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PREFACE

Mathematical modeling is now widely applied in physiology and medicine to support
the life scientist and clinical worker. Our aim in writing this book is to provide an
introduction to this topic, presenting the underlying principles of good modeling
methodology together with numerous examples indicating the way in which such
modeling is finding application in physiology and medicine.

Mathematical modeling finds application in medical research, in education and
in supporting clinical practice. In the research context, the use of models can, for
example, yield quantitative insights into the manner in which physiological systems
are controlled. In the educational setting, medical students can use computer model
simulation to explore the dynamic effects of pathophysiological processes or of drug
therapy. In the clinical arena, mathematical models can enable estimates to be made
of physiological parameters that are not directly measurable – useful for example
in diagnosis, as well as enabling predictions to be made as to how changes in drug
therapy will impact on variables of clinical importance such as blood pressure or
blood glucose concentration.

This book is directed at a broad readership across a wide range of student and
practitioner backgrounds. In terms of the student readership, it is designed to appeal
to biomedical engineers and to others studying physical and engineering sciences, and
biological and life sciences. It should also appeal to medical students who wish to
enhance their quantitative understanding of the physical and chemical processes that
underpin physiology and medicine. Further, the book should be of interest to practi-
tioners of all professions who have an interest in quantitative aspects of physiology
and medicine.

The book begins by exploring some of the complexities of physiology that lend
themselves to modeling in order that their quantitative features may be better under-
stood. The concepts of mathematical modeling are then introduced, showing that
models can be used for a wide range of purposes: to gain insights, to support pro-
cesses of measurement, to make predictions of future behavior and in a variety of
ways assist in enhancing clinical research and practice. A number of approaches to
developing mathematical models are then considered, with each being illustrated by
a range of examples. Much of the remainder of the text then focuses on issues asso-
ciated with making estimates of model parameters and addressing the problem of

xi



xii PREFACE

ensuring that a mathematical model is valid; that is to say fit for its intended purpose.
The final chapter comprises a number of case studies which demonstrate, in detail,
how the modeling concepts, methods and techniques that have been described and
discussed earlier can be applied to real-world problems in physiology and medicine.

In writing this book, we wish to express our thanks to a number of our colleagues
who have worked with us in developing the examples and case studies, including:
Alessandra Bertoldo, Chiara Dalla Man, Giovanni Sparacino, Gianna Toffolo and
Peter Weller; and to Andy Morrison for his assistance in the preparation of the figures.
We are also indebted to those who over many years have offered us encouragement
and support in our modeling ventures, including Riccardo Bonadonna, Derek Cramp,
Ludwik Finkelstein, Roman Hovorka, David Kelley, Antonio Lepschy, Robert Rizza,
Abdul Roudsari and Peter Sönksen. Finally, we should like to express our grati-
tude to Jonathan Simpson and all his colleagues at Academic Press/Elsevier for their
encouragement, support and tolerance during the lengthy gestation of this book.

Claudio Cobelli and Ewart Carson

A full Solutions Manual is
available for downloading by
teachers and lecturers who adopt
or recommend this text for class
use. For further details and
access please visit
<http://textbooks.elsevier.com/>



1 INTRODUCTION

Chapter Contents

1.1 Introduction

1.2 The Book in Context

1.3 The Major Ingredients

1.4 Readership

1.5 Organization of the Book

1.1 INTRODUCTION

Over the past few decades there has been a considerable increase in the application
of quantitative methods to the study of physiological systems. New techniques for
making physiological measurements are being constantly developed and applied and
there has been a corresponding increase in the methods available for the analysis and
interpretation of such experimental data.

Improvements have occurred in both the quality and quantity of experimental
data that are now available from studies in the intact organism and on the isolated
organ. Advances in instrument technology and biochemical laboratory methods have
contributed significantly to these improvements.

In parallel, there have been substantial advances in terms of concepts, methods
and techniques for the study of dynamic systems; advances that have originated in the
control and systems theory. These are increasingly finding their way into physiological
investigations, and in associated investigations in the clinical sciences and medicine.
An additional driver for all of this is, of course, the availability of more and more
computing power. Harnessing all of these together is resulting in an increase in the
use of mathematical modeling techniques in physiological investigations.

The increasing application of modeling and dynamic systems analysis offers ben-
efits for the physiology, control and systems science, and biomedical engineering.
For the control and systems science there is the opportunity to examine the structure
and behavior of complex physiological systems which function effectively. More-
over, such systems provide a test bed for examining the merits and limitations of
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2 CHAPTER 1 INTRODUCTION

techniques of modeling and dynamic systems analysis, originally developed largely
for technological applications.

For the physiologist, the appropriate use of mathematical models offers many
potential benefits. They provide a concise description of complex dynamic processes,
indicate ways in which improved experimental design could be achieved, and enable
hypotheses concerning physiological structure to be tested. Furthermore, they allow
estimates to be made of parameters (physiological quantities) that are otherwise not
directly accessible to measurement. Although initially most modeling applications
have been in the areas of physiological and medical research, they are now increasingly
being used as aids in the diagnosis and treatment of disease.

If these benefits are to be realized, there is clearly a need for a greater awareness
and understanding of modeling methodology and techniques, together with their
strengths and limitations. It is to address these issues that this book has been devised.
Its aim is to provide insight into the why and how of modeling; the need for models,
what they can do, how to build them, and how to use them.

The concepts, problems and approaches are illustrated with examples and case
studies drawn both from literature within the field and from our own very extensive
experiences gained over many years of endeavor. The illustrations cover a very wide
range of physiological topics, demonstrating the wide applicability of the approaches
being described.

1.2 THE BOOK IN CONTEXT

This book forms a part of the series of volumes in Biomedical Engineering. However,
physiological modeling is very much an interdisciplinary subject. Hence the topic is
also central to a range of related disciplines including biomathematics, medical and
health informatics and systems physiology.

Significant activity in the field of mathematical modeling of physiological systems
certainly stretches back more than a hundred years. Texts in the field have been
produced over the best part of 40 years. Amongst the first were those of Milsum
(1966) and Milhorn (1966). An early classic having a biomathematics flavor was
that of Riggs (1963), whilst Talbot and Gessner (1973) produced a definitive text
having a systems physiology focus. Since then dynamic modeling of physiological
systems has been a major component of many biomedical engineering texts. Examples
include Bronzino (2000) and Enderle et al. (2000). For a more advanced treatment
of modeling methodology, the reader should consult Carson and Cobelli (2001).

Other volumes have focused on particular approaches to modeling or on specific
areas of physiology. For example, volumes on compartmental modeling have been
produced by Atkins (1969) and Godfrey (1983), amongst others. The analysis of data
yielded by dynamic tracer experiments has been the subject of volumes by Jacquez
(1972; 1996) and Cobelli et al. (2000). The modeling of metabolic and endocrine
systems has been described by McIntosh and McIntosh (1980) and by Carson et al.
(1983). The related subject of physiological modeling and control has been dealt
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with extensively by authors such as Carson and Cramp (1985), Khoo (2000) and
Northrop (2000).

In addition to textbooks on the subject, there is a number of modeling software
packages that are now readily available. Some such as MATLAB® and SIMULINK®

are generic modeling packages for dynamic systems. Others have been designed for
a specific physiological application. Examples include SAAM (SAAM User Guide,
1998) and NONMEM (Beal and Sheiner, 1998).

However, there has been remarkably few attempts to produce what are essentially
entry-level texts to the topic of modeling of physiological systems; the earlier volume
by Finkelstein and Carson (1985) being one of the few. This is the focus of this
present volume. Its aim is to provide a comprehensive introduction to the modeling
of dynamic, physiological systems. The emphasis is placed firmly on developing sound
modeling methodology, with numerous examples and case studies being included as
illustrations.

1.3 THE MAJOR INGREDIENTS

In general terms, a model is a representation of reality. However, it is also an approx-
imation of that reality since not all the ingredients of that reality can be incorporated
into any model. Hence the models that we are concerned with in the chapters that
follow will all, in their various ways, provide approximate representations of the
particular physiological systems under consideration. What is crucial is that the form
of model developed is appropriate for its purpose. As already hinted at, there can be
a wide range of possible purposes for modeling. For instance, the form of a model
adopted for the purpose of understanding some of the complexities of the control
of breathing might well be quite different to that adopted as an aid to weaning the
patient in an intensive care unit off a ventilator. This is the case even though in both
examples the physiological focus is the respiratory system.

The way in which we develop a model will be dependent on our knowledge of the
relevant physiology and the availability of relevant experimental data. So in essence
the process of building a model can be regarded as a mapping of physiological knowl-
edge and experimental data into the model. In the case of a model that is essentially
a representation of the experimental data available, it is those data that dominate
in this mapping process. On the other hand, if the model is one designed to provide
a representation of the physiology more explicitly, then it will be the physical and
chemical knowledge of that physiological system which dominates in the building of
the model.

The overall process of modeling involves a number of inter-related ingredients.
These are model building, model identification, simulation and model validation.
Used appropriately in conjunction with each other, they provide a methodology for
developing a model which will be fit for its intended purpose.

Model building involves formulating equations that provide an adequate repre-
sentation of either the experimental data (in the case of a data-driven model) or the
underlying physiology (in the case of a model that explicitly represents the underlying
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physiology). Once the model has been built, identification can take place that includes
making estimates of those parameters (physiological quantities) in the model that
cannot be measured directly, using the available input/output experimental data.

Simulation involves solving the model equations to predict output behavior. Such
computer simulation might, for instance, be used to predict the time course of a
patient’s blood glucose concentration, in the case of a model designed to explore
relationships between insulin dosage and blood glucose in a diabetic patient. The
fourth ingredient is that of model validation; this involves examining (in the case of
two or more competing models) which is the best in relation to the modeling purpose.
In the case of a single model it involves examining whether that model is good enough
in relation to its purpose. This validation process involves the use of statistical tests
as well as examining other features of the behavior of the model.

All are vital ingredients of the modeling exercise and are very much inter-related.
One point that will be stressed in the chapters that follow is the iterative nature of
the modeling process. Just as any design process is very much iterative in nature –
only very rarely will it be right first time - so the same applies with modeling. Usually,
several iterations through the cycle of ingredients will be needed before an acceptable
end product is produced!

1.4 READERSHIP

This book describes the development of models of physiological systems; models
which can be used in a variety of ways, including as aids to understanding, as means
of supporting clinical processes and for educational purposes amongst others. Given
that the level of this text is essentially that of an introductory guidebook, it is aimed
first at students of biomedical engineering and related disciplines. Such students may
be undergraduates, or may be following more specialized Masters’ programs in the
subject.

However, one of the fascinations of the subject of physiological modeling is its very
interdisciplinary nature. As such, it is an activity undertaken not only by those with
technical backgrounds in biomedical engineering and health informatics, but also
by many in the clinical and life sciences. Thus this text will also be relevant to the
needs of physiologists, biologists and clinical scientists and practitioners interested in
quantitative approaches and results.

1.5 ORGANIZATION OF THE BOOK

As indicated above, the aim of this book is to provide an introduction to the modeling
of physiological systems. However, before proceeding to the actual modeling process,
it is worth spending a little effort in understanding something of the fundamentals of
physiology itself. This is important if modeling is to be undertaken successfully. In
the normal healthy individual, the physiological systems provide an almost incredible
array of functions necessary for the maintenance of life. In doing so, they exhibit a
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variety of forms of complexity. Chapter 2 thus provides some insights into the nature
of physiological complexity.

Physiological complexity is discussed in terms of function and behavior (which
we wish to access) and measurements (which are available). Complexity manifests
itself in terms of concepts such as hierarchy and feedback, and each is considered
in the physiological context. As a result of complexity it is often not possible to
measure directly (in vivo) the quantities of interest. Only indirect measures of such
quantities may be possible. This complexity of physiological systems, coupled with
limitations in measurement means that models have to be adopted as a means to aid
understanding.

Chapter 3 introduces the concepts of model and modeling process. It describes
what is meant by a model, the variety of models, why modeling (i.e. modeling
purpose) and the nature of the modeling process. There are many possible pur-
poses for modeling. These can range from investigating the physical or chemical
structure and associated parameters of the physiological system in question to the
development of clinical models for either diagnosis or patient management. This is
followed by a description of the modeling process, stressing the need for good model-
ing methodology. The basic ingredients of model formulation, model identification,
model validation and model simulation are described.

Following on from the first three introductory chapters, Chapter 4 starts the
detailed examination of approaches to modeling. Here the focus is modeling the data.
The aim of this chapter is to describe data modeling approaches as representations of
physiological dynamics. The chapter describes what we mean by modeling the data,
when such approaches are applicable and how it should be done (i.e. a description of
the principal types of data driven (black box) models. Approaches include modeling
both continuous and discrete time signals, adopting both time domain and frequency
domain methods.

In contrast, Chapter 5 focuses on modeling the system. The aim of the chap-
ter is to describe approaches to modeling the physiology, showing that it can be
done at different levels and that the approach adopted depends on available a priori
knowledge and assumptions made. The approaches adopted compare and contrast
the following cases: static v. dynamic, deterministic v. stochastic, time-invariant v.
time-varying, lumped v. distributed, linear v. nonlinear and continuous v. discrete.
As with the previous chapter, extensive examples are included as illustrations of the
approaches available, demonstrating how modeling can be carried out for a wide
range of physiological processes and situations.

We need a complete model of the physiological system under consideration. This
may not be the case. By this stage we shall have at least one candidate model, but
possibly more than one with the need to choose between them. Focusing on a single
model, if it is incomplete this will be due to some of the parameter values being
unknown. This is true whether the modeling approach has been data driven or driven
by the physiology of the system. We may be dealing with the whole model or just part
of it. Chapter 6 aims to provide a framework for dealing with this situation (whether
the model is data driven or physiologically based). To solve this problem we need data.
Data sometimes occur from the intrinsic dynamics of the system (e.g. spontaneous
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oscillations or noise), but more usually we must design experiments. The chapter
discusses what experiments need to be designed to yield appropriate data.

Chapters 7 and 8 address the problem of identifying models which include param-
eters, whether these are input/output models or models that explicitly correspond to
the physiology of the system under investigation. Chapter 7 considers the problem of
identifiability. That is, whether it is theoretically possible to make unique estimates
of all the unknown parameters of the model on the basis of those input/output
experiments that it is proposed to perform as a means of acquiring experimental
data. Having addressed this problem of identifiability, techniques for estimating the
unknown parameters are then discussed in Chapter 8. Emphasis is placed upon linear
least squares and nonlinear least squares techniques, though brief reference is made
to maximum likelihood and Bayesian estimation.

The focus of Chapter 9 is non-parametric models. These are defined and methods
outlined for estimating functions, rather than parameters. Available techniques
include raw deconvolution and deterministic regularization.

Chapter 10 considers the issue of model validation, that is to say whether a par-
ticular model is good enough for its intended purpose, or in the case of a number of
competing models, which of them is best. Having defined what is meant by model
validity, an overall framework, together with associated methods, for the validation
process is presented. The chapter ends with some recommendations for good mod-
eling practice. Finally Chapter 11 illustrates the methods and techniques that have
been discussed in relation to validation through a series of case studies.

Throughout the text, numerous illustrations, examples and case studies are
included, demonstrating how the methodology and techniques described can be
applied across a wide range of physiological examples. All of these illustrations
are appropriately referenced. With regard to the basic methodology described in
this book, only essential references are included. The reader who wishes to engage
in a deeper study of modeling methodology is encouraged to consult our compan-
ion volume (Carson and Cobelli, 2001), which includes extensive referencing to all
methodological issues and detail.
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2.1 INTRODUCTION

Before moving on to the modeling activity that forms the bulk of this book, it is
worth devoting a little attention to the nature of the physiological systems that we
shall be modeling. In various ways all physiological systems are characterized by their
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8 CHAPTER 2 PHYSIOLOGICAL COMPLEXITY AND THE NEED FOR MODELS

complexity. So in this chapter we shall examine the nature of this complexity in phys-
iology. It is important that we should understand this complexity, since by definition
any model that we create will be a simplification, an approximation of that complex
reality. By understanding something of this complexity we shall be in a better position
to make the simplifying assumptions that correspond to the particular model formu-
lation that we shall adopt. In essence, the model that we develop needs to have taken
into account both this inherent complexity that we have simplified and the availability
of measurement data which will be used in estimating the parameters of our model.

Figure 2.1 shows a schematic representation of the human organism. In effect,
this is a conceptual model that gives a flavor of the complexity of human physiology.
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Figure 2.1 The human organism as a complex system (adapted from Janes and Carson, 1971).
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Although quite a complex figure, it is clearly a very simplified and approximate
representation of all the physiological detail. Nevertheless, it does capture the essence
of much of the dynamic processes that are present within the living organism. It
depicts the human organism as a complex multi-input, multi-output system, with
linkages involving an array of physico-chemical processes. Finally, it includes many
of the standard functions to be found in any complex control system; that is sens-
ing, decision making and control, actuating or effecting, and the feeding back of
information. Some of the ingredients of complexity in this physiological context are
considered in later sections of this chapter. However, let us first examine some of the
attributes of complexity in a more general sense.

2.2 COMPLEXITY

Complexity manifests itself in a number of ways. First, in general, the greater the
number of components or elements there are in a system, the greater will be its
complexity. So the greater the number of neurons in a central nervous system or the
larger the number of intermediate substances in a metabolic pathway, the greater will
be the complexity. However, complexity is associated not only with the number of
elements, but also with their interconnectivity (Flood and Carson, 1993). In the case
of the central nervous system this would correspond to the number of interconnections
between neurons.

These concepts of numbers of elements and interactions form part of a frame-
work for complexity that has been proposed by Yates (1978). Yates suggested that
complexity arises when one or more of five attributes are found which, in addition
to the two already referred to, include nonlinearity, asymmetry and nonholonomic
constraints.

Nonlinear systems occur when at least one element in the system relates to and
varies in a nonlinear way with another. It would be represented graphically by a
curved rather than a straight line. Nonlinear systems are, in general, much more dif-
ficult to analyse and comprehend than linear systems; that is, they are more complex.
Almost all physiological systems are inherently nonlinear, even if from a modeling
perspective it may be possible, and indeed reasonable, to treat them as if they were
linear under specific conditions. This is a concept that will be considered in some
detail later in the book.

Asymmetry occurs when symmetry in a system’s relationships no longer holds.
Consider the following example. A single cell after fertilization multiplies to become
two cells, and then four, and then eight, and so on. Eventually, this produces an
organism in the mould of its parents. During the developmental process, the single
cell becomes a distinct organism or creature due to organization and differential
growth. Differential growth is a type of asymmetry, and without it the process of
growth described above would result in nothing more than a very large number of
cells. It is such differential growth that results in the specialization that gives rise to
the emergence of specific organs within the overall organism, such as the liver.
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Holonomics relate to the integrity of systems, so that holonomic constraints are
constraints that relate to laws affecting an entire organism. The obverse of this is
nonholonomic constraints. These relate to parts of a system that are temporarily
outside central control and which, in essence, ‘go off and do their own thing.’ This
applies in a major way in the physiological context. The central nervous system would
not be able to cope with the myriad of regulatory functions that take place within
the human organism, for instance. So the human organism has evolved and adapted
in such a manner that there is very considerable local regulation and control. For
example, large numbers of metabolic processes are regulated at the local level (as will
be described later), without recourse to centralized neural control. Complexity arises
in situations where there is a high degree of freedom in parts of a system. In other
words, the behavior and control of the parts cannot easily be predicted just on the
basis of knowledge of the overall system characteristics.

Complexity also arises as a consequence of stochastic and time-varying dynamic
effects. These will be considered in later chapters. Three key concepts that will aid
our understanding of physiological complexity are feedback, control and hierarchy.
These will now be discussed in the following three sections.

2.3 FEEDBACK

Feedback is a fundamental feature of all physiological systems. It is vital in terms of
ensuring physiological regulation and control. It is very much an ingredient of the
complexity that characterizes physiological systems.

At its simplest, feedback can be regarded as a mutual causality, whereby variable X
has an affect on variable Y, and in turn variable Y has an affect on variable X. If
an increase in variable X brings about an increase in variable Y, and that increase in
variable Y brings about a decrease in variable X, the process is referred to as negative
feedback.

2.3.1 Negative Feedback

Glucose metabolism provides us with examples of such negative feedback. For
instance, in a normal individual, an increase in blood glucose concentration (vari-
able X), brought about by the ingestion of the carbohydrate component of a meal,
causes an increase in the secretion of insulin (variable Y). The effect of this increased
insulin level is to bring about a reduction in the blood glucose concentration towards
a normal value. So this negative feedback process is inherently regulatory, seeking
to enhance the control of blood glucose concentration. Physiologically the effects of
insulin on glucose are achieved by processes that include the chemical conversion of
glucose into glycogen that is stored in the liver.

2.3.2 Positive Feedback

On the other hand, positive feedback corresponds to the situation in which variable
X causes an increase in variable Y, where in turn, that increase in Y brings about
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a further increase in X. An example outside the physiological domain is the so-called
wage-price spiral. An increase in wages causes price increases that in turn act as a
catalyst for further wage increases. This is clearly a destabilizing phenomenon.

2.3.3 Inherent Feedback

The examples of feedback considered above relate to control systems in which the
feedback link takes the form of a flow of material or information. There is, however,
a further form of feedback that needs to be considered, namely inherent feedback.

Consider the case of a metabolic system. Suppose that in a simple chemical reac-
tion, it can be assumed that the rate of decrease of concentration of chemical A taking
part in the reaction is directly proportional to its concentration. Mathematically this
can be expressed as:

dCA

dt
= −k CA (2.1)

where CA is the concentration of chemical A, and k is the rate constant for the
reaction. Expressing (2.1) in the form of a signal flow diagram (see Figure 2.2), it
can be seen that there is effectively a negative feedback connection. In other words,
there is an inherent regulatory effect exhibited in this chemical reaction despite the
fact that there is no physical feedback link. This phenomenon of inherent feedback
that has been revealed is contained in any dynamic process that can be described
mathematically in this way in differential equation form.

dCA
dt

CA

k

�

�

Figure 2.2 Signal flow diagram illustrating inherent negative feedback.

2.3.4 Combining Negative and Positive Feedback

Both positive and negative feedback can be seen in a simple model of population
dynamics. This is a model which could apply, for instance, in relation to the num-
ber of humans or animals in a particular location, or equally in the context of cell
populations within an organism.

Suppose that the birth rate in a population is assumed to be directly proportional to
the number of individuals in the population and let kb be the rate constant that defines
this relationship. Mathematically we can represent this by the following differential
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equation that indicates that the rate of change of population occurs in a positive man-
ner at a rate proportional to the number of individuals making up the population (P):

dP
dt

= kb P (2.2)

In a similar way we could assume that the death rate in this population (P) is
directly proportional to P, being characterized by a rate constant kd. Mathematically
this could be represented as:

dP
dt

= −kd P (2.3)

where the negative sign indicates that this is a processes causing a negative rate of
change in the population (in contrast to the birth effect).

Combining (2.2) and (2.3) gives us an overall model for the dynamics of this
population:

dP
dt

= kb P − kd P (2.4)

Graphically we can describe this by the signal flow diagram shown in Figure 2.3.
This clearly indicates the presence of both positive and negative feedback loops,
providing another illustration of inherent feedback.

dP

kd

kb

dt

��

�� P

Figure 2.3 Signal flow diagram of population growth model.

The death rate is negative feedback regulating population growth. The birth rate is
positive inherent feedback; it tends to lead to population instability that is explosive
exponential population growth. The relative strengths of these opposing feedback
processes (for example, due to disease, medical intervention, famine, etc.) will deter-
mine the overall complexity of the patterns of population dynamics that are observed.
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2.3.5 Derivative and Integral Feedback

In the examples considered so far, it has been assumed that the feedback effect has
been directly proportional to the variable that brings about this effect. Other forms of
feedback are possible, however. It can be shown that reliance on proportional feed-
back and control alone can result in delay in achieving the desired regulatory effect,
often with oscillations being apparent before the desired steady state is achieved.

One way of improving dynamic response is to incorporate feedback whereby not
only is there a sensing of change in variable X, but also a sensing of its rate of
change (dX/dt). There is some evidence that this occurs in the case of carbohydrate
metabolism, for instance. In other words insulin is being secreted not only in response
to elevation of glucose concentration, but also to positive rate of change of glucose
concentration. The incorporation of such derivative (rate of change) feedback and
control brings about a more speedy response within the control loop and a more
rapid achievement of the desired regulation.

In addition to proportional and derivative feedback, there are systems in which
there appears to be integral feedback. One of the problems with control based on pro-
portional and derivative feedback is that there can be an error in the final steady state
that is achieved once the correcting feedback has taken its effect. A means of over-
coming this problem is to include control action whereby there is a feedback signal
employed that is proportional to the integral between the desired value of the vari-
able being controlled and its actual value. A number of studies have suggested that a
number of physiological systems behave as if such integral feedback was in operation.
For instance, Saratchandran et al. (1976) proposed that regulation of the thyroid
hormones is achieved through a combination of proportional and integral feedback.

2.3.6 Effects of Feedback on the Complexity of System Dynamics

The sections above outline some of the principal modes of feedback action that are
to be found in the complexity of physiology. In practice many of the instances of
feedback are even more complicated. Moreover, feedback can result in a wide range.

Changes occurring with feedback processes are also closely associated with the
transition from the healthy state to that of disease. For example, type I diabetes is the
result of a total failure of the glucose/insulin feedback loop described in section 2.4.1.
Equally, type II diabetes is at least in part the consequence of a partial failure of such
a feedback loop, with the parameters involved changing from their normal values.

Feedback is intimately related not only to the manner in which physiological sys-
tems are regulated, but also the patterns of dynamic behavior that they exhibit. It
can affect stability and speed of response. Some of the behavioral features will be
examined in examples that will be considered in later chapters.

2.4 CONTROL IN PHYSIOLOGICAL SYSTEMS

2.4.1 General Features

The study of control in physiological systems reveals a range of manifestations of
complexity. A central feature is homeostasis at various levels in the hierarchy from
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intracellular mechanisms to mechanisms operating at the level of the whole organ-
ism. Much of the major focus is related to the internal environment of the intact
physiological organism, but control systems also feature prominently in relation to
the way we deal with externally sensed information (via the eyes, ears, etc.).

The patterns of regulation and control occurring within physiological systems are
many and varied. Static and dynamic equilibrium, linear and nonlinear regulation,
weak and highly stable rhythmicity (oscillating systems) – all are instrumental in the
maintenance of the living state. In most engineering applications of feedback control,
the focus is temporal control, studying and seeking to minimize transient errors in
the approach to a goal value. In the physiological state, however, in addition to
such temporal aspects, control also involves geometric or functional patterns (in
the context of neural control) and the minimization of their deviations from normal
resting values (Talbot and Gessner, 1973). This involves control action. For example,
in the visual system, color and contrast involve spatial rather than time integrals
and time derivatives. Equally the maintenance of the set of steady-state operating
points for flows and concentrations in the circulatory or respiratory systems provide
examples of functional pattern control.

Let us return now to chemical regulation and control within the physiological
system and examine some of its dynamic features. A range of regulatory mechanisms
is involved, both in the maintenance of the environment within the individual cell

Environment

Chemical Processes in Cell

System
Behavior

Energy

Enzymes

RNA

DNA

Brain

Endocrines

Structural Changes

Neuro-endocrines

Synthesis, Storage

Chemical Reactions

Protein Synthesis

Sensors

Muscle Contraction, Secretion

Figure 2.4 Major processes occurring within the cell and their integration into
total system behavior.
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and in their aggregation into the behavioral patterns of the entire organism. Some of
the major processes occurring within the cell are shown in Figure 2.4.

Control is evident at each level. For example, at the lowest level there is both
transcriptional and translational control involved in protein synthesis, incorporating
genetic effects transmitted via RNA. Feedback features in all these control mech-
anisms. Proteins may either be incorporated into the cellular structure or may, as
enzymes, be involved in subsequent chemical reactions occurring within the cell.

2.4.2 Enzymes

The rate of chemical changes in physiological systems is generally controlled by such
enzymes, which act as biological catalysts. In the simplest enzyme controlled reaction,
an enzyme E and chemical substrate S form an enzyme-substrate complex X which in
turn decomposes into the original enzyme E and the product of the reaction P. This
system of reactions can be represented by the equation:

E + S ↔ X → E + P (2.5)

Assuming first order reactions, such that rate of change is directly proportional to
the concentration of the ingredients of the reaction, the mass transfer equations for
the system are given by:

dE
dt

= −kEX E S + kXE X (2.6)

dS
dt

= −kSX E S + kXS X (2.7)

dX
dt

= (kEX + kSX) E S − (kXS + kXE) X − kXP X (2.8)

dP
dt

= kXP X (2.9)

where E, S, X and P are the quantities of free enzyme, substrate, complex and product
respectively. The k values are the rate constants for the appropriate reactions, so that
for instance kXP is the rate constant relating rate of production of product to the
quantity of complex.

A signal flow diagram for this system is shown in Figure 2.5. It can be seen that the
dynamics resulting even from this very simple process are complex and nonlinear. For
instance, the reversible reaction E + S ↔ X gives rise to two negative feedback loops
tending to regulate E and S. On the other hand the regenerative cycle E → X → E
leads to a positive feedback loop which has a potentially destabilizing effect.

This simplistic treatment has neglected many of the features which occur in more
realistic enzymic reactions. For example, reaction rates frequently depend upon the
presence of a substance other than enzyme or substrate to activate or inhibit the
process. A typical reaction involving the enzyme phosphofructokinase which occurs
in glucose metabolism is shown in Figure 2.6. The many pathways available give rise
to even more complex patterns of regulatory behavior.



16 CHAPTER 2 PHYSIOLOGICAL COMPLEXITY AND THE NEED FOR MODELS
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Figure 2.5 Signal flow diagram for a simple enzymic reaction.
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Figure 2.6 Phosphofructokinase (PFK) reactions. The nomenclature adopted
is: A = ATP; AM = Mg-ATP; C = citrate; CM = ATP-citrate; D = ADP; DM = Mg-ADP;
E = enzyme (PFK); EAM = complex; EF = complex; EP = complex; F = substrate
(fructose-6-phosphate); M = Mg (magnesium); P = product (fructose 1,6 diphosphate);
and X = complex.
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2.4.3 Hormones

Control in such chemical reactions, however, is not confined to the action of enzyme
systems. For example, there is a large number of chemical reactions that form a part of
glucose metabolism taking place in the lever that are under enzyme control. However,
this set of reactions is also controlled by a range of hormones, including insulin,
glucagon, adrenalin, cortico-steroids, growth hormone and the thyroid hormones.
Hormones are powerful chemical agents secreted by endocrine glands such as the
pancreas and the thyroid gland.

Three types of hormonal action are evident from a control perspective. The first
type of action is associated with hormones that act on smooth muscle or other cells
to stimulate an effect such as muscle contraction (Figure 2.7). These are sometimes
referred to as kinetic hormones. The consequence of this action is perceived by a neu-
ral detector. For example, arterial baroreceptors monitor changes in blood pressure
following the secretion of adrenalin from the adrenal medulla. The fact that neural
transmission is involved in the feedback pathway from the site of the kinetic action to
the particular endocrine gland ensures that within seconds the appropriate changes
in hormonal output can occur.

Hormone

Neural 
Detector

Kinetic 
Action

GlandCNS

Figure 2.7 Hormonal action on smooth muscle or other cells to stimulate
an effect such as muscle contraction.

The second type of hormonal action manifests itself in the change in blood con-
centration of a particular chemical (see Figure 2.8). Hormones bringing about such
action are sometimes referred to as metabolic hormones. For example, insulin secreted
in the pancreas brings about a decrease in the level of blood glucose. This may be
due either to its direct allosteric effect in an enzyme system or to its mediation of
a transport process. The feedback in this case is chemical, the lower level of blood
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Figure 2.8 Hormonal action manifesting itself in the change in blood
concentration of a particular chemical.
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glucose in the blood perfusing the pancreas being recognized and inhibiting further
insulin secretion. The limitation of this type of control stems from the fact that this
local chemical feedback has an effective time constant which is typically of the order
of tens of minutes.

The third type of hormonal control involves endocrino-kinetic or trophic hormones
(sometimes also known as endocrine-kinetic hormones). These are produced by one
gland which, in turn, controls the activity of another (see Figure 2.9). For example,
ACTH is a trophic hormone secreted by the anterior pituitary which, in turn, acts
upon the adrenal cortex in controlling the rate of secretion of cortico-steroids. The
actions of such target gland hormones are complex, multiple and slow. The effects of
cortico-steroids, for instance, are such that their actions on peripheral tissues cannot
be monitored by changes in a single blood constituent. It is therefore the concentration
of the steroid itself that is used as the feedback signal. Also it can be seen that the feed-
back effects are more complex for this type of hormone. Pathways to both hypothala-
mus and pituitary may be present, affording greater flexibility in the system’s response
to a particular perturbation. Moreover, target gland activity can change very rapidly
in response to a changed external environment. Disturbances such as stress or seasonal
changes are detected and fed into the hypothalamus via the central nervous system.

External
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Figure 2.9 Trophic (endocrino-kinetic) hormone.

From a system’s perspective, a number of interesting features are apparent if we
consider a portion of the liver glucose system. The reactions by which glucose is con-
verted into glucose-6-phosphate and glycogen involve complex enzyme systems. Some
of these, in turn, are under hormonal control (see Figure 2.10). For example, if blood
glucose level is high, insulin is secreted, thus facilitating the conversion of glucose-6-
phosphate into glycogen and hence bringing about a decrease in the glucose level. The
hormone glucagon, however, is also secreted in response to the same stimuli as applied
to insulin. Yet its metabolic effect is in direct opposition to that of insulin in that it
tends to raise glucose levels. Glucagon, however, is more sensitive than insulin and so
modulates reactions promoted by insulin thereby bringing about better control action.

Here we have an antagonist pair of metabolic hormones acting in a manner par-
allel to that occurring in locomotion, where muscle extension is achieved by active
contraction of an antagonist.
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Figure 2.10 Hormonal control of chemical reactions.

The overall control of the chemical processes of physiology involves the nervous
system as well as hormones. Many of these are still not very well understood, though
considerable advances in understanding have taken place in some areas; for instance,
relating to the vagal control of breathing.

Nevertheless, it is clear that a complex array of control actions is involved in
the totality of chemical processes to be found in the intact physiological organism.
At a simple level there is strong local control action. This enables many of the chemical
processes to be regulated without recourse to higher levels of control. This is due to
the fact that chemical reaction rates are generally concentration-dependent, giving
rise to inherent negative feedback. This, together with the sophisticated array of
enzymic, hormonal and nervous system mechanisms involving both chemical and
neural transmission, provides a degree of flexibility and adaptability that constitutes
an excellent example of effectively functioning control.

2.5 HIERARCHY

From the foregoing descriptions it is clear that feedback and control in physiological
systems offer many examples of functioning complexity. However, in our treatment
of feedback and control a further feature of system complexity has become apparent.
This is hierarchy.

The structure of the overall human organism offers itself to analysis in hierarchical
terms; from genes, through cellular subsystems, cells, organelles, organs to the intact
physiological organism. At each level there is feedback and control action of a variety
of modes. Equally each level of organization is aggregated into the next level up in
this organizational hierarchy (e.g. cellular subsystems aggregate into cells and organs
into the intact organism).
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Examining the control of organ systems a number of mechanisms are evident. As
we have already seen, in many processes there is strong, local low level chemical
control. This is particularly appropriate for the situation in which disturbances to
the metabolic process are unlikely to be large in magnitude. On the other hand,
for the likes of carbohydrate metabolism where gross perturbations occur daily,
through the feeding process, hormonal mechanisms form an integral component of
the regulatory process.

We can define a hierarchy of regulatory mechanisms in terms of intrinsic chemical,
enzymic, hormonal and neural control. This multitude of controllers ensures that the
organ systems and the organism as a whole are able to withstand disturbances normal
and abnormal both in terms of magnitude and time scale.

2.6 REDUNDANCY

One more feature that characterizes the complexity of human physiology is redun-
dancy. The most obvious examples of redundancy relate to the provision of pairs of
organs: two eyes, ears, lungs and kidneys. In the case of the sensory organs, this per-
mits an increased sophistication in sensory perception, such as binocular vision. The
duplication of lung and kidney function provides the ability to cope with extremes of
operating conditions that would tax the single organ. Moreover, the kidney, whilst
of prime importance in the regulation of the body’s water balance, also has a lim-
ited capacity to act as a chemical plant and can therefore provide a limited degree of
back-up for the major chemical plant – the liver.

A degree of redundancy is also apparent in the organ control systems. For example,
a number of hormonal control loops are involved in the maintenance of blood glucose
levels. Glucagon, adrenalin, growth hormone and the cortico-steroids are all capable
in their several ways of remedying low glucose levels. This is not to say that all
these hormones are specific in their action, for many hormones mediate a variety of
metabolic effects. Nevertheless, a high level of reliability is afforded in the correction
of a deficiency in blood glucose. On the other hand there is only a single control loop
capable of lowering elevated glucose levels – the insulin controller. This is, however,
a robust controller in the healthy individual, thus offsetting to a degree the absence
of any back-up system from a system design perspective.

Redundancy is also apparent in the nervous system. In many instances a small frac-
tion of the available information needing to be transmitted is carried by each of a large
number of units. In this way immunity to large scale loss of information is provided,
even though small numbers of the central neurons are dying each and every day.

Organisms with a higher nervous system are capable of responding selectively to
a vast number of specific combinations of sensory stimuli. This ability has led to the
hypothesis that information from the dense organs is progressively re-coded to higher
levels in a less redundant form. Since the transmission lines – the number of fibers in
a sensory pathway – is fairly constant, this reduction process would occur in terms
of reduced average activity in the sensory centers, that is economy of pulses. Great
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economy can be achieved by this recoding, providing of course that it occurs with
the minimum sacrifice of information.

2.7 FUNCTION AND BEHAVIOR AND THEIR MEASUREMENT

From the foregoing sections it is clear that physiological systems exhibit complexity
in a variety of forms. The integration of the system components, the manner in which
they are inter-connected and the mechanisms by means of which they are regulated
and controlled gives rise to the functional and behavioral patterns that are to be found
in the functioning physiological organism. Figure 2.1 provided us with one simplified
representation of some of this overall physiological complexity. It is these functional
and behavioral patterns which are of interest to us as physiological modelers.

However, in order to be able to quantify the dynamic processes and effects that
are occurring within the complexity of our physiological systems, we must be able to
make measurements. This is where many challenges lay; there are limits as to what
can be measured in living organisms. There are constraints, both practical and ethical.

For example, it is generally not possible to make invasive measurements on the
organs, nor in the tissues, nor of the secretion of the glands of the intact physio-
logical organism. This has traditionally meant that, in terms of chemical variables
in the body, measurements have been limited to those that could be derived from
blood, urine or breath samples. More is now possible, however, due to technological
advance. Making use of advanced imaging modalities it is now possible to derive
measurements of say glucose in the brain, assuming that the organ in question, brain,
liver or kidneys for example, can be precisely identified from the images in question.

So, at an experimental level, our ability to access and hence potentially understand
physiological complexity is limited. We are constrained by measurement technology
and methodology as to what may be measured directly (in vivo). As far as accessing
information regarding other quantities is concerned, the only way forward is by using
indirect or inferential methods. This means using models as will be explained below.

2.8 CHALLENGES TO UNDERSTANDING

So what is clear is that physiology is complex and that the availability of measure-
ments to access the dynamics of this complexity is limited. It is this tension between
complexity and measurement that is one of the major drivers for modeling activity
and the manner in which it should be undertaken. As we shall see in the chapters
that follow, modeling enables us to maximize the information that can be gained
from measurements. It also aids our understanding of complexity. For quantitative
models in essence are vehicles for relating our quantitative measurements to features
of physiological behavior.

For instance, in the circulatory system we can measure blood pressure and flow
rate. If we postulate, in the form of a mathematical model, that pressure is equal to the
product of flow and compliance, then measurements of pressure and flow will enable
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us to make estimates of compliance in the blood vessel under consideration. The
measurements may enable us to assume that compliance is constant over a specified
range of pressures and flow rates. We could then use this model to explore how
changes in vessel compliance, due say to disease processes of arteriosclerosis, would
alter these pressure/flow relationships. In this way models can aid our understanding.

This particular example illustrates the idea of a model as a means of indirect
or inferential measurement. We cannot directly measure the compliance of a blood
vessel. However, we can estimate its value, by inference, from the available measures
of pressure and flow and the mathematical relationship between them that we have
postulated in terms of the parameter that is compliance. So models can increase our
understanding of physiological complexity. This is one reason why we might wish
to develop a model of some aspect of physiology. The following chapter will explore
the idea of why we might wish to formulate and use mathematical models, outlining
a range of possible purposes for such physiological modeling.

2.9 EXERCISES AND ASSIGNMENT QUESTIONS

1. Give a summary of some of the main ways in which complexity manifests
itself in physiological systems.

2. Feedback is an essential ingredient of functioning physiological systems.
Using appropriate diagrammatic representations, illustrate some of the
different modalities in which feedback may occur.

3. Describe briefly the ways in which hormones can exert a controlling action
in the regulation of physiological systems.

4. List some of the different ways in which the concept of redundancy can be
observed in functioning physiological systems.
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3.1 INTRODUCTION

The aim of this chapter is to show what is meant by a model, the variety of mod-
els, why modeling (i.e. modeling purpose), and the nature of the modeling process.
A number of examples are included to illustrate these fundamental modeling con-
cepts; concepts which constitute the building blocks for the more detailed treatment
that will follow in later chapters.

3.2 WHAT IS A MODEL?

What do we mean by the term model? In essence, a model is a representation of reality
involving some degree of approximation. Models can take many forms. For the most

23
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part, however, this book will focus on mathematical models; that is, representations
of physiological reality that are expressed in the form of mathematical equations.

However, our mathematical model will only be an approximation to reality. For
instance, we can formulate equations that represent the way in which blood is pumped
around the circulatory system by the heart. A completely realistic model would require
us to represent mathematically every molecule of the heart muscle. This would clearly
result in a totally intractably large set of equations. So in practice we are likely to
adopt a simpler formulation that might include the four heart chambers (ventricles
and atria) as entities in our model, but exclude detail at the molecular level. In this way
our model is an approximation of the true situation, but one which is still likely to be
of sufficient detail for the purpose for which we are building the model (see below).

There are, though, other forms of model. We can have conceptual, mental, verbal,
physical, statistical, logical, graphical models, etc. For instance, a standard textbook
of physiology may typically include a description of the inhalation of air that results
in oxygen entering the bloodstream via the lungs, and the corresponding removal
of carbon dioxide that is exhaled back into the atmosphere. This description may
well extend to a sizeable word count, and is known as a verbal model of part of
the respiratory system. Much of these physiological processes could equally well be
captured by an appropriate set of differential and algebraic equations. So we see here
how the true reality can be represented by two different modeling modalities; a verbal
description and a mathematical one. Each though will just be an approximation of
the full complexities of the respiratory dynamics and their controlling mechanisms.

In another modality, we can use a graph to represent the way in which a drug is
cleared from the bloodstream. Suppose that the process can be approximated as a first
order one; that is, the rate of clearance of the drug is directly proportional to the con-
centration of the drug in the bloodstream. We could represent this process by plotting
graphically the concentration of the drug on the y-axis against time, plotted on the
x-axis. The result would be an exponentially decaying curve (one which if plotted
semi-logarithmically would yield a straight line). So this exponential plot of drug
concentration versus time can be regarded as a graphical model of the drug clearance
process.

Thus, in essence, a model is a representation of the physiological system of interest.
Deriving the model is a transformation process, as depicted in Figure 3.1, where this

System

Modeling methodology

Model

Figure 3.1 Modeling methodology: a means of transforming
a system into a model (adapted from Carson and Cobelli, 2001).
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transformation is brought about using an appropriate modeling methodology as will
be described later.

3.3 WHY MODEL? THE PURPOSE OF MODELING

The way in which we formulate a model, and the degree of detail that is incorporated
into it, are determined principally by its intended purpose. From a basic scientific
perspective, the four general types of purpose for which models are developed cor-
respond to the four classical categories of descriptive, interpretive, predictive and
explanatory models.

The descriptive use of mathematical models is the expression of quantitative rela-
tionships in terms of equations. These equations provide a concise and economic
description of the system under consideration and facilitate ease of analysis and han-
dling of data. For example, if a variable in a system is directly proportional to another
(say a relationship between pressure and volume), then a linear equation relating the
two is more concise and easy to handle than a graphical or verbal description.

Models can also be used for interpreting experimental results. For example, a single
exponential decay, as a mathematical expression, provides a compact representation
of data that approximate to a first order process. By a first order process we mean one
in which, for instance, the rate of loss of a substance is directly proportional to the
quantity or concentration of that substance in the pool or compartment from which it
is being lost. This could apply to the rate of clearance of drug from the bloodstream.
In other words, if a sequence of blood samples were analyzed for the concentration
of a particular drug, the changing drug concentration of drug over time could be
approximated as an exponential decay, the rate constant of which provided informa-
tion regarding the rate of clearance of that drug. In a similar fashion, a mathematical
model can be used to interpret data collected as part of a lung function test.

A third general category of purpose is that of prediction. Here we are addressing the
question as to how a system would respond to a stimulus or to a change in the system.
An example would be predicting how the human organism, or a specific physiological
organ system, might respond to the injection or infusion of a drug. Suppose that
a mathematical model has been formulated which includes the processes that are
affected by a particular drug. The model can then be used, in simulation mode, by
applying a stimulus to it corresponding to the drug injection or infusion. In the model,
one can observe how the concentration of drug in the body changes with time, or
how blood pressure changes over time following the administration of a drug that is
designed to reduce blood pressure.

In another situation, one might use a model to simulate the way in which the
time course of urea and creatinine in the bloodstream changes as a result of a change
in kidney function. This change of kidney function would typically be simulated by
changing the value of an appropriate parameter in the model.

Finally, models can be used for explanatory purposes. For example, if the param-
eters of the model correspond to explicit physiological processes or effects, then
changes in observed behavior can be interpreted in terms of changing parameter
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values. This means that the model can be used to help provide a physiological expla-
nation for observed dynamic effects. In this way a model can, for instance, be used to
help understand how changes in physiological parameters can bring about changes
in the uptake of substances, including drugs, by various organs of the body.

The purpose of the modeling process is a key driver of good modeling methodology,
as shown in Figure 3.2. Whilst descriptive, interpretive, predictive and explanatory
are the four classical categories of model purpose, a number of more specific pur-
poses can be identified in the context of physiological systems. These include: aiding
understanding, hypothesis testing, inferential measurement, teaching, simulation and
experimental design.

System

Modeling methodology
Modeling
purpose

Model

Figure 3.2 The purpose of the model: driving the modeling process
(adapted from Carson and Cobelli, 2001).

For example, competing models, constituting alternative hypotheses as to the
nature of the physiological processes taking place, can be examined to determine
which are compatible with physiological or clinical observation. Moreover, a model
of the relevant metabolic processes, when taken together with measurements of a
metabolite made in the bloodstream, can be used to infer the value of the metabolite
in the liver. This use of models as a means of indirect measurement can avoid the
need to resort to invasive techniques that might be difficult or ethically problematic.

Models can also assist in the educational process. By means of simulation of a
model, the student can be exposed to a wider range of physiological and pathophys-
iological situations than would be possible in the conventional laboratory setting.
Models can also play an important role in relation to experimental design. For exam-
ple, if the number of blood samples that can be taken from a patient in a given
period of time is limited, models can be used to determine the times at which blood
samples should be extracted in order to obtain the maximum information from
the experiment. This is particularly relevant in the context of pharmacokinetic or
pharmacodynamic effects.

Models can also play key roles in relation to diagnosis and patient management.
For instance, if a model includes a parameter that corresponds to the rate of uptake
of a substance by the liver, then estimation of that parameter can provide a diagnostic
indicator of the effectiveness of that uptake process, and for example whether there
might clinically be some degree of obstruction. Equally, model simulation can be
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used to compare the likely dynamic effects resulting from different routes of drug
administration or of different dosage levels in terms of their expected effects on key
clinical variables.

3.4 HOW DO WE MODEL? THE MODELING PROCESS

In developing a mathematical model, two fundamentally distinct approaches are
possible.

The first is based on experimental data and is essentially a data-driven or black-
box modeling approach. In essence, this means seeking quantitative descriptions
of physiological systems based on input/output descriptions that are derived from
experimental data collected on the system. So these are mathematical descriptions of
data that only correspond implicitly to the underlying physiology.

These data-driven models are particularly appropriate where there is a lack of
knowledge concerning the underlying physiology. Also, they are appropriate where
an overall input/output representation of the system’s dynamics is all that is needed;
that is, there is not the need to know specifically how the physiological mechanisms
gave rise to such input/output behavior.

The second approach, modeling the system, provides a clear contrast, inasmuch
as there is an attempt to explicitly represent the underlying physiology. However, as
has already been indicated, any model is by definition an approximation of reality,
so any model of a physiological system will involve a greater or lesser degree of
approximation to the underlying physical and chemical processes. These models offer
the advantage that features of dynamic behavior that are observed can be directly
related to physiological parameters and variables that are explicitly incorporated
into the model.

Whichever approach to modeling is adopted, however, there is one common
feature. A good model is dependent upon a clear and appropriate methodology being
adopted for the modeling process. This provides the means by which the physiolog-
ical system of interest is transformed into the model, as outlined in Figure 3.1. The
nature of this methodology in relation to the model building or formulation process
is shown below.

3.5 MODEL FORMULATION

In the case of a data-driven or black-box model, the methodology adopted in the
model building process is summarized in Figure 3.3. A full account is given in
Chapter 4. In essence, however, some model structure is chosen to provide an
input/output description of the data obtained from the physiological system. There
are several methods for formulating such models including time series analysis, trans-
fer function analysis, etc. The degree of complexity of the mathematical formalism
is chosen to be consistent with the intended purpose for the model. The parameters
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Figure 3.3 A methodological framework for modeling the data (adapted from
Carson and Cobelli, 2001).

of this mathematical expression are then determined in the identification process as
outlined in section 3.6.

The modeling methodology for the situation where the model seeks to provide an
explicit representation of the underlying physiology is depicted in Figure 3.4. Here
there are essentially three distinct components of the modeling process. These are
formulation of a conceptual model, the mathematical realization of that conceptual
model and then the solution of the model to give the required relations between the
variables of interest (this last component being achieved once the model identification
process is complete). This approach to modeling is considered in detail in Chapter 5.

The conceptual model is based on the physiological knowledge that it is pro-
posed to have been represented by the model. However, since any model is an
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Figure 3.4 A methodological framework for modeling the system (adapted from Carson
and Cobelli, 2001).
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approximation of the underlying reality, a number of simplifying assumptions will
need to be made. These can typically be categorized under the headings of aggregation,
abstraction and idealization.

Aggregation is typified by lumping together all of the extravascular space of the
human organism and treating it as a single lumped compartment. Another example
would be treating the kidney as a single lumped entity as opposed to providing distinct
model representation of the different types of nephron in the kidney.

Abstraction is the degree to which only certain aspects of a system are considered
in a model. For example, in modeling blood glucose regulation, the bloodstream is
regarded as containing only glucose and the hormones involved in its regulation. In
such abstraction other features that are important but do not relate directly to glucose
regulation are neglected.

For the purpose of formulating a model, structures or behavior that are difficult
to describe or treat can be approximated by simple idealized ones. For example, in
a metabolic system the injection of a metabolite can be regarded as being instanta-
neously distributed throughout the system although, in fact, the distribution takes a
finite time.

Having produced the conceptual model, equations are then constructed to provide
a mathematical description of the components of the conceptual model. In a dynamic
model, these equations will typically describe the manner in which one or more
physiological variable varies as a function of time. The constants in the mathematical
models are the parameters that specify the relationships between variables.

In general, we shall want to be able to obtain explicit relationships between vari-
ables and/or parameters in the model – in other words to solve the model. Within the
model the relevant variables are commonly connected through complex mathemati-
cal relations such as differential equations. Obtaining the required explicit relations
is commonly done by computer implementation of the model. In some cases the
structure and parameter values of the model may be known a priori. The model can
therefore be solved and its validity further assessed as discussed in section 3.7. Often,
however, there is uncertainty in the structure of the model and/or its parameters. In
this situation, the solution is not possible directly, and identification of the model
from input/output data must be carried out as described below.

3.6 MODEL IDENTIFICATION

In order to complete the transformation from system to model as shown in Figure
3.1, we need to have specified the structure of the model and to have fully determined
all the parameters corresponding to that structure. In other words the model needs
to be complete so that it can be solved. In practice our model may not be complete
because some of the parameter values are unknown. This may be the case regardless
of whether our model is data-driven or an explicit model of the underlying phys-
iology. So at this stage an integrated identification framework is needed as shown
schematically in Figure 3.5.



30 CHAPTER 3 MODELS AND THE MODELING PROCESS

Experimental 
design

Unknown 
system

Model structure 
determination

Parameter 
estimation

Experiment

Data analysis

Input Output

Figure 3.5 Model identification (adapted from Carson and Cobelli, 2001).

Solving this identification problem requires data. Sometimes data may be obtained
from the intrinsic dynamics of the physiological system. Examples include electro-
physiological signals relating to brain, muscle or cardiac function. Such situations
tend to be the exception, however, so in practice experiments usually need to be
designed. These experiments involve applying some stimulus to the system and
observing the dynamic response of one or more of the variables. Clearly, the
input/output data from the experiment must contain that part of the model with
the unknown parameter values. Typical input stimuli might involve the application
of a trace quantity of a metabolite in the case of a metabolic system or a step change
in the fraction of an inspired gas in the case of the respiratory system.

In the identification process, the first issue to be addressed is whether the exper-
imental data are sufficiently rich to enable unique estimates to be made of all the
unknown parameters. This is known as the identifiability problem. Problems of iden-
tifiability arise where there is a mismatch between the complexity of the model and
the richness of the data. That is, the model is too complex (too many unknown
parameters) for the experimental data, or the data are not sufficient for the model pro-
vided. In such cases, there is the need to explore whether the model might, in a manner
that retains validity, be reduced (simplified), or whether the experimental design
might be enriched. This could be achieved, for example, by making measurements of
an additional variable.

If the model is uniquely identifiable, assuming perfect data, it is possible to proceed
directly to estimating the unknown parameters. A range of techniques exist as will
be discussed in detail in later chapters. Those that are most widely adopted use an
approach based on linear or nonlinear least squares estimation.

3.7 MODEL VALIDATION

Validating a model is in essence examining whether it is good enough in relation to
its intended purpose. This assumes of course that it has been developed in such a way
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that it can reasonably be tested. A model is by definition an approximation of reality.
As such, it will not be able to reproduce all the features of behavior that would be
found in the real system. The question is can it reproduce those that matter in terms
of how it is to be used in practice?

When working with a number of competing, candidate models, the validation
process consists of determining which of these models is best in relation to its intended
purpose. We can therefore define a valid model as one that has successfully passed
through all the tests that form the validation process.

An important point to stress at the outset is that the validation process is very
much an integral component of the modeling process overall. It is an activity which
takes place whilst the model is being built as well as once the completed model
is available. The issue of validity testing during the process of model formula-
tion involves considering issues, such as whether the various ways in which the
model is an approximation of reality are reasonable (given the intended purpose of
the model).

Once the model is complete and all its parameters have been specified, the val-
idation process can be summarized as shown in Figure 3.6. Again it is important
to emphasize that the validity issue is intimately related to model purpose. In other
words, it is specific to the particular problem being dealt with. So we are examining
whether all the necessary ingredients are included in our model. For example, we
might want to use our model to test the hypothesis that particular changes in vascular
blood flow were linked to particular changes in the elastic properties of certain
arteries. Suppose these changes in blood flow corresponded to the change from a
healthy state to one of disease. We would then expect that by changing the elas-
ticity parameters in a way which we knew corresponded to the disease process, we
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Figure 3.6 Validation of the complete model (adapted from Carson and Cobelli, 2001).
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would see dynamic patterns of blood flow that were those observed in that disease
state. In other words the model would be reproducing the changes in blood flow
pattern that we were expecting. This test provides evidence to support the validity of
the model.

More generally we can say that, dependent upon purpose, some features of the
model and the system output (i.e. experimental output data) must correspond suf-
ficiently for the same input (an acceptably small difference between them). So in
relation to the domain of intended validity, we are testing whether our model is
credible.

The basic approach when validating a single model is to compare the behavior of
the model and the system, based upon appropriate output features of response. Any
discrepancy between the system and model output should be analyzed for plausibility
of behavior.

In some situations, as previously discussed, formal parameter estimation tech-
niques will have been employed in developing the model. In such cases there are
additional quantitative tolls available for use in the validation process. These include
examining the residuals of the mismatch between model and system response, and also
examining the plausibility of the estimates of the parameters, where the parameters
have a clear physiological meaning (e.g. elasticity of arteries).

When choosing between a number of competing models, the choice can be aided
by examining the parsimony of the models. In other words, if two models are equally
acceptable in terms of their features of response, and are also both plausible, then
the preferred model would be that which had the smaller number of parameters or
was of the lowest order. Further details of such testing, and of the validation process
overall, are to be found in Chapter 10.

As we have seen, there are many comparatively simple cases of structured, dynamic
physiological processes that can be modeled with sets of first order differential equa-
tions. In some situations it is possible to solve these equations analytically. However,
there are many situations in which this is either not possible or not practicable. Hence
an alternative approach is required.

The first difficulty is the particular problem of obtaining solutions for equations
that are of a nonlinear form. The second difficulty relates to the tedious task of
solving large sets of equations, corresponding to physiological processes where a large
number of variables need to be incorporated into the model. Both of these factors
may substantially hinder progress. In such situations it may be desirable to use digital
computer simulation methods, given their widespread availability and ever-increasing
computing power/cost ratio. The aim of the next section is to examine this arena of
computer simulation and to provide an account of the what, when, why and how of
simulation.

3.8 MODEL SIMULATION

Having derived a complete model, including estimating all unknown parameters and
checking its validity in relation to its intended domain of application, it is now possible
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to use it as a simulation tool. Computer simulation involves solving the model (i.e. the
equations that are the realization of the model) in order to examine its output behav-
ior. This might typically be the time course of one or more of the system variables.
In other words we are performing computer experiments on the model.

In fact simulation can be used either during the process of model building or with a
complete model. During model building, simulation can be performed in order to clar-
ify some aspects of behavior of the system or part of it in order to determine whether
a proposed model representation seems to be appropriate. This would be done by
comparison of the model response with experimental data from the same situation.
Simulation, when performed on a complete, validated model, yields output responses
that provide information regarding system behavior; information which, depending
on the modeling purpose, assists in describing the system, predicting behavior, or
yielding additional insights (i.e. explanation).

Why carry out computer simulation? The answer is that it might not be either
possible, appropriate, convenient or desirable to perform particular experiments on
the system (e.g. it cannot be done at all, it is too difficult, too expensive or too
dangerous, it is not ethical or it would take too long to obtain results). Therefore,
we need an alternative way of experimenting with the system. Simulation offers such
an alternative that overcomes the above limitations. Such experimenting can provide
information that is useful in relation to our modeling purpose.

In order to perform computer simulation we first need a mathematical model that is
complete in terms of all its parameters being noted and with initial conditions specified
for all the variables. If the model is not complete in the sense of there being unspecified
parameter values, then formal parameter estimation techniques must be employed to
obtain such estimates (this estimation process will be described in Chapter 7). The
model is then implemented on the computer. This assumes that the model equations
cannot be, or are not being, solved analytically and that a numerical solution of the
system is needed.

Therefore, the model is solved on the computer, this solution process producing the
time course of the system variables. In technical terms, the computer implementation
is done either by using a standard programming language (e.g. FORTRAN, C) or by
using a specialist simulation package (e.g. MATLAB®). A number of practical issues
arise in order to achieve successful simulation. These will be considered in some detail
in Chapter 11, where one of the case studies gives particular emphasis to the practical
aspects of computer simulation.

3.9 SUMMARY

This chapter has provided an outline of the nature of models and of the processes by
means of which they are formulated, identified and validated. The manner in which
computer simulation can be performed has also been briefly discussed. All these
ingredients form the basis of the modeling processes that will be described in greater
detail in the chapters which follow. It is worth re-iterating that this book is designed to
describe and promote the essence of modeling methodology. The reader who wishes
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to pursue particular aspects in greater detail should refer to our companion volume
(Carson and Cobelli, 2001). Some of this additional detail was also to be found in
our earlier work (Carson et al., 1983). Having now outlined the principles of the
modeling process, the next two chapters will provide a wide range of examples of
model building. Chapter 4 starts this process, focusing on models that are designed
to provide descriptions of experimental data.

3.10 EXERCISES AND ASSIGNMENT QUESTIONS

1. Describe what is meant by the concept of a model of a physiological
system and discuss the various forms that a model might take. Give an
illustration of some of these forms in the context of physiology.

2. Discuss the range of possible purposes for which a model of a
physiological system might be formulated. Give an example in each case.

3. Describe the process of formulating a model of a physiological system,
discussing the way in which the particular formulation might be influenced
by the availability of physiological knowledge.

4. Using appropriate examples, discuss how the processes of model
formulation, model identification and model validation are inter-related.

5. How might the process of simulation be useful in the physiological or
clinical context?
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4.1 INTRODUCTION

So far, we have talked in general terms about the modeling process and the need
for good modeling methodology. In this chapter and the one which follows, we
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shall demonstrate how models can be developed as a means of representing phys-
iological dynamics. This chapter focuses upon data modeling. Chapter 5 will
concentrate on models as representations of the underlying systems which give rise
to physiological data.

We need to consider first of all what we mean when we say ‘modeling data’, and
when such approaches are applicable. Having discussed these issues, we shall go on
to discuss some of the ways in which data modeling can be performed. This will
be done by means of a range of examples, considering the different ways in which
physiological data can arise.

