

p , g

IET TELECOMMUNICATIONS SERIES 67

Managing the
Internet of Things

p , g

Other volumes in this series:

Volume 9 Phase noise in signal sources W.P. Robins
Volume 12 Spread spectrum in communications R. Skaug and J.F. Hjelmstad
Volume 13 Advanced signal processing D.J. Creasey (Editor)
Volume 19 Telecommunications traffic, tariffs and costs R.E. Farr
Volume 20 An introduction to satellite communications D.I. Dalgleish
Volume 26 Common-channel signalling R.J. Manterfield
Volume 28 Very small aperture terminals (VSATs) J.L. Everett (Editor)
Volume 29 ATM: the broadband telecommunications solution L.G. Cuthbert and

J.C. Sapanel
Volume 31 Data communications and networks, 3rd edition R.L. Brewster (Editor)
Volume 32 Analogue optical fibre communications B. Wilson, Z. Ghassemlooy and

I.Z. Darwazeh (Editors)
Volume 33 Modern personal radio systems R.C.V. Macario (Editor)
Volume 34 Digital broadcasting P. Dambacher
Volume 35 Principles of performance engineering for telecommunication and

information systems M. Ghanbari, C.J. Hughes, M.C. Sinclair and J.P. Eade
Volume 36 Telecommunication networks, 2nd edition J.E. Flood (Editor)
Volume 37 Optical communication receiver design S.B. Alexander
Volume 38 Satellite communication systems, 3rd edition B.G. Evans (Editor)
Volume 40 Spread spectrum in mobile communication O. Berg, T. Berg,

J.F. Hjelmstad, S. Haavik and R. Skaug
Volume 41 World telecommunications economics J.J. Wheatley
Volume 43 Telecommunications signalling R.J. Manterfield
Volume 44 Digital signal filtering, analysis and restoration J. Jan
Volume 45 Radio spectrum management, 2nd edition D.J. Withers
Volume 46 Intelligent networks: principles and applications J.R. Anderson
Volume 47 Local access network technologies P. France
Volume 48 Telecommunications quality of service management A.P. Oodan (Editor)
Volume 49 Standard codecs: image compression to advanced video coding M. Ghanbari
Volume 50 Telecommunications regulation J. Buckley
Volume 51 Security for mobility C. Mitchell (Editor)
Volume 52 Understanding telecommunications networks A. Valdar
Volume 53 Video compression systems: from first principles to concatenated codecs

A. Bock
Volume 54 Standard Codecs: image compression to advanced video coding, 3rd edition

M. Ghanbari
Volume 59 Dynamic Ad Hoc Networks H. Rashvand and H. Chao (Editors)
Volume 60 Understanding Telecommunications Business A Valdar and I Morfett
Volume 65 Advances in Body-Centric Wireless Communication: Applications and

State-of-the-art Q. H. Abbasi, M. U. Rehman, K. Qaraqe and A. Alomainy (Editors)
Volume 68 Advanced Relay Technologies in Next Generation Wireless Communications

I. Krikidis and G. Zheng
Volume 905 ISDN applications in education and training R. Mason and P.D. Bacsich

p , g

Managing the
Internet of Things

Architectures, Theories and Applications

Edited by
Jun Huang and Kun Hua

The Institution of Engineering and Technology

p , g

Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England &
Wales (no. 211014) and Scotland (no. SC038698).

© The Institution of Engineering and Technology 2017

First published 2016

This publication is copyright under the Berne Convention and the Universal Copyright
Convention. All rights reserved. Apart from any fair dealing for the purposes of research or
private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act
1988, this publication may be reproduced, stored or transmitted, in any form or by any means,
only with the prior permission in writing of the publishers, or in the case of reprographic
reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the
publisher at the undermentioned address:

The Institution of Engineering and Technology
Michael Faraday House
Six Hills Way, Stevenage
Herts, SG1 2AY, United Kingdom

www.theiet.org

While the authors and publisher believe that the information and guidance given in this work
are correct, all parties must rely upon their own skill and judgement when making use of
them. Neither the authors nor publisher assumes any liability to anyone for any loss or
damage caused by any error or omission in the work, whether such an error or omission is the
result of negligence or any other cause. Any and all such liability is disclaimed.

The moral rights of the authors to be identified as authors of this work have been asserted by
them in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A catalogue record for this product is available from the British Library

ISBN 978-1-78561-028-8 (hardback)
ISBN 978-1-78561-029-5 (PDF)

Typeset in India by MPS Limited
Printed in the UK by CPI Group (UK) Ltd, Croydon

p , g

Contents

1 Topology control for building scalable energy-efficient
Internet of Things 1
Jun Huang, Qiang Duan and Cong-cong Xing
Abstract 1
1.1 Introduction 1
1.2 Overview of TC in IoT 3
1.3 A framework of topology construction for scalable energy-efficient

IoT 4
1.4 Modeling topology construction for scalable energy-efficient IoT 6
1.5 Topology construction algorithm for scalable energy-efficient IoT 9
1.6 Performance evaluation 10
1.7 Conclusions 16
References 16

2 Wireless sensor network operating systems: a survey 19
Haiying Zhou, Xing Liu, Shen Lin, Jian Li,
Shengwu Xiong and Kun-Mean Hou
Abstract 19
2.1 Introduction 19
2.2 OS architecture 20

2.2.1 Monolithic architecture 21
2.2.2 Modular architecture 21
2.2.3 VM architecture 22
2.2.4 Discussion 22

2.3 OS scheduling model 23
2.3.1 Event-driven scheduling and preemptive

multithreading 23
2.3.2 Cooperative multithreading 23
2.3.3 Hybrid scheduling 24
2.3.4 Implementation of different scheduling models 25
2.3.5 Discussion 26

2.4 Memory management 26
2.4.1 Basic dynamic allocation mechanisms in the WSN 26
2.4.2 Coalescence-deferred SF allocation 27
2.4.3 Defragmented SF allocation 28
2.4.4 Virtual memory mechanism 28

p , g

vi Managing the Internet of Things: architectures, theories and applications

2.5 Application programming model 29
2.5.1 Event-based programming 29
2.5.2 Thread-based programming 29
2.5.3 Thread-based programming in the event-driven OSes 29

2.6 Application reprogramming 30
2.6.1 Optimization to the reprogramming code size 30
2.6.2 Code dissemination protocol 30

2.7 Energy conservation 31
2.7.1 Energy conservation in the sensing subsystem 31
2.7.2 Energy conservation in the signal processing subsystem 31
2.7.3 Energy conservation in the communication subsystem 32

2.8 Real-time performance 32
2.9 Fault-tolerant mechanisms 33
2.10 Feature comparison and ongoing research challenges 33

2.10.1 Feature comparison of different WSN OSes 33
2.10.2 Research challenges of the WSN OSes 35

Acknowledgments 35
References 36

3 Wireless sensor network operating system: concept,
new design, and implementation 43
Xing Liu, Haiying Zhou, Shen Lin, Shengwu Xiong,
Jian Li and Kun-Mean Hou
Abstract 43
3.1 Introduction 44
3.2 LiveOS memory-efficient real-time scheduling 45

3.2.1 Hybrid scheduling 46
3.2.2 Shared-stack multithreading 47
3.2.3 Performance evaluation 48
3.2.4 Discussion 51

3.3 LiveOS reactive-defragmentation dynamic memory allocation 51
3.3.1 LiveOS reactive-defragmentation allocation mechanism 52
3.3.2 Performance evaluation 52
3.3.3 Discussion 53

3.4 LiveOS middleware for user-friendly application development
environment 54
3.4.1 LiveOS memory-efficient and energy-efficient

middleware LiMid 55
3.4.2 Performance evaluation 57

3.5 LiveOS multi-core task assignment for the energy conservation 58
3.5.1 Concept of the LiveOS multi-core energy conservation

mechanism 58
3.5.2 Performance evaluation 59

3.6 LiveOS multi-core task assignment to improve the real-time
performance 60

p , g

Contents vii

3.7 LiveOS multi-core technique for the context-aware applications 61
3.8 LiveOS multi-core fault-tolerant mechanism 63

3.8.1 Concept and implementation of the LiveOS multi-core
fault-tolerant platform 63

3.8.2 Experimental evaluation 64
3.9 LiveOS multi-core debugging mechanism 64

3.9.1 Traditional debugging approaches 65
3.9.2 Concept and implementation of the LiveOS multi-core

debugging approach 65
3.10 Discussion on the LiveOS design concepts 66
3.11 Conclusions and ongoing works 66
Acknowledgments 67
References 67

4 OSIRIS framework: sensOr-baSed monItoRIng Systems 73
Raphael Guerra and Felipe Santos
Abstract 73
4.1 Introduction 73
4.2 OSIRIS Communication Layer 75

4.2.1 OMCP Protocol 76
4.2.2 OSIRIS modules communication 76
4.2.3 Implementation on RabbitMQ 76

4.3 OSIRIS modules 78
4.3.1 Collector 78
4.3.2 SensorNet 78
4.3.3 VirtualSensorNet 79
4.3.4 Function and External 80

4.4 Evaluation 80
4.5 Conclusion 83
References 83

5 Modeling and tracing events in RFID-enabled supply chains 85
Cong-cong Xing, Jun Huang and Shui Yu
Abstract 85
5.1 Introduction 85
5.2 Background and related work 86
5.3 The RFID-enabled supply chain system 87

5.3.1 System architecture 87
5.3.2 The discovery service mechanism 89
5.3.3 Access controls of the secure Data DS 89

5.4 Modeling of the system 91
5.4.1 Events 91
5.4.2 Event dissemination 95

p , g

viii Managing the Internet of Things: architectures, theories and applications

5.5 Tracing events 95
5.5.1 The algorithm 95
5.5.2 Event-tracing examples 97

5.6 Conclusion 99
References 99

6 A new clone detection approach in RFID-enabled supply chains 103
Cong-cong Xing, Jun Huang, Kun Hua, and Song Guo
Abstract 103
6.1 Introduction 103
6.2 A categorical perspective of RFID supply chains 105
6.3 The clone detection system 108

6.3.1 ν-Value verification sequence 108
6.3.2 Event track formation 109
6.3.3 Clone detection rules 109
6.3.4 Clone detection examples 110

6.4 Evaluation and comparison with peer work 112
6.5 Related work 116
6.6 Final remarks 117
References 118

7 Participatory sensing network: a paradigm to achieve applications
of IoT 121
Fen Hou, Jingyi Sun and Shaodan Ma
Abstract 121
7.1 Introduction 121
7.2 System model 124
7.3 Problem formulation 125

7.3.1 Allocation rule 126
7.3.2 Payment rule 127
7.3.3 Proof of properties 127

7.4 Performance evaluation 130
7.4.1 Simulation setup 130
7.4.2 Truthfulness 131
7.4.3 Weighted social welfare 131
7.4.4 Average reputation 131

7.5 Conclusion and discussion 132
Acknowledgements 135
References 135

8 Economics of Internet of Things (IoT): market structure analysis 137
Cheng Zhang
Abstract 137
8.1 Introduction 137

p , g

Contents ix

8.2 Economic models of IoT 139
8.3 Monopoly market structure analysis of IoT 142

8.3.1 Monopoly market model 143
8.3.2 Monopoly market analysis 143

8.4 Oligopoly market structure analysis of IoT 145
8.4.1 Oligopoly market model 146
8.4.2 Oligopoly market analysis 146

8.5 Conclusions 150
Appendix A 151
References 154

9 IoT and big data: application for urban planning and building
smart cities 155
Mazhar Rathore, Anand Paul and Awais Ahmad
Abstract 155
9.1 Introduction 156
9.2 Motivation 158
9.3 Proposed system for urban planning and smart cities 159

9.3.1 Smart systems deployment and big data generation 159
9.3.2 IoT-based smart city 161
9.3.3 IoT-based urban planning 163
9.3.4 Proposed system architecture and implementation model 163

9.4 Urban data analysis and discussion 166
9.4.1 Vehicular traffic analysis 166
9.4.2 Smart parking data analysis 171
9.4.3 Smart home data analysis 172
9.4.4 Flood data analysis 174
9.4.5 Environmental data analysis 175

9.5 System implementation abstraction 177
9.5.1 Smart city system implementation abstraction 177
9.5.2 Urban planning system implementation abstraction 178

9.6 System real implementation and evaluation 179
9.7 Conclusion and future work 180
References 181

10 Healthcare Internet of Things: fundamental technologies, state-of-
the-art standards, and current practices 185
Alan Diaz and Wei Wang
Abstract 185
10.1 Introduction 185
10.2 IoT elements for healthcare 187

10.2.1 Ambient intelligence (AmI) in general 187
10.2.2 Service oriented architecture (SOA) 188
10.2.3 Radio frequency identification (RFID) 188

p , g

x Managing the Internet of Things: architectures, theories and applications

10.2.4 Wireless sensor network (WSN) 189
10.2.5 ZigBee 190
10.2.6 Bluetooth 191
10.2.7 IPv6 and IPv6LoWPAN 191

10.3 IoT applications in healthcare 192
10.3.1 Vital signs 192
10.3.2 Smart drug intake 195
10.3.3 Elderly care 196
10.3.4 Healthcare applications of AmI 198

10.4 Conclusions 200
References 200

Index 205

p , g

Chapter 1

Topology control for building scalable
energy-efficient Internet of Things

Jun Huang1, Qiang Duan2 and Cong-cong Xing3

Abstract

Internet of Things (IoT) is one of the most significant recent developments in the field
of networking. Energy efficiency and scalability are two important technical issues
that must be fully addressed in order to build high-performance IoTs. Topology control
(TC) plays a crucial role in scalable and energy-efficient IoTs. In this chapter, we
first give an overview of TC technologies and their applications in IoTs. Then we
describe a systematic approach for topology construction in IoT to achieve scalability
and energy efficiency. Such an approach includes a hierarchical system framework
for IoT deployment, an optimization model for realizing energy efficiency, and an
algorithm for solving the optimization mode. Experimental results are also presented
in the chapter to show effectiveness of this topology construction approach.

1.1 Introduction

Internet of Things (IoT) as an emerging concept has gained worldwide attention
from both industries and research communities. The term IoT is composed of two
keywords – Internet and Things – and their definitions shape the ultimate form of
an IoT. First, “Internet” here indicates that IoT is based on the existing Internet
infrastructures and designed to perform data transmission and information exchange
in a rather global and pervasive manner, instead of “Intranets” that only process
data within its local range [1,2]. Second, associated with the widest range, the term
Things is supposed to have the broadest pattern, that is, all uniquely identifiable
computing devices are potential IoT elements. Note that equipment as actuator or
radio transceiver is optional for a legitimate IoT element – RFID and items labeled by

1Institute of Electronic Information and Networking, Chongqing University of Posts and
Telecommunications
2Department of Information Science and Technology, The Pennsylvania State University
3Department of Mathematics/Computer Science, Nicholls State University

p , g

2 Managing the Internet of Things: architectures, theories and applications

various scanning-compatible codes could of course be a part of IoT, even they provide
no extra capability other than a unique identifier.

With rapid adoption of IoT in various fields, diverse requirements have risen from
both academic and industrial communities for this emerging technology. Especially
at present, the connectivity density of Internet is at a dramatic scale, as the amount
of interconnected devices is increasing in booming fashion. On the other hand, most
of the “things” interconnected within IoT are devices with constrained resources,
especially limited battery capacity. Therefore building large-scale energy-efficient
IoT is particularly important. We summarize the following three characteristics as the
most vital requirements for IoT.

Perception capability: This capability, via a variety of sensors or identifiers,
etc., essentially provides an approach to linking real objects (i.e. with measurable
physical quantities) with digitalized and Internet-compatible data. In the big picture
of an IoT eco-system, all these elements for perception work jointly as the access
from where they need to exist to the place where people want them to present on the
Internet.

Transmission quality: The tremendous advance of telecommunication and net-
working industry brings not only neat transmission efficiency and greatly diverse
wireless pathways, but also a highly intertwined communication scenario. IoT nat-
urally has a good reason to employ the state-of-the-art underlying data transmission
technologies in its backbone such as the fourth Generation Long-Term Evolution
(LTE) and its several variants approved by third Generation Partnership Project
(3GPP) organization. However, data transmission in IoT faces some new challenges
due to some special features of this new networking paradigm, such as high node den-
sity, ad hoc network architecture, low network bandwidth among nodes, and limited
battery capacity at regular nodes.

Data processing ability: Nodes in an IoT should be able to make intelligent deci-
sions on how to cope with the collected data. With the aid of Internet access, this
processing can be supported by Cloud computing or other remote acceleration strate-
gies, but an IoT device/node should be equipped with the least computing resource
to accomplish the very first step of data processing.

The requirements of IoT bring some challenges for its implementation. Differ-
ing from traditional wireless sensor networks (WSNs), IoT achieves a larger scale
and becomes more complex. In addition, an IoT typically consists of more objects
that consume higher power, which requires that energy efficiency to be considered
seriously.

Topology control (TC), in general, refers to a group of techniques used in dis-
tributed computing and networking systems to alter underlying network topology
to enhance system performance and/or reduce system cost. Lately, TC technolo-
gies have been shaped as a loop divided into construction phase and maintain phase
of a networks connectivity [3]. Conventionally, TC is used mostly in autonomous,
infrastructure-free wireless ad hoc, sensor networks and their variants. With advances
on these network formations, a great number of literatures [4,5] have been published
and some theoretical or practical solutions based on graph theory are well grounded
already. Comparatively, Internet is infrastructure based and has its own more fixed

p , g

Topology control for building scalable energy-efficient Internet of Things 3

topology, thus are often absent of TC. With advancement of IoT, which combines
the traditional infrastructure-based Internet backbone with infrastructure-free ad hoc
sensor networks, TC technologies have been explored as an effective solution to build
large-scale energy-efficient IoT.

The backbone part of IoT is basically an Internet and therefore, follows highly
hierarchical Internet topology under conventional infrastructure. On the other hand,
the microstructure or local topology of an IoT may include ad hoc networks in which
TC may be applied for enhancing system performance. It is reasonable to see this
atomic element as a small network, in which its scale could still be a few hundreds
or even thousands of nodes but ignorable compared with the massive scale of a com-
plete IoT that includes the backbone Internet infrastructure. This is to say that the
overall topology of IoT will not affect the local network upon analysis, and vice
versa. Consequently, the process of this atomization and isolation opens up a window
of bridging the gap of classical TC techniques and cutting-edge perspective of IoT
architecture.

IoT is globally device-heterogeneous but locally homogeneous. It can be assumed
that network architecture is a device-similar or homogeneous in a smaller region or
in a single applications coverage. Unlike in wired networks where power-supply is
basically regarded unlimited, devices in IoT are wireless and autonomous and thus
are mostly battery-operated. This property makes emphasis on a key optimization
objective C energy-efficiency – for large-scale IoT.

Mobility is concerned in IoT but not a primary focus. Relatively speaking, Wire-
less Sensor Network (WSN) tends to be stationary after initial deployment while
Mobile Ad hoc NETwork (MANET) has higher mobility. Currently, applications
such as military surveillance, tag tracking, intelligent transportation control, and
smart home do not involve much mobility C they basically exchange information at
one location.

In the rest of this chapter, we will first give an overview of TC techniques avail-
able for IoT and then present a hierarchical framework of topology construction that
facilitates building scalable and energy-efficient IoT. We formulate topology con-
struction with this framework as an optimization problem and give an algorithm for
determining the number and location of relay nodes in this framework to achieve
energy efficiency.

1.2 Overview of TC in IoT

In this section, we give an overview of existing TC technologies. TC can be defined
as an iterative loop combining initialization phase, topology construction phase, and
topology maintain phase. Initially, all nodes in network discover their nearby nodes
with maximum transmission power to establish an initial topology C a connectivity
graph. In the construction phase, network control employs some algorithms to build
a reduced topology, where nodes are operated under an adjusted lower transmission
power. As battery consumption fails some nodes and nodes may have moved over
time, maintain phase takes its place and triggers new topology construction when

p , g

4 Managing the Internet of Things: architectures, theories and applications

necessary. As we discussed in the previous section, the local IoT architecture tends
to have low mobility and thus is rather static. Therefore, our overview of TC in this
section focuses on the topology construction phase.

Given the interpretation of topology construction, the algorithms for building
reduced topology (connectivity graph) suggest the very criteria of any TC technique.
These algorithms are designed with different optimization objectives. We list here
three most common objectives and their corresponding applicable circumstances.

Energy Preservation: Since most of the devices such as sensors and actuators
connected in IoT have limited battery capacity, a priority concern for IoT design
should be conservation of energy. Otherwise, overly short life-time of nodes will
dramatically damage the value in use for an IoT ecosystem. Lower energy consump-
tion may be achieved with both hardware- and software-based approaches. Recent
advancements of microelectronic technologies, improved hardware design of IoT
devices has significantly reduced energy consumption. Given the same set of devices
and connectivity restrictions, network control software may employ some algorithms
to create an appropriate topology that has lower energy consumption thus long net-
work life time. This is the fundamental motivation of TC. Various algorithms have
been developed based on graph theory to form a network topology and reduce the
total number of links needed for keeping all active communication paths in IoT while
maintaining connectivity for each node.

Interference/Collision Avoidance: Another optimization objective for TC tech-
niques is the interference among proximate radio-equipped devices, since occurrence
of interference/collision imposes a huge negative impact on devices interrelate data
transmission. Interference tends to be more severe in networks with higher node den-
sity. For this reason, the initialization phase with maximum transmission power and
densest connectivity graph has the highest probability of severe interference. That is
why the reduced topology generated by TC algorithms in construction phase could
relieve this problem to some degree.

Capacity/Throughput Improvement: Some specific interference scenes cause
another destructive phenomenon. It occurs when a node is prevented from sending
packets to other nodes due to a neighboring transmitter. In some literatures, this phe-
nomenon is said to be Hidden Node Problem. Some TC algorithms are designed with
an objective to prevent node placement that causes such a problem thus improving
network capacity.

Overall, the above three objectives must be thoroughly considered in TC in order
to achieve high-performance IoT. Please note that misuse of TC will degrade or even
eliminate positive effect. Therefore selection or design of TC algorithms must take
into account compatibility with IoT under particular scenarios.

1.3 A framework of topology construction for scalable
energy-efficient IoT

In this section, we present a framework of topology construction for building a large-
scale energy-efficient IoT.

p , g

Topology control for building scalable energy-efficient Internet of Things 5

Convergence layer

Relay layer

Sensing layer

Base station

Relay node

Object/thing

Wireless link

Wired link

Figure 1.1 An example of system framework for IoT deployment

Previous engineering practice for deploying large-scale WSNs shows that
dynamic routing is not very effective in wide area outdoor environments. Many fac-
tors such as electromagnetic interference, air humidity, and temperature, all have
great impacts on sensor’s data transmission, thus making such a network structure
ineffective for large-scale networking. More importantly, WSNs configured with
dynamic routing protocols require network nodes to perform power-consuming data
processing for path computation. The power consumption of data processing increases
significantly with network scale due to the complexity of dynamic routing proto-
cols for a large number of nodes. In addition, dynamic routing requires network
nodes to exchange route information among them regularly, which not only causes
overhead traffic in network but also consumes node power for extra data commu-
nications. All these factors make such a network deployment scheme ineffective
for building scalable energy-efficient IoT. On the other hand, network elements
deployed in IoT very often have low mobility and network topology remains rela-
tively stable, which makes dynamic routing gain little advantage over static routing
configuration.

Based on these observation and consideration, we argue that for large-scale IoT
it is reasonable to adopt static routing for higher power efficiency in order to achieve
better network scalability and longer life time. We present a tiered framework for
IoT topology construction in which objects are placed in a hierarchical structure with
static routing configuration. As shown in Figure 1.1, this framework includes three
layers – Sensing layer, Relay layer, and Convergence layer from bottom to up. Sensing
layer is used for placing objects and things (e.g., RFID), Relay layer is formed by
a collection of relay nodes, and Convergence layer consists of several base stations
that are connected to the Internet. With the purpose of energy saving and link load
balancing, the objects/things (sensing nodes) in the sensing layer are not allowed
to communicate with each other directly. Instead, the communication between any

p , g

6 Managing the Internet of Things: architectures, theories and applications

two objects must go through a relay node. That is, equipments in sensing layer can
only send data to a relay node in the upper layer. On the other hand, the sensing
node receives few signaling packets from relay nodes. Such signaling packets are
quite small, which can be neglected compared with data sending from sensing node.
Nodes in the Relay layer form a relay network where any two neighbor nodes can
communicate with each other. The other major functionality of a relay node is to
forward the data from the sensing layer to a base station in the upper layer. In the
convergence layer, base stations are also interconnected to form a network, which
further uploads data to the Internet.

Note that this framework provides a general scheme for IoT topology con-
struction to achieve scalability and energy-efficient. This framework is not limited
to any specific technical implementation thus is applicable for various applica-
tion scenarios. By placing IoT elements in the above hierarchical framework, this
sensor deployment scheme provides flexibility, promotes scalability, and promises
increased manageability. One of the major benefits introduced by such a tiered
paradigm is that equipments in IoT do not require sophisticated hardware and do
not need to run complex routing mechanisms and thereby significantly reduce the
network cost.

1.4 Modeling topology construction for scalable
energy-efficient IoT

In order to enable the tiered scheme of IoT topology construction presented in the last
section, we formulate the system framework as follows.

The communication policy for the tiered topology construction scheme includes
the following key aspects:

1. No sensor node can communicate with any other sensor node, even the distance
between a pair of sensor nodes is less than the communication radius.

2. A sensor node can communicate with a relay node if the distance between these
two nodes is less than the communication radius.

3. Two relay nodes may communicate with each other if the distance between them
is less than the communication radius.

In addition, we make the following assumptions about the system framework:

● All the nodes in the framework are in the fixed sites.
● Nodes in the same type have the same attribute, e.g. initial energy, energy con-

sumption parameters, maximum sending power, minimal receiving power, and so
forth.

● Nodes in the Sensing layer can send data to a base station in a multi-hop manner.

p , g

Topology control for building scalable energy-efficient Internet of Things 7

● Each node in both Sensing and Relay layer is energy-constrained, while base
station is not.

● The whole network of IoT represents a connected graph, that is, each node in the
Sensing layer has a path to a base station, so does the relay node.

Given such hierarchical system framework, the goal of topology construction is
to determine the number and location of relay nodes while satisfying power-saving
and budget constraints. In this section, we define the system constraints according
formulate the topology construction as an optimization problem. Listed following are
notations of variables and parameters used in this chapter.

Etx, Erx: the energy consumption at a node for data transmission and receiving,
respectively.

Eelec: the energy consumption of radio electronics.
ε0, ε1, ε2: transmit amplifier of the node, sensing node, and relay node,

respectively.
dij: the distance between node i and node j.
L: the data length.
Fij: the data rate from node i to node j.
Fmax: the maximum data rate of a link.
CS, CR, CB: the monetary cost of sensing node, relay node, and base station.
|·|: the cardinality of a set.
l, m, n: the cardinality of set S, R, B
W0: the system budget.
Denote the entire network of IoT as G(N , A), where N represents the node set

and A represents the wireless link set. A sensing node can only communicate with a
relay node in the upper layer, whereas a relay node can send/receive data both to/from
its neighbor relay nodes as well as a base station; therefore, G(N , A) is a directed and
connected graph. We call node i and node j neighbors if i and j are able to communicate
with each other. Let N (i) be the set of i’s neighbors, C be the adjacency matrix of
G(N , A), then:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1|N |

c21 c22 · · · c2|N |
...

...
. . .

...

c|N |1 c|N |2 · · · c|N ||N |

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.1)

where cij = 1 if j ∈ N (i), otherwise cij = 0.
We consider the following system constraints.
Energy Consumption Constraints: From the system perspective, the energy

consumption of IoT mainly comes from data communication because the energy

p , g

8 Managing the Internet of Things: architectures, theories and applications

expenditure in data sensing and processing is much less compared to data
communication [6]. Thus, only the energy consumption of data communication, i.e.
energy for sending and receiving data, is taken into account in this model. According
to the Friis free space model [7], we have:

Etx = (Eelec + ε0 · d2) · L, Erx = Eelec · L (1.2)

Upon above two equations, the data length L from node i to node j in a time unit
is equal to the data rate from i to j. Therefore, the energy consumption per time unit
of each node can be calculated by:

ei =
∑
j∈R

cij · Fij · (ES

elec + ε1 · d2
ij) ∀i ∈ S (1.3)

ej =
∑

i∈S∪R

cij · Fij · ER

elec +
∑

i∈B∪R

cji · Fji · (ER

elec + ε2 · d2
ji) ∀j ∈ R (1.4)

ek =
∑
j∈R

cjk · Fjk · EB

elec ∀k ∈ B (1.5)

where ei, ej, and ek denote the consumption of sensing node, relay node, and base
station. ES

elec, ER

elec, and EB

elec are the energy consumption of radio electronics of sensing
node, relay node, and base station, respectively.

Link Flow Balancing Constraints: In the IoT, the base stations are usually inter-
connected by wired links, which have wider bandwidth compared with relay and
sensing nodes, therefore, the bandwidth is constrained at nodes except for base sta-
tions. For a relay node, it communicates with not only its neighbor relay nodes but
also sensing nodes in the lower layer. Thus, the wireless links of a relay node should
satisfy:

cij · Fij + cji · Fji ≤ Fmax ∀i, j ∈ R (1.6)

Likewise, the wireless links at each sensing node and base station need to meet
the constraint cij · Fij ≤ Fmax, where ∀i ∈ S, j ∈ R or ∀i ∈ R, j ∈ B.

System Budget Constraint: Since relay nodes and base stations are comparatively
expensive, the deployment of an IoT must be as cheap as possible. On the other hand,
the number of base stations is fixed, consequently, the IoT deployment should meet
the system budget constraint, i.e.:

0 < CS · l + CR · m < W0. (1.7)

p , g

Topology control for building scalable energy-efficient Internet of Things 9

1.5 Topology construction algorithm for scalable
energy-efficient IoT

The main purpose of this chapter is to reduce energy consumption to achieve
an energy-efficient IoT. Hence, the optimization model for energy-efficient IoT
deployment is defined as:

min

⎡
⎣∑

i∈S

ei +
∑
j∈R

ej +
∑
k∈B

ek

⎤
⎦

s.t.

ei =
∑
j∈R

cij · Fij · (ES

elec + ε1 · d2
ij) ∀i ∈ S

ej =
∑

i∈S∪R

cij · Fij · ER

elec +
∑

i∈B∪R

cji · Fji · (ER

elec + ε2 · d2
ji) ∀j ∈ R

ek =
∑
j∈R

cjk · Fjk · EB

elec ∀k ∈ B

cij · Fij + cji · Fji ≤ Fmax ∀i, j ∈ R

cij · Fij ≤ Fmax ∀i ∈ S, j ∈ R or ∀i ∈ R, j ∈ B

0 < CS · l + CR · m + < W0 (1.8)

We devise a Minimal Energy Consumption Algorithm (MECA) as shown in
Algorithm 1 in order to solve the problem (10). The basic idea behind MECA is to
first apply canonical K-means clustering algorithm to select the relays, then construct
a graph to associate each edge a weight through mapping the transmitting/receiving
energy of the connected node pair. At last, MECA employs a well-known Steiner tree
algorithm to solve the problem. Specifically, MECA works in the following four steps.

In the first step (line 1), MECA applies K-means clustering algorithm [8] in the
sensing layer to find a set of clusters, and then the closest relay from each cluster is
selected to form the set R1, where K-means clustering is a method of cluster analysis
which aims to partition n observations into K clusters in which each observation
belongs to the cluster with the nearest mean. The set R1 is essentially the minimal
single-cover set due to the minimal clusters found by K-means.

The second step (lines 2–8) establishes the graph connecting relays and base
station. It also assigns the weight on each edge.

In the third step of MECA (line 9), it employs a well-known Steiner tree algorithm
[9] to compute a minimal energy consumption tree. Note that the Steiner tree algorithm
used in this chapter is similar to that used in Reference 10. The major difference is
that the MECA exploits the energy consumption as the link weight instead of the
weight as defined in Reference 10. In such a way, the number and location of relay
nodes can be determined by the Steiner tree algorithm, which guarantees the entire
network to be energy-efficient.

p , g

10 Managing the Internet of Things: architectures, theories and applications

The forth step obtains the solution min(e) for optimization problem (10) by
summing the total weight on each edge, where:

min(e) = min

⎡
⎣∑

i∈S

ei +
∑
j∈R

ej +
∑
k∈B

ek

⎤
⎦ (1.9)

the total weight here means the multiples of the weight on the common links, which
transmits data to base stations for two or more sensing nodes.

1.6 Performance evaluation

In this section, we give performance evaluation of the presented topology construction
scheme through numerical experiments. The nodes in each topology are distributed
in a 100 × 100 m2 region. The number of candidate locations for placing relay node
is 99, and m = 1. The parameters are configured as follows. We set Eelec = 50 nJ/bit,
EB

elec = 2ER

elec = 4ES

elec = 4Eelec, ε1 = ε2 = 100 pJ/bit/m2, Fij = 100 kbps for sens-
ing nodes, Fij = 200 kbps for relay nodes, and Fmax = 400 kbps.

Figure 1.2 shows the number of relay nodes deployed to achieve energy-efficient
IoT in the different communication radius. In this experiment, the number of sensing

0 50 150 300 600 1000
0

5

10

15

20

25

M
in

im
al

 n
um

be
r o

f R
N

s u
se

d

Number of sensing nodes

R = 2r = 30
R = r = 20
R = r = 15

Figure 1.2 Number of relay nodes used for five topologies with different
communication radius

p , g

Topology control for building scalable energy-efficient Internet of Things 11

nodes was set to be 50, 150, 300, 600, and 1 000 to represent the different scale of IoT.
From the figure we can see that, the minimal number of relay nodes increases with
network scale. This is natural because the larger the network scale is, the more relay
nodes are needed for covering all the sensing nodes. Another interesting observation
we obtained from the figure is that when the number and positions of sensing nodes
and base stations are stable, the minimal number of relay nodes decreases as the
communication radius of relay nodes increases. This is because larger communication
radius allows a relay node to cover more sensing nodes; thus reducing the number
of relays required for deploying. In addition, we also find that a small variation in
communication radius has little impact on the minimal number of relay nodes. In
particular, Figure 1.2 gives similar minimum numbers of relay nodes for the cases
of 600 and 1 000 nodes. Since the nodes are randomly distributed in a 100 × 100 m2

region, the nodes density is relatively high. Therefore, the minimal number of relay
nodes for IoT deployment would be affected by not only communication radius but
also the node density.

Figures 1.3–1.6 give the relationship between energy consumption of deployed
IoT and the number of relay nodes with different communication radius. It can be seen
from these figures that the network energy consumption per unit time increases with
the number of sensing nodes. Specifically, Figure 1.4 shows the energy consumption
for another topology where l = 150, n = 1. We observe that the energy consumption
tends to be high while the communication radius of relay nodes increases. It turns

8 10 12 14 16 18 20
1.6

1.8

2.0

2.2

2.4

En
er

gy
 c

on
su

m
pt

io
n

(J
)

Number of RNs used

R = 2r = 30
R = r = 20
R = r = 15

Figure 1.3 Energy consumption of deployed IoT (l = 150) versus the number of
relay nodes with different communication radius

p , g

12 Managing the Internet of Things: architectures, theories and applications

16 18 20 22 24 26 28
3.6

3.8

4.0

4.2

En
er

gy
 c

on
su

m
pt

io
n

(J
)

Number of RNs used

R = 2r = 30
R = r = 20
R = r = 15

Figure 1.4 Energy consumption of deployed IoT (l = 300) versus the number of
relay nodes with different communication radius

22 24 26 28 30 32
7.0

7.2

7.4

7.6

En
er

gy
 c

on
su

m
pt

io
n

(J
)

Number of RNs used

R = 2r = 30
R = r = 20
R = r = 15

Figure 1.5 Energy consumption of deployed IoT (l = 600) versus the number of
relay nodes with different communication radius

p , g

Topology control for building scalable energy-efficient Internet of Things 13

26 28 30 32 34 36 38
11.4

11.6

11.8

En
er

gy
 c

on
su

m
pt

io
n

(J
)

Number of RNs used

R = 2r = 30
R = r = 20
R = r = 15

Figure 1.6 Energy consumption of deployed IoT (l = 1 000) versus the number of
relay nodes with different communication radius

out that the minimal number of relay used in this topology is reached when R = 2
and r = 30. In addition, we can also see that the IoT is unconnected when R =
r = 20 or R = r = 15, and m < 12 or m < 13, which leads to zero network energy
consumption. Note that we assume the network energy consumption be zero if the
graph is unconnected. Since the goal of deploying a energy-efficient networked IoT
is to place as few relay nodes as possible in the IoT, we only need to consider the
energy consumption for the scenario with the least relay used. Therefore, it is not
necessary to consider the case of m > 15, R = 2r = 30, and we assume that the
energy consumption is also zero in this setting. Figures 1.5–1.7 give the data of energy
consumption for the network when l = 300, l = 600, and l = 1 000, respectively.
These figures provide the same insight as Figure 1.4 does, which proves the proposed
algorithm robustness.

In order to validate the effectiveness of our proposed hierarchical deployment
structure, we implement a hybrid deployment scheme for comparing the network
lifetime of the two frameworks. The main difference between the hybrid scheme and
our proposed hierarchical framework is that the sensor nodes in the lower layer of the
hybrid structure are allowed to communicate directly with their neighboring nodes.
Figures 1.7–1.9 show the comparing results of network lifetime for different numbers
of nodes with various communication ranges.

p , g

14 Managing the Internet of Things: architectures, theories and applications

14 16 18 20 22 24 26 28 30 32 34

6

8

10

12

14

N
et

w
or

k
lif

et
im

e
(1

06 s)

Number of RNs used

Hierarchy, R = 2r = 30
Hybrid, R = 2r = 30
Hierarchy, R = r = 15
Hybrid, R = r = 15
Hierarchy, R = r = 20
Hybrid, R = r = 20

Figure 1.7 Network lifetime comparisons for the topology l = 300, m = 83, n = 1

2220 24 26 28 30 32 34 36 38

4

6

8

N
et

w
or

k
lif

et
im

e
(1

06 s)

Number of RNs used

Hierarchy, R = 2r = 30
Hybrid, R = 2r = 30
Hierarchy, R = r = 15
Hybrid, R = r = 15
Hierarchy, R = r = 20
Hybrid, R = r = 20

Figure 1.8 Network lifetime comparisons for the topology l = 600, m = 111, n = 1

p , g

Topology control for building scalable energy-efficient Internet of Things 15

20 22 24 26 28 30 32 34 36 38

4

6

N
et

w
or

k
lif

et
im

e
(1

06 s)

Number of RNs used

Hierarchy, R = 2r = 30
Hybrid, R = 2r = 30
Hierarchy, R = r = 15
Hybrid, R = r = 15
Hierarchy, R = r = 20
Hybrid, R = r = 20

Figure 1.9 Network lifetime comparisons for the topology l = 1 000, m = 111,
n = 1

From these figures, we find that the network lifetime of IoT deployed in the
hierarchical structure is longer than that of IoT deployed in the hybrid scheme.
This is due to the fact that in the hybrid scheme the sensing nodes near to relay
nodes may be overloaded, therefore, consume more energy than other nodes, which
causes a shorter network lifetime. While in the hierarchical scheme, sensing nodes
send information to their neighbor relay nodes, then the relay nodes forward such
information to a base station. In this way, the hierarchical scheme balances the net-
work load of the nodes; thus balancing node energy consumption and extending
the network lifetime. The more relay nodes are deployed, the longer the network
lifetime is. In addition, increasing communication radius of relay nodes would also
prolong the network lifetime. Another important fact we can see from these fig-
ures is that the network lifetime becomes shorter when the number of sensing nodes
increases. Since more sensing nodes result in more network traffic, which leads to
a shorter network lifetime, the proposed hierarchical deployment scheme is better
than the hybrid scheme with respect to the network lifetime. Therefore, we claim that
the proposed hierarchy scheme is more preferable for energy-efficient deployment
of IoT.

p , g

16 Managing the Internet of Things: architectures, theories and applications

1.7 Conclusions

In this chapter, we discussed TC technologies and their applications in Internet of
Things for achieving scalability and energy efficiency, which are two critical tech-
nical issues for building high-performance IoTs. We first gave an overview of TC
technologies and how they can be applied in IoTs for improving network scala-
bility and energy efficiency. Then we describe a topology construction scheme for
large-scale energy-efficient IoTs. This scheme includes a hierarchical system frame-
work for network deployment, an optimization model for minimizing network energy
consumption, and an algorithm to solve the optimization model. We show through
numerical experiment results that the presented scheme can achieve longer network
lifetime in large-scale IoTs.

References

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:
Vision, applications and research challenges,” Ad Hoc Networks, vol. 10, no.
7, pp. 1497–1516, 2012.

[3] Y. Wang, “Topology control for wireless sensor networks,” in Wireless Sensor
Networks and Applications. Berlin, Germany, Springer, 2008, pp. 113–147.

[4] P. Santi, “Topology control in wireless ad hoc and sensor networks,” ACM
Computing Surveys (CSUR), vol. 37, no. 2, pp. 164–194, 2005.

[5] R. Rajaraman, “Topology control and routing in ad hoc networks: A survey,”
ACM SIGACT News, vol. 33, no. 2, pp. 60–73, 2002.

[6] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sen-
sor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422,
2002.

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-
specific protocol architecture for wireless microsensor networks,” IEEE
Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670,
2002.

[8] M. Li, M. Ng, Y.-m. Cheung, and J. Huang, “Agglomerative fuzzy k-means
clustering algorithm with selection of number of clusters,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 20, no. 11, pp. 1519–1534,
2008.

[9] L.T. Kou, G. Markowsky, and L. Berman, “A FastAlgorithm for SteinerTrees,”
Acta Informatica, vol. 15, no. 2, pp. 141–145, 1981.

[10] D.Yang, S. Misra, X. Fang, G. Xue, and J. Zhang, “Two-tiered constrained relay
node placement in wireless sensor networks: Computational complexity and
efficient approximations,” IEEE Transactions on Mobile Computing, vol. 11,
no. 8, pp. 1399–1411, 2012.

p , g

Topology control for building scalable energy-efficient Internet of Things 17

Algorithm 1 MECA

Input:
S, R, B, R ≥ r > 0

Output:
Minimal Energy Consumption min(e)

1: Apply K-means clustering algorithm to obtain a single-cover set S1 ⊆ S,
choose the closest relay i ∈ R to replace the j ∈ S1 forming the set R1.

2: for i ∈ R, j ∈ R ∪ B, i �= j do
3: Calculate the distance dij between i and j;
4: if dij ≤ R then
5: Add the node i and j to a candidate set RN for placement, set cij = 1 in G;
6: end if
7: end for
8: Assign edge weight for G in terms of (4), (5) and (6) on each edge;
9: Apply a well-known Steiner Tree algorithm to compute a minimal energy

consumption Steiner tree GT of G = (S ∪ RN ∪ B, A) spanning the node set
B ∪ R1.

10: for each edge in GT do
11: Sum the total weight on each edge, denoted as min(e);
12: end for
13: return min(e);

This page intentionally left blank

p , g

Chapter 2

Wireless sensor network operating systems:
a survey

Haiying Zhou1,2, Xing Liu2,5, Shen Lin3, Jian Li4,
Shengwu Xiong2 and Kun-Mean Hou5

Abstract

Operating system (OS) is a critical research topic in the wireless sensor network
(WSN). With an outstanding WSN OS, not only the constrained WSN platform
resources can be managed efficiently, but also the complicated WSN application
development can be simplified soundly. In this chapter, a survey to the current WSN
OSes is investigated. Different OS concerns such as the OS architecture, the schedul-
ing model, the memory management, the application programming, the application
reprogramming, the energy conservation, the real-time scheduling, and the fault tol-
erance are reviewed. In addition, the features of the different OSes are compared and
the ongoing research challenges are proposed. The work presented in this chapter can
be helpful for the WSN users to select an appropriate OS for the WSN motes, and it
can also be useful for the WSN developers to set forth the future OS design directions.

2.1 Introduction

The Internet of Things (IoT) is comprised of the “things” objects which are embed-
ded with the sensors, the electronics, the software, and the network connectivity.
With the environmental data collection and the data exchange among these intelligent

1School of Electrical and Information Engineering, HuBei University of Automotive Technology, 442002
Shiyan, HuBei, China
2Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, 430070
Wuhan, China
3Key Laboratory of Automobile Parts Testing, General Administration of Quality Supervision, Inspection
and Quarantine of P.R. China, 441003 XiangYang, HuBei, China
4School of Computer Science, Harbin Institute of Technology, 150001 Harbin, China
5LIMOS Laboratory, UMR 6158 CNRS, Blaise Pascal University, Les Cézeaux, BP 10125, 63173
Clermont-Ferrand, France

p , g

20 Managing the Internet of Things: architectures, theories and applications

IoT objects, the integration between the physical world and the computer-based
systems can be realized [1–3].

In recent years, many research works have been researched in the IoT, and these
works can be classified three visions: the thing-oriented vision, the Internet-oriented
vision, and the semantic-oriented vision [3]. In the thing-oriented field, the WSN is
one of the critical research issues. With the WSN technique, the physical or envi-
ronmental data can be collected and forwarded to the common network framework,
e.g., the Internet network. And then, these data can be analyzed and used for the
smart decision. Currently, the WSN technique has played a significant role in the
proliferation of the IoT paradigm [4–6].

As the proliferation of the WSN technique, many research challenges emerge and
need to be addressed. First, the WSN motes are typically the small-size and low-cost
ones on which the platform resources such as the memory resource and the energy
resource are constrained [5,6]. Therefore, the memory optimization and the energy
conservation become essential to the WSN. Second, the WSN hardware and software
platforms are currently diverse [7]. Different hardware platforms such as the BTnode
and the iMote2, and the software OSes such as the TinyOS, the Contiki, and the SOS,
are developed. Due to this reason, the users need to understand the diverse low-level
platform details to make the programming and this process is hard for many users.
Third, many WSN motes are deployed in the outdoor harsh contexts where the labor
maintenance to the deployed motes is quite difficult. Thus, the fault-tolerant ability
and the remote reprogramming become important to the WSN motes.

To address the challenges above, the research and implementation of an outstand-
ing WSN OS becomes significant. With an outstanding OS, not only the constrained
WSN platform resources can be managed efficiently, but also the complicate WSN
application development can be simplified soundly. Due to this significance, a sur-
vey to the current popular WSN OSes is investigated in this chapter. Different OS
concerns are discussed and the OS ongoing research challenges are proposed. This
work presented in this chapter can be helpful for the WSN users to understand the
different WSN OSes quickly, and it can also be useful for the WSN developers to set
forth the future WSN OS design directions.

The structure of this chapter is organized as follows: From section 2.2 to
section 2.9, the features of different WSN OSes, such as the architecture model,
the scheduling model, the memory management, the application programming, the
application reprogramming, the energy conservation, the real-time performance, and
the fault recovery mechanisms, are investigated respectively. In section 2.10, the
comparison and the research challenges of the current WSN OSes are summarized.

2.2 OS architecture

OS architecture can have an effect not only on the kernel code size but also on the
way how the system services are provided. The current WSN OS architectures can be
classified into three types: the monolithic architecture, the modular architecture, and
the virtual machine (VM) architecture.

p , g

Wireless sensor network operating systems: a survey 21

2.2.1 Monolithic architecture

In the monolithic-architecture OSes, all the software components are built together
to form a single system image. This kind of OS has compact code size and sound
execution efficiency.Yet, the entire software binary needs to be updated if any change
to the software program is made. As a result, the application reprogramming perfor-
mance of this kind of OSes is low. Currently, the monolithic architecture has been
used in the OSs such as the TinyOS [8], the openWSN [9], and the uCOS [10].

2.2.2 Modular architecture

Modular architecture is different from the monolithic architecture in that parts of the
software components, such as the applications and the drivers, can be built indepen-
dently into a set of dynamic loadable modules (Figure 2.1). Currently, this kind of OS
architecture has been used in the SOS [11].

In the modular-architecture OSes, a module’s address is changeable after it is
updated, thus the position independent code (PIC) and the indirect interaction mecha-
nisms are commonly applied in these OSes. With the PIC mechanism, the interactions
within a module can still keep valid even if the module changes its address. With
the indirect interaction mechanism, the interactions among the modules can still
keep valid even if the modules locates to a new address. In Figure 2.1, the indirect
interaction mechanisms of the SOS are depicted.

The advantage of the module-architecture OS is that the modules can be updated
dynamically without reprogramming the monolithic software binary. Therefore, the
application reprogramming or the system fault repairing can be performed efficiently.
Yet, the module management such as the module loading, module deletion, and
module registration needs to be performed. As a result, the OS code size and the archi-
tecture complexity will increase. Moreover, the modules need to interact with each
other in the indirect way, and the OS execution efficiency will be decreased by this.

Hardware
abstraction

Device
drivers

Kernel
services

Dynamic
memory Scheduler Function

control block

Timer Serial
framer

Comm
stack

Sensor
manager

Clock UART ADC SPI

Loadable
modules

Tree
routing

Surge
application

Light
sensor

… Module A
Module B

Module C

Module D
Jump tables(b)

(a)

call

Message
scheduler

Module
A

Message
queue

message
post

Module B

Module C

Module D

(c)

call

Figure 2.1 (a) Software structure of the SOS. Modules can be loaded dynamically.
(b, c) Module interaction mechanism in the SOS. Modules interact with
each other indirectly either by the synchronous jump table or the
asynchronous message queues

p , g

22 Managing the Internet of Things: architectures, theories and applications

2.2.3 VM architecture

In the VM-architecture OSes, the application code is decoupled from the low-level
system code and built independently into an interpretable image. During the run-time,
the application image can be updated dynamically and be interpreted by the VM.

A typical example of the VM architecture WSN system is the embedded Java
VM (EJVM). With the EJVM, the users can program the WSN nodes by the popular,
reusable, robust, object-orient, and hardware-independent Java language. By this
means, a user-friendly application development environment can be provided to the
WSN users. Currently, the VM architecture has been applied in many WSN OSes,
including the simpleRTJ [12] (Figure 2.2), the LeJOS [13], the nanoVM [14], the
JavaCard [15], and the DarjeelingVM [16].

Since the VM application code is executed in the interpreted way, the application
of the VM-architecture OSes can be hardware independent, and this is significant for
the programming in the heterogeneous WSN contexts. In addition, theVM application
code is decoupled from the low system code. Thus, only the application part needs to
be updated during the reprogramming process, and the reprogramming performance
keeps high.

