 
vacuum. If the capacitor is electrically isolated, then the charge on 
the plates remains fixed and the potential difference between them 
will fall. This is what we would expect from Equation (23.1). Since V 
= QIC, and Q is fixed, then an increase inC by a factor of Er (from 
Equation 23.2) will lead to a corresponding reduction in V. If the 
capacitor is connected to a cell or a battery, as in Figure 23.1, then 



the insertion of a dielectric will cause a further flow of electrons, so 
that the potential difference across the plates remains equal to the 
voltage of the cell. In this case V is fixed, where Q = CV, and the 
presence of the dielectric raises C by a factor of t., so the charge 
stored by the capacitor is increased accordingly. These effects suggest 
that the presence of the dielectric reduces the electric field between 
the plates, so that more charge is required to restore the potential 
difference between them to its original value. The reason for this is 
polarisation. 

As Figure 23.2 suggests, the nucleus of an atom in an electric field 
tends to be shifted in the field direction, whereas the outer electrons 
tend to be shifted in the opposite direction. The centres of positive 
and negative charge distributions within the atom are thus displaced 
from one another, producing a dipole orientated in opposition to the 
field. In effect, this gives a resultant field smaller than the original. 
Where a substance consists of polar molecules with permanently 
polarised structures (Topic 15), their tendency to orientation can lead 
to marked dielectric behaviour. For example, as we saw in Topic 21, 
water is a highly polar molecule which, in the liquid state, has 
considerable freedom to align itself in an electric field. Water there­
fore has a high relative permittivity value (see Table 21.1 on page 
203). The bending and stretching of polar bonds can also contribute 
to polarisation. 
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Figure 23.2 

Earlier we noted that capacitance C is proportional to Aid, where 
A is the area of each plate and dis the distance between them. We 
can now make this relationship into an equation, because the permit­
tivity t of the dielectric (where t = trto) gives us the constant of 
proportionality as follows: 

c(= ) =€: (23.3) 
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Q 

Figure 23.3 

Note that the normal unit of permittivity (given by rearrangement of 
this equation) is farads per metre, F m-1 • Also note that Er is a 
dimensionless quantity, since it is given by the ratio E/E0 • 

23.2 ENERGY STORED IN A CHARGED 
CAPACITOR 

The energy stored in a charged capacitor is the total work done in 
transferring the electrons from one plate to the other. The work done 
in transferring the first electron is virtually zero, because the initial 
potential difference between the plates is zero. Since the relationship 
between Q and Vis a straight line (see Figure 23.3), the work done in 
transferring successive electrons increases linearly as the charge 
builds up on the plates. If, at a given moment, the total charge 
transferred is Q and the potential difference is V, then we can say that 
the electrons have been transferred through an average potential 

v difference equal to (0 + V)/2. Thus, W, the total work done, is given 
by the total charge multiplied by the average potential difference, as 
follows: 

W = Q x (O + V) = ...!_ QV 
2 2 

(23.4) 

(We can regard the energy stored in a charged capacitor as analogous 
to the strain energy stored in a stretched wire. Strain energy is given 
by the area of the triangle under the force/extension line (Figure 
8.2(b) on page 65). Similarly, the energy stored in the capacitor is 
given by the area of the triangle under the Q/V line.) 

Note that, since Q = CV, W can also be expressed in the forms 

and 

1 Q2 
W=--

2 c 

Worked Example 23.1 

(23.5) 

(23.6) 

A capacitor of unknown value was charged using a 10 V battery. It 
was then disconnected from the battery and discharged through a 
small electric motor, which raised a 100 g mass to a height of 1 m. 
Estimate the unknown capacitance. 



Assuming that all the stored electrical energy was converted to 
gravitational potential energy, then 

1 
-CV2 =mgh 
2 

which can be rearranged to 

C=2mgh 
yz 

Substituting the values given above, and assuming that g = 9.8 m s-2 , 

C = 2mgh = 2 X 0.1 X 9.8 X 1 = 0.02 F 
V 2 10Z 

23.3 CAPACITORS COMBINED IN PARALLEL AND 
IN SERIES 

Where a number of capacitors are combined in an electrical circuit, 
their resultant capacitance can be found by considering them as either 
parallel or series combinations. 

Figure 23.4 shows a parallel combination of two capacitors with 
capacitances C1 and C2 , respectively. (The figure shows the conven­
tional symbol for a capacitor.) Both capacitors are connected across 
the same battery, so the potential difference V across each is the 
same. The charge carried by each is therefore given by Q1 = C1 V and 
Q2 = C2V, respectively (from Equation 23.1). The combined charge 
Q is given by 

Therefore, the combined capacitance C is 

This argument can be extended to give the general equation for any 
number of capacitances in parallel, as follows: 

(23.7) 

Figure 23.5 shows a series combination. In this case the battery 
produces a charge of + Q on plate D and of - Q on plate G. Provided 
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that the plates in each capacitor are sufficiently large and closely Figure 23.5 
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(a) 

(b) 

Figure 23.6 

spaced together, E and F carry charges of - Q and + Q induced by 
their proximity to plates D and G, respectively. In this case the 
charge stored by each capacitor is equal and the potential difference 
across each is given by V1 = Q/C1 and V2 = QIC2 , respectively. The 
overall potential difference V, governed by the battery, is divided 
across the capacitors, so that 

The combined capacitance C is therefore given by 

1 1 1 
-=-+-c cl c2 

Again the argument can be extended to give a general equation for 
any number of capacitances in series, as follows: 

1 1 1 1 
-=-+-+-+ c cl c2 c3 

1 
(23.8) 

Worked Example 23.2 illustrates more complex networks involving 
both parallel and series combinations. 

Worked Example 23.2 

Find the resultant capacitance of each of the combinations shown in 
Figure 23.6. 

(a) First, considering the pair in series, 

1 1 1 
-=-+-c 6 6 

which gives C = 3 !JF. 
Then, considering the parallel combination of this with the third 

capacitor, 

C=3+6=9!J.F 

(b) First, considering the pair in parallel. 

C = 6 + 6 = 12 !J.F 

Then, considering the series combination of this with the third 
capacitor, 



1 1 1 -=-+-c 12 6 

which gives C = 4 f.tF. 

Worked Example 23.3 

A 3 J.1F capacitor is charged to 60 V and a 6 J.1F capacitor is charged to 120 
V. The capacitors are then connected with their like-charged plates 
together. Find the total stored energy before and after connection. 

Figure 23.7 shows the capacitors (a) before, and (b) after connec­
tion. 
(a) Before connection: 

The total stored energy is given by 

1 c v2 1 c 2 
- 1 1 +- 2v2 
2 2 

and, substituting the given values, 

( ~ X 3 X 1~ X 6Q2) + ( ~ X 6 X 1~ X 12Q2) 

= 0.0486 J 

The total stored charge is given by 

and, substituting the given values, 

(3 X 1~ X 60) + (6 X 10-6 X 120) 

=9xl0-4 C 

(b) After connection: 

Initially the capacitors have different potentials. On connection, 
there will be a redistribution of the total charge Q to equalise the 
potential difference across the parallel combination, which has a 
combined capacitance (C1 + C2 =) 9 J.IF. From Equation (23.6), the 
stored energy is given by 

_!_ Q2 = _!_ (9 X 1Q-4)2 = 0.045 J 
2 C 2 9xl0-6 
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Note that the stored energy lost on connection (i.e. 0.0486- 0.045 = 
0.0036 J) is converted to heat in the connecting wires. 

Also note that, after connection, the potential difference V is the 
same across both capacitors and can be found from 

V = Q = 9 X 1Q-4 = 100 V 
C 9 X 1~ 

Using this approach, the stored energy after connection can be 
obtained from 

1 1 - QV = - X 9 X 10-4 X 100 = 0.045 J 
2 2 

or from 

1 1 
-CV2 =-X 9 X 1o-6 X 10Q2 = 0.045 J 
2 2 

Questions 

(Use any previously tabulated data as required.) 

1. Find the charge on a 5 !J.F capacitor with a potential 
difference of 80 V between its plates. 

2. Two parallel plates, each 0.2 m square, are positioned 
2 mm apart in air. How many electrons must be trans­
ferred from one plate to the other to give a potential 
difference of 190 V between them? 

3. A parallel-plate capacitor, with air between its plates, 
is charged by using a 60 V battery. Find the potential 
difference between the plates if, after disconnecting 
the battery, the air between them is replaced with 
polythene. 

4. What is the total charge stored by one 2 !J.F, one 3 !J.F, 
one 5 !J.F and two 10 !J.F capacitors all connected in 
parallel across a 24 V battery? 

5. Find the various capacitances obtainable from three 
3 !J.F capacitors in combination. 

6. Two parallel-plate capacitors are identical except that 
the plates of one are spaced twice as far apart as those 
of the other. If the capacitors are connected in series 
across a 12 V battery, estimate the potential differ­
ence across each. 



7. A capacitor holds a charge of 0.1 mC after being 
charged to 50 V. Find (a) its capacitance, and (b) the 
amount of energy stored. 

8. A 20 V battery is used to charge a 0.021 F capacitor. 
After disconnection from the battery, the energy 
stored in the capacitor is used to heat 10 g of water 
that is initially at a temperature of 15.0 °C. Find the 
final temperature of the water. 

9. A 150 V battery is connected across a 4 !!F and an 8 !!F 
capacitor combined (a) in parallel, (b) in series. Find 
the charge stored by each capacitor in both cases. 

10. A 3 !!F capacitor, previously charged to 120 V, is 
connected in parallel with an uncharged 5 !!F capaci­
tor. Find (a) the final voltage across the capacitors and 
(b) the energy lost in heating the connecting wires. 
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TOPIC 24 ELECTRIC 
CURRENT 

COVERING: 

• electric current as a flow of charge; 
• current in metal conductors; 
• conventional current; 
• power; 
• current in semiconductors. 

Electric current provides a very convenient means of transporting 
energy from place to place. Metal conductors are used to carry it, and 
all sorts of electrical devices are available to convert it into heat, light 
or whatever other form of energy is required. 

As we noted in Topic 21, electric current is simply a flow of electric 
charge. It may be the flow of electrons through a vacuum, or ions 
through a gas or an electrolyte; more importantly from our point of 
view, it may be the flow of electrons through a metal or, as we shall 
see later in this topic, electrons and positive holes through semicon­
ducting materials. 

The magnitude of an electric current could be defined as the rate of 
flow of charge - say the number of coulombs passing a given point in 
a conductor in one second. But electric current (like mass, length and 
time) is one of the seven base SI units (see Topic 1) and, as we shall 
see later, the base unit of current, the ampere (A), is defined in quite 
a different way. The coulomb is formally derived from the ampere, 
rather than the other way round, and is defined as the quantity of 
charge which flows in one second past a point in a conductor which is 
carrying a steady current of one ampere. Thus, 

Q =It, or I= Q 
t 

(24.1) 

where I amperes is the steady current that flows when a total charge 
Q coulombs passes a given point at a uniform rate over a period of t 
seconds. To take a very simple example, the uniform flow of a total of 
135 C over a period of 45 s is equivalent to a current of 3 A. 



24.1 ELECTRIC CURRENT IN METAL 
CONDUCTORS 

First let us estimate the velocity of the free electrons which constitute 
an electric current through a metal conductor. Figure 24.1 shows a 
conductor with a cross-sectional area of A square metres. If the 
average velocity of the free electrons flowing along the length of the 
conductor is v metres per second, and if X andY are v metres apart, 
then all the free electrons between X and Y at a given moment will 
pass Yin 1 s. The volume of metal between X andY is given by v x A 
(i.e. length x cross-sectional area), so, if the metal contains n free 
electrons per unit volume, then nvA electrons will pass Yin 1 s. This 
corresponds to a total charge of nvAe, where e represents the charge 
on each electron. Putting this into the form of an equation, the 
current I is given by 

I= nvAe 

Electron 

flow 

Cross-sectional 
area; A 

~-+1•-- v --+~•1 
X y 

Figure 24.1 

\ 
J 

/ 

(24.2) 

To estimate the velocity of the electrons, let us consider a current of 1 
A flowing in a copper wire of 1 mm2 cross-sectional area. In Question 
7 at the end of Topic 14 you should have found that a 1 mm cube of 
copper contains 8.4 x 1019 atoms. A copper atom has one outer 
electron (Table 14.2 on page 127), so it is not unreasonable to assume 
a value for n of 8.4 x 1()28 electrons per m3 • Rearranging Equation 
(24.2) and substituting these values, 

I v=-­
nAe 

Therefore, 

1 
v = -----------------------------

8.4 X 1028 X 1 X 10-6 X 1.6 X 10-19 

= 0.074 X 10-3 m S- 1 
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This is equivalent to about a quarter of a metre per hour, which 
bears no comparison with the speeds of electrons in vacuum that we 
met in Topic 22. Clearly the electrons carrying a current through a 
metal conductor encounter considerable resistance to their move­
ment. 

To understand the reason for this, we need to remember that our 
atomic model of a metal is an ordered crystal structure of positive 
ions within which the valence electrons are free to move. If the crystal 
was perfectly regular and the ions stationary, then the electrons 
would be able to move through the 'corridors' between the rows of 
ions without any resistance. However, because of their thermal en­
ergy, the ions continuously vibrate about their mean positions on the 
crystal lattice, partially blocking the corridors as they move to and 
fro, so that the electrons collide with them from time to time. The 
collision frequency is expressed in terms of the mean free path, which 
is the average length of free flight between collisions. In the case 
of copper at ordinary temperatures, the mean free path is about 
40 x 10-9 m (40 nm). This is equivalent to a row of about 160 
copper atoms. At higher temperatures, thermal vibration is more vig­
orous and the collisions more frequent; hence, the mean free path 
becomes correspondingly shorter. 

Normally the free valence electrons in a metal move at very high 
speeds in an entirely random fashion, rather like gas molecules. They 
have wide ranges of velocity and kinetic energy, and each electron 
continually changes speed and direction as it collides with metal ions 
in the crystal lattice. However, because there are so many electrons 
moving at random, their overall distribution is uniform and there is 
no net flow of charge in any particular direction. 

If a potential difference is applied across the ends of a metal 
conductor, the electrons will tend to move towards the positive end. 
Their movement will still be essentially random, but during each 
flight between collisions they will respond to the force due to the 
applied electric field. Electrons that are moving towards the positive 
end will be accelerated, and those moving away from it will be 
decelerated. The result will be an overall drift superimposed on their 
random motion. 

The drifting electrons experience a gain in kinetic energy associ­
ated with their net acceleration towards the positive end of the 
conductor. They share this energy with the metal ions as they collide 
with them, then they move on, providing a continual transfer of 
energy to the ions which ultimately appears as a temperature rise in 
the metal. By its very nature, the temperature rise will itself cause 
increased resistance to the passage of electrons which, in turn, will 
lead to a further increase in temperature- and so on. Sooner or later 
an equilibrium may be established where the conductor loses heat to 
its surroundings at the same rate as that at which it gains heat from 
the passage of the electrons. Obviously, the conversion of electricity 
to heat is wasteful and potentially dangerous in an electric cable but 



essential in a heating element (or in a piece of fuse wire, which melts 
when the current exceeds a particular value). Temperature rise is 
therefore an important factor in the design of a conductor. 

Apart from temperature, the ease with which electrons pass 
through a metal depends upon structural features. For instance, the 
electrical conductivity of pure copper is roughly halved by substitut­
ing 10% of the atoms with zinc. Because of their different size, the 
substituent atoms distort the copper crystal lattice and, hence, the 
electron pathways between the ions. This will have the effect of 
reducing the mean free path and increasing the frequency of colli­
sions. The mass of a substituent atom is also important, because this 
will affect its response to a collision and the extent to which it vibrates 
afterwards, and, hence, the transfer of heat into the metal structure. 
The charge on the ion also has an effect: zinc ions carry a double 
charge, in contrast to the single charge on copper, and this will create 
electrical irregularities in the electron pathways. 

So now we can see that metals show an almost friction-like resist­
ance to the passage of electrons which is due to structural irregu­
larities of one kind or another. 

24.2 CONVENTIONAL CURRENT DIRECTION 

Before we go any further, there is a very important convention that 
we must remember. In practice, the direction of an electric current is 
taken to be that in which positive charge carriers would move (i.e. 
opposite to that of the electron drift). This conventional current 
direction was established before the discovery of the electron's role as 
the charge carrier in metals, and it remains to this day. For many 
practical purposes it makes no difference whether we think about 
negative charge moving one way or positive charge moving the other. 

24.3 ENERGY CONVERSION AND POWER 
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Figure 24.2 represents a lamp powered by a battery. We shall assume 
that the wires connecting the bulb to the battery offer negligible J 1---8-•tt_•rv..., 
resistance to the current. The filament in the bulb, however, offers so ~ 
much resistance that it becomes hot enough to emit light. 

Thinking in terms of conventional current, the positive terminal of 
the battery represents a point of high potential and the negative 
terminal a point of low potential. Our notional positive charge will 
leave the positive terminal and pass through the filament, providing 
energy to raise its temperature. The charge, depleted of its energy, 
will return to the battery via the negative terminal. The potential Figure 24.2 
difference across the filament, and the total energy per coulomb 
converted by it (to heat and light), are related by Equation (22.3) 
(V = W!Q). Thus, a potential difference of 6 V means that 6 J 

Bulb 
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are extracted from each coulomb passing through the filament, 12 J 
from 2 C, 18 J from 3 C, and so on. This argument applies generally 
to devices which convert electrical energy to other forms - for 
example, electric motors which convert it to mechanical energy, and 
batteries on charge which convert it to chemical energy. We should 
note that most devices convert some of the electrical energy into 
unwanted by-products, such as heat, which reduce their efficiency. 

In Topic 8 we noted that power is the quantity used to measure the 
rate at which energy is converted from one form to another. Thus, 
the power of an electrical device is the rate at which it converts 
electrical energy into other forms. If W joules of electrical energy 
are converted in t seconds, then the power Pis given by Wit. But 
W = QV; therefore, Wit is equal to QVIt. Since Q =It (Equation 24.1), 

and 

P =IV 

ltV 
t 

(24.3) 

where Pis in watts (W). This equation gives the rate of conversion to 
all forms of energy- for example, light plus heat in a light bulb, or 
mechanical energy plus heat in an electric motor. 

24.4 ELECTRIC CURRENT IN SEMICONDUCTORS 

In view of the great technological importance of semiconductors, we 
need to have some understanding of how they work. As their name 
implies, they are neither good conductors nor good insulators but lie 
somewhere in between. There are many semiconducting materials. 
Silicon and germanium are well-known examples which we shall use 
as the basis of our discussion. 

As their position in group IV of the periodic table suggests, atoms 
of silicon and germanium form four covalent bonds with their neigh­
bours in a similar way to carbon atoms in diamond. At absolute zero 
both silicon and germanium behave as insulators. However, their 
valence electrons are rather loosely held, so that, at higher tempera­
tures, some of them have sufficient thermal energy to become de­
tached from the bonds and turn into conduction electrons that are 
able to transport charge. 

