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Chapter 1
Introduction

Abstract This chapter gives a brief introduction on the motivation of the work on
spatial audio reproduction using a sound scene decomposition technique referred to
as primary ambient extraction.

Keywords Spatial audio reproduction � Primary ambient extraction (PAE)

Sound is an inherent part of our everyday lives for information, communication,
and interaction. Sound improves the situational awareness by providing feedback
for actions and situations that are out of the view of the listener. An advantage of
sound is that multiple sound sources can be perceived from any location around the
head in the three-dimensional (3D) space [BaS07]. The role of natural 3D sound, or
spatial sound, is very essential in high-stress applications, such as flight navigation
and communication systems [Air15, BWG10]. Naturally rendered spatial sound has
also been proven to be beneficial in personal route guidance for visually impaired
people [LMG05, Mic14] and in medical therapy for patients [DLH03, ASI08,
SPL10]. Last but not least, the ever-growing market of consumer electronics calls
for spatial audio reproduction for digital media, such as movies, games, and virtual
reality applications (e.g., Oculus Rift), augmented reality applications (e.g.,
Microsoft HoloLens).

Considering the variety of applications, spatial audio reproduction of digital
media (especially the movies and video games) has gained significant popularity
over the recent years [ITU12b]. The reproduction methods generally differ in the
formats of audio content. Despite the growing interest in object-based audio formats
[ITU12b], such as Dolby ATMOS [Dol13], DTS multidimensional audio (DTS: X)
[JoF11], most existing digital media content is still in channel-based formats (such
as stereo and multichannel signals). The channel-based audio is usually specific in
its playback configuration, and it does not support flexible playback configurations
in domestic or personal listening circumstances [ITU12b]. Considering the wide
diversity of today’s playback systems [HHK14], it becomes necessary to process
audio signals such that the reproduction of the audio content is not only compatible
with various playback systems, but also able to achieve the best quality (especially
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spatial quality [Rum02]) with the actual playback system [Rum11]. In line with the
objective of the new MPEG-H standard for 3D audio [HHK14], this book aims to
achieve a flexible, efficient, and immersive spatial audio reproduction.

Depending on the actual playback system, the challenges in spatial audio
reproduction can be broadly categorized into two main types: loudspeaker playback
and headphone playback [Rum13]. The challenge in loudspeaker playback mainly
arises from the mismatch of loudspeaker playback systems in home theater appli-
cations, where the number of loudspeakers [Rum01] or even the type of loud-
speakers [GTK11], [TaG12, TGC12] between the intended loudspeaker system
(based on the audio content) and the actual loudspeaker system is different.
Conventional techniques to solve this challenge are often referred to as audio
remixing (i.e., down-mix and up-mix), e.g., “Left only, Right only (LoRo),” “Left
total, Right total (LtRt),” and matrix-based mixing surround sound systems
[Rum01, BaS07, Ger92, ITU93]. These audio remixing techniques basically
compute the loudspeaker signals as the weighted sums of the input signals. For
headphone playback, the challenge arises when the audio content is not tailored for
headphone playback (usually intended for loudspeaker playback). Virtualization is
often regarded as the technique to solve this challenge [Beg00], where virtualization
of loudspeakers is achieved by binaural rendering, i.e., convolving the
channel-based signals with head-related impulse responses (HRIRs) of the corre-
sponding loudspeaker positions. These conventional techniques in spatial audio
reproduction are capable of solving the compatibility issue, but the spatial quality of
the reproduced sound scene is usually limited [BaS07, BrS08, BrF07, ZiR03]. To
improve the spatial quality of the sound reproduction, the MPEG audio standard-
ization group proposed MPEG Surround and related techniques, which typically
address the multichannel and binaural audio reproduction problems based on
human perception [BrF07, FaB03, Fal04]. In the synthesis, these techniques usually
employ the one-channel down-mixed signal and the spatial cues, which better suit
the reproduction of the distinct directional source signals as compared to the diffuse
signals [BrF07, GoJ07b].

To further improve the quality of the reproduced sound scene, the perception of
the sound scenes is considered as a combination of the foreground sound and
background sound [StM15], which are often referred to as primary (or direct) and
ambient (or diffuse) components, respectively [GoJ08, HTG14, SHT15, KTT15].
The primary components consist of point-like directional sound sources, whereas
the ambient components are made up of diffuse environmental sound, such as the
reverberation, applause, or nature sound like waterfall [GoJ07b, AvJ04]. Due to the
perceptual differences between the primary and ambient components, different
rendering schemes should be applied to the primary and ambient components for
optimal spatial audio reproduction of sound scenes [GoJ07b, MeF10]. However, the
existing channel-based audio formats provide only the mixed signals [Hol08],
which necessitate the process of extracting primary and ambient components from
the mixed signals. This extraction process is usually known as the primary ambient
extraction (PAE).

2 1 Introduction



As a spatial audio processing tool [Rum01, BrS08, GoJ07b, BrF07, SHT15,
MeF10], PAE can also be incorporated into spatial audio coding systems, such as
spatial audio scene coding [GoJ08, JMG07], and directional audio coding [Pul07].
Essentially, PAE serves as a front end to facilitate flexible, efficient, and immersive
spatial audio reproduction. First, by decomposing the primary and ambient com-
ponents of the sound scene, PAE enables the sound reproduction format to be
independent of the input format, hence increasing the flexibility of spatial audio
reproduction [JMG07, Rum10]. Second, PAE-based reproduction of sound scenes
does not require the individual sound objects as in object-based format (which is the
most flexible), but is able to recreate perceptually similar sound scenes, hence
maintaining the efficiency of spatial audio reproduction [HTG14]. Last but not
least, PAE extracts the two key components of the sound scenes, namely directional
and diffuse sound components. These components are highly useful in recreating an
immersive listening experience of the sound scene [GoJ08, JPL10, UsB07, Fal07,
KKM15].

Figure 1.1 illustrates the PAE-based spatial audio reproduction system, where
the primary and ambient components undergo different rendering schemes
[HGT14]. The rendering schemes differ for loudspeaker or headphone playback
[AvJ04, JPL10, FaB11]. For loudspeaker playback, the primary components are
reproduced using vector base amplitude panning (VBAP) [Pul97] or vector base
intensity panning [GoJ06a, GoJ06b, JLP99] to reproduce the accurate direction of
the sound sources. The ambient components, on the other hand, are further
decorrelated and distributed to all the loudspeaker channels to create an envelop-
ment effect of the sound environment [GoJ08, Fal06]. For headphone playback, the
conventional virtualization that simply applies binaural rendering to the mixed
channel-based signals suffers from virtual phantom effect as discussed in [BrS08,
GoJ07b]. PAE-based virtualization resolves this problem by applying binaural
rendering to the extracted primary components, creating accurate virtual sound
sources in the desired directions [GoJ07b] for headphone playback [SHT15,
LBP14]. Similar to the loudspeaker playback case, the ambient components are
decorrelated using artificial reverberation [BrF07, GoJ08, AvJ04, MeF10] to create
a more natural sound environment.

PAEInput

Primary
components

Ambient
components

Primary
rendering

Ambient
rendering

Spatial
attributes

Post-
processing

Any
playback
system

Fig. 1.1 Block diagram of PAE-based spatial audio reproduction
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1.1 Organization

This book is organized into seven chapters. Chapter 1 introduces the background
and motivation of this work. Chapter 2 reviews the basics of spatial hearing. Based
on the three types of audio representations, various spatial audio reproduction
systems are discussed. Lastly, prior works on PAE are reviewed. In Chap. 3, the
widely used stereo signal model and the linear estimation framework for PAE are
discussed. In-depth analysis on the extraction error leads to different objectives in
PAE, and five linear estimation-based PAE approaches are proposed and evaluated
thoroughly. Based on the study in Chap. 3, we observed limited performance of
these linear estimation-based PAE approaches, especially when ambient power is
relatively strong. Such a problem leads us to a new ambient spectrum estimation
framework for PAE in Chap. 4, where the solutions can be obtained by exploiting
the sparsity of the primary components. Simulations and subjective listening tests
are conducted to validate the performance of these PAE approaches. Chapters 5 and
6 focus PAE in dealing with complex signals that are encountered in practice. In
Chap. 5, we examine primary components with partial correlation at zero lag (i.e.,
primary-complex case). The performance of the conventional PAE approaches is
investigated in the primary-complex case, leading to the proposed time-shifting
technique. Following the study in Chaps. 5, 6 proposes techniques based on
sub-band decomposition and multishift techniques to handle complex primary
components with multiple dominant sources. Finally, Chap. 7 concludes this book
and points out some meaningful directions for future work.
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Chapter 2
Literature Review on Spatial Audio

Abstract Inspired by the human auditory system, the sound scene is considered as
the mixture of a foreground sound (primary component, directional) and a back-
ground sound (ambient component, diffuse). The primary and ambient components
are rendered separately to preserve their spatial characteristics, in accordance with
the actual playback configurations. The core problem is how to extract the primary
and ambient components from channel-based audio content efficiently. To answer
this question, this chapter begins with the fundamentals of spatial hearing and
reviews existing spatial audio reproduction techniques, as well as prior arts in
primary ambient extraction, which is also compared with another sound scene
decomposition technique: blind source separation.

Keywords Spatial audio � Fundamentals � Sound scene decomposition � Primary
ambient extraction (PAE) � Blind source separation

Spatial audio, also known as three-dimensional (3D) audio, refers to the perception
of sound in 3D space and anything that is related to such a perception, including
sound acquisition, production, mastering, processing, reproduction, and evaluation
of the sound. This book describes the reproduction of 3D sound based on the
formats of the audio content. For this purpose, we first review the fundamental
principles of human’s spatial hearing and discuss various conventional as well as
advanced techniques for spatial audio reproduction. After that, a summary of the
prior work on primary ambient extraction is presented.

2.1 Basics of Spatial Hearing

With the ears positioned on both sides of our head, humans are capable to perceive
sound around us. The perceived sound can be processed by our brain to interpret the
meaning of the sound. Equally amazing is our ability to localize sound in the 3D
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space. This capability of localizing sound in 3D space is often referred to as spatial
hearing. In this section, we will review the fundamentals of spatial hearing.

2.1.1 How Do We Hear Sound

From a physical point of view, sound waves, emanating from a vibration process
(a.k.a., sound source), travel through the air all the way into our ears. Human ears
can be broadly separated into three parts: the outer ear, middle ear, and inner ear, as
shown in Fig. 2.1 [WHO06]. The pinna of the outer ear picks up the sound and
passes through the ear canal to the eardrum of the middle ear. The sound vibrations
captured by the eardrum are transformed into nerve signals by the cochlea. These
nerve signals travel through the auditory nerve and reach our brain. Our brain can
then interpret the sound we hear. Impairment to any parts of the ear would affect our
hearing.

2.1.2 How Do We Localize Sound

For a particular sound source in a 3D space, localization of this sound source would
involve three dimensions. Clearly, taking the listener (more specifically the head of
the listener) as the center of the space, a polar coordinate system is considered to be
more appropriate to describe the 3D space. Hence, we describe the three dimensions
as distance, azimuth, and elevation, as shown in Fig. 2.2. Distance is the length of
the direct line path between the sound source and the center of the head. Horizontal
plane refers to the plane that is horizontal to the ground at ear-level height. Median
plane is a vertical plane that is perpendicular to the horizontal plane with the same
origin at the center of the head. Azimuth θ refers to the angle between the median

Fig. 2.1 Structure of the human ear (extracted from [WHO06])
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plane and the vector from the center of the head to the source position. Azimuth is
usually defined in the clockwise direction, with 0° azimuth referring to the direction
right in front of us. Elevation ø is defined as the angle between the horizontal plane
and the vector from the center of the head to the source position. An elevation of 0°
refers to a sound directly in front, and increasing elevation will first move the sound
up, then behind, and finally under the listener.

In spatial hearing, sound localization can be considered in different perspectives.
In terms of the position of the sound source, we usually consider the direction (i.e.,
azimuth and elevation) and distance of the sound. Perception of single sound source
is different from multiple sound sources, where incoherent sound sources are per-
ceived as separate auditory events and coherent sound sources are governed by
summing localization (usually for sound sources with time difference under 1 ms)
or precedent effect (for time difference above 1 ms, e.g., reflections) [Bla97].
Coherent sound sources that arrive after several milliseconds would be perceived as
echo, which is quite common for sound in enclosed space. For sound localization
task, human brains combine various cues from perceived sound and other sensory
information such as visual images. It has been commonly known that the following
cues contribute to sound localization [Bla97, Beg00, AlD11, Xie13]:

(1) Inter-aural time difference (ITD),
(2) Inter-aural level difference (ILD),
(3) Spectral cues (monaural, relevant to the anthropometry of the listener),
(4) Head movement cues (a.k.a., dynamic cues),
(5) Intensity, loudness cues,
(6) Familiarity to sound source,
(7) Direct-to-reverberation ratio (DRR),
(8) Visual and other non-auditory cues.

Among the seven auditory cues (1) to (7), the first four contribute to direction
localization, whereas the last three affect distance perception.

Fig. 2.2 The coordinate system for sound localization
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2.1.3 Direction Perception: Azimuth and Elevation

A variety of psychoacoustic experiments have demonstrated human’s ability to
localize the direction of the sound source. The minimum audible angle (MAA) can
reach as low as 1°–3° for broadband sound (e.g., white noise) in the front horizontal
plane (±90° azimuth), though it becomes worse for other directions and narrow-
band sound [Bla97]. The ITD and ILD are the two most important cues for azimuth
direction localization. The ITD refers to the difference of time that the sound travels
from the source to the left and right ears. Apparently, sound from different direc-
tions would have different traveling time durations to the two ears, resulting dif-
ferent ITDs. The ILD is mainly caused by the attenuation of the sound levels in the
contralateral ear (further to the source) due to the head shadowing effect, compared
to the ipsilateral ear (nearer to the source). According to the duplex theory [Ray07],
ITD relates to the ability of human auditory system to detect inter-aural phase
differences at low frequency, and hence, ITD is more dominant in low frequency,
whereas ILD dominants at high-frequency region. The cutoff frequency is deter-
mined by the distance between the two ears (typically 22–23 cm), which is usually
considered to be around 1500 Hz.

For localization of sound in different elevations, ITD and ILD are not enough.
This is because identical ITD and ILD values can be obtained from the sound source
in a conical surface, as shown in Fig. 2.3 [Beg00]. This is the so-called cone of
confusion phenomenon [Mil72]. One of the most common perceptual errors in cone
of confusions is the front–back confusions, where one perceives a front (or back)
sound in the back (or front). In order to perceive the elevation directions correctly,
spectral cues are required. Spectral cues are mainly caused by head, torso, and pinna
that filter the incoming sound waves. Sound from different elevations would reach
different parts of our body (especially the pinna) and undergoes different reflections
before entering the ear canal. Most of the spectral cues due to pinna occur at
frequencies above 3 kHz, and the spectral cues due to head and torso appear in lower
frequencies. It is worth mentioning that the spectral cues vary greatly from person to
person due to the idiosyncratic anthropometry of the listener. In addition to the static
cues mentioned above, dynamic cues due to head movement are extremely useful in
resolving localization errors, especially front–back confusions.

Fig. 2.3 Cone of confusion
due to identical ITD and ILD
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The head-related transfer function (HRTF) is usually introduced to describe the
change in the sound spectra due to the interactions of the sound wave with the
listener’s head, torso, and pinna, which is defined as follows. In a free-field envi-
ronment, take the Fourier transform of the sound pressure (SPL or SPR) at the
eardrums of the two ears and the sound pressure (SP0) at the center of the head with
the listener absent. The HRTF is the ratio of these two Fourier representations.
Since human has two ears, HRTF typically comes in pairs. Clearly, HRTF is a
function of frequency (f), direction (h;/), distance (r), and listener (lsn) and is
expressed as

HL f ; h;/; r; lsnð Þ ¼ SPL f ; h;/; r; lsnð Þ
SP0 f ; rð Þ ;

HR f ; h;/; r; lsnð Þ ¼ SPR f ; h;/; r; lsnð Þ
SP0 f ; rð Þ :

ð2:1Þ

where PL, PR, and P0 are sound pressures in the frequency domain. According to
Algazi et al. [ADM01, BrD98, ADD02], HRTF can be approximated by a structural
composite of pinna-less head and torso, and the pinna, which is mainly effective at
modifying the source spectra at low and high frequencies, respectively. In the far
field, HRTF is usually considered to be independent of distance [Ken95a]. The
time-domain representation of HRTF is referred to as head-related impulse response
(HRIR).

In Figs. 2.4, 2.5, and 2.6, the HRIR and HRTF of subjects from the
CIPIC HRTF database are plotted [ADT01]. The HRIR and HRTF of the same
subject at different directions are shown in Fig. 2.4. It is clear that the waveform
and magnitude spectra shapes vary with the direction horizontally and vertically. In
Fig. 2.5, we show the ITD and ILD (full-band) that are computed from the HRTFs
of the same subject. It is clear that ITD and ILD exhibit a close-to-linear rela-
tionship with the azimuth, and the change across different elevations is minimal,
especially at non-lateral azimuthal directions. The HRIR and HRTF of three dif-
ferent subjects are plotted in Fig. 2.6, which indicates that HRTF generally differs
from individual to individual, especially the spectral notches in the high-frequency
range. The individual differences of HRTF among different subjects are indeed due
to the anthropometric features of these subjects.

2.1.4 Distance Perception

Perception of distance of sound sources is important in sound localization. In sound
rendering, it is critical to recreate the perception of distance of the sources close to
natural listening. However, the challenges in simulating accurate distance percep-
tion are numerous. Human beings’ ability to accurately estimate the distance of a
sound source has long been known to be poorer compared to our ability to estimate
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directions, even in the physical listening space [Zah02]. The experiments conducted
by Zahorik showed that the perceived distance can usually be expressed in a power
function of the actual distance [Zah02a]. The direct-to-reverberation energy ratio is
found to be the most critical cue for absolute distance perception, even though the
intensity, loudness, and binaural cues (including ILD and inter-aural coherence) can
provide relative cues for distance perception [Zar02b, Beg00]. However, accurate
simulation of distance perception is challenging since reverberation depends on the
room characteristics. The correct amount of reverberation to be added to simulate
distance perception in a particular room can be obtained only by carrying out
acoustical measurements.

2.1.5 Sound in Rooms: Reflections and Reverberation

Though sound localization is discussed in free-field environment, the real-life sound
environment is never free-field. The existing free-field environment can only be
found in an anechoic chamber. Rooms that we live in everyday are filled with
reflections and reverberation, usually characterized by the room impulse response
(RIR). A schematic illustration of RIR is shown in Fig. 2.7. A typical RIR consists
of three parts: the direct path, early reflections, and late reverberation (after 80 ms).
An important aspect of room acoustics is the reverberation time RT60, which is
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Fig. 2.6 HRIR and HRTF (left ear, azimuth = 0°, elevation = 0°) of three different subjects
(subjects 003, 008, 009 in the CIPIC HRTF database [ADT01])
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defined by the time that it takes for the sound to attenuate by 60 dB once the sound
source ceases. To simulate the perception of sound in rooms (or sound environment
in general), RIRs that are derived or measured from the (approximately) geomet-
rically identical room are usually used to add artificial reverberation to the dry
sound sources [VPS12].

2.1.6 Psychoacoustics and Critical Band

Sound is meaningful when it is perceived by humans. Changes in the physical part
of the sound (including frequency, intensity, phase, direction) may not always
excite perceptual difference. This is mainly due to the limitation of human auditory
system. Thus, in additional to objective evaluation, psychoacoustic experiments,
which are in the form of subjective listening tests, are conducted to evaluate the
performance of a sound reproduction system. The psychoacoustic experiments
could help us better understand how the system actually performs in practice. The
psychoacoustic experiments usually include the localization of the sound sources,
quality of the synthesized sound, quality of the reproduction system (e.g., loud-
speakers and headphones), quality of the rendering methods, and so on.

One of the most important aspects of psychoacoustics is auditory masking,
where a louder sound masks (fully or partially) a weaker sound when their spectra
are close. Auditory masking happens in frequency domain (spectral masking) and
time domain (temporal masking). The range of the spectra for spectral masking is
defined based on its critical band, as per the psychoacoustic experiments. According
to Zwicker [Zwi61], 24 bands known as the Bark scale are defined to cover the
frequency range of human listening. Each critical band has a center frequency with
an approximate 1/3 octave bandwidth. The conversion from frequency (f in kHz)
into the Bark can be described as:

Bark ¼ 13 arctan 0:76fð Þþ 3:5 arctan f =7:5ð Þ2
h i

: ð2:2Þ

Fig. 2.7 A schematic
illustration of RIR (adopted
from [VPS12])
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Another example of critical band is the equivalent rectangular bandwidth
(ERB) [Moo98], which is described as:

ERB ¼ 24:7 4:37f þ 1ð Þ: ð2:3Þ

It is widely believed that the human auditory system is performing the critical
band analysis of the incoming sound, in tasks like localization and separation of
sound [Fle40, Bre90]. Therefore, many audio processing systems are derived based
on the concept of critical band (or its equivalents). For example, in binaural cue
coding (BCC), 20 non-uniform filterbank based on ERB is employed [FaB03].
Furthermore, MPEG Surround employs a hybrid quadrature mirror filter
(QMF) filterbanks [SBP04, HPB05] that match the frequency resolution of the
human auditory system.

2.2 Spatial Audio Reproduction

Most of the time, we are not listening to real sound in a real environment, but are
listening to a reproduced sound playback from a sound reproduction system. The
reproduced sound is often referred to as virtual sound, as compared to real sound in
natural listening.

2.2.1 A Brief History of Sound Reproduction Systems

Ever since the invention of phonograph by Edison in 1887, sound has been an
essential part of telecommunication and media. The first stereo loudspeaker system
was introduced by Blumlein [Blu31] in 1931, which has since then become the
most popular sound reproduction system in homes. It takes humans some forty
years to come up with new sound systems, including the first Dolby surround sound
[ITU12] and Ambisonics invented by Gerzon [Ger73]. Though invented at almost
the same time, these two systems undergo extremely different paths. The surround
sound reproduction system, including 5.1 and 7.1, as pushed by the film and music
industries, has become the most prevalent home theater systems. The 5.1 surround
sound system requires five speakers placed at center (0° azimuth), front left (−30°
azimuth), front right (30° azimuth), surround left (−110° azimuth), surround right
(110° azimuth), and a subwoofer. The 7.1 surround sound system extends 2 sur-
round speakers in 5.1–4 speakers. The multichannel surround sound system keeps
evolving, from one layer to two layers (such as 9.1 and 10.2) to even more layers
(such as 22.2 [HMS11], Auro 3D). On the other hand, Ambisonics, despite its
mathematical beauty (based on Huygens’ principle), was not well adopted in
commercial systems. Nevertheless, the research on Ambisonics was never stopped
in academia and it gains popularity in recent years, as shown in new MPEG-H
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standard [HHK14]. In 1993, another sound reproduction technique, wave field
synthesis (WFS), was introduced [Ber88, BVV93] and has found its presence in
commercial products since 2001. Besides the development of loudspeaker systems,
headphones are getting more and more widely used in recent years, which is mainly
due to the rapid increase in mobile devices. The HRTFs are widely used in
headphone-based 3D sound reproduction [Beg00, AlD11, SHT15]. Today, we see a
variety of sound reproduction systems in various applications, from cinema, home
theater, to on the go. More and more 3D sound reproduction techniques have been
studied and implemented in commercial products.

2.2.2 Representations of Audio Content

With the development of different recording and mixing techniques, different types
of audio content representations have emerged in commercial market. Three main
types are as follows: channel-based, object-based, and transform-domain-based.

Channel-based format has been the most common way of audio content repre-
sentation. The channel-based format is playback-oriented as the channel signals can
be directly fed to the loudspeakers based on the standard configuration (i.e., pre-
scribed positions). Usually, no additional processing (or very little processing like
volume control) is required. This is because the channel-based format is usually the
outcome of the sound mixing process (performed by the sound engineer). Besides
the easy applicability for the playback, the channel-based format is also rather
efficient at transmission and storage. The down side of channel-based format lies in
its requirement to have a fixed playback system that corresponds to the number of
channels. For example, stereo audio content requires the two speakers to be placed
symmetrically at ±30° azimuth on the two sides of the listener. The 5.1 channel
further adds a center and two rear channels, placed at 0° and ±110° azimuth,
respectively, together with a subwoofer (low-frequency effect channel). A matrix
system that enables the downward compatibility of 5.1 is discussed in [ITU12].
Other channel-based formats include 7.1, 9.1, 10.2, and all the way up to 22.2 in
three vertical layers. Adding height channels in channel-based audio is a funda-
mental improvement over horizontal loudspeaker setup to make the sound repro-
duction in full three dimensions. Commercial examples involving height channels
on top of the conventional surround sound formats include Dolby ATMOS [Dol13]
and Auro 3D [Aur15].

Object-based format is the most original format of a sound recording.
Object-based format represents a sound scene using a combination of sound objects
with the associated metadata [HHK15]. Sound objects are essentially individual
sound sources. The metadata usually consists of two types: static metadata, such as
language and on/off time, and dynamic metadata, such as position or direction,
level, width, or diffuseness of the sound object. Not all audio objects are separated.
Those objects that collectively contribute to a fix sound effect or sound environment
shall be grouped and regarded as one “larger” audio object. As a result, metadata
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can be specified for each audio object or a group of objects. The greatest benefit of
object-based audio is that it can be rendered optimally for any arbitrary playback
systems. Meanwhile, interactivity can be enabled, for example, changing to another
language of speech, increasing the loudness of certain objects (e.g., speech level
shall be higher for hearing-impaired listeners), and adapting the position of the
sound objects according to listener’s movement in virtual reality applications. The
object-based format is the best format in terms of reproduction flexibility and
quality. However, two challenges that are found in practical implementation are
high storage or transmission bandwidth and high computation complexity for
real-time rendering [MMS11]. Important aspects on the implementation of audio
objects’ coding and rendering were extensively studied in [Pot06]. Some work has
been carried out by MPEG to achieve an efficient coding of sound objects based on
perceptual features [HPK12].

The other type of audio representation is known as the transform-domain-based
format (or scene based, Ambisonics) [SWR13]. Transform-domain-based format
encodes the sound scene using orthogonal basis functions physically (using
microphones) or digitally. In the reproduction, a corresponding rendering process is
required. Though individual sound objects are not used, transform-domain-based
format can also achieve flexibility in reproduction for various playback setups,
thanks to the sound field analysis and synthesis principle [Pol05]. However, the
transform-domain representation is less common and less supported (e.g.,
recording/reproduction equipment) in industry than in academia.