Yet, the code execution efficiency of the VM-architecture OSes is low since the
application code is executed by interpretation, and this causes more energy to be
cost during the run-time process by comparing with that of the native application
code. In addition, the memory cost of most VM-architecture OSes is high since
the byte code interpreter and the byte code handlers need to be implemented, e.g.,
about 20 KB code memory is required by the simpleRTJ to run on the 8-bit AVR
microcontroller ATmega1281, and this makes these EJVMs not suitable to run on the
high memory-constrained WSN nodes.

2.2.4 Discussion

Different architectures have different advantages and drawbacks, and they are appro-
priate to be applied in different contexts. The monolithic TinyOS has low memory

Java
APP
space

JDK
builtJava program

Java Class 1

Java Class N
……

GNU
built

Java VM (byte code interpreter, etc.)

Multithreaded
Java OS

Drivers,
protocols, etc.

System
space

Java Image
(loadable

part)

System
Image

(pre-burned)

FLASH
Java Application Image

Class
Linker

Figure 2.2 Elementary diagram of the Java VM/OS SimpleRTJ. SimpleRTJ is
consisted of the embedded JVM and the lightweight multithreaded
JavaOS. With the JavaOS, the WSN applications can be programmed by
the multithreading Java language

p , g

Wireless sensor network operating systems: a survey 23

and energy cost, yet the application reprogramming performance is poor, thus it is
suitable to be used when the platform resource is highly constrained and the appli-
cation reprogramming is rarely performed. The modular SOS can dynamically load
both the application module and the system service modules. Thus, it is essential to
be used when the application reprogramming or the system fault repairing is regu-
larly needed. TheVM-based simpleRTJ can provide a decent application development
environment to the WSN users although its memory and energy costs are relatively
high. Therefore, it can be a sound selection for the WSN developers in case the WSN
platform resources are abundant.

2.3 OS scheduling model

The scheduling models of the WSN OSes include the event-driven scheduling, the pre-
emptive multithreading, the cooperative multithreading, and the hybrid scheduling.

2.3.1 Event-driven scheduling and preemptive multithreading

The basic scheduling models of the WSN OSes include the event-driven scheduling
and the preemptive multithreading [17,18]. The main difference between these two is
that the latter supports the task preemption while the former cannot (Figure 2.3). With
the preemption support, better real-time performance can be realized in the multi-
threaded OSes. Yet, the context switch needs to be performed during the preemption
process. As a result, each task in multithreaded OS needs to be allocated an indepen-
dent stack which will be used to store the context, and this causes the memory cost
and the scheduling overhead of the multithreaded OSes to be higher than those of the
event-driven OSes.

2.3.2 Cooperative multithreading

Cooperative multithreading is the scheduling mechanism in which the task currently
controlling the CPU can yield the control to the others in the voluntary way, rather
than in the preemptive way. It is differentiated with the preemptive multithreading

Event
generator

Event-driven
Scheduler

Task1

Task2

Task3

Event
post

Event
Extraction

Scheduling queue

(b)

1

A

1 1 1

B B C C

Thread 1

Thread 2 preempt
t

t
switch switchpreempt

(a)

Figure 2.3 (a) Scheduling process of the multithreaded system. (b) Software
structures of the event-driven system

p , g

24 Managing the Internet of Things: architectures, theories and applications

Update the Java program counter to
the next bytecode

Release the run-time stack of
the bytecode handler

Execute the bytecode handler

Allocate the C run-time stack for
the bytecode handler

Interprets the bytecode pointed by
the Java program counter

Check whether the thread
switch flag is set or not?

Perform the thread switch

Set the thread switch flag
(but not perform the switch)

High-priority thread becomes
active

no

yes

Figure 2.4 Cooperative scheduling model of the Java VM simpleRTJ. Only after
the context of the current bytecode handler has been released, the
thread switch can be performed. By so doing, the memory cost of the
thread stacks can be optimized significantly

in which a high-priority task can preempt the low-priority task anytime outside of the
low-priority task’s control [19]. Currently, the cooperative multithreading has been
used in several WSN OSes including the simpleRTJ and the Enix [20], and it has been
used to reduce the stack memory usage and decrease the scheduling overhead.

In the JavaVM/OS simpleRTJ, the cooperative multithreading mechanism, which
is also termed as atomic instruction or bytecode-granularity thread switch in the JVM
terminology, is applied to schedule the Java threads. With the cooperative multi-
threading, the thread switch will not be performed during the executing process of the
bytecode handler, but it is performed until the handler runs to completion and the
thread scheduler is called explicitly. Since the bytecode handler will not be preempted
during the executing process, the allocation of an independent stack which will be
used to store the run-time contexts of the handlers need not be performed. As a result,
the stack memory cost of the simpleRTJ can be decreased significantly (Figure 2.4).
In the Enix, the cooperative multithreading is also implemented. Yet, it is different
from the simpleRTJ in that it is used to optimize the thread scheduling overhead and
ease the thread race condition problem.

Although the cooperative multithreading can be used to optimize the memory cost
and decrease the scheduling overhead, it still has some drawbacks. In the simpleRTJ,
the memory cost is optimized, yet it is achieved at the cost of decreasing the OS real-
time performance. In the Enix, the scheduling overhead is optimized, yet the software
programming complexity is increased since the programmers need to be aware of
calling the scheduler manually.

2.3.3 Hybrid scheduling

Hybrid scheduling is the scheduling mechanism in which the event-driven schedul-
ing and the multithreading scheduling are both implemented. Currently, it has been
applied in several WSN OSes including theTinyOSTOSThread [21], the Contiki [22],

p , g

Wireless sensor network operating systems: a survey 25

TinyOS
system task1

TinyOS event-driven scheduler

TinyOS
system task2

TOSThread multithreaded scheduler

APP thread 1 APP thread 2

Boundary

(a)
Contiki event-driven scheduler

Contiki
process2

Multithreaded
scheduler

Thread
1-1

Thread
1-2

Contiki process1 Contiki process3

Multithreaded
scheduler

Thread
3-1

Thread
3-2

(b)

Figure 2.5 (a) Hybrid scheduling model in the TOSThread. (b) Hybrid scheduling
model in the Contiki

and the HEROS [23], and it is designed with the purpose of simplifying the event-
driven programming, adding the preemption into the event-driven system, or enabling
the WSN OS to be context aware.

The hybrid scheduling structure of TinyOS TOSThread is depicted in Figure 2.5,
the fully-preemptive thread package TOSThread is implemented on top of the TinyOS
event-driven kernel, and it serves the TinyOS applications dedicatedly. With the
TOSThread, the applications in the event-driven TinyOS can be programmed by the
thread-based programming, and the programming complexity can be eased.

Similar to the TinyOS TOSThread, the multithreaded scheduler in the Contiki
is also implemented on top of the event-driven scheduler. Yet, different from the
TOSThread, the Contiki multithreaded scheduler can serve any Contiki task which
requires the preemption support (Figure 2.5). By means of this multithreading exten-
sion, the long-running computations in the Contiki can be programmed while the
time-sensitive nature of the Contiki can also be preserved.

In the HEROS, the multithreaded scheduler is also implemented on top of the
event-driven scheduler. Yet, it is different from the TOSThread and Contiki in that the
scheduling model is configurable. With the configurable functionality, the HEROS
can run in three different models: event-driven model, multithreading model, and
hybrid model (Figure 2.6). Since different models have different advantages and
drawbacks, HEROS can become context aware and adapt well to the diverse WSN
applications.

2.3.4 Implementation of different scheduling models

The event-driven scheduler is commonly implemented by using the event queue [24].
After an event is generated, it will be buffered in the event queue. The event scheduler
polls this queue and extracts the event one by one. After an event is extracted, the
corresponded task will be executed. Since the tasks cannot be preempted in the event-
driven system, each task runs to completion before the next event can be extracted.

The implementation of the multithreaded scheduler includes the initialization of
the thread stacks, the restoring of the thread contexts, and the selection of next thread
to be scheduled. The thread selection depends on the scheduling strategy. Currently,

p , g

26 Managing the Internet of Things: architectures, theories and applications

HEROS event-driven scheduler

HEROS Task2

Multithread
scheduler

Thread
1-1

Thread
1-m

HEROS Task1 HEROS Task n

Multithread
scheduler

Thread
3-1

Thread
3-m

Multithread
scheduler

Thread
(2-1,…,2-m)

HEROS event-driven scheduler

HEROS
Task 1

HEROS
Task n…

Event-driven system

…

m = 1

n = 1…

Multithreaded scheduler

Thread1-1 Thread 1-m

Multithreading system

…

…

Figure 2.6 Hybrid scheduling model in the HEROS. The HEROS hybrid model can
be configured either to be the event-driven model or to be the
multithreaded model

the popular thread scheduling strategies in the WSN OSes include the Round-Robin
(RR) scheduling, the Rate-Monotonic Scheduling (RMS), and the Earliest Deadline
First (EDF) [25,26].

2.3.5 Discussion

Different scheduling models have different advantages and drawbacks, and they com-
monly strike the balance between the memory cost and the real-time performance.
In case that the real-time responsiveness is required and the memory resource of
the WSN platforms is abundant, the multithreaded scheduling can be considered.
Reversely, the event-driven scheduling is more appropriate. Cooperative multithread-
ing and the hybrid scheduling keeps the balance between the above two. As for which
scheduling model to be selected, it depends on the application requirements and the
WSN platform resources.

2.4 Memory management

Memory management is essential for the WSN since the RAM resources of most
WSN nodes are constrained, e.g., the MicaZ node has only 4 KB RAM. To manage
the memory resources efficiently, the dynamic allocation and the virtual memory
mechanisms are popularly implemented in the WSN. In this section, the basic WSN
dynamic allocation approaches, such as the SGS allocation and the SF allocation, are
presented in section 2.4.1. Then, the extended dynamic allocation approaches, such
as the coalescence-deferred sequential fit (SF) allocation and the defragmented SF
allocation, are discussed in sections 2.4.2 and 2.4.3. Finally, the WSN virtual memory
mechanisms are introduced in section 2.4.4.

2.4.1 Basic dynamic allocation mechanisms in the WSN

In Reference 27, the mechanisms of the dynamic allocation are classified into five
kinds: the SF, the segregated free list which includes the simple segregated storage

p , g

Wireless sensor network operating systems: a survey 27

100
100

100
100
100

100
100
100

100
100

Partition A
(100 bytes 10)

X

Unformatted
Partition

200
200

200
200
200

Partition B
(200 bytes 5)

Free memory list

(b)(a)

A
(22 B)

free
(8 B)

B
(32 B)

free
(9 B)

C
(36 B)

free
(20 B)

Figure 2.7 (a) SGS allocation in the uCOS. Partitions can be formatted during the
run-time, and the different partitions can be formatted into the different
fixed-size blocks. (b) SF allocation in the MantisOS. A free list is used
to manage the free memory blocks

(SGS) and the segregated fit, the Buddy systems, the indexed fit, and the bitmapped
fit. Currently, the SGS and the SF mechanisms are commonly used in the WSN OSs.
The Buddy system approach is not popularly used in the WSN as the fragmentation
percentage of this approach can be high [28]. The malloc allocation is not popularly
used as nontrivial code space will be taken up by its implementation.

A key difference between the SGS and the SF is that the former performs the
fixed-size block allocation while the latter performs the varied-size block allocation.
In the SGS allocation, the memory heap is divided into segregated partitions. Each
partition is formatted into a set of fixed-size blocks, and the block sizes in the different
partitions are different (Figure 2.7). Since the fixed-size block allocation is performed,
the allocation time of SGS is short and deterministic. Moreover, no block splitting and
coalescence are needed. Yet, the internal and external memory fragmentation can be
severe, and this reduces the memory utilization efficiency of this approach. Different
from the SGS allocation, the block sizes of the SF allocators are not fixed. Each block
is allocated in the sizes exactly as required. The advantage of this approach is that
no internal memory fragments will exist. Yet, the allocation time is not deterministic
as a free list needs to be searched upon allocation. Moreover, the block splitting
and coalescence needs to be performed and this increases the allocation overhead
(Figure 2.7). Currently, the SGS allocation has been applied in the Contiki [22] and
the uCOS [10] while the SF allocation has been used in the MantisOS [29].

2.4.2 Coalescence-deferred SF allocation

In the SF system, block splitting and coalescence need to be performed, and this
increases the allocation execution overhead. To optimize the allocation performance,
the coalescence-deferred SF approach is proposed.

Coalescence-deferred mechanism is appropriate to be applied when the size of the
newly allocated block is identical to that of the previously released block. In this case,
the previous released block can be reused exactly for the allocation of the subsequent
block, and it needs not to be coalesced. Currently, the coalescence-deferred SF has

p , g

28 Managing the Internet of Things: architectures, theories and applications

A B C Free space

New allocation always
starts from here

Ref-A Ref-B Ref-C

(a)

A C Free space

New allocation always
starts from here

Ref-A Null Ref-C

(b)

Figure 2.8 Contiki defragmented SF allocation. After the block B is released, the
blocks A and C will be coalesced. By this means, the memory fragments
can be reused. Since the addresses of some blocks will change after the
coalescence, the indirect pointers needs to be used to access the blocks

been realized in the FreeRTOS [30]. With this mechanism, the allocation performance
of the FreeRTOS can be optimized.

2.4.3 Defragmented SF allocation

In the SF allocation system, external memory fragment can occur, and this will reduce
the memory utilization efficiency of this allocation approach, e.g., in Figure 2.7, if
a 30-byte block needs to be allocated, it cannot be performed successfully although
the total sizes of the free blocks are larger than 30 bytes. To utilize the external
fragment efficiently, the memory defragmentation needs to be performed. Currently,
this has been realized by the Contiki mmem allocator [31]. In the Contiki mmem,
the fragments are defragmented proactively once it appears. In case that a block is
released, the blocks adjacent to it will be coalesced (Figure 2.8). By doing this, all the
free blocks will be continuous in the address and no memory fragments will exist.

2.4.4 Virtual memory mechanism

Virtual memory can support conceptually more memory than might be physically
available, and makes the application programming easier by hiding the fragmentation
of the physical memory. Typically, the implementation of the virtual memory requires
the support from the hardware Memory Management Unit (MMU). Yet, most WSN
microcontrollers are absent in the MMU hardware support. Therefore, the software-
based virtual memory technique needs to be developed, and this has currently been
realized in the Enix [20] and the t-kernel [32].

In the Enix, the software-based virtual memory mechanism is achieved by using
the code insertion technique at the compiling time. The commonly used libraries
are pre-built on the host PC and transformed into the PIC segments. Then, these
libraries can be loaded dynamically into the code memory after being called by the
user program.

In the t-kernel, the software-based virtual memory is also realized, and it is
achieved by modifying the application instructions at the loading time. When a new
page of application instructions needs to be executed, the corresponded instructions
will be modified so as to achieve the virtual address translation. Currently in the
t-kernel, a 64 KB virtual memory space over 4 KB physical memory can be supported.

p , g

Wireless sensor network operating systems: a survey 29

With the virtual memory technique, the constrained memory resource of the WSN
nodes can be utilized more efficiently.

2.5 Application programming model

Application programming model depends closely on the low-level OSes. In terms of
the different OS scheduling models, the applications in the WSN can be programmed
in two patterns: the event-based programming and the thread-based programming.

2.5.1 Event-based programming

Event-based programming is commonly applied in the event-driven OSes. In the
event-driven systems, the preemption is not enabled, thus the execution time of the
tasks cannot be lengthy. In order to program the lengthy task, the split-phase state-
machine programming [33], with which the application code can be broken across
multiple disjoint segments of code, is popularly used in the event-based programming.
The advantage of this programming model is that the memory cost and the run-time
overhead are low. The drawback is that the programmers need to construct the explicit
machine states manually, and this is difficult to be handled by many developers.

2.5.2 Thread-based programming

Thread-based programming is commonly applied in the multithreaded OSes. It is
different from the event-based programming in that the tasks can preempt each other.
Thus, the complicated split-phase state-machine programming, which is needed in
the event-driven programming, needs not to be performed in the thread-based pro-
gramming. However, due to the thread switch operations, the memory cost and the
run-time overhead of the thread programming are high, and this makes the thread-
based programming less preferable for the high resource-constrained WSN devices.
In addition, the thread synchronization operation, which can lead to the deadlock and
the race condition problems, can also occur in the thread-based programming.

2.5.3 Thread-based programming in the event-driven OSes

The programming in the event-drive OSes is difficult to be handled since the pro-
grammers need to construct the machine states manually. To ease the programming
complexity of the event-driven OSes, the user-friendly thread-based programming is
motivated to be added into the event-driven OSes. Currently, this has been realized
in several event-driven OSes, including the Contiki protothread [34] and the TinyOS
TOSThread [21].

Contiki protothread does not support the thread preemption. Yet, it enables the
users to program the event-driven Contiki applications by using the thread-based pro-
gramming model. In the protothread system, a static local continuations (LC) variable
will be defined in the task. This variable can be used to save and restore the execution
address of the task. By doing this, the state-machine programming needs no more to

p , g

30 Managing the Internet of Things: architectures, theories and applications

be constructed and the programming complexity can be eased. TinyOS TOSThread
is another mechanism which can support the thread-based programming in the event-
driven TinyOS, and it is achieved by implementing a multithreaded scheduler on top
of the event-driven scheduler. With the TOSThread, the users can program the TinyOS
applications by the user-friendly thread-based programming.

2.6 Application reprogramming

Application reprogramming is practical and economic to be performed in the WSN
since the application requirements and the network environments are changeable over
the time. To avoid the work of recollecting the nodes by labor to make the reprogram-
ming, the WSN reprogramming needs to be achieved through the wireless. However,
the wireless communication is high energy cost [35] and the WSN bandwidth is
commonly constrained [36–38]. Thus, the optimization to the reprogramming perfor-
mance becomes essential in the WSN, and this can be achieved by reducing the repro-
gramming code size and developing a resource-efficient code dissemination protocol.

2.6.1 Optimization to the reprogramming code size

The optimization to the reprogramming code size can be achieved by the mechanisms
such as the decoupling of the application code from the system code, the diff-patch
approach and the code compression.

Once the application code is decoupled from the system code, only the applica-
tion part needs to be updated during the reprogramming process. By doing this, the
application reprogramming performance can be optimized. To decouple the appli-
cation code from the system code, the module-architecture OSes (Contiki, SOS,
etc.) or the virtual-machine architecture OSes (simpleRTJ, etc.) can be applied. In
these OSes, only the small-size application code needs to be reprogrammed, and the
reprogramming performance is high.

Diff-based approach can also optimize the reprogramming code size since only
the differential changes between the new code and the old code needs to be updated
by this approach. Currently, this approach has been used by several mechanisms such
as the Zephyr [39], the Hermes [40], the EasiLIR [41], the R2 [42], and the Remote
incremental update [43,44].

Code compression can optimize the code size as well [45], and it is appropriate
to be applied in the WSN since the energy cost of decompressing the code can be
lower than that of transmitting the large-size packet.

All the above approaches can be used comprehensively to optimize the repro-
gramming code size. With these approaches, both the reprogramming energy and the
reprogramming time can be optimized significantly.

2.6.2 Code dissemination protocol

In addition to the reprogramming code size optimization, the development of a time-
efficient and energy-efficient code dissemination protocol is also significant for

p , g

Wireless sensor network operating systems: a survey 31

the WSN reprogramming. Currently, different code dissemination protocols have
been developed [46–50]. With these protocols, not only the reprogramming energy
and time cost can be optimized, but also the reprogramming reliability and security
can be improved.

2.7 Energy conservation

WSN nodes are prone to be deployed in the harsh environment where the power
recharging is difficult or even impossible. In order to prolong the lifetime of the WSN
network, the energy conservation becomes essential. Typically, a WSN node consists
of the sensing subsystem, the processing subsystem and the communication subsys-
tem, thus the energy conservation can be realized respectively from these aspects.

2.7.1 Energy conservation in the sensing subsystem

The sensing subsystem can be high energy cost in the WSN under many cases [51],
e.g., the acoustic sensors [52] with the high-rate and high-resolution A/D converters
can be power hungry during the sampling process. Thus, the energy conservation
to the sensing subsystem becomes essential, and this can be achieved by the data
prediction and the hierarchical sampling mechanisms.

Data prediction can conserve the energy cost by reducing the sensor sampling
redundancy. It is feasible to be applied as some sensed phenomenon can be described
by the given models. In case that the results predicted by these models are within
acceptable error bounds, the sensing values queried by the users can be responded
by sending the result calculated from this model, rather than the result sampled by
the sensors. Currently, this technique has been achieved in several research works,
e.g., the dynamic probabilistic model and the Kalman filter model have been applied
respectively in References 53 and 54 to achieve the sensing data prediction.

The hierarchical sampling is another mechanism to conserve the sensing energy
cost. With this approach, several types of sensors can be equipped on the nodes. These
sensors have different resolutions and strike the tradeoff between the accuracy and
the energy cost. During the run-time, one appropriate kind of sensors can be selected.
For example, in the target tracking application, the low accurate sensors which has
low energy cost can be selected to detect the targets. In case that the target objective
is locked, the high accurate sensors which have higher energy cost will be loaded. By
so doing, the sensor sampling process can be context aware and the energy can be
utilized efficiently.

2.7.2 Energy conservation in the signal processing subsystem

It is experimented that the energy cost of transmitting one bit of sensing data is in a
way the same as that of processing thousands of instructions on a typical WSN node
[55]. Therefore, the optimization to the sensing data size is significant to achieve
the energy conservation, and this can be realized by the data compression and data
aggregation mechanisms.

p , g

32 Managing the Internet of Things: architectures, theories and applications

Data compression is a common signal processing mechanism which can decrease
the sensing packet size. It involves the operation of encoding the data at the sources
and decoding it at the destination. Currently, many data compression approaches
have been implemented in the WSN [56,57]. In addition to the data compression
mechanism, the data aggregation [58,59], which can aggregate and fuse the sensing
data from multiple other nodes so as to reduce the amount of the data transmitted
to the base station, can also be applied to decrease the sensing data size. With this
aggregation, the amount of the data traversing through the network can be reduced,
and the energy cost can be optimized.

2.7.3 Energy conservation in the communication subsystem

Energy can also be conserved from the communication subsystem, and it is achieved
either by reducing the communication redundancy, or by prolonging the inactive
period of the radio transceiver.

Communication redundancy can exist in the WSN since the nodes are commonly
deployed randomly in many cases and the number of deployed nodes can be larger
than that is required. Thus, only partial nodes need to be selected to maintain the
network while the others can fall asleep to conserve the energy. One typical example
to reduce the communication redundancy is the topology control technique [60–63].
With this technique, only minimum numbers of nodes are selected to keep the active
status of the network topology. By doing this, the network lifetime can be prolonged
by a factor of two to three [63,64].

The optimization to the transceiver’s active period is another approach to con-
serve the energy cost. Currently, it has been achieved by many protocols such as
the TDMA-based protocols [65–67], the contention-based MAC protocols [68,69],
and the energy-efficient routing protocols [70]. By using these protocols, the radio
transceiver can be switched on only within a short period. Consequently, the energy
cost can be optimized.

2.8 Real-time performance

Real-time performance is significant for the applications in which the nodes need to
react immediately to the emergent events, such as the health care application, the gas
leaking monitoring application, and the industrial engine control application. Cur-
rently, the real-time performance of the WSN can be improved from several aspects,
including the task scheduling, the network protocol, and the data management.

From the task scheduling aspect, a real-time scheduling algorithm needs
to be implemented to guarantee the deadline of the time-critical tasks [25,26].
Besides the real-time algorithms, the resource pre-reservation mechanism [71], with
which the time-critical tasks can specify their resource demands and then the OS
provides the timely and guaranteed resource access to these tasks, can also be used
to improve the real-time performance of the WSN.

From the network protocol aspect, the delay-efficient MAC protocols [72,73]
and routing protocols [74–76] can be developed. These protocols optimize the com-
munication latency by applying the time-efficient scheduling mechanisms, easing

p , g

Wireless sensor network operating systems: a survey 33

the transmission confliction, prolonging the inactive period of the transceivers, easing
the broadcast transmission, or selecting the optimal routing paths.

Data aggregation can also optimize the WSN real-time performance. It can ease
the data redundancy which commonly exists due to the multiple sensor sampling
and the slow change phenomena [58]. With the data aggregation, the network conges-
tion, the communication and computational overhead can be decreased. Consequently,
the real-time communication performance of the WSN can be enhanced. Besides the
data aggregation, the data compression scheme, which can exploit the delta com-
pression and provide better bandwidth utilization, can also be applied to optimize the
communication latency [77].

2.9 Fault-tolerant mechanisms

The WSN network is prone to fall failure due to innumerous potential fault sources
such as the unpredictable communication channel, the extreme outdoor environments,
the battery depletion, as well as the fragility and the mobility of the nodes [78–80].
Since the sensor nodes can be deployed in the harsh environments where the post
maintenance is hard, the fault tolerant mechanisms becomes significant for the WSN
nodes. With these mechanisms, the WSN nodes can continue to function even if the
faults occur.

Reference 81 classifies the WSN fault-recovery mechanisms into two types:
active replication and passive replication. In the active replication system, all or
many WSN nodes provide the same functionality. As a result, sufficient information
can still be provided to the recipients even if parts of these nodes are failed, and
the fault-tolerant ability of the WSN network can be improved. Currently, the active
replication mechanism has been applied in the multipath routing [82] and the data
aggregation [58] mechanisms. Different from the active replication approach, the
nodes in the passive replication system are classified into the primary replicas and
the backup replicas. In case that the primary replicas have failed, the backup repli-
cas will be selected and continue providing the services. By doing this, the faults of
the WSN can be recovered. One typical passive replication mechanism is the topol-
ogy management mechanism [83]. With this mechanism, the network parameters
such as the degree of network connectivity, the role of the nodes, the transmis-
sion power, can be adjusted during the run-time. With these operations, the network
topology can be constructed and the network communication can be recovered from
the fails.

2.10 Feature comparison and ongoing research challenges

2.10.1 Feature comparison of different WSN OSes

In Table 2.1, the features of different WSN OSes are compared. Each OS has the par-
ticular features and addresses the different WSN challenges. The SOS is a dynamic
OS which can load the different modules dynamically. The RETOS is a robust

p
,

g

Table 2.1 Feature comparison of the different WSN OSes

WSN OSes Architecture Scheduling model Memory management Application
program

Reprogramming part Miscellaneous

TinyOS Monolithic Event-driven Static allocation Event, nesC
language

Monolithic software
image

TOSThread, TYMO,
etc.

Contiki Modular
(only for
application)

Hybrid SGS allocation Event &
Thread, C
language

Dynamic loadable
application (by the
relocation)

Coffee FS, protothread,
etc.

SOS Modular Event-driven Event, C Dynamic loadable
application (by using
PIC code)

Module bug protection,
garbage collection

MantisOS Monolithic Round-robin multithreaded SF allocation Thread, C Monolithic software
image

User-level stack,
Remote shell

openWSN Event-driven Static allocation Event, C Full stacks
(IEEE 802.15.4.e)

Enix Modular
(only for
application
part)

Cooperative/Priority-based/
Round-robin multithreading

Virtual memory Thread, C Dynamic loadable
application (by using
PIC code)

EcoFS,
Reprogramming shell.

LiteOS Priority-based/round-robin
multithreading

Malloc at the kernel
level

Thread,
LiteC++

Dynamic loadable
application
(by differential patch)

UNIX-like LiteFS,
LiteShell

nano-RK Monolithic Priority-based multithreading Static allocation Thread, C Monolithic software
image

Reservation Paradigm
for timeliness

RETOS Modular
(only for
application)

Round-robin/Event-aware
multithreading

Single kernel stack
and stack-size
analysis

Thread, C Dynamic loadable
application
(by relocation)

WSN-oriented network
abstraction

t-kernel Monolithic Priority-based multithreading Virtual memory Thread, C Monolithic software
image

OS protection

simpleRTJ VM Cooperative/Round-robin
multithreading

SF allocation &
Garbage collection

Thread, Java
language

Dynamic loadable
application
(by interpretation)

Garbage collection/
exception handling

uCOS Monolithic Priority-based/Round-robin
multithreading

SGS allocation Thread, C Monolithic software
image

Message passing,
uC-GUI, uC-FAT, etc.

FreeRTOS Cooperative/Priority-based
multithreading

Coalescence-deferred
SF/malloc

Run-time stack
checking

p , g

Wireless sensor network operating systems: a survey 35

and resilient OS which realizes the kernel extensibility with the dynamic recon-
figuration [84]. The openWSN implements a fully open-source standards-based
protocol stack. The LiteOS implements a UNIX-like file system [85]. And, the Enix
implements a software-based virtual memory mechanism.

2.10.2 Research challenges of the WSN OSes

The different OS design and implementation mechanisms have addressed widespread
WSN challenges effectively.Yet, some challenges still exist and need to be researched
further. First, to achieve the real-time scheduling, the multithreaded scheduling needs
to be implemented.Yet, the multithreaded systems have high memory cost and are not
suitable to run on the tight memory-constrained WSN nodes. Thus, the research of a
new scheduling mechanism which can achieve good real-time performance and yet
keeps low memory cost becomes important. Second, the defragmented SF allocation
which has been implemented in the Contiki can defragment the memory fragments
so that the constrained memory resources can be utilized efficiently. Yet, the current
Contiki allocator defragments the fragments proactively and the defragmentation
overhead is high. Thus, the development of a new memory allocation mechanism
which can defragment the fragments with low run-time overhead becomes essential.
Third, different mechanisms have been implemented to conserve the energy cost of the
WSN nodes, whereas the energy constraint is still a limitation for the proliferation of
the WSN technology. Currently, the investigation of a new approach which can opti-
mize the energy cost of the WSN platform further is still needed. Fourth, to reprogram
the WSN nodes efficiently, it is significant to decouple the application code from the
system code. The current dynamic loading or VM mechanism can achieve this objec-
tive, whereas the memory cost or energy cost of these mechanisms is high. Therefore,
the development of a new memory-efficient and energy-efficient reprogramming
scheme needs to be researched. Finally, the current WSN fault-tolerant mechanisms
are effective to improve the availability of the network, but these approaches are lim-
ited in that they focus on the recovery of the network from the faults, and are lacking
in the research of recovering the nodes from the faults. Therefore, the research of
the new fault-recovery mechanism which can recover the WSN nodes from the faults
becomes significant. In the ongoing works of the WSN OSes, the challenges above
will be focused and addressed.

Acknowledgments

The authors would like to thank all the colleagues and copartners who have con-
tributed to this study, and are also grateful for the research support from the
Natural Science Foundation of HUAT (BK201411), the Sci-Tech. Pillar program
of Hubei Province (2014BHE024), the National High-tech 863 R&D Program of
China (2015AA015403), the fundamental research funds for the Central Universi-
ties (WUT:163110003, WUT:40120225), and the National Key Technology R&D
Program (2012BAH45B01).

p , g

36 Managing the Internet of Things: architectures, theories and applications

References

[1] Whitmore A., Agarwal A., Da Xu L. ‘The Internet of Things—a survey of
topics and trends’. Information Systems Frontiers. 2015;17(2):261–274.

[2] Miorandi D., Sicari S., De Pellegrini F., Chlamtac I. ‘Internet of things:
vision, applications and research challenges’. Ad Hoc Networks. 2012;10(7):
1497–1516.

[3] Atzori L., Iera A., Morabito G. ‘The internet of things: a survey’. Computer
networks. 2010;54(15):2787–2805.

[4] Borges L.M., Velez F.J., Lebres A.S. ‘Survey on the characterization and clas-
sification of wireless sensor network applications’. IEEE Communications
Surveys and Tutorials. 2014;16(4):1860–1890.

[5] El Emary I.M.M., Ramakrishnan S. Wireless Sensor Networks: From Theory
to Applications. CRC Press; 2013.

[6] Akyildiz I. F., Vuran M.C.Wireless Sensor Networks. John Wiley & Sons Press;
2010.

[7] Wikipedia. List of Wireless Sensor Nodes [online]. Available from https://
en.wikipedia.org/wiki/List_of_wireless_sensor_nodes [Accessed 26 March
2016]

[8] Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister K. ‘System archi-
tecture directions for networked sensors’. In Proceedings of the ACM SIGOPS
Operating Systems Review; Cambridge, MA, USA, 12–15 December 2000.
pp. 93–104.

[9] Watteyne T., Vilajosana X., Kerkez B., et al. ‘OpenWSN: a standards-based
low-power wireless development environment’. Transactions on Emerging
Telecommunications Technologies. 2012;23(5):480–493.

[10] Micrium | Real-time Operating Systems. A Real-time Kernel for Embedded
System [online]. 2016. Available from http://micrium.com [Accessed 26 March
2016]

[11] Han C.C., Kumar R., Shea R., Kohler E., Srivastava M. ‘A dynamic operating
system for sensor nodes’. In Proceedings of the 3rd International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys 2005); Seattle,
Washington, USA, 6–8 June, 2005. pp. 163–176.

[12] RTJ Computing Pty. Ltd. simpleRTJ Technical Brief [online]. 2009. Available
from http://www.rtjcom.com/downfile.php?f=techpdf [Accessed 26 March
2016]

[13] LEGO Mindstorms. LeJOS, Java for Lego Mindstroms [online]. 2006.
Available from http://www.lejos.org [Accessed 26 March 2016]

[14] Tills Palm Pages. The NanoVM – Java for the AVR [online]. 2005. Available
from http://www.harbaum.org/till/nanovm/index.shtml [Accessed 26 March
2016]

[15] Oracle Pty. Ltd. Java Card Platform Specification 2.2.2. [online]. Available
from http://www.oracle.com/technetwork/java/javacard/specs-138637.html
[Accessed 26 March 2016]

p , g

Wireless sensor network operating systems: a survey 37

[16] Brouwers N., Langendoen K., Corke P. ‘Darjeeling, a feature-rich VM for
the resource poor’. In Proceedings of Embedded Networked Sensor System;
Berkeley, CA, USA, 4–6 November 2009. pp. 169–182.

[17] Ousterhout J. ‘Why threads are a bad idea (for most purposes)’. In Proceedings
of the 1996 USENIX Annual Technical Conference; San Diego, CA, USA,
22–26 January 1996. Volume 5.

[18] Von Behren R., Condit J., Brewer E. ‘Why events are a bad idea (for high-
concurrency servers)’. In Proceedings of the 9th Workshop on Hot Topics in
Operating Systems; Lihue, HI, USA, 18–21 May 2003. pp. 19–24.

[19] Keen A.W., Ishihara T., Maris J.T., Li T., Fodor E.F., Olsson R.A. ‘A compari-
son of concurrent programming and cooperative multithreading’. Concurrency
and Computation: Practice and Experience. 2003;15(1):27–53.

[20] Chen Y.T., Chien T.C., Chou P.H. ‘Enix: a lightweight dynamic operating
system for tightly constrained wireless sensor platforms’. In Proceedings of
the 8th ACM Conference on Embedded Networked Sensor Systems; Zurich,
Switzerland, 3–5 November, 2010. pp. 183–196.

[21] Klues K., Liang C.J.M., Paek J., et al. ‘TOSThreads: thread-safe and non-
invasive preemption in TinyOS’. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems; Berkeley, CA, USA, 4–6 November
2009. pp. 127–140.

[22] Dunkels A., Gronvall B., Voigt T. ‘Contiki—a lightweight and flexible oper-
ating system for tiny networked sensors’. In Proceedings of Local Computer
Networks; Tampa, FL, USA, 16–18 November 2004. pp. 455–462.

[23] Zhou H.Y., Hou K.M., De Vaulx C., Zuo D.C. ‘A hybrid embedded real-
time operating system for wireless sensor networks’. Journal of Networks.
2009;4(6):428–435.

[24] Stephen Ferg. Event-Driven Programming: Introduction, Tutorial, His-
tory [online]. 2006. Available from http://eventdrivenpgm.sourceforge.net
[Accessed 26 March 2016]

[25] Liu C.L., Layland J.W. ‘Scheduling algorithms for multiprogramming in a
hard-real-time environment’. Journal of the ACM. 1973;20(1):46–61.

[26] Buttazzo G.C. ‘Rate monotonic vs. EDF: judgment day’. Real-Time Systems.
2005;29(1):5–26.

[27] Wilson P.R., Johnstone M.S., Neely M., Boles D. ‘Dynamic storage alloca-
tion: a survey and critical review’. Memory Management. Springer Berlin
Heidelberg, 1995: pp. 1–116.

[28] Johnstone M.S., Wilson P.R. ‘The memory fragmentation problem: solved?’.
ACM SIGPLAN Notices. 1998;34(3):26–36.

[29] Bhatti S., Carlson J., Dai H., Deng J. ‘MANTIS OS: An embedded multi-
threaded operating system for wireless micro sensor platforms’. ACM Kluwer
Mobile Networks and Applications. 2005;10(4):563–579.

[30] Real Time Engineers Ltd. FreeRTOS – Market Leading RTOS for Embedded
Systems with Internet of Things Extensions [online]. 2010. Available from
http://www.freertos.org/ [Accessed 26 March 2016]

p , g

38 Managing the Internet of Things: architectures, theories and applications

[31] Adam Dunkels. Contiki Managed Memory Allocator [online]. 2012.
Available from https://github.com/adamdunkels/contiki-fork/wiki/Memory-
allocation [Accessed 26 March 2016]

[32] Gu L., Stankovic J.A. ‘t-kernel: providing reliable OS support to wireless
sensor networks’. In Proceedings of the 4th ACM International Conference on
Embedded Networked Sensor Systems; Boulder, Colorado, USA, 31 October–
3 November, 2006. pp. 1–14.

[33] Philip Levis. TinyOS programming [online]. 2006. Available from http://www.
tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf [Accessed 26 March
2016]

[34] Dunkels A., Schmidt O., Voigt T., Ali M. ‘Protothreads: simplifying event-
driven programming of memory-constrained embedded systems’. In Proceed-
ings of the 4th International Conference on Embedded Networked Sensor
Systems; Boulder, Colorado, USA, 31 October–3 November 2006. pp. 29–42.

[35] Wang Q., Zhu Y., Cheng L. ‘Reprogramming wireless sensor networks:
challenges and approaches’. IEEE Network Magazine. 2006;20(3):48–55.

[36] IEEE Standards Association. IEEE SA-802.15.4-2006-IEEE Standard for
Information Technology [online]. Available from https://standards.ieee.org/
findstds/standard/802.15.4-2006.html [Accessed on 26 March 2016]

[37] ZigBee Alliance. ZigBee 3.0: The Foundation for the Internet of Things
[online]. 2015. Available from http://www.zigbee.org/zigbee-for-developers/
zigbee3-0 [Accessed on 26 March 2016]

[38] Montenegro G., Kushalnagar N., Hui J., Culler D. Transmission of IPv6
packets over IEEE 802.15.4 networks. Internet proposed standard RFC 4944,
2007.

[39] Panta R.K., Bagchi S., Midkiff S.P. ‘Zephyr: efficient incremental repro-
gramming of sensor nodes using function call indirections and difference
computation’. In Proceedings of USENIX Annual Technical Conference; San
Diego, CA, USA, 14–19 June 2009.

[40] Panta R.K., Bagchi S. ‘Hermes: fast and energy efficient incremental code
updates for wireless sensor networks’. In Proceedings of 28th IEEE Inter-
national Conference INFOCOM ; Rio de Janeiro, Brazil, 19–25 April, 2009.
pp. 639–647.

[41] Qiu J., Li D., Shi H., Cui L. ‘EasiLIR: lightweight incremental reprogramming
for sensor networks’. International Journal of Distributed Sensor Networks.
2014; Article ID: 120597, pp. 1–15.

[42] Dong W., Liu Y., Chen C., Bu J., Huang C., Zhao Z. ‘R2: incremental repro-
gramming using relocatable code in networked embedded systems’. IEEE
Transactions on Computers. 2013;62(9):1837–1849.

[43] Sun J.Z. ‘Dissemination protocols for reprogramming wireless sensor net-
works: a literature survey’. In Proceedings of IEEE International Conference
on Sensor Technologies and Applications; Venice, Italy, 18–25 July 2010.
pp. 151–156.

[44] Stolikj M., Cuijpers P.J.L., Lukkien J.J. ‘Energy-aware reprogramming of sen-
sor networks using incremental update and compression’. Procedia Computer
Science. 2012;10:179–187.

p , g

Wireless sensor network operating systems: a survey 39

[45] Tsiftes N., Dunkels A., Voigt T. ‘Efficient sensor network reprogramming
through compression of executable modules’. In Proceedings of IEEE Con-
ference on Sensor, Mesh and Ad Hoc Communications and Networks; San
Francisco, CA, USA, 16–20 June 2008. pp. 359–367.

[46] Saginbekov S., Jhumka A. ‘Towards efficient stabilizing code dissem-
ination in wireless sensor networks’. Computer Journal. 2014;57(12):
1790–1816.

[47] Tan H., Ostry D., Zic J., Jha S. ‘A confidential and DoS-resistant multi-hop
code dissemination protocol for wireless sensor networks’. Computers and
Security. 2013;32:36–55.

[48] He D., Chen C., Chan S., Bu J. ‘DiCode: DoS-resistant and distributed code
dissemination in wireless sensor networks’. IEEE Transactions on Wireless
Communications. 2012;11(5):1946–1956.

[49] Zhang R., Zhang Y. ‘LR-Seluge: loss-resilient and secure code dissemination
in wireless sensor networks”. In Proceedings of IEEE International Con-
ference on Distributed Computing Systems; Minneapolis, USA, 20–24 June
2011. pp. 497–506.

[50] Dong W., Liu Y., Wang C., Liu X., Chen C., Bu J. ‘Link quality aware code
dissemination in wireless sensor networks’. In Proceedings of IEEE Interna-
tional Conference on Network Protocols; Vancouver, Canada, 17–20 October
2011. pp. 89–98.

[51] Raghunathan V., Ganeriwal S., Srivastava M. ‘Emerging techniques for
long lived wireless sensor networks’. IEEE Communications Magazine.
2006;44(4):108–114.

[52] Simon G., Maróti M., Lédeczi Á., et al. ‘Sensor network-based countersniper
system’. In Proceedings of the International Conference on Embedded
Networked Sensor Systems; Baltimore, Maryland, USA, 3–5 November 2004.
pp. 1–12.

[53] Kanagal B., Deshpande A. ‘Online filtering, smoothing and probabilistic
modeling of streaming data’. In Proceedings of the 24th Interna-
tional Conference on Data Engineering; Cancún, México, April 2008.
pp. 1160–1169.

[54] Jain A., Chang E.Y., Wang Y.F. ‘Adaptive stream resource management using
Kalman filters’. In Proceedings of the ACM International Conference on
Management of Data; Paris France, 13–18 June, 2004. pp. 11–22.

[55] Pottie G., Kaiser W. ‘Wireless integrated network sensors’. Communication
of ACM. 2000;43(5):51–58.

[56] Caione C., Brunelli D., Benini L. ‘Distributed compressive sampling for
lifetime optimization in dense wireless sensor networks’. IEEE Transactions
on Industrial Informatics. 2012;8(1):30–40.

[57] Srisooksai T., Keamarungsi K., Lamsrichan P., Araki K. ‘Practical data
compression in wireless sensor networks: a survey’. Journal of Network and
Computer Applications. 2012;35(1):37–59.

[58] Maraiya K., Kant K., Gupta N. ‘Wireless sensor network: a review on data
aggregation’. International Journal of Scientific and Engineering Research.
2011;2(4):1–6.

p , g

40 Managing the Internet of Things: architectures, theories and applications

[59] Xiang L., Luo J., Vasilakos A. ‘Compressed data aggregation for energy
efficient wireless sensor networks’. In Proceedings of IEEE Conference on
Sensor, Mesh and Ad hoc Communications and Networks; Salt Lake, Utah,
USA, 27–30 June, 2011. pp. 46–54.

[60] Aziz A.A., Sekercioglu Y.A., Fitzpatrick P., Ivanovich M. ‘A survey on
distributed topology control techniques for extending the lifetime of battery
powered wireless sensor networks’. Communications Surveys and Tutorials.
2013;15(1):121–144.

[61] Li M., Li Z., Vasilakos A.V. ‘A survey on topology control in wireless sensor
networks: taxonomy, comparative study, and open issues’. Proceedings of the
IEEE. 2013;101(12):2538–2557.

[62] Üster H., Lin H. ‘Integrated topology control and routing in wireless sensor net-
works for prolonged network lifetime’. Ad Hoc Networks. 2011;9(5):835–851.

[63] Warrier A., Park S., Mina J., Rheea I. ‘How much energy saving does
topology control offer for wireless sensor networks? – a practical study’. ACM
Computer Communications. 2007;30(14):2867–2879.

[64] Ganesan D., Cerpa A., Ye W., Yu Y., Zhao J., Estrin D. ‘Networking issues in
wireless sensor networks’. Journal of Parallel and Distributed Computing.
2004;64(7):799–814.

[65] Saleh A.M.S, Ali B.M., Rasid M.F.A, Ismail A. ‘A survey on energy awareness
mechanisms in routing protocols for wireless sensor networks using optimiza-
tion methods’. Transactions on Emerging Telecommunications Technologies.
2014;25(12):1184–1207.

[66] Gilani M.H.S., Sarrafi I., Abbaspour M. ‘An adaptive CSMA/TDMA hybrid
MAC for energy and throughput improvement of wireless sensor networks’.
Ad Hoc Networks. 2013;11(4):1297–1304.

[67] Rajendran V., Obracza K., Garcia-Luna Aceves J.J. ‘Energy-efficient,
collision-free medium access control for wireless sensor networks’. In
Proceedings of International Conference on Embedded Networked Sensor
Systems; Los Angeles, USA, 5–7 November 2003. pp. 63–78.

[68] Ye W., Heidemann J., Estrin D. ‘Medium access control with coordinated
adaptive sleeping for wireless sensor networks’. IEEE/ACM Transactions on
Networking. 2004;12(3):493–506.

[69] Zareei M., Taghizadeh A., Budiarto R., Wan T.C. ‘EMS-MAC: energy
efficient contention-based medium access control protocol for mobile sensor
networks’. Computer Journal. 2011.

[70] Pantazis N., Nikolidakis S.A., Vergados D.D. ‘Energy-efficient routing
protocols in wireless sensor networks: a survey’. IEEE Communications
Surveys and Tutorials. 2013;15(2):551–591.

[71] Eswaran A., Rowe A., Rajkumar R. ‘Nano-RK: an energy-aware resource-
centric RTOS for sensor networks’. In 26th IEEE International on Real-Time
Systems Symposium; Miami, FL, USA, 5–8 December, 2005. pp. 10–19.

[72] Xia F., Hao R., Li J., Xiong N., Yang L.T., Zhang Y. ‘Adaptive GTS allocation
in IEEE 802.15. 4 for real-time wireless sensor networks’. Journal of Systems
Architecture. 2013;59(10):1231–1242.

p , g

Wireless sensor network operating systems: a survey 41

[73] Azeem M., Khan M.I., Khan S.U., Gansterer W. ‘Efficient scheduling of
sporadic tasks for real-time wireless sensor networks’. IET Wireless Sensor
Systems. 2014;5(1):1–10.

[74] Mouradian A., Augé-Blum I., Valois F. ‘RTXP: a localized real-time
MAC-routing protocol for wireless sensor networks’. Computer Networks.
2014;67:43–59.

[75] Aissani M., Bouznad S., Fareb A., Laidoui M.A. ‘EA-SPEED: energy-aware
real-time routing protocol for wireless sensor networks’. International Journal
of Information and Communication Technology. 2013;5(1):22–44.

[76] B. Shah, K.I. Kim, “A new real-time and guaranteed lifetime protocol in
wireless sensor networks”. International Journal of Distributed Sensor
Networks. 2014.

[77] Szalapski T., Madria, S. ‘On compressing data in wireless sensor networks for
energy efficiency and real time delivery’. Distributed and Parallel Databases.
2013;31(2):151–182.

[78] Chouikhi S., El Korbi I., Ghamri-Doudane Y., Saidane L.A. ‘A survey on
fault tolerance in small and large scale wireless sensor networks’. Computer
Communications. 2015;69:22–37.

[79] Munir A., Antoon J., Gordon-Ross A. ‘Modeling and analysis of fault
detection and fault tolerance in wireless sensor networks’. ACM Transactions
on Embedded Computing Systems. 2015;14(1):1–49.

[80] Tolle G., Polastre J., Szewczyk R., et al. ‘A macroscope in the redwoods’. In
Proceedings of the 3rd International Conference on Embedded Networked
Sensor Systems; San Diego, USA, 2–4 November, 2005. pp. 51–63.

[81] De Souza L.M.S., Vogt H., Beigl M. ‘A survey on fault tolerance in wireless
sensor networks’. SAP Research. 2007.

[82] Chanak P., Banerjee I. ‘Energy efficient fault-tolerant multipath routing
scheme for wireless sensor networks’. Journal of China Universities of Posts
and Telecommunications. 2013;20(6):42–61.

[83] Younis M., Senturk I.F., Akkaya K., Lee S., Senel F. ‘Topology management
techniques for tolerating node failures in wireless sensor networks: a survey’.
Computer Networks. 2014;58:254–283.

[84] Cha H., Choi S., Jung I., et al. ‘RETOS: resilient, expandable, and threaded
operating system for wireless sensor networks’. In Proceedings of Interna-
tional Symposium on Information Processing in Sensor Networks; Cambridge,
MA, USA, 25–27 April 2007. pp. 148–157.

[85] Cao Q., Abdelzaher T., Stankovic J., He T. ‘The LiteOS operating system:
towards UNIX-like abstractions for wireless sensor networks’. In Interna-
tional Conference on Information Processing in Sensor Networks; St. Louis,
Missouri, USA, 22–24 April, 2008. pp. 233–244.

This page intentionally left blank

p , g

Chapter 3

Wireless sensor network operating system:
concept, new design, and implementation

Xing Liu1,5, Haiying Zhou2, Shen Lin3, Shengwu Xiong1,
Jian Li4 and Kun-Mean Hou5

Abstract

Memory optimization, real-time scheduling, energy conservation, reprogramming,
context awareness, and fault tolerance are the critical research challenges in the
wireless sensor network (WSN). To address these challenges, a new WSN operat-
ing system (OS) LiveOS is designed and implemented in this chapter. Compared
with the other WSN OSes, LiveOS has two typical features. On the one hand, the
new OS design concepts such as the hybrid scheduling, the shared-stack scheduling,
the reactive-defragmentation allocation, and the pre-linked native-code middleware
are implemented. By doing this, the memory cost of the real-time WSN OS can
be decreased. Moreover, the reprogramming performance of the WSN nodes can be
improved. On the other hand, the new research approach, which addresses the WSN
challenges by combining both the software technique and the multi-core hardware
technique, is applied in LiveOS. By means of the multi-core hardware infrastructure,
the lifetime of the LiveOS node can be prolonged. Moreover, the context-aware abil-
ity, the real-time performance, and the fault-tolerant capability of the WSN nodes can
be improved. With the implementation of the above concepts, LiveOS becomes the
WSN OS which can be applied on the resource-constrained WSN nodes and can be
used to execute the real-time WSN applications with high reliability.

1Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, 430070
Wuhan, China
2School of Electrical and Information Engineering, HuBei University of Automotive Technology, 442002
Shiyan, HuBei, China
3Key Laboratory of Automobile Parts Testing, General Administration of Quality Supervision, Inspection
and Quarantine of P.R. China, 441003 XiangYang, HuBei, China
4School of Computer Science, Harbin Institute of Technology, 150001 Harbin, China
5LIMOS Laboratory, UMR 6158 CNRS, Blaise Pascal University, Les Cézeaux, BP 10125, 63173
Clermont-Ferrand, France

p , g

44 Managing the Internet of Things: architectures, theories and applications

3.1 Introduction

WSN is composed of a set of nodes which can monitor the environmental conditions
and pass the collected data cooperatively to a main location [1]. Currently, the WSN
technology has been applied in widespread application domains such as the precision
agriculture, the disaster management, the intelligent transport system, the industrial
control, and the medical care [2,3].

Due to its typical features, many research challenges exist in the WSN. First,
the WSN nodes need to be low cost and small size so as to keep in with the strong
market competitive strength. With the cost and size limitation, most WSN nodes
are constrained in the memory resource [1], e.g., the MicaZ node has only 4 KB
RAM. Thus, the memory optimization becomes significant for the WSN nodes. Sec-
ond, the WSN nodes are commonly powered by the energy-limited batteries and are
difficult to be recharged after being deployed. Therefore, the energy conservation
becomes important to the WSN nodes [4]. Third, the WSN platforms are diverse.
Different hardware and software platforms have been developed [5]. Thus, the user
application programming is difficult. To simplify the programming complexity, the
research of a mechanism which can abstract the low-level system details becomes
essential. Fourth, with the proliferation of the WSN technique, the WSN applica-
tions become more and more comprehensive. Currently, many WSN applications
start to merge with the wireless multimedia sensor network (WMSN) applications.
Since the WMSN applications have the run-time contexts different from the WSN
applications, the research of the new WSN OS which can be context aware to the
comprehensive application contexts become important. Finally, the WSN nodes
are prone to be deployed in the harsh environments such as the mine and agricul-
ture field, and they are difficult to be maintained after the deployment. Therefore,
the remote reprogramming and the fault-tolerant ability become significant to the
WSN nodes.

To prompt the proliferation of the WSN and address the challenges above, the
design and implementation of an outstanding WSN OS becomes critical. With an out-
standing WSN OS, not only the constrained WSN platform resources can be managed
efficiently, but also the complicated WSN application development can be simpli-
fied soundly. Due to this reason, a serial of WSN OSes have been developed in the
past, including the TinyOS [6], the Contiki [7], the SOS [8], the MantisOS [9], the
openWSN [10], the Enix [11], and the LiteOS [12]. These OSes have different fea-
tures and prompted the proliferation of the WSN technology. Yet, some improvement
works still needs to be achieved.

In this chapter, a new WSN OS termed LiveOS is designed and implemented. Dif-
ferent from the other WSN OSes, LiveOS has two typical features. On the one hand,
the new design concepts, such as the hybrid scheduling, the shared-stack scheduling,
the reactive-defragmentation allocation and the pre-linked native-code middleware
are implemented. With these mechanisms, the memory cost of LiveOS can be opti-
mized significantly. Moreover, a user-friendly application development environment

p , g

Wireless sensor network operating system 45

can be provided to the users. On the other hand, the new research approach which
addresses the WSN challenges by combining both the software technique and the
multi-core hardware technique is applied in LiveOS. By means of the multi-core
hardware infrastructure, the energy cost, the real-time performance, the context-
aware ability, the fault-tolerant performance, and the debugging functionality of the
WSN OSes can be optimized soundly. With the above features, LiveOS becomes the
WSN OS which is real time, memory efficient, energy efficient, context aware, fault
tolerant, and user friendly. In addition, it can run on most WSN nodes to serve the
different WSN applications effectively.

The structure of this chapter is organized as follows: In section 3.2, the hybrid
scheduling and the shared-stack scheduling mechanisms of LiveOS are presented.
With these mechanisms, the memory consumption of LiveOS can be decreased sig-
nificantly whereas the real-time performance of LiveOS can keep well. In section 3.3,
the reactive-defragmentation memory allocator of LiveOS is introduced. With this
allocator, the memory fragments during the allocation time can be defragmented,
yet the allocation overhead still keeps not high. In section 3.4, a resource-efficient
middleware LiMid, which decouples the application code from the low-level system
code, is implemented and embedded inside LiveOS. With the LiMid, not only the
LiveOS application programming complexity can be simplified, but also the applica-
tion reprogramming performance can be optimized. In section 3.5, the multi-core task
assignment mechanism which can be used to optimize the energy cost of the WSN
tasks is realized. By doing this, the lifetime of the WSN nodes can be prolonged.
In section 3.6, the approach of using the multi-core task assignment to improve the
OS real-time performance in the LiveOS is introduced. In section 3.7, the LiveOS
multi-core context-aware platform, with which the node can self-adjust to become
aware to the different application contexts, is investigated. In section 3.8, the works of
using the multi-core technique to validate the run-time status of the microcontroller
and recover the run-time faults of the WSN nodes are investigated. By this multi-core
checking and recovery techniques, the availability of the WSN nodes can be improved
significantly. In section 3.9, the LiveOS multi-core debugging approach is presented.
With this debugging approach, the online debugging on the high memory-constrained
WSN node can be realized efficiently. In section 3.10, a discussion about the LiveOS
design concepts is presented. Finally in section 3.11, the conclusion and the ongoing
works of LiveOS are concluded.

3.2 LiveOS memory-efficient real-time scheduling

To achieve the real-time scheduling, the multithreaded preemption is needed. Yet,
when a thread is preempted, its run-time context needs to be stored. As a result, each
thread in the multithreaded OS needs to be allocated an independent stack, and the
memory cost of the multithreaded OS becomes high [13,14]. To run the multithreaded
OS on the tightly resource-constrained WSN nodes, the memory optimization to the

p , g

46 Managing the Internet of Things: architectures, theories and applications

thread stacks is essential, and this has currently been realized in LiveOS by using
the hybrid scheduling and the shared-stack multithreading. With the hybrid schedul-
ing, the number of the stacks in the multithreaded OS can be decreased With the
shared-stack multithreading, the average size of the stacks in the multithreaded OS
can be reduced. By the above means, the memory cost of the multithreaded OS can
be optimized significantly.

3.2.1 Hybrid scheduling

The objective of LiveOS hybrid scheduling is to implement a hybrid scheduler
which targets to combine the advantage of the multithreaded OS good real-time
performance and the event-driven OS low memory cost. With this hybrid sched-
uler, the stack number of the multithreaded OS can be optimized. Consequently,
the real-time multithreaded OS can run even on the high memory-constrained
WSN nodes.

The concept of LiveOS hybrid scheduling is to strip the redundant thread stacks
which can exist in the traditional multithreaded OSes. In the multithreaded OS, each
thread runs in its own independent stack and this stack will be used to save the thread’s
context when the thread is preempted. Yet, not all threads need the preemption func-
tionality during the run-time. In case that the threads have loose requirement to the
responsive time, they can be executed one by one without preemption. Due to this
reason, the tasks in the LiveOS are classified into two kinds: the real-time tasks
and the non-real-time tasks. The real-time tasks need to run to completion before
the deadline, thus they are scheduled by the preemptive multithreaded scheduler and
each task takes up an independent stack. The non-real-time tasks do not have the
strict restriction to the responsive time, thus they can be executed one by one without
preemption and be scheduled by the event-driven scheduler [15]. Since all non-real-
time tasks which are managed by the event-driven scheduler, run within a shared
stack in LiveOS, the stack number of the multithreaded LiveOS can be decreased.
As a result, the stack memory cost of LiveOS can be optimized. In Figure 3.1, the
elementary diagram of the LiveOS hybrid scheduling is depicted. It is assumed that
there are six non-real-time tasks and three real-time tasks in the system. If the tra-
ditional multithreaded OS is used to schedule these tasks, nine threads along with
nine stacks need to be allocated. Yet, after the LiveOS hybrid scheduling is applied,
all the non-real-time tasks run one by one within a shared stack. As a result, only
four stacks need to be created. Since the thread stack is not small in the data mem-
ory size, the reduction of the stack number can optimize the stack memory cost
significantly.

In the hybrid LiveOS, two kinds of schedulers exist. To simplify the implementa-
tion of this hybrid scheduler, the whole LiveOS event-driven scheduling system is also
implemented as a thread, named nonRT_thread. By doing this, the implementation
of the LiveOS hybrid scheduling system can be implemented as that of the general
multithreaded system, and the implementation complexity can be eased, depicted
in Figure 3.2. Currently, the static-scheme fixed-priority scheduling algorithm RMS

p , g

Wireless sensor network operating system 47

Event-driven Scheduler

One shared stack for all non-RT tasks

non-RT
task 1

Event Scheduling Queue
(buffer the upcoming events)

non-RT Event Generators

non-RT
task 2

non-RT
task 6……

stack 2

RT
task 7

RT thread2

RT event 7
active

stack 3

RT
task 8

RT thread3

RT event 8
active

stack 4

RT
task 9

RT thread4

RT event 9
active

Multithreaded Scheduler
Scheduler

Switch

Thread
switch

Thread
switch

Figure 3.1 Elementary diagram of the LiveOS hybrid scheduling. If six
non-real-time tasks and three real-time tasks exist in LiveOS, only
four stacks need to be allocated. Yet, in the traditional multithreaded
OS, nine threads along with nine stacks need to be created

Multithreaded scheduler

Thread
switch

Scheduler
switch

Thread
switch

Priority: 0 (lowest)

Event-driven scheduler

Multithreading Scheduling System
(Scheduled by RMS algorithm)

Event-driven System

Non real-time tasks

0 1 1 0 0 0 1 1 1 0 poll
Stack 1

Real-time task 1

Thread
priority: 3

Stack 2

Real-time task 2

Thread
priority: 2

Stack 3

Real-time task 3

Thread
priority: 1

Thread1 Thread2 Thread3 nonRT_thread

Global Stack

Figure 3.2 Implementation of the LiveOS hybrid scheduling. The event-driven
scheduling system is also implemented as a thread. By doing this, the
switch between these two schedulers can be operated as the switch from
one thread to the other

[16] is applied in the hybrid LiveOS. The non-real-time nonRT_thread has the lowest
priority. It can be preempted anytime by the real-time threads, and it can be executed
only when all the real-time tasks are inactive.

3.2.2 Shared-stack multithreading

Besides the optimization to the stack number, the optimization to the average
stack size is also significant to reduce the OS stack memory cost. Currently, this
has been realized in the LiveOS by implementing the shared-stack multithreading
mechanism.

p , g

48 Managing the Internet of Things: architectures, theories and applications

T1
(72)

T2
(66)

T2 T3

T1 T2T3

Context Shifting

Shared-stack Dynamic Allocation

Wasted memory

Static
Reserved

Stack
(128 bytes)

(a)

(b)

(c)

T3
(82)

Running

T1

Figure 3.3 (a) Stack memory will be wasted in the traditional multithreaded OS
due to the static pre-reservation mechanism. (b) Stacks are allocated
dynamically within the shared stack in LiveOS. (c) Context shifting
technique is applied to avoid the corruption to the context data

In traditional multithreaded system, each thread is allocated an independent stack,
and the stack memory is pre-reserved statically. Since the stacks are allocated stati-
cally, the stack size needs to be large enough to meet the worst-case scenario. As a
result, the stack memory cannot be avoided to be wasted (Figure 3.3). One way to
solve this problem is to run all the threads within a shared stack, and allocate the
memory space of each stack dynamically as it is required. By doing this, the stack
memory space which can be wasted in the traditional multithreaded WSN OS can be
avoided.

However, the threads’ stacks are closely adjacent to each other after the shared-
stack multithreading mechanism is used, and this will cause the stack data of one
thread to be corrupted when the other threads resume its execution, e.g., in Figure 3.3
the stack data of T3 will be corrupted if the T2 resumes its execution. To solve this
problem, the context shifting technique is applied in the shared-stack LiveOS. Once
an inactive thread is ready to be executed, its context will be shifted to the free memory
space (Figure 3.3). By doing this means, the context corruption problem described
above can be avoided.

After the contexts shifting is carried out for a period of time, the left free stack
space cannot be sufficient for the new thread to run. In this case, the memory defrag-
mentation to the shared stack needs to be performed. In LiveOS, the defragmentation
to the shared stack is operated the same as that to the heap space (Section 3.3).

3.2.3 Performance evaluation

In this section, the scheduling performance of the LiveOS hybrid scheduler and
the LiveOS shared-stack scheduler is evaluated by comparing with the TinyOS, the
Contiki, the SOS, the MantisOS, and the TOSThread [17] from the perspectives of
code memory cost, data memory cost, and scheduling efficiency. The evaluation
is performed on the iLive node (Figure 3.4), and the AVR studio is used as the
compiler.

The code memory cost of the different schedulers is shown in Figure 3.5. SOS is
a modular-architecture OS in which the module management mechanism needs to be

p , g

Wireless sensor network operating system 49

Figure 3.4 Prototype board of the iLive node. ILive node is equipped with the 8-bit
AVR ATmega1281 microcontroller

0
800

1600
2400
3200
4000

178

936
1972

3232 2796

1096 1136

Code memory size of different scheduler (bytes)
TinyOS (event-driven)

Contiki (event-driven)

SOS (event-driven)

MantisOS

TOSThread

Hybrid-scheduling LiveOS

Shared-stack LiveOS

Figure 3.5 Code memory cost of the schedulers in different WSN OSes

implemented. As a result, the code memory cost of SOS is higher than that of Contiki
and TinyOS. MantisOS has the code memory cost higher than that of LiveOS. This is
because MantisOS is a traditional multithreaded OS. In MantisOS, all the tasks need
to be executed by threads. As a result, the thread number is large and the complicated
multilevel queue scheduling mechanism is implemented. TOSThread also has the code
memory cost higher than that of LiveOS, and this is because a flexible application
and system boundary which can simplify the application development in TinyOS is
implemented in the TOSThread.

The data memory cost in the event-driven OSes (TinyOS, Contiki, and SOS)
and the multithreaded OSes (TOSThread, MantisOS, and LiveOS) can be denoted
respectively as follows:

MEVENT = SDATA/BSS + SPCB × NPCB + SEVT × LSQ + SSTK

MTHREAD = SDATA/BSS + S(TCB) + S(STK)

= SDATA/BSS + STCB × NTCB + SSTK × NSTK

in which SDATA/BSS represents the size of the DATA/BSS sections; SPCB, STCB, SEVT and
SSTK represent, respectively, the process control block (PCB) size, the thread control
block (TCB) size, the event structure size, and the thread stack size; NPCB, NTCB

p , g

50 Managing the Internet of Things: architectures, theories and applications

LSQ, and NSTK represent, respectively, the PCB number, the TCB number, the event
scheduling queue (SQ) length, and the thread stack number. It is assumed that the NPCB

and LSQ in the event-driven OSes TinyOS, Contiki, and SOS are, respectively, 12 and
10; the NTCB, SSTK , and NSTK in the traditional multithreaded OSes TOSThread and
MantisOS are, respectively, 12, 128, and 10; the NTCB, SSTK , and NSTK in the hybrid-
scheduling LiveOS are, respectively, 8, 128, and 6 (thread number of the hybrid
LiveOS can be smaller than that of the traditional multithreaded OS); the NTCB, SSTK ,
and NSTK in the shared-stack multithreading LiveOS are, respectively, 12, 80, and 10
(average stack size of the shared-stack multithreading LiveOS can be smaller than
that of the traditional multithreaded OS). Then, the data memory cost of different
schedulers can be calculated, depicted in Figure 3.6.

The scheduling efficiency of different schedulers can be evaluated by the schedul-
ing clock cycles. In the event-driven systems, the scheduling processes include the
operation of extracting the events and the dispatch of the events to the related tasks
[15]. In the multithreaded OSes, the scheduling processes include the operation of
switching the contexts and the operation of selecting the next thread to be scheduled.
In Figure 3.7, the scheduling clock cycles of different schedulers are shown. In the
shared-stack multithreading LiveOS, the extra scheduling overhead caused by the
context shifting exists, thus the scheduling overhead becomes higher.

0
300
600
900

1200
1500
1800

150
296

658

1586 1498

836
580

Data memory size of different scheduler (bytes)
TinyOS (event-driven)

Contiki (event-driven)

SOS (event-driven)

MantisOS

TOSThread

Hybrid-scheduling LiveOS

Shared-stack LiveOS

Figure 3.6 Data memory cost of the schedulers in different WSN OSes

1

500
56 64 92

172 106 120

836

TinyOS (event-driven)

Contiki (event-driven)

SOS (event-driven)

MantisOS

TOSThread

Hybrid-scheduling LiveOS

Shared-stack LiveOS

Figure 3.7 Scheduling clock cycles of the different schedulers

p , g

Wireless sensor network operating system 51

3.2.4 Discussion

From the evaluations above, it is shown that the data memory cost of the multithreaded
scheduler is commonly higher than that of the event-driven scheduler, and this is
because more stacks need to be allocated in the multithreaded system.

With the hybrid scheduling mechanism, the stack number of LiveOS can be
smaller. As a result, the data memory cost of LiveOS can be 47.3 per cent lower
than that of traditional multithreaded MantisOS. With the shared-stack scheduling
mechanism, the average stack size of LiveOS can be decreased. Consequently, the
data memory cost of LiveOS can be 63.4 per cent lower than that of traditional
MantisOS.

In the shared-stack multithreaded LiveOS, the stack memory cost can be opti-
mized significantly. Yet, the scheduling overhead will increase due to the context
shifting operation. Therefore, the optimization to the scheduling overhead of the
shared-stack LiveOS becomes essential. Fortunately, this optimization can be real-
ized by combining both the hybrid scheduling and the shared-stack scheduling. With
the hybrid scheduling, the thread switch will be performed only among the real-time
tasks, and the thread switch frequency will be reduced greatly. Consequently, the
entire scheduling overhead of the shared-stack LiveOS can be optimized soundly.

3.3 LiveOS reactive-defragmentation dynamic
memory allocation

Since the RAM resources of the WSN nodes are commonly constrained, the dynamic
memory allocation is popularly implemented in the WSN OSes. In the Contiki and
the MantisOS, the simple segregated storage allocation and the sequential fit allo-
cation [18] are performed respectively. With these dynamic allocation mechanisms,
the memory utilization efficiency of the RAM resources can be improved. Yet, the
memory fragments cannot be defragmented by these mechanisms and this lowers the
utilization rate of the memory resource. To defragment the fragments, a new alloca-
tion mechanism termed mmem is implemented in Contiki [19]. With the mmem, the
fragments can be defragmented proactively. Once a block is released, the allocated
blocks adjacent to it will be coalesced. By doing this, all the free blocks will be
continuous in the memory address and no fragments will exist.

Although the Contiki mmem can perform the defragmentation, its run-time over-
head is too high due to the frequent data shifting operations. Therefore, this mechanism
is not ideal for the high resource-constrained WSN platform, and the implementation
of a new allocation mechanism which can achieve the defragmentation and yet keeps
lower allocation overhead becomes essential.

In this section, a new LiveOS memory allocation scheme lmem, which is realized
by extending the MantisOS sequential fit allocator with the defragmentation func-
tionality, is presented. Compared to the Contiki mmem, LiveOS lmem is different in
that it does not defragment the fragments in the proactive way but in the reactive way.

p , g

52 Managing the Internet of Things: architectures, theories and applications

A
(10 Bytes)

B
(free, 18 bytes)

C
(15 bytes)

D
(26 bytes)

free space
(30 bytes)

Ref-A Null Ref-C Ref-D

(a)

A
(10 Bytes)

C
(15 bytes)

D
(26 bytes)

free space
(8 bytes)

Ref-A Ref-E Ref-C Ref-D

(b)
E

(40 bytes)

(References of block C and D need to be updated)

Figure 3.8 LiveOS reactive defragmentation mechanism. Only after the first time
allocation is failed, the defragmentation will be performed

By this reactive defragmentation mechanism, the allocation overhead of LiveOS can
be optimized.

3.3.1 LiveOS reactive-defragmentation allocation mechanism

In LiveOS, each time a block is released, the coalescence to its adjacent blocks will
not be performed immediately. Instead, the coalescence is performed only when the
left free blocks are not large enough for the new allocation, e.g., in Figure 3.8, if a
20-byte block needs to be allocated, it can be performed successfully without any
defragmentation. Yet, if a 40-byte block needs to be allocated, the allocation will
fail since there is no continuous 40-byte free memory. In this case, the coalescence
to the blocks A, C and D will be performed. By this means, the defragmentation
data shifting frequency can be decreased, and the defragmentation overhead can be
optimized.

3.3.2 Performance evaluation

In this section, the allocation performance of the Contiki simple segregated storage,
the SOS simple segregated storage, the MantisOS sequential fit, the Contiki mmem
allocator, and the LiveOS lmem allocator is evaluated. The evaluation is performed
from the perspectives of the code memory size, the memory utilization efficiency and
the allocation overhead.

The code memory sizes of different allocators are shown in Figure 3.9. The
LiveOS lmem allocator has the code memory size larger than that of MantisOS sequen-
tial fit, and this is because the memory defragmentation functionality is implemented
extendedly in the LiveOS.

With the results in Figure 3.9, it shows that the memory cost of the dynamic
allocators are not so high that the dynamic allocation is feasible to be applied on the
resource-constrained WSN nodes. This result has also been recognized by the author
of the article [18]. In this article, the author insists that the overhead of the dynamic
allocators has been simply overestimated in the past.

p , g

Wireless sensor network operating system 53

0.00
150.00
300.00
450.00
600.00
750.00

298 332

608

248

690

Code memory size of different OS memory allocators (bytes)

Contiki simple segregated storage

SOS simple segregated storage

MantisOS sequential fit

Contiki mmem allocator

LiveOS lmem allocator

Figure 3.9 Code memory cost of the different memory allocators

To evaluate the memory utilization efficiency and the allocation overhead of
different allocators, it is assumed that there exists an allocation scenario as follows:

● The heap memory size is 900 bytes.
● The new blocks to be allocated are sequentially 110, 50, 165, 130, 195, 125, 80,

150, 155, 185, 120, 45, 85, 35, 95, 65, and 105 bytes.
● The allocation is performed every 5 s, and each allocated block will be released

6 s later after being allocated.
● The heap space is divided into three partitions in the Contiki simple segregated

storage: 200-byte partition (two items), 125-byte partition (three items), and
50-byte partition (two items).

Based on the above scenario, it is experimented that the allocation in the Contiki
simple segregated storage system and the MantisOS sequential fit system will fail
respectively at the fifth allocation and the tenth allocation, whereas all the allocations
will be performed successfully in the Contiki mmem and the LiveOS lmem systems.
This result proves that the Contiki mmem and the LiveOS lmem have the memory
utilization efficiency higher than the others, and this is because the memory can be
fragmented in these two mechanisms.

As for the allocation overhead, it is calculated from the above scenario that the data
shifting sizes of the Contiki mmem and the LiveOS lmem during the defragmentation
process are, respectively, 4465 bytes and 365 bytes. From this result, it is shown that
the allocation overhead of the LiveOS lmem is much lower than that of the Contiki
mmem, and this is because the reactive defragmentation mechanism, rather than the
proactive defragmentation, is realized in the LiveOS.

3.3.3 Discussion

Different allocation mechanisms have different advantages and drawbacks. The sim-
ple segregated storage has short and deterministic allocation time, yet the memory
utilization efficiency is not high since both external and internal fragments exist.
The Contiki mmem system has high memory utilization efficiency as the external
fragments can be defragmented. Moreover, the allocation time is also deterministic.
However, its allocation overhead is high due to the frequent memory coalescence.

p , g

54 Managing the Internet of Things: architectures, theories and applications

The LiveOS lmem system has sound memory utilization efficiency since the defrag-
mentation is supported. Moreover, the allocation overhead keeps low as the fragments
are defragmented reactively. Yet, its allocation time cannot be deterministic. As for
the selection of an appropriate allocation mechanism, it depends on the case of the
application requirements and the platform memory resources.

3.4 LiveOS middleware for user-friendly application
development environment

Middleware is the intermediate software which lies between the application space
and the low-level system space. With the middleware, the application code can be
decoupled from the underlying system code. Moreover, a set of abstract program-
ming interfaces can be provided from the system space to the user application space.
By so doing, the WSN application programming can be simplified since the WSN
users only need to focus on the application development without the necessity of
understanding the low-level details. In addition, the WSN reprogramming perfor-
mance can be improved as only the application binary rather than the monolithic
software binary needs to be updated during the reprogramming process. Commonly,
the embedded Java VM (EJVM) mechanism [20–23] and the dynamic linking mech-
anism (DLM) [7,17] have been used in the WSN to decouple the application code
from the system code (Figure 3.10). These mechanisms are effective. However, some
drawbacks still exist. First, the extra data information, which will be needed either
for the bytecode interpretation or the dynamic reference resolving, should be con-
tained in the application code of these mechanisms. As a result, the application code
sizes of these mechanisms are not small, and this will increase the energy cost during
the reprogramming process. Second, the bytecode interpreter or the dynamic linker
need to be implemented in these mechanisms. Consequently, more memory will be
cost by the implementation of these mechanisms. Third, the Java bytecode needs to
be executed in the interpreted way. As a result, more energy will be cost during the
application execution process. Due to the above reasons, the EJVM and the DLM

Operating system, network protocols, system services, drivers, etc.

Virtual machine Dynamic linking/relocationMiddleware layer

Byte-code
applications

Loadable application modules
(ELF files, etc.)

System
space

Application space

Figure 3.10 Different mechanisms which can decouple the application code from
the system code in the WSN

p , g

Wireless sensor network operating system 55

mechanisms are not ideal for the high memory and energy constrained WSN nodes.
And the implementation of a new middleware mechanism, which can decouple the
application code from the system code and meanwhile keeps low memory and energy
cost, becomes essential. In this section, a LiveOS middleware named LiMid will be
discussed and evaluated.

3.4.1 LiveOS memory-efficient and energy-efficient
middleware LiMid

To develop a middleware which can run even on the tightly resource-constrained WSN
nodes, a new software LiMid is developed and embedded inside LiveOS. Similar to
the EJVM and the DLM mechanisms, LiMid bridges the interaction between the
application space and the system space. Yet, it avoids the drawbacks of both the
EJVM and the DLM mechanisms, and keeps low memory and energy cost.

In Table 3.1, the design concept of LiMid is depicted. Different from the EJVM
which uses the interpreted bytecode or the DLM which uses the dynamic load-
able module, LiMid uses the pre-linked machine-code mechanism to generate the
application binary. During the development process, the application code is built
independently from the system code. Then, all the system-call functions in the appli-
cation binary will be re-linked to the corresponded service functions in the system
code. With the above means, the application reprogramming code size will become
smaller in the LiveOS. Moreover, the code run-time memory and energy cost can
keep lower.

However, the pre-linked machine code is less flexible if compared to the bytecode
or the dynamic loadable code. To solve this problem, an intermediate function jump
table, which locates in a fixed address in the system space, is applied in LiMid
(Figure 3.11). With this table, the application system-call functions will not link
hardly to the corresponded system service functions, but link indirectly to a given
address within the jump table. By doing this, the change to the system code will no
more cause the application code to be invalid, and the flexibility of the application
binary becomes better.

With the pre-linking mechanism, the application code can call to the system
code. Yet, the callback from the system code to the application cannot be achieved.
To solve this problem, a callback registration mechanism is implemented in LiveOS.
With this mechanism, any registered application function can be called back from the
system space (Figure 3.11). By achieving this, the application development process
can become easier to the WSN users.

Not only the system callback functionality is realized in LiMid, the multitasking
application programming can also be supported by LiMid, and this is realized by the
multitasking registration mechanism. In the application space, a set of independent
tasks can be defined. Once these tasks are registered by calling the task registration
interface, their addresses will be passed to the OS scheduling center, and then they
can be scheduled and executed at the time.

p
,

g

Table 3.1 Design concepts of the LiveOS middleware LiMid

Design topics EJVM mechanism
(simpleRTJ)

DLM mechanism
(Contiki)

LiMid mechanism

Design concept Why LiMid is designed in this way?

Memory
efficient

Energy
efficient

Small
size

Required
by WSN

APP file format Java bytecode ELF module Machine code
√ √

APP executable format Machine code N/A
APP language Java C C

Call from the APP to the
system

By interpretation By dynamic
linking

By pre-linking
√ √

Callback from the system
to the APP

Support Not support Support, by registration
mechanism

√

APP multitasking
√

Exception handling Support Not support N/A

p , g

Wireless sensor network operating system 57

LiveOS
scheduler

Hardware drivers,
system services, etc.

Multitasking
registration

Callback
registration

Application
tasks

Application
callback functions

LiMid
System

Space

Application
Space

Intermediate jump table

System service functions

Application
system-call functions

callbackschedule linking registrationregistration

Figure 3.11 Elementary diagram of the LiveOS middleware LiMid

3.4.2 Performance evaluation

In this section, the performance of the LiveOS LiMid will be evaluated by compar-
ing with the EJVM mechanism (simpleRTJ), the DLM mechanism (Contiki DLM),
and the Atmel OTAU mechanism (a reprogramming mechanism which does not
use the middleware to decouple the application code from the system code) [24]
from the perspectives of the code memory size, the application execution efficiency,
and the reprogramming performance.

The code memory size of different mechanisms is shown in Figure 3.12.
In LiveOS, the pre-linking mechanism is used, and most of the operations are per-
formed on the personal computer rather than on the WSN nodes. As a result, the code
memory cost is lower if compared to the other mechanisms.

The application code execution efficiency will have a direct influence on the
energy cost of the WSN nodes. In the DLM and the LiMid mechanisms, the executable
application code is the machine code. In the EJVM mechanism, the executable appli-
cation code is the bytecode. To perform the comparison between these two kinds of
code, the time between the invoking of the application system-call function and the
execution of the corresponded system service function in the EJVM simpleRTJ and
the Contiki DLM is calculated respectively, and the results show that the execution
time of the simpleRTJ is 34.6 times that of the Contiki. This result proves that the
EJVM which uses the bytecode has the execution efficiency much lower than the
DLM which uses the machine code.

Application reprogramming performance is another critical evaluation standard
for the middleware, and this can be evaluated by the reprogramming code size.
In Figure 3.12, the reprogramming code sizes of the different mechanisms are shown.
The Atmel OTAU does not implement the middleware concept. As a result, the mono-
lithic software needs to be reprogrammed and the reprogramming code size is large.
The LiMid uses the pre-linked machine code and the application code size is the
smallest. As shown in the results, the reprogramming code size of the LiMid has
respectively 92.7 per cent, 76.6 per cent, and 99.8 per cent been optimized if compared
to that of the simpleRTJ, the Contiki DLM, and the Atmel OTAU mechanisms.

From the evaluations above, it is shown that the memory cost and the energy
cost of LiMid are low, whereas the reprogramming performance is high. Due to

p , g

58 Managing the Internet of Things: architectures, theories and applications

1
100

10000
1000000

Atmel
OTAU

Contiki
DLM

EJVM
simpleRTJ

LiveOS
LiMid

0 5.7 20
1.6

114760
796 2562

186

Code memory size and reprogramming size of different mechanisms

Code memory cost (KB)

Reprogramming size (bytes)

Figure 3.12 Code memory size and application reprogramming size of the different
middleware mechanisms. A basic packet transmission program is used
for this evaluation

this reason, LiMid is appropriate to run even on the tightly resource-constrained
WSN nodes and can provide a friendly application programming and reprogramming
environment to the WSN users.

3.5 LiveOS multi-core task assignment for the energy
conservation

Energy conservation is significant for the WSN not only because most WSN nodes
are equipped with the limited energy resources, but also because the recharging to the
nodes after the deployment is commonly difficult. Currently, a set of energy conser-
vation mechanisms have been implemented, such as the data prediction mechanism
which can reduce the sampling redundancy of the sensor devices [25,26], the data
compression and data aggregation mechanisms which can optimize the size of the
packet to be transmitted [27–30], the topology control technique which can reduce the
communication redundancy of the network [31–34], and the network protocols which
can shorten the active period of the wireless transceivers [35–39]. These mechanisms
are effective and can prolong the lifetime of the nodes. Yet, the energy limitation is
still a challenge in the WSN and needs to be addressed further.

In this section, a new LiveOS energy conservation approach will be presented.
Different from the other conservation mechanisms which focus mainly on the software
aspect, the LiveOS energy conservation is realized by combining both the software
technique and the multi-core hardware technique. With the support of the multi-
core hardware platform, the energy cost of the WSN nodes can be optimized further.

3.5.1 Concept of the LiveOS multi-core energy conservation
mechanism

The LiveOS multi-core energy conservation approach is based on the experimental
results that the energy cost of executing one task on the different microcontrollers
can be different (Table 3.2). Thus, several feature-different microcontrollers can be
equipped on the WSN nodes. During the run-time, a WSN task can be assigned to the

p , g

Wireless sensor network operating system 59

Table 3.2 Energy and time cost of executing the tasks on different microcontrollers

Tasks for the measurements 32-bit ARM AT91SAM7Sx 8-bit AVR ATmega1281
(voltage: 3V)

Current Time Energy Current Time Energy
(mA) (ms) (mJ) (mA) (ms) (mJ)

Temperature light, and humidity 22.1 1386 91.89 15.9 1560 74.4
sensor sampling task

Signal processing task (pure 19.7 5.0 0.296 9.9 268 7.96
instruction execution)

Flash programming (100-byte) 20.9 58 3636 16.3 103 5.037
Wireless packet transmission 21.8 139 9.091 20.9 132 8.276
Sleep 0.2 N/A N/A 40 μA N/A N/A

ARM

AVR

iGLOO

Figure 3.13 Multi-core EMWSN node

microcontroller which is the most energy-efficient to execute this task. By so doing,
the energy cost of the WSN nodes can be optimized efficiently.

Currently, the LiveOS multi-core energy conservation approach has been imple-
mented on the multi-core EMWSN node (Figure 3.13). EMWSN is composed
of three microcontrollers: the 8-bit low-power AVR Atmega1281 [40], the 32-bit
ARM AT91SAM7x [41], and the low-power iGLOO nano FPGA [42] (Figure 3.14).
The iGLOO FPGA is configurable. With its configurability functionality, the working
modes of the AVR and ARM microcontrollers (active, sleeping, or power off) can
be adjusted without the necessity of changing the wired connection. By the above
means, the WSN nodes can be energy aware to the tasks, and the energy cost of the
nodes can be optimized.

3.5.2 Performance evaluation

To evaluate the performance of LiveOS multi-core energy conservation mechanism,
the energy cost of the multi-core EMWSN node, the single-core iLive node which
is equipped with only the AVR Atmega1281 microcontroller, and the single-core

p , g

60 Managing the Internet of Things: architectures, theories and applications

Power
Manager Arbiter

SPI
Control

UART
Control

I2C
Control

iGLOO nano FPGA

ATMEGA1281AT91SAM7Sx
ENEN

PEN0 PEN1

PEN[6-0]

Analog
Device

SPI
Device ZigBee UART

Device
I2C

SensorsPEN2 PEN3 PEN4 PEN5 PEN6

RTC PSU

Figure 3.14 Circuit diagram of the multi-core EMWSN node

Live node which is equipped with only the ARM AT91SAM7x microcontroller are
evaluated. In case the nodes are powered by a pair of AA lithium/iron disulfide
(Li/FeS2) 3,000 mAh batteries, and perform the temperature and light sampling task
every 3 min, the lifetime of the EMWSN node, the iLive node, and the Live node
will, respectively, be 1276 days, 829 days, and 382 days [43]. This result indicates
that the energy cost of LiveOS multi-core EMWSN node can be respectively 35.1 per
cent and 70 per cent optimized if compared to the traditional single-core iLive and
Live node.

3.6 LiveOS multi-core task assignment to improve the
real-time performance

In LiveOS, the multi-core technique has also been used to address the challenge of
high-overhead real-time scheduling.

To achieve the real-time scheduling, a real-time algorithm needs to be imple-
mented. Yet, each real-time algorithm has a schedulability condition, e.g., the
schedulability condition of the rate-monotonic scheduling (RMS) algorithm is as
follows [16]:

U =
k∑

i=1

Ci

Ti
≤ k(21/k − 1) (3.1)

where U represents the CPU utilization of the real-time tasks, Ci represents the task
computation time, Ti represents the task release period, and k represents the number
of real-time tasks to be scheduled. In case that two real-time tasks exist in the system
(k = 2), the CPU utilization of these tasks will be limited to 82.8 per cent. Compared to
the RMS, the Earliest Deadline First (EDF) algorithm supports higher CPU utilization
rate, and it can be as high as 100 per cent [16,44]. Yet, no matter which algorithm is
applied, the CPU utilization rate of the real-time tasks cannot exceed 100 per cent.

However, there can exist some cases in which the CPU utilization rate of the
real-time tasks can be higher than 100 per cent, e.g., in Table 3.3, the utilization rate

p , g

Wireless sensor network operating system 61

Table 3.3 CPU utilization rate of different tasks on different microcontrollers

Tasks Execution On the AVR microcontroller On the ARM microcontroller
Period

Computation CPU utilization Computation CPU utilization
time rate (per cent) time rate (per cent)

Task1 20 5 25 3 15
Task2 10 6 60 5 50
Task3 25 8 32 6 24

of all the three tasks on the AVR microcontroller is 117 per cent. In this case, these
tasks cannot be schedulable no matter what kind of real-time scheduling algorithm
is used. However, if these tasks are distributed and executed concurrently on more
than one microcontroller, they can be schedulable. In case that both the AVR and the
ARM microcontrollers are equipped on the LiveOS multi-core node, and Task1 and
Task3 are executed on the AVR microcontroller while Task2 is executed on the ARM
microcontroller. Then, the CPU utilization rate of the tasks on the two microcontrollers
will respectively be 57 per cent and 50 per cent. In this case, these tasks can be
schedulable either by the RMS algorithm and the EDF algorithm.

3.7 LiveOS multi-core technique for the context-aware
applications

With the development of WSN technology, WMSN application starts to emerge [45]
and be merged with the traditional WSN application. One typical example is the forest
fire detection application. In this application, two kinds of tasks exist: one is the
temperature sampling task and the other is the fire image capturing task. Most of the
time, only the temperature sampling task needs to be executed. When the sampled
temperature is observed to be abnormal, e.g., the temperature is higher than 100◦, the
fire hazard may occur. Only in this case, the image capturing task needs to be launched
so as to oversight the fire scene situation. In this example, the temperature sampling
operation is a traditional WSN application. This application is simple and can be
performed by the low-end microcontrollers. Yet, the image capturing operation is the
WMSN application. This application is more complicated and needs to be performed
by the powerful microcontrollers. Namely, the two feature-different tasks which have
different requirements to the WSN hardware platforms are merged in this application.

If the single-core WSN node is used to execute the above applications, the
powerful microcontroller needs to be equipped. In this case, this powerful micro-
controller will not only perform the complicated image capture task, but also perform
the simple temperature sampling task. Yet, it is high energy cost to use the powerful

p , g

62 Managing the Internet of Things: architectures, theories and applications

AVR
ATmega1281

ARM
ARM1176JZF-S

sensors
ext-ports

ZigBee (802.15.4)

WiFi (802.11)

Camera

Power
Supply UnitnanoRisc

VEXT VBAT

Uart
AVR En

ARM En

VDD

VDD

GPIO

GPIO

Figure 3.15 Elementary diagram of multi-core MiLive node. The working modes of
AVR and ARM microcontrollers can be configured by the nanoRisc
microcontroller through the power supply unit

Figure 3.16 Multi-core MiLive node. Both the WSN microcontroller and the
WMSN microcontroller are equipped so that the node can be aware to
different application contexts

microcontroller to run the simple temperature sampling task. As a result, more energy
cost will be consumed, and the lifetime of the node will be shortened.

To address the challenge above, the LiveOS multi-core application context-aware
mechanism is implemented. With this mechanism, three kinds of microcontrollers will
be equipped on the LiveOS multi-core node MiLive (Figures 3.15 and 3.16). One is the
low-power 8-bit AVR microcontroller ATmega1281 which will be used dedicatedly to
perform the temperature sampling task, one is the high-power 32-bit ARM microcon-
trollerARM1176JZF-S which will be used dedicatedly to perform the image capturing
task, and another is the ultra-low-power 4-bit auxiliary microcontroller nanoRisc
which will be used to configure the working modes of the AVR and ARM microcon-
trollers. Most of the time, only the AVR microcontroller works and the environmental
temperature is monitored. Only when the sampled temperature value exceeds the
warning level, the ARM microcontroller is powered on to startup the scene image
capturing work. By doing so, the WSN node can become context aware to the dif-
ferent applications and the node platform resources can be utilized more reasonably.
Currently, an online live demo about the MiLive node is available from the website:
http://edss.isima.fr/demoforall/. (login name: demo, password: demo).

p , g

Wireless sensor network operating system 63

3.8 LiveOS multi-core fault-tolerant mechanism

Fault tolerance is significant for the WSN as the WSN nodes can be deployed in the
harsh environments where they are difficult to be maintained after being deployed.
With the fault-tolerant functionality, the economic loss and the maintenance cost
caused by the failed nodes can be decreased.

Currently, a set of fault-tolerant mechanisms have been realized in the WSN,
such as the multipath routing mechanism which can provide active route replication
for the network [46], the topology management mechanism which can recover the
communication fail from the network reconstruction [47], and the data aggregation
mechanism which can still provide sufficient information to the recipients even if
parts of the nodes are failed [29]. All the mechanisms are effective to improve the
availability of the network. Yet, they are limited in that they focus mainly on recov-
ering the network from the faults and lacking in the research of recovering the nodes
from the fail. To improve the fault-tolerant ability of the WSN nodes, a new LiveOS
multi-core fault-tolerant technique is implemented and will be presented in this
section.

3.8.1 Concept and implementation of the LiveOS multi-core
fault-tolerant platform

Traditionally, theWSN nodes are the single-core nodes and only one microcontroller is
equipped. In case this microcontroller runs abnormally, the node will fail. To improve
the fault-tolerant performance, two microcontrollers can be equipped on the WSN
nodes: the working microcontroller and the auxiliary monitoring microcontroller.
The working microcontroller takes charge of performing the WSN tasks whereas the
monitoring microcontroller takes the responsibility of monitoring the run-time status
of the working microcontroller. In case the working microcontroller is observed to
run abnormally, the monitoring microcontroller will take action to recover it. By this
means, the WSN node can recover from the faults and continue its functioning.

Currently, the above LiveOS multi-core fault-tolerant mechanism has been
achieved on the multi-core IWoT node. IWoT node is equipped with the 8-bit working
microcontroller AVR ATmega1281 and the 4-bit ultra-low-power high-reliable aux-
iliary microcontroller nanoRisc. During the run-time, the working microcontroller
will send the execution status information to the auxiliary core at the time. In terms
of the received information, the auxiliary microcontroller can diagnose whether the
working microcontroller runs normally or not. If the received status information is
incorrect or it is not received within the expected time, the working microcontroller
can be determined to be abnormal. In this case, the auxiliary microcontroller will
restart the working microcontroller through the power supply unit.

A key design principle of the above LiveOS multi-core fault-tolerant mechanism
is that the auxiliary microcontroller should be a high reliable. Otherwise, the fault
recovery cannot be performed ideally. Fortunately, this design objective is not difficult
to be achieved. On the one hand, the software running on the auxiliary microcontroller

p , g

64 Managing the Internet of Things: architectures, theories and applications

Figure 3.17 LiveOS fault-tolerant multi-core IWoT node

is quite simple, thus the software reliability can be high. On the other hand, a high-
reliable auxiliary microcontroller can be selected during the hardware design process.
By doing this, the hardware platform of the auxiliary microcontroller can be high.
In case that the above two conditions are satisfied well, the reliability of the auxiliary
microcontroller can keep well.

3.8.2 Experimental evaluation

To evaluate the fault-tolerant ability of the LiveOS multi-core node, three multi-core
IWoT nodes (Figure 3.17) were deployed in the outdoor garden of the ISIMA more
than 3 years ago. By experiment, these nodes ran abnormally during the past period,
yet they can be recovered automatically. As a result, no nodes have been failed until
now. However, before the LiveOS multi-core technique is applied, more than 30 per
cent of the traditional single-core Live node [44] will fail after being deployed for
about 2 months. Currently, an online demo which can be used to verify the reliability
of the multi-core IWoT node is available from the website: edss.isima.fr (login name:
demo, password: demo).

3.9 LiveOS multi-core debugging mechanism

Compared to the debugging on the general-purpose platforms, the debugging on the
WSN platform is more difficult. First, the WSN platform resources are constrained,
thus the debugging approach in the WSN needs to be low overhead. Second, the WSN
nodes commonly work within a network, rather than work in isolation. Thus, the
run-time process of the WSN nodes cannot be halted during the debugging process.
Once being halted, the node will stop exchanging with the others. And then, it can be
regarded as a lost one and be deleted from the network. Due to the above reasons, the
development of a new debugging approach which can be used to debug the resource-
constrained WSN network effectively becomes essential.

p , g

Wireless sensor network operating system 65

3.9.1 Traditional debugging approaches

The traditional debugging approaches which can be applied on the embedded plat-
forms include the printf, the serial port and the breakpoint. The former two approaches
are not effective in the WSN as the debugging overhead is high. In these cases, a pas-
sive influence will be caused to the regular execution of the WSN code. Breakpoint
approach is also not appropriate for the WSN debugging. First, it is more effective if
the software execution is logically sequential, but not effective when the software exe-
cution is concurrent. Second, it is more effective to debug an isolated WSN node, but
not effective to debug a WSN network as the nodes can be deleted from the network
after the breakpoint is met.

3.9.2 Concept and implementation of the LiveOS multi-core
debugging approach

To address the challenge of debugging on the resource-constrained WSN platform, the
LiveOS multi-core debugging mechanism is implemented. The concept of the LiveOS
multi-core debugging approach is to use an assistant resource-abundant debugging
microcontroller to ease the debugging overhead on the resource-constrained WSN
microcontroller. With the assist of the debugging microcontroller, most debugging
tasks which should originally perform by the WSN microcontroller will be migrated
to the debugging microcontroller. By so doing, the debugging overhead on the
resource-constrained WSN microcontroller can become light and the WSN debugging
challenges described above can be addressed soundly.

Currently, the LiveOS multi-core debugging mechanism has been realized
on the MiWSN node. MiWSN node is equipped with two microcontrollers: the
resource-constrained WSN microcontroller AVR ATmega1281 and the resource-
abundant debugging microcontroller ARM1176JZF-S. Two microcontrollers com-
municate with each other through the general-purpose input and output (GPIO) ports
(Figure 3.18). GPIO is selected as the communication port since it has low com-
munication overhead. With this multi-core architecture, the debugging tasks on
the WSN microcontroller only involve the production of the debugging code and
the transmit of the debugging code from the GPIO ports to the debugging micro-
controller. As for the left debugging tasks such as the caching of the produced

WSN microcontroller Debugging microcontroller

Generate debugging code Cache
code

Process
code Transmit

GPIO

Multi-core WSN node MiWSN

Figure 3.18 LiveOS multi-core debugging system. With the assist of powerful
debugging microcontroller, the debugging overhead on the WSN
microcontroller can be optimized

p , g

66 Managing the Internet of Things: architectures, theories and applications

debugging code, the analysis and processing of the debugging information, they will
be performed by the powerful debugging microcontroller. Currently, this multi-core
debugging approach has been applied to debug the scheduling process of the hybrid
LiveOS, and an available online demo about this can be accessed from the website:
http://edss.isima.fr/sites/smir/miros.

3.10 Discussion on the LiveOS design concepts

LiveOS is different from the other OSes in that it addresses a set of critical WSN
challenges by combining both the software technique and the multi-core hardware
technique, rather than only from the software aspect. The evaluation results on the
LiveOS prove that this research way is feasible and effective. Although several micro-
controllers are equipped on the multi-core nodes and the node price will increase in
a way, it is not a considerable matter since the WSN microcontrollers are commonly
low-cost one, e.g., the cost of the AVR Atmega1281 can be lower than $5.

Each approach has advantages and drawbacks. It cannot exist an approach
which has the best performance in all the evaluation aspects. Yet, it can exist an
approach which is the most appropriate for a given situation, e.g., the shared-stack
multithreading mechanism shows the advantage in low memory consumption, yet it
is achieved at the cost of high scheduling overhead. Thus, it is appropriate to be used
when the memory resource of the WSN platform is high constrained, whereas the
energy resource of the WSN node is abundant.

The design concept of some mechanisms is not complicated, yet this does not
indicate that these approaches are not essential, e.g., the software architecture of the
pre-linked machine-code LiMid is not so complicated as that of the EJVM and the
dynamic relocation schemes, but it is typically appropriate to be used on the high
resource-constrained WSN nodes.

Different multi-core mechanisms can be integrated to improve the WSN per-
formance comprehensively, e.g., the LiveOS multi-core energy conservation scheme
and the LiveOS multi-core fault-tolerant approach can be applied comprehensively
on the one WSN node. By doing this, the performance of the WSN platform can be
improved comprehensively.

3.11 Conclusions and ongoing works

LiveOS is a new real-time, memory-efficient, energy-efficient, user-friendly, context-
aware and fault-tolerant WSN OS. It implements several new design mechanisms,
such as the hybrid scheduling, the shared-stack multithreading, the reactive-
defragmentation allocation, the resource-efficient middleware LiMid, the multi-core
energy conservation, the multi-core real-time responsiveness, the multi-core context-
aware ability, the multi-core fault-tolerant functionality, and the multi-core WSN
debugging. By means of these mechanisms, the stack memory cost of the LiveOS
can be more than 40 per cent decreased if compared to the traditional multithreaded

p , g

Wireless sensor network operating system 67

MantisOS; the energy cost of LiveOS can be more than 30 per cent reduced if com-
pared to the traditional single-core WSN system; the real-time performance of LiveOS
can be more than 16 per cent optimized if compared to the single-core WSN node.
In addition, the user application programming can be simplified, the application
reprogramming performance can be improved, the WSN/WMSN integrated applica-
tion context-aware ability can be improved and the WSN fault-tolerant ability can be
enhanced. Due to the above features, LiveOS becomes feasible to run on the resource-
constrained WSN nodes, can support the real-time outdoor WSN applications and can
provide a friendly development environment to the users. For more works about the
team works, it can be accessed from the homepage: http://edss.isima.fr/sites/smir/.