To detach a valence electron in diamond involves overcoming an 
energy barrier of about 6 e V, whereas it only requires about 1.1 e V 
and 0. 7 e V for silicon and germanium, respectively. The effect of this 
is that, at room temperature, silicon and germanium possess enough 
conduction electrons to make them semiconductors, whereas dia­
mond remains an insulator. Diamond becomes a semiconductor if 



its temperature is raised sufficiently and, in general, the conductivity 
of semiconductors increases with increasing temperature as more 
electrons have sufficient thermal energy to jump the barrier. 

When a valence electron becomes detached, it leaves behind it a 
positively charged vacant site called a hole. A second valence elec­
tron from a nearby covalent bond may then move into the hole, in 
which case it will leave a new hole behind it. In effect, this electron 
and the original hole will exchange places, as indicated by the arrows 
in Figure 24.3, the electron moving one way and the positive hole in 
the opposite direction. This means that holes can act as charge 
carriers which contribute towards the electrical conductivity of the 
semiconductor. 

• 
-?-Atom • Electron 1 • 

e Electron 
Electron 2 

• • 0 Hole Hole 

• 
• 

Figure 24.3 

Intrinsic semiconductors are so called because their semiconduc­
tivity is an inherent property of the material. Intrinsic semiconductors 
may be doped with minute traces of impurities in order to control the 
flow of current by introducing additional charge carriers. These 
doped materials are called extrinsic semiconductors. They are clas­
sified as n-type if the additional charge carriers are electrons and 
p-type if they are holes. (p- and n- signify positive and negative charge 
carriers, respectively.) 

n-Type semiconductors can be made from silicon and germanium 
by doping them with group V elements (i.e. elements with five outer 
electrons) such as phosphorus, arsenic and antimony. Each impurity 
atom takes up a position on the crystal lattice, forming four covalent 
bonds with its neighbours, leaving the fifth electron free to act as a 
charge carrier. Electrons are the majority carriers (i.e. the predomi­
nant type), although intrinsic minority carriers (holes) will still be 
present. In this case the impurity atoms donate electrons and are 
known as donors. It is important to note that the crystal as a whole 
remains electrically neutral, because all of its constituent atoms are 
neutral. 
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If silicon or germanium is doped with a group III element (such as 
boron, aluminium or gallium), with three outer electrons, the im­
purity atoms form three covalent bonds with their neighbours, leav­
ing a hole which can accept electrons. In this case the majority charge 
carriers are holes and we have a p-type semiconductor with the 
impurity atoms described as acceptors. 

24.5 p-n JUNCTIONS 

Many semiconductor devices make use of p-n junctions specially 
formed between p- and n-type materials. 

A single junction forms the basis of the semiconductor diode, which 
has the property of allowing conventional current to flow from the p 
side to the n side but not the other way. Figure 24.4 illustrates how 
this works in principle. 

I I 
I I 

n p n 

0 0 0 0 • • • • 0 • 0 
0 00 0 • •• • 00 • • •r- • 0 0 • r--- + 0 

0 
0 

-
0 0 • •• 0 0 0 • • • • • 0 • 0 0 0 • • • • 0 • 

(a) (b) 

Figure 24.4 

Figure 24.4(a) shows a cell connected across the junction so that 
the p end is positive and the n end is negative. The majority carriers 
on each side (holes and electrons, respectively) move towards the 
junction, where they meet and combine. Fresh electrons enter the 
n-type material from the negative terminal of the cell and fresh holes 
are formed at the positive terminal where electrons are withdrawn. 
Current will flow as these processes continue and the junction is said 
to be forward-biased. 

The recombination of electrons and holes at a forward-biased p-n 
junction is accompanied by the liberation of energy, usually in the 
form of heat. Some types of junction emit useful amounts of light and 
can be used as the basis of light-emitting diodes, such as those used for 
digital displays. 

If the applied voltage is reversed, as in Figure 24.4(b), the elec­
trons and holes tend to be drawn away from the junction and no 
current flows (apart from a very small leakage current due to the 
thermal formation of a few intrinsic carriers). In this case the junction 
is said to be reverse-biased. 



Questions 

(Use any previously tabulated data as required.) 

1. In 1 min how many electrons pass a given point in a 
wire carrying a current of 0.2 A? 

2. What is the power consumed by an electrical device 
carrying a current of 500 rnA and across which there is 
a potential difference of 10 V? 

3. Find the energy lost by an electron in passing through 
the filament of a torch bulb across which there is a 
potential difference of 2.5 V. 

4. In 1 min a charge of 3 C passes through an electrical 
device across which there is a potential difference of 
120 V. Find the power consumed by the device. 

5. An electrical device consumes a total of 120 J of elec­
trical energy when 8 C passes through it at a steady rate 
over a period of 20 s. Find (a) the power consumption 
of the device, (b) the potential difference across it, and 
(c) the magnitude of the current passing through it. 

6. Assuming that the current and duration of a lightning 
flash are of the order of 1 x 10" A and 1 x 10-3 s, 
respectively, estimate the quantity of charge involved. 
Assuming a potential difference of 200 MV between the 
cloud and the ground, estimate the energy dissipated. 

7. Find the potential difference across an electrical device 
which consumes 1200 J of electrical energy when a steady 
current of 2 A flows through it for a period of 10 s. 

8. Water at 10 oc passes into a continuous-flow electric 
water heater at a rate of 100 g per minute and emerges 
at 15 °C. Assuming there are no heat losses, find the 
current in the heater element if the potential difference 
across it is 14 V. 

9. An electrical machine operates with an efficiency of 
80% while drawing a current of 6 A at 160 V. How 
much power is wasted? 
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TOPIC 25 RESISTANCE 

COVERING: 

• simple measurement of resistance; 
• resistance and resistivity; 
• I-V characteristics; 
• resistors in series and in parallel; 
• e.m.f.; 
• internal resistance; 
• power. 

In the previous topic we saw how metal conductors tend to resist the 
flow of electric charge that constitutes an electric current. We have 
now reached the point where we need to be able to quantify this 
electrical resistance. 

We already know that a potential difference is needed to make a 
current flow through a conductor. Extending this idea, a bad conduc­
tor offers greater electrical resistance than a good one; it therefore 
requires a correspondingly greater potential difference to give the 
same current under the same conditions. Resistance R is defined as 
the ratio between the potential difference V across the conductor and 
the current I that is passing through it. Thus, 

v 
R=­

I 

The unit of resistance is called the ohm (symbol Q). 

(25.1) 

To take a simple example, if a bulb operating at 3 V draws a 
current of 0.25 A, then it has a resistance R, given by 

R = VII = 3/0.25 = 12 Q 

Looking at this another way (I= VIR), a conductor with a small 
resistance will allow a large current to pass for a given potential 
difference. To illustrate this, let us compare the currents drawn by 
two different bulbs, say with resistances of 12 Q and 15 Q, respect­
ively, both operating at 3 V. 

For the 12 Q bulb, 



I= VIR= 3112 = 0.25 A 

and for the 15 Q bulb, 

I = VIR = 3115 = 0.2 A 

25.1 MEASURING RESISTANCE 

Figure 25.1 shows a simple way of measuring the resistance of a bulb, 
or indeed any other electrical component, using Equation (25 .1). 

The voltmeter is connected in parallel with the bulb in order to 
measure the potential difference across it. The current will divide at 
the point X, some passing through the bulb and the rest through the 1 

voltmeter; then it will recombine at the point Y. Ideally a voltmeter 
should have very high resistance so that it diverts an insignificant 
proportion of the current from the component across which it is 
connected. (In terms of I= VIR, the larger the value of R the smaller 
the value of I.) The voltmeter will then cause very little disturbance 
to the conditions in the main circuit. 

The ammeter measures the current and is connected in series with 
the bulb, so that the same current flows through them both (assuming 
a negligible current through the voltmeter). Ideally, an ammeter 
should have very low resistance so that it disturbs the conditions in 
the circuit as little as possible. 

The resistance of the component is then calculated from the volt­
meter and ammeter readings by use of Equation (25 .1). 

We shall look at another method of measuring resistance in the 
next topic. 

25.2 RESISTANCE AND RESISTIVITY 

The resistance of a conductor (e.g. a wire) depends on its dimensions. 
If we double its cross-sectional area without changing anything else, 
then twice as much charge can pass and the current will be doubled. 
(The same effect would be achieved by connecting a second identical 
conductor in parallel with the first.) On the other hand, if we double 
the length (in effect, adding a second identical conductor in series 
with the first), then the current has to travel twice as far and will 
therefore experience twice the resistance. If nothing else is changed, 
the current will be halved (because I = VIR). 

These observations are summarised by the equation 

L 
R=pX­

A 
(25.2) 

Figure 25.1 
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where L and A are the length and cross-sectional area of the conduc­
tor in m and m2 , respectively. p, the constant of proportionality, 
represents the resistivity of the material from which the conductor is 
made. Rearrangement of Equation (25.2) tells us that the unit of pis 
Q m. Resistivity is a property of enormous variation, ranging, for 
example, from 1.6 x 10-8 Q m for silver to around 1 x 1018 Q m 
for silica glass. (The reciprocal of resistivity (1/p) is called conduct­
ivity (o). This is measured in Q-1 m- 1 or, in SI units, siemens per 
metre, where siemens (S) is the SI unit of electrical conductance. 
1 S = 1 Q-1 ; thus, conductance is the reciprocal of resistance.) 

Table 25.1 

Substance 

Silver -
Copper 
Aluminium 
Tungsten 
Nichrome (Ni/Cr alloy) 
Germanium 
Silicon 
Silica glass 

Resistivity/Q m 

1.6 X 10-8 

1.7 X 10-8 

2.8 X 10-8 

5.5 X 10-8 

100 X 10-8 

0.5 
2.5 X 103 

1 X 1018 

Table 25.1 shows the approximate resistivities of various materials 
at ordinary temperatures. 

Copper has slightly higher resistivity than silver but is much more 
widely used as an electrical conductor, because of the cost factor. 
Aluminium is used in overhead power lines, because, although its 
resistivity is around one and a half times that of copp.er, its density is 
about three times less. Thus, on a weight basis (important for sus­
pended cables), aluminium is an appropriate choice. Tungsten is used 
for light bulb filaments, which get very hot, because it has a very high 
melting point (about 3400 °C). Nichrome, which is a nickel/chromium 
alloy with fairly high resistivity, is used for making heating elements. 

Knowing the dimensions of a conductor, Equation (25.2) enables 
us to calculate its resistance from its resistivity, or vice versa. It also 
suggests that, if we are simply interested in transporting electricity, we 
should make conductors as thick and as short as possible in order to 
minimise their resistance. If the resistance is high, then electrical 
energy will be wasted in heating the conductor and there will be a 
voltage drop along its length (given by V = IR). 

25.3 1-V CHARACTERISTICS OF A METALLIC 
CONDUCTOR 

We would normally expect the current flowing through a metallic 
conductor to increase if we increase the potential difference across its 



(a) (b) 

Figure 25.2 

ends. Figure 25.2 illustrates several general points about the relation­
ship between current and voltage. 

Figure 25.2(a) shows the I-V characteristics of an ordinary metal 
conductor determined at two different temperatures. As we saw in 
the previous topic, the electrical conductivity of a metal decreases 
with increasing temperature. This is reflected in Figure 25.2(a), which 
shows that the conductor allows less current to pass at high tempera­
ture. The figure also shows that, at constant temperature, current is 
proportional to potential difference. In other words, the I-V charac­
teristic is linear. From this we can say that the resistance of the metal 
is constant, because the ratio VII ( = R) is the same at any point on 
the line. As Figure 25.2(a) stands, the steeper the line the lower the 
resistance, since the slope /IV (the reciprocal of the resistance) rep­
resents the conductance. 

The proportionality between current and potential difference is 
described by Ohm's law (named after Georg Ohm, who discovered it 
early in the nineteenth century). This may be expressed in the form 

v - =constant 
I 

It is most important to recognise that this equation is not a restate­
ment of Equation (25.1) (R = VII), which merely defines resistance 
under particular current and voltage conditions. The resistance of 
many materials changes with voltage. Ohm's law describes the re­
lationship between I and V only for those whose resistance remains 
constant. 

Figure 25.2(b) simply follows from Equation (25.2) and shows the 
effect of changing the dimensions of a conductor, say a wire, made 
from a given material. A thicker and/or shorter wire will allow more 
current to pass than a thinner and/or longer wire under the same 
conditions. 

Under constant conditions, metals generally obey Ohm's law. They 
tend to deviate from linear behaviour if their temperature is not 
kept constant. For example, Figure 25.2(c) shows the I-V character­
istic of a bulb filament. The slope of the curve progressively decreases 
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as the potential difference is increased. This is because the resistance 
of the filament increases as it becomes hotter. 

25.4 RESISTORS 

Although we have discussed resistance in terms of conductors and 
light bulb filaments, there are electronic components called resistors 
which are specifically designed to provide resistance in electrical 
circuits. Resistors are made from a variety of materials - for 
example, from wire wound into a coil, or from metal oxides or 
carbon. There are two main types- namely fixed and variable. Fixed 
resistors, with a fixed value, are simply provided with a connection at 
either end. Variable resistors consist of a track, sometimes a wire­
wound coil, with a sliding contact that can be moved along its length. 
The resistance over the total track length is, of course, fixed (and 
there are normally connections at either end), but intermediate 
values can be tapped off by using the sliding contact to vary the length 
of wire or track through which current has to pass. 

Resistors commonly have values of thousands or even millions of 
ohms, in which case the convenient units to use are kilohms (kQ) or 
megohms (MQ), respectively. 

Where a number of resistors are interconnected, we can use Ohm's 
law to evaluate their combined effect in terms of a single resistance 
value. 

25.5 RESISTORS IN SERIES 

Figure 25.3 shows three resistances (Ru R2 and R3 ) connected in 
series, so the same current I will pass through them all (as can readily 
be demonstrated by connecting an ammeter into any part of the 
circuit). Between entering R1 and leaving R3 , each coulomb will have 
lost energy, as heat, equivalent to the total drop in potential V across 

+----------------v-----------------. 

R, 

+---------------- R ------~-----------

Figure 25.3 



the resistors. The total potential drop will be the sum of the separate 
drops across the individual resistors (as can readily be demonstrated 
with a voltmeter). In general, 

and, since V = IR, 

Dividing both sides by /, which is constant throughout, 

(25.3) 

Thus, the total combined resistance is the sum of the individual 
values. 

Worked Example 25.1 

Find the current that flows when a potential difference of 12 V is 
maintained across a 2 Q resistor and a 4 Q resistor connected in 
series. Hence find the potential difference across each resistor. 

The circuit is shown in Figure 25.4. 

-----V(12V)-----

R1 (20) 

Figure 25.4 

From Equation (25.3), the resistors have a combined value of 
2 Q + 4 Q = 6 Q. A potential difference of 12 V across a resistance of 
6 Q will result in a current /, given by 

I = VIR = 12/6 = 2 A 

The potential difference. vl and v2 across each resistor is therefore 
given by 

Vl = IR1 = 2 X 2 = 4 V 
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and 

Vz = IRz = 2 X 4 = 8 V 

The example above shows that two resistors in series divide the 
total voltage across them in the ratio of their respective resistance 
values. The general case is easy to prove. The current is the same 
throughout the circuit; therefore, 

vl vz I=-=-
Rl Rz 

so 

(25.4) 

Furthermore, if Vis the total voltage across the series combination, 
then 

and, since V1 = IR1 , 

(25.5) 

and similarly for V2 • 

This is the basis of the potential divider, which is a device used to 
divide a voltage into given fractions. 

25.6 RESISTORS IN PARALLEL 

Figure 25.5 shows three resistances (Ru R2 and R3 ) connected in 
parallel. In this case it is the potential difference V across them that is 
fixed, while the current is divided between them. The total current I 
is given by 

I= It + Iz + I3 + · · · In 

and, since I= VIR 



I I 
I 

v 

I, 

R, 

12 

R2 

13 
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Figure 25.5 

Dividing both sides by V, which is constant, 

(25.6) 

Thus, resistances in parallel have a combined value less than any of 
the individual values. 

(Be very careful not to confuse these equations with the corres­
ponding equations for capacitors. Remember that, for series com­
binations, 

and 

and for parallel combinations, 

and 

C=C +C +C +···C) 1 2 3 n 
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Figure 25.6 

Worked Example 25.2 

Find the current that flows when a 2 Q resistor and a 4 Q resistor are 
connected in parallel across a 12 V battery. 

The circuit is shown in Figure 25.6. 
From Equation (25.6), the resistors have a combined value given 

by 

1 1 1 
- =- +- = 0.75 
R 2 4 

Therefore, R = 110.75 = 1.33 Q. 
A potential difference of 12 V across a resistance of 1.33 Q will 

result in a current I, given by 

I= VIR= 12/1.33 = 9 A 

(Alternatively, the currents I1 and I 2 flowing through each resistor are 
given by 

I 1 = VIR1 = 12/2 = 6 A 

and 

I 2 = VIR2 = 12/4 = 3 A 

Therefore, 

Worked Example 25.3 

For the circuit in Figure 25.7, (a) find the potential difference be­
tween A and B and between B and C, and (b) find the current passing 
through the 20 Q resistor and through the 30 Q resistor. 

The resistance RBc of the parallel combination between B and C is 
given by 

1 1 1 --=-+-
RBC 20 30 

which gives RBc = 12 Q. 



+-----------9V------------~ 

A B 

Figu~, is.7 

The total resistance RAe is 6 Q + 12 Q = 18 Q. Since the potential 
difference across AC is 9 V, the current drawn by the total combina­
tion is given by 

I = VIR = 9118 = 0.5 A 

(a) The potential difference V AB across AB is given by 

v AB = I X RAB = 0.5 X 6 = 3 v 

and the potential difference Vae across BC is given by 

Vae = I X Rae = 0.5 X 12 = 6 V 

(b) Since the potential difference across BC is 6 V, the current 
passing through the 20 Q resistor is given by 

I = VIR = 6120 = 0.3 A 

and through the 30 Q resistor by 

I = VIR = 6130 = 0.2 A 

25.7 E.M.F. AND INTERNAL RESISTANCE 

The basic function of an electric cell or battery is to use chemical 
energy to raise charge through a potential difference. Equation (22.3) 
(W = QV) tells us, for example, that a 3.0 V cell gives 3.0 J of energy 
to each coulomb passing through it. 

When a cell is not being used, the voltage across its terminals is 
called the electromotive force or e.m.f. (symbol E), as indicated in 
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Figure 25.8 

Figure 25.8(a). The e.m.f. is the electrical energy supplied by the cell 
per coulomb. If the cell is being used to maintain a current, say 
through the resistance R in Figure 25.8(b), then the potential differ­
ence V across the resistor, and across the cell, is found to be less than 
the e.m.f. The reason for this is that the cell has its own internal 
resistance as charge moves through its interior. This means that, when 
a current flows around the circuit, electrical energy is consumed by 
the cell as well as by the resistor. It can be helpful to view internal 
resistance as a component of the circuit into which the cell is con­
nected. Figure 25.8(b) is therefore redrawn in Figure 25.8(c) to show 
the circuit as a cell of e.m.f. E and internal resistance r connected 
across the resistance R. 