2.2.3 Spatial Audio Reproduction Techniques

These above-mentioned sound scene representations support different spatial audio
reproduction techniques. Due to the nature of channel-based representations, con-
ventional spatial audio reproduction techniques are straightforward as the audio
signals of each channel are directly sent to drive the corresponding loudspeaker,
resulting in stereo loudspeaker playback, 5.1, 7.1 surround sound playback, and
stereo headphone playback. The simplicity of channel-based reproduction is
achieved at the cost of strict requirement of exact match of the playback configu-
ration. When there is a mismatch between the audio content and actual playback
configuration, the performance is degraded, though simple down-mixing and
up-mixing approaches can be applied.

In contrast to the channel-based format, the object-based and transform-domain-
based formats are more flexible in the playback and usually achieve better
performance in spatial audio reproduction. Modern spatial audio reproduction
techniques can usually be divided into two classes, namely the physical recon-
struction and perceptual reconstruction [HWZ14].

The first class of physical reconstruction aims at synthesizing the sound field in
the listening area or point to be (approximately) equal to the desired sound field.
Sound field synthesis is essentially based on the physical principle of synthesizing
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acoustic pressure using a weighted distribution of monopole sources [SWR13].
Two examples of sound field synthesis techniques are Ambisonics (4 channels) or
high-order Ambisonics (HOA, consists of more than 4 channels), and WFS.
Ambisonics or HOA decomposes (or encodes) a sound field using spherical har-
monics, which results in the transform-domain-based representation. With more
channels, HOA can improve the spatial quality of reproduced sound field over
Ambisonics. The best listening area in Ambisonics is usually limited to the central
area of the sphere. In contrast, WFS can extend the sweet spot to a much wider area
by approximating the propagation of the primary source using an array of secondary
sources (loudspeakers). The loudspeaker driving signals are derived using a syn-
thesis system function and source signals, which are expressed in object-based
format. Compared to Ambisonics, WFS is not only well studied in academia, but
also employed in some commercial sound systems such as IOSONO [Ios15] and
Sonic Emotion [SoE15]. A major challenge in the physical reconstruction tech-
niques is the requirement of large amount of loudspeakers and high computational
complexity (especially in real-time rendering scenarios) [SWR13].

The other type of spatial audio reproduction techniques is based on the per-
ceptual characteristics of human auditory system that our listening is not very
sensitive. A good spatial audio reproduction is one that sounds good. The key idea
of perceptual based spatial audio reproduction techniques is to have the sound
captured by the listener’s eardrum to be perceptually close to the desired sound
field. While the reproduced sound field does not always well match the desired
sound field, perceptual based spatial audio reproduction techniques can greatly
simplify the reproduction method. The simplest example of this category is the
amplitude panning techniques, which are widely employed in sound mixing for
stereo and surround sound [Hol08]. Techniques that extend amplitude panning to
3D space include the vector base amplitude panning [Pul97, PuK08] and variants
like distance-based amplitude panning [LBH09]. Amplitude panning techniques are
based on the ILD cues to recreate the correct direction of the sound sources.
Similarly, time delay techniques that vary the ITD can also be used for spatial audio
reproduction [SWR13].

However, the amplitude panning and time delay techniques are usually too
simple to reproduce the correct impression of the sound sources with increased
source width [MWC99], degraded location performance [ThP77], and coloration
[PKV99]. A better approach is to consider the complete localization cues, which are
included in the HRTFs [Beg00]. This approach is usually applied in headphone
playback, and it is known as binaural rendering. The key idea in binaural rendering
is to consider the sound source propagation process (from sound source to listener’s
eardrum) as a linear-time-invariant system and express this alteration of the source
spectra due to human body as a filter. Therefore, the perception of any source from
any direction can be recreated by convolving the sound source with the corre-
sponding filters to obtain the driving signals that are sent to a compensated head-
phone (assumed transparent). The same concept of binaural rendering can also be
applied in stereo loudspeakers, which is known as transaural rendering [Gar97].
Compared to binaural rendering, transaural rendering requires one additional
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process known as crosstalk cancelation. Multichannel extension of crosstalk
cancelation and transaural system are discussed in [Gar00]. Crosstalk cancelation
techniques are very sensitive of listener movement and small changes in sound
environment, which limits the practical use of transaural systems. In contrast,
binaural rendering over headphones is much more widely used. However, there
remain two major challenges. The first one lies in the large variations of the HRTFs
among different individuals. The use of non-individualized HRTF will degrade the
localization accuracy. The other problem is the headphone itself, which is hardly
completely transparent, and headphone effect compensation varies not only from
person to person, but also even after repositioning. Due to the advent of
virtual/augmented reality applications, many studies on HRTF individualization
and headphone compensation are currently being carried out.

2.2.4 Spatial Audio Processing

In order to achieve the goal of efficient, flexible, and immersive spatial audio
reproduction, different spatial audio signal processing techniques are introduced.
The aim of spatial audio processing (or coding) techniques is to complement the
discrepancies in the above-mentioned spatial audio reproduction techniques, with a
focus on channel-based signals and conventional multichannel reproduction tech-
niques. Generally, these techniques are based on the concept of parametric spatial
audio processing [KTT15] and exploit the perceptual characteristics of human
auditory systems [Bla97]. In this part, we focus on five most widely studied
frameworks, though other variations could also been found in the literature. Among
the five frameworks discussed below, two of them deal with channel-based signals,
one on the object-based signals and another one on the transform-domain-based
signals, and the latest one consolidates all three types of signals.

For channel-based signals, the objective of spatial audio processing is to achieve
a more efficient representation that can reproduce perceptually plausible sound
scenes. The most widely known framework comes from the MPEG audio group,
known as MPEG Surround [HKB08, BrF07, HiD09]. In MPEG Surround, the
multichannel signals go through a spatial analysis process and is represented using a
down-mixed version together with the spatial parameters, as shown in Fig. 2.8. In
the spatial synthesis, the original multichannel can be reconstructed using the
spatial parameters in a way that the spatial perception is maximally preserved.
Furthermore, other types of synthesized output include the direct down-mix for the
playback with a reduced number of loudspeakers and binaural signals for head-
phone playback [BrF07, FaB03]. The details on the coding of the spatial parameters
can be found in BCC framework [FaB03, BaF03].

Another framework that is also targeting channel-based audio is the so-called
spatial audio scene coding (SASC) framework developed by Jot et al. [GoJ08,
JMG07, GoJ07a, GoJ06a, GoJ06b, GoJ07c]. Compared to MPEG Surround, SASC
was designed to address the pressing need to enhance sound reproduction over
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arbitrary playback configurations in loudspeakers and headphones. The detailed
block diagram is shown in Fig. 2.9. In SASC, a sound scene is considered as a sum
of primary and ambient components. Therefore, primary ambient extraction (or
decomposition) is applied first, followed by the spatial analysis carried out inde-
pendently for the primary and ambient components to obtain the spatial cues (i.e.,
localization information). In the spatial synthesis, the output is reconstructed using
the primary and ambient components as well as the spatial cues. By taking into
account the actual playback format, the reconstruction is able to fit any playback
configuration. Due to this advantage of SASC, the primary ambient extraction work
described in this book is essentially based on SASC. Details on the primary ambient
extraction will be discussed throughout this book.

For object-based audio signals, MPEG introduced MPEG spatial audio object
coding (SAOC) framework in 2012 [HPK12]. Similar to MPEG Surround, the
MPEG SAOC aims to achieve an efficient representation of the object-based audio
using a parametric approach that takes a down-mix of the audio objects in sub-band
with supplementary inter-object information, as shown in Fig. 2.10. In the syn-
thesis, the object decoder can be employed first before the render or can be com-
bined into one block. Based on the information of the actual playback information,

Fig. 2.8 Basic concept of MPEG Surround (adapted from [HiD09])

Fig. 2.9 Block diagram of spatial audio scene coding (SASC) (adapted from [GoJ08])
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a rendering matrix is used to transform the audio objects into channel signals for
playback. It shall be noted that SAOC can also achieve the flexibility and inter-
activity of the object-based format.

For transform-based signals, a parametric spatial audio processing framework
known as directional audio coding (DirAC) was introduced by Pulkki et al. [Pul07].
As shown in Fig. 2.11, DirAC analyzes the direction and diffuseness information of
the microphone signals (in B-format) and then decomposes the microphone signals
into two streams, namely diffuse streams and non-diffuse streams. As shown in
Fig. 2.11, these two streams go through different rendering processes, where the
non-diffuse streams are processed using VBAP with the loudspeaker setup infor-
mation provided, and diffuse streams are decorrelated and played back over all the
channels. The advantage of such decomposition, similar to SASC, is to be able to
achieve flexible reproduction over arbitrary playback configurations.

Finally, MPEG-H [HHK14, HHK15], introduced in 2014, aims to handle all
three types of audio content (channel-based, object-based, and transform-domain-
based, presenting a complete solution for universal spatial audio reproduction. An
overview of MPEG-H framework is depicted in Fig. 2.12. In the first step, the input

Fig. 2.10 Basic concept of spatial audio object coding (SAOC) (adapted from [HPK12])

Fig. 2.11 Block diagram of directional audio coding (DirAC) (adapted from [Pul07])
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bit stream is converted to their respective format using unified speech and audio
coding (USAC)-3D core decoder. Next, different content types go through corre-
sponding processing before they were mixed into channel signals that match the
actual playback system layout. Finally, in the case of headphone playback, a bin-
aural rendering of loudspeaker signals based on binaural room impulse response
(BRIR) is employed. With such a unified framework, MPEG-H 3D audio can be
employed for any content type and any playback configuration, while achieving the
highest spatial audio quality.

2.2.5 Spatial Audio Evaluation

In spatial audio reproduction, the quality of the reproduced sound scene is usually
evaluated on human perception. Perceptual evaluation of audio quality is often
achieved using subjective listening tests [BeZ07]. Unlike conventional sound
quality evaluation that usually only considers the timbre quality [GaS79] (e.g.,
evaluation of the quality of audio codec [ITU03]), the spatial quality is equally
important in spatial audio evaluation [Rum02]. Referring to these two aspects of
audio quality for spatial audio evaluation, Table 2.1 below summarizes the various
attributes that can be considered in each category [SWR13]. Among the timbre
attributes, timbre fidelity, coloration, and distortion are more widely used. For
spatial attributes, spatial fidelity, envelopment, distance, and localization are more
important. Relative importance between the spatial quality and timbre quality is
investigated in [RZK05], and it was summarized that the overall sound quality can
be explained by the sum of 70 % of the timbre quality and 30 % of the spatial
quality. Beyond these “perceptive domain” attributes as listed in Table 2.1, the

Fig. 2.12 Overview of MPEG-H 3D audio coding (adapted from [HHK14])
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highest level of perception is in the “affective domain” [11], where the listeners
indicate their preference of the perceived sound scenes. In spatial audio repro-
duction where virtual audio is presented to the listener, an importance affective
feature is the immersiveness. In other words, while listening to the reproduced
sound, how much the listener feels as if him/herself is inside the virtual scene
(a.k.a., being there). Pursuing an immersive reproduction is the common aim of all
spatial audio reproduction systems including the primary ambient extraction-based
spatial audio reproduction.

2.2.6 Summary and Comparison of Spatial Audio
Reproduction

Table 2.2 summarizes the advantages, disadvantages, and the status of the three
audio formats discussed in this section. Furthermore, the spatial audio reproduction
systems that correspond to each audio format are listed, together with the possible

Table 2.1 Attributes used for perceptual spatial audio evaluation (adapted from [SWR13])

Category Attribute Description

Timbre Timbral fidelity Degree to which timbral attributes agree with reference

Coloration Timbre change considered as degradation of auditory event

Timbre, color
of tone

Timbre of auditory events

Volume, richness Perceived thickness

Brightness Perceived brightness or darkness

Clarity Absence of distortion, clean sound

Distortion,
artifacts

Noise or other disturbances in auditory event

Spatial Spatial fidelity Degree to which spatial attributes agree with the reference

Spaciousness Perceived size of environment

Width Individual or apparent source width

Ensemble width Width of the set of sources present in the scene

Envelopment Degree to which the auditory scene is enveloping the
listener

Distance Sense of perspective in the auditory scene as a whole

Externalization Degree to which the auditory event is localized inside or
outside of the head

Localization Measure of how well a spatial location can be attributed to
an auditory event

Robustness Degree to which the position of an auditory event changes
with listener movements

Stability Degree to which the location of an auditory event changes
over time
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spatial audio processing techniques. It shall be noted that though classified in
Table 2.2, there are still exceptions that link one audio format with other repro-
duction systems or processing techniques. For example, channel-based signals can
also be employed in binaural/transaural rendering by considering one channel as
one audio object with a fixed position. Ambisonics reproduction can also be
extended to object-based audio by encoding the sound objects using spherical
harmonics. It could be foreseen that with the advancement of semiconductor
industry, the efficiency problem in object-based audio could be greatly alleviated
and object-based audio will overtake channel-based to become the most commonly
used audio format. Thus, advanced spatial audio reproduction system can essen-
tially be employed in homes and mobile platforms. Nevertheless, there is still a
need to ensure the compatible playback of channel-based audio signals due to the
large amount of content available today.

2.3 Prior Work in Primary Ambient Extraction

In this section, we will summarize various existing works on PAE and highlight
how our works differ from those in the literature.

As discussed above, PAE is an integral part of SASC framework that considers
the audio scene as a sum of the primary components and ambient components. The

Table 2.2 A summary of the characteristics of three audio content formats and their relationships
with the spatial audio reproduction systems and processing techniques

Audio content
format

Channel-based Object-based Transform-domain-based

Advantages Easy to set up; no
processing for the
matched playback
configurations

Flexible for arbitrary
playback
configuration; accurate
sound image; enable
interactivity

Flexible for arbitrary
playback configuration;
full 3D sound image

Disadvantages Difficult to fit in
different playback
configurations; 3D
sound image
limited

High transmission or
storage; high
computation
complexity

Require a large number
of speakers placed on the
surface of a sphere

Status Legacy audio
format, still
dominant

Emerging audio
format; gaining
popularity

Not well adopted
commercially

Desired
reproduction
system

Stereo and
multichannel
surround sound
system

Amplitude panning,
WFS, binaural,
transaural rendering

Ambisonics and HOA

Typical
spatial audio
processing

MPEG Surround
[HiD09], SASC
[GoJ08]

SAOC [HPK12] DirAC [Pul07]
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primary components are usually composed of directional pointlike sources, whereas
the ambient components are diffuse sound determined by the sound environment.
The target audio format of PAE is channel-based signals. Therefore, we classify the
PAE approaches based on the number of channels in the input signals: single
channel (or mono), stereo, and multichannel. From another perspective, the com-
plexity of the audio scenes affects the performance of PAE greatly. Based on the
existing PAE work, the complexity of audio scenes can generally be classified into
three levels, namely basic, medium, and complex. The basic complexity level refers
to the audio scene where there is usually one dominant source in the primary
components, with its direction created using only amplitude panning techniques.
More specific conditions for the basic level will be detailed in Chap. 3. The medium
complexity level requires only the condition of one dominant sources, without
restricting how its direction (using amplitude panning, delay, or HRTF, etc.) can be
created. In the complex audio scene level, we consider multiple dominant sources in
the primary components. The number of dominant sources in this case is also
usually limited to 2–3 since it is impractical for listeners to concentrate on too many
sources at one time and listeners would rather consider those sources as ambient
components. Note that those PAE approaches that claimed to work in multiple
sources using sub-band techniques, but without detailed study, will not be classified
in the complex level category. From these two perspectives, we shall classify the
existing PAE approaches into different categories, as summarized in Table 2.3.

With a glance of this table, it is observed that most of the PAE works are mainly
focused on the stereo signals, due to the large amount of stereo content. There are
some works carried out for multichannel signals, whereas very limited works are on
single-channel signals. This makes sense because dealing with multichannel signals
is much less challenging than dealing with single-channel signals, where there is
very limited information (especially the inter-channel relations). Next, we will
summarize the PAE work in each category.

2.3.1 Stereo Signals

PAE for stereo signals in the basic complexity category can be classified into four
types: (i) time–frequency masking, (ii) principal component analysis (PCA),
(iii) least squares (LS), and (iv) ambient spectrum estimation, as well as some other
techniques.

One of the earliest works in primary or ambient extraction was from Avendano
and Jot in 2002 [AvJ02]. In this work, a time–frequency masking approach was
proposed to extract ambient components Âc from stereo signals Xc, as

Âc m; lð Þ ¼ Xc m; lð ÞWA m; lð Þ; ð2:4Þ
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where c denotes the channel index and 0�WA m; lð Þ� 1 is the real-valued ambient
mask at time–frequency bin m; lð Þ: The time–frequency regions that present high
coherence correspond to stronger primary components, and low-coherence time–
frequency regions can be attributed to stronger ambient components [AvJ04]. Thus,
they derived the ambient mask using a nonlinear function of the inter-channel
coherence. The following works on time–frequency masking derive the ambient
mask based on the characteristic that ambient components have equal level in the
two channels of the stereo signal [MGJ07] or using diffuseness measured from
B-format microphone recordings [Pul07].

PCA has been the most widely studied PAE approach [IrA02, BVM06, MGJ07,
GoJ07b, BaS07, God08, JHS10, BJP12, TaG12, TGC12, LBP14, HTG14]. The key

Table 2.3 An overview of recent work in PAE

No. of
channels

Complexity of audio scenes

Basic (single source, only amplitude
panning)

Medium
(single source)

Complex
(multiple
sources)

Stereo Time–frequency masking:
[AvJ02], [AvJ04], [MGJ07], [Pul07]
PCA:
[IrA02], [BVM06], [MGJ07],
[GoJ07b], [BaS07], [God08], [JHS10],
[BJP12], [TaG12], [TGC12], [LBP14]
Least squares: [Fal06], [Fal07],
[JPL10], [FaB11], [UhH15]
Linear estimation: [HTG14]
Ambient spectrum estimation:
[HGT15a], [HGT15b]
Others: [BrS08], [MeF10], [Har11]

LMS: [UsB07]
Shifted PCA:
[HTG13]
Time-shifting:
[HGT15c]

PCA:
[DHT12],
[HGT14],
[HeG15],

Multichannel PCA:
[GoJ07b]
Others:
[GoJ07a], [WaF11], [TGC12],
[CCK14]

ICA and time–
frequency
masking:
[SAM06]
Pairwise
correlations:
[TSW12]
Others:
[StM15]

ICA: [HKO04]

Single NMF: [UWH07]
Neural network: [UhP08]

Notes
1. Those papers that do not explicitly study and evaluate complex signals will be classified into the
basic or medium complexity categories

2. Blue color represents application papers, where no detailed study is carried out on PAE
3. Red color represents our works, which are described in the following chapters of this book
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idea behind the PCA-based PAE approach is to extract the principal component with
the largest variance as the primary components (as the name suggests). Variants of
PCA include the modified PCA that ensures uncorrelated ambience extraction
[God08], enhanced post-scaling to restore the correct primary-to-ambient energy
ratio [JHS10], and correct power of primary and ambient components [BJP12]. In
our work [BJP12], we derived a simplified solution for PCA and conducted a
comprehensive objective evaluation of PCA, which leads us to the applications of
PCA in PAE.

Least-squares algorithm is another type of commonly used PAE approaches
[Fal06, Fal07, JPL10, FaB11, HTG14, UhH15]. Based on the basic stereo signal
model, least-squares algorithm derives the estimated primary and ambient com-
ponents by minimizing the mean square error (MSE) of the estimation of these
components [Fal06]. Several variants of LS have been proposed and studied in our
work [HTG14]. Combining PCA with LS, we proposed a unified linear estimation
framework for PAE [HTG14], where details of liner estimation-based PAE can be
found in Chap. 3. Furthermore, other least-squares variants were introduced to
improve the spatial quality of the extracted primary and ambient components
[JPL10, UhH15].

To solve the problem of removing uncorrelated (undesired) ambient components
from the extraction output, a new framework based on ambient spectrum estimation
was introduced recently [HGT15a, HGT15b]. Details on the ambient spectrum
estimation approaches can be found in Chap. 4 of this book. Other PAE approaches
that fall into this category include [BrS08] that derives an out-of-phase signal as
ambient components; [MeF10] that considers ambient components as the sum of a
common component and an independent component; and [Har11] that classifies
various signal models for respective extraction.

In order to handle stereo signals that consist of primary components whose
directions are created using time/phase differences (i.e., medium complexity),
several works can be found in the literature. Usher and Benesty proposed an
adaptive approach using normalized least mean squares (NLMS) to extract rever-
beration from stereo microphone recordings [UsB07]. However, this adaptive
approach cannot always yield a good performance in a short time. In contrast, our
proposed shifted PCA [HTG13] and extended time-shifting technique [HGT15c] is
much simpler in solving this problem. Details on this approach can be found in
Chap. 5 of this book.

With respect to stereo signals with multiple sources, there is less work reported
in the literature of PAE. One prior work by Dong et al. applied PCA in polar
coordinates to reduce the coding noise of stereo signals for multiple source cases
[DHT12]. However, the extraction performance was not studied. To fill this gap, we
conducted two works that studied PCA with different frequency partitioning
methods in frequency domain [HGT14] and PCA with multiple time shifts in time
domain [HeG15]. Details are described in Chap. 6 of this book.
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2.3.2 Multichannel Signals

Besides the extensive study on PAE for stereo signals, PAE on multichannel signals
is less well studied. PCA was originally proposed to work for multichannel signals
with only one dominant amplitude-panned source in [GoJ07b]. There are several
works [GoJ07a, WaF11, TGC12, CCK14] that only briefly mention the idea for
multichannel PAE without in-depth studies. For other multichannel signals with one
dominant source, independent component analysis (ICA) can be combined with
time–frequency masking to extract the dominant sources [Sam06]. Another
approach that was extended from [AvJ04] achieves primary ambient extraction
using a system of pairwise correlation. Recently, Stefanakis introduced W-disjoint
orthogonality (WDO) and PCA-based foreground suppression techniques in mul-
tichannel microphone recordings [StM15]. In the case of multiple sources in
multichannel signals, blind source separation techniques can be employed for the
purpose of primary ambient extraction. When the number of dominant sources is
equal to or less than the number of channels (as it is the case for PAE), ICA is a
common technique [HKO04]. Compared to stereo signals, PAE with multichannel
signals is in fact easier to solve since there are more data available. Moreover, PAE
approaches based on stereo signals can be extended to multichannel signals. Some
discussions on this topic can be found in [HeG15b].

2.3.3 Single-Channel Signals

In contrast to stereo and multichannel signals, PAE with single-channel signals is
quite challenging due to the limited amount of information available. A critical
problem in the single-channel case is that how primary and ambient components
can be defined and characterized since there are no inter-channel cues.
Nevertheless, two works from Uhle shed some light on solving such a problem. In
[UWH07], it is considered that ambient components exhibit a less repetitive and
constructive spectra structure than primary components. Therefore, when applying
nonnegative matrix factorization (NMF) on the single-channel signal, primary
components are better explained and factorized, and the residue can thus be con-
sidered as ambient components. However, the NMF method suffers from high
computational complexity and latency. To avoid this problem, Uhle and Paul
introduced a supervised learning approach for ambient extraction from
single-channel signals [UhP08], where a neural network is trained to obtain an
ambient spectra mask. Subjective listening tests in [UhP08] validated the improved
perceptual quality of the up-mix systems employing these PAE approaches.

28 2 Literature Review on Spatial Audio



2.4 Sound Scene Decomposition Using PAE and BSS

To achieve a flexible and immersive 3D sound rendering, two important con-
stituents of the sound scenes are required, namely the individual sound sources and
characteristics of the sound environment. However, this information is usually not
directly available to the end user. One has to work with the existing digital media
content that is available, i.e., the mastered mix distributed in channel-based formats
(e.g., stereo, 5.1). Therefore, it is necessary to extract the sound sources and/or
sound environment from their mixtures. Two types of techniques that can be
applied in sound scene decomposition are PAE and BSS.

2.4.1 Decomposition Using BSS

Extracting the sound sources from the mixtures, often referred to as BSS, has been
extensively studied in the last few decades. In BSS, the sound scene is considered to
be the sum of distributed sound sources. The basic mixing model in BSS can be
considered as anechoic mixing, where the sources sk nð Þ in each mixture xc nð Þ have
different gains gck and delays sck: Hence, the anechoic mixing is formulated as
follows:

xc nð Þ ¼
XK
k¼1

gcksk n� sckð Þþ ec nð Þ; 8c 2 1; 2; . . .;Cf g; ð2:5Þ

where ec nð Þ is the noise in each mixture, which is usually neglected for most cases.
Note that estimating the number of sources is quite challenging and it is usually
assumed to be known in advance [HKO04]. This formulation can be simplified to
represent instantaneous mixing by ignoring the delays or can be extended to
reverberant mixing by including multiple paths between each source and mixture.
An overview of the typical techniques applied in BSS is listed in Table 2.4.

Based on the statistical independence and non-Gaussianity of the sources, ICA
algorithms have been the most widely used techniques in BSS to separate the
sources from mixtures in the determined case, where the numbers of mixtures and

Table 2.4 Overview of typical techniques in BSS

Objective: To extract K (K > 2) sources from C mixtures

Case Typical techniques

Determined: K = C ICA [HKO04]

Overdetermined: K < C ICA with PCA or LS [HKO04]

Underdetermined: K > C C > 2 ICA with sparse solutions [HKO04, PBD10]

C = 2 Time–frequency masking [YiR04]

C = 1 NMF [Vir06, VBG14]; CASA [WaB06]
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sources are equal [HKO04]. In the overdetermined case, where there are more
mixtures than sources, ICA is combined with PCA to reduce the dimension of the
mixtures, or combined with LS to minimize the overall MSE [HKO04]. In practice,
the underdetermined case is the most common, where there are fewer mixtures than
sources. For the underdetermined BSS, sparse representations of the sources are
usually employed to increase the likelihood of sources to be disjoint [PBD10]. The
most challenging underdetermined BSS is when the number of mixtures is two or
lesser, i.e., in stereo and mono signals.

Stereo signals (i.e., C = 2), being one of the most widely used audio format,
have been the focus in BSS. Many of these BSS techniques can be considered as
time–frequency masking and usually assume one dominant source in one time–
frequency bin of the stereo signal [YiR04]. In these time–frequency masking-based
approaches, a histogram for all possible directions of the sources is constructed,
based on the range of the binwise amplitude and phase differences between the two
channels. The directions, which appear as peaks in the histogram, are selected as
source directions. These selected source directions are then used to classify the
time–frequency bins and to construct the mask. For every time–frequency bin
m; lð Þ, the kth source at cth channel Ŝck n; lð Þ is estimated as:

Ŝck m; lð Þ ¼ Wck m; lð ÞXc m; lð Þ; ð2:6Þ

where the mask and the mth mixture are represented by Wck m; lð Þ and Xc m; lð Þ;
respectively.