The ongoing works of LiveOS will involve the following aspects. First, the
research of a multi-core task scheduling mechanism which can optimize both the
energy cost and the real-time performance of the WSN nodes will be done. Cur-
rently, the multi-core technique has been used either to optimize the energy cost
or to optimize the real-time performance. In the next step, the multi-core schedul-
ing mechanism which can optimize the energy cost and the real-time performance
simultaneously will be investigated. Since the energy optimization condition and the
real-time optimization condition can conflict with each other commonly, a multi-
objective optimization scheduling algorithm needs to be researched. Second, the
design and implementation of a comprehensive multi-core WSN node will be real-
ized. Currently, different kinds of multi-core nodes have been developed so as to
satisfy the requirements of different contexts. This development way has complicated
manufacture process and high maintenance cost. In the ongoing works, a comprehen-
sive multi-core platform which can self-configure to adapt to the different application
contexts will be designed and implemented. With this platform, the WSN nodes can
be more intelligent and the WSN development cycle can also be shorten.

Acknowledgments

The authors would like to thank all the colleagues and copartners who have con-
tributed to this study, and are also grateful for the research support from the
Natural Science Foundation of HUAT (BK201411), the Sci-Tech. Pillar program
of Hubei Province (2014BHE024), the National High-tech 863 R&D Program of
China (2015AA015403), the fundamental research funds for the Central Universi-
ties (WUT:163110003, WUT:40120225), and the National Key Technology R&D
Program (2012BAH45B01).

References

[1] El Emary I.M.M., Ramakrishnan S. Wireless Sensor Networks: From Theory
to Applications. CRC Press; 2013.

[2] Akyildiz I.F., Vuran M.C. Wireless Sensor Networks. John Wiley & Sons Press;
2010.

p , g

68 Managing the Internet of Things: architectures, theories and applications

[3] Borges L.M., Velez F.J., Lebres A.S. ‘Survey on the characterization and clas-
sification of wireless sensor network applications’. IEEE Communications
Surveys and Tutorials. 2014;16(4):1860–1890.

[4] Texas Instruments Inc. The internet of things: Opportunities & Challenges
[online]. Available from http://www.ti.com/ww/en/internet_of_things/iot-
challenges.html [Accessed 26 March 2016]

[5] Wikipedia. List of Wireless Sensor Nodes [online]. Available from https://
en.wikipedia.org/wiki/List_of_wireless_sensor_nodes [Accessed 26 March
2016]

[6] Hill J., Szewczyk R., Woo A., Hollar S., Culler D., Pister K. ‘System
architecture directions for networked sensors’. In Proceedings of the 9th
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems; Cambridge, USA, 12–15 November 2000.
pp. 93–104.

[7] Dunkels A., Gronvall B., Voigt T. ‘Contiki—a lightweight and flexible oper-
ating system for tiny networked sensors’. In Proceedings of Local Computer
Networks; Tampa, FL, USA, 16–18 November 2004. pp. 455–462.

[8] Han C., Kumar R., Shea R., Kohler E., Srivastava M. ‘A dynamic operating
system for sensor nodes’. In Proceedings of Mobile Systems, Applications, and
Services; Seattle, WA, USA, 6–8 June 2005. pp. 117–124.

[9] Bhatti S., Carlson J., Dai H., Deng J. ‘MANTIS OS: an embedded multi-
threaded operating system for wireless micro sensor platforms’. ACM Kluwer
Mobile Networks and Applications. 2005;10(4):563–579.

[10] Watteyne T., Vilajosana X., Kerkez B., Chraim F. ‘OpenWSN: a standards-
based low-power wireless development environment’. Transactions on Emerg-
ing Telecommunications Technologies. 2012;23(5):480–493.

[11] Chen Y.T., Chien T.C., Chou P.H. ‘Enix: a lightweight dynamic operating
system for tightly constrained wireless sensor platforms’. In Proceedings of
the 8th ACM Conference on Embedded Networked Sensor Systems; Zurich,
Switzerland, 3–5 November, 2010. pp. 183–196.

[12] Cao Q., Abdelzaher T., Stankovic J., He T. ‘The LiteOS operating system:
towards UNIX-like abstractions for wireless sensor networks’. In Interna-
tional Conference on Information Processing in Sensor Networks; St. Louis,
Missouri, USA, 22–24 April, 2008. pp. 233–244.

[13] Ousterhout J. ‘Why threads are a bad idea (for most purposes)’. In Proceedings
of the 1996 USENIX Annual Technical Conference; San Diego, CA, USA,
22–26 January 1996. Volume 5.

[14] Von Behren R., Condit J., Brewer E. ‘Why events are a bad idea (for high-
concurrency servers)’. In Proceedings of the 9th Workshop on Hot Topics in
Operating Systems; Lihue, HI, USA, 18–21 May 2003. pp. 19–24.

[15] Stephen Ferg. Event-Driven Programming: Introduction, Tutorial, His-
tory [online]. 2006. Available from http://eventdrivenpgm.sourceforge.net
[Accessed 26 March 2016]

[16] Liu C.L., Layland J.W. ‘Scheduling algorithms for multiprogramming in a
hard-real-time environment’. Journal of the ACM. 1973;20(1):46–61.

p , g

Wireless sensor network operating system 69

[17] Klues K., Liang C.J.M., Paek J., et al. ‘TOSThreads: thread-safe and non-
invasive preemption in TinyOS’. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems; Berkeley, CA, USA, 4–6 November
2009. pp. 127–140.

[18] Wilson P.R., Johnstone M.S., Neely M., Boles D. ‘Dynamic storage alloca-
tion: a survey and critical review’. Memory Management. Springer Berlin
Heidelberg, 1995. pp. 1–116.

[19] Adam D. Contiki Managed Memory Allocator [online]. 2012. Available
from https://github.com/adamdunkels/contiki-fork/wiki/Memory-allocation
[Accessed 26 March 2016]

[20] RTJ Computing Pty. Ltd. simpleRTJ Technical Brief [online]. 2009. Available
from http://www.rtjcom.com/downfile.php?f=techpdf [Accessed 26 March
2016]

[21] LEGO Mindstorms. LeJOS, Java for Lego Mindstroms [online]. 2006. Avail-
able from http://www.lejos.org [Accessed 26 March 2016]

[22] Tills Palm Pages. The NanoVM – Java for the AVR [online]. 2005. Available
from http://www.harbaum.org/till/nanovm/index.shtml [Accessed 26 March
2016]

[23] Brouwers N., Langendoen K., Corke P. ‘Darjeeling, a Feature-Rich VM for
the Resource Poor’. In Proceedings of Embedded Networked Sensor System;
Berkeley, CA, USA, 4–6 November 2009. pp. 169–182

[24] Atmel Corporation. Atmel AVR2058: BitCloud OTAU User Guide [online].
2015. Available from http://www.atmel.com/Images/Atmel-8426-BitCloud-
OTAU_User-Guide_AVR2058.pdf [Accessed 26 March 2016].

[25] Kanagal B., Deshpande A. ‘Online filtering, smoothing and probabilistic mod-
eling of streaming data’. In Proceedings of the 24th International Conference
on Data Engineering; Cancún, México, April 2008. pp. 1160–1169.

[26] Jain A., Chang E.Y., Wang Y.F. ‘Adaptive stream resource management using
Kalman filters’. In Proceedings of the ACM International Conference on
Management of Data; Paris France, 13–18 June, 2004. pp. 11–22.

[27] Caione C., Brunelli D., Benini L. ‘Distributed compressive sampling for life-
time optimization in dense wireless sensor networks’. IEEE Transactions on
Industrial Informatics. 2012;8(1):30–40.

[28] Srisooksai T., Keamarungsi K., Lamsrichan P., Araki K. ‘Practical data com-
pression in wireless sensor networks: A survey’. Journal of Network and
Computer Applications. 2012;35(1):37–59.

[29] Maraiya K., Kant K., Gupta N. ‘Wireless sensor network: a review on data
aggregation’. International Journal of Scientific and Engineering Research.
2011;2(4):1–6.

[30] Xiang L., Luo J., Vasilakos A. ‘Compressed data aggregation for energy effi-
cient wireless sensor networks’. In Proceedings of IEEE Conference on Sensor,
Mesh andAd hoc Communications and Networks; Salt Lake, Utah, USA, 27–30
June, 2011. pp. 46–54.

[31] Aziz A.A., Sekercioglu Y.A., Fitzpatrick P., Ivanovich M. ‘A survey on dis-
tributed topology control techniques for extending the lifetime of battery

p , g

70 Managing the Internet of Things: architectures, theories and applications

powered wireless sensor networks’. Communications Surveys and Tutorials.
2013;15(1):121–144.

[32] Li M., Li Z., Vasilakos A.V. ‘A survey on topology control in wireless sensor
networks: taxonomy, comparative study, and open issues’. Proceedings of the
IEEE. 2013;101(12):2538–2557.

[33] Üster H., Lin H. ‘Integrated topology control and routing in wireless sen-
sor networks for prolonged network lifetime’. Ad Hoc Networks. 2011;9(5):
835–851.

[34] Warrier A., Park S., Mina J. and Rheea I. ‘How much energy saving does
topology control offer for wireless sensor networks? – a practical study’. ACM
Computer Communications. 2007;30(14):2867–2879.

[35] IEEE Standards Association. IEEE SA-802.15.4-2006-IEEE Standard for
Information Technology [online]. Available from https://standards.ieee.org/
findstds/standard/802.15.4-2006.html [Accessed on 26 March 2016]

[36] SalehA.M.S., Ali B.M., Rasid M.F.A., IsmailA. ‘A survey on energy awareness
mechanisms in routing protocols for wireless sensor networks using optimiza-
tion methods’. Transactions on Emerging Telecommunications Technologies.
2014;25(12):1184–1207.

[37] Gilani M.H.S., Sarrafi I., Abbaspour M. ‘An adaptive CSMA/TDMA hybrid
MAC for energy and throughput improvement of wireless sensor networks’.
Ad Hoc Networks. 2013;11(4):1297–1304.

[38] Zareei M., TaghizadehA., Budiarto R., Wan T.C. ‘EMS-MAC: energy efficient
contention-based medium access control protocol for mobile sensor networks’.
Computer Journal. 2011;54(12):1963–1972.

[39] Pantazis N., Nikolidakis S.A., Vergados D.D. ‘Energy-efficient routing proto-
cols in wireless sensor networks: a survey’. IEEE Communications Surveys
and Tutorials. 2013;15(2):551–591.

[40] Atmel Corporation. 8-bit Microcontroller with 64K/128K/256K Bytes In-
System Programmable Flash [online]. 2007. Available from www.atmel.com/
Images/doc0945.pdf [Accessed 26 March 2016]

[41] Atmel Corporation. Atmel SAM7X Series of Microcontrollers [online]. 2014.
Available from http://www.atmel.com/Images/doc6120.pdf [Accessed 26
March 2016]

[42] Microsemi Corporation. IGLOO nano FPGAs [online]. 2016. Available from
http://www.microsemi.com/products/fpga-soc/fpga/igloo-nano [Accessed 26
March 2016]

[43] Shi H.L. Development of an energy efficient, robust and modular multi-
core wireless sensor network. PhD thesis of University Blaise Pascal,
2014.

[44] Buttazzo G.C. ‘Rate monotonic vs. EDF: judgment day’. Real-Time Systems.
2005;29(1):5–26.

[45] Akyildiz I.F., Melodia T., Chowdhury K.R. ‘A survey on wireless multimedia
sensor networks’. Computer Networks. 2007;51(4):921–960.

p , g

Wireless sensor network operating system 71

[46] Chanak P., Banerjee I. ‘Energy efficient fault-tolerant multipath routing
scheme for wireless sensor networks’. Journal of China Universities of Posts
and Telecommunications. 2013;20(6):42–61.

[47] Younis M., Senturk I.F., Akkaya K., Lee S., Senel F. ‘Topology management
techniques for tolerating node failures in wireless sensor networks: a survey’.
Computer Networks. 2014;58:254–283.

This page intentionally left blank

p , g

Chapter 4

OSIRIS framework: sensOr-baSed
monItoRIng Systems∗

Raphael Guerra1 and Felipe Santos1

Abstract

Deploying monitoring systems with wireless sensor networks (WSNs) is a very chal-
lenging task: physical components are highly heterogeneous, suffer damage, replaced;
data is generated massively and must be managed, stored, and made available to other
systems. In this chapter, we propose OSIRIS, a framework for building monitoring
systems based on WSNs. This framework provides resources for monitoring the WSN,
collecting, processing, and storing data, and an interface for providing data to other
applications and/or systems. OSIRIS uses a set of abstractions to offer flexibility for
the creation of various monitoring systems and to decouple network physical sen-
sors from data consuming applications. In our tests, we use an implementation of
OSIRIS to show that our architectural decisions allow OSIRIS to handle commercial
and industrial-sized networks.

4.1 Introduction

Wireless sensor networks (WSNs) consist of small sensors with limited computational
resources working intelligently in groups to achieve their goals. These networks have
the main purpose of offering to other applications environmental sensory data. The
deployment of these networks in practical applications has, as biggest challenges
energy restriction and low processing capacity [1]. Several applications of these net-
works have been proposed in the literature [2–4], including smart environments and
Internet of Things [5–8].

Sharing collected data with other applications is an additional challenge to the
implementation of systems based on WSN. Among the challenges for this interop-
erability, we can mention the highly heterogeneous nature of WSNs and the volatile

∗Development repository at https://github.com/labtempo/osiris and binaries at https://github.com/
labtempo/osiris-binaries
1Computation Institute, Federal Fluminense University, Niterói/RJ, Brazil, Email: {rguerra,fralph}@
ic.uff.br

p , g

74 Managing the Internet of Things: architectures, theories and applications

connectivity of nodes. Furthermore, network data traffic is the main source of energy
consumption. These data often still need to be processed before being used to provide
a more complete and robust view of the monitored environment, a technique known
as data fusion [9]. In this context, an infrastructure becomes necessary to collect,
process, store, and share data between multiple concurrent applications from differ-
ent sources in a standardized and flexible way and manage the sensor network while
hiding intrinsic details of how data are obtained. Building this infrastructure from
scratch for each monitoring system is a costly task.

SenseWeb [10] is a framework that tries to address these problems. It defines four
main components: sense gateway, mobile proxy, coordinator, and data transformer.
Sense gateways provide a uniform interface for communication with the sensors.
Mobile proxies act similar to sense gateways for mobile sensors: they return data
from any device that meets the needs expressed by a requesting application. Coordi-
nator stores data in cache to minimize the flow of data directly from the sensors and
manages each sensing application needs to locate appropriate sensors. Finally, Data
transformers handle the data collected before passing them on to applications, e.g.,
for better viewing, unit conversion, or filtering.

Data transformers require applications to be aware of the need to perform data
transformations. Depending on how data transformers are implemented, raw data that
must be handled before passed on to the applications may be processed at each request,
increasing processing demand and latency. Moreover, if two applications request
different data from the same sensor network, there might be data traffic in the network
for each request, increasing energy consumption. We also noticed that the coordinator
is a centralizing element, compromising scalability. Finally, SenseWeb does not offer
an element to manage the operation of WSNs, such as energy consumption of nodes
and state of routing trees.

Sensor Cloud [8] is another proposal of a framework to support the construction
of sensor-based monitoring systems. Sensor Cloud focuses on abstracting data from
their sources using virtual nodes [11] and managing access to these data in a cloud
infrastructure.

Both SenseWeb and Sensor Cloud focus primarily on building an information
management infrastructure to collect, group, and share data from several WSNs.
The open question is how to extract data from the sensor network to the information
management infrastructure while addressing issues such as reduce network traffic,
handle sensor heterogeneity and provide fault tolerance.

We propose the OSIRIS Framework: sensOr-baSed monItoRIng Systems. As
can be seen in Figure 4.1, it consists of five main modules: Collector, SensorNet,
VirtualSensorNet, Function, and External. Collector is the gateway that extracts data
from the sensor network and transfers them to OSIRIS; there may be several of them
in the same network so that data, have multiple options to leave the sensor network.
SensorNet is the software representation of the current state of the physical network
and its sensors, storing data and metadata such as battery level, current reading of
each sensor, and network routing graph. VirtualSensorNet is the entity that manages
the virtual sensors, an abstraction that hides data sources from applications. Data
source can be a physical sensor or a software element that processes data from one
or more sources (for fault tolerance, data fusion, etc.). Each module Function is

p , g

OSIRIS framework: sensOr-baSed monItoRIng Systems 75

SensorNet

Collector Function External

VirtualSensorNet

Communication Layer

Figure 4.1 OSIRIS architecture

a shared module that works linked to virtual sensors in order to process data and
return a result. Application-specific modules to display data or forward data to other
subsystems are implemented as External modules. All these modules are distributed
and communicate with each other over a Communication Layer.

SensorNet and VirtualSensorNet prevent successive data queries from gen-
erating extra traffic on the physical sensor network, saving energy. In addition,
VirtualSensorNet and Function together allow software processed data to be stored
and shared as if they came directly from sensors. This abstraction reduces processing
load on the framework and coupling between applications and physical data sources.
The strategic placement of Collectors provides for fault tolerance and reduced traf-
fic and energy consumption within the network by offering multiple exit routing
options for collected data [12]. Since this module is distributed, its instances can
runon embedded devices and be distributed over a wide area. Collectors also directly
handle redundancy.

Our experiments show that our implementation of OSIRIS supports sensor net-
works with traffic rate up to 10.000 samples per second. Given that even commercial
applications of WSN tend to use sample frequency in the order of few minutes to
reduce data traffic, and hence save energy [4,13,14], this throughput suffices for
WSNs with over 1 million nodes. This validates our architectural decisions with
respect to scalability (Collectors are distributed) and efficiency. OSIRIS’s capa-
bility to support the implementation of sensor-based monitoring systems has been
demonstrated in previous work [15].

The rest of this chapter is structured as follows. Section 4.2 describes the
communication layer and Section 4.3, OSIRIS modules. Then, we present in Sec-
tion 4.4 experimental results about the performance and efficacy of OSIRIS. Finally,
Section 4.5 brings our concluding remarks.

4.2 OSIRIS Communication Layer

We developed a protocol for OSIRIS Communication Layer called OMCP –
OSIRIS module communication protocol. In the next three subsections, we describe
OMCP, the communication between modules, and OMCP’s implementation on
RabbitMQ [16].

p , g

76 Managing the Internet of Things: architectures, theories and applications

4.2.1 OMCP Protocol

OMCP is a communication protocol designed to allow synchronous and asynchronous
communication between distributed modules pairwise and via publish/subscribe.
Inspired on HTTP, OMCP is a client/server protocol that implements REST archi-
tectural style [17]. This architectural decision aims at reduced network traffic when
broadcasting sensor read samples, yet allowing pairwise communication with loose
coupling between modules. This way, modules can be dynamically added to the
framework when building monitoring system applications.

OMCP defines five request methods: GET, POST, PUT, DELETE e NOTIFY.
The first four methods are used for synchronous communication: a client issues a
request and waits for the server to process and send a response. They behave as in
HTTP1.1 [18]: GET retrieves the state of a resource, POST creates a resource, PUT
updates the state of a resource, and DELETE deletes a resource. NOTITY is an
asynchronous method used to send data from one client to one or more servers.

A request packet, issued by clients, contains fields to indicate the method,
the resource, the protocol version, and the destination address (module that will
handle the request). A response packet contains the protocol version, a return code to
indicate whether the request was properly processed or not, and a textual description
of the return code. It also contains field to indicate the URI of a resource created
at the server (for POST). Both packet types also contain fields for date and time at
which the packet was issued, identification of the packet issuer, content type, content
length, and payload.

4.2.2 OSIRIS modules communication

OSIRIS modules can communicate pairwise (point-to-point) synchronously and asyn-
chronously, and broadcast event messages. Point-to-point communication is used
so modules can consult, delete, or modify the state of resources in other modules.
A module may also request the creation of resources in other modules. Broadcast
communication is used to notify events to an undisclosed number of modules using
publish/subscribe.

Broadcast communication is implemented using the concept of message groups.
Producing modules publish events in groups of interest and consuming modules reg-
ister to groups in other to get their messages. OSIRIS defines some standard message
groups, see Section 4.3, and the developer is free to extend the framework with
whatever groups necessary for correct application behavior.

OSIRIS also defines two communication components for modules: OMCP Client
and OMCP Server. An OMCP Client may send request messages to an OMCP Server
or publish to message groups. An OMCP Server may register to message groups and
receive direct messages from OMCP Clients.

4.2.3 Implementation on RabbitMQ

We implemented OMCP on RabbitMQ [16], an open-source message broker mid-
dleware for distributed systems capable of running on server clusters and handling
over 1 million messages per second [19]. It supports robust applications (atomic

p , g

OSIRIS framework: sensOr-baSed monItoRIng Systems 77

transactions, broadcast and multicast messages, delivery guarantee, etc.), is easy to
use, available in several operating systems, and has a large community with consid-
erable support for various development platforms. It implements the AMQP proto-
col [20], which is an open standard application layer protocol for message-oriented
middleware.

The operation of RabbitMQ is simple and works with five basic elements [21]:
producer, consumer, queue, exchange, and binding. Producers can send messages
to an exchange or directly to a queue. Exchanges distribute copies of messages to
zero or more queues using routing algorithms and rules called bindings. Queues pass
message on to their respective consumers or consumers search for messages in them
according to the demand.

Figure 4.2 depicts our implementation of OCMP on RabbitMQ. We implemented
group messages with exchanges. Both OMCP Client and Server consists of a Rab-
bitMQ producer, consumer, and queue. An OMCP Client sends out request packets

XP

C

Client P

C

Server

P

C

Server

Server

Server

Asynchronous

P

C P

C

Client

Client

Asynchronous

P

C P

C

Synchronous

ProducerP ExchangeXConsumerC

QueueCAPTION:

Figure 4.2 OMCP implementation on RabbitMQ

p , g

78 Managing the Internet of Things: architectures, theories and applications

using its producer and, in case of synchronous messages, creates a temporary queue
binded to its consumer in order to receive the response packet. Request packets of
synchronous messages are mandatorily sent out to the queue of an OMCP Server, and
request packets of asynchronous messages may be sent to either a queue binded to an
OCMP server or to one or more exchanges. The OMCP Server has a consumer binded
to its queue, and optionally to one or more exchanges, to receive request packets. In
case of synchronous messages, it uses its producer to send out response packets to
the temporary queue of the OMCP Client that issued the request. The OMCP Client
informs the address of this temporary queue in a property field of the request packet.

In our current implementation, an OMCP Client waits indefinitely for a response
from the OMCP Server. The server has a timeout for processing the request; after this
timeout, the action is canceled and an error is reported to the client. In future updates,
we want to implement Client timeout and Server rollback for reliable communication.

4.3 OSIRIS modules

Besides the communication layer, OSIRIS defines five module types: Collector,
SensorNet, VirtualSensorNet, Function, and External. SensorNet and Virtual-
SensorNet have one unique instance each running at runtime and are offered as a
service (daemon) to the framework user. Collector, Function, and External are mod-
ules that each developer has to implement specifically for his monitoring application.
The next subsections describe each module in more detail.

4.3.1 Collector

Collector is responsible for collecting data from the sensor network, handling, and
forwarding them to other modules of the framework. Arriving data have to be format-
ted and packetized in order to inform from which network, collector, and sensor they
came. Each data is also formatted as a tuple with fields to specify value, name, type,
unit, and symbol. For example, a temperature sensor read can be formatted as <30.5,
temperature, real, Celsius, C>. All Collectors publish data to a standard message
group dedicated for collector messages, called omcp://collector.messagegroup.osiris/.

Collector is a distributed module, i.e. there may be multiple instances running
concurrently and distributed over the network, and have to be implemented each time
a monitoring application is built using OSIRIS. Collectors are identified with IDs that
may be unique or not. Collectors with same ID are seen as replica for fault tolerance
in the sensor network, and data sampled at the same time and coming from the same
network, collector, and sensor are stored only once in OSIRIS database.

4.3.2 SensorNet

SensorNet is responsible for monitoring the physical network and broadcasting
notifications of network changes. It subscribes to message group omcp://collector.
messagegroup.osiris/ and processes metadata informed by Collector modules to create
an internal data structure with the following resources:

p , g

OSIRIS framework: sensOr-baSed monItoRIng Systems 79

● Networks – Networks monitored by SensorNet.
● Collectors – Each monitored network consists of one or more Collectors. This

resource is a list of Collectors for a given network.
● Sensors – Sensors that belong to a Collector.

Changes in the physical network are directly mapped to the internal data structures
of SensorNet. Therefore, queries about network state such as network topology and
sensor status do not have to be forwarded to the physical network. This reduces
network traffic and energy consumption.

Sensornet also periodically checks whether its resources are being updated. This
periodicity is a parameter that the Collector has to inform, as each resource for each
particular application has different timing requirements. A sensor, collector or net-
work resource that has not received an update for this period has its state changed to
INACTIVE. A subsequent update changes the state to REACTIVATED. A partially
functioning sensor, e.g., it should inform temperature and luminosity but only tem-
perature is working, is in MALFUNCTION state. Added resources are in state NEW
until they are updated, changing the state to UPDATED. Resources properly working
remain forever in state UPDATED. State change messages are sent to message group
omcp://notification.messagegroup.osiris/.

4.3.3 VirtualSensorNet

VirtualSensorNet is a module responsible for decoupling sampled data from physical
sensors. For example, a temperature monitoring application for datacenters may be
interested in obtaining temperature values in front of rack 37. It does not matter how
this data is obtained: using sensor of type A or B, calculating the average between the
temperature of adjacent racks, etc. VirtualSensors offer this level of abstraction, and
VirtualSensorNet is the module that manages VirtualSensors.

There are three types of VirtualSensors: Link, Composite, and Blending.
VirtualSensorLink binds to a sensor resource in SensorNet in order to obtain sampled
data. If a physical sensor fails and is replaced, VirtualSensorLink may bind to the new
sensor and this update is transparent to consuming applications.

VirtualSensorComposite may bind to any number of VirtualSensors of any type
and select which of their fields to use. For example, if one VirtualSensorLink has
temperature and luminosity values of a mobile device and another VirtualSensorLink
has the GPS location this device, we can create a VirtualSensorComposite containing
GPS location and temperature. VirtualSensorComposites do not store their sampled
data in a database, they link to the original data source; links may be nested.

VirtualSensorBlending allows results of processed sampled data to be published
as a sensor reads. For example, if a server room has 30 temperature sensors spread over
the area, a VirtualSensorBlending could be used to publish the average temperature of
the room as if there existed a sensor to monitor average temperature. This abstraction
is very powerful as it can be used to obtain fault tolerance, data conversion, etc.

In order to process data, VirtualSensorBlending binds upon creation to a Function
module (see Section 4.3.4) and to any number of VirtualSensors of any type to

p , g

80 Managing the Internet of Things: architectures, theories and applications

select which of their fields to use. Periodically (this periodicity is informed upon
VirtualSensorBlending creation), the Function module processes data from
VirtualSensors and the result is published as a sensor read.

Similar to SensorNet, VirtualSensorNet also broadcasts VirtualSensor state
changes to message group omcp://notification.messagegroup.osiris/.

4.3.4 Function and External

Functions are application-specific modules that process input data and return a result.
They are used byVirtualSensorBlending, as described in Section 4.3.3. External mod-
ules are wildcards that perform any particular action of a monitoring application. The
most trivial use of this module is to consume data for visualization. External modules
may send messages to other modules, e.g., to retrieve history data, to instruct the
creation/deletion of VirtualSensors, etc. We plan on using this module to implement
a GUI SensorNet and VirtualSensorNet Manager.

4.4 Evaluation

In this section, we assess the performance of OSIRSIS measuring the end-to-end
latency, henceforth called E2ELatency, from the moment each sample arrives at the
Collector until the sample arrives at a consuming application module. Our experi-
mental setup consists of two machines directly connected over a 10 Gbits cabled link:
one hosts OSIRIS modules and the other hosts the communication layer. Collectors
were configured to generate synthetic random data and publish them at different rates.
There is no need to set up a real WSN to generate data as we just want to assess OSIRIS
performance under different workloads. We emphasize that OSIRIS capability to sup-
port the implementation of sensor-based monitoring systems has been assessed in the
previous work [15].

In our first set of experiments, we create one virtual sensor of type link
(VSensorLink) and use one Collector to generate its data; data is generated within
intervals of 2 s. For each scenario in this set, we vary the number of messages that are
sent in each interval and run 100 experiments of 100 intervals each.

Figure 4.3 depicts in a boxplot our results when one message is sent every 2 s. As
can be seen, most E2ELatency values (∼75%) are below 32 ms and all but one value
are below 50 ms. The highest measured E2ELatency, an exceptional case, is around

0 10 20 30 40 50 60 70
E2ELatency (ms)

Figure 4.3 E2ELatency for one message every 2 s

p , g

OSIRIS framework: sensOr-baSed monItoRIng Systems 81

62 ms. These results are very good given some commercial WSN products promise
63 ms delay [22].

Figure 4.4 depicts in a barplot the minimum, maximum and average E2ELatency
when 10, 100, and 300 message are sent every 2 s. The average bar also plots the
95% confidence interval. In each experiment, the Collector establishes one single
connection with the message broker to send all messages. We can see that in this case
OSIRIS can barely handle 300 messages per second.

If each Collector establishes one dedicated connection with the message broker
to send each message, we can see in Figure 4.5 that OSIRIS can handle up to 10.000
messages per second with maximum E2ELatency of 1 s and average of around 30 ms.
We believe that using one connection causes latter sampled data to stall, while mul-
tiple parallel connections avoid this bottleneck. This is an important observation for
developers using OSIRIS to build their monitoring systems.

In our second set of experiments, we create one virtual sensor of type link
(VSensorLink), 100 nested composite virtual sensors (VSensorComposite001 to

10
10

0
30

0 avg
max
min

E2ELatency (ms)

N
um

be
r o

f m
es

sa
ge

s p
er

 in
te

rv
al

1 10 100 1 000 10 000

Figure 4.4 One connection per Collector for all messages

10
10

0
30

0
10

00
10

00
0

E2ELatency (ms)

N
um

be
r o

f m
es

sa
ge

s p
er

 in
te

rv
al

1 10 100 1 000 10 000

avg
max
min

Figure 4.5 One dedicated connection for each message

p , g

82 Managing the Internet of Things: architectures, theories and applications

0 20 40 60 80 100

0
20

0
40

0
60

0

Number of chained composites

E2
EL

at
en

cy
 (m

s)

min
max
avg

Figure 4.6 Overhead of nested composite virtual sensors

10
20

30
40

50

E2ELatency (ms)

N
um

be
r o

f m
es

sa
ge

s p
er

 in
te

rv
al

1 10 100 1 000 10 000

avg
max
min

Figure 4.7 Overhead of several Collectors on same machine

VSensorComposite100) and use one Collector to generate data; data is generated
with intervals of 2 s. Nested VSensorComposite means that VSensorComposite001 is
linked to VSensorLink, VSensorComposite002 is linked to VSensorComposite001,
and so on. We send a total of 100 messages and plot the minimum, maximum ad
average E2ELatency for each VSensorComposite in Figure 4.6. We can see that the
average E2ELatency is close to the minimum and that latency increases linearly with
the nesting depth. Therefore, composite virtual sensors scale well but should not be
overused so performance is not compromised.

Finally, in our third set of experiments, we create one virtual sensor of type
link (VSensorLink) and vary the number of Collectors that generate data. Each col-
lector generates one message every 2 s and each experiment consists of sending 100
messages. Figure 4.7 plots the minimum, maximum, and average E2ELatency for 100
experiments as we vary the number of Collectors that generate data simultaneously.
We can see that with 30 Collectors the average E2ELatency already reaches 1 s. From
our first set of experiments, we expected to be able to handle 10.000 Collectors since
each Collector sends only one message. We believe that this extra overhead results

p , g

OSIRIS framework: sensOr-baSed monItoRIng Systems 83

from running all Collectors on the same machine. In future work, we want to run each
Collector on a different machine.

4.5 Conclusion

In this work, we proposed the OSIRIS Framework, an infrastructure to build moni-
toring systems that collect, process, store, and share data to multiple distributed and
concurrent applications. OSIRIS offers tools to handle data from different sources
in a standardized and flexible way and to manage the sensor network while hid-
ing intrinsic details of how data are obtained. Our tests show that OSIRIS can
handle a traffic rate up to 10.000 samples per second, which suffices for large-
scale commercial applications of WSN. Multiples sink distributed over a wide area
is not a problem since our collector modules work distributed. Source codes and
binaries are publicly available on GitHub (https://github.com/labtempo/osiris and
https://github.com/labtempo/osiris-binaries).

References

[1] J. Yick, B. Mukherjee, and D. Ghosal. “Wireless sensor network survey.”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] M. Suzuki, S. Saruwatari, N. Kurata, and H. Morikawa. “A high-density earth-
quake monitoring system using wireless sensor networks.” In Proceedings of
the 5th International Conference on Embedded Networked Sensor Systems,
SenSys ’07, New York, NY, USA, 2007. ACM, pp. 373–374.

[3] B. Wang, X. Guo, Z. Chen, and Z. Shuai. “Application of wireless sen-
sor network in farmland data acquisition system.” In J. Zhang, editor,
Applied Informatics and Communication, Communications in Computer and
Information Science, vol. 226, Springer Berlin Heidelberg, 2011, pp. 672–678.

[4] G. Zanatta, G.D. Bottari, R. Guerra, and J.C.B. Leite. “Building a WSN infras-
tructure with COTS components for the thermal monitoring of datacenters.” In
Symposium on Applied Computing, SAC 2014, Gyeongju, Republic of Korea,
pp. 1443–1448, March 24–28, 2014.

[5] R. Piyare, and S. R. Lee. “Towards internet of things (iots): Integration of
wireless sensor network to cloud services for data collection and sharing.”
CoRR, abs/1310.2095, 2013.

[6] S. Kelly, N. Suryadevara, and S. Mukhopadhyay. “Towards the implementation
of iot for environmental condition monitoring in homes.” Sensors Journal,
IEEE, vol. 13, no. 10, pp. 3846–3853, 2013.

[7] D. Zhong, H. Lv, J. Han, and Q. Wei. “A practical application combining
wireless sensor networks and internet of things: Safety management system
for tower crane groups.” Sensors, vol. 14, no. 8, pp. 13794–13814, 2014.

[8] S. Madria, V. Kumar, and R. Dalvi. “Sensor cloud: a cloud of virtual sensors.”
Software, IEEE, vol. 31, no. 2, pp. 70–77, 2014.

p , g

84 Managing the Internet of Things: architectures, theories and applications

[9] H. Durrant-Whyte, and T. Henderson. “Multisensor data fusion.” In
B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics, Springer
Berlin Heidelberg, pp. 585–610, 2008.

[10] A. Kansal, S. Nath, J. Liu, and F. Zhao. “SenseWeb: an infrastructure for shared
sensing.” IEEE MultiMedia, vol. 14, no. 4, pp. 8–13, 2007.

[11] S. Kabadayi, A. Pridgen, and C. Julien. “Virtual sensors: abstracting data from
physical sensors.” In World of Wireless, Mobile and Multimedia Networks,
2006. WoWMoM 2006. International Symposium on a, pages 587–592, 2006.

[12] F. Chen, and R. Li. “Sink node placement strategies for wireless sensor net-
works.” Wireless Personal Communications, vol. 68, no. 2, pp. 303–319,
2013.

[13] D. Networks. “Wireless sensor networks make it possible to predict pre-
cious water supplies.” Technical report, Linear Technology Corporation, 1630
McCarthy Blvd. Milpitas, CA.

[14] Vigilent and D. Networks. “Close the loop on energy management at the cali-
fornia franchise tax board.” Technical report, Linear Technology Corporation,
1630 McCarthy Blvd. Milpitas, CA.

[15] F. Santos, and R. Guerra. “Osiris framework: construindo sistemas de moni-
toramento com redes de sensores sem fio para compartilhar dados.” In Anais
do 33 Simposio Brasileiro de Redes de Computadores e Sistemas Distribuidos,
Vitoria/ES, Brazil, 2015.

[16] J. Russell, and R. Cohn. Rabbitmq. “World Chess Championship 2012.” Book
on Demand, 2012.

[17] R.T. Fielding. “Architectural styles and the design of network-based software
architectures.” PhD thesis, 2000. AAI9980887.

[18] R. Fielding, J. Gettys, J. Mogul, et al. Hypertext transfer protocol – http/1.1,
1999.

[19] Pivotal. “Rabbitmq hits one million messages per second on google
compute engine.” https://blog.pivotal.io/pivotal/products/rabbitmq-hits-one-
million-messages-per-second-on-google-compute-engine, 2015. Accessed:
2015-11-25.

[20] S. Vinoski. “Advanced message queuing protocol.” IEEE Internet Computing,
vol. 10, no. 6, pp. 87–89, 2006.

[21] Pivotal. “AMQP 0-9-1 model explained.” https://www.rabbitmq.com/tutorials/
amqp-concepts.html, 2014. Accessed: 2014-12-04.

[22] B.E. Corp. “Zero defect standard achieved using wireless sensor solution on
industrial winder.” Technical report, Banner Engineering Corp, 9714 Tenth
Ave. No., Minneapolis, MN, USA.

p , g

Chapter 5

Modeling and tracing events in RFID-enabled
supply chains

Cong-cong Xing1, Jun Huang2 and Shui Yu3

Abstract

With cloned tag attacks being a serious problem in radio frequency identification
(RFID) supply chains, tracing event records and inspecting them are one of the
notably effective means to defense such attacks. Unfortunately, current event for-
mulations are unable to characterize the variety and complexness of the events in
real-world RFID supply chains. This chapter identifies the problem of the existing
tag event models, reviews the RFID supply chain architecture, proposes a new tag
event model, and devises the ensuing event-tracing algorithm. It is our belief that the
newly proposed event model together with the event-tracing algorithm based on this
model furnish a foundation for future more sophisticated event-record-based clone
detection techniques.

5.1 Introduction

The architecture of the Internet of Things (IoT) can be roughly sketched as consist-
ing of a bottom sensor layer, a middle network layer, and a top application layer.
As one of the primary information-acquiring means at the bottom layer of the IoT,
radio frequency identification (RFID) tags have found increasingly widespread appli-
cations in various business areas, with the expectation that the use of RFID tags will
eventually replace the existing bar codes in all business areas. While the RFID tech-
nology offers numerous exciting new benefits, it also brings in new challenges. The
RFID tag of each product contains an electronic product code (EPC) that is used to
uniquely identify this product. However, the EPC contents of an RFID tag can be eas-
ily cloned by some malicious attackers, and the cloned tags may be attached to some

1Department of Mathematics/Computer Science, Nicholls State University
2Institute of Electronic Information and Networking, Chongqing University of Posts and Telecommuni-
cations
3School of Information Technology, Deakin University

p , g

86 Managing the Internet of Things: architectures, theories and applications

counterfeit products which then can be injected into business RFID supply chains,
transit along the supply chains subsequently, and are eventually sold to customers.

As such, techniques, methods, and strategies on how to prevent counterfeit
RFID/EPC tags from being made as well as on how to detect counterfeit tags (once
they are in the supply chain) have been extensively studied in the literature (e.g., see
References 1–3). Between these two approaches, it has been realized that there are
essentially no feasible and effective ways to completely prevent an RFID tag from
being cloned. Hence, much efforts have been devoted to the cloned tag detection
techniques. One notable method of detecting cloned RFID tags is to check the history
record of events of the suspected tag against some predefined criteria. To use this
approach to detect cloned tags, one must access the Discovery Service of the EPC-
global network to obtain a set of desired events first, which immediately raises the
issue of modeling events and tracing events in RFID supply chains.

Currently, RFID tag-related events are typically treated as simple events in the
literature in the sense that there is no need for any tag changes, and a tag remains
isolated during its entire course of transition in supply chains. Unfortunately, this is
not the case in real-world commercial RFID supply chains where events are more
complicated. For instance, a box of goods may be split into sub-boxes of goods at a
distribution center, and several (different types of) products may be bundled together
for sale at a wholesale store. Both activities involve tag changes in their courses.
Toward resolving this problem, we in this chapter model RFID tag events by taking
the variety of events into consideration, and address the ensuing event history record
issue by devising a corresponding event-tracing algorithm.

The remainder of this chapter is organized as follows. Section 5.2 reviews the
related work in the literature, Section 5.3 describes the structural elements in RFID-
enabled supply chain systems. Section 5.4 presents a model of the RFID tag event that
encapsulates an array of different types of events, which is followed in Section 5.5 by
a tag event-tracing algorithm together with some illustrating examples. Section 5.6
concludes this chapter.

5.2 Background and related work

The security issues associated with RFID supply chains are wide-spread and far-
reaching [4–10]. With regard to the strategies for defending cloned tag attacks, as
mentioned earlier in Section 5.1, there exist two different approaches: prevention and
detection.

The primary means to prevent cloned RFID tags from being made is to encrypt the
data contained in RFID tags via public/private keys to make it difficult to be revealed
and cloned, and many such mechanisms have been proposed. Lehtonen et al. [11]
proposed to use the memory of RFID tag to save a secret key which will be updated
every time the tag goes through a successful reading. Abawajy [12] suggested a mecha-
nism to enhance RFID tags’ resistance against being cloned by protecting RFID tags’
identifications and recognitions. As an emerging encryption technique, physically
unclonable function devices [13,14] use the “finger print” that is unique and intrinsic
to each piece of semiconductor hardware to secure the secret key. Closely related to

p , g

Modeling and tracing events in RFID-enabled supply chains 87

RFID tag data encryption is the RFID communication authentication. Two lightweight
RFID authentication protocols are proposed in References 15 and 16, respectively,
where the first protocol allows tags and readers/writers to authenticate to each other,
and the second protocol only requires Hash or XOR operations be performed in tag
memory. Shen et al. [17] presented a novel anonymous RFID authentication protocol
which not only provides authentications but disguises RFID tags against attackers by
giving them fake names, as well.

Unfortunately, encryption of data and the subsequent authentication require both
complex algorithms/computations and communication overheads between RFID tag
memory and the EPC reader/writer, and thus generally cannot be sustained by the typ-
ically simple, lightweight, resource-limited RFID tags (e.g., the standard EPC C1G2
tags). Moreover, a cloned RFID tag, although not being the original tag, is a perfect
duplication of the original tag possessing not only an identical EPC content but also
a legitimate private key, and therefore is able to pass the identity authentication in the
same way as an authentic RFID tag would. Since there is essentially no effective way
to prevent cloned RFID tags from being made [11], extensive studies have been con-
ducted on the detection of cloned tags after they are injected into RFID supply chains.

Mirowski and Hartnett [18] investigated a method that detects the change of the
RFID tag ownership by checking the combination of reader/writer operations, tag
and reader/writer identifications, and the time stamps of tag events. Kerschbaum and
Oertel [7] proposed a machine-learning technique that detects clone existence sug-
gesting tag anomaly by pattern matching. By noting the cloned tags and authentic
tags always respond at the same time to the message sent by the reader/writer,
and these simultaneous responses will inevitably collide in an unreconciled fash-
ion, Bu et al. [19] suggested that cloned tags can be uncovered by such unreconciled
collisions. A batch clone detection mechanism was discussed in Reference 20 where
each supply chain partner generates a random number when it processes a batch of
RFID products. This generated random number is sent to a central server and the
server detects the existence of cloned tags by checking the consistency of the gener-
ated numbers. Another method of detecting cloned RFID tags is to check the history
record of events of the suspected tag against some predefined criteria [1,3]. Basically,
if all criteria are passed, then the suspected tag is a genuine tag; otherwise, it has a
strong probability of being a cloned tag.

The topic of this chapter is the modeling and tracing of tag events, which serve
as the foundation for event history record-based clone detection techniques.

5.3 The RFID-enabled supply chain system

As a preparation for the modeling of the RFID supply chains in the next section, here,
we give an overview of the RFID supply chain system.

5.3.1 System architecture

The essential architecture of an RFID supply chain system is illustrated in Figure 5.1.
Every node in the supply chain system/network represents some supply chain partic-
ipant. As such, each node in the supply chain system serves as a node in the larger

p , g

88 Managing the Internet of Things: architectures, theories and applications

s.c.p. A Local
EPCIS

s.c.p. B Local
EPCIS

EPC-DS

Tag Tag

Service-oriented
platform

Data record 1
Data record 2
Data record 3

... ...

A tag transits from
s.c.p. A to s.c.p. B

Data
dissemination

Data
dissemination

Figure 5.1 The architecture of RFID-enabled supply chains (s.c.p. = supply chain
participant)

EPC network, and thus the transition of a product (with an EPC tag) in the sup-
ply chain network naturally gives rise to the flow of the product’s information on
the larger EPC network. Each supply chain partner is equipped with multiple RFID
readers/writers, has a local EPC Information Service (EPCIS) database, and can send
product-related event information (such as product’s EPC and the address of the local
EPCIS) to the remote RFID/EPC Discovery Service (DS). When an EPC tag is read
by a reader at the site of a supply chain partner, a corresponding event will be cre-
ated and saved in the local EPCIS database. Since a tag will be read many times at
many different sites, various events associated with one tag will thus be stored, in a
distributed fashion, at different local EPCIS databases of supply chain participants.
Each supply chain participant (or local EPCIS database) may choose to share, via
RFID infrastructure (EPCglobal network), any event information with other supply
chain participants.

As a service-oriented platform, the DS can be consulted by a third-party program
(e.g., a counterfeit product detection program) in its process of tracing all events
related to this product, and in the program’s subsequent analysis and decision-making,
once a product is sold at a retailer which triggers the execution of the program.
Also, a third-party program may be allowed to access the local EPCISs to collect
required data and analyze relevant events via authentication and/or access control
mechanisms [21,22], which is useful in terms of the optimization of the system.

Throughout this chapter, we make the following assumptions/stipulations for the
supply chain system.

1. A product and its EPC tag are regarded as one single item that cannot be separated.
2. Each tag has a limited amount of memory with basic functionalities only. There is

no communication authentication between a tag and the tag reader/writer, which
is consistent with the widespread use of the unpowered tags, especially EPC
C1G2 tags, in the real-world RFID supply chains.

p , g

Modeling and tracing events in RFID-enabled supply chains 89

3. The identification of a tag cannot be altered. But the contents of a tag’s memory
can be read and (re)written.

4. An event will be created and saved in the local EPCIS database whenever a
tag is being read or written. The information contained in such an event should
include the EPC of the product, the time when this event occurs, the location
of the local supply chain participant, and the nature of the business transaction
(e.g., shipping, receiving, and inventory).

5. Two special events (beginning event and ending event) will be created, respec-
tively, when a product enters the supply chain and exits the supply chain.
The former characterizes the activity when an EPC tag is assigned to a prod-
uct at a manufacturer, and the latter characterizes the activity of a product being
sold at a retailer.

6. Supply chain participants generally agree to share the event data with one another.
7. Any supply chain participant only knows its direct business partners, and may

choose to leave or join the supply chain at any time.

5.3.2 The discovery service mechanism

In RFID-enabled supply chains, only supply chain participants (companies) that have
processed an EPC tag are allowed to query information related to this specific tag by
sending requests to the DS. In terms of the working mechanism of the existing DS
in real-world supply chains, there are the following four models: (1) catalog service
model, (2) query delay model, (3) data consolidation model, and (4) secure data
model, as shown in Figure 5.2. We briefly explain each of them below.

● Catalog service model: The DS will return the relevant web addresses (URL)
to the querying company when the DS receives the EPC-searching request from
the querying company. By using the obtained URL, the querying company will
contact the target company directly and acquire the desired results.

● Query delay model: The DS does not return any URL to the querying company
when it receives such a querying request; instead, it redirects the query to the
data-sending company. The data-sending company will return the desired results
directly to the data-querying company.

● Data consolidation model: The DS works in a similar fashion to that of the
query delay model, except that it receives the results returned by the data-sending
company, consolidates it, and sends it to the data-querying company.

● Secure data model: Secure data model [23] is an improved version of the catalog
service model in the sense that both access to the DS database and access to the
data-sending company are securely controlled for the protection of data. Currently,
secure data model is the only DS mechanism that considers the security of data
and protects the privacy of business companies.

5.3.3 Access controls of the secure Data DS

For the sake of privacy of product information, some kind of control over the access
to the product information must be implemented in the mechanism of the secure data

p , g

90 Managing the Internet of Things: architectures, theories and applications

Data querying
company EPC-DS Data sending

company
1. Send data

2. Query
3. Return URL

4. Query
5. Return result

(a)

Data querying
company EPC-DS Data sending

company
1. Send data

2. Query
3. Return URL

4. Query
5. Return result

(b)

Data querying
company EPC-DS Data sending

company
1. Send data

2. Query 3. Redirected query

4. Return result
(c)

Data querying
company EPC-DS Data sending

company
1. Send data

2. Query 3. Redirected query

4. Return result5. Return result
(d)

Figure 5.2 Discovery service models. (a) Catalog service model; (b) secure data
model; (c) query delay model; (d) data consolidation model

model of DS. When a data-sending company releases an event, the related access
control method to this event will be released together with the event. Some basic
strategies regarding business partner identity authentication and product information
access-right authorization in RFID supply chains are proposed by Kywe et al. [22],
where the identity authentication can be handled by the X.509 certification, and the
access-right authorization can be controlled at three levels: public, protected, and
private. If the access control for a product is labeled as “public,” then every individual
is allowed to receive the information about this product from the DS; if it is labeled
as “protected,” then only companies which are related to this product in terms of
business are allowed to receive the information about this product; and if it is labeled

p , g

Modeling and tracing events in RFID-enabled supply chains 91

as “private,” then only the owner itself can access the information about this product,
nobody else can.

A more sophisticated access control mechanism – attribute-based access control
(ABAC) – is proposed in References 24 and 25. Specifically, in ABAC, a product
can be characterized by a combination of subject attributes, object attributes, and
visibility attributes.

● Subject attribute: Subject attributes refer to properties that are related to the
supply chain participant (company) itself, such as the company’s name, ID, role,
and location.

● Object attribute: Object attributes refer to properties that are related to the EPC
events associated with the product, such as the EPC itself, the time and location
of the event, and the business itinerary of the product.

● Visibility attribute: Visibility attributes refer to the relative business relationship
among supply chain participants, and they can be one of the following values:
“upper,” “lower,” and “all.” For example, consider a supply chain that includes raw
material suppliers, manufacturers, distributors, wholesalers, and retailers. Then,
for a distributor, raw material suppliers and manufacturers will be considered
its “upper” partners; wholesalers and retailers will be considered its “lower”
partners; and all participants will be considered its “all” partners.