R is in series with r, so the total resistance in the circuit is (R + r). 
From Ohm's law, the current I flowing through the circuit will be 

E 
I=---

R + r 

which, on rearranging, gives 

E = IR + Ir = V + Ir 

(25.7) 

where V ( = IR) represents the potential difference across the cell 
terminals. Ir is the inaccessible voltage lost across the resistance of 
the cell which produces heat and which only becomes evident when a 
current I flows. On rearranging, 

V = E- Ir (25.8) 

That is to say, when current passes through the circuit, each coulomb 
of charge passing through the cell gains E joules but also loses Ir 
joules to the internal resistance. This leaves V joules for external use. 
Because the magnitude of Ir increases with I, the usable voltage V of 
the cell decreases in proportion to the current drawn from it. Equation 
(25.8) enables us to calculate the internal resistance of a cell or other 
source of e.m.f. simply by subtracting the potential difference across its 
terminals from the e.m.f. and dividing the result by the current. 

25.8 BATTERIES 

As we noted in Topic 23, a battery is simply a number of cells 
connected together to form a single unit. Batteries may have cells 
connected in series or in parallel. 

If the cells are in series with positive terminals connected to nega­
tive, as in Figure 25.9(a), then their combined e.m.f. and their 
combined internal resistance are both obtained by adding the indi­
vidual values together as follows: 



(25.9) 

and 

(25.10) 

For example, six 2.0 V lead-acid cells are used in series in 12 V car 
batteries. (Lead-acid cells have low internal resistance, which allows 
high currents to be drawn briefly for starting engines.) 

If identical cells are connected in parallel, as in Figure 25.9(b), 
then their combined e.m.f. is the same as a single cell but their 
capacity is correspondingly increased. Capacity is measured in 
ampere-hours, 1 ampere-hour being the charge passing a point in 1 h 
in a conductor carrying a steady current of 1 A. (In practice, the 
actual capacity generally depends on the rate at which a cell is 
discharged.) As we might expect from Equation (25.6), the combined 
resistance is given by rln, where r is the internal resistance of each of 
the n identical parallel cells. 

The parallel combination of different types of cell is more complex 
and we shall consider it in the next topic. 

25.9 POWER 

Equation (24.3) (P = IV) applies to any device converting electrical 
energy to another form. If the device is a resistor that obeys Ohm's 
law and converts the electrical energy entirely to heat, then we can 
modify the equation by introducing R and eliminating I or V as 
required. Thus, 

p =IV 

and, since I = VIR, 

vz 
P=­

R 

Also, since V = IR, 

p = J2R 

Worked Example 25.4 

(25.11) 

(25.12) 

A potential difference of 12 Vis maintained across an 8 Q and a 16 Q 
resistor connected (a) in series, and (b) in parallel. Find the electrical 
power consumed in each case by each resistor. 
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(b) 

Figure 25.10 

The circuits are shown in Figure 25.10. 
(a) The total resistance of the series combination in Figure 25.10(a) 

is (8 Q + 16 Q =) 24 Q; therefore, the current I flowing round the 
circuit is given by 

v 12 
I=-=-= 0.5A 

R 24 

The power consumed by the 8 Q resistor is given by 

P = J2 X R = 0.52 X 8 = 2 W 

and by the 16 Q resistor by 

P = J2 X R = 0.52 X 16 = 4 W 

(b) The power consumed by the 8 Q resistor is given by 

P = _V2 = 122 = 18 W 
R 8 

arid fiy the 16 Q resistor by 

y2 122 
P=-.=-· .. =9W 

R 16 

Questiobs 

(Use any previously tabulated data as required.) 

1. Find the resistance of a 100m length of copper wire 
1.2 mm in diameter. 

2. A copper wire, 10m long and 1.7 mm2 in cross­
sectional area, carries a current of 15 A. Find the 
potential drop along its length. 

3. The individual resistors shown in Figure 25.11 all have 
the value of 3 Q. Find the combined resistance across 
AB in each case. 

4. What value resistor must be connected with a 20 Q 
resistor to give a combined value of 12 Q? Should it 
be connected in series or in parallel? 

5. (a) Show that the combined resistance R of two re­
sistors R1 and R2 connected in parallel is given by 

R = 



(a) 

(c) r 
(d) 

A 

(e) 

Figure 25.11 

A B 
(b) 

A B 

(f) 

(b) Two resistances connected in parallel have a com­
bined value of 1.2 Q. When connected in series, 
they have a combined value of 5 Q. Find their 
individual values. 

6. For the circuit shown in Figure 25.12, find (a) the 
potential difference across the 20 Q resistor, (b) the 

~~--_;--~~---~r-
100 200 ,---0 4t--

300 

._ ___________ w------------• 

~----------~II._ ____________ ~ 
I 

Figure 25.12 
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Figure 25.13 

6V 

Figure 25.14 

combined resistance of the three resistors, and (c) the 
current through the 10 Q resistor. 

7. Two resistors are connected in series across a 3 V 
supply. One of the resistors, with a value of 200 Q, 
has a potential difference of 0.1 V across it. Find the 
value of the other resistance. 

8. (a) A battery of 4.5 V e.m.f. with an internal resist­
ance of 1.25 Q is used to maintain a current of 
0.2 A through a resistor. Find the potential differ­
ence across the resistor. 

(b) Find the potential difference if the resistor is 
changed for one that draws a current of 0.8 A. 

(c) Estimate the current which flows if the terminals 
of the battery are momentarily short-circuited 
with a very low resistance conductor. 

9. In the circuit shown in Figure 25.13 the cell has an 
e.m.f. of 6 V and an internal resistance of 0.5 Q. R1 

and R2 are resistors of 3 Q and 6 Q, respectively. Find 
the current through (a) the cell, (b) R1 and (c) R2 • 

10. Two identical cells, each with an e.m.f. of 4.5 V and 
an internal resistance of 1.5 Q, are connected (a) 
positive terminal to negative in series and (b) positive 
terminal to positive in parallel across a 3 Q resistance. 
Find the current through the resistance in each case. 

11. A current of 1.2 rnA flows through a resistor across 
which there is a potential difference of 6 V. Find the 
resistance and the power consumption of the resistor. 

12. The maximum power rating of a particular 100 Q 
resistor was given as 2.25 W. Find the maximum cur­
rent that it would safely carry. 

13. By considering the units on the right-hand sides of 
Equation (24.3) (page 228) and Equations (25.11) and 
(25.12), confirm that the quantity obtained in each 
case is power. 

14. For the circuit in Figure 25.14 find (a) the power 
supplied by the battery and (b) the power dissipated 
in the 8 Q resistor. (Assume that the internal resist­
ance of the battery is negligible.) 



TOPIC 26 SOME SIMPLE 
CIRCUITS 

COVERING: 

• shunts and multipliers (ammeters and voltmeters); 
• potential dividers; 
• the potentiometer; 
• the Wheatstone bridge; 
• Kirchhoff's laws. 

The purpose of this topic is to develop some of the ideas that we have 
already met and to broaden our discussion of electrical circuits. 

26.1 SHUNTS AND MULTIPLIERS 

In this section we shall consider ammeters and voltmeters based on 
the moving-coil galvanometer. Nowadays these are tending to be 
superseded by digital electronic instruments; nevertheless they pro­
vide a good basis for our discussion. 

The moving-coil galvanometer is an instrument that measures 
small electric currents. Essentially it consists of a coil mounted be­
tween the poles of a permanent magnet in such a way that the coil 
rotates when a current is passed through it. (We shall consider this in 
more detail in the next topic.) Rotation is resisted by a spring, so that 
the angle through which the coil moves gives a measure of the 
current. This is usually indicated by the position of a needle against a 
calibrated scale. As far as its behaviour as a circuit element is con­
cerned, the instrument can generally be treated as a resistor because 
of the resistance of its internal wiring, particularly that of the coil. 

Moving-coil galvanometers usually need to be modified for use as 
ammeters, because they are generally too sensitive for normal cur­
rents and the needle tends to go off scale. The range of the instrument 
needs to be adjustable, so that the current corresponding to full-scale 
deflection of the needle can be varied as required. This is very easily 
done using a shunt, which is a resistance connected in parallel with 
the galvanometer which allows a fixed proportion of the total current .... 
to bypass the instrument itself, as in Figure 26.1. 

R8 is the resistance of the galvanometer G. By adjusting the shunt 
resistance R., we can vary the proportion in which the total current 

247 



248 Foundation Science for Engineers 

G 

----V----+ 

Shunt 

Figure 26.1 

I is divided into Ig and I., the parallel currents through the galva­
nometer and through the shunt, respectively. Since the potential 
difference V across both resistances is the same, then, from Ohm's 
law, 

Therefore, 

and, since I. = I - Ig, 

(26.1) 

By adjusting R. we can adjust the range of the instrument to suit the 
magnitude of the current being measured. Obviously, Ig must not 
exceed the full-scale deflection current; otherwise the needle will go 
off scale. 

Worked Example 26.1 

Armoving-coil galvanometer shows full-scale deflection with a poten­
tial difference of 75 m V across the terminals and a current of 15 rnA 
flowing through the coil. How can the instrument be adapted to 
measure currents up to 2.5 A? 

The resistance of the galvanometer is obtained from Equation 
(25.1) (on page 232) as follows: 

V 15 X 1o-3 
R=-= =5Q 

I 15 X 1o-3 



If, in Figure 26.1, Ig is not to exceed 0.015 A, then a shunt is required 
which allows (2.5 - 0.015) A to bypass the galvanometer when the 
total current I is 2.5 A. The shunt resistance may therefore be 
obtained from Equation (26.1) as follows: 

IgRg 15 X 10-3 X 5 
R =--=-----

• I - Ig (2.5 - 0.015) 
0.03 Q 

Since a potential difference applied across the terminals of a galva­
nometer will cause a current to flow, we can use it as a voltmeter. If 
the wiring inside the galvanometer obeys Ohm's law, then there will 
be a linear relationship between V and I and it can be calibrated to 
measure either. But, as with the ammeter, we need to be able to vary 
the sensitivity of the instrument. In this case we use a multiplier, as in 
Figure 26.2. 

-------v------
---v9--~~~~ .. ---vm-l 

(;\G I Multiplier 
---;---'----{vi-· -----'-· --11 ~-1 _.L__ 

Rm 

Figure 26.2 

A multiplier is simply a series resistance, Rm in the figure. Together 
with the galvanometer resistance Rg, it divides the potential differ­
ence V in accordance with Equation (25.4) (page 238). Since the 
current I is the same through both resistances, because· they are in 
series, then 

Therefore, 

and, since V m = V - Vg, 

(26.2) 

Thus, we can adjust the range of the voltmeter by varying the 
multiplier resistance, remembering that Vg must not exceed the full­
scale deflection voltage. 
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Worked Example 26.2 

How can the moving-coil galvanometer in Worked Example 26.1 be 
adapted to measure voltages up to 12 V? 

If, in Figure 26.2, Vg is not to exceed 0.075 V, then a multiplier is 
required across which there is a potential difference of (12- 0.075) V 
when the total potential difference is 12·V. The multiplier resistance 
may therefore be obtained from Equation (26.2) as follows 

Rg (V - Vg) 5(12 - 0.075) 
R = = = 795 Q 

m Vg 0.075 

The ideal voltmeter has infinite resistance and the ideal ammeter 
has zero resistance, so that they have no effect on the current flowing 
through the circuit where they are being used. In practice, real 
moving-coil instruments have finite resistance, which can affect the 
measurements significantly. For example, let us consider the measure­
ment of resistance by the so-called ammeter-voltmeter method which 
we met in the last topic (Figure 25.1 on page 233). The two arrange­
ments in Figure 26.3 incorporate a rheostat to control the current 
through the circuit. (A rheostat is a variable resistor connected so 
that current flows between one of the end connections and the sliding 
contact.) 

(a) (b) 

Figure 26.3 

If the resistance R being measured in Figure 26.3(a) has a suf­
ficiently high value, then the current flowing through it may be low 
enough for the current through the voltmeter V to be significant. This 
problem can be overcome by connecting the voltmeter across both 
the resistance and the ammeter A, as in Figure 26.3(b), so that the 



ammeter measures the true current through the resistance. Note that 
this arrangement will only give a satisfactory measurement where the 
resistance of the ammeter is negligible compared with the component 
under test; otherwise there will be a significant voltage drop across 
the ammeter. 

26.2 POTENTIAL DIVIDERS 

In the last topic we met a potential divider in the form of two resistors 
in series which enable a fraction of the total voltage across them to be 
tapped off according to Equation (25.5) (page 238). Potential dividers 
take a variety of different forms, including a chain of any number of 
series resistors dividing the voltage across it into as many portions as 
there are individual resistances. 

I· v ·I 
I-- v, •I• vc-j 

A B (a) 

A B 

Figure 26.4 

Figure 26.4(a) shows a potential divider based on a variable re­
sistor with both ends connected across a cell. The sliding contact 
divides the track into two parts, corresponding to R1 and R2 in 
Equation (25.5), as shown in Figure 26.4(b). ·By adjusting the posi­
tion of the sliding contact, the potential difference across the output 
terminals AB may be varied from zero up to the maximum potential 
difference V across the ends of the variable resistor. As the following 
worked example demonstrates, this voltage will fall when an external 
current is drawn from the output terminals. 

Worked Example 26.3 

For the potential divider shown in Figure 26.4, R1 = 200 Q, R2 = 
100 Q and V = 12 V. Assuming the battery has negligible internal re­
sistance, find the potential difference across the output terminals AB 

Some Simple Circuits 251 



252 Foundation Science for Engineers 

(a) when no external current is being drawn from them, and (b) when 
an external resistance of 200 Q is connected across them. 

(a) From Equation (25.5), 

(and V2 = 4 V). 
(b) With the external resistance Re connected, the combined 
resistance RAB across AB is given by 

1 1 1 1 1 
-=-+-=-+­
RAB Rl Re 200 200 

Hence, RAB = 100 Q. 
Since RAB = R2 = 100 Q, the voltage Vis divided into equal halves 

(i.e. V1 = V2 = 6 V). The potential difference across AB is therefore 
reduced to 6 V by the effect of the external resistance. (Note that the 
greater the external resistance the less will be the current drawn by it 
and the less the reduction in the potential difference across AB.) 

The potentiometer (see Figure 26.5(a)) is a very simple form of 
potential divider. It consists of a resistance wire of uniform cross­
section which has a constant potential difference maintained across its 
ends by means of a so-called driver cell. A sliding contact is used to 
tap off any fraction of the total potential difference. A scale is fixed 
parallel to the wire so that the lengths 11 and 12 (corresponding to R1 

and R2 in Figure 26.4) can be measured. The galvanometer G has a 
central zero position so that it can detect current flowing in either 
direction when other circuit elements are connected across AB. 

Driver cell 

A 8 

~J 
(b) 

A 8 
(a) 

Figure 26.5 



The potentiometer measures potential difference and can be used 
to find the true e.m.f. of a cell. The cell is connected across AB so 
that it is in opposition to the driver (as indicated in Figure 26.5(b)). 
Provided that the cell e.m.f. is less than the potential difference 
between the ends of the potentiometer, then a length of wire 11 can be 
found where the potential difference across it exactly balances the 
e.m.f. of the cell. Under these conditions, no current flows through 
the galvanometer and the potentiometer is said to be balanced. Since 
no current is flowing through the cell under test, the potential differ­
ence across its terminals is equal to its e.m.f. (because Ir = 0 in 
Equation 25.8 on page 242). Thus, the balanced length 11 is pro­
portional to the e.m.f. of the cell. If this procedure is repeated with 
another cell, then 

(26.3) 

where EA and EB are the e.m.f. values and LA and /Bare the respective 
values of the balance length 11 for the two cells. The e.m.f. of an 
unknown cell can therefore be obtained by comparing it with a cell of 
accurately known e.m.f. 

The potentiometer needs modification for measuring very small 
e.m.f. values, because the balance length will be very small and 
subject to large errors in its measurement. The problem could be 
solved by using a very long potentiometer wire but this would gener­
ally be impracticable. However, the same effect can be achieved by 
connecting a large resistor in series with the wire, as in Figure 
26.6(a). The total voltage across the series pair is then divided 
according to Equation (25.5) (page 238), where R1 is the resistance of 
the whole length of the wire and R2 is the added series resistance. 

A 8 

r-- ~ 
14 Wire .. , Series 

Copper Copper 

~ 
resistor 

0 "C 100 "C 

A 8 

(a) (b) 

Figure 26.6 

This arrangement can be used to measure the small e.m.f. pro­
duced by a thermocouple. Thermocouples are devices that are used 
for measuring temperature. For example, if a piece of iron wire is 
connected to the potentiometer via two copper wires and the two 
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iron-copper junctions are at different temperatures, say 0 oc and 
100 oc as in Figure 26.6(b ), then a small e.m.f. can be measured. This 
e.m.f. varies with the temperature difference and the device can 
therefore be used as a thermometer by keeping one of the junctions 
at a known reference temperature. 

Since the potentiometer draws no external current, it behaves, in 
effect, like a voltmeter of infinitely high resistance and therefore does 
not disturb any circuit into which it is connected. It can be used to 
measure potential difference accurately, because the balance length 
can be measured accurately. Being a null method (i.e. a balance 
method), it does not rely on the accuracy of the galvanometer. It 
therefore has a number of advantages over ordinary voltmeters and 
can even be used to calibrate them. (Calibration is the determination 
of the true values corresponding to the actual readings given by any 
type of instrument.) 

A variable potential difference can be applied across the terminals 
of an ordinary voltmeter by using a variable resistor as a potential 
divider (as in Figure 26.4). For any given reading on the voltmeter, 
the true potential difference across its terminals can be measured by 
using the potentiometer. The voltmeter can therefore be calibrated 
over its whole range by varying the potential difference. 

The potentiometer can be used to measure current by finding the 
potential difference across a known resistance through which the 
current is passing and then applying Ohm's law. This may involve 
inserting into the circuit an accurately known resistance of sufficiently 
low value not to disturb the current. This principle can be used to 
calibrate an ammeter by measuring the true current passing through 
it for any given reading. 

The value of an unknown resistance can be obtained by connecting 
a known resistance in series with it and using the potentiometer to 
measure the potential difference across each resistance in tum when 
they are both carrying the same current. If VA and VB are the 
potential differences corresponding to the balance lengths /A and /B 
for the resistances RA and RB, respectively, then 

(26.4) 

(Before we leave this section, note that variable resistors used in 
electronic circuits are sometimes referred to as potentiometers.) 

26.3 THE WHEATSTONE BRIDGE 

The Wheatstone bridge is a circuit that can be used for the accurate 
measurement of resistance. It consists of a network of four resist-. 
ances R1 , R2 , R3 and R4 , connected as shown in Figure 26.7. For the 
purposes of our discussion let us assume that the voltages across them 
are V1 , V2 , V3 and V4 , respectively. 



X 

y 

Figure 26.7 

If the values of the resistances are such that no current flows 
through the galvanometer, then the bridge is said to be balanced. The 
potential difference across XY must then be zero and therefore 
VI = v3 and v2 = v4. Furthermore, the current I entering the net­
work divides into lx through R1 and R2, and ly through R3 and R4 

(remembering that none flows through the galvanometer). 
If Y1 = Y3 , then lxR1 = lyR3 (since V = IR), and if V2 = V4 , then 

lxR2 = lyR4 • 

Dividing one equation by the other, 

lxR1 = lyR3 

lfi2 lyR4 

Therefore, 

(26.5) 

Knowing the values of three of the resistances, the fourth may be 
found. 