4.2 THE BASIS OF DATA MODELING

Data modeling provides us with a means of representing the variables which charac-
terize physiological dynamics as captured by the measurement process. A first point to
make is that these models are in essence ‘black box’ models and as such are mathemat-
ical representations of our measurement data, having only implicit correspondence
to the underlying physiology that gives rise to these measures. This contrasts with the
approaches considered in Chapter 5 where the models formulated are in their various
ways explicit representations of the physiology.

These data models do, however, provide us with concise descriptions of physi-
ological data. As such they offer advantages over purely graphical representations.
Whilst the graph does have an immediate visual appeal, a mathematical description
is concise and can be used as a basis for generalization from the specific data in terms
of characterizing patterns or features contained within the data.

4.3 THE WHY AND WHEN OF DATA MODELS

So when is it appropriate to adopt data models? First they are useful in situations
where there is a lack of knowledge of the underlying physiology; for example, as
is the case in a number of areas of electrophysiology and neurophysiology. These
are situations where the very complexity of the system in question gives rise to this
uncertainty in structure and behavior.

A second possibility that we should know is an overall input/output description of
the system dynamics, without needing to understand specifically how the physiolog-
ical mechanisms gave rise to such input/output behavior. Typical situations include
the control of a physiological variable; for example, by means of drug therapy.

4.4 APPROACHES TO DATA MODELING

In essence, there are two major types of approaches to data modeling. These corre-
spond to treating the system as being either deterministic or stochastic. In both cases
the output measurement will generally be corrupted by noise, but in the first case the
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system output is a deterministic function of the input. In the stochastic case the output
is not a deterministic function of the input due to some unmeasurable disturbances
(noise) within the system itself.

The stochastic modeling strategy is particularly important in electrophysiology
and neurophysiology. However, this approach is not the subject of our book. The
reader who is interested in the data modeling of such physiological signals should
consult texts such as Marmarelis and Marmarelis (1978), Bruce (2000) or Westwick
and Keaney (2003). What this book will be focusing on is the deterministic system
approach.

The measurements that provide us with the physiological data can take a variety
of forms. First the measurements can be discrete or continuous. Usually the variables
themselves are continuous, but we can choose whether to collect the data as sample
values at discrete time points or as continuous signals. For instance, the blood glucose
concentration of a diabetic patient is a continuous signal, but typically such a patient
might decide to measure his or her blood glucose concentration, say between four
and eight times a day, corresponding to events such as meal times and bedtime. So
although the variables are continuous, we have a set of data corresponding to values
measured at discrete times. On the other hand, we may have continuous data in the
form of signals monitoring the cardiac status of a patient with heart or circulatory
problems over a period of 24 hours.

Equally, even if the data are continuous, we can elect to analyze them as such or
as a set of discrete data obtained by sampling the continuous record (usually at equi-
spaced time intervals for convenience of analysis). On the other hand, whilst discrete
data points are usually analyzed using discrete time methods, it is possible to convert
such discrete data to continuous form by the adoption of appropriate interpolation
and extrapolation methods.

The emphasis in this chapter is placed upon time domain data. A number of
examples of frequency domain approaches are included though, together with means
by which time domain data can be converted into frequency domain forms. For more
in-depth treatments of frequency domain approaches to data modeling, the reader
should consult works such as Marmarelis and Marmarelis (1978) and Westwick and
Kearney (2003).

Our discussion of approaches to data modeling will be grouped into four
categories. These correspond to different types of physiological and clinical situa-
tions. The first, considered in section 4.5, focuses on situations in which we are
interested in a single, measurable variable that arises as a spontaneously occurring
signal. Examples would include body temperature, urine potassium and electrical
rhythms in the gastro-intestinal tract.

Section 4.6 again focuses on a single variable, but this time on a signal that occurs
as a direct response to some form of perturbation to the physiological system in
question. The monitoring of the blood glucose concentration of a diabetic patient
in response to a particular regimen of insulin injections would be one example of
this case. Others could include evoked potential responses and the time course of
arterial pressure in response to an anti-hypertensive agent administered in order to
bring about its reduction.
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The third case, treated in section 4.7, considers the causal relationship between
two variables. Examples include the relationship between glucose and insulin in the
normal subject and the impact of water loading on the level of sodium in urine.

Whilst this third category has focused on situations whereby the relationship
between the two variables is something that arises naturally within the normally
functioning human organism, the last case, discussed in section 4.8, deals with the
situation in which there is explicit control. Examples include glucose/insulin relation-
ships in the diabetic patient and the relationship between blood pressure and dosage
of sodium nitroprusside administered to bring about its control.

The final example of data modeling that we shall discuss is the impulse response.
This will be examined from a deconvolution perspective. We can either reconstruct
the unknown input (for example, hormone secretion) when we know the system
output and the impulse response, or determine the impulse response when both input
and output of the system are known. An example of such an impulse response might
be the circulatory transport function of an organ from knowledge of arterial and
venous concentrations of an intravascular indicator.

4.5 MODELING A SINGLE VARIABLE OCCURRING SPONTANEOUSLY

As will be demonstrated in this and the sections that follow, a wide range of methods
and techniques are available for providing quantitative descriptions of physiological
and medical signals.

The first case to be considered is that of a single variable which can be regarded as
having arisen spontaneously. In reality the signal which is observed will be the result
of a range of interacting physical and chemical processes within the human body
that give rise to the particular manifestation. Regarding the single variable as having
arisen spontaneously is in effect a means of distinguishing this signal, essentially of
endogenous origin, from one which arises as the explicit effect of having administered
some test signal to the organism; for instance, a drug injection or the application of
an electrical stimulus to the body.

The examples presented have been selected to demonstrate that the quantitative
analysis (that is to say data modeling) is applicable across the broad range of physio-
logical signals. Equally they show that such modeling can be applied to signals which
are either non-periodic, or are periodic with frequencies which range from cycle times
measured in seconds to those of one or more months.

4.5.1 Temperature

The cyclic change in body temperature during the menstrual cycle of a woman is a
typical example of a biological rhythm. The basic pattern of the rhythm is broadly
consistent from one month to the next, though some variation occurs from one
monthly cycle to the next in any particular individual. As a first approximation it
is reasonable to model such temperature data by a sine wave function.
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An example of the temperature variation in a woman, not taking oral contracep-
tives, measured orally on waking each morning is shown in Figure 4.1. These are
some of the data that were collected over a period of almost one year, with measure-
ments being omitted on 94 days. They were modeled by the sine wave function given
by (4.1) (McIntosh and McIntosh, 1980):

y = A1 sin
[

6.2832(A2 + t)
A3

]
+ A4 (4.1)

where y is the dependent variable (temperature), and t is the independent variable
(time). Parameter A1 corresponds to the peak amplitude of the sinusoidal temperature
variation, and A2 is a parameter for synchronizing the phases of the model and the
data. Parameter A3 modifies the period or distance between peaks of the sinusoidal
temperature variation, whilst A4 represents the displacement of the central mean
value from zero. Figure 4.1 depicts the first ninety days of the experimental data,
together with the fitted data model. In this case the fitted parameter values, together
with their standard deviations, are: A1 = 0.191 ± 0.011◦C, A2 = 12.85 ± 0.47 days,
A3 = 27.07 ± 0.07 days, and A4 = 36.56 ± 0.008◦C.
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Figure 4.1 Temperature variation in a woman, not taking oral contraceptives, mea-
sured orally on waking each morning. Experimental data corresponding to the first
90 days are shown, together with the fitted data model (adapted from McIntosh and
McIntosh, 1980).

Another approach which has been adopted in the analysis of this time series of
temperature values has been to calculate the correlation between all pairs of values of
the temperature variable, the auto-correlation coefficient, at each different lag or time
interval apart (McIntosh and McIntosh, 1980). This correlation coefficient is calcu-
lated from the covariance of the same variable displaced in time. The correlogram
provides a graphical representation of the variation of correlation as a function of
the lag. As previously discussed, if there is more than a single rhythm present in
the time series, then a corresponding number of peaks will be found in the correlo-
gram. Correlograms of time series displaying obvious cyclicity may not provide new
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information since they tend to mirror closely the rhythm of the data. Peaks may also
occur at harmonics of the basic frequencies, and this fact can be confusing when
interpreting the results obtained.

Performing this correlation analysis on the temperature data considered in this
example results in the relationship between auto-correlation and lag as shown in
Figure 4.2. In the analysis, all values of lag up to a maximum corresponding to
170 days were included.
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Figure 4.2 Correlation analysis on the temperature data showing the relationship
between auto-correlation and lag (adapted from McIntosh and McIntosh, 1980).

The values of the correlation coefficients between pairs of measurements sepa-
rated by a range of lags or time intervals varied in a sinusoidal manner which clearly
reflected the dominant cyclicity of the temperature data. The peak in the autocor-
relation function at a lag of approximately 27 days shows that there was a mean
correlation of 0.33 between all measurements separated by this interval. Equally,
a correlation also existed between observations that were 54 days apart, and so on.

An alternative means of analyzing these rhythms is to describe them as the sum of
an arbitrary number of sine waves of different frequencies, phases and amplitudes.
A model consisting of a sum of sine waves is known as a spectral representation.
From the spectral representation one can construct a spectral density function, which
is a graph showing the contributions of each frequency to the observed process.
This spectrum is the Fourier transform of the auto-covariance function from which
auto-correlations are calculated. Carrying out this transformation for our example
of the temperature data yields the spectral density function shown in Figure 4.3
(McIntosh and McIntosh, 1980). The contributions of the different frequencies to
the total variance about the mean of the data are represented as a function of the
frequencies. In this figure the data are also expressed as periods. From this plot it
can be observed that most of the variance is explained by a process with a period of
between 26 and 28 days.
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Figure 4.3 Spectral density function of the daily temperature data (adapted from
McIntosh and McIntosh, 1980).

4.5.2 Urine Potassium

A second example relates to a series of measurements of the concentration of potas-
sium in a patient’s urine. In our example, the data were collected once a day from a
road traffic accident patient who remained in an intensive care unit for a period of
27 days. A time series plot of the data is shown in Figure 4.4.
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Figure 4.4 Time series plot of urine potassium (adapted from Flood and Carson, 1993).
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The reference range for urine potassium concentration is 40–120 mmol liter−1. The
time series plot shows two outliers (highlighted by circles), which may have arisen due
to errors in measurement. These could be removed by changing their actual values
to their expected values. However, physiologically large changes can occur. Hence
it may be difficult to determine whether these experimental values are due to poor
measurement technique or physiological changes. For this reason, the values were
left unchanged. Moreover, there were three missing values which were set to their
expected values (Flood and Carson, 1993).
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Figure 4.5 Correlogram of the urine potassium data (adapted from Flood and Carson, 1993).

The correlogram of the raw data is presented in Figure 4.5. The autocorrelation
function rj clearly damps out slowly. This implies non-stationarity of the series which
is not obvious from the basic time series data. Hence, the first differences of the series
were taken. The autocorrelation function rj of this is shown in Figure 4.6.

On the basis of subsequent statistical analysis (the scope of which is beyond
the basic exposition being provided here) it can be shown that the data could
be represented by an Autoregressive Integrated Moving Average (ARIMA) model.
As indicated in section 4.7.2, an ARIMA process is conventionally written ARIMA
(p, d, q), where p refers to the autoregressive part of the process, q is the moving
average part, and d relates to the number of differences that are needed to achieve
stationarity of a set of time series data. In our example here, the ARIMA model
adopted was of the form ARIMA(2, 1, 0). Carrying out the processes of estimating
the parameters of this model (the principles of which will be described in Chapters 7
and 8), led to the following model realization:

xt = −0.6476xt−1 − 0.6817xt−2 + Ut (4.2)

where the x values are the modeled values of the urine potassium concentration at
the daily times of measurement.
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Figure 4.6 Autocorrelation function of the first differences of the urine potassium data
(adapted from Flood and Carson, 1993).

This example illustrates how ARIMA modeling can be used in fitting time series
data. In practice, however, this modeling approach can be difficult when the number
of data points is comparatively low. In this case there were 27 clinical data points.
General experience is that a time series of at least 50–100 values is needed if the
errors in estimating the parameters of the ARIMA model are not to be unacceptably
large. So this modeling approach would be more applicable in situations where there
was on-line patient monitoring with frequent sampling, rather than with the more
restricted regimen of daily data derived from laboratory results.

4.5.3 Gastro-intestinal Rhythms

The third example returns to a case of rhythmic data, namely the electrical rhythms
of the gastro-intestinal system. This is a domain which has not received as much
attention as, for instance, nerve-axon electrical potentials or the field of cardiac pace-
makers. Reasons for this include the fact that smooth muscle (such as is found in the
digestive system) does not have the dimensions and properties which lend them to
easy measurement, unlike the physiological cellular measurements on nerve axons;
nor are there the specialized areas of tissue corresponding to the cardiac pacemaker
concepts. Nevertheless, there is increasing interest in the role of these gut electrical
rhythms, both in the healthy subject and in the disease state, an interest which is
advanced by the use of models as a vehicle for aiding description and understanding
of these phenomena.

Spontaneous electrical rhythms occur in all parts of the digestive tract below
the middle of the stomach. These rhythms are commonly called ‘slow waves’.
A schematic representation of the gastro-intestinal tract, together with typical
frequencies recorded in man, is given in Figure 4.7 (Linkens, 1979). The frequency
and wave shape of the slow waves varies considerably between the organ and the
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Figure 4.7 A schematic representation of the gastro-intestinal tract, together with
typical frequencies recorded in man (adapted from Linkens, 1979).

species being studied. For example, the canine stomach has narrow pulse-like waves
of approximately 0.08 Hz, whereas the human stomach produces square-like waves
of approximately 0.05 Hz. Figure 4.8 shows typical recordings from normal and
diverticular-diseased colons. In the case of disease, it can be seen that there is a
tendency for these waves to have a component higher in frequency than normal.
Equally, colonic waveforms are seen to be nearly sinusoidal with the occurrence of
considerable variation in amplitude.

In terms of modeling these data, one widely adopted approach has been to repre-
sent them in terms of Van der Pol type dynamics as given by (4.3) which is in effect
a coupled oscillator model:

d2x
dt

− ε(α2 − x2)
dx
dt

+ ω2x = 0 (4.3)

in other words, a model of the form of a second order differential equation.
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Figure 4.8 Typical recordings from (a) normal and (b) diverticular-diseased
colons (adapted from Linkens, 1979).

This equation as a model of the data has considerable advantages in that its
three parameters ε, α and ω approximately determine the wave shape, amplitude
and frequency of the nonlinear oscillation. These are the primary parameters under
consideration in this slow wave modeling. Equally this equation has been treated
extensively in nonlinear differential equation studies.

In order to produce a representation of the whole 240 cm of the small intestine it
has been found necessary to adopt up to 100 oscillators linked in a chain with each
being represented by an equation of the form of (4.3) (Linkens, 1979).

4.5.4 Hormonal Time Series

Plasma concentrations of hormones exhibit cyclic behaviors which can range from
seasonal to circadian to ultradian (hours) to rapid (minutes). It is worth noting that
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while seasonal and circadian rhythms have been known for some time, it is only
since the 1970s and 1980s (with the advent of very sensitive radioimmunoassay (RIA)
methods) that both ultradian and rapid patterns have come to be understood. Three
examples of hormonal time series are shown. Figure 4.9 shows plasma cortisol con-
centration over a 24 h window with uniform 15 min sampling: the circadian trend
is shown by the dashed line and we can see on top of that the ultradian oscillations
of smaller amplitude and period (3 to 5 h). Figure 4.10 shows C-peptide (a hormone
secreted by the pancreas equimolarly with insulin, but not degraded by the liver)
concentration in plasma measured every 10 min for 24 h in a normal (upper panel)
and a type 2 diabetic (lower panel) subject. Ultradian oscillations with a period of
90–180 min are apparent in the normal subject while the diabetic subject time series
appears much more irregular. Figure 4.11 shows an example of rapid oscillations:
plasma C-peptide is sampled for 3 h every 2 min and 5–15 min oscillations can be
seen. In both Figures 4.10 and 4.11 also shown in the lower panels are the associated
glucose oscillations which will be commented on in section 4.7.1.

Figure 4.9 Time series of cortisol concentration measured every 15 minutes
for 24 hours in a normal subject (adapted from Van Cauter, 1990).

The hormonal time series usually consists of a finite number of samples
{y(tk)} = {y(t1), y(t2), . . . , y(tN)} where the generic sample y(tk) is related to the
concentration c(tk) by

y(tk) = c(tk) + v(tk) (4.4)

where v(tk) is the measurement error at time tk.
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Figure 4.10 Time series of C-peptide (upper panel) and glucose (lower panel)
concentrations measured every 10 minutes for 24 hours in a normal subject (adapted
from Sturis et al.,1991).
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Figure 4.11 Time series of C-peptide (upper panel) and glucose (lower panel) concen-
trations measured every 2 minutes for 3 hours in a normal subject.

A first means of characterizing a hormonal time series could be in terms of its mean
and variance

μ =
N∑

k=1

y(tk)
N

(4.5)

var =
N∑

k=1

(y(tk) − μ)2

N − 1
(4.6)

This has sometimes proved to be a useful representation. For example, it has
enabled it to be shown that luteinizing hormone (LH) secretion in women is more
variable in the luteinizing than in the follicular phase. However, this mean and vari-
ance model does not provide insight into the pulsatility features of the series, such as
the number of secretory events and their amplitudes.

The recognition and analysis of peaks is not easy. For instance, one has to detect
which are the true peaks and which are the spurious ones (due to measurement error).
It is worth noting that classic pattern recognition techniques such as those used for
QRS detection of ECG signals or for spike detection of EEG cannot be employed,
given the nature of the data and the irregularity of secretory events. One possibility
would be to recognize as true peaks only those whose levels are sufficiently greater,
e.g. three standard deviations (SD), than their previous minimum (Figure 4.12).
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This rough model, however, can be criticized in a number of aspects. For example,
it is very sensitive to outliers and does not take advantage of the future history.
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Figure 4.12 Recognition as true peaks only those whose levels are sufficiently
greater, e.g. three standard deviations (SD), than their previous minimum.

An interesting algorithm which was specifically developed for ultradian oscilla-
tions is ULTRA (Van Cauter, 1988). The idea is to polish the series by eliminating
from it non-significant variations. A variation is assumed to be significant if it is
sufficiently elevated, i.e. greater than ρSD (where ρ is a parameter and SD is the stan-
dard deviation of measurement error), with respect to the previous data point. More
specifically, if y(tk+1) > y(tk), then the increment is significant if y(tk+1) − y(tk) > ρSD.
If y(tk+1) < y(tk), then the decrement is significant if y(tk) − y(tk+1) > ρSD. Thus, if
the series has an increasing trend and one encounters a non-significant increment or
a non-significant decrement, then either, respectively, one does nothing or maintains
the value at the previous levels. The same applies if the series exhibits a decreasing
trend and one encounters, respectively, a non-significant trend or a non-significant
increment. An example of the performance of the algorithm is shown in Figure 4.13.
Clearly the critical point of this algorithm is the choice of ρ, but one easily appreciates
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Figure 4.13 Performance of the algorithm (adapted from Van Cauter, 1990).
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that the detection of peaks is much easier on the polished series. However, in many
situations where pulses are brief, small in amplitude and irregular, peak detection
is difficult.

Another widely used approach to study hormone pulsatility from plasma con-
centration time series is to look for cycles by time series spectral analysis, i.e. by
computing the autocorrelation function or Fourier transform (Veldhuis et al., 1987;
Veldhuis and Johnson, 1988). Unfortunately, spectral analysis is hard to apply when
small length and noisy data sets are considered; in addition, it does not handle cycles
whose timing is inherently irregular, which is the most common situation (Merriam
and Wachter, 1982). Finally, since both peak detection and spectral analysis ignore
the morphology of the pulse, they cannot detect changes in the pattern of hormone
episodic release which characterize some physiological and pathophysiological states
(Pincus et al., 1996b).

Approximate entropy
A recently developed powerful tool for the analysis of hormonal time series is the
approximate entropy algorithm (Pincus, 1991). Approximate entropy provides a
model-independent measure of the ‘regularity’ of the underlying secretion process
by calculating the logarithmic likelihood that patterns in the time series are similar
on the next incremental comparison. Notably, such a notion of regularity is quite
different from that usually considered in engineering, where, for a signal, regularity
is meant as being synonymous with smoothness. The approximate entropy algorithm
summarizes the time series into a single non-negative number, ApEn: the higher
the value of ApEn, the more irregular is the process. Approximate entropy is not
intended to replace peak detection or spectral analysis, but is complementary to
them. In fact, approximate entropy discerns changes in the pulsatile behavior that are
not reflected in changes in peak occurrences or amplitudes. Moreover, approximate
entropy focuses on the similarity between pulses and nearly ignores the quiescent
intervals of the secretory release, thus relaxing the spectral analysis requirement of a
dominant set of frequencies at which some patterns within the time series are repeated.

The approximate entropy algorithm appears well suited to the clinical need of dis-
tinguishing the healthy from the abnormal. Therefore, since its inception in the early
1990s, the approximate entropy algorithm has been extensively applied in endocrinol-
ogy to study the pulsatility of many hormones in various pathophysiological states
(e.g. Hartman et al., 1994; Pincus et al., 1996a and b; Meneilly et al., 1997; Schmitz
et al., 1997). Such a great interest in approximate entropy is motivated by the fact
that many pathological or pre-pathological states are associated with an enhanced
secretion disorder which ApEn was found able to measure with success. For instance,
in Hartman et al. (1994) time series of growth hormone (GH) plasma concentration
were considered in normal and acromegalic subjects. The average value of ApEn in the
normal subjects was shown to be lower than that in the pathological ones, suggesting
that the pathology is characterized by an increased disorder of the secretion process.

Briefly, ApEn index can be defined as follows. Let {y(k)} = {y(1), y(2), . . . , y(N)}
denote the N-size time series from which we want to calculate the ApEn index. Let
r (a real) and m (an integer) be two given positive parameters. In order to compute
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ApEn, let us first form the sequence of vectors x(1) through x(N − m + 1), where each
x(i) is defined by:

x(i) = [y(i), y(i + 1), . . . , y(i + m − 1)], i = 1, 2, . . . , N − m + 1 (4.7)

Vector x(i) contains m consecutive samples of the time series {y(k)}, commencing with
the i-th point.

Define the distance d[x(i),x(j)] between vectors x(i) and x(j) as the maximum
difference in their respective scalar components:

d[x(i), x(j)] = max
k=1...m

|y(i + k − 1) − y(j + k − 1)| (4.8)

Now compute, given r, for each i ≤ N − m + 1 the number:

Cm
i (r) = # of j for which d[x(i),x(j)] ≤ r

N − m + 1
(4.9)

Cm
i (r) values measure, within a tolerance r, the frequency, or regularity, of patterns

similar to a given pattern of window of length m. Next, define �m(r) as the average
value of ln Cm

i (r):

�m(r) = 1
N − m + 1

N−m+1∑
i=1

lnCm
i (r) (4.10)

Finally, define the ApEn index as:

ApEn = �m(r) − �m+1(r) (4.11)

It is possible to demonstrate that ApEn measures the logarithmic likelihood that
runs of patterns that are close (within a tolerance r), for windows of m observa-
tions remain close for windows of m + 1 observation. The greater the likelihood of
remaining close (i.e. the regularity), the lower the value of ApEn.

ApEn depends on two positive parameters: m, an integer, and r, a real. While m
gives the length of the compared runs, r represents the tolerance which determines if
the runs are close enough. The choice of m and r is usually done by criteria based on
statistical considerations and obviously influences the value of ApEn. To appreciate
better the influence of m and r let us consider Figure 4.14 where a portion of the time
series {y(1), y(2), . . . , y(i), . . . , y(N)} is shown. Assuming y(i) as a reference sample,
we have to evaluate which are the samples similar to y(i) (within the tolerance band
r). If r is too small (short dashed) no sample (except y(i)) will fall into the tolerance
bands, ApEn will be small, and non-significant; if r is too large (long dashed lines) all
samples will fall into the tolerance band and again ApEn will be useless as a means of
distinguishing different signals (one will also consider as being similar samples which
are not). In practice, since the number of data in endocrine-metabolic time series is not
large, it is not possible to choose m too large and r too small. Available guidelines sug-
gest for N > 1000 samples, m = 2 and r = 0.1 ÷ 0.25 SD, where SD is the sample stan-
dard deviation of the series; for N < 1000 m = 1. The choice of r between 10 and 25%
of signal SD is a compromise between the two case limits, i.e. r too small or too large.
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Figure 4.14 Role of the choice of the threshold r in ApEn calculation.

As an example, consider the case described in Sparacino and Cobelli (1998) where
ApEn has been used to analyze the C-peptide series of Figure 4.10 together with
those of obese and glucose intolerant subjects (Sturis et al., 1991; O’Meara et al.,
1993). Results are shown in Figure 4.15. ApEn increases with the severity of the
disease, i.e. obese, impaired glucose tolerant and diabetic subjects have less and less
regularity in ultradian oscillations.
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Figure 4.15 ApEn values (mean ± SD) in normal, obese, impaired glucose
tolerant (IGT) and type 2 diabetic subjects (adapted from Sparacino and Cobelli,
1998).

4.6 MODELING A SINGLE VARIABLE IN RESPONSE
TO A PERTURBATION

The second type of situation is that where we are again interested in modeling a single
variable. However, this time we are viewing it as the response of a physiological
system to a specific stimulus or perturbation that has been applied to that system.
Examples of such situations are presented below.



4.6 MODELING A SINGLE VARIABLE IN RESPONSE TO A PERTURBATION 53

4.6.1 Glucose Home Monitoring Data

With advances in telecare, it is becoming increasingly common for patients with
chronic diseases to monitor their clinical and health status in their home setting. The
data can then be transmitted to a clinical center where they can be analyzed and
appropriate advice fed back to the patient. This is particularly relevant in the case of
patients with type 1 diabetes who home-monitor their blood glucose concentration.

In many cases the diabetic patient will measure their blood glucose concentration
up to four times a day. One approach to analyzing these data is to make use of struc-
tured time series modeling, an approach that has been widely adopted in the analysis
of economic time series data (Harvey, 1989). This involves identifying patterns in
these blood glucose time series as comprising four elements:

Gi = f(Di, Ci, Ti, Ri) (4.12)

where Gi refers to the observed blood glucose value at time ti, whilst Di, Ci, Ti and
Ri are the daily pattern, cyclical component, trend component and random noise,
respectively at time ti. The explicit functional relationship, f, used to relate these four
sub-patterns, can take a variety of forms. The most straightforward, adopted here in
this example, is additive; simply adding the elements (Deutsch et al., 1994).

Trend patterns representing long-term behavior exist when there is a general
increase in the blood glucose values over time. Daily patterns (which in time series
analysis are generally known as seasonality) exist when the blood glucose data
observed on different days fluctuate according to some daily rhythm (in other words,
periodic fluctuations of constant length which repeat themselves at fixed intervals).
This may be due to an internal diurnal rhythm or inadequacy in the current insulin
therapy.

A cyclic pattern is similar to a seasonal pattern, but the length of a single cycle is
generally longer. In the context of the diabetic patient, this could arise as a conse-
quence of the difference between workdays and weekends, or from the menstrual cycle
in women. Although randomness, by definition, cannot be predicted, once it has been
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Figure 4.16 Home-monitored blood glucose measurements collected by a diabetic
patient over a period of 21 days (adapted from Deutsch et al., 1994).
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isolated, its magnitude can be estimated and used to determine the extent of likely
variation between actual and predicted blood glucose levels (Deutsch et al., 1994).

Figure 4.16 depicts blood glucose data obtained from an adult patient over a
21-day period by home monitoring. During this time the patient recorded four blood
glucose measurements per day, together with details of his diet and insulin regimen.
In addition, he provided a brief commentary on his social activities and general well-
being, information that could be helpful in interpreting the results of the time series
analysis. The results of the time series analysis are shown in Figure 4.17 (Deutsch
et al., 1994).

4.6.2 Response to Drug Therapy – Prediction of
Bronchodilator Response

The clinical focus of this example is chronic obstructive pulmonary disease in which a
bronchodilator drug such as theophylline is administered in order to attempt to open
obstructed airways. The aim is to be able to predict the response to theophylline using
a simple data-driven model (Whiting et al., 1984). This then enables drug dosage to
be adjusted in order to achieve the target therapeutic concentration.

The model used to relate the drug effect on respiratory function to concentration
in the steady state was of the form:

FVC = m Cpss + i (4.13)

where FVC is the forced vital capacity, Cpss is the steady-state plasma concentration of
theophylline, m (l μg−1 ml) represents the sensitivity of an individual to theophylline
and the intercept i is the untreated, baseline FVC. FVC values were used to assess
ventilatory response since they closely reflected the extent to which the small airways
were unobstructed. This linear (straight line) model of the data was assumed to
provide an adequate representation over the range of concentrations encountered in
the study.

Using Bayesian probability theory and maximum likelihood estimation, Whiting
and colleagues were able to predict the response of an individual to any steady-state
concentration of theophylline, provided that the mean values of the parameters m
and i were known in a representative population of patients with chronic bronchitis.

Assuming that all the parameters are normally distributed and independent and
that all measurements are also independent, the most likely set of values of m and i
for an individual is obtained by minimizing the function M where:

M = (m − mmean)2

σ2
m

+ (I − imean)2

σ2
i

+
n∑

j=1

(
(FVCj − FVCj est)2

σ2
FVC

)
(4.14)

and where σ2
m and σ2

i are the variances of the parameters m and i, σ2
FVC is the estimated

variance of FVC and FVCj est is the expected value of FVCj given by the equation:

FVCj est = m Cpss + i (4.15)
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Figure 4.17 Analysis of the time series home-monitored blood glucose data in terms of (a) trend, (b) cyclical, (c) random, and (d) seasonal
components (adapted from Deutsch et al., 1994).
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and n is the number of paired FVC − Cpss measurements. The estimates of the param-
eters m, σ2

m, i and σ2
i were subsequently obtained using the program NONMEM

developed by Beal and Sheiner (1979).

4.7 TWO VARIABLES CAUSALLY RELATED

The third category is that of using input/output experimental data in order to estab-
lish quantitative relationships between two variables that are causally related. The
underlying mechanisms can be different. For instance, two hormones may have
their secretion controlled by the same factor, or the secretion of a hormone (e.g.
testosterone) is under the control of another hormone (luteinizing hormone), or
the same gland may simultaneously release two hormones. Also, substrate-hormone
interaction can produce hormone and substrate concentration time series which are
correlated, e.g. in Figures 4.10 and 4.11 glucose and C-peptide concentrations.

4.7.1 Hormone/hormone and Substrate/hormone Series

Cross-correlation and cross-spectrum (i.e. finding the maxima of the Fourier trans-
form of the cross-correlation function) have been intensively applied to understand
correlation in hormone/hormone, e.g. testosterone/LH (Veldhuis et al., 1987),
LH/FSH (Veldhuis et al., 1988), and substrate/hormone, e.g. glucose/C-peptide
(Sturis et al., 1991, 1992; O’Meara et al., 1993a,b) concentration time series. These
techniques suffer from a number of limitations, including those already mentioned,
in discussing autocorrelation and spectral analysis for analyzing a single time series.
In particular, the small number of data and measurement noise make results diffi-
cult to interpret. In addition, it is also possible that slow or large trends that are
present in one of the series (or in both, but in opposite directions) can mask possi-
ble concordances of oscillations of smaller amplitude and period. Finally, a different
measurement error in the two series may produce misleading results, e.g. if measure-
ment error variance in one series is sufficiently large so that spurious oscillations due
to noise are comparable to true oscillations in the other series.

Another available approach is the extension of the single series peak detection, i.e.
one analyzes concordance of peak positions in the two series. Each series is analyzed
separately with a peak detection algorithm, so that peak position and amplitude
are obtained. Since concordance analysis only examines peak positions, usually one
considers the two on-off quantized series (see Figure 4.18). However, these two
series cannot be looked at as such, i.e. for each instantaneous event present in one
or the other series, in both series or in none, because a number of coincidences
can occur by chance (and this increases with pulse frequencies). The two on–off
series can be analyzed with various techniques including a Monte Carlo simulation
strategy (Clifton et al., 1988) and an analytical approach which calculates a ‘specific
concordance’ index (Guardabasso et al., 1991).

There are some intrinsic limitations in peak concordance analysis. First, peak
amplitudes can only play a minor role in the analysis, e.g. a very large peak in
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Figure 4.18 Time series of luteinizing (LH) and prolactin (PRL) hormone and their two-level
quantized version: high level (On) when active secretion occurs and low level (Off) at all other times
(adapted from Guardabasso et al., 1990).

one series can easily be associated with a very small peak in the other series. Sec-
ondly, when concordance analysis, like cross-correlation or cross-spectral analysis,
indicates a statistical concordance, this does not necessarily mean a functional con-
cordance, i.e. two hormones may be functionally independent, but can exhibit a high
concordance due to the presence of a component of the same frequency, e.g. ultradian.

Recently a new technique, cross-approximate entropy has been introduced (Pincus
et al., 1996b). An index (Cross-ApEn) is provided, which measures the degree of
synchrony between two series belonging to the same endocrine-metabolic axis, e.g.
two interacting hormones. The theory on which cross-approximate entropy is based is
the same of that behind approximate entropy. While single series regularity measured
by ApEn refers to some relation existing in the signal between different time instants,
Cross-ApEn assesses the synchrony of two signals with higher values of Cross-ApEn
associated with increasingly asynchronous series.

Let y = {y(1), y(2), . . . , y(N)} and z = {z(1), z(2), . . . , z(N)} be two N-size time
series. By using parameters r (a real) and m (an integer) we can build the sequence of
N − m + 1 m-dimension vectors:

x(i) = [y(i), . . . , y(i + m − 1)] (4.16)

s(i) = [z(i), . . . , z(i + m − 1)] (4.17)
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and can define for each i (1 ≤ i ≤ N − m + 1):

Cm
i (r)(y‖z) = # of j for which d[x(i)s(j)] ≤ r

N − m + 1
(4.18)

where:

d[x(i)s(j)] = max
k=1,2,...,m

|y(i + k − 1) − z(j + k − 1)| j = 1, . . . , N − m + 1 (4.19)

The terms Cm
i (r) (u‖v) denote the fraction of N − m + 1 vectors s(j) similar (within

a tolerance r) to vector x(i) of similar lengths m. One can calculate the quantity:

�m(r)(y‖z) = 1
N − m + 1

N−m+1∑
i=1

ln Cm
i (r)(y‖z) (4.20)

The meaning of �m(r)(y‖z) is similar to �m(r) as defined in section 4.5.4.
Finally, Cross-ApEn is defined as:

Cross-ApEn = �m(r)(y‖z) − �m+1(r)(y‖z) (4.21)

Cross-ApEn is a meaningful index if the two series have the same mean and vari-
ance; in fact, if the two means are different, it is not possible to evaluate an index
of synchronism because samples in the two series would never have been close (the
same applies to the variance). This is the way in which Cross-ApEn is calculated on
standardized time series, i.e. the mean is subtracted from each sample of the series
which is then divided by its standard deviation. As far as the parameters m and r are
concerned, the same considerations made when discussing ApEn apply.

Cross-ApEn has been used to assess the relationship between two variables of the
same endocrine-metabolic network, thus allowing one to detect possible derange-
ments in their mode of interaction. For instance, in Pincus et al. (1996b) a reduction
in the synchrony between LH and testosterone in aging has been quantified through
Cross-ApEn (in aging both LH and testosterone series are also more irregular as
shown by ApEn). In Sparacino and Cobelli (1998) the relationship between the glu-
cose and C-peptide time series already discussed in section 4.5.4 has been studied
with Cross-ApEn. Cross-ApEn results (see Figure 4.19) show that, in moving from
normal metabolism to diabetes, there is a significant deterioration in the synchronism
between glucose and C-peptide oscillations with derangement already present in pre-
diabetes states such as obesity and impaired glucose tolerance. In other words, the
efficiency of the control system is progressively deteriorating.

4.7.2 Urine Sodium Response to Water Loading

Let us now consider a set of time series data which relate water intake as the input and
urine sodium as the output. Physiologically the data are of interest as they provide
insight as to the manner in which sodium is selectively excreted in the control of total
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Figure 4.19 Cross-ApEn values (mean ±SD) in normal, obese, impaired
glucose tolerant (IGT) and type 2 diabetic subjects (adapted from Sparacino
and Cobelli, 1998).

body water. Figure 4.20 shows these time series data with xt being the water input
and yt the urine sodium output. The number of samples, n, is 100.

The ARIMA model is adopted (Flood and Carson, 1993) and the modeling pack-
age MINITAB used to assess the type and order of the input time series as an ARIMA
process. MINITAB is a statistical software package (developed at Pond Laboratory,
University Park, Pennsylvania 16802, USA), which supports this ARIMA modeling.
The overall objective of an ARIMA modeling exercise is to build a model of a uni-
variate time series, expressed in terms of past observations, and errors between
current and past observations, so as to make predictions about a particular variable
of interest, in this case urine sodium output.

As already discussed in section 4.5.2, an ARIMA process is conventionally written
ARIMA(p, d, q), where p refers to the autoregressive part of the process, q is the
moving average part, and d relates to the number of differences that are needed to
achieve stationarity of a set of time series data.

The essence of an ARIMA process is that we are integrating both autoregressive
and moving average components. This means that a given observation in a time
series generated by an ARIMA(p, d, q) process may be expressed in terms of past
observations of order p, and current and past disturbances of order q, where the
series has been filtered by differencing d times in order to achieve stationarity. So
we have:

xt = (1 + φ1)xt−1 + (φ2 − φ1)xt−2 + · · · + (φp − φp−1)

− φpxt−p−1 + μ + ut − θ1ut−1 − · · · − θqut−q

(4.22)

Initially the data should be checked for outliers, replacing actual outlier values
with their expected values if errors in the data are suspected. The correlogram of the
raw data is then inspected and assessed for stationarity. If the series displays non-
stationarity, the first differences of the series are taken and these are inspected and
assessed. If stationarity has still not been achieved, then the second has been identified
as the number of times the differences have to be taken to achieve stationarity.
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Figure 4.20 Time series plot of water intake and urine sodium output (adapted from
Flood and Carson, 1993).

When stationarity has been achieved, and after the partial autocorrelation function
has been calculated, the standard errors of the autocorrelation and partial autocor-
relation functions are taken, so that the standard error values of these function plots
can be assessed for significance. This enables an appropriate ARIMA process to be
selected by identifying the time lags p and q.

In relation to our example here, if a correlogram were to be drawn it would
show that the raw data decay slowly. A partial-autocorrelation plot would spike
at lag 1 and then tail off. This would seem to suggest that we were dealing with an
ARIMA(1, 0, 0) process. However, adopting an ARIMA(2, 0, 0) process, the estimate
of φ2 was significantly different from zero. Exploring possible higher order models
by adding a φ3 or θ1 term made no significant difference on the basis of the t-ratios.
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The sums of squares for ARIMA(1, 0, 0) and ARIMA(2, 0, 0) were not significantly
different. Hence the ARIMA(2, 0, 0) process was adopted as a representation of the
water input process.

The MINITAB package was then used to derive the final parameter estimates for φ1
and φ2. Maximum likelihood estimation is used for this process (see Chapter 8). Using
these estimates, a series of transformations, cross-correlations (rαβ), and impulse
responses of urine sodium response were simulated. The standard error was assumed
to be 0.1 (n−1/2 evaluated for n = 100). The results of these simulations are shown
in Table 4.1, in which k is the lag between input and output. If these results are then
compared with examples given in the classic work of Box and Jenkins (1976), the
model which best fits the data is that of (r, s, b) = (2, 1, 4), that is:

(1 − δ1B − δ2B2)yt = (ω0 − ω1B)xt−4 (4.23)

where xt and yt are respectively the water input and urine sodium output.

Table 4.1 Cross-correlation (rαβ), standard error (SE) and impulse response (vk) of urine sodium
response to water intake represented by an ARIMA(2, 0, 0) process

k 0 1 2 3 4 5 6 7 8 9 10

rαβ 0.03 0.13 −0.14 0.13 0.36 0.14 0.28 0.30 0.26 0.14 −0.14
SE 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
vk 0.10 0.05 −0.05 0.05 0.13 0.09 0.10 0.11 0.10 0.05 −0.02

In order to complete this statistical transfer function model, it is necessary to add
an appropriate noise model. Making use of techniques described in Box and Jenkins
(1976), implemented in the MINITAB package, a second order noise model was
postulated and its parameters estimated.

This example has shown how a simple model may be adequate as a means of
providing an adequate input/output representation. However, successful application
of this ARIMA modeling is critically dependent upon an adequate set of time series
samples; here there were 100 samples. Whilst this number may often be adequate,
a figure of 200 or more is usually needed to ensure a successful modeling outcome.

4.8 INPUT/OUTPUT MODELING FOR CONTROL

The next type of model considered is one that corresponds to explicit physiological
control systems. Here models are to be formulated based on input/output experiments
in order to obtain greater understanding in quantitative terms of the dynamics of such
control systems. Examples are presented which include both a naturally occurring
physiological control, such as the pupil light reflex, as well as situations corresponding
to therapeutic control. One classic instance presented is that of insulin control of
blood glucose in diabetes.
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4.8.1 Pupil Control

An example for adopting a frequency response approach to modeling an input/output
situation for control purposes is provided by the classical pupil light reflex study of
Stark and Sherman, as described by Toates (1975).

The quantity of light reaching the retina is determined by the size of the pupil
aperture. When the intensity of light is higher than desired, the pupil light reflex
causes a contraction of the pupil so as to reduce the quantity of admitted radiation.
Conversely, in dim illumination the aperture enlarges so that more light falls on the
retina. This pupil light reflex was first modeled as a feedback control system by Stark
and Sherman (1957).

A simplified representation of the system is shown in Figure 4.21. The controlled
variable is the quantity of light falling on the retina, Lc. There is also a reference light
flux variable, LREF, with which Lc is compared. The difference, or error Lc − LREF,
is the signal that operates the control system.

Reference Light

LREF

Error

LC – LREF LC

Control 
System

Controlled Light

Open Loop Conditions

Response Disturbance

Figure 4.21 Simplified representation of the pupil light reflex system (adapted from
Stark and Sherman, 1957).

The experimental technique by which data were obtained for the purpose of build-
ing a mathematical model of the system involved measuring light stimulus and pupil
area. Stark and Sherman (1957) devised a method for opening the feedback loop
without interfering with the system. This involved focusing the light stimulus so that
the light entering the eye had a diameter that was smaller than the smallest diameter
of the pupil. In this way any changes the pupil made were unable to influence the
quantity of light falling on the retina. A disturbance was introduced at the output
of the system by modulating the intensity of the light falling on the retina in a sinu-
soidal manner. The response in the form of changes to the pupil, were measured. By
ensuring that only small test signals were employed, it was reasonable to assume that
linear analytical techniques would be valid.

By carrying out this input/output experiment over a range of frequencies, the open-
loop frequency response was obtained, depicted as a Bode diagram in Figure 4.22.
From this frequency response it can be seen that the low frequency gain is 0.16 and
that at high frequencies the gain falls off with a slope of −18 db/octave. Since a single
exponential lag is responsible for −6 db/octave, Stark and Sherman estimated that
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Figure 4.22 Open-loop frequency response of the pupil light reflex (adapated
from Stark and Sherman, 1957).

three such lag elements must be present, each having a time constant of approxi-
mately 0.1 s. Hence the transfer function model proposed to describe the open-loop
characteristic of the pupil is:

G(s) = 0.16 exp(−0.18 s)
(1 + 0.1 s)3 (4.24)

The term exp(−0.18 s) is the Laplace representation of the pure delay of 0.18
seconds, 0.16 is the gain constant, and 1/(1 + 0.1 s) represents a lag, of which there
are three present.

4.8.2 Control of Blood Glucose by Insulin

In Type 1 diabetes pancreatic beta cell function is lost and must be replaced exter-
nally (see Figure 4.23), i.e. insulin must be infused exogenously. Advances in glucose
sensing and the availability of fast-absorbing insulin analogs can potentially lead to
a closed-loop insulin delivery system or ‘artificial pancreas’ based on a subcutaneous
site for glucose sensing and insulin delivery. One important ingredient of the artifi-
cial pancreas is the algorithm for calculating insulin delivery rate based on glucose
measurements.
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Figure 4.23 The glucose-insulin control system in a healthy (upper) and type 1
diabetic (lower panel) subject. In type 1 diabetes pancreatic beta cells do not secrete
insulin, thus the ‘physiological’ controller must be replaced by an ‘external’ one.

Various approaches have been proposed which have been recently reviewed by
Bequette (2005). Here we briefly discuss one relatively simple approach, based on
an input/output model, the so-called proportional-integral-derivative controller, PID,
which is widely employed in industrial control systems. The PID controller responds
to glucose with three components: a proportional component (P) that reacts to the
difference between measured glucose and basal glucose; an integral component (I)
that reacts to persistent hyper- or hypo-glycemia; and a derivative component (D)
that reacts to the rate of change in glucose. More precisely:

PID(t) = P(t) + I(t) + D(t); PID ≥ 0∀t (4.25)

where:

P(t) = Kp(G(t) − GB) (4.26)

I(t) = Kp
TI

t∫
0

(G(t) − GB)dt; I(0) = IDB (4.27)

D(t) = KpTD
dG(t)

dt
(4.28)

Kp determines the rate of insulin delivery in response to glucose above the target GB,
TI the ratio of proportional to integral delivery, and TD the ratio of derivative to
proportional delivery.

This model has been recently used in diabetic dogs to show the feasibility of
closed-loop insulin delivery using the subcutaneous route (Pantaleon et al., 2006).
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PID parameters were fixed from pilot-dog studies and from knowledge of the total
daily dose of insulin that each dog required for open-loop glucose control. Glucose
concentration was measured frequently in plasma and continuous glucose concentra-
tion was calculated by linear extrapolation of measured values. Figure 4.24 shows
the performance of the PID controller in a six hour experiment with a meal given at
the 4th hour for three different values of the gain Kp. A stable meal response for a
wide range of gain can be observed.
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Figure 4.24 Blood glucose (upper), plasma insulin (middle) and PID algorithm insulin
delivery (lower panel) during 10 hour closed-loop control in diabetic dogs (n = 8) for three
values of gain (Kp). Meal occurs at the 4th hour (adapted from Pantaleon et al., 2006).
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One can note that, while pre-prandial glucose values are very similar for the differ-
ent gains, the peak post-prandial glucose decreases significantly as the gain increases
(Figure 4.24, upper panel) due to a higher early-phase insulin delivery (Figure 4.24,
lower panel) which produces a higher insulin concentration (Figure 4.24, middle
panel).

4.8.3 Control of Blood Pressure by Sodium Nitroprusside

This example considers the situation in which the drug sodium nitroprusside is admin-
istered to lower the blood pressure of patients in hospital (Slate and Sheppard, 1982).
Closed-loop control methods are adopted, so that the drug infusion rate should
be adjusted based on frequent measurements of arterial blood pressure. Feedback
is needed to maintain pressure near a desired value because of disturbances that
perturb pressure, the changing state of the patient and the wide range of response
characteristics generally found amongst a population of patients.

In this study an automatic control system is adopted, with mean arterial pressure
being controlled by a nonlinear proportional plus integral plus derivative (PID) con-
troller as depicted in Figure 4.25. For the purpose of testing and evaluating the design
of the controller, a model of the arterial pressure related features of the patient was
developed. Such a model enables computer simulation studies to be performed as
part of the controller evaluation process.
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Figure 4.25 Automated system for the infusion of sodium nitroprusside using a nonlinear PID
digital controller (adapted from Slate and Sheppard, 1982).

The model in this case is partly derived on the basis of experimental data, but also
in part derived using some physiological and pharmacological concepts. Experimen-
tal data, for example, provide evidence of the patient’s sensitivity to the drug and
the lagged response resulting from uptake, distribution and biotransformation of the
drug. The resulting patient model, represented in transfer function form, is shown
in Figure 4.26. A pseudo-random binary signal was used to program the drug infu-
sion rate and cross-correlation analysis was used to estimate the impulse response.
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Figure 4.26 Model of a post-surgical cardiac patient developed to test drug dynamic and control
effects (adapted from Slate and Sheppard, 1982).

This model was then incorporated in a simulation schema to examine a range of
dynamic and control effects associated with this drug therapy.

4.9 INPUT/OUTPUT MODELING: IMPULSE RESPONSE
AND DECONVOLUTION

Another important input/output model is the impulse response of the system. The
impulse response is not only useful for characterizing the system under study, but it
is the key ingredient of the convolution integral. As we shall see, this forms the basis
for solving by deconvolution a number of important inverse biomedical problems;
that is to say estimating inputs to the system, e.g. the secretion rate of a gland, which
cannot be directly measured in vivo.

4.9.1 Impulse Response Estimation

Consider the linear time-invariant dynamic system depicted in Figure 4.27. One can
write the integral equation:

c(t) =
t∫

−∞
g(t − τ)u(τ)dτ (4.29)

where u(t), c(t) and g(t) denote the input, the output and the impulse response of
the system, respectively. The function g(t) describes the input/output behavior of the
system and is called the impulse response of the system. In fact, g(t) is the time course
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of the output when the system is forced by a unitary pulse δ(t), the Dirac impulse,
occurring at time zero.

Physiological 
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Figure 4.27 A linear time-invariant physiological system. g(t) is the
impulse response, u(t) the input and c(t) the output.
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Figure 4.28 Plasma disappearance curve of a drug or a tracer after a
unitary bolus at time 0 sampled at discrete times (open circles). The data are
fitted with a two exponential model (continuous line).

The impulse response is a model of data which can be used to characterize the
system. For instance, consider the disappearance curve of Figure 4.28 which may, for
example, represent the disappearance of a drug or of a radioactive or stable isotope
tracer of glucose injected as a unit bolus at time 0. One can fit the data say by a two
exponential model:

g(t) = A1e−α1t + A2e−α2t (4.30)

From knowledge of g(t) one can calculate some parameters of the system, e.g. the
area under the curve, AUC:

AUC =
∞∫

0

g(t)dτ (4.31)

or the initial distribution volume, V:

V = D
g(0+)

where D is the dose amount, or the clearance rate, CR:

CR = 1∫∞
0 g(t)dt

= 1
AUC

(4.32)
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Since the system is linear, one can also work, instead of in time, in the Laplace
domain. From (4.29), one has:

C(s) = G(s) · U(s) (4.33)

where G(s) is the transfer function of the system.
The impulse response is not only a model of data that is useful per se, but

also because it is the key ingredient for solving the convolution and deconvolution
problems.

4.9.2 The Convolution Integral

The integral (4.29) is called the convolution integral, i.e. c(t) is the convolution of
u(t) with g(t). Thus, knowing g(t), we can use convolution for predicting the output
response c(t) for a variety of known inputs u(t). For instance we could investigate
administering the drug as a bolus at different times during the day with the goal
of reaching and maintaining therapeutic levels of its concentration. This is a direct
problem: knowing the input and the impulse response, to predict the output.

The most powerful use of the convolution integral is in tackling what in the
mathematics/physics/engineering literature, is referred to as an inverse problem; that
is, instead of following the cause-effect chain (direct problem), one follows the rever-
sal of this chain. If the unknown signal is the input of the system, the inverse problem
is an input estimation problem (Figure 4.29) which is solved by deconvolution. This
is very important because many signals of interest for the quantitative understanding
of physiological systems are not directly measurable in vivo. Some examples include
the secretion rate of a gland, the production rate of a substrate, or the appearance rate
of a drug in plasma after oral administration. Very often, it is only possible to mea-
sure the causally related effects of these signals in the circulation (e.g. the time course
of plasma concentrations). Thus, there is the need of reconstructing the unknown
causes (e.g. hormone secretion rate) from the measured effects (e.g. hormone plasma
concentration).

Physiological 
System 

g (t � )

Production? 
Secretion? 
Rate of Appearance

Plasma Concentration

u(t) c(t)

Figure 4.29 The input estimation problem: from knowledge of response of the sys-
tem and of the output, e.g. plasma concentration, reconstruct the input, e.g. substrate
production, hormone secretion rate or drug absorption rate.
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4.9.3 Reconstructing the Input

Deconvolution is known to be ill-posed (i.e. the problem of reconstructing u(t)
from the finite number of samples of c(t) does not permit a unique solution, and
ill-conditioned (i.e. a small percentage error in the measured effect (e.g. hormone
concentration in plasma) can produce a much greater percentage error in the esti-
mated cause (e.g. secretion rate)). Moreover, dealing with physiological signals adds
to the complexity of the problem, since they are often non-negative and sampled at
a non-uniform and/or infrequent rate. We shall discuss these problems and how to
solve them in Chapter 9. Here the focus is on the basic concepts, illustrating by way of
examples the potential of deconvolution for solving important biomedical problems.

Let us consider some examples taken from Sparacino et al. (2001). Suppose
we want to reconstruct insulin secretion rate from C-peptide concentration data
(C-peptide is used instead of insulin because they are secreted equimolarly by the
pancreas, but C-peptide does not, unlike insulin, undergo any extraction by the liver).
In normal conditions, the pancreas releases C-peptide (and insulin) in an oscillatory
fashion with at least two detectable modes: rapid pulses, with period between 8 and
15 min, which are superimposed on to slower and larger oscillations, named ultradian
oscillations, whose period ranges between 90 and 150 min. If glucose concentration
increases rapidly, for instance during an intravenous glucose tolerance test, the spon-
taneous oscillations are obscured by the response of the pancreas. A sudden and large
secretory peak (first phase) is followed by a smooth release (second phase). The pan-
creatic secretion is not directly measurable and the only available information is the
plasma concentration of C-peptide. Figure 4.30 (upper panel) shows the C-peptide
plasma concentration measured every 20 minutes for 12 hours in a normal subject
(Sturis et al., 1991).

The ultradian oscillatory pattern of the secretion (i.e. the cause) is evident from
the measured concentration (i.e. the effect). The sampling rate is, however, insuf-
ficient to reveal the rapid pulses. Figure 4.30 (lower panel) depicts the C-peptide
plasma concentrations non-uniformly sampled for four hours in a normal subject
during an intravenous glucose tolerance test (IVGTT) (Shapiro et al., 1988). The
time series clearly reflects the biphasic response of the pancreas to the glucose stimu-
lus. For both cases, since C-peptide kinetics are linear, the problem of reconstructing
C-peptide (insulin) secretion rate (i.e. the input of Figure 4.29) from the C-peptide
plasma concentrations (i.e. the output of Figure 4.29) is a deconvolution problem.
To solve it, the impulse response of the system is required. In the C-peptide case, an
ad hoc experiment can be performed in the same individual on a separate occasion.
After suppressing the spontaneous pancreatic secretion by means of a somatostatin
infusion, an intravenous bolus of C-peptide is administered and plasma concentration
samples are collected frequently.

The impulse response g(t) is obtained by fitting a sum of two exponentials to the
data by nonlinear least squares. A representative data set (Shapiro et al., 1988) with
the model fit is reported in Figure 4.31. Now, looking at (4.29), we know c(t) and
g(t) and need to estimate u(t). By using the techniques discussed in Chapter 9, we
can reconstruct insulin secretion for the two experimental situations of Figure 4.30.
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Figure 4.30 C-Peptide plasma concentration time series. Upper panel: Spon-
taneous ultradian oscillations. Lower panel: Intravenous glucose tolerance test
(IVGTT) (adapted from Sparacino et al., 2001).
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Figure 4.31 The C-peptide impulse response. A bolus of C-peptide is
administered at time 0 (endogenous secretion has been suppressed) and plasma
concentration is frequently sampled (open circles). A sum of two exponentials is
filled against the data (continuous line) (adapted from Sparacino et al., 2001).

Results are shown in Figure 4.32: the left panels show the reconstructed insulin
secretion (upper panel: ultradian oscillations; lower panel: intravenous glucose toler-
ance test) while the right panels show the corresponding reconvolution, i.e. with the
estimated u(t), knowing g(t), we can solve (4.29) for c(t).
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Figure 4.32 Estimation of insulin secretion rate by deconvolution. Left panels: Ultradian oscil-
lations (upper) and IVGTT (lower). Right panels: Ultradian oscillations (upper) and IVGTT (lower)
reconvolution against data (adapted from Sparacino et al., 2001).

Another problem, which could be tackled similarly to the one discussed above,
would be to use deconvolution on the C-peptide time series of Figure 4.10 to
quantitatively assess the derangement of the physiological control system in diabetes.

A further application is to study hormone secretion after a hormonal stimulus.
For instance, an injection of growth hormone releasing hormone (GHRH) is given
to adolescents to assess the ability of the pituitary gland to properly secrete growth
hormone (GH). Plasma concentrations of GH are measured for 2 h following the
stimulus (Figure 4.33). By using the GH impulse response we can thus reconstruct
the GH secretion rate, thus being better informed with regard to designing a hormonal
therapy that favors a normal growth.

A final example concerns the use of deconvolution to reconstruct the rate of appear-
ance in plasma of a drug taken orally or injected subcutaneously. This could enable
therapy to be optimized, or drug design enhanced, by improving the mechanisms by
which the drug is absorbed and released. The only measurements available are those
of the drug in plasma (e.g. after an oral administration) (Figure 4.34, upper panel).
By using deconvolution we can reconstruct the drug rate of appearance (Figure 4.34,
lower panel), thus estimating a non-measurable key ingredient for therapy or drug
design.

We conclude by noting that there are a number of biomedical applications of
deconvolution, including hormone secretion/substrate production (Pilo et al., 1977;
Polonsky et al., 1986; Veldhuis et al., 1987; Caumo and Cobelli, 1993; De Nicolao
and Liberati, 1993; De Nicolao et al., 1995; Sparacino and Cobelli, 1996, 1997;
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Figure 4.34 Estimation of the rate of appearance of a drug in plasma. Upper panel:
Plasma concentration of the drug after an oral administration at time 0. Lower panel: The phar-
macokinetic system. From knowledge of drug plasma concentration c(t), and its distribution
and metabolism (the impulse response, g(t)), it is possible to reconstruct by deconvolution
the drug rate of appearance in the circulation.

Sartorio et al., 1997); pharmacokinetics (Cutler, 1978; Dix et al., 1986; Gillespie
and Veng-Pedersen, 1985; Iga et al., 1986; Cobelli et al., 1987; Charter and
Gull, 1991; Tett et al., 1992; Verotta, 1996; Hovorka et al., 1998; Vicini et al.,
1999; Pillonetto et al., 2001); radiography (Hunt, 1971); tracer data processing
(Commenges and Brendel, 1982; Bates, 1991; Sparacino et al., 1997); and transport
through organ studies (Bassingthwaighte et al., 1966; Knopp et al., 1976; Nakai,
1981; Bronikowsky et al., 1983; Clough et al., 1993; Sparacino et al., 1998).
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4.10 SUMMARY

This chapter has examined in some detail the process of modeling experimental data.
Four cases have been examined, namely: modeling a single variable occurring spon-
taneously; modeling a single variable in response to a perturbation; modeling two
variables that are causally related; and input/output modeling for control. A range of
examples has illustrated these four cases. Both time and frequency domain approaches
to modeling have been demonstrated. The basis of convolution and deconvolution
has also been outlined. The next chapter will go on to illustrate approaches to model
formulation, where the aim is to produce mathematical formalisms corresponding to
the underlying physical and chemical mechanisms that are the basis of physiological
systems.

4.11 EXERCISES AND ASSIGNMENT QUESTIONS

1. Discuss the nature of the relationship between physiological measurement
and data modeling.

2. Data modeling can be applied to either a single variable or to two
inter-related (input/output) variables, with or without control. Give some
examples for each of these different situations.

3. Plasma concentrations of hormones exhibit a spontaneous cyclic behavior.
Which are the most powerful modeling methods to analyze hormonal time
series?

4. Input/output models are often needed either to understand quantitatively
naturally occurring control in physiological systems, or to control a
severely diseased physiological system. Give an example for each case.

5. The impulse response of the system is the key ingredient of the convolution
integral. Define the deconvolution problem and discuss why it is important
in physiology and medicine by also giving some examples.
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5.1 INTRODUCTION

In the previous chapter, it was shown how models could be developed in such a
way as to provide a correspondence with available physiological data. In essence the
objective was to produce a mathematical expression which was capable of describing
the available data. In such situations successful modeling would be characterized
primarily by a good fit of the model to the data (or of the data to the model, depending
on one’s perspective). However, such models do not necessarily correspond explicitly
to the relevant underlying physiology.

Where there is a need for the model to correspond to the relevant physiology, then
some other means of modeling is required. This is the theme of this chapter. The aim
is to describe approaches to modeling the physiology (which can be regarded as the
system of interest). It will be shown that this can be done at a number of levels. The
particular approach to be adopted depends upon the available a priori knowledge that
is available, and the extent to which it is reasonable to make simplifying assumptions
regarding the physiology.

A number of approaches will be compared and contrasted. Comparisons will be
made of static and dynamic, deterministic and stochastic, time-invariant and time-
varying, lumped and distributed, linear and nonlinear, and continuous and discrete
forms. Between them these represent different levels of complexity of models. How-
ever, we shall begin with the simple static case and then systematically progress to
more complex forms of dynamic representation.

5.2 STATIC MODELS

Let us begin by considering a static model; that is to say a model of a system in which
there is no change occurring over a period of time.