By combining the above attributes, a data-sending company is able to stipulate the
access control rubrics for a product when disseminating an EPC event associated with
this product. For instance, it can be controlled that some events can only be viewed by
manufacturers, that some companies can only access events that have occurred during
a specific time period, and that some events can only be viewed by their “upper” or
“lower” partners.

5.4 Modeling of the system

We now address the issue of modeling the RFID supply chains.

5.4.1 Events

The RFID-enabled supply chains described in the previous section can be intuitively
and initially modeled as a directed graph such as the one shown in Figure 5.3, where
each node represents a supply chain participant (manufacturer, distribution center,
distributor, or retailer) labeled with EPC tags being processed at that node, and each
edge represents the transition (regular, split, combined, or recall, see explanation
below) of a tag from one supply chain participant to another. For example, the shipment
of a product with tag T1 from manufacturer P1 to distribution center P3 is a regular
transition, while the shipment of a product with tag T3 from distributor P10 to retailer
P11 is a combined transition.

An event takes place when a supply chain participant receives a product, ships
a product, or processes a product. By the studies on EPC tags and supply chains

p , g

92 Managing the Internet of Things: architectures, theories and applications

(e.g., see References 26 and 27), events occurring on supply chains can be essentially
classified into the following categories:

● Regular event: A product/tag transits from one supply chain participant to another
without any changes. Regular events are marked by “r” in our initial model of
supply chains. For example, the edge P1

r−→ P3 in Figure 5.3 represents a regular
event.

● Split event: A product/tag transits from one supply chain participant to another
by splitting its original EPC tag into a set of new tags. For example, a case of beer
with tag Tα containing four six-packs of beer may be split into four individual
six-packs with tags Ta, Tb, Tc, and Td , respectively, which then can be sent to
four different supply chain participants. Split events are marked by “s” in our
initial model of supply chains. In Figure 5.3, the edges P4

s−→ P5, P4
s−→ P6,

and P4
s−→ P7 are all split events.

● Combined event: A set of products with different tags and from different supply
chain partners may transit to one supply chain participant to form a new product
with a new EPC tag. For example, a bottle of beer with tag Tx and a rose with
tag Ty may be combined together to form a new gift product with a new tag
Tz. Combined events are marked by “c” in our initial model of supply chains.
In Figure 5.3, the edges P10

c−→ P11, and P9
c−→ P11 are all combined events.

● Recall event: A product/tag transits back a manufacturer due to the manufacturer’s
recall on products with defects. Recall events are marked by “rc” in our initial
model of supply chains. For example, in Figure 5.3, the edge P2

rc−→ P1 is a recall
event.

Toward defining events formally, we need to take a closer look at the nature of
events. Note that a split event actually occurs at a supply chain participant after some
product has been received, and then the split products will be sent out to other supply

P1

M(T1, T2)

P3

DC(T1)

P2

R(T2)

P4

D(T1)

P5

D(T3)

P6

R(T4)

P7

R(T5)

P10

D(T3)

P11 R(T7)

P9

D(T6)

P8

M(T6)

r

r r

s

s

s

r

c

c

r

rc

Figure 5.3 The various events involved in a supply chain (M = manufacturer,
DC = distribution center, D = distributer, R = retailer, r = regular
transition, s = split transition, c = combined transition, rc = recall
transition)

p , g

Modeling and tracing events in RFID-enabled supply chains 93

chain participants. For example, the edge P4
s−→ P5 in Figure 5.3 in fact involves

the sequence of the following three activities: (1) distributer P4 splits a product with
tag T1 into three products with tags T3, T4, T5, respectively, (2) distributor P4 ships the
product with tag T3 to distributor P5, and (3) the distributor T5 receives it. Clearly, the
split activity occurs within the boundary of distributor P4 before the product with tag
T3 is shipped to P5. The combined events can be characterized in the same fashion.
As such, we refine the types of events as follows:

● Input event: This event describes the fact that a supply chain participant receives
a product from another supply chain participant. There is no product tag change
in this event since the product is simply (shipped and) received.

● Output event: This event describes the fact that a supply chain participant ships
a product to another supply chain participant. There is no product tag change in
this event since the product is simply shipped (and received).

● Split event: This event describes the fact that a supply chain participant divides
one product into several different products. There is a product tag change in this
event.

● Combined event: This event describes the fact that a supply chain participant
combines several different products into one product. There is a product tag
change in this event. (This event can be viewed as the reversal of the split events.)

● Recall event: This event describes the fact that a supply chain participant ships a
product with defects back to the manufacturer. There is no product tag change in
this event for the obvious reason.

Based on the refined types of events, we can formally define an event in
an RFID-enabled supply chain as follows. Let EPC be the set of all EPC tags,
ET = {i, o, s, c, rc} be the set of event types (representing input, output, split,
combined, recall events, respectively), L be the set of locations of supply chain
participants, and T be the set of time stamps. Then an event is a four-tuple

(tp, et, l, t) ∈ (EPC × EPC) × ET × L × T

where

− tp = 〈 fEPC, nEPC〉 ∈ EPC × EPC is a tag pair, with fEPC being the initial tag
and nEPC being the end tag,

− et ∈ ET is the event type,
− l ∈ L is the location where the event occurs,
− t ∈ T is the time stamp when the event occurs,

such that fEPC = nEPC if et = i, o, or rc, and fEPC �= nEPC otherwise.
Note that the last condition in the above definition ensures that there would be

no tag changes in input, output, and recall events, and there would be some tag
changes for split and combined events, as we observed earlier. For example, with
reference to Figure 5.3, the event (〈T1, T1〉, o, P1, t2) represents the fact that a product
with tag T1 is shipped out of the manufacturer P1 at time t2, and the receiver receives
the same product with tag T1; the event (〈T1, T3〉, s, P4, t8) represents the fact that a
product with tag T3 is produced by splitting a product with tag T1 at distributor P4 at

p , g

94 Managing the Internet of Things: architectures, theories and applications

Table 5.1 All events that are associated with the supply chain in Figure 5.3

Supply chain Events
participant

P1 (〈T1, T1〉, o, P1, t2), (〈T2, T2〉, o, P1, t1)
P2 (〈T2, T2〉, rc, P2, t4), (〈T2, T2〉, i, P2, t3)
P3 (〈T1, T1〉, o, P3, t6), (〈T1, T1〉, i, P3, t5)
P4 (〈T3, T3〉, o, P4, t11), (〈T4, T4〉, o, P4, t10), (〈T5, T5〉, o, P4, t9),

(〈T1, T3〉, s, P4, t8), (〈T1, T4〉, s, P4, t8), (〈T1, T5〉, s, P4, t8),
(〈T1, T1〉, i, P4, t7)

P5 (〈T3, T3〉, o, P5, t13), (〈T3, T3〉, i, P5, t12)
P6 (〈T4, T4〉, o, P6, t15), (〈T4, T4〉, i, P6, t14)
P7 (〈T5, T5〉, o, P7, t17), (〈T5, T5〉, i, P7, t16)
P8 (〈T6, T6〉, o, P8, t24)
P9 (〈T6, T6〉, o, P9, t26), (〈T6, T6〉, i, P9, t25)
P10 (〈T3, T3〉, o, P10, t19), (〈T3, T3〉, i, P10, t18)
P11 (〈T7, T7〉, o, P11, t23), (〈T3, T7〉, c, P11, t22), (〈T6, T7〉, c, P11, t22),

(〈T3, T3〉, i, P11, t21), (〈T6, T6〉, i, P11, t20)

time t8; the event (〈T3, T7〉, c, P11, t22) represents the fact that a product with tag T7 is
assembled at retailer P11 by combining a product with tag T3 and other products, at
time t22; and the event (〈T5, T5〉, i, P7, t16) represents the fact that a product with tag
T5 (is shipped by a sender first, and then) enters the retailer P7 at time t16.

For the sake of convenience and the study of event-tracing algorithm later in this
chapter, we enumerate all events associated with Figure 5.3 in Table 5.1, and index
them by the supply chain participants. Note that in Table 5.1, the subscript of time in
events does not suggest any order for associated time stamps. That is, i < j does not
necessarily imply that ti < tj (or ti is earlier than tj). Those subscripts are used purely
to indicate different time stamps.

Note, however, that there is not a one-to-one correspondence between the edges
in Figure 5.3 and the events. For instance, the edge P4

s−→ P5 in fact involves three
different events: a split event, an output event, and an input event, as mentioned
earlier. For this reason, we refine the initial supply chain graph model and formally
define it as follows. An RFID-enabled supply chain is an attributed directed graph

(V , E,A, src, tgt, att)

where

− V is the set of vertices (supply chain participants).
− E is the set of edges.
− A is the set of attributes (events).
− src is the source function from E to V .
− tgt is the target function from E to V .
− att: E → P(A) is the attribute function from E to P(A), where P(A) denotes the

power set of A. That is, att maps an edge to a set of events that are associated
with this edge.

p , g

Modeling and tracing events in RFID-enabled supply chains 95

By this definition, Figure 5.3 can be precisely specified or reformulated by adding
the attributes of its edges. For example, the attribute of the edge e = P4

s−→ P5 is
att (e) = {(〈T1, T3〉, s, P4, t8), (〈T3, T3〉, o, P4, t11), (〈T3, T3〉, i, P5, t12)}, which models
the intended meaning of the supply chain exactly.

5.4.2 Event dissemination

DS is a centralized database which keeps the record of all events that have occurred
at some point in a supply chain, and all supply chain participants’ information such
as their company addresses, phone numbers, website addresses, product data, and
partnership with other companies. The primary purpose of DS is to provide services
to supply chain participants upon their query requests, but the information held at the
DS is private and thus is not available to the general public.

Local EPCISs are the main resources from which DS acquires its data. Critical
pieces of information stored in local EPCISs will be singled out and disseminated to
the DS, so that DS, as a lightweight catalog service system, may allow customers to
locate all information linked to a target product [7–10]. As such, the minimum amount
of data in a DS-record must include a product identifier (i.e. EPC), a pointer (referring
to the information resources about the product), and a time stamp (recording the time
when the record is created).

Any supply chain participant can either register event information to DS, or
request the DS to search some information about a particular supply chain partner.
Particularly, a supply chain participant registers an input event to the DS when it
receives a product, a split event when it decomposes a product into several other
products, a combined event when it assembles a product by piecing several products
together, and an output event when it ships a product to another supply chain partner.

5.5 Tracing events

Given the model of events developed in the previous section, we now turn our attention
to the event tracing,

5.5.1 The algorithm

Given a tag EPC index, the following recursive procedureTrace(index) finds all events
associated with index, and stores them in a global structure ST through updating the
contents of ST repeatedly.

Algorithm: Trace(index)
Input: A tag EPC index.
Output: The set ST of all events associated with index.

Step 1. ST = ∅.
Step 2. Find all events E in DS such that E.TP.nEPC = index, and store all these

events in set S. (TP is the tag pair component of an event and nEPC is the second
component of a tag pair.)

p , g

96 Managing the Internet of Things: architectures, theories and applications

Step 3. Order all events in S, from early to late, in terms of their time component.
Step 4. Search all events in S, looking for events E with E.TP.fEPC �= E.TP.nEPC.

● If no such events can be found, then there are two cases to deal with.
– If S = ∅, then terminate the program.
– Otherwise, all events in S are regular events. In this case, copy all events

in S in the existing order to the front of ST , purge all events from S (i.e.,
S = ∅), and terminate the program.

Trace(index)

Find all events E in
DS with

E.TP.nEPC = index

Order these events by
time and put the
result into set S

Any event E in
S s.t.

E.TP.fEPC ≠
E.TP.nEPC ?

Let F be the first such
event. Set newindex =

F.TP.fEPC

Move F and all
following events into
ST. Update S and ST

accordingly.

call Trace (newindex)

Is S = ?

Move all events in S
to ST

Terminate
the program

yes

no

no

yes

Figure 5.4 Flow chart of the event-tracing algorithm

p , g

Modeling and tracing events in RFID-enabled supply chains 97

● Otherwise, proceed to step 5.
Step 5. Let E be the first event in S with E.TP.fEPC �= E.TP.nEPC, and

newindex = E.TP.fEPC. Copy E and all events after E, in existing order, to
the front of ST , and purge them from S. Update S and ST accordingly.

Step 6. Call Trace(newindex) recursively.
Step 7. Go back to step 4 to continue process the remaining events in S.

The flow chart of the above algorithm is depicted in Figure 5.4, which gives a
visual explication of the working mechanism of the algorithm.

5.5.2 Event-tracing examples

To see clearly how the event-tracing algorithm works, we present two examples here
with reference to Figure 5.3.

Example 1. As the first example, we illustrate the event tracing for the tag T5. The
event-tracing action, Trace(T5), is triggered when the product with tag T5 is sold
at retailer P7. Detailed results at stages of the execution of Trace(T5) are shown in
Table 5.2. Basically, the call Trace(T5) updates S and ST , and issues a recursive call
Trace(T1). The call Trace(T1) updates its local S and the global ST , and returns to
its caller Trace(T5). The continued execution of Trace(T5) terminates immediately
since its local S is empty. The final contents of ST resulted in by the call Trace(T5)
is: {(〈T1, T1〉, o, P1, t2), (〈T1, T1〉, i, P3, t5), (〈T1, T1〉, o, P3, t6), (〈T1, T1〉, i, P4, t7),
(〈T1, T5〉, s, P4, t8), (〈T5, T5〉, o, P4, t9), (〈T5, T5〉, i, P7, t16), (〈T5, T5〉, o, P7, t17)}.

A more comprehensive instance of tag event tracing is given in the next
example.

Table 5.2 Computation of Example 1

Trace(T5)

initial S {(〈T1, T5〉, s, P4, t8), (〈T5, T5〉, o, P4, t9), (〈T5, T5〉, i, P7, t16), (〈T5, T5〉, o, P7, t17)}
initial ST ∅
updated S ∅
updated ST {(〈T1, T5〉, s, P4, t8), (〈T5, T5〉, o, P4, t9), (〈T5, T5〉, i, P7, t16),

(〈T5, T5〉, o, P7, t17)} ∪ current ST
recursive call Trace(T1)

Trace(T1)

initial S {(〈T1, T1〉, o, P1, t2), (〈T1, T1〉, i, P3, t5), (〈T1, T1〉, o, P3, t6), (〈T1, T1〉, i, P4, t7)}
initial ST {(〈T1, T5〉, s, P4, t8), (〈T5, T5〉, o, P4, t9), (〈T5, T5〉, i, P7, t16), (〈T5, T5〉, o, P7, t17)}
updated S ∅
updated ST {(〈T1, T1〉, o, P1, t2), (〈T1, T1〉, i, P3, t5), (〈T1, T1〉, o, P3, t6),

(〈T1, T1〉, i, P4, t7)} ∪ current ST
recursive call No recursive call. Trace(T1) terminates and returns.

p , g

98 Managing the Internet of Things: architectures, theories and applications

Table 5.3 Computation of Example 2

Trace(T7)

initial S {(〈T6, T7〉, c, P11, t22), (〈T3, T7〉, c, P11, t22), (〈T7, T7〉, o, P11, t23)}
initial ST ∅
updated S {(〈T6, T7〉, c, P11, t22)} | ∅
updated ST {(〈T3, T7〉, c, P11, t22), (〈T7, T7〉, o, P11, t23)} |

{(〈T6, T7〉, c, P11, t22)} ∪ current ST
recursive call Trace(T3) | Trace(T6)

Trace(T3)

initial S {(〈T1, T3〉, s, P4, t8), (〈T3, T3〉, o, P4, t11), (〈T3, T3〉, i, P5, t12), (〈T3, T3〉, o, P5, t13),
(〈T3, T3〉, i, P10, t18), (〈T3, T3〉, o, P10, t19), (〈T3, T3〉, i, P11, t21)}

initial ST {(〈T3, T7〉, c, P11, t22), (〈T7, T7〉, o, P11, t23)}
updated S ∅
updated ST {(〈T1, T3〉, s, P4, t8), (〈T3, T3〉, o, P4, t11), (〈T3, T3〉, i, P5, t12), (〈T3, T3〉, o, P5, t13),

(〈T3, T3〉, i, P10, t18), (〈T3, T3〉, o, P10, t19), (〈T3, T3〉, i, P11, t21)} ∪ current ST
recursive call Trace(T1)

Trace(T1)

initial S {(〈T1, T1〉, o, P1, t2), (〈T1, T1〉, i, P3, t5), (〈T1, T1〉, o, P3, t6), (〈T1, T1〉, i, P4, t7)}
initial ST {(〈T1, T3〉, s, P4, t8), (〈T3, T3〉, o, P4, t11), (〈T3, T3〉, i, P5, t12), (〈T3, T3〉, o, P5, t13),

(〈T3, T3〉, i, P10, t18), (〈T3, T3〉, o, P10, t19), (〈T3, T3〉, i, P11, t21)} ∪
{(〈T3, T7〉, c, P11, t22), (〈T7, T7〉, o, P11, t23)}

updated S ∅
updated ST {(〈T1, T1〉, o, P1, t2), (〈T1, T1〉, i, P3, t5), (〈T1, T1〉, o, P3, t6),

(〈T1, T1〉, i, P4, t7)} ∪ current ST
recursive call No recursive call. Trace(T1) terminates and returns.

Trace(T6)

initial S {(〈T6, T6〉, o, P8, t24), (〈T6, T6〉, i, P9, t25), (〈T6, T6〉, o, P9, t26)}
initial ST {(〈T6, T7〉, c, P11, t22)} ∪

{(〈T1, T1〉, o, P1, t2), (〈T1, T1〉, i, P3, t5), (〈T1, T1〉, o, P3, t6), (〈T1, T1〉, i, P4, t7)} ∪
{(〈T1, T3〉, s, P4, t8), (〈T3, T3〉, o, P4, t11), (〈T3, T3〉, i, P5, t12), (〈T3, T3〉, o, P5, t13),
(〈T3, T3〉, i, P10, t18), (〈T3, T3〉, o, P10, t19), (〈T3, T3〉, i, P11, t21)} ∪
{(〈T3, T7〉, c, P11, t22), (〈T7, T7〉, o, P11, t23)}

updated S ∅
updated ST {(〈T6, T6〉, o, P8, t24), (〈T6, T6〉, i, P9, t25), (〈T6, T6〉, o, P9, t26)}∪ current ST
recursive call No recursive call. Trace(T6) terminates and returns.

Example 2. This example shows how the result of tracing the tag T7 is obtained, and is
illustrated in Table 5.3. The initial call Trace(T7) yields the top portion of the table and
issues a recursive call Trace(T3). The call Trace(T3) generates the second portion of
the table and issues another recursive call Trace(T1). The call Trace(T1) produces the
third portion of the table and terminates/returns. Note that at this point, the termination
of Trace(T1) sends control back to its caller Trace(T3). The continued execution of
Trace(T3) immediately terminates itself and sends control back to its caller Trace(T7).

p , g

Modeling and tracing events in RFID-enabled supply chains 99

Trace(T7) now goes into the second round of processing (the remaining) events in S.
Specifically, it purges the only event {(〈T6, T7〉, c, P11, t22)} left in S, inserts it to the
front of ST , and then issues another recursive call Trace(T6), which generates the
bottom portion of the table. The status of updated S, updated ST , and recursive calls
in the call Trace(T7) which are associated with the two rounds of processing events
in S, are marked by the symbol | in Table 5.3.

The final result of ST , returned by the call Trace(T7), is: {(〈T6, T6〉, o, P8, t24),
(〈T6,T6〉, i, P9, t25), (〈T6,T6〉, o, P9, t26), (〈T6,T7〉, c, P11, t22), (〈T1, T1〉, o, P1, t2), (〈T1,T1〉,
i, P3, t5), (〈T1, T1〉, o, P3, t6), (〈T1, T1〉, i, P4, t7), (〈T1, T3〉, s, P4, t8), (〈T3, T3〉, o, P4, t11),
(〈T3, T3〉, i, P5, t12), (〈T3, T3〉, o, P5, t13), (〈T3, T3〉, i, P10, t18), (〈T3, T3〉, o, P10, t19),
(〈T3, T3〉, i, P11, t21), (〈T3, T7〉, c, P11, t22), (〈T7, T7〉, o, P11, t23)}.

5.6 Conclusion

Finding RFID tags’ behavioral discrepancies by examining RFID tag event records
is an important and effective method for detecting cloned tags in RFID-enabled sup-
ply chains. However, most event models for RFID tags deal with simple events
only and thus fail to characterize the tag events in real-world RFID supply chains.
We have in this chapter provided a new event model and the corresponding event-
tracing algorithm for RFID supply chains. While the newly proposed event model is
able to successfully capture some of the complicated event scenarios in real-world
RFID supply chains, the event-tracing algorithm designed for the newly proposed
event model provides a foundation for future more powerful clone detection techniques
that aim to tackle the cloned tag detection problem more effectively.

An immediate future research work would be to extend the existing event-record-
based clone detection techniques by integrating the work of this chapter into them.

References

[1] D. Zanetti, L. Fellmann, and S. Capkun, “Privacy-preserving clone detection
for RFID-enabled supply chains,” in 2010 IEEE International Conference on
RFID, April 2010, pp. 37–44.

[2] D. Zanetti, S. Capkun, and A. Juels, “Tailing rfid tags for clone detection,” in
Network and Distributed System Security Symposium (NDSS), April 2013.

[3] J. Huang, X. Li, C. Xing, W. Wang, K. Hua, and S. Guo, “Dtd: A novel
double-track approach to clone detection for RFID-enabled supply chains,”
IEEE Transactions on Emerging Topics in Computing, in press.

[4] J. Khor, W. Ismail, and M. Rahman, “Prevention and detection methods
for enhancing security in an RFID system,” International Journal of Dis-
tributed Sensor Networks, vol. 2012, Article ID 891584, 8 pages, 2012.
doi:10.1155/2012/891584.

[5] W. Xin, “Research on the security and privacy issues in RFID-based supply
chains,” Ph.D. dissertation, Peking University, 2013.

p , g

100 Managing the Internet of Things: architectures, theories and applications

[6] V. Hinkka and J. Tatila, “RFID tracking implementation model for the technical
trade and construction supply chains,” Automation in Construction, vol. 35,
no. 1, pp. 405–414, 2013.

[7] F. Kerschbaum and N. Oertel, “Privacy-preserving pattern matching for
anomaly detection in RFID anti-counterfeiting,” in Proceedings of the 6th
International Workshop on RFID Security, 2010, pp. 124–137.

[8] M. Lehtonen, F. Michahelles, and E. Fleisch, “How to detect cloned tags in a
reliable way from incomplete RFID traces,” in Proceedings of the 2009 IEEE
International Conference on RFID, 2009, pp. 257–264.

[9] T. Mackey and B. Liang, “The global counterfeit drug trade: patient safety and
public health risks,” Journal of Pharmaceutical Sciences, vol. 100, no. 11, pp.
4571–4579, 2011.

[10] K. Koscher, A. Juels, V. Brajkovic, et al., “Epc rfid tag security weaknesses and
defenses: Passport cards, enhanced drivers licenses, and beyond,” in Proceed-
ings of the 2009 ACM Conference on Computer and Communications Security,
2009, pp. 33–42.

[11] M. Lehtonen, D. Ostojic, A. Ilic, and F. Michahelles, “Securing RFID systems
by detecting tag cloning,” in Pervasive Computing, Lecture Notes in Computer
Science, H. Tokuda et al., editors, 2009, vol. 5538, pp. 291–308.

[12] J. Abawajy, “Enhancing RFID tag resistance against cloning attack,” in Third
International Conference on Network and System Security, 2009, pp. 18–23.

[13] Q. L. Xiang, P. Q. Zhang, D. S. Ouyang, and C. H. Feng, “Multiple fre-
quency slots based physical unclonable functions,” Journal of Electronics and
Information Technology, vol. 34, no. 8, 2012, pp. 2007–2012.

[14] H. S. Kou, Z. N. Zhang, and J. Ma, “Physical unclonable function based RFID
mutual authentications,” Computer Engineering, vol. 39, no. 6, 2013.

[15] T. Dimitriou, “A lightweight rfid protocol to protect against traceability and
cloning attacks,” in First International Conference on Security and Privacy for
Emerging Areas in Communications Networks, 2005, pp. 59–66.

[16] Z. H. Niu and X. H. Wu, “Physical unclonable function based RFID mutual
authentications,” Chinese Journal of Engineering Mathematics, vol. 27, no. 5,
2010.

[17] J. Shen, D. Choi, S. Moh, and I. Chung, “A novel anonymous RFID authenti-
cation protocol providing strong privacy and security,” in 2010 International
Conference on Multimedia Information Networking and Security, 2010, pp.
584–588.

[18] L. Mirowski and J. Hartnett, “Deckard: A system to detect change of RFID tag
ownership,” Journal of Computer Science and Network Security, vol. 7, no. 7,
pp. 89–98, 2007.

[19] K. Bu, X. Liu, J. Luo, et al., “Unreconciled collisions uncover cloning attacks
in anonymous rfid systems,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 3, pp. 429–439, March 2013.

[20] J. Shi, S. M. Kywe, andY. J. Li, “Batch clone detection in RFID-enabled supply
chain,” in 2014 IEEE International Conference on RFID, 2014, pp. 118–125.

p , g

Modeling and tracing events in RFID-enabled supply chains 101

[21] B. J. Albert and C. Li, “The radio frequency identification tag with the func-
tion of anti-collision and anti-counterfeiting,” in Proceedings of the Ninth
International Conference on Machine Learning and Cybernetics, 2010, pp.
2681–2686.

[22] S. M. Kywe, Y. Li, and J. Shi, “Attack and defense mechanisms of malicious
EPC event injection in EPC discovery service,” in Proceedings of the 2013
IEEE International Conference on RFID-Technologies andApplications, 2013,
pp. 1–6.

[23] W. Zhao, X. Y. Liu, S. K. Zhang, and L. F. Wang, “A double random number
based secure communication mechanism of RFID discovery service,” Chinese
Journal of Electronics, vol. 41, no. 1, pp. 153–160, 2013.

[24] J. Shi, D. Sim, Y. Li et al., “A secure EPC discovery services system in EPC-
global network,” in Proceedings of the second ACM conference on Data and
Application Security and Privacy, 2012, pp. 267–274.

[25] J. Worapot, Y. Li, and A. Somjit, “Design and implementation of the EPC
discovery services with confidentiality for multiple data owners,” in 2010
IEEE International Conference on RFID-Technology and Applications, 2010,
pp. 19–25.

[26] D. Kim, J. Kim, and S. Lee, “Design and implementation for EPC system
method to authentication and cryptography,” in Proceedings of the 2008
International Conference on Information Security and Assurance, 2008,
pp. 137–141.

[27] F. Kerschbaum, “An access control model for mobile physical objects,” in
Proceedings of the 15th ACM symposium on Access control models and
technologies, 2010, pp. 193–202.

This page intentionally left blank

p , g

Chapter 6

A new clone detection approach in RFID-enabled
supply chains

Cong-cong Xing1, Jun Huang2, Kun Hua3,
and Song Guo4

Abstract

We propose a new method for detecting cloned tags in RFID-enabled supply chains,
aiming to overcome the deficiencies of the existing clone detection techniques in
RFID supply chains, caused in partial by the dynamic changes and incidents in radio
frequency identification (RFID) supply chains. We first provide a formal (categorical)
model for the activities in RFID supply chains, and then present a new cloned tag
detection technique by adding a verification bit into tag events, which is followed
by some clone detection examples. Next, we compare the performance of the newly
proposed clone detection technique against Zanetti’s clone detection mechanism by
conducting relevant experiments, and finally discuss the related work in the literature.
The results of the experiments demonstrate that our proposed mechanism is effective,
reasonable, and outperforms Zanetti’s work in terms of hit rate.

6.1 Introduction

In radio frequency identification (RFID)-enabled supply chains, a unique product
identifier, namely, the electronic product code (EPC), is tagged on each product. Since
EPC-related information of products is stored in the local EPC Information Services
(EPCIS) located at each supply chain participant and is processed individually,
various supply chain participants may record, store, and share their product-related
information by leveraging RFID infrastructures (e.g., EPC-global Network).

1Department of Mathematics/Computer Science, Nicholls State University
2Institute of Electronic Information and Networking, Chongqing University of Posts and Telecommunica-
tions
3Department of Electrical and Computer Engineering, Lawrence Technological University
4School of Computer Science and Engineering, The University of Aizu

p , g

104 Managing the Internet of Things: architectures, theories and applications

Although the implementation of a transparent and real-time supply chain manage-
ment system and the improvement of warehouse management efficiency for logistics
enterprises can be achieved by employing the RFID technology, it, unfortunately,
also brings in several issues. For example, cloned tags, once in the hands of crimi-
nals and/or terrorists, may endanger the safety of patients in health-care industry [1],
threaten the national security and the military force of a country [2], and strike seri-
ous economic damages in logistics industries [3–6] leading to consumers’ interest and
property losses. As such, various clone attack prevention and clone attack detection
techniques have been studied aiming to effectively address these issues.

Clone attack prevention: Clone attack prevention methods are cryptography-
based techniques (such as encryption, decryption, and authentication) and are
composed of (cryptographic) key distributions and management policies. Unfortu-
nately, these prevention techniques, due to their requirements for extra storage spaces
and additional encryption operations [3,7], are not suitable for being deployed in those
low-cost RFID tags that typically have very low computational power.

Clone attack detection: As no clone attack prevention strategies can completely
prevent cloned tags from transpiring, clone attack detection techniques will play a
significant and complement role. When the security system of a supply chain is
shut down or weakened, counterfeiters can inject a large number of cloned tags into
the supply chain. In this case, clone attack detections are the only way to protect
the interests of consumers, and thereby are the foundation of the security infras-
tructure. Clearly, the importance of studying clone detection techniques cannot be
overstated.

This chapter proposes an efficient clone detection approach, coined double-track
clone detection (DTD). The proposed approach stores a verification value ν in a tag’s
memory, which is subsequently updated to ν + 1 after the tag is read by the reader.
This verification value is part of the data associated with any event that occurs at
any supply chain participant. For the sake of privacy protection, the initial ν-value
is set to be a random number (within permitted range). We assume that the ν-value
is 8-bit long, the EPC of a tag cannot be modified, but the memory of a tag can
be read and rewritten. All ν-values of a tag form a verification sequence as the tag
transits along the supply chain. While the ν-value sequence constitutes one track
of product information, business transaction information of events forms another.
The newly proposed clone detection scheme checks the correctness of both tracks
with reference to specific tag events. Note that even if the ν-value is modified by
attackers, the proposed approach can still detect clones because the modification will
probably cause duplicated ν-values. Due to its independence of a predefined structure
of supply chains and on the information flow of products, the proposed DTD approach
not only fits well to supply chains that change dynamically, but is suitable for general
deployment as well.

The remainder of this chapter is organized as follows. Section 6.2 presents a
formal (categorical) characterization of product flows in RFID-enabled supply chains.
Our proposed clone detection approach is introduced in Section 6.3, and is evaluated
in Section 6.4 with comparison to Zanetti’s work. Section 6.5 discusses the related
work in the literature and Section 6.6 concludes this chapter.

p , g

A new clone detection approach in RFID-enabled supply chains 105

6.2 A categorical perspective of RFID supply chains

In RFID-enabled supply chains, each product is labeled with an RFID tag which
contains an EPC, and an RFID tag and the product to which it is attached are considered
inseparable. So throughout the chapter, the terms RFID tags and EPC tags and the
terms cloned tags and cloned products are both used interchangeably.

The EPC contained in a product is to be read (multiple times) by RFID readers at
different supply chain participants’ locations. Each tag-reading at a location creates an
event (see formal definition below) which is stored in the local EPCIS database. The
created event is a log of a tag reading activity, consists of various pieces of information
related to the tag reading, and can be accessed and shared by all (allowed) RFID sup-
ply chain partners. As such, all events associated with a specific tag during its lifetime
in the supply chain are stored in a distributed manner. Discovery Services (DS) is a
central repository database which is connected to all local EPCIS databases, and may,
upon requests, create a product event history path for each product by accessing var-
ious distributed EPCIS databases. Supply chain participants, such as manufacturers,
wholesalers, as well as retailers, may access the data in DS through authentication
and access control mechanisms. We assume that all supply chain participants are
legitimate and act in good faith.

Below, we give a formal definition of tag events. An event, e(id, t), which is
created for reading a product (identified by its id = EPC) at time t in an RFID supply
chain, is defined as follows:

Id = set of tag identifications (EPCs)

Tm = set of times

L = set of locations of supply chain participants

Tr = {r, s, i}
V = {0, . . . , 255}
S = {tr, fs}

Ev = Id × Tr × L × Tm × V × S

e : Id × Tm → Ev

e(id, t) = (id, τ , �, t, ν, σ) ∈ Id × Tr × L × Tm × V × S

where the meanings of the sets Id, Tm, and L are as explained, and Tr, V , S, and
Ev denote the set of business transactions (receiving (r), shipping (s), and inventory
(i)), the set of verification values, the set of status (i.e., the success (tr) or failure
(fs) of updating the verification value in an event), and the set of events, respectively.
e is a function with domain Id × Tm and codomain Ev, taking a pair of product
identification and time and returns the corresponding event.

Two special events e(id, tin) and e(id, tout) are created for a product when the
product initially enters into the supply chain (i.e., when an EPC tag is assigned to
a product at the manufacturer) and eventually leaves the supply chain (i.e., the product

p , g

106 Managing the Internet of Things: architectures, theories and applications

is sold at a retailer). So cloned products can be easily detected using the corresponding
events if they appear on the supply chain before e(id, tin) or after e(id, tout). An event
is considered to be proprietary and confidential. Any supply chain participants only
know their direct business partners, and can join or leave the supply chain at any time.
We define clones as counterfeit products carrying legitimate EPCs, and multiple
reading results of one tag are assumed to be processed during the data collection
stage.

The activities associated with the clone detection in RFID-enabled supply chains
can be understood and formalized as an Olog model [8] as partially1 shown in
Figure 6.1, in which each box represents an entity type and each arrow denotes a
mathematical function from the source box (domain) to the target box (codomain).
Note that there are multiple arrows going from box E into box D, but only three
arrows are drawn in the diagram for the sake of succinctness. The check mark (

√
)

indicates that the enclosing figure is commutative, i.e., any two paths leaving from
the same source box and ending at the same target box are equivalent in the sense that
they yield the same result. For example, the check mark in the lower right triangle
ABC explicitly states that the EPC which is being read in a tag-reading is exactly the
same EPC of the product for which the tag-reading action is performed.

In fact, the Olog diagram shown in Figure 6.1 precisely constitutes a mathematical
category [8,9]. Let us call this category Tag, and give a brief explanation (or proof)
as follows.

● Ob(Tag): Each box in Figure 6.1 represents an object in category Tag. They are
actually sets of the corresponding entities. For example, box A in Fig 6.1 is the
set of all products.

● Hom(Tag): Morphisms in category Tag are functions (represented by arrows) in
Figure 6.1. Specifically, for any pair of objects a and b in Tag, HomTag(a, b) is
the set of functions depicted in Figure 6.1 and their compositions with a being
domain and b being codomain. For example, the edge from box A to box B labeled
by “has” in Figure 6.1 is a function that sends a product to its unique EPC.

● Identify morphisms: For each object a ∈ Tag, the identify morphism ida for a
is just the identity function from a to itself. In terms of Olog (where functions,
instead of being abstract, are always labeled with English phrases or sentences),
the identity morphism of an object can be understood as or labeled by “doing
nothing.” Note that these identity functions are not shown in Figure 6.1 due to
their trivialness.

● Composition operation: For any morphisms

f ∈ HomTag(a, b) and g ∈ HomTag(b, c),

we have g ◦ f ∈ HomTag(a, c), where ◦ is just the (regular) function-composition
operation. For example, the commutativity (marked by the check sign

√
) of

the lower right triangle ABC in Figure 6.1 suggests that the function labeled by
“directly read” is the composition of the two functions labeled by “is performed

1Some Olog edges are not drawn in the diagram in order not to clutter it.

p , g

A new clone detection approach in RFID-enabled supply chains 107

An event
e(id, t)D

A sequence
of events
{e(idi, ti)}

E

A clone
detectionF

A DS
instance

G

A product A

An EPC B
A tag-
reading

C

A local
supply chain
participant

I

A local
EPCIS
record

H

÷

÷

÷

÷

accesses a specific event info

issues a
check for

operates
on

projects

stores
event info
for a
specific
tag

has

directly
reads

is
performed
for

occurs at

creates

requests
service for a
specific tag

calls for

corresponds

Figure 6.1 The Olog model for RFID-enabled supply chain activities

for” and “has.” In other words, if we rename these three functions as “dr,” “ipf ,”
and “h,” respectively, then we have

dr = h ◦ ipf .

● Identity law: For any identity function ida of object a ∈ Ob(Tag), and any
morphisms f ∈ HomTag(a, b) and g ∈ HomTag(c, a), we have

f = f ◦ ida and g = ida ◦ g

which is guaranteed by the definition of identity function and the definition of
function compositions. So the identity law is satisfied. For instance, looking at
the object C and the function labeled by “directly reads” in Figure 6.1, the identity
law instance dr = dr ◦ idC can be intuitively understood as: for a tag-reading, the
sequence of “doing noting” activity followed by the “directly reads” activity is
equivalent to the “directly reads” activity alone.

● Composition law: For any morphisms f ∈ HomTag(a,b), g ∈ HomTag(b,c) and h ∈
HomTag(c,d), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

which is, again, guaranteed by the definition of function compositions. Hence
the composition law is also satisfied. For instance, looking at the three functions

p , g

108 Managing the Internet of Things: architectures, theories and applications

A

BC

h

dr = h ○ ipf

ipf

idB

idA

idC

Figure 6.2 Part of the Tag category

labeled by “occurs at,” “calls for,” and “operates on” in Figure 6.1, the composition
law regarding them can be understood as: the sequence of events operated on by a
clone detection which is the result of the request of a local supply chain participant
where the related tag-reading occurs, is the same sequence of events which is the
result of a local supply chain participant’s calling for clone detection and the
subsequent operation, with the condition that the related tag-reading occurs at
this local supply chain participant.

As an illustrative example for the objects and morphisms (including identity
morphisms) together with morphism compositions, all objects and morphisms in the
category Tag that are directly associated with the lower right triangle in Figure 6.1
are depicted in Figure 6.2.

6.3 The clone detection system

A verification sequence of ν-values for the purpose of detecting clones is formed by
following some stipulated rules except that the initial item in the verification sequence
may be assigned randomly by the manufacturer. Our approach detects the presence
of clones by examining, for two consecutive events in time, the successiveness of the
ν-values and the consistency of business transactions.

6.3.1 ν-Value verification sequence

A ν-value verification sequence for a product is built up by successively updating the
ν-value in the tag of the product. ν-value updating is completed in a non-interactive
manner, i.e., by the participating RFID reader alone. It is a natural extension of the
tag-reading process in the sense that a new event containing the updated ν-value will
be created after the current event (containing an old ν-value) has been read. The
procedure of the ν-value updating includes the following steps: (1) Read the EPC
and the ν-value from the tag memory. (2) Increase ν by 1 and write the result back
into the tag memory. Tag-writing mistakes are indicated by the status attribute σ .
When the reader does not receive an acknowledging response from the tag for the
writing operation, or the writing operation fails, σ will be set to f . (3) Create an event
e(id, t) = (id, �, τ , t, ν, σ), and add it to the local database. Of course, supply chain
participants must agree to the above specifications. In addition, the reader is capable
of signaling a request at any time to disable the σ -attribute.

p , g

A new clone detection approach in RFID-enabled supply chains 109

6.3.2 Event track formation

Any supply chain participants may request any product-related information from the
DS, and the DS can access the distributed EPCIS databases to create a history path of
events – an event track – for any product upon the request from the supply chain par-
ticipants. When requested by supply chain partners, our clone detection approach, as a
third-party service program, may be authorized to access, collect, and analyze all event
data associated with a particular tag EPC to build the track of events for this tag EPC.

6.3.3 Clone detection rules

All available events associated to a specific tag EPC are collected and ordered by
time to form an event path. The machinery of our clone detection approach can be
precisely expressed by the following formulated rules:

(1) e(id, t) = (id, �, τ , t, ν, σ)
(2) For any time ti, if e(id, ti)τ = r,

then e(id, ti+1)τ = s | i and e(id, ti)� = e(id, ti+1)�;
(3) For any time ti, if e(id, ti)τ = s,

then e(id, ti+1)τ = r and e(id, ti)� �= e(id, ti+1)�;
(4) For any time ti, if e(id, ti)τ = i,

then e(id, ti+1)τ = i | s and e(id, ti)� = e(id, ti+1)�;
(5) For any time ti, if e(id, ti)σ = tr = e(id, ti+1)σ ,

then e(id, ti+1)ν − e(id, ti)ν ≡ 1 (mod 256);

where ti and ti+1 represent two arbitrary consecutive points in time, e(id, t)� (respec-
tively, e(id, t)τ , e(id, t)ν , e(id, t)σ) signifies the � (respectively, τ , ν, σ) component of
the e(id, t) tuple, and s | i means s or i.

Formula (1) is just a redisplay of the event formulated in Section 6.3. Following
the standard format of inference rules in logic, all rules are written in the form of “if
A then B” clause where A represents the premise and B represents the conclusion.
Specifically, rule (2) states that for any given event, if the business transaction of this
event is “receiving” (e(id, ti)τ = r), then this event must be followed by a shipping or
inventory event recorded at the same location. In a similar fashion, rule (3) stipulates
that a shipping event recorded at a location must be followed by a receiving event
recorded at a different location, and rule (4) states that an inventory event must
be followed by either an inventory event or a shipping event at the same location.
Rule (5) states that if the verification values of two time-consecutive events are well
documented, then the verification value of the later event is one more than that of the
early event modulo 256. We can regroup rules (2)–(5) into two composite rules as
follows:

Rule I = {rule(2), rule(3), rule(4)} (business transaction track),

Rule II = {rule(5)} (verification sequence track),

and any pair of time-consecutive events passes the clone-check if and only if both
Rule I and Rule II are satisfied.

p , g

110 Managing the Internet of Things: architectures, theories and applications

6.3.4 Clone detection examples

We can examine the correctness of all such pairs for any given set of events through
the above two (composite) rules, thereby forming a double-track inspection for
clones. If all examinations yield correct (pass) results, then there is no presence
of clones; otherwise, some cloned products exist in the supply chain. These two
situations are illustrated in Figure 6.3(a) and (b), respectively. Figure 6.3(a) shows
the detection result for a case where there are no cloned products, and Figure 6.3(b)
shows the detection result for a case where there are some cloned products. Note
that the successful detection of the clone existence in Figure 6.3(b) would not be
possible without Rule II, since Rule I gives a pass to all inspections in this situa-
tion. Incidentally, accidents may conceal the presence of clones or create incorrect
observations leading to a false alarm. There are three types of accidents: misevent,
misread, and miswrite, and their respective effects are illustrated in Figure 6.3(c).
For instance, due to the misevent at time t2 or the miswrite at time t3, the first
examination yields a “fail” and therefore causes a false alarm since there are no
clones involved in that examination. The result of the third examination should
have been a “fail” since there is a cloned product involved in the examination; but
because of the misreading of the clone tag at time t5, no event is created for this
cloned product for that time slot and thus the existence of the cloned product is
concealed.

We now address the issue of determining the cause of failure when the double-
track rule verification yields a negative result. That is, does the failure suggest
the presence of some clone products or is it caused by the combination of misev-
ent, misread, and miswrite? There are basically two approaches to resolving this
issue.

Binomial approach: Assume Pmr is the misreading probability of the reader.
The readings of the tags can be considered binomially distributed as shown in (6.1),
where Nm is the total number of missing events that would be required to restore all
incorrect sequences in the considered track, and N is the total number of events. If the
probability calculated by (6.1) exceeds a certain threshold δ, then the cause of the rule
verification failure can be regarded as clones; otherwise, it is due to the combination
of misevent, misread, and miswrite.

Ptr = 1 −
N∑

k=Nm

CN
k Pk

mr(1 − Pmr)N−k (6.1)

Ptr > δ (Clone) (6.2)

Ptr ≤ δ (Read/Write error) (6.3)

Ratio approach: Let RVf be the number of failed rule verifications, and RV be
the total number of rule verifications. If the ratio of RVf to RV is over a predefined

p , g

A new clone detection approach in RFID-enabled supply chains 111

Tag id = T1

Tag id = T2

Tag id = T3

Time t1 t2 t3 t4 t5

t1

t1 t2 t3 t4 t5 t6

t2 t3 t4 t5 t6

Genuine
tag event

(T1, r, l1,
t1, 10, t)

(T2, r, l1,
t1, 10, t)

(T3, r, l1,
t1, 10, t)

(T3, i, l1,
t2, 11, t)

(T3, s, l1,
t3, 10, t)

(T3, r, l2,
t4, 13, t)

(T3, s, l2,
t6, 14, t)

(T3, i, l2,
t5, 13, t)

(T2, i, l1,
t2, 11, t)

(T2, i, l1,
t3, 12, t)

(T2, s, l1,
t4, 12, t)

(T2, r, l2,
t5, 13, t)

(T2, s, l2,
t6, 14, t)

(T1, i, l1,
t2, 11, t)

(T1, s, l1,
t3, 12, t)

(T1, r, l2,
t4, 13, t)

(T1, s, l2,
t5, 14, t)

Location l1

l1

l1

l1 l1

l1 l2 l2

l1 l2 l2

l1 l1 l2 l2
B. track r i s r s

r i i s sr

V. track 10 11 12 13 14

Rule I Pass Pass Pass Pass

Pass Pass Pass Pass Pass

Pass Pass Pass
Fail Fail Pass
Fail Fail Pass

Pass Pass Fail Pass Pass
Pass Pass Fail Pass Pass

Pass Pass Pass Pass
Pass Pass Pass Pass

Rule II
Result

(a)

Time
Genuine
tag event
Cloned
tag event
Location
B. track
V. track 10 11 12 12 13 14

Rule I
Rule II
Result

(b)

Time
Genuine
tag event
mr/w/e Misevent Miswrite
Cloned
tag event
mr/w/e Misread
Location
B. track r s r s
V. track 10 10 13 14

Rule I
Rule II
Result

(c)

Figure 6.3 Clone detections. (a) Results of a genuine product. (b) Results of a
genuine product mixed with a cloned product. (c) Results of a genuine
product mixed with a cloned product with misevent, misread, and
miswrite being considered (B. track = business transaction track;
V. track = verification value track; mr/w/e = misread, miswrite,
misevent; t = tr)

p , g

112 Managing the Internet of Things: architectures, theories and applications

threshold φ, then the cause of the failure is probably cloned tags; otherwise, the cause
can be attributed to reading/writing mistakes. That is,

R = VRf

VR
(6.4)

R > φ (Clone) (6.5)

R ≤ φ (Read/Write error) (6.6)

The probability method and the ratio method can be coupled with double-track
sequence verifications to determine the presence of clones. The specific steps are as
follows:

(i) Use Rule I and Rule II to determine whether a given pair of time-consecutive
events is in the correct order; the answer is positive if and only if both Rule I
and Rule II are satisfied. There would be no presence of cloned products in the
given set of events if all examinations for all time-consecutive pairs of events
yield a positive answer.

(ii) When the result obtained from step (i) is negative, use (6.1)–(6.3) or (6.4)–(6.6)
to determine the possibility of the presence of clones.

6.4 Evaluation and comparison with peer work

In this section, we evaluate our clone detection scheme by conducting simulation
experiments. A 15-partner supply chain in the form of a FOUR-level binary tree is
constructed by using the Arena [10] simulation software (see Figure 6.4). Products
flow in the supply chain from the manufacturer to retailers via one or several distrib-
utors. Our clone detection approach will be triggered when a genuine or counterfeit
product leaves the supply chain (is sold to customers). The manufacturer (top level)
produces 1 000 genuine products every day, and 10 cloned products are randomly
injected into different levels in the supply chain on a daily basis.2 Specific parameter
settings of the simulation are shown in Table 6.1.

The following aspects regarding our clone detection approach are evaluated:
storage space requirement, computation workload, communication cost, and the
clone detection rate. The use of EPC C1G2 RFID tags is stipulated in the simulation
experiments.

Storage space requirement: Only a small amount (8 bits) of storage space is
required for the ν-value which can be generally met by any (and even low-cost) tags.
Our scheme will not increase the number of events in the local database. Compared
with [12], the set of relevant attributes of each event is extended by ν and σ , resulting
in only 7% increases in event size.

2The clone product injection rate is stipulated to be 1% in the simulation. By the way in which the DTD
works, if the clone injection rate is higher than 1%, then the clone detection rate would not be less than the
current clone detection rate.

p , g

A new clone detection approach in RFID-enabled supply chains 113

RT
(R,PoS)

CIP
RT
(R,PoS)

CIP
RT
(R,PoS)

CIP
RT
(R,PoS)

CIP
RT
(R,PoS)

CIP
RT
(R,PoS)

CIP
RT
(R,PoS)

CIP
RT
(R,PoS)

CIP

DT
(R,R)

CIP
DT
(R,R)

CIP
DT
(R,R)

CIP
DT
(R,R)

CIP

DTC
(R,R)

CIP
DTC
(R,R)

CIP

MN (R)L1

L2

L3

L4

Figure 6.4 A four-level 15-partner binary tree supply chain (MN = manufacturer,
DTC = distribution center, DT = distributor, RT = retailer, R = reader,
PoS = point of sale, CIP = clone injection point, Li = level i). (Adapted
from Zanetti et al. [11])

Table 6.1 Simulation parameters

Parameter Value

Misread probability(Pmr) N (5%, 1%)
Miswrite probability(Pmw) N (5%, 1%)
Misevent probability(Pme) N (5%, 1%)
Production rate for genuine products 1 000 products/day
Production rate for counterfeit products 10 products/day
Production time 2 months
Shipping time 8 AM every day
Stocking time N (3, 0.5) days
Transportation time N (1, 0.25) days
Output load (demand) Uniformly distributed
Supply-chain structure FOUR-level binary tree
ν value 8 bits
Counterfeit injection point Random at any partner

Computation workload: Tags themselves do not perform any computations. Read-
ers only perform a primitive operation (increment by 1 for the ν-value stored in tags),
and the rule verifications are simple and lightweight logical operations.