The metre bridge, shown in Figure 26.8, is a simple practical 
version of the Wheatstone bridge. It consists of a resistance wire 1 m 

14-----R1------~+~~I<III---R2____.. 

Figure 26.8 
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Figure 26.9 

long which enables the ratio R/R2 to be continuously varied with a 
sliding contact. Knowing this ratio and the value of either R3 or R4 , 

the value of the fourth resistance can be found from Equation (26.5). 

26.4 KIRCHHOFF'S LAWS 

Kirchhoff's laws are useful when it comes to considering steady 
currents flowing through circuits which are too complicated to be 
treated as series and parallel combinations of resistances and e.m.f.s. 
In such cases we consider circuits in terms of junctions (where three 
or more conductors meet) and closed loops. We have already met the 
basic ideas involved. Now we shall formalise them. 

The first law states that the sum of the currents entering a junction 
in a circuit is equal to the sum of the currents leaving it. In math­
ematical terms ~/ = 0 (where ~ means 'the sum of'). Currents 
arriving are normally treated as positive and those leaving as nega­
tive. In terms of Figure 26.9, which shows two currents arriving at a 
junction and three leaving it, 

or 

This is the statement of a speCial case of the principle of conserva­
tion of charge. It also expresses the idea that charge does not accumu­
late at any point under steady state conditions. 

Kirchhoff's second law tells us that, in any closed loop in a circuit, 
the sum of the e.m.f.s is equal to the sum of the potential differences 
across the resistances in the loop. In mathematical terms, ~E =~JR. 
This is, of course, the statement of a special case of the principle of 
conservation of energy. As we shall see, we have to think carefully 
about the signs in applying the second law. If we follow the conven­
tional current flowing round a simple circuit, then the e.m.f. of a cell 
(or any source of e.m.f.) represents a rise in potential and the 
potential difference across a resistance represents a drop in potential. 
Figure 26.10 shows a more awkward case where two cells are con­
nected in parallel to form a closed loop which is part of a larger 
circuit. E1 and E2 are the e.m.f.s of the cells and r1 and r2 are their 
respective internal resistances. 

Applying the first law to the junctions at either end of the loop 
simply tells us that the sum of the currents / 1 and / 2 through the two 
branches of the loop is equal to the total current / 3 • 

We can apply the second law by travelling either clockwise or 
anticlockwise round the loop formed by the two branches. In either 
case we equate the sum of the e.m.f.s (i.e. the potential rises) to the 
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sum of the potential drops, taking into account our direction of 
travel. We take an e.m.f. as positive if we enter the cell via the 
negative terminal and exit via the positive; we take a potential drop 
as positive if we travel through the resistance in the same direction as 
the current. Thus, if we choose to travel clockwise round the loop in 
Figure 26.10, then E2 and / 2r2 are positive, while E1 and / 1r1 are 
negative. We have 

and 

Therefore, 

The following worked example illustrates a simple application of 
Kirchhoff's laws. First, we identify the current passing through each 
branch. (In some cases it may be difficult to decide the current 
direction, but if the wrong assumption is made, then the calculated 
value will simply be negative.) Next we apply the first law to the 
junctions, then the second law to the closed loops. 

Worked Example 26.4 

A 10 Q resistance is connected in parallel with two cells simul­
taneously, one of 3 V e.m.f. and 1 Q internal resistance and the other 
of 6 V e.m.f. and 2 Q internal resistance, with their positive ter- /2 

minals together. Find the current in each branch of the circuit. 

The circuit is shown in Figure 26.11. 
Let us choose / 1 and /2 as the currents in the upper and lower 
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E1 = 3V 
I 
I ,, = 10 

/3 R = 100 

I E2 = 6V 

I 
'2 = 20 

branches in the directions shown. Figure 26.11 
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Applying the first law to the left-hand junction, 11 and / 2 combine 
to give 13 , which is the current through the resistance in the middle 
branch. 

Applying the second law to the upper loop (containing cell 1 and 
the resistance R), then, in the anticlockwise direction, 

Therefore, 

and, substituting the given values, 

(a) 

Applying the second law to the lower loop (containing cell 2 and 
the resistance R), then, in the clockwise direction, 

Therefore, 

and, substituting the given values, 

(b) 

Combining (a) and (b) to eliminate 12 gives 

11 = -0.75 A 

and substituting -0.75 A for 11 in either (a) or (b) gives 

12 = 1.125 A 

Therefore, 

We can check the values of 11 and /2 by applying the second law to 
the outer loop containing just the cells (but not the resistance R). 
Taking the clockwise direction, 

'2-E = E2 - E1 = 6 - 3 = 3 V 

and 



(As noted above, the negative value found for 11 simply tells us that 
its direction is opposite to that initially chosen and shown in Figure 
26.11.) 

Questions 

1. A battery of 12 V e.m.f. and 15 Q internal resistance is 
connected across a voltmeter of (a) 500 Q resistance 
(b) 5000 Q resistance. In each case find the potential 
difference across the voltmeter. 

2. A 9.5 Q resistance and an ammeter of0.1 Q resistance 
are connected in series with a cell of 1.5 V e.m.f. and 
0.4 Q internal resistance. Find (a) the current passing 
through the ammeter and (b) the potential difference 
across the cell. 

3. Two 1000 Q resistors are connected in series across a 
battery of 6 V e.m.f. and negligible internal resistance. 

(a) Find the potential difference across a voltmeter of 
2000 Q resistance connected in parallel across one 
of the resistors. 

(b) What would the potential difference be if the volt­
meter had infinite resistance? 

(c) What would the resistance of the voltmeter have to 
be for a potential difference of 2.9 V? 

4. (a) In Worked Example 26.3 (page 251), find the 
potential difference across AB if the value of the 
external resistance had been 66.7 Q. 
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(b) Find the current passing through R2 (i) in this 1 12v 

arrangement and (ii) in both arrangements in the j__.-----1 11------, 

worked example. 

5. Twelve identical pieces of wire, each of 12 Q resist-
ance, are connected together to form the edges of a 
cube. A current of 2 A enters this network at one 
corner of the cube and leaves it by the corner diagonal­
ly opposite. (a) Find the current in each wire. Find (b) 
the potential difference between the points where the 
current enters and leaves the network and (c) the total 
resistance between these points. 

6. A current of 0.2 A flows through the 50 Q resistance in 

R 

0.2A 

the circuit shown in Figure 26.12. Using Kirchhoff's Figure 26.12 
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laws, find the value of the resistance R, assuming that 
the battery has negligible internal resistance. 

7. In the Wheatstone bridge circuit shown in Figure 26.7 
(page 255) R1 = 10 Q, R2 = R3 = 20 Q and R4 = 40 Q. 
The battery has an e.m.f. of 6 V and an internal resist­
ance of 2 Q. Using Kirchhoff's laws, find the current 
drawn from the battery. 



TOPIC 27 MAGNETIC 
FIELDS 

COVERING: 
• permanent magnets; 
• fields around current-carrying conductors; 
• force on a current-carrying conductor in a magnetic field; 
• force on a moving charge in a magnetic field; 
• torque on a current-carrying coil in a magnetic field; 
• force between current-carrying conductors. 

We have already seen that an electric charge gives rise to an electric 
field. In this topic we shall see that if an electric charge is in motion, it 
will produce a magnetic field as well. 

27.1 PERMANENT MAGNETS 

The magnetic field surrounding a permanent magnet is associated 
with the motion of the electrons within its constituent atoms. The 
earth behaves like a permanent magnet for reasons that are not fully 
understood but are believed to have their origins in electric currents 
which circulate in its molten core. 

Permanent magnets have equal and opposite north-seeking and 
south-seeking poles, normally called north and south poles, corre­
sponding to the way in which a freely suspended bar magnet aligns 
itself in the earth's magnetic field. The opposite poles of two magnets 
attract one another and their like poles repel because of the forces 
arising from the interaction of their magnetic fields. From this it 
follows that the earth's north pole is actually a magnetic south pole, 
because it attracts the north-seeking pole of a compass. Similarly, its 
south pole is a magnetic north pole. (A compass is simply a small 
magnet, pivoted to allow it to align itself in a magnetic field.) 

Magnetic fields, like electric fields, can be represented by field lines 
whose concentration indicates the field strength. The field direction 
at any point is taken to be the direction of the force acting on a north 
pole placed there. The field pattern round a permanent magnet can 
be plotted with a small compass, but it can be revealed much more 
quickly by covering the magnet with a sheet of stiff paper and sprink­
ling iron filings on top. On gently tapping the paper, the iron filings 
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(a) 

(b) 

Figure 27.1 

(a) 

(b) 

Figure 27.2 

align themselves in the field. Figure 27.l(a) represents the way in 
which the field varies around a bar magnet. Such fields are described 
as non-uniform. By contrast, Figure 27.l(b) shows straight, parallel, 
equally spaced field lines that are characteristic of uniform fields. 

The earth behaves rather as though it contains a bar magnet along 
its magnetic axis. A compass needle free to rotate in any direction 
would set horizontally at the magnetic equator and vertically at the 
magnetic poles, with intermediate angles elsewhere. In the UK it 
would point downwards at an angle of roughly 70° below the horizon­
tal. (This angle is called the angle of dip or the inclination.) 

27.2 MAGNETIC FIELDS AROUND CONDUCTORS 

Since electric current is a flow of charge, we find magnetic fields 
associated with current-carrying conductors such as wires. In this 
section we shall consider the field patterns associated with a straight 
wire, a flat circular coil and a solenoid (i.e. a long cylindrical coil). 

Figure 27.2(a) represents the field pattern around a long straight 
wire running perpendicularly through the page with the current pass­
ing downwards into the paper. The cross represents the tail of a 
departing arrow indicating the current direction. In Figure 27 .2(b) 
the dot represents the tip of an approaching arrow indicating that the 
current direction is upwards out of the paper. If the current is 
sufficiently large, the field will be strong enough for interference from 
the earth's magnetic field to be insignificant and the field lines will 
form concentric circles around the wire. The field direction, given by 
the so-called corkscrew rule, is the direction of rotation of a right­
hand screw thread advancing in the conventional current direction. 
(Just think of the cross in Figure 27.2(a) as the head of an ordinary 
screw.) 

Figure 27.3 represents the field through a flat circular coil viewed 
from above, with the plane of the coil set at right angles to the plane 
of the paper. The cross and the dot indicate the current direction 
through the opposite sides. Very close to the wire the field pattern 
takes the form of more or less concentric circles which become 
progressively distorted further away as the field due to current in 
other parts of the coil becomes more significant. The direction of the 
field lines in the figure is still consistent with the corkscrew rule. 

Figure 27.3 



Figure 27.4 

Figure 27.4 represents the field associated with a solenoid (some­
what simplified for our purposes). As we can see, there is a region of 
uniform magnetic field inside. The corkscrew rule still applies and the 
pattern is essentially an extended version of that associated with a flat 
coil. It is also similar to that of the permanent bar magnet in Figure 
27.1(a). In fact, the solenoid will align itself in a magnetic field in just 
the same way as a bar magnet, and this leads us on to consider the 
force experienced by a current-carrying conductor in a magnetic field. 

27.3 FORCE ON A CONDUCTOR IN 
A MAGNETIC FIELD 

When a current flows through a wire suspended vertically between 
the poles of a U-shaped permanent magnet, the wire experiences a 
force and will move as shown in Figure 27.5. The direction in which it 
moves is given by Fleming's left-hand rule, which is a mnemonic 
involving the first and second fingers and the thumb of the left hand 
mutually arranged at right angles. If the First finger points in the 
Field direction and the seCond finger points in the Current direction 
then the thuMb gives the direction of Motion. 

Figure 27.5 

Ses;ond 
current 

Magnetic Fields 263 



264 Foundation Science for Engineers 

I 

/sin 9 
I 

I cos 9 I --------------· 
---------8---------. 

Field direction 

Figure 27.6 

The magnitude of the force acting on the wire is proportional to the 
strength of the field expressed in terms of its magnetic flux density or 
magnetic induction (symbol B). The force F, also proportional to the 
current I and to the length of wire I in the field, is given by 

F= BIZ (27.1) 

Rearrangement of this equation (B = Fill) tells us that we could 
measure flux density by finding the force acting on a metre length of 
wire carrying a current of 1 A at right angles to the field. The unit of B 
is N A - 1 m-1 and is called the tesla (symbol T). 

Equation (27.1) only applies when the current direction is perpen­
dicular to the field direction. If the two directions are parallel, then 
the wire will experience no force at all. If the wire makes an angle e 
with the field direction, as in Figure 27.6, then the force acting on the 
parallel component of the current(/ cos e) will be zero and the force 
on the perpendicular component will be proportional to I sin e. 
Equation (27 .1) should then be written 

F =BIZ sine (27.2) 

When e = 90°, then sine = 1 and F = BIZ. When e = oo, then sin e = 
0 and F = 0. Remember that the direction of the force is perpendicu­
lar to the plane containing the current and field directions. 

It is sometimes useful to resolve a magnetic field into components. 
For example, we noted that, in the UK, the earth's magnetic field 
dips at an angle of roughly 70° below the horizontal; the vertical and 
horizontal components of the earth's flux density, Bv and Bh, are 
therefore related by Bvl Bh = tan 70°. 

27.4 FORCE ON A MOVING CHARGE IN A 
MAGNETIC FIELD 

Equation (27 .2) can readily be adapted to obtain the force acting on a 
single electron in a wire carrying an electric current in a magnetic 
field. Equation (24.2) (page 225) gives the magnitude of the current 
in a metal conductor as I = nvAe, where n is the number of free 
electrons per unit volume, v and e are their drift velocity and charge, 
respectively, and A is the cross-sectional area of the conductor. 
Substituting this for I in Equation (27 .2) gives 

F = BnvAel sine 

But the number of free electrons in l metres of wire is nAl; therefore, 
the force acting on just one electron is given by 

F BnvAel sin e - - -------- = Bve sin e 
nAl nAl 
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In general, a charge q moving with a speed v at an angle 8 relative 
to the direction of a magnetic field B will experience a force F, given 
by 

F = Bvq sin 8 (27.3) 

If the charge is moving perpendicularly to the field, then F = Bvq 
because sin 90° = 1. 

From this it follows that a magnetic field will deflect a beam of 
charged particles passing through it (unless the beam is parallel to the 
field direction, in which case sin oo = 0 and F = 0). The force acting 
on the particles will not change their speed, because it always acts at 
right angles to their path. (Remember that, when applying Fleming's 
left-hand rule to a beam of negative particles, they travel in the 
opposite direction to a conventional current.) 

The force due to a magnetic field can be cancelled out by the force 
due to a superimposed electric field. For example, a beam of elec­
trons will be undeflected when it passes through superimposed 
magnetic and electric fields if they provide equal and opposite forces 
acting at right angles to the beam. Since the force due to an electric 
field of strength E is given by F = qE (Equation 22.1 on page 207) 
then, when both the fields and the beam direction are mutually 
perpendicular, as in Figure 27.7, electrons of velocity v and chargee Figure 27.7 

will be undeflected if 

F = Bve = eE 

and 

E 
v=-

B (27.4) 

Note the field directions in Figure 27.7. In the absence of an 
electric field, Fleming's left-hand rule tells us that the electron beam 
would be deflected downwards (remembering that the equivalent 
conventional current flows in the opposite direction). The direction 
of the electric field must therefore be downwards in order to deflect 
the beam upwards (remembering that the direction of an electric field 
is that of the force acting on a positive charge). 

27.5 TORQUE ON A COIL IN A MAGNETIC FIELD 

In the last topic we noted that the moving-coil galvanometer relies on 
the principle that a current passing through a coil in a magnetic field 
can be used to produce rotation. The same principle applies to 
electric motors. We shall not go into the design of galvanometers or 
electric motors, but we need to understand the principle. 

8 

E 
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Figure 27.8 

Figure 27.8(a) shows a rectangular coil that is free to rotate about 
its central vertical axis. The axis is at right angles to the direction of a 
uniform magnetic field of flux density B. 

Figure 27.8(b) shows the top view of the coil when its plane is 
parallel to the field. The cross and dot show the current direction 
through the vertical sides of the coil. The direction of the force F 
acting on each vertical side is drawn in accordance with Fleming's 
left-hand rule. The current through the horizontal sides of the coil, at 
the top and bottom, is parallel to the field direction and therefore the 
magnetic force acting on them is zero. The forces on the vertical sides 
constitute a couple and the coil rotates until its plane is perpendicular 
to the field direction, as shown in Figure 27.8(c). The forces acting on 
the vertical sides are still the same as before but their lines of action 
both pass through the vertical axis, so there is no further tendency to 
rotate. Fleming's left-hand rule shows that there are now forces 
acting on the horizontal sides, but they are vertically opposed to one 
another and have no effect on the rotation of the coil. 

Figure 27 .8( d) shows the coil when it is inclined at an angle a to the 
field direction. From our discussion of the moments of forces in Topic 
3 we can deduce that the torque T due to the couple about the axis of 
rotation is given by 

T=Fxbcosa 



where b is the width of the coil and b cos a is the perpendicular 
distance between the lines of action of the forces F. 

The vertical sides of the coil remain perpendicular to the direction 
of the field, whatever the value of a; therefore, F always has the value 
BIZ (Equation 27.1), where 1 is the length of the vertical sides. If the 
coil has N turns, then, in effect, 1 is multiplied by N and F = BINI. 
Substituting this in the equation for T above, 

T (= Fb cos a) = BINlb cos a 

But lb is equal to the area A of the coil face; therefore, 

T = BINA cos a (27.5) 

If a= 0°, then cos a= 1 and T = BINA, and if a= 90°, then cos a= 
0 and T = 0, as in Figures 27.8(b) and (c), respectively. 

27.6 FORCES BETWEEN PARALLEL CONDUCTORS 

Two straight current-carrying conductors placed parallel to one 
another each experience a force because of the magnetic field due to 
the other. The forces are attractive if the currents are flowing in the 
same direction and repulsive if they are in opposite directions. 

Figure 27.9 shows two parallel conductors running perpendicularly 
through the page, each carrying a current downwards into the paper. 
The current I2 in the right-hand conductor produces a field B at the 
left-hand conductor (as in Figure 27.2a on page 262). The resulting 
force acting on the left-hand conductor pulls it towards the right 
(Fleming's left-hand rule). Similarly, the right-hand conductor ex­
periences a force to the left because of the magnetic field due to the 
current I 1 in the left-hand conductor. Similar arguments show that the 
forces between the conductors are repulsive if the currents flow in 
opposite directions. 

The ampere is defined as the steady current in each of two straight, 
parallel conductors of infinite length and negligible cross-sectional 
area, 1 metre apart in vacuum, that produces a force between them of 
2 X w-? N per metre length. 

Questions 

(Use any previously tabulated data as required.) 

1. A straight wire 100 mm long experiences a force of 
15 x 10-3 N while it carries a current of 3 A perpen­
dicular to a uniform magnetic field. 

(a) Find the flux density of the field. 
(b) Find the magnitude of the force acting on the wire 

if the wire makes an angle of 60° with the field. 
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2. (a) Find the direction of the force acting on an elec­
tron travelling horizontally in the 9 o'clock direc­
tion when it enters a horizontal magnetic field in 
the 12 o'clock direction. 

(b) Find the direction of the force acting on a conven­
tional current flowing in the same direction under 
the same circumstances. 