In the circulatory system, a relationship can be developed between the rate at which
blood flows through a blood vessel and the pressure drop along that length of blood
vessel. For simplicity, assume that there is a steady volume flow Q of blood along a
blood vessel which is treated as being rigid, where the pressure drop along its length
(L) is P, and let the internal diameter of the vessel be D. Then, given the assumptions
stated above, the relationship between flow and pressure can be expressed as:

Q = KPD4

L
(5.1)

where K is the parameter which creates the equality. In fact, K varies with the viscosity
of the fluid (in this case blood), which means that (5.1) can be re-written as:

Q = (P1 − P2)πr4

8ρL
(5.2)

P1 and P2 are the pressures at the two ends of the blood vessel, r is the internal radius
and ρ is the viscosity of the blood. In other words, the ratio of the mean pressure
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gradient to mean flow is a measure of the extent to which the system resists flow.
We can term this ratio as the vascular resistance R where:

R = 8ρL
πr4 (5.3)

Therefore, we can write the relation between pressure and flow as:

(P1 − P2) = RQ (5.4)

Hence from measurement of mean values of pressure and flow, the resistance can be
calculated. In the context of the circulatory system, if P1 is the mean ascending aortic
pressure, P2 is venous pressure, and Q is the mean aortic flow (cardiac output), then
R represents the total systemic peripheral resistance. If, in this model, the assumption
can be made to neglect the effect of venous pressure (since it is only a few mm Hg),
then an estimate of the total peripheral resistance can be obtained from the ratio
of mean ascending aortic pressure and cardiac output. This linear relationship is
depicted in graphical form in Figure 5.1.

P

Q

Figure 5.1 Graphical representation of a linear relationship between
blood pressure, P, and blood flow, Q.

The linear model above is a particular case of the more general model which states
that pressure P is a function of flow Q. This can be expressed mathematically as:

P = f(Q) (5.5)

where f( ) represents a general form of functional relationship.
In the case of the flow of air in the respiratory system, a linear model relationship

between pressure and flow only applies in the case of laminar flow of air. Where there
is turbulent flow, the resistance to flow is no longer a constant, but is now a function
of gas flow:

R = R0 + R1(Q) (5.6)
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R0 corresponds to the value of resistance at zero flow and R1( ) is the general nonlinear
functional relationship defining the manner in which the resistance in the steady state
increases with increase in air flow.

The turbulent flow which occurs in the upper respiratory tract at high flow rates,
such as occur in the case of mechanical ventilation, can be reasonably approximated
by a model of the form:

P = R0Q + R1Q2 (5.7)

This model is nonlinear, since in addition to the first term R0Q – which is linear –
there is a second term in which there is a component of pressure proportional to the
square of the flow R1Q2.

Another example of a static, nonlinear model is provided by the Michaelis-Menten
equation. This describes the steady-state (static) condition of an enzyme-controlled
chemical reaction, the model being of the form:

v = Vmaxs
(Km + s)

(5.8)

The variable v is the rate or velocity, or flux, of the chemical reaction in the steady
state and s is the concentration of the chemical substrate involved in the reaction. Two
parameters characterize the effects of the enzyme involved in the reaction. Vmax is the
maximal rate of the chemical reaction as the concentration of the substrate becomes
very large and tends towards infinity. The second parameter (Km), corresponds to the
concentration of chemical substrate s for which the reaction velocity would be half
of the maximum value of Vmax. It can be seen that this model is nonlinear, since a
doubling of the value of the substrate concentration s does not result in a doubling of
the reaction of the chemical velocity v. The nonlinear nature of this model relationship
is shown graphically in Figure 5.2 where, in effect, the steady-state reaction velocity or
flux saturates towards its maximal value as the substrate concentration tends towards
infinity.

However, if one examines the form of this model as it would apply in the case of
low values of substrate concentration, the relationship approximates to one in which
the reaction velocity is directly proportional to the substrate concentration. In other
words, for small values of s, the denominator of (5.8) approximates to Km, since
s is small compared to Km, and so the model equation for reaction velocity can be
written as:

v = Vmaxs
Km

(5.9)

Under appropriate conditions, this is an example of being able to approximate a full
nonlinear model by a linear one. It should be noted, however, that this model is only
valid for small values of substrate concentration. Graphically, this linearized model
would give rise to the relationship shown in Figure 5.3.
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S

Figure 5.2 Nonlinear relationship between chemical flux and the
concentration of the chemical substrates.

Flux

S

Figure 5.3 Linearized relationship between chemical flux and substrate concentration.

5.3 LINEAR MODELING

Whilst analysis of the steady-state condition can provide some useful information
regarding the characteristics of a physiological system, the extent of this information
is necessarily limited. More often than not, one would wish to have some knowledge
of the manner in which a particular system responds to a stimulus, not just being
limited to knowledge of the final state that one or more of the variables ultimately
achieve. This means that we must move from a static view of the world to one in
which we examine the richness of dynamic behavior that a system may exhibit.

As we have already seen, a model is by definition an approximation of a system
in terms of its representation. In other words, in modeling the dynamics of a sys-
tem a number of assumptions are going to be made, and it is important that such
assumptions should be made in an explicit manner. To begin with let us consider
the simplest case. We shall assume that our system can be treated as being deter-
ministic, linear and time-invariant (that is to say, that the parameters are constant,
rather than changing in some way over time). Furthermore, effects which in reality
may be spatially distributed are treated as if they could be lumped together in a way
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which removes the need for this spatial dimension. As a first example we shall derive
a simple dynamic model to represent a portion of the circulatory system.

5.3.1 The Windkessel Circulatory Model

In the windkessel model, the arteries are treated as if they comprise an elastic reservoir
with fluid storage capacity. The compliance of this reservoir is assumed to represent
the total arterial compliance. The term compliance is the parameter that specifies the
elastic nature of the blood vessels. It is defined as the incremental change in volume
that would result from an incremental change in pressure. In other words:

C = �V
�P

(5.10)

where C is compliance, �P is the change in pressure and �V is the change in the
volume.

In terms of Figure 5.4, blood enters the arterial reservoir as a result of ventricular
ejection from the heart, and flows out at the other end of the reservoir through the
peripheral resistance. A mathematical model of these dynamics can be formulated
as follows. The input flow into the arterial system Q̇in(t), is equal to the sum of the
outflow Q̇out(t), of blood from the arterial system into the venous system and the rate
dV/dt of storage (the continuity equation):

Q̇in(t) = dV(t)
dt

+ Q̇out(t) (5.11)

Qin Qout
Elastic 

Chamber

Left 
Ventricle

Peripheral 
Resistance

.
.

Figure 5.4 Representation of a portion of the circulatory system depicting the flow of
blood from the left ventricle of the heart into the systemic circulation.

If one makes the assumption that there is a linear relationship between pressure and
volume, then the total arterial compliance C will be constant throughout a heart beat.

C = dV(t)
dP(t)

(5.12)
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Assuming that the outflow Q̇out(t) can be assumed to be proportional to the
arterio-venous pressure difference P(t) then:

Q̇out(t) = P(t)
R

(5.13)

where R is the total peripheral resistance. Substituting (5.12) and (5.13) into (5.11)
yields:

Q̇in(t) = C
dP(t)

dt
+ P(t)

R
(5.14)

Since there is flow into the arterial system only during ventricular systole, Q̇in(t) is
zero in diastole. If we define t∗ as the time at which ventricular ejection ends, and let
T be the total duration of a cardiac cycle, the dynamic behavior of the system during
any time interval during diastole can be described by:

C
dP(t)

dt
+ P(t)

R
= 0, t∗ < t < T (5.15)

The solution of this equation is:

P(t) = P∗exp
[
− (t − t∗)

τ

]
, t∗ < t < T (5.16)

where τ = RC.
In other words, given the assumption that ascending aortic flow is zero during

diastole, the windkessel model describes the diastolic aortic pressure decay as a
mono-exponential function with a time constant τ, equal to the product of arte-
rial compliance and peripheral resistance. An estimate of τ can be made from fitting
an exponential function to the plot of diastolic pressure decay. If cardiac output is
measured, peripheral resistance can be computed from the ratio of mean pressure
to cardiac output. Eventually, the ratio τ/R yields an estimate of the compliance C.
Equation (5.16) is an example of the exponential response as a function of time that
is the solution to any first order, linear differential equation model.

5.3.2 Elimination from a Single Compartment

As a further example of a simple dynamic model, consider the elimination of a
drug from the bloodstream. As an approximation it will be assumed that the blood-
stream can be considered to be a single compartment, in which the drug is uniformly
distributed. In other words, the concentration of the drug will be the same at all
points within this bloodstream compartment. If the drug has been injected into the
bloodstream, this assumption that there is a uniform concentration corresponds
to neglecting the rapid mixing effects of the drug which would occur immediately
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following injection. Mathematically we can describe this model as follows:

dQ(t)
dt

= −p1Q(t) + U(t), Q(0) = 0 (5.17)

C(t) = Q(t)
V

(5.18)

In equation (5.17), the variable Q represents the mass of drug in plasma as a function
of time. The input variable U(t) is the mass of drug input into the bloodstream again
as a function of time. The parameter p1 is the estimated fractional rate constant for
the drug, and V is the plasma distribution volume. In other words this equation states
that the rate of change of mass of the drug is given by the difference between the flux
of drug out of the compartment (the first term on the right-hand side of the equation)
and the flux of drug into the compartment (the second term). The initial condition of
this equation Q(0) is the mass of drug in the compartment at time zero.

For any value of input function U(t), the general solution of this pair of (5.17) and
(5.18) can be shown to be the convolution integral:

C(t) = 1
V

∫ t

0
exp(−p1(t − τ))U(τ)dτ (5.19)

However, a simpler solution is obtained for the case where the drug is introduced
rapidly as a brief pulse of unit magnitude, that is it approximates to a unit impulse,
U(t) = δ(t). Now the solution becomes:

C(t) = 1
V1

exp(−p1t) (5.20)

which is a single exponential decay characteristic of the response to an impulse for a
lumped, linear, time-invariant, deterministic first order system.

5.3.3 Gas Exchange

As a further example of simple linear dynamic modeling, let us consider the process
of gas exchange between the alveolus of the lung and the blood capillary (Flenley and
Warren, 1988). This takes place by passive diffusion across the alveolar-capillary
membrane down a concentration gradient. For an inert solute in a single solvent,
diffusion can be described by Fick’s Law as follows:

�Q
�t

= −dA
�C

l
(5.21)

where the quantity of solute �Q diffusing per unit time �t is a function of the cross-
sectional area A and distance l over which diffusion is occurring. The concentration
gradient is �C, and the diffusion coefficient is d, a physical rate constant which is
dependent on properties of the system such as the molecular weight of the solute and
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the temperature and viscosity of the solvent. The quantity of the substance which
is dissolved in the surface layers of the alveolar-capillary membrane, and hence the
concentration gradient across the membrane, are determined by the product of the
partial pressure of the substance in the adjoining compartment (alveolar or capillary)
and the solubility coefficient α, for the substance in the membrane. Hence, we can
re-write Fick’s Law as follows:

�Q
�t

= −
[
dA

α

l

]
[PA − PC] (5.22)

where PA and PC are the partial pressures that are exerted by the gas in the alveoli
and capillaries respectively.

It might seem intuitively obvious that a thickening of the alveolar-capillary mem-
brane; that is to say an increase in l, as can occur as a result of a disease process,
should reduce the rate of diffusion. This would suggest that measurement of the rate
of diffusion would be a useful diagnostic tool. However, there are a number of com-
plications when it comes to applying this simple Fick’s Law Model to the lungs. First,
the alveolar-capillary membrane consists of a layer of alveolar epithelial cells and
capillary endothelial cells, both of which have a basement layer which in some areas
are fused together, whilst in others are separated by a narrow interstitium. Hence
the use of a single solubility coefficient cannot be justified. Moreover, the gases in
question are not inert, but do in fact combine with haemoglobin in the capillary red
blood cells. As such, the assumption that this chemical interaction is infinitely rapid
and does not provide a rate limiting step in the gas exchange process is probably
not valid. Finally, the total area involved in gas exchange and the thickness of the
alveolar-capillary membrane vary with the degree of inflation of the lungs and cannot
readily be measured. Hence, in clinical practice the term −dα A/l is replaced by the
single term D, which is defined as the diffusing capacity of the lungs. Fick’s equation
can therefore be re-written as:

�Q
�t

= D(PA − PC) (5.23)

This is the standard first order linear model which is widely adopted in respiratory
measurement.

5.3.4 The Dynamics of a Swinging Limb

The next example is that of a freely swinging human limb. Specifically, let us consider
the situation in which the leg swings freely under the action of gravity, after its
release from contact with the ground in its rearward position by raising the toe. This
situation, depicted in Figure 5.5, is the basis of the mathematical model that has been
developed by Milsum (1966).

The model described here makes a number of simplifying assumptions. For
instance, the complexities of leg shortening and hip raising necessary for the heel
to be able to clear the ground are excluded. Equally the focus is on the controlled
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θ0

Direction of Walking

Figure 5.5 Model of swinging limb (adapted from Milsum, 1966).

system, which means that the controlling effects arising from the neuromuscular
feedback loops of the antagonistic pairs of effector muscles are not considered.

The angular motion of the leg is based on Newton’s second law of motion:

T = J
d2θ

dt2 = J
dω

dt
(5.24)

where T = net torque, or turning moment about the axis of rotation; J = moment of
inertia of the accelerating body about this axis; θ = angle of rotation; and ω = angular
velocity of rotation.

As a further simplifying assumption in the modeling process, the leg will be
assumed to be a stiff uniform cylinder as shown in Figure 5.6 with the dimensions of:

Length, L = 90 cm; diameter, d = 12 cm; and density, ρ = 1.1 g cm−2 (5.25)

from which: Volume, V = (π/4)d2L = 10,300 cm3, and mass, m = ρ V = 11.5 kg,
which approximates to a typical value for a 70 kg male subject despite the simplifying
assumptions which have been made.

If it is further assumed that there are neither viscous nor nonlinear retarding torques
due to joint stiffness, air friction, tissue deformation, etc. then the net torque is only
that resulting from the forces of gravity. This net torque is thus equal to the product
of the leg-weight component perpendicular to the leg (mg sin θ) and the moment arm
L/2, as shown in Figure 5.6:

T = −mg
L
2

· sin θ (5.26)
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sin θ
2

L
T � mg
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Figure 5.6 The leg modeled as a stiff uniform cylinder (adapted from Milsum, 1966).

The right-hand term of equation (5.24) is termed the inertia torque which may be
evaluated using the moment of inertia of the thin-cylindered leg swinging about its
hip joint:

J = m L2

3
(5.27)

Substituting (5.26) and (5.27) into equation (5.24) leads to the following second order
differential equation of motion:

d2θ(t)
dt2 +

(
3g
2L

)
sin θ(t) = 0 (5.28)

Due to the presence of the term sin θ, equation (5.28) is in fact nonlinear. However,
the equation may be linearized if the deflections of the limb may be considered as
being small, in which case sin θ is approximately equal to θ (where θ is measured in
radians).

Milsum (1966) had assessed the error associated with making such a small deflec-
tion, linearizing assumption. For a leg of length 90 cm, and with a half pace of 38 cm,
θ is equal to 0.4 radians, whereas sin θ would be 0.39 radians. This implies a maxi-
mum error arising from this assumption of 2.5%, with the average error being much



86 CHAPTER 5 MODELING THE SYSTEM

less than this figure. Hence equation (5.28) becomes:

d2θ

dt2 +
(

3g
2L

)
θ = 0 (5.29)

Solving this equation yields a sinusoidally varying pattern of angular position of the
swinging limb, without there being any damping of the oscillations. In other words,
the solution of this equation would correspond to unending sinusoidal oscillation as
shown in Figure 5.7. In reality, however, there are of course energy dissipation effects
during working, which in the model can be included in the form:

Tb = −b
dθ

dt
(5.30)

π 2π 3π 4π 5π 6π ωnt

θ(t)

θ0

θ0

�θο

b �� 0

b � 0
b � 0

θ

Figure 5.7 Dynamics of swinging limb model (adapted from Milsum, 1966).

This simple linear representation is, of course, an approximation to what in prac-
tice is probably a more complex effect. The negative sign indicates that this torque
opposes the motion. This viscous friction causes the oscillatory response as depicted
in Figure 5.7 to decay, as shown by the dashed line, towards the terminal state of zero
energy stored in the system. In steady walking the relevant muscles in the leg must
pump in enough energy to make up for this viscous dissipation as well as providing
the various forces required in relation to posture which this simple model formulation
has neglected (Milsum, 1966). It is therefore necessary to add an appropriate torque,
Tm(t), as a function of time, so that equation (5.24) becomes:

Tm − b
dθ

dt
− mg

(
L
2

)
θ = J

d2θ

dt2 (5.31)

or

J
d2θ(t)

dt2 + b
dθ(t)

dt
+ kθ(t) = Tm(t) (5.32)

where the gravity coefficient has been defined as a generalized spring constant
k = mg(L/2). This equation represents a basic second order linear system with an input
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forcing function and viscous damping in addition to the inertia and spring effects
of the system modeled as equation (5.29). From an energy perspective, the spring
stores potential energy, the inertia stores kinetic energy, and the viscous damping
dissipates both.

5.3.5 A Model of Glucose Regulation

The glucose regulatory system is a classic negative feedback system (Figure 5.8) main-
taining glucose homeostasis. When blood glucose concentration increases after a
perturbation, e.g. a meal, an oral glucose tolerance test or an intravenous infusion of
glucose, the beta cells of the pancreas secrete more insulin. The resulting increased
plasma level of insulin, in turn, enables blood glucose to return to its basal concentra-
tion by enhancing glucose utilization by the tissues and inhibiting endogenous glucose
production.

Controller Controlled 
System

Glucose 
Concentration

Insulin 
System

Glucose 
System

Figure 5.8 The glucose regulatory system depicted as a classic negative feedback system.

Let us assume that the glucose and insulin systems are each describable by a single
compartment representation with, respectively, substrate and hormonal fluxes enter-
ing and outgoing from the compartment (Figure 5.9). The next step then is to detail
the control signals from the glucose to the insulin system and from the insulin to the
glucose system. A general scheme depicting the glucose and insulin fluxes of material
and the control signals following a glucose perturbation is shown in Figure 5.10. The
model equations are:

Q̇1(t) = P(Q1, Q2) − U(Q1, Q2) + J(t) Q1(0) = Q10 (5.33)

Q̇2(t) = S(Q1, Q2) − D(Q2) Q2(0) = Q20 (5.34)

C1(t) = Q1(t)
V1

(5.35)

C2(t) = Q2(t)
V2

(5.36)

where Q1 and Q2 denote glucose and insulin masses respectively, with the suffix ‘o’
denoting the basal state; P and U are respectively glucose production and utilization



88 CHAPTER 5 MODELING THE SYSTEM

Controller Controlled 
System

Glucose 
Concentration

Insulin 
System

Glucose 
System

Figure 5.9 The glucose regulatory system depicting the compartmental structure of
controller and controlled system.
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Figure 5.10 Glucose and insulin fluxes and their control follow-
ing a glucose perturbation J. The measured concentrations of glucose
C1 and insulin C2 are also shown.

assumed to be functions of Q1 and Q2; J is the glucose input which can be either an
intravenous injection or infusion or the absorption rate of glucose during a meal or
an oral glucose tolerance test; S and D are insulin secretion and degradation assumed
to be functions of Q1, Q2 and Q2 only, respectively; V1 and V2 are the glucose and
insulin distribution volumes.

The pioneering model of the glucose regulatory system developed by Bolie (1961),
which we describe below, is a linearized version of the model described by (5.33)–
(5.36). To arrive at this model one can write:

P(Q1, Q2) = P0 − αQ1 − βQ2 (5.37)

U(Q1, Q2) = U0 + γQ1 + δQ2 (5.38)

S(Q1, Q2) = S0 + εQ1 − ηQ2 (5.39)

D(Q2) = D0 − μQ2 (5.40)
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where α, β, γ, δ, ε and μ are rate parameters ≥0 (the ‘minus’ and ‘plus’ signs in
(5.37)–(5.40) denote the modalities of glucose-insulin control, e.g. insulin secretion
is stimulated by glucose and inhibited by insulin) and P0, S0, U0 and D0 denote values
in the basal state.

By defining the variables which represent the deviation of glucose and insulin from
their basal values:

q1 = Q1 − Q10 (5.41)

q2 = Q2 − Q20 (5.42)

one has:

q̇1(t) = −p1q1(t) − p2q2(t) + J(t) q1(0) = 0 (5.43)

q̇2(t) = −p3q2(t) + p4q1(t) q2(0) = 0 (5.44)

c1(t) = q1(t)
V1

(5.45)

c2(t) = q2(t)
V2

(5.46)

where p1 = α + γ; p2 = β + δ; p3 = η + μ; p4 = ε.
This linear model has been used in conjunction with intravenous injections or

infusions (Bolie, 1961; Segre et al., 1973; Ceresa et al., 1973) and also during an oral
glucose tolerance test (Ackerman et al., 1964; Gatewood et al., 1968a,b) to obtain
a four-parameter portrait the glucose regulation system in various states of glucose
intolerance including diabetes. For the intravenous inputs one has J(t) = D · δ(t) for
the injection and J(t) = J[1(t) − 1(t − ta)] for the infusion, where the term δ(t) is the
Dirac function and 1(t − T) the Heaviside function (=0 for t < T and 1 for t ≥ T). For
the oral input one has J(t) = J[1(t) − 1(t − ta)] [1 − e−β(t−ta)].

An alternative simpler parameterization has also been used to characterize the
glucose regulatory system. To do so, (5.43)–(5.46) have been recast as second order
differential equations in C1 and C2 by first writing (5.43) and (5.44) in term of C1
and C2:

Ċ1(t) = −m1c1(t) − m2c2(t) + J′(t) C1(0) = 0 (5.47)

Ċ2(t) = −m3c2(t) + m4c1(t) C2(0) = 0 (5.48)

with m1 = p1, m2 = p2V2/V1, m3 = p3, m4 = p4V1/V2 and J′(t) = J(t)/V1, and then
differentiating (5.47) and (5.48) with respect to time. This leads, after some algebraic
manipulation, to a pair of second order equations:

C̈1(t) + 2αĊ1(t) + �2
0C1(t) = S1(t) (5.49)

C̈2(t) + 2αĊ2(t) + �2
0C2(t) = S2(t) (5.50)
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where α = (m1 + m3)/2, �2
0 = m1m3 + m2m4, S1(t) = m3J′(t) + J̇′(t) and S2(t) = m4J′(t).

The linearity of the system allows us to obtain an analytical solution, if the input
J(t) is a simple function of time. For instance if J(t) is such that:

S1(t) = B · δ(t) (5.51)

one has:

C1(t) = B
�

e−αt sin � (5.52)

where �2 = �2
0 − α2.

For situations in which equation (5.51) can be considered to be a good approx-
imation for an intravenous infusion (certainly it is for an injection) and for an
oral administration, interpreting glucose concentration measurement using equation
(5.52) provides a two-parameter classification of the blood glucose control system. In
particular �0 was suggested in Ackerman et al. (1964) as being the most significant
parameter in distinguishing diabetics from normal subjects. Moreover, the natural
period T0 = 2π/�0 was used as a classification parameter: normal subjects showed
T0 values less than 3 h whilst diabetics were greater than 5 h. However, a significant
gray area was observed.

This linear model made a conceptually important contribution to work in this
field in the 1970s. However, this linear description has been subsequently shown to
be not valid, e.g. if insulin is also measured and the model of (5.42)–(5.46) is fitted
simultaneously to both glucose and insulin concentration data. This will be discussed
later. This, in some sense, is not surprising since glucose and insulin concentrations
hardly show a small change during an intravenous or an oral perturbation, thus
violating the assumption that would justify linearization of the model of (5.33)–
(5.36), i.e. that deviations from steady-state equilibrium are sufficiently small.

5.4 DISTRIBUTED MODELING

In many cases metabolic processes can be adequately represented in terms of a lumped
model. This assumes that it is reasonable to consider that a chemical substance is uni-
formly distributed in a physical space treated as a single compartment. This was the
assumption made in the example of drug elimination considered in section 5.3.2.
In that case the drug was assumed to be uniformly distributed throughout the blood-
stream, resulting in the concentration of drug at any particular time being of equal
value throughout that space. Such a simple model clearly neglects the effects of blood
flow and mixing during the early period following injection of the drug.

In distributed modeling, no such assumption of homogeneity is made. This leads to
a more complicated form of mathematical representation. The examples of lumped
models presented in section 5.3 gave rise to ordinary differential equations. These
were equations in which the left-hand side of the equality took the form dx/dt, the rate
at which the dependent variable x is changing with respect to time t, the independent
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variable. In other words, because a lumped model had been adopted, one only had to
consider variation of drug concentration with respect to time. In a distributed model
there would also be the need to represent the variation of drug concentration with
respect to spatial position.

Mathematically this gives rise to equations involving two partial derivatives: for
example ∂x/∂z, the partial derivative (rate of change) of x (say drug concentration)
with respect to z, a spatial variable (say the distance along a particular blood vessel),
as well as ∂x/∂t, the partial rate of change of drug concentration with respect to time.

The solution for models realized as sets of partial differential equations is much
more complicated than that of the ordinary differential equations of lumped models.
Normally one has to resort to numerical computational techniques, the scope of
which lies beyond this introductory text.

5.4.1 Blood-tissue Exchange

An important area of distributed parameter modeling is that concerning transport and
metabolism of a substance at the organ level. This is a topic that has been considered
in detail by Vicini (2001) in Carson and Cobelli (2001) (extracts from these treat-
ments are included here). Every organ in vivo is perfused by its own vascular tree and
capillaries are the most important elements since they allow exchange of substrates
between blood and tissue through passive or active transport. The capillary-tissue
unit is therefore the elementary functional unit discussed here, in order to describe
transport and metabolism of a substance at the organ level. The substance that reaches
the capillary is proportional to the flow that perfuses it. The flow to the system is
partitioned in all the branches of the capillary network and these partitions come
together in the outlet vein. The flow sub-division is not uniform and is referred to as
the heterogeneity of flow. As a result there is heterogeneity of metabolism in every
capillary-tissue unit. This is shown schematically in Figure 5.11. Every capillary-tissue
unit is positioned between an arteriole and a venule. Blood reaches the capillaries
through an arteriole and leaves them through a venule, but from an arteriole, blood
can be distributed to numerous meta-arterioles before reaching the capillary.

A typical capillary can be thought of as a thin wall tube (capillary membrane),
formed by endothelial cells ‘embedded’ in one another. The transport modality
through the capillary membrane is twofold. Some substances are subject exclusively
to passage through the small spaces between endothelial cells and endothelial gaps;
this is especially true for smaller molecules (e.g., proteins). Other substances can
also flow through the endothelial cells by means of facilitated diffusion or active
transport. Fundamentally, blood-tissue exchange consists of the passage of molecules
from the plasma, through the capillary membrane, to the interstitial fluid and, from
there, through the cellular membrane or sarcolemma, to the parenchymal cell where
metabolism takes place. An example of the elementary processes of blood-tissue
exchange is shown in Figure 5.12.

The experimental techniques for the study of blood-tissue exchange are based on
the use of tracers and include multiple tracer dilution, positron emission tomography
(PET) and nuclear magnetic resonance (NMR) spectroscopy. Here we concentrate
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Figure 5.11 Schematic representation of the vascular network of an organ showing the het-
erogeneity of blood-tissue exchange. Transport and metabolism occur in the capillary-tissue unit
(adapted from Vicini, 2001).
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Figure 5.12 Basic steps of blood-tissue exchange. Glucose is transported
via convection by plasma flow, diffuses in the interstitial volume, and from there
is transported through the cell membrane, and is irreversibly metabolized there
(adapted from Vicini, 2001).
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on multiple tracer dilution and will discuss PET and interpretative system models in
Chapter 11 in Case Studies.

This method consists of the simultaneous injection, upstream of the organ, of more
than one tracer, each with different molecular characteristics. The simultaneous use
of several differing tracers allows separate monitoring of the elementary processes
of blood-tissue exchange. For example, consider the case when the objective of the
experiment is the measurement of all the elementary processes (convection, diffusion,
transport, and metabolism). In such a situation one can usually inject four tracers
simultaneously upstream of the organ (in an artery that transports blood flow entering
the organ), and then measure them downstream (from a vein that collects the flow
leaving the organ).

The first tracer is distributed only in the capillary bed (intravascular tracer), the
second is subject to the bidirectional exchange through the capillary membrane (extra-
cellular tracer), the third, once subjected to the two previous steps, also permeates
the cell through the sarcolemma (permeating not metabolizable tracer), and, finally,
the fourth is also metabolized (permeating metabolizable tracer). These tracers must
obviously be distinguishable one from the other once they reach the organ outflow.
The venous outflow curves (Figure 5.13) must then be analyzed by means of plausible
and physiologically reasonable mathematical models of the organ.
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Figure 5.13 Multiple indicator dilution washout curves to measure glucose transport and phos-
phorylation in human skeletal muscle in the basal (left) and insulin stimulated (right) state. Three tracers
are injected in the brachial artery, an extracellular (D-[12C]-mannitol), a transportable but not metab-
olizable (3-0-[14C]-methyl-D-Glucose) and a metabolizable (D-[3H]glucose), and their concentration
measured in a vein (adapted from Saccomani et al., 1996).

The single-capillary model

Let us consider a generic single tracer confined within the capillary. In the hypothesis
of negligible radial diffusion (radius of capillary is small), the concentration of tracer
(expressed, for example, in mmol ml−1) will be defined by the surface c(x, t)(where x
is the space coordinate and t the temporal coordinate). The fundamental equation of
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the distributed parameter model for the single capillary (Figure 5.14) is given by the
classic equation describing convection and axial diffusion:

∂c(x, t)
∂t

= −v(x)
∂c(x, t)

∂x
+ D

∂2c(x, t)
∂x2 (5.53)

where v is the velocity of convection (cm s−1) and D the diffusion coefficient (cm2 s−1).
At this point, we can introduce some simplifications. First, let us suppose that the
system is in a steady state. Moreover, it is known that the presence of red blood
cells creates, in the capillaries, inner spaces of purely convective transport (this is the
so-called plug flow): a limited error is then introduced if we neglect the effect of axial
diffusion. Transport in the single capillary therefore remains defined by convection
alone:

∂c(x, t)
∂t

= −v(x)
∂c(x, t)

∂x
(5.54)

Plasma Fp

Vp

D

Fp

Figure 5.14 Single-region, single-capillary blood-tissue exchange model (adapted
from Vicini, 2001).

If, at this point, we establish that the capillary diameter is uniform everywhere, we
can write v(x) = v. From now on, we shall refer to the plasma tracer concentration
in the capillary as cp(x, t). Let us denote with Vp (ml g−1) the volume of the capillary
(independent from the axial coordinate, since the diameter of the capillary is constant
as a reasonable approximation), the flow of plasma with Fp (ml min−1 g−1), and the
length of the capillary with L (cm). We can write:

v = FpL
Vp

(5.55)

and therefore:

∂cp(x, t)
∂t

= −FpL
Vp

∂cp(x, t)
∂x

(5.56)

This is a first order partial differential equation with boundary condition:
cp(0,t) = u(t), where u(t) is the concentration profile (mmol ml−1) at the capillary
inlet. Its solution is:

cp(L, t) = δ

(
t − Vp

Fp

)
⊗ u(t) = u

(
t − Vp

Fp

)
(5.57)
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where ⊗ is the convolution operator. Briefly, the response of a single capillary to
the generic input u(t) is the input itself, shifted forward in time by an amount equal
to the transit time of the capillary. It is useful to observe that the length of the
capillary L, since axial diffusion is negligible, does not influence the profile of outflow
concentration. In agreement with the fact that the capillaries do not have contractile
ability, the profile at the inlet is not deformed by passage through the capillary.

The capillary-interstitial fluid model

Let us suppose now that the capillary is dipped in a homogeneous and stagnant
medium (convection happens only in the capillary), the so-called interstitial fluid,
which in the microcirculatory system separates the capillary membrane from the cellu-
lar membrane. As we have already indicated, the capillary membrane is characterized
by the presence of endothelial gaps, that is, of ‘fissures’ between the endothelial cells.
The possibility that a generic substance will pass from one side of the membrane to
the other will depend on many factors, including the width of the gaps and their dis-
tribution on the membrane. We now define the permeability of a membrane (Crone
and Lassen, 1970) as:

P = flow through the membrane
membrane surface × concentration gradient through the membrane

(5.58)

Let us now consider the concentration gradient through the capillary membrane.
The concentration in the capillary is cp(x, t); that in the interstitial fluid (referred to
as the interstitial volume, Visf) is cisf(x, t). The dynamics of the concentration through
the capillary membrane can therefore be described, as a function of the discontinuity
of the concentration across the membrane, with the equation (first order process):

∂cp(x, t)
∂t

= −Sg(x)
Vp

[P−(x)cp(x, t) − P+(x)cisf(x, t)] (5.59)

where Sg(x) is the capillary membrane surface interested to the exchange (g indicates
the endothelial pores, or endothelial gaps), P−(x) is the permeability in the direction
leaving from the membrane (centrifuge permeability), P+(x) is the permeability in
the direction entering the capillary (centripetal permeability) (Bassingthwaighte and
Goresky, 1984).

At this point, we make the following hypotheses:

� the dimensions of capillary and tissue are uniform with respect to the axial
direction; therefore, the surface relating to the exchange is independent of the
axial dimension: Sg(x) = Sg;

� the permeability is uniform in both the axial, P(x) = P, and the radial direction,
P+ = P− = P; the product permeability-surface PSg (ml min−1 g−1) is therefore
a constant;
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� the radial diffusion in the interstitial fluid is fast; if the capillary is situated
in a well-perfused organ (e.g., the cardiac tissue), the distance between the
capillaries is usually small, so that the equilibrium time in the lateral direction
of the concentration of the substance subject to diffusion is a negligible fraction
of the transit time of the capillary.

We can now derive a simple two-region model that describes transcapillary transfer
(Figure 5.15). The explicit solution of this model was derived by Rose and Goresky
(1976), Sangren and Sheppard (1953) and Sheppard (1962), while Bassingthwaighte
et al. (1992) proposed efficient numerical algorithms.

PlasmaVpFp

Visf

PSg

Fp

Figure 5.15 The two-region single-capillary blood-tissue exchange model (adapted
from Vicini, 2001).

The plasma region equation is the following:

∂cp(x, t)
∂t

= −FpL
Vp

∂cp(x, t)
∂x

− PSg

Vp
[cp(x, t) − cisf(x, t)] (5.60)

and analogously for the interstitial fluid equation:

∂cisf(x, t)
∂t

= PSg

Visf
[cp(x, t) − cisf(x, t)] (5.61)

where Visf is the volume of the interstitial fluid.
The system of two equations defined above describes transport through the

endothelial gaps of the capillary membrane for a single capillary. One can show that
the solution to this system is given, again for the boundary condition cp(0,t) = u(t),
by this function:

cp(L, t) = e−PSg/Fpδ

(
t − Vp

Fp

)

+
+∞∑
n=1

(
Vp
Fp

PSg
Vp

PSg
Visf

)n (
t − Vp

Fp

)n−1
e−PSg/Visf (t−Vp/Fp)−PSg/Fp1(t − τ)

n!(n − 1)! (5.62)
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where l(t − τ) is the step function (zero before τ and one at and after τ). Equa-
tion (5.62) can be written more conveniently if we define the auxiliary constants
τ = Vp/Fp, ka = PSg/Vp, kb = PSg/Visf :

cp(L, t) = e−τkaδ(t − τ) +
+∞∑
n=1

(τkakb)n(t − τ)n−1e−kb(t−τ)−τka1(t − τ)
n!(n − 1)! (5.63)

The first addendum (throughput fraction) represents the molecules of substance that
flow directly through the capillary without ever leaving it and is, therefore, equal
to the intravascular response of the single capillary, scaled by the factor e−τk. The
second addendum (tail function) describes the return (backdiffusion) of the substance
from the interstitial fluid to the capillary (Bassingthwaighte and Goresky, 1984).

The capillary-interstitial fluid-cell model

At this point, we can model the kinetics of a substance leaving interstitial fluid and
entering the cell membrane through the parenchymal cell. The model (Figure 5.16),
a rather straightforward extension of the two-region model, is described by:

∂cp(x, t)
∂t

= −FpL
Vp

∂cp(x, t)
∂x

− PSg

Vp
[cp(x, t) − cisf(x, t)]

∂cisf(x, t)
∂t

= − PSg

Visf
[cisf(x, t) − cp(x, t)]

− PSpc

Visf
[cisf(x, t) − cpc(x, t)]

∂cpc(x, t)
∂t

= −PSpc

Vpc
[cpc(x, t) − cisf(x, t)] − Gpc

Vpc
cpc(x, t) (5.64)

where PSpc (ml min−1 g−1) is the permeability-surface product of the cell membrane,
Vpc(ml g−1) is the volume of the parenchymal cell, and Gpc (ml min−1 g−1) is irre-
versible metabolism. The explicit solution is again due to Rose and Goresky (1976);
an efficient numerical solution, also including the contribution from diffusion, is
reported in Bassingthwaighte et al. (1992).

The whole-organ model

Until now, we have limited our analysis to the single capillary. In a more generalized
setting, and as noted at the beginning of this chapter, an organ is characterized by
a network of interconnected capillaries (King et al., 1996). The total flow into the
organ becomes divided between the capillaries in an unequal and non-uniform way.
This is the so-called spatial heterogeneity of flow (Bassingthwaighte and Goresky,
1984). Flow heterogeneity causes heterogeneity of the local capillary permeability,
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Figure 5.16 The three-region single-capillary blood-tissue exchange model. ISF is
interstitial fluid; PC is parenchymal cell (adapted from Vicini, 2001).

thus limiting the quantity of substances that can be exchanged between blood and
tissue.

Knowledge of such a prominent phenomenon is very important for modeling
blood-tissue exchange of substrates. In fact, neglecting flow heterogeneity can result
in biased estimation of extravascular parameters (King et al., 1996; Kuikka et al.,
1986). Thus, the availability of a description of flow heterogeneity (even an approx-
imate one) in the organ of interest is a prerequisite for physiologically sound kinetic
modeling (Vicini et al., 1998).

The most common approaches to assess flow heterogeneity in an animal, or in iso-
lated and perfused tissue, are microsphere deposition (Bassingthwaighte and Goresky,
1984) and autoradiography (Stapleton et al., 1995); both very invasive techniques
that require sectioning of the organ under study. In contrast to animal studies, there
is little knowledge about flow heterogeneity in humans. PET provides a potentially
valuable tool for the assessment of regional flow heterogeneity (Vicini et al., 1997;
Utrainen et al., 1997). In fact, the PET image of a given organ, when obtained with
an appropriate marker such as [15O] water, provides information not only of average
flow in a region of interest but also of its spatial distribution (Figure 5.17).

There are two landmark models to describe the heterogeneity of flow. The first
is that by Goresky and colleagues (see for example Rose and Goresky, 1976). The
second is that by Bassingthwaighte and colleagues (see for instance King et al., 1996).
Below we describe the salient features of this second model, also referred to as the par-
allel capillary model or parallel network model (King et al., 1996). Such an approach
stems directly from the fact that, especially in muscle, capillaries are arranged in a
more or less parallel fashion. However, the method assumes that the capillaries all end
at the same point (x = L), and this can be a more difficult condition to satisfy (Jacquez,
1985). It is important to note that any parallel capillary heterogeneity model does not
allow the description of phenomena, such as the shunting between capillaries that
may have a crucial importance on a correct description of the problem.
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Figure 5.17 Example of a frequency histogram in a normal subject showing
relative flow in human muscle in the basal state. Flow measurement was made with
[15O]-labeled water and positron emission tomography. In the abscissa the relative
flow is normalized to the mean flow. The ordinate shows the frequency with which a
given range of relative flows is observed. Mean flow (Fp, ml min−1 g−1) and relative
dispersion (expressed in %) of the distribution are also presented (adapted from
Vicini, 2001).
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Figure 5.18 Structure of the distributed parameter organ model.

Let us suppose that the organ is describable with a number N of parallel pathways
(Figure 5.18), along which the blood-tissue exchange occurs. Every pathway repre-
sents a region of the organ characterized by a fraction Fi of the total input flow F and
a fractional mass Wi. Based on this definition, a ‘pathway’ is a compact description
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of sub-regions within the organ, each one characterized by the same flow for unit
of tissue mass. It is useful to point out that these regions also need not be adjacent.
Every pathway therefore is characterized from a regional relative flow, fi = Fi/Fp,
i = 1, . . . , N, where Fp is the total input flow, and a fractional mass Wi, i = 1, . . . , N
(which we define as the percentage of the mass of the organ interested from the
regional relative flow fI). The output of the model is therefore given by the total
outflow, which is the weighted (with J; and Wi) sum of the single capillaries responses.

Let us formally define the width of the i-th flow class �fi, i = 1, . . . , N for a generic
flow distribution as:

�f1 = f2 − f1

�fi = fi−1 + fi+1

2
, i = 2, . . . , N − 1

�fN = fN − fN−1 (5.65)

The distribution of relative flows has unitary area:

N∑
i=1

wi�fi = 1 (5.66)

and unitary mean:

N∑
i=1

fiwi�fi = 1 (5.67)

The response of such a model to a pulse input u(t) = δ(t) is then:

h(t) = hA(t) ⊗
[

N∑
i=1

wifi�fiha,i(t) ⊗ hc,i(t) ⊗ hv,i(t)

]
⊗ hV(t) (5.68)

where ⊗ is the convolution operator, hA(t) is the artery impulse response (situated
at the inlet, does not take part in blood-tissue exchange), hV(t) is the vein impulse
response (situated at the outlet, does not take part in blood-tissue exchange), ha,i(t)
is the impulse response of the arterioles in the i-th path, hv,i(t) is the impulse response
of the venules in the i-th path, and hc,i(t) is the impulse response of the capillaries in
the i-th path.

hc,i(t) = δ(t − τi) = δ

(
t − Vp

Fi

)
(5.69)

where Vp (volume per unit tissue) is capillary volume. Thanks to the associative and
commutative property of convolution, we can simplify such a model:

h(t) = hAV(t) ⊗
[

N∑
i=1

wifi�fihav,i(t) ⊗ hc,i(t)

]
(5.70)
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where hAV(t) = hA(t) × hV(t) and hav,i(t) = ha,i(t) ⊗ hv,i(t), i = 1, . . . , N. This formula-
tion is rather general. However, such parameter richness means that, for achieving
identifiability of the physiologically relevant parameters, it is necessary to assume
some characteristics of the model, such as flow heterogeneity and large vessel vol-
umes, according to prior information (e.g., using labelled microspheres allows to
measure flow heterogeneity). When this kind of information is indeed available (e.g.,
the case of the isolated and perfused animal heart, where the model has been initially
developed), the model is identifiable.

A classic application of this model has been to describe transport and metabolism
of glucose in the isolated and perfused heart (Kuikka et al., 986). In this study four
tracers were injected into the aorta; an intravascular, an extracellular, a permeating
not metabolizable and a permeating metabolizable tracer. The four outflow dilution
curves measured in the coronary sinus were interpreted with the model of Figure 5.18
by using the capillary-interstitial-cell model of equation (5.63).

5.4.2 Hepatic Removal of Materials

Estimating the rate constants associated with the hepatic removal of materials from
the circulation is a problem for clinicians as well as physiologists and pharmacologists.
A large group of compounds of special interest in this regard are extensively bound to
plasma proteins with the result that they are removed almost exclusively by the liver.
In the short interval during which this occurs, their extrahepatic distribution is largely
confined to the vascular volume. Endogenous products such as bilirubin and bile
acids, diagnostic agents such as indocyanine green, rose bengal, sulfobromophthalein
(BSP) as well as many drugs are familiar examples.

A classic representation which allows the estimation of the rate constants for hep-
atic transport from the plasma disappearance curve of the material is the lumped
model of Figure 5.19. The model specifically predicts that after an instantaneous
injection of material into compartment P, plasma concentration will decline as the
sum of two exponentials whose slopes and intercepts are simple functions of the rate
constant for hepatic uptake (k1), the rate constant for the return of material from
liver cells to plasma (k2), and the rate constant for irreversible removal from liver
cells (k3). Experimentally determined disappearance curves are often closely approx-
imated by two exponentials. Moreover, the initial volume of distribution determined
by extrapolation of the plasma concentration to t = 0 is usually consistent with the
model assumption of a single well-stirred plasma compartment. These observations
together with the mathematical and experimental simplicity of the methods and its
feasibility for human studies have led to its wide and continuing use ever since it was
originally suggested for BSP removal by Richards et al. (1959).

k1

k2

LiverPlasma
k3

Figure 5.19 Lumped model for the estimation of hepatic transport.
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This model, however, drastically simplifies the physiological variables in a living
system. Specifically, the plasma volume is not a single well-stirred compartment, and
liver cells are exposed to a profile of concentrations along the sinusoids – not as the
model assumes to the mean concentration in the plasma volume as a whole. The
model by Forker and Luxon (1978), which we describe below, has been principally
developed to analyze the validity of the assumptions involved in treating the circu-
lating plasma volume and liver cells as homogeneous compartments and deriving
quantitative estimates of the errors that can occur as a result of this simplification.

The model is shown in Figure 5.20 and is partly lumped and partly distributed.
It is assumed that lumped compartmental representation is adequate for the heart
and lungs, peripheral mixing and splanchnic mixing. However, the assumption of

Sinusoidal Array

Splanchnic
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Splanchnic
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Peripheral 
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Figure 5.20 A hybrid (part lumped, part distributed) model. F denotes
the total hepatic plasma flow, m is the total number of sinusoids, f1, f2, . . . , fm

are respectively the plasma flows into the first, second and m-th sinu-
soids, and k4 and k5 are the fractional transfer rate constants between
compartments P and R (adapted from Forker and Luxon, 1978).
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homogeneity which a lumped representation would imply is removed when describ-
ing the dynamics of the material in the liver. The model contains a small central
compartment, P, which receives the pulse of injected material at t = 0. The volume of
this compartment, Vp, represents a fraction of the total plasma volume considered to
undergo instantaneous mixing and is visualized here as equivalent to the combined
plasma volume of the heart and lungs. A splanchnic circuit receives plasma from and
delivers it to P at the rate of hepatic plasma flow, F. Compartment R contains the
remainder of the plasma volume, Vr, not contained in Vp or the splanchnic circuit
and provides for delayed mixing in the peripheral circulation. Compartments R and
P exchange with each other at a flow rate, H, equivalent to the cardiac output less the
hepatic plasma flow. The splanchnic segment of the model contains a parallel array of
liver sinusoids in series with a mixing compartment, C, and a simple delay represented
by compartment D. The latter two compartments are included to simulate delay and
dispersion in the extrahepatic portion of the splanchnic loop.

The sinusoidal array comprises many identical units whose liver cells all oper-
ate with the same rate constants, but the fraction of liver plasma flow assigned to
individual sinusoids has been given a normal distribution to simulate the shape of
hepatic indicator dilution curves. The model for the generic l-th sinusoid is shown
in Figure 5.21 and is based on the assumptions discussed in Goresky et al. (1973).
Specifically the fractional transfer constants, k1, k2, and k3, are first order rate con-
stants, flow-limited distribution of material to the cell surface is assumed, and axial
diffusion is neglected so that dispersion at the outflow of the sinusoidal system is
wholly attributable to delayed return of material from liver cells and to the non-
uniform distribution of plasma flows. In Figure 5.21, x (the location variable) is the
cumulative vascular volume (instead of sinusoidal length – this simplifies the nota-
tion); ul,vl,zl, denote the material concentration in the sinusoid, Disse space and liver
cells: Vu is the total volume of m identical sinusoids, fl is the plasma flow to the l-th
sinusoid, γ is the ratio of extravascular, extracellular volume to sinusoid volume, and
θ is the ratio of intracellular volume to sinusoidal volume.

Consider m identical sinusoids grouped in n classes according to n values of fi, the
plasma flow per sinusoid. The flow distribution scheme assigns a fraction, αI, of the
m sinusoids to each flow class. Thus the i-th class has mαi elements, each element is
characterized by flow fi with:

n∑
i=1

αi = 1
n∑

i=1

mαifi = F (5.71)

The model consists of three ordinary and 2n partial differential mass balance
equations:

VpṖ = FC(t − τd) + k5VrR − (F + k4Vp)P (5.72)

VcĊ =
n∑

i=1

(αimfi)ui

(
Vu

m
, t
)

− FC (5.73)

VrṘ = k4VpP − k5VrR (5.74)
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x � 0 x � Vu/m

Sinusoid, Vol � Vu/mul (x, t)

vl (x, t)

zl (x, t)

kl

fl fl

k2

k3

Disse Space, Vol � Vuγ/m

Liver Cells, Vol � Vuθ/m

Figure 5.21 Representation of a liver sinusoid unit of the distributed model. x
denotes the cumulative sinusoidal volume, Vu is the total volume of m identical sinusoids,
fl is the plasma flow to the l-th sinusoid, γ is the ratio of extravascular, extracellular
volume to sinusoidal volume, θ is the ratio of intracellular volume to sinusoidal volume,
and k1, k2 and k3 are fractional transfer rate constants as indicated in the figure; u, v and
z denote concentrations in the indicated sites as functions of distance and time (adapted
from Forker and Luxon, 1978).

u̇i(x, t) + γ v̇i(x, t) + ϑżi(x, t) + fi · ∂ui(x, t)
∂x

= −ϑk3zi(x, t) (5.75)

ϑżi(x, t) = k1γvi(x, t) − ϑ(k2 + k3)zi(x, t) (5.76)

where τd = Vp/F is the delay provided by compartment D and the volume term �x
which multiplies each term in equations 5.75 and 5.76 is not shown because it
drops out.

The initial conditions are:

P(0) = 1 (5.77)

ui(x, 0) = vi(x, 0) = zi(x, 0) = C(0) = R(0) = 0 (5.78)

since an impulsive input of material at time t = 0 in P is assumed, with P being the
concentration normalized to its initial value.
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The auxiliary conditions are:

ui(0, t) = P(t) (5.79)

vi(x, t) = ui(x, t) (5.80)

the first denoting that the input concentration to the sinusoids is P while the second
denotes that the material in Disse space is in rapid equilibrium with that in plasma
sinusoids.

The model variable of interest is the time course of the concentration in the periph-
eral compartment, R. However, an analytical solution in closed form is not possible.
The authors have obtained its Laplace transform, R(s), which was subsequently
inverted numerically. Volumes and flows in the model were mostly assigned from
published data on dogs (Table 1 in Forker and Luxon, 1978). Given these values,
the lumped-distributed model generates plasma disappearance curves uniquely deter-
mined by the choice of the three hepatic rate constants k1, k2 and k3. A wide range
of rate constant values, all functionally significant, was examined.

The major findings of this simulation study can be summarized as follows. First,
the lumped-distributed model generates disappearance curves that are fitted almost
exactly by the sum of two exponentials. As a result, the clearance of material
recovered by the lumped model has a small error. Similarly, the initial volume of
distribution is only slightly (20%) lower than that of the lumped-distributed model.
However, the picture changes when estimates of the rate constant of the lumped
model are considered. Estimates of k1 and k2 were consistently lower with errors
in the range of 4% to 57%, and 6% to 73%, respectively, while a relatively minor
underestimation error was encountered in k3 estimate, ranging from 1% to 7%. Also
of note is that errors in estimating k1 and k2 increase rapidly with increasing values
of the initial extraction fraction. In fact, in the lumped-distributed model the plasma
concentration of the material in the liver is less than in the periphery. The lumped
model ignores this effect and compensates for this error by lowering the values of
the rate constants. This underestimation effect is obviously more pronounced when
the plasma disappearance curves vary more rapidly, and is thus amplified in the first
portion of the disappearance curve. In effect k1 and k2 which are estimated from the
first portion of the curve have a greater error.

Although this lumped-distributed model cannot be used in vivo to estimate hepatic
removal of substances, it provides a cautionary lesson when disappearance curves are
analyzed with conventional lumped representation. It also stresses the importance of
relying on the entire disappearance curves and not just on initial slope estimates for
hepatic removal, in order to ensure that estimates for clearance are robust.

5.4.3 Renal Medulla

As a final example of distributed modeling, let us consider the development of a model
of the medulla of the kidney which could be used to simulate human renal function.
The model presented here focuses on the conservation of water and electrolytes and
the production of urine within the medulla. The renal medulla is unusual in the degree
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to which its anatomical structure is essential to its function due to the transverse
interactions between longitudinal flows in the parallel tubules. By formulating an
appropriate mathematical model it is possible to provide a controlled and quantitative
method of studying the contributions of the individual components of the kidney to
the dynamic behavior of the overall system (Cage et al., 1977).

A schematic diagram of the structure of the model is shown in Figure 5.22, where
this corresponds to the anatomy of the kidney. The mass of the cortex and the medulla
is composed of many tubular structures. These are divided into four classes: the
cortical nephrons, the juxtamedullary (JM) nephrons (since they are anatomically
and functionally distinct), the collecting ducts, and the vasa recta. All members of
a class are assumed to behave similarly and each class is simulated by tubes made
up by a series of segments in which fluid flows from one segment to the next. A set
of adjacent segments makes up a functionally distinct section of a tube, such as the
thick ascending limb of the loop of Henle (THAL). The medulla is not treated as a
continuous structure, but rather is modeled as a set of discrete terraces, recognizing
the distributed nature of flows in the kidney. A terrace contains segments of different
sections and the depth of the terrace is the length of a single segment.
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Figure 5.22 Schematic model of the renal medulla. Abbreviations: DESC – descend-
ing limb of the loop of Henle; THIL – thin ascending limb of the loop of Henle; THAL – thick
ascending limb of the loop of Henle; DIST – distal convoluted tubule; COLL – collecting
duct; Ciso, CO and CI are total interstitial solute concentrations (adapted from Cage et al.,
1977).

Model assumptions
A number of assumptions have been made in developing the model and these can be
stated explicitly as follows. First, all the segments within a section of tube are given
the same values for area, volume and permeability coefficients. The values for area
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and volume for each segment are the sum of the surface areas and volumes of all the
members of a class within the depth of one terrace.

In the cortical nephrons, which make up 85% of the total, the loops of Henle
pass only as far as the inner zone of the medulla (see Figure 5.22). Concerning the
juxtamedullary nephrons (JM), the effect of the reducing numbers of the loops of
Henle towards the tip of the medulla is represented by reducing the numbers of tubes
in this class, and by allowing a proportion of the fluid descending through each
terrace to be passed directly to the ascending limb. The JM nephrons are reduced
by a geometric process to 30% of their number by the medullary tips, equivalent to
4.5% of all nephrons.

The vasa recta are treated as if they act only as a passive drain for the medulla.
Therefore, they are modeled as a class of tubes which loop once through the entire
length of the medulla. The flux of solutes for the vase recta is treated as for other
segments, except that the flow rate down the descending limbs is held constant and
the ascending flow is determined directly from the other tubes. The ascending vasa
recta are assumed to take up excess fluid from the interstitium.

The glomeruli and proximal tubules are part of a complex control system which
supplies the nephrons with fluid. The effect of this early part of the nephron is
represented by a fixed flow rate at the beginning of the descending limbs of the
loops of Henle. By changing the value of this input to the model, it is possible to
investigate how the medulla responds to changes in glomerular filtration rate (GFR)
and proximal resorption.

Principles of the mathematical formulation for the tubular structures
Consider an elemental segment of an individual tube, as shown in Figure 5.23, which
is assumed to be well mixed radially and to be unaffected by axial diffusion. The
mass balance for water passing through this segment is given by:

(πR2
j �x) · ∂ρ(x, t)

∂ρ
= ρ(x − �x, t) · Q(x − �x, t) − ρ(x, t) · Q(x, t) − (2πRj�x) · J(x, t)

(5.81)

where J is the water efflux rate per unit area, Q is the flow rate of water, R is the
inner radius of tubule cross-section, t is time in seconds, x is distance along the tubule,
and ρ is fluid density. The term �x represents a small increment of distance and the
subscript j specifies the tubule section number.

Assuming that the density of water remains constant at 1.0 g cm−3, equation (5.81)
can be simplified to:

Q(x, t) = Q(x − �x, t) − (2πRj�x) · J(x, t) (5.82)

Since the concentration of solute does not remain constant, no equivalent simplifica-
tion is possible. Hence the equation describing mass balance for solutes is:

(πR2
j �x) · ∂Ci(x, t)

∂t
= Ci(x − �x, t) · Q(x − �x, t) − Ci(x, t) · Q(x, t)

−(2πRj�x) · Nj(x, t) (5.83)

where C is the concentration of solute and the subscript I defines the solute species.
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Figure 5.23 Diagram showing a segment within a terrace in the renal medulla
(adapted from Cage et al., 1977).

To represent the various tubular structures which are simulated as a number of
functionally distinct classes of tubes, the values for the areas and volumes of the seg-
ments are increased by the number of tubes in the class. The equations are re-written,
labeling the segment at distance x along the tube as n. Equation (5.82) then becomes:

Q(n, t) = Q(n − 1, t) − (2πRj�xBj) · J(n, t) (5.84)

where B is the total number of nephrons in both kidneys. In a similar way, equation
(5.83) becomes:

(πR2
j �xBj) · dCi(n, t)

dt
= Ci(n − 1, t) · Q(n − 1, t) − Ci(n, t) · Q(n, t)

−(2πRj�xBj) · Ni(n, t) (5.85)

These equations can be modified to take account of the reduction in JM nephron
numbers towards the tip of the medulla. The value of Bj is reduced, and the mass
flows of water and solutes from DESC to THIL are incorporated in the model. Hence,
the loop of Henle in the inner medulla, Bj is a function of x.

Fluid flow in (5.84) and (5.85) is constrained in the model to be greater than or
equal to zero so as to avoid the possibility of reverse flow through the tubule.

Interstitial compartment
The equation for the interstitial compartments includes assumptions for the tubular
structures similar to those adopted above. It is assumed that transverse mixing results
in homogeneity in each terrace, and that there is insignificant diffusion or mass flow
between terraces. The equation for a solute at level p is thus:

Vp · dCi(p, t)
dt

= �n(2πRm�xBm) · Ni(m, t) (5.86)
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where Vp is the interstitial volume of terrace p and m is the number of different
segments within the terrace.

Transmural flux
It is assumed that the layer of cells which constitutes a segment of a tube acts as a
simple semi-permeable membrane with specific permeabilities. The transmural flux
rates for the solutes and solvent can then be calculated using Fick’s Law and the laws
of osmosis. For the solvent, the volume efflux rate per unit area is given by:

J(n, t) = kwj · �i(Ci(p, t) − Ci(n, t)) (5.87)

where k is the re-absorption coefficient of the solute species. It is assumed that all the
segments and terraces in the model have constant volume.

As stated above, the vasa recta flow is held constant in the descending vasa recta,
and so J is set equal to zero in equation (5.87). The ascending vasa recta are assumed
to remove all the excess fluid from the interstitium as the result of hydrostatic and
oncotic forces acting on its very permeable membrane. Thus for the ascending limb:

J(p, t) = �mJ(m, t) · (2πRm�xBm) (5.88)

where Rm and Bm are the radius and number of nephrons represented by segment m.
The equations for the solutes within the vasa recta are of the same form as for the

other classes, but their permeability coefficients are very high, allowing the solutes
to move easily into the vasa recta, which act as a drain for the medulla. When only
passive diffusion is involved, the flux of solute is given by Fick’s Law:

Ni(n, t) = kij(Ci(n, t) − Ci(p, t)) (5.89)

where N is the molar flux per unit area. In the sections where re-absorption of elec-
trolyte in the nephron is caused by active transport, it is assumed that passive diffusion
occurs in parallel with active transport and that the effects are additive:

Ne(n, t) = kej(Ce(n, t) − Ce(p, t)) + Nactive (5.90)

where the subscript e refers to electrolyte and Nactive, the active transport component,
is given by:

(5.90a)
Nactive =

{
aej · Ce(n, t) for Ce(n, t) < Ce iso

aej · Ce iso for Ce(n, t) ≥ Ce iso (5.90b)

with the subscript iso indicating that the electrolyte is isotonic to blood plasma.
Having formulated the mathematical model in this fashion, parameter values

and boundary conditions can be inserted into the equations and simulation studies
performed.



110 CHAPTER 5 MODELING THE SYSTEM

5.5 NONLINEAR MODELING

In section 5.3 the examples presented were of systems that were being modeled as
if they exhibited linear dynamics. Mathematically the models were composed of lin-
ear, ordinary differential equations. This concept of linearity can be illustrated by
considering the following equation:

dx(t)
dt

= −a x(t) + b u(t) (5.91)

The dynamics of the dependent variable x are being represented in this equation
as a function of the independent variable time; u is the input variable and a and
b are (constant) parameters. Examining the first term on the right-hand side of this
equation, a doubling of the value of the dependent variable would result in a doubling
of the value of that right-hand term since the parameter a is a constant.

In contrast, consider equation (5.92) below:

dx(t)
dt

= −c x2(t) + b u(t) (5.92)

where c is a constant parameter. Now if we double the value of x, this first right-hand
term is no longer doubled due to the presence of this x2 term. In other words this
x2 term makes the equation, and hence the model, one that is nonlinear. Let us now
consider some examples of nonlinear models.

5.5.1 The Action Potential Model

Several cellular functions depend on the generation and propagation of the action
potential. For instance, receptors convert chemical, thermal and electrical signals into
an action potential: signals which control muscle contraction and hormone secretion
are action potentials. The action potential is an electrical signal which consists of the
local depolarization of the cell membrane as a result of a stimulus (Figure 5.24). Since
the action potential is generated only if the stimulus is above a certain threshold, this
perturbation of the electrical equilibrium of the membrane produces the depolariza-
tion of the adjacent region, thus allowing (in the case of a neuron) the propagation of
the signal along the axon. The main advantage of this complex signal transmission
system is that the signal is regenerated at each section of the membrane and is thus
less sensitive to noise.

An electrical model of the cell membrane

The cell membrane lipid bilayer structure is an insulating component and also at
rest there is a difference of potential between the intracellular and extracellular space.
The simplest model to describe the electrical behavior of the membrane is thus a
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Figure 5.24 Dynamics of the action potential.

capacitance (Figure 5.25). The model equation is:

Cm
dV
dt

+ Iion(V, t) = 0 (5.93)

where V = Vi − Ve (the intracellular and extracellular potentials respectively), Cm is
the membrane capacitance, and Iion are the ionic currents through the membrane, the
most important being those of sodium (Na+), potassium (K+) and chloride (Cl−).