In the case of single-channel (or mono) signals, the separation is even more
challenging since there is no inter-channel information. Hence, there is a need to
look into the inherent physical or perceptual properties of the sound sources.
NMF-based approaches are extensively studied and applied in single-channel BSS
in recent years. The key idea of NMF is to formulate an atom-based representation
of the sound scene [Vir06], where the atoms have repetitive and non-destructive
spectral structures. NMF usually expresses the magnitude (or power) spectrogram
of the mixture as a product of the atoms and time-varying nonnegative weights in
an unsupervised manner. These atoms, after being multiplied with their corre-
sponding weights, can be considered as potential components of sources [VBG14].
Another technique applied in single-channel BSS is the computational auditory
scene analysis (CASA) that simulates the segregation and grouping mechanism of
human auditory system [WaB06] on the model-based representation (monaural
case) of the auditory scenes. An important aspect worth considering is the directions
of the extracted sources, which can usually come as a by-product in multichannel
BSS. In single-channel BSS, this information of source directions has to be pro-
vided separately.
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2.4.2 A Comparison Between BSS and PAE

Both BSS and PAE are extensively applied in sound scene decomposition, and a
comparison between these approaches is summarized in Table 2.5. The common
objective of BSS and PAE is to extract useful information (mainly the sound
sources and their directions) about the original sound scene from the mixtures and
to use this information to facilitate natural sound rendering. Following this objec-
tive, there are three common characteristics in BSS and PAE. First, only the
mixtures are available and usually no other prior information is given. Second, the
extraction of the specific components from the mixtures is based on certain signal
models. Third, both techniques require objective and subjective evaluation.

As discussed earlier, the applications of different signal models in BSS and PAE
lead to different techniques. In BSS, the mixtures are considered as the sums of
multiple sources, and the independence among the sources is one of the most
important characteristics. In contrast, the mixing model in PAE is based on human
perception of directional sources (primary components) and diffuse sound envi-
ronment (ambient components). The perceptual difference between primary and
ambient components is due to the directivity of these components that can be
characterized by their correlations. The applications that adopted BSS and PAE also

Table 2.5 Comparison between BSS and PAE in sound scene decomposition

BSS PAE

Objective To obtain useful information about the original sound scene from given
mixtures and facilitate natural sound rendering

Common
characteristics

• Usually no prior information, only mixtures
• Based on certain signal models
• Require objective as well as subjective evaluation

Basic mixing
model

Sums of multiple sources
(independent, non-Gaussian, etc.)

Primary components (highly
correlated) + ambient
components (uncorrelated)

Techniques ICA [HKO04], sparse solutions
[PBD10], time–frequency masking
[YiR04], NMF [Vir06, VBG14],
CASA [WaB06], etc.

PCA [MGJ07], LS [Fal06,
HTG14], time–frequency
masking [AvJ04, MGJ07],
time/phase-shifting [HTG13,
HGT14], etc.

Typical
applications

Speech, music Movie, gaming

Related
applications

Speech enhancement, noise reduction,
speech recognition, music
classification

Sound reproduction
sound localization
coding

Limitations • Small number of sources
• Sparseness/disjoint
• No/simple environment

• Small number of sources
• Sparseness/disjoint
• Low ambient power
• Primary ambient components
uncorrelated
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have distinct differences. BSS is commonly used in speech and music applications,
where the clarity of the sources is usually more important than the effect of the
environment. On the other hand, PAE is more suited for the reproduction of movie
and gaming sound content, where the ambient components also contribute signif-
icantly to the naturalness and immersiveness of the sound scenes. Subjective
experiments revealed that BSS- and PAE-based headphone rendering can improve
the externalization and enlarge the sound stage with minimal coloration [BrS08]. It
shall be noted in certain cases, such as extracting sources from their reverberation,
BSS shares a similar objective as PAE and hence can be applied in PAE [SRK12].

Despite the recent advances in BSS and PAE, the challenges due to the com-
plexity and uncertainty of the sound scenes still remain to be resolved. One com-
mon challenge in both BSS and PAE is the increasing number of audio sources in
the sound scenes, while only a limited number of mixtures (i.e., channels) are
available. In certain time–frequency representations, the sparse solutions in BSS
and PAE would require the sources to be sparse and disjoint [PBD10]. Considering
the diversity of audio signals, finding a robust sparse representation for different
types of audio signals is extremely difficult. The recorded or post-processed source
signals might even be filtered due to physical or equivalently simulated propagation
and reflections. Moreover, the audio signals coming from adverse environmental
conditions (including reverberation and strong ambient sound) usually degrade the
performance of the decomposition. These difficulties can be addressed by studying
the features of the resulting signals and by obtaining more prior information on the
sources, the sound environment, the mixing process [VBG14], and combining
auditory information with visual information of the scene.

2.5 Conclusions

In this chapter, we reviewed the basics on spatial hearing of humans, where the
binaural cues are very important. Various aspects on spatial audio reproduction are
further discussed, which begins with the history of spatial audio reproduction.
Three types of audio representations are explained and found to be deterministic in
choosing the appropriate spatial audio reproduction techniques as well as spatial
audio processing techniques. With the aim to improve the reproduction flexibility
and quality of channel-based audio, primary ambient extraction is introduced.
Various PAE approaches are classified and reviewed in this section. The details on
the work to improve the performance of PAE in various circumstances will be
presented in the following chapters.
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Chapter 3
Linear Estimation-Based Primary
Ambient Extraction

Abstract Audio signals for moving pictures and video games are often linear
combinations of primary and ambient components. In spatial audio analysis–
synthesis, these mixed signals are usually decomposed into primary and ambient
components to facilitate flexible spatial rendering and enhancement. Existing
approaches such as principal component analysis (PCA) and least squares (LS) are
widely used to perform this decomposition from stereo signals. However, the
performance of these approaches in primary ambient extraction (PAE) has not been
well studied, and no comparative analysis among the existing approaches has been
carried out so far. In this paper, we generalize the existing approaches into a linear
estimation framework. Under this framework, we propose a series of performance
measures to identify the components that contribute to the extraction error. Based
on the generalized linear estimation framework and our proposed performance
measures, a comparative study and experimental testing of the linear
estimation-based PAE approaches including existing PCA, LS, and three proposed
variant LS approaches are presented.

Keywords Primary ambient extraction (PAE) � Spatial audio � Linear estimation �
Principal component analysis (PCA) � Least squares (LS) � Performance measure

In this chapter, we focus on primary ambient extraction approaches that can be
considered in a unified linear estimation framework, with the assumption that the
primary and ambient components are linearly mixed in the stereo signal model
[GoJ07b]. Based on the linear estimation, PCA and least squares (LS) are designed
to minimize the correlation between the primary and ambient components and the
extraction error, respectively. Our analysis reveals that the extraction error consists
of three error components, namely distortion, interference, and leakage. Distortion
relates to the amount of amplitude scaling of the extracted primary (or ambient)
component as compared to the true primary (or ambient) component. Interference
measures the amount of uncorrelated primary (or ambient) component that is
extracted from the stereo signal. Leakage measures the amount of undesired
ambient (or primary) components in the extracted primary (or ambient) component.
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The characteristics of these three error components indicate that the leakage and
distortion are perceptually more noticeable than interference in most of the appli-
cations. Taking this into consideration, different solutions for PAE can be obtained
by minimizing these components. By minimizing the leakage and distortion, two
variant LS approaches, namely minimum leakage LS (MLLS) and minimum dis-
tortion LS (MDLS), are proposed in this chapter, respectively. This derivation is
followed by a comparative study on the performance of these PAE approaches.
Based on our observations of this comparison, another approach referred to as the
adjustable LS (ALS) is proposed, which offers adjustable error performance
between the distortion and extraction error.

The rest of this chapter is organized as follows. In Sect. 3.1, we review the stereo
signal model and the key assumptions of this signal model. Subsequently, the linear
estimation framework of PAE and two groups of performance measures are pre-
sented in Sect. 3.2. Section 3.3 discusses several approaches applied in PAE.
Section 3.4 presents our discussion on the simulation results, which leads to our
recommendations in applying the PAE approaches in different applications.
Section 3.5 concludes this work.

3.1 Stereo Signal Model

Sound scenes in moving pictures and video games usually comprise several
point-like sound sources (or primary component) and the environmental ambient
sound (or ambient component) [Hol08]. PAE aims to separate the primary com-
ponent from the ambient component based on their perceptual spatial features. The
perceptual spatial features can be characterized by the inter-channel relationships,
including inter-channel time difference (ICTD), inter-channel level difference
(ICLD), and inter-channel cross-correlation coefficient (ICC) [BaF03]. Since the
number of primary sources is usually unknown and might be varying, a common
practice in spatial audio processing is to convert the signals into time–frequency
domain using short-time Fourier transform (STFT) [AvJ04, GoJ07b, GoJ07a, Pul07,
Fal06, MGJ07, FaB03] or subband via filter banks like hybrid quadrature mirror
filter banks [BHK07]. For each frequency band or subband, it is generally assumed
that the primary component of the input signal is composed of only one dominant
source [AvJ04, GoJ07b, Fal06, MGJ07]. Denote the bth subband of input stereo
signals (denoted by the subscript 0, and 1) at time frame index m as x0 m; b½ � ¼
x0 mN; bð Þ; . . .; x0 mN þN � 1; bð Þ½ �T ; and x1 m; b½ � ¼ x1 mN; bð Þ; . . .; x1 mN þð½ N �
1; bÞ�T ; where N is the length of one frame. PAE is carried out in each subband
of each frame independently, and the extracted primary and ambient components
are combined via inverse STFT or synthesis filter banks. Here, a non-overlapping
case of the signal frames is considered, though extension to the overlapping case is
quite straightforward. In this chapter, the time-domain stereo signal model is
expressed as:
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x0 m; b½ � ¼ p0 m; b½ � þ a0 m; b½ �;
x1 m; b½ � ¼ p1 m; b½ � þ a1 m; b½ �; ð3:1Þ

where p0;p1 and a0; a1 are the primary and ambient components in the two
channels of the stereo signal, respectively. Since the subband of the input signal is
generally used in the analysis of PAE approaches, the indices m; b½ � are omitted for
brevity. Figure 3.1 shows the stereo signal model and the input and output of PAE.

The stereo signal model also assumes that the primary components in the two
channels are correlated, whereas the ambient components in the two channels
are uncorrelated. The correlation coefficient between the two channels of the sig-
nal xi and xj is defined as /ij sð Þ ¼ rij sð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rii 0ð Þrjj 0ð Þp
; where rij sð Þ ¼PmN þN�1

n¼mN xi n; bð Þxj nþ s; bð Þ� �
is the correlation between xi and xj at lag s: Two

signals are considered correlated when max
s

/ij sð Þ�� �� ¼ 1; uncorrelated when

max
s

/ij sð Þ�� �� ¼ 0; and partially correlated when 0\max
s

/ij sð Þ�� ��\1:

Correlated primary component in the stereo signal can be described by one of the
following conditions [Bla97]:

(i) amplitude panned, i.e., p1 ¼ kp0; where k is referred to as the primary
panning factor (PPF);

(ii) time-shifted, i.e., p1ðnÞ ¼ p0ðnþ s0Þ; where p1ðnÞ is the nth sample of p1
and s0 is the ICTD (in samples); and

(iii) amplitude panned and time-shifted, i.e., p1ðnÞ ¼ kp0ðnþ s0Þ:
In this signal model, we only consider the primary component to be amplitude

panned by PPF k [GoJ07b, Fal06, MGJ07]. This amplitude-panned primary com-
ponent is commonly found in stereo recordings using coincident techniques and
sound mixes using conventional amplitude-panning techniques [Hol08]. For an
ambient component that consists of environmental sound, it is usually considered to
be uncorrelated with the primary component [UsB07, KDN09, HGC09]. The
ambient component in the two channels is also assumed to be uncorrelated and
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a0; a1 are the true primary and
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respectively; p̂0; p̂1 and â0; â1
are the extracted primary and
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relatively balanced in terms of power, considering the diffuseness of ambient
component. To quantify the power difference between the primary and ambient
components, we introduce the primary power ratio (PPR) c; which is defined as the
ratio of total primary power to total signal power in two channels:

c ¼ Pp0 þPp1

� ��
Px0 þPx1ð Þ; ð3:2Þ

where P :ð Þ denotes the mean square power of the signal in the subscript. From (3.2),
it is clear that γ ranges from zero to one. Summarizing the assumptions for the
stereo signal model, we have

p1 ¼ kp0; a0?a1; pi?aj; 8i; j 2 0; 1f g; ð3:3Þ

Pp1 ¼ k2Pp0 ; Pa1 ¼ Pa0 ; ð3:4Þ

where ? represents that two signals are uncorrelated.
Given any stereo input signal that fulfills the above conditions, the relationships

between the autocorrelations r00; r11 and cross-correlation r01 at zero-lag and the
power of these components can be expressed as

r00 ¼ xH0 x0 ¼ NPx0 ¼ N Pp0 þPa0

� �
; ð3:5Þ

r11 ¼ xH1 x1 ¼ NPx1 ¼ N k2Pp0 þPa0

� �
; ð3:6Þ

r01 ¼ xH0 x1 ¼ pH0 p1 ¼ NkPp0 ; ð3:7Þ

where H is the Hermitian transpose operator. From (3.5)–(3.7), the PPF(k) and PPR
(c) of the stereo signal are derived as:

k ¼ r11 � r00
2r01

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 � r00
2r01

	 
2

þ 1

s
; ð3:8Þ

c ¼ 2r01 þ r11 � r00ð Þk
r11 þ r00ð Þk : ð3:9Þ

The primary component is panned to channel 1 for k[ 1 and to channel 0 for k\1.
In spatial audio, the PPF is considered as the square root of ICLD. Only the primary
or ambient component is found in the stereo signal for c ¼ 1 or c ¼ 0; respectively.
In other words, the primary component becomes more prominent as c increases. In
the following sections, we shall see that PPF and PPR are useful parameters for the
extraction of the primary and ambient components, as well as for the evaluation of
the performance of the PAE approaches.
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3.2 Linear Estimation Framework and Performance
Measures

In this chapter, we examine the blind extraction of primary and ambient compo-
nents from a stereo input signal. Inspired by the mixing signal model given in (3.1),
we address the PAE problem based on a linear estimation framework, where the
primary and ambient components are estimated as weighted sums of the stereo
signals in two channels. Thus, the extracted primary and ambient components are
expressed as

p̂T0
p̂T1
âT0
âT1

2
66664

3
77775 ¼

wP0;0

wP1;0

wA0;0

wP0;1

wP1;1

wA0;1

wA1;0 wA1;1

2
6664

3
7775 xT0

xT1

" #
¼ W

xT0
xT1

" #
; ð3:10Þ

where p̂0; p̂1 and â0; â1 are the extracted primary and ambient components in the
two channels, respectively; T is the transpose operator; and w :ð Þ is the estimated
weight of the extracted component, where the first subscript refers to the output
signal, with “P” or “A” denotes the primary or ambient component, respectively,
and the following number denotes the channel of the extracted component; and the
second subscript denotes the channel of the input signal. Using this formulation, the
PAE problem is simplified to the estimation of weighting matrix W.

Based on the weighting matrix W, we shall introduce two groups of measures to
evaluate the objective performance of the linear estimation-based PAE approaches.
The first group measures the extraction accuracy of the primary and ambient
components, whereas the second group examines the accuracy of the localization
cues for the primary component and diffuseness for the ambient component.

3.2.1 Group 1: Measures for Extraction Accuracy

In [MGJ07], the extraction accuracy of PAE approaches is evaluated by the simi-
larity measures based on the cross-correlation coefficient between the extracted and
true components. While these measures quantify the overall performance of the
PAE approaches, these measures are unable to provide in-depth insights on possible
causes for the performance degradation. In this subsection, we shall analyze the
components that form the extraction error of the PAE approaches, and propose four
performance measures to quantify the extraction error. A similar decomposition on
the error components with corresponding measures can be found in source sepa-
ration [VGF06] and speech enhancement [HaR09], where different beamformers
are derived using different error components as criteria. In the following, we discuss
the error measures for the primary component, followed by the ambient component.
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Considering the error between the extracted primary component p̂0 and its true
component p0; we have

eP ¼ p̂0 � p0: ð3:11Þ

Based on (3.11), we compute the error-to-signal ratio (ESR) for the primary
component, which is defined as the ratio of the power of the extraction error to the
power of the true primary component:

ESRP ¼ PeP

.
Pp0 : ð3:12Þ

Note that the ESR is equivalent to the normalized mean square error (NMSE).
Based on (3.10), p̂0 can be expressed as

p̂0 ¼ wP0;0x0 þwP0;1x1: ð3:13Þ

According to the assumptions stated in (3.3) and substituting (3.1) into (3.13), we
have

p̂0 ¼ wP0;0p0 þwP0;1p1
� �þ wP0;0a0 þwP0;1a1

� �
¼ wP0p0 þ wP0;0a0 þwP0;1a1

� �
¼ p0 þ wP0 � 1ð Þp0 þ wP0;0a0 þwP0;1a1

� �
; ð3:14Þ

where wP0 ¼ wP0;0 þ kwP0;1 is the weight of p0 in the extracted component p̂0.
Substituting (3.14) into (3.11), the extraction error becomes

eP ¼ wP0 � 1ð Þp0 þ wP0;0a0 þwP0;1a1
� � ¼ DistP þLeakP; ð3:15Þ

where DistP ¼ wP0 � 1ð Þp0 and LeakP ¼ wP0;0a0 þwP0;1a1 are the distortion and
leakage in the extraction error, respectively. The distortion comes from the
extraction weight wP0; which fluctuates from frame to frame, causing variations in
sound timbre or level. We consider the primary component to be completely
extracted and hence distortionless when wP0 ¼ 1: On the other hand, the leakage of
the extracted primary component LeakP originates from the true ambient compo-
nents a0 and a1 of the stereo signal. We consider the ratios of the distortion and
leakage power to the power of true primary component, as the distortion-to-signal
ratio (DSR) [BCH11] and the leakage-to-signal ratio (LSR), respectively:

DSRP ¼ PDistP

�
Pp0 ;

LSRP ¼ PLeakP

�
Pp0 :

ð3:16Þ

Similar performance measures are also obtained to quantify the ambient
extraction error. Based on (3.10), the extraction error of the ambient component is
rewritten as:
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eA ¼ â0 � a0
¼ wA0;0 � 1

� �
a0 þwA0;1a1 þ wA0;0p0 þwA0;1p1

� �
¼ DistA þ IntfA þLeakA; ð3:17Þ

where the three components in eA: DistA ¼ wA0;0 � 1
� �

a0; IntfA ¼ wA0;1a1; and
LeakA ¼ wA0;0p0 þwA0;1p1 are the distortion, interference, and leakage, respec-
tively. Similar to primary extraction, the distortion comes from the extraction
weight wA0;0; and the ambient component is considered to be distortionless when
wA0;0 ¼ 1: Interference IntfA is produced by the uncorrelated ambient component in
the counterpart channel a1; whereas the leakage of the extracted ambient compo-
nent LeakA originates from true primary components p0 and p1: The extraction
error of the ambient component and its three error components are quantified by the
ratios of their power to the power of true ambient component, as ESR, DSR,
interference-to-signal ratio (ISR), and LSR, which are given as

ESRA ¼ PeA=Pa0 ;

DSRA ¼ PDistA=Pa0 ;

ISRA ¼ PIntfA=Pa0 ;

LSRA ¼ PLeakA=Pa0 :

ð3:18Þ

Comparing the measures of extraction error for the primary and ambient com-
ponents, we find that no interference is found in the extracted primary component
due to the unity correlation of the primary component. For both the primary and
ambient components, ESR quantifies the overall error of the extracted component,
and DSR, ISR, and LSR provide detailed information on the extraction perfor-
mance. In particular, LSR corresponds to the perceptual difference between the
primary and ambient components. Both the interference and distortion in the
extracted primary (or ambient) component come from the differences in this pri-
mary (or ambient) component between the two channels; hence, they often exhibit
some perceptual similarity with the true primary (or ambient) component. However,
leakage solely comes from the ambient (or primary) component. Consequently,
leakage is much more noticeable and undesirable than interference and distortion.
Thus, we consider LSR to be the most important measure among DSR, ISR, and
LSR for many applications. Nevertheless, more emphasis should be placed on DSR
when sound timbre or amplitude is of high importance.

3.2.2 Group 2: Measures for Spatial Accuracy

In the second group of measures, we consider the spatial accuracy of the extracted
primary component based on three widely used spatial cues, namely ICC, ICTD,
and ICLD. These cues are used to evaluate the sound localization accuracy of the
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extracted primary component [Rum01, Bla97]. There have been many studies to
estimate ICTD after the coincidence model proposed by Jeffress (see [Jef48,
JSY98] and references therein). Based on the Jeffress model [Jef48], the ICC at
different time lags is calculated and the lag index that corresponds to the maximum
ICC is the estimated ICTD. ICLD is obtained by taking the ratio of the power
between the signals in two channels.

As the ambient component is assumed to be uncorrelated and balanced in the
two channels, ICC and ICLD are selected as the measures to determine the dif-
fuseness of the extracted ambient component [AnC09]. A better extraction of the
ambient component is obtained when the ICC and ICLD of the extracted ambient
component are closer to zero and one, respectively.

3.3 Linear Estimation-Based PAE Approaches

Following the discussions in Sect. 3.2, we shall derive the solutions for PAE
approaches using linear estimation. These solutions are obtained by optimizing the
weights in W for different criteria in PAE, including the minimization of the
correlation between primary and ambient components and the minimization of
different error components. In this section, an analytic study and comparison of five
linear estimation-based PAE approaches including three proposed approaches will
be presented.

3.3.1 PAE Using Principal Component Analysis

Principal component analysis is a widely used method in multivariate analysis
[Jol02]. The central idea of PCA is to linearly transform its input sequence into
orthogonal principal components with descending variances. PCA was first intro-
duced to solve the PAE problem in [IrA02]. In general, the primary component is
assumed to possess more power than the ambient component, i.e., c[ 0:5: Hence,
it is a common practice to relate the larger eigenvalue to the primary component and
the smaller eigenvalue to the ambient component. Based on the stereo signal model,
PAE using PCA decomposition can be mathematically described as [MGJ07]:

uP ¼ argmax
uP

uTPx0
�� ��2 þ uTPx1

�� ��2� 
;

uA ¼ argmin
uA

uTAx0
�� ��2 þ uTAx1

�� ��2� 
;

s:t: uP ? uA; uPk k ¼ uAk k ¼ 1;

ð3:19Þ
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where uP and uA are the primary and ambient basis vectors, respectively. As
depicted in Fig. 3.2, uP and uA maximize and minimize the total projection energy
of the input signal vectors, respectively. The solution to (3.19) can be obtained by
eigenvalue decomposition of the input covariance matrix [GoJ07b].

First, we find the larger eigenvalue and its corresponding primary basis vector
[GoJ07b, MGJ07] as

kP ¼ 0:5 r00 þ r11 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r00 � r11ð Þ2 þ 4r201

q� �
; ð3:20Þ

uP ¼ r01x0 þ kP � r00ð Þx1: ð3:21Þ

Next, we compute the extracted primary components as

p̂PCA;0 ¼
uHP x0
uHP uP

uP;

p̂PCA;1 ¼
uHP x1
uHP uP

uP:
ð3:22Þ

However, the above solution of the extracted primary components is too complex in
terms of its computation. Using (3.5–3.9), we can simplify the expressions for the
extracted primary components using PCA as follows (detailed derivation can be
found in Appendix A):

p̂PCA;0 ¼
1

1þ k2
x0 þ kx1ð Þ;

p̂PCA;1 ¼
k

1þ k2
x0 þ kx1ð Þ ¼ kp̂PCA;0:

ð3:23Þ

Similarly, the extracted ambient components are obtained as follows:

âPCA;0 ¼ k
1þ k2

kx0 � x1ð Þ;

âPCA;1 ¼ � 1
1þ k2

kx0 � x1ð Þ ¼ � 1
k
âPCA;0:

ð3:24Þ

Pu
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1x PCA, 1â

PCA, 0â

PCA, 1p̂

PCA, 0p̂

Fig. 3.2 A geometric
representation of PCA-based
PAE
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From (3.23–3.24), we observe that the weights for the extracted primary and
ambient components are solely dependent on the PPF k. Between the two channels,
the primary components are amplitude panned by a factor of k, whereas the ambient
components are negatively correlated and panned to the opposite direction of the
primary components, as indicated by the scaling factor �1=k: Clearly, the
assumption of the uncorrelated ambient components in the stereo signal model does
not hold considering the ambient components extracted using PCA. This drawback
is inevitable in PCA since the ambient components in two channels are obtained
from the same basis vector. Nevertheless, as the primary and ambient components
are derived from different basis vectors, the assumption that the primary compo-
nents are uncorrelated with the ambient components is well satisfied in PCA.

By substituting the true primary and ambient components into (3.23) and (3.24),
we have

p̂PCA;0 ¼ p0 þ
1

1þ k2
a0 þ ka1ð Þ;

p̂PCA;1 ¼ p1 þ
k

1þ k2
a0 þ ka1ð Þ;

ð3:25Þ

âPCA;0 ¼ k2

1þ k2
a0 � k

1þ k2
a1;

âPCA;1 ¼ 1
1þ k2

a1 � k
1þ k2

a0:
ð3:26Þ

Since there is no primary component in (3.26), (3.26) or (3.24) that comes from the
basis vector with the smaller eigenvalue cannot be related with the extraction of the
primary components. That is to say, the basis vector with larger eigenvalue always
corresponds to the primary component regardless of the value of the primary power
ratio γ. This observation reveals that the assumption c[ 0:5 in PCA is redundant.
However, if this assumption is not satisfied in the stereo input signal, the extraction
error of the extracted primary component becomes higher, as inferred from (3.25).