3. What angle should a current-carrying conductor make 
with a magnetic field so that the force acting on it is half 
its maximum possible value? 

4. An electron is travelling in a straight line at 5 x 
106 m s-1 towards a magnetic field of 0.025 T superim­
posed on an electric field of 125 x 103 V m-1 • If the 
electron path and the two fields are mutually perpen­
dicular as in Figure 27.7, find the deflection experi­
enced by the electron 0.2 !!S after entering the fields. 

5. An electron is travelling in a straight line at 10 x 
106 m s-1 midway between two parallel plates providing 
a uniform electric field perpendicular to the direction in 
which it is travelling. The plates are 10 mm apart and 
there is a potential difference of 1000 V between them. 
Find the magnitude of the magnetic field which is re­
quired to maintain the straight path of the electron. 

6. A square coil with 50 mm sides is made from 125 turns 
of wire which has a resistance of 4 Q per metre. Esti­
mate the torque acting on the coil when it is connected 
to a 12 V supply while it is suspended from the centre 
of one of its sides with its plane parallel to a uniform 
magnetic field of 0.04 T. 

7. A 12m length of metal wire, of 8900 kg m-3 density 
and 1. 7 x 10-s Q m resistivity, is aligned horizontally in 
an west-east direction. A potential difference of 890 V 
across the ends of the wire provides just enough sup­
port for its weight. Estimate the magnitude of the 
earth's magnetic field acting horizontally at that point. 
(Assume g = 9.8 m s-2 .) 



TOPIC 28 ELECTRO­
MAGNETIC 
INDUCTION 

COVERING: 

• e.m.f. and current induced in a moving conductor; 
• magnetic flux; 
• e.m.f. induced in a rotating coil; 
• inductance; 
• the transformer. 

In the last topic we saw how electric current produces motion in a 
magnetic field. In this topic we shall see how motion in a magnetic 
field induces electric current. 

28.1 E.M.F. AND CURRENT INDUCED IN A 
MOVING CONDUCTOR 

Figure 28.1(a) is to remind us of Fleming's left-hand rule. This is 
sometimes called the motor rule, because it concerns the motion 
produced by passing a current through a conductor in a magnetic 
field. We shall now move on to consider Fleming's right-hand rule, 
sometimes called the generator rule, because it concerns the current 
induced in a conductor that is being propelled through a magnetic field. 

(a) 
t 

+ 
Current 

Left-hand 
(motor) 

rule 

Figure 28.1 

Field 

(c) 

+ 

+ 

+ 
Current 

(induced) 

Right·hand 
(generator) 

rule 

Figure 28.l(b) shows a vertical conductor, isolated from any exter­
nal circuit, that is being propelled at a steady horizontal velocity v at 
right angles to a horizontal magnetic field. The charge carriers in the 
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conductor are therefore being transported across the field at velocity 
v and, in effect, constitute a current in a similar way to charged 
particles in a beam. Consequently, they will experience a vertical 
force Bvq in accordance with Equation (27 .3) (page 265) and in the 
direction given by Fleming's left-hand rule. If the conductor is met­
allic, then the charge carriers are electrons and will be displaced 
upwards (in the opposite direction to a conventional current). Since 
the positive metal ions cannot move, there will be a separation of 
charge, so that the top end of the conductor becomes negative while 
the bottom end is left positive. As charge separation continues, it 
creates an electric field of growing magnitude in the conductor which 
increasingly opposes further movement of electrons towards the top. 

The electric force acting on each electron is equal to eE (Equation 
22.1 on page 207), where E is the electric field strength and e the 
charge on the electron. Eventually this force will grow large enough 
to balance the magnetic force Bve (where q =e). An equilibrium will 
then be established in which 

eE = Bve 

and 

E = Bv 

(remembering that v is the velocity of the conductor). 
Thus, a potential difference V is created between the ends of the 

conductor. If the length of the conductor is l, then, from Equation 
(22.4) (page 210), 

E =VII 

and, substituting for E in E = Bv, we obtain 

V = Bvl (28.1) 

If the ends of the conductor are connected to an external circuit 
and a steady velocity v is maintained, then it will act as a generator. 
(In the next section we shall treat V in Equation 28.1 as an e.m.f. E. 
Note that e.m.f. and electric field strength have the same symbol, so 
be very careful not to confuse these quantities.) The direction of the 
induced current is given by Fleming's right-hand rule, which is illus­
trated in Figure 28.1(c). The field and induced current directions are 
represented by the first and second fingers of the right hand. These 
are mutually perpendicular to the thumb, which represents the direc­
tion in which the conductor is being moved. 

Lenz's law tells us that the direction of an induced current is always 
such that it opposes the change that is causing it. This is in agreement 
with Figure 28.1(c), where moving the conductor as shown produces 
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a conventional current flowing downwards. This current is just like 
any other, so, according to Fleming's left-hand rule, its interaction 
with the magnetic field produces a force which acts in the opposite 
direction to the movement of the conductor, as in Figure 28.1(a). 

We can regard this as an example of the principle of conservation 
of energy. Moving the conductor induces a current which creates an 
opposing force that requires work to be done to overcome it. Mech­
anical energy is therefore absorbed by the system and electrical 
energy is produced. 

28.2 MAGNETIC FLUX 

It is helpful to think of an induced e.m.f. as the result of a moving 
conductor cutting through magnetic field lines or, as we shall see 
later, magnetic field lines sweeping across a stationary conductor. 

To develop this approach, we make use of a quantity called mag­
netic flux (symbol <I>), which we shall take to represent the number of 
field lines. The magnetic flux through a plane is obtained by multi­
plying the area A of the plane by the magnetic flux density B normal 
to its surface. If the field direction is perpendicular to the plane, then 
the three quantities are related by the expression <I> = BA. 

The unit of magnetic flux is the weber (Wb) and, since B = <1>/A, 
1 Tis equivalent to 1 Wb m-2• (Now we can see why B is called the flux 
density.) 

Let us imagine that a straight conductor of length l is moving at a 
steady velocity v through a magnetic field of flux density B, where the 
conductor, the field and the velocity are mutually perpendicular (see 
Figure 28.2). During a time interval !it the conductor will have Figure 28.2 
moved a distance v!it and swept out an area lv!it. The flux cut by the 
conductor is therefore given by 

/1<1> = Blv!it 

This can be rearranged to give 

Blv = 11<1> I !it 

But, from Equation (28.1), 

E = Bvl 

where E is the induced e.m.f.; therefore, 

E = !1<1>/!:it (28.2) 

Thus, the induced e.m.f. is equal to the rate of flux change which the 
conductor experiences in cutting through field lines. 

8 
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figure 28.3 

Ci/ .c. 

Ef' 
/ v 

(a) 

(b) 

figure 28.4 

/ 

• 8 

Bearing in mind that $ = BA, a flux change can also result from a 
change in B over a fixed area A. For example, a coil will experience 
change in the flux linking it (i.e. passing through it) if it is placed in a 
varying magnetic field. 

Figure 28.3 illustrates a case which we can interpret either way. If 
the coil is moved through a non-uniform field, then it will cut field 
lines in the process. At the same time we can see that there will be a 
change in the number of field lines linking the coil. Either way an 
e.m.f. will be induced in the coil and for our purposes it is reasonable 
to assume that flux cutting or a change in flux linking have equivalent 
effects. (Note that the weber is actually defined as the flux which, 
when linking a coil of one turn, and when uniformly reduced to zero 
in one second, induces an e.m.f. of one volt in the coil.) 

These ideas are embodied in Faraday's laws of electromagnetic 
induction, which tell us that the induced e.m.f. is proportional to the 
rate of cutting flux or the rate of change of flux linking. Note that if a 
coil has N turns, then the so-called flux-linkage is given by N$ and 
any induced e.m.f. is correspondingly increased. Putting all these 
ideas together gives the Faraday-Neumann law, which can be ex­
pressed in the form 

E =- Nt::,.$ 
/::,.t 

(28.3) 

The minus sign, which is in accordance with Lenz's law, tells us that 
the direction of the e.m.f. is such that it opposes the change caus­
ing it. 

28.3 E.M.F. INDUCED IN A ROTATING COIL 

We have seen that if we push a conductor across a magnetic field at 
right angles to the field direction, then the induced e.m.f. is given by 
E = Bvl. 

Figure 28.4(a) is looking down on top of a vertical conductor that is 
being pushed across a magnetic field at an angle ~ relative to the field 
direction. In this case the effective velocity of the conductor relative 
to the field is reduced to the perpendicular component v sin ~· The 
induced e.m.f. is therefore reduced to Bvl sin ~ (which becomes zero 
if the conductor moves parallel to the field.) The negative sign at the 
top of the conductor in the figure indicates the charge there due to the 
electrons moving upwards, as in Figures 28.l(b) and (c). 

Figure 28.4(b) shows the conductor as one of a pair which we shall 
treat as the vertical sides of a rectangular coil of width b (as in Figure 
27.8 on page 266). The coil is being rotated at a constant angular 
velocity about its central vertical axis, so that the vertical sides cut the 
magnetic flux. As the positive and negative signs indicate, the e.m.f.s 



in the two sides act in the same direction around the coil and re­
inforce each other, so that the total induced e.m.f. (between the ends 
of the coil) is obtained by adding them together. Therefore, at any 
instant when the normal to the plane of the coil makes an angle ~ with 
the field direction, 

E = 2 x Bvl sin f3 

From Equation (9.2) (page 72) the angular velocity of the coil is 
given by oo = ~It rad s-1 , where it rotates through ~ radians in t 
seconds and, if~ = 0 at t = 0, then ~ = wt. Furthermore, if vis the 
linear speed of the conductors around the circumference of a circle of 
radius b/2, then, from Equation (9.3) (page 72) v = wb/2. Substitut­
ing for ~ and v in the equation for E above, we get 

E = 2B ~b l sin wt 

and since the area A of the coil is equal to bl, then 

E = BAw sin wt 

Finally, if the coil has N turns, then A is, in effect, multiplied by N, so 
that 

E = BANw sin wt (28.4) 
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If required, this can be rewritten in terms of frequency of rotation f 
(Hz = s-1), since oo = 2:rrf. 

Equation (28.4) tells us that if the coil rotates at a steady rate, then 
the induced e.m.f. across its ends varies sinusoidally with time- that 
is to say, it follows the pattern of a sine wave. Figure 28.5 shows how 
the e.m.f. between the ends of the coil alternates between positive 
and negative as each conductor changes direction relative to the field 
when the coil passes the point where its plane is perpendicular to the 
field direction. At this point the sides of the coil are travelling parallel 
to the field direction and E = 0. 

When the plane of the coil is parallel to the field, its vertical sides 
are travelling at right angles to the field direction and the e.m.f. is at a 
maximum. At this point the normal to the plane of the coil is 
perpendicular to the field direction, so that wt is either n/2 or 3n/2. 
(Remember that wt is in radians.) Sin wt is therefore either 1 or -1. 
The e.m.f. is therefore either + BANw or - BANw, where BANw is 
the amplitude of the sinusoidally alternating e.m.f. 

If a resistance is connected across the coil, the alternating e.m.f. 
will produce an alternating current (a.c.) which periodically reverses 
its direction. (By contrast, direct current ( d.c.) flows in one direction 
only.) 
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Figure 28.5 

A major advantage of alternating current is that voltages can be 
stepped up and down very efficiently with transformers. However, 
before we can discuss transformers we must first consider inductance. 

28.4 INDUCTANCE 

Let us try to imagine what happens when a current is passed through 
a coil. Initially, before the current is switched on, there is no mag­
netic field, but as the current starts to flow, the field begins to 
develop. This provides a changing magnetic flux linking the coil or, if 
it is easier to picture them, field lines growing out from each loop of 
the coil which cut through their neighbouring loops. Either way, an 
e.m.f. is induced in the coil itself. According to Lenz's law, this e.m.f. 
opposes the change that is causing it, with the result that the rise in 
current is delayed, as indicated in Figure 28.6. 

on 

Figure 28.6 
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~-------- / off 
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Where the curve levels off, the opposing e.m.f. is zero and the 
current has reached a steady value that depends on its source and the 
resistance of the circuit. The work done in raising the current to a 
steady value against the opposing e.m.f. is now stored in the magnetic 
field in an analogous way to the energy stored in the electric field of a 
capacitor. 

If the current is switched off, the magnetic field collapses, thereby 
inducing an e.m.f. which opposes the decay of the current, as indi­
cated in Figure 28.6. (On opening the switch contacts, this e.m.f. may 
be large enough to produce a visible spark as the energy stored in the 
magnetic field is dissipated.) 

The unit of inductance is called the henry (symbol H). A coil or 
other inductor has an inductance of 1 henry if a current passing 
through it, while changing at the rate of 1 ampere per second, induces 
an e.m.f. of 1 volt. A given current change will induce a large e.m.f. 
in a coil with a large inductance and a small e.m.f. in one with a small 
inductance. Putting this into the form of an equation, 

!J.l 
E= -L­

!J.t 
(28.5) 

where L is the inductance. The equation tells us that 1 H = 1 V sA - 1• 

The minus sign reminds us that the induced e.m.f. acts in opposition 
to the current change that is causing it (Lenz's law). Since the e.m.f. 
is induced in the same circuit through which the current is changing, 
L is often called self-inductance. 

By contrast, the term mutual inductance applies when the changing 
current in one coil or circuit (called the primary) causes an e.m.f. to 
be induced in another (called the secondary) because of the changing 
flux linkage between them. (Or, if you prefer, because the expanding 
field lines from the primary cut across the secondary.) 

A mutual inductance of 1 henry exists if a current passing through 
the primary, while changing at the rate of 1 ampere per second, 
induces an e.m.f. of 1 volt in the secondary. The e.m.f. E. in the 
secondary is given by 

E = - M !J.IP 
s !J.t (28.6) 

where M is the mutual inductance and !J..IP/ !J.t is the rate of current 
change in the primary. 

If an a.c. supply is connected across the primary, then an alternat­
ing e.m.f. will be induced in the secondary. This is what happens in 
transformers. 
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28.5 THE TRANSFORMER 

Figure 28.7 shows a transformer with primary and secondary wind­
ings side by side on a core. (In practice, one set of windings is often 
wound on top of the other.) The core, made of iron, for example, 
provides a very efficient magnetic linkage between the primary and 
secondary windings. Iron is much better than air at conveying mag­
netic flux (just as copper is much better at conveying electric current), 
so practically all the flux remains within the core. 

Primary Secondary 

Core 

Figure 28.7 

(Note that the changing flux induces eddy currents in the core 
material itself. These lead to the dissipation of electrical energy as 
heat. Eddy current losses can be minimised by constructing the core 
from laminations which are insulated from one another to interrupt 
the current pathways.) 

The theory of transformers is beyond the scope of this book, so we 
shall confine ourselves to an outline discussion. An alternating volt­
age applied to the primary gives an alternating flux in the core which 
induces an alternating voltage in the secondary. Since the flux is the 
same through both, then the voltage V across each is proportional to 
the number of turns N and 

(28.7) 

where the subscripts identify the primary and secondary windings. If 
N. > NP, we have a step-up transformer, which increases the supply 
voltage; and if N. < NP, we have a step-down transformer, which 
reduces it. 

Many transformers transfer power from the primary to the sec­
ondary with nearly 100% efficiency, in which case, using Equation 
(24.3) (page 228), we can write I. v. = IP VP, which gives 

(28.8) 



Questions 

1. A straight conductor, 200 mm long and of negligible 
resistance, is moved at 20 m s- 1 through a field of 
magnetic flux density of 5 X 10-3 T. Assuming that the 
conductor, the field and the direction of motion are 
mutually perpendicular, calculate the current if the 
conductor is connected across a 2.5 Q resistor. 

2. Calculate the induced e.m.f. across the ends of a 
straight conductor 4.0 m long under each of the follow­
ing circumstances: 

(a) After having fallen freely through a distance of 10 
m from a horizontal position at right angles to the 
magnetic north-south direction. 

(b) As in (a) but parallel to the magnetic north-south 
direction. 

(c) As it travels parallel to the ground at 250 km per 
hour in a direction at right angles to its longitudinal 
axis, which is orientated as in (b). 

(Assume g = 9.8 m s-2 and that the horizontal compo­
nent of the earth's magnetic field is 1.9 x w-s T, while 
the angle of dip is 70°.) 

3. An e.m.f. of 0.21 mV is induced across the ends of a 
straight, horizontal conductor 2.0 m long as it is moved 
vertically at 5.5 m s- 1 at right angles to the magnetic 
north-south direction. The induced e.m.f. is 0.48 m V 
when the conductor is moved parallel to the ground at 
the same speed in a direction at right angles to its 
longitudinal axis. Calculate the flux density and the 
angle of dip of the magnetic field in that area. 

4. A rectangular coil of 100 turns 60 mm wide and 100 mm 
long is rotated at 500 revolutions per minute about its 
central longitudinal axis, which is at right angles to a 
magnetic field of flux density 32 mT. Calculate the 
instantaneous value of the e.m.f. in the coil when its 
plane is at an angle of (a) 0°, (b) 60° and (c) 90° to the 
field direction. 

5. If the coil in Question 4 is stationary and the flux 
density falls uniformly from 32 mT to zero in 48 s, 
calculate the e.m.f. induced in the coil when its plane is 
at an angle of (a) 90°, (b) 30° and (c) 0° to the field 
direction. 
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TOPIC 29 MAGNETIC 
BEHAVIOUR 
OF MATERIALS 

COVERING: 

• diamagnetism, paramagnetism and ferromagnetism; 
• hysteresis; 
• soft and hard magnets; 
• magnetic circuits. 

As Figure 27.4 (page 263) indicates, there is a region of more or less 
uniform magnetic field inside a solenoid when it carries an electric 
current. The flux density can be varied by filling the solenoid with a 
core of material. So-called diamagnetic materials slightly reduce the 
flux density and paramagnetic materials slightly increase it. On the 
other hand, ferromagnetic materials increase it greatly, some by a 
factor of many thousands. 

Let us represent the uniform flux density in the solenoid by B0 

under vacuum conditions and by B when it is filled with different 
materials. From above, we can write B < B0 for diamagnetic ma­
terials, B > B 0 for paramagnetic materials and B ~ B 0 for ferromag­
netic materials. The ratio BIB0 , which is a dimensionless quantity, 
gives the relative permeability !Lr of a material. For air !Lr is very close 
to 1. 

The magnetic behaviour of a material can be attributed to the 
orbital motion and spin of electrons in its constituent atoms. The 
electrons can be regarded as behaving like tiny circulating currents 
with associated magnetic fields. 

29.1 DIAMAGNETISM AND PARAMAGNETISM 

Diamagnetism is a very weak effect that is exhibited by all materials 
but is often swamped by the effects of paramagnetism and ferro­
magnetism. It results from changes in orbital motion which, in 
keeping with Lenz's law, tend to oppose an applied magnetic field, 
thereby decreasing the field in the material. Purely diamagnetic 
materials generally have complete electron pairing in their atomic 
and molecular structures. 

Materials with structures containing unpaired electrons show para­
magnetic behaviour. The unpaired electrons have associated mag-
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netic fields which tend to become aligned in an applied field, thereby 
increasing the field in the material. Some metals show paramagnetic 
behaviour due to the spin of conduction electrons. Paramagnetism is 
opposed by the randomising effect of thermal agitation. 