Iion (V, t) Iion (V, t)Ve

Vi

Vi

Ve

�

�

V

Figure 5.25 Capacitance model of the cell membrane. Note that V = Vi − Ve < 0.

One can now build on the schema of Figure 5.25 by taking into account the fol-
lowing facts: (a) the ion fluxes occur along ion-specific channels each characterized
by a certain resistance; (b) ions move along the channels due to a membrane potential
(described by the Goldman equation which combines the Nerst potential of the indi-
vidual ions); and (c) at equilibrium the different ion concentrations are maintained
by an active pump which balances the passive fluxes of sodium and chloride into the
cell and of potassium outside the cell.

The contribution of sodium and potassium ions to the action potential is explicitly
considered, since it is assumed that it is predominant with respect to that of all the
other ions, including chloride, which are lumped into a leakage current.
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With the above logic, equation (5.93) becomes:

Cm
dV
dt

+ gNa(V − VNa) + gK(V − VK) + gL(V − VL) = Ipump + Iapp (5.94)

where gNa, gK and gL are the channel conductances of sodium, potassium and leakage,
and VNa, VK and VL are the respective Nerst potentials of sodium, potassium and all
other ions. Ipump is the active pump current and Iapp is the applied current stimulus.
By incorporating these concepts, the electrical analog of the cell membrane becomes
that shown in Figure 5.26. This linear model is valid only if a small current is applied
(Figure 5.27), but we have seen that, with an elevated current, the system response
is completely different (Figure 5.24).

gNa

VNa

gK

VK

gL

VL

� � �

� � �
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Out

Cm Ipump

�

�

Iapp

V

Figure 5.26 Expanded electrical analog model of the cell membrane. Note that
VNa < 0 and VK > 0.
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Figure 5.27 Membrane voltage in response to a small current.

The Hodgkin-Huxley model

This model focuses on sodium and potassium ions only and does not consider the
role of the active sodium pump (see Figure 5.28). Thus, the model equation becomes:

Cm
dV
dt

= −gNa(V − VNa) − gK(V − VK) + Iapp (5.95)
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Figure 5.28 The model of Figure 5.26 focusing on sodium and potassium ions only.

It is useful to define membrane potential at equilibrium, i.e. when Iapp = 0
(this is known as the Goldman equation and combines the Nerst potential of the
individual ions):

Veq = (gKVK + gNaVNa)
(gK + gNa)

(5.96)

The key piece of intuition which led to the formulation of this model was that the
individual ion conductances of the cell membrane are not constant, but rather are
a function of the membrane potential, i.e. gNa = gNa(V), gK = gK(V) and gL = gL(V).
In addition, it was perceived that for an increase of the membrane potential, the
permeability increases differently for various ions with the dominant ion being the
one with the highest permeability.

Since the system is a closed-loop feedback system, i.e. the membrane potential is a
function of the ion conductances which in turn depend on the membrane potential, the
only possibility to investigate the system experimentally was to open the feedback loop
by maintaining a potential that was constant over time. For this purpose Hodgkin
and Huxley (1952) developed the voltage clamp technique. This involved imposing
step changes of the membrane potential (of different amplitudes) and measuring (at
constant voltage) the ionic current in response to the stimulus, thus eliminating the
dependence of the conductances from the membrane voltage.

In order to derive the time course of the conductances gNa and gK as a function
of V, it has been necessary to separate the individual components of IIon, i.e. INa and
IK. It was assumed that, following an increase in the membrane potential, the cur-
rent going into the cell is mostly due to Na+ ions, whilst that going out of the cell
(responsible for the return to equilibrium of the potential) is mostly due to the K+
ion. Hence the two components of IIon were separated by substituting 90% of extra-
cellular Na+ with coline (a substance which makes the axon non-excitable) and by
assuming that, immediately after the increase of V, the current is due to Na+ only.
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Under these circumstances, let us denote by I1Na and I2
Na the sodium current under

normal conditions and when [Na+]ext = 0 respectively. Assuming also that the ratio
I1
Na/I2

Na = K, a constant over time, and that I1
K = I2

K, one has from IIon = INa + IK that:

I1
Na = K

K − 1
(I1

Ion − I2
Ion) (5.97)

Figure 5.29 shows the time course of IIon and of its components INa and IK. It is now
possible to determine the time course of gNa = INa/(V − VNa) and gK = IK/(V − VK) as
functions of V.

Figure 5.30a shows gK for a step increase and decrease of V, whilst Figure 5.30b
and c show gK and gNa for various values of step increase of V. It should be noted
that gNa, for a step increase of V, first increases and then decreases.
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Figure 5.29 Time course of IIon and its components IK and INa.
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Figure 5.30 (a) Dynamic response of potassium conductance, gK, for step increase and decrease of V; (b) and (c) Dynamic response
of potassium, gK, and sodium, gNa, conductances for various step increases in V.
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Potassium conductance

By observing Figure 5.30a and b, one notes that gK increases after a step increase
in V in a sigmoidal fashion. However, it decreases exponentially when the stimulus
ends. Accordingly, the following description has been proposed for gK

gK = gKn4 (5.98)

where gK is a constant and n obeys the differential equation:

τ(v)
dn
dt

− n∞(v) − n = 0 (5.99)

with v = V − Veq. This can also be re-written as:

dn
dt

= αn(v)(1 − n) − βn(v)n (5.100)

where:

τ(v) = 1
αn(v) + βn(v)

; n∞(v) = αn(v)
αn(v) + βn(v)

(5.101)

For values of V higher than the threshold, n(t) increases exponentially towards its
regimen value and thus activates the potassium current: n(t) is called the potassium
activation. For V increasing from 0 to V0, n(t) is described by:

n(t) = n∞(v0)
[
1 − exp

(
− t

τn(v0)

)]
(5.102)

and n4(t) is a sigmoidal function (Figure 5.31), whilst for V decreasing from V0 to 0
n(t) is given by:

n(t) = n∞(v0)exp
(

− t
τn(v0)

)
(5.103)

and n4(t) decreases exponentially.
One can estimate the values of αn and βn for each value of V of the step function

by fitting the function to the data. Since the number of V values was finite, to obtain
the values of αn and βn for every value of V a function was fitted to the αn, βn data
(Figure 5.32).

Sodium conductance

By observing Figure 5.30c it can be seen that, after a step increase in V, the sodium
channels are first activated and then de-activated. The following description has been
proposed for gNa:

gNa(v) = gNam3h (5.104)

where m and h obey the differential equation:

dw
dt

= αw(1 − w) − βww (5.105)
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Figure 5.32 Fitted values of αn and βn.

where w = m or w = h.
The value of m is small in the steady state, but it is the first to increase after the

stimulus and is called sodium activation. The term h is called sodium de-activation
(h = 0 means that sodium channels are not active). As with gK, αw and βw are
estimated first for the various values of step function after which a curve is fitted
to the αw, βw data (Figure 5.33). The components of gNa following a step increase
in membrane voltage are shown in Figure 5.34, whilst Figure 5.35 shows the func-
tion describing gNa and gK during an action potential with Figure 5.36 showing
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their gating variables. It is worth noting that since τm(V) is very much greater
than τn(V) and τh(V), m(t) responds to voltage variations much faster than n and
h (Figure 5.36). Thus, the first effect of a step change in membrane voltage is the
activation of sodium currents. This process in turn causes a further increase in mem-
brane potential. For elevated values of V, h tends to 0 and thus sodium currents are
de-activated, whilst potassium currents are activated, hence returning the system to
equilibrium.
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5.5.2 Enzyme Dynamics

The dynamics of chemical processes taking place within the human organism are
complex, and only rarely can one truly consider such dynamics to be linear. The
nonlinear form of mathematical models in this domain can be illustrated by examining
a simple enzyme reaction.

In the simplest of enzyme reactions, an enzyme E and a chemical substrate S form
an enzyme-substrate complex X. In turn, this complex decomposes into the orig-
inal enzyme E and the reaction product P. In other words the enzyme acts as a
catalyst in this chemical reaction, but remains unchanged at the end of the reac-
tion. The standard chemical representation of this set of reactions is as depicted in
equation (5.106):

k1 k3
E + S ←→ X −→ E + P

k2

(5.106)

In other words, the substrate to complex reaction is reversible, whereas the conversion
of complex into reaction product can only proceed in the forward direction. The
parameters k1, k2 and k3 are the constants associated with the respective reactions
defining the rates at which they proceed.

If first order reaction dynamics are assumed, these enzyme dynamics can be
represented by the following set of differential equations.

ds
dt

= −k1se + k2x (5.107)

dx
dt

= k1se − (k2 + k3)x (5.108)
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de
dt

= (k2 + k3)x − k1se (5.109)

dp
dt

= k3x (5.110)

where s, x, e and p are the concentrations of the chemical ingredients S, X, E and P,
respectively. The conservation equation:

e0 = e + x (5.111)

also applies, where the subscript refers to the initial concentration. In other words,
the enzyme exists either in free form, or else chemically combined as complex.

In this model the nonlinearity arises through the term k1 se, meaning that there is
a component of rate of change of complex that is proportional to the product of the
concentrations of substrate and enzyme. The other terms in the model are linear.

Thus, on examining the components of equation (5.107), we see that there is
a negative rate of change of concentration of substrate due to the conversion into
complex defined by the first nonlinear term on the right-hand side of the equation;
and a positive rate of change due to the linear second term corresponding to the
conversion of complex back into substrate.

Equation (5.106) represents the simplest possible enzyme reaction. In practice,
enzyme dynamics are usually very much more complex, involving additional layers
of nonlinearity through the action of multiple substrates, co-enzymes, etc. So the
nonlinear model considered above is in fact a highly simplified representation of
reality, involving a large number of assumptions.

Returning to the model, since the enzyme present at any time is either still pure
substance or has been combined, molecule for molecule, with the substrate as the
complex X, a ‘steady state’ is normally said to exist over the period when the rate of
change of substrate concentration, dx/dt is approximately zero. Providing that the ini-
tial concentration of substrate, s0, is very much greater than the initial concentration
of enzyme, e0, then we can write:

v = dp
dt

= k3e0s

s + k1+k2
k1

(5.112)

which can be re-written as:

v = Vmaxs
Km + s

(5.113)

where:

Vmax = k3e0 (5.114)

and

Km = k2 + k3

k1
(5.115)
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Equation (5.113) is the Michaelis-Menten equation which was referred to in sec-
tion 5.2. Thus, if the assumption that s0 � e0 is valid, the rate law is completely
determined by the two parameters Vmax and Km. The former is the limiting velocity
as s → ∞ whilst the latter is the concentration of substrate for which v = Vmax/2.
These parameters provide the conventional method for determining the rate law for
enzymic reactions.

5.5.3 Baroreceptors

Baroreceptors are specialist cells which monitor blood pressure in certain of the main
arteries of the body and transmit this information to the central nervous system
(CNS). As such, these receptors form part of the short-term feedback mechanisms
responsible for the control of blood pressure.

A nonlinear approach to modeling is necessary in order to capture the dynamic
behavior of these receptors. The basis of this approach is presented below. The overall
relationship between blood pressure, P, and the baroreceptor output function, B,
will be developed in the form of the block diagram shown in Figure 5.37, where
sA − sD are dummy variables. This block diagram indicates that B is given by a linear
combination of a dynamic estimate (sC) of the positive derivative (sA) and the dynamic
mean pressure estimate (sB), together with a threshold pressure below which the
baroreceptor does not fire. A further constraint is incorporated into the model in
order to ensure that the firing rate is always positive (Leaning et al., 1983).

P

sA sC

KD sD B2

1

1

1

1

d
dt

dP
dt 1

1 � sτ2

1 � sτ1

1

Kc

�

�

sB

� �

Figure 5.37 Block diagram representation of the relationship between blood pressure, P, and
the baroreceptor output, B (adapted from Leaning et al., 1983).

The equations for each baroreceptor area can be developed as follows:

sA = dP+

dt
(5.116)
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that is to say that sA = dP/dt for (dP/dt) > 0, and sA = 0 otherwise.

dsB

dt
= P − sB

τ1
(5.117)

dsC

dt
= sA − sC

τ2
(5.118)

sD = sB + KCsC − KD (5.119)

and:

B2 = s+
D (5.120)

that is to say that there is a firing of the baroreceptor whenever sD is positive (s+
D). As

depicted in Figure 5.37, KD is the threshold below which firing of the baroreceptor
does not occur, and KC is the average contribution of the positive pressure derivative
term over one cardiac cycle. In the model, KC is estimated by assuming that the
average value of KC sC over one cycle is 60 (Leaning et al., 1983), that is:

1
TH

TH∫
0

KCsC dtC = 60

or

KC = 60TH∫ TH
0 sC dtC

(5.121)

where TH is the heart period, i.e. one cardiac cycle. Thus, for normal values of heart
rate and blood pressure the value of KC calculated in this fashion is approximately 1.0.

The effective input to the CNS can then be assumed to be a static linear function
of the output of the aortic arch baroreceptor BAA and the carotid sinus baroreceptor
BCS, where these are the two baroreceptor locations designated respectively by the
subscripts AA and CS. The combination of these two baroreceptor outputs is depicted
in Figure 5.38. Hence:

B = αBCS + (1 − α)BAA (5.122)
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Figure 5.38 Combination of two baroreceptor outputs (adapted from Leaning et al., 1983).
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where α is typically assumed to be 0.7. In formulating this model it should be noted
that the nonlinearity has arisen as a result of the unidirectionality of the baroreceptor
response; that is, it fires only when the rate of change of pressure in the blood vessel
in question is positive.

5.5.4 Central Nervous Control of Heart Rate

This nonlinear approach to modeling can be adopted in a similar manner in relation
to the CNS control of heart rate. In this case a two region dynamic formulation is
adopted, one for blood pressures above normal and the other for pressures below
normal. For raised blood pressure, the CNS input function B is greater than a thresh-
old value KE and the dynamics of this region (region A) are approximated by a first
order system. This is described by the following equations in which U is a CNS vari-
able. These equations form components of the block diagram shown in Figure 5.39
(Leaning et al., 1983):

UA =
⎧⎨
⎩

(B − KE), B > KE

0, B ≤ KE

(5.123)

UB =

⎧⎪⎪⎨
⎪⎪⎩

1.5,
dUA

dt
> 0

4.5,
dUA

dt
≤ 0

(5.124)

dUC

dt
= (UA − UC)

UB
(5.125)
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Figure 5.39 Block diagram model for CNS control of heart rate, relating baroreceptor function
as input to the output of the heart period (adapted from Leaning et al., 1983).
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For the other region (region B), the dynamics are approximated by a second order
system described by the following equations:

UD =
{

KE, B > KE

0, B ≤ KE
(5.126)

dUE

dt
= UD − UE

τ3
(5.127)

dUF

dt
= UE − UF

τ4
(5.128)

The overall response of the heart rate controller, which is a linear combination of the
outputs of regions A and B, is given by:

UG = KF(UC + UF) (5.129)

where UG represents a continuously varying estimate of the heart rate which is utilized
in the next cardiac cycle, subject to the following constraint, which limits the heart
rate, fH, to lie in the range 30–200 beats per minute:

UH =

⎧⎪⎨
⎪⎩

2.0, UG ≥ 2.0

UG, 0.3 < UG < 2.0

0.3, UG ≤ 0.3

(5.130)

Taken together, this set of model equations can be represented by the block diagram
depicted in Figure 5.39 above which relates baroreceptor function as input to the
output of the heart period.

5.5.5 Compartmental Modeling

Compartmental models are a class of dynamic (i.e. differential equation) models
derived from mass balance considerations which are widely used for studying quan-
titatively the kinetics of materials in physiological systems. Materials can be either
exogenous, such as a drug or tracer, or endogenous, such as a substrate or hor-
mone, and kinetics include processes such as the production, distribution, transport,
utilization, and substrate-hormone control interactions.

Compartmental models have been widely employed for solving a broad spectrum
of physiological problems related to the distribution of materials in living systems
in research, diagnosis and therapy at whole-body, organ and cellular levels. Exam-
ples and references can be found in a number of books including Gibaldi and Perrier
(1982), Carson et al. (1983), Godfrey (1983), Jacquez (1996), Cobelli et al. (2000)
and Carson and Cobelli (2001). We have already seen some examples of linear
compartmental models in section 5.3. Here we shall define and discuss the general
nonlinear compartmental model.
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Let us begin with some definitions. A compartment is a quantity of material
that acts as though it is well-mixed and kinetically homogeneous. A compartmental
model consists of a finite number of compartments with specified interconnections
among them. The interconnections represent fluxes of material which physiologically
constitute transport from one location to another or a chemical transformation or
both. These fluxes of material can be controlled not only by the two interconnected
compartments, but also by other compartments of the system.

Given these introductory definitions, it is useful before explaining well-mixed and
kinetic homogeneity to consider possible candidates for compartments. Consider the
notion of a compartment as a physical space. Plasma is a candidate for a compart-
ment; a substance such as plasma glucose could be a compartment. Zinc in bone
could be a compartment, as could thyroxine in the thyroid gland. In some exper-
iments, different substances could be followed in plasma; plasma glucose, lactate
and alanine provide examples. Thus, in the same experiment there can be more than
one plasma compartment, one for each of the substances being studied. This notion
also extends beyond plasma: glucose and glucose-6-phosphate could be two different
compartments inside a liver cell. Thus, a physical space may actually represent more
than one compartment.

In addition, one must distinguish between compartments that are accessible and
those that are non-accessible for measurement. Researchers often try to assign physi-
cal spaces to the non-accessible compartments. This is a very difficult problem which
is best addressed once it is understood that the definition of a compartment is actu-
ally a theoretical construct which may, in fact, lump material from several different
physical spaces in a system. To equate a compartment with a physical space depends
upon the system under study and assumptions about the model.

With these notions of what might constitute a compartment, it is easier to define
the concepts of well-mixed and kinetic homogeneity. ‘Well-mixed’ means that any
two samples taken from the compartment at the same time would have the same
concentration of the substance being studied, and therefore be equally representative.
Thus the concept of well-mixed relates to uniformity of information contained in a
single compartment.

Kinetic homegeneity means that every particle in a compartment has the same
probability of taking the pathways leaving the compartment. Since, when a particle
leaves a compartment, it does so because of metabolic events relating to transport and
utilization, it means that all particles in the compartment have the same probability
of leaving due to one of these events.

The notion of a compartment, i.e. lumping material with similar characteristics
into collections that are homogeneous and behave identically, is what allows one to
reduce a complex physiological system into a finite number of compartments and
pathways. The required number of compartments depends both on the system being
studied and on the richness of the experimental configuration. A compartmental
model is clearly unique for each system studied, since it incorporates known and
hypothesized physiology and biochemistry. It provides the investigator with insights
into the system structure and is as good as the assumptions that are incorporated in
the model.
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The model

Let Figure 5.40 represent the i-th compartment of an n-compartment model, in which
Qi ≥ 0 denotes the mass of the compartment. The arrows represent fluxes into and
out of the compartment. The fluxes into the compartment from outside the system,
i.e. endogenous (de novo synthesis of material) and exogenous inputs are represented
by Pi and Ui respectively. The flux to the environment and therefore out of the system
is given by F0i, the flux from compartment i to j by Fji and the flux from compartment
j to i by Fij. All fluxes are ≥0. The general equations for the compartmental model
are obtained by writing the mass balance equation for each compartment:

Q̇i(t) =
n∑

j=1
j�=i

Fij(t) −
n∑

j=1
j�=i

Fji(t) + Pi(t) − F0i(t) + Ui(t) Qi(0) = Qi0 i = 1, 2, . . . , n

(5.131)

where Qi0 denotes the mass in the compartment at time 0. In equation (5.131)
some terms may be zero, e.g. Ui and Pi would be zero if there was no exogenous
or endogenous input, respectively.

Qi

Vi

Pi

Fji

Fij

Foi

Ui

Ci � QiVi

Figure 5.40 The i-th compartment with its input and output
fluxes and the output measurement of concentration.

Fluxes Fij are in general functions of all compartmental masses Q1, Q2, . . . , Qn
and sometimes also of time (for the sake of simplicity we shall ignore this dependency
here):

Fij(t) = Fij[Q1(t), Q2(t), . . . , Qn(t)] i = 0, 1, 2, . . . , n; j = 1, 2, . . . , n; j �= i (5.132)

A similar dependence on Q1, Q2, . . . , Qn can also apply for each of the Pi.
Not all compartments are usually accessible to measurement, as already indicated.

Let us assume that we can measure the concentration of the material in M compart-
ments. Then one can couple equation (5.131) with the measurement equation:

Ci(t) = Qi(t)
Vi

i ∈ M (5.133)

where Vi denotes the volume of the compartment.
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It is always possible to write equation (5.132) as:

Fij[Q1(t), Q2(t), . . . , Qn(t)] = kij[Q1(t), Q2(t), . . . , Qn(t)]Qj(t)

i = 0, 1, 2, . . . , n; j = 1, 2, . . . , n; j �= i (5.134)

where kij is defined as the fractional transfer coefficient from compartment j to i.
With this definition one has:

kij[Q1(t), Q2(t), . . . , Qn(t)] ≥ 0 i = 0, 1, 2, . . . , n; j = 1, 2, . . . , n; j �= i (5.135)

Thus, by substituting equation (5.134) into equation (5.131), the system of equations:

Q̇i(t) =
n∑

j=1
j�=i

kij[Q1(t), Q2(t), . . . , Qn(t)]Qj(t)

−
n∑

j=1
j�=i

kji[Q1(t), Q2(t), . . . , Qn(t)]Qi(t) + Pi[Q1(t), Q2(t), . . . , Qn(t)]

− k0i[Q1(t), Q2(t), . . . , Qn(t), t]Qi(t) + Ui(t) i = 1, 2, . . . , n (5.136)

describes the generic n-compartment nonlinear model.
There are several candidate mathematical descriptions of the kij functional depen-

dencies. The simplest one is that where there is no control on kij, i.e. kij is a
constant:

kij[Q1(t), Q2(t), . . . , Qn(t)] = kij (5.137)

and thus:

Fij(t) = kijQj(t) (5.138)

i.e. the flux is a linear function of Qj (see Figure 5.41).
A more realistic description, allowing a saturation control from the source

compartment, is that of Michaelis-Menten:

kij[Qj(t)] = VM

Km + Qj(t)
(5.139)

and thus:

Fij[Qj(t)] = VMQj(t)
Km + Qj(t)

(5.140)

where VM is the saturation value and KM is the value of Qj giving VM/2 (Figure 5.41).
It is of interest to note that for Qj � KM, equation (5.139) becomes equation (5.137)
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Figure 5.41 Four examples of functional dependence of flux between compartments: (a) no
control; (b) control from the source compartment; (c) control from the remote compartment; and
(d) control from source and remote compartments.
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with kij = VM/KM. This means that the Michaelis-Menten relation starts linearly for
small values of Qj. This is a potential limitation in certain situations, e.g. in addition to
saturation, the threshold phenomenon is also often present in physiological systems.

This additional complexity is taken care of by the Hill relationship:

kij[Qj(t)] = VMQq−1
j (t)

Km + Qq
j (t)

(5.141)

with q being a positive integer. Note that for q = 1 the Hill relation collapses to the
Michaelis-Menten form.

Control usually also occurs from compartments other than Qj, say Qh. For
instance, one can have linear control of kij from Qh:

kij[Qh(t)] = α + βQh(t) (5.142)

or linear plus derivative control from Qh:

kij[Qh(t)] = α + βQh(t) + γQ̇h(t) (5.143)

It should be noted that linear parametric control on kij implies nonlinear dependence
of the flux Fij, e.g. for equation (5.142) one has:

Fij[Qj(t)] = kij[Qh(t), Qj(t)]Qj(t) = αQj(t) + βQj(t)Qh(t) (5.144)

The control compartment Qh can also coincide with the destination compartment
Qi. In this case an example is provided by the Langmuir relation (see Figure 5.41):

kij[Qi(t)] = α

[
1 − Qi(t)

β

]
Qi < β

(5.145)

kij[Qi(t)] = 0 Qi ≥ β

It is also possible that control occurs from more than one compartment. An exam-
ple of this is shown in Figure 5.41 where the parameters of the Michaelis-Menten
relationship describing k02 are functions of Q3, thus giving:

k02[Q2(t), Q3(t)] = VM[Q3(t)]
Km[Q3(t)] + Q2(t)

(5.146)

It is useful to put the compartmental model (5.136) and (5.133) in compact vector-
matrix notation. To do so, let us define:

kii[Q1(t), Q2(t), . . . , Qn(t)] = −k0i[Q1(t), Q2(t), . . . , Qn(t)]

−
n∑

j=1
j�=i

kji[Q1(t), Q2(t), . . . , Qn(t)] (5.147)
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Equations (5.136) and (5.131) thus become:

Q̇i(t) =
n∑

j=1

kij[Q1(t), Q2(t), . . . , Qn(t)]Qj(t) + Pi[Q1(t), Q2(t), . . . , Qn(t)] + Ui(t)

Qi(0) = Q10 (5.148)

and:

Ci(t) = Qi(t)
Vi

i ∈ M (5.149)

Now, defining the vectors:

Q(t) = [Q1(t), Q2(t), . . . , Qn(t)]T (5.150)

P(t) = [P1(t), P2(t), . . . , Pn(t)]T (5.151)

U(t) = [U1(t), U2(t), . . . , Un(t)]T (5.152)

C(t) = [C1(t), C2(t), . . . , Cm(t)]T (5.153)

one has:

Q̇(t) = K[Q(t)]Q(t) + P[Q(t)] + U(t) Q(0) = Q0 (5.154)

C(t) = HQ(t) (5.155)

where: K[Q(t)] is the compartmental n × n matrix and H is the measurement m × n
matrix.

The compartmental matrix has some properties which arise from the mass balance
principle upon which compartmental models rely, namely:

kii[Q(t)] ≤ 0 for all i (5.156)

kij[Q(t)] ≥ 0 for all i �= j (5.157)

In addition, K[Q(t)] is diagonally dominant with respect to columns, i.e.:

|kii[Q(t)]| ≥
n∑

j=1
j�=i

|kji[Q(t)]| =
n∑

j=1
j�=i

kji[Q(t)] for all i (5.158)

since
n∑

j=1

kji[Q(t)] =
n∑

j=1
j�=i

kji[Q(t)] + kii[Q(t)] = −koi ≤ 0 (5.159)

By using properties of (5.156) to (5.158), one can state some stability properties of
nonlinear compartmental models (Jacquez and Simon, 1993).
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An interesting class of compartmental models is that where K is a constant matrix,
i.e. kij[Q(t)] = kij. In this case one has:

Q̇(t) = K · Q(t) + P(t) + U(t) (5.160)

and compared to the nonlinear case it is relatively easy to state the stability properties
(Jacquez and Simon, 1993). It can be shown that no eigenvalues can have positive
real parts and that there are no purely imaginary eigenvalues. This means that all the
solutions are bounded and if there are oscillations they must be damped. Also, for
particular classes of linear compartmental models, such as mamillary and catenary
models (see Figure 5.42), the eigenvalues are always real.

1

3

2n

k03

k02k0n

k01

kn1 k21

k12

1 2 3 n

k01 k0n

k21

k12

kn, n – 1

kn – 1, n

Mamillary

Catenary

k1n

Figure 5.42 Examples of mamillary and capillary compartmental models.

It is worth commenting that whilst physiological systems almost invariably exhibit
nonlinear dynamics, the linear dynamic model of equation (5.160) is very useful due
to an important result. The kinetics of a tracer in a constant steady-state system, linear
or nonlinear, is linear with constant coefficients. An example is shown in Figure 5.43.
This can be used to study tracer glucose kinetics in the steady-state at the whole-body
level. Linear compartmental models, in conjunction with tracer experiments, have
been used extensively in studying the distribution of materials in living systems at
whole-body, organ and cellular levels. Examples and references can be found in
Carson et al. (1983), Jacquez (1996), Cobelli et al. (2000) and Carson and Cobelli
(2001).
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Figure 5.43 The linear compartmental model of glucose kinetics.

An interesting application of linear compartmental models at the organ level is
in describing the exchange of materials between blood, interstitial fluid, and cellular
tissue from multiple tracer indicator dilution data. Compartmental models provide a
finite difference approximation in the space dimension of a system described by par-
tial differential equations which may be more easily resolved from the data. These
models are discussed in Jacquez (1985). An example of a model describing glucose
transport and metabolism in human skeletal muscle is shown in Figure 5.44 (Sacco-
mani et al., 1996). This model is, in some sense, the compartmental alternative to the
distributed modeling discussed in section 5.4.1 for describing blood-tissue exchange.
The two models clearly rely on different assumptions and exhibit different degrees of
parsimony.

5.5.6 Insulin Receptor Regulation

Representing the dynamics of insulin receptor regulation offers another example
of nonlinear modeling. A conceptual representation of the model is given in Fig-
ure 5.45, showing the cell and the processes being modeled (Quon and Campfield,
1991). Surface and intracellular pools of insulin receptors are connected by the
rate constants for receptor translocation between the two pools (rates of bound
and unbound receptor internalization and receptor recycling); receptor synthesis
and the degradation of intracellular receptors. No distinction is made in the model
between insertion into the cell membrane of newly synthesized receptors and insertion
of receptors which have been internalized, bound or unbound, and then retro-
endocytosed. In the model it is assumed that all processes are characterized by
first order rate constants, with the exception of receptor synthesis which is mod-
eled as a zero order state dependent process. More complex representations were
considered, including higher order rate constants and saturable processes. How-
ever, insufficient data were available to justify such more complex forms of model
representation.
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Figure 5.44 Compartmental model of transport and metabolism of glucose in skeletal
muscle. P denotes plasma; P&ISF denotes plasma and interstitial fluid; C denotes cell; and
RBC represents red blood cells. Parameters kin, kout and kmet denote glucose transport into
and out of the cell and its metabolism.

The mathematical realization of this model is as follows:

ẋ1(t) = k−1x2(t) − [k1(1 − x3(t) + k′
1x3(t)]x1(t) (5.161)

ẋ2(t) = [k1(1 − x3(t) + k′
1x3(t)]x1(t) − k−1x2(t) + k2 − k−2x2(t) (5.162)

ẋ3(t) = 0 (5.163)

where x1 = number of surface receptors (% total basal receptors); x2 = number
of intracellular receptors; x3 = fraction of bound receptors; k1 = unbound recep-
tor internalization rate; k1′ = bound receptor internalization rate; k−1 = receptor
recycling rate; k2 = state dependent synthesis rate; k−2 = intracellular receptor
degradation rate.

The nonlinearity in this model stems from the presence of the multiplicative terms
involving the product x3x1. There is a component of positive rate of change in the
number of intracellular receptors which is proportional both to the number of surface
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k1k1

k2

k�1

k�2

Figure 5.45 A schematic diagram of insulin receptor regulation model. The param-
eter k1 is the unbound receptor internalization rate constant, k1′ is the bound internaliza-
tion rate constant, k−1 is the receptor recycling rate constant, k2 is the state dependent
receptor synthesis rate constant, and k−2 is the intracellular receptor degradation rate
constant. The symbol τ denotes a free insulin molecule, ∨ denotes an insulin receptor,
and � denotes a bound insulin receptor complex.

receptors and to the fraction of bound receptors. All of the other terms in the model
are linear, but the presence of this one nonlinear effect means that, overall, the model
is nonlinear.

5.5.7 Insulin Action Modeling

The ability to measure in vivo insulin action is of great value since it is well-established
that abnormalities in insulin action are an important determinant of diabetes and
other states of glucose intolerance. A model-based noninvasive method to measure
insulin action or insulin sensitivity is to resort to an intravenous glucose tolerance
test (IVGTT) and to interpret the plasma glucose and insulin concentrations with
the so-called minimal model (Bergman et al., 1979). The salient features of this
method are discussed later in this chapter, and for a more detailed presentation of
the model we refer to Case Study 6 (section 11.6). The glucose-insulin system is a
negative feedback system and can be profitably thought of as being composed of the
glucose and insulin systems connected by the measured plasma glucose and insulin
concentrations (Figure 5.46).

The rationale behind the glucose minimal model is to treat the measured insulin as
a known input and to predict the measured glucose concentration. To do so, a descrip-
tion of the glucose kinetics and insulin action must be incorporated into the model.
However, with this system decomposition there is no need to simultaneously describe
the upper portion of the system, i.e. all processes related to glucose-stimulated insulin
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Figure 5.46 The glucose-insulin system represented as two inter-connected subsystems
linked by their measured signals.

secretion, insulin kinetics and degradation. The physiological scheme of the glucose
minimal model is shown in Figure 5.47 and its mass balance equations are:

Q̇(t) = NHGB(t) − Rd(t) Q(0) = Qb + D (5.164)

İ′(t) = −k3I′(t) + k2[I(t) − Ib] I′(0) = 0 (5.165)

G(t) = Q(t)
V

(5.166)
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Liver

k2 k3

k1
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Rd

D

G � Q/V

NHGB

Plasma 
Insulin

Peripheral 
Tissues

Figure 5.47 The glucose minimal model. The rate constants, k, characterize either material fluxes
(solid lines) or control actions (dashed lines).

where Q is glucose mass, with Qb denoting its basal value; D is the glucose dose;
NHGB is net hepatic glucose balance; Rd is plasma glucose disappearance rate;
I′ is insulin concentration (deviation from basal) in a compartment remote from
plasma (interstitial fluid – from where insulin action signaling occurs) and I is plasma



5.5 NONLINEAR MODELING 137

insulin concentration with Ib denoting its basal value; G is plasma glucose concentra-
tion, with Gb denoting its basal value; and V is the distribution value. Clearly GbV
equals Qb.
NHGB is controlled by glucose and remote insulin:

NHGB(t) = NHGB0 − [k5 + k6I′(t)]Q(t) (5.167)

where NHGB0 is net endogenous glucose balance at zero glucose.
Rd is controlled by glucose and remote insulin:

Rd(t) = [k1 + k4I′(t)]Q(t) + Rd0 (5.168)

where Rd0 is glucose disappearance rate at zero glucose. Thus, by incorporating
(5.167) and (5.168) into (5.164), the following expressions are obtained:

Q̇(t) = −[(k5 + k1) − (k6 + k4)I′(t)]Q(t) + (NHGB0 − Rd0) Q(0) = Qb + D (5.169)

İ′(t) = −k3I′(t) + k2[I(t) − Ib] I′(0) = 0 (5.170)

G(t) = Q(t)
V

(5.171)

where the term (NHGB − Rd0) can be written as (k3 + k1)Qb by using the basal
constraint dQ/dt = 0. The model is nonlinear due to the presence of the product of
Q and I′ in (5.169).

Unfortunately, the model has too many parameters to be resolved, assuming
plasma insulin concentration I as a known input, from plasma glucose concen-
tration data G, i.e. the model is a priori unidentifiable (see Chapter 7). To be
resolved numerically, the model must be made more parsimonious by the following
reparameterization that is the classic minimal model representation:

Q̇(t) = −[p1 + X(t)]Q(t) + p1Qb Q(0) = Qb + D (5.172)

Ẋ(t) = −p2X(t) + p3[I(t) − Ib] X(0) = 0 (5.173)

G(t) = Q(t)
V

(5.174)

This parameterization has new parameters, the p’s, and a new variable, X, which
are related to the parameters and variable of the original scheme of Figure 5.47 as
follows:

X(t) = (k4 + k6)I′(t) (5.175)

p1 = k1 + k5 (5.176)

p2 = k3 (5.177)

p3 = k2(k4 + k6) (5.178)
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The model can thus predict the time course of X, a variable related to insulin action
by an unknown scale factor (k4 + k6). However, it can also provide an index of
insulin action called insulin sensitivity. To do this one needs to formally define insulin
sensitivity. Let us first define glucose effectiveness, i.e. the ability of glucose per se to
enhance its own disappearance:

SG = −∂Q̇
∂Q

∣∣∣∣∣
SS

(5.179)

where ss denotes steady state. Then, insulin sensitivity is simply the ability of insulin
to enhance glucose effectiveness:

SI = −∂SG

∂I

∣∣∣∣
SS

(5.180)

By applying these definitions, SI can be calculated as:

SI = p3

p2
= k2(k4 + k6)

k3

min−1

(μU · ml−1)
(5.181)

The intuitive meaning of SI is clear from the right-hand side of the expression in
terms of the ki parameters: it is directly proportional to the stimulatory action on the
periphery (k4) and inhibitory action on the liver (k6), but it is also proportional to
the insulin input magnitude (k2) and to the time constant of action (1/k3).

5.5.8 Thyroid Hormone Regulation

Another model containing a nonlinear element is that developed to increase under-
standing of physiological mechanisms regulating the thyroid hormones focusing on
the relationships between the anterior pituitary and thyroid glands. The basic features
of the thyroid hormone regulating system are shown in Figure 5.48. The regulated
variables are assumed to be the free concentrations of the two thyroid hormones,
thyroxine T4 and triiodothyronine T3 in the plasma. Regulation is assumed to take
place through feedback of information relating to these two hormones to the anterior
pituitary. In this manner the secretion of thyrotrophin (TSH), the thyroid-stimulating
hormone, by the anterior pituitary can be modified. TSH is secreted in response to

TSH
Free T3

Free T4

Binding 
Distribution 
and Disposal

Pituitary 
Gland

Thyroid 
Gland

T3

T4

Figure 5.48 Conceptual model of the principal features of the thyroid-pituitary axis of
the hormone regulatory system.
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TRH, the thyrotrophic-releasing hormone that is produced by the hypothalamus.
Stimulation of the thyroid gland by TSH brings about the secretion of T3 and T4.
These hormones undergo reversible binding to three plasma proteins (TBG, TBPA and
albumin). Free (i.e. unbound) hormone is distributed into extravascular sites where
breakdown of T3 and T4 is assumed to occur. A proportion of T4 is converted to T3.

To gain increased quantitative understanding of the nature of the feedback regu-
latory system, a number of models have been developed, based on the early work of
Saratchandran et al. (1976). The fundamental postulates underpinning these models
are as follows:

1. Feedback signals act by altering the secretion rate of the hormones produced
by the regulated organ.

2. TSH secretion is inhibited by T3 or T4 or both. Secretion is proportional to
the logarithm of the current level of TRH in the pituitary portal circulation
(introducing a nonlinear component here).

3. The secretion rates of T3 and T4 are dependent on TSH, there being no
autonomous secretion of either thyroid hormone.

4. Destruction of all hormones occurs by means of first order processes.
5. Less than 20% of T3 production is by direct secretion in the basal state. The

remainder is produced by peripheral de-iodination of T4.
6. Circulatory mixing dynamics are sufficiently rapid to be ignored.

Let us consider first the mathematical description of the portion of the model describ-
ing the dynamics of binding, distribution and disposal of T3 and T4 (DiStefano et al.,
1975). Each of the hormones is described in terms of a three compartment model
representing plasma and two extravascular sites, those with fast and slow dynamics,
respectively (Figure 5.49). A linearized model can be adopted in terms of which the
following equations can be written defining the rate of change of concentration of
the hormone:

dx1

dt
= a1x1 + a2x2 + a3x3 + u1

V
(5.182)

dx2

dt
= a4x1 + a5x2 + a6x5 (5.183)

dx3

dt
= a7x1 + a8x3 + a9x6 (5.184)

dx4

dt
= a10x4 + a11x5 + a12x6 + u2

V
(5.185)

dx5

dt
= a13x4 + a14x5 (5.186)

dx6

dt
= a15x4 + a16x6 (5.187)
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Figure 5.49 A six compartment model depicting the coupled dynamics of the binding, dis-
tribution and disposal of T3 and T4. The thyroid hormone binds to the three proteins thyroid
hormone-binding globulin, TBG, thyroid hormone-binding pre-albumin, TBPA, and albumin, AL.
(adapted from DiStefano et al., 1975).

where: x1 = plasma total T3 concentration; x2 = fast compartment total T3 con-
centration; x3 = slow compartment total T3 concentration; x4 = plasma total T4
concentration; x5 = fast compartment total T4 concentration; x6 = slow compart-
ment total T4 concentration; u1 = rate of secretion of T3; u2 = rate of secretion of
T4; V = plasma volume, a1, a2, . . . , a16 are constant parameters reflecting the var-
ious rates of material transfer. Some of these are composite parameters so that, for
instance, a1 reflects transport of T3 form plasma to both fast and slow compartments.

Since it is assumed that the free fractions of T3 and T4 are involved in feedback
regulation, equations are required relating free concentration to the total (i.e. free
and protein-bound fractions) concentration. The following two algebraic equations
provide an approximate description of these dynamics:

x7 = a17x1 (5.188)

x8 = a18x4 (5.189)

In its first form, the following descriptions were assumed for the rates of secretion of
T3 and T4 and for the dynamics of TSH:

u1 = k1x9 (5.190)
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u2 = k2x9 (5.191)

dx9

dt
= k3 log u3 − k4x7 − k5x9 (5.192)

where x9 = concentration of TSH in plasma; u2 = perceived secretion rate of TRH
in portal plasma; k1, k2 = parameters representing the stimulatory effect of TSH
on the thyroid gland; k3 = parameter representing the stimulatory effect of TRH on
the rate of TSH secretion; k4 = parameter representing the inhibitory effect of free
T3; k5 = rate constant for loss of TSH in plasma.

With values inserted for the various parameters, simulation studies can then be
undertaken with the model in order to gain quantitative insights regarding the regu-
latory processes. However, on the basis of such simulation studies it was found that
the model assumptions of proportional control for the rate of release of T3, accept-
able model responses could not be achieved with the adoption of parameter values
which were physiologically plausible. The model was therefore extended by assuming
that the rate of release of T3 is not only proportional to the current concentration of
TSH, but also to the cumulated past excess of TSH concentration (compared with the
steady-state level). This assumption of proportional and what is known as integral
control did lead to results which were plausible with the adoption of physiologically
acceptable parameters. In other words, in terms of the model, (5.190) is replaced by
(5.193) below:

u1 = k1x9 + k6

t∫
0

(x9 − x9s) dt (5.193)

where x9s is the steady-state concentration of TSH and k6 is a positive parameter.

5.5.9 Modeling the Chemical Control of Breathing

Large scale mathematical models of the human respiratory system can play an impor-
tant role in testing hypotheses concerning the control of breathing. The example
presented here incorporates the inspiratory and expiratory processes of breathing
and has been used to explore the relationships between the elements of the breathing
pattern (inspiratory, TI, and expiratory, TE, times, and tidal volume, VT). By assum-
ing a triangular waveform pattern of breathing, separate controllers are provided for
inspiratory and expiratory times. This enables a variety of hypotheses relating to the
chemical control of breathing to be investigated.

In developing the model, the respiratory system is presented in conventional con-
trol system terms with its two major components of the controlled system and the
controller (Sarhan et al., 1988).

The controlled system
The model adopted for the controlled system is depicted in Figure 5.50. This consists
of four major compartments: lung, brain tissue, muscle and other tissue connected by
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Figure 5.50 The model structure of the controlled respiratory system. The rates of
change of M and U represent CO2 production and O2 utilization, with the subscripts B, M
and OT corresponding to brain tissue, muscle tissue and other tissue respectively (adapted
from Sarhan et al., 1988).

the circulatory bloodstream. The lung is represented as a single chamber of variable
volume, thus permitting the generation of oscillating blood gas concentrations and
pH in the arterial blood. The model incorporates a dead space corresponding to the
portion of the lung in which gas exchange does not occur. This is partly of fixed
volume (the anatomical dead space VD anat) and partly expansible, the alveolar dead
space VD alv which encroaches on the lung volume VL. Thus alveolar gas exchanging
volume VA is equal to VL minus VD alv.

The model also includes a shunt, whereby a portion of mixed venous blood
can bypass the lung. It is assumed that the alveolar gas equilibrates perfectly with
end-capillary blood, and that similarly the partial pressures of gases in the tissue
compartments are equal to the pressures in the venous blood from that compartment.
Mixing within compartments is assumed to be instantaneous and complete.

The full equations for the controlled system describe the rate of change of the
blood gases in each of the compartments. They are not given here since the emphasis
in this example is in showing how the model can be developed for the controller. They
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can be found in Sarhan et al. (1988). The equations correspond to: the alveolar gas
exchanging and dead space compartments; the tissue compartments; CO2 and O2
dissociation curves in blood and tissues; hydrion concentration equations; control
of cardiac output and brain blood flow equations; calculation of lag times due to
circulatory delays; mixed venous blood; and dead space and shunt. The equations
defining gas exchange and metabolism are restricted to carbon dioxide and oxygen.

VT

VA

(1)

t(s)

t(s)

TI TEVFRC

In

Ex

VA

(1 min�1)

.

Figure 5.51 Pattern of breathing (adapted from Sarhan et al., 1988).

By representing the pattern of breathing with a triangular waveform (as shown
in Figure 5.51) separate controllers can be provided for inspiration and expiration,
thus enabling relations between the components of the respiratory cycle and chemical
drive to be investigated. The instantaneous lung volume is therefore defined by the
two equations:

Inspiration

VA = VFRC + VT(t − t0)
TI

(5.194)

where VFRC is the functional residual capacity, VT is the tidal volume, TI is the
inspiratory time, t is time and t0 is the starting time of the current breath. The rate
of change of lung volume, dVA/dt is given by:

dVA

dt
= VT

TI
(5.195)
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Expiration

VA = VFRC + VT − VT(t − t0)
TE

(5.196)

where TE is the expiratory time and dVA/dt during expiration is given by

dVA

dt
= −VT

TE
(5.197)

The controller
The form of the controller for the pattern of breathing is shown in Figure 5.52. The
equations are derived partly on an empirical basis using data derived from
Cunningham and Gardner (1977).

Set 
Point

Controller

Disturbances

TI � g(VT)
Controlled 

System

�

�

PaCO2

TE � g(TI, PaCO2
)

VT � g(PaCO2
, TI)

Figure 5.52 Controller of the breathing pattern (adapted from Sarhan et al., 1988).

Inspiratory flow controller

VT
TI

= p1(PaCO2 − p2) (5.198)

where PaCO2 is the arterial partial pressure of CO2.

Inspiratory time controller

TI = p3 − p4 VT (for VT < 2.08 liters) (5.199)

TI = p5(VT − p6) + p7 (for VT ≥ 2.08 liters) (5.200)
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Expiratory time controller

TE = p8 TI + p9

(PaCO2 − p2) − p10
(5.201)

where p1 − p10 are parameters evaluated from the data of Cunningham and Gardner
(1977) with values: p1 = 0.11; p2 = 35.2; p3 = 1.29; p4 = 0.07; p5 = 0.65; p6 = 0.88;
p7 = 0.59; p8 = 0.64; p9 = 11.1 and p10 = −2.73.
Tidal volume is evaluated from:

VT =
(

VT
TI

)
· TI (5.202)

where (VT/TI) is taken from (5.198) and TI from (5.199) or (5.200), and the total
time for one respiratory cycle, TT, is:

TT = TI + TE (5.203)

so that the respiratory frequency (f) and lung ventilation (dV/dt) are given by:

f = 60
TT min−1 (5.204)

dV
dt

= f · VT (5.205)

thus providing a definition of ventilation as the product of the separately calculated
variables, respiratory frequency and tidal volume.

Having developed the basic form of this complex model, it can then be used in sim-
ulation studies to test hypotheses and gain quantitative insight regarding the control
of breathing in situations such as that of exercise.

5.6 TIME-VARYING MODELING

There is a correspondence between nonlinear modeling and model elements that
are time-varying. In the examples of nonlinear models presented above, the nonlin-
ear terms were an attempt to incorporate the inherently nonlinear structural effects
occurring within the underlying physiology. An alternative means of producing the
same effects in terms of dynamic response is to incorporate into a model components
which are treated as if they were time-varying.

5.6.1 An Example in Cardiac Modeling

An illustration of this time-varying approach to modeling can be seen in a repre-
sentation of the short-term dynamics of the cardiovascular system (Leaning et al.,
1983). The basic structure of the model is depicted in Figure 5.53. The mathematical
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Figure 5.53 Structure of the uncontrolled hemodynamics (adapted from Leaning et al., 1983).

model incorporates differential equations which describe the blood flow dynamics. In
arriving at these equations, time-varying representations are adopted for the elastic
properties of the heart chambers. In other words, rather than treating such param-
eters as being constant, as was the case earlier in this chapter, here that simplifying
assumption is dispensed with, given that the time scale of this model is seconds and
minutes; a time frame in which the time-varying nature of these parameters must be
incorporated. The assumption of time-invariance would result in an invalid model,
in contrast to a time frame of tens of minutes or hours in which case the simplifying
assumption would be valid.
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The heart is considered as a set of four separate unidirectional pumps. Cardiac
timing events are described by linear approximations based on earlier research of
Beneken and De Wit (1967):

TAS = 0.1 + 0.09TH (5.206)

TAV = TAS − 0 (5.207)

TVS = 0.16 + 0.2TH (5.208)

where TAS is the duration of the arterial systole, TAV is the time between the onset of
arterial systole and the onset of ventricular systole, TVS is the duration of ventricular
systole, and TH is the heart period.

For a heart period, TH, of 0.8 s, corresponding to a heart rate of 75 beats per
minute, TAS = 0.172 s, TAV = 0.132 s and TVS = 0.32 s.

The pumping action of the heart is described by the equation relating pressure and
volume:

P = a(t)[V − Vu] (5.209)

where a(t) is the time-varying elastance function (elastance being the reciprocal of
compliance).

The elastance functions for the four heart chambers are given by the equations
derived using the time courses of the four elastances shown in Figure 5.54.

aRA = x(aRAS − aRAD) + aRAD (5.210)

aRV = y(aRVS − aRVD) + aRVD (5.211)

aLA = x(aLAS − aLAD) + aLAD (5.212)

aLV = y(aLVS − aLVD) + aLVD (5.213)

where the subscripts RA, RV, LA and LV refer to the right and left atria and ventricles,
and the S and D subscripts correspond to systolic and diastolic values respectively.
In (5.210) to (5.213):

x = sin
(

πtc

TAS

)
, 0 < tc < TAS (5.214)

x = 0, tc ≥ TAS

y = 0, tc ≤ TAV

y = sin
[
π(tc − TAV)

TVS

]
, TAV < tc < (TAV + TVS) (5.215)

y = 0, tc ≥ (TAV + TVS)
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Figure 5.54 Elastances of the four heart chambers (adapted from Leaning et al., 1983).

The minimum (diastolic) and maximum (systolic) values of elastance are given by:

aD = PD

VD − Vu
; aS = PS

VS − Vu
(5.216)

where tc is the elapsed time during each cardiac cycle (0 ≤ tc ≤ TH), V is volume
and the subscript u denotes its unstressed value.

These time-varying components can then be incorporated into the differential
equations to describe the pressure/flow dynamics during the cardiac cycle. As an
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illustration, consider the right atrium. This can be modeled by the following set of
equations:

PRA = aRA(t)[VRA − VuRA] (5.217)

dVRA

dt
= F1 − FRARV, VRA ≥ 0 (5.218)

FRARV = PRA − PRV

RRARV
, PRA > PRV

FRARV = 0, PRA ≤ PRV (5.219)

F1 = FSVCRA + FIVCRA + FBRONC + FCOR (5.220)

Double subscripts relate to flow, F, and resistance, R, between heart chambers, e.g.
FRARV corresponds to flow from right atrium to right ventricle. The four terms on
the right of (5.220) are the flows from superior vena cava to right atrium, inferior
vena cava to right atrium, bronchial flow and coronary flow respectively.

Equation (5.219) approximates the action of the tricuspid valve with RRARV being
the resistance of the fully opened valve. F1 represents the total inflow of the right
atrium.

The basic flows through the coronary and bronchial vascular beds are given by:

FCOR = PAO1 − PRA

RCOR
(5.221)

FBRONC = PAO3 − −PRA

RBRONC
(5.222)

where the subscripts AO1 and AO3 correspond to ascending aorta and thoracic aorta
respectively.

The right atrial inlet contraction which assists the pumping action introduces resis-
tance to the inflow. Whilst this is negligible in the case of bronchial and coronary
flow, it is a significant effect in the case of blood flow from the inferior and superior
venae cavae, represented in the model by equations (5.223) and (5.224).

FIVCRA = F9, F9 ≥ 0

FIVCRA = 0.1F9, F9 < 0 (5.223)

FSVCRA = F10, F10 ≥ 0

FSVCRA = 0.1F10, F10 < 0 (5.224)

where F9 and F10 are the respective flows, assuming no contraction.
In a similar manner, we can write equations describing the dynamics occurring in

the left atrium, taking into consideration the action of the mitral valve.
Thus we have demonstrated an example of how time-varying behavior can be

incorporated into model parameters. This illustration in the context of the short-term
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dynamics of the cardiovascular system has also demonstrated some of the physiolog-
ical complexity that may need to be included in the model if it is to provide a valid
representation of what is undoubtedly complex physiology.

5.7 STOCHASTIC MODELING

Deterministic models are widely, and successfully, used to provide quantitative
descriptions of the dynamics of a wide variety of types of physiological systems.
All of the models considered so far in this chapter have been of a deterministic form,
whether the mathematical realization was lumped or distributed, linear or nonlinear.
In some cases, however, particularly when modeling physiological phenomena at the
cellular level, a purely deterministic approach is not adequate. Such an approach
fails to take account of probabilistic effects. Probabilistic (random) effects that are
particularly important in the modeling of metabolic processes are those that evolve
over time. Such effects are known as stochastic processes.

Stochastic processes can be incorporated into models of physiological systems in a
number of ways. One particular class of deterministic model that has been extended
to embrace certain forms of stochasticity is the one where the formulation involves
a description in terms of a number of interconnected compartments. In this case the
stochasticity is incorporated into the basic elements of the compartmental model in
one of two ways. The first is to treat the compartmental variables as being stochastic
variables, with the time-invariant or time-varying transport rate parameters defin-
ing flux between compartments as being deterministic. The alternative approach is to
incorporate the intrinsic stochasticity into the transfer rate parameters. In this second
case, the stochasticity in the transfer rate parameters can arise from a number of fac-
tors, including interindividual variability; variation of system parameters as functions
of time, drug concentrations, cell membrane volume/area ratios; measurement and
sampling conditions; environmental effects; and so on. It is also possible to combine
the two types of representation of stochasticity, in both variables and parameters,
into a single model.

5.7.1 Cellular Modeling

For a classic example of the formulation of a stochastic model, let us consider the
processes occurring at the cellular level by which granulocyte-macrophage progeni-
tor cells proliferate and differentiate. Francis and Leaning (1985) produced a model
which included all the major processes associated with such proliferation and dif-
ferentiation such that it could be validated quantitatively using data from in vitro
experiments.

The conceptual model
The conceptual basis of the proposed mathematical model is shown in Figure 5.55.
In this, the population of cells in the granulocyte-macrophage differentiation pathway
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is partitioned into a set of distinct generations. The model also incorporates the
observed association between the proliferation and differentiation processes, in that
movement between successive generations occurs through cell division (shown as
double-headed arrows).

Production of 
Granulocyte 
Progenitor 
Cells

Granulocyte Differentiation Pathway

Proliferation/Differentiation Stimulus (CSA)

Cell Death

Division
1 2 3 N

Figure 5.55 Conceptual form of the cellular stochastic model. The boxes represent successive
generations in the granulocyte differentiation pathway, from the first generation (1) of committed
progenitor cells, to the final generation (N), incapable of further division, corresponding to mature
granulocytes. Proliferation and differentiation (double-headed arrows) are induced by the specific
growth stimulus gm-CSA (open arrows). Vertical arrows indicate loss of cells from each generation
by death rather than transition to the next generation (adapted from Francis and Leaning, 1985).

The input to this system of cell production is the first generation of granulocyte-
macrophage progenitor cells, which is treated as a time-dependent supply rate. The
final generation of cells in the model is mature neutrophil granulocytes which can
divide no further. Between these extremes lie intermediate stages corresponding to
later progenitors and recognizable granulocyte precursors (including myeloblasts,
promyeloblasts and myelocytes).

The processes of proliferation and differentiation are under the control of at least
one agent. Operationally this is termed granulocyte-macrophage colony-stimulating
activity (gm-CSA), and this is required at each stage for progression down the pathway
of the conceptual model shown in Figure 5.55.

An important implication of the model is that when a sample of marrow cells are
seeded in vitro, cells of different generations have a different capacity with respect to
the size of clone that they are able to produce. Clone size is a function of the number
of cell divisions before the mature cell generation is reached. For a cell seeded in
generation I, the theoretical maximum size of a clone is 2(N−i), where N is the number
of generations between the first and final generations of cells.

The occurrence of a proliferation/differentiation event depends monotonically on
the level of gm-CSA, but is subject to random variations. The system is therefore mod-
eled as a stochastic process, adopting probability distributions which are functions
of the concentration of gm-CSA. In the model, the level of gm-CSA determines the
probability that a cell will divide per unit time into the next generation. Since the pro-
cess of DNA replication and cell division occupies a certain minimum time, the model
adopts an eight hour time unit, so that two successive divisions could not take place



152 CHAPTER 5 MODELING THE SYSTEM

within this time span (Francis and Leaning, 1985). It is also assumed in the model
that at each stage there is a small but finite probability of cell death.

The division of granulocyte-macrophage progenitor cells is not totally syn-
chronous. The fate of any individual cell in a particular generation within the model
is either to divide to the next generation, to die, or to remain in the same cell gener-
ation for later action. The model is thus asynchronous despite the fact that discrete
time points are adopted. In addition to cell differentiation giving to each successive
generation of cells a change limiting the number of cell divisions before mature end
cell production, the model also incorporates a graduated change in the sensitivity of
the cell to gm-CSA; so, in the model, for each generation of cells, the greater the level
of gm-CSA the larger the probability of proliferation/differentiation. Also, as each
new stage in the pathways is reached, the cells become increasingly sensitive to CSA
and thus are more likely to reach completion.

The mathematical model
An annotated version of Figure 5.55 is shown as Figure 5.56, where the parameters
used in the mathematical formulation are included. The variable k represents each
discrete time unit of eight hours. Hence values of k of 0, 1, 2, etc. correspond to real
times of 0, 8 and 16 hours, etc. The stochastic nature of the model is governed by
two sets of probabilities: pi is the probability that a cell in generation I divides to
become two cells in generation i + 1 during the time interval from k to k + 1, and αi
is the probability that a cell in generation I dies in the same time interval k to k + 1.

1 2 i N
A (k) p1 p2 pi–1 pi pN–1

α1 α2 αi αN

Figure 5.56 The mathematical model (adapted from Francis and Leaning, 1985).

Since a cell must either divide, die or do nothing, it follows that pi + αi ≤ 1. The
probability that a cell remains in the same generation for the next time period is thus
1 − pi − αi. The dependency upon age in the processes of proliferation and differen-
tiation and death within a generation is neglected except in that there is a delay of
eight hours before any event occurs. When cells reach generation N, they are mature
neutrophil granulocytes which are incapable of proliferation and thus pN = 0.

A(k) is the supply rate of generation 1 cells over the time interval k to k + 1. This
is used only in calculating the proportions of cells in each generation in vivo. It is not
used in in vitro simulations.

Figure 5.57 shows the relationship between the probability of proliferation/
differentiation and gm-CSA dose for each cell generation. This set of probability func-
tions incorporates the two main features of the conceptual model, namely increasing
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probability of proliferation/differentiation with increasing gm-CSA for each individ-
ual generation, and increasing sensitivity to gm-CSA with transition to each successive
generation.

Slope
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Figure 5.57 Relationship between the probability of a proliferation/differentiation
event and gm-CSA level for different cell generations (gm-CSA in arbitrary units); p1 − p9

are the probability functions for generations 1 to 9, respectively (p10 = 0); pmax is the
maximum probability of a proliferation/differentiation event within any one time inter-
val, pmin the minimum. For simplicity, the slopes of the probability functions over their
operating ranges are assumed to be equal. The threshold sensitivities of the generations
to CSA are given by d1 − d9 (adapted from Francis and Leaning,1985).

It should be noted that in Figure 5.57 the maximum probability of prolifera-
tion/differentiation over a single time interval is less than unity. This allows for a
distribution of cell survival times before proliferation/differentiation even when there
is maximal CSA stimulation. For example, if pmax = 0.3, approximately 59% of cells
will have undergone a proliferation/differentiation event in 24 hours, and 72% in 48
hours under conditions of maximal gm-CSA stimulation. This allows for 10% cell
death per unit time.

In order to provide a complete stochastic description of the system of interest, it
would be necessary to incorporate difference equations for the probability distribu-
tions of the number of cells in each generation at any time. Such a representation
would be extremely complicated to formulate. In this example, therefore, a simpler
approach has been adopted. This involves the setting up of a set of recursive difference
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equations in terms of the mean or expected number of cells ni(k) in generation i at
time k:

ni(k + 1) = A(k) + N1(k)(1 − pi − αi)

ni(k + 1) = 2ni−1(k)pi−1 + ni(k)(1 − pi − αi), i = 2, 3, . . . , N (5.225)

Having formulated the mathematical model in this fashion, simulation studies can
then be carried out in order to obtain a quantitative understanding of the results of
in vitro cellular experiments.

5.7.2 Insulin Secretion

A classic example of stochastic modeling can be found in the realization developed
by Grodsky (1972) to represent short-term glucose-stimulated insulin secretion. This
model focused on phenomena occurring at organ level, in this case relating to the
pancreas.

Consider a process v that is controlled by the concentration S of a substance. The
process is said to be a threshold process if there exists a value θ of the concentration
such that:

v = 0, if S < θ (5.226)

v = f(S, θ), if S ≥ θ (5.227)

Now consider a secretory process controlled by a stimulus S for the case where
the substance does not behave in a homogeneous manner with respect to S, but can
be regarded as being formed of a number of packets. For each packet the release
mechanism is a threshold process. With each packet a value of concentration θ may
be associated so that:

If S < θ, the packet cannot release the substance (it is closed)
If S ≥ θ, the packet can release the substance (it is open)
Under these conditions, there exists a probability density function of the threshold,

ξ(θ,t), so that ξ(θ,t) dθ represents the quantity of substance contained in the packets
the threshold of which lies between θ and θ + dθ, which can be released when the
stimulus passes from θ to θ + dθ. The quantity of substance, X, that can be released
for a certain value of the stimulus at time t, S(t) is given by:

X(S, t) =
S(t)∫
0

ξ(θ, t)dθ (5.228)

This model has been used by Grodsky (1972) as the basis of a more comprehensive
model to represent first-phase and second-phase secretion of insulin by the pancreas.
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5.7.3 Markov Model

As a final example of stochastic modeling we shall consider Markov processes. These
are models in which the system of interest, say the state of health of a patient, is
characterized by a finite number of distinct states of health, and with the likelihood
of the patient making a transition from one state of health to another being defined
by a set of transition probabilities.