Furthermore, it is observed from (3.25) that the primary component is com-
pletely extracted by PCA, and no primary components are found in the extracted
ambient components. On the other hand, the extracted primary components suffer
from the ambient leakage, i.e., 1

1þ k2 a0 þ ka1ð Þ; and k
1þ k2 a0 þ ka1ð Þ: The severity

of ambient leakage increases as the ambient power increases. In other words,
dominant primary components lead to better extraction performance using PCA.
Some variants of PCA-based PAE approaches that improve the PAE performance
for stereo signal containing non-dominant primary component are discussed in
[God08, JHS10, and BJP12].
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3.3.2 PAE Using Least Squares

Least-squares estimation is frequently used to approximate solutions for overde-
termined systems. According to the stereo signal model, Faller introduced LS to
extract the primary and ambient components by minimizing the MSE of the
extracted components [Fal06]. Considering the extraction of the primary compo-
nent, the extraction error expressed in (3.15) can then be rewritten as

eP ¼ p̂0 � p0 ¼ wP0;0 þ kwP0;1 � 1
� �

p0 þwP0;0a0 þwP0;1a1; ð3:27Þ

and the MSE is J ¼ E eHP eP
� �

: By substituting the assumptions and relationships of
the signal model stated in (3.2)–(3.4) and (3.27), the MSE becomes

J ¼ Pp0 1þðk2 þ 1Þ 1� c
2c

� �
w2
P0;0

þPp0 k2 þðk2 þ 1Þ 1� c
2c

� �
w2
P0;1 � 2wP0;0 � 2kwP0;1 þ 2kwP0;0wP0;1 þ 1

� �
:

ð3:28Þ

Hence, the weights can be easily obtained by taking the gradients of J with respect
to wP0;0;wP0;1 and equating their results to zero. The weights of the primary
component extracted by LS are found to be

wP0;0 ¼ 2c
1þ c

1
1þ k2

; wP0;1 ¼ 2c
1þ c

k
1þ k2

: ð3:29Þ

Similarly, the weights for the remaining components can also be derived. The
extracted primary and ambient components using LS are thus expressed as

p̂LS;0 ¼
2c

1þ c
1

1þ k2
x0 þ kx1ð Þ;

p̂LS;1 ¼
2c

1þ c
k

1þ k2
x0 þ kx1ð Þ;

ð3:30Þ

âLS;0 ¼ 1þ k2 þ k2 � 1ð Þc
1þ c

1
1þ k2

x0 � 2c
1þ c

k
1þ k2

x1;

âLS;1 ¼ � 2c
1þ c

k
1þ k2

x0 þ 1þ k2 þ 1� k2ð Þc
1þ c

1
1þ k2

x1:
ð3:31Þ

From (3.30–3.31), we observe that the weights for the extracted primary and
ambient components are not only dependent on k, but also related to γ. As compared
with PCA, the panning relationship of k between the extracted primary components
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in the two channels still holds, but no explicit panning is found in the extracted
ambient components using LS.

3.3.3 PAE Using Minimum Leakage Least Squares

As discussed in Sect. 3.2, three types of error may be found in the extracted
components, namely the distortion, interference, and leakage. The leakage is the
most undesirable among the three, and priority should be given to the minimization
of the leakage in the extraction process. We therefore propose MLLS, which
minimizes the extraction error with the constraint that the leakage is minimum in
the extracted components. The amount of leakage power in the extracted primary or
ambient component can be quantified by the leakage-to-extracted-signal ratio
(LeSR), which is given as

LeSRP ¼ PLeakP

�
Pp̂0 ; LeSRA ¼ PLeakA

�
Pâ0 : ð3:32Þ

Minimum leakage in the extracted components is achieved by minimizing LeSR.
For the extracted primary component, the leakage comes from the ambient com-
ponents. Using (3.15) and (3.26), the LeSRP is computed as follows:

LeSRP ¼
w2
P0;0 þw2

P0;1

� 
Pa0

wP0;0 þ kwP0;1
� �2

Pp0 þ w2
P0;0 þw2

P0;1

� 
Pa0

: ð3:33Þ

Minimizing LeSRP with respect to wP0;0;wP0;1; we have

wP0;1 ¼ kwP0;0: ð3:34Þ

Next, we substitute (3.34) into the extraction error given by (3.15), and the
extraction error becomes

eP ¼ 1þ k2
� �

wP0;0 � 1
� �

p0 þwP0;0a0 þ kwP0;0a1: ð3:35Þ

Based on (3.12) and (3.35), the ESRP is expressed as follows:

ESRP ¼
1þ k2ð ÞwP0;0 � 1

� �2
Pp0 þ w2

P0;0 þ k2w2
P0;0

� 
Pa0

Pp0
: ð3:36Þ

By minimizing ESRP, we arrive at wP0;0 ¼ 2c
1þ c

1
1þ k2 ; and wP0;1 ¼ 2c

1þ c
k

1þ k2 : Finally,
we can express the primary component in channel 0 extracted by MLLS as
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p̂MLLS;0 ¼
2c

1þ c
1

1þ k2
x0 þ kx1ð Þ; ð3:37Þ

The remaining components extracted by MLLS can be obtained similarly and are
found to be

p̂MLLS;1 ¼
2c

1þ c
k

1þ k2
x0 þ kx1ð Þ; ð3:38Þ

âMLLS;0 ¼ k
1þ k2

kx0 � x1ð Þ;

âMLLS;1 ¼ � 1
1þ k2

kx0 � x1ð Þ:
ð3:39Þ

3.3.4 PAE Using Minimum Distortion Least Squares

Inspired by the popular minimum variance distortionless response (MVDR) filter
[Cap69], we propose the minimum distortion least squares in PAE by minimizing
the extraction error ESR, with the constraint that the extracted component is dis-
tortionless. Mathematically, we can express the objective function of MDLS as
min
w

ESR s:t: DSR ¼ 0: Similar to the steps in MLLS, the solution for each

extracted component can be derived as follows:

p̂MDLS;0 ¼
1

1þ k2
x0 þ kx1ð Þ;

p̂MDLS;1 ¼
k

1þ k2
x0 þ kx1ð Þ:

ð3:40Þ

âMDLS;0 ¼ x0 � 2kc
k2 � 1ð Þcþ k2 þ 1

x1;

âMDLS;1 ¼ � 2kc
1� k2ð Þcþ k2 þ 1

x0 þ x1:
ð3:41Þ

3.3.5 Comparison Among PCA, LS, MLLS, and MDLS
in PAE

In this subsection, we compare the relationships and differences, as well as the
performance among the four linear estimation-based PAE approaches. The key
minimization criteria and relationships of these approaches are illustrated in
Fig. 3.3. Based on the linear estimation framework, PCA minimizes the correlation
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between the primary and ambient components, whereas LS, MLLS, and MDLS aim
to minimize the extraction error, leakage, and distortion, respectively, for both the
primary and ambient components. Some interesting relationships can be found for
the primary components extracted using these approaches. From (3.23) and (3.40),
we find that p̂PCA;i ¼ p̂MDLS;i; 8i 2 0; 1f g: This equivalence implies that PCA
extracts the primary component with minimum distortion, even though PCA
does not explicitly specify this constraint as found in MDLS. From (3.30) and
(3.37–3.38), we observe that p̂LS;i ¼ p̂MLLS;i: This equivalence implies that LS
extracts the primary component with minimum leakage, even though LS does
not explicitly specify this constraint as found in MLLS. There is an amplitude
difference between the primary components extracted by MLLS and by MDLS, i.e.,

p̂MLLS;i ¼ cPp̂MDLS;i; ð3:42Þ

where the scaling factor cP ¼ 2c= 1þ cð Þ: Since c 2 ½0; 1�; cP � 1; it is clear that the
primary component extracted by MLLS has lower power than the primary com-
ponent extracted by MDLS for all c 6¼ 1:

Linear 
estimation 
based PAE

MDLS MLLS

LS

PCA

Min 
leakage

Min 
distortion

Min 
error

Min 
correlation

,

Sca
lin

g f
ac

tor
 A ic

Scaling factor Pc

Fig. 3.3 Objectives and relationships of four linear estimation-based PAE approaches. Blue solid
lines represent the relationships in the primary component, and green dotted lines represent the
relationships in the ambient component
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Similarly, we noted a few interesting relationships for the extracted ambient
component. Based on (3.24) and (3.39), it is interesting to find that âPCA;i ¼ âMLLS;i.
This equivalence implies that PCA extracts the ambient component with minimum
leakage, even though PCA does not explicitly specify this constraint as found in
MLLS. From (3.31) and (3.41), there is also an amplitude difference between the
ambient components extracted by MDLS and LS, which is given by

âLS;i ¼ cA;iâMDLS;i; ð3:43Þ

where cA;i ¼ 1þ k2 þ �1ð Þi k2�1ð Þc
1þ k2ð Þ 1þ cð Þ : As compared to (3.42), the scaling factor in the

extracted ambient components differs from channel 0 to channel 1.
Next, we present a comparative analysis on the performance of these four PAE

approaches. Here, we summarize the results of the performance measures obtained
with channel 0 in Table 3.1. Due to the symmetry in the stereo signal model, the
measures for channel 1 can be obtained by replacing k in the results in Table 3.1
with its reciprocal. From Table 3.1, it is clear that the two groups of measures are
highly dependent on γ and/or k.

For the primary extraction, we have the following observations of MDLS (or
PCA) and MLLS (or LS) based on the measures in Table 3.1. In Group 1, lower
ESR and LSR of the extracted primary component are observed in MLLS as
compared to MDLS. The distortion measure DSR = 0 indicates that primary
component extracted using MDLS (or PCA) is free of distortion, whereas the
distortion in MLLS (or LS) increases as γ decreases. Hence, MLLS (or LS) extracts
primary component with minimum leakage and error at the expense of introducing
some distortion in the extracted primary component. All four approaches extract
primary component without interference. According to the spatial cues (ICC, ICTD,
and ICLD) of the primary component in Group 2, all four approaches are capable of
preserving the correct spatial information in the extracted primary component.

For the ambient extraction, we have the following observations of MLLS (or
PCA), LS, and MDLS based on the measures in Table 3.1. In Group 1, we observe

Table 3.1 Results of performance measures for PCA, LS, minimum leakage LS, and minimum
distortion LS in PAE

Measures Primary component Ambient component

MDLS/PCA MLLS/LS MLLS/PCA LS MDLS

Group 1:
extraction
accuracy

ESR 1�c
2c

1�c
1þ c

1
1þ k2

1
1þ k2

2c
1þ c

2c
k2�1ð Þcþ k2 þ 1

LSR 1�c
2c 1�c

2c
2c

1þ c

� 2 0 1
1þ k2

2c 1�cð Þ
1þ cð Þ2

1þ k2ð Þ 1�cð Þ2c
1þ k2ð Þ 1þ cð Þ�2c½ �2

DSR 0 1�c
1þ c

� 2
1

1þ k2

� 2
1

1þ k2
2c

1þ c

� 2 0

ISR 0 k
1þ k2

� 2
k

1þ k2
2c

1þ c

� 2
2kc

1þ k2ð Þ 1þ cð Þ�2c

h i2
Group 2:
spatial
accuracy

ICC
(ICTD)

1(0) 1 2kcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ð Þ2� 1�k2ð Þ2c2

p

ICLD k2 1
k2

1
k2

1þ cþ k2 1�cð Þ
1þ cþ 1

k2
1�cð Þ

1
k2

1�cþ k2 1þ cð Þ
1�cþ 1

k2
1þ cð Þ
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that LS has the lowest ESR. The measure LSR = 0 found in MLLS indicates that no
primary components are leaked into the extracted ambient component. In contrast, a
certain amount of primary leakage is found in ambient component extracted using
LS or MDLS. As for DSR, only MDLS extracts the ambient component without
distortion. The overall best performance on the ambient extraction is achieved using
LS based on the measures of diffuseness in Group 2, but none of the approaches is
able to extract an uncorrelated and balanced ambient component. Therefore, some
post-processing techniques such as decorrelation [Fal06b] and post-scaling [Fal06]
should be used to enhance the ambient extraction.

3.3.6 PAE Using Adjustable Least Squares

In this subsection, we propose the adjustable least squares, which is designed to
achieve an adjustable performance in terms of extraction error and distortion, as
well as producing minimum leakage in the extracted primary and ambient com-
ponents. Similar to (3.34), by minimizing the LeSR in the extracted primary and
ambient components, we have wP0;1;wP1;1

� � ¼ k wP0;0;wP1;0
� �

; and wA0;1;wA1;1
� � ¼

�k�1 wA0;0;wA1;0
� �

; respectively. To achieve the adjustable performance in terms of
extraction error and distortion, we introduce the adjustable factor β where
0� b� 1: By letting β = 0, and β = 1, we can achieve the minimum distortion and
extraction error, respectively. Based on our analysis of the four PAE approaches,
the weights in ALS are obtained as follows:

wP0;0 wP0;1

wP1;0 wP1;1

� �
¼ 1

1þ k2
1� b

1� c
1þ c

	 

1 k
k k2

� �
; ð3:44Þ

wA0;0 wA0;1

wA1;0 wA1;1

� �
¼

1� b 1
1þ k2 � 1

k 1� b 1
1þ k2

� 
�k 1� b k2

1þ k2

� 
1� b k2

1þ k2

2
4

3
5: ð3:45Þ

Next, the three key performance measures for PAE using ALS are expressed as
follows:

ESRP ¼ 1� c
2c

þ b b� 2ð Þ 1� cð Þ2
2c 1þ cð Þ ;

DSRP ¼ b2
1� c
1þ c

	 
2

; LeSRP ¼ 1� c
1þ c

;

ESRA ¼ 1
k2

þ b b� 2ð Þ 1
k2 k2 þ 1ð Þ ;

DSRA ¼ b2
1

1þ k2

	 
2

; LeSRA ¼ 0:

ð3:46Þ
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From the above measures, it can be inferred that the extraction error ESR
decreases and the distortion DSR increases gradually as β increases, whereas the
measure for LeSR remains constant and small. Since the adjustable factor β = 0 and
β = 1 leads to minimum distortion and extraction error, respectively, other values of
β between 0 and 1 yield an adjustable performance in terms of extraction error and
distortion. For example, ALS with β = 0.5 produces 75 % reduction of extraction
error and distortion in PAE. The characteristics of ALS and its relationships with
other PAE approaches are illustrated in Fig. 3.4. By adjusting the value of β, ALS
can achieve the performance of the previously discussed PAE approaches.
Specifically, in primary extraction, ALS with β = 0 is equivalent to MDLS (or
PCA), whereas ALS with β = 1 is equivalent to MLLS (or LS). In ambient
extraction, ALS can be linked with MLLS (or PCA) by letting β = 1.

3.4 Experiments and Discussions

Since our focus in this chapter is to compare different linear estimation-based PAE
approaches, instead of the subband decomposition of the stereo signal, we shall
consider only one primary component in the stereo signal in our simulations.
A speech signal is selected as the primary component, and uncorrelated white
Gaussian noise with equal variance in two channels is synthesized as the ambient
component in our simulations. To simulate the source panned to channel 1, the
primary component is scaled by k = 5. Subsequently, the stereo signals are syn-
thesized by linearly mixing the primary and ambient components using different

PCA/
MDLS

LS/
MLLS

PCA/
MLLS

0β =Min
distortion

Min
error

ALS
(Min 

leakage)

1β =

Fig. 3.4 Characteristics and relationships of adjustable least squares. Blue solid lines represent the
relationships in the primary component, and green dotted lines represent the relationships in the
ambient component
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values of primary power ratio (PPR), ranging from zero to one. The performance of
these PAE approaches is then evaluated using the performance measures introduced
in Sect. 3.2. Based on our simulations, we provide some recommendations for the
applications using these PAE approaches.

3.4.1 Comparison of PAE Using PCA, LS, MLLS,
and MDLS

The simulation results of PAE using PCA, LS, MLLS, and MDLS are shown in
Figs. 3.5, 3.6, 3.7 and 3.8. Recall that the extraction performance of the primary
component is identical: (i) Between PCA and MDLS and (ii) between LS and
MLLS, we shall discuss the primary extraction for MLLS and MDLS only in this
subsection. The extraction accuracy of the extracted primary components using
MLLS and MDLS (same for the two channels) is shown in Fig. 3.5. Several
observations from Fig. 3.5 are as follows. The extraction error given by ESRP

reduces gradually as γ increases. The ESRP and LSRP for MLLS are relatively
lower than those in MDLS, which indicates that MLLS is superior to MDLS in
extracting the primary component in terms of the extraction error and leakage.
However, the distortion of extracted primary component using MLLS increases as γ
decreases, whereas no distortion is found with MDLS. These observations can be
directly related to the objectives of these approaches.

The difference in the performance for the extracted primary component between
MLLS and MDLS is caused by the scaling difference, as expressed in (3.42). This
scaling factor depends solely on PPR, which is determined by the power difference
between true primary and ambient components in each frame. In the case of sta-
tionary primary and ambient components, the scaling factor is almost constant and
leading to similar performance between MLLS and MDLS. However, there is a
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Fig. 3.5 Comparison of MDLS (or PCA) and MLLS (or LS) in primary extraction,
a error-to-signal ratio ESR, b leakage-to-signal ratio LSR, c distortion-to-signal ratio DSR.
Legend in (a) applies to all plots
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noticeable difference in the primary components extracted using MLLS and MDLS
when the primary component is non-stationary. An example to illustrate the vari-
ation of the scaling factor is shown in Fig. 3.6. It is observed that the scaling factor
is fluctuating according to the power difference between primary and ambient
components. The scaling factor rises closer to one when the primary component
power is comparably stronger than the ambient component power, and the scaling
factor drops to zero when the primary component becomes relatively weak com-
pared to the ambient component. This example reveals that MLLS and MDLS
behave similarly when primary component is dominant and only MLLS can extract
weak primary component at the ambient-dominant periods of the signal. As a result,
MLLS has lower ESRP, but the extracted primary component may possess some
discontinuity and more distortion, compared to MDLS.

The performance of ambient extraction using PCA, LS, MLLS, and MDLS is
illustrated in Fig. 3.7. Unlike the primary extraction, the performance of ambient
extraction has significant variation between the two channels. Due to the weaker
primary component in channel 0, the performance of ambient extraction in channel
0 is better than that in channel 1 as shown in our simulations. Nevertheless, some
common characteristics in the performance of ambient extraction in the two
channels are observed. We found that LS has the lowest extraction error (Fig. 3.7a,
b), whereas MLLS (or PCA) and MDLS can completely remove the leakage
(Fig. 3.7c, d) and distortion (Fig. 3.7e, f), respectively. However, MDLS extracts
the ambient component in channel 1 with much higher extraction error, leakage,
and interference than the other PAE approaches.

In Figs. 3.8 and 3.9, we show the results of ambient extraction under different
values of PPF, i.e., k = 3 and k = 1, respectively. With a smaller k, the extraction
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error performance between the two channels becomes closer. For k ¼ 3; 5, we can
observe a very similar relation in various error performance, with the difference on
the scale. Whereas for k = 1, the performance of MDLS becomes worse than MLLS
or LS when PPR is high. Nevertheless, these methods still achieve the respective
optimal performance in terms of different performance measures. That is, LS
minimizes ESR, MLLS (or PCA) minimizes LSR, and MDLS minimizes DSR.

Finally, we examine the spatial accuracy of the extracted primary and ambient
components (k = 5), as shown in Fig. 3.10. Since the extracted primary compo-
nents are all scaled by k between the two channels, the ICC and ICTD of the
primary components are the same as the true values, and the ICLDP is also very
close to its true value, as shown in Fig. 3.10a. However, from the results of ICCA

and ICLDA shown in Fig. 3.10b, c, respectively, we found that none of these
approaches is able to extract uncorrelated and balanced ambient components. In
Figs. 3.11 and 3.12, we also show the spatial accuracy with other values of PPF,
i.e., k = 3 and k = 1, respectively. Similar trends can be found with ICLDP, ICCA,

and ICLDA for the three different values of PPF. One exceptional is that the ICLDA

estimation difference is very small when PPF k = 1.
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3.4.2 Performance of ALS in PAE

The performance of PAE using ALS is shown in Fig. 3.13. The measures for
extraction error, distortion, and leakage are examined with respect to the adjustable
factor β. These measures for the primary components for both channels are pre-
sented in the plots in the left column. The results of the measures for ambient
extraction for the channels 0 and 1 are presented in the plots in the middle and right
columns, respectively. From the plots of the top and middle rows, we observed that
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larger values of β lead to lower extraction error (as shown by ESR) but higher
distortion (as shown by DSR). Nevertheless, the leakage as quantified by LeSR
remains at a very low level for all values of β, as shown in the plots in the bottom
row. These observations verified that the adjustable performance in terms of
extraction error and distortion using ALS is achieved by adjusting β.

3.4.3 General Guidelines in Selecting PAE Approaches

Generally, the selection of the PAE approaches depends on the post-processing
techniques and playback systems that are associated with the specific audio
application, as well as the audio content and user preferences. Several guidelines on
the applications of these PAE approaches can be drawn from our analysis and
discussions. In Table 3.2, we summarize the strengths and weaknesses of different
PAE approaches and provide some recommendations on their applications in
Table 3.2. In applications such as spatial audio coding and interactive audio in

Table 3.2 Strengths, weaknesses, and recommendations of different PAE approaches [HTG14]

Approaches Strengths Weaknesses Recommendations

PCA • No distortion in the
extracted primary
component

• No primary leakage
in the extracted
ambient component

• Primary and ambient
components are
uncorrelated

Ambient component
severely panned

Spatial audio coding and
interactive audio in gaming,
where the primary component is
more important than the ambient
component

LS Minimum MSE in the
extracted primary and
ambient components

Severe primary leakage
in the extracted ambient
component

Applications in which both the
primary and ambient components
are extracted, processed, and
finally mixed together

MLLS • Minimum leakage in
the extracted primary
and ambient
components

• Primary and ambient
components are
uncorrelated

Ambient component
severely panned

Spatial audio enhancement
systems and applications in
which different rendering or
playback techniques are
employed on the extracted
primary and ambient components

MDLS No distortion in the
extracted primary and
ambient components

Severe interference and
primary leakage in the
extracted ambient
component

High-fidelity applications in
which timbre is of high
importance

ALS Performance
adjustable

Need to adjust the value
of the adjustable factor

For applications without explicit
requirements
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gaming, where the primary component is usually more important than the ambient
component, PCA would be a better choice. In the case where both the primary and
ambient components are extracted, processed, and finally mixed together, the
extraction error becomes more critical, and hence, LS is recommended. In some
spatial audio enhancement systems, where the extracted primary or ambient com-
ponent is added back to the original signal to emphasize the extracted component,
accurate extraction of the primary or ambient component becomes the key con-
sideration. For such systems, MLLS is preferred as the leakage becomes the most
important consideration. MLLS is also recommended when different rendering and
playback techniques are employed on the extracted primary and ambient compo-
nents. MDLS is more suitable for high-fidelity applications, where timbre is of high
importance, such as in musical application. When there is no explicit requirement,
ALS can be employed by setting the proper adjustable factor.

3.5 Conclusions

In this chapter, we revisited the problem of primary ambient extraction (PAE) of
stereo signals using linear estimation-based approaches. Based on the stereo signal
model, we formulated PAE as a problem to determine the weighting matrix under
our linear estimation framework. Under this framework, we introduced two groups
of performance measures and derived the solutions for two existing approaches,
namely principal component analysis (PCA) and least squares (LS). Based on the
objectives of minimum leakage, minimum distortion, and adjustable performance,
we proposed three additional LS-based PAE approaches, namely minimum leakage
LS (MLLS), minimum distortion LS (MDLS), and adjustable LS (ALS). The
relationships and differences of these PAE approaches are extensively studied. For
primary extraction, PCA was found to be equivalent to MDLS in terms of minimum
distortion and LS is equivalent to MLLS in terms of minimum extraction error and
leakage. The difference between extracted primary components using MDLS and
MLLS is found to be a scaling factor, which is solely related to primary power ratio
(PPR). All the discussed PAE approaches perform well for primary extraction but
perform poorly in extracting ambient component when PPR is high. In ambient
extraction, MLLS (or PCA), LS, and MDLS minimize the leakage, extraction error,
and distortion, respectively. Adjustable LS offers an adjustable performance in
terms of extraction error and distortion with the constraint of minimum leakage.
Based on our discussions in this chapter, these PAE approaches are suggested in
different spatial audio applications. In the following chapter, a different PAE
framework will be discussed and compared with the linear estimation framework
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Chapter 4
Ambient Spectrum Estimation-Based
Primary Ambient Extraction

Abstract The diversity of today’s playback systems requires a flexible, efficient,
and immersive reproduction of sound scenes in digital media. Spatial audio
reproduction based on primary ambient extraction (PAE) fulfills this objective,
where accurate extraction of primary and ambient components from sound mixtures
in channel-based audio is crucial. Severe extraction error was found in existing PAE
approaches when dealing with sound mixtures that contain a relatively strong
ambient component, a commonly encountered case in the sound scenes of digital
media. In this paper, we propose a novel ambient spectrum estimation
(ASE) framework to improve the performance of PAE. The ASE framework
exploits the equal magnitude of the uncorrelated ambient components in two
channels of a stereo signal and reformulates the PAE problem into the problem of
estimating either ambient phase or magnitude. In particular, we take advantage of
the sparse characteristic of the primary components to derive sparse solutions for
ASE-based PAE, together with an approximate solution that can significantly
reduce the computational cost. Our objective and subjective experimental results
demonstrate that the proposed ASE approaches significantly outperform existing
approaches, especially when the ambient component is relatively strong.

Keywords Primary ambient extraction (PAE) � Spatial audio � Ambient spectrum
estimation (ASE) � Sparsity � Computational efficiency

Due to the nature of summing input signals directly [HTG14], the aforementioned
PAE approaches, as studied in previous chapter, often have difficulty in removing
uncorrelated ambient component in the extracted primary and ambient components.
The extraction error in these PAE approaches is more severe when the ambient
component is relatively strong compared to the primary component [HTG14], as
often encountered in digital media content, including busy sound scenes with many
discrete sound sources that contribute to the environment as well as strong rever-
beration indoor environment. According to [HGT15b], it is found that the per-
centage for the cases with over half of the time frames having relative strong
ambient power is around 70 % in these digital media content examples. Since high
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occurrence of strong ambient power case degrades the overall performance of PAE,
an PAE approach that also performs well in the presence of strong ambient power is
desired and investigated in this chapter.

In Sect. 4.1, we propose a new ambient spectrum estimation (ASE) framework
to improve the performance of PAE. The ASE framework exploits the
equal-magnitude characteristic of uncorrelated ambient components in the mixed
signals of digital media content. These ASE problems are solved by pursuing the
sparsity of the primary components [PBD10], as detailed in Sect. 4.2. To perform
an in-depth evaluation of these PAE approaches, a novel technique to compute
these measures for PAE approaches without analytic solutions, as is the case with
the proposed ASE approaches, is proposed in Sect. 4.3. This is followed by the
experiments to evaluate the PAE approaches in Sect. 4.4. Besides the compre-
hensive evaluation of these PAE approaches in ideal case, statistical variations are
introduced to the ambient magnitudes to examine the robustness of the proposed
ASE approaches. Furthermore, subjective listening tests are conducted to comple-
ment the objective evaluation. Finally, Sect. 4.5 concludes this chapter.