29.2 FERROMAGNETISM 

As their name suggests, ferromagnetic materials are epitomised by 
iron. They are of great importance in electrical engineering and we 
shall concentrate on them in this topic. 

In ferromagnetic materials the effect of unpaired electron spin in 
incomplete inner orbitals is great enough to cause such strong interac­
tions between neighbouring atoms that they tend to become mutually 
aligned. Below a certain temperature, called the Curie point or Curie 
temperature, the magnetic axes of neighbouring atoms are able to 
remain aligned and the material exhibits ferromagnetic behaviour. 
Above the Curie point (about 760 °C in the case of iron) there is 
sufficient thermal energy to destroy the alignment and the material 
becomes paramagnetic. 

Regions of uniform alignment are called domains. These are typi­
cally fractions of a millimetre in size and are, in effect, small perma­
nent magnets. In a piece of unmagnetised ferromagnetic material the 
domains are orientated in different directions and therefore cancel 
each other out. If the material is subjected to an increasing external 
magnetic field, then domains that are aligned in more or less the same 
direction as the field will tend to grow at the expense of the others. 
Furthermore, the magnetic axes of domains that are not aligned in 
the field direction may rotate if the field is strong enough. 

Saturation occurs when the magnetic axes of all the domains are 
aligned with the external field. If the field is then reduced to zero, the 
material will remain magnetised. To see how this happens, let us 
consider the relationship between B and B0 for a ferromagnetic core 
in a solenoid. To avoid complications due to end effects, it is better to 
consider a toroid (Figure 29.1), which is an endless solenoid made in 
the form of a ring. (B0 is readily controlled, since it varies pro- Figure 29.1 

portionally with the current through the toroid.) 
Figure 29.2 shows the typical form of the relationship between B 

and B0 for an initially unmagnetised ferromagnetic material. (Gener­
ally, B ~ B0 , so the vertical and horizontal scales would normally be 
different for a real material.) As B0 is increased from zero at 0, the 
material becomes magnetised, as discussed above. B increases pro­
gressively less rapidly with B0 as it reaches its saturation value at P. If 
B0 is now reduced to zero, the material retains a remanent (i.e. 
residual) flux density (at Q) which is called the remanence or reten­
tivity. The value of this indicates the degree of residual distortion of 
the domain structure. The remanent flux density can be reduced to 
zero (at R) by increasing B0 in the reverse direction. The value of B0 
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Figure 29.2 

required to do this is proportional to the coercive force or coercivity, 
which is a measure of the difficulty of neutralising the residual distor­
tion of the domain structure. 

On further increasing the reversed field, the material becomes 
saturated in the reverse direction (at S). The whole process from P to 
S can then be repeated in the opposite direction, from S to P, to form 
a closed loop called the hysteresis loop. (The word hysteresis de­
scribes the lagging of an effect behind its cause, in this case the 
lagging of B behind B0 .) 

It is evident from Figure 29.2 that the relative permeability !Lr 
(= BIB0 ) is not constant for ferromagnetic materials. The maximum 
relative permeability, based on the largest value of B I B0 on the initial 
magnetisation curve, is sometimes used to characterise a material, a 
high value indicating that the material is readily magnetised. 

29.3 SOFT AND HARD MAGNETS 

Ferromagnetic materials are described as soft or hard, depending on 
whether they readily lose their magnetism or tend to retain it. The 
use of these words is well exemplified by iron and steel, whose 
mechanical softness and hardness, respectively, is reflected in their 
magnetic properties. (The reasons for this are beyond the scope of 
our discussion.) Figure 29.3 shows hysteresis loops corresponding to 
an example of each type. 

The loop for the soft magnetic material indicates low coercivity and 
remanence and a generally high relative permeability. This suggests a 
material that would be suitable for making electromagnets. An elec­
tromagnet is a temporary magnet, essentially a solenoid with a soft 
magnetic core giving a strong field, that can be controlled by varying 
the current. This principle is used in such diverse applications as 
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Figure 29.3 

electric bells, relays, telephone receivers and for lifting heavy objects 
made from iron and steel. 

Materials used for transformer cores must be magnetically soft in 
order to respond to alternating current. Ferromagnetic materials 
consume energy as their magnetisation direction is continually 
changed. This energy, which is proportional to the area enclosed by 
the hysteresis loop, is dissipated as heat. Thus, the hysteresis loop 
should be narrow. 

Magnetically hard materials are used to make permanent magnets. 
Such materials generally have high remanence - that is to say, they 
retain a high remanent flux density when the magnetising field has 
been removed. They also tend to have high coercivity, so that they 
are not readily demagnetised. The shape of the hysteresis loop 
reflects their high resistance to alteration of the domain structure. 

29.4 MAGNETIC CIRCUITS 

There is an interesting analogy between electric circuits and the 
magnetic circuit formed by the toroid in Figure 29 .1. Magnetic flux $ 
is driven round the toroid by a magnetomotive force (m.m.f) in an 
analogous way to a current being driven round an electric circuit by 
an e.m.f. The magnitude of the m.m.f. is given by NI (measured in 
ampere-turns) where N is the number of turns and I is the current. 
Thus, $ is proportional to NI. 

Furthermore, the reluctance Rm, which is the 'magnetic resistance' 
of the circuit, is given by the ratio m.m.f./$ (analogous toR = VII), 
thus, 

(29.1) 
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The analogy extends further because 

l R=-
m ~ (29.2) 

where lis the length (i.e. mean circumference) and A is the cross­
sectional area of the toroid. 1.1. is the absolute permeability of the core 
material and is analogous to the electrical conductivity of a conductor 
(see Section 25.2). 

Absolute permeability 1.1. and relative permeability 1.1.r are related by 
1.1. = !.l.r!.l.o where !J.o, called the magnetic constant, is the absolute 
permeability of free space and has the value 4:n: x 10-7 H m -1 • In 
Topic 21 we met the parallel relationship £ = fr£0 for the permittivity 
of a material in an electric field. 

(The electromagnetic theory of James Clerk Maxwell, the 
nineteenth century scientist, showed that the speed c of electro­
magnetic waves in free space depends only upon Eo and 1.1.o as follows: 

1 
c = ----===--
~ 

Although this is really beyond the scope of our present discussion, it 
serves to illustrate the fundamental interrelationship between elec­
tricity and magnetism which has become evident from the previous 
two topics.) 

Question 

1. An iron ring, of 420 mm mean diameter and 1.6 x 10-3 

m2 cross-sectional area, has 1000 turns of wire wound 
uniformly around it (as in Figure 29.1). If a current of 
1.4 A in the wire produces a magnetic flux of 4 x 10-3 

Wb in the iron core, estimate the relative permeability 
of the iron. 
(!.l.o = 4:n: X 10-7 H m-1.) 



TOPIC 30 ALTERNATING 
CURRENT 

COVERING: 

• inductive reactance; 
• capacitive reactance; 
• impedance; 
• phase angle; 
• power dissipation. 

The transmission of electrical power is more efficient when high 
voltages are used. To take an example, 100 kW of power is carried by 
a 1000 A current at 100 V, and by a 100 A current at 1000 V 
(remembering that 1 W = 1 Ax 1 V). Assuming that identical cables 
of resistance R are used for both, the power loss P will be 100 times 
greater in the first case than the second because the current I is ten 
times greater and P = PR (Equation 25.12 on page 243). Since 
transformers provide a very efficient means of stepping the voltage up 
or down, it makes good sense to use alternating current to transmit 
electrical power over long distances. In practice, enormous voltages 
are used for this purpose, sometimes as high as 400 kV. 

Alternating current is extensively used for lighting, heating and 
driving machinery, and it can readily be rectified to direct current if a 
particular application demands it. 

As far as we are concerned, the major difficulty with alternating 
current is its mathematical treatment, which is more complicated 
than for direct current. We have already seen that a steady direct 
current is opposed by the resistance of the circuit through which it 
flows. Alternating current is opposed not only by resistance, but also 
by any capacitance or inductance that the circuit may possess. But, 
before we move on to this, we must first understand how to quantify 
alternating current and voltage. 

30.1 ALTERNATING CURRENT AND VOLTAGE 

All we need to describe a steady direct current is its magnitude and 
direction. It is more difficult to describe an alternating current, be­
cause its magnitude and direction vary periodically with time. We 
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shall confine our discussion to sinusoidal variation, although there are 
other types of waveform (e.g. square and sawtooth). 

The frequency of an alternating current is measured in hertz (Hz), 
where 1 Hz is equal to one complete cycle per second. The ordinary 
mains supply in many countries is 50 Hz. 

The amplitude or peak value is the maximum value, positive or 
negative. From our discussion in Section 28.3 we can say that the 
instantaneous value V of an alternating voltage at any time t is given 
by 

V = V0 sin 2nft (30.1) 

where V0 is the peak voltage and f is the frequency. Similarly, the 
instantaneous value of an alternating current is given by 

I = 10 sin 2nft (30.2) 

For many practical purposes, we need average values that we can 
use in simple calculations. But alternating voltage and current have 
average values of zero over a complete cycle because they are posi­
tive for one half and negative for the other. We can get round the 
problem by considering the heating effect of a current, because this is 
the same in both directions. We can define the effective value Jeff of an 
alternating current in terms of the equivalent direct current that 
produces the same power dissipation in a given resistor. Although we 
shall not go into the reasons here, this turns out to be 

1 
leff = .J2 = 0.707 10 (30.3) 

Similarly, the effective voltage is given by 

v: 
Veff = \fz = 0.707 E0 (30.4) 

The 240 V quoted for the ordinary domestic mains supply in Britain is 
the effective value. Equation (30.4) gives the corresponding peak 
value as 339 V. 

Note that, unless otherwise stated, any further reference to current 
I and voltage V in this topic implies their effective values. 

30.2 REACTANCE 

We are now in a position to consider the factors which oppose the 
reciprocating flow of alternating current through a circuit. As with 
direct current, alternating current is opposed by the electrical resist-



ance of the materials of which the circuit is made. But, because it is 
continuously changing, alternating current is also opposed by the 
effects of inductance and capacitance. These effects are called reac­
tance and are due to the occurrence of voltages that arise in inductors 
and capacitors which oppose the current. 

We shall begin by considering inductive reactance Xu which is the 
quantity that is used to measure the effect of an inductor such as a 
coil. The relationship of XL to an inductor is parallel to that of 
resistance R to a resistor, and we can write 

v X=­
L I (30.5) 

where V and I are the effective values of voltage and current. This 
expression is parallel to the definition of resistance (R = VII) and, as 
we shall see below, reactance is measured in ohms. 

A detailed mathematical analysis of reactance is beyond the scope 
of this book; nevertheless we need to understand it in semi­
quantitative terms. As we saw in Topic 28, switching a direct current 
on or off through a coil (or other inductor) causes a self-induced 
e.m.f. which opposes the current and tends to maintain the status 
quo, thereby delaying current growth or decay. However, once a 
steady state has been reached, this e.m.f. disappears. In the case of 
alternating current, which is continuously changing, the opposing 
e.m.f. will also be continuous. 

Inductive reactance increases with increasing frequency f and in­
creasing inductance L and is given by 

(30.6) 

Since the unit off is s -1 and the unit of L is V s A -1 (from Equation 
28.5), the unit of 2rrfL is V A-t. This is the same as the unit of 
resistance R (=VII), and reactance is measured in ohms. (Note that 
f = 0 for a steady direct current, in which case XL = 0 and the current 
is impeded solely by the resistance of the coil.) 

In a purely resistive circuit, with no reactance at all, the voltage 
and current are in phase. That is to say, their peaks and troughs 
coincide as indicated in Figure 30.1. The alternating current and 
voltage are represented by rotating vectors, called phasors, which 
turn anticlockwise with frequency f and whose length is equal to the 
amplitude. Their vertical component (the projection onto the vertical 
axis) represents the instantaneous value. 

Figure 30.2 shows that, in the case of a pure inductor, the voltage 
leads the current by a quarter of a cycle. (The opposing e.m.f., which 
balances the applied voltage, is at a maximum where the rate of 
current change is at a maximum and I = 0.) 

Capacitive reactance Xc is the quantity that is used to measure the 
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opposition of a capacitor to the flow of alternating current. In a 
similar way to inductive reactance, 

v X=-­c I 

and, similarly, the units are ohms. 

(30.7) 

Again, we need a semi-quantitative description. In Topic 23 we 
saw that direct current cannot flow through a capacitor, because of 



the insulating gap between its plates. If it is connected across a 
battery, then current flows as charge builds up on the plates. But the 
growing potential difference across the plates increasingly opposes 
and eventually stops the current flow. 

A capacitor does not stop alternating current, however, because 
charge can flow backwards and forwards from plate to plate around 
an external circuit without actually crossing the gap between them. 
However, the build-up of charge, and the resultant opposing poten­
tial difference every half-cycle, will still tend to impede the current. 
Capacitive reactance decreases with increasing frequency f and in­
creasing capacitance C and is given by 

1 
X=--

c 21tfC 
(30.8) 

Remember that the unit of capacitance can be expressed as C v-1 

(Equation 23.1 on page 215) and that 1 C = 1 As (Equation 24.1 on 
page 224). The unit of Xc is therefore given by 

1 v 
s-1 X As v-1 A 

Hence, Xc is measured in ohms. (Note that for direct current f = 0; 
therefore, Xc is infinite and current cannot flow.) 

Figure 30.3 shows how the voltage in a purely capacitive circuit lags 
behind the current by a quarter of a cycle. (The capacitor has maxi­
mum charge when the current is zero and on the point of reversing.) 

Figure 30.3 

,-- .... , . 
.. v 
\I 

' 

Alternating 
.-----i'V ..--..., supply 

Capacitance 

--~ 

, , 
• , 

The word CIVIL is a useful mnemonic for phase relationships. CIV 
reminds us that, for capacitance C, I leads V. VIL reminds us that V 
leads I for inductance L. 
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30.3 IMPEDANCE AND PHASE ANGLE 

Many circuits have inductance, capacitance and resistance. To take a 
very simple example, a coil will have inductance and it will have 
resistance due to the wire from which it is made. Figure 30.4(a) 
represents a simple series circuit containing all three and indicates the 
effective voltage across each. From the previous section we know that 
VR is in phase with the current/, VL is a quarter of a cycle ahead of it 
and Vc is a quarter of a cycle behind. These quantities are therefore 
represented as vectors, as in Figure 30.4(b), where the vector sum 
equals the applied voltage V as given by 

(30.9) 

.---------{f'"V 1-----------, 
- - - - - - - v ~-:; ~rT 1 

.-........ I I 

(a) 

~ ~ (VL- Vc) 

1"-~ ~-~-~ _<P__._ ______ .. :- L 
VR 

(In phase with /) 

(b) 

Figure 30.4 

The circuit elements are in series; therefore, the current I is the 
same through each. From Equations (30.5) and (30. 7) we know that 
VL = /XL and Vc = IXc; furthermore, VR = JR. Therefore, from 
Equation (30.9), we can write 

and 

(30.10) 

The total opposition to alternating current, called the impedance Z, is 
given by 

z = v = YR 2 + (X - X )2 I L c (30.11) 



where Z is measured in ohms. (Remember that XL and Xc depend on 
frequency; therefore, Z depends on frequency too.) 

As the relationship between impedence and voltage suggests, we 
can draw a vector diagram in terms of impedance, as in Figure 30.5. 

The phase angle <I> is the angle between the applied voltage and the 
current. Bearing in mind that VR is in phase with the current, then, 
from Figure 30.4(b) 

(30.12) 

or, from Figure 30.5, 

(30.13) 

If VL < Vc (and XL< Xc), then <I> will be negative, indicating that the 
current leads the voltage. 

Although the above equations apply to series 'RLC' circuits they 
can be applied to series RL and RC circuits, where the respective C 
and L terms are zero; thus, 

and so on. 

30.4 POWER 

(30.14) 

(30.15) 

Pure inductors and capacitors do not consume power, since energy is 
only temporarily stored in their respective magnetic and electric 
fields. On the other hand, power is dissipated by resistance and its 
average value Pis given by PR, where I is the effective current in a 
circuit containing a resistance R. 

If V leads I by <1>, as in Figure 30.4(b), VR is the component of V 
across the resistance in the circuit and we can write 

VR = v cos <I> 

Hence, 

(30.16) 

Cos <I> is called the power factor and, as we can see from Figure 
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30.5, it is equal to RIZ. If the circuit is purely resistive, then cos c1> = 1 
and P = IV. If the circuit is purely inductive, then cos c1> = 0 and 
p = 0. 

Questions 

(Assume effective values for current and voltage.) 

1. Cables with a total resistance of 12 Q are used to carry 
current from a 25 kW supply. Find the power loss and 
voltage drop if the supply voltage is (a) 5 kV and (b) 
10 kV. 

2. What is the effective value of an alternating supply of 
205 V amplitude? 

3. A coil has a reactance at 50 Hz that is fifty times 
greater than its resistance. At what frequency would 
you expect its reactance to be a hundred times greater 
than its resistance? 

4. A purely inductive circuit operating at 50 Hz has an 
inductance of 350 mH. 

(a) Find the reactance of the circuit. 
(b) Find the current if the voltage is 110 V. 

5. A purely capacitive circuit operating at 70 Hz has a 
capacitance of 65 !J.F. 

(a) Find the reactance of the circuit. 
(b) Find the voltage if the current is 2 A. 

6. What is the reactance at 35 Hz of a capacitor that has 
a reactance of 35 Q at 70 Hz? 

7. State the phase relationship between current and volt­
age for a pure (a) capacitance, (b) resistance and (c) 
inductance. 

8. Find the impedance in a series circuit where 

(a) R = 12.5 Q,XL = 25 Q andXc = 15 Q 
(b) R = 12.5 Q, XL= 15 Q and Xc = 25 Q 
(c) R = 3 Q, XL= 6 Q and Xc = 2 Q. 

9. Find the impedance of a series circuit in which R = 10 
Q, L = 13.64 mH and C = 23.32 !J.F at 350Hz. 

10. Find the current when a 26 V alternating supply is 
connected across a circuit with an inductive reactance 
of 6 Q in series with a resistance of 2.5 Q. 

11. A 15 V, 2 kHz supply is connected across the com­
bination of a 3 Q resistor in series with a 20 !J.F 



capacitor. Find the voltage drop across (a) the resistor 
and (b) the capacitor. 

12. (a) Find the voltage of an alternating supply con­
nected in series with a resistor, an inductor and a 
capacitor across which there are potential differ­
ences of 3 V, 8 V and 4 V, respectively. 

(b) Find the phase angle. 

13. Find the impedance and phase angle where R = 5 Q, 
XL = 14 Q and Xc = 2 Q. If the applied voltage is 26 
V then find the voltage drops across the resistance, 
the inductance and the capacitance, respectively. 

14. Find the impedance of a circuit in which the resistance 
is 25 Q and the phase angle is 60°. 

15. Find the power consumed by the circuits which, when 
connected to a 240 V supply, carry currents of 1.5 A 
which lag behind the voltage by (a) 0°, (b) 41.4° and 
(c) 90°. 