A simple example of such a model is depicted in Figure 5.58. In this case the
patient is classified as being in one of three categories: WELL, ILL and DEAD. At
any time i, he or she resides in just one of these states. The possible changes of state,
or transitions, that occur over the fixed time interval from i to i + 1 are represented
in Figure 5.58 by arrows leading to the states at time i + 1. In this Markov model
the passage of time is represented by cycles on an implicit clock, where i denotes the
cycle count. Transitions between states occur instantaneously at each of these finite
time intervals. In this simple example, the state DEAD can be defined as an absorbing
state, since once reached it is not possible to make a transition to any other state. In
contrast, WELL and ILL are non-absorbing states since transitions are possible from
those states to other states.

Well

Well

Dead

Dead

Ill

Ill

Time i

Time i � 1

PddPidPwd

Pww Pwi Pii

Figure 5.58 A simple Markov model depicting patient transitions between the
three states WELL, ILL and DEAD (adapted from Beck and Pauker, 1983).

In Figure 5.58 each change of state is represented by a single transition from one
health status to another. This implies that the process has no memory of prior states.
In other words, a transition is dependent only upon the transition probability and
does not in any way depend on how the patient arrived in his or her current state.

Two types of the Markov model are used in clinical decision making. The first is
those in which the state transition probabilities are constant and these are known as
‘Markov chains’. The second allows for the transition probabilities to vary over time
according to preset regular rules, these being the more general Markov processes in
which transition probabilities are time-dependent.

The simpler Markov chain models can be applied to clinical problems only if
the chances of moving amongst clinical states can be assumed to be constant. The
assumption of such constant transition probabilities is reasonable only for diseases
with a short time horizon. In situations of chronic disease, the annual mortality of a
healthy population increases with age. Given that clinical Markov models use death
as the absorbing state, the population mortality needs to be built into the model.
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For conditions with short time horizons an approximate average annual mortality
rate can be adopted. If the disease-specific probabilities of mortality and morbidity are
approximately constant, then the whole problem may be modeled as a Markov chain.

In constructing a model such as that depicted in Figure 5.58, the distinct states of
health must first be defined. As with many models there is a trade-off here in terms of
the number of states which are to be incorporated; the larger the number of states, the
closer the model corresponds to reality. For instance, a range of states corresponding
to different gradations of illness is more realistic than one which simply lumps all
illnesses into a single state. On the other hand, a larger number of states means that
there will be a larger number of transition probabilities which need to be estimated.

Having specified the states of the model, all of the allowable transitions need to be
defined. In the example shown, from WELL it is possible to move to each of the other
states in addition to remaining in the WELL state. Transitions from ILL to WELL
are not permitted in this particular case, but may in general be allowed in a Markov
model where recovery from illness is a possibility.

There is then the need to specify the probabilities associated with allowable state
transitions. In the clinical literature, state transitions are often expressed as rates
(Beck and Pauker, 1983). Rates can range from zero to infinity and are expressed
as per unit time (e.g. the mortality rate associated with disease X is 5% per year).
Probabilities, on the other hand, vary from zero to one, having time built in to them
implicitly. So, for a rate r, the probability that an event will occur over a time interval
of t time units is:

P(t) = 1 − e−rt (5.229)

By way of example, suppose that in a published study of the clinical problem being
modeled in Figure 5.58, 100 well patients were followed over a three year period,
and that 70 became ill during that period. The data represent 70 transitions from
WELL to ILL per 100 patients over a three-year period or (70/100/3) which equals
to 0.233 transitions per patient year. This is the annual rate associated with the tran-
sition from WELL to ILL. Hence, if the cycle length chosen for the Markov model is
one year, the transition probability from WELL to ILL, Pwi, would be 1 − e−0.233 or
0.208. On the other hand, if the cycle length had been chosen to be one month, then
Pwi would be 1 − e−0.233/12 or 0.019. Thus, the rate, whilst unchanged on an annual
basis, leads to very different transition probabilities with differing cycle lengths for
the Markov model.

Using a model such as this, the dynamics of a patient population can be calculated
over time as they make their allowable transitions between the set of patient states
(Beck and Pauker, 1983).

5.8 SUMMARY

This chapter has focused on the situation in which the model should correspond to
the relevant physiology, in contrast to the data-driven approach described in Chap-
ter 4. The extent to which the model reflects this underlying physiology is dependent
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on the a priori knowledge that is available, and the extent to which it is reason-
able to make simplifying assumptions regarding the physiology. Examples have been
presented which compare and contrast a range of approaches to formulating mod-
els that correspond to the underlying physiology. These have included static and
dynamic, deterministic and stochastic, time-invariant and time-varying, lumped and
distributed, linear and nonlinear, and continuous and discrete forms. Between them
they have illustrated different levels of model complexity. This chapter concludes the
part of the book that has focused on the formulation of mathematical models. Chap-
ter 6 provides a framework for the model identification process, by means of which
estimates can be made for unknown model parameters.

5.9 EXERCISES AND ASSIGNMENT QUESTIONS

1. Discuss the benefits of developing mathematical models that are based on
the underlying physiology of the relevant system.

2. Give examples of the way in which assumptions can be made in relation to
a particular physiological system’s impact on the approach to be adopted
in formulating the mathematical model of that system.

3. Which are the key different assumptions behind lumped and distributed
linear dynamic system models? What are the mathematical consequences?
Illustrate these concepts by using an appropriate example.

4. Compartmental models are a widely used class to describe nonlinear
dynamic physiological systems based on the mass balance principle. First,
define a compartment and a compartmental model, and then describe the
equations of the general nonlinear compartment model and of the
measurements made upon it.

5. Deterministic, either lumped or distributed, linear or nonlinear, models are
powerful quantitative tools to describe physiological system dynamics.
Why and when does stochastic modeling become important? Illustrate
your answer using an appropriate example.
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6.4.1 Parameter Estimation
6.4.2 Signal Estimation

6.5 Summary

6.6 Exercises and Assignment Questions

6.1 INTRODUCTION

To complete the transformation from system to model (the essence of the modeling
process), we must have both a model structure and a fully determined set of param-
eters corresponding to that structure. In other words, we require a complete model.

By this stage of the modeling process we have at least one candidate model. It is
equally possible, however, that we could have more than one, with the need to choose
between them as to which is the most appropriate. Focusing on a single model, if it is
incomplete this will be due to some of the parameter values being unknown. This is
true whether the modeling approach has been driven by data or by the physiology of
the system. We may be dealing with the whole model or just part of it. This chapter
aims to provide a framework for dealing with this situation. The basic concepts are
depicted in Figure 6.1 and these will be explained further as the chapter proceeds.
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OutputInput
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Figure 6.1 The overall basis of model identification.

6.2 DATA FOR IDENTIFICATION

To solve this identification problem, as it is known, we need data. Data sometimes
occur from the intrinsic dynamics of the system; for instance, in the form of sponta-
neous oscillations or noise. The signals recorded as the electrocardiogram would be an
example of this. More usually, however, we need to design experiments. So the ques-
tion arises: what experiments should be designed in order to yield appropriate data?

In essence, the experiment will involve applying some type of test signal to our
system and measuring the response of one or more variables. In doing this it is vital
to ensure that the resulting input/output data contain that part of the model which
has the unknown parameter values that we are trying to estimate.

6.2.1 Selection of Test Signals

The selection of appropriate test signals is of essential importance to the identification
process. There are a number of general criteria that we can list in this regard:

1. The test signals should be convenient to generate. Examples would be the
administration of a drug or metabolic compound in the form of an injection,
or applying a step change in the concentration of oxygen being inhaled by a
subject in an investigation of the dynamics of the respiratory system.

2. The signals should be as large as possible so as to produce a high output
signal-to-noise ratio. However, the magnitude of the test signal is limited by
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practical constraints. First, the extent of perturbation of the system under test
must not be excessive. Thus, for example, the dose of a drug administered in
a pharmacokinetic test, or the quantity of radioactivity in tracer kinetic trials,
is restricted by health and safety considerations. Furthermore, the extent of
the disturbance to the system posed by the test signal must not move it outside
the region for which the assumed model is valid. For example, in the case
of a linearized model the disturbance must conform to the assumption that
disturbances are small.

3. The test signal should, as far as possible, minimize the time required for the
identification process.

4. The test signal should, when taken together with the model to be identified,
result in a convenient and accurate identification procedure. This issue will be
discussed further later in the chapter.

In general, test signals can be classified into those that result in a transient response,
those that result in harmonic signal analysis (frequency response), and those that
involve random signal analysis.

6.2.2 Transient Test Signals

The most commonly applied test signals in metabolic and endocrine studies and in
studies on physiological organ systems are those that result in a transient response
of one or more system variable. Impulse (e.g. injection) or step (e.g. infusion or
step change in concentration of a gas inhaled) inputs are the usual form of input in
this context. When applied and the time course of the appropriate output variable is
observed, the impulse response or the step response is obtained for the corresponding
portion of the system as shown in Figure 6.2.

Impulse

Step

Input OutputSystem

Figure 6.2 Diagrammatic representation of the use of transient test signals in
model identification for impulse (e.g. injection) and step (e.g. infusion) inputs.

The information yielded by the impulse and step tests is theoretically the same for
linear systems. Since the step (infusion) is the integral of the impulse (injection), the
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step response is correspondingly the integral of the impulse response. The choice of
input should be such that any effects on the experimental data due to constraints on
the perturbation are minimized. For example, in tracer studies, if the radioactivity
content of specimens used to define the terminal portion of the impulse response is
low (e.g. not more than twice background radioactivity), substantial errors may arise
because of the inefficiency of radioactivity counting. Errors due to this cause would
be much less significant if a step (infusion) test was carried out, in which case the
specific activity would in most instances tend to a finite, readily measurable value
rather than to zero, as in the case of the impulse test.

Transient testing offers the advantages of simplicity and short duration of test,
since it is the transient and not the steady state that contains the information relating
to the system behavior.

Although impulse testing is straightforward in application, in practice a disadvan-
tage can arise because of the restrictions imposed on the magnitude of the impulse.
This can result in inadequate excitation of some modes of the system. Although the
impulse should be of such a magnitude as to provide adequate stimulation, it must
not be so large as to drive the system into a nonlinear mode of operation.

Equally, no filtering of noise is provided in transient testing and hence there is the
possibility of high errors, including interference from other system inputs.

The number of sites at which test signals can be applied is generally restricted. For
instance, often it is only possible (in the case of metabolic systems) to inject mate-
rial into the bloodstream. Constraints are particularly rigorous in the case of clinical
studies. Here the number of accessible sites is severely restricted. Moreover, where
output measurement is made by removal of blood samples on a discrete basis in order
to measure the concentration of a metabolite in the blood, the number of samples and
the frequency of their withdrawal is limited by considerations of patient well-being.
In physiological studies, however, greater freedom may be available to the experi-
menter in terms of both the number of accessible sites and the form of permitted test
signals. It is worth noting that in some instances it may be possible to overcome some
of the limitations of blood sampling by making use of new healthcare technology.
For example, by using appropriate imaging modalities, it may be possible to achieve
continuous measurement of the time source of concentration of radioactivity in one
of the organs of the body. This assumes that the imaging technology is sufficiently
well able to define precisely the particular organ in question, for example the liver.

6.2.3 Harmonic Test Signals

As an alternative to transient testing, in some situations harmonic test signals can be
applied. Frequency response testing involves applying harmonic (sinusoidally vary-
ing) signals of various frequencies and observing the amplification or attenuation and
phase shift of the corresponding frequency components in the output variables of the
system under test.

For a linear system that is stable, it can be shown that if an input signal of the form
A sin ωt is applied; once any transient components have died away, the ‘steady state’
output will be of the form A |G(jω)| sin(ωt + �G(jω)). In other words, the output
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exhibits oscillations of the same frequency as the applied input, but the magnitude is
amplified or attenuated by the factor |G(jω)| and the oscillations are phase shifted by
�G(jω). |G(jω)| and �G(jω) vary with change in the frequency of the applied sine wave
in a manner that is dependent upon the intrinsic dynamics of the system under test.

Harmonic test signals are, in general, less convenient to apply in our physiological
context than transient test signals. They may require special instrumentation for
output measurement. However, such test signals do offer some advantages in terms
of accuracy and convenience of identification.

Firstly, in comparison with transient testing, all the test power in harmonic testing
is concentrated at a single frequency. This means that all significant modes can be
adequately excited in a series of tests without applying signals of excessive amplitude.

However, a consequent disadvantage is the duration of the test since, in general,
the experiment needs to be repeated with sine wave inputs for some 10 to 15 different
frequencies, with the lowest applied frequency being well below that corresponding
to the longest time constant in the system. Also, in each test it is necessary to wait for
the transient effects to decay and then carry out the harmonic test for 5 to 10 cycles
of the test frequency. On the other hand, frequency response testing has the merit of
effectively filtering noise which may be present in the data, since one is only seeking
that frequency component in the output that corresponds to the frequency of the sine
wave applied as the input.

The frequency response forms for a linear system a complete non-parametric model
of the system. Parametric models of the frequency response may be fitted to the
experimental data obtained in order to estimate parameters.

One area of physiology where frequency response testing has been applied over
the past 30 years is in relation to the respiratory system. For example, pioneering
experiments were those of Swanson and Belville (1974) who sought to identify the
dynamics of a linear mathematical model of the respiratory system. This they did
by applying sinusoidally varying inputs of alveolar CO2 and O2 over a range of
frequencies, and plotting the variation of output amplitude as a function of frequency.

6.2.4 Random Signal Testing

Random signals, or signals so constructed to approximate to random signals (e.g.
pseudo-random binary sequences), may be used as test inputs. We now consider a
linear, time-invariant system to which an input m(t) is applied, resulting in an output
y(t). If that system is characterized by a unit impulse response g(t), then it can be
shown that:

Rmy(τ) =
∞∫

−∞
g(t)Rmm(t − τ) dt (6.1)

That is, the cross-correlation function between the input and the output, Rmy(τ),
is equal to the convolution of the autocorrelation function of the input, Rmm(t − τ),
and the unit impulse response of the system, g(t).



164 CHAPTER 6 MODEL IDENTIFICATION

Now, if the input to the system is white noise, a totally random signal in which
all frequency components are present at equal power levels, the cross-correlation
function, Rmy(τ), is equal to the unit impulse response of the system.

Rmy(τ) = g(τ) (6.2)

Random signal testing consists then of applying to the system a test signal
approximating to white noise and then cross-correlating input and output. The
cross-correlation function then gives the unit impulse response.

Random fluctuations approximating to white noise may occur spontaneously on
one of the variables of the physiological system and they may be used as a test sig-
nal without introducing an external stimulus. Such a situation is convenient, but
in practice does not often occur. Hence, in general, it is necessary to generate the
random test signals specially. They often take the form of so-called pseudo-random
binary sequences, a sequence of pulses of equal duration and taking the values of
zero (no disturbance for the pulse duration) or one (a pulse of fixed amplitude). The
sequence of zero and unity pulses, which is cyclically repeatable, is such that over
one cycle it has the properties of white noise. Such white noise analysis has found
application particularly in the domain of electrophysiology; for example, in the work
of Marmarelis and Marmarelis (1978).

Random signals represent the simultaneous injection of all frequencies into a sys-
tem and thus lead to shorter test times than harmonic signals. Test duration must,
however, be sufficiently long for the time averaging in the autocorrelation function to
be accurate. The output of the random test procedure is a cross-correlation function
corresponding to the unit impulse response of the system. This correlation process
effectively filters out noise present in the data.

6.3 ERRORS

In the identification process, data are mapped into parameter values by means of the
model. However, problems can arise in estimating the values of unknown parameters
due to a number of sources of errors. These are shown schematically in Figure 6.3.
The four types of error are:

– imperfections in the test signal that do not correspond to the form assumed in
the interpretation of the result;

– errors due to imperfections in measurement of output variables;
– influence on observed output of variables other than the test signal; and
– model error, which is the effect of using in the identification process a model

that does not satisfactorily represent the system being identified

Clearly, if the values of some of the model parameters are obtained from inde-
pendent sources (either direct measurement or from a priori knowledge), rather than
from estimation schemes, then the errors associated with these parameter values must
be taken into account.
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Figure 6.3 Practical experimental design, indicating a number of sources of error.

From a theoretical point of view, considerable difficulties arise when trying to
account simultaneously for more than one type of error. Measurement errors are
always present. Hence, this is the problem that has received most attention.

With regard to errors in the test signal, normally these are either known explicitly,
in which case this information can be directly taken into account, or can often be
neglected. Consider, for example, an injection of material (an impulse) applied to a
metabolic system that is of finite duration. One possibility is to treat it as a pulse
input (that is a step increase followed by a step decrease). The alternative is that it
might be neglected if its duration is short compared to the most rapid dynamics that
one is seeking to identify from the experimental data.

Disturbances may be neglected if, for example, they have only minimal effect on
the experimental data that are being obtained in a short-term study on the particular
physiological system. Alternatively, it may be assumed that the disturbance simply
results in a component of error in the measured variable.

Having proposed a false or inappropriate model constitutes an important source
of error. In general, there are few theoretical approaches available for dealing with
this type of uncertainty. It is usually only at the stage of model validation that
consideration can be given to assessing whether or not a given model structure is
appropriate. In some instances the problem may be approached by considering a
number of candidate identifiable model structures and carrying out the parameter
estimation procedure for each of them. The results of estimating the parameters of
these alternative configurations can then be compared in terms of a set of validity
criteria as will be outlined in Chapter 10. Normally, this will lead to a ranking of the
candidate model structures in relation to the given experimental data.

The only error that can be dealt with in a rigorous manner is that which arises
due to imperfections in the measurement process. In most practical situations it is
reasonable and normal to assume that any errors are additive.

zl(ti, p) = yl(ti, p) + vl(ti), i = 1, 2, . . . , Nl; l = 1, 2, . . . , m (6.3)
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Equation (6.3) thus describes, for each of the m measured variables, the relation
between the actual noisy, discrete-time measurement zl and the noise-free measur-
able output yl, with vl being the error associated with the measurement performed at
time ti.

To carry out the parameter estimation process, it is highly desirable to be able to
provide a statistical description of the errors. In some instances it may be possible to
assume that the errors are characterized by either a Gaussian or a Poisson distribution.
In other cases it may only be possible to assume, for instance, that the errors are
white; that is to say uncorrelated. The extent of such statistical information, which is
available a priori regarding these errors, is closely related to the goodness of the results
of the parameter estimation procedure. The more complete the statistical description,
the more desirable will the properties of the estimation algorithm be, and the greater
the confidence that can be placed in the results obtained. Equally, good a priori
statistical information can provide evidence leading to the rejection of unsuitable
models.

6.4 THE WAY FORWARD

Since errors in model structure cannot be dealt with explicitly, they can only be solved
by considering each competing model in turn. Thus it is customary to focus on a
single model, and concentrate on the impact of measurement errors that are assumed
to be additive as indicated above. The available approaches can be divided into two
groups; situations with parametric models and those with non-parametric models.
These are considered briefly below under the headings of parameter estimation and
signal estimation. A full treatment for these two cases is given in Chapters 8 and 9.

6.4.1 Parameter Estimation

In relation to parametric models, as discussed in Chapter 7, the first consideration
is that of identifiability. This involves asking the question as to whether it is the-
oretically possible to make unique estimates of all the unknown parameters on the
assumption that the data we have available for the identification process are complete
and noise-free. In other words, we are examining the balance between the availability
of experimental data and the number of unknown parameters to be estimated. Are
the data rich enough for the parameter estimation problem? Difficulties arise where
there is a mismatch between the complexity of the model (as evidenced by the number
of unknown parameters) and the richness of the data. The problem can be viewed as
there being either too many parameters to be estimated or the data are not sufficient
in relation to the model in question.

If this problem arises, there are two possible approaches. The first is to consider
whether it might be possible to reduce the complexity of the model, including reducing
the number of unknown parameters needing to be estimated. There would, however,
be the need to ensure that the reduced model was still valid in relation to the purpose
of the modeling activity. The second would be to examine whether it was possible to
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enrich the available experimental data; for instance, by making measurements of an
additional variable.

If the model is uniquely identifiable, on the assumption that the data are perfect,
it is possible to proceed with the process of estimating the parameters as discussed
in Chapter 8. In some situations multiple solutions may be theoretically possible for
some of the parameters. This means two or more, but a finite number of solutions.
In cases such as this, it might be possible to choose between alternative solutions at
the stage of validating the complete model by considering which parameter values
are most plausible in a physiological sense. Where an infinite number of values are
theoretically possible for one or more parameters, there is the need to tackle the
mismatch between model and data as indicated above.

Once the model has passed the identifiability test, there are a number of techniques
available for estimating the parameters. Most commonly adopted are linear or non-
linear least squares estimation. These are least demanding in terms of the quantity
of a priori information needed. Other techniques available include maximum likeli-
hood and Bayesian estimation. However, both of these require a priori knowledge
regarding the statistics of the situation being modeled.

6.4.2 Signal Estimation

The other type of estimation problem relates to models which do not explicitly contain
parameters and hence are referred to as non-parametric models. What we are seeking
to estimate here is not parameters, but rather a signal. As described in section 4.9,
we are dealing with an overall input/output model that is specified as an integral
equation. Such a description has three main ingredients: the input, the output, and
the impulse response that provides the connection between them. In our signal iden-
tification problem we know two out of the three, and we need to determine the third.

The most usual situation is that in which the output signal is known, and we need
to identify one of the other two ingredients. The techniques available for solving
this problem can be classified as raw deconvolution and deterministic regularization.
Further details are given in Chapter 9. The domain of electrophysiology is an example
where this is often the identification problem which must be solved. For instance,
the evoked electrical response may be measured in response to a known sensory
stimulation. In this case the identification problem is that of determining the impulse
response that maps the known applied stimulus into the measured evoked response.

6.5 SUMMARY

This chapter has described an overall framework for model identification. This pro-
cess enables us to achieve a complete model; that is to say that we have both a model
structure and a fully determined set of parameters corresponding to that structure.
The following two chapters deal with the identification of parametric models in full
detail. Chapter 7 begins this process by addressing the problem of identifiability.
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6.6 EXERCISES AND ASSIGNMENT QUESTIONS

1. What are the desirable characteristics of physiological measurements in
order to provide appropriate test signals for system identification?

2. What are the relative merits of transient, harmonic and random signals in
the context of system identification?

3. Discuss the relationship between experimental design and system
identifiability if the process of estimating the unknown parameters of a
physiological model is to be successfully completed.

4. Give an account of the different types of error that can arise in the
identification process and the means by which such errors might be treated
in order to achieve successful parameter estimation.
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7.1 INTRODUCTION

Once a parametric model has been formulated, the next fundamental step in its
development is the assignment of numerical values to its unknown parameters
p1, p2, . . . , pP. This parametric model might be an input/output one; say the sum of
three decaying exponentials describing the disappearance of a substance in the body
after an impulse dose. Examples of such data models are discussed in Chapter 4.
Alternatively, it might be a structural model of a system such as that described
in Chapter 5; for instance, a resistance-compliance model describing the dynamic
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pressure-flow relationships of respiratory mechanics. In the case of the data model
the unknown parameters p1, p2, . . . , pP would be the coefficients of the exponential
function. In the latter case they would be the resistance and compliance parameters
of the differential equation model.

In practice, this assignment of numerical values is done by exploiting the informa-
tion contained in the measurements performed on the physiological system which are
functions of time t and of the parameter vector p = [p1, p2, . . . , pP]T. Let us consider
for the sake of argument the case where a single measurement signal is available. This
has the general form:

y(t) = g(t, p) (7.1)

where g(t, p) is a function that links the model to the measurement. In the examples
discussed above y(t) could be a plasma concentration or a flow signal, respectively.

In practice the signal y(t) is not available. What is measured is a noise-corrupted
signal, usually at a number of discrete time points t1, t2, . . . , tN, which can be
described as:

z(ti) = zi = yi + vi = g(ti, p) + vi (7.2)

where vi denotes the error on the i-th measurement (Figure 7.1) which can be viewed
as a random variable having its expected value equal to zero. Usually some statistical
information on v1 . . . vN is available, e.g. they are usually uncorrelated, with either a
constant variance σ2 or with different variances σ2

i for the various vi.

Physiological 
System

u(t) y(t) y(ti)

v(ti)

z(ti)�
Figure 7.1 The physiological system, the input u and the output y. Measurements
z(ti) are taken at discrete times and are corrupted by noise v(ti).

The function g(t, p) is related to the model of the system. As anticipated in the
examples above, this can be an input/output (data driven) or a structural model. Let
us clarify this with a simple example and consider the data shown in Figure 7.2.
These data refer to the concentration of a drug disappearing from blood after an
intravenous unit dose bolus injection given at time 0. The data z1 . . . zN of Figure 7.2
can be described by (7.2) with g(t, p) of (7.1) expressed either as an input/output
model or a structural model. An input/output model would typically be of the form:

y(t, p) = A1e−λ1t + A2e−λ2t (7.3)

and the model identification problem becomes that of estimating from the measure-
ments z1 . . . zN the parameters A1, λ1, A2, λ2, i.e. p = [A1, λ1, A2, λ2]T.
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Plasma 
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Time

Figure 7.2 The plasma concentration disappearance curve of a drug after a bolus injection.

The same data can also be described by a structural model of the kinetics of the
drug in the body. A candidate model is the one shown in Figure 7.3. Linear kinetics
are assumed and the existence in the body of two compartments with irreversible
elimination of the drug taking place from compartment 1 is postulated. Compart-
ment 1 is the accessible compartment, i.e. the one where the drug is injected and
where the concentration is measured at discrete times. The model equations are:

Q̇1(t) = (k01 + k21)Q1(t) + k12Q2(t) + U(t) Q1(0) = 0 (7.4)

Q̇2(t) = k21Q1(t) − k12Q2(t) Q2(0) = 0 (7.5)

y(t) = Q1(t)
V1

(7.6)

y

u
k21

k12
k01

q2
q1

V1

Figure 7.3 A two compartment model of the kinetics of a drug.

where Q1,Q2 denote the masses of drug in compartments 1 and 2, respectively; u is
the drug input, e.g. U(t) = D · δ(t) where d is the dose and δ(t) is the Dirac function;
V1 is the distribution volume of compartment 1; k21, k12 and k01 are rate parameters
describing the transfer of drug between compartments and to the outside of the system
respectively. In this case the model identification problem becomes that of estimat-
ing from the measurements z1, z2, . . . , zN the parameters k21, k01, k02, V1, i.e. p =
[k21, k01, k12, V1]T.
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It is important to note that, when choosing a structural model in order to under-
stand the system, there is, in general, the possibility of describing the data with more
than one model, even without changing the model order. For instance, the data of
Figure 7.2 can also be described by the model shown in Figure 7.4:

Q̇1(t) = −(k01 + k21)Q1(t) + k12Q2(t) + U(t) Q1(0) = 0 (7.7)

Q̇2(t) = k21Q1(t) − (k02 + k12)Q2(t) Q2(0) = 0 (7.8)

y(t) = Q1(t)
V1

(7.9)

y

u
k21

k12
k01

q2
q1

V1

k02

Figure 7.4 Another two compartment model of the kinetics of the drug.

This model is similar to the previous one described by (7.4) and Figure 7.3, but
postulates that the drug is irreversibly removed not only from compartment 1, but also
from compartment 2. This means that the model has an additional parameter, i.e. k02,
and the identification problem becomes more difficult to solve since the parameters
to be estimated from the data are now five, i.e. p = [k21, k01, k12, k02, V1]T.

This example also serves to highlight an important issue that will be discussed
in the next section. While (with an input/output model such as that of (7.3)) it is
always possible to obtain an estimate of all its unknown parameters from the data,
this is generally not true for a structural model. For instance, it will be shown that
while the experiment that has been designed (i.e. injection into compartment 1 and
measurement of its concentration) is sufficiently informative to estimate all the four
parameters of the model of Figure 7.3, this is not true for the model of Figure 7.4. Not
all of its five parameters can be estimated from the data. In other words, in the case
of structural models, but not of input/output models, it is necessary to assess if the
designed experiment has enough information to estimate all the unknown parameters
of the postulated model structure. This assessment can be made by resorting to a
data-independent test that is called a priori identifiability.

A priori identifiability is a key step in the formulation of a structural model whose
parameters are going to be estimated from a set of data. The question that a priori
identifiability addresses is the following: do the data contain enough information to
estimate all of the unknown parameters of the postulated model structure? This ques-
tion is usually referred to as the a priori identifiability problem. It is set in the ideal con-
text of an error-free model structure and noise-free, continuous time measurements,
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and is an obvious prerequisite for well-posed parameter estimation from real data. In
particular, if it turns out that the postulated model structure is too complex for the
particular set of ideal data (i.e. some model parameters are not identifiable from the
data) there is no possibility that a real situation – where there is error in the model
structure and noise in the data – the parameters can be identified. The a priori iden-
tifiability problem is also referred to as the structural identifiability problem because
it is set independently of a particular set of values for the parameters. For the sake of
simplicity, in what follows, only the term a priori will be used to qualify the problem.

Only if the model is a priori identifiable is it meaningful to use the techniques to
estimate the numerical values of the parameters from the data discussed in section 7.4.
If the model is a priori non-identifiable, a number of strategies can be considered.
One would be to enhance the information content of the experiment by adding,
when feasible, inputs and/or measurements. Another possibility would be to reduce
the complexity of the model by simplifying its model structure, e.g. by lowering
the model order, or by aggregating some parameters. These simple statements allow
one to foresee the importance of a priori identifiability also in relation to qualitative
experiment design, e.g. definition of an experiment which allows one to obtain an
a priori identifiable model with the minimum number of inputs and measurements.

Before discussing the problem in depth and the methods available for its solution,
it is useful to illustrate the fundamentals through some simple examples. Then some
formal definitions will be given, using these simple examples where the identifiability
issue can be easily addressed.

7.2 SOME EXAMPLES

Example 1

Consider a single compartment model shown in Figure 7.5, where the input is a
bolus injection of a drug given at time zero and the measured variable is the drug
concentration. The model and measurement equations are:

Q̇(t) = −kQ(t) + U(t) Q(0) = 0 (7.10)

y(t) = Q(t)
V

(7.11)

y

u

k

q
V

Figure 7.5 A single compartment model.
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where U(t) = D · δ(t), that is d is the magnitude of the bolus dose. The unknown
parameters for the model are the rate constant k and the volume V.

Equation (7.11) defines the observation on the system, i.e. drug concentration, in
an ideal context of noise-free and continuous-time measurements. In other words,
(7.11) is the model output describing what is measured continuously and without
errors; it does not represent the noisy discrete times measurements. The word ‘output’
is used here in the information sense. Specifically, in the context of Figure 7.5, U(t)
and y(t) define an input/output experiment, and should not be confused with the
material output or outflow from the compartment.

To see how the experiment can be used to obtain estimates of these parameters,
note that the solution of (7.10) is the mono-exponential:

Q(t) = De−kt (7.12)

The model output y(t) can thus be given by:

y(t) = D
V

e−kt ≡ Ae−λt (7.13)

The model output or ideal data are thus described by a function of the form Ae−λt,
and the parameters that can be determined by the experiment are A and λ. These
parameters are called the observational parameters.

What is the relationship between the unknown model parameters k and V, and
the observational parameters A and λ? From Equation (7.13) one sees immediately:

A = y(0) = D
V

(7.14)

λ = k (7.15)

In the example above, the unknown parameters k and V of the model are a priori
uniquely or globally identifiable from the designed experiment since they can be
evaluated uniquely from the observational parameter A and λ. Since all model param-
eters are uniquely identifiable, the model is said to be a priori uniquely or globally
identifiable from the designed experiment.

This first example was limited to a bolus injection input. The same identifiability
results hold for different inputs as well. This is a general result of dealing with linear,
time-invariant models such as the one described above: the identifiability properties
of a model are the same irrespective of the shape of the inputs. This is true for a
single input situation, but is no longer true in a general multiple input experiment or
in nonlinear models.

So far we have analyzed the identifiability properties of the model by inspecting
the expression of the model output in order to derive the relationships between the
observational parameters and the unknown model parameters. The method is easy to
understand, since it only requires some fundamentals of differential calculus. How-
ever, the approach is not practicable in general, since it works easily only for some
simple linear models of order one and two. For linear models of higher order the
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method becomes quite cumbersome and its application is practically impossible. It is
worth noting that in these introductory examples emphasis has been placed on linear
dynamic models: for nonlinear models it is usually simply impossible to obtain the
expression of the model output.

Returning to linear models, a simpler method is available to derive the desired
relationships between observational parameters and unknown model parameters.
It consists of writing the Laplace transform for the model output and is known as the
transfer function method. Briefly, the advantage of the Laplace transform method is
that there is no need to use the analytical solution of the system of linear differential
equations. By writing the Laplace transform of the state variables (e.g. masses), and
then of the model outputs (e.g. concentrations), one obtains an expression which
defines the observational parameters as a function of the unknown model parameters.
This gives a set of nonlinear algebraic equations in the original parameters.

For the model of Figure 7.5, the Laplace transforms of (7.10) and (7.11) are,
respectively:

(7.16)
⎧⎪⎨
⎪⎩

sQ(s) = −kQ(s) + D

Y(s) = Q(s)
V

(7.17)

where s is the Laplace variable and the capital letter denotes the Laplace transform
of the corresponding lower case letter variable.

The transfer function is:

H(s) ≡ Y(s)
U(s)

=
Q(s)

V

D
=

[D/s+k]
V

D
=

1
V

s + k
≡ β

s + α
(7.18)

The coefficients α and β are determinable from the experiment, i.e. they are the
observational parameters and thus one has:

(7.19)
⎧⎨
⎩β = 1

V

α = k (7.20)

that is, the model is a priori uniquely identifiable.
For this simple model the advantage of the Laplace transform method is not

evident, but its power will be appreciated when we consider the next example.

Example 2

Consider next the two compartment model of the kinetics of a substance in the body
shown in Figure 7.6, where a bolus injection of material is given into compartment 1.
The accessible compartment is compartment 2. Assume the measured variable is the
concentration y(t) = Q2(t)/V2.
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y

u
k21

k02

q2

V2
q1

Figure 7.6 A two compartment model.

The equations describing this model, assuming a bolus input, are:

Q̇1(t) = −k21Q1(t) + U(t) Q1(0) = 0 (7.21)

Q̇2(t) = k21Q1(t) − k02Q2(t) Q2(0) = 0 (7.22)

y(t) = Q2(t)
V2

(7.23)

where U(t) = D · δ(t).
The unknown model parameters are k21, k02 and V2. To see how the experiment

can be used to obtain estimates of these parameters, one can use either the time domain
solution of (7.22) (a sum of two exponentials) or the transfer function method which
is much more straightforward. The transfer function is:

H(s) = Y(s)
U(s)

=
k21
V2

(s + k21)(s + k02)
≡ β1

s2 + α2s + α1
(7.24)

where the coefficients α1, α2, β1 are the observational parameters (known from the
experiment) linked to the unknown model parameters by:

(7.25)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1 = k21

V2

α2 = k21 + k02

α1 = k21k02

(7.26)

(7.27)

The equations (7.25)–(7.27) are nonlinear and it is easy to verify that it is not
possible to obtain a unique solution for the unknown parameters. In fact, from
(7.26) and (7.27) parameters k21 and k02 are interchangeable and thus each has two
solutions, say kI

21, kII
21 and kI

02, kII
02. As a result, from (7.25) V2 has two solutions

also, VI
2 and VII

2 . The two solutions provide the same expression for the model output
y(t). When there is a finite number of solutions (more than one; two in this case), the
unknown parameters are said to be a priori nonuniquely or locally identifiable from
the designed experiment. When all the model parameters are identifiable (uniquely or
nonuniquely) and there is at least one of the model parameters which is nonuniquely
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identifiable (in this case, all three are), the model is said to be a priori nonuniquely
or locally identifiable.

In Figure 7.7 we show the two curves defined by equations k21 + k02 = α2 and
k21k02 = α1: the existence of two solutions is confirmed by the presence of two points
of intersection.

It is worth noting that also in this case one has parameters which are a priori
uniquely identifiable, but these are not the original parameters of interest. They are
combinations of the original parameters, in particular k21k02, k21 + k02 and k21/V2.

k21 k02 � constant

k21 � k02 � constant

k02

k21

Figure 7.7 A plot of k21k02 = α1 and k21 + k02 = α2.

To achieve unique identifiability of this nonuniquely identifiable model, one could
design a more complex experiment or, if available, exploit additional independent
information available on the system. In this particular case, knowledge of V2, or a
qualitative relationship between k21 and k02, i.e. k21 greater or less than k02 (see
Figure 7.7), allows one to achieve unique identifiability of all model parameters.

Example 3

Consider next the two compartment model shown in Figure 7.8 where a bolus
injection of a drug is given at time zero and where the measured variable is the
concentration of drug in plasma. The equations describing this model are:

Q̇1(t) = −(k01 + k21)Q1(t) + U(t) Q1(0) = 0 (7.28)

Q̇2(t) = k21Q1(t) Q2(0) = 0 (7.29)

y(t) = Q1(t)
V1

(7.30)

The unknown model parameters are k21, k01 and V1.
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y

u

k01

k21q1

V1
q2

Figure 7.8 A two compartment model.

To see how the experiment can be used to obtain estimates of these parameters,
one notes that the transfer function is:

H(s) = Y(s)
U(s)

=
1

V1

s + k21 + k01
≡ β

s + α
(7.31)

and thus

β = 1
V1

(7.32)

α = k21 + k01 (7.33)

It is easy to see that, while V1 is uniquely identifiable, k01 and k21 are not. In fact,
as illustrated in Figure 7.9, there are an infinite number of solutions lying on the
straight line k01 + k21 = α.

k21

k01 k01 � k21 � λ

Figure 7.9 A plot of k21 + k01 = α.

When there is an infinite number of solutions for a parameter, one says that the
parameter is a priori nonidentifiable from the designed experiment. When there is
at least one of the model parameters which is nonidentifiable (in this case, there are
two), the model is said to be a priori nonidentifiable.
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As with the previous example, one can find a uniquely identifiable parameteriza-
tion, i.e. a set of parameters that can be evaluated uniquely. In this case, the parameter
is the sum k01 + k12 (V1 has been seen to be uniquely identifiable). Again to achieve
unique identifiability of k01 and k21, either a more informative experiment is needed,
e.g. measuring also in compartment 2, or additional information on the system such
as a relationship between k01 and k21 is required.

When a model is nonidentifiable, however, it is usually possible to obtain for the
nonidentifiable parameters upper and lower bounds for their values, i.e. to identify
an interval of values in which the parameters may lie. The reasoning is the following.
Since by definition k01 and k21 are greater than zero, one sees immediately from
(7.33) that the upper bound for each is α. For instance, for k21, one has:

k21 = α − k01 (7.34)

and thus the upper bound for k21, α, will be achieved when k01 is zero. Similar results
hold for k01. The parameter bounds for k01 and k21 are:

kmin
01 = 0 ≤ k01 ≤ α = kmax

01 (7.35)

kmin
21 = 0 ≤ k21 ≤ α = kmax

21 (7.36)

In this example, the intervals are the same; normally, this is not the case.

When there is an upper and lower bound for the values that a nonidentifiable
parameter can assume, one says the parameter is a priori interval identifiable. When
all of the nonidentifiable model parameters are interval identifiable (in this case, all
are), the model is said to be a priori interval identifiable.

7.3 DEFINITIONS

The simple examples on linear dynamic models in the previous section emphasized
the importance of understanding the a priori identifiability problem, and provided
a means of introducing, in an appropriate context, some basic definitions. In this
section, generic definitions will be given which also hold for more general model
structures, i.e. nonlinear dynamic models. A general nonlinear model is a system of
n-first order nonlinear ordinary differential equations, depending on a set of P
unknown constant parameters p = [p1, p2, . . . , pP]T which can be written conve-
niently in vector notation as:

ẋ(t, p) = f[x(t, p), u(t), t; p] x0 = x(t, p) (7.37)

y(t, p) = g[x(t, p); p] (7.38)

where the n state variables of the model are denoted by the vector x =
[x1, x2, . . . , xn]T; u = [u1, u2, . . . , ur]T is the vector of r known inputs; y =
[y1, y2, . . . , ym]T is the vector of m outputs (measurements); the observation inter-
val is t0 ≤ t ≤ T and the initial state x0 = x(t0) = x(t0, p) is allowed to depend on p;
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f is the vector of n nonlinear functions that defines the structure of the model, i.e. the
input-state coupling parameterized by p; g is a vector of m nonlinear functions which
defines the state-output coupling, also parameterized by p. It is worth noting that
often the g functions are linear functions of the state variables, so that the output
equation becomes:

y(t, p) = C(p)x(t, p) (7.39)

where C is a m × n matrix.
Define the observational parameter vector � = [φ1, . . . , φR]T having the observa-

tional parameters φj, j = 1, . . . , R as entries. Each particular input/output experiment
will provide a particular value �̂ of the parameter vector �, i.e. the components of �̂

can be estimated uniquely from the data by definition. Moreover, the observational
parameters are functions of the basic model parameters pi which may or may not be
identifiable:

� = �(p) (7.40)

Thus, to investigate the a priori identifiability of model parameters pi, it is necessary
to solve the system of nonlinear algebraic equations in the unknown pi obtained by
setting the polynomials �(p) equal to the observational parameter vector �̂:

�(p) = �̂ (7.41)

These equations are called the exhaustive summary.
Examples of this have already been provided in working out Examples 1, 2 and 3

in (7.14)–(7.15) and (7.19)–(7.20); (7.25)–(7.27) and (7.32)–(7.33), respectively.
One can now generalize definitions. Let us give them first for a single parameter

of the model, and then for the model as a whole.
The single parameter pi is a priori – uniquely or globally identifiable if and only if

the system of (7.41) has one and only one solution:

– nonuniquely or locally identifiable if and only if the system of (7.41) has for
pi more than one but a finite number of solutions;

– nonidentifiable if and only if the system of (7.41) has for pi infinite solutions;
– interval identifiable if it is nonidentifiable and has finite upper and lower

bounds that can be calculated from the system of (7.41).

The model is a priori:

– uniquely or globally identifiable if all of its parameters are uniquely
identifiable;

– nonuniquely or locally identifiable if all of its parameters are identifiable, either
uniquely or nonuniquely, and at least one is nonuniquely identifiable;

– nonidentifiable if at least one of its parameters is nonidentifiable; and
– interval identifiable if all its nonidentifiable parameters are interval identifiable.
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7.4 LINEAR MODELS: THE TRANSFER FUNCTION METHOD

The problem now is to assess, only on the basis of knowledge of the assumed model
structure and of the chosen experimental configuration, whether the model is a priori
nonidentifiable, nonuniquely identifiable, or uniquely identifiable.

A linear dynamic model as specified by the linear case of (7.37), is described by:

ẋ(t) = A(p)x(t) + B(p)u(t), x0 = x(t0, p) (7.42)

y(t, p) = g[x(t, p); p] (7.43)

where A and B are constant coefficient matrices of suitable dimensions. Again one
often has an output equation linear in the states (see (7.39)), i.e.

y(t, p) = C(p)x(t, p) (7.44)

For sake of simplicity it will be assumed in the following that x0(t0, p) = 0, but all
comments and results which will be presented hold for the general case.

The most common method to test a priori identifiability of linear models described
by (7.42) and (7.43) or (7.44) is the transfer function method. The approach is based
on the analysis of the r × m transfer function matrix:

H(s, p) = [Hij(s, p)] = Yi(s, p)
Uj(s)

= C(p)[sI − A(p)]−1B(p) (7.45)

where each element Hij of H is the Laplace transform of the response in the mea-
surement variable at port i, yi(t, p) to a unit impulse at port j, uj(t) = δ(t), and I is the
identity matrix. Thus each element Hij(s, p) reflects an experiment performed on the
system between input port j and output port i.

The transfer function approach makes reference to the coefficients of the numerator
and denominator polynomials of each of the m × r elements Hij(s, p) of the transfer

function matrix, respectively, β
ij
1(p), . . . , βij

n(p) and α
ij
1(p), . . . , αij

n(p). These coefficients

are the 2n × (r × m) observational parameters φ
ij
� . Therefore, the exhaustive summary

can be written as:

β11
1 (p) = φ11

1
...

...

α11
n (p) = φ11

2n
...

...

βrm
1 (p) = φrm

1
...

...

αrm
n (p) = φrm

2n

(7.46)

This system of nonlinear algebraic equations needs to be solved for the unknown
parameter vector p to define the identifiability properties of the model.
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Let us consider two examples of physiological systems, one dealing with the
glucose-insulin control system and one with respiratory mechanics.

Example 4: A Model of Glucose-Insulin Control

Consider the linear model discussed in section 5.3.5 (equations (5.43)–(5.46), Fig-
ure 5.10) and assume for the moment that only glucose concentration is measured
after an impulse input, i.e. the model is:

q̇1(t) = −p1q1(t) − p2q2(t) + δ(t) q1(0) = 0 (7.47)

q̇2(t) = −p3q2(t) + p4q1(t) q2(0) = 0 (7.48)

c1(t) = q1

V1
(7.49)

The unknown parameter vector is p = [p1, p2, p3, p4, V]T.
Let us study the identifiability properties of this model. The transfer function is:

H11(s) = c1(s)
u(s)

=
(s+p3)

V1

s2 + (p1 + p2)s + p1p3 + p2p4∣∣∣
≡ β2s + β1

s2 + α2s + α1

(7.50)

and the exhaustive summary is given by:

(7.51)

(7.52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p3

V1
= φ1

1
V1

= φ2

p2p4 + p1p3 = φ3

p1 + p3 = φ4

(7.53)

(7.54)

Therefore, the model is a priori nonidentifiable and the set of a priori uniquely
identifiable parameters is p1, p3, V1 and p2p4.

If, however, the plasma concentration of insulin is also measured, i.e. one has:

c2(t) = q2(t)
V2

(7.55)

then a second transfer function can be defined:

H21(s) = c2(s)
u(s)

=
p4

V2

s2 + (p1 + p3)s + p1p3 + p2p4
(7.56)
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and the identifiability properties improve. In fact, a new equation can now be added
to the exhaustive summary of (7.51)–(7.54):

p4

V2
= φ5 (7.57)

This means that the set of a priori uniquely identifiable parameters becomes p1,
p3, V1, p2V2 and p4/V2. Note that if the assumption can be made that V2 is known
or that V1 = V2, the model becomes a priori uniquely identifiable.

Example 5: A Model of Respiratory Mechanics

Many techniques for estimating respiratory system mechanics are based on the
assumption that the lungs can be described by the general equation of motion, a linear
first order system:

P(t) = RV̇(t) + 1
C

V(t) + IV̈(t) (7.58)

where P denotes airway pressure, V̇ air flow, V lung volume, V̈ volume acceleration,
R total breathing resistance, C respiratory compliance and I inertial effects. The
electric analog of the model is shown in Figure 7.10.

P(t)

V(t)
.

Figure 7.10 The resistance-elastance first order model of respiratory mechanics.

For most practical applications the inertial components are negligible and can be
ignored. Thus (7.58) reduces to:

P(t) = RV̇(t) + 1
C

V(t) (7.59)

Taking ventilatory airflow, V̇(t), as input and pressure at the airway opening, P(t),
as output we can rewrite (7.59) in terms of the pair of differential equations:

(7.60)

⎧⎪⎨
⎪⎩

ẋ(t) = V̇(t)
C

P(t) = RV̇(t) + x(t) (7.61)
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where x(t) is the elastic component of pressure. The unknown parameter vector is
p = [R, C]T. The transfer function is:

H(s) = Y(s)
U(s)

= P(s)

V̇(s)
= R + 1

sC
= sRC + 1

sC
≡ βs + 1

αs
(7.62)

Thus the exhaustive summary is given by:

RC = φ1 (7.63)

C = φ2 (7.64)

Therefore the model is a priori uniquely identifiable.

We have discussed the Laplace transform method to generate the exhaustive sum-
mary of the models. The method is simple to use even for system models of order
greater than two. What becomes more and more difficult is the solution, i.e. to deter-
mine which of the original parameters of the model are uniquely determined by the
system of nonlinear algebraic equations. In fact, one has to solve a system of non-
linear algebraic equations which is increasing both in number of terms and in degree
of nonlinearity with the model order. In other words, the method works well for
models of low dimension, e.g. order two or three, but fails when applied to relatively
large, general structure models because the system of nonlinear algebraic equations
becomes too difficult to be solved.

To deal with the problem in general there is the need to resort to computer algebra
methods. In particular, there is the need for a tool to test a priori identifiability
of linear compartmental models of general structure which combines the transfer
function method with a computer algebra method. Such a tool, named the Gröbner
basis, is available (Audoly et al., 1998).

7.5 NONLINEAR MODELS: THE TAYLOR SERIES EXPANSION METHOD

For a nonlinear model described by (7.37) and (7.38) or (7.39), the problem becomes
even more difficult. Below, we illustrate a method based on the analysis of the coef-
ficients of the Taylor series expansion in t0 of the output variable y (Pohjanpalo,
1978).

For sake of simplicity, let us consider the scalar case and more precisely the i-th
measurement variable yi. The Taylor series expansion in t0 of yi is:

yi(t) = yi(t0) + tẏi(t0) + t2

2! ÿi(t0) + t3

3!
...
y i(t0) + · · · (7.65)

where yi(t0), ẏi(t0), . . . are known and are the observational parameters φj. By express-
ing yi(t0), ẏi(t0), . . . , as functions of the unknown parameters p of the model one has
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the exhaustive summary of the model as:

yk
i (t0, p) = φk k = 0, 1, 2, . . . (7.66)

where k denotes the derivative order.
The system of nonlinear algebraic (7.66) needs to be solved for p. If it has

a unique solution, then one can conclude that the model is uniquely identifi-
able. Unfortunately, nothing can be said about the identifiability properties of
the model if this is not the case, e.g. if one is not able to prove, due to the
complexity of (7.66), that the system of (7.66) has a unique solution. However,
this does not necessarily mean that the model is nonidentifiable. In other words,
the method only provides necessary and sufficient conditions for a priori unique
identifiability.

In addition to this limitation, it should also be noted that one does not know
how many coefficients of the power series expansion are needed to study a priori
identifiability of a given model and experiment. In other words, theory does not
provide the value of k, i.e. the order of the derivatives, at which one can stop. This
makes the analysis even more difficult.

The power series expansion method also holds for linear models. In this
case one knows (from the Cayley Hamilton theorem) that one can stop at
k = 2n − 1, i.e. there is no independent information in the derivatives of order
higher than 2n − 1. To illustrate this point, let us consider an example of a receptor
model.

Example 7: A Langmuir Receptor Model

Let us consider the model in Figure 7.11. Assume that the material is injected at time 0
as a bolus of dose d, i.e. U(t) = D · δ(t), in plasma (compartment 1) and its concentra-
tion is measured. While irreversible elimination occurs linearly, i.e. it is characterized
by parameter k01, transfer of material into the nonaccessible compartment 2 takes
place with Langmuir saturation kinetics (see Figure 5.41c), i.e. the parameter k21
decreases linearly as the material is accumulated into 2.

y

u
k21 (1 – q2/s2)

k01

q2
q1

V1

Figure 7.11 A two compartment with the flux from compartment
1 to 2 described by a Langmuir relationship.
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The model equations are:

(7.67)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̇1(t) = −k01Q1(t) − k21

(
1 − Q2(t)

s2

)
Q1(t) + U(t) Q1(0) = 0

Q̇2(t) = k21

(
1 − Q2(t)

s2

)
Q1(t) Q2(0) = 0

y(t) = Q1(t)
V1

(7.68)

(7.69)

The unknown parameter vector is p = [V1, k01, k21, s2]T.
To study a priori identifiability one now has to obtain the various

y(0), ẏ(0), ÿ(0), ...
y (0). . . . (Note that 0 is a 0+, i.e. an instant immediately after the

impulse). Let us thus calculate y(0), ẏ (0), ÿ(0) and ...
y (0). Q1(0) is easy to calculate:

Q1(0) = D (7.70)

For Q̇1(0) one has from (7.67):

Q̇1(0) = −(k01 + k21)Q1(0) (7.71)

since Q2(0) = 0.
For Q̈1(0) one has:

Q̈1(t) = −
[
k01 + k21

(
1 − Q2(t)

s2

)]
Q̇1(t) + k21

Q̇2(t)
s2

Q1(t) (7.72)

and thus:

Q̈1(0) = −(k01 + k21)Q̇1(0+) + k21

s2
k21Q2

1(0+) (7.73)

For
...
Q1(0) one has:

...
Q1(t) = −

[
k01 + k21

(
1 − Q2(t)

s2

)]
Q̈1(t) + k21

Q̇2(t)
s2

Q̇1(t)

+ k21

s2
Q̇2(t)Q̇1(t) + k21

s2
Q̇2(t)Q1(t)

(7.74)

and thus:

...
Q1(0) = −k2

21

s2

(
k21

s2
Q2

1(0+) − 3Q̇1(0+)
)

Q1(0+) − (k01 + k21)Q̈1(0+) (7.75)
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Now it is easy from (7.71) to obtain y(0), ẏ(0), ÿ(0), ...
y (0) from (7.70), (7.71), (7.73)

and (7.75), respectively. The exhaustive summary of (7.65) is:

D
V1

= φ1 (7.76)

1
V1

[−(k01 + k21
)

Q1(0+)
] = φ2 (7.77)

1
V1

[
−(k01 + k21

)
Q1(0+) + k2

21

s2
Q2

1(0+)

]
= φ3 (7.78)

−k2
21

s2

(
k21

s2
Q2

1(0) − 3Q̇1(0)
)

Q1(0) − (k01 + k21)Q̈1(0) = φ4 (7.79)

It is easy to see that (7.76) provides V1 uniquely, (7.77) provides k01 + k21
uniquely, (7.78) gives k2

21/s2 uniquely and (7.79) gives k21/s2. In other words one has:

V1 = c1 (7.80)

k01 + k21 = c2 (7.81)

k2
21

s2
= c3 (7.82)

k21

s2
= c4 (7.83)

where c1, c2, c3, c4 are known constants. Since one has s2 = k21/c4, then k21 = c3/c4
and thus k01 = c1 − c3

c4
. Therefore the model is a priori uniquely identifiable.

It is interesting to note that if we consider a linearized version of the model, i.e.
with Q2 � s2 one has k21(1 − Q2/s2) � k21, the model becomes nonidentifiable. In
fact, the equations for Q1(0), Q̇1(0) become:

Qk
1(0) = −(k01 + k21)Qk−1

1 (0) k = 1, 2 . . . (7.84)

i.e. only the aggregated parameter k01 + k21 is uniquely identifiable (in addition to
V1). Note that in this case the model of Figure 7.11 reduces to that of Figure 7.8 and
we have already proven the above in section 7.2.

7.6 QUALITATIVE EXPERIMENTAL DESIGN

7.6.1 Fundamentals

Having defined a model structure and an input/output experiment for its identifica-
tion, a priori identifiability analysis permits one to avoid doing an experiment if the
parameters of interest are not identifiable, or conversely to define which would be
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the uniquely identifiable parameter combinations of the model. This is particularly
important in physiological and clinical studies where ethical as well as practical issues
come into play. For instance, if the general two compartment model of Figure 7.4 is
the model of choice for the system under study, but only compartment 1 is accessible
for input and measurement, a priori identifiability analysis can show that k21, k12,
k01 and k02 are nonidentifiable. However, some combinations of them are uniquely
identifiable, i.e. kll = k21 + k01, k22 = k12 + k02 and k21k12.

A priori identifiability is also an essential ingredient of qualitative experiment
design. Qualitative experiment design consists of selecting the site of inputs and out-
puts, among those that are experimentally feasible, which will guarantee a priori
unique identifiability of the model parameters. Since severe constraints exist on exper-
iment design when dealing with in vivo studies, i.e. the number of inputs and outputs
is severely limited for both ethical and practical reasons, it is of great interest to
define a minimal input/output configuration, i.e. necessary and sufficient to guaran-
tee a priori unique identifiability. Minimal means here minimum number of inputs
and outputs: obviously more than one minimal input/output configuration can exist,
i.e. having the same minimum number of inputs and outputs which take place in
different compartments.

The definition of a minimal input/output configuration thus relies on a priori
identifiability. For instance, the minimal input/output configuration of the general
two compartment model of Figure 7.4 is not the most general two input/four out-
put configuration, but a two input/three output one. There are thus four minimal
configurations available in this case.

7.6.2 An Amino Acid Model

An example of qualitative experiment design and minimal input/output configura-
tion can be provided using a model of leucine metabolism which is an essential
amino acid (Saccomani and Cobelli, 1992). Leucine metabolism can be described
in the context of the unit processes shown in Figure 7.12. The first metabolite in
the degradation via transamination is a-ketoisocaproate (Kic). Leucine and Kic are
interconvertible via the transamination process. Irreversible oxidation occurs with
the next step in metabolism which releases CO2. Leucine can enter the system from
protein breakdown, and be incorporated into protein.

To quantitate the steps in leucine metabolism outlined in Figure 7.12, knowledge of
leucine, Kic and bicarbonate kinetics is required. To develop a model of this complex
system, a pilot two-stage (A and B) tracer experiment described in Figure 7.13 was
performed.

Stage A

This is a two input/five output experiment where carbon labeled leucine and tritium –
or deuterium labeled Kic are simultaneously administered into plasma (e.g. as a
bolus). The corresponding four plasma leucine and Kic tracer concentration curves
are measured; in addition, the carbon labeled CO2 is measured in expired air.
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Figure 7.12 Schematic representation of the major unit processes of leucine metabolism
(adapted from Saccomani and Cobelli, 1992).
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Figure 7.13 Two-stage pilot tracer experiment designed for model formulation and identifica-
tion. Tracer inputs and measurements are denoted by large arrows and dashed lines with a bullet,
respectively. The open and closed bullets correspond to the labeled leucine (open) and Kic (closed)
inputs respectively. The closed square bullet corresponds to the bicarbonate input (adapted from
Saccomani and Cobelli, 1992).

Stage B

This is a single input/single output experiment performed on a separate occasion
where labeled bicarbonate is administered into plasma, e.g. as a bolus, and labeled
CO2 is measured in expired air.

The modeling strategy employed to describe the pilot experimental data was as
follows. First, the single input/single output data of bicarbonate kinetics (Stage B)
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were interpreted using the known three compartment model of bicarbonate kinet-
ics shown in Figure 7.14. Then, assuming the bicarbonate model is known in each
individual (from Stage B), the Stage A two input/five output data were interpreted
using the model shown in Figure 7.15 where, besides assuming a known bicarbonate
system, the model is subject to the constraint k03 = k05.

9

8

10

k8, 10

k98 k89

k10, 8

k
R

08

k
NR

08

Figure 7.14 The three-compartment model of bicarbon-
ate kinetics used to interpret the single input/single output
data of the Stage B experiment. The number of compartments
has been chosen to be consistent with the leucine metabolism
model shown in Figure 7.12. Irreversible loss from compart-
ment 8 is comprised of a respiratory kR

08 and non-respiratory
kNR

08 component. The large arrow denotes tracer input while
the dashed line with the bullet denotes the measurement of
labeled bicarbonate in the expired air, i.e. kR

08Q8.

Having postulated a plausible model structure, both in terms of physiology and
consistency with the pilot experimental data, the first question is: do the Stage A
and Stage B experiments ensure a priori unique identifiability of the leucine-Kic-
bicarbonate model? The answer is yes. In fact, one can show first that the Stage B
single input/single output experiment allows a priori unique identifiability of all the
unknown parameters of the model in Figure 7.15, i.e. k89, k98, k8,10, k10,8, kR

08 and
kNR

08 , once the structural symmetry problem is resolved by labeling compartments
9 and 10 as fast and slow, respectively. Then it can be shown that the Stage A two
input/five output experiment allows a priori unique identifiability of all the remaining
sixteen unknown parameters. These are the remaining kij together with V1 and V2,
of the model shown in Figure 7.14 (subject to the constraint k03 = k05 and assuming
the bicarbonate system parameters are known from the Stage B experiment).

Knowing that the model is a priori uniquely identifiable, the minimal input/output
configuration problem can be addressed. In particular, the following qualitative
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Figure 7.15 Ten-compartment model of leucine-Kic-bicarbonate kinetics used to
interpret the Stage A tracer experiment. The bicarbonate model shown in Figure 7.14 has
been appended to the intracellular Kic compartment. Two tracer inputs (large arrows) and
five measured variables are indicated: three measured variables (open bullets) refer to the
labeled leucine input, and the two closed bullets refer to labeled Kic. The model is subject
to the constraint that k03 = k05.

experiment design questions must be addressed: is the two-stage pilot experiment a
minimal one which guarantees a priori, unique identifiability? In particular, is Stage
B necessary? If not, are all the four plasma outputs of Stage A necessary? Which are
the sufficient ones? In particular, is the expired CO2 measurement of Stage A needed?

To answer these questions, it is necessary to analyze the a priori identifability of
the model from the Stage A experiment only.