4.1 Ambient Spectrum Estimation Framework

In this chapter, we denote the stereo signal in time–frequency domain at time frame
index m and frequency bin index l as Xc m; lð Þ, where the channel index c 2 0; 1f g.
Hence, the stereo signal at subband b that consists of bins from lb�1þ 1 to lb (where
lb is the upper boundary of bin index at subband b) is expressed as Xc m; b½ � ¼
Xc m; lb�1þ 1ð Þ;Xc m; lb�1þ 2ð Þ; . . .;Xc m; lbð Þ½ �T [GoJ06b]. The stereo signal model
is expressed as follows:

Xc m; b½ � ¼ Pc m; b½ � þAc m; b½ � 8c 2 0; 1f g; ð4:1Þ

where Pc and Ac are the primary and ambient components in the cth channel of the
stereo signal, respectively. Since the frequency band of the input signal is generally
used in the analysis of PAE approaches, the indices m; b½ � are omitted for brevity.

The diffuseness of ambient components usually leads to low cross-correlation
between the two channels of the ambient components in the stereo signal. During
the mixing process, the sound engineers synthesize the ambient component using
various decorrelation techniques, such as introducing delay [Rum99], all-pass fil-
tering [Sch58, PoB04, Ken95b], artificial reverberation [Beg00], and binaural
artificial reverberation [MeF09]. These decorrelation techniques often maintain the
magnitude of ambient components in the two channels of the stereo signal. As such,
we can express the spectrum of ambient components as

Ac ¼ Acj j �Wc; 8c 2 0; 1f g; ð4:2Þ
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where � denotes element-wise Hadamard product, A0j j ¼ A1j j ¼ Aj j is the equal
magnitude of the ambient components, and the element in the bin (m, l) of Wc is
Wc m; lð Þ ¼ ejhc m;lð Þ; where hc m; lð Þ is the bin (m, l) of hc and hc ¼ \Ac is the vector
of phase samples (in radians) of the ambient components. Following these dis-
cussions, we shall derive the ASE framework for PAE in two ways: ambient phase
estimation (APE) and ambient magnitude estimation (AME).

4.1.1 Ambient Phase Estimation

Considering the panning of the primary component P1 ¼ kP0; the primary com-
ponent in (4.1) can be canceled out and we arrive at

X1 � kX0 ¼ A1 � kA0: ð4:3Þ

By substituting (4.2) into (4.3), we have

Aj j ¼ X1 � kX0ð Þ:= W1 � kW0ð Þ; ð4:4Þ

where := represents the element-wise division. Because ambient magnitude Aj j is
real and non-negative, we derive the relation between the phases of the two ambient
components. First, we rewrite W1 � kW0 ¼ cos h1 � k cos h0ð Þþ j sin h1�ð
k sin h0Þ: Since Aj j is real, we have the following relation: sin h:=cos h ¼
sin h1 � k sin h0ð Þ:= cos h1 � k cos h0ð Þ; which can be further rewritten as

sin h� h0ð Þ ¼ k�1 sin h� h1ð Þ: ð4:5Þ

Two solutions arise when solving for h0:

h 1ð Þ
0 ¼ h� a; h 2ð Þ

0 ¼ hþ aþ p; ð4:6Þ

where a ¼ arcsin k�1 sin h� h1ð Þ½ � and a 2 �0:5p; 0:5p½ �. Then, we have sin a ¼
k�1 sin h� h1ð Þ and cos a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�2 sin2 h� h1ð Þ

q
: Based on the other condition

that ambientmagnitude Aj j is non-negative, the imaginary (or real) part ofW1 � kW0

must have the same sign as the imaginary (or real) part ofX1 � kX0. Next, we examine

the two solutions for this condition.We take the first solution h 1ð Þ
0 and rewrite the ratio

of imaginary part of W1 � kW0 to the imaginary part of X1 � kX0 as
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Im W1 � kW0f g
Im X1 � kX0f g

����h 1ð Þ
0 ¼h�a

¼ sin h1 � k sin h0
sin h

����h 1ð Þ
0 ¼h�a

¼ sin h1 � k sin h� að Þ
sin h

¼ � cos h� h1ð Þþ k cos a½ �
¼ � cos h� h1ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1þ cos2 h� h1ð Þ

ph i
� 0: ð4:7Þ

Therefore, the sign of the imaginary part of W1 � kW0 is different from the sign
of imaginary part of X1 � kX0, resulting in negative values for ambient magnitude
Aj j. Therefore, the first solution in (4.6) is inadmissible. Similarly, we take the

second solution h 2ð Þ
0 and derive the ratio of imaginary part of W1 � kW0 to the

imaginary part of X1 � kX0 as

Im W1 � kW0f g
Im X1 � kX0f g

����h 2ð Þ
0 ¼hþ aþ p

¼ cos h� h1ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1þ cos2 h� h1ð Þ

ph i
� 0:

ð4:8Þ

Therefore, the sign of the imaginary part ofW1 � kW0 is the same from the sign
of imaginary part of X1 � kX0, ensuring non-negative values in ambient magnitude
Aj j. Hence, we can conclude that based on the second solution, the relation between
the ambient phases in two channels is

Im W1 � kW0f g
Im X1 � kX0f g

����h 2ð Þ
0 ¼hþ aþ p

¼ cos h� h1ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1þ cos2 h� h1ð Þ

ph i
� 0:

ð4:9Þ

where h ¼ \ X1 � kX0ð Þ: Furthermore, by substituting (4.4) and (4.2) into (4.1), we
have

Ac ¼ X1 � kX0ð Þ:= W1 � kW0ð Þ �Wc;

Pc ¼ Xc � X1 � kX0ð Þ:= W1 � kW0ð Þ �Wc; c 2 0; 1f g: ð4:10Þ

Since Xc and k can be directly computed using the correlations of the input
signals [refer to Eq. (3.8) in Chap. 3] [HTG14], W0; and W1 are the only
unknown variables on the right hand side of the expressions in (4.10). In other
words, the primary and ambient components are determined by W0; and W1;
which are solely related to the phases of the ambient components. Therefore, we
reformulate the PAE problem into an APE problem. Based on the relation between
h0 and h1 stated in (4.9), only one ambient phase h1 needs to be estimated.
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4.1.2 Ambient Magnitude Estimation

To reformulate the PAE problem as an AME problem, we rewrite (4.1) for every
time–frequency bin as follows:

X 00 ¼ kX0 ¼ P1þ kA0;

X1 ¼ P1þA1:
ð4:11Þ

Considering these bin-wise spectra stated in (4.11) as vectors in complex plane
(represented by an arrow on top), we can express their geometric relations in
Fig. 4.1 as

X 00
�! ¼ OB

�! ¼ BRe;BImð Þ; X1
�! ¼ OC

�! ¼ CRe;CImð Þ;
P1
�! ¼ OP

�! ¼ PRe; PImð Þ;
k A0
�! ¼ PB

�!
; A1

�! ¼ PC
�!

:

ð4:12Þ

Let r denote the magnitude of the ambient component, i.e., r ¼ A0
�!��� ��� ¼ A1

�!��� ���:
Then, we have PC

�!��� ��� ¼ r; PB
�!��� ��� ¼ kr: Therefore, by drawing two circles from their

origins at B and C, we can find their intersection point P (select one point when
there are two intersection points), which corresponds to the spectrum of the primary
component and leads to the solution for the extracted primary and ambient com-
ponents. For any estimate of ambient magnitude r̂, the coordinates of point P shall
satisfy

PRe � BReð Þ2þ PIm � BImð Þ2¼ k2r̂2;

PRe � CReð Þ2þ PIm � CImð Þ2¼ r̂2:
ð4:13Þ

The solution of PRe; PImð Þ for (4.13) is given by

P̂Re ¼ BReþCRe

2
þ CRe � BReð Þ k2 � 1ð Þr̂2 � BIm � CImð Þb

2 BC
�!��� ���2 ;

P̂Im ¼ BImþCIm

2
þ CIm � BImð Þ k2 � 1ð Þr̂2 	 BRe � CReð Þb

2 BC
�!��� ���2 ;

ð4:14Þ
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where the Euclidean distance between the points B and C is BC
�!��� ��� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CRe � BReð Þ2þ CIm � BImð Þ2
q

and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1ð Þ2r̂2 � BC

�!��� ���2� �
k � 1ð Þ2r̂2 � BC

�!��� ���2� �s
:

Based on (4.12), the spectra of the primary and ambient components can then be
derived as

P̂1 ¼ P̂Reþ jP̂Im; P̂0 ¼ k�1 P̂Reþ jP̂Im
� �

;

Â1 ¼ X1 � P̂Reþ jP̂Im
� �

; Â0 ¼ X0 � k�1 P̂Reþ jP̂Im
� �

:
ð4:15Þ

Therefore, the PAE problem becomes the problem of determining r, i.e., AME.
The approach to determine r and select one of the two solutions in (4.14) will be
discussed in Sect. 4.2. It can be inferred from Fig. 4.1 that determining the ambient
magnitude is equivalent to determine the ambient phase as either of them will lead
to the other. Therefore, we conclude that APE and AME are equivalent and they are
collectively termed as ASE. The block diagram of the ASE-based PAE is illustrated
in Fig. 4.2. The input signals are transformed into time–frequency domain using,
e.g., STFT, and followed by the proposed ASE stage, where either APE or AME
can be used. After estimating the ambient phase or magnitude, the extracted pri-
mary and ambient components can be derived in time–frequency domain, which are
finally transformed into time domain. We argue that in theory, by accurately
obtaining the spectra of ambient components, it is possible to achieve perfect
extraction (i.e., error free) of the primary and ambient components using the for-
mulation of ASE, which is not possible with existing PAE approaches as a con-
sequence of residue error from the uncorrelated ambient component [HTG14].

O (0, 0)

B (BRe, BIm)

C (CRe, CIm)

Re

Im

'
0X

1X 1P

0k A

1A P (PRe, PIm)

Fig. 4.1 Geometric
representation of (4.11) in
complex plane in AME
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4.2 Ambient Spectrum Estimation with a Sparsity
Constraint

The proposed ASE framework can greatly simplify the PAE problem into an
estimation problem with only one unknown parameter per time–frequency bin. To
estimate these parameters, we shall exploit other characteristics of the primary and
ambient components that have not been used in previous derivations. One of the
most important characteristics of sound source signals is sparsity, which has been
widely used as a critical criterion in finding optimal solutions in many audio and
music signal processing applications [PBD10]. In PAE, since the primary com-
ponents are essentially directional sound sources, they can be considered to be
sparse in the time–frequency domain [PBD10]. Therefore, we estimate the ambient
phase or magnitude spectrum by restricting that the extracted primary component is
sparse. We refer to these approaches as ambient spectrum estimation with a sparsity
constraint (ASES). By applying the sparsity constraint in APE and AME, ASES can
be divided into two approaches, namely, APES and AMES.

4.2.1 Ambient Phase Estimation with a Sparsity Constraint

With a sparsity constraint, the APE problem can be expressed as follows:

ĥ


1 ¼ argmin

ĥ1
P̂1

		 		
1; ð4:16Þ

where P̂1

		 		
1 is the 1-norm of the primary component, which is equal to the sum of

the magnitudes of the primary component over all the time–frequency bins. Since
the objective function in (4.16) is not convex, convex optimization techniques are

  Find 1

Compute

ˆ     ˆˆ    ˆ
Inverse T-F 
Transform

Extracted primary and 
ambient components

ˆ    ˆ   ˆ   ˆ

, , ,

, , ,

0 1 0 1P P A A

0 1 0 1p    p   a a

Input signal
,0 1x x

  Find r

T-F
Transform

Select
ASE

APE

AME

Fig. 4.2 Block diagram of ASE-based PAE
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inapplicable. Heuristic methods, such as simulated annealing [LaA87], require
optimization to be performed for all the phase variables and hence might be inef-
ficient in solving APES. Therefore, a more efficient method referred to as discrete
searching (DS) to estimate ambient phase is proposed. DS is proposed based on the
following two observations. First, the magnitude of the primary component at one
time–frequency bin is solely determined by the phase of the ambient component at
the same time–frequency bin, and hence, the estimation in (4.16) can be inde-
pendently performed for each time–frequency bin. Second, the phase variable is
bounded to �p; pð �, and high precision of the estimated phase may not be neces-
sary. Thus, the optimal phase estimates can be selected from an array of discrete
phase values ĥ1 dð Þ ¼ 2pd=D� pð Þ; where d 2 1; 2; . . .;Df g with D being the total
number of phase values to be considered. In general, the value of D affects the
extraction and the computational performance of APES using DS. Following (4.9)
and (4.10), a total number of D estimates of the primary components can be
computed. The estimated phase then corresponds to the minimum of magnitudes of
the primary component, i.e., ĥ
1 ¼ ĥ1 d
ð Þ; where d
 ¼ argmind2 1;2;...;Df g P̂1 dð Þ�� ��.
Finally, the extracted primary and ambient components are computed using (4.10).
It shall be noted that in DS, a sufficient condition of the sparsity constraint was
employed in solving the APES problem in (4.16). The detailed steps of APES are
listed in Table 4.1.

In addition to the proposed APES, we also consider a simple way to estimate the

ambient phase based on the uniform distribution, i.e., ĥ
U
1 �U �p; pð �. This

approach is referred to as APEU and is compared with the APES to examine the
necessity of having a more accurate APE in the next section. Developing a com-
plete probabilistic model to estimate the ambient phase, though desirable, is beyond
the scope of the present study.

Table 4.1 Steps in APES 1. Transform the input signal into time–frequency domain X0,
X1, precompute k, choose D, and repeat steps 2–7 for every
time–frequency bin

2. Set d = 1, compute h ¼ \ X1 � kX0ð Þ; repeat steps 3–6
3. bh1 dð Þ ¼ 2pd=D� p

4. Compute ĥ0 dð Þ using Eq. (4.9), and Ŵ0 dð Þ; Ŵ1 dð Þ
5. Compute P̂1 dð Þ using Eq. (4.10) and P̂1 dð Þ�� ��
6. d  dþ 1, Until d ¼ D

7. Find d
 ¼ argmind2 1;2;...;Df g P̂1 dð Þ�� ��; repeat steps 3–5 with
d ¼ d
, and compute the other components using Eq. (4.10)

8. Finally, compute the time-domain primary and ambient
components using inverse time–frequency transform
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4.2.2 Ambient Magnitude Estimation with a Sparsity
Constraint

Similar to APES that is solved using the sparsity constraint, the AME problem can
be expressed as follows:

r̂
 ¼ argmin
r̂

P̂1

		 		
1; ð4:17Þ

where r̂ is the estimated ambient magnitude of all the time–frequency bins. As no
constraints are placed on the ambient magnitude spectra among the time–frequency
bins in one frame, the estimation of ambient magnitude can also be considered to be
independent for every time–frequency bin. Therefore, the estimation of ambient
magnitude can be obtained individually for every time–frequency bin by mini-
mizing the primary magnitude under the AMES framework.

To derive the solution for AMES, we follow the geometric relation illustrated in
Fig. 4.1. To ensure the existence of intersection point P, the following constraint

PC
�!��� ���� PB

�!��� ���� BC
�!��� ���� PB

�!��� ���þ PC
�!��� ���; ð4:18Þ

has to be satisfied, which leads to

r 2 rlb; rub½ �; ð4:19Þ

where rlb ¼ jBC
�!

jkþ 1; rub¼jBC
�!

j
k�1 ;8k 6¼1: When k = 1, there is no physical upper bound

from (4.18). Based on the objective of minimizing the magnitude of primary com-
ponent, we can actually enforce an approximate upper bound for k = 1; for example,

let rub ¼ OB
�!��� ���þ OC

�!��� ���; 8k ¼ 1. Thus, the ambient magnitude is bounded, and the

same numerical method DS (as used in APES) is employed to estimate r in AMES.
Consider an array of discrete ambient magnitude values r̂ dð Þ ¼
1� d�1

D�1
� �

rlbþ d�1
D�1 rub, where d 2 1; 2; . . .;Df g with D being the total number of

ambient magnitude estimates considered. For each magnitude estimate r̂ dð Þ, we
select the one P̂Re; P̂Im

� �
of two solutions from (4.14) which gives the smaller

primary magnitude. First, we write the two solutions from (4.14) as follows:

P̂
1ð Þ
Re ¼

BReþCRe

2
þ CRe � BReð Þ k2 � 1ð Þr̂2þ BIm � CImð Þb

2 BC
�!��� ���2 ;

P̂
1ð Þ
Im ¼

BImþCIm

2
þ CIm � BImð Þ k2 � 1ð Þr̂2 � BRe � CReð Þb

2 BC
�!��� ���2 ;

ð4:20Þ
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P̂
2ð Þ
Re ¼

BReþCRe

2
þ CRe � BReð Þ k2 � 1ð Þr̂2 � BIm � CImð Þb

2 BC
�!��� ���2 ;

P̂
2ð Þ
Im ¼

BImþCIm

2
þ CIm � BImð Þ k2 � 1ð Þr̂2þ BRe � CReð Þb

2 BC
�!��� ���2 ;

ð4:21Þ

We compare the power of the primary components given by these two solutions
as follows:

P̂
1ð Þ��� ���2� P̂

2ð Þ��� ���2 ¼ P̂
1ð Þ
Re

h i2
þ P̂

1ð Þ
Im

h i2
� P̂

2ð Þ
Re

h i2
� P̂

2ð Þ
Im

h i2

¼ 4
BReþCRe

2
þ CRe � BReð Þ k2 � 1ð Þr̂2

2 BC
�!��� ���2

2
64

3
75 BIm � CImð Þb

2 BC
�!��� ���2

� 4
BImþCIm

2
þ CIm � BImð Þ k2 � 1ð Þr̂2

2 BC
�!��� ���2

2
64

3
75 BRe � CReð Þb

2 BC
�!��� ���2

¼ � BReCIm � BImCReð Þ 2b

BC
�!��� ���2 :

ð4:22Þ
By selecting the solution with smaller power, we arrive at

P̂Re; P̂Im ¼
P̂

1ð Þ
Re ; P̂

1ð Þ
Im ; BReCIm � BImCReð Þ� 0

P̂
2ð Þ
Re ; P̂

2ð Þ
Im ; otherwise

:

8<
: ð4:23Þ

Therefore, we can unify the solution for the selected P̂Re; P̂Im
� �

from (4.14)
based on the sign of BReCIm � BImCReð Þ, that is,

P̂Re dð Þ ¼ BReþCRe

2
þ CRe � BReð Þ k2 � 1ð Þr̂2 dð Þ

2 BC
�!��� ���2

þ BIm � CImð Þb dð Þsgn BReCIm � BImCReð Þ
2 BC
�!��� ���2 ;

P̂Im dð Þ ¼ BImþCIm

2
þ CIm � BImð Þ k2 � 1ð Þr̂2 dð Þ

2 BC
�!��� ���2

þ � BRe � CReð Þb dð Þsgn BReCIm � BImCReð Þ
2 BC
�!��� ���2 ;

ð4:24Þ
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where sgn(x) is the sign of x. The estimated magnitude of the primary component is
obtained as

P̂1 dð Þ�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂
2
Re dð Þþ P̂

2
Im dð Þ

q
; ð4:25Þ

The estimated ambient magnitude then corresponds to the minimum of the pri-
mary component magnitude, i.e., r̂
 ¼ r̂ d
ð Þ; where d
 ¼ argmind2 1;2;...;Df g P̂1 dð Þ�� ��.
Finally, the extracted primary and ambient components are computed using (4.15).

4.2.3 Computational Cost of APES and AMES

In this subsection, we compare the computational cost of APES and AMES, as
shown in Table 4.2. In general, both AMES and APES are quite computational
extensive. AMES requires more operations which include square root, addition,
multiplication, and division, but requires no trigonometric operations. By contrast,
APES requires 7D + 6 times of trigonometric operations for every time–frequency
bin. The computational efficiency of these two approaches is affected by the
implementation of these operations.

4.2.4 An Approximate Solution: APEX

To obtain a more efficient approach for ASE, we derive an approximate solution in
this subsection. For every time–frequency bin, we can rewrite (4.1) for the two
channels as follows:

X0j j2 ¼ P0j j2þ A0j j2þ 2 P0j j A0j j cos hPA0 ¼ k�2 P1j j2þ Aj j2þ 2k�1 P1j j Aj j cos hPA0;
X1j j2 ¼ P1j j2þ A1j j2þ 2 P1j j A1j j cos hPA1 ¼ P1j j2þ Aj j2þ 2 P1j j Aj j cos hPA1;

ð4:26Þ

where hPA0; hPA1 are the phase differences between the spectra of the primary and
ambient components in channels 0 and 1, respectively. From (4.26), we can obtain
that

1� k�2
� �

P1j j2þ 2 Aj j cos hPA1 � k�1 cos hPA0
� �

P1j j � X1j j2� X0j j2

 �

¼ 0: ð4:27Þ
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Solving (4.27) for P1j j, we arrive at

8k[ 1; P1j j ¼ Aj j k�1 cos hPA0 � cos hPA1ð Þ
1� k�2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj j2 k�1 cos hPA0 � cos hPA1ð Þ2þ 1� k�2ð Þ X1j j2� X0j j2


 �r
1� k�2

;

8k ¼ 1; P1j j ¼ X1j j2� X0j j2
2 Aj j cos hPA1 � cos hPA0ð Þ

¼ X1j j2� X0j j2
�4 Aj j sin hPA0 þ hPA1

2 sin h0�h1
2

� � :
ð4:28Þ

. \eqno\rm(4.28)
From (4.28), when k > 1, the minimization of P1j j can be approximately

achieved by minimizing k�1 cos hPA0 � cos hPA1 (considering that X1j j2� X0j j2 in
most cases since k� 1), which leads to hPA0 ¼ p; hPA1 ¼ 0. According to the
relation between the two ambient phases in (4.9), we can infer that it is impossible
to always achieve both hPA0 ¼ p and hPA1 ¼ 0 at the same time. Clearly, since
k[ 1, a better approximate solution would be taking hPA1 ¼ 0. On the other hand,
when k = 1, one approximate solution to minimize P1j j would be letting
h0 � h1 ¼ p. These constraints can be applied in either APE or AME framework.
Here, applying the constraints in APE is more straightforward, and we shall obtain
the approximate phase estimation as follows:

ĥ


1 ¼

\X1; 8k[ 1
\ X1 � X0ð Þ; 8k ¼ 1

�
: ð4:29Þ

As the phase (or the phase difference) of the input signals is employed in (4.29),
we refer to this approximate solution as APEX. As shown in Table 4.2, APEX
requires the lowest computational cost and is significantly more efficient than either
APES or AMES. The performance of these approaches will be evaluated in the
following sections.

Table 4.2 Computational cost of APES, AMES, and APEX (for every time–frequency bin)

Operation Square
root

Addition Multiplication Division Comparison Trigonometric
operation

APES D 15D + 18 15D + 13 4D + 6 D − 1 7D + 6

AMES 2D + 2 25D + 35 24D + 24 9D + 13 D − 1 0

APEX 0 13 7 4 1 7

D Number of phase or magnitude estimates in discrete searching
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4.3 Performance Measures

An evaluation framework for PAE was initially proposed in [HTG14]. In general,
we are concerned with the extraction accuracy and spatial accuracy in PAE. The
overall extraction accuracy of PAE is quantified by error-to-signal ratio (ESR, in
dB) of the extracted primary and ambient components, where lower ESR indicates
better extraction of these components. The ESR for the primary and ambient
components is computed as

ESRP ¼ 10 log10
1
2

X1
c¼0

p̂c � pck k22
pck k22

( )
;

ESRA ¼ 10 log10
1
2

X1
c¼0

âc � ack k22
ack k22

( )
;

ð4:30Þ

where pc; and ac are the time–domain primary and ambient components of the
whole signal, respectively. The extraction error can be further decomposed into
three components, namely the distortion, interference, and leakage (refer to Chap. 3
for the explanation of these three error components). Corresponding performance
measures of these error components can be computed directly for PAE approaches
with analytic solutions. As there is no analytic solution for these ASE approaches,
we need to find alternative ways to compute these measures. In this section, we
propose a novel optimization technique to estimate these performance measures.

We consider the extracted primary component in time domain p̂c. Since the true
primary components in two channels are completely correlated, no interference is
incurred [HTG14]. Thus, we can express p̂c as

p̂c ¼ pcþLeakpc þDistpc ; ð4:31Þ

where the leakage is Leakpc ¼ wPc;0a0þwPc;1a1
� �

; and the distortion is Distpc : To
compute the measures, we need to estimate wPc;0;wPc;1 first. Considering that
pc; a0; and a1 are inter-uncorrelated, we propose the following way to estimate
wPc;0;wPc;1; with

w
Pc;0;w


Pc;1


 �
¼ arg min

wPc;0;wPc;1ð Þ
p̂c � pc � wPc;0a0þwPc;1a1

� �		 		2
2; ð4:32Þ

Thus, we can compute the measures, leakage-to-signal ratio (LSR) and
distortion-to-signal ratio (DSR), for the primary components as
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ð4:33Þ

Next, we express âc in a similar way as

âc ¼ acþLeakac þ Intfac þDistac ; ð4:34Þ

where the leakage is Leakac ¼ wAc;cpc, and the interference Intfac ¼ wAc;1�ca1�c
originates from the uncorrelated ambient component. The two weight parameters
wAc;c;wAc;1�c can be estimated as

w
Ac;c;w


Ac;1�c


 �
¼ arg min

wAc;c;wAc;1�cð Þ
âc � ac � wAc;cpcþwAc;1�ca1�c

� �		 		2
2; ð4:35Þ

Thus, we compute the measures LSR, interference-to-signal ratio (ISR), and
DSR for the ambient components as

LSRA ¼ 10 log10
1
2

X1
c¼0

w
Ac;cpc
			 			2

2

ack k22

8><
>:

9>=
>;;

ISRA ¼ 10 log10
1
2

X1
c¼0
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			 			2

2
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9>=
>;;

DSRA ¼ 10 log10
1
2

X1
c¼0

âc � ac � w
Ac;cpcþw
Ac;1�ca1�c

 �			 			2

2

ack k22

8><
>:

9>=
>;:

ð4:36Þ

Previous experience on evaluating linear estimation-based PAE approaches such
as PCA and least squares suggests that these parameters wPc;0;wPc;1;wAc;c;wAc;1�c
are bounded to [−1, 1]; hence, we can employ a simple numerical searching method
similar to DS to determine the optimal estimates of these parameters using a certain
precision [HTG14]. As audio signals from digital media are quite non-stationary,
these measures shall be computed for every frame and can be averaged to obtain the
overall performance for the whole track.

On the other hand, spatial accuracy is measured using the inter-channel cues. For
primary components, the accuracy of the sound localization is mainly evaluated
using inter-channel time and level differences (i.e., ICTD and ICLD). In this
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chapter, there is no ICTD involved in the basic mixing model for stereo input
signals, and the ICLD is essentially determined by the estimation of k, which is
common between the proposed approaches and the existing linear estimation-based
approaches such as PCA [HTG14]. For these two reasons, spatial accuracy is not
evaluated for primary component extraction, but is focused on the extraction of
ambient components. The spatial accuracy of the ambient component is evaluated
in terms of its diffuseness, as quantified by inter-channel cross-correlation coeffi-
cient (ICC, from 0 to 1) and the ICLD (in dB). It is clear that a more diffuse ambient
component requires both ICC and ICLD to be closer to 0.