Communication cost: While our clone detection scheme requires the reader per-
form some extra writing operations, it does not inflict any communication overheads
with the local databases at the back end. Also, compared with the tailing mechanism
in Reference 11 which works on 3 bytes of data (16 bits for the tail and the pointer

p , g

114 Managing the Internet of Things: architectures, theories and applications

0.8

0.85

0.9

0.95

1

False detection rate

H
it

ra
te

10−3 10−2 10−1 100

Zanetti, Pme = 0.05, Pmr = 0.01

DTD, Pme = 0.05, Pmr = 0.01

Figure 6.5 Hit rate comparison between Zanetti’s work and DTD

and 8 bits for the flag), our scheme induces a simpler communication process that
only needs to update the 8-bit ν-value.

Clone detection rate: Note that the presence of clones will not be detected by the
work in Reference 12 when the business transactions in cloned products and in genuine
products are consistent. This issue is well resolved in our clone detection scheme by
enforcing the consecutiveness of the ν-values in two adjacent events in addition to
the requirement of business transaction consistency. Clearly, in theory, clones can
still be potentially detected by our DTD scheme even if the business transactions in
cloned products and in genuine products do not show any evidence of counterfeits,
which will lead to a higher rate of clone detections. This theoretical observation is
verified by the experimental results: the hit rate of our clone detection scheme is
91.3% when the misread probability Pmr = 0.01, misevent probability Pme = 0.05,
and the false detection rate FDR = 0.001, as shown in Figure 6.6. This is a 6%
increase over Zanetti’s work [12] where the same Pmr , Pme, and FDR are used (see
Figure 6.5); moreover, the hit rate of our work is as high as 98.3% when FDR = 0.04.
Also, Figures 6.6 and 6.7 indicate that misread has a greater impact than misevent on
the clone detection rate in our clone detection approach. Note that injecting clones
into a lower level (toward the top of the tree) of the chain generates fewer events than
injecting clones into an upper level (toward the bottom of the tree), and for the same
number of failed incidents on the double-track checking of adjacent event pairs, a
shorter event trace gives a clearer evidence on the presence of clones than a longer
event trace. So, for a fixed false detection rate, the hit rate when clones are injected
into a lower level is higher than that when clones are injected into an upper level,
which is shown in Figure 6.8.

p , g

A new clone detection approach in RFID-enabled supply chains 115

10−3 10−2 10−1 100
0.8

0.85

0.9

0.95

1

False detection rate

H
it

ra
te

Pme = 0.05, Pmr = 0.01

Pme = 0.05, Pmr = 0.05

Figure 6.6 Correlations between Pmr and hit rate with respect to FDR

0.8

0.85

0.9

0.95

1

False detection rate

H
it

ra
te

10−3 10−2 10−1 100

Pme = 0, Pmr = 0.05

Pme = 0.01, Pmr = 0.05

Pme = 0.05, Pmr = 0.05

Figure 6.7 Correlations between Pme and hit rate with respect to FDR

For convenience, comparisons between our DTD strategy and Zanetti’s work [12]
are summarized in Table 6.2. In short, our proposed DTD approach outperforms
Zanetti’s work [12] in term of clone detection rate under the same testing environment
and with the same parameter settings, at the cost of slight increase in tag memory and
decrease in tag processing speed.

p , g

116 Managing the Internet of Things: architectures, theories and applications

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False detection rate

H
it

ra
te

Injection at second level
Injection at third level
Injection at fourth level

10−3 10−2 10−1 100

Figure 6.8 Correlations between clone injection level and hit rate with respect
to FDR

Table 6.2 Comparison between DTD and Zanetti’s work

Aspect Zanetti’s work DTD

Tag memory 96 bits for EPC EPC (96)+ ν-value (8)
Extra EPCIS storage None 7%
Communication cost Low Relative low
Tag processing speed No effect on speed Slow down speed
Clone detection rate Low High
Pragmatics General deployment General deployment

6.5 Related work

Extensive investigations on the cloned products issue in RFID supply chains have
been done in the literature. We in this section review some of these studies.

Staake et al. [13] presented a preliminary study on the supply chain RFID security
solutions in terms of track-and-trace, highlighting the negative impact of incomplete
tracks on cloning attack detections when partners do not record or share the track data.
Mirowski and Hartnett [14] used statistical anomaly to detect clones by checking the
status of the RFID tag ownership, operations of readers, tags and reader IDs, and the
time stamp marks of events. Tag paths (the sequence of visited readers) are verified by
the data saved in tag memory in References 15 and 16. Lee and Bang [17] proposed a
pattern mining algorithm, using event track records to mine the legitimate supply chain
model by which a counterfeit product detection algorithm can be generated. Although

p , g

A new clone detection approach in RFID-enabled supply chains 117

these proposed mechanisms are all suitable for the low-cost EPC C1G2 tags [18,19],
they need the related supply chain structure and product flow information in order
to work properly, and thus will result in some weak performance and less robustness
when the situation is complicated with supply chain dynamic changes, product recalls,
and product transportation errors.

Zanetti et al. [12] proposed a track-and-trace-based privacy-preserving clone
detection method, which detects clones by verifying the correctness of two con-
secutive events in time, without relying on the global knowledge of supply chain
structures or the product flow information. This method works well with product
recalls and product delivery errors; however, the clone detection rate is not improved
with this method. A pattern-matching approach was proposed in Reference 20 by
Kerschbaum and Oertel to detect illegal transactions between supply chain partners.
In Reference 11, Zanetti et al. proposed to add a random tail and a tail pointer in
each user-defined block in EPC tags. In each event, the reader increments the tail
pointer and updates the pointed random bits. Cloned products can be detected by
inspecting the consistency between tails and tail pointers. Although enjoying a rela-
tively high detection rate, this method reduces the tag processing speed, and induces
a large amount of communication and memory overheads. Bu et al. [5,7] suggested
the use of hash functions in detecting clones. Under their schemes, two tags with the
same ID always simultaneously responds to the reader queries when they are within
the reading range of the reader, resulting in the situation that genuine tags and cloned
tags will make inevitable irreconcilable collisions. Because of its requirement that
genuine tags and clone tags must be present at the same time and in the location, this
method can be used only in certain restricted scenarios.

The DTD approach proposed in this chapter simply adds a new and effective
clone detection mechanism to the existing ones in the literature, making a step forward
toward finding the optimal clone detection technique for RFID supply chains.

6.6 Final remarks

Cloned tags/products are a serious issue in RFID supply chains, and conventional
clone detection techniques are inadequate in the sense that they rely on the global
structure of supply chains but the supply chains may change dynamically. Toward
addressing the deficiencies of the conventional cloned products detection techniques,
we have proposed a simple, effective, event-record-based new clone detection tech-
nique that considers both the consistency of business transactions and the consecutive
nature of the proposed ν-value. We argue that this chapter makes the following
contributions.

● The newly proposed technique does not depend on the structure of supply chains
and thus makes it universally applicable.

● The simplicity of the proposed technique makes it practically feasible.
● The newly proposed technique has a competitively high clone detection rate with

a comparably low communication overhead.

p , g

118 Managing the Internet of Things: architectures, theories and applications

● The newly proposed clone detection technique successively captures the cloned
products that will be inevitably overlooked in Zanetti’s work [12]. The verification
values of events in the proposed method form a natural number sequence, and
the strictness and successiveness of natural numbers (i.e., a natural number n has
a unique successor n + 1 and a unique predecessor n − 1) essentially eliminates
any chance for any counterfeit products to exist and remain undetected in an
RFID supply chain.

Possible future work along this line of research would include investigations on
the clone detection techniques where RFID readers may be hijacked and/or supply
chain participants may not act in good faith.

References

[1] E. Lefebvre, L. Castro, and L. A. Lefebvre, “Prevailing issues related to RFID
implementation in the healthcare sector,” in Proceedings of the 10th WSEAS
International Conference on Applied Computer and Applied Computational
Science (ACACOS), Venice, Italy, March 2011, pp. 266–272.

[2] K. Koscher, A. Juels, V. Brajkovic, and T. Kohno, “EPC RFID tag secu-
rity weaknesses and defenses: Passport cards, enhanced drivers licenses,
and beyond,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security, Nov 2009, pp. 33–42.

[3] J. H. Khor, W. Ismail, and M. G. Rahman, “Prevention and detection methods
for enhancing security in an RFID system,” International Journal of Dis-
tributed Sensor Networks (IJDSN), vol. 2012, Article ID 891584, 8 pages,
2012. doi:10.1155/2012/891584.

[4] Z. D. Sun and J. D. Sun, “RWMS: RFID based weapon management system,”
Advanced Materials Research, Vols. 452–453, pp. 386–390, 2012.

[5] K. Bu, X. Liu, J. Luo, B. Xiao, and G. Wei, “Unreconciled collisions
uncover cloning attacks in anonymous RFID systems,” IEEE Transactions
on Information Forensics and Security, vol. 8, no. 3, pp. 429–439, 2013.

[6] M. Lehtonen, F. Michahelles, and E. Fleisch, “How to detect cloned tags in
a reliable way from incomplete RFID traces,” in 2009 IEEE International
Conference on RFID, Orlando, FL, USA, April 2009, pp. 257–264.

[7] K. Bu, X. Liu, and B. Xiao, “Fast cloned-tag identification protocols for large-
scale RFID systems,” in 2012 IEEE 20th International Workshop on Quality
of Service (IWQoS), Coimbra, Portugal, June 2012, pp. 1–4.

[8] D. Spivak, Categroy Theory for the Sciences. MIT Press, Cambridge, MA,
USA, 2014.

[9] S. M. Lane, Categories for the Working Mathematician. Springer, New York,
NY, USA, 1998.

[10] A. Memari, A. Anjomshoae, M. Galankashi, and A. Bin Abdul Rahim,
“Scenario-based simulation in production-distribution network under demand
uncertainty using arena,” in 2012 7th International Conference on Computing

p , g

A new clone detection approach in RFID-enabled supply chains 119

and ConvergenceTechnology (ICCCT), Seoul, Korea (South), December 2012,
pp. 1443–1448.

[11] D. Zanetti, S. Capkun, and A. Juels, “Tailing RFID tags for clone detection,”
in Network and Distributed System Security Symposium (NDSS), San Diego,
CA, USA, April 2013.

[12] D. Zanetti, L. Fellmann, and S. Capkun, “Privacy-preserving clone detection
for RFID-enabled supply chains,” in 2010 IEEE International Conference on
RFID, April 2010, Orlando, FL, USA, pp. 37–44.

[13] T. Staake, F. Thiesse, and E. Fleisch, “Extending the EPC network – The poten-
tial of RFID in anti-counterfeiting,” inACM Symposium onApplied Computing
(SAC 2005), March 2005, Santa Fe, NM, USA, pp. 1607–1612.

[14] L. Mirowski and J. Hartnett, “Deckard: A system to detect change of RFID tag
ownership,” International Journal of Computer Science and Network Security,
vol. 7, no. 7, pp. 89–98, 2007.

[15] E.-O. Blass, K. Elkhiyaoui, and R. Molva, “Tracker: Security and privacy for
RFID-based supply chains,” in 18th Annual Network and Distributed System
Security Symposium (NDSS 2011), San Diego, CA, USA, February 2011.

[16] K. Elkhiyaoui, E.-O. Blass, and R. Molva, “Checker: On-site checking in
RFID-based supply chains,” in Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, Tucson, AZ, USA,
April 2012, pp. 173–184.

[17] H. S. Lee and H. C. Bang, “Detecting counterfeit products using supply chain
event mining,” in 2013 15th International Conference on Advanced Communi-
cation Technology (ICACT), PyeongChang, Korea (South), January 2013, pp.
744–748.

[18] http://www.impinj.com. Retrieved in April 2016.
[19] http://www.rfidchina.org. Retrieved in April 2015.
[20] F. Kerschbaum and N. Oertel, “Privacy-preserving pattern matching for

anomaly detection in RFID anti-counterfeiting,” in Proceedings of the 6th
International Conference on Radio Frequency Identification: Security and
Privacy Issues, Istanbul, Turkey, June 2010, pp. 124–137.

This page intentionally left blank

p , g

Chapter 7

Participatory sensing network: a paradigm
to achieve applications of IoT

Fen Hou1, Jingyi Sun1 and Shaodan Ma1

Abstract

Internet of Things (IoT) aims to provide ubiquitous connectivity and services for indi-
vidual persons and machines. The related applications cover various areas in industry,
healthcare, city management, etc. The efficient information collection is very critical
for the success of these applications. Without enough number of data, it is difficult
for a system to provide high-quality services. Participatory sensing network (PSN) is
a promising paradigm to efficiently collect information/sensing data. Meanwhile, the
incentive mechanism design plays a key role in achieving the collection of enough
number of sensing data in PSN, where the sensor-equipped mobile devices are owned
and controlled by individual users. Most of existing works on incentive mechanism
design focus on the participation of smartphone users, rather than the quality of sens-
ing data. However, data quality is also an important factor for a data collector since
smartphone users may submit the erroneous or unreliable data. Low-quality data will
impact the accuracy of data analysis result and degrade the provided service. There-
fore, data quality should be considered in the incentive mechanism design. Reputation
is one way to evaluate the quality of data provided by a mobile user. In this chap-
ter, we introduce the significance of incentive mechanism design for the applications
of IoT, then we design a reputation-aware incentive mechanism. Taking the quality
of sensing data into account, the proposed mechanism can maximize the weighted
social welfare of the whole system and guarantee the nice features of truthfulness
and individual rationality. Extensive simulations have been conducted to demonstrate
the better performance of the proposed incentive mechanism compared with other
existing methods in terms of the weighted social welfare and the average reputation.

7.1 Introduction

As a new phase of information society, Internet of Things (IoT) is expected to
provide ubiquitous connectivity and services for individual persons and machines.

1Department of Electrical and Computer Engineering, University of Macau, Macao

p , g

122 Managing the Internet of Things: architectures, theories and applications

IoT applications cover various areas [1] such as transportation and traffic control,
smart healthcare, smart environment, and smart city and society. For example, a
smartphone-assisted chronic illness self-management system can collect the real-
time biomedical and environmental data, then the system can provide the intelligent
healthcare service based on the collected data [2].

To make these applications be successful, the efficient information collection
plays one of the most important roles. For instance, without enough data to reflect
the traffic status at different areas in a city, the precise and comprehensive analy-
sis and virtualization of the traffic situation cannot be achieved, which makes the
provision of smart traffic control or intelligent transportation system be difficult.
Participatory sensing network (PSN) is a promising paradigm to efficiently collect
information/sensing data from the surrounding environment such as temperature,
noise level, and traffic situation. Therefore, it plays a key role in the success of IoT
applications.

With the advance of hardware technology, the size of sensor devices becomes
smaller and smaller such that various sensors (e.g., GPS, gyroscope, camera,
accelerometer) have been widely embedded in mobile devices. Meanwhile, we have
witnessed the explosive growth of the mobile users in recent years [3]. The popularity
of sensor-embedded mobile devices in our daily life makes PSN become a promising
paradigm to collect a large amount of high-quality sensing data in different areas
[4,5]. Compared with a traditional fixed sensor network, PSN exists many novelties
in both the network structure and the applications due to its good features in terms
of mobility and scalability. However, it also poses many new challenging issues in
the aspects of mechanism design, resource allocation, and scheduling. Successfully
addressing these challenging issues in PSN will enable the success of IoT.

Incentive mechanism design is one of the most critical challenges to achieve the
collection of enough sensing data in PSN. In a traditional sensor network, enough
sensing data can be easily collected since the sensor network is usually deployed by
some specific service provider (SP), which can control the activity of the deployed
sensors. However, in PSN, the sensor-equipped mobile devices are owned and con-
trolled by individual users. They may be reluctant to involve in the sensing activity
and contribute their sensing data since the process of sensing consumes the resource
of their mobile devices (e.g., power, memory, computing capacity). Therefore, how
to motivate the rational mobile users to participate in the sensing activity is one
of the most significant challenges. If an SP cannot collect enough sensing data,
the service quality (e.g., accuracy of air pollution, traffic congestion) cannot be
guaranteed.

A few research efforts have been made to address this issue. Lee and Hoh [6]
proposed an incentive mechanism using iterative reverse auction, where users could
sell their sensing data to an SP with the claimed bid price. The proposed mechanism
introduced the virtual participation credit to avoid the cost explosion, maintain ade-
quate number of participants, minimize the incentive cost, and prevent the smartphone
users from dropping out of the sensing procedure. However, the designed inventive

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 123

mechanism cannot guarantee the property of truthfulness. Duan et al. [7] designed
incentive mechanisms for data acquisition for the collection of enough data to set
up a database, where a reward-based collaboration mechanism was proposed to for-
mulate this problem as a two-stage Stackelberg game. In the first stage, the client
announced the total reward to the users and the minimum number of users required
for successful building up a database. In the second stage, each user decided whether
to collaborate or not. Yang et al. [8] proposed two incentive mechanisms for the
platform-centric model and the user-centric model, respectively. For platform-centric
model, only one sensing task was considered and a Stackelberg game was adopted,
where the SP announced a total reward and users determined their own sensing plan
accordingly. This mechanism ensures that the utility of platform is maximized but
is not truthful. For user-centric model, multiple sensing tasks were considered and a
reverse auction-based method was proposed. Users can select several tasks and submit
their claimed bid price to the platform, then the platform will determine the winning
users. Koutsopoulos [9] considered the reverse auction design in a participatory sen-
sor network. First, the customers sent queries to the service provider for the requested
data. Next the SP sent a request for data contribution to the mobile users. The mobile
users then declared their participation costs, which was private information, to the SP.
An incentive-compatible mechanism was proposed to specify the participation level
and payment of each mobile user. The objective of the SP was to minimize the total
payment to the MUs, subject to the quality of experience of the customers. Feng et al.
[10] took the location information into consideration and designed a truthful auction
scheme. Jaimes et al. [11] also considered the location information of smartphone
users when selecting the participants. It considered the coverage and the budget con-
straint of SP at the same time. Chen et al. [12] used the double auction to design the
incentive mechanism for both multiple sensing tasks and smartphone users.

Most of related works on incentive mechanism design focus on the participation
of smartphone users, in other words, the data quantity. However, data quality is
also an important factor for a data collector since smartphone users may submit
some erroneous or unreliable data. Low-quality data will impact the accuracy of data
analysis result and degrade the provided service. Therefore, data quality should be
considered in the incentive mechanism design. Reputation is one way to evaluate the
quality of data provided by a mobile user. Kantarci and Mouftah [13] considered the
reputation in the collection of sensing data. However, the proposed method mainly
focused on the improvement of SP utility of SP and cannot guarantee the truthfulness.

Therefore, we aim to take the data quality into the consideration of designing
efficient incentive mechanism with the property of truthfulness and individual ratio-
nality. We use the reputation to evaluate the quality of sensing data a smartphone
user submits. The reputation of each smartphone user can be updated using a repu-
tation system like the one proposed in Reference 9. It reflects the accuracy of recent
reported data. With the consideration of the reputation of smartphone users, we design
a truthful incentive mechanism which can maximize the weighted social welfare, and
improve the overall quality of collected data as well.

p , g

124 Managing the Internet of Things: architectures, theories and applications

7.2 System model

As in Figure 7.1, we consider a participatory sensing system consisting of an SP
and multiple smartphone users. The SP is the promulgator of sensing tasks. It aims
to collect the information in an area through the involvement of mobile users. SP
posts the tasks through mobile phone apps. The smartphone users are the executors of
sensing tasks. They can download and install these apps, and participate in the sensing
procedure. Being at different locations in this area, the smartphone users can execute
these sensing tasks, and submit their sensing data to the SP. The whole sensing area is
divided into many grids denoted by the set G = {1, 2, . . . , m} and one user’s sensing
area can cover multiple grids, as the dashed circle illustrated in Figure 7.1.

Considering that locations may have different degrees of importance to SP, we
let vg represent the significance of the grid g, which denotes the valuation SP can
obtain if she gets the sensing data of the grid g. Let N = {1, 2, . . . , n} be the set of
smartphone users who are interested in the sensing task. Any user i ∈ N is associated
with several attributes:

● The set Gi ⊆ G: which represents the set of grids covered by the user i.
● The true cost ci: which reflects the real cost for the user i to conduct the sensing

task and report the sensing data. Note that true cost ci is the private information
for the user i and not open to any other users and SP.

● The bid price bi: which is the payment that user i hope to receive from the SP to
compensate the cost of conducting sensing task such as energy consumption and
transmission cost. Note that the bid price bi may not equal to the true cost ci. For
instance, the user i may request a bid price higher than its true cost if it can make
her achieve a higher payment.

● The reputation ri: which reflects the quality of sensing data provided by the user i.
Base on the history of the received data, SP evaluates the reputation of each user.
Note that the SP evaluates, updates, and keeps the reputation of each smartphone
user.

Service
provider

Sensing
area

Smartphone
user

13
14

15
16

12
8

4
3

7

1

1

5

Internet

10
9

Figure 7.1 The illustration of a participatory sensing network

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 125

We take the quality of sensing data (i.e., the reputation of smartphone users)
into consideration and use the auction method to design an incentive mechanism.
Smartphone users interested in conducting the sensing task submit their own bid
price bi to SP. Based on the collected bid price bi, i ∈ N , the reputation of each user ri

and the values of grids that each user can cover, SP determines the set of smartphone
users to conduct the sensing task, and calculate the payment for each user. Then,
winning users execute the sensing task and submit their sensing data to SP, and receive
corresponding payment from SP. The allocation rule (winner selection) and payment
rule of the designed incentive mechanism are presented in the following section.

7.3 Problem formulation

Usually, the primary objective of a non-commercial SP (e.g., governmental depart-
ment, a non-profit organization) is to maximize the social welfare of the system. In
this chapter, due to the consideration of quality of sensing data (i.e., the reputation
of smartphone users), we introduce the weighted social welfare, where the achieved
value for the grids covered by the sensing data is weighted by the quality of the sensing
data (i.e., the reputation). The weighted social welfare is defined as follows.

Definition 1 (Weighted social welfare). Weighted social welfare of the participatory
sensing system is defined as the total weighted valuation of grids covered by the
sensing data that SP collects minus the total cost of smartphone users conducting the
sensing task, which is given as:

S =
∑
g∈G

(vg × rg) −
∑
i∈N

(bi × ai) (7.1)

where ai = 1 denotes user i is selected to perform the sensing task, ai = 0 otherwise.
rg = max{rh : h ∈ �g} represents the highest quality (i.e., reputation) among all col-
lected data which cover the grid g, and �g = {i : i ∈ N , ai = 1, dg

i = 1} denotes the
set of all smartphone users who cover the grid g and are selected to conduct the
sensing task. Similarly, dg

i = 1 denotes that the grid g is covered by the sensing area
of the user i, otherwise, dg

i = 0. The frequently used notations in this chapter are
listed in Table 7.1.

Definition 2 (Utility of smartphone user). The utility of user i ∈ N is defined as:

Ui =
{

pi − ci if ai = 1

0 otherwise
(7.2)

where pi is the payment that user i receives from SP, and ci is the true cost of user i.

Our objective is to design a truthful incentive mechanism denoted by � =
(N , G, b, r, v), where given N , G, b, r and v, the SP determines the set of users
to perform sensing task with the objective of maximizing the weighted social welfare
in (7.1). Meanwhile, the SP calculates corresponding payment pi for each user.

p , g

126 Managing the Internet of Things: architectures, theories and applications

Table 7.1 Frequently used notations

Notation Explanation

N set of smartphone users
W set of selected users
W−i set of selected users except i
G set of grids
� feasible set of W
i,g smartphone user, grid
S weighted social welfare
Gi the set of grids covered by user i
S−i weighted social welfare excluding user i from the system
S∗ optimal weighted social welfare
S(W ∗) optimal weighted social welfare with optimal winner W ∗
�g subset of selected users who cover grid g
τi the contribution set of user i
vg value of grid g
bi bid price of user i
ci true cost of user i
ri reputation of user i
pi payment to user i
Ui utility of user i
b bid vector
r reputation vector
v grid value vector
n, m number of smartphone users, number of grids

We adopt the weighted Vickrey-Clarke-Groves (VCG) scheme to design a
reputation-aware incentive mechanism (RAIM). The winner selection rule (i.e., allo-
cation rule) and payment rule of the proposed RAIM are elaborated in detail as
follows.

7.3.1 Allocation rule

Based on the collected bid prices, reputation, sensing coverage of each user, and the
significance of each grid (i.e., the value of each grid), the SP selects a set of users
to perform the sensing task with the objective of maximizing the weighted social
welfare, which can be formulated as:

W ∗ = arg max
W∈�

S =
∑
g∈G

(vg × rg(W)) −
∑
i∈N

(bi × ai(W)) (7.3)

where W denotes a possible allocation result (i.e., the set of users selected to perform
the sensing task). � is the set of all possible allocation results that SP can adopt, and
rg(W) = max{rh : ah(W) = 1, dg

h = 1, h ∈ N }, ai(W) = 1 if i ∈ W .

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 127

Algorithm 1 Proposed incentive mechanism (N , G, b, r, v)

1: //Stage 1: Winner Allocation
2: S∗ = max S
3: W ∗= arg max

W∈�

S

4: //Stage 2: Payment calculation
5: for all i ∈ N do
6: pi = 0
7: end for
8: for all i ∈ W ∗ do
9: S−i = max SN\{i}

10: pi = bi + (S∗ − S−i)
11: end for
12: return (S∗, W ∗, p)

7.3.2 Payment rule

The SP determines the payment pi for each user i. If user i is not selected to perform
the sensing task (i.e., ai = 0), the payment pi = 0; If user i is a winner (i.e., ai = 1),
the payment is

pi = bi + (S∗ − S−i)

=
∑
g∈G

(vg × rg(W ∗)) −
∑

j∈N , j �=i

(bj × aj(W ∗)) − S−i
(7.4)

where S−i denotes the optimal weighted social welfare when excluding user i from
the auction. rg(W ∗) = max{rh : ah(W ∗) = 1, dg

h = 1, h ∈ N }, aj(W ∗) = 1 if j ∈ W ∗.

7.3.3 Proof of properties

In this subsection, we prove our proposed incentive mechanism is individually rational
and truthful.

Theorem 1 (Individually rational). Our proposed incentive mechanism is individually
rational.

Proof. For the users who are not selected as winners, their utility is zero. For each
winning user i ∈ W ∗, his utility Ui satisfies the following property

Ui = pi − ci

= bi + (S∗ − S−i) − ci (7.5)

When bidding truthfully, i.e., bi = ci, Ui = S∗ − S−i ≥ 0. So our proposed incentive
mechanism achieves individually rational.

p , g

128 Managing the Internet of Things: architectures, theories and applications

Theorem 2 (Truthfulness). Our proposed incentive mechanism is truthful.

Before we prove this theorem, we first prove several lemmas.

Definition 3 (Contribution set of user i). Given user i is selected to conduct sensing
task, the contribution set of user i, denoted as τi, is defined as the set of grids that user
i cover and has the highest reputation over all other selected users covering these
grids. We have τi = {g : g ∈ G, ri = max{rh : h ∈ �g}}.

Let W = {i} ⋃
W−i be the set of all selected smartphone users, where W−i denotes

the set of all selected users except i.

Lemma 1. Given the selection result W = {i} ⋃
W−i maximize the weighted social

welfare defined in (7.3), then after excluding user i and removing the grids in the
contribution set τi, the users in the set W−i maximize the weighted social welfare of
the remaining system.

Proof. Given the winner set W = {i} ⋃
W−i. Based on the definition of weighted

social welfare, user i has no contribution to the grids except τi, and all the other users
have no contribution to the grids in τi. So, when we remove i and τi from the system,
the remaining system is not affected. So, the set of users in W−i can still maximize
the weighted social welfare of the remaining system. Hence, Lemma 1 holds.

Lemma 2. If user i wins by bidding bi, she can also win by bidding b′
i < bi.

Proof. The selection rule is to maximize the weighted social welfare, so when user
i wins the auction with the bid price bi, i ∈ W ∗, we can get the largest weighted
social welfare S∗. When user i bids b′

i < bi, based on (7.3), we will get a larger
weighted social welfare S ′ (i.e., S ′ > S∗). So, user i must be a winner too when
bidding b′

i < bi.

Based on the above lemmas, we prove Theorem 2 by showing that no user can
improve her utility by bidding different from her true cost, i.e., Ui ≥ U ′

i for any
bi �= ci, where Ui and U ′

i are the utility of user i when bidding ci and bi, respectively.
We verify all possible cases to show the truthfulness.

Case 1: bi = ci

Based on the payment rule of our proposed mechanism in (7.4), we can easily see
that if bi = ci, the payment p′

i = pi, so we have U ′
i = p′

i − ci = pi − ci = Ui.

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 129

Case 2: bi > ci

Based on Lemma 3, the case user i loses by bidding ci but wins by bidding bi is not
impossible. So we need to consider three subcases:

Subcase 1: User i wins by bidding both bi and ci. In this case, assume the winner set
is denoted as W ∗ when user i bidding ci. Let W ∗ = {i} ⋃

W ∗
−i be the selection result.

Then user i’s utility is

Ui = pi − ci

= ci + (S(W ∗) − S−i) − ci

=
∑
g∈G

(vg × rg(W ∗)) −
∑
j∈N

(cj × aj(W ∗)) − S−i (7.6)

where rg(W ∗) = max{rh : ah(W ∗) = 1, cg
h = 1, h ∈ N }, and aj(W ∗) = 1 if j ∈ W ∗.

Assume the winner set is W ′ when user i bid with bi, let W ′ = {i} ⋃
W ′

−i be the
selection result. Similarly, user i’s utility is

U ′
i = p′

i − ci

= bi + (S(W ′) − S−i) − ci

=
∑
g∈G

(vg × rg(W ′)) −
∑
j∈N

(cj × aj(W ′)) − S−i (7.7)

Based on Lemma 1, if the winner set is W ∗ = {i} ⋃
W ∗

−i, then the subset W ∗
−i

maximize the weighted social welfare of the remaining system, which actually is
excluding user i and removing the grids in τi. We assume the whole system is divided
into two parts: τi and G−i, where G−i = G \ τi. For the part τi, i can maximize it.
For the part G−i, W ′

−i is also the winner set. So the winner set W ∗ and W ′ are same.
Hence, based on (7.6) and (7.7), U ′

i = Ui.

Subcase 2: User i wins by bidding ci but loses by bidding bi. In this case, it is clear
that U ′

i = 0. Ui = pi − ci = bi + (S∗ − S−i) − ci, because S∗ ≥ S−i and bi > ci, so
Ui ≥ 0. Hence, U ′

i ≤ Ui.

Subcase 3: User i loses by bidding both bi and ci. In this case, it is clear that U ′
i =

Ui = 0.

Case 3: bi < ci

Based on Lemma 3, the case user i wins by bidding ci but lose by bidding bi is
impossible. So there are three subcases too.

Subcase 1: User i wins by bidding both bi and ci. We can follow the same analysis in
case 2 above to prove Ui

′ = Ui.

Subcase 2: User i loses by bidding ci but wins by bidding bi. In this case, Ui = 0.
Assume the optimal weighted social welfare is S(W ∗) and S(W ′) when user i bids ci

and bi, respectively. Based on (7.4), when user i bids bi and wins the auction, his/her
payment pi = bi + (S(W ′) − S−i). As we know S−i is the optimal social welfare when

p , g

130 Managing the Internet of Things: architectures, theories and applications

we exclude user i in the auction, actually, its result is equivalent to the case when user
i loses. So S−i = S(W ∗). We can calculate the weighted social welfare (not optimal)
when user i bids ci with the strategy W ′, we denote this value as s, based on the fact
W ′ is not the optimal winner set when bidding ci but is the optimal winner set when
bidding bi, S(W ′) = s + (ci − bi). Hence:

U ′
i = pi − ci

= bi + (S(W ′) − S−i) − ci

= bi + (s + (ci − bi) − S(W ∗)) − ci

= s − S(W ∗) (7.8)

Because S(W ∗) ≥ s, we get U ′
i ≤ 0 = Ui.

Subcase 3: User i loses by bidding both bi and ci. In this case, U ′
i = Ui = 0.

So, based on all the cases talked above, we can get Ui ≥ U ′
i . Hence our proposed

incentive mechanism is truthful.

7.4 Performance evaluation

Simulations have been conducted to evaluate the performance of the proposed incen-
tive mechanism (i.e., RAIM) in terms of the achieved weighted social welfare and
the average reputation of users selected to conduct the sensing task. We compare
RAIM with three other mechanisms: random selection, reverse auction, and TSCM
proposed in Reference 13. For random selection, we randomly select smartphone
users as winners and the total number of winning users is the same as that in RAIM.
For reverse auction, we first sort all users’ bids in ascending order, and then select the
users with smaller bid as winners, and the number of winners is same as RAIM as
well. In TSCM, the winner selection rule is based on users’ reputable marginal value
minus their modified bids. The modified bid of a user is his actual bid divided by his
reputation score.

7.4.1 Simulation setup

We consider a participatory sensing system in which the whole sensing area is
a 200 m × 200 m square. This square is divided into multiple square grids with
10 m × 10 m. Smartphone users are randomly located in this area, and each user’s
sensing coverage includes all the grids within a distance of 20 m from this user, as
shown in Figure 7.2. The bid of each user is uniformly distributed over [1,10]. The
reputation of each user is uniformly distributed over [0,1]. We consider two scenar-
ios. In the first scenario, the value of each grid is uniformly distributed over [1,5]. In
the second scenario, there are three hotspots, in which the grids close to the center
of these hotspots are much more important to the SP, so they have a larger value,

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 131

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Figure 7.2 Simulation setup: the circle denotes user’s sensing area

as shown in Figure 7.3. We set the average value of grids in these two scenarios be
the same.

7.4.2 Truthfulness

To verify the truthfulness of the proposed incentive mechanism, we randomly pick
up one user (ID = 1) whose true cost is 8 and observe how his utility changes when
he bids different values from 1 to 20. Figure 7.4 shows the property of truthfulness
since the user cannot improve her utility by bidding untruthfully.

7.4.3 Weighted social welfare

Figure 7.5 plots the weighted social welfare with different numbers of grids. Compared
with the random selection and reverse auction, the proposed mechanism RAIM can
achieve the largest weighted social welfare. The trends for both scenarios are the same.
Due to the space limit, we only present the simulation results in Scenario 1 here.

Figure 7.6 shows the impact of number of users on weighted social welfare. It is
observed that the proposed RAIM outperforms other counterparts. Compared with
TSCM and random selection, RAIM improves the weighted social welfare by 8.65%
and 48.16%, respectively, with the number of users N = 18.

7.4.4 Average reputation

We use the average reputation over smartphone users selected to conduct the sensing
task to reflect the quality of collected sensing data. From Figure 7.7, it is observed

p , g

132 Managing the Internet of Things: architectures, theories and applications

that RAIM can achieve the largest average reputation, which means that the proposed
mechanism can achieve a higher quality sensing data.

7.5 Conclusion and discussion

We have designed the incentive mechanism RAIM to maximize the weighted social
welfare and improve the quality of sensing data. Our proposed incentive mechanism
is truthful and individually rational. The simulation results have demonstrated the

5

10

15

5

10
15

20

20
2

4

6

Scenario (1)

G
ri

d
va

lu
e

Scenario (2)

20

2

4

6

G
ri

d
va

lu
e

5

10

15

20

5

10

15

Figure 7.3 Scenario (1) no hotspot; Scenario (2): three hotspots

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 133

0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

Bid

U
til

ity

Figure 7.4 c1 = 8

100 225 289 361 400 484 576 676 784
0

20

40

60

80

100

120

140

160

180

200

Number of grids

W
ei

gh
te

d
so

ci
al

 w
el

fa
re

RAIM
Random selection
Reverse auction

Figure 7.5 Weighted social welfare with different number of grids in scenario 1,
n = 15

p , g

134 Managing the Internet of Things: architectures, theories and applications

4 6 8 10 12 14 16 1840

60

80

100

120

140

160

180

200

Number of mobile users

W
ei

gh
te

d
so

ci
al

 w
el

fa
re

RAIM
Random selection
Reverse auction
TSCM

Figure 7.6 Impact of number of users on weighted social welfare, m = 400

4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of mobile users

A
ve

ra
ge

 re
pu

ta
tio

n

RAIM
Random selection
Reverse auction

Figure 7.7 Impact of number of users on average reputation, m = 400

p , g

Participatory sensing network: a paradigm to achieve applications of IoT 135

better performance of our proposed mechanism in terms of weighted social welfare,
average reputation, and truthfulness. In addition to the incentive mechanism design,
another interesting research issue is the integration of PSN with online social network,
which is driven by the popularity of online social network (e.g., Facebook, WeChat,
Twitters, QQ) and benefit both networks.

Acknowledgements

This work is supported by the Research Committee of University of Macau
under grants MYRG2016-00171-FST, MYRG2014-00140-FST, MYRG101(Y1-L3)-
FST13-MSD and MYRG2014-00146-FST, and by the Macau Science andTechnology
Development Fund under grants FDCT 121/2014/A3 and FDCT 091/2015/A3.

References

[1] Atzori L., Iera A., and Morabito G. ‘The Internet of Things: a survey’.
Computer Networks, vol. 54, no. (15), pp. 2787–2805, 2010.

[2] Sha K., Zhan G., Shi W., Lumley M., Wiholm C., and Arnetz B. ‘Spa: a
smart phone assisted chronic illness self-management system with participa-
tory sensing’. Proceedings ofACM HealthNet; Breckenridge, USA, June 2008,
pp. 1–5.

[3] Ericsson J. ‘Ericsson mobility report’. 2014. Available from http://www.
ericsson.com/mobility-report

[4] Lane N.D., Miluzzo E., Lu H., Peebles D., Choudhury T., and Campbell A.T.
‘A survey of mobile phone sensing’. IEEE Communications Magazine, vol.
48, no. 9, pp. 140–150, 2010.

[5] Ganti R.K., Ye F., and Lei H. ‘Mobile crowdsensing: current state and future
challenges’. IEEE Communications Magazine, vol. 49, no. 11, pp. 32–39,
2011.

[6] Lee J.S., and Hoh B. ‘Sell your experiences: a market mechanism based
incentive for participatory sensing’. Proceedings of IEEE International Con-
ference on Pervasive Computing and Communications (PerCom); Mannheim,
Germany, March 2010, pp. 60–68.

[7] Duan L., Kubo T., Sugiyama K., Huang J., Hasegawa T., and Walrand J.
‘Incentive mechanisms for smartphone collaboration in data acquisition and
distributed computing’. Proceedings of IEEE INFOCOM ; Orlando, USA,
March 2012, pp. 1701–1709.

[8] Yang D., Xue G., Fang X., and Tang J. ‘Crowdsourcing to smartphones:
incentive mechanism design for mobile phone sensing’. Proceedings of ACM
18th annual international conference on Mobile computing and networking;
Istanbul, Turkey, Aug 2012, pp. 173–184.

p , g

136 Managing the Internet of Things: architectures, theories and applications

[9] Koutsopoulos I, ‘Optimal incentive-driven design of participatory sens-
ing systems’. Proceedings of IEEE INFOCOM ; Turin, Italy, April 2013,
pp. 1402–1410.

[10] Feng Z., ZhuY., Zhang Q., Ni L.M., and Vasilakos A.V. ‘Trac: Truthful auction
for location-aware collaborative sensing in mobile crowdsourcing’. Proceed-
ings of IEEE INFOCOM ; Toronto, Canada, April 2014, pp. 1231–1239.

[11] Jaimes L.G., Vergara-Laurens I., and Labrador M.A. ‘A location-based incen-
tive mechanism for participatory sensing systems with budget constraints’.
Proceedings of IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom); Lugano, Switzerland, March 2012,
pp. 103–108.

[12] Chen C. and Wang Y. ‘Sparc: Strategy-proof double auction for mobile par-
ticipatory sensing’. Proceedings of IEEE International Conference on Cloud
Computing and Big Data (CloudCom-Asia); Fuzhou, China, December 2013,
pp. 133–140.

[13] Kantarci B. and Mouftah H.T. ‘Reputation-based sensing-as-a-service for
crowd management over the cloud’. Proceedings of IEEE International Confer-
ence on Communications (ICC); Sydney, Australia, June 2014, pp. 3614–3619.

p , g

Chapter 8

Economics of Internet of Things (IoT): market
structure analysis

Cheng Zhang1

Abstract

Over the last few years, the Internet of Things (IoT) has obtained huge attention from
both industry and academia. IoT is a novel paradigm of connecting every possible
things through the current Internet. The core idea is to integrate a variety of things
or objects around us with the global Internet through wired or wireless networks.
The “things” being equipped with sensors, and (or) actuators have powerful com-
putation ability. The sensor-generated data are transmitted through the networks for
further process, while the actuators can receive instructions from network to per-
form certain tasks. While most of the current research studies the technical aspects
of IoT, we concentrate on the economical aspect of an IoT system. Except for some
government-dominated nonprofit projects, most of the IoT systems seek to improve
profit. Therefore, we study how to price the IoT service under different market
structures to maximize the IoT service providers’ revenue.

8.1 Introduction

Over the last few years, the Internet of Things (IoT) has obtained huge attention from
both industry and academia. IoT is a novel paradigm of connecting every possible
things through the current Internet. The core idea is to integrate a variety of things or
objects around us with the global Internet through wired or wireless networks. The
“things” being equipped with sensors, and (or) actuators have powerful computation
ability. The sensor-generated data are transmitted through the networks for further
process , while the actuators can receive instructions from network to perform certain
tasks. For example, a Nursing home IoT system (see Figure 8.1) may compose objects
with gyro sensors, and the objects are connected to the Internet through cellular wire-
less network or Wi-Fi access point. The objects can detect whether the elderly people
fell down in the nursing home. Once the elderly people fell down, the information

1School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan

p , g

138 Managing the Internet of Things: architectures, theories and applications

The elderly people’s information will
be pushed to the subscribed users, who
can be the elderly people’s relatives or
doctors in hospital.

Internet

Platform

Wi-Fi
access pointSensors

Nursing home

Cellular
base station

User

If the elders people in nursing
home fell down, sensor information
is sent through wireless network to
the platform.

2

1

Figure 8.1 IoT solution for a nursing home

will be sent to the platform. On the other hand, the subscribed users who want to know
the status of the elderly people will get the information from the platform through
wired or wireless networks.

As shown in Figure 8.2, horizontally, IoT has the potential to improve system
performance in multidisciplinary such as healthcare, transportation, manufacturing,
and so on [1]. Vertically, the IoT system also have cross layers. We will introduce the
layered IoT system from the bottom.

● Objects layer: The objects layer is at the bottom, including low-level devices such
as various kinds of sensors or actuators. Information is generated from this layer
or the instructions are performed in this layer. Various network interfaces may
be incorporated into the objects to support data transfer through heterogeneous
network. They either direct connect to the communication layer through wireless
networks, or connect among each other with peer-to-peer connections for data
forwarding.

● Communication layer: Data from/to objects is transferred through the commu-
nication layer. Wireless networks such as cellular wireless network, Wi-Fi access
network, or WiMAX access network are used to connect the objects and the gate-
ways, which are further connected to the Internet backbone. Data transmission
with high reliability, high quality, and high security are always the main require-
ment for the communication layers. Even current telecommunication technologies
can be directly applied to IoT, some special requirements of IoT have made how
to design a suitable communication layer a challenging problem.

● Application layer: This layer provides facility for data access and data storage.
Data from objects layer are processed and stored in this layer. Based on the

p , g

Economics of Internet of Things (IoT): market structure analysis 139

Business layer

Application layer

Communication layer

Objects layer

Transportation ...Healthcare

Multidisciplinary

C
ro

ss
 la

ye
r

Figure 8.2 Layered IoT

collected data, services can be produced and then be provided for IoT users.
It can also be combined with cloud system such as Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS).

● Business layer: This layer provides business-related functions for the IoT system,
including business model, business echo system, price and cost, and so on. In
order to provide sustainable IoT system, not only the technologies, but also the
the aspect of business take an important role. Incentives should be provided for
the players (such as network service providers, data service provider, and end
users) involving the IoT system.

In this chapter, we concentrate on the business layer of an IoT system. Except for
some government-dominated nonprofit projects, most of the IoT systems seek to
improve profit. Therefore, we study how to price the IoT service under different
market structures to maximize the IoT service providers profit.

In what follows, we first review some economics models of IoT. Then study the
IoT service pricing problem for profit maximization under monopoly, duopoly, and
oligopoly markets.

8.2 Economic models of IoT

For the business layer of IoT, there are still many aspects, this section discuss some
economic models of IoT and related literature. We classify the economic models
of IoT into three categories: market model, utility model, and cost–benefit analysis
model.

p , g

140 Managing the Internet of Things: architectures, theories and applications

P: Price

Demand function

Supply function

Market equilibrium
point (d0, p0)

d0

p0

d: Demand

Figure 8.3 A simple market and pricing model

Market Model: Markets are where goods and services can be exchanged. Although
money is not necessarily for exchange, it is always used for sellers and buyers to
exchange their goods and services. Therefore, pricing has become an important fac-
tor for the market mechanism. As shown in Figure 8.3, demand for goods or services
always decreases with the price, which is called demand function, and the supply
for goods or services always increases with price, which is called supply function.
The intersection of demand function curve and supply function curve is called mar-
ket equilibrium, where the demand d0 is fulfilled at the price p0. There are different
structures for a market.

The price determination depends on the specific market structure. For example,
in a monopoly market, where only one seller dominated the market, pricing can be
rather high to get the whole surplus of the buyers, while in a duopoly or oligopoly
market, there are many sellers, who compete with each other, and arbitrary price is
not possible since they should consider competitors pricing strategies, or the seller
with high prices will lose buyers.

In IoT area, Munjin and Morin [2] draw an analogy between the smartphone
application marketplaces, e.g., Apple AppStore and Google Play, and the existing
similar trends in the IoT, and they propose a similar market for IoT for data and ser-
vice exchange. However, the authors [2] did not consider the pricing problem in the
proposed IoT marketplace.

Utility model: In economics, utility measures the satisfaction or preferences over some
goods and services. The concept of utility has been adopted in telecommunication
for bandwidth resource allocation. As shown in Figure 8.4, utility is a logarithmic
function of allocated bandwidth, which has the property of “diminishing returns.”
Instead of allocating bandwidth equally for users, the bandwidth is allocated based
on the utility of each user to maximize the overall satisfaction of all users.

Al-Fagih et al. [3] introduced utility to quantify the quality of service perfor-
mance of the sensor data for a smart city system. The systems include access points,

p , g

Economics of Internet of Things (IoT): market structure analysis 141

U: User’ utility

U = ln(x + 1)

x: Bandwidth allocated to user

Figure 8.4 A kind of user’s utility model

Benefit

Cost

Figure 8.5 Cost–benefit analysis

gateways, data collectors, and sensor nodes. The access points initiate data request
based on clients’ request, and the date generated by the sensors are collected by data
collectors then transferred by gateway. The utility is defined as a function of delay,
quality, and trust parameters. The system tries to maximize the clients’ gain through
the aforementioned utility.

Cost–benefit analysis model: Cost–benefit Analysis (CBA) [4] is a systematic
approach to estimating the strengths and weaknesses of alternatives that satisfy trans-
actions, activities or functional requirements for a business. It is a technique that is
used to determine options that provide the best approach for the adoption and practice
in terms of benefits in labor, time and cost savings, etc. When the benefit is greater
than cost (see Figure 8.5), a business will be operated.

In IoT area, Uckelmann [5] proposed an alternative approach to performance
measurement and CBA for an RFID IoT in logistic application. They have found that
the benefit could be distributed among different parties, and they also proposed a
Cost and Benefit Sharing scheme.

In this chapter, we introduce the market model of IoT. Although there may be
many parties involved in the IoT market, we consider two parties in the market: IoT
service provider and users. The IoT service provider provides IoT service to users
through IoT service platform (see Figure 8.6).

We study how to pricing the IoT services to maximize the profit of IoT service
providers under monopoly, duopoly, and oligopoly IoT service markets.

p , g

142 Managing the Internet of Things: architectures, theories and applications

IoT service provider

IoT service

IoT service platform

Figure 8.6 IoT service provider provides IoT service to users through IoT service
platform

Monopoly market
Only one IoT service provider in the market.

Users choose whether to use IoT service
provider’s service based on the quality of
service and price from service provider.

IoT service
provider

Internet

Cellular
base station

UsersWi-Fi access point

Sensors

Us sssers

Figure 8.7 Monopoly market model

8.3 Monopoly market structure analysis of IoT

Under monopoly market, there is only one IoT service provider which denoted as I1,
in the market (refer to Figure 8.7). I1 provides IoT services to users. The price set by
I1 is p1. It is assumed that the population of users denoted by M is fixed, with M1 as
the number of users using IoT service provider I1’s service. The proportion of users
choosing I1’s service is denoted by (8.1).

x1 = M1

M
(8.1)

p , g

Economics of Internet of Things (IoT): market structure analysis 143

It is assumed that the value of M is very large.
The following set D defined in (8.2) is the domain for x1.

D = {x1|0 ≤ x1 ≤ 1} (8.2)

The quality of service provided by I1 is denoted as φ1.

8.3.1 Monopoly market model

A continuum model of users is employed. If there are a large number of users in the
market and each individual user is negligible, the continuum model approximates
well the real user population. The payoff of user k is denoted as (8.3)

Uk ,1 = λkφ1 − p1 (8.3)

where λk ∈ [0, 1] is user k’s valuation for I1’s quality of service. The value of λk is
private information to users, but the distribution of λk is public information of IoT
service providers. Furthermore, different users may have different valuations on the
same level of quality of service. φ1 denotes the quality of service provided by I1 and
λkφ1 denotes the benefit that the user can get from I1’s service. The unit of λkφ1

has the same unit as that of p1, which is the price set by I1. Note that λk and φ1

are normalized to [0, 1]. We have the following assumption for users’ valuations of
quality of service.

Assumption 1. The users’valuations of quality of service have the probability density
function (PDF) f (·), which is strictly positive and continuous on [0, 1]. The cumulative
density function (CDF) is defined by F(a) = ∫ a

−∞ f (y) dy for all a ∈ R.

Each user chooses to use I1’s service if he/she gets positive payoff by using I1. In
other words, a user chooses an IoT service provider under the conditions enumerated
as follows.

{
Use I1’s service if Uk ,1 > 0

Not use I1’s service if Uk ,1 ≤ 0

8.3.2 Monopoly market analysis

The monopoly IoT service provider tries to maximize profit. The profit of the IoT
service provider depends on the number of users using his service, the service price
and the cost, which is denoted as

�1 = p1x1(p1) − c1(x1) (8.4)

Note that the number of user using service of I1, x1(p1), is a function of the price set
by I1, and liner cost function is assumed as shown in (8.5)

c1(x1) = c1x1 (8.5)

p , g

144 Managing the Internet of Things: architectures, theories and applications

The parameter c1 is also normalized to [0, 1]. The IoT service provider tries to
maximize its profit by considering the following subproblem shown in (8.6):

max
p1

�1 (8.6)

subject to x1 ∈ D

User k uses I1’s service if and only if the conditions shown in inequality (8.7) are
satisfied.