16. Find the phase angle in a series circuit in which 
R = 3 Q, XL = 6 Q and Xc = 2 Q, and find the 
power dissipated when a current of 1.5 A is flowing 
through it. 
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ANSWERS TO 
QUESTIONS 

Topic 1 

1. (a) 89 mat 54°; (b) 102m at 63°; (c) 178m at 37°; (d) 127m at 
113°. 

2. 9.9 m s-1 horizontally and 1.0 m s-1 vertically. 
3. 146m at 322°. 
4. 3.9 m s-1 at 249°. 
5. 58 m at 212° (approximately 8 o'clock). 
6. (a) 60s; (b) 90 m; (c) 17° west of north; (d) 62.6 s. 

Topic 2 

1. 7.3 X 10 22 kg. 
2. 25 mm. 
3. (a) 195 x 1()6 N m-2 ; (b) 0.0975%. 
4. ON. 
5. 98 N. 
6. 104 N. 
7. 400 N. 
8. (a) 29°; (b)(i) 37 N, (ii) 451 N. 

Topic 3 

1. (a) Yes; (b) 56 Nat 127°; (c) 317 Nat 78°; (d) yes; (e) yes; (f) yes 
2. a = f3 = 60°. 
3. 123 N, 368 N. 
4. 245 N, 1225 N. 
5. (a) 735 N m; (b) 980 N m; (c) 3.3 m. 
6. The forces are in equilibrium. 
7. (a) 33 N, 16 Nat 90°; (b) 98 N, 85 Nat 0°; (c) 19 N, 53 Nat 69°; (d) 

25 N, 43 Nat 60°; (e) 19 N, 34 Nat 73°; (f) 28 N, 29 Nat 119°. 
8. 0.18. 
9. 45°. 

Topic 4 

1. 82 kg. 
2. 1.23 x 10-3 m3 • 

3. 5500 kg m-3 • 

4. 2620 kg m-3 • 
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5. 250 N; 1.2 X 106 Pa. 
6. (a) 2.2 X 1()4 Pa; (b) 1.9 X 1()3 Pa; (c) 9.98 X 1()4 Pa; (d) 1.02 X 105 

Pa; (e) 9.0 x lOS Pa. 
7. 31.1 cm3 • 

8. (a) 7.8 x 103 kg m-3 ; (b) 0.80 x 103 kg m-3 • 

9. 0.12 N. 

Topic 5 

1. 9 s. 
2. 500 m. 
3. 44 m, 103 m, 123 m, 103 m, 44 m; 10 s. 
4. 0 m s-1 ; -2m s-2 • 

5. -3m s-2• 

6. 3.1 x 1()4 m s-2• 

7. 10 ni s-2 ; 4 s. 
8. 32.0 m; 2.55 s. 
9. 714 m; 122m s-1 at 35° below the horizontal. 

10. U 2 sin 2 e u sine 
(a) s = ; (b) t = --

2g g 

Topic 6 

1. 1.7 X 10-25 m s-2• 

2. 1.5 m s-2 ; 8.2 s. 
3. 7.5 s. 
4. 200m. 
5. 2.0 m s-2 in the 56° direction. 
6. 360 m in the 46° direction. 
7. 0.59. 
8. 8.9 N. 
9. 10.2 m s-2 • 

10. 100m s-1 • 

11. (a) 618 N; (b) 9270 N. 

Topic 7 

1. 556 N. 
2. 100m s-1 • 

3. 1.35 m s-1 in the opposite direction to the bullet. 
4. 20m s-1 ; 1.8 x lOS kg m s-1 in both cases. 
5. (a) 14 kN; (b) 2.3 kN. 
6. 1.8 N. 
7. 35 g. 
8. 14.3 m s-1 in the 3 o'clock direction. 
9. 6.3 m s-1 at 39° anticlockwise from 3 o'clock. 

10. 1800 m s-1 • 
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Topic 8 

1. 5 kg. 
2. (a) 10 kJ; (b) 0 J. 
3. 30m s-1 • 

4. 240 N. 
5. 70ms-1 • 

6. 67%. 
7. 1.1 m s -1 horizontally. 
8. 180 w. 
9. 8 m s-1• 

10. 60 w. 

Topic 9 

1. 2 x 10-4m s-1 • 

2. 0.5. 
3. 2.0 x 10Z0 N. 
4. 7.3°. 
5. 3.8 rad s-1 • 

6. 1.96 N. 
7. 24.SO. 
8. 2.0 N. 
9. 10 rad s-1 ; 90 rad s-1 • 

10. (a) 250 N; (b) 1620 N. 

Topic 10 

1. (a) 0.025 kg m2 ; (b) 12.3 J; (c) 37.0 J. 
2. 3.3 X 10-4 J. 
3. (a) 225 rad; (b) 30 rad s-1 ; (c) 2700 J; (d) 360 W; (e) 2700 J. 
4. 1.25 kg m2 • 

5. 1.5 rad s-1 ; 8.2 s. 
6. 2.0 kg. 
7. (a) 50 rad s-I; (b) 37.5 kJ. 
8. 33 rad s-1 • 

9. 450 J. 
10. (a) 124 J; (b) 0.28 kg m2 ; (c) hoop. 

Topic 11 

1. (a) 0.25 m; (b) 0.99 m; (c) 3.97 m. 
2. 0.45 s. 
3. 1.6 m. 
4. 3.5 Hz. 
5. (a) 0.30 m s-1 ; (b) 0.94 m s-2 • 

6. 56 N m-1 • 

7. At the top; 5 mm. 
8. 0.16 Hz. 



9. (a) 28 J; (b) 4.7 m s~1 ; (c) 1.1 kN. 
10. 476 g. 

Topic 12 

1. 825 rpm. 
2. (a) 1.7 km; (b) 1.3 m; (c) 0.4 s; (d) 20 000- 20Hz. 
3. 510 m. 
4. (a) 340m s~1 ; (b) 255m. 
5. 1.1 w. 
6. (a) 5.70 m; (b) 1.33 m. 
7. 256 Hz; 512 Hz; 768 Hz. 
8. 440Hz. 
9. (a) 2.0 x 1011 N m~2 • 

10. The aluminium rod must be 4.2 times longer than the lead rod. 

Topic 13 

1. Light (because A. = 588 nm). 
2. (a) 3.07 m; (b) 247m. 
3. (a) 656 nm; (b) 494 nm. 
4. (a) 17°; (b) 17° (the light path is reversible). 
5. 1.33. 
6. (a) 1.23 x lOS m s~1 ; (b) 242 nm; (c) 24.2°; (d) 33.0°. 
7. (a) 2 x ic = 98°; (b) total internal reflection. 
8. 14.SO. 
9. 588 nm. 

10. (a) 5.6°- 10.7°; (b) 17.0°- 33.7°. 

Topic 14 

1. Lithium (metal); nitrogen; neon; sulphur; potassium (metal); 
scandium (metal); manganese (metal); bromine. 

2. 2; 7; 8; 8; 22; 21; 20. 
3. 1.99 x 10~26 kg; 2.66 x 10~26 kg; 9.26 x 10~26 kg. 
4. (a) 107.9 g; (b) 27.0 g; (c) 2698 kg. 
5. 6.0 X 1026 ; 9.5 X 10 24 ; 5.6 X 1024• 

6. 2.0 X 1022 • 

7. 8.4 X 10 19• 

8. 20 g. 
9. 590 mm3 • 

10. 92.5%. 
11. (a) Iron; (b) 2.66 X 10~26 kg; (c) 1.2 X 10~29 m~3 • 

Topic 15 

1. Ionic crystal; covalent molecule; covalent molecules joined by 
hydrogen bonds; atoms joined by van der Waals forces; covalent 
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molecule; covalent molecules joined by hydrogen bonds. 
2. 30.0; 100.1; 46.0; 169.9; 119.5. 
3. Methane; ethane. 
4. 52.9%. 
5. 13.5 g. 
6. 2.275 kg. 
7. C2H50H + 302 = 2C02 + 3H20; 7.5 g. 

Topic 16 

1. (a) 1 oc; (b) 2 °C; (c) 4.7 oc; (d) 9.1 oc; (e) 32.3 °C. 
2. (a) 1650 kJ; (b) 1755 kJ; (c) 2700 kJ. 
3. 812 m s-1• 

4. 1.75 kW. 
5. (a) 293 s; (b) 575 s. 
6. (a) 2.5 kg; (b) 0.5 kg. 
7. 17 X 10-6 K-1• 

8. 30.007 m. 
9. 160 °C. 

10. 16 oc; 62.5 MN m-2 • 

11. 5.15 l. 
12. Steel rod 475 mm; brass rod 300 mm. 

Topic 17 

1. (a) 16 mm; (b) 52 mm; (c) 400 mm; (d) 20m. 
2. (a) 11.1 oc; (b) copper/steel = 8/1. 
3. 69 °C. 
4. 1.84 MW m-2 • 

5. 15 w. 
6. (a) 2.5 W; (b) 2.5 W; (c) 2.5 W. 
7. 0.6 kg. 
8. (a) Larger/smaller = 4/1; (b) larger/smaller= 1/2. 
9. (a) 503 oc; (b) 315 w m-2• 

10. 0.5. 

Topic 18 

1. An increase of 240 mm3 • 

2. 72.5 1. 
3. 38 °C. 
4. 35 1. 
5. 22.4 X 10-3 m3 • 

6. (a) 2.80 m3 ; (b) 125 mol. 
7. 1.0 X 1022• 

8. 1.3 kg m-3• 

9. 752 mm. 
11. 149 mm. 



Topic 19 

2. l.OOls-1 • 

3. 2.0 x lOZ7 molecules min-1 • 

5. 1.8 x 10-s Pa s. 
6. (a) Laminar (Re = 1475); (b) 0.30 m. 
7. 18 kPa. 
8. 11 X 10-3 N. 
9. 2 X 10-4 J. 

Topic 20 

1. 50 MPa in both cases. 
2. (a) 100 MPa; (b) 2.5 mm. 
3. 100 MPa. 
4. (a) 0.43 mm; (b) 0.23 mm; (c) 15.6 mm. 
5. 4.5 mm. 
6. 8 kg. 
7. 99.94 mm. 
8. + 0.08%. 
9. -0.03%. 

10. (a) 77 GPa; (b) 167 GPa. 

Topic 21 

1. (a) X 4; (b) X 1/9. 
2. (a) 50 nC; (b) 5.32 mN; (c) 50 mN. 
3. (a) 8.2 X 10-8 N; (b) 3.6 X 10-47 N. 
4. 0.11 ~C. 

Topic 22 

1. (a) Right to left; (b) right to left; (c)(i) 5000 N C-1 , (ii) 5000 V m-1 ; 

(d)(i) 4.8 x 10-17 J, (ii) 4.8 x 10-17 J, (iii) o J; (e) 4.8 x 10-17 J; (f) 
2.4 x lOS m s-1 ; (g) 1.0 x 107 m s-1 • 

2. (a) 6.4 X 10-16 N; (b) 7.0 X 1014 m s-2 • 

3. 2.0 X 10--{; V m-1 • 

4. 4. 
5. 1 ~-
6. (a) 8.4 x 106 m s-1 ; (b) 9.5 x 10-8 s. 
7. (a) 2.0 x lOS m s-1 ; (b) 4.1 x 10--{; s. 
8. 4.8 X 10-19 C. 
9. (a) 1.0 x 107 m s-1 ; (b) 6.2 mm. 

Topic 23 

1. 400 ~C. 
2. 2.1 X 1011 • 
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3. 26 v. 
4. 7.2 X 10-4 C. 
5. 1 !J.F; 1.5 !J.F; 2 !J.F; 3 !J.F; 4.5 !J.F; 6 !J.F; 9 !J.F. 
6. 8 V (wider-spaced plates); 4 V. 
7. (a) 2 !J.F; (b) 2.5 mJ. 
8. 15.1 °C. 
9. (a) 600 !J.C, 1200 !J.C; (b) 400 !J.C, 400 !LC. 

10. (a) 45 V; (b) 13.5 mJ. 

Topic 24 

1. 7.5 X 1019 • 

2. 5W. 
3. 4 X 10-19 J. 
4. 6W. 
5. (a) 6 W; (b) 15 V; (c) 0.4 A. 
6. 10 C; 2 GJ. 
7. 60 v. 
8. 2.5 A. 
9. 192 w. 

Topic 25 

1. 1.5 Q. 
2. 1.5 v. 
3. (a) 9 Q; (b) 1 Q; (c) 2 Q; (d) 4.5 Q; (e) 7.5 Q; (f) 1.8 Q. 
4. 30 Q in parallel. 
5. 2 Q; 3 Q. 
6. (a) 6 V; (b) 15 Q; (c) 0.3 A. 
7. 5800 Q. 
8. (a) 4.25 V; (b) 3.5 V; (c) 3.6 A. 
9. (a) 2.4 A: (b) 1.6 A; (c) 0.8 A. 

10. (a) 1.5 A; (b) 1.2 A. 
11. 5 kQ; 7.2 mW. 
12. 0.15 A. 
14. (a) 9 W; (b) 2 W. 

Topic 26 

1. (a) 11.65 V; (b) 11.96 V. 
2. (a) 0.15 A; (b) 1.44 V. 
3. (a) 2.4 V; (b) 3.0 V; (c) 14.5 kQ. 
4. (a) 4 V; (b)(i) 0.08 A, (ii) 0.04 A, 0.06 A. 
5. (a) 0.67 A in the wires connected to the corners where the current 

enters or leaves the network and 0.33 A in the other wires; (b) 20 
V; (c) 10 Q. 

6. 3.3 Q. 
7. 0.273 A. 



Topic 27 

1. (a) 0.05 T; (b) 13 X 10-3 N. 
2. (a) Vertically upwards; (b) vertically downwards. 
3. 30°. 
4. Nil. 
5. 0.01 T. 
6. 1.5 X 10-3 N m. 
7. 2 X 10-5 T. 

Topic 28 

1.8mA. 
2. (a) 1.06 mV; (b) 0 V; (c) 14.5 mV. 
3. 4.8 X 10-s T; 66°. 
4. (a) 1.0 V; (b) 0.5 V; (c) 0 V. 
5. (a) 0.4 mV; (b) 0.2 mV; (c) 0 V. 

Topic 29 

1. 1875. 

Topic 30 

1. (a) 300 W, 60 V; (b) 75 W, 30 V. 
2. 145 v. 
3. 100Hz. 
4. (a) 110 Q; (b) 1 A. 
5. (a) 35 Q; (b) 70 V. 
6. 70 Q. 
7. (a) /leads Vby 90°; (b) I and Vare in phase; (c) Vleads /by 90°. 
8. (a) 16 Q; (b) 16 Q; (c) 5 Q. 
9. 14.50 Q. 

10. 4 A. 
11. (a) 9 V; (b) 12 V. 
12. (a) 5 V; (b) 53.1°. 
13. 13 Q; 67.4°; 10 v, 28 v, 4 v. 
14. 50 Q. 
15. (a) 360 W; (b) 270 W; (c) 0 W. 
16. 53.1°; 6.75 w. 
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Index 

absolute permeability 282 
of free space 282 

absolute permittivity 202 
of free space 202 

absolute pressure 32 
absolute refractive index 114 
absolute zero 146, 148, 172 
acceleration 3, 39, 50 

angular 72 
centripetal 75 
due to gravity 44, 50 
in simple harmonic motion 89, 90 

acceptors (in semiconductors) 230 
action and reaction 53 
addition of vectors 5 
aircraft wing, lift force on 77, 180 
alkali metals 128 
alloys 140 
alternating current 273, 283 
alternating e.m.f. 273 
alternating voltage 283 
ammeter 233, 247, 250 
amorphous solids 197 
ampere 203, 224 

defmition of 267 
amplitude 

alternating e.m.f. 273 
simple harmonic motion 90 
waves 99 

Andrews' investigation of real gases 
173 

angle 
critical 115 
of contact 188 
of dip 262 
of friction 17 
of incidence 102, 112, 113 
of reflection 102, 112 
of refraction 113 
phase 289 

angular acceleration 72 
angular displacement 71 

angular equations of motion 73 
angular momentum 83, 84 

conservation of, see Conservation 
laws/principles 

angular velocity 72 
antinodes 107 
apparent weight 54 
Archimedes' principle 34 
area expansivity 152 
atmosphere (unit of pressure) 33 
atmospheric pressure 32 
atomic mass 131 
atomic mass unit 123, 131 
atomic number 124 
atomic structure 123 
atomic weight 131 
atoms, electronic structure of 125 
Avogadro constant 131 
Avogadro's hypothesis 173 

banking (aircraft and roads) 77 
bar 33 
base units 3, 4 
batteries 210, 215, 242 
bending 15 
Bernoulli's equation 178 
black body 163 
boiling point 147, 148, 175 
bond rotation 138, 195, 197 
bonds, chemical 13, 134 
Boyle's law 168, 169, 172 
brittle fracture 196 
bulk modulus 105, 193 
butane molecule 138 

calibration 183, 254 
capacitance 215 
capacitive reactance 285 
capacitors 215 

energy stored in 218 

301 



302 Index 

in parallel 219, 239 
in series 219, 239 
parallel-plate 215 
practical 216 

capacity 
cells and batteries 243 
heat 147, 148 

capillarity 188 
cells, electric 215, 241, 242, 256, 

257 
Celsius scale 148 
centigrade scale 148 
centre of gravity 12, 13 
centripetal acceleration 75 
centripetal force 75 
ceramics 197 
chain-like molecules 138, 195, 197 
charge, see Electric charge 
Charles' law 169, 172 
chemical bonds 13, 134 
chemical equations 143 
circuits, magnetic 281 
circular motion 71 

vertical 78 
coefficient of dynamic viscosity 

184 
coefficients of friction 16 
coercive force/coercivity 280 
coherent waves 104 
coils 

magnetic field around 262 
magnetic torque on 265 
rotating, e.m.f. induced in 272 

collisions 58, 68 
colour 112 
components of forces 21 
compounds 137 
compression 13, 15, 136, 190 
conductance, electrical 234 
conduction 

electrical, in metals 226 
electrical, in semiconductors 228 
thermal 156 
thermal, through successive layers 

159 
conductivity 

electrical 234 
thermal 157, 158 

conservation laws/principles 
angular momentum 83 
charge 201, 256 
energy 68, 145, 179, 256, 271 

momentum 58 
constructive interference 104 
contact angle 188 
continuity equation 178 
contraction, thermal 147, 151 
convection 152, 156, 162 
conventional current direction 227 
converging lenses 116 
conversion of energy 64, 68, 91, 

227 
cooling 162, 163 

Newton's law of, see Newton 
corkscrew rule 262 
coulomb 203, 224 
Coulomb's law 124, 202, 207 
couple 24 
covalent bonding 136 

contrasted with ionic bonding 138 
polarisation in 139 

covalent crystal structures 138 
critical angle 115 
critical isotherm and temperature 

173, 174 
crystal structures 

covalent 138 
ice 152 
ionic 136 
metallic 139 

cubic expansivity 152, 172 
Curie point/temperature 279 
current, see Electric current 