4.4 Experiments and Discussions

In this section, we present a comprehensive objective and subjective evaluation of
the proposed ASE approaches and two existing PAE approaches, namely PCA
[GoJ07b] and time–frequency masking [MGJ07]. We present a preliminary
experimental result on APES,1 followed by the detailed results on ASE approa-
ches.2 To examine the robustness of these PAE approaches, we evaluate the pro-
posed approaches using synthesized mixed signal with unequal ambient magnitude
in two channels. Lastly, subjective listening tests were conducted to examine the
perceptual timbre and spatial quality of different PAE approaches.

4.4.1 Experimental Results on APES

Experiments using synthesized mixed signals were carried out to evaluate the
proposed approach. One frame (consists of 4096 samples) of speech signal is
selected as the primary component, which is amplitude panned to channel 1 with a
panning factor k = 4, 2, 1. A wave lapping sound recorded at the beach is selected
as the ambient component, which is decorrelated using all-pass filters with random
phase [Ken95b]. The stereo input signal is obtained by mixing the primary and
ambient components using different values of primary power ratio ranging from 0
to 1 with an interval of 0.1.

Our experiments compare the extraction performance of APES, APEU, PCA
[GoJ07b], and two time–frequency masking approaches: Masking [MGJ07] and
Masking_2 [AvJ04]. In the first three experiments, DS with D = 100 is used as the

1The source code and demo tracks are available: http://jhe007.wix.com/main#!ambient-phase-
estimation/cied.
2The source code and demo tracks are available: http://jhe007.wix.com/main#!ambient-spectrum-
estimation/c6bk.
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searching method of APES. Extraction performance is quantified by the
error-to-signal ratio (ESR, in dB) of the extracted primary and ambient components.

First, we examine the significance of APE by comparing the performance of
APES with APEU. In Fig. 4.3, we show the mean phase estimation error, and it is
observed that compared to a random phase in APEU, the phase estimation error in
APES is much lower. As a consequence, ESRs in APES are significantly lower than
those in APEU, as shown in Fig. 4.4. This result indicates that obviously, close
APE is necessary.

Second, we compare the APES with some other PAE approaches in the litera-
ture. From Fig. 4.4, it is clear that APES significantly outperforms other approaches
in terms of ESR for c� 0:8 and k ≠ 1, suggesting that a better extraction of primary
and ambient components is found with APES when primary components are
panned and ambient power is strong. When k = 1, APES has comparable perfor-
mance to the masking approaches and performs slightly better than PCA for
c� 0:5. Referring to Fig. 4.3 that the APE error is similar for different k values, we
can infer that the relatively poorer performance of APES for k = 1 is an inherent
limitation of APES. Moreover, we compute the mean ESR across all tested c and
k values and find the average error reduction in APES over PCA, and the two time–
frequency masking approaches are 3.1, 3.5, and 5.2 dB, respectively. Clearly, the
error reduction is even higher (up to 15 dB) for low c values.

Lastly, we compare the performance, as well as the computation time among
different searching methods in APES: SA, DS with D = 10 and 100. The results
with γ = 0.5 and k = 4 are presented in Table 4.3. It is obvious that SA requires
significantly longer computation time to achieve similar ESR when compared to
DS. More interestingly, the performance of DS does not vary significantly as the
precision of the search increases (i.e., D is larger). However, the computation time
of APES increases almost proportionally as D increases. Hence, we infer that the
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Fig. 4.3 Comparison of ambient phase estimation error between APES and APEU with a k = 4;
b k = 2; and c k = 1. Legend in (a) applies to all the plots
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proposed APES is not very sensitive to phase estimation errors and therefore the
efficiency of APES can be improved by searching a limited number of phase values.

4.4.2 Experimental Results on ASE Approaches

In these experiments, the searching method of APES or AMES is DS with D = 100.
Based on the performance measures introduced in Sect. 4.3, we shall compare the
overall extraction error performance, the specific error performance including
leakage, distortion, and interference, as well as the spatial accuracy of the ambient
components. Additionally, we will also compare the efficiency of these PAE
approaches in terms of the computation time based on our simulation. The stereo
mixed signals employed in the experiments are synthesized in the following way.
A frame (4096 samples, sampling rate: 44.1 kHz) of speech signal is selected as the
primary component, which is amplitude panned to channel 1 with a panning factor
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Fig. 4.4 ESR of a–c extracted primary component and d–f extracted ambient component, with
respect to 3 different values of primary panning factor (k = 4, 2, 1), using APES, APEU, PCA
[GoJ07b], Masking [MGJ07], and Masking_2 [AvJ04]. Legend in (a) applies to all the plots

Table 4.3 Comparison of APES with different searching methods

Method Computation time (s) ESRP (dB) ESRA (dB)

DS (D=10) 0.18 −7.28 −7.23

DS (D=100) 1.62 −7.58 −7.50

SA 426 −7.59 −7.51
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k 2 1; 2; 4f g: A wave lapping sound recorded at the beach is selected as the
ambient component, which is decorrelated using all-pass filters with random phase
[Ken95b]. The stereo signal is obtained by mixing the primary and ambient com-
ponents based on different c values ranging from 0 to 1 with an interval of 0.1.

In the first experiment, we compare the overall performance of the three ASE
approaches with two other PAE approaches in the literature, namely PCA [GoJ07b]
and Masking [MGJ07]. For the proposed ASE approaches, FFT size is set as 4096,
whereas for Masking, the best setting for FFT size is found as 64. The ESR of these
approaches with respect to different values of c and k is illustrated in Fig. 4.5. Our
observations of the ESR performance are as follows:

(1) Generally, the performance of all these PAE approaches varies with c. As c
increases, ESRP decreases while ESRA increases (except ESRA of PCA).
Considering primary components to be more important in most applications, it
becomes apparent that the two representative existing approaches cannot
perform well when c is low.

(2) Primary panning factor k is the other factor that affects the ESR performance
of these PAE approaches except PCA. For the Masking approach, the influ-
ence of k is insignificant for most cases except ESRP at very low c and ESRA

at very high c. By contrast, the ASE approaches are more sensitive
to k. The ESRs of APES and AMES are lower at higher k, especially when c is
high. For APEX, the performance varies between k > 1 and k = 1, which was
implied in (4.29).
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Fig. 4.5 Comparison of the ESR of a–c extracted primary components and d–f extracted ambient
components, with respect to different k values, using APES, AMES, APEX, PCA [GoJ07b], and
Masking [MGJ07]
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(3) Irrespective of c and k, APES and AMES perform quite similar. Both APES
and AMES outperform existing approaches at lower c, i.e., from γ < 0.8 when
k = {2, 4} to γ < 0.5 when k = 1. APEX can be considered as an approximate
solution to APES or AMES for k > 1, and when k = 1, it becomes identical to
PCA (this can also be verified theoretically).

In the second experiment, we look into the specific error performance of ASE
approaches at k = 2. Note that there are some slight variations in these error
measures for close c values, which is due to the inaccuracy in the estimation of
specific error components. Nevertheless, we can observe the following trends. As
shown in Fig. 4.6a, b, we found that the performance improvement of ASE
approaches in extracting primary components lies in the reduction of the ambient
leakage, though at the cost of introducing more distortion. For ambient component
extraction, PCA and Masking yield the least amount of leakage and interference,
respectively. Note that the little amount of leakage in PCA and interference in
Masking are actually due to the estimation error, since none of them theoretically
exist in the extracted ambient components. Nevertheless, the ASE approaches yield
moderate amount of these errors, which results in a better overall performance.

In the third experiment, we examine the spatial accuracy of PAE in terms of the
diffuseness of the extracted ambient components. As shown in Fig. 4.7a–c, the
lowest and highest ICC is achieved with true ambient components and ambient
components extracted by PCA, respectively. The ASE approaches outperform the
existing approaches and are more effective in extracting diffuse ambient
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Fig. 4.6 Comparison of the specific error performance of a–b LSR and DSR in the extracted
primary components and c–e LSR, DSR, and ISR in the extracted ambient components using
APES, AMES, APEX, PCA, and Masking
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components at higher k and lower c. For ICLD of the extracted ambient components
as shown in Fig. 4.7d–f, we observed that all approaches extract ambient compo-
nents with equal level between the two channels, whereas PCA works only for
k = 1.

In the fourth experiment, we compare the extraction performance as well as the
computation time among these PAE approaches. The simulation was carried out on
a PC with i5-2400 CPU, 8 GB RAM, 64-bit windows 7 operating system, and
64-bit MATLAB 7.11.0. Though MATLAB simulations do not provide precise
computation time measurement compared to the actual implementation, we could
still obtain the relative computation performance among the PAE approaches. The
results of computation time averaged across all the c and k values are summarized
in Table 4.4. It is obvious that the three ASE approaches perform better than PCA
and Masking on the average. But, when we compare the computation time among
APES, AMES, and APEX, we found that AMES is around 20× faster than APES,
but is still far away from the computation time of the existing approaches.
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Fig. 4.7 Comparison of the diffuseness of the extracted ambient components in terms of a–c ICC
and d–f ICLD using APES, AMES, APEX, PCA, and Masking

Table 4.4 Average ESR, ICC, and computation time of PAE approaches

Method APES AMES APEX PCA
[GoJ07b]

Masking
[MGJ07]

ESRP (dB) −6.73 −6.31 −6.25 −3.02 −1.57

ESRA (dB) −6.73 −6.31 −6.25 −3.02 −2.77

ICC of ambient
components

0.19 0.22 0.42 1 0.40

Computation time (ms) 3921.8 217.1 4.8 0.06 5.0
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The APEX, which estimates the ambient phase directly using the phase of the input
signals, is over 40× faster as compared to AMES, has similar computational per-
formance as the Masking approach, and can be considered as a good alternative
ASE approach for PAE. Furthermore, in order to achieve real-time performance (in
frame-based processing), the processing time must be less than 4096/44.1 =
92.88 (ms). It is clear that APEX, together with PCA and Masking, satisfies this
real-time constraint.

4.4.3 Experimental Results on Robustness of ASE
Approaches

To investigate the robustness of the proposed ASE approaches, we conduct
experiments with the input signals containing unequal ambient magnitudes in the
two channels. To quantify the violation of the assumption of equal ambient mag-
nitude, we introduce an inter-channel variation factor v that denotes the range of
variation of the ambient magnitude in one channel as compared to the other
channel. Let us denote the ambient magnitude in the two channels as r0; r1. The
variation of ambient magnitude is expressed as v ¼ 10 log10 r1=r0ð Þ dBð Þ: In the
ideal case, we always have v ¼ 0: To allow variation, we consider v as a random
variable with mean equal to 0, and variance as r2: In this experiment, we consider
two types of distributions for the variation, namely normal distribution and uniform
distribution, and examine the performance of these PAE approaches with respect to
different variance of variations, i.e., r2 2 0; 10½ �, at c ¼ 0:5, and k = 2. We run the
experiment 10 times and illustrate the averaged performance in terms of ESR and
ICC in Figs. 4.8 and 4.9. We observed that as the variance of the variation
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Fig. 4.8 Comparison of the performance of PAE approaches in the presence of normally
distributed variations in the ambient magnitudes in two channels (with c ¼ 0:5, k = 2): a ESRP,
b ESRA, and c ICC of ambient components
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increases, the ESR performance of proposed ASE approaches becomes worse,
though ICC was not affected much. The ASE approaches are more robust to
ambient magnitude variations under normal distribution compared to uniform
distribution. Compared to PCA and Masking, the proposed approaches are still
better with the variance of variation up to 10 dB. Therefore, we conclude that the
three ASE approaches are in general robust to ambient magnitude variations.

4.4.4 Experimental Results on Subjective Listening Tests

Lastly, subjective tests were carried out to evaluate the perceptual performance of
these PAE approaches. A total of 17 subjects (15 males and 2 females), who were
all between 20 and 30 years old, participated in the listening tests. None of the
subjects reported any hearing issues. The tests were conducted in a quiet listening
room at Nanyang Technological University, Singapore. An Audio Technica
MTH-A30 headphone was used. The stimuli used in this test were synthesized
using amplitude-panned (k = 2) primary components (speech, music, and bee
sound) and decorrelated ambient components (forest, canteen, and waterfall sound)
based on two values of primary power ratio (c ¼ 0:3; 0:7) for the duration of 2–4 s.
Both the extraction accuracy and spatial accuracy were examined. The testing
procedure was based on MUSHRA [ITU03b, LNZ14], where a more specific
anchor (i.e., the mixture) is used instead of the low-passed anchor, according to
recent revision of MUSHRA as discussed in [LNZ14]. The MATLAB GUI was
modified based on the one used in [EVH11]. Subjects were asked to listen to the
clean reference stimuli and processed stimuli obtained from different PAE
approaches, and give a score of 0–100 as the response, where 0–20, 21–40, 41–60,
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Fig. 4.9 Comparison of the performance of PAE approaches in the presence of uniformly
distributed variations in the ambient magnitudes in two channels (with c ¼ 0:5, k = 2): a ESRP,
b ESRA, and c ICC of ambient components
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61–80, and 81–100 represent a bad, poor, fair, good, and excellent quality,
respectively. Finally, we analyzed the subjects’ responses for the hidden reference
(clean primary or ambient components), mixture, and three PAE approaches,
namely Masking [MGJ07], PCA [GoJ07b], and APEX. Note that APEX is selected
as the representative of ASE approaches because APES and AMES exhibit very
similar extraction results. For each PAE approach, we combine the subjective
scores of different test stimuli and different values of primary power ratio, so as to
represent the overall performance of these PAE approaches. According to [ITU14],
we conducted the post-screening to detect the outliers by excluding the scores of the
subject who rates the hidden reference lower than 90. The mean subjective score
with 95 % confidence interval of the extraction and spatial accuracy for the tested
PAE approaches are illustrated in Fig. 4.10. Despite the relatively large variations
among the subjective scores that are probably due to the different scales employed
by the subjects and the differences among the stimuli, we observe the following
trends. On one hand, we observed that APEX outperforms the other PAE
approaches in extracting accurate primary components, as shown in Fig. 4.10a. In
Fig. 4.10b, APEX, though slightly worse off than PCA, still produces considerable
accuracy in ambient extraction. The good perceptual performance of ambient
components extracted from PCA lies in the very low amount of primary leakage, as
shown in Fig. 4.6c. On the other hand, we found that the spatial performance was
also affected by the undesired leakage signals as compared to the clean reference, as
found in the mixtures, which preserve the same spatial quality as the reference, but
was rated lower than the reference. With respect to the diffuseness of the ambient
components, APEX performs the best, whereas PCA performs poorly. We find that
PCA sacrifices on the diffuseness of the extracted ambient components for the sake
of a better perceptual extraction performance. A further analysis of the ANOVA
results shows that the p-values between the APEX, Masking, and PCA are extre-
mely small, which reveals that the differences among the performance of these PAE
approaches are significant. To sum up the subjective evaluation results, the
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Fig. 4.10 Subjective performance (mean with 95 % confidence interval) for a the extraction
accuracy of primary components, b the extraction accuracy of ambient components, and
c diffuseness accuracy of ambient components

4.4 Experiments and Discussions 89



proposed ASE approaches yield the best performance in terms of extraction and
spatial accuracy, which is consistent with our objective evaluation results.

4.5 Conclusions

In this chapter, we presented a novel formulation of the PAE problem in the time–
frequency domain. By taking advantage of equal magnitude of ambient component
in two channels, the PAE problem is reformulated as an ASE problem. The ASE
framework can be considered in two ways, namely APE and AME. The novel ASE
formulation provides a promising way to solve PAE in the sense that the optimal
solution leads to perfect primary and ambient extraction, which is unachievable
with existing PAE approaches. In this chapter, ASE is solved based on the sparsity
of the primary components, resulting in two approaches, APES and AMES. To
thoroughly evaluate the performance of extraction error, we proposed an opti-
mization method to compute the leakage, distortion, and interference of the
extraction error for PAE approaches without analytical solutions.

Based on our experiments, we observed significant performance improvement of
the proposed approaches over existing approaches. The improvement on error
reduction is around 3–6 dB on average and up to 10–20 dB for lower c, which is
mainly due to the lower residual error from the uncorrelated ambient components.
Moreover, the ASE approaches perform better for mixed signals having heavily
panned primary components (e.g., k = 4) than those having slightly panned primary
components (e.g., k = 1). In terms of the spatial accuracy, the ASE approaches
extract more diffuse ambient components. With respect to the computational effi-
ciency of APES and AMES, the value of D is an important factor, where the
efficiency of these two ASE approaches can be improved by lowering the precision
of the phase/magnitude estimation, without introducing significant degradation on
the extraction performance. Furthermore, we found that AMES is an order of
magnitude faster than APES under the same setting in MATLAB simulation, but is
still not as efficient as existing approaches. For this purpose, we have also derived
an approximate solution APEX and verified its effectiveness, as well as its effi-
ciency in our simulation. Besides the ideal situation where the ambient magnitudes
are equal in two channels, the robustness of these ASE approaches was also
examined by introducing statistical variations to the ambient magnitudes in the two
channels of the stereo signal. It was found that the proposed approaches can still
yield better results with the variance of variations up to 10 dB. The objective
performance of the proposed ASE approaches was also validated in our subjective
tests. In the next two chapters, we will study PAE that deals with more complex
signals.
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Chapter 5
Time-Shifting-Based Primary Ambient
Extraction

Abstract One of the key issues in spatial audio analysis and reproduction is to
decompose a signal into primary and ambient components based on their directional
and diffuse spatial features, respectively. Existing approaches employed in primary
ambient extraction (PAE), such as principal component analysis (PCA), are mainly
based on a basic stereo signal model. The performance of these PAE approaches
has not been well studied for the input signals that do not satisfy all the assumptions
of the stereo signal model. In practice, one such case commonly encountered is that
the primary components of the stereo signal are partially correlated at zero lag,
referred to as the primary-complex case. In this paper, we take PCA as a repre-
sentative of existing PAE approaches and investigate the performance degradation
of PAE with respect to the correlation of the primary components in the
primary-complex case. A time-shifting technique is proposed in PAE to alleviate
the performance degradation due to the low correlation of the primary components
in such stereo signals. This technique involves time-shifting the input signal
according to the estimated inter-channel time difference of the primary component
prior to the signal decomposition using conventional PAE approaches. To avoid the
switching artifacts caused by the varied time-shifting in successive time frames,
overlapped output mapping is suggested. Based on the results from our experi-
ments, PAE approaches with the proposed time-shifting technique are found to be
superior to the conventional PAE approaches in terms of extraction accuracy and
spatial accuracy.

Keywords Primary ambient extraction (PAE) � Spatial audio � Principal compo-
nent analysis (PCA) � Spatial cues � Time-shifting

In practice, PAE is usually applied to the input signals without any prior infor-
mation. To achieve better extraction of the primary and ambient components, PAE
requires the signal model to match the input signal more closely. As presented in
the previous two chapters, most work focus on the ideal case. To date, little work
has been reported to deal with input signals that do not fulfill all the assumptions of
the stereo signal model. In [UsB07], a normalized least-mean-square approach was

© The Author(s) 2017
J. He, Spatial Audio Reproduction with Primary Ambient Extraction,
SpringerBriefs in Signal Processing, DOI 10.1007/978-981-10-1551-9_5

93



proposed to address the problem in extracting the reverberation from stereo
microphone recordings. Härmä [Har11] tried to improve the performance of PAE
by classifying the time–frequency regions of the stereo signal into six classes.
Thompson et al. [TSW12] introduced a primary extraction approach that estimates
the magnitude and phase of the primary component from a multichannel signal by
using a linear system of the pairwise correlations. The latter approach requires at
least three channels of the input signal and is not applicable to stereo input signals.

This chapter focuses on PAE that deals with the real-world stereo input signals
that may not fit the typical PAE signal model. In Sect. 5.1, we discuss the complex
cases of the real-world signals and identified one of the most frequently occurring
cases, known as the primary-complex case. The performance analysis of
PCA-based PAE in the primary-complex case is presented in Sect. 5.2. The pro-
posed SPCA-based PAE to address the problem in the primary-complex case is
discussed in Sect. 5.3. Section 5.4 presents our comparative evaluation on the
performance of PCA- and SPCA-based PAE using four experiments. Finally, we
conclude this chapter in Sect. 5.5.

5.1 Complex Cases in PAE

Referring to the stereo signal model discussed in Sect. 3.1, we shall recall that there
are three key assumptions. In practice, none of these three assumptions can be
satisfied completely. By relaxing any one of them, we can come up with one
complex case. As seen in stereo microphone recordings, movies, and gaming tracks,
the primary components in stereo signals can be amplitude panned and time-shifted.
In addition, spectral differences can be found in the primary components that are
obtained using binaural recording or binaural synthesis based on head-related
transfer functions (HRTFs) [Beg00]. We shall classify this type of stereo signals as
the primary-complex signals. The primary components in the primary-complex
signals usually exhibit partial correlation at zero lag. Other types of complex stereo
signals, such as those involving (partially) correlated ambient components, are less
common and hence are not considered in this chapter.

Therefore, we shall focus our study of PAE on two cases, namely the ideal and
primary-complex cases, where the primary components are completely correlated
and partially correlated at zero lag, respectively. The performance of PAE is
quantified by the measures of extraction accuracy and spatial accuracy.
Performance degradation due to the mismatch of the input signal with the stereo
signal model and the proposed solution to deal with this mismatch is studied
extensively in this chapter. PCA is taken as a representative PAE approach in our
study. More in-depth analysis on the performance of PCA-based PAE is conducted
for the extraction of both the primary and the ambient components. In the
primary-complex case, the performance degradation of PCA-based PAE with
respect to the value of primary correlation is discussed, and we find the main cause
of low primary correlation and the consequent performance degradation to be the
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time difference of the primary component. Hence, we propose a time-shifting
technique to deal with PAE in the primary-complex case. The time-shifting tech-
nique is incorporated into PCA-based PAE, resulting in a new approach referred to
as the time-shifted PCA (SPCA). A new overlapped output mapping method has
also been proposed to avoid the switching artifacts caused by time-shifting. To
validate the advantages of the proposed time-shifting technique and verify the
improved performance of the proposed approach over conventional approaches
more comprehensively, four experiments have been conducted using more realistic
test signals. It shall be noted that the proposed time-shifting technique, though
studied with PCA in this chapter, can be incorporated into any other PAE
approaches that are derived based on the stereo signal model.

5.2 Performance of Conventional PAE
in the Primary-Complex Case

In practice, it is unlikely for any stereo input signals to fulfill all the assumptions
stated in Sect. 3.1. Several non-ideal cases can be defined by relaxing one or more of
the assumptions of the stereo signal model. In this chapter, we focus our discussions
on one commonly occurring non-ideal case, referred to as the primary-complex case,
which defines a partially correlated primary component at zero lag. To investigate
the performance of PCA-based PAE in the primary-complex case, we shall examine
the estimation of k and c first and then evaluate the performance in terms of
extraction accuracy and spatial accuracy.

Considering a stereo signal having a partially correlated primary component at
zero lag, the first assumption of the stereo signal model, as stated in (3.3), is allowed
to be relaxed to

0\ /P ¼ pT0p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT0p0
� �

pT1p1
� �q

2
64

3
75\1; ð5:1Þ

where /P is the correlation coefficient of the primary component at zero lag (primary
correlation for short), and the rest of the assumptions in (3.3 and 3.4) remain
unchanged. Here, only the positive primary correlation is considered, since the
negatively correlated primary component can be converted into positive by simply
multiplying the primary component in either channel by −1. In the primary-complex
case, the correlations of the input signals at zero lag are computed as:

r00 ¼ N Pp0 þPa0

� �
; r11 ¼ N k2Pp0 þPa0

� �
; r01 ¼ N/PkPp0 : ð5:2Þ
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Hence, the estimated k and c are as follows:

k̂pc ¼ /P
r11 � r00
2r01

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/P

r11 � r00
2r01

� �2

þ 1

s
; ð5:3Þ

ĉpc ¼
2r01 þ/P r11 � r00ð Þk̂pc

/P r11 þ r01ð Þk̂pc
; ð5:4Þ

where the subscript “pc” stands for “the primary-complex case.” Clearly, accurate
estimation of k and c in the primary-complex case requires the additional knowl-
edge about the primary correlation /P: However, this primary correlation is usually
unavailable as only the mixed signal is given as input. In PCA-based PAE, the
estimates of k and c for the ideal case, given in (3.8) and (3.9), are usually
employed. In this section, these two solutions are re-expressed as k̂ic and ĉic, where
the subscript “ic” stands for “ideal case.” To see how accurate these ideal case
estimates are, we substitute (5.2) into (3.8) and (3.9) and compute the ratio between
the estimated k and true k, and the ratio between estimated c and true c is as follows:

Dk ¼ k̂ic
k

¼ k2 � 1
2/Pk2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1
2/Pk2

� �2

þ 1
k2

s
; ð5:5Þ

Dc ¼ ĉic
c
¼ k2 � 1þ 2/P

k2 þ 1
: ð5:6Þ

Using (5.5) and (5.6), the ratios of the k and c in the primary-complex case with
respect to the primary correlation are plotted in Fig. 5.1. It is clear that k is only
correctly estimated (i.e., Dk = 0 dB) when it equals one; and the estimation of c is
more accurate (i.e., Dc closer to 1) as k increases. The estimations of k and c
become less accurate as the primary correlation decreases from one to zero. The
inaccuracy in the estimates of k and c results in an incorrect ICLD of the extracted
primary components and hence degrades the extraction performance.

Next, we analyze the extraction performance of PCA-based PAE in the
primary-complex case. First, we rewrite (3.28)–(3.29) using the true primary and
ambient components:

p̂PCA;0 ¼ p0 � vþ 1

1þ k̂2ic
a0 þ k̂ica1
� �

;

p̂PCA;1 ¼ p1 þ
1

k̂ic
vþ k̂ic

1þ k̂2ic
a0 þ k̂ica1
� �

;

ð5:7Þ
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âPCA;0 ¼ k̂2ic
1þ k̂2ic

a0 þ vþ �k̂ic
1þ k̂2ic

a1;

âPCA;1 ¼ 1

1þ k̂2ic
a1 � 1

k̂ic
vþ �k̂ic

1þ k̂2ic
a0;

ð5:8Þ

where v ¼ k̂ic
1þ k̂2ic

k̂icp0 � p1
� �

is the interference signal decomposed from the input

primary components p0; and p1: As compared to the ideal case (where v ¼ 0), this
interference v introduces additional extraction error in the primary-complex case.