λkφ1 − p1 ≥ 0 (8.7)

Otherwise, user k does not use I1’s service.
Now we characterize the marginal points that identifying user’s valuation of

quality of service associated with changes in their decision to use IoT service provider
I1’s service. τ 0

I1
denotes the marginal point where users switch from getting negative

payoff to deriving positive payoff from using IoT service provider I1, i.e., τ 0
I1

is a
point such that Uk ,1 = 0. We can have the following:

Uk ,1 = λkφ1 − p1 > 0 if λk > τ 0
I1

(8.8)

Equation (8.8) indicates that if λk > τ 0
I1

, then the user with quality of service valuation
greater than τ 0

I1
can get positive payoff from using I1’s service. Therefore, it is very

important to compute these marginal points, which determines whether the user uses
I1’s service.

By setting Uk ,i = 0, we can derive τ 0
I1

shown in (8.9)

τ 0
I1

= p1

φ1
(8.9)

Lemma 1. The number of user who use I1’s service is shown as that in (8.10)

x1 = 1 − F(τ 0
I1

) (8.10)

Proof. As shown in (8.8), if λk > τ 0
I1

, users will use IoT service provider I1’s network.
Therefore, the number of users use IoT service provider I1’s network is as follows:

x1 = P(λk > τ 0
I1

) (8.11)

Equation (8.10) can easily be derived as follows.

x1 = P(λk > τ 0
I1

) = 1 − P(λk ≤ τ 0
I1

) = 1 − F(τ 0
I1

) (8.12)

Lemma 1 shows that the number of users using I1’s service is a function of τ 0
I1

.

Proposition 1. If users’quality of service valuation is distributed uniformly, then the
optimal price for IoT service provider is as follows.

p1 = φ1 + c1

2
(8.13)

p , g

Economics of Internet of Things (IoT): market structure analysis 145

Proof. Since Uk ,1 is 0, when λk = τ 0
I1

. By the definition of Uk ,1 in (8.3), the price set
by IoT service provider I1 can be expressed as shown in (8.14).

p1 = τ 0
I1
φ1 (8.14)

Equation (8.14) shows that the price set by a monopoly is a function of τ 0
I1

.
If users’ quality of service valuation is distributed uniformly, by Lemma 1, x1 =

1 − F(τ 0
I1

) = 1 − τ 0
I1

.
Therefore, the maximization of �1 can be derived as shown in (8.15).

max
p1

�1(p1) = max
p1

(p1 − c1) ∗ x1

= max
τ0
I1

∈[0,1]
[(φ1τ

0
I1

− c1) ∗ (1 − τ 0
I1

)] (8.15)

It is obvious that d2∏
1

d(τ0
I1

)2 = −2φ1 < 0, and when τ 0
I1

= φ1+c1
2φ1

∈ [0, 1], d
∏

1
dτ0

I1

= 0.

Therefore, the solution for problem (8.15) is as in (8.16)

p1 = φ1 + c1

2
(8.16)

Proposition 1 shows that in a monopoly market, the IoT service provider sets price
proportional to the sum of quality of service and the cost to maximize profit.

8.4 Oligopoly market structure analysis of IoT

Under oligopoly market, there are many competing IoT service providers. In this
chapter, n competing IoT service providers are considered, which are denoted as I1,
I2, . . . , In respectively (refer to Figure 8.8). IoT service providers I1, I2, . . . , In

provide the substitute IoT services to users. IoT service provider Ii, i ∈ {1, 2, . . . , n}
sets price pi (where i ∈ {1, 2, . . . , n}). We denote that p = (p1, . . . , pn)′, where p is
an n × 1 column vector, and “′ ” means transpose operator. It is assumed that the
population of users denoted by M is fixed, with Mi as the number of users choosing
IoT service provider Ii for i ∈ {1, 2, . . . , n}. The proportion of users who choose IoT
service provider Ii is denoted by (8.17).

xi = Mi

M
, where i ∈ {1, 2, . . . , n} (8.17)

It is assumed that the value of M is very large. We also denote that x = (x1, x2, . . . , xn)′.
The following set D defined in (8.18) is the domain for x1, x2, …, xn:

D =
{

(x1, x2, . . . , xn)
∣∣∣

n∑
i=1

xi ≤ 1, xi ∈ [0, 1]

}
(8.18)

The level of quality of service provided by IoT service provider Ii for i ∈
{1, 2, . . . , n} is denoted as φi.

Assumption 2. Without loss of generality, we assume that φ1 > φ2 > · · · > φn.

p , g

146 Managing the Internet of Things: architectures, theories and applications

Oligopoly market
More than three IoT service providers in

the market. Users choose one IoT
service provider based on the quality of
service and price from service provider.

Sensors

Internet

IoT service
provider 1

IoT service
provider 2

IoT service
provider n

UsersWi-Fi access point

Cellular
base station

nnt Use

II
p

e

I
p

ers

Figure 8.8 Oligopoly market model

8.4.1 Oligopoly market model

Similar to user model in Section 8.3.1, a continuum model of users is employed. The
payoff of user k is denoted as (8.19)

Uk ,i = λkφi − pi (8.19)

where λk ∈ [0, 1] is the quality of service valuation of user k . φi denotes the quality
of service provided by IoT service provider Ii, and λkφi denotes the benefit that the
user can get from IoT service provider Ii. The price set by IoT service provider Ii is
denoted as pi. Note that λk and φi are normalized to [0, 1].

For the users’ valuations of quality of service, see the Assumption 1 in Section
8.3.1. We also assumed that there is no switching cost when users change from one
IoT service provider to another. Each user makes decision independently.

8.4.2 Oligopoly market analysis

IoT service providers try to maximize their profit. We model the IoT service provider
oligopoly competition as a Bertrand competition game. In the Bertrand competition
game, different firms strategically choose prices independently at the same time while

p , g

Economics of Internet of Things (IoT): market structure analysis 147

supplying quantities demanded at the chosen prices [6–8]. The profit of IoT service
providers is defined as in (8.20).

�i = pixi(p) − ci(xi(p)) (8.20)

xi(p) is the proportion of users who choose IoT service provider Ii as defined in
(8.17). Note that it is a function of the prices set by all the network I1, I2, …, In,
which can be calculated by Lemma 2 established in this section. ci(xi(p)) is the linear
cost function which is assumed as ci(xi) = cixi.

User k chooses IoT service provider that gives him/her highest payoff. The index
of IoT service provider that user k chooses can be expressed as shown in (8.21).

l = arg max
i∈1,...,n

Uk ,i (8.21)

Now we characterize the marginal points that identify users’ valuation of quality of
service associated with changes in their decision to choose IoT service provider. We
have the following Definition 1.

Definition 1. Define n marginal points τ 1
k , τ 2

k , . . . , τ n
k , as

τ i
k = pi − pi+1

φi − φi+1
if i = 1, 2, . . . , n − 1 (8.22)

τ n
k = pn

φn
(8.23)

We can derive these marginal points by letting Uk ,i = Uk ,i+1 for i = 1, 2, . . . , n − 1
and Uk ,n = 0. Geometrically, for i = 1, 2, . . . , n − 1, τ i

k is the horizontal axis value of
the intersection point between line Uk ,i and Uk ,i+1. τ n

k is the horizontal axis value of
the intersection point between horizontal axis and line Uk ,n.

In order to illustrate the marginal points in Definition 1, we assume that there are
three IoT service providers, which means that n = 3. User’s payoff function Uk ,i =
λkφi − pi is a linear function of user’s quality of service valuation λk , and the slope of
the payoff function is φi. By Assumption 2, we have φ1 > φ2 > φ3. The user’s payoff
function lines can be drawn in the same coordinate system with λk as the horizontal
axis and user’s payoff as the vertical axis (see Figure 8.9). It is shown that the prices set
by IoT service providers are the y-intercepts in the coordinate system. The marginal
point τ 1

k can be derived by letting Uk ,1 = Uk ,2, which is τ 1
k = p1−p2

φ1−φ2
, and the payoff

lines Uk ,1 and Uk ,2 intersect at point E. Similarly, the marginal point τ 2
k can be derived

by letting Uk ,2 = Uk ,3, which is τ 2
k = p2−p3

φ2−φ3
, and payoff lines Uk ,2 and Uk ,3 intersect at

point C. The marginal point τ 3
k can be derived by letting Uk ,3 = 0, which is τ 3

k = p3
φ3

.
The payoff line τ 3

k and horizontal axis intersect at point A.

Lemma 2. The necessary and sufficient condition for positive number of users in
each IoT service provider’s network is shown in (8.24),

1 > τ 1
k > τ 2

k > · · · > τ n
k (8.24)

p , g

148 Managing the Internet of Things: architectures, theories and applications

Uk,i

λk

Uk ,1 = λkf1 − p1

Uk ,2 = λkf2 − p2

Uk ,3 = λkf3 − p3

p3

p2

p1

τ1
k

E

τ2
k

C

f3

f2

f1

τ3
k ,A

Figure 8.9 Illustration of marginal points of users valuation with three IoT service
providers case

The number of users in each IoT service provider’s network can be expressed as shown
in (8.25).

xi =
{

F(τ i−1
k) − F(τ i

k) if i = 2, . . . , n

1 − F(τ 1
k) otherwise

(8.25)

Proof. (1) Sufficiency: If 1 > τ 1
k > τ 2

k > · · · > τ n
k , then the users with valuation of

quality of service belonging to [τ i
k , τ i−1

k] use Ii’s IoT services at price pi. (This is
obvious by Definition 1, we will further illustrate this point by example after the
proof of this lemma.) The number of users using Ii’s IoT services is given by

xi =

⎧⎪⎨
⎪⎩

∫ τ i−1
k

τ i
k

f (y)dy = F(τ i−1
k) − F(τ i

k) if i = 2, . . . , n
∫ 1

τ1
k

f (y)dy = 1 − F(τ 1
k) otherwise

(8.26)

According to Assumption 1, it is obvious that xi > 0, which means that the number
of users choosing Ii’s IoT services is positive.
(2) Necessity: If the number of users of IoT service providers, or xi > 0. By (8.26),
if i = 2, . . . , n, we have F(τ i−1

k) − F(τ i
k) > 0, or F(τ i−1

k) > F(τ i
k). Since F(·) is an

increasing function, we have (8.27)

τ i−1
k > τ i

k (8.27)

p , g

Economics of Internet of Things (IoT): market structure analysis 149

If i = 1, we have 1 − F(τ 1
k) > 0. Since 1 = F(1), we have F(1) − F(τ 1

k) > 0.
Similarly, we have (8.28).

1 > τ 1
k (8.28)

By combining (8.27) and (8.28), we can check that the condition in (8.24) is right.

Although users’ quality of service valuation is a random variable with CDF F(·), the
proportion of users xi calculated from F(·) is not a random variable. Once the F(·)
and the marginal points are determined, the value of xi is determined from (8.25).

In order to illustrate that a user with valuation of quality of service between
[τ i

k , τ i−1
k] using Ii’s IoT service at price pi in the proof process of Lemma 2, we take

n = 3 as an example. In Figure 8.9, if the user’s quality of service valuation is between
[τ 3

k , τ 2
k], the line Uk ,3 is above lines Uk ,1 and Uk ,2, this means that the user can obtain

maximum payoff with IoT service provider I3 in this case, then the user chooses I3.
Similarly, if the user’s quality of service valuation is between [τ 2

k , τ 1
k], the line Uk ,2

is above lines Uk ,1 and Uk ,3, then the user uses I2; if the user’s quality of service
valuation is between [τ 1

k , 1], the line Uk ,1 is above lines Uk ,2 and Uk ,3, then the user
uses I1.

Each IoT service provider tries to maximize its profit by considering the following
problem shown in (8.29).

max
pi

�i

subject to xi ∈ D
(8.29)

The problem in (8.29) can be solved by considering the game played by IoT service
provider I1, I2, . . . , In. The Nash Equilibrium point is the solution of the problems.
Now we consider that n IoT service providers play a Bertrand competition (or price
competition) game. The Bertrand competition game �(Player, Strategy, Payoff) is
described as follows:

● Player: The IoT service provider I1, . . . , In are the n players in the game.
● Strategy: The strategy is the price set by IoT service provider Ii for i ∈

{1, 2, . . . , n}.
● Payoff : The payoff is the profit gotten by IoT service provider Ii for i ∈

{1, 2, . . . , n}.
In this game, IoT service providers I1, I2, . . . , In set their price p1, p2, . . . , pn, respec-
tively, to maximize their profit, which is different between the revenue and cost. The
number of users in each IoT service provider’s network can be derived by Lemma 2.

Proposition 2. If users’quality of service valuation is distributed uniformly, the nec-
essary and sufficient condition for unique Nash Equilibrium of the game �(Player,
Strategy, Payoff) is as that in (8.30),

|I −A| �= 0 (8.30)

p , g

150 Managing the Internet of Things: architectures, theories and applications

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 0 0 . . . 0

α1 0 β3 0 0 . . . 0

0 α2 0 β4 0 . . . 0

0 0 α3 0 β5 . . . 0
...

...
...

. . .
. . .

. . .
...

0 0 0 0 αn−2 0 βn

0 0 0 0 0 αn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

αi−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(φ1 − φ2)

2
if i = 1

φi − φi+1

2(φi−1 − φi+1)
else if i = 2, . . . , n − 1

φn

2φn−1
else i = n

(8.31)

βi+1 = φi−1 − φi

2(φi−1 − φi+1)
for i = 2, . . . , n − 1 (8.32)

and I is an n × n unit matrix with ones on the main diagonal and zeros elsewhere.
And the Nash Equilibrium price is

pi = |(I −A)i|
|(I −A)| (8.33)

where (I −A)i is the matrix formed by replacing the ith column of (I−A) by the column
vector μt. μt is defined as μt = (α0, 0, . . . , 0)′. The operator | · | on a matrix denotes
the determinant [9] of the matrix. Thus, |(I −A)| is determinant of the matrix (I −A),
|(I−A)i| is determinant of the matrix (I −A)i.

Proof. Refer to Appendix for the details of proof.

8.5 Conclusions

We study how to pricing the IoT services to maximize the profit of IoT service
providers under monopoly and oligopoly IoT service markets. Under monopoly mar-
ket, the only one IoT service provider can set price to get all the surplus from the
users. However, under oligopoly market, there are competitions among the IoT ser-
vice providers. We model the interaction among IoT service providers as a Bertrand
game, Nash equilibriums are established for oligopoly case.

p , g

Economics of Internet of Things (IoT): market structure analysis 151

Appendix A

Proof of Proposition 2

We denote the price of n IoT service providers as a vector p = (p1, . . . , pn)′, and the
price vector p−i = (p1, . . . , pi−1, pi+1, pn)′. Since users’ QoS valuation is distributed
uniformly, we have F(λk) = λk .
(1) The profit of IoT service provider I1 can be expressed as follows (The number of
users using IoT service of I1’s can be gotten by Lemma 2):

�1 = x1 × (p1 − c1)

= [1 − F(τ 1
k)] × (p1 − c1)

= [1 − τ 1
k] × (p1 − c1)

=
[

1 − p1 − p2

φ1 − φ2

]
× (p1 − c1) (A.1)

To maximize �1, we have the following optimal condition:

d
∏

1

dp1
= 0 (A.2)

Therefore, we can get the optimal price by solving (A.2),

p1 = BR1(p−i)

= 1

2
p2 + 1

2
(φ1 − φ2 + c1) (A.3)

The optimal price of IoT service provider I1 is a function of p−i, which is defined as
function BR1(p−i). In game theory [7], we call the function BR1(p−i) as best response
function of player IoT service provider I1.
(2) The profit of IoT service provider, for i = 2, . . . , n − 1, can be expressed as

�i = (pi − ci)xi

= (pi − ci)[F(τ i−1
k) − F(τ i

k)]

= (pi − ci)
[
(τ i−1

k − τ i
k)

]

= (pi − ci)
(pi−1 − pi

φi−1 − φi
− pi − pi+1

φi − φi+1

)
(A.4)

To maximize �i by letting d�i
dpi

= 0, we can get the best response function of player
IoT service provider Ii as shown in (A.5).

pi = BRi(p−i)

= φi − φi+1

2(φi−1 − φi+1)
pi−1 + φi−1 − φi

2(φi−1 − φi+1)
pi+1 + 1

2
ci, (A.5)

for i = 2, . . . , n − 1

p , g

152 Managing the Internet of Things: architectures, theories and applications

(3) The revenue of IoT service provider In can be expressed as follows:

�n = (pn − cn)xn

= (pn − cn)[F(τ n−1
k) − F(τ n

k)]

= (pn − cn)
[
(τ n−1

k − τ n
k)

]

= (pn − cn)
(pn−1 − pn

φn−1 − φn
− pn

φn

)
(A.6)

To maximize �n by letting d�n
dpn

= 0, we can get the best response function of player
IoT service provider In as that in (A.7).

pn = BRi(p−i)

= φn

2φn−1
pn−1 + 1

2
cn (A.7)

If we define

αi−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
(φ1 − φ2 + c1) if i = 1

φi − φi+1

2(φi−1 − φi+1)
else if i = 2, . . . , n − 1

φn

2φn−1
else i = n

(A.8)

βi+1 = φi−1 − φi

2(φi−1 − φi+1)
for i = 2, . . . , n − 1 (A.9)

IoT service providers’ best response functions (see (A.3), (A.5), (A.7)) can be
expressed as follows:

pi = BRi(p−i) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 p2 + α0 if i = 1

αi−1pi−1 + βi+1pi+1 + 1
2 ci else if i = 2, . . . , n − 1

αn−1pn−1 + 1
2 cn else i = n

(A.10)

It is obvious the solution of linear equations in (A.10) is the Nash Equilibrium
of the game �.

If we can prove that there is a unique solution for linear equations in (A.10), we
can conclude that there is a unique Nash Equilibrium of the game �.

p , g

Economics of Internet of Things (IoT): market structure analysis 153

We can express the linear equations in (A.10) as follows:

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

...

pn−1

pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 p2 + α0

α1p1 + β3p3 + 1
2 c2

α2p2 + β4p4 + 1
2 c3

α3p3 + β5p5 + 1
2 c4

...

αn−2pn−2 + βnpn + 1
2 cn−1

αn−1pn−1 + 1
2 cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 0 0 . . . 0

α1 0 β3 0 0 . . . 0

0 α2 0 β4 0 . . . 0

0 0 α3 0 β5 . . . 0
...

...
...

. . .
. . .

. . .
...

0 0 0 0 αn−2 0 βn

0 0 0 0 0 αn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

...

pn−1

pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

1
2 c2

1
2 c3

1
2 c4

...
1
2 cn−1

1
2 cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1

If we define matrix A and vector μ as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 0 0 . . . 0

α1 0 β3 0 0 . . . 0

0 α2 0 β4 0 . . . 0

0 0 α3 0 β5 . . . 0
...

...
...

. . .
. . .

. . .
...

0 0 0 0 αn−2 0 βn

0 0 0 0 0 αn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

μ =
(

α0,
1

2
c2, . . . ,

1

2
cn

)′
(A.11)

then we can express the best response functions in (A.10) of n IoT service providers
as follows:

p = Ap + μ (A.12)

Equation (A.12) can be written as follows:

(I −A)p = μ (A.13)

where I is an n × n unit matrix with ones on the main diagonal and zeros elsewhere.

p , g

154 Managing the Internet of Things: architectures, theories and applications

By Cramer’s rule [9], the necessary and sufficient condition for unique solution
of (A.13) is shown as that in (A.14).

|I −A| �= 0 (A.14)

And the Nash Equilibrium price is

p∗
i = |(I −A)i|

|(I −A)| (A.15)

where (I −A)i is the matrix formed by replacing the ith column of (I −A) by the
column vector μ. The operator |·| on a matrix denotes the determinant [9] of the
matrix. Thus, |(I −A)| is determinant of the matrix (I −A), |(I −A)i| is determinant
of the matrix (I −A)i.

Note that the solution from Cramer’s rule is not necessarily positive, therefore,
the none positive solution should be omitted.

References

[1] L.Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] D. Munjin and J.H. Morin Proc. IEEE International Conference on Green
Computing and Communications (GreenCom 2012), BesanÃğon, France,
pp. 156–162, November 2012.

[3] A.E. Al-Fagih, F.M. Al-Turjman, W.M. Alsalih, and H.S. Hassanein, “A priced
public sensing framework for heterogeneous IoT architectures,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 1, no. 1, pp. 133–147,
2013.

[4] Wikipedia, “Cost-benefit analysis,” accessed November, 2015.
[5] D. Uckelmann, “Performance Measurement and Cost BenefitAnalysis for RFID

and Internet of Things Implementations in Logistics,” Quantifying the Value of
RFID and the EPCglobal Architecture Framework in Logistics, Springer, Berlin
Heidelberg, Germany, ISBN 978-3-642-27990-4, pp. 71–100, February 2012.

[6] J. Tirole, “The theory of industrial organization,” MIT Press, Cambridge,
Massachusetts, USA, 1988.

[7] D. Fudenberg and J. Tirole, “Game theory,” MIT Press, Cambridge, Mas-
sachusetts, USA, 1991.

[8] D.M. Kreps and J.A. Scheinkman, “Quantity precommitment and Bertrand com-
petition yield Cournot outcomes,” The Bell Journal of Economics, vol. 14, no. 2,
pp. 326–337, 1983.

[9] G. Strang, “Introduction to linear algebra,” fourth edition, Wellesley Cambridge
Press, Cambridge, England, 2009.

p , g

Chapter 9

IoT and big data: application for urban
planning and building smart cities

Mazhar Rathore1, Anand Paul1 and Awais Ahmad1

Abstract

The rapid growth in the population density in urban cities demands additional, smart,
and fast provision of services and infrastructure. Countries and metropolitan author-
ities are really interested to provide smart and intelligent environment and real-time
facilities to their citizens. Citizens also want to be facilitated by the provision of
real-time information regarding anything like traffic, flood, security, pollution, etc.
To meet the requirements of both the metropolitan authorities and the citizens, we
proposed the use of Internet of Things (IoT)-based smart systems for smart city estab-
lishment and the urban planning as well. In this chapter, we propose an IoT-based
system that uses the massive volume of data, termed as big data, generated by the
smart systems to establish smart city and to do urban planning for the bright future.
The data are generated from the smart home sensors, vehicular networks, weather
and water sensors, smart parking systems, surveillance objects, etc. A four-tier archi-
tecture is proposed which include (1) bottom tier-1: responsible for the management
and deployment of IoT sources, data generations, and collections; (2) intermediate
tier-1: handles all type of communication between sensors, relays, base stations, the
Internet, etc.; (3) intermediate tier-2: levers the data management and processing
using Hadoop framework; and (4) top tier: is responsible for application and usage
of the data analysis, results generation, and smart decisions. The system implementa-
tion consists of various phases including data generation and collecting, aggregating,
filtration, classification, preprocessing, computing, and decision making. The pro-
posed system implementation is done in Hadoop ecosystem with spark, voltDB, storm
or S4 for real-time processing to generate results in order to establish the smart city.
For urban planning or city future development, the offline historical data are used
using MapReduce programming in Hadoop environment. IoT-based datasets gener-
ated by smart homes, smart parking, weather, pollution, and vehicle datasets are used
for analysis and evaluation. The system is evaluated with respect to efficiency in terms
of throughput and processing time.

1The School of Computer Science and Engineering, Kyungpook National University, South Korea

p , g

156 Managing the Internet of Things: architectures, theories and applications

9.1 Introduction

A large number of entities are being linked to the Internet at an unexpected rate
comprehending the awareness of the IoT. One of the CISCO reports in 2008 exposed
that the number of objects joined with the Internet exceeded the number of individuals
living in the world, whereas in 2020, it will reach the limit of 50 billion, causing the
expansion of the digital world [1]. There are many diverse domains in which IoT plays
an energetic role and improve the excellence of human life. These domains include
healthcare, mechanization, robotics, automation, transportation, safety, emergency
response, and many more. It has a major impact on handling man-made and natural
disasters where it is tough for the human to make decisions. Thus, the Internet is no
longer considered as the network of personal computers and servers. However, it has
now involved in millions of smart objects in conjunction with the embedded systems.
As a result, IoT is significantly growing in its magnitude and scope, giving a new
way of opportunities with a lot of other issues and challenges [2]. The majority of the
developed countries put forward the national strategies toward the implementations
of IoT by making their system smarter with real-time response. For instance, Japan’s
broadband access is providing the facility of communication between people, people
and things, and things and things [3]. Similarly, South Korea’s smart home allows their
citizens to access most of the things remotely [4]. Next-generation I-Hub of Singapore
[5] aims to grasp the next-generation “U” type network through a protected ubiquitous
network [6]. Moreover, IoT is growing to be used in healthcare sector [7]. The listed
initiatives laid the foundation of IoT [8].

IoT is leading us toward the concept of smart systems, such as smart homes where
various electronic appliances are connected with each other with high-quality two-
way interactive multimedia services. People are controlling their home appliances
from remote location. In the literature, extensive research efforts have been made on
the smart home technology [9]. Similarly, the idea of the smart home is also drawn-out
toward the smart community where home domain, community domain, and service
domain are joined to offer assistances to the humanity. In such system, where a huge
number of objects are communicating with each other over the Internet, generating an
enormous volume of data, termed as big data. To advance the smart home technology,
the enhanced and better analytical techniques of big data can play a main role in the
expansion of Information and Communications Technologies (ICTs). Such kind of
big data analysis offers a better understanding and valuable information about the
future prospects as well as planning and development; thus providing us the insight
knowledge about the big data.

IoT not only improves the fields mentioned earlier, but the data generated from
IoT devices and smart systems can be used as an asset for citizen’s development. One
of the documents reported that 70% of the world’s population (more than 6 billion)
will live in cities and adjacent areas by 2050 [10]. Having such great size of the
population, billions of the electrical, electronics, and digital devices will also interact
with each other, as a result this will produce overwhelming of big data. Hence, using
and analyzing such big data as an asset based on the user desires and choices, the
cities would become more developed and smarter. Thus, by running the variations of

p , g

IoT and big data: application for urban planning and building smart cities 157

enabling technologies and advanced big data analytics, the IoT has been leaving its
early stages and is arriving into the era of revolution by transforming the traditional
network infrastructure into a fully integrated future, the Internet. The massive volume
of information generated by the embedded and general devices will be shared across
a miscellaneous platform and applications to enhance the cities smarter and foresee
accordingly in terms of its planning and development.

Conventionally, for expansion of urban cities, it is an extremely important factor
to realize the demand for facility profiling to enhance the proficiency and to bring
the recent advancement in the city administration. Currently, a small number of
organizations are working with their platforms in order to achieve live monitoring,
planning, and gathering urban process parameters. These activities are catered by
applying the data collection, data processing and analysis, and decision making.
Usually, data collection and real-time processing is costly and difficult to achieve,
while providing real-time information and facilities to the citizens. Therefore, there
is a need to bring smart technologies that could efficiently generate and accumulate
the data, perform real-time as well as offline analysis efficiently, and predict the
future for better planning and development. For achieving this, we need useful data
generation from valuable sources, efficient and fast collection, and real-time analysis
mechanisms and platforms.

Having the understanding of the practicality and potential of the IoT and the
smart systems, in this chapter, we propel the concept of smart systems toward the
smart city with the notion of urban planning and development achieved through big
data analytics. In this chapter, we identified the smart systems that can be used as
a source of big data generation, which can be used as an asset for developing smart
cities and performing urban planning. For achieving this, we proposed the complete
architecture in order to analyze IoT-based smart systems generated big data. The
four-tier architecture has the ability to process vast amount of data generating from
various sources of the smart system in the city such as smart homes, air gas monitoring
sensors, smart car parking, vehicular network. In addition, the complete system
implementation model is given, which guides various municipalities to implement the
system in order to achieve smarter city. Moreover, the analysis is performed on various
reliable smart systems datasets to make smart city decision using the proposed system.
Finally, the system is tested and evaluated with respect to efficiency measures in terms
of throughput and processing time. The proposed system is implemented and tested
using Hadoop framework to achieve parallel processing with spark to accomplish the
real-time effects in the case of immediate smart city decision. Moreover, Hadoop with
MapReduce programming paradigm is used for analyzing historic big data for urban
planning and future enhancements.

The rest of the chapter is organized as follows. In the next section, the motivation
behind starting this work is explained. In section 3, the details of the proposed system
are given including the deployment of the smart systems, smart devices and sensors,
how we can use smart systems data for smart cities development as well as for urban
planning. Section 4 typically discusses the analysis details on the urban smart systems
datasets in order to achieve smart cities and to do urban planning. In section 5, the
system implementation is described at abstract level to guide the municipalities to

p , g

158 Managing the Internet of Things: architectures, theories and applications

implement the system. Later, in section 6, the practical system implementation details
and evaluation results are given. Finally, in the last section the conclusion and future
work is made.

9.2 Motivation

As mentioned earlier, smart cities becoming keener by making intelligent decisions
due to the augment nature of digital technology, in which smart city is equipped with
different electronic equipment and smart systems, such as street cameras for surveil-
lance system, sensors for transportation system, smart homes, pollution detector
sensors. Although there are also various initiatives taken that use objects to pro-
vide different value-added facilities, such as street view, global positioning system
(GPA), Earth maps. Furthermore, the enriching nature also rises toward the practice
of individual mobile devices, contributing in the said scenario. In such heterogeneous
environment in terms of entities features, usage, motivations, security rules, etc.,
different questions arise from a city environment, which need to be responded [10].
These are:

● How to make existing objects smarter? Alternatively, how to design new object
smarter based on the user choice in order to facilitate the citizens?

● How to make smart objects to react accordingly with respect to environment and
situation?

● How to minimize the cost of data collection, processing, and decision making
that is being generated by some devices?

● How to use IoT generated data as a resource in order to get an insight into it, if
the data are collected and going to processing stage in a real-time?

Based on the aforementioned questions, the smart city concept exploits ICT
by serving the citizens in everyday life within limited resources. Moreover, vari-
ous organizations aimed at developing a system that uses an innovative technology
by providing the proficient services to their citizens. The majority of such modern
technologies comprises of cutting-edge sensing abilities, storage capacity for the
exceptional volume of data, and finally, to get an insight into the baggy data. How-
ever, the earlier research involved in very few research outcomes in the field of smart
city development as well as in the better planning of urban areas. Similarly, a solid
system is not yet built with more scalability and efficiency. The big data can be used
as an asset to analyze various features of the smart city and then uses the knowledge
acquired from the past data for better future of the cities. A similar concept is fol-
lowed using the IoT paradigm and the big data concepts for urban planning. Thus, we
tried to come up with a solution that is applicable in the smart city as well as in the
urban areas.

In addition, the motivation behind our aim is to supplement the massive deploy-
ment of ICT resources in developing the whole system. For this very reason, we
acknowledged that the advancement of recent technology in the field of embedded
systems depicts the trends of ICT.Therefore, a system is vital that could bring together

p , g

IoT and big data: application for urban planning and building smart cities 159

all of the recent developments in the field of ICT, due to which an extraordinary growth
can be seen in a near future. The design of this system entails all the capabilities of
sensing the atmosphere and analyzing the sensed information. Moreover, it can be
seen that integrating a large amount of data to perform the efficient analysis is already
performed at their best. However, with large scale environment, it is inevitable that
the huge portion of data are left disjointed. As a result, such data cannot deliver us
better knowledge of the situation so that we may make strategies for the near future.
For this reason, urban planning and developing offers a new means to the field of the
IoT, in which devices are incorporated by means of their geographical location, and
they are analyzed by means of freshly designed system for various services in a city.

9.3 Proposed system for urban planning and smart cities

The basic idea of the smart city is to provide right information at the right place
and on the right device to anyone who needs it in order to make the city related
decision in a well-organized way. The main purpose of smart city is to facilitate the
citizens with more quick and fast ways, such as giving current traffic information,
pollution information, and any critical event information. Moreover, smart city also
aims at providing lots of other information to the authorities to manage the city in a
real-time way, such as managing traffic, controlling, and taking action against any
crime or any critical incident at real-time. In addition, urban planning also leaves a
major impact on a countries development. In the current technological era, the use
of IoT for urban planning not only rapid the planning process but also makes the
process more effective and intelligent by historical big data analysis. In this section,
we provide the complete overview of the proposed system, which describes how we
can use IoT-based smart systems in order to generate and use data for smart city
building and urban planning. How the sensors are deployed? How the sensors will
generate data? These questions are addressed in this section. In addition, the pro-
posed system architecture including its implementation model is presented that have
four tiers or layers and system implementation to show the working of the proposed
system.

9.3.1 Smart systems deployment and big data generation

One of the basic issues and perhaps many people have the query in mind that how
IoT can be used to establish and form a smart city. Thus, we came up with the
right discussion and, of course, the solution to this question. IoT is called as the
interconnection of heterogeneous devices that tie together over the Internet. Since we
are moving forward towards the digital era, smart homes, smart cities, etc., we start
thinking that the objects at home and the surroundings, such as washers, refrigerators,
TV, traffic control, security surveillance, should be linked to the Internet for fast
and remote accessibilities and facilities. In order to reach the objective of smart city
establishment, many sensors are being deployed at different places in order to generate
and analyze data for better usage. The ultimate goal is to achieve smart homes, smart

p , g

160 Managing the Internet of Things: architectures, theories and applications

parking, environment population, smart vehicular traffic, weather and water systems,
and surveillance system. To develop the IoT-based smart city concept and urban
planning system, several wireless and wired sensors, surveillance cameras, emergency
buttons in streets, and other fixed devices are also suggested to be deployed. The main
challenge in this regard is to achieve smart city system and link various IoT systems
together to get information. This is done by installing relay nodes, aggregators, various
classifiers, and gateways. Moreover, all sensors generate rich amount of data with
very high speed, which is termed as big data. Therefore, aggregation, collection, and
processing of big data are also one of the key challenges. To address the collection and
aggregation issue, one or more aggregation servers should be deployed, which collects
and aggregates the data from all smart systems. The data are received with high-speed
network; therefore, the aggregation process is powerful enough to aggregate the data
and send it for analysis through IoT systems. To process and analyze the big data in an
efficient way, the Hadoop ecosystem systems are employed. The complete IoT objects
deployment is shown in Figure 9.1, in which we can see that various smart systems
and other IoT objects are deployed, like smart home, smart parking, weather and water
system, surveillance devices, environmental monitoring sensors, and vehicular traffic
information network by establishing a complete IoT platform. All the data from each
system are gathered by aggregator and sent to the main system.

Vehicular traffic

IoT platform

Weather and water
system

Environmental pollution Surveillance

Smart home Smart parking

Time
No of vehicles

Free slots

Total slots

Temperature
Gas consumption

water
Electricity consumption

Pollution data

Wind speed

River/lake water

Rain
Humidity

Temperature

Pressure

Front screen sensors

Location

Time

others

Sulfur dioxide

Ozone

Carbon monoxide

others

Emergency buttonvoice

CCTVPedestrian count

Smoke

Noise

Smart city and
urban planning

Aggregator

Figure 9.1 Sensors deployment

p , g

IoT and big data: application for urban planning and building smart cities 161

9.3.2 IoT-based smart city

As we have seen previously, various smart systems and IoT objects are imposed to
deploy with the purpose of establishing the smart city. These systems are smart home,
smart parking, security surveillance, environmental pollution sensors, weather and
water sensor, vehicular traffic network and road sensors, etc. How these systems
participate in development of the smart city are described here.

In smart home, the home is continuously monitored by sensors deployed in the
house, such as smoke and temperature, water and energy consumption. The smart
home generated data can be used in many forms that overall affect the performance
of the city, e.g., fire detection at real-time, the electricity and gas consumption to
manage the power, gas, and water consumption effectively to the houses as well as
different areas of the city. Similarly, monitoring the pollution in the house helps in
the healthcare of the households and alerts them when the pollution rises more than
a certain threshold.

The smart parking helps in counting and monitoring all the vehicles approaching
and leaving various car parking zones. Thus, such types of smart parking system
give the information of number of vehicles inside the parking, coming or going out
from parking area, etc., which can be used for discovering the places to establish new
parking zones. Similarly, the smart car parking data provide lots of other facilitations
to the citizens and the merchants also as being a part of the smart city. The nearest free
and suitable car parking information can easily be obtained by the citizen in smart city
environment. This results in reducing the overall fuel consumption of the vehicles.
Moreover, this also saves the time wastage, a person can spend more time in a market
place or other activities. In addition, the merchants who are getting less profit are
encouraged by diverting the citizens’ cars toward their parking area.

Weather and water information also give productivity to the smart city by deliv-
ering the weather related information like temperature, pressure, wind speed, rain,
humidity, and water levels at rivers, lacks, dams, and other water reservoirs. All these
information are accumulated by installing the sensors in water reservoirs for water
level or quantity detection and other open places for other weather-related data col-
lection. In all over the world, majority of the floods occur because of heavy rainfall
and few others by snow melting and dam breakage. Therefore, the rain monitoring
and snow melting sensors are used in order to predict the flood earlier. We can also
expect earlier the water quantity in reservoirs in order to meet the water needs of all
the citizens. Similarly, we can announce many more things based on critical values
of other weather sensors like wind speed, humidity, and others.

Real-time vehicular traffic information is the best source of data for smart traffic
management in the city. This data source can be one of the major assets for both
government and citizens, if effectively used in order to generate transport-related
decisions. The travelers can get to the destination by the quickest route based on the
current traffic intensity level and the speed of the vehicles. The traffic can be diverted
across various roads within the city, which not only reduces the fuel consumption
but also drops the pollution level that occurs due to the crowded traffic. Government
authorities, such as traffic police, can also be benefited by locating the blockage of

p , g

162 Managing the Internet of Things: architectures, theories and applications

road area due to an accident or other incidents. They can ensure any necessary action
based on the current scenario at real-time to manage the traffic. In the proposed smart
city system, we are receiving the current traffic information by General Packet Radio
Service (GPRS), vehicular sensors, road sensors, as well as the sensors placed at
the window screens of the car in order to detect accidents. We can use each vehicle
location and the number of vehicles between two pairs of sensors placed at various road
junctions of the city. Moreover, in case of any accident, the front screen is normally
damaged immediately. In such cases, the sensor instantly sends an alert to the police,
traffic authorities, ambulances, and hospitals. Similarly, we can do a lot of other things
with real-time traffic data to make the city smarter, more intelligent, and developed.

Pollution monitoring is also vital for human healthcare, especially in this tech-
nological era, where there are a lot of transportation, factories, and other sources
generating lots of toxic gases. So, delivering the current pollution, i.e. toxic gases
level information to the people, is also vital, especially informing heart, liver, asthma
patients not to go outside when any gas level is higher. Any metropolitan can never be
smarter and developed with unhealthy populations. Therefore, while designing smart
city, we place a separate component to get environment data related to toxic gases,
such as carbon monoxide, ozone, particular metals, sulfur dioxide, and noise as well.
These gases are very hazardous for human fitness, which causes coughing, liver dis-
ordering, and heart-related diseases. People with such types of diseases, especially
the children, people for physical exercise, already sick people, old age people, should
not go outdoors when the level of these gases are more in the air. This can only be pos-
sible when people have real-time access to all environmental information and alerts
are generated when any of the polluted gas exceeds a certain threshold. Moreover, the
places where there are more population, transportation, and factories, government
should try to dominate such causes of the pollution like moving industries to other
places, diverting traffic to the other routes, etc.

Last but not least, the most significant concern for the people of smart city is the
security and safety provision. This is achieved by the proposed system by constantly
monitoring the video of all the city area by surveillance cameras. However, it is very
difficult to analyze the videos coming from thousands of cameras placed all over
the city while detecting any mishap with anyone in a quick manner. To overcome
this limitation, we propose a new setup that increases the security system of the
complete city. We placed various emergency buttons with microphones at various
street areas of the city along with the surveillances cameras. When any misfortune
occurs with anybody like robbery, car stolen, rape, fighting, purse stolen, or someone
watching some illegal activity in the street, he can just push the emergency button
at any nearby place and it will send the message to the closest police station and
other authorities. Thus, the police or security agencies start observing the nearby
locations through surveillance cameras and can easily trace the imposters. Moreover,
the past crime information collected from different sensors can be used to avoid the
future security threats by placing more security objects in critical areas. This will
lead the authorities to the provision of more secure environment to the residents of
the city.

p , g

IoT and big data: application for urban planning and building smart cities 163

9.3.3 IoT-based urban planning

Same IoT scenario is considered for the urban planning with same devices and sensors,
as shown in Figure 9.1. However, the use of sensors generated data and the main
purposes of analysis vary in case of urban planning and smart city. In smart city, real-
time decision is made based on current data. On the other hand, in urban planning,
the historical data generated from the same smart city’s IoT devices and systems are
used to make planning for future regarding anything related to the city. For example
by analyzing the electricity consumption of the previous years, we predict the demand
for next year and take necessary action to fulfill the demands.

By smart home generated data, government authorities can analyze previous
energy consumption data and growing needs and make future planning for building
new dams to produce more energy. Moreover, they can also analyze the pattern of
energy usage at different periods and manage the electricity and gas bills accordingly
to facilitate the citizens. They can also make energy plans for various periods of
the year accordingly. For smart parking and vehicular traffic data, new parking lots
needs, new building needs, places to build new roads, or extend roads, all these needs
can be planned for the future. The cause of pollution can be analyzed and necessary
planning can be made based on the increase or decrease in pollution due to traffic
changes. Similarly, analyzing the weather and water consumption datasets, we can
make plans for agriculture, for prior flood safety, water reservation, etc. Moreover,
based on the temperature data and electricity consumption, we can make a better plan
for high-temperature seasons to reduce the consumption of electricity. Similarly, from
surveillance datasets, we can analyze the number of crime events, more dangerous
place, more effected people, which crime is spreading, etc.; based on these data, the
security plans for the next month or even for next year can be set.

9.3.4 Proposed system architecture and implementation model

Based on the needs of smart city and urban planning, we proposed four-tier architec-
ture to analyze IoT big data in order to establish smart cities. The complete architecture
is shown in Figure 9.2, where the first tier is the bottom tier, two intermediate tiers,
and finally the top tier. Functionality of each tier is described below.

9.3.4.1 Tier-I: bottom tier
This layer is responsible for data generation through various IoT sources and then col-
lecting and aggregating that data. Since there are lots of IoT sensors participating in
generation of data. Therefore, a lot of heterogeneous data are produced with varying
format, different point of origin and periodicity. Moreover, various data types have
security, privacy, and quality requirements. In addition, in sensor data, the metadata
are always greater than the actual measure. Therefore, early registration and filtra-
tion techniques are applied at this layer, which filters the unnecessary metadata and
discards the repeated data.

p , g

164 Managing the Internet of Things: architectures, theories and applications

Data generation
and
collection

Data management
and processing

Data
interpretation

Source
B

ot
to

m
tie

r
In

te
rm

ed
ia

te
tie

r-
I

In
te

rm
ed

ia
te

tie
r-

II
To

p-
tie

r

IoT

Technologies

Hadoop
ecosystem

Application

Govt.

E&G
management

Citizen
security

Fire
detection

Citizens Travelers Entrepreneur

Offline

MapReduce Analysis

StorageHDFS HBASE HIVE SQL

Real-time
spark/voltDB/storm

Hospitals Security
organization

Smart home Smart
parking

Vehicular
networking Surveillance

Zig BEE Wi-Fi 3G/LTE/3GPP WiMAX Ethernet

Weather
&

water
Environmental

pollution

Entrepreneur
benefits

Flood
safety

Citizens
healthcare

Travelers
guide line

Smart city
plan

Communicator

Figure 9.2 Four-tier architecture for IoT big data analytics for remote smart city
and urban planning

9.3.4.2 Tier-II: intermediate tier-I
This tier handles the communication between sensors, sensors to relay through ZigBee
technology, relays to GW or base station and then on Internet using various commu-
nication technologies. At the analysis sides between various analysis servers Ethernet
is used.

9.3.4.3 Tier-III: intermediate tier-II
This layer is the main layer of the whole analytical system, which is responsible
for the processing of the data. Since we need real-time analysis for smart system.
Therefore, we need third-party real-time tool to combine with Hadoop to provide
real-time implementation. To provide real-time implementations, Strom, Spark, and
VoltDb could also be used. However, for system evaluation, we implemented the
system by using Spark. At lower layer of Hadoop, same structure of MapReduce
and HDFS is used. With this system, we can also use HIVE, HBASE, and SQL for
managing database (in-memory or offline) to store historical information for urban
planning, since we care about the efficient results. Therefore, we use Hadoop with
the MapReduce programming.

All the data will be stored at Hadoop using HDFS and analysis will be performed
at intermediate tier-II. The last tier is the interpretation tier, which uses the results
of analyzed data and then generates reports and announcements if required. Here,
the generated results are announced and used by many applications, such as flood
detection, security, and city planning.

We also designed implementation model of the system, which is shown in
Figure 9.3. It shows the complete details of all the steps performed while imple-
menting the system. Initially, every system will generate their own data, such as

p , g

IoT and big data: application for urban planning and building smart cities 165

Smart home

Vehicular
network

GW

GW

Rela
y

Relay

Relay
Relay

Relay

R
el

ayGW

GW

GW

GW
Surveillance

Internet

Collection/Aggregation

Filtering
Classify Data
Emerging actions

HDFS storage
Computations
Processing
Calculations
Results generation

Results
Analysis
Results interpretation
Prediction
Visualization

ML Pattern
recognition

Soft
computing

Decision
models

Decision making

Hadoop
ecosystem

Classification

Pre-processing

MN1 MN2 MNN

DNMNDN2DN1

Environmental
sensors

Weather and
water sensors

Smart parking
IoT sensors

Sensors data

Figure 9.3 Implementation model

smart home generated data, vehicular data, smart parking data. At every system,
there is a relay node, which is responsible for collecting data from all the sensors in
the system. It uses ZigBee technology to communicate with the sensors. The relay
is responsible for collecting data from all sensors, and then sending to the analytical
system through GW and Internet. As the sensors have a lot of metadata, the data
are of heterogeneous type. Therefore, all the unnecessary metadata and redundant
data are discarded. Moreover, the data are classified by the message type and the
identifier. After classification, the classified data are converted to the form that is
understandable to the Hadoop ecosystem, such as sequence file.

Since we are dealing with a large amount of data (termed as big data), we need
a system that could efficiently process a large set of huge datasets. To meet these
requirements, we used Hadoop ecosystem, which contains master nodes and various
data nodes under the master node. The Hadoop ecosystem has HDFS file storage,

p , g

166 Managing the Internet of Things: architectures, theories and applications

which divides the data into an equal amount of chunks and stores them into various data
nodes. Later, the parallel processing is performed on these chunks using MapReduce
system. All the processing calculations and results generation are done at Hadoop
ecosystem. Finally, the decision making is performed based on the results generated
by Hadoop ecosystem. The decision-making approach uses machine learning, pattern
recognition, soft computing, and decision models.

9.4 Urban data analysis and discussion

To perform the feasibility study and importance of the system, the detailed analysis is
performed on various IoT datasets. The analysis is performed to show how the smart
city can be built using the proposed system, how the deployment of sensors maters
for building smart city, and also how we can use the historic sensors data to perform
big data analytics for urban planning. This section also illustrates how we can use the
same IoT generated data for both real-time decision making to make a city smarter
as well as performing offline analysis on historic data to perform urban planning. In
this section, we describe the analysis discussion on various smart systems datasets
collected from various reliable sources to establish the smart city and perform useful
urban planning for the future of the city.

We take real-world large size IoT generated datasets from various reliable
resources. The datasets include (1) the vehicular mobility dataset and road sensors
datasets including all the details of the vehicles traveling between many pairs of source
and destination points at various places of the city, (2) parking places datasets includ-
ing the current status of number of vehicles in the parking area, (3) the smart home
temperature collected dataset including the water usage of each house, etc., (4) the
data of flood occurrence all over the world, (5) pollution datasets including various
gases and noise pollution, (6) weather datasets including continuous measurement of
temperature, humidity, rain, etc., outside as well as inside the home, and (7) other
common city datasets such as cultural events, library events. Few of the datasets anal-
ysis discussion is presented here, which shows how helpful the smart system data
is, which can be used as an asset for developing smart cities and performing smart
planning for the future.

9.4.1 Vehicular traffic analysis

The first dataset that we have analyzed for the smart city and urban planning is
Madrid highway vehicular traffic [11]. This dataset is more important for smart city to
facilitate the people as well as for urban planning in constructing new roads, building,
etc. It contains the location of each vehicle between two edge points of Madrid
highway as well as the speed of the vehicle. We also tested the vehicular mobility
dataset that is generated by Institute of transportation systems, German Aerospace
Center (ITS-DLR) as TAPASCologne project [12–14]. It contains the mobility of all
the cars in Cologne city of Germany. It covers the area of 400 km2 in 24 h with 700
cars. Next all other datasets are covering the Aarhus city of Denmark. In addition, the

p , g

IoT and big data: application for urban planning and building smart cities 167

0

5

10

15

20

25

30

35

40

0

10

20

30

40

50

60

70

80

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

N
o.

 o
f

ve
hi

cl
es

A
vg

. s
pe

ed

Time
Vehicle count Avg. speed (km/h)

Figure 9.4 Speed of vehicles at low intensity of traffic between two points

Aarhus city vehicular datasets [15–17] are generated by placing sensors at various
locations of the city, especially at road junctions. They generate the data by placing
449 sensors at different locations of the city. The sensors are placed at various source
and destination points on different locations to estimate the traffic between two points.
It contains various information like the average speed of vehicles between two points,
the average speed and time to reach the second point. The analysis ofAarhus city traffic
is presented only by the data taken from the two sensors placed at 1 km distance in
“A rhusvej” street of Hinnerup.

The number of vehicles in a particular area plays a vital role in society. For
instance, during the on hours, the traffic intensity at particular roads is higher than
off times. Similarly, the road management system can be affected by the number
of vehicles in a particular time and on particular roads. In Figures 9.4 and 9.5, we
carefully analyzed the traffic intensity on different roads in a society. For instance, if
the vehicle speed is low on some roads, then this means that the intensity of the cars is
high on those roads. Moreover, in Figure 9.4, when the number of vehicles is higher,
e.g. 106 and 121, the vehicle speed is less i.e. 45 and 42. Therefore, keeping this
relation between vehicle and vehicle speed, we can design roads for better vehicular
management. Similarly, in Figure 9.5, the number of vehicles is taken between 25
and 35, by considering this number as high-intensity traffic. We can see that when
the number of vehicles is high e.g. 37, the vehicle speed decreases to 18. Thus, the
statistics in Figures 9.4 and 9.5 can be used to design wide roads where the intensity
of vehicle is high and vice versa while planning for future.