Dalton's law of partial pressures 
173 

damping of oscillations 97 
deceleration 40 
deflection, magnetic, charged 

particle beams 265 
deformation 

elastic 13, 190 
plastic 15, 196 

density 30, 105 
comparison between ice and water 

152 
relative 30, 35 
water 30 

derived units 3, 4 
destructive interference 105 
deviation of light 

by diffraction gratings 118 
by prisms 116 



dew point 175 
diamagnetism 278 
diamond 115, 138, 228 
dielectric constant 202, 203, 216 
dielectric strength 216 
dielectrics 202, 216 
diffraction 103 

light 103, 117 
sound 103 

diffraction grating 117 
diode, semiconductor 230 
dip, angle of 262 
direction, field, see Field direction 
dispersion of light 116 
displacement 5, 39 

angular 71 
in simple harmonic motion 89 

diverging lenses 116 
domains, magnetic 279 
donors (in semiconductors) 229 
doping (semiconductors) 229 
Doppler effect 106 
double bond 138 
drift velocity of electrons in 

metallic conductors 225 
dynamic friction, coefficient of 16 

earth, magnetic field of the 261, 
262 

earthing 210 
echoes 102 
eddy currents 276 
effective value, alternating current 

and voltage 284 
efficiency 69, 228 
elastic deformation 13, 190 
elastic limit 15, 196 
elastic modulus, see Modulus of 

elasticity 
elasticity 13, 136, 190, 193 
elasticity of rubber 193, 195 
electric cell 215, 241, 242, 256, 

257 
electric charge 124, 201 

conservation of, see Conservation 
laws/principles 

moving, magnetic force on 264 
electric constant 202, 282 
electric current 201, 224 

alternating 273, 283 
conventional direction 227 

eddy 276 
in metallic conductors 225, 243 
in semiconductors 228 
induced in a moving conductor 

269 
measurement of 254 

electric field 206 
electric field line 207 
electric force 124, 202, 203, 206 
electrical conductance 234 
electrical conduction 

in metals 226 
in semiconductors 228 

electrical conductivity 234 
electrical energy, conversion of 

227 
electrical insulators 201, 216 
electrical power 228, 243 
electrical resistance 226, 232 

internal 241, 242 
measurement of 233, 250, 254 
metals, effect of temperature on 

226, 235 
electrolytes 202 
electromagnetic induction 269 
electromagnetic interaction 11 
electromagnetic radiation 156, 162 
electromagnetic spectrum 112 
electromagnetic waves 111, 156, 

162 
electromagnets 280 
electromotive force (e.m.f.) 241 

alternating 273 
induced in a moving conductor 

269 
induced in a rotating coil 272 
measurement of 253 

electron gas 139 
electron spin 126 
electronegativity 139 
electronic structure of atoms 125 
electrons 123, 201 

behaviour in electric fields 210, 
217, 265 

behaviour in magnetic fields 264, 
270, 272 

drift velocity in metallic 
conductors 225 

in atomic structures 125 
in charged capacitors 215, 218 
mean free path in metallic 

conductors 226 

Index 303 



304 Index 

role in the behaviour of magnetic 
materials 261, 278 

role in chemical bonding 134 
role in electrical conduction 

through metals 225 
role in electrical conduction 

through semiconductors 
228 

role in electrostatic induction in 
metals 204 

role in thermal conduction 157 
electronvolt 211 
electropositive elements 139 
electrostatic induction 203 
electrostatics 202 
elements, chemical 123 
e.m.f., see Electromotive force 
emissivity 163 
energy 4, 64 

conservation of, see Conservation 
laws/principles 

conversion/transformation 64, 68, 
91, 227 

in simple harmonic motion 91 
internal 112, 144 
ionisation 126, 128 
kinetic 66, 91 
levels, electronic, in the atom 125 
loss in hysteresis 281 
potential 64, 91, 209 
rotational 83, 85 
sound 101 
stored in a capacitor 218 
stored in a magnetic field 275 
strain 65, 218 
surface 187 
thermal 146 

equations 
of angular motion 73 
chemical 143 
of motion 40, 41, 43, 44 

equilibrium, mechanical 21 
equipotential surface 65, 209 
ethane molecule 138 
ethene (ethylene) molecule 138 
expansion, thermal 147, 151 
expansivity 151, 172 
extension 13 
extrinsic semiconductors 229 

farad 215 

Faraday's laws of electromagnetic 
induction 272 

Faraday-Neumann law 272 
ferromagnetic materials 278 
ferromagnetism 279 
field direction 

electric 207 
magnetic 261 

field lines 
electric 207 
magnetic 261 

field strength 
electric 206, 207, 212 
gravitational 12, 50, 206 
magnetic 261, 264 

fields 
electric, see Electric field 
gravitational, see Gravitational 

field 
magnetic, see Magnetic field 
uniform and non-uniform 208 

flat coil, magnetic field around 262 
Fleming's left hand (motor) rule 

263, 269 
Fleming's right hand (generator) 

rule 269, 270 
floating 36 
flux, see Magnetic flux 
focus, principal 116 
forces 3, 11, 13, 50, 57 

action and reaction 53 
between parallel conductors 267 
between polar molecules 141 
centripetal 75 
components of 21 
electric 124, 202, 203, 206 
frictional 15 
gravitational 12, 203 
intermolecular 140 
internal 13 
lift on aircraft wing 77, 180 
lines of 208 
magnetic, on a conductor 263 
magnetic, on a moving charge 

264 
moments of 24, 26 
normal 15 
parallelogram of 17 
resolution of 18, 21, 26 
restoring, in simple harmonic 

motion 90 
resultant of 17, 21 



van der Waals 142 
forward biased p-n junction 230 
free fall 44 

acceleration of 44 
freezing point 147, 148 
frequency 

alternating current and voltage 
284 

natural 108 
simple hannonic motion 92 
waves 99, 100 

friction 15, 75, 77, 20 l 
angle of 17 
force 15 
rolling 18 

fundamental 107 
fundamental frequency of a taut 

string 108 
fundamental particles 123 
fusion, latent heat of 147, 150 

galvanometer, moving coil 247 
gas constant 169 
gas equation 169 
gases 167 
gases, inert (noble) 127 
gauge pressure 32 
generator rule 269 
germanium 228-230 
glass 115, 197 
glass transition temperature 197 
gravitation, Newton's law of, see 

Newton 
gravitational constant 12 
gravitational field 12, 206, 208 
gravitational force 12, 203 
gravitational interaction 11 
gravity 

acceleration due to 44, 50 
centre of 12, 13 

hannonics 107 
heat 144 

latent 147, 148 
heat capacity 14 7, 148 
heat transfer 156 
henry 275 
holes, positive, in semiconductors 

229 
Hooke's law 13, 190, 195 

fundamental basis of 136 
humidity, relative 175 
hydraulic press 34 
hydrocarbons 137 
hydrogen bonding 141 
hydrometer 36 
hysteresis 280 

ice and water, density of 152 
ideal gas 167 
ideal gas equation 169 
ideal (non-viscous) liquids 178 
impedance 288 
impulse 58 
inclination 262 
induced current in a moving 

conductor 269 
induced e.m.f. 

in a moving conductor 269 
in a rotating coil 272 

inductance 274 
induction 

electromagnetic 269 
electrostatic 203 

inductive reactance 285 
inert gases 127 

structure 126, 134 
inertia 11 
inertia, moment of 81, 82, 84 
insulation, thermal 158 
insulators, electrical 201, 216 
intensity of sound 101 
interference 104, 105 

light 117 
intermediate (ionic/covalent) 

bonding 138 
intermolecular forces 140 
internal energy 112, 144 
internal forces 13 
internal resistance 241, 242 
intrinsic semiconductors 229 
inverse square relationships 12, 

101, 124, 202 
ionic bond 134 

contrasted with covalent bond 
138 

polarisation in 139 
ionic crystal structures 136 
ionization energy 126, 128 
ions 134 

size of 138 
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isotherm 172 
critical 173, 174 

isotopes 124 
1-V characteristics, metallic 

conductors 234 

joule 4, 63 

kelvin 148 
kinematic equations, see Equations 

of motion 
kinetic energy 66 

rotational 83, 85 
kinetic friction, coefficient of 16 
Kirchhoff's laws 256 

laminar flow 177 
latent heat 14 7, 148 
laws/principles of conservation, see 

Conservation laws/principles 
lenses 116 
Lenz's law 270 
lift force on aircraft wing 77, 180 
lifts, apparent weight in 54 
light 112 

deviation 116, 118 
diffraction 103, 117 
dispersion 116 
interference 117 
polarisation 119 
reflection 112 
refraction 113 
speed 111 
wavelengths 112 

light emitting diodes 230 
linear expansivity 151 
linear momentum 57 
lines, field, see Field lines 
lines of force 208 
liquids 177 

apparent volume/cubic expansivity 
152 

pressure in 31, 33 
supercooled 197 

litre 153 
lone pair (electrons) 141 
longitudinal waves 100 
lubrication 18 

magnetic behaviour of materials 
278 

magnetic circuits 281 
magnetic constant 282 
magnetic domains 279 
magnetic field 208, 261 

around a flat coil 262 
around a solenoid 263 
around a straight conductor 262 
energy stored in 275 
of the earth 261, 262 
resolution into components 264 

magnetic field lines 261 
magnetic flux 271 

cutting 271, 272 
density 264, 271 
linkage 272 
linking 272 

magnetic force 
between parallel conductors 267 
on a conductor in a magnetic field 

263 
on a moving charge in a magnetic 

field 264 
magnetic induction 264 
magnetic materials 278 
magnetic poles 261 
magnetic torque on a coil 265 
magnetomotive force (m.m.f.) 281 
magnets, permanent 261 

soft and hard 280 
majority carriers 229 
manometer 32 
mass 11 

atomic 131 
molecular 142 

mass number 124 
materials, magnetic 278 
matter, speed of sound through 105 
Maxwell, James Clerk 282 
mean free path 

electrons in metal conductors 226 
gas molecules 167 

mechanical waves 99 
melting point 147, 148 
metal conductors, current in 225 
metallic bonding 139 
metallic conductors, 1-V 

characteristics 234 
metallic crystal structures 140 
metals 130, 139 

alkali 128 



electrical conduction in 140, 226 
slip in 196 
thermal conductivity 140, 157 

methane molecule 137 
metre bridge 255 
microstrain 193 
millibar 33 
minority carriers 229 
mixtures 137 
m.m.f. (magnetomotive force) 281 
modulus of elasticity 

bulk, see Bulk modulus 
shear, see Shear modulus 
Young's, see Young's modulus 

molar heat capacity 149 
molar latent heat 150 
mole 131 
molecular mass, relative 142 
molecular weight 142 
molecules 137 

butane 138 
chain-like 138, 195, 197 
ethane 138 
ethene (ethylene) 138 
methane 137 
polar 204, 217 
propane 138 
water 140, 141 

moment of inertia 81, 82, 84 
moments of forces 24, 26 
momentum 57 

angular 83, 84 
angular, conservation of, see 

Conservation laws/principles 
conservation of, see Conservation 

laws/principles 
motion 11, 21, 39, 50, 57 

circular 71 
equations of, see Equations of 

motion 
Newton's laws of, see Newton 
rotational 81 
simple harmonic 89 
thermal, see Thermal motion 
wave 99, 111 

motor rule 269 
moving coil galvanometer 24 7 
multiplier 249 
mutual inductance 275 

net force/separation curve 135, 

137, 140, 190, 191 
Neumann, Faraday-, law 272 
neutron 123, 124 
newton 3, 50 
Newton 

first law of motion 11, 50 
law of cooling 162 
law of gravitation 11, 53, 206 
second law of motion 50, 57 
third law of motion 53 

noble gases 127 
nodes 107 
non-bonding orbitals 141 
non-uniform fields 208 
non-viscous (ideal) liquids 178 
normal force 15 
n-type semiconductors 229 
nucleus 124 

ohm 232 
Ohm's law 235 
orbitals 125 

non-bonding 141 
oscillation 89, 97 

simple pendulum 94 
vertical, mass on a spring 95 

overtones 107 

parallel 
capacitors in 219, 239 
resistors in 238, 239 

parallel conductors, force between 
267 

parallel-plate capacitor 215 
parallelogram of forces 17 
paramagnetism 278 
partial pressures, Dalton' law of 

173 
pascal 14, 31 
peak value, alternating current and 

voltage 284 
pendulum 

simple 94 
torsion 97 

period 
of revolution 72 
of simple harmonic motion 90, 

91, 94, 96 
of wave motion 99 
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periodic table of the elements 129, 
130 

permanent magnets 261 
soft and hard 280 

permeability 
absolute 282 
absolute, of free space 282 
relative 278, 282 

permittivity 202, 216, 217, 282 
absolute 202 
absolute, of free space 202, 216, 

282 
relative 202, 203, 216 

permittivity, unit of 218 
phase angle 289 
phasors 285 
pitch (sound) 100 
Pitot tube 180 
plastic deformation 15, 196 
p-n junctions 230 
poise 184 
Poiseuille' s formula 185 
Poisson's ratio 192, 193 
polar molecules 204, 217 

forces between 141 
polarisation 

in dielectrics 217 
in the covalent bond 139 
in the ionic bond 139 
of light 119 

Polaroid 119 
poles, magnetic 261 
polythene 142 
positive holes in semiconductors 

229 
potential 209 
potential difference 209, 210 

measurement of 253, 254 
potential divider 238, 251 
potential energy 64, 209 
potential energy/separation curve 

145, 146 
potentiometer 252 
pounds per square inch 33 
power 4, 68 

derivation of units of 3 
electrical 228, 243 
in alternating current circuits 289 
transmission in rotation 84, 85 

power factor 289 
prefixes for units 4, 5 
pressure 31 

absolute 32 
atmospheric 32 
gauge 32 
in liquids 31, 33 
and temperature, standard 173 
transmission of 33 
units of 33 
vapour 174 

pressure law 168, 169, 172 
principal focus 116 
principle of superposition 103 
principles/laws of conservation, see 

Conservation laws/principles 
prisms 116 
progressive (travelling) wave 99 
projectiles 45 
propane molecule 138 
proton 123, 124, 201, 204 
p-type semiconductors 229, 230 

quantities 3 

radian 71 
radiation 

el«!ctromagnetic 156, 162 
heat transfer by 156, 162 
thermall63 

reactance 284 
reaction 53 
real gases 173 

Andrews' investigation 173 
real (viscous) liquids 183 
recoil (gun) 58 
reflection 102 

laws of 112 
of light 112 
of sound 102 
total internal 115 

refraction 102 
of light 113 

refractive index 114 
relative atomic mass 131 
relative density 30, 35 
relative humidity 175 
relative molecular mass 142 
relative permeability 278, 282 
relative permittivity 202, 203, 216 
relative refractive index 114 
reluctance 281 
remanence 279 



resistance 
electrical, see Electrical resistance 
thermal 157 

resistivity 234 
resistors 

in parallel 238, 239 
in series 236, 239 
practical 236 
variable 250, 254 

resolution 
of forces 18, 21. 26 
of magnetic fields 264 
of vectors 5 

resonance 108 
resultant 

of forces 17, 21 
of vectors 5 

retardation 40 
retentivity 279 
reverse biased p-n junction 230 
Reynolds' number 185 
rheostat 250 
ripple tank 101 
rolling friction 18 
rotation about covalent bonds 138, 

195, 197 
rotation of solids 81 
rotation, power transmission and 

work done in 84, 85 
rotational equilibrium 22, 25 
rotational kinetic energy 83, 85 
rubber, elasticity of 193, 195 

saturated vapour 174 
saturated vapour pressure 174 
saturation (magnetic) 279 
scalar quantities 4 
self-inductance 275 
semiconductor 202, 228 

diode 230 
series 

capacitors in 219, 239 
resistors in 236, 239 

shear 184, 190, 192, 193 
shear modulus 192, 193 
shells 125 
shunt 247 
SI units 3 
siemens 234 
silicon 228-230 

simple harmonic motion 89 
simple pendulum 94 
sinking 34 
slip in metals 196 
Snell's law 114 
solenoid, magnetic field around 

263 
solids 190 
sonic boom 106 
sound 100 

barrier 106 
diffraction 103 
energy 101 
intensity 101 
reflection 102 
speed of 100, 105 
wavelengths 100 

specific gravity 30 
specific heat capacity 149 
specific latent heat 149 
spectrum, electromagnetic 112 
speed 39 

light 111 
sound 100, 105 
waves 99, 105 

spin, electron 126 
standard temperature and pressure 

(S.T.P.) 173 
standing (stationary) waves 106 
static friction, coefficient of 16 
stationary (standing) waves 106 
Stefan's constant 163 
Stefan's law 163 
Stokes's law 186 
S.T.P. (standard temperature and 

pressure) 173 
strain 13, 191-193 

energy 65, 218 
transverse and longitudinal 192 

strength, field, see Field strength 
stress 14, 184, 191-193 

thermal 153 
stress/strain plot 193-195 
string, taut 

fundamental frequency of 108 
wave speed along 105 

structure, atomic 123 
subshells 125 
supercooled liquids 197 
superficial expansivity 152 
superposition, principle of 103 
surface energy 187 
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surface tension 187 

temperature 144 
absolute zero of 146, 148, 172 
and pressure, standard 173 
critical 173, 174 
effect on resistance of metals 

226, 235 
glass transition 197 
rise in metal conductors 226, 236 
scales 148 

tension 13, 15, 136, 190 
surface 187 

terminal velocity 44, 186 
tesla 264 
thermal conduction 156 
thermal conductivity 157, 158 
thermal contraction 147, 151 
thermal energy 146 
thermal expansion 147, 151 
thermal insulation 158 
thermal motion 145, 146, 156, 167, 

168, 195, 197, 226 
thermal radiation 163 
thermal resistance 157 
thermal stress 153 
thermocouple 253 
thrust (rocket motor) 59 
toroid 279 
torque 24, 81, 84 

magnetic, on a coil 265 
torr 33 
Torricelli's theorem 179 
torsion pendulum 97 
total internal reflection 115 
transfer, heat 156 
transformation of energy 64, 68, 

91, 227 
transformers 274, 276, 283 
translational equilibrium 21 
transmission of pressure 33 
transverse waves 100 
travelling (progressive) wave 99 
turbulent flow 177 

ultrasonic waves 102 
uniform fields 208 
units, SI 3 
universal molar gas constant 169 
unsaturated vapour 175 

upthrust 34 

valence electrons 137 
in metals 204 

valency 137 
van der Waals forces 142 
vaporisation, latent heat of 147, 

150 
vapour 174 
vapour pressure 174 
vector addition 5 
vector quantities 5 
velocity 3, 6, 39 

angular 72 
electron drift in metallic 

conductors 225 
terminal 44, 186 

Venturi meter 180 
vertical circular motion 78 
vibrational motion 89 
viscosity 178, 184 

coefficient of 184 
viscous (real) liquids 183 
volt 210 
voltage, alternating 283 
voltmeter 233, 247, 249, 250 

calibration of 254 
volume expansivity 152, 172 
volume strain 193 

water 
and ice, comparison of density 

152 
density of 30 
molecule 140, 141 
refractive index of 115 
waves 101, 102 

watt 4, 68 
wavelength 99, 100, 112 
waves 

electromagnetic 111, 156, 162 
mechanical 99 

weber 271, 272 
weight 12 

apparent 54 
wetting 188 
Wheatstone bridge 254 
work 4, 63, 144 

done in moving a charge 209 
done in rotation 84, 85 



done in stretching a wire 65 

Young's fringes 117 
Young's modulus 14, 105, 
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191-193 
fundamental basis of 136 

zero, absolute 146, 148, 172 