To evaluate the PAE performance, two groups of performance measures quan-
tifying the extraction accuracy and spatial accuracy are introduced in Chap. 3. The
extraction accuracy is usually quantified by the extraction error, which is given by
the error-to-signal ratio (ESR) and is computed as:

ESRP ¼ 0:5
Pp0�p̂0

Pp0
þ Pp1�p̂1

Pp1

� �
;

ESRA ¼ 0:5
Pa0�â0

Pa0
þ Pa1�â1

Pa1

� �
:

ð5:9Þ

Smaller value of ESR indicates a better extraction.
In the second group of measures, we consider the spatial accuracy by comparing

the inter-channel relations of the extracted primary and ambient components with
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Fig. 5.1 Estimation of a primary panning factor k, and b primary power ratio c in the
primary-complex case with varying /P: The estimations are more accurate when Δk and Dc are
closer to 0 dB and 1, respectively
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those of the true components. Due to the differences in the spatial characteristics of
the primary and ambient components, we shall evaluate these components sepa-
rately. For the primary components, there are three widely used spatial cues, namely
ICC, ICTD, and ICLD. The accuracy of these cues can be used to evaluate the
sound localization accuracy of the extracted primary components [Rum01,
RVE10]. There has been extensive research in ICTD estimation after the coinci-
dence model proposed by Jeffress (see [Jef48, Yos93, JSY98, KaN14] and refer-
ences therein). Based on the Jeffress model [Jef48], the ICC of different time lags is
calculated and the lag number that corresponds to the maximum ICC is determined
as the estimated ICTD. ICLD is obtained by taking the ratio of the signal power
between the channels 1 and 0. For the extracted ambient components, we evaluate
the diffuseness of these components using ICC and ICLD [SWB06]. Since the
ambient component is uncorrelated and relatively balanced in the two channels of
the stereo signal, a better extraction of the ambient component is achieved when
ICC and ICLD of the ambient component is closer to zero and one, respectively.

In Table 5.1, we summarize the results of the performance measures for the
extracted primary and ambient components when PCA-based PAE is applied in the
primary-complex (i.e., /P 6¼ 1) and ideal cases (i.e., /P ¼ 1).

To illustrate how the extraction accuracy is influenced by /P;, the results of ESR
using c 2 0:2; 0:5; 0:8f g and k = 3 are plotted in Fig. 5.2. It is clear that ESR is
affected by the primary correlation /P: As shown in Fig. 5.2a, the error of the
extracted primary component decreases as /P approaches one, except for γ = 0.2.
This exceptional case arises when γ is low, and the ambient leakage in the extracted
primary component becomes the main contributor for the extraction error. From
Fig. 5.1a, we notice that as /P increases, Dk decreases, which leads to the decrease
of k̂ic ¼ Dk � k, and hence, the contributor from the ambient leakage in ESRP (i.e.,

1þ k�2 þ k2�k�2

k̂2ic þ 1

� �
1�c
4c ) increases, which finally leads to the increase of ESRP for

γ = 0.2. For the ESR of the extracted ambient component (ESRA) as illustrated in
Fig. 5.2b, we observed that ESRA decreases gradually as /P increases, which leads
to an extracted ambient component having less error. Based on these observations,
we find that

Table 5.1 Performance of PCA-based PAE in the primary-complex case

Measures ESR

Primary
component

k̂4ic�2/Pkk̂
3
ic þ k2 þ k�2ð Þk̂2ic�2/Pk

�1 k̂ic þ 1

2 k̂2ic þ 1ð Þ2 þ 1þ k�2 þ k2�k�2

k̂2ic þ 1

� �
1�c
4c

Ambient
component

k̂4ic�2/Pkk̂
3
ic þ k2 þ 1ð Þk̂2ic�2/Pkk̂ic þ k2

1þ k̂2icð Þ2 1þ k2ð Þ
c

1�c þ 1
2

Measures ICLD ICC ICTD

Primary
component

k̂2ic 1 0

Ambient
component

k̂�2
ic

1 Not applicable
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(1) In the ideal case, where /P ¼ 1; the primary and ambient components are
extracted with relatively less error.

(2) In the primary-complex case, the error of the primary and ambient components
extracted in PCA-based PAE generally increases for most values of γ as /P
decreases.

(3) It is also found in Table 5.1 that ICC and ICTD in the primary component are
always one and zero, respectively. These values imply that the ICTD of the
primary component is completely lost after the extraction. The correct ICLD
of the primary component can only be obtained when k is accurately
estimated.

From the above observations, it is concluded that the performance of PCA-based
PAE is degraded by the partially correlated primary components of the stereo signal
in the primary-complex case. The degraded performance, as observed in PCA,
actually originates from the inaccurate estimations of k and c: As shown in Chap. 3,
the linear estimation-based PAE approaches are determined by these two parame-
ters. Hence, it can be inferred that these linear estimation-based PAE approaches as
well as other PAE approaches that are derived based on the basic stereo signal
model will encounter a similar performance degradation when dealing with stereo
signals having partially correlated primary components.
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Fig. 5.2 ESR of a primary extraction and b ambient extraction using PCA-based PAE in the
primary-complex case with varying /P according to the results in Table 5.1. Legend in (a) applies
to both plots
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5.3 Time-Shifting Technique Applied in PAE

In the audio of moving pictures and video games, it is commonly observed that the
primary components are amplitude panned and/or time-shifted [Wik13, SWR13],
where the latter leads to low correlation of the primary components at zero lag. As
mentioned in the previous section, PCA-based PAE dealing with such
primary-complex signals leads to significant extraction error. Furthermore, the
ICTD of the primary component is completely lost after the extraction. To over-
come these issues, we propose a time-shifting technique to be incorporated into
PCA-based PAE, which results in the proposed approach, namely the time-shifted
PCA (SPCA)-based PAE. The proposed approach aims to retain the ICTD in the
extracted primary component and time-shifts the primary components to increase
the primary correlation, thereby enhancing the performance of PAE.

The block diagram of the proposed SPCA-based PAE is shown in Fig. 5.3. In
SPCA-based PAE, the stereo input signal is first time-shifted according to the
estimated ICTD of the primary component. Subsequently, PCA is applied to the
shifted signal and extracts primary and ambient components at shifted positions.
Finally, the time indices of extracted primary and ambient components are mapped
to their original positions using the same ICTD. If so denotes the estimated ICTD,
then the final output for the nth sample in the extracted components can be
expressed as follows:

p̂SPCA;0 nð Þ ¼ 1

1þ k̂2ic
x0 nð Þþ k̂icx1 n� soð Þ� �

;

p̂SPCA;1 nð Þ ¼ k̂ic
1þ k̂2ic

x0 nþ soð Þþ k̂icx1 nð Þ� �
;

ð5:10Þ

âSPCA;0 nð Þ ¼ k̂ic
1þ k̂2ic

k̂icx0 nð Þ � x1 n� soð Þ� �
;

âSPCA;1 nð Þ ¼ � 1

1þ k̂2ic
k̂icx0 nþ soð Þ � x1 nð Þ� �

:

ð5:11Þ
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Fig. 5.3 Block diagram of SPCA-based PAE
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It can be seen that the proposed approach is related to delayed-and-sum beam-
former [VaB88] in the sense that each extracted component is a weighted sum of
the input signals but with a delay or advance being applied in either channel.
When ICTD so ¼ 0; the proposed SPCA-based PAE reduces to the conventional
PCA-based PAE.

As mentioned in the previous section, estimation of ICTD can be obtained using
various approaches. In this chapter, we apply the Jeffress model [Jef48], which
estimates the ICTD of the primary component using the maximum ICC of the
primary component at various lags /P sð Þ: When only the stereo signal is available,
we cannot compute the ICC of the primary component directly. Instead, the ICC of
the stereo input signal /x sð Þ is used to estimate the ICTD of the primary component.
Due to the uncorrelated ambient component of the stereo signal, which remains
uncorrelated after the stereo signal is time-shifted, we find that for each lag s;

/x sð Þ ¼ g/P sð Þ; ð5:12Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffi
Pp0Pp1
Px0Px1

q
is lag invariant. Therefore, the ICTD so ¼ argmax

s
/P sð Þ ¼

argmax
s

/x sð Þ: A detailed study on the estimation of ICTD based on ICC in

complex situations is discussed in [FaM04]. Due to the effect of summing local-
ization, the maximum number of lags considered for ICC and ICTD in spatial audio
is usually limited to ±1 ms [Bla97]. The positive and negative values of ICTD
account for the primary components that are panned to the directions of channel 0
and channel 1 in the auditory scene, respectively. As compared to the conventional
PCA-based PAE, the estimation of ICTD is one critical additional step, which
inevitably incurs more calculations. More specifically, in the conventional PCA, the
cross-correlation (i.e., /x 0ð Þ) is only computed once. By contrast, the proposed
SPCA requires a total of 89 times of cross-correlations (i.e., /x sð Þ; 8s 2 �44; 44½ �;
at a sampling rate fs = 44.1 kHz). One way to reduce the additional computation
load is to increase the sample step size in ICTD estimation. For instance, computing
only the cross-correlations with odd (or even) indices can reduce the additional
computation load by half, at the cost of reducing the resolution of ICTD estimation.

The time-shifting operation is achieved by keeping the signal in channel 0
unchanged but delaying (or advancing) the signal in channel 1 by a duration equal
to ICTD when ICTD ≤ 0 (or ICTD > 0). When the amounts of shifts in two
successive frames are not the same, a proper mapping strategy is required to shift
back the primary and ambient components that are extracted from the shifted signal
to the original positions. To show how the change of ICTD affects the final output
mapping, we consider two extreme cases, as illustrated in Fig. 5.4. The table in the
top middle of Fig. 5.4 shows the ICTDs of three successive frames considered for
these two cases. In the first case, we consider maximum ICTD decrease; i.e., the
ICTD of frame i−1 is 1 ms, which is decreased to −1 ms in frame i. In the second
case, we consider maximum ICTD increase; that is, as compared to the frame i, the
ICTD of frame i + 1 is increased to 1 ms. Consequently, the decrease and increase
of ICTDs in these two cases lead to a 2 ms overlap and gap in channel 1 between
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these frames, respectively, as shown in Fig. 5.4a. To generalize these two extreme
cases, let us consider the change of ICTD in two successive frames as Dso ið Þ ¼
so ið Þ � so i� 1ð Þ: Hence, we have the following:

Samples between the two frames of the extracted components in channel 1

¼
overlap of Dso ið Þj j; Dso ið Þ\0

no overlap or gap, Dso ið Þ ¼ 0

gap of Dso ið Þ; Dso ið Þ[ 0

8><
>: :

ð5:13Þ

To retain the ICTD, a straightforward mapping method is to set the amplitude of
the samples of the gap to zero and averaging the overlapped samples in a
cross-fading manner. However, it can be easily understood and also revealed in our
informal listening tests that perceivable switching artifacts are introduced by the
gaps. This is because the gaps are not caused by the silence of the primary com-
ponents, but are artificially created as a result of the increased ICTD.

To avoid the switching artifacts, all successive frames should be overlapped such
that no gap between the frames can be found even when the ICTD increase reaches
its maximum. The proposed overlapped output mapping strategy is depicted in
Fig. 5.4b. Let the duration of the overlapping samples in the stereo signals be Q ms.
As compared to the conventional output mapping in Fig. 5.4a, different amount of
overlapping samples are found in both channels in Fig. 5.4b. In channel 0, exact

i-1

overlaps of Q  = 2 ms

an overlap of 2 ms a gap of 2 ms

(b) Overlapped output mapping

frame i-1
frame i

frame i+1

frame i+1
   frame i

frame i-1            x        

an overlap of Q +2 = 4 ms an overlap of Q -2 = 0 ms

Frame
ICTD (ms)

(a) Conventional output mapping

frame i
frame i-1 frame i+1

frame i-1
frame i

frame i+1

i i+1
1 -1 1

Fig. 5.4 An illustration of two output mapping strategies in the extreme cases: a conventional;
b overlapped. The two channels 0 and 1 are depicted in white and gray, respectively. The table in
the top middle shows the ICTDs for three successive frames. The value of Q in this example is
selected as 2 ms
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Q ms between each two frames is overlapped, while in channel 1, the duration of
overlapping samples varies from frame to frame according to the change in the
ICTDs. That is,

Samples between the two frames of the extracted components in channel 1

= overlap of Q � 10�3 � fs� Dso ið Þ� �
:

ð5:14Þ

To correspond to the two extreme cases, the duration of overlapping samples in
channel 1 would be from Q – 2 to Q + 2 ms. In order to ensure no gap is found
between any two successive frames, the duration of overlapping samples must be
equal to or greater than 2 ms, i.e., Q ≥ 2 ms. As shown in Fig. 5.4b, where Q is
chosen as the lowest value, i.e., Q = 2 ms, we find that even in the extreme case of
maximum ICTD increase from frame i to frame i + 1, there is no gap in channel 1.
Therefore, no matter how much the ICTD changes, all frames can be handled
appropriately without gap artifacts. Increasing Q would also smoothen the extracted
components, especially when the direction of the primary components changes
rapidly. It is noted from (5.14) that the actual overlapping samples in different
frames and channels can be varying. Thus, the cross-fading technique is required to
adapt to these variations of the overlapping samples.

Based on the above discussions, we shall see that the proposed time-shifting and
overlapped output mapping techniques work independently from PCA. Therefore,
the same time-shifting and output mapping technique in the proposed SPCA can be
applied seamlessly to improve the performance of many other existing PAE
approaches, including time–frequency masking [AvJ04], PCA-based approaches
[God08, JHS10, 5], and other linear estimation-based PAE approaches as discussed
in Chap. 3, as well as ambient spectrum estimation-based approaches as discussed
in Chap. 4. However, it shall be noted that the ICTD estimation and time-shifting
operations would incur additional computation and memory cost.

5.4 Experiments and Discussions

To validate the performance of the proposed SPCA-based PAE, a number of
experiments1 were conducted. As the focus of this chapter is to examine PAE with
partially correlated primary components, we shall consider only one dominant
source in the primary component of the stereo signal. Experimental results for PAE
with time-shifting on multiple dominant sources can be found in Chap. 6. In this
section, we present the results from four different experiments. To perform an
accurate comparative analysis between PCA and SPCA, we manually synthesized

1The source code and demo tracks are available: http://jhe007.wix.com/main#!research/c24xx.
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directional signals and mixed them with ambient signals in the first two experiments.
The first and second experiments considered static and moving primary components,
respectively. In the first experiment, we compared the extraction performance of
PCA and SPCA with respect to c:While the direction of the primary component was
fixed in the first experiment, the second experiment examined the estimation of the
panning directions of the primary components using PCA and SPCA with c being
close across the frames. The third experiment evaluated how PCA and SPCA per-
form when dealing with reverberation type of ambient components. To evaluate
these two PAE approaches in a more realistic scenario, the fourth experiment was
conducted using recorded signals of primary and ambient sound tracks that were
played back over loudspeakers around a dummy head. Detailed specifications of the
four experiments are given in Table 5.2.

5.4.1 Experiment 1: Fixed Direction

In the first experiment, a speech clip was selected as the primary component, which
is amplitude panned by k = 3 and time-shifted by so ¼ 40 samples at a sampling
rate of 44.1 kHz, both correspond to the direction of channel 1. The ambient
component was taken from a stereo recording of lapping wave with low correlation
(less than 0.1) and close to unity power ratio between the two channels.
Subsequently, the primary and ambient components were linearly mixed based on
the values of c ranging from 0 to 1. Finally, the extraction performance of PCA and
SPCA was evaluated using the performance measures introduced in Sect. 5.2. Note
that the correlation coefficient of the tested primary component at zero lag is 0.17,
which is increased to one after time-shifting the synthesized signal by 40 samples
according to the estimated ICTD. The unity correlation implies that the primary
component is completely correlated in SPCA.

The results of the performancemeasures of PCA and SPCA are shown in Figs. 5.5,
5.6 and 5.7. In Fig. 5.5, there are significant errors in the estimations of k and c in
PCA, which are estimated more accurately in SPCA. Figure 5.6 summarizes the ESR
of PAE using PCA and SPCA. For primary extraction as shown in Fig. 5.6a,

Table 5.2 Specifications of the four experiments

# Input signal Primary
component

Ambient
component

Settings

1 Synthesized Speech Lapping wave Fixed direction; different
values of c

2 Synthesized Shaking
matchbox

Lapping wave Panning directions
with close c

3 Synthesized Direct path
of speech

Reverberation
of speech

Varying directions
with different c

4 Recorded Speech Canteen sound Three directions with close c
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significant reduction (more than 50 %) of ESR is obtained using SPCAwhen c� 0:5.
Based on Fig. 5.6b, SPCA extracts the ambient components with smaller ESR than
PCA, especially when c is high (more than 50 % reduction for c� 0:8). The signif-
icant improvement lies in the reduction of the leakage from the primary components
in the extracted ambient component.
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Fig. 5.5 Comparison of the estimation of a k and b c between PCA and SPCA based PAE in the
primary-complex case

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

E
S

R
P

(a)

Input primary power ratio γ

PCA

SPCA

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Input primary power ratio γ

E
S

R
A

(b)

Fig. 5.6 ESR of a primary extraction and b ambient extraction using PCA and SPCA in the
primary-complex case. Legend in (a) applies to both plots
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SPCA also outperforms PCA in terms of spatial accuracy of the extracted pri-
mary and ambient component. As shown in Fig. 5.7a, the ICTD of the primary
component extracted by SPCA is closer to the ICTD of the true primary component
for c� 0:3: When the primary components become too weak in the stereo signals,
the estimation of ICTD in SPCA is less accurate. For the ICLD whose
just-noticeable difference (JND) is generally below 3 dB [Fal06b], we found that
the ICLD of the primary component extracted by SPCA is significantly closer to the
ICLD of the true primary component, as shown in Fig. 5.7b. Therefore, the
directions of the primary components extracted by SPCA would be more accurately
reproduced and localized. For ambient extraction, we observed that the ICLD of the
extracted ambient component for SPCA is closer to 0 dB as compared to PCA, as
shown in Fig. 5.7c. Even though neither approach can extract an uncorrelated and
balanced ambient component, a relatively better ambient extraction is obtained with
SPCA. Similar to the ideal case, this drawback of ambient extraction is an inherent
limitation of PCA [HTG14]. Post-processing techniques such as decorrelation
[Fal06b] and post-scaling [Fal06a, BJP12] can be applied to further enhance
ambient extraction. To sum up the first experiment, we can verify that when dealing
with PAE having a directional primary component with time and level differences,
SPCA extracts the primary and ambient components more accurately than PCA.

5.4.2 Experiment 2: Panning Directions

In the second experiment, a binaural recording of a matchbox sound shaking around
the dummy head in the anticlockwise direction was taken as the primary compo-
nent, and a wave lapping sound was used as the ambient component. The four plots
in Fig. 5.8 illustrate the short-time cross-correlation of the true primary component,
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Fig. 5.7 Comparison of spatial accuracy in PAE using PCA and SPCA in the primary-complex
case. a ICTD in the extracted primary components; b ICLD in the extracted primary components;
c ICLD in the extracted ambient components. Legend in (a) applies to all plots
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mixed signal, primary component extracted by PCA, and primary component
extracted by SPCA. The positions of the peaks on the mesh of these plots represent
the direction of the primary components, where the time lag at 40 represents
extreme left and -40 represents extreme right. The anticlockwise panning of the
primary component around the head, as shown in Fig. 5.8a, becomes less obvious
after mixing with the ambient component, as shown in Fig. 5.8b. Comparing the
correlation of the primary component extracted using PCA and SPCA, as shown in
Fig. 5.8c, d, respectively, we can easily verify that only SPCA-based PAE pre-
serves the spatial cues of the primary component from the mixed stereo signal. This
experiment confirms that SPCA can correctly track the moving directions of the
primary components and thus leads to an improved extraction performance with
more accurate spatial cues, as compared to PCA.

5.4.3 Experiment 3: Reverberation Ambience

In the third experiment, we considered the extraction of a direct signal and its
reverberation from a stereo recording in a reverberant room. For the purpose of a
more accurate evaluation, simulated room impulse responses (RIRs) were used.
The RIR was generated using the software from [Hab14], which is created using the
image method [AlB79]. As specified in Fig. 5.9, the size of the room is
5 × 4 × 6 m3 with reverberation time RT60 set as 0.3 s. For the RIR generation,
positions for two microphones were set as m1(2, 1.9, 2) and m2(2, 2.1, 2).

Fig. 5.8 Short-time cross-correlation function of a true primary component; b stereo signal with
mixed primary and ambient components; c primary component extracted using PCA; d primary
component extracted using SPCA. Frame size is 4096 samples with 50 % overlap
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The positions of a speech source varied in 10 locations (one at a time) in a straight
line, as (2.5, si, 2) with si = 1.9 + 0.2*i, i = 1, 2, …, 10. The length of the RIR is
4096 samples with sampling frequency at 44.1 kHz. In either channel, the mixed
signal was obtained by convolving the source with the generated RIR. The true
primary components were synthesized by convolving only the direct paths with the
source, while the remainder paths are used as the responses for the synthesis of the
true ambient components, as shown in Fig. 5.10. It shall be noted that in this
experiment, the primary and ambient components are correlated.

Performance of PAE using PCA and SPCA is compared in Figs. 5.11 and 5.12.
It can be observed clearly in these figures that as compared to PCA-based PAE,
SPCA-based PAE yields a smaller ESR in both primary and ambient extractions, as
well as having spatial cues (i.e., ICTD, ICLD) closer to the true values. In par-
ticular, we have also applied the normalized least-mean-square (NLMS) approach
proposed by Usher [UsB07] in the ambient extraction. As shown in Fig. 5.11b, the
proposed SPCA approach also outperforms NLMS significantly.

5.4.4 Experiment 4: Recordings

In the fourth experiment, we tested and compared these PAE approaches using
recorded signals. The measurements were conducted in a recording room
(5.4 × 3.18 × 2.36 m3) with a reverberation time of 0.2 s at the School of
Electrical and Electronic Engineering, Nanyang Technological University,

m1 m2

10 source
Positions, si

4m

5m

RT60 = 0.3s

Fig. 5.9 Specifications of
room, microphone positions,
and source positions in the
reverberation experiment
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Singapore. The layout of the experiment setup is illustrated in Fig. 5.13. Four
loudspeakers A1–A4 were used to reproduce the ambient sound of a canteen. The
primary component, a speech signal, was played back over loudspeaker P, which
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Fig. 5.10 An example of the generated RIR and the division of the response for primary and
ambient components
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Fig. 5.11 ESR of a primary extraction and b ambient extraction using PCA and SPCA in the
reverberation experiment. The NLMS approach [UsB07] is included in (b) for comparison of
ambient extraction performance
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was placed at each of the three positions with 0°, 45°, and 90° azimuth in the
horizontal plane. At the center of the room, a dummy head, which was fitted with a
pair of microphones mounted on the two ears, was used to record the simulated
sound scene. To evaluate the performance of the PAE approaches, the “ground
truth” reference signals of this experiment (i.e., the true primary and ambient
components) were recorded by muting either the one-channel primary loudspeaker
or the four-channel ambient loudspeakers.

The performance of PCA- and SPCA-based PAE is summarized in Tables 5.3,
5.4, and 5.5. In Table 5.3 and Table 5.4, the performance of the two PAE
approaches is examined by comparing c, k, and the spatial cues with their true
values, respectively. We observed that SPCA-based PAE yields much closer results
to the true values as compared to PCA-based PAE for all directions of the primary
component. From Table 5.5, we observed that the values of ESR in SPCA-based
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Fig. 5.13 Layout of the
fourth experiment setup. Four
ambient loudspeakers are
located at A1–A4. The
primary loudspeaker P is
positioned at one of the three
directions 0°, 45°, 90° in the
horizontal plane with a radius
of 1.5 m. Two microphones
m1 and m2 are mounted onto
the two ears of the dummy
head
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PAE are lower (up to 50 %) than those in PCA-based PAE. These observations
from the fourth experiment indicate clearly that SPCA-based PAE outperforms
PCA-based PAE in more practical situations.

5.5 Conclusions

In this chapter, we investigated the performance of PCA-based PAE in the ideal and
primary-complex cases. The performance of PAE was evaluated based on extrac-
tion accuracy and spatial accuracy. In practice, the conventional PCA-based PAE
exhibits severe performance degradation when dealing with the input signals under
the primary-complex case, where the primary component is partially correlated at
zero lag. Without the knowledge of the correlation of the primary component, the
two important parameters primary panning factor and primary power ratio of the
stereo signal cannot be estimated accurately. Furthermore, it was found that as the
primary correlation decreases, the error in the primary and ambient components
extracted by PCA-based PAE generally increases. Based on this finding, the pro-
posed SPCA-based PAE approach maximizes the primary correlation by appro-
priately time-shifting the input signals prior to the extraction process. Overlapped
output mapping method with a minimum duration of 2 ms overlapping is required

Table 5.5 Comparison of ESR in the fourth experiment

Primary component Ambient component

θ 0° 45° 90° 0° 45° 90°

PCA 0.27 0.64 0.88 1.08 1.89 2.49

SPCA 0.21 0.31 0.34 0.81 1.02 1.39

Table 5.3 Comparison of c, k in the fourth experiment

c k

θ 0° 45° 90° 0° 45° 90°

True 0.81 0.79 0.86 0.95 1.47 1.81

PCA 0.66 0.31 0.57 0.93 6.06 3.18

SPCA 0.76 0.73 0.72 0.94 1.54 2.18

Table 5.4 Comparison of spatial cues in the fourth experiment

ICTDP ICLDP (dB) ICLDA(dB)

θ 0° 45° 90° 0° 45° 90° 0° 45° 90°

True 1 −17 −31 −1.02 7.74 11.90 1.03 1.18 1.03

PCA 0 0 0 −1.46 36.03 23.11 1.46 −36.03 −23.11

SPCA 1 −17 −31 −1.26 8.65 15.60 1.26 −8.65 −15.60

5.4 Experiments and Discussions 111



to avoid the switching artifacts introduced by time-shifting. As compared to the
conventional PCA-based PAE, the proposed approach retains the ICTD and cor-
rects the ICLD of the extracted primary component, as well as reduces the
extraction error by as much as 50 %. With the improved performance of the pro-
posed approach validated using synthesized signals and real-world recordings in
our experiments, we conclude that the proposed time-shifting technique can be
employed in PAE to handle more generic cases of stereo signals that contain
partially correlated primary components. In the following chapter, we will discuss
some ideas for PAE to handle an even more complex case, i.e., primary components
with multiple sources coming from different directions.
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Chapter 6
Multiple Source-Based Primary
Ambient Extraction

Abstract In practice, the complex audio scenes could even include multiple
concurrent sources in the primary components. Subband techniques are commonly
implemented in PAE to deal with such signals. The effect of subband decompo-
sition on PAE is investigated. The results indicate that the partitioning of the
frequency bins is very critical in PAE, and the proposed top-down (TD) adaptive
partitioning method achieves superior performance, as compared to the conven-
tional partitioning methods. Moreover, we also extended the time-shifting technique
to multiple shifts. It is found that the consecutive multishift PAE with proper
weighting yields more robust results. These techniques help improve the robustness
of PAE in dealing with complex signals.