Stage B is not necessary
A priori identifiability analysis of the leucine-Kic-bicarbonate model of Figure 7.15
from data of only Stage A experiment, i.e. without assuming the parameters of the
bicarbonate portion of the model to be known, shows the unique a priori identifi-
ability of all the parameters including those related to the bicarbonate model. This
theoretical result indicates that the independent assessment of bicarbonate kinetics
(Stage B) is not necessary since the information content of the five curves of Stage A
is sufficient to solve for all the unknown parameters of the leucine-Kic-bicarbonate
model. In terms of experiment design, this theoretical result is of particular interest
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since it shows that the model is a priori identifiable with a reduced experimental
effort. The two-stage pilot tracer experiment originally designed for model identifica-
tion is a priori not necessary; in particular, the single input/single output experiment
(Stage B) performed on a separate occasion from the dual input/five output one (Stage
A) is not required.

Dual input/four output experiment
So far the sufficiency of the dual input/five output experiment for a priori unique
identifiability of the leucine-Kic-bicarbonate model shown in Figure 7.15 has been
demonstrated. Is this experiment design also necessary? In other words, is it a minimal
experiment design for model identifiability? An examination of the Stage A exhaustive
summary reveals that measurements of labeled leucine concentration after a labeled
leucine injection and of labeled Kic concentration after a labeled Kic injection are nec-
essary. However, either the measurement of leucine concentration after a labeled Kic
injection or the measurement of labeled Kic after labeled leucine injection is redun-
dant. Thus, not all the four plasma curves are necessary for the a priori unique identifi-
ability of the model. Only three of them are needed, i.e. the two disappearance curves
of leucine and Kic plus one of the two appearance curves are required. So far, we have
proved that the two input/four output experiment, i.e. the measurement of the three
plasma curves described above and of the labeled CO2 in the expired air, is sufficient.

Two input/three output experiment
Now remaining to be proved is the necessity of the two input/four output experiment.
Having demonstrated the necessity of three plasma curves, one must examine the
necessity of the measurement of expired CO2. This is of particular interest since it
would allow the model to be identified with less experimental effort, i.e. from plasma
measurements only.

With such a two input/three output experiment, the model is that of Figure 7.15
without the bicarbonate portion of the model, and with k84 replaced by k04. Exami-
nation of the exhaustive summary shows that all of the parameters of the leucine-Kic
portion of the model are a priori uniquely identifiable from the two input/three output
tracer experiment, an experiment based on plasma measurement only.

7.7 SUMMARY

This chapter has explored the nature of the identifiability problem in relation to para-
metric models and discussed methods that are available for addressing it. In essence
this involved asking the question as to whether or not it is theoretically possible to
make unique estimates of all the unknown model parameters on the basis of data
obtained from particular input/output experiments. This is an exercise that needs to
be undertaken prior to performing any actual experiment, thereby avoiding unnec-
essary resource expenditure that would be ineffective in terms of securing useful
parameter estimates. The various approaches to addressing the problem have been
illustrated by a number of examples. Having considered this issue of identifiability,
Chapter 8 will now go on to consider the next step in dealing with parametric models,
namely ways of estimating the model parameters.



7.8 EXERCISES AND ASSIGNMENT QUESTIONS 193

7.8 EXERCISES AND ASSIGNMENT QUESTIONS

1. Discuss the role of the assessment of a priori identifiability in the overall
problem of parameter estimation.

2. Why does the a priori identifiability problem become more and more
difficult to solve when the model order increases?

3. A model of a given physiological system has been shown to be a priori
nonidentifiable. Discuss possible strategies to cope with nonidentifiability.

4. The kinetics of a drug in the body are described by the model shown
below:

Q1 Q2

k21

k01
k02

U1(t) � D1δ(t) C1(t) � Q1(t)/V1

⎧⎪⎨
⎪⎩

Q̇1(t) = −(k21 + k01) · Q1(t) + U1(t) Q1(0) = 0

C1(t) = Q1(t)
V1

� Show that the model is a priori nonidentifiable and derive the uniquely
identifiable parametrization

� Examine the a priori identifiability of this model if it now includes an
additional output from compartment 2:

Q1 Q2

k21

k01
k02

U1(t) � D1δ(t) C1(t) � Q1(t)/V1 C2(t) � Q2(t)/V2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̇1(t) = −(k21 + k01) · Q1(t) + U1(t) Q1(0) = 0

Q̇2(t) = −k02 · Q2(t) + k21 · Q1(t) Q2(0) = 0

C1(t) = Q1(t)
V1

C2(t) = Q2(t)
V2
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Consider the two cases, V2 unknown and V2 known.
� Examine a priori identifiability of the model with an additional input in

compartment 2 simultaneous with that into compartment 1:

Q1 Q2

k21

k01
k02

U1(t) � D1δ(t)
U2(t) � D2δ(t)

C1(t) � Q1(t)/V1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q̇1(t) = −(k21 + k01) · Q1(t) + U1(t) Q1(0) = 0

Q̇2(t) = −k02 · Q2(t) + k21 · Q1(t) + U2(t) Q2(0) = 0

C1(t) = Q1(t)
V1

5. Assume that the kinetics of a drug are described by the nonlinear model
shown below:

Q

U(t) � Dδ(t) C(t) � Q(t)/V

VM

KM�Q

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q̇(t) = − VM

KM + Q(t)
· Q(t) + U(t) Q1(0) = 0

C(t) = Q(t)
V

where VM and KM are the parameters of the Michaelis-Menten description
of irreversible drug elimination.

Examine the a priori identifiability problem.
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8.1 INTRODUCTION

The focus of this chapter is the estimation problem in the context of mathematical
models that explicitly include unknown parameters. Having formulated the basic
estimation problem, descriptions are given of the major approaches which include
linear and nonlinear least squares, maximum likelihood and Bayes. Also discussed is
the basis of the related problem of optimal experimental design. For a more detailed
account of estimation methods, including least squares, maximum likelihood and
Bayesian methods, Walter and Pronzato (1997) provides a good description.

A model of the system – whether an input/output or a structural one – has now been
formulated. The model contains a set of unknown parameters to which we would like
to assign numerical values from the data of an experiment. For a structural model we
assume that we have checked its a priori identifiability. However, this is not necessary
for an input/output model because, by definition, its unknown parameters are the
observational ones. The experimental data are available, e.g. they have been obtained
after a qualitative experiment design phase. In mathematical terms the ingredients we
have are the model output (as shown earlier in (7.1)):

y(t) = g(t, p) (8.1)

where g(t,p) is related to the model of the system, e.g. a structural or an input/output
one, and the discrete-time noisy output measurements, zi (as shown earlier in (7.2)):

z(ti) = zi = yi + vi = g(ti, p) + vi (8.2)

where vi is the measurement error of the i-th measurement.
The problem is to assign a numerical value to p from the data zi. As an example,

suppose the model of data:

y(t) = p1 + p2t + p3t2 (8.3)

is used to describe the data zi: in this case one needs to assign a numerical value to
p = [p1, p2, p3]T. On the other hand, suppose that the model of data:

y(t) = A1e−α1t + A2e−α2t (8.4)

is the candidate one for describing zi: in this case one needs to assign a numerical value
to p = [A1, λ1, A2, λ2]T. The same also holds for models of systems, e.g. consider the
model of Figure 7.3 in Chapter 7. In this case one needs to assign a numerical value
to p = [k21, k12, k01, V1]T or p = [k21, k12, k01, V1]T, respectively.

If either of these models were being used to describe a set of data, the parameters
characterizing them need to be ‘adjusted’ until a set of values for them is obtained
which provides the ‘best fit’ to the data (Figure 8.1). Regression analysis, which is
defined and described in detail below, is the most widely used method to ‘adjust’ the
parameters characterizing a particular function to obtain the ‘best fit’ scenario to a
set of data.
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Figure 8.1 The parameter estimation scheme showing its iterative nature.

It will be seen that there are fundamentally two kinds of regression: linear and non-
linear. The theory of linear regression is mathematically precise with the formulae for
the parameters characterizing the function specifically defined. Nonlinear regression
is more complex and results only in approximations for the estimates of the parame-
ters. In addition to the parameter estimates, for both linear and nonlinear regression,
one usually wants information on the errors of the parameter estimates. To obtain
estimates of these errors, one moves to weighted regression. In weighted regression,
knowledge of the error structure of the data is needed. These errors are used to calcu-
late the weight assigned to a datum during the regression process. The importance of
understanding the nature of the error in the data and how this relates to weighted and
unweighted regression is an essential ingredient of the regression problem as will be
made clear later. Thus there are several ingredients to the regression problem. These
will be isolated and explained in detail with examples provided.

8.2 LINEAR AND NONLINEAR PARAMETERS

What constitutes a linear or nonlinear parameter? It is important to understand this
since, as will be seen in section 8.4, there is an exact solution when the model contains
only linear parameters. In contrast, as will be seen in section 8.5, the solution is only
approximate if the model contains a nonlinear parameter.

There are many kinds of functions that are linear in their parameters. Polynomials
such as the following one are an example:

y(t) = p1 + p2 · t + p3 · t2 + · · · + pn · tn−1 (8.5)



198 CHAPTER 8 PARAMETRIC MODELS – THE ESTIMATION PROBLEM

This polynomial y(t) is characterized by the coefficients p1, p2, . . . , pn which
are the parameters to be estimated in data fitting, and the independent variable is
t. Why are polynomials linear? The reason why can be illustrated by using the simple
polynomial

y(t) = pt = y(p, t) (8.6)

When y(t) = y(p, t) is written in this manner, it indicates that y is a function of the
independent variable t and of the value assigned to the parameter p. That is, y(t) will
assume different values depending upon a specific value for p. The function y(t) is
linear in the parameter p, or equivalently the parameter p in (8.6) is linear because if
the value p + p′ is considered, then:

y(p + p′, t) = (p + p′)t = pt + p′t = y(p, t) + y(p′, t) (8.7)

For example, doubling the value for the parameter p will double the value for the
function y(t).

If y(t) is nonlinear in at least one of its parameters, or equivalently if not all
parameters describing y(t) are linear, then y(t) is nonlinear. Nonlinearity is seen when
the counterpart of (8.7) cannot be written for a particular function. For example, the
exponential function y(t) given in (8.4) is nonlinear since y(A1 + A′

1, λ1 + λ′
1, A2 + A′

2,
λ2 + λ′

2,t) is not equal to the sum of y(A1, λ1, A2, λ2, t) and y(A′
1, λ′

1, A′
2, λ′

2, t). This
function is linear in A1 and A2 and nonlinear in λ1 and λ2.

For a model linear in the parameters exact solutions are available based on linear
regression theory. However, for a model nonlinear in the parameters only approxi-
mate solutions are available based on the linear theory. That is why an understanding
of the linear theory is essential to discuss the nonlinear problem.

One final remark that is worth emphasizing relates to the difference between lin-
earity in the parameters and linearity of the dynamics. To exemplify this, consider
the simplest linear dynamic model, e.g. a one compartment model:

q̇(t) = −kq(t) + dδ(t) q(0) = 0 (8.8)

In terms of parameter estimation, this is a model nonlinear in the parameters since
the solution of (8.8) is:

q(t) = de−kt (8.9)

and, thus, the parameter estimation problem is nonlinear in k (d is known).

8.3 REGRESSION: BASIC CONCEPTS

Here we examine one by one the essential ingredients of regression.
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8.3.1 The Residual

The basic notions of regression, i.e. finding a set of parameter values which define
a function that will provide the best fit for a set of data, can be described using
Figure 8.2. Suppose an investigator wishes to obtain the best fit of the data to the
straight line

y(t) = pt (8.10)

How can this fit be obtained?
To solve the problem, one sees that, for different values of p, different straight

lines will be generated. How does one find the particular value for p which provides
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Figure 8.2 (a): A set of data with a straight line through them obtained by linear regression.
(b): A plot of the residuals illustrating the pattern of ‘above’ or ‘below’ zero. (c): Plot of WRSS(p) versus
p which shows that there is a unique value of p for which WRSS(p) is minimal (adapted from Cobelli
et al., 2001).
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the best fit? Note that for each point at time ti where there is a datum, denoted zi,
there is a corresponding prediction from y(t), yi. Once a value for p is chosen, the
difference between the experimentally observed datum and the calculated value, i.e.
zi − yi, can be calculated; this is called the residual. In general, if y(t) is a function to
be fitted to a set of data, and if zi is the ith observation, the residual is written:

resi = zi − yi (8.11)

8.3.2 The Residual Sum of Squares

The expression:

RSS =
N∑

i=1

(zi − yi)2 =
N∑

i=1

res2
i (8.12)

where N is the number of observations is called the residual sum of squares, RSS,
or sum of squares of errors since zi − yi can be considered as the error between the
observed and predicted value for each sample time ti.

The residual sum of squares, RSS, can be considered a measure of how good
the fit is to the given set of data. For different numerical values of the parameter
characterizing (8.10), i.e. for different numerical values for p, one will obtain a
different RSS. Therefore, RSS itself can be considered as a function of the parameter
characterizing the linear function chosen to describe a set of data. One can write
RSS = RSS(p) for (8.12) to emphasize this fact.

The idea behind regression is to minimize RSS with respect to the parameter values
characterizing the function to be fitted to the data, i.e. to find a set of parameter values
for y(t) which minimizes RSS. The process is called least squares. In the case of the
function defined in (8.10), the problem would be to find a value for p which minimizes
RSS for the set of data given in Figure 8.2.

The theory behind this minimization utilizes differential calculus. It also depends
upon a number commonly encountered in statistics: degrees of freedom. Suppose a
function y(t) described by P parameters is to be fitted to a set of N data points; the
degrees of freedom is defined as the number N − P. For the example above, y(t) given
in (8.10) is characterized by the single parameter p, hence P = 1. The number of data
given in Figure 8.2 is 10, hence N = 10. In this example, the degrees of freedom are 9.
The degrees of freedom are important since in order to solve the regression problem,
i.e. to find one set of parameter values for which RSS is minimum, it is necessary that
the degrees of freedom should be one or greater. If the degrees of freedom are less
than one, there is an infinite number of parameter values which will minimize RSS.

8.3.3 The Weighted Residual Sum of Squares

Data have errors associated with them. This basically means more confidence may be
placed in one type of data than in another, i.e. some data may be more ‘important’
than others in the fitting process. For instance, some data are less noisy than others,
so the preferred description/explanation would be for the less noisy outcome rather
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than for the noisier, i.e. small residuals are desired for the less noisy while larger
ones are tolerated for the noisier. Therefore, some means by which to give greater
importance to these data is sought. This is accomplished through assigning weights
to each datum.

The assignment of weights is reflected in the sum of squares. If y(t) is a function
to be fitted to a set of data and zi is the ith observation, the expression:

WRSS =
N∑

i=1

wi(zi − yi)2 =
N∑

i=1

wres2
i (8.13)

where N is the number of observations is called the weighted residual sum of squares,
WRSS, or weighted error sum of squares since

√
wi(zi − yi) can be considered as the

weighted error between the observed and predicted value for each sample time ti.
Extending the above, the theory behind minimizing WRSS is called weighted least
squares (WLS). In this expression wi is the weight assigned to the ith datum, and the
weighted residual is written:

wresi = √
wi(zi − yi) (8.14)

RSS and WRSS are functions of the parameters characterizing a function y(t). They
are examples of what in the theory of optimization are called an objective or cost
function. While there are other objective functions that can be used, RSS and WRSS
are most commonly used in the modeling of physiological systems. Other objective
functions will be briefly described in section 8.7 where the Maximum Likelihood and
Bayes estimators are discussed.

8.3.4 Weights and Error in the Data

It is natural to link the choice of weights to what is known about the precision of
each individual datum. In other words, it is necessary to give more credibility, or
weight, to those data whose precision is high and less credibility, or weight, to those
data whose precision is small.

Suppose that fitting a function y(t) to a set of data is required. In what follows, it
will be assumed that the function y(t) is the correct model for the data being consid-
ered. As part of the theory to be developed, information is recovered from the fitting
process to test if this assumption is in fact correct.

To start, for each datum zi at sample time ti, there is an error term vi. It is usually
assumed that this term is additive, i.e. can be expressed as:

zi = yi + vi (8.15)

vi is a random variable and assumptions about its characteristics must be made. The
most common assumption is that the sequence of vi is a random process with zero
mean (i.e. no systematic error) independent samples and variance known. This can be
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formalized in the statistical setting using the notation E, Var, and Cov to represent,
respectively, mean, variance and covariance. Then:

E(vi) = 0 (8.16)

Cov(vi, vj) = 0 for ti �= tj (8.17)

Var(vi) = σ2
i (8.18)

Equation (8.16) indicates that the errors vi have zero mean; (8.17) signifies that they
are independent, and (8.18) shows that the variance is known. A standardized mea-
sure of the error is provided by the fractional standard deviation (FSD) or coefficient
of variation (CV):

FSD(vi) = CV(vi) = SD(vi)
zi

(8.19)

where SD is the standard deviation of the error:

SD(vi) = √
Var(vi) (8.20)

The FSD or CV is often expressed as a percentage, i.e. the percentage fractional
standard deviation or percentage coefficient of variation, by multiplying SD(vi)/zi in
(8.19) by 100.

Three remarks are in order here. First, if the errors vi are Gaussian, then
(8.16)–(8.18) specify completely the probability distribution; otherwise they can
be seen to provide a description based on the first two moments (mean and vari-
ance). Second, using the fact that if Y is a random variable, and α and β are
constants, Var(α + βY) = β2Var(Y) one has from (8.15) that, since yi is constant,
Var(zi) = Var(vi), that is, the variance of an individual datum and of its error are equal.

Finally, we have considered the case where the variance is known (see equation
(8.18)). However, one can also easily handle the case where the variance is known
up to a proportionality constant, i.e. Var(vi) = biσ

2 with bi known and σ2 unknown.
It is beyond the scope of this book to consider this case further. For more details the
reader is referred to Cobelli et al. (2001; Chapter 10).

Knowing the error structure of the data, how are the weights wi chosen? The
natural choice is to weight each datum according to the inverse of the variance, i.e.:

wi = 1

σ2
i

(8.21)

It can be shown that this natural choice of weights is optimal in the linear regression
case, i.e. it produces the minimum variance of the parameter estimates. Therefore, it
is very important to have correct knowledge of the error of the data, and to weight
each datum according to this error.

The problem now is how to estimate the error variance. Ideally one would like
to have a direct estimate of the variance of all sources of error. This is a difficult
problem. For instance, the measurement error is just one component of the error; it
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can be used as an estimate of the error only if the investigator believes that the major
source of error arises after the sample is taken. To have a more precise estimate of
the error, the investigator should have several independent replicates of the mea-
surement zi at each sampling time ti from which the sample variance σ2

i at ti can be
estimated. If there is a major error component before the measurement process (for
instance, an error related to drawing a plasma sample or preparing a plasma sample
for measurement), then it is not sufficient to repeat the measurement per se on the
same sample several times. In theory, in this situation it would be necessary to repeat
the experiment several times. Such repetition is not often easy to handle in practice.
Finally, there is the possibility that the system itself can vary during the different
experiments.

In any case, since the above-mentioned approach estimates the variance at each
sampling time ti, it requires several independent replicates of each measurement.
An alternative more practical approach consists of postulating a model for the error
variance and estimating its unknown parameters from the experimental data.

A flexible model that can be used for the error variance is:

σ2
i = α + β(yi)γ (8.22)

which can be approximated in practice by:

σ2
i = α + β(zi)γ (8.23)

where α, β and γ are non-negative model parameters relating the variance associated
with an observation to the value of the observation itself. Values can usually be
assigned to these parameters, or they can also be estimated from the data themselves.

8.4 LINEAR REGRESSION

The fundamental ideas of linear regression are discussed by fitting a straight line
through the data of Figure 8.2. The concepts introduced here, based on least squares
theory, carry over to any linear function. The equation for the straight line used
here is:

y = y(p, t) = pt (8.24)

where t is the independent variable. The parameter describing this line, p, is linear
as described above. Different values for p will produce different lines. Hence, for
each value of p there is a different calculated value of RSS, or RSS(p) to denote
the functional relationship with p; this is shown in Figure 8.2. What one seeks
is the value of p̂, which minimizes RSS(p). This point is indicated in Figure 8.2.
As part of the theory of linear regression, it is known that when the degrees of
freedom are greater than one, there is a unique value for p which will minimize
RSS(p).
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8.4.1 The Problem

It is important to take into account measurement errors. This is done by weighted
least squares, WLS, which takes errors in the data explicitly into account through
weights. The expression to be minimized is WRSS:

WRSS(p) =
N∑

i=1

wres2
i =

N∑
i=1

wi(zi − yi)2 =
N∑

i=1

1

σ2
i

(zi − pti)2 (8.25)

To find the unique value for p which minimizes WRSS(p), one takes the derivative
of WRSS(p) with respect to p, sets the resulting expression equal to zero, and solves
this equation for p:

d(WRSS(p))
dp

= −2
N∑

i=1

ti

σ2
i

(zi − pti) = 0 (8.26)

From differential calculus, it is known that the value of p which is a solution of (9.26),
p̂, will minimize WRSS(p). This is given by:

p̂ =

(∑N
i=1

zi · ti

σ2
i

)
(∑N

i=1
t2
i

σ2
i

) (8.27)

It is also possible to obtain an expression for the precision of p̂, Var(p̂). Since data
zi are affected by a measurement error vi as specified in (8.15), one has that p̂ is
also affected by an error which we call estimation error. The estimation error can be
defined as:

p̃ = p − p̂ (8.28)

p̃ is a random variable because p̂ is random. One can measure the ability of the
estimation error to vary through its variance:

Var(p̃) = E(p̃2) = 1∑N
i=1

(
t2
i

σ2
i

) = 1∑N
i=1σ

2
i t2

i

= Var(p̂) (8.29)

The precision of the estimate p̂ of p is often expressed in terms of standard deviation,
i.e. the square root of the variance Var(p̂):

SD(p̂) = √
Var(p̂) (8.30)

It can also be given in terms of the fractional standard deviation FSD or the coefficient
of variation CV, which measures the relative precision of the estimate:

FSD(p̂) = CV(p̂) = SD(p̂)
p̂

(8.31)
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As noted previously, FSD and CV can be expressed as a percent by multiplying it
by 100.

From (8.27) and (8.29), one sees that both p̂ and VAR(p̂) depend upon the σ2
i .

This is why it is essential that the investigator appreciates the nature of the error in
the data.

8.4.2 Test on Residuals

Up to this point, an assumption has been made that the model is correct, i.e. that
y(t) = pt provides the correct functional description of the data. In this case, from the
comparison between the equation describing the data:

zi = yi + vi = pti + vi (8.32)

and from the definition of the residual (8.11):

resi = zi − yi = zi − p̂ti (8.33)

it can immediately be concluded that residuals resi must reflect the measurement
errors vi. For this in fact to be true, two conditions must hold: (i) the correct model or
functional description of the data has been selected, and (ii) the parameter estimation
procedure has converged to values close to the ‘true’ values. The sequence of residuals
can thus be viewed as an approximation of the measurement error sequence.

We can check if the above two conditions hold by testing on the sequence of
residuals the assumptions made regarding the measurement error. As discussed in
previous sections, the measurement error is usually assumed to be a zero mean, the
independent random process having a known variance. These assumptions can be
checked on the residuals by means of statistical tests. This analysis can reveal the
presence of errors in the model structure, i.e. in the above example if y(t) = pt is not
an appropriate model for a given set of data, or the failure of the parameter estimation
procedure to converge, i.e. if p̂ are not close to the true values for p.

Independence of the residuals can be tested visually by using a plot of residuals
versus time. It is expected that the residuals will oscillate around their mean, which
should be close to zero, in an unpredictable way. Systematic residuals, i.e. a long run
sequence of residuals above or below zero, suggests that the model is an inappropriate
description of the system since it is not able to describe a non-random component
of the data. In Figure 8.3 a typical plot is shown for a sequence of independent and
correlated residuals.

A formal test of non-randomness of residuals is called the run test. A run is defined
as a subsequence of residuals having the same sign (assuming the residuals have zero
mean); intuitively a very small or very large number of runs in the residual sequence
is an indicator of non-randomness, i.e. of systematic errors in the former and of
periodicity in the latter case. For details and examples we refer the reader to Cobelli
et al. (2001; Chapter 8).

In WLS estimation a specific assumption on the variance of the measurement errors
has been made. If the model is correct, the residuals must reflect this assumption.
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Figure 8.3 Plot of residuals versus time. (a) shows a pattern of independent
residuals; (b) of correlated residuals (adapted from Cobelli et al., 2001).

Since:

Var
(

vi

σi

)
= 1

σ2
i

Var(vi) = 1 (8.34)

if we define the weighted residuals as:

wresi = resi

σi
(8.35)

there should be a realization of a random process having unit variance. By plotting
the weighted residual versus time it is thus possible to visually test the assumption
on the variance of the measurement error: weighted residuals should lie in a −1,+1
wide band. A typical plot of weighted residuals is shown in Figure 8.4.

A pattern of residuals different from that which was expected indicates either the
presence of errors in the functional description of the data or that the model is correct
but that the measurement error model is not appropriate. In this case, it is necessary
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Figure 8.4 Plot of weighted residuals versus time. See text for additional
explanation (adapted from Cobelli et al., 2001).

to modify the assumptions on the measurement error structure. Some suggestions can
be derived by examining the plot. As an example, consider the case where the variance
of the measurement error is assumed to be constant. The residuals are expected to be
confined in a −1,+1 wide region. If their amplitude tends to increase in absolute value
with respect to the observed value, a possible explanation is that the variance of the
measurement error is not constant, thus suggesting a modification of the assumption
on the measurement error variance.

A formal test on the variance of weighted residuals based on χ2 statistics can also
be applied; this test is exact for linear regression with Gaussian measurement errors,
while it is approximate in the general case. For details and examples we refer the
reader to Cobelli et al. (2001; Chapter 8).

8.4.3 An Example

Consider the data shown in Figure 8.5 (these data have already been shown in
Figure 8.2). Assume that the linear function to be fitted to the data is y(t) = pt and let
us consider two different weighting schemes. The fitted data and the linear function
prediction are shown in Figure 8.6a.

In the first weighting scheme, σ2 was constant and equal to 900, hence the weights
wi were constant and equal to 0.01. Evaluating (8.27), one finds the numerator and
denominator are, respectively, 170.11 and 48.72, hence Â = 900 p̂. In the second
weighting scheme, σ2 = (0.15zi)2. In this case, the numerator and denominator of
(8.27) are 0.343 and 0.089, respectively, hence 900 p̂ = 3.845.

The assignment of weights has a substantial effect upon the estimate Â and its esti-
mated standard deviation. The effect of the two weighting schemes can be evaluated
by using (8.27) and (8.29). The results are summarized below in Table 8.1.

The plot of residuals for testing independence is shown in Figure 8.6b: residuals
are randomly scattered around the origin. The plot of weighted residuals to test the
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Figure 8.5 A set of data (those of Figure 8.2) to be fitted with a linear function (adapted
from Cobelli et al., 2001).

assumption on the variance of the measurement error is shown in Figure 8.6c: most
weighted residuals lie between −1 and 1 indicating that they are consistent with the
above assumption.

8.4.4 Extension to the Vector Case

We have seen in detail the simple case with one parameter:

y(t) = p · t (8.36)

An easy extension, and one which will allow us a straightforward handling of the
general case, is to two model parameters:

y(t) = pt + q (8.37)

The measurement equation is:

zi = yi + vi = pti + q + vi (8.38)

In this case, the weighted residual sum of squares, WRSS, is given by:

WRSS =
N∑

i=1

1

σ2
i

(zi − pti − q)2 (8.39)

To get p̂ and q̂ we follow the same line of reasoning discussed for the model (8.36),
and so calculate:

∂WRSS(p, q)
∂p

= 0 (8.40)

∂WRSS(p, q)
∂q

= 0 (8.41)
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Figure 8.6 Effect of two different weighting schemes on parameter estimation.
(a): Plot of data versus model fits. The solid line is a plot of y(t) = 3.977t and the dotted
line is y(t) = 3.845t. (b): Plot of residuals. (c): Plot of weighted residuals (adapted from
Cobelli et al., 2001).
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Table 8.1 Estimation results for two weighting schemes

Constant Variance Constant FSD
Var(vi) = 900 Var(vi) = z2

i · 0.015
wi = 1/900 wi = 1/(z2

i · 0.015)

p̂ 3.977 3.845
Var(p̂) 0.023 0.034
SD(p̂) 0.153 0.185
FSD(p̂) 4% 5%
WRSS 0.095 2.074

and obtain explicit expressions for p̂ and q̂. We can also calculate Var(p̂) and
Var(q̂), but this time there will be the covariance between p̂ and q̂ available,
cov(p̂, q̂) = cov(p̂, q̂).

Let us put this example in compact matrix-vector notation. By writing the
measurement equation (8.38) for all measurements i = 1, 2, . . . , N we get:⎡

⎢⎢⎢⎢⎢⎢⎣

z1
z2
. . .

. . .

zN−1
zN

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
y2
. . .

. . .

yN−1
yN

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
. . .

. . .

vN−1
vN

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

t1 1
t2 1
. . . . . .

. . . . . .

tN−1 1
tN 1

⎤
⎥⎥⎥⎥⎥⎥⎦
[
m
q

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
. . .

. . .

vN−1
vN

⎤
⎥⎥⎥⎥⎥⎥⎦ (8.42)

and thus:

z = y + v = Gp + v (8.43)

with:

z = [z1, z2, . . . , zN]T (8.44)

y = [y1, y2, . . . , yN]T (8.45)

v = [v1, v2, . . . , vN]T (8.46)

v = [v1, v2, . . . , vN]T p = [mq]T (8.47)

G =

⎡
⎢⎢⎢⎣

t1 . . . 1
t2 · · · 1
...

...

tN · · · 1

⎤
⎥⎥⎥⎦ (8.48)

The measurement error v, assuming a second order description, i.e. mean and
covariance matrix (N × N), is:

E[v] = 0 (8.49)

E[vvT] = �v (8.50)
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Since independence is assumed, �v is diagonal:

�v = diag(σ2
1 , σ2

2 , . . . , σ2
N) (8.51)

Now it is straightforward to generalize. We can write:

z = y + v = G p + v (8.52)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
z2
. . .

. . .

zN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
. . .

. . .

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
. . .

. . .

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g11, g12, . . . , g1M
g21, g22, . . . , g2M

. . .

gN1 gNM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

p1
p2
. . .

pM

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
. . .

. . .

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.53)

with:

p = [p1, p2 . . . pM]T (8.54)

G =
⎡
⎢⎣

g11 . . . g1M
...

...

gN1 · · · gNM

⎤
⎥⎦ (8.55)

Now, if we define the residual vector r:

r = z − Gp (8.56)

the weighted residual sum of squares is:

WRSS(p) =
N∑

i=1

1

σ2
i

r2
i = rT�−1

v r = (z − Gp)T�−1
v (z − Gp) (8.57)

The WLS estimate of p is that which minimizes WRSS(p):

p̂WLS = arg min
p

WRSS(p) = arg min
p

(z − Gp)T�−1
v (z − Gp) (8.58)

and we get the expression:

p̂WLS = (GT�−1
v G)−1GT�−1

v z (8.59)

We can also extend the test of residuals to the vector case and the estimation of the
precision of parameter estimates.



212 CHAPTER 8 PARAMETRIC MODELS – THE ESTIMATION PROBLEM

As far as the residuals are concerned, since we now have p̂, we can obtain the
residuals and the weighted residuals, respectively, as:

r = z − Gp̂ (8.60)

wr = �−1
v r (8.61)

As far as the precision is concerned, the covariance matrix is:

�p̃ = cov(p̃) = E
[
p̃p̃T

]
= �p̂ (8.62)

with p̃ = p − p̂.
Since p̂WLS = (GT�−1

v G)−1GT�−1
v z, we get:

p̃ = p − p̂ =
[
IM − (GT�−1

v G)−1GT�−1
v G

]
︸ ︷︷ ︸

deterministic

p − (GT�−1
v G)−1GT�−1

v v︸ ︷︷ ︸
random

(8.63)

By using the definition (8.62), �p̃ can be immediately obtained as the covariance of
the random addendum:

�p̃ = (GT�−1
v G)−1 = �p̂ (8.64)

8.5 NONLINEAR REGRESSION

What happens in the case where y(t), instead of being described by a set of linear
parameters, has nonlinear parameters as well? The problem of how to estimate the
parameters becomes more complex.

In the previous section, the major points were illustrated using the function
y(p,t) = pt. In this section, the major points will be illustrated using the mono-
exponential function y(t) = g(t, α) = e−αt where α is the nonlinear parameter to be
estimated. Later in this section, the function y(t) = g(A, α, t) = Ae−αt will be used to
then generalize to the vector case. How is the nonlinear case handled? The problem
is solved through a number of iterations that draws on the linear regression theory
discussed previously.

8.5.1 The Scalar Case

In this section, the same notation from the previous section will be used where
wi = 1/σ2

i is the weight assigned to each datum zi, and the expression to be
minimized is:

WRSS(α)
N∑

i=1

wi(zi − yi)2 =
N∑

i=1

wi(zi − e−αti )2 (8.65)
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In order to keep the formulae as simple as possible we shall retain wi in the derivation
instead of 1/σ2

i . As noted previously, y(t) is a nonlinear function of the parameter α,
so an explicit analytical solution for α analogous to (8.27) is not possible. In fact if
one takes the derivative of WRSS with respect to α and sets it equal to zero:

dWRSS(α)
dα

=
d
(∑N

i=1 wi(zi − e−αti )2
)

dα
= 0 (8.66)

one obtains:

−2
N∑

i=1

witie−αti (zi − e−αti ) = 0 (8.67)

which does not yield an explicit expression for α as a function of the known quantities
zi, ti, and wi.

To arrive at an estimate of α one possible strategy is based on iterative linearizations
of the model, i.e. the Gauss-Newton method. Let us consider the expression of y(t)
obtainable through its Taylor series expansion around a specific value of α, say α0:

y(t) = g(α, t) = g(α0, t) + dg(α, t)
dα

∣∣∣∣
α=α0

(α − α0) + 1
2

d2g(α, t)

dα
2

∣∣∣∣∣
α=α0

(α − α0)2 + · · ·

(8.68)

where the derivatives are evaluated at α = α0. The Taylor series is an infinite series,
i.e. the expression on the right hand side of (8.68) contains an infinite number of
terms. Normally, however, a truncated version of this expression can be used, e.g. a
finite number of terms of the series given on the right-hand side of (8.68). When this
is done, the right-hand side of (8.68) no longer equals y(t) exactly, but approximates
it with an approximation that generally improves as more terms of the series are
retained.

Now assume that an initial estimate α0 of α is available. The idea behind linearizing
the problem is to assume that the terms in (8.68) which contain derivatives of second
order and higher are small and can be neglected. This means that (8.68) can be
re-written as:

yi(t) ≈ g(α, t)
∣∣∣∣
α=α0

+ dg(α, t)
dα

∣∣∣∣
α=α0

(α − α0) = e−α0t − te−α0t(α − α0) (8.69)

Notice that this equation is now linear in α, since α0 is known as the assumed initial
estimate of α. Define:

�α = α − α0 (8.70)

Equation (8.69) can be re-written for the generic time ti as:

yi(t) ≈ g(α, t)

∣∣∣∣∣ α=α0

t=ti

+ dg(α, t)
dα

∣∣∣∣ α=α0

t=ti
�α = e−α0ti − tie−α0ti�α (8.71)
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which is an equation linear in �α. Assuming that the weights wi for the data zi are
known, one can write the following expression for WRSS(α):

WRSS(α) =
N∑

i=1

wi(zi − yi)2

≈
N∑

i=1

wi

(
zi − g(α, t)

∣∣∣∣∣ α=α0

t=ti
− dg(α, t)

dα

∣∣∣∣ α=α0
t=ti

· �α

)2

=
N∑

i=1

wi(zi − e−α0ti + ti · e−α0ti · �α)2

(8.72)

For convenience, define a new term:

�zi = zi − y(α0, ti) = zi − e−α0ti (8.73)

Equation (8.72) can be re-written:

WRSS (α)
N∑

i=1

wi

(
�zi − dg(α, t)

dα

∣∣∣∣∣ α=α0

t=ti
�α

)2

=
N∑

i=1

wi(�zitie−α0ti�α)2

(8.74)

WRSS can now be considered as a linear function of �α, and hence �α can be
estimated using the linear regression machinery. Briefly, in (8.27), �zi is substituted

for zi, and
dg(α, t)

dα

∣∣∣∣∣ α=α0

t=ti
for ti. Then one obtains:

�α̂ =

∑N
i=1 wi�zi

dg(α, t)
dα

∣∣∣∣∣ α=α0

t=ti

∑N
i=1 wi

(
dg(α, t)

dα

∣∣∣∣∣ α=α0

t=ti

)2

= −∑N
i=1 wi�zitie−α0

t∑N
i=1 wit2

i e−2α0 ti
(8.75)

=
−∑ 1

σ2
i

�zitie−α0ti

∑ 1

σ2
i

t2
i e−2α0ti
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At this stage, a new estimate for α can be obtained:

α1 = α0 + �α̂ (8.76)

and the process repeated using α1 instead of α0 in the above formulae. WRSS(α1)
is obviously smaller than WRSS(α0) since �α was chosen to minimize WRSS in
the neighborhood of α0. At each iteration, both the model function y(t) = g(α,
t) and its derivative with respect to the parameter α need to be evaluated at the
sample times.

The iterative process, which technically could go on forever, usually stops when
some preset criterion, for example comparing two consecutive values of WRSS, is
satisfied.

The linear regression machinery used to obtain an estimate for α can also be used
to obtain an estimate of the precision of this estimate. The extension of the linear
WLS equation, (8.29), for Var(p̃) to the nonlinear case provides (using the rationale
behind (8.75)) an estimate of Var(α̂):

Var(α̂) ≈ 1∑N
i=1

1

σ2
i

(
dg(α, t)

dα

∣∣∣∣ α=α̂
t=ti

)2 (8.77)

The derivative term is known:

dg(α, t)
dα

∣∣∣∣ α=α̂
t=ti

= −tie−α̂ti (8.78)

Therefore, one has:

Var(α̂) ≈ 1∑N
i=1

t2
i

σ2
i

e−2α̂ti

(8.79)

In the case of linear regression, the expressions for Var(α̂) are exact whereas in the
case of nonlinear regression, the expression given in (8.77) only provides an approx-
imation for Var(α̂). As far as the residuals and weighted residuals are concerned, the
treatment of the linear case in section 8.4.2 also holds here, with model prediction
being produced by g(α̂,t).

The linear machinery has been used to solve the nonlinear case. However, it is
worth remarking that the nonlinear case is more complex to handle than the linear
case. This is true not only from a computational point of view (see section 8.5.3),
but also conceptually due to presence of local minima of WRSS(α) and the necessity
of specifying an initial estimate of α, α0. To graphically illustrate this additional
complexity, let us consider WRSS(α) as a function of α as shown in Figure 8.7. There
is more than one minimum for WRSS, and this is distinctly different from the linear
case where there is only one (unique) minimum. The minima shown in Figure 8.7 are
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Figure 8.7 Plot of WRSS(α) as a function of α illustrating several local minima but only
one global minimum over the domain of the function. Notice also that some of the minima
are quite well-defined, or sharp, while others are much more gradual (adapted from Cobelli
et al., 2001).

called local minima. The difference, then, between the linear and nonlinear case is
that in linear regression there is a ‘unique’ minimum for WRSS while in the nonlinear
case there may be several local minima for WRSS. Among the local minima, the
smallest is called the global minimum. This has obvious implications for the choice
of α0. Generally, to be sure one is not ending up at a local minimum, several tentative
values of α0 are used as starting points.

8.5.2 Extension to the Vector Case

Let us now extend the machinery to the case where there is more than one unknown
parameter. This will accommodate functions y(t) such as:

y(t) = Ae−αt (8.80)

or

y(t) = A1e−α1t + A2e−α2t (8.81)

where, in (8.80) there are two parameters, A and α, and in (8.81) there are four, A1,
A2, α1 and α2; the ideas carry over to arbitrary functions y(t) described by a set of
parameters p = [p1, p2, . . . pp]T.

To set the scene, let us consider the model of (8.80), i.e.:

y(t) = g(t, p) = g(t, A, α) = Ae−αt (8.82)
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Let us assume we have an initial estimate p0 = [A0, α0]. For A and α in the
neighborhood of A0, α0 one has:

g(t, A, α) ∼= g(t, A0, α0)+∂g(t, A, α)
∂α

∣∣∣∣∣ A=A0

α=α0

(α−α0)+∂g(t, A, α)
∂A

∣∣∣∣∣ A=A0

α=α0

(A−A0) (8.83)

where now partial derivatives are used in the Taylor series since we have more than
a single parameter and so we have:

g(t, A0, α0) = A0e−α0t (8.84)

∂g(t, A, α)
∂α

∣∣∣∣∣ A=A0

α=α0

= −A0te−α0t (8.85)

∂g(t, A, α)
∂A

∣∣∣∣∣ A=A0

α=α0

= e−α0t (8.86)

Thus, we can write (8.83) as:

g(t, A, α) ∼= A0e−α0t − A0te−α0t(α − α0) + e−α0t(A − A0) (8.87)

Let us now consider the data:

zi = g(ti, A, α) + vi = Ae−αti + vi (8.88)

and by using (8.87) one has:

zi = A0e−α0tik − A0tie−α0tik (α − α0) + e−α0tik (A − A0) + vi (8.89)

Now, by defining:

�zi = zi − A0e−α0ti (8.90)

one has:

�zi = A0tie−α0ti (α − α0)e−α0ti (A − A0) + vi (8.91)

If we now further define:

�α = α − α0 �A = A − A0 (8.92)

one has:

�zi = −A0tie−α0ti�α + e−α0ti�A + vi (8.93)
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and thus, by considering all measurements, we have the matrix vector formulation:

⎡
⎢⎢⎢⎢⎢⎢⎣

�z1
�z2
. . .

· · ·
�zN−1
�zN

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e−α0t1 − A0t1e−α0t1

e−α0t2 − A0t2e−α0t2

· · · · · ·
· · · · · ·
e−α0tN−1 − A0tN−1e−α0tN−1

e−α0tN − A0tNe−α0tN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[
�A
�α

]
+

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
. . .

· · ·
vN−1
vN

⎤
⎥⎥⎥⎥⎥⎥⎦ (8.94)

We have now the linear model formulation:

�z = G�p + v (8.95)

where �z is known and �p unknown. The WLS solution (see 8.59):

�p̂ = (GT�−1
v G)−1GT�−1

v �z (8.96)

Now, having estimated �p̂, the initial estimate can be improved (we have moved in
the parameter space by decreasing WRSS):

p1 = p0 + �p̂ (8.97)

and the procedure can be iterated till WRSS (A, α) stops decreasing according to some
preset criterion.

Now we are in a position to extend the machinery to the generic nonlinear
model y(t) = g(t, p). Paralleling the general linear model development (as described
in section 8.4.4) we have:

z = y + v = G(p) + v (8.98)

where:

z = [z1, z2, . . . , zN]T (8.99)

y = [y1, y2, . . . , yN]T (8.100)

p = [p1, p2, . . . , pN]T (8.101)

G(p) = [g(t1, p), g(t2, p), . . . , g(tN, p)]T (8.102)

v = [v1, v2, . . . , vN]T with �v = cov(v) (8.103)

The WLS estimate of p is the one which minimizes WRSS(p):

p̂WLS = argmin
p

[z − G(p)]T�−1
v [z − G(p)] (8.104)
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Let us denote with p0 the initial estimate of p:

p0 = [p0
1, p0

2, . . . , p0
M]

T
(8.105)

The model prediction at time ti is:

g(ti, p) ∼= g(ti, p0) +
[

∂g(ti, p0)
∂p1

∂g(ti, p0)
∂p2

· · · ∂g(ti, p0)
∂pM

]⎡⎢⎢⎢⎣
p1 − p0

1

p2 − p0
2

. . .

pM − p0
M

⎤
⎥⎥⎥⎦ (8.106)

where notation has been compacted with respect to (8.83) by bringing the

∣∣∣∣∣ p=p0

t=ti
inside the argument of g(t, p). The data relate with g(tk, p) as:

zi = g(ti, p) + vi i = 1, 2, . . . , N (8.107)

Thus, using (8.106) and moving to vector notation one has:

⎡
⎢⎢⎢⎢⎢⎢⎣

z1 − g(t1, p0)
z2 − g(t2, p0)
z3 − g(t3, p0)

. . .

zN − g(tN, p0)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g(t1, p0)
∂p1

∂g(t1, p0)
∂p2

· · · ∂g(t1, p0)
∂pM

∂g(t2, p0)
∂p1

∂g(t2, p0)
∂p2

· · · ∂g(t2, p0)
∂pM

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

∂g(tN, p0)
∂p1

∂g(tN, p0)
∂p2

· · · ∂g(tN, p0)
∂pM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

p1 − p0
1

p2 − p0
1

. . .

pM − p0
M

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3

. . .

vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.108)

and thus:

�z = S�p + v (8.109)

with obvious definition of �z, S and �p from (8.109).
Now since �z (p0 is given, z is measured) and S can be computed, one can use

WLS to estimate �p with the linear machinery:

�p̂ = (ST�−1
v S)−1ST�−1

v �z (8.110)

Hence, a new estimate of p can be obtained as:

p1 = p0 + �p̂ (8.111)
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Now, with p1, which is by definition a better estimate than p0, the process can
restart: the model is linearized around p1, a new estimate p2 is obtained and so on
until the cost function stops decreasing significantly, e.g. when two consecutive values
of WRSS(p) are within a prescribed tolerance.

Once �p̂ has been obtained, by paralleling the general linear model case discussed
in section 8.4.4, one can obtain the covariance of the parameter estimates as:

�p̃ ∼= (ST�−1
v S)−1 = �p̂ (8.112)

with:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g(t1, p̂)
∂p1

∂g(t1, p̂)
∂p2

· · · ∂g(t1, p̂)
∂pM

∂g(t2, p̂)
∂p1

∂g(t2, p̂)
∂p2

· · · ∂g(t2, p̂)
∂pM

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

∂g(tN, p̂)
∂p1

∂g(tN, p̂)
∂p2

. . .
∂g(tN, p̂)

∂pM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.113)

Residuals and weighted residuals are defined as for the linear case in section 8.4.4
(equations 8.60 and 8.61) with model prediction provided by G(p̂).

8.5.3 Algorithms

The steps of nonlinear least squares estimation have been illustrated using the Gauss-
Newton iterative scheme. This outlines the principles of that class of algorithms which
requires the computation of derivatives contained in matrix S. This is usually done
numerically, e.g. using central difference methods, albeit other strategies are also
available, e.g. the sensitivity system (Cobelli et al., 2001; Chapter 10). This class is
referred to as gradient-type (derivative) algorithms. Numerically refined and efficient
algorithms, e.g. the Levenberg-Marquardt technique, based on the Gauss-Newton
principle, are available and are implemented in many software tools.

Another category of algorithms for minimizing WRSS which has been applied
in physiological model parameter estimation is one that does not require the com-
putation of the derivatives. These algorithms are known as direct search methods,
and both deterministic and random search algorithms are available and implemented
in software tools. An efficient deterministic direct search algorithm is the simplex
method. It is worth emphasizing that with a direct search method, the computation
of the derivatives is not required. Albeit that a direct comparison of gradient versus
direct search methods is difficult and may be problem dependent, available experi-
ence in physiological model parameter estimation tends to favor the gradient type
methods.
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Table 8.2 Test data with two descriptions of measurement error

ti zi Var(vi) = 0.0025 Var(vi) = (0.1 · zi)2

wi wi

15 0.856 400 136
30 0.797 400 157
60 0.538 400 345

120 0.318 400 989
240 0.133 400 5653
360 0.069 400 21003

Table 8.3 Estimation results with two weighting schemes

Constant Variance Constant FSD
Var(vi) = 0.0025 Var(vi) = (0.1 · zi)2

α 0.00923 0.00808
Var(α) 0.593 × 10−6 0.576 × 10−7

SD(α) 0.77 × 10−3 0.24 × 10−3

FSD(α) 8% 3%
WRSS 1.94 11.0

8.5.4 An Example

Consider next the data given in Table 8.2 and assume that a mono-exponential func-
tion is to be fitted to the data, y(t) = Ae−αt, i.e. both A and α need to be estimated
from the data. Consider two situations for the variance of measurement error. In the
first there is a constant standard deviation of 0.05 assigned to each datum, while in
the second a constant fractional standard deviation equal to 10% is assigned to each
datum. The weights are calculated as wi = 1/σ2(ti). The two situations are summarized
in Table 8.3.

When the function y(t) = Ae−αt is fitted to these data using the two weighting
schemes, estimates of A, α, SD(A) and SD(α) are obtained. Table 8.3 and Figure 8.8
summarize the results. The estimates of A and α and their precision clearly depend
upon the weighting scheme. This observation underlines the importance of having a
good knowledge of the error structure in the data.

8.6 TESTS FOR MODEL ORDER

Up to this point, only the problem of testing whether or not a specific model is
an appropriate description of a set of data has been examined. Consider now the
case where different candidate models are available, and the problem is to select the
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Figure 8.8 Upper panel: A plot of a function y(t) = Ae−αt for the case of con-
stant variance (dashed line) and constant FSD (solid line). Lower panel: A plot of the
weighted residuals (adapted from Cobelli et al., 2001).

model that provides the best description of the data. For example, when performing
multiexponential modeling of a decay curve:

y(t) =
n∑

i=1

Aie−λit (8.114)

the model order, that is the number n of exponentials, is not known a priori. A
mono-, bi- and tri-exponential model are usually fitted to the data, and the results of
parameter estimation evaluated so as to select the optimum order, i.e. the ‘best’ value
for n.
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Relying solely upon WRSS and an examination of the weighted residuals to deter-
mine the optimum model order is not appropriate since, as the model order increases,
WRSS will decrease. For example, in dealing with a tracer decay curve following a
bolus injection, each additional exponential term added to the sum of exponentials
will decrease WRSS. Similarly, the pattern of residuals will become more random.
However, each time an exponential term is added, two parameters are added (a coef-
ficient and an exponential), and the degrees of freedom are decreased by two. Thus
intuitively, when comparing different model structures, both WRSS and the degrees
of freedom should be evaluated. This is in order to check whether or not the reduction
of WRSS truly reflects a more accurate representation of the data, or whether it is
merely the result of the increase in the number of parameters. Hence additional tests
are required.

The two tests which are frequently used to compare model structures are the
F-test and tests based on the principle of parsimony. We briefly describe below only
the latter and refer the reader for illustration of the F-test to Cobelli et al. (2001;
Chapter 8).

The most commonly employed tests which implement the principle of parsimony,
i.e. choose the model which is best able to fit the data with the minimum number
of parameters, are the Akaike information criterion (AIC) (Akaike, 1974) and the
Schwartz criterion (SC) (Schwartz, 1978). More than two models can be compared
and the model which has the smallest criterion value is chosen as the best.

These criteria have been derived for linear dynamic models in a maximum likeli-
hood estimation context, the principles of which are discussed in the next section 8.7.
However, if one assumes that errors in the data are uncorrelated and Gaussian, then
the criteria can also be computed for WLS and are:

AIC = WRSS + 2P (8.115)

SC = WRSS + PlnN (8.116)

where P is the number of parameters in the model and N are the number of data.
While having different derivations, AIC and SC are similar as they are made up
of a goodness-of-fit measure plus a penalty function proportional to the number of
parameters P in the model. Note that in SC, P is weighted ln(N), i.e. with large N,
this may become important.

An Example

To illustrate the use of the criteria based on the parsimony principle let us consider
a two- and a three-exponential model as candidates to describe a set of data. Model
predictions against data and weighted residuals are shown in Figure 8.9. Parameter
estimates with their precision and WRSS values of the two models are shown in
Table 8.4. As expected from theory, the value of WRSS and residuals of the three are
lower than those of the two-exponential model, while the parameter estimates of the
two are more precisely estimated than those of the three-exponential model. Which
is the model to adopt? The principle of parsimony tests comes in to play and
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Figure 8.9 Left panel: Two-exponential model fit of the data and weighted residuals. Right panel: Three-exponential model fit of the
data and weighted residuals (adapted from Sparacino et al., 2000).
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Table 8.4 Model order choice based upon the principle of parsimony

A1 A2 A3 α1 α2 α3 WRSS AIC SC
(ml)−1 (ml)−1 (ml)−1 (min)−1 (min)−1 (min)−1

2 Exponentials 1.79 × 10−4 0.90 × 10−4 – 0.141 0.025 – 61 69 75
(7.2) (4.8) (9.2) (2.5)

3 Exponentials 1.29 × 10−4 0.88 × 10−4 0.81 × 10−4 0.253 0.085 0.024 40 52 60
(39) (66) (9) (49) (40) (3)

in Table 8.4 AIC and SC values are shown: the more parsimonious model is the
three-exponential one (lower AIC and SC).

8.7 MAXIMUM LIKELIHOOD ESTIMATION

The least squares approach to estimation requires comparatively little a priori knowl-
edge. Apart from having the model and the data, all that is required for full
probabilistic treatment is information regarding the measurement errors; that is, the
noise model. In contrast, a maximum likelihood (ML) estimation has additional
requirements of a priori knowledge. Not only is a noise model required, but also a
probability density function, defining the generation of the experimental data. ML
estimation makes use of this additional information so as to maximize the probability
that the parameter estimates achieved would enable the actual experimental data to
be re-created.

Let us consider the model of (8.98):

z = y + v = G(p) + v (8.117)

and assume the probability density function of v, fv(v) is known. Since v is random,
z will also be random with probability density function fz(z).

To clarify, let us now consider the case where v is independent and normally
distributed, i.e. v ∈ N(0, �v) with �v diagonal. Then z is also normal:

z ∈ N(G(p), �v) (8.118)

and:

fz(z) = 1[
(2π)Ndet(�v)

]1/2 exp
(

−1
2

[z − G(p)]T�−1
v [z − G(p)]

)
(8.119)

It should be noted that fz(z) is partially unknown since it depends on G(p) which is
unknown and also reflects randomness of v through its fv(v).

What then is the rationale on which ML estimation is based? Let us consider
the random vector z of (8.117). Since fv(v) is known, for a given value of p, fz(z)
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is completely determined as measurements are also known. In other words, for a
generic value of p, fz(z) gives the a priori probability that the random vector z can
have as its realization exactly the measurements. This quantity, which is called the
likelihood of the measurements, varies with p and is denoted by L(p). The principle
of a ML estimation is to choose the value which maximizes the likelihood of the
measurements as an estimate of p, i.e. it renders most possible the measurements:

p̂ML = argmax
p

L(p) (8.120)

The solution of (8.120) is normally tackled numerically and it is usual for computa-
tional reasons to maximize lnL(p) instead of L(p) (see below for an example).

It is of interest to see what L(p) becomes if v is Gaussian. Consider (8.119) and
fix z to the measurements. Then the likelihood of the measurements as a function of
p becomes:

L(p) = 1[
(2π)Ndet(�v)

]1/2 exp
(

−1
2

[z − G(p)]T�−1
v [z − G(p)]

)
(8.121)

Thus the ML estimate is:

p̂ML = argmax
p

1[
(2π)Ndet(�v)

]1/2 exp
(

−1
2

[z − G(p)]T�−1
v [z − G(p)]

)
(8.122)

Since e−f(x) is monotonically decreasing, the argument which maximizes e−f(x) is that
which minimizes f(x), so one has:

p̂ML = argmin
p

[z − G(p)]T�−1
v [z − G(p)] (8.123)

It is then simple to recognize that (8.122) is the same as (8.104). In other words, for
Gaussian and independent measurement errors, the ML and WLS estimates coincide.

The maximum likelihood estimation context allows one to set the precision
of parameter estimates within a rigorous framework. Let us define the Fisher
information matrix as:

F(p) = E

[
∂InL(p)

∂p
∂InL(p)T

∂p

]
(8.124)

Then, one has from the Cramér-Rao inequality that:

cov(p̃) = cov(p̂) ≥ [
F(p)

∣∣p=p̂
]−1 (8.125)

In other words, there is a limit on the achievable precision of parameter estimates
which is given by the inverse of the Fisher information matrix.
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What kind of expression do we then have for F(p)? Let us consider the case of
Gaussian and independent measurement noise v. In this case it is easy to show that:

[F(p)]ij =
N∑

i=1

1

σ2
i

∂g(p, ti)
∂pi

∂g(p, ti)
∂pj

(8.126)

and thus in matrix form:

F(p)
∣∣p=p̂ = ST�−1

v S (8.127)

with:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂g(t1, p)
∂p1

∣∣∣∣
p=p̂

∂g(t1, p)
∂p2

∣∣∣∣
p=p̂

. . .
∂g(t1, p)

∂pM

∣∣∣∣
p=p̂

∂g(t2, p)
∂p1

∣∣∣∣
p=p̂

∂g(t2, p)
∂p2

∣∣∣∣
p=p̂

. . .
∂g(t2, p)

∂pM

∣∣∣∣
p=p̂

· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

∂g(tN, p)
∂p1

∣∣∣∣
p=p̂

∂g(tN, p)
∂p2

∣∣∣∣
p=p̂

. . .
∂g(t2, p)

∂pM

∣∣∣∣
p=p̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.128)

As a result one has that:

cov(p̃) = cov(p̂) ≥ (ST�−1
v S)−1 (8.129)

Thus, approximating the covariance matrix of parameter estimates with (ST�vS)−1,
as in WLS, underestimates the effective uncertainty of the parameter estimates.

The ML estimator has important asymptotic (i.e. as N → ∞) properties for the case
of independent and Gaussian measurement error. In particular it is unbiased, normal
and efficient, i.e. the equality holds in (8.125) and (8.129). Given the equivalence
of ML and WLS for independent and Gaussian measurement error, these properties
also carry over to WLS. The above are asymptotic properties; in practice the number
of measurements is limited and one has to perform Monte Carlo simulation to assess
the reliability of the estimator.

8.8 BAYESIAN ESTIMATION

So far we have discussed two methods – nonlinear least squares and maximum like-
lihood – of the so-called Fisherian approach to parameter estimation. This means
that only the data z of (8.117) are supplied to the estimator, together with the noise
characteristics, in order to estimate the unknown model parameters p (Figure 8.10,
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Figure 8.10 Comparison of the requirements for weighted least
squares, maximum likelihood and Bayesian estimation.

upper and middle panels). Here we briefly discuss the Bayesian approach to param-
eter estimation which takes into account not only the data z, but also some a priori
information available on the unknown parameter vector p.

A Bayesian estimation assumes that the a priori probability distribution of p, fp(p),
is available (Figure 8.10, lower panel). This knowledge is independent of the data.
The basic idea is to exploit the actual data to refine our a priori knowledge and
obtain the a posteriori probability distribution of p, i.e. the probability distribution
of p given the data, fp|z(p|z). How can we obtain fp|z(p|z)? Since the model G(p) is
known (8.117), as is the probability distribution of the noise vector v, fv(v), we can
calculate the probability distribution of the data z as a function of the parameters p,
i.e. the likelihood function, fz|p(z|p). Now, since we know fp(p) and fz|p(z|p), Bayes’
theorem can be used to obtain fp|z(p):

fp|z(p|z) = fz|p(z|p)fp(p)
fz(z)

= fz|p(z|p)fp(p)∫
fz|p(z|p)fp(p)dp

(8.130)

Once fp|z(p|z) has been obtained, several point estimators can be defined. Two that
are widely used are Maximum A Posteriori (MAP) and Mean Square (MS) estimates
which are given respectively, by:

p̂MAP = argmax
p

fp|z(p|z) (8.131)

and:

p̂MS = E[p|z] =
∫

pfp|z(p|z) (8.132)

In general, an analytic expression for fp|z is either not available or else it is simply
intractable. Hence one has to resort to sophisticated numerical simulation techniques
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known as Markov chain Monte Carlo (Gilks et al., 1995). The description of these
techniques is outside the scope of this book but we refer the interested reader to
Pillonetto et al. (2002; 2006) for an appreciation of these techniques in relation to
biomedical modeling.

The expression for fp|z(p|z) in (8.130) is simplified considerably if specific assump-
tions regarding the distributions of v, fv(v), and p, fp(p), are made. For instance,
let us assume that both v and p are independent and normally distributed (8.118).
Then we have:

fp(p) = 1[
(2π)Ndet(�p)

]1/2 exp
(

−1
2

(p − μp)T�−1
p (p − μp)

)
(8.133)

with μp and �p as the mean and covariance of p, and (see 8.119):

fz|p(z|p) = 1[
(2π)Ndet(�v)

]1/2 exp
(

−1
2

[z − G(p)]T�−1
v [z − G(p)]

)
(8.134)

Suppose now that we choose a MAP estimator (8.131). First we note that since the
denominator of (8.130) does not depend on p, the MAP estimate is given by:

p̂MAP = argmax
p

fz|p(z|p) · fp(p) (8.135)

with fz|p(z|p) and fp(p) given by (8.134) and (8.133), respectively.
By using a reasoning similar to that used adopted in deriving the ML estimate

(8.123), we get:

p̂MAP = argmin
p

[z − G(p)]T�−1
v [z − G(p)] + (p − μp)T�−1

p (p − μp) = argmin
p

J(p)

(8.136)
where the first addendum in the argument is an a posteriori information term (the
data) and the second an a priori one (our expectation on p).

The MAP estimator thus realizes a compromise between a priori and a posteriori
information. For instance, if a priori information is ‘poor’, i.e. �P is large, the sec-
ond term becomes negligible and one has the situation in which the MAP estimate
coincides with ML:

p̂MAP = argmin
p

[z − G(p)]T�−1
v [z − G(p)] = p̂ML (8.137)

This is also true in general (above we have made the assumption of normality). In fact,
if we consider the definition of the MAP estimate (8.131) and consider a situation
of ‘poorer and poorer’ a priori information, fp(p) will tend to a uniform distribution
(Figure 8.11). In other words, it is like not having a priori information and the MAP
estimate of (8.136) then coincides with the ML estimate of (8.123).