Keywords Primary ambient extraction (PAE) � Spatial audio � Subband �
Time-shifting

In this chapter, we investigate an even more complex case in PAE. The basic stereo
signal model introduced in Chap. 3 limits the number of the dominant source in the
primary components to be only one. This assumption generally holds considering
that each signal frame is quite short. However, it is still very likely to encounter the
exceptional case where there are multiple dominant sources in the primary com-
ponents. Conventional approaches that ignore this difference will not work well and
a robust PAE approach must be devised to handle such cases. For this purpose, we
will discuss two approaches to improve the performance of PAE under the case of
multiple dominant concurrent sources. The first approach, known as the subband
technique, is studied in Sects. 6.1 and 6.2 details the second approach referred to as
the multishift technique. Similar to Chap. 5, PCA-based PAE approaches are
selected for our testing. Since it is the primary components that incur the challenge,
we shall focus on the extraction of primary components, and the ambient compo-
nents can be obtained by subtracting the extracted primary components from the
mixed signal. Further discussions and conclusions are presented in Sect. 6.3.
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6.1 Subband Technique and Frequency Bin Partitioning

In this section, we focus on the study of subband PAE in the case of multiple
sources. First, we transform the time domain time-shifted PCA-based PAE into
frequency domain. Next, we discuss in detail the most important step of frequency
domain PAE, i.e., partitioning of the frequency bins. Subsequently, a series of
simulations are presented to validate the PAE approaches.

6.1.1 Time-Shifted PCA in Frequency Domain

First, we consider PAE with one dominant source in primary components in the
frequency domain by converting the previous time domain analysis into frequency
domain. From (5.10)–(5.11), only parameters primary panning factor k and ICTD so
are relevant to the extracted primary components in PCA and SPCA, and both
parameters are computed using the correlations. Therefore, we shall see how cor-
relations are computed in frequency domain. As discussed in [WSL06], the cor-
relation of different lag s(in samples) between two signals xi and xj can be
computed by

rij sð Þ ¼
IDFT X�

i lð ÞXj lð Þ
� �

; s� 0

IDFT Xi lð ÞX�
j lð Þ

� �
; s\0

8<
: ; ð6:1Þ

where Xi lð Þ is the lth bin of the DFT of xi and * denotes complex conjugate.
The ICTD is determined based on the maximum of the cross-correlation

so ¼ argmax
s

r01 sð Þf g: ð6:2Þ

Time-shifting in time domain is equivalent to phase-shifting in frequency
domain [Mit06], that is,

xi n� soð ÞN
� � $DFTXi lð Þe�j2plso=N : ð6:3Þ

Thus, we can rewrite (5.10) in the frequency domain as

P̂SPCA;0 lð Þ ¼ 1
1þ k2

X0 lð Þþ kX1 lð Þe�j2plso=N
� �

;

P̂SPCA;1 lð Þ ¼ k
1þ k2

X0 lð Þej2plso=N þ kX1 lð Þ� �
:

ð6:4Þ
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6.1.2 Frequency Bin Partitioning

To effectively handle multiple sources in the primary components, frequency bins
of the input signal are grouped into several partitions, as shown in Fig. 6.1. In each
partition, there is only one dominant source, and hence, one corresponding value of
k and so is computed. Ideally, the number of partitions should be the same as the
number of sources, and the frequency bins should be grouped in a way such that the
magnitude of one source in each partition is significantly higher than the magnitude
of other sources. However, the number and spectra of the sources in any given input
signals are usually unknown. Hence, the ideal partitioning is difficult or impossible
to achieve.

Alternatively, we consider two types of feasible partitioning methods, namely
fixed partitioning and adaptive partitioning. Regardless of the input signal, the fixed
partitioning classifies the frequency bins into a certain number of partitions uni-
formly [AvJ04, Fal06] or non-uniformly, such as equivalent rectangular bandwidth
(ERB) [FaB03]. By contrast, adaptive partitioning takes into account of the input
signal via the top-down (TD) or bottom-up (BU) method. BU method starts with
every bin as one partition and then gradually reduces the number of partitions by
combining the bins. Conversely, TD starts from one partition containing all fre-
quency bins and iteratively divides each partition into two subpartitions, according
to certain conditions. As the number of partitions is usually limited, TD is more
efficient than BU, and hence preferred.

To determine whether one partition requires further division, ICC-based criteria
are proposed in TD partitioning. First, if the ICC of the current partition is already
high enough, we consider only one source is dominant in the current partition and
cease further division of the partition. Otherwise, the ICCs of the two divided
subpartitions are examined. The partitioning is continued only when at least one of
two ICCs of the subpartitions becomes higher, and neither ICC of the subpartitions
becomes too small, which indicates that no source is dominant. Suppose the ICCs
of the current partition and two uniformly divided subpartitions are ϕ0, ϕ1, ϕ2, as

Stereo input signal
Extracted primary and 

ambient components

Frequency bin 
grouping

DFT
Inverse

DFT

Frequency bin 
partitioning

ITD
estimation

Shifted PCA
(frequency

domain)

Fig. 6.1 Block diagram of frequency bin partitioning-based PAE in frequency domain

6.1 Subband Technique and Frequency Bin Partitioning 117



shown in Fig. 6.2. For generality, a higher threshold of ICC ϕH and a lower
threshold ϕL are introduced. Thus, we propose the following three criteria for the
continuation of partitioning in TD:

(a) ϕ0 < ϕH, and
(b) Max(ϕ1, ϕ2) > ϕ0, and
(c) Min(ϕ1, ϕ2) > ϕL.

The partitioning is stopped when any of the three criteria is unsatisfied.

6.1.3 Experimental Results and Discussions

To evaluate the performance of frequency domain PAE approaches, a number of
simulations are conducted. In these simulations, speech and music signals are
selected as two sources in the primary components, which are amplitude panned
and time-shifted separately to simulate different directions. To fulfill the assump-
tions of the stereo signal model, uncorrelated white Gaussian noise is used as the
ambient component. Subsequently, the primary and ambient components are lin-
early mixed by letting PPR = 0.9. DFT of size N = 4096 (sampling frequency at
44.1 kHz) and Hanning window with 50 % overlapping is applied. Both PCA and
SPCA are employed in the testing, and their settings are listed as follows:

(a) Full band, without partitioning (denoted by F);
(b–e) Fixed partitioning, with 2, 8, 32 uniform (U) partitions or 20 non-uniform

(N) partitions based on ERB [FaB03], (denoted by 2U, 8U, 32U, and 20N,
respectively);

(f) TD adaptive partitioning, with ϕH = 0.7 and ϕL = 0.05.

The performance of PAE is determined by the error-to-signal ratio (ESR) as in
previous chapters, which can be computed as

ESR(dB) ¼ 10 log10 0:5
p̂0 � p0k k22

p0k k22
þ p̂1 � p1k k22

p1k k22

 !" #
: ð6:5Þ

Fig. 6.2 An illustration of
top-down partitioning
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A better performance is achieved when ESR is smaller.
First, we test these PAE approaches with signals containing one source

(a speech) in the primary components, and the ESR results are presented in
Table 6.1 (column “1S”). SPCA is better than PCA since it takes the time difference
of the primary component into consideration. Comparing the results of SPCA in
fixed partitioning with those in the full band, we observed that the PAE perfor-
mance degrades as the number of partitions increases. This observation indicates
that the partitioning is not required and should be avoided for the single source case.
Nevertheless, the performance of TD is quite close to the full-band approach.

Next, we test the performance of PAE when there are two sources in the primary
components. Basically, three cases for the directions of two sources are specified as
follows:

(a) DS: in different sides, i.e., one in the left, the other in the right;
(b) C: one in the center, the other in the left or right;
(c) SS: in the same side, i.e., both are in the left or right.

The ESR results are shown in Table 6.1. First, we found that the performance of
PCA is worse than that of SPCA, especially when no sources are in the center.
Second, not all SPCA approaches with partitioning can yield a better performance
than SPCA in full band, especially when the directions of the two sources are closer
(e.g., SS), as shown in Fig. 6.3. Generally, TD performs better than the fixed
partitioning approaches, as well as the full-band approach. As the directions of the
two sources get closer (i.e., from DS to SS), better performance with TD is usually
achieved.

Table 6.1 ESR of PAE for two sources

Approach Setting 1S SS C DS

PCA F −3.69 −4.18 −8.06 −4.74

2U −3.38 −3.95 −8.19 −5.04

8U −3.34 −3.91 −8.34 −5.22

32U −3.16 −3.89 −8.44 −5.48

20 N −3.33 −3.98 −9.55 −6.85

TD −3.72 −4.19 −8.44 −5.03

SPCA F −14.78 −10.16 −8.07 −6.45

2U −12.34 −9.89 −8.38 −6.85

8U −11.52 −9.8 −8.57 −7.11

32U −10.63 −9.07 −8.44 −7.25

20 N −10.34 −7.29 −9.07 −7.73

TD −14.13 −10.41 −8.58 −7.93
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6.2 Multishift Technique

In Chap. 5, we introduced a time-shifting technique to improve the performance of
PAE when dealing with partically correlated primary components. The input signal
is time-shifted according to the estimated ICTD that corresponds to the direction of
the dominant source. However, one single shift only accounts for one direction,
which is ineffective for primary components that consist of sound sources from
multiple directions. Thus, a common approach is to decompose the signal into
subband before the extraction, assuming that only one source is dominant in each
subband [Fal06, HGT14]. Moreover, the directions of multiple sources can be
tracked [RoW08] and localized [WoW12] in the presence of ambient noise.
Nevertheless, subband PAE approaches become problematic when the spectra of
the sources in the primary components overlap in certain subbands. Meanwhile,
timbre change is an inevitable problem in subband PAE.

In this section, we investigate the primary component extraction (or primary
extraction for short) with multiple directions by extending the single shift SPCA to
multiple shifts. These shifts are performed based on the ICTD estimation. While in
the output, the extracted primary components are correspondingly shifted back,
weighted, and summed to obtain the final results of the extracted primary com-
ponents. We refer to this method as multishift PCA (MSPCA) in this section. The
typical structure of MSPCA is shown in Fig. 6.4.

1S SS C DS
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Fig. 6.3 Comparison of ESR
for SPCA with different
partitioning settings
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6.2.1 Multishift PCA

In many applications of spatial audio, concurrent sound sources from different
directions and even the reflections of these sound sources (image sources) are
frequently encountered in the stereo mix. These directions of the sources and
reflections imply multiple different ICTDs. In such cases, SPCA with one single
shift that corresponds to one single direction becomes problematic. Therefore, to
account for multiple directions in the primary components of the stereo signal, we
extend SPCA from one single shift to multiple shifts and develop MSPCA for
primary extraction. The typical structure of the MSPCA (MSPCA-T) is shown in
Fig. 6.4. First, several ICTDs are estimated from the stereo input signal by finding
the peaks in the short-time cross-correlation function [Mat13]. Next, the input
signal is time-shifted according to the estimated ICTDs [HTG13]. For every shifted
version, PCA is applied to obtain the extracted primary components. Finally, the
extracted primary components of all shifted versions are properly mapped,
weighted, and linearly summed to obtain the final output of the extracted primary
components. Note that the weights are computed according to the significance of
each shifted version.

Combining the selective time-shifting with the significance-based weighting
method, a consecutive structure for MSPCA can also be employed, as shown in
Fig. 6.5. Instead of shifting the input signal according to a few selected ICTDs, we
perform the shifting consecutively lag by lag. Subsequently, PCA-based primary
extraction is employed for each shifted version. Before reversing the one-lag
shifting and adding to the final output, the extracted primary components of each
shifted version are weighted based on the significance of each shifted version. By
assuming that those shifted versions having higher ICC are more significant, the

Multiple
ICTD

estimation

Stereo input signal Primary components

Output
mapping

1τ

X

iτ

Tτ

{ }1, , , ,i Tτ τ τ=

1X

iX

TX

P̂

1P̂

ˆ
iP

ˆ
TP

Time-
shifting

PCA

Time-
shifting

Time-
shifting

PCA

PCA

Fig. 6.4 Typical structure of MSPCA (MSPCA-T). Stereo input signal X ¼ x0; x1f g; si is the ith
estimated ICTD (T is the total number of ICTDs); Xi and P̂i are the corresponding shifted signal
and extracted primary component, respectively. The final output of the extracted primary
components is denoted by P̂
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weights are set higher for the shifted version with higher ICC. Via this ICC-based
weighting method, we can unify the consecutive MSPCA and MSPCA-T.

Let the stereo input signal be X ¼ x0; x1f g: The shifted signal is Xl ¼ x0; x
$l
1

n o
with nth sample of x$

l
1 shifted by l lags, as x

$l
1 nð Þ ¼ x1 n� lð Þ; where l 2 �L; L½ �: The

extracted primary components at the lth shifted version P̂l are computed using PCA.
The final output of the extracted primary components P̂ can be expressed as a
weighted sum of the shifted back version of P̂l: The nth sample of P̂ (either p̂0 or p̂1)
is hence obtained by
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Fig. 6.5 Block diagram of MSPCA with consecutive structure. The shift and reverse shift of a
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p̂ nð Þ ¼
XL
l¼�L

wlP̂l nþ lð Þ; ð6:6Þ

where wl � 0 is the weight applied on P̂l: To retain the overall signal power, the
weights shall sum up to one, i.e.,

PL
l¼�L wl ¼ 1: Since the weights in consecutive

MSPCA are proportional to the ICC of each lag, a straightforward way to obtain the
weights is to employ the exponent of the ICC, i.e., wl ¼ /a

l =
PL

l¼�L /
a
l where a is

the exponent and /l is the ICC of lag l. Larger values of a lead to sparser weights.
Examples of the exponent selection for the weighting methods are shown in the
following section.

6.2.2 Experimental Results and Discussions

To evaluate the performance of the proposed MSPCA-based primary extraction, a
number of simulations and subjective listening tests are conducted. In our experi-
ments, primary components consist of a speech signal and a music signal, which are
amplitude panned by a factor of three and time-shifted by 20 lags, toward the
channel 1 and channel 0, respectively, and uncorrelated white Gaussian noise is
used as the ambient component. Subsequently, the primary and ambient compo-
nents are linearly mixed by setting the root-mean-square power of the speech,
music, and ambient components to be equal. This setting constraints the primary
power ratio to 0.67. Next, PCA, SPCA, and MSPCA with different settings are
employed to extract primary components from the synthesized stereo signals. The
searching range for ICTD is ±50 lags, which is around 2 ms for sampling fre-
quency at 44.1 kHz. Finally, the performance of primary extraction using these
approaches is compared using objective metrics and subjective testing.

It can be found that PCA and SPCA can be considered as special cases of
MSPCA by specifically setting the weights. Both PCA and SPCA have only one
nonzero weights, but at different lags. While the corresponding lag for the unit
weight in PCA is always zero, SPCA places the unit weight at the lag corre-
sponding to maximum ICC. Since all weights shall sum up to one, this maximum
weight for PCA and SPCA will be exactly equal to one. MSPCA-T can detect the
two ICTDs by peak finding. After normalization, we can consider it having two
nonzero weights at the two corresponding lags. For consecutive MSPCA, we
examine two exponent values, namely a = 2 and 10. Summarizing all different
settings for these approaches, the weighting methods are compared in Fig. 6.6. As
discussed, PCA and SPCA have only one nonzero weight at zero lag and −20 lag,
respectively. For MSPCA-T, two weights are applied at two distinct lag positions,
though the positive ICTD for the music is not as accurate as the negative ICTD for
the speech. For consecutive MSPCA with different exponent values, the nonzero
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weights are found for all the lags, and apparently higher weights are given to those
lags that are closer to the directions of the primary components. As the exponent
value a increases, the differences among the weights at various lags become more
significant. When a is high (e.g., a = 10), the weighting method in consecutive
MSPCA becomes similar to SPCA, as seen from Fig. 6.6b, e.

After applying these approaches, the objective performance on the extraction
accuracy of the primary component is determined by ESR, as defined in (6.5).
The ESR results for these approaches are illustrated in Fig. 6.7. It is obvious that
MSPCAs generally perform better than PCA or SPCA by having smaller ESR. It is
also quite interesting to observe that consecutive MSPCA approaches outperform
MSPCA-T. This implies that the accuracy in the estimation of the number of the
directions and the associated ICTDs are extremely critical for MSPCA-T. Failure to
accurately estimate any ICTDs will degrade the overall extraction performance, as
observed here. By contrast, consecutive MSPCA mitigates this problem by
applying weights at all lags. Furthermore, the averaging of the ambient components
across various shifted versions could also reduce ambient leakage in the extracted
primary components. Between the two consecutive MSPCA approaches, MSPCA
(a = 2) performs better than MSPCA (a = 10). Therefore, the exponent applied on
the ICC for the weights in consecutive MSPCA cannot be too large.
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Fig. 6.6 An illustration of the weighting methods in PCA, SPCA, and MSPCAs. Negative and
positive lags correspond to the direction toward the channel 1 and channel 0, respectively
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In addition to the objective assessment on the error performance, subjective
testing of localization accuracy of the primary extraction was also conducted. The
testing method was based on MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) [ITU03b, Vin13]. Nine signals, including primary components
extracted using the five methods, one known reference, one hidden reference and
two anchors, were tested. The subjects were asked to rate a score of 0–10, where a
score of 0 denotes the worst localization (i.e., the two directions are reversed), and a
score of 10 denotes the same directions perceived as the reference. When at least
one direction is accurate, a score of no less than 5 shall be given, and a score of 3–7
shall be appropriate for those signals with perceived directions neither too close nor
too bad. Finally, 12 subjects participated in the experiment and the results are
shown in Fig. 6.8. Generally, MSPCAs produce more accurate localization of the
primary components among these testing methods. Similar to the observation in
ESR, MSPCA (a = 2) performs the best and MSPCA (a = 10) degrades the

Fig. 6.7 Objective
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for PCA, SPCA, and
MSPCAs
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localization significantly. Therefore, it can be concluded that consecutive MSPCA
with proper weighting can help improve both the extraction accuracy and local-
ization accuracy of the primary components when there are multiple directions.

6.3 Further Discussions and Conclusions

In this chapter, two techniques to improve the performance of PAE in the case of
multiple concurrent sources are discussed. PCA- and SPCA-based PAE approaches
are employed in this study.

The subband technique was derived in frequency domain. We found that fre-
quency bin partitioning is unnecessary for one source, but this partitioning plays an
essential role for multiple sources, especially when the spectra of the sources
overlap. Conventional fixed partitioning and proposed TD adaptive partitioning
methods were compared for both PCA and SPCA in our simulations. Generally,
SPCA outperforms PCA regardless of the partitioning methods. As for the influence
of different partitioning methods in SPCA, we found that not all partitioning
methods yield better performance than the full-band approach, whereas the best
performance is obtained with the proposed ICC-based TD partitioning method.

On the other hand, multishift technique takes a time domain approach that
extends the single time-shifting into multiple shifts to account for the multiple
directions. Two different structures of MSPCA are examined. While MSPCA with
typical structure is simpler, its performance relies heavily on the correct estimation
of the ICTDs. By contrast, consecutive MSPCA is more robust by applying weights
on all shifted versions. The weighting method for different shifted versions is found
to be critical to the extraction performance. In general, applying the exponential
function of ICC with proper exponent value as the weighting yields a good per-
formance in terms of the extraction accuracy as well as localization accuracy.

Comparing the subband and multishift techniques in PAE, we found that both
approaches can be considered as preprocessing before applying the conventional
PAE approaches. In both techniques, the input signal is processed signals to match
the assumptions of the signal model as close as possible. ICC is critical in both
approaches, in either the partitioning of frequency bins or output weighting of the
shifted versions, to obtain the extracted primary components. Both approaches can
be considered as a filtering process. The subband technique can be viewed as
frequency domain filtering where the spectra of the mixed signal are multiplied by a
complex weight in each frequency bin. The multishift technique could be used as a
filter with coefficients derived using ICC. Under the filtering framework, the sub-
band technique can be combined directly with the multishift technique in PAE for
practical spatial audio reproductions.
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Chapter 7
Conclusions and Future Works

Abstract In conclusion, several advancements on primary ambient extraction
(PAE) are presented. Objective and subjective evaluations validate the feasibility of
applying PAE in spatial audio reproduction. With these advanced PAE approaches
readily applied, the listeners can thus immerse himself/herself in the reproduced
sound scenes, without the limitation on the audio contents or playback systems.
Future work on PAE is also discussed in this chapter.

Keywords Spatial audio reproduction � Primary ambient extraction (PAE)

In this chapter, we will summarize this book with conclusions drawn from these
works as well as future works to be carried out as an extension of the book.

7.1 Conclusions

Spatial audio reproduction is essential in creating immersive and authentic listening
experience, as per the increasing need from the consumer market. Primary ambient
extraction (PAE) can be applied in spatial audio reproduction to alleviate the rig-
orous requirements of the channel-based audio format on the audio reproduction
system configuration. Thereby, PAE facilitates flexible, efficient, and immersive
spatial audio reproduction. With the PAE approaches proposed for signals in the
ideal case, little work has been carried out to study PAE for more practical real-world
signals encountered in digital media content. Thus, spatial audio reproduction based
on PAE was investigated in this book on the following five aspects.

First, a comprehensive study on existing PAE approaches was carried out. Our
observations on existing PAE approaches such as PCA and least squares led us to a
unified linear estimation framework, where the extracted (primary or ambient)
components can be estimated as a weighted sum of the input signals. Furthermore,
in order to quantify the objective performance of PAE, we introduced two groups of
performance measures, namely the measures for extraction accuracy and measures
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for spatial accuracy. For extraction accuracy, we identified three types of errors that
contribute to the extraction error: the distortion, the interference, and the leakage.
Dividing the extraction error into these three parts helps us understand the per-
formance of PAE approaches. With the objectives of minimum leakage, minimum
distortion, and adjustable performance, three variants of the least-squares method
were proposed. The key relationships and differences among these linear
estimation-based PAE approaches were established in this book. Comparatively
better performance was found in primary component extraction than in ambient
component extraction, where primary power ratio also plays an important role. As a
result of this comparative study, guidelines and recommendations on selecting the
more suitable PAE approaches for various spatial audio reproduction applications
were suggested.

Secondly, a novel ambient spectrum estimation (ASE) framework was proposed
to improve the performance of PAE, especially when the ambient power is strong.
Based on the relation of equal magnitude of ambient components in two channels,
the ASE framework can be analyzed from two perspectives, i.e., ambient phase
estimation (APE) and ambient magnitude estimation (AME). Equivalence between
APE and AME was verified. The sparsity constraint of the primary components was
employed in this book to solve the ASE problem, leading to two PAE approaches
such as APES and AMES. To improve the computational efficiency, an approxi-
mate solution to the ASE problem with sparsity constraint, known as APEX, was
further proposed. With the aim to apply the evaluation framework of extraction
accuracy (as introduced earlier) in PAE approaches without analytical solutions (as
is the case with these ASE approaches), an optimization method was proposed. It
was evident from our objective and subjective experiments that the ASE approaches
can improve the performance of PAE with 3–6 dB less extraction error (all cases,
on average) and closer spatial cues. Furthermore, the experiments with variant
ambient magnitude difference indicated the robustness of the ASE approaches.

Thirdly, when dealing non-ideal signals (signals that do not fit the signal model),
we observed a significant performance degradation using conventional PAE
approaches. One of the most often occurring cases is the primary-complex case
where the primary components are partially correlated at zero lag. The performance
degradation generally increases as primary correlation decreases. Therefore, a
time-shifting technique was proposed to maximize the primary correlation prior to
PAE. Overlapped output mapping is introduced to alleviate the frame boundary
switching artifacts due to varied time-shifting amounts. Simulations using synthe-
sized signals and real recordings showed that the time-shifting technique can greatly
enhance the performance PAE with around 50 % lower extraction error and much
more accurate spatial cues. Furthermore, the time-shifting technique can be
seamlessly incorporated into any existing PAE approaches.

Lastly, it is possible to encounter even more complex signals when dealing with
actual sound scenes from digital media, where multiple concurrent dominant
sources pose a challenge for PAE. Our study revealed that multishifting technique
with ICC-based weighting and sub-band technique with adaptive frequency bin
partitioning could enhance the PAE performance with multiple sources.
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7.2 Future Works

Through the investigations of PAE approaches reported in this book, there are
several interesting future works that can be further explored, which are suggested as
follows:

Firstly, the performance of various PAE approaches is only studied in the ideal
case. In the non-ideal cases, only the performance of PCA is analyzed. Therefore, it
is also interesting and beneficial to understand how the performance varies for the
other PAE approaches. Some interesting results from this study could shed lights on
how to design more specific techniques to improve the performance of PAE in
non-ideal cases.

Secondly, it is commonly known that for spatial audio evaluation, timbre quality
and spatial quality are two important aspects. Previous studies from Rumsey et al.
showed that it is possible to combine the two aspects [1]. Yet, it is unknown
whether the model developed in [1] is applicable to PAE. Hence, one future work
would involve extensive subjective listening tests to understand the relative
importance of the timbre and spatial quality in PAE applications. Furthermore,
considering that conducting subjective tests to evaluate all the PAE approaches is
very tedious and impractical, objective evaluation is more preferred. Therefore, the
relations between the subjective quality and objective quality would lead to a more
meaningful and reliable objective evaluation. Besides, evaluation of PAE approa-
ches in a more specific spatial audio reproduction application could help us
understand the final performance of these PAE approaches.

Thirdly, further studies can be extended based on our ASE framework. In the
current study, only the sparsity constraint is employed. Employing other con-
straints, such as the diffuseness of the ambient components and the independence
between primary and ambient components, could improve the performance of PAE
(or the performance in certain cases). Probabilistic approaches could be developed
to model the ambient magnitude variations better.

Fourthly, more work still has to be carried out for complex signals in PAE. For
those signals with multiple dominant sources, we could further combine the mul-
tishift technique with the sub-band technique, which might lead to an optimal
filtering method. Moreover, blind source separation techniques could be incorpo-
rated into PAE to separate the multiple sources. On the other hand, more com-
prehensive study shall be carried out on PAE for multichannel signals.

Lastly, PAE is a blind process, which implies that its performance relies heavily
on how effective the signal model is. Due to the complexity of the actual sound
scenes, not one signal model could satisfy any audio content. Therefore, machine
learning techniques could be introduced to solve the PAE and spatial audio
reproduction problem thanks to the vast amount of digital media data. Furthermore,
real-time implementation of the PAE approaches for spatial audio reproduction
applications shall also be seriously considered.
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