The statistical information characterizing a MAP estimate is similar to that con-
sidered in the Fisherian approach; that is, confidence intervals for the parameter
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Figure 8.11 Distribution of fp(p) as affected by poorer a priori information.

estimates can be derived to assess precision, and parsimony principle criteria for
model order selection are available. One that is frequently used is the Generalized
Information Criterion (GEN-IC):

GEN-IC = 2M
N

+ J(p̂MAP) (8.138)

In general, with respect to ML, MAP estimation worsens the fit (the second term in
(8.136) is positive), but precision improves.

As a case in point, we can revisit the example that was considered in section 8.6.
The three-exponential model performance can be improved if we have some a priori
knowledge regarding the parameters. Table 8.5 shows the MAP results for the three-
exponential model obtained by assuming that μp and �P were known from previous
population studies. Also shown for comparison are the WLS results (or ML since we
assumed measurement errors to be independent and Gaussian) which were already
reported in Table 8.4. Precision improves with point estimates remaining very similar.
Weighted residuals are shown in Figure 8.12, demonstrating that they are virtually
the same as those obtained by WLS/ML estimation.

Table 8.5 Comparison of ML and MAP estimation

A1 A2 A3 α1 α2 α3 WRSS
(ml)−1 (ml)−1 (ml)−1 (min)−1 (min)−1 (min)−1

WLS 1.29 × 10−4 0.88 × 10−4 0.81 × 10−4 0.253 0.085 0.024 40
(ML) (39) (66) (9) (49) (40) (3)

MAP 1.51 × 10−4 0.93 × 10−4 0.74 × 10−4 0.283 0.074 0.023 48
(13) (10) (7.5) (12) (11.8) (2.9)

Examples of situations in which the Bayesian approach is particularly helpful are
presented in Chapter 11.
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Figure 8.12 Example of the fitting of data to a three-exponential (3E) model demonstrating
the patterns of weighted residuals obtained with ML (left) and MAP (right) estimation.

8.9 OPTIMAL EXPERIMENTAL DESIGN

We have now reached the stage where we have a model structure, a description
of the measurement error, and the numerical values of our parameters, together
with the precision with which they can be estimated. It may now be appropriate
to address the issue of optimal experimental design. The rationale here is to act on
design variables in order to maximize, according to some criterion, the precision
with which the compartmental model parameters can be estimated (DiStefano, 1981;
Landaw and DiStefano, 1984). Candidate design variables include the number of
test inputs and outputs, the form of test inputs, the number of samples and sampling
schedule, and the measurement error. For example, in clinical studies it may be highly
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desirable to minimize the experimental effort, say by minimizing the number of blood
samples needing to be collected.

The approach is to use the Fisher information matrix F, which is the inverse of
the lower bound of the covariance matrix, as a function of the design variables.
Usually the determinant of F (this is termed D-optimal design) is maximized, which
corresponds to minimizing the determinant of the inverse of F, F−1, that is the volume
of the asymptotic confidence region for p, so as to maximize the precision of the
parameter estimates, and hence numerical identifiability.

Let us define the principal variables of the experimental design, considering the
scalar case, as follows:

1. The form of the test signal u (e.g. injection, infusion, or combination of such
signals).

2. The duration of the time over which the output variable is measured T.
3. The number of samples, N, obtained during T.
4. The sampling schedule SS, that is where the samples are located in T (i.e. the

choice of t1, t2, . . . , tk, . . . , tN).
5. The variance of the measurement errors, �v.

The Fisher information matrix can thus be defined as:

F = F(u, T, N, SS, �v) (8.139)

The optimal design of sampling schedules (that is, determining the number and
location of the discrete time points at which samples are collected) has received con-
siderable attention, since this is the variable which is generally least constrained by
the experimental setting. Theoretical and algorithmic aspects of the problem have
been studied, and software is available for both the single- and multi-output cases
(DiStefano, 1981; Cobelli et al.,1985; Landaw and DiStefano, 1984). Optimal sam-
pling schedules are usually obtained in an iterative manner. Starting with the model
derived from pilot experiments, the program computes optimal sampling schedules
for subsequent experimentation.

The D-optimal design for the nth order multiexponential model usually consists
of independent replicates at 2M distinct times, where M is the number of parameters
to estimate. This can be a highly efficient result in terms of resources. In a number of
cases these designs can be approximated by rules of thumb, which have become part
of our intuition for selecting and modifying optimal designs. Under the error variance
model of (8.22), with α = 0 and time interval from t0up to tf, the D-optimal sam-
pling schedule for the two-parameter mono-exponential model y(t) = A1eλ1t consists
of two times t∗1 = t0 and:

t∗2 = minimum
{

t0 + 2
(λ1(γ − 2))

, tf

}
.

Note that for γ = 0 (constant error variance), the spacing between t∗1 and t∗2 is (−1/λ1),
and for γ = 2 (constant CV error) t∗2 is always chosen at the maximum time tf. This
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latter result is valid, of course, only if the assumption of no constant background
constant variance (α = 0) still holds at tf .

Also note that this design specification is independent of the nominal value for
parameter A1, in part because the regression model is linear in the A1 parameter.

The extension of the rules to higher-order multiexponential models is more dif-
ficult, but hints are given in Landaw and DiStefano (1984). In general for a single
input-single output, linear dynamic model with M parameters, the D-optimal design
consists of M distinct samples with independent replicates at the M points. This
allows improvement to be made in the precision by a factor m for the variance and√

m for the CV.
The adoption of optimal sampling schedule design has been shown to enhance the

precision of estimated parameters as compared to designs that have been arrived at
by intuition or some other means. The approach has also been shown to enhance the
cost-effectiveness of a dynamic clinical test by reducing the number of blood samples
withdrawn from a patient without significantly reducing the precision with which
model parameters have been obtained.

For instance, in Cobelli and Ruggeri (1989), the four parameters of a glucose
tracer kinetic model have been estimated in humans with a frequent sampling sched-
ule consisting of 19/35 samples (considered as the reference) and compared with those
obtained with an optimal ‘population’ four sample schedule. In each individual the
parameters estimated using the four sample and the 19/35 samples schedule were
fairly close: the mean absolute percentage difference from the reference of the four
estimated parameters was 18%, 15%, 9% and 4%. The precision of the estimated
parameters was obviously lower with the four sample as compared to the reference
schedule, but still satisfactory: mean coefficient of variation was for the four parame-
ters 20 vs. 12 (reference), 21 vs. 11, 17 vs. 9 and 4 vs. 3, respectively. This means that
with four replicates at the four optimal points, it is possible to achieve a precision
virtually identical to that obtained with the full 19/35 sample reference schedule.

8.10 SUMMARY

This chapter has focused on the problem of assigning numerical values to the
unknown parameters of a structural model, given that relevant experimental data are
available for this purpose. The concept of linear and nonlinear parameters has been
introduced, followed by a discussion of the basic concepts of regression analysis. This
then led on to a consideration of linear and nonlinear least squares estimation. Dis-
cussion of maximum likelihood and Bayesian estimation then followed. The chapter
concluded with discussion of the related issue of optimal experimental design. Having
dealt with structural models in this chapter, Chapter 9 will go on to consider signal
estimation in the context of non-parametric models.

8.11 EXERCISES AND ASSIGNMENT QUESTIONS

1. Discuss the relative advantages of Weighted Least Squares and Least
Squares parameter estimation.
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2. Weighted Least Squares parameter estimation for a model that is nonlinear
in the parameters is more difficult than for models that are linear in the
parameters. Discuss why this is the case.

3. The first criterion with which to judge whether or not a specific system
model is a reliable description of the data is the test on residuals. Discuss
why residuals should be independent, and why weighted residuals should
lie in a −1,+1 wide band.

4. Discuss the relative merits of Least Squares, Maximum Likelihood and
Bayesian approaches to parameter estimation in the context of
physiological modeling.

5. Discuss the rationale of optimal experiment design and formalize it.
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9.1 INTRODUCTION

Just as many parameters (the subject of Chapter 8) are not directly measurable in vivo,
the same is true of many signals that are of interest for the quantitative understanding
of physiological systems. Examples include the secretion rate of a gland, the produc-
tion rate of a substrate, or the rate of appearance of a drug in plasma after an oral
administration. Very often, it is only possible to measure the causally-related effects
of these signals in the circulation, e.g. the time course of plasma concentrations.
Thus, there must be reconstruction of the unknown causes, e.g. hormone secretion
rate, from the measured effects, e.g. hormone plasma concentration.

This is referred to as an inverse problem. If the unknown signal is the input of the
system, the inverse problem is an input estimation problem (refer back to Figure 4.29),

235



236 CHAPTER 9 NON-PARAMETRIC MODELS – SIGNAL ESTIMATION

which in the case of a linear time-invariant system, is called deconvolution. As already
anticipated in Chapter 4, section 4.9.2, deconvolution is known to be an ill-posed and
ill-conditioned problem and dealing with physiological signals adds to the complexity
of the problem. In this chapter we discuss these difficulties in a formal manner and
describe a classic non-parametric regularization method to handle these difficulties.

9.2 WHY IS DECONVOLUTION IMPORTANT?

One could argue that the measurement of a concentration time series in plasma pro-
vides sufficient information on the system of interest, e.g. for understanding its basic
mechanisms or for diagnostic and therapeutic purposes. In other words, there would
be no need to solve for u(t) in the integral equation (see (4.29)):

c(t) =
t∫

0

g(t − τ)u(τ) dτ (9.1)

since the samples of c(t) would do the job. There is no question that concentration
time series, i.e. the samples of c(t), contain precious information and we discussed in
Chapter 4 a number of methods to extract important quantitative information from
them. However, these concentration signals also reflect, in addition to the substance
secretion/production process of interest, its distribution and metabolism in the organ-
ism, i.e. its kinetics. In fact, the kinetics of the substance can play a very important
role since they can render the measured plasma concentration signal very different
from that of the signal we are interested in, i.e. the secretion/production flux, with
obvious consequences on inference from data analysis.

Let us illustrate this aspect with the simulated example of Figure 9.1. The input u(t)
is common to two systems, one characterized by a ‘fast’ impulse response, g(t) = e−αt

with α = 12 (left panels), and the other by a ‘slow’ one, i.e. g(t) = e−αt with α = 2
(right panels). This makes the two outputs c(t) calculated by convolution from u(t)
and g(t) very different (central panels, continuous lines): the ‘slow’ system shows a
second peak higher than the first one, while the true input shows the opposite. The
situation is further worsened if we consider discrete sampling and measurement noise
(central panels, open circles). The investigator only ‘sees’ the measured time series
redrawn and interpolated in the bottom panels: the ‘fast’ system shows the two origi-
nal peaks while the ‘slow’ system only shows a single bell-shaped peak. The lesson of
the simulated example shown in Figure 9.1 is pretty clear: there is the need to remove
the distortion introduced by the kinetics of the substance by estimating the input.

9.3 THE PROBLEM

We solve (9.1) for the unknown input, u(t), from the knowledge of the output of the
system, c(t), and the impulse response of the system, g(t). In real world problems,
only a finite number of output samples can be measured and the impulse response
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g(t) is a model (often a sum of exponentials) either identified through a specific input-
output experiment or obtained from population studies.

In (9.1) it is implicitly assumed that u(t) is causal, i.e. u(t) = 0 for t < 0. In several
cases, this is not true, as when a basal spontaneous hormone secretion also occurs for
t < 0. There are several ways to approach this problem, see for instance Sparacino
et al. (2001).

It is worth noting that due to the symmetry of (9.1) with respect to g(t) and u(t), a
deconvolution problem also arises whenever the impulse response g(t) of the system
given the input u(t) and the output c(t) is estimated. For instance, the transport
function of a substance through an organ can be estimated by deconvolution of the
inlet and outlet concentrations (Sparacino et al., 1998). Hereafter, we address only
the input estimation problem.

A final remark. We shall assume the system to be linear and time invariant. There
are situations where this is not the case; i.e. the system is linear time-varying. In such
situations the input estimation problem becomes that of solving a Fredholm integral
equation of the first kind:

c(t) =
t∫

0

g(t, τ)u(τ) dτ (9.2)

The function g(t,τ) is called the kernel of the system and depends on both t and τ and
not on their difference as in (9.1). In particular, the function g(t,τ0) describes the time
course of the output when the system is forced by a unitary pulse input δ(τ0) given at
time τ0. For instance, the reconstruction of hepatic glucose production after a glucose
perturbation can be stated as a Fredholm integral equation of the first kind, where
the kernel g(t,τ) is described by a linear two-compartment model of glucose kinetics
with time-varying parameters (Caumo and Cobelli, 1993; Vicini et al., 1999). In the
literature, the solution of the Fredholm integral equation of the first kind is usually
also called (albeit improperly) deconvolution.

9.4 DIFFICULTY OF THE DECONVOLUTION PROBLEM

In the mathematics/physics/engineering literature, deconvolution is known to be diffi-
cult because such problems tend to be ill-posed and ill-conditioned. Here, we discuss
these ‘analytical’ difficulties of input estimation by using a classic example of the lit-
erature (Hunt, 1971), hereafter referred to as the Hunt simulated problem. Consider
the input given by:

u(t) = e−[(t−400/75)]2 + e−[(t−600/75)]2
, 0 ≤ t ≤ 1025 (9.3)

and the impulse response of the system given by:

g(t) =
{

1, t ≤ 250
0, t > 250

(9.4)
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These functions do not necessarily have a physiological counterpart. Knowing u(t)
and g(t), c(t) can be obtained. Assume that N samples of c(t), {ck} where ck = c(tk),
are measured without error on the uniform sampling grid �s = {kT}, k = 1, . . . , N,
with T = 25 and N = 41. The input u(t), the impulse response g(t) and the output c(t)
together with the samples {ck} are shown in Figure 9.2 upper panel: left and right;
middle: right, respectively.

The problem of reconstructing the continuous-time function u(t) from the time
series {ck} can be shown not to result in a unique solution (Bertero, 1989). This will
be illustrated below by making reference to the least squares deconvolution technique.
Thus the problem has, in addition to the true solution, others such as the staircase
function (Figure 9.2, middle panel, left), the convolution of which with the impulse
response g(t) perfectly describes the output data {ck}. More precisely, there is an
infinite number of continuous-time functions that, once convoluted with the impulse
response, perfectly describe the sampled data. Therefore, the deconvolution problem
is an ill-posed problem.

To tackle ill-posedness, any deconvolution approach must in some way restrict the
field of the functions among which the solution of the problem is sought. For instance,
in so-called discrete deconvolution the signal u(t) is assumed to be a piecewise con-
stant within each interval of the sampling grid �s = [t1, t2, . . . , tN], i.e. u(t) = ui for
ti−1 ≤ t ≤ ti, i = 1, 2, . . . , N, where t0 = 0. From (9.1) it follows that:

c(tk) =
tk∫

0

g(tk − τ) · u(τ) · dτ =
k∑

i=1

ui ·
ti∫

ti−1

g(tk − τ) · dτ (9.5)

One may also think of ui as being the mean level of u(t) during the i-th sampling
interval. By letting:

gk−i =
ti∫

ti−1

g(t − τ) · dτ (9.6)

it follows that:

ck = c(tk) =
k∑

i=1

ui · gk−i (9.7)

So that the first terms are:

c1 = g0 · u1 (9.8)

c2 = g0 · u2 + g1 · u1 (9.9)

c3 = g0 · u3 + g1 · u2 + g2 · u1 (9.10)

·
·
·
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Figure 9.2 The Hunt simulated problem. Upper panels: True input (left) and impulsive response (right). Middle panels: Ill-posedness. The
staircase function (left, thick line) is a solution of the problem with error-free data like the true input (left, thin line), i.e. it perfectly describes
the sampled data (right, open circles, N = 41). The true continuous output is also shown (right, continuous line). Lower panels: Ill-conditioning.
Solution provided by LS deconvolution vs true input (left, thick vs thin line) from the noisy (SD = 3) sampled data (right, open circles). Also shown
is reconvolution (right, continuous line) (adapted from Sparacino et al., 2004).
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Adopting a matrix notation:

c = Gu (9.11)

where c = [c1, c2, . . . , cN]T is the N-dimensional vector of sampled output,
u = [u1, u2, . . . , uN]T, and G is an N × N lower triangular (Toeplitz) matrix:

G =

⎡
⎢⎢⎢⎢⎣

g0 0 0 0 0
g1 g0 0 0 0
g2 g1 g0 0 0
. . . . . . . . . . . . . . .

gN . . . g2 g1 g0

⎤
⎥⎥⎥⎥⎦ (9.12)

Since G is invertible, (9.11) provides a unique solution:

û = G−1c (9.13)

For the Hunt simulated problem, this solution is displayed in Figure 9.2, middle
panel: left. It should be noted that, given the ill-posed nature of the problem, this
profile is only one possible solution of the deconvolution problem with noise-free
data. Once convoluted with g(t), the staircase function perfectly describes the output
samples just as the true input, providing an accurate approximation, apart from the
staircase approximation.

u(t)

SYSTEM
g(t) c(t)

��

zk

vk

c(tk)
Input Concentration Measured Time Series

Figure 9.3 Output samples and measurement error.

Equation (9.11) addresses the noise-free situation. However, output samples are
usually affected by measurement error (Figure 9.3), and this dramatically enhances
the difficulty of the deconvolution problem. Let zk denote the k-th measurement:

zk = ck + vk k = 1, 2, . . . , N (9.14)

where vk is the error. Thus, in vector notation:

z = G · u + v (9.15)

where z = [z1, z2, . . . , zN]T and v = [v1, v2, . . . , vN]T. Let us assume v to be of zero
mean and independent with covariance matrix �v given by (8.50). The simplest esti-
mate of u from data z is achieved by resorting to least squares parameter estimation,
i.e. to solve the LS problem:

min
u

(z − G · u)T�−1
v (z − G · u) (9.16)
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The solution of (9.16) is (see Chapter 8, (8.59)):

ûLS = (GT�−1
v G)−1GT�−1

v z = G−1(GT�−1
v )−1GT�−1

v z = G−1z (9.17)

since G is square and invertible.
In this case reconvolution, i.e. the prediction of the output z(t) in (9.1) by using

ûLS(t):

z(t) =
t∫

0

g(t − τ) · ûLS(τ) · dτ (9.18)

describes perfectly the sampled data, i.e. the residual vector r = z − G ûLS is identically
zero.

The presence of noise in the measurement vector z (9.15) has a dramatic effect
on the quality of the estimate. In Figure 9.2 (lower panel: right) Gaussian noise
(standard deviation SD = 3) was added to the data of the Hunt simulated problem
and LS deconvolution was performed (Figure 9.2, lower panel: left). Note that wide,
spurious, and unrealistic oscillations contaminate the estimated input, which also
takes on negative values. The reason for this deterioration is that deconvolution is
not only ill-posed but is also an ill-conditioned problem. Small errors in the observed
data can be amplified, thus yielding much larger errors in the estimates.

It could be hypothesized that increasing the number of samples would be beneficial
to the solution of the problem. On the contrary, both theory and practice show that
increasing the sampling rate worsens the ill-conditioning. In addition, the ‘slower’
the system (i.e. the smoother the impulse response), the worse the ill-conditioning
for the same sampling frequency. This is well-exemplified in Figure 9.4 again on the
Hunt simulated problem. For the sake of clarity, we report in the top panels the lower
panels of Figure 9.2, i.e. those corresponding to a sampling period of T = 25. The
middle panels refer to the same impulsive response and measurement error (SD = 3)
of the top panels, but the sampling period is now T = 10 (vs 25). The lower panels
refer to a ‘slower’ system (g(t) lasts 400 instead of 250) with the original sampling
period (T = 25) and measurement error (SD = 3). This means, for example, that the
longer the hormone half-life and the higher the sampling rate, the more difficult the
reconstruction of the hormone secretion rate by deconvolution.

The conceptual difficulties described above made the deconvolution problem a
classic of the engineering/mathematics/physics literature. Unfortunately, dealing with
physiological signals adds to the complexity of the problem. For instance, parsimo-
nious sampling schemes are needed to cope with technical and budget limitations as
well as patient comfort. Consequently, the data are often collected with infrequent
and non-uniform sampling schedules. Among other things, non-uniform sampling
hinders the possible use of frequency domain techniques such as Wiener filtering.
Furthermore, physiological inputs are often intrinsically non-negative (e.g. hormone
secretion or substrate production rate). Thus, negative input estimates due to ill-
conditioning are physiologically implausible. Finally, physiological systems are some-
times time-varying, e.g. the glucose-insulin system during a glucose perturbation.
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Figure 9.4 The Hunt simulated problem. Effect of sampling frequency and system dynamics. Upper panels: Lower panels of Figure 9.2 are
reported for sake of comparison. Middle panels: Effect of an increased sampling frequency. LS deconvolution vs true input (left, thick vs thin
line) from noisy (SD = 3) samples (right, open circles, N = 102). Also shown is reconvolution (right, continuous line). Lower panels: Effect of a
‘slower’ dynamics. LS deconvolution vs true input (left, thick vs thin line) from noisy (SD = 3) samples (right, open circles, N = 41). Also shown is
reconvolution (right, continuous line) (adapted from Sparacino et al., 2004).
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Least square deconvolution is appealingly simple but weak because it is too sen-
sitive to ill-conditioning. In the literature many methods have been developed to
circumvent ill-conditioning. Broadly speaking, these methods can be divided into
two categories. The first, named parametric deconvolution, assumes the analytical
expression of the input to be known except for a small number of parameters, so that
the deconvolution problem becomes one of parameter estimation. A second, often
referred as non-parametric deconvolution, does not require an analytical form of the
input to be postulated. The best known non-parametric approach is the regulariza-
tion method. A deterministic version of this will be described in detail in the next
section.

9.5 THE REGULARIZATION METHOD

9.5.1 Fundamentals

The regularization method is a non-parametric approach (Philips, 1962; Tikhonov,
1963). The idea of the method is to identify a solution that provides not a perfect fit to
the data (like LS deconvolution) but rather a good data fit and one that simultaneously
enjoys a certain degree of ‘smoothness’. This is done by solving the optimization
problem:

min
u

(z − G · u)T�−1
v (z − G · u) + γuTFTFu (9.19)

where �v is the covariance matrix of the measurement error, F is a N × N penalty
matrix (see below) and γ is a real non-negative parameter (see below).

The problem posed in (9.19) is quadratic and its solution is:

û = (GT�−1
v G + γFTF)−1GT�−1

v z (9.20)

which depends linearly on the vector data z.
Note that, if γ = 0, (9.19) and (9.20) coincide with (9.16) and (9.17), respectively,

and the LS solution is obtained. When γ > 0, the cost function (9.19) is made up
of two terms. The first one penalizes the distance, weighted by the inverse of �v,
between the model prediction Gu (the reconvolution vector) and the data. The second
contribution uTFTFu, is a term that penalizes the ‘roughness’ of the solution. The
standard choice is to penalize the energy of the m-th order time derivative, with m
being an integer parameter. Usually the energy of the first or second derivatives is
considered. How is F built in order to achieve this? Let us consider the case of uniform
sampling (in what follows we shall remove this assumption). F is built so that Fu gives
the m-th differences of u (m = 1, 2, . . .), i.e. one has:

F = Dm (9.21)
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D =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0

0 −1 1 . . . 0
. . . . . . . . . . . . . . .

0 . . . . . . −1 1

⎤
⎥⎥⎥⎥⎦ (9.22)

As an illustration let us consider the case where the energy of the first derivatives is
penalized, i.e. m = 1. In this case:

F =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0

0 −1 1 . . . 0
. . . . . . . . . . . . . . .

0 . . . . . . −1 1

⎤
⎥⎥⎥⎥⎦ (9.23)

and thus Fu with F = D gives the first differences of u:

Du =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0

0 −1 1 . . . 0
. . . . . . . . . . . . . . .

0 . . . . . . −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
. . .

uN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

u1
u2 − u1
u3 − u2

. . .

uN − uN−1

⎤
⎥⎥⎥⎥⎦ (9.24)

If the energy of the second derivatives is penalized, i.e. m = 2, one has:

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
−2 1 0 . . . 0

1 −2 1 . . . 0
. . . 1 −2 . . . 0
. . . . . . . . . . . . . . .

0 . . . 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.25)

and thus Fu with F = D2 gives the second differences of u:

D2u = D(Du) =

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
−1 1 0 . . . 0

0 −1 1 . . . 0
. . . . . . . . . . . . . . .

0 . . . . . . −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2 − u1
u3 − u2

. . .

uN − uN−1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

u1
u2 − 2u1

u3 − 2u2 + u1
. . .

uN − 2uN−1 + uN−2

⎤
⎥⎥⎥⎥⎦

(9.26)

The relative weight given to data and solution regularity is governed by the so-called
regularization parameter γ. By increasing γ, the cost of roughness increases and the
data match becomes relatively less important. Conversely, by decreasing the value
of γ the cost of roughness is lowered, and the fidelity to the data becomes relatively
more important. The choice of regularization parameter is a crucial problem: too large
values of γ will lead to very smooth estimates of û that may not be able to explain
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the data (over-smoothing), while too small values of γ will lead to ill-conditioned
solutions of û that accurately fit the data but exhibit spurious oscillations due to their
sensitivity to noise (for γ → 0 the LS solution is approached).

The importance of the choice of γ is demonstrated by the profiles reported in
Figure 9.5 (left panels) for the Hunt simulated problem (right panels display how
well the estimated input, once convoluted with the impulse response, matches the
data). Too small a value of γ produces an input estimate û which suffers from noise
amplification due to ill-conditioning (under-smoothing) while too high a value pro-
duces an estimate of û that is too regular and hence is not able to explain the data
(over-smoothing).

9.5.2 Choice of the Regularization Parameter

In the literature, several criteria have been proposed for the choice of the reg-
ularization parameter γ such as: discrepancy; cross-validation and generalized
cross-validation; unbiased risk; minimum risk; and L-curve (see Sparacino et al., 2001
for references). Below we only describe the popular discrepancy criterion (Twomey,
1965) which suggests the following. Let us compare the residual vector:

r = z − Gû (9.27)

where r depends on γ.
Since from (9.15) one has:

v = z − Gu (9.28)

the residual vector r can be thought of as an estimate of the measurement error vector
v, i.e.

v̂ = r (9.29)

Thus it is ‘logical’ to expect that:

rTr ∼= E[vTv] (9.30)

Since rTr depends on γ, one has to adjust γ iteratively until:

N∑
i=1

r2
i

∼= trace(�v) =
N∑

i=1

σ2
i (9.31)

Examples of the use of the Phillips-Tikhonov regularization method with the discrep-
ancy criterion are shown in Figures 9.6–9.8 (left panels). In Figure 9.6, results of
the Hunt simulation problem are shown which are definitely better than those of Fig-
ure 9.5 where the regularization parameter γ was chosen empirically. Figures 9.7 and
9.8 are two physiological case studies on insulin and LH oscillations, respectively.
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Figure 9.5 The Hunt simulated problem. Upper panels: Regularized deconvolution vs true input (left, thick vs thin line) obtained with too
small a value of the regularization parameter (γ = 5) from the noisy data (right, open circles). Also shown is reconvolution (right, continuous line).
Lower panels: Regularized deconvolution vs true input (left, thick vs thin line) obtained with too large a value of the regularization parameter
(γ = 400) from the noisy data (right, open circles). Also shown is reconvolution (right, continuous line) (adapted from Sparacino et al., 2004).
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Figure 9.6 The Hunt simulated problem. Left panels: Regularized deconvolution vs true input (upper, thick vs thin line) obtained with the
value of the regularization parameter determined by the discrepancy criterion (γ = 105) from the noisy samples (lower, open circles). Also shown
is reconvolution (lower, continuous line). Right: Same as left by employing the virtual grid (γ = 1237455).
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Figure 9.7 Insulin oscillation case study. Left: Regularized deconvolution obtained with a value of the regularization parameter determined
by the discrepancy criterion (γ = 0.0015) from the noisy samples (lower, open circles). Also shown is reconvolution (lower, continuous line). Right:
Same as left by employing the virtual grid (γ = 0.588).
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Figure 9.8 Luteinizing hormone (LH) oscillation case study. Left: Regularized deconvolution obtained with a value of the regularization
parameter determined by the discrepancy criterion (γ = 130) from the noisy samples (bottom, open circles). Also shown is reconvolution (lower
panel, continuous line). Right: Same as left by employing the virtual grid (γ = 776).
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9.5.3 The Virtual Grid

Physiological signals are often sampled at a low and often non-uniform rate. The reg-
ularization method is based on the discrete model, (9.7), which was derived assuming
that the unknown input is constant during each sampling interval, no matter how
long. In the infrequent sampling case, this results in a poor approximation of the sig-
nal. For instance, consider the problem of estimating insulin secretion rate from an
intravenous glucose tolerance test (IVGTT). Figure 9.9 (left, upper panel) shows the
secretion profile obtained by deconvolution from plasma C-peptide data (left, bot-
tom panel) using the C-peptide impulse response. Due to the infrequent sampling, the
staircase approximation is hardly acceptable. The roughness of the staircase approx-
imation can also be appreciated by examining the deconvoluted profiles obtained for
the Hunt simulated problem, in both the ideal (Figure 9.2, middle panel, left) and
noisy case (Figure 9.2, bottom panel, left and Figure 9.5, left panels).

Such an unsatisfactory performance is due to the fact that the number of com-
ponents of the unknown vector u is assumed to be equal to the number N of
measurements. To remove this assumption, a different discretization grid can be
used for the input and the output. Let �S be the (experimental) sampling grid and
�V = {T1, T2, . . . , Tk, . . . , TV} a finer (V >> N) grid (possibly uniform) over which
the unknown input u(t) is described as a piecewise constant function. �V must con-
tain �S but, apart from this, it is arbitrary and has no experimental counterpart. For
this reason, �V is called a virtual grid. Let cV(Tk) denote the (noise-free) output at
the virtual sampling times Tk. Assuming that u(t) is piecewise constant within each
time interval of the virtual grid, it follows that:

cV(Tk) =
Tk∫

0

g(Tk − τ)u (τ)dτ =
k∑

i=1

ui

Ti∫
Ti−1

g(Tk − τ) dτ (9.32)

where T0 = 0. Adopting the usual matrix notation one has:

cV = GVu (9.33)

where V stands for ‘virtual’, cV and u are V-dimensional vectors obtained by sampling
c(t) and u(t) on the virtual grid, and GV is a V × V lower-triangular matrix. Times
belonging to the virtual grid �V have no counterpart in the sampled output data. We
can regard them as (virtually) missing data.

Let us denote by G the N × V matrix obtained by removing from GV those rows
which do not correspond to sampled output data. The measurement vector is thus:

z = Gu + v (9.34)

where v is the N-dimensional vector of the measurement error, u is the V-dimensional
vector of the input discretized over the virtual grid. If �V is uniform (note that a
uniform �V can always be chosen), G has a near-to-Toepliz structure, meaning that
it misses some of the rows of the Toepliz matrix GV.
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Figure 9.9 IVGTT insulin secretion case study. Left: Regularized deconvolution obtained with a value of the regularization parameter
determined by the discrepancy criterion (γ = 0.0012) from the noisy samples (lower panel, open circles). Also shown is reconvolution (lower
panel, continuous line). Right: Same as left by employing the virtual grid (γ = 0.25) (adapted from Sparacino et al., 2001).
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The estimate û is given by (9.20), where G and u are those of (9.34) and F has mag-
nitude of V × V. In fact, in (9.20) the matrix (GT�−1

V G + γFTF) is invertible because
it is the sum of GT�−1

V G (semi-definite positive) and FTF (positive). Provided that
�V has a fine time detail (in other words the time points are not widely spaced), this
method yields a stepwise estimate that is virtually indistinguishable from a continuous
profile.

To clarify the mechanics of the virtual grid rationale an illustrative example can
help. Let us consider a non-uniform and infrequent sampling grid (5 samples, time is
arbitrary):

1 ? 3 ? ? 6 ? ? ? 10 ? ? ? ? 15

and define a virtual grid as:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

then one has:

⎡
⎢⎢⎢⎢⎣

c(1)
c(3)
c(6)
c(10)
c(15)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

g0 0 0 0 0 0 0 0 0
g2 g1 g0 0 0 0 0 0 0
g5 g4 g3 . . . g0 0 0 0 0
g9 g8 g7 . . . . . . . . . g0 0 0
g14 g13 g12 . . . . . . . . . . . . g1 g0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
. . .

. . .

. . .

u15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.35)

If all samples of the virtual grid are available, then we have:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(1)
c(2)
c(3)
c(4)
. . .

. . .

c(14)
c(15)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 0 0 0 0 0 0 0
g1 g0 0 0 0 0 0 0 0
g2 g1 g0 0 0 0 0 0 0
g3 g2 g1 g0 0 0 0 0 0

. . . . . . . . .

g13 g12 . . . . . . . . . . . . g1 g0 0
g14 g13 g12 . . . . . . . . . . . . g1 g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
. . .

. . .

. . .

u15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.36)

We can now remove those rows that do not correspond to the sampled output data
and have:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(1)
c(2)
c(3)
c(4)
. . .

. . .

c(14)
c(15)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 0 0 0 0 0 0 0
g1 g0 0 0 0 0 0 0 0
g2 g1 g0 0 0 0 0 0 0
g3 g2 g1 g0 0 0 0 0 0

. . . . . . . . .

g13 g12 . . . . . . . . . . . . g1 g0 0
g14 g13 g12 . . . . . . . . . . . . g1 g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
. . .

. . .

. . .

u15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.37)
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and thus:

⎡
⎢⎢⎢⎢⎣

c(1)
c(3)
c(6)
c(10)
c(15)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

g0 0 0 0 0 0 0 0 0
g2 g1 g0 0 0 0 0 0 0
g5 g4 g3 . . . g0 0 0 0 0
g9 g8 g7 . . . . . . . . . g0 0 0
g14 g13 g12 . . . . . . . . . . . . g1 g0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
. . .

. . .

. . .

u15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.38)

In matrix notation:

� �

5 × 1

z

5 × 15

G

15 × 1

u

5 × 1

v

Results obtained with a one-minute virtual grid and employing the discrepancy cri-
terion are shown in Figures 9.6–9.9 (right panels), where the corresponding, already
discussed, estimates obtained with the sampling grid are shown on the left panels. The
estimates are able to describe both the true continuous-time input of the Hunt simu-
lated problem (Figure 9.6) and the physiological case studies data (Figures 9.7–9.9)
much better than staircase functions.

9.6 SUMMARY

In this chapter we have discussed the importance, and also the difficulties, of the
deconvolution problem for estimating an unknown input, e.g. the secretion rate of
a gland or a substrate production rate of an organ. We have presented in detail a
regularization method which can cope with most of the difficulties. However, one can
do much better. For instance, as concerns the choice of the regularization parameter,
albeit the discrepancy criterion has an intuitive rationale, it has no solid theoretical
foundation. In particular, it can be shown to be at risk of oversmoothing, i.e. it
provides too high a value of γ (De Nicolao et al., 1997). Another shortcoming is
the impossibility, within the deterministic context of the regularization method as
presented, of obtaining the confidence intervals of the reconstructed input. This is
a very important point, since deconvolution provides an indirect way of measuring
a non-accessible variable. Hence, it is important to assess the reliability of such a
measurement. In physiological systems analysis, confidence limits are particularly
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useful when one has to make inferences, such as choosing a threshold for detecting
the number of pulses present in a hormone secretory pulsatile profile or deciding if a
secretory profile is a pathological one. Another drawback is that sometimes, albeit the
input u(t) is known to be intrinsically non-negative, e.g. hormone secretion rates and
drug absorption rates, due to the measurement errors and impulse response model
mismatch, the solution provided may take on negative values.

All of the above aspects can be handled by more sophisticated approaches.
For instance, by setting the deconvolution problem within a stochastic embedding
(De Nicolao et al., 1997; Sparacino et al., 2001), we can derive a statistically-
based choice of the regularization parameter, improving on the discrepancy criterion
and putting statistically-based confidence limits on the reconstructed input. Also,
non-negativity constraints can be handled by considering constrained deconvolution
(De Nicolao et al., 1997; Sparacino et al., 2001; Pillonetto et al., 2002a). Finally,
it is worth mentioning that a user-friendly software tool, WINSTODEC (Sparacino
et al., 2002) is available, which implements both the deterministic version of the
regularization method described in this chapter as well as its stochastic embedding.

9.7 EXERCISES AND ASSIGNMENT QUESTIONS

1. Hormonal concentration time series reflect both secretion by the gland and
its distribution and metabolism in the body. Discuss why deconvolution is
important if the study goal is to reconstruct the secretion rate of the gland.

2. Discuss the difficulties of the deconvolution problem in general and the
additional complexity involved when dealing with physiological signals.

3. Least Squares deconvolution generally performs poorly when attempting
to reconstruct the unknown input. Discuss why this is the case.

4. Discuss the rationale of the regularization method.

5. The regularization method guarantees a certain degree of smoothness of
the reconstructed input. Discuss how this is achieved.
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10 MODEL VALIDATION

Chapter Contents

10.1 Introduction

10.2 Model Validation and the Domain of Validity
10.2.1 Validation During Model Formulation
10.2.2 Validation of the Completed Model

10.3 Validation Strategies
10.3.1 Validation of a Single Model – Basic Approach
10.3.2 Validation of a Single Model – Additional Quantitative Tools for

Numerically Identified Models
10.3.3 Validation of Competing Models

10.4 Good Practice in Good Modeling

10.5 Summary

10.6 Exercises and Assignment Questions

10.1 INTRODUCTION

‘Model validation’ involves assessing the extent to which a model is well-founded
and tractable, while fulfilling the purpose for which it was formulated (valid – from
the Latin validus, ‘strong, vigorous’). This assumes that, in a Popperian∗ sense, it can
be tested. Clearly, no model can have absolute, unbounded validity given that, by
definition, a model is an approximation of reality. When dealing with a set of com-
peting, candidate models, the validation process involves determining which of them
is best in relation to its intended purpose. A valid model is one that has successfully
passed through the validation process.

The aim of this chapter is to consider the nature of model validity and provide
a framework, with associated methods, for the model validation process. First, we
consider model validation and the domain of validity of models. This is followed by

∗ General attitude and practice of critical rationalism – Karl Popper.
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an examination of validation strategies; this involves considering both the validation
of a single model as well as the situation in which there is a need to choose amongst
a number of competing models. The chapter concludes with some thoughts on what
constitutes good practice in the overall context of good modeling methodology.

10.2 MODEL VALIDATION AND THE DOMAIN OF VALIDITY

Validation is integral to the overall modeling process. It is an activity which needs to
be performed both during model building, and upon completion of the model. Let us
consider each of these in turn.

10.2.1 Validation During Model Formulation

As already explained, model validation involves assessing the model in order to check
that it is well-founded and fulfils the purpose for which it was intended. Validation
is something that needs to be considered all the way through the modeling process.
It begins when specifying the purpose of the modeling activity and continues right on
to the completed model as discussed below.

Here we wish to consider the validation process as it should be applied during
the formulation of the model. First of all we need to think very carefully about the
purpose of the model. This needs to be specified very precisely and clearly. Validation
involves assessing the goodness or the worth of the model in relation to its intended
purpose. If this purpose has not been clearly defined, then it will not be possible to
make the required judgment as to whether the model is fit for its purpose.

The building of a model normally proceeds by postulating a conceptual model and
then proceeding to a mathematical realization of this conceptual form. In putting up a
conceptual framework, care needs to be taken to ensure that all the relevant physical
and chemical concepts are properly described. This is important when it comes to
producing the mathematical realization. For example, it might be assumed that the
flow of air in a portion of the respiratory system is to be considered, conceptually, as
including a turbulent component. This means that the mathematics used to describe
that flow must be appropriate as a description of the process of turbulent flow. More
generally, the particular mathematical formulation adopted must be consistent with
the physics, chemistry and physiology that are relevant to the situation being modeled.

As was discussed in Chapter 5, different degrees of assumption can be built
into the model. In reality, most physiological systems exhibit the complexities of
nonlinearity, distributed phenomena, stochasticity, etc. Yet, in appropriate circum-
stances, it may be acceptable (in relation to the intended purpose) to adopt a linear,
time-invariant, deterministic, lumped parameter model. Such simplifications imply
assumptions being made, and it is essential to be sure that such assumptions are
valid. This is a key component of the validation process during the formulation of a
model. For example, is an assumption of laminar air flow in the portion of the respi-
ratory system being modeled valid? Is the perturbation being modeled in relation to
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an oral glucose tolerance test sufficiently small that it is valid to adopt a linear model
of glucose metabolism?

Not only should the mathematical model be consistent with the relevant physical
and chemical principles and laws that are being represented, but the model should
also be consistent in other ways. It is important to ensure that the proposed set of
differential equations, say representing some of the dynamics of lipid metabolism, is
compatible with a feasible steady state. To carry out this check, the derivative terms
in all the differential equations of the model are set equal to zero. Solving what is
now a set of algebraic equations gives the values of all the variables that correspond
to that steady state. If the equations had been compiled in an inconsistent manner, it
might be found that one or more of the variables had an infinite or zero value in the
steady state, clearly providing evidence of model invalidity.

10.2.2 Validation of the Completed Model

The essence of the validation process once the model is complete is shown in Fig-
ure 10.1. In other words, by this stage all of the previously unknown parameters will
have been estimated.

Experimental
design

Unknown
system

Model structure
determination

Parameter
estimation

Model
validation

Experiment

Input Output

Data analysis

Final model

Figure 10.1 Validating the complete model.

It is important to stress that, in examining the validity of the complete model, the
process is dependent on model purpose. In other words, the task is problem-specific.
Validity is a multidimensional concept reflecting model purpose, current theories, and
experimental data relating to the particular physiological system of interest, together
with other relevant knowledge. Thus, as new theories are developed and additional
data become available, the requirements for a model to be deemed valid can change
although its validity is still assessed in terms of the same criteria.
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In general, for a model to be valid it will need to satisfy one or more of the criteria
of: empirical, theoretical, pragmatic and heuristic validity.

Empirical

Empirical validity is assessed by examining how well the model corresponds to
available data.

Theoretical

Theoretical validity, on the other hand, is concerned with ensuring that the model is
consistent with accepted physiological theories.

Pragmatic

Pragmatic validity particularly comes into play in the context of a model that is to be
used to support clinical decision making. For instance, consider the case of a model
being used to predict the way in which a patient would respond to a change in therapy
as evidenced by a change in blood glucose concentration or blood pressure. For the
model to be useful, it needs to be able to predict patient response with sufficient
accuracy for the predictions to be clinically useful. A model which was sufficiently
accurate in its predictions would be deemed to be pragmatically valid.

Heuristic

Heuristic validity is important when a model is to be used to test physiological
hypotheses. For instance, if a model is to be used to explore competing hypothe-
ses as to the type of sensors involved in providing information for the short-term
regulation of cardiovascular dynamics, the model would include representations of
the various types of sensor being considered if it was to be used in such hypothesis
testing. So a test of heuristic validity in this connection would be an examination of
the inclusion of such sensor representations.

Clearly which of the above validity criteria are relevant in any particular case is
dependent on the intended purpose of the modeling. In other words, the issue is
very much problem-specific. This again emphasizes the fact that we are dealing in a
particular instance with a specific domain of validity. We are seeking a model that is
good enough in relation to its domain of validity. However, in some cases a model
may be valid for some situations that lie outside the original domain of validity. This
adds to the credibility of the model. That means that a model that has a wider domain
of validity than a competitor would be regarded as a more credible model, if all other
considerations were equal.
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10.3 VALIDATION STRATEGIES

10.3.1 Validation of a Single Model – Basic Approach

The strategy to be adopted in the validation of a single model has as its essence a
comparison of the behavior of the model with that of the physiological system being
considered. This will involve assessing any mismatch between the system output, as
evidenced principally by experimental data, and the model output. In addition, the
model should be checked for plausibility of behavior.

Examining system and model responses has two ingredients. The first involves
comparison of overall patterns of response. The second focuses on particular features
of response.

Overall patterns of response

In terms of overall patterns of response, the usual measure is the goodness of fit of the
model response to the response of the physiological system as evidenced by the data
collected from input/output experiments. So typically we are examining the residual
sum of squares, SSR, corresponding to the final parameter estimates of the model, p.
This is the expression, as shown in (10.1) that we wish to make as small as possible,
or at least not greater than some agreed threshold value. In other words, we are
seeking to ensure that the model response must fit the experimental test data with
sufficient accuracy.

SSR =
N∑

i=1

(
1

σ2(ti)

)
[z(ti) − y(ti, p)]2 (10.1)

In (10.1), z (ti) is the measured experimental value of the output variable of the
physiological system made at time ti, σ is the standard deviation of that measurement,
y (ti) is the value of the corresponding model output variable for time ti, and p is the
vector of parameter estimates.

Features of response

In assessing the validity of a model, it may be useful to examine the occurrence of
certain patterns of features to be observed in the dynamic behavior produced by the
model. In essence, we are asking the question as to whether or not certain response
features which are to be seen in experimental data are reproduced by the model.

In many physiological systems, the normal or abnormal response is characterized
by the presence or absence of such features. Therefore, a qualitative assessment of
the occurrence or non-occurrence of features can be an important ingredient of the
validation process. Such features, which can be said to represent a subset of the infor-
mation contained in the available data may be simple or complex. Simple features
might include the rise or fall of a particular variable following the application of a
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particular physiological stimulus. More complex features might include the occur-
rence and specific timing of a peak value of a variable, a biphasic response pattern, or
particular patterns of oscillatory behavior. The model must be capable of reproducing
such qualitative features if it is to be deemed valid.

As well as undertaking such a qualitative analysis, it may be useful to quantify
the occurrence of such distinctive features. Typically this will involve setting up an
appropriate measure of ‘distance’ between the features as predicted by the model and
those exhibited in available experimental test data. The setting up of such quantitative
measures of features such as ‘distance’ can be regarded as a form of error function
that should be reduced to an adequate level if a model is to be valid.

For instance, suppose xD is a vector of quantitative features in the data and xM is
the vector of the corresponding model features. The distance between xM and xD in
feature space can be used to provide a measure of the error of fit between model and
data. Let us define a ‘figure of merit’ or measure of model adequacy F in terms of the
error between the data features xD(k) and the model features xM(k), k = 1, . . . , N:

F = 1(
1 +

(
1
N

)∑N
k=1 ωkδk

) , F ∈ [0, 1] (10.2)

where:

δk =
∣∣∣∣ (xM(k) − xD(k))

xD(k)

∣∣∣∣ (10.3)

and ωk are weighting factors (ωk ∈ [0, 1]). δk is the fractional error of the kth model
feature. If there is no error, F = 1, whereas an average error of ±50% between model
and data fives F = 0.67.

A figure of merit such as this thus provides an indicator of how closely important
features of dynamic response in the physiological system are mimicked by those in
the model. As well as being a useful tool in the validation of a single model, this
measure can also be very helpful when deciding between two or more competing
models as discussed below. An assessment of such quantitative measures of features
may equally enable deficiencies in the individual model to be revealed, requiring a
return to model formulation.

10.3.2 Validation of a Single Model – Additional Quantitative
Tools for Numerically Identified Models

In the case of validating a complete, single model, a number of other quantitative tools
are available. Let us consider the case where parameters have been estimated using
the methods that were described in Chapter 8. These tools enable us to investigate the
precision of the estimated parameters, the residuals of the mismatch between model
and data, and the plausibility of the parameter estimates for the situation in which
the parameters should have some explicit correspondence to physiological concepts.
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Parameter precision

An important test of model validity involves assessing the precision of the parameters
that have been estimated. In general terms, this can be achieved by determining the
covariance matrix of the parameter estimates, V(p̂). In the case of nonlinear least
squares estimation as considered in Chapter 8, the diagonal elements vii(p̂) of V(p̂),
provide the variances of the parameter estimates. Hence, the precision with which the
parameter pi can be estimated may be expressed in terms of the standard deviation by:

p̂i ±√
(vii(p̂i) (10.4)

Very often in judging parameter precision (a posteriori identifiability) a percentage
measure is employed. This is the coefficient of variation (CV) or fractional standard
deviation (FSD):

CV(p̂i) = FSD(p̂i) =
(√

(vii(p̂i))
p̂i

)
× 100 (10.5)

Residuals of the mismatch between model and data

As indicated above, for the model to be deemed valid, there must be an adequately
good fit of the model to the data that will have been assessed through the residual
sum of squares. Following on from this should be an investigation of the statistics of
the residual errors of this fitting process.

For example, it may have been assumed a priori that the measurement noise is
white, Gaussian and of zero mean. The residual errors of the fitting process must thus
be examined for bias, normality and whiteness, wherever possible using appropriate
statistical tests. For instance, whiteness can be examined by the use of correlation
techniques and normality by the application of a χ2 test. If, however, the data are
small in number, empirical visual methods may need to be adopted in examining
the residuals. This would typically involve plotting them against time in order to
detect possible inconsistencies; for example, outliers or systematic deviations between
experimental data and predicted model response.

Parameter plausibility

After assessing these other quantitative methods, we can finally turn to examining
the plausibility of the parameters in particular, as well as the plausibility of the model
overall. If the estimated parameters of a model correspond to some specific physical
or physiological properties, then those parameter estimates must accord with the
known values of such properties. In other words, if estimated parameters of a model
take on values that are absurd (e.g. fractional transfer rate constants in a metabolic
system or compliance of a blood vessel in the circulatory system lying outside the
physiologically feasible range), the model must be deemed invalid and is rejected.

In the case of a model that is identifiable, but not uniquely so (i.e. there are two
possible values for one or more of the parameters), this criterion may enable one to
be selected on the grounds that it is plausible whereas the other one is not.
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In addition to the specific issues of parameter plausibility just examined, other
features of model plausibility may be used in assessing validity. For instance, wherever
possible, the validity of the model should be tested against data independent of those
used in the fitting process, but obtained from other tests that are nevertheless within
the chosen domain of validity. For example, in the context of a metabolic system, the
model may enable values to be estimated for parameters such as volume of distribution
and clearance rate; parameters not directly estimated in the identification process. The
values estimated for such parameters from the model should then be compared with
the corresponding parameter values obtained from independent experiments. Such
parameters can be used in assessing the validity of the model under consideration.

In addition to the criteria already cited, wherever possible the validity of the model
should be tested against data independent of those used in the fitting process, but
obtained from other tests that are nevertheless within the chosen domain of valid-
ity. For example, a model of a metabolic system may enable values to be estimated
for parameters such as volume of distribution and clearance rate: parameters not
directly estimated in the identification process. The values estimated for such param-
eters should then be compared with the corresponding parameter values obtained
from independent experiments. Such parameters can be used in assessing the validity
of the individual model. Another useful test is to examine the prediction provided by
the model of variables other than those measured in the available input/output identi-
fication experiments. Again, such predictions may support or refute a specific model.

Finally, there is the need to consider the extent to which the model is compatible
with current physiological knowledge.

10.3.3 Validation of Competing Models

Goodness of fit

If there is a set of two or more candidate models, comparisons between them of their
ability to fit the available data as one measure of model validity should be made.
In this way the best model, in terms of goodness of fit, may be selected. However,
the improvement in predictability of the data by one model over a competing model
should not be obtained purely as a result of an increase in the number of parameters.
It must truly reflect a more accurate representation of data corrected for the increase
in the degrees of freedom in fitting. This is sometimes referred to as the principle of
parsimony.

In the case of linear dynamic models, the Akaike information criterion takes into
account both goodness of fit and number of parameters when comparing models
(Akaike, 1974). This criterion, AIC, is given by:

AIC = N ln SSR + 2P (10.6)

where N is the number of data points, P is the number of parameters, and SSR is the
residual sum of squares defined in (10.1) as:

SSR =
N∑

i=1

(
1

σ2(ti)

)
[z(ti) − y(ti, p)]2 (10.7)
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Features of response

The role of feature comparison has already been discussed above in the context of
a single model. However, this aspect of testing for model validity can also play an
important role in the situation in which a choice amongst two or more competing
models is sought. The figure of merit, F, such as that defined in (10.2), can be very
useful as an objective measure for deciding among competing models, enabling one
or more to be rejected without having to proceed further in the validation process.

Model plausibility

The considerations of plausibility, described above in relation to a single model,
are equally applicable when choosing the best out of a number of candidate models.
Examination of the plausibility of the parameter estimates achieved should help when
choosing the most appropriate model.

Having examined the plausibility of the parameters of the competing models, other
aspects of plausibility should be investigated, as for the case above when considering
the validity of just a single model. So again this involves exploring the plausibil-
ity of other features such as structure, parameters and behavior, as well as overall
physiological plausibility compatible with current physiological knowledge.

10.4 GOOD PRACTICE IN GOOD MODELING

Let us conclude this chapter by offering a few remarks that should be helpful in
ensuring good practice. First of all, remain critical of your model. Do not love it
too much! Remember that, by definition, a model is an approximation of reality.
As such, it cannot be perfect. So always be prepared to take account of new facts and
observations with a view to including them in your model.

A good model, in a Popperian sense, is one that is clearly falsifiable and therefore
is capable of bringing about its own downfall. In other words, it should be possible
to devise critical experiments to perform on the model which will provide a rigorous
test of its validity and provide clues as to where improvement is needed.

It should also be remembered that in situations of complexity, it might be appro-
priate to think in terms of a suite of models, where each would have its own distinct
domain of validity. It is then a case of choosing which is most appropriate for the spe-
cific context. This may reflect the particular level in the physiological hierarchy that
is being represented and the time scale of interest in relation to dynamic response,
for instance short-term or long-term. For example, the model chosen to examine
breath-by-breath control in the human respiratory system is likely to be significantly
different, both in terms of structure and parameters, from that needed to investigate
day-by-day changes in the asthmatic patient.

In summary, we have examined what is required in order to produce a model that
can be deemed to be valid. This requires the adoption of good modeling methodology,
with its ingredients that have been discussed in detail in this book. What should
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be clear, as captured in Figure 10.2, is that a successful outcome to the modeling
process is critically dependent on both the quality of the model and the quality of the
experimental data. Neither by itself is sufficient. We hope that by explaining good
methodology, and demonstrating its application in a variety of physiological settings,
we have given you the confidence to embark on this fascinating and important arena
of scientific endeavor.

PERFECT 
MODEL

PERFECT 
DATA

POOR DATA POOR RESULT

POOR RESULTPOOR MODEL

THE GARBAGE PARADIGM

Figure 10.2 The garbage paradigm.

Now that we have established a framework for considering the validity of one or
more models, the final chapter will look at a number of case studies to demonstrate
how these methods and techniques can be applied in practice.

10.5 SUMMARY

This chapter has provided an overview of the process of model validation. It has
been shown to be a process that pervades the whole modeling process, from initial
thinking about model purpose through to consideration of the worth or value of the
completed model. Strategies for validation have been outlined, both for the case of
a single model and also for the situation in which one is seeking to judge between
competing models. Suggestions have also been offered as to what constitutes good
modeling practice. The final chapter of the book will put these concepts and methods
into practice, offering a number of detailed case studies of model validation in action.

10.6 EXERCISES AND ASSIGNMENT QUESTIONS

1. Describe how the process of model validation is influenced by the purpose
for which a physiological model is intended.
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2. Discuss how issues of validation need to be considered during the process
of formulating a mathematical model of a physiological system.

3. Give an account of the criteria that can be used to assess the validity of a
single model, where the model might be developed for use in the context of
(a) physiological research, or (b) clinical decision support.

4. Two competing models have been developed as possible representations
of the dynamic processes with a particular area of human metabolism.
Indicate ways by means of which it might be possible to judge which
model is the more appropriate.
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11.8 Postscript

The previous chapters have outlined concepts, methods and techniques relevant to
the development of mathematical models of physiological systems. This final chapter
now presents a number of case studies which will demonstrate how such approaches
have been applied in tackling a number of real physiological and medical situations.
Taken together, these case studies cover the application of a wide range of modeling
methods and techniques.

11.1 CASE STUDY 1: A SUM OF EXPONENTIALS TRACER
DISAPPEARANCE MODEL

As a first case study let us consider a set of data that have been collected during a tracer
experiment. These data represent the time course of radioactive glucose tracer concen-
tration following an injection of tracer at time zero. The data, which were collected
from a normal subject, are depicted in Table 11.1 where the plasma measurements
are dpm/ml and the measurement times are minutes following the injection.
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Table 11.1 Plasma data from a tracer experiment (adapted from Cobelli et al., 2000)

Time Plasma Time Plasma

2 3993.50 99.87 28 2252.00 65.04
4 3316.50 86.33 31 2169.50 63.39
5 3409.50 88.19 34 2128.50 62.57
6 3177.50 83.55 37 2085.00 61.70
7 3218.50 84.37 40 2004.00 60.08
8 3145.00 82.90 50 1879.00 57.58
9 3105.00 82.10 60 1670.00 53.40

10 3117.00 82.34 70 1416.50 48.33
11 2984.50 79.69 80 1333.50 46.67
13 2890.00 77.80 90 1152.00 43.04
14 2692.00 73.84 100 1080.50 41.61
15 2603.00 72.06 110 1043.00 40.86
17 2533.50 70.67 120 883.50 37.67
19 2536.00 70.72 130 832.50 36.65
21 2545.50 70.91 140 776.00 35.52
23 2374.00 67.48 150 707.00 34.14
25 2379.00 67.58

From a modeling perspective, our aim is to fit these data to a set of exponential
terms. The number of exponentials required to fit the data would give us a clue as to
how many compartments would be needed should we wish to model our physiological
system explicitly in terms of a number of interconnected compartments.

In order to select the order of the multiexponential model which is best able to
describe these data, one, two and three-exponential models can be considered as
represented by equations (11.1)–(11.3):

y(t) = A1e−α1·t (11.1)

y(t) = A1e−α1·t + A2e−α2·t (11.2)

y(t) = A1e−α1·t + A2e−α2·t + A3e−α3·t (11.3)

It is assumed that the measurement error is additive:

zi = yi + vi (11.4)

where the errors vi are assumed to be independent, Gaussian with a mean of zero,
and having an experimentally-determined standard deviation of:

SD(vi) = 0.02 · zi + 20 (11.5)

These values are shown associated with each datum in Table 11.1. The three models
are to be fitted to the data by applying weighted nonlinear regression, as discussed in
Chapter 8, with the weights chosen equal to the inverse of the variance. The plots of
the data and the model predictions, together with the corresponding weighted residu-
als, are shown in Figure 11.1. The model parameters, that is to say the coefficients of
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Table 11.2 One, two, three-exponential model parameter estimates (see text for
explanation)

One exponential Two exponentials Three exponentials

A1 3288 (1%) 1202 (10%) 724866 (535789%)
α1 0.0111 (1%) 0.1383 (17%) 4.5540 (7131%)
A2 2950 (2%) 1195 (14%)
α2 0.0098 (3%) 0.1290 (14%)
A3 2925 (2%)
α3 0.0097 (3%)

AIC 171.10 40.98
SC 174.09 46.97

the exponential terms and their corresponding rate constants (eigenvalues), are given
in Table 11.2.

On examination of the parameter values presented in Table 11.2, it can be observed
that all those corresponding to the one and two-exponential models can be estimated
with acceptable precision. However, some of the parameters of the three-exponential
model are very uncertain. This means that the three-exponential model cannot be
resolved with precision from the data.

This arises from the fact that the first exponential is so rapid, α1 = 4.6 min−1, that it
has practically vanished by the time of the first available datum at 2 minutes. The other
two exponential terms have values similar to those obtained for the two-exponential
model. In addition, the final estimates of A1 and α1 are also dependent upon the initial
estimates; that is, starting from different initial points in parameter space, the nonlin-
ear regression procedure yields different final estimates while producing similar values
of the weighted residual sum of squares (WRSS). Therefore, the three-exponential
model is not numerically identifiable, and hence can be rejected at this stage.

The next step is to compare the fit of the one and two-exponential models. It can
be seen by inspection that the residuals of the one-exponential model are not random
because the plot reveals long runs of consecutive residuals of the same sign. This can
also be tested more formally using the statistical runs test. For details, see Cobelli
et al. (2000).

Most residuals for the two-exponential model lie between −1 and 1. This indi-
cates that they are compatible with the assumptions made regarding the variance
of the measurement error. On the other hand, only a few of the residuals of the
one-exponential model fall in this range. To test formally if the weighted residuals
have unit variance, as expected if the model and/or assumptions on the variance of
the measurement error are correct, the X2-test can be applied. Again, details can be
found in Cobelli et al. (2000).

Applying the Akaike criterion (AIC) and the Schwarz criterion (SC) (refer to
(8.115) and (8.116)), Table 11.2 shows that the two-exponential model reduces the
WRSS significantly when compared with the one-exponential model. Applying an
F test reveals similar results (see Cobelli et al., 2000).
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11.2 CASE STUDY 2: BLOOD FLOW MODELING

This next case study demonstrates how the classic model of Kety and Schmidt (1948)
can be used to measure blood flow, making use of experimental data obtained
from Positron Emission Tomography (PET) functional imaging. These data are
measures of radioactivity concentration in the blood over time following injection
of an appropriate radioactive tracer substance. The basic model used is shown in
Figure 11.2.
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Blood
Flow

Blood
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Figure 11.2 Blood flow model incorporating a single-tissue compartment.

The model equation is:

dCt(t)
dt

= K1Cp(t) − k2Ct(t) Ct(0) = 0 (11.6)

where Ct is the tracer concentration in tissue, and Cp is the tracer concentration in
arterial plasma. K1 and k2 (adopting the nomenclature used in PET modeling) are
two first-order kinetic rate constants. The tracer concentrations are often measured
in units of μCi/ml or in kBq/ml and the acquisition time in minutes. Consequently, K1
has units of mlplasma/mltissue/min or, in abbreviated form, ml/ml/min or ml/100 g/min
and k2 has units of min−1.

At any time following the introduction of the PET tracer, the total concentration
of radioactivity measured by a PET scanner, C(t), is the sum of the tissue activity
in a region of interest (ROI), or in a voxel, and a certain fraction of blood tracer
concentration:

C(t) = (1 − Vb) · Ct(t) + Vb · Cb(t) (11.7)
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where Vb is the fraction of the measured volume occupied by blood and Cb the tracer
concentration in the whole blood. The three model parameters are a priori uniquely
identifiable and can be estimated by weighted nonlinear least squares.

In PET neuroimaging, because blood volumes in the human brain are small, typi-
cally constituting only 5% of the total blood volume, the blood volume term is often
omitted. Adopting this simplified model structure, together with experimental data
obtained following the injection of freely diffusible [15O]H2O PET tracer, blood flow
can be quantified making use of the assumptions:

K1 = F (11.8)

k2 = F
λ

(11.9)

where F is the rate of blood flow per unit mass of tissue and λ is the tissue–blood
partition coefficient. The partition coefficient was originally defined as the ratio of
the tissue to venous blood concentration. In PET studies the partition coefficient
refers to the concentration ratio between a tissue compartment and arterial plasma at
equilibrium, i.e. λ = Ct/Cp|equilibrium = K1/k2 which is more correctly termed volume
of distribution, generally represented by Vd. However, traditionally in [15O]H2O
PET quantification, the ratio λ = K1/k2 is named partition coefficient.

11.3 CASE STUDY 3: CEREBRAL GLUCOSE MODELING

Experimental data obtained by PET functional imaging can also be used in order
to study glucose metabolism in the brain. In this case a two-compartment model is
adopted as shown in Figure 11.3.

This two-compartment model proposed by Sokoloff and colleagues (1977) was
originally developed for autoradiographic studies in the brain, but has subsequently
been used for PET studies of glucose utilization with [18F]fluorodeoxyglucose,
[18F]FDG. [18F]FDG is an analog of glucose that crosses the blood–brain barrier
by a saturable carrier-mediated transport process and competes with glucose for the
same carrier. Once in the tissue, [18F]FDG, like the glucose, can either be trans-
ported back to plasma or can be phosphorylated. In the model, Cp is [18F]FDG
plasma arterial concentration, Ce is [18F]FDG cerebral tissue concentration, and
Cm is [18F]FDG-6-P cerebral concentration in tissue. K1 [ml/100 g/min or ml/ml/min]
and k2 (min−1) are the rate constants of [18F]FDG forward and reverse transcapillary
membrane transport, respectively, and k3 (min−1) is the rate constant of [18F]FDG
phosphorylation.

The model equations are:

dCe(t)
dt

= K1Cp(t) − (k2 + k3)Ce(t) Ce(0) = 0 (11.10)
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Figure 11.3 Cerebral [18F]FDG model incorporating two-tissue compartments.

and

dCm(t)
dt

= k3Cm(t) Cm(0) = 0 (11.11)

The total concentration of radioactivity measured by a PET scanner, C(t), is the sum
of the tissue activity in a ROI, or in a voxel, and a certain fraction of blood tracer
concentration:

C(t) = (1 − Vb) · (Ce(t) + Cm(t)) + Vb · Cb(t) (11.12)

where Vb is the fraction of the measured volume occupied by blood, and Cb is the
tracer concentration in whole blood. All four parameters, [K1, k2, k3, Vb] are a priori
uniquely identifiable. It should be noted that the model parameters reflect [18F]FDG
kinetics and not those of glucose. However, from [18F]FDG parameter estimates it is
possible to also derive the cerebral metabolic rate of glucose utilization, CMRglu from:

CMRglu = K1k3

k2 + k3

Cglu
p

LC
(11.13)

where Cglu
p is the arterial plasma glucose concentration (mg/dl). LC is a lumped con-

stant (unitless) that describes the relationship between the glucose analog [18F]FDG
and glucose itself. LC is given by:

LC = EFDG

EGLU (11.14)
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where EFDG and EGLU are, respectively, the extraction of [18F]FDG and glucose. The
value of LC for the human brain under normal physiological conditions is in the
region of 0.85 (Graham et al., 2002). From the model parameter estimates obtained,
it is also possible to derive the distribution volume for the Ce compartment as:

Vd = K1

k2 + k3

(
ml

100 g

)
or
(

ml
ml

)
(11.15)

11.4 CASE STUDY 4: MODELS OF THE LIGAND-RECEPTOR SYSTEM

Advances in PET imaging also make it possible to study receptor density and
radioligand affinity in the brain and in the myocardium. Quantification of the ligand-
receptor system is of fundamental importance not only in understanding how the
brain works, e.g. how it performs the various commands and reacts to stimuli, but
also in the investigation of the pathogenesis of important diseases such as Alzheimer’s
and Parkinson’s. In recent years PET has become an increasingly used tool to quan-
titate important parameters such as the receptor density and the binding affinity of
radioligands. A number of models have been proposed for specific ligand-receptor
interactions, including those of Mintun et al. (1984) which will be discussed below.

The most widely adopted model in this context is one that incorporates two tissue
compartments as shown in Figure 11.4.
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Figure 11.4 Model incorporating two tissue compartments.

In this model Cp is the plasma arterial plasma concentration corrected for metab-
olites, Cf+ns is the free and the non-specifically bound tissue concentration of the PET
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ligand, and Cs is the tissue concentration of specifically bound ligand. The parameters
K1 (ml ml−1min−1) and k2 (min−1) represent rate constants for the ligand transfer
from plasma to tissue and vice-versa, while k3 (min−1) represents the transfer of tracer
to the specifically bound compartment and k4 (min−1) relates to the return from the
specifically bound compartment to the free and non-specifically bound compartment.

Whilst the two-tissue compartment model is the one that is most widely employed,
it is in fact a simplification of the true tissue distribution space which should be
more realistically represented by three compartments. This structure is depicted in
Figure 11.5.
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Figure 11.5 Model incorporating three-tissue compartments.

In this model, Cp is the arterial plasma concentration corrected for metabolites, Cf
is the concentration of free ligand, Cns is the concentration of non-specifically bound
ligand, and Cs is the concentration of specifically bound ligand. The model equations
are thus:

Cf(t)
dt

= K1Cp(t) − (k2 + k3 + k5)Cf(t) + k4Cs(t) + k6Cns(t) (11.16)

Cs(t)
dt

= k3Cf(t) − k4Cs(t) (11.17)

Cns(t)
dt

= k5Cf(t) − k6Cns(t) (11.18)

with initial conditions Cf(0) = Cs(0) = Cns(0) = 0. K1 (ml/ml/min) is the rate constant
for the transfer from plasma to the free ligand tissue compartment, and k2, k3, k4,
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k5, k6 (min−1) are the rate constants for ligand transfer from tissue to plasma and
within the tissue space.

In order to have a better understanding of the physiological meaning of parameters
k3 and k4, let us assume that the binding of the ligand to the receptor site can be
described by a bimolecular reaction:

L + R
kon−−−−−→←−−−−−
koff

LR (11.19)

where L represents the ligand, R the receptor site, LR the binding product, kon is the
association rate of the ligand with the receptor sites, and koff the dissociation rate of
the specifically bound reaction product. In terms of the notation of Figure 11.5, Cf
and Cs represent L and LR, respectively, hence:

dCs(t)
dt

= konCf(t)Cr(t) − koffCs(t) (11.20)

where Cr denotes the concentration of receptors. If Bmax is the total number of
available reactions sites, then:

Bmax = Cs + Cr (11.21)

and, if the ligand is present in tracer concentration, then the concentration Cs is
negligible and thus:

Bmax ≈ Cr (11.22)

Hence (11.20) becomes:

dCs(t)
dt

= konBmaxCf(t) − koffCs(t) = k3Cf(t) − k4Cs(t) (11.23)

with k3 = konBmax and k4 = koff .
Another important parameter is the equilibrium binding constant Kd which is

defined with the ligand-receptor reaction in steady state as:

Kd = Cs

CrCf
= kon

koff
(11.24)

The PET measurement is the result of the tracer present in the tissue and of that
present in the blood of the ROI. Consequently the measurement equation for the
three-tissue compartment model is:

C(t) = (1 − Vb)(Cf(t) + Cns(t) + Cs(t)) + VbCb(t) (11.25)

where Cb is whole blood tracer concentration including metabolites and Vb is the
fraction of the measured volume occupied by blood. However, the three-tissue model
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is a priori only nonuniquely identifiable, allowing two solutions for each parameter.
To ensure unique identifiability, it is usually assumed that the exchange rates between
the free tissue and nonspecific binding pools are sufficiently rapid (compared with the
other rates of the model) so that the three-tissue compartment model reduces to the
two-tissue model, where Cf+ns(t) = Cf(t) + Cns(t) is the free and nonspecific binding
tracer concentration. It is for this reason that the two-tissue compartment model is
the most widely adopted in studies designed to quantify receptor binding. The model
equations for the two-tissue compartment model are:

Cf+ns(t)
dt

= k1Cp(t) − (k2 + k3)Cf+ns(t) + k4Cs(t)

Cs(t)
dt

= k3Cf+ns(t) − k4Cs(t)

(11.26)–(11.27)

with initial conditions Cf+ns(0) = Cs(0) = 0 and with:

k3 = konBmaxf (11.28)

where f is given by:

f ≡ Cf

Cf+ns
= Cf

Cf + Cns
= Cf

Cf

(
1 + Cns

Cf

) = 1

1 + k5
k6

(11.29)

The measurement equation thus becomes:

C(t) = (1 − Vb)(Cf+ns(t) + Cs(t)) + VbCb(t) (11.30)

The model is now a priori uniquely identifiable. Moreover, in addition to k1, k2, k3,
k4, Vb it is also possible to estimate the binding potential, BP:

BP = f · Bmax

Kd
= k3

k4
(11.31)

and the distribution volumes:

Vd−Cf+ns
= Cf+ns

Cp

∣∣∣∣
equilibrium

= K1

k2
(11.32)

Vd−Cs = Cs

Cp

∣∣∣∣
equilibrium

= K1k3

k2k4
(11.33)

Vd = Cs + Cf+ns

Cp

∣∣∣∣
equilibrium

= K1

k2
+ K1k3

k2k4
= K1

k2

(
1 + k3

k4

)
(11.34)
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11.5 CASE STUDY 5: A SIMULATION MODEL OF THE
GLUCOSE-INSULIN SYSTEM

This case study describes a model of the glucose-insulin control system that is to be
used to examine dynamic effects both during meals and in normal daily life. Such
a model is useful for testing glucose sensors, algorithms for the infusion of insulin
and, more generally, decision support systems for diabetes. This simulation model
enables computer-based experiments to be performed which would be too difficult,
too dangerous or unethical to perform in real life.

One of the key factors for success in any modeling study is the availability of exper-
imental data. In this case data were available from 204 normal subjects who received a
triple tracer, mixed meal. The resultant data allowed estimates to be made for a num-
ber of glucose and insulin fluxes as well as measures of glucose and insulin concen-
tration. Figure 11.6 depicts the mean ±1 SD values over a time course of seven hours.

11.5.1 Model Formulation

The basic structure of the glucose-insulin control system is shown in Figure 11.7. This
depicts the uptake of the ingested glucose via the gastro-intestinal tract, the distribu-
tion of glucose in the liver and in muscle and adipose tissue, together with the various
regulating mechanisms. However, on the basis of experimental data that are limited
to measures of glucose and insulin concentrations, it would not be possible to identify
the parameters of a mathematical model that encompassed the full complexity of the
system as shown. For instance, a good model representation of the plasma glucose
and insulin concentrations would be compatible with a wide range of descriptions
of endogenous glucose production by the liver, its rate of appearance in the plasma
from the gut and its rate of utilization.

Fortunately, an approach can be adopted which is based on developing structural
models corresponding to each unit process. Reliable parametric models can be for-
mulated in this way. For example, in order to model the rate of glucose utilization,
we can make use of our knowledge of endogenous glucose production, glucose rate of
appearance and insulin concentration as known inputs, and as model outputs glucose
utilization and plasma glucose concentration.

Glucose subsystem

The two-compartment model used to describe glucose kinetics is shown in the upper
panel of Figure 11.8 (Vicini et al., 1997). The model equations are:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ġp(t) = EGP(t) + Ra(t) − Uii(t) − E(t)

− k1 · Gp(t) + k2 · Gt(t) Gp(0) = Gpb (11.35)

Ġt(t) = −Uid(t) + k1 · Gp(t) − k2 · Gt(t) Gt(0) = Gtb (11.36)

G(t) = Gp

VG
G(0) = Gb (11.37)



11.5 CASE STUDY 5: A SIMULATION MODEL OF THE GLUCOSE-INSULIN SYSTEM 281

t (min) t (min)

(m
g/

dl
)

(m
g/

kg
/m

in
)

(m
g/

kg
/m

in
)

(m
g/

kg
/m

in
)

(p
m

ol
/k

g/
m

in
)

(p
m

ol
/l)

Plasma Glucose Plasma Insulin

Endogenous Glucose Production

Glucose Utilization

Glucose Rate of Appearance

Insulin Secretion

50

100

150

200

250

0 60 120 180 240 300 360 420
0

100

200

300

400

500

600

0 60 120 180 240 300 360 420

0 60 120 180 240 300 360 420 0 60 120 180 240 300 360 420

0 60 120 180 240 300 360 420 0 60 120 180 240 300 360 420

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

2

4
6
8

10
12
14
16

Figure 11.6 Glucose and insulin database corresponding to 204 normal subjects (adapted from
Dalla Man et al., 2006).

where Gp and Gt (mg/kg) are glucose masses in plasma and rapidly-equilibrating
tissues, and in slowly-equilibrating tissues, respectively, G (mg/dl) plasma glucose
concentration, with the suffix b denoting the basal state. EGP is the endogenous
glucose production (mg/kg/min), Ra is the glucose rate of appearance in plasma
(mg/kg/min), E is renal excretion (mg/kg/min), and Uii and Uid are the insulin-
independent and dependent glucose utilizations, respectively (mg/kg/min). VG is the
distribution volume of glucose (dl/kg), and k1 and k2 (min−1) are rate parameters.

In the basal steady-state endogenous production, EGPb, equals glucose disappear-
ance, i.e. the sum of glucose utilization and renal excretion (which is zero in the
normal subject), Ub + Eb.

EGPb = Ub + Eb (11.38)
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Figure 11.7 Basic structure of the glucose-insulin control system.

Parameter values of VG, k1, k2 are reported in Table 11.3 (Glucose Kinetics) for both
the normal and the type 2 diabetic subject.

Insulin subsystem

The lower panel of Figure 11.8 depicts the two-compartment model used to describe
insulin kinetics (Ferrannini and Cobelli, 1987). The model equations are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

İl(t) = −(m1 + m3(t)) · Il(t) + m2Ip(t) + S(t) Il(0) = Ilb (11.39)

İp(t) = −(m2 + m4) · Ip(t) + m1 · Il(t) Ip(0) = Ipb (11.40)

I(t) = Ip

VI
I(0) = Ib (11.41)

where Ip and Il (pmol/kg) are insulin masses in plasma and in liver respectively,
I (pmol/l) is plasma insulin concentration, with the suffix b denoting basal state. S is
insulin secretion (pmol/kg/min), VI is the distribution volume of insulin (l/kg), and
m1, m2, m4 (min−1) are rate parameters. Degradation, D, occurs both in the liver
and in the periphery. Peripheral degradation has been assumed to be linear (m4).
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Figure 11.8 Glucose (upper panel) and insulin (lower panel) subsystem models
(adapted from Vicini et al., 1997 and Ferrannini and Cobelli, 1987).

Hepatic extraction of insulin, HE, is defined as the insulin flux which leaves the liver
irreversibly divided by the total insulin flux leaving the liver. Thus, we get:

m3(t) = HE(t) · m1

1 − HE(t)
(11.42)

Experimental evidence suggests that the time course of HE is related to the secretion
of insulin, S in the following equation:

HE(t) = −m5 · S(t) + m6 HE(0) = HEb (11.43)

In the basal steady state we have:

m6 = m5 · Sb + HEb (11.44)

m3(0) = HEb · m1

1 − HEb
(11.45)

Sb = m3(0) · Ilb + m4 · Ipb = Db (11.46)

with Sb and Db being basal secretion and degradation, respectively.



284 CHAPTER 11 CASE STUDIES

Table 11.3

Process Parameter Normal value Type 2 diabetic value Unit

Glucose kinetics VG 1.88 1.49 dl/kg
k1 0.065 0.042 min−1

k2 0.079 0.071 min−1

Insulin kinetics VI 0.05 0.04 l/kg
m1 0.190 0.239 min−1

m2 0.484 0.302 min−1

m4 0.194 0.477 min−1

m5 0.0304 0.0690 min ·kg/pmol
m6 0.6471 0.8778 dimensionless
HEb 0.6 0.6 dimensionless

Rate of kmax 0.0558 0.0465 min−1

appearance kmin 0.0080 0.0076 min−1

kabs 0.057 0.023 min−1

kgri 0.0558 0.0465 min−1

f 0.90 0.90 dimensionless
a 0.00013 0.00006 mg−1

b 0.82 0.68 dimensionless
c 0.00236 0.00023 mg−1

d 0.010 0.09 dimensionless
Endogenous kp1 2.70 3.09 mg/kg/min
production kp2 0.0021 0.0007 min−1

kp3 0.009 0.005 mg/kg/min per pmol/l
kp4 0.0618 0.0786 mg/kg/min per pmol/kg
ki 0.0079 0.0066 min−1

Utilization Fcns 1 1 mg/kg/min
Vm0 2.50 4.65 mg/kg/min
Vmx 0.047 0.034 mg/kg/min per pmol/l
Km0 225.59 466.21 mg/kg
p2U 0.0331 0.0840 min−1

Secretion K 2.28 1.38 pmol/kg per (mg/dl)
α 0.050 0.014 min−1

β 0.11 0.05 pmol/kg/min per (mg/dl)
γ 0.5 0.5 min−1

Renal excretion ke1 0.0005 0.0007 min−1

ke2 339 269 mg/kg

Moreover, given that the liver is responsible for 60% of insulin clearance in the
steady state, one has:

m2 =
(

Sb

Ipb
− m4

1 − HEb

)
· 1 − HEb

HEb
(11.47)

and

m4 = 2
5

· Sb

Ipb
· (1 − HEb) (11.48)

HEb was fixed to 0.6, and is reported together with VI, m1, m2, m4, m5 and m6
in Table 11.3 (Insulin Kinetics) for both the normal and type 2 diabetic subject.
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Unit process models and identification

The model is divided into the unit processes of the glucose and insulin subsystems:
endogenous glucose production, glucose rate of appearance, glucose utilization, renal
excretion and insulin secretion. The model for each of them was identified from
average data with a forcing function strategy; that is to say that some variables,
considered to be the input of the unit process, were assumed to be known without
error.

Endogenous glucose production
The functional description of EGP in terms of glucose and insulin signals is described
in Dalla Man et al. (2006); it comprises a direct glucose signal and both delayed and
anticipated insulin signals:

EGP(t) = kp1 − kp2 · Gp(t) − kp3 · Id(t) − kp4 · Ipo(t) EGP(0) = EGPb (11.49)

where Ipo is the quantity of insulin in the portal vein (pmol/kg), Id (pmol/l) is a delayed
insulin signal realized with a chain of two compartments:

(11.50)
{

İ1(t) = −ki · [I1(t) − I(t)] I1(0) = Ib

İd(t) = −ki · [Id(t) − I1(t)] Id(0) = Ib (11.51)

In terms of the parameters, kp1 (mg/kg/min) is the extrapolated EGP at zero
glucose and insulin, kp2 (min−1) liver glucose effectiveness, kp3 (mg/kg/min per
pmol/l) the parameter governing amplitude of insulin action on the liver, kp4
(mg/kg/min/(pmol/kg)) the parameter governing amplitude of portal insulin action
on the liver, and ki (min−1) is rate parameter accounting for delay between insulin
signal and insulin action. EGP is also constrained to be non-negative.

In the basal steady state we have:

kp1 = EGPb + kp2 · Gpb + kp3 · Ib + kp4 · Ipob (11.52)

The model of (11.49) was identified by nonlinear least squares using mean EGP
data with the forcing function strategy of: mean insulin, portal insulin and glucose
concentrations as the model inputs, assumed to be known without error and EGP
is the model output. The measurement error of the EGP data was assumed to be
independent, with zero mean and unknown constant standard deviation (constant
SD assumes relatively more precise values when the signal is higher). A satisfactory
model fit was obtained and parameters were estimated with precision for both the
normal and type 2 diabetic subject. They are reported in Table 11.3 (Endogenous
Glucose Production).

Glucose rate of appearance
The physiological model of glucose intestinal absorption, as proposed in Dalla Man
et al. (2006), was used to describe the glucose transit through the stomach and
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intestine; it assumes that the stomach is represented by two compartments (one for
solid and one for the triturated phase), while a single compartment is used to describe
the gut:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qsto(t) = Qsto1(t) + Qsto2(t) Qsto(0) = 0 (11.53)

Q̇sto1(t) = −kgri · Qsto1(t) + D · δ(t) Qsto1(0) = 0 (11.54)

Q̇sto2(t) = −kempt(Qsto) · Qsto2(t) + kgri · Qsto1(t) Qsto2(0) = 0 (11.55)

Q̇gut = −kabs · Qgut(t) + kempt(Qsto) · Qsto2(t) Qgut(0) = 0 (11.56)

Ra(t) = f · kabs · Qgut(t)
BW

Ra(0) = 0 (11.57)

where Qsto (mg) is quantity of glucose in the stomach (solid, Qsto1, and liquid phase,
Qsto2), Qgut (mg) is the glucose mass in the intestine, kgri (min−1) rate of grinding, and
kabs (min−1) rate constant of intestinal absorption, f fraction of intestinal absorption
which actually appears in plasma. D (mg) is the quantity of ingested glucose, BW (kg)
body weight and Ra (mg/kg/min) appearance rate of glucose in plasma; kempt(Qsto)
(min−1) is the rate constant of gastric emptying which is a nonlinear function of Qsto:

kempt(Qsto) = kmin + kmax − kmin

2
· {tan h

[
a
(
Qsto − b · D

)]+
− tan h

[
c
(
Qsto − d · D

)]+ 2
} (11.58)

The model of (11.53)–(11.58) was identified using Ra data with the forcing function
strategy. A good model fit was achieved. The parameters kgri, a and c were fixed as
follows:

kgri = kmax (11.59)

a = 5
2 · D · (1 − b)

(11.60)

c = 5
2 · D · d

(11.61)

while the remaining parameters were estimated with precision. They are reported in
Table 11.3 (Glucose Rate of Appearance) for both the normal and type 2 diabetic
subject.

Glucose utilization
The model of glucose utilization by body tissues during a meal assumes that
glucose utilization is made up of two components: insulin-independent and insulin-
dependent.

Insulin-independent utilization takes place in the first compartment, is constant,
and represents glucose uptake by the brain and erythrocytes (Fcns):

Uii(t) = Fcns (11.62)



11.5 CASE STUDY 5: A SIMULATION MODEL OF THE GLUCOSE-INSULIN SYSTEM 287

Insulin-dependent utilization takes place in the remote compartment and depends
nonlinearly (Michaelis Menten) upon glucose in the tissues:

Uid(t) = Vm(X(t)) · Gt(t)
Km(X(t)) + Gt(t)

(11.63)

where Vm(X(t)) and Km(X(t)) are assumed to be linearly dependent upon a remote
insulin, X(t):

Vm(X(t)) = Vm0 + Vmx · X(t) (11.64)

Km(X(t)) = Km0 + Kmx · X(t) (11.65)

It should be noted that, when fitting this model to available data, Kmx collapsed to
zero, so that Km is no longer dependent upon X.

X (pmol/L) is insulin in the interstitial fluid described by:

Ẋ(t) = −p2U · X(t) + p2U[I(t) − Ib] X(0) = 0 (11.66)

where I is plasma insulin, with the suffix b denoting basal state, and p2U (min−1) is
a rate constant defining insulin action on peripheral glucose utilization.

Total glucose utilization, U, is therefore:

U(t) = Uii(t) + Uid(t) (11.67)

In the basal steady state one has:

Gtb = Fcns − EGPb + k1 · Gpb

k2
(11.68)

and:

Ub = EGPb = Fcns + Vm0 · Gtb

Km0 + Gtb
(11.69)

from which:

Vm0 = (EGPb − Fcns) · (Km0 + Gtb)
Gtb

(11.70)

This model and that of (11.35)–(11.37) were simultaneously identified using U and
G data with the forcing function strategy (Figure 11.8, bottom left panel). A good
model fit was achieved and the parameters were estimated with precision and are
reported in Table 11.3 (Glucose Utilization) for both the normal and type 2 diabetic
subject.

Insulin secretion
The model used to describe pancreatic insulin secretion is:

S(t) = γ · Ipo(t) (11.71)
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İpo(t) = −γ · Ipo(t) + Spo(t) Ipo(0) = Ipob (11.72)

Spo(t) =
{

Y(t) + K · Ġ(t) + Sb for Ġ > 0
Y(t) + Sb for Ġ ≤ 0

(11.73)

and

Ẏ(t) =
{−α · [Y(t) − β · (G(t) − h)] ifβ · (G(t) − h) ≥ −Sb
−α · Y(t) − α · Sb ifβ · (G(t) − h) < −Sb

; Y(0) = 0 (11.74)

where γ (min−1) is the transfer rate constant between portal vein and liver. K (pmol/kg
per mg/dl) is the pancreatic responsivity to glucose rate of change, α (min−1) is
the delay between glucose signal and insulin secretion, β (pmol/kg/min per mg/dl) is
the pancreatic responsivity to glucose, and h (mg/dl) is the threshold level of glucose
above which the β-cells initiate the production of new insulin (h has been set to the
basal glucose concentration Gb to guarantee system steady state in basal condition).

This model and that of (11.39)–(11.41) were simultaneously identified using S
and I data with the forcing function strategy. A good model fit was achieved and
the parameters were estimated with precision and are reported in Table 11.3 (Insulin
Secretion) for both the normal and type 2 diabetic subject.

Glucose renal excretion
Glucose excretion by the kidney occurs if plasma glucose exceeds a certain threshold
and can be modeled by a linear relationship with plasma glucose:

E(t) =
{

ke1 · [Gp(t) − ke2] if Gp (t) > ke2
0 if Gp (t) ≤ ke2

(11.75)

where ke1 (min−1) is glomerular filtration rate and ke2 (mg/kg) is the renal threshold
for glucose. The parameters are reported in Table 11.3 (Glucose Renal Excretion).

11.5.2 Results

Meal in normal subject

A normal subject receiving a mixed meal was simulated first using parameters reported
in Table 11.3 (Normal value). Figure 11.9 shows the predicted glucose and insulin
concentrations and glucose/insulin fluxes (continuous line) against ±1SD confidence
limits (gray area, Figure 11.6). The model also enables prediction of the effect of
the various control signals on glucose production (Figure 11.10, upper panel), as
well as the insulin-independent and dependent components of glucose utilization
(Figure 11.10, right panel); in addition, hepatic insulin extraction can be predicted
(Figure 11.10, lower panel).
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Figure 11.9 Simulation results following the administration of a meal for both normal (con-
tinuous line) and type 2 diabetic subjects (dashed line) (adapted from Dalla Man et al., 2006).

Meal in type 2 diabetic subject

The model was also numerically identified for the type 2 diabetic subject, although in
this case the database was much smaller and involved a triple tracer meal. The model
structure that had been proposed for the normal subject turned out to be robust and
data were fitted well. In other words the type 2 diabetic subject can be described
quantitatively using the same model structure, but with different parameter values
(Table 11.3, Type 2 diabetic). In particular, gut absorption, kabs, was slower than
in the normal case; parameters quantifying insulin action, both peripheral, Vmx, and
hepatic, kp3, were lower; hepatic glucose effectiveness, kp2, was lower; even though
the maximum utilization by the tissue at basal insulin, Vm0, was higher, it was
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left panel), glucose utilization (upper right) and hepatic insulin extraction (lower panel) (adapted from Dalla Man et al., 2006).
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reached at higher glucose levels, Km0. Finally, both dynamic, K, and static beta cell
responsivity, β, as well as the rate of response, α, were lower. This different parametric
portrait is reflected in the predictions of the model. It can be seen that there are
important derangements in both glucose and insulin concentration as well in glucose
and insulin fluxes as compared to the normal situation (Figure 11.9, dashed line).

Daily life for a normal subject

The model can also be used to simulate the dynamic patterns occurring during the
day in the case of a normal subject: 24 h with breakfast at 0800 (45 g), lunch at 12
(70 g) and dinner at 2000 (70 g). Figure 11.11 (continuous line) shows the predictions
of concentrations and fluxes in the normal subject during the day.

t (hours) t (hours)

(m
g/

dl
)

(m
g/

kg
/m

in
)

(m
g/

kg
/m

in
)

(m
g/

kg
/m

in
)

(p
m

ol
/k

g/
m

in
)

(p
m

ol
/l)

Plasma Glucose Plasma Insulin

Endogenous Glucose Production

Glucose Utilization

Glucose Rate of Appearance

Insulin Secretion

0

2

4

6

8

10

12

Normal
Intolerant: ↓ insulin sensivity; ↑ β-cell responsivity
Intolerant: ↓ insulin sensivity; normal
β-cell responsivity

0

200

600

6 9 12 15 18 21 24

0

0.5

1

1.5

2

2.5

0

2

4

6

0

3

6

9

12

15

80

100

120

140

160

180

200

6 9 12 15 18 21 24

6 9 12 15 18 21 246 9 12 15 18 21 24

6 9 12 15 18 21 246 9 12 15 18 21 24

Figure 11.11 Model predictions for both the normal subject and the subject with impaired
glucose tolerance (adapted from Dalla Man et al., 2006).
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Daily life for a subject with impaired glucose tolerance

Glucose intolerance can also be simulated. In particular, an impairment in insulin
sensitivity (with both Vmx and kp3 halved) is considered for the cases both compen-
sated and not by higher beta cell response to glucose. For instance, if the parameters
Vmx and kp3 are halved, without a significant increase in beta cell responsivity, glu-
cose concentration exhibits a higher peak and returns to basal level almost two hours
later than in the normal subject (Figure 11.11, dashed line).

Conversely, if the parameters K and β are both doubled, glucose concentration
basically does not differ significantly from the normal case. However, plasma insulin
concentration is doubled (Figure 11.11, dashed-dotted line). Finally, if K and β are
halved with insulin action remaining normal, glucose concentration peaks at a higher
value and returns to its basal level almost three hours later than in the normal subject.
However, if Vmx and kp3 are both doubled, glucose concentration remains essentially
normal, but plasma insulin concentration is halved (results not shown).

11.6 CASE STUDY 6: A MODEL OF INSULIN CONTROL

In pathophysiology it is of the utmost importance to measure quantitatively the con-
trol that insulin exerts on glucose metabolism. In fact, insulin stimulates glucose
utilization and inhibits glucose production (Figure 11.12) and it is easily appreci-
ated that derangement of these two control features can lead to glucose intolerance
and type 2 diabetes. In this case study we discuss a widely adopted model. This is
the so-called glucose minimal model that is used to measure insulin action from an
intravenous glucose tolerance test (IVGTT) (see Figure 11.13).
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Figure 11.12 The glucose-insulin control system.



11.6 CASE STUDY 6: A MODEL OF INSULIN CONTROL 293

0

100

200

300

400

500

600

0 60 120 180 240

0 60 120 180 240

Glucose

uU
/m

l
m

g/
dl

IVGTT

0

50

100

150

200

Insulin
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The feedback nature of the glucose-insulin system poses major difficulties.
A closed-loop model must be postulated, thus possible inaccuracies in modeling
insulin action and secretion can compensate for each other. To avoid this, the feed-
back loop can be opened conceptually by partitioning the whole system into two
subsystems (Figure 11.14) linked by the measured variables, insulin and glucose con-
centration. The two subsystems cannot be separately modeled. For the model of
insulin action on glucose production and utilization, insulin is the (known) input and
glucose the output (Figure 11.15).

TISSUES OF
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AND  UTILIZATION
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INSULIN SECRETION
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I(t)G(t)

PLASMA
GLUCOSE

PLASMA
INSULIN

Figure 11.14 Partitioning of the feedback system into glucose and insulin subsystems,
linked by plasma measurements.
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Figure 11.15 Model of insulin secretion to be determined using insulin as the input
variable and glucose as the output.

Since the whole model is intended for clinical use, another important attribute
is its parsimony, in other words the model must be simple; this is to enable all the
parameters to be estimated with acceptable precision from the data of an individual
subject. At the same time the model must not be simplistic, since it needs to be able
to provide a reliable description of the relevant physiological processes. It is in this
context that the term minimal model was coined (Bergman et al., 1979).

The model is shown in Figure 11.16 and its key features are as follows: (a) glu-
cose kinetics are described by a single-compartment model; (b) glucose inhibition of
production and stimulation of utilization are proportional to glucose plasma concen-
tration; and (c) insulin inhibition of glucose production and stimulation of glucose
utilization are proportional to insulin concentration in a compartment remote from
plasma. Mathematically one has:

Q(t) = Ra(Q(t), I′(t)) − Rd(Q(t), I′(t)) + D · δ(t) Q(0) = Qb

(11.76)= NHGB(Q(t), I′(t)) − Rd(Q(t), I′(t)) + D · δ(t)

I′(t) = −k3 · I′(t) + k2 · I(t) I′(0) = I′b (11.77)

G(t) = Q(t)
V

(11.78)

where Q is the mass of glucose, with Qb denoting its basal value; D is the glucose
dose, δ(t) is the Dirac function, Ra is the rate of appearance of glucose in plasma
which is equal to NHGB, the net hepatic glucose balance; Rd is plasma glucose dis-
appearance rate. I′(t) is insulin concentration in a compartment remote from plasma,
i.e. interstitial fluid and I(t) is plasma insulin concentration with Ib denoting its basal
value; G is plasma glucose concentration; and V is the glucose distribution volume.

The next step is to provide functional descriptions of NHGB and Rd. These are
displayed graphically in Figure 11.17 and mathematically one has:

NHGB(t) = NHGB0 − [k5 + k6I′(t)]Q(t) (11.79)
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Figure 11.17 Graphical description of net hepatic glucose balance (NHGB) and the
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where NHGB0 is net endogenous glucose balance at zero glucose, and:

Rd(t) = [k1 + k4I′(t)]Q(t) + Rd0 (11.80)

where Rd0 is glucose disappearance rate at zero glucose.
Sigmoidal shaped relationships would be more realistic but one has to remember

that during an IVGTT glucose is usually confined in a range, say 90 to 350 mg/dl,
so one has to regard these linear relationships as a reasonable approximation in the
observed glucose range.

Now, incorporating (11.79) and (11.80) into (11.76) enables us to write:

Q(t) = [(k5 + k1) − (k6 + k4)I′(t)](Q(t) + (NEGB0 − Rd0) Q(0) = Qb + D

(11.81)

I′(t) = −k3 · I′(t) + k2[I(t) − Ib] I′(0) = 0 (11.82)

G(t) = Q(t)
V

(11.83)
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where the term (NHGB0 − Rd0) can be written as (k5 + k1)Qb by using the steady-
state constraint Q(t) = 0, and the impulse dose has been incorporated into the initial
condition.

Unfortunately, the model has too many parameters to be resolved, assuming
plasma insulin concentration I as a known input, from plasma glucose concentra-
tion data. By testing a priori identifiability with the Taylor series expansion method
(the model is nonlinear) of section 7.5 one can show that the model is a priori noniden-
tifiable since all the k parameters are nonidentifiable (only V is uniquely identifiable).
The uniquely identifiable parametrization of the model is:

Q(t) = −[p1 + X(t)]Q(t) + p1Qb Q(0) = Qb + D (11.84)

X(t) = −p2X(t) + p3[I(t) − Ib] X(0) = 0 (11.85)

G(t) = Q(t)
V

(11.86)

This parametrization includes new p parameters, and a new variable, X, where these
are related to the original parameters as follows:

X(t) = (k4 + k6)I′(t) (11.87)

p1 = k1 + k5 (11.88)

p2 = k3 (11.89)

p3 = k2(k4 + k6) (11.90)

From the uniquely identifiable model parameters p1, p2, p3 and V, one can calculate
indices of glucose effectiveness, SG, and insulin sensitivity, SI, as follows.

Glucose effectiveness

SG = − ∂Q̇
∂Q

∣∣∣∣∣
ss

= −[−(p1 + X(t))]ss = p1 + Xb

= p1 + p3

p2
· Ib = k1 + k5 + k2 · (k4 + k6)

k3
· Ib (11.91)

Insulin sensitivity

SI = − ∂2Q̇
∂Q · ∂I

∣∣∣∣∣
ss

= ∂[p1 + X(t)]
∂I

∣∣∣∣
ss

= ∂X
∂I

∣∣∣∣
ss

(11.92)

In the steady state:

0 = −p2 · Xss + p3 · I(t) (11.93)

Xss = p3

p2
· I(t) (11.94)
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and thus:

SI = ∂X
∂I

∣∣∣∣
ss

= p3

p2
= k2 · (k4 + k6)

k3
(11.95)

SG and SI reflect both the effect of glucose and insulin on Rd and NHGP. In fact, SG is
a function not only of k1 but also of k5, and thus measures the ability of glucose per
se, at basal insulin, to stimulate Rd and inhibit NHGB. Similarly, SI is a function not
only of k2, k3, k4 but also of k6, and thus measures the ability of insulin to enhance
the glucose per se stimulation of Rd and the glucose per se inhibition of NHGB.

The model of (11.84)–(11.86) can be identified for instance by weighted nonlinear
least squares assuming that the measurement error is independent, zero mean and
with a CV = 2%. To favor the single compartment approximation, the first 8–10 min
samples are usually neglected. A typical identification result is shown in Figure 11.18.

This model also allows discussion of issues related to model validation. For
instance, is the value of SI reliable? In fact, there is an alternative, albeit rather
invasive and intensive, technique to measure SI which is the euglycemic hyperin-
sulinemic clamp (Figure 11.19). In this case, the feedback loop is opened experi-
mentally by maintaining glucose concentration at basal level in spite of an elevated
insulin concentration:

SI = M
�I · Gb

(11.96)

where �I = Iss − Ib.
The minimal model SI has been validated against the clamp SI in numerous studies

with correlation ranging from 0.79–0.92.

11.7 CASE STUDY 7: ILLUSTRATIONS OF BAYESIAN ESTIMATION

A key step in developing both structural and input/output models of physiological
systems is parameter estimation. That is, assigning numerical values to the unknown
model parameters from the experimental data. Maximum likelihood (ML) is prob-
ably the most used parameter estimation approach, also given its connection, in the
Gaussian case, to least squares estimation. A more sophisticated but less adopted
approach is maximum a posteriori (MAP) estimation.

The major difference between these two approaches lies in the fact that MAP
estimation exploits not only the experimental data, but also the a priori available
statistical information on the unknown parameter vector; for example, its expected
value and covariance matrix in the Gaussian case. In other words, while ML is a
Fisherian approach (that is to say that experimental data are the only information
supplied to the estimator) MAP is a Bayesian approach (that is a priori information
is used) in addition to the information contained in the data (therefore termed a
posteriori information), in the determination of the numerical values of the model
parameters. Often, the a priori information needed to implement Bayesian estimation
is available, for instance from population studies.
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In this case study a comparison will be performed between ML and MAP estimators
in the determination of the parameters of a sum of exponentials model which describes
the impulse response of C-peptide (CP), using the results obtained by Sparacino et al.
(2000).

CP is a peptide co-secreted with insulin on an equimolar basis, but is not extracted
by the liver and exhibits linear kinetics over a large range of concentrations. Therefore,
CP plays a key role in quantitative studies of the insulin system, since its impulse
response (but not that of insulin) allows the reconstruction of pre-hepatic β-cell insulin
secretion rate by deconvolution.

In particular, it will be shown that, when a priori information on the unknown
model parameters is available, Bayesian estimation can be of particular interest since
it can significantly improve the precision of parameter estimates with respect to Fisher
estimation. This enables more complex models to be adopted than would be the case
with a Fisherian approach. Moreover, it also enables a model to work in a data-
poor situation, for instance with reduced sampling schedules and large errors in the
measurements that constitute the data.

Database

In 14 normal humans, a bolus of biosynthetic CP was administered intravenously.
Blood samples were collected at 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 20, 25,
30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 140, 160 and 180 min-
utes following the bolus administration and CP plasma concentration was measured.
The measurement noise was assumed Gaussian and independent, i.e. the covariance
matrix �v was diagonal, with zero mean, and with constant CV equal to 5%. A
representative decay curve (subject # 1) is shown in Figure 11.21 (top panels, open
bullets).

The two-exponential model: ML vs. MAP

The unknown vector is p = [A1, A2, α1, α2]T. Table 11.4 shows the estimates obtained
by ML and MAP together with their precision. These values of μ and �p needed for
MAP estimation have been obtained from

μ = 1
M

M∑
i=1

p(i) (11.97)

� = 1
M − 1

M∑
i=1

(p(i) − μ)(p(i) − μ)T (11.98)

where p(i) is the parameter vector of the i−th subject of the population. First, individ-
ual ML estimates of the parameters of the CP impulse response model are obtained
for the 14 subjects. Then, μ and �p are calculated from these estimates by applying
(11.97) and (11.98).
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Table 11.4 Parameter estimates of the two-exponential (2E) model with their precision (expressed
as percentage CV, in parenthesis) obtained by maximum likelihood (ML) and maximum a posteriori
(MAP) estimation (the amplitudes of the exponentials are divided by the bolus dose). WRSS is the
weighted residuals sum of squares (adapted from Sparacino et al., 2000)

A1 × 10−4 A2 × 10−4 α1 α2 WRSS
ml−1 ml−1 min−1 min−1

# 1 ML 1.894 (4.7) 0.5564 (4.6) 0.1443 (5.6) 0.0262 (2.2) 55.56
MAP 1.896 (4.3) 0.5518 (4.3) 0.1436 (5.0) 0.0261 (2.1) 55.58

# 2 ML 1.996 (4.7) 0.5612 (4.4) 0.1470 (5.5) 0.0251 (2.3) 43.88
MAP 1.991 (4.3) 0.5585 (4.2) 0.1461 (5.0) 0.0250 (2.2) 43.88

# 3 ML 1.908 (4.5) 0.6444 (4.0) 0.1256 (5.9) 0.0204 (2.1) 76.67
MAP 1.956 (4.4) 0.6634 (3.6) 0.1328 (5.4) 0.0206 (1.9) 77.23

# 4 ML 2.210 (5.2) 0.6747 (3.7) 0.1625 (5.8) 0.0240 (1.9) 47.99
MAP 2.167 (4.7) 0.6662 (3.6) 0.1579 (5.1) 0.0239 (1.9) 48.17

# 5 ML 1.913 (6.3) 0.7551 (3.0) 0.1750 (6.9) 0.0196 (1.8) 77.91
MAP 1.875 (5.4) 0.7489 (2.9) 0.1692 (5.7) 0.0195 (1.7) 78.05

# 6 ML 1.443 (5.8) 0.5222 (4.0) 0.1691 (6.7) 0.0257 (2.2) 89.15
MAP 1.413 (5.1) 0.5058 (3.8) 0.1595 (5.6) 0.0253 (2.1) 89.44

# 7 ML 1.777 (5.7) 0.8846 (4.1) 0.1353 (7.7) 0.0245 (2.0) 45.15
MAP 1.842 (5.2) 0.8856 (3.7) 0.1407 (6.5) 0.0244 (1.8) 45.61

# 8 ML 2.444 (5.4) 0.8595 (3.3) 0.1552 (6.1) 0.0222 (1.7) 59.75
MAP 2.410 (4.8) 0.8555 (3.2) 0.1529 (5.3) 0.0222 (1.7) 59.88

# 9 ML 2.309 (3.8) 0.6049 (5.7) 0.1186 (5.1) 0.0273 (2.4) 96.37
MAP 2.313 (3.6) 0.6032 (5.3) 0.1191 (4.7) 0.0272 (2.3) 96.47

# 10 ML 2.271 (4.3) 0.4515 (3.8) 0.1555 (4.5) 0.0220 (2.1) 128.85
MAP 2.229 (4.0) 0.4506 (3.7) 0.1527 (4.1) 0.0220 (2.0) 129.03

# 11 ML 2.605 (5.1) 0.6719 (3.5) 0.1705 (5.2) 0.0237 (1.8) 39.56
MAP 2.497 (4.5) 0.6614 (3.4) 0.1625 (4.7) 0.0235 (1.7) 40.29

# 12 ML 2.046 (7.1) 1.037 (3.2) 0.1720 (8.1) 0.0215 (1.8) 70.65
MAP 2.042 (5.8) 1.023 (2.9) 0.1681 (6.3) 0.0214 (1.7) 70.86

# 13 ML 2.104 (3.7) 0.4548 (4.0) 0.1214 (4.4) 0.0195 (2.1) 130.90
MAP 2.143 (3.7) 0.4724 (3.7) 0.1273 (4.2) 0.0198 (1.9) 131.49

# 14 ML 1.243 (5.3) 0.4691 (3.9) 0.1431 (6.8) 0.0231 (2.0) 44.44
MAP 1.265 (4.9) 0.4717 (3.6) 0.1459 (5.9) 0.0232 (1.9) 44.53

The values of ML and MAP estimates are very similar. In all subjects, the weighted
residual sum of squares (WRSS) is lower for ML. This should not be surprising since,
while the ML estimator only weights the distance of the model predictions from
the data, the MAP estimator also weights the distance of the parameters from their
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Figure 11.20 The 2E model identified by ML (left) and MAP (right) estimators from
C-peptide concentration samples following the administration of a bolus at t = 0 (subject #1).
Top: model predictions (continuous line) vs. data (open bullets). Bottom: weighted residuals
(adapted from Sparacino et al., 2000).

a priori expected values. However, the WRSS difference is very small. Turning to
precision of parameter estimates (CV, reported in parentheses), it can be noted that
it always improves by using Bayesian estimation. This is again in line with theoret-
ical expectations, given the incorporation of a priori knowledge into the algorithm.
However, here the improvement is almost undetectable, since the parameters esti-
mated by ML, exploiting only the a posteriori information, already have very good
precision.

To give a quantitative flavor of the extent of this modest improvement, by averag-
ing the percentage CV of the estimates of [A1, A2, α1, α2]T reported in Table 11.4,
the values are [5.1, 3.9, 6.0, 2.0]T with ML and [4.6, 3.7, 5.2, 1.9]T with MAP. On
average, the uncertainty is thus reduced by approximately 10%.

Figure 11.20 shows the model fit and the weighted residuals for the repre-
sentative subject, obtained by ML and MAP estimation. In agreement with the
small gap in WRSS, no significant differences can be detected by inspecting the
two fits.
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Table 11.5 Parameter estimates of the three-exponential (3E) model with their precision (expressed
as percentage CV, in parenthesis) obtained by ML and MAP (the amplitudes of the exponentials are
divided by the bolus dose). WRSS is the weighted residuals sum of squares (adapted from Sparacino
et al., 2000)

A1 × 10−4 A2 × 10−4 A3 × 10−4 α1 α2 α3 WRSS
ml−1 ml−1 ml−1 min−1 min−1 min−1

# 1 ML 1.304 (32.0) 1.093 (47.1) 0.4929 (10.2) 0.2998 (48.2) 0.0998 (26.4) 0.0251 (4.0) 46.83
MAP 1.525 (12.0) 0.9294 (13.1) 0.4593 (8.2) 0.2799 (13.8) 0.0859 (9.7) 0.0245 (3.5) 47.82

# 2 ML 1.712 (17.2) 0.8711 (37.0) 0.441 (14.9) 0.2659 (28.0) 0.0793 (26.8) 0.0229 (5.6) 29.29
MAP 1.750 (10.5) 0.8808 (13.3) 0.4217 (10.5) 0.2723 (13.1) 0.0760 (11.2) 0.0225 (4.3) 29.48

# 3 ML 2.266 (13.5) 1.007 (9.0) 0.3597 (20.6) 0.3283 (17.6) 0.0520 (13.8) 0.0161 (8.5) 21.21
MAP 2.239 (9.3) 0.9495 (8.0) 0.3786 (17.7) 0.3068 (11.4) 0.0522 (12.3) 0.0165 (7.3) 21.89

# 4 ML 2.313 (13.2) 0.9013 (22.1) 0.5118 (12.9) 0.3273 (21.8) 0.0742 (21.3) 0.0216 (4.9) 21.19
MAP 2.125 (9.6) 0.8745 (12.3) 0.4918 (9.9) 0.2989 (12.1) 0.0706 (11.6) 0.0213 (4.1) 21.91

# 5 ML 2.112 (15.6) 0.7661 (17.6) 0.5657 (11.8) 0.3576 (22.4) 0.0641 (22.1) 0.0173 (5.2) 46.45
MAP 2.024 (9.8) 0.6872 (12.5) 0.5541 (9.1) 0.3120 (11.8) 0.0591 (13.3) 0.0171 (4.2) 47.14

# 6 ML 1.648 (15.5) 0.6683 (13.7) 0.3332 (18.5) 0.3677 (21.2) 0.0675 (18.8) 0.0215 (7.0) 47.60
MAP 1.522 (11.2) 0.6474 (10.7) 0.3444 (12.2) 0.3347 (12.0) 0.0695 (12.0) 0.0218 (5.0) 48.44

# 7 ML 1.331 (35.5) 0.8817 (59.3) 0.7765 (12.7) 0.2471 (47.8) 0.0790 (41.1) 0.0233 (4.5) 38.57
MAP 1.525 (11.9) 0.7974 (16.1) 0.7672 (6.7) 0.2465 (14.8) 0.0743 (11.2) 0.0232 (2.8) 39.08

# 8 ML 2.428 (9.0) 0.9118 (12.8) 0.3980 (47.0) 0.2311 (14.7) 0.0424 (24.0) 0.0170 (15.5) 28.30
MAP 2.375 (8.5) 0.9143 (10.9) 0.5013 (19.7) 0.2469 (11.8) 0.0498 (15.7) 0.0183 (7.0) 28.92

# 9 ML 1.998 (13.7) 1.280 (18.7) 0.3907 (20.8) 0.2597 (23.5) 0.0695 (16.1) 0.0236 (6.9) 64.54
MAP 2.047 (10.1) 1.234 (10.2) 0.3908 (17.1) 0.2534 (13.1) 0.0689 (10.9) 0.0235 (5.9) 64.82

# 10 ML 2.494 (7.5) 0.7363 (9.1) 0.1382 (36.6) 0.2490 (10.1) 0.0455 (13.5) 0.0134 (16.9) 51.73
MAP 2.441 (6.8) 0.7527 (8.8) 0.1574 (27.3) 0.2534 (9.0) 0.0479 (11.8) 0.0142 (12.2) 52.07

# 11 ML 2.598 (9.8) 0.7882 (24.2) 0.4661 (16.7) 0.2673 (16.7) 0.0640 (24.3) 0.0207 (6.0) 12.85
MAP 2.380 (8.4) 0.8812 (13.1) 0.4561 (11.0) 0.2712 (11.4) 0.0662 (12.0) 0.0205 (4.3) 14.18

# 12 ML 1.876 (20.0) 0.4559 (79.1) 0.9092 (17.4) 0.2186 (29.3) 0.0618 (80.5) 0.0204 (6.1) 66.90
MAP 1.871 (9.7) 0.5914 (21.5) 0.8633 (6.6) 0.2393 (13.6) 0.0618 (13.2) 0.0200 (3.0) 67.53

# 13 ML 2.457 (7.9) 0.8876 (6.9) 0.1101 (38.7) 0.2458 (10.4) 0.0405 (10.4) 0.0103 (21.8) 11.68
MAP 2.484 (7.1) 0.9007 (6.8) 0.1528 (26.0) 0.2596 (9.2) 0.0442 (9.5) 0.0123 (12.7) 12.75

# 14 ML 1.100 (19.4) 0.3997 (51.6) 0.3808 (19.6) 0.2104 (26.4) 0.0636 (46.0) 0.0215 (6.7) 37.64
MAP 1.103 (12.0) 0.5149 (17.6) 0.3915 (7.4) 0.2571 (14.3) 0.0728 (11.5) 0.0216 (3.2) 38.32

The three-exponential model: ML vs. MAP

The unknown vector is p = [A1, A2, A3, α1, α2, α3]T. The ML and MAP estimates
are shown in Table 11.5. The a priori information supplied to the MAP estimator, is
the same for the two-exponential (2E) model. Again, by looking at Table 11.5, only
small differences between the values of the parameters estimated by ML or MAP can
be detected. Also, the WRSS of ML estimation is only slightly better than that of that
MAP estimation. In contrast with the 2E model, a significant improvement in the
precision of the parameter estimates now occurs with MAP in comparison with ML
estimation. For instance, for subject #7 the CV of the parameter A2 is 59.3% with
ML estimation, and 16.1% with MAP estimation. By averaging the percentage CV
of the estimates of [A1, A2, A3, α1, α2, α3]T reported in Table 11.5, the values are
[16.4, 29.4, 20.8, 24.2, 27.7, 8.4]T with ML and [9.7, 12.4, 13.5, 12.2, 11.8, 5.6]T

with MAP. On average, the uncertainty is thus reduced by approximately 50%.
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Figure 11.21 3E model identified by ML (left) and MAP (right) estimators in the same
subject of Figure 11.20. Top: model predictions (continuous line) vs. data (open bullets). Bottom:
weighted residuals (adapted from Sparacino et al., 2000).

Figure 11.21 shows the model fit and weighted residuals (bottom) obtained by
the two estimation techniques. As with the 2E model, no significant differences
can be detected by inspection, again given the fact that the WRSS values are very
close.

By comparing the results presented in Tables 11.4 and 11.5, it is evident that the
improvement in parameter precision obtained by using MAP in place of ML estima-
tion is now much more significant. This can be explained by noting that in MAP
estimation a trade-off is established between a priori and a posteriori information.
Thus, the improvement in the precision obtained by MAP estimation is more signif-
icant for those parameters related to the fastest eigenvalues (A1 and α1 and A2 and
α2) than for those related to the slowest mode (A3 and α3), since their estimation is
based on fewer data (i.e. less a posteriori information).

Two vs. three-exponential model order choice

In each subject (see, for example, Figures 11.20 and 11.21) both the 2E and the 3E
models describe the data satisfactorily. The 3E model obviously fits the data better
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Table 11.6 Values of the difference of AIC (�AIC) and GEN-IC
(�GEN-IC) between the 3E and the 2E models obtained in a ML and
MAP estimation context, respectively (a negative value indicates that
the 3E model is the most parsimonious) (adapted from Sparacino
et al., 2000)

Subject �AIC �GEN-IC

# 1 −4.75 −6.80
# 2 −10.56 −13.90
# 3 −51.78 −55.47
# 4 −22.89 −25.77
# 5 −27.63 −31.70
# 6 −37.62 −39.91
# 7 −2.60 −7.12
# 8 −27.57 −30.10
# 9 −27.94 −31.05
# 10 −73.45 −76.67
# 11 v22.79 −26.15
# 12 0.27 −2.30
# 13 −116.0 −120.12
# 14 −2.80 −4.95

than the 2E one, especially in the first portion of the experiment (0–20 min), where
the 2E model exhibits larger and correlated residuals in contrast with the assumptions
on measurement error. As a consequence, the WRSS is significantly lower for the 3E
model. For instance, by looking at Tables 11.4 and 11.5 it can be seen that, for the
representative subject, WRSS is approximately 55.5 with the 2E model (Figure 11.20)
and 47 with the 3E model (Figure 11.21), thus showing a 15% difference. Even greater
WRSS differences can be detected in other subjects (e.g. more than 100% for subject
#10). However, the 3E parameter estimates always exhibit worse precision, especially
those associated to the fastest eigenvalue. Therefore, the question of selecting the
better model needs to be addressed.

The AIC and GEN-IC indexes are the tools for resolving this issue. Table 11.6
shows the differences in AIC, �AIC, and GEN-IC, �GEN-IC, between the 3E and
the 2E models in the 14 subjects. As far as an ML estimation is concerned, for all the
subjects with the exception of #12, �AIC is negative, suggesting that the 3E model is
the one of choice. For subject #12 the slightly positive �AIC value reflects the similar
performance of the two models.

As far as MAP is concerned, �GEN-IC is negative in all subjects. Therefore, in
the context of a Bayesian estimation, the superiority of the 3E model is more clear
cut than in the deterministic embedding.

Data-poor situation: ML vs. MAP

To understand the ML vs. MAP situation in a data-poor context, let us consider two
simulations which depict such a data-poor situation. In both cases, the response of a
3E system to a CP bolus was simulated using the parameters reported in Table 11.7.
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Table 11.7 True parameters and parameter estimates with precision obtained by ML and MAP
estimation from the simulated bolus responses displayed in Figure 11.22 (simulation #1) and Figure
11.23 (simulation #2). WRSS is the weighted residuals sum of squares. E is the estimation error (adapted
from Sparacino et al., 2000)

A1 × 10−4 A2 × 10−4 A3 × 10−4 α1 α2 α3 WRSS E × 10−10

ml−1 ml−1 ml−1 min−1 min−1 min−1

True 1.304 1.093 0.4929 0.2998 0.0998 0.0251 – –

Sim # 1 ML 1.632 (38.7) 0.6443 (80.7) 0.3084 (88.4) 0.1997 (63.4) 0.0545 (82.5) 0.0217 (24.5) 21.5 9.979
MAP 1.663 (18.8) 0.9001 (15.9) 0.3830 (19.7) 0.2798 (16.9) 0.0744 (13.7) 0.0229 (7.2) 21.9 0.654

Sim # 2 ML 1.690 (31.4) 0.5522 (108.3) 0.4976 (12.5) 0.2212 (37.7) 0.0772 (57.3) 0.0251 (3.4) 9.6 2.876
MAP 1.530 (12.7) 0.8206 (15.5) 0.4845 (6.4) 0.2738 (14.9) 0.0839 (9.3) 0.0249 (2.0) 10.7 1.493
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Figure 11.22 Simulation #1 for large measurement error situation. The 3E model identified
by ML (left) and MAP (right) estimators. Top: model predictions (continuous line) vs. data (open
bullets). Bottom: weighted residuals (adapted from Sparacino et al., 2000).

In simulation #1, we created a situation with a ‘normally-frequent’ sampling sched-
ule (the grid was the same as that described in the Database above) and a large
measurement error, i.e. a constant CV of 20%. The simulated, noisy data are
displayed in Figure 11.22 (open bullets). The ML and MAP estimates are shown
in Table 11.7. The differences between the values of the parameters estimated by
ML or MAP are now much larger than in Table 11.5 (where a 5% CV measurement
error affected the data).
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Figure 11.23 Simulation #2 for the reduced sampling situation. The 3E model is identified
by ML (left) and MAP (right) estimators. Top: model predictions (continuous line) vs. data (open
bullets). Bottom: weighted residuals (adapted from Sparacino et al., 2000).

Moreover, the values of the model parameters estimated by MAP are much closer
to the true ones than those estimated by ML. It is noteworthy that even if the WRSS
of the ML estimation is (only slightly) better than that of the MAP estimation, the
realization of the impulse response estimation error E (defined as the integral from
zero to infinity of the squared difference between the true and the estimated impulse
response) is much lower in the MAP case. As expected, a large improvement in the
precision of parameter estimates now occurs with MAP in comparison with the ML
estimation. For instance, the CV of parameter A2 is 88.4% with the ML estimation,
and 19.7% with the MAP estimation. On average, the uncertainty is reduced by 75%.

In simulation #2, we create a situation with the same noise as found in the real
data, CV = 5%, but with a much reduced sampling schedule: 2, 4, 6, 9, 14, 25,
40, 60, 80, 100, 120, 140, 160, 180 min. It is worth noting that this grid is a
subset of the ‘rich’ grid, but, although sparse, is frequent enough to make all the
three modes of the impulse response resolvable. The ML and MAP results are shown
in Table 11.7 and Figure 11.23. Again, the differences between the values of the
parameters estimated by ML or MAP are much larger than in Table 11.5 (where
a rich sampling grid was used). The values of the model parameters estimated by
MAP are, on average, much closer to the true ones than those estimated by ML, and
the lowest estimation error E is obtained using MAP estimation. More importantly,
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the improvement in the precision of parameter estimates with MAP in comparison
with ML estimation is now really impressive: for instance, the CV of parameter
A2 is 108.3% with ML and 15.5% with MAP estimation. In both simulations the
uncertainty of the ML estimates is unacceptable. In contrast, MAP estimation leads
to reasonable confidence intervals.

In summary, the general lesson which emerges is that the improvement obtained by
a Bayesian estimation with respect to a Fisher estimation is that the more significant
the result, the more the a priori information supports the a posteriori information.
The examples that have been discussed here cover three typical situations in which
taking into account a priori information can be crucial: the model is too complex for
being identifiable with satisfactory precision by a Fisherian approach (see real case
studies); data are very noisy (i.e. a posteriori information is not sufficiently reliable,
see simulation #1); and data are few in number (i.e. there is only a small amount of
a posteriori information, see simulation #2).

11.8 POSTSCRIPT

This final chapter with its set of seven case studies has provided illustrations of some
of the varied ways in which modeling of physiological systems can be undertaken.
Together they cover many of the main ingredients of modeling methodology that
have been described in the earlier chapters. As has been emphasized throughout,
good modeling methodology is made up of a number of components, including for-
mulation, identification and validation. This text has set out to provide a guide to
such modeling methodology. It has essentially been an introductory exploration, but
we hope that we have encouraged at least some readers to explore further in this
exciting interdisciplinary field of study.

As a final thought, repeating the comment that we make at the end of the first chap-
ter of our more advanced book (Carson et al., 2001), it is important that one should
always remain critical of a model and not love it too much! All models are approxi-
mations; hence one should always be prepared to include new facts and observations.
A good model (in a Popperian sense) is one that is clearly falsifiable and therefore is
readily capable of bringing about its own downfall. It should be remembered that in
situations of complexity (very much the norm in physiology and medicine), it may be
appropriate to think of a set of models, with each having its own, distinct domain of
validity. It is then a case of choosing the one that is most appropriate; for instance,
for the level of physiological hierarchy that is being represented and the time scale
of interest in relation to the dynamic response. As summarized in Figure 10.2, a suc-
cessful outcome to the modeling process is critically dependent on both the quality
of the model and the quality of the experimental data.
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