In Figure 9.6, two types of traffic classes are used, i.e., 1–15 and 25–35 cars. We
performed an experiment of reaching moving between two points. We start assuming
a car is moving from point A to point B on the road with the number of cars between
1 and 15. The figure shows that the time required for the car to reach its destination
is less comparing to the same road with cars between 25 and 35. This estimation is

p , g

168 Managing the Internet of Things: architectures, theories and applications

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

Avg. speed (km/h) Vehicle count

Figure 9.5 Speed of vehicles at high intensity of traffic between two points

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

Es
tim

at
ed

 ti
m

e
to

 re
ac

h
(m

in
)

Time

Less vehicles (1–15)More vehicles (25–35)

Figure 9.6 Estimated time to reach the destination depending on the traffic
intensity

taken at a real-time average speed of the cars running on the roads. Thus, we can
design wider roads in those areas where the intensity of car is high. For example, if on
a road the number of schools, colleges, universities, etc. is high, then using statistics,
a wider road is considered. Similarly, the area where the number of buildings is less
than the roads can be designed with less number of lanes. However, we are avoiding
the scalability option for now, and we will consider it in our future work.

In Figure 9.7, we check the intensity of the vehicle along a road in a different
duration of time. For example, we can see from the graph, during 08:25 and 11:55,
the number of vehicles are very high in number i.e. >12. Thus, an efficient road
system can design that can dynamically change the routes during the rush hour time.

p , g

IoT and big data: application for urban planning and building smart cities 169

0
2
4
6
8

10
12
14

 0
7:

50
:0

0
 0

8:
25

:0
0

 0
8:

55
:0

0
 0

9:
25

:0
0

 0
9:

55
:0

0
 1

0:
25

:0
0

 1
0:

55
:0

0
 1

1:
25

:0
0

 1
1:

55
:0

0
 1

2:
25

:0
0

 1
2:

55
:0

0
 1

3:
25

:0
0

 1
3:

55
:0

0
 1

4:
30

:0
0

 1
5:

05
:0

0
 1

5:
35

:0
0

 1
6:

15
:0

0
 1

6:
55

:0
0

 1
7:

35
:0

0
 2

0:
55

:0
0

 2
3:

25
:0

0
 0

5:
35

:0
0

 0
6:

15
:0

0
 0

6:
50

:0
0

N
o.

 o
f v

eh
ic

le
s

Time

Figure 9.7 Number of vehicles between two source and destination at various time
of the day

Similarly, the sensors can be installed at different locations that can communicate with
the vehicles in the case of accidents and congestion on the roads. Thus, the various
conclusions can be drawn from the statistics of Figure 9.7. For example, the engineer
can be provided with better information about the road designing and construction.

From the above IoT-based network traffic analysis, we can predict the estimated
time to reach from one point to the other point. Smart city analyzes vehicular traffic
data at a real time and facilitates citizens to find how much time it will take them
to reach the destination by following alternative routes depending on the current
intensity of the traffic. It will give the updated information about all the travelers so
that they can make their plan to reach the destination by following the convenient
route. Moreover, it also helps the government traffic authorities to control traffic and
make optimized plan at run time when the intensity of traffic becomes higher or a
road is blocked due to any mishaps that happen on the road like accident, strike,
any damage, etc. This traffic management not only helps the citizen and government
while providing fuel saving but also provides safety from pollution that is generated
by abundant traffic at a single point. So smart city helps the diversion of traffic from
busy roads to free roads to get the equal usage of all alternative roads.

In next phase of vehicular traffic analysis, a slightly different dataset covering
Madrid is taken. We show the traffic intensity of first 2,500 locations for a particular
time in Figure 9.8. The figure shows the congested location where the intensity of
the traffic is more. We can easily observe that at starting position there are more
vehicles, and when we go forward, the number of vehicles start reducing. It shows
that the location 500 is the important location where most of the vehicles are passing
through. On the other hand, the location 2,500 is very far from the city, where very
fewer cars are moving. Therefore, on the basis of this analysis, we can plan for the
road by building more lanes where the traffic is more. Moreover we can also assume
that at location 2,500, the number of people living or the number of houses, shops,
and building are less; therefore, we can plan to build more houses and buildings there
to reduce the traffic burden, pollution, and crown.

p , g

170 Managing the Internet of Things: architectures, theories and applications

200

180

160
140

120
100

80
60

40
20

0
500 1000 1500

Location

N
um

be
r o

f v
eh

ic
le

s

No. of vehicles

2000 2500

Figure 9.8 Intensity of traffic on various locations of Madrid highway

499
500
501
502
503
504
505
506
507

0 2000 4000 6000 8000 10000 12000

Lo
ca

tio
n

(L
an

e)

Position

Figure 9.9 Location of speed violation on Madrid highway

For the Madrid traffic data, we also analyzed the speed of the vehicles at the
highway. The average speed of the vehicle is 90 km/h. On the basis of speed measured,
we can estimate the condition of the road by identifying the regions where the speed
of the vehicles goes lower. We can identify the reason for the low speed that cab
be the poor structure of the road or the damage of the road. Similarly, in a smart
city, we can identify the speed violations of the vehicles at the run time and charged
challan on the violation. We identified the regions, where most of the vehicles crosses
the maximum limit of speed, as shown in Figure 9.9. On Madrid highway, most of
the vehicles crosses the maximum limit from location 5,000 to 1,100. Most of the
violations occurs at Lane 3 (most extreme lane) of the highway. These violations might
be due to the less number of vehicles on the road. This can be stopped by notifying
through sign boards or placing speed barkers at that place, which is suitable for that
location. This can also be a better option toward the smart city and urban planning as

p , g

IoT and big data: application for urban planning and building smart cities 171

–200

0

200

400

600

800

1000

1200
1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

59
6

63
1

66
6

70
1

73
6

77
1

80
6

84
1

87
6

N
o.

 o
f v

eh
ic

le
s

Time

Bruuns (931) Busgadehuset (130)
Kalkvaerksvej (210) Magasin (400)
Salling (700)

Figure 9.10 Free spaces at various parking lots at different times

well. Moreover, in the smart city, the accident ratio is also monitored with respect to
the area speed and violation data.

9.4.2 Smart parking data analysis

Parking lot dataset [15–17] covers the continuous monitoring of eight parking lots
of the city with respect to the usage. It contains the data from May 22, 2014, to
November 4, 2014, by capturing data through 55 points. By analyzing the parking
lots current usage, citizens are updated to select the best suitable parking lot near their
location. Figure 9.10 shows the number of free spaces at various parking garages in
Aarhus city and Figure 9.11 shows the current use of parking garages. Based on this
study, the user can be updated about the free car parking at a run time. He can save his
fuel without manually searching the free car garage. Moreover, it also makes profit
equilibrium between the sellers in the city by giving benefit to the shop owners who
are getting less profit. Normally, citizens prefer to go to the uncongested place for
shopping where the number of people is not that much and where they can easily get
the parking, resultantly encouraging all sellers. The parking study analysis also gives
direction to the government authorities for the urban planning to build more parking
areas near the places where most of the people go. In Figure 9.11, it is obvious that
the Bruuns is a huge parking area with the capability of parking 931 cars but still you
cannot find the parking place few time. This shows the need for more parking lots at
that location to facilitate the user. Similarly, the same result can be obtained by the
analysis of selling the garage.

p , g

172 Managing the Internet of Things: architectures, theories and applications

0

200

400

600

800

1000

1200
1 36 71 10
6

14
1

17
6

21
1

24
6

28
1

31
6

35
1

38
6

42
1

45
6

49
1

52
6

56
1

59
6

63
1

66
6

70
1

73
6

77
1

80
6

84
1

87
6

N
o.

 o
f v

eh
ic

le
s

Time

Bruuns (931) Busgadehuset (130)
Kalkvaerksvej (210) Magasin (400)
Salling (700)

Figure 9.11 Usage of various parking lots at different times

9.4.3 Smart home data analysis

In case of the use of smart home data analysis for smart city and urban planning,
we only consider one water usage scenario for illustration. However, it is not only
limited to only water usage, there are a lot of other types of smart home data that
can be used for other purposes. The water usage data for each household of Surrey
city of Canada are taken for household analysis [18]. Water meter readings in a total
of 61,263 houses are measured. It contains the complete address and water usage
of the house. The water consumption analysis of the household helps smart cities to
manage the water resource with respect to the current usage of data. The next year
need of water can also be predicted. Moreover, the flow of water to various areas
depending on the need of the area can also be controlled. The water consumption of
each house of the Surrey city of Canada is analyzed for that purpose. Figure 9.8 shows
the histogram of the usage of water in cubic meters at all houses of the city. It shows
more than 6,000 houses consume water more than 8,000–9,000 m3. This shows the
normal use of the water at maximum houses.

In general, every city used different amount of water. The consumption of water
directly depends on the number of people present in a city. Similarly, some of the cities
provide fewer services such as industries, hospitals, universities, schools. Therefore,
the population at these cities is less comparatively with other cities. Therefore, using
the statistics present in Figure 9.12 helps us in designing the water usage at particular
houses within a city. Similarly, the fresh water consumption can be maintained e.g.
if a house needs more fresh water and another needs less than a balance relation can
be drawn between the houses. Moreover, it also helps the authorities to control the
water resources depending on their reservoirs. For instance, if you have more water
reservoir, then you can only store the required amount of water by finding the smart

p , g

IoT and big data: application for urban planning and building smart cities 173

2000
1800

1600
1400
1200
1000

C
ou

nt
Count

800
600

400
200

0
0.0 2.0e+4 4.0e+4 6.0e+4

Water usage
8.0e+4 1.0e+5 1.2e+5

Figure 9.12 Total water usage counts for the Surrey city

0

0 A
VE

0A
 A

VE
1 A

VE

10
 A

VE

10
0 A

VE

10
1 A

VE

10
3A

 A
VE

10
3 A

VE

10
2B

 A
VE

10
2A

 A
VE

10
2 A

VE

10
1B

 A
VE

10
1A

 A
VE

10
0A

 A
VE

0B
 A

VE

1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

W
at

er
 u

sa
ge

 (m
3)

Area

Figure 9.13 Water usage of various areas of Surrey city

city parameters. Likewise, if you have a scarcity of water reservoir, then you can
predict the need of water before and then consume the water accordingly.

We also noticed that the water usage in some areas like cities and industrial
zones is more than the water usage in the residential area. In Figure 9.13, we show
the average water consumption at different areas. For instance, in areas 101B and
102B, the average water consumption is very low. Similarly, in areas 102 and 103A,
the average water consumption is very high. This helps us in designing a system by
increasing or decreasing the flow and level of water in different areas. Similarly, an
efficient drainage system can be designed while keeping the above statistics in mind.
Thus, we can draw a conclusion on the basis of water consumption in a particular city
by designing a billing system of water usage.

p , g

174 Managing the Internet of Things: architectures, theories and applications

We observed that in a total 61,263 houses, the average consumption of the house
is 57877.937. However, 50% of the citizens consume less than 58,186 cubic water
(found out by media analysis), 25% citizen use less than 26,893 cubic water. While
the 75% of the people use less than 81,983 cubic water. The data are positively skewed
means more than 50% use more than average consumption of water. By this analysis
of water consumption, smart authorities manage the billing system by choosing a
limit for less fixed bill payments and for charging extra amount to those people who
consume more amount of water as compared to most of the users. By this management
of water, we can manage energy such as electricity and gas as well.

9.4.4 Flood data analysis

For flood detection in smart cities, initially we analyze the reasons behind all the
flood in the country. For this purpose, we use G.R. Brakenridge generated the flood
dataset [19], which is created by the news from official and TV news channel of the
flooded country. The data contain the date of flood, area of flood, damage, intensity,
death, etc.

The flood due to rain water normally happens more and intensive as compared
to other type of floods such as flood due to snow melting, storm. In Table 9.1, we
examine a different type of flood, resulting that the rainwater produces high chances
of the flood following by snow. The M represents the magnitude of the flood, which is
calculated as, log (duration × severity × area affected). For example, if the M value
is greater than 4, it means the flood is of a higher intensity. Around 50,250 floods have
been experienced with higher intensity at the various areas of the world. Similarly,
if the value of M is greater than 6, the intensity of the flood is dangerous. Around
13,751 floods have been recorded of this intensity. The flood ratio in the case of both
these magnitude is greater in the event of rain. We can see that 35% of floods have
been happening due to the rain following by snow of 1.5%. Thus, we can design a
society with predefined thresholds of rain. For instance, if rain in an area crosses a
predefined threshold, then a warning signal, or alert can be broadcasted in the society.
The society can be made safer by installing high diameter drainage pipe in an area
where the rain level is high. Moreover, the rain measure also used to manage the water
reservoir in a smart city. Similarly, the snow melting is also a cause of flood but it

Table 9.1 World flood report from 1985 to 2014

Flood type Total Duration Total Total (M > 4) Total (M > 6) Percentage of
floods deaths total floods

Avalanche 3 11 33 14.02157794 0 0.005970149
Rain 3657 41637 190426 17830.89731 6539.589962 35.48437276
Snow 134 2404 851 776.500426 416.4602809 1.54527448
Storm 83 981 6320 473.2605046 229.0867418 0.941811949
Dam break 54 568 3600 163.5712257 44.54054417 0.325514877
Typhoon 5 38 1486 28.63278646 12.34100746 0.05698067

p , g

IoT and big data: application for urban planning and building smart cities 175

is not that much. This can also be saved by placing snow melting sensors at the hilly
station.

9.4.5 Environmental data analysis

Transportation is the main daily activity of the Europeans. Each citizen travel at least
1 h/day [20]. Therefore, a large amount of transportation means such as buses, trains,
cars exists in cities. This means of transport cause the emission of 12% CO2 [21].
Moreover, road population is more than twice as deadly as traffic accidents [22] and
car pollution also damaged the youth health and increased the risk of earlier deaths
[23]. This shows how much the awareness and safety of pollution are important.
The most important gasses in the air that affect the human health are ozone (O3),
carbon monoxide, sulfur dioxide (SO2), nitrogen oxide, and particulate matter. The
environmental existence of these gases is analyzed to deliver the current intensity of
those gasses in the air so that more people protect themselves from these gasses.

For analyzing polluted gases in the air, we use pollution datasets [15–17] that
are generated by placing sensors at various road points of the Aarhus city. The pol-
lution data have various measures including ozone, nitrogen dioxide, nitrogen oxide,
particle matters, carbon dioxide, etc. Finally, the weather data [15–17] consisting
of temperature, humidity, rain, pressure, wind, etc., are also considered for anal-
ysis and evaluation, which covers the period of February to June and August to
September 2014.

Ozone (O3) is made with three oxygen joined together. It is too dangerous for
the living tissues of the human when it comes in contact with them, such as it can
harm your lungs, effect to a sunburn inside your lungs, a cough, an irritated throat,
or an uncomfortable feeling in your chest, worsened asthma, emphysema and bron-
chitis, and may reduce the body’s ability to fight infections in the respiratory system.
It is made with the reaction of volatile organic compounds (VOC), nitrogen oxide
(NO), and nitrogen dioxide (NO2). Therefore, nitrogen dioxide is also dangerous.
More VOCs and NO2 cause more ozone. Sunny weather, less wind, crowded traffic
cause increase in ozone. Sulfur dioxide (SO2) adverse respiratory effects including
bronchoconstriction and increased asthma symptoms. “Particulate matter” is a com-
plex fusion of extremely small particles and liquid droplets. The particle can be made
by acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust
particles. These are so small that they can get deep into the lungs and cause serious
health problems.

For the analysis purpose to keep the gasses value within a limit, the calculations
of gas values are a little bit modified [15–17]. However, it will not affect the anal-
ysis and reality and effect of the gasses. The values of carbon monoxide, nitrogen
dioxide, sulfur dioxide, particulate matter, and ozone index levels gases values are
calculated as:

● Initially assigned a value between 25 and 100. Every 5 min, the values will be
updated as follows:
– If the value were below 20 before, it would now be the last value + random

integer between 1 and 10.

p , g

176 Managing the Internet of Things: architectures, theories and applications

– If the value were higher than 210, it would now be the last value – random
integer between 1 and 10.

– Else the value will be last value + a random integer between −5 and 5.

These gasses are dangerous when their values are greater such as shown in
Figure 9.14, the pollution data of Aarhus city are depicted. The maxima values of
all gases, as shown as ozone value at time 70–90, particulate matters value at time
185–215 and also at more than 245, nitrogen dioxide at start and end of time interval,
and carbon monoxide at 90–115, are all dangerous for health. Therefore, children
should not be allowed to spend more time outdoors. Moreover, adults should not
exercise outdoor; at that time as healthy persons engaged in physical activity, they
breathe faster and more deeply which cause flowing ozone into the lungs. People with
respiratory disease should also care when ozone value is higher, as ozone can further
irritate the airways of persons who already have diseases of the lung or airways.

For daily based pollution analysis, as we did, we guide the people about the
intensity of the pollution and suggested them not to go outside and also do not allow
children, diseased persons, and old age people to go out when the intensity of any of
the gas is higher. Authorities can also take action and make alert announcements to the
public when the pollution goes beyond the limit. The government can also do urban
planning by analyzing the history and change behaviors of the pollution in different
seasons and months. Overall year analysis, and plan for traffic, city and industrial
building can shift industries outside the cities or build new industries at far from cities
when these pollution gasses start increasing.

0

20

40

60

80

100

120

140

160

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

G
as

 re
ad

in
gs

Time

Ozone Particulate_matter
Carbon_monoxide Sulfur_dioxide
Nitrogen_dioxide

Figure 9.14 Pollution level at different time of the day

p , g

IoT and big data: application for urban planning and building smart cities 177

9.5 System implementation abstraction

Based on the datasets collected, analysis made, and the proposed system architec-
ture, the system is developed using Hadoop single node at Ubuntu 14.04 LTS with
3.2 GHz × 4 processors and 4 GB memory. The PCaP format traffic is processed
by Hadoop-pcap-lib, Hadoop-pcap-scr-de libraries. The network traffic data are then
converted into sequence file to make them capable of processing on Hadoop. The
system is implemented by two major modules i.e. smart city and urban planning.
These two modules further have other submodules for various functionalities. In this
section, we provide the implementation at abstract level by describing the modules,
source of data, their relationship, and the applications.

9.5.1 Smart city system implementation abstraction

The input source remains the same as described previously as shown in Figure 9.15
with circles outside the boundary of the system i.e. smart home, parking, etc. Each
facility of the smart city is implemented as a separated class or submodule, which

Citizen: Govt.

Govt.

Govt.
Citizen: Govt.

Smart
home

Parking

Vehicular
traffic

Surveillance

Weather
& water

Security
management

Traffic info.
management

Flood &
water management

Energy
management

Health
management

Early fire
management

Environment

Figure 9.15 Smart city implementation scenario

p , g

178 Managing the Internet of Things: architectures, theories and applications

takes data from various sources. Traffic information measurements take data from the
vehicular traffic and parking. Security management module takes data from surveil-
lance, smart home, and vehicular traffic. It takes data from vehicular traffic in case of
government needs to monitor stolen vehicles. Flood and water management module
take water usage data from smart home rain, storm ice data from weather and predict
flood at run time. Similarly, energy consumption management also takes electricity
and gas data from smart home and dam and water-related data weather and water.
This module will manage and save extra energy that is not used by the several homes.
It also distributes energy to various areas according to their needs. Similarly, early
fire management program performs fire detection. Finally, the health management
makes decision on pollution data. Citizens have limited access to the results of these
modules, and the government has full access over them. The complete flow of data,
modules, and actors is shown in Figure 9.15.

9.5.2 Urban planning system implementation abstraction

Urban planning system implementation is done in three levels i.e. physical level,
intermediate level, and upper level as shown in Figure 9.16. Physical level is called
storage level, which is based on Hadoop HTFS system. All the historic data are stored
in physical level. Each dataset is given a number in figure such as vehicular data at

Physical level:
Storage level

Intermediate level:
Processing level

Upper level:
Decision level

1. Vehicular data

2. Energy data

3. Water data

4. Pollution data

5. Weather data

6. Parking slots data

7. Surveillance data

8. Manual annual
 statistics

1. Statistical
 measurements
(average, correlation,
variation, chi-square test,
probability calculations)

2. Graphs analysis

3. Other processing

. Road 7 traffic planning
(1 : 4 : 6 : 8)

. Building, parking,
 shopping malls planning

(1 : 4 : 5: 6 : 7 : 8)
. Factories & industries

(1 : 2 : 4 : 5 : 8)
. Energy need & safety
 planning

(2 : 4 : 5 : 8)
. Flood safety planning

(3 : 5 : 8)
. Environmental health
 care planning

(1 : 4 : 5 : 8)
. Security Planning

(7 : 8)

Historic data Future planningProcessing, results

Figure 9.16 Urban planning system implementation scenario

p , g

IoT and big data: application for urban planning and building smart cities 179

number 1, energy data as number 2. Intermediate level is the second level, which is
also called processing level. All the processing is done at this level on the data store in
the physical level. At this level, statistical calculation, computation, graph analysis,
and other computations are performed. The third level is the upper level, which is also
called decision level. The decision regarding the urban planning is made at this level.
The decision level has various modules for each type of planning, e.g. road planning,
building planning. The number written under the planning module is the number of
dataset from which the module takes the data for input.

9.6 System real implementation and evaluation

The proposed analysis system is implemented using Hadoop single node setup on
UBUNTU 14.04 LTS coreTMi5 machine with 3.2 GHz processor and 4 GB memory.
For real-time traffic, we generated Pcap packets by Wireshark libraries and retrans-
mitted them using other systems to evaluate the real-time efficiency of the system.
Hadoop-pcap-lib, Hadoop-pcap-serde, and Hadoop Pcap-Input libraries are used
for network packets processing and generating Hadoop Readable (sequence file)
at collection and aggregation unit so that it can be processed by Spark. MapReduce
programming is used for performing offline analysis for urban planning. The dataset
mentions in section 4 are used to perform the efficiency evaluation of the system.

Since the system is based on big data analytics, it is evaluated with respect to
the efficiency and response time. The system performance is measured various size
datasets by considering the processing time (in ms) and throughput (in Mbps). The
processing time result is shown in Figure 9.17, and the throughput analysis result is
shown in Figure 9.18. It is obvious in the graph that when the data size is increased
the processing time proportionally increased, both data size and processing time are

0

50000

100000

150000

200000

250000

300000

350000

78 150 301 450 1228.8 1843.2 3276.8 5345.28

Pr
oc

es
si

ng
 ti

m
e

(m
s)

Dataset size

Figure 9.17 Processing time of various size vehicular datasets

p , g

180 Managing the Internet of Things: architectures, theories and applications

0

2

4

6

8

10

12

14

16

18

20

–500 500 1500 2500 3500 4500 5500

Th
ro

ug
ho

ut
 (M

B
ps

)

Dataset size

Figure 9.18 Throughput of datasets depending on the size

directly proportional to each other. However, we can examine the processing at higher
(larger) dataset i.e. 5,345 MB, the processing time for this dataset is just 300,000
which is far better than other systems. Moreover, when we analyze the throughput
corresponding to the data size, we identified throughput is also directly proportional
to data size because of the parallel processing nature of Hadoop system. This is the
major achievement of the system that with increase in data size the throughput is also
increased.

We also check the performance of the system by increasing the number of sensors
for a single record. We keep the data size as constant i.e. 2 GB and increase the number
of sensors per record, we came to know that with an increase in the number of sensors
the throughput is decreased. This is because when we increase the sensors, it will take
a lot of time in classification filtrations and processing, as a lot of comparison due
to a large number of the sensor in a single record. The throughput of the system with
respect to the number of sensors is shown in Figure 9.19.

9.7 Conclusion and future work

Smart cities and urban planning leave a major impact on the development of the
nations. It increases the decision power of the societies by making an intelligent
effective decision at the appropriate time. It provides convenience to the citizens, so
that can get information at real-time without any delay. In this chapter, we propose a
system for smart cities and urban planning by using IoT generated big data analysis.
A four-tier architecture is proposed which has a collection, aggregation, communica-
tion, processing, and interpretation layer. The system describes in detail by designing
a complete system implementation model to guide the municipalities to practically

p , g

IoT and big data: application for urban planning and building smart cities 181

0

1

2

3

4

5

6

0 10 20 30 40 50

Th
ro

ug
hp

ut
 (M

B
ps

)

No. of sensors/record

Figure 9.19 Throughput of the system by increase of sensors per record for 1 GB
of data

develop the system. Moreover, the system implementation is also given at abstract
level by making the system module, the source of data for each module, their relation-
ship, and their application more evident. Finally, the complete system is developed
using Hadoop technologies with Spark to achieve real-time processing. The simple
IoT-based smart city datasets such as vehicular network, smart parking, smart home,
weather, pollution, surveillance are analyzed for making smart city as well as urban
planning decisions. The systems are finally tested based on the efficiency perfor-
mance by considering processing time and throughput. The system gives efficient
results even on larger datasets. The system throughput is increased in data size.

In future we are planning to start the practical implementation of the system by
developing own smart vehicular transport system. We are planning to use that data for
next transport-related planning. Moreover, we are planning to make the city smarter
enough to detect and apply smart encounter action when any disaster happens. We want
to make the city smarter enough to decide by itself to cater the various problematic
situations by making instant and real-time decisions.

References

[1] CISCO, “The Internet of Things, Infographic”, http://blogs.cisco.com/news/
the-internet-of-things-infographic, accessed May 24, 2015.

[2] Z. Deze, S. Guo, and Z. Cheng, “The web of things: a survey”. Journal of
Communications 6, no. 6 (2011): 424–438.

[3] S. Lara, “Japan’s ubiquitous mobile information society”. Info 6, no. 4 (2014):
234–251.

p , g

182 Managing the Internet of Things: architectures, theories and applications

[4] G. Sylvain, and H. Pigot, “From smart homes to smart care” “ICOST 2005, 3rd
International Conference on Smart Homes and Health Telematics”. Vol. 15.
IOS Press, 2005.

[5] H. Sun Sheng, “Global city making in Singapore: a real estate perspective”.
Progress in Planning 64, no. 2 (2005): 69–175.

[6] O. Mairtin, and I. Ganchev, “The creation of a ubiquitous consumer wire-
less world through strategic ITU-T standardization”. IEEE Communications
Magazine 48, no. 10 (2010): 158–165.

[7] A. Ahmad, A. Paul, M. Mazhar Rathore, and H. Chang, “Smart cyber
society: integration of capillary devices with high usability based on cyber-
physical system”. Elsevier: Future Generation Computer Systems (in press).
doi:10.1016/j.future.2015.08.004

[8] X. Feng, L. T. Yang, L. Wang, and A. Vinel, “Internet of things”. International
Journal of Communication Systems 25, no. 9 (2012): 1101.

[9] D. Sudhir, and R. Prasad, eds. “Technologies for Home Networking”. John
Wiley & Sons, 2007.

[10] J. Jiong, J. Gubbi, S. Marusic, and M. Palaniswami, “An information frame-
work for creating a smart city through Internet of things”. IEEE Internet of
Things Journal 1, no. 2 (2014): 112–121.

[11] M. Gramaglia, O. Trullols-Cruces, D. Naboulsi, M. Fiore, and M. Calderon,
“Vehicular Networks on Two Madrid Highways”. IEEE SECON, Singapore,
July 2014.

[12] S. Uppoor, and M. Fiore, “Large-scale Urban Vehicular Mobility for Net-
working Research”. IEEE VNC, Amsterdam, The Netherlands, November
2011.

[13] D. Naboulsi, and M. Fiore, “On the Instantaneous Topology of a Large-
Scale Urban Vehicular Network: the Cologne Case”, ACM MobiHoc 2013,
Bangalore, India, July 2013.

[14] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J.M. Barcelo-Ordinas, “Gener-
ation and analysis of a large-scale urban vehicular mobility dataset”. IEEE
Transactions on Mobile Computing 13, no. 5 (2014).

[15] S. Bischof, A. Karapantelakis, C.-S. Nechifor, A. Sheth, A. Mileo, and
P. Barnaghi, “Semantic modeling of smart city data”, Position Paper in W3C
Workshop on the Web of Things: Enablers and services for an open Web of
Devices, 25–26 June 2014, Berlin, Germany.

[16] R. Tönjes, P. Barnaghi, M. Ali, et al., “Real time IoT stream processing and
large-scale data analytics for smart city applications”, poster session, European
Conference on Networks and Communications, 2014.

[17] S. Kolozali, M. Bermudez-Edo, D. Puschmann, F. Ganz, and P. Barnaghi,
“A knowledge-based approach for real-time IoT data stream annotation and
processing”, Proc. of the 2014 IEEE International Conference on Internet of
Things (iThings 2014), Taipei, Taiwan, September 2014.

[18] http://data.surrey.ca/dataset/water-meters, accessed June 30, 2015.

p , g

IoT and big data: application for urban planning and building smart cities 183

[19] G.R.Brakenridge, “Global Active Archive of Large Flood Events”. Dart-
mouth Flood Observatory, University of Colorado, http://floodobservatory.
colorado.edu/Archives/index.html, accessed June 30, 2015.

[20] Eurostat, “Passenger Mobility in Europe”. European Commission, 2007.
[21] Eurostat, “Energy, Transport and Environment Indicators”. European Com-

mission, 2011.
[22] US environmental Protection Agency (EPA), “Car Pollution Effects”. 2012.
[23] S. Yim, and S. Barrett, “Public Health Impacts of Combustion Emis-

sions in the United Kingdom”. Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Cambridge, United States, 2012.

This page intentionally left blank

p , g

Chapter 10

Healthcare Internet of Things: fundamental
technologies, state-of-the-art standards,

and current practices
Alan Diaz1 and Wei Wang1

Abstract

Life expectancy has been increasing in the last decades. Although increased life
expectancy is one of the main goals of modern society, this involves a high cost for
governments, which is distributed among facilities for people with disabilities, health
insurance for over 65 years individuals, treatment/medication for chronic diseases,
and so on.

The Internet of Things (IoT) proposes a technological approach to assist and
alleviate some of those costly problems, and preserve a high quality of life. In
this chapter, an updated definition of IoT and the healthcare system is presented.
Additionally, a quantifiable representation of current health issues is discussed, in
combination with a review of the state of the art of IoT-applications in the healthcare
sector that assist these issues, emphasizing in those that concern to energy-aware
policies.

10.1 Introduction

One of the main goals of modern society is ameliorating health conditions. There exist
diverse diseases that technology has not been able to eradicate. Such is the case of car-
diovascular diseases (CVDs), cancers, diabetes, and chronic lung diseases. These are
the four main non communicable diseases (NCD), which cannot be transmitted nor
are infectious, representing 68% of all deaths in 2012, according to the World Health
Organization (WHO) [1]. Only in that year, 17.5 million people died from CVDs, posi-
tioning these diseases as the number one cause of death globally. Also, approximately
14 million cases of cancer were detected. Only in the United States, the American
Cancer Society, Inc invested $632 million dollars to assist issues including patient
support, research, prevention, and detection/treatment expenses [2]. Moreover, in the

1Department of Computer Science, San Diego State University, California, USA

p , g

186 Managing the Internet of Things: architectures, theories and applications

next two decades cancer cases are expected to rise to 22 million. Furthermore, there is
an estimation of 1 out of 10 adults suffering from diabetes. In 2012, 1.5 million deaths
were reported due to a diabetes issue. In 2014, 9% of the adult population was living
with this ailment [3]. In addition, chronic lung diseases, such as chronic obstructive
pulmonary disease, have taken nearly 3 million people as of 2012, representing a 6%
of global death [4].

Similarly, these ailments with high mortality ratio, there are also health dis-
abilities that concern the medical sector and global population. Among the 20 main
problems of disability worldwide, there are mental disorders including dementia,
epilepsy, and depression. For instance, people over 65 years old are more suscep-
tible to suffer from dementia. This is a population that has been increasing in the
past decade, because life expectancy has increased by 6 years approximately since
1990s. The Deloitte Inc Company has estimated that by the year 2050, the population
of the elderly is going to be three times bigger. Unfortunately, medical institutions,
such as hospitals, do not have the capacity to assist this number of people in their
infrastructures. Moreover, the number of caretakers (physicians and nurses) remains
static, and studies estimate that this number is going to remain the same in the fol-
lowing years. As we can see, there are still many issues that concern to the healthcare
systems that have not been solved, and they are going to get tougher in the coming
years.

The healthcare system is in charge of preventing, diagnosing, and treating health
issues in an overall population. The healthcare sector is the second largest category
as of spending in gross domestic product, representing a 10.5% of waste by 2014,
according to the Economist Intelligent Unit [5]. The healthcare systems from all over
the world have been benefited in the past decades due to technology. The introduc-
tion of computers and medical assistance devices (i.e. Magnetic Resonance Image
machines, digital thermometers, etc.) has improved the performance of medical insti-
tutions. Patient care and worker efficiency, decision-making assistance with big data
analytics, doctors and physicians accessibility, and online consultancy are just a few
of the improvements that technology has to offer. In this sense, health assistance
can reach a major number of the population, providing good quality service, and
improving life-experience among modern society.

Since technology evolved very fast, their application in the medical field has been
improving over the past decades. Because of that, the International Organization for
Standardization (ISO) released the ISO/TC 215 Health Informatics section, with 146
standards up to date, to support and enable all the aspects of the healthcare system,
by developing health information technology (HIT) [6].

Healthcare informatics, which is the area in charge of the development of HIT,
is in charge of improving healthcare security, quality, and efficiency by digitalizing
all aspects concerned with the healthcare sector, such as electronic health records
(EHRs), analysis of data recorded, and better in-time patient assistance.

The IoT is a technology in development that is revolutionizing ubiquitous com-
puting. The proposal suggests that any object can enable a smart conversation
between another object or group of objects without wires or human intervention. The
usage of IoT will enhance scalability and reliability among ubiquitous computing,

p , g

Healthcare Internet of Things 187

allowing the development of more efficient and accurate decision-making tools, and
user-interacting devices/applications.

Among the features that compose the IoT, there is the capability of constant
unobtrusive monitoring. This is a key element for the healthcare system, since it will
enhance the quality of the patients’experience. Additionally, enabling objects entering
into a smart conversation will inform the stakeholders about the current status of a
specific situation, allowing immediate action over an emergency.

In this chapter, a discussion of the most promising technologies that exist to enable
the IoT for the healthcare sector is presented, in addition to current applications that
have been implemented to assist diverse issues concerning to this area.

This chapter is structured as follows. In section 2, the state of the art of existent
technologies that have been proposed to assist the IoT is presented. In section 3,
applications of these technologies in real-life scenarios are presented, by introducing
previous work of the research community. In section 4, we present open challenges
and future directions, and conclusions respectively.

10.2 IoT elements for healthcare

Modern technology has evolved at a significant fast pace. Today, it is common to be in
constant interaction with our phones, tablets, or computers, communicating with other
devices to do whatever we want to, from driving cars to ordering pizza with a simple
click on our electronic device. Behind the scenes of this interactive new world there
is a vast group of different technologies that make this possible. The enhancement
of computer networks, the efficiency of nanotechnology and diverse sensors, and re-
structuring of computer architecture are allowing the research community to provide
society of better tools to assist health conditions. In this section, the state of the
existent technologies that have been proposed to assist the IoT issues is presented.

10.2.1 Ambient intelligence (AmI) in general

AmI systems can be seen as a branch ofArtificial Intelligence (AI), where the purpose
is to generate smart environments to assist common, everyday situations of modern
human behavior, in order to improve the quality of life. According to Acampora et al.
[7], an AmI system must be aware and adaptive to the context it is being implemented
in, so it can learn from the environment and be able to anticipate specific needs of an
individual. This feature provides a personalized service of AmI systems. In addition,
each system must be ubiquitous and transparent, in order to have a big impact without
interfering in the user’s life.

The difference between the IoT and AmI systems resides in that each application
that involves the IoT must follow protocols that include strictly the usage of Internet.
On the other hand, the diverse applications of AmI systems can use different wireless
communication standards such as Bluetooth or ZigBee, just to mention a couple. Fur-
ther development of AmI includes wireless body area networks (WBANs), wireless
mesh sensor networks (WMSNs), and different sensor technologies.

p , g

188 Managing the Internet of Things: architectures, theories and applications

Direct applications of AmI in healthcare include the monitoring of individuals
within different scenarios, from the elderly to alert in case of falls, to dementia
patients who leave rooms and get themselves in dangerous situations. Similarly, the
data analysis and prediction (anticipation) that these systems provide can improve
hospital–patient experience among hospitals. Since the information travels between
nodes (patients, analysis-systems, doctors) in real-time, a larger number of people
can be assisted with better accurate medical results.

Security and infrastructure are the most challenging issues that AmI has to face.
In order to learn from the environment, the systems must be recollecting data of
the users constantly. The misuse of this information can lead the user/patient into a
dangerous situation. Further research is necessary in order to provide this ubiquitous
service without compromising relevant-personal data.

10.2.2 Service oriented architecture (SOA)

The implementation of the Internet among enterprises has enabled faster communi-
cation between people and electronic devices. This enhancement has been improving
over the years, allowing the interconnection of more devices inside large compa-
nies. For instance, the development of desktop, mobile, and Web applications in the
software industries has improved enormously due to the Internet.

SOA is a software architectural pattern that extends object-oriented architecture.
It enables communication between diverse technologies (programming languages,
software applications, etc.) through the implementation of services and messages.
In this sense, services are software components that can be self-identifiable and
application-independent. The messages are encrypted codes that services use to com-
municate between them. Services communicate through an Enterprise Service Bus
(ESB). An ESB is in charge of the routing, reliability, management of services, log-
ging, and security issues of communication [8]. SOA is referred to as a tightly couple
technology, which lightens the communication process between applications.

Among the technologies that enable the implementation of SOA, there is the usage
of Extensible Markup Language (XML) and JavaScript Object Notation (JSON) that
are the most common standards for the development of Web services. Alternatives
to these two languages are the Simple Object Access Protocol (SOAP), Hyper-Text
Transfer Protocol (HTTP), Representational State Transfer (REST), and Web Service
Definition Language (WSDL) among the most popular.

Standard information sharing and scalability are a necessity for today’s systems.
A SOA infrastructure beneath healthcare systems allows software applications to
interact consistently. Consistency is important in the SOA infrastructure, because it
provides independency among different programs or processes, which means that
individual technologies inside a system could be replaced without restructuring the
entire system [9].

10.2.3 Radio frequency identification (RFID)

RFID has been investigated in depth for the last two decades. It consists in a
chip/microchip that is composed of tags that uniquely identify each device, and a

p , g

Healthcare Internet of Things 189

reader with an antenna and a transceiver, that allows the reception and transmission
of data via radio waves.

There are two types of tags: active tags, that have the necessity of a powered
system, a life expectancy of 10 years, and commonly read/write features; and passive
tags, that do not require a powered provider, life expectancy is unlimited, are less
expensive than active tags, and are widely used for reading purposes. Its frequency
range varies between low and high range. More specifically, low frequency band is
100–500 kHz, providing an inexpensive low reading speed; medium frequency band
is 10–15 MHz, providing an inexpensive medium reading speed; and finally, high
frequency band that is 850–950 MHz, 2.4–5.8 GHz, providing an expensive high
reading speed [10].

RFID has been implemented in different sectors such as transportation, techno-
logical devices, security systems, the food sector, among others. Since 1996 the ISO
has been updating the status of RFID according to modern technology. In the car and
food industries, RFID has been implemented entirely. This is because it has helped
companies save time and money during industrialization processes. For that reason,
many authors consider RFID as the backbone of IoT. Its energy-saving, small size,
and bandwidth are the main features that have made researchers and companies elect
them as a critical gadget of their services.

The introduction of RFID into the healthcare sector has been challenging due
to several issues. Even when it proposes many benefits, for example, real-time data
access, time saving, and an improved medical process, it carries interference problems
that make them ineffective for a health system, that must be completely reliable. In
addition, the implementation of RFID into the medical system has been delayed
because of privacy and legal issues [11].

Furthermore, Rosenbaum recollected the main vulnerabilities that RFID has to
face in the healthcare area. Cost, Denial of Service (DOS), eavesdropping, possible
physical attacks, and spoofing have been reasons that impede the introduction of
RFID into the healthcare system [12].

10.2.4 Wireless sensor network (WSN)

WSNs, or sometimes called wireless sensor and actuator networks (WSANs), are
telecommunication technologies that allow communication between nodes that are
individual and autonomous systems one from the other. There are structured WSNs
that have deployed nodes in a preplanned manner; and unstructured WSNs with
nodes deployed in an ad hoc manner. WSNs are designed for specific purposes (appli-
cations), and are classified in two different categories: for monitoring, allowing the
study of specific targets in different areas including the military, business, and health;
and for tracking, allowing the reachability or capture of different targets in areas such
as military, business, and habitat (animals). WSNs are designed in order to satisfy
low energy consumption. For instance, it follows five-layer protocols (application,
transport, network, data-link, and physical) to improve communication and the energy
usage [13].

p , g

190 Managing the Internet of Things: architectures, theories and applications

WSNs are built in a dynamic network topology. This enhances a scalable and
ubiquitous system that is smart enough to cope with node failures due to the inde-
pendency of each single one, but, this unattended operation can lead to lost data
and communication failure. Nonetheless, the heterogeneity that exists among the
nodes enables self-correction, which means that in case of a failure, the network will
cooperate in order to keep data flowing [14].

These computer networks have been used in several sectors from environmental
monitoring and home automation, to healthcare and industrial automation. Due to
the fact of its heterogeneity and scalability, WSNs have shown excellent results for
the improvement of timesaving, low energy consumption, and commonly low cost
implementation [15].

The main challenge for the research community in WSNs is the integration
of current technologies to compose scalable and reliable networks. There are dif-
ferent approaches from non-IP-based technologies, such as ZigBee or Z-Wave, to
IP-based technologies, such as Bluetooth or Wi-Fi. Up to date, these technologies
have been selected to work excellent for different specific areas. Nonetheless, the
implementation of WSN for the IoT is still in a development phase.

10.2.5 ZigBee

ZigBee is a counterpart technology from Bluetooth. It enables communication
between devices around a Personal Area Network (PAN). It works through a mesh
networking topology, and its range varies from the 10 to 20 m (although it can reach
100 m with a significant lack of efficiency). It maximizes battery life and commu-
nication efficiency. It was first proposed by the ZigBee Alliance, which is the group
that still handles the updates of this technology. ZigBee is composed of the physical
and medium access control (MAC) layers, both based on the IEEE 802.15.4 standard,
and the network and application layers, defined by the ZigBee specification, which
are mostly used in embedded applications [13].

The mesh network topology that rules the ZigBee technology allows strong
reliability, because it keeps communicating even when a node cannot enable communi-
cation. It can connect several (tens to thousands) devices together. ZigBee 3.0 released
in the year 2014 enhanced object’s (device’s) connectivity. The former improvement
has been considered a powerful tool for the development of the IoT. ZigBee pre-
sumes having the lowest energy consumption of the products available for IoT, which
they called Green Energy. ZigBee 3.0 operates at 2.4 GHz, and uses the networking
protocol of ZigBee PRO, enabling device-to-device communication with low-power
consumption, low-cost, and low-complexity [16].

Smart home systems and retail systems are the two main targets of ZigBee.
After the release of ZigBee 3.0, the ZigBee Alliance has been proposing several
applications for IoT in different sectors. The healthcare area is a strong market for this
technology, since it enables constant health monitoring and management for chronic
diseases, aging independence, general health, wellness, and fitness [17]. For this
sector, ZigBee is working in parallel with Continua Health Alliance, which endorsed
the ZigBee Health Care as the main technology for their devices’ networking. With
a vast repertory of applications in different health areas among chronic diseases,

p , g

Healthcare Internet of Things 191

independent aging, and general wellness, ZigBee has been gaining reputation for its
effectiveness and lower cost, and lower energy consumption, in contrast with current
wireless technologies.

10.2.6 Bluetooth

Bluetooth is a wireless standard, first created by Ericsson in 1994. Afterwards, it has
been constantly developed and updated by the Bluetooth Special Interest Group (SGI).
This technology enables communication between devices, using radio transmission
waves at a high speed and with a low cost. In 2002, the IEEE approved the 802.15.1
specification as the Bluetooth wireless technology. Since 2004, Bluetooth’s Core
Specifications (standards) are handled by the Bluetooth SGI. The former determined
the range of Bluetooth, which varies from 1 m (class 3 radios), 10 m (class 2 radios),
and 100 m (class 1 radios). Its vast reachability and low power consumption gain
investors attention since its first introduction to society [18]. Bluetooth runs over the
Internet Protocol (IP), enabling interconnectivity between current known technologies
worldwide in a simpler form.

In 2013, Bluetooth 4.1 was released promoting simplest steps to the development
of the IoT, providing coexistence between multiple devices, better connections, and
improved data transfer. This version has been named Bluetooth Low Energy (BLE)
or Bluetooth Smart. BLE, the low-power wireless standard has two device types:
single-mode (BLE, Bluetooth Smart) device, and dual-mode (classic or BR/EDR/LE,
Bluetooth Smart Ready) device. In addition, BLE best-case scenario could have a
maximum data throughput of 5–10 KB/s. This newest release provides device com-
munication in two ways: broadcasting, where a broadcaster sends data constantly,
and observers (that can be more than 1) receive this data if they are willing to; and
connections, which is the other device-communication that allows the transmission
interchange in both ways for two peers only [19].

In 2014, Bluetooth 4.2 was introduced to the family of Bluetooth technologies,
enabling higher speed and better security (less interference ratio) [20]. BLE opened a
wide area for IoT developers due to its efficiency, allowing software developers and
original equipment manufacturers (OEMs) to create better Bluetooth applications
and devices. The main advantage of BLE is its energy efficiency, which was designed
in order to consume the less energy possible in an exchange-data communication
process.

There is an expectancy of three billion Bluetooth devices shipment in 2015.
This number is supposed to increase by five billion in 2019 [21]. Fortunately, the
healthcare system has been aided by this technology. Currently, there are millions
of devices including heart monitors and inhalers that work with this technology. In
addition, according toABI Research there is going to be an annual growth of Bluetooth
healthcare devices shipment of 114% between 2012 and 2018. This implies 31 million
devices enabled in the healthcare sector by 2018 [22].

10.2.7 IPv6 and IPv6LoWPAN

The IP revolutionized the method of digital data exchange. By identifying each com-
puter with unique addresses and encapsulating messages beneath packages, two

p , g

192 Managing the Internet of Things: architectures, theories and applications

devices can have a conversation. IP version 6 (IPv6) and IP version 6 over Low
Energy Wireless Personal Network (IPv6LoWPAN) are the newest versions of this
protocol. IPv6 provides a 128-bit address space. It supports address 3.4 × 1038 nodes,
assuming 100% efficiency. IPv6 provides over 1500 addresses per square foot of the
Earth’s surface. Hosts are capable of talking to other IPv6 nodes even when some of
the infrastructure between them may only support IPv4. Two major mechanisms have
been defined to help this transition: dual-stack operation (IPv6 nodes run both IPv6
and IPv4 and use the version field to decide which stack should process and arriving
packet) and tunneling (the IPv6 packet is encapsulated within an IPv4 header that has
the address of the tunnel endpoint in its header, is transmitted across the IPv4-only
piece of network, and then is decapsulated at the endpoint).

The main goal of the IPv6 address allocation plan is to provide aggregation of
routing information to reduce the burden on intra domain routers. Its development was
intent to support the continued growth of the Internet. From its former official ver-
sion IPv4 there have been two improvements: auto-configuration and source-directed
routing. The IPv4 and IPv6 capabilities have become virtually indistinguishable, so
that the main driver for IPv6 remains the need for larger addresses [2].

6LoWPAN defines how to layer IP version 6 (IPv6) over low data rate, low power,
small footprint radio networks (LoWPAN) as typified by the IEEE 802.15.4 radio.
The name 6LoWPAN was born from the combining of IPv6 and Low Power Wireless
Premise Area Networks, but more importantly so that the name would sort to the
top of the working groups list. 6LoWPAN is a developing standard from the Internet
Engineering Task Force (IETF) 6LoWPAN Working Group and it was designed from
the start to be used in small/pico sensor networks [1].

10.3 IoT applications in healthcare

The healthcare sector has been studied in depth due to the fact of unreliable and
unaffordable patient care systems’ implementation. Several organizations and gov-
ernments worldwide have been working in conjunction in order to assist the issues
that concern specifically to the medical sector. The main future challenges are reduc-
ing the costs of production and machinery from medical institutions, providing a
high-quality healthcare service for an overall population, assisting the elderly and the
population with disabilities or chronic diseases without compromising other human
lives, and preserve a green sustainable world through the introduction of new tech-
nology. In this section, general applications of current technologies addressing an
IoT-based solution are presented.

10.3.1 Vital signs

According to ProPublica Journalisms in the Public Interest, in year 2014 the average
waiting time at hospitals before seeing a doctor was 24 min in the United States.
Because of that, people who may not need immediate medical assistance could be

p , g

Healthcare Internet of Things 193

waiting for longer periods of time. Due to this inefficiency, hospitals and other medical
institutions are paying high costs to alleviate the patient–hospital experience.

Among the first activities that medical caretakers must complete when a patient
first arrive to the medical institution is retrieving the vital signs of the person in
question. This must be performed due to a medical record storage system that aids to
prevent or assist future irregularities in one’s medical record.

The current process of vital-signs-retrieval in the average hospital consists in
a group of repetitive and exhaustive steps, with the usage of diverse devices, and
commonly with a handwritten recording method. HIT has provided the automation
of different medical services, mostly, the digitalization of medical records. Due to
this enhancement, the hard work used to be done by medical assistants has been sig-
nificantly reduced. In addition, the introduction of electronic medical records (EMR)
or EHRs, brought benefits such as providing flow reports, emergency-alert systems,
graphs/charts, electronic medical consultancy, and description support tools [23]. The
US government created the meaningful use incentive program, which finances and
regulates the usage of EMRs all over the country.

A primary step for EMR composition is the retrieval of data. Sensors’ capabili-
ties provide diverse features to this inquiry. Rolim et al. [24] proposed a WSN-like
approach that assists the recollection of patient’s vital signs through a consistent
method. The system implements different sensors on existing medical devices to
retrieve patient’s data and communicate to other hosts or stations to analyze and
manipulate the information. The protocol of communication used by Rolim et al. is
Wireless 802.11, exchanging XML and HTTP format files. At the same time, the sys-
tem provides cloud-computing capabilities for the storage and analysis processes. In
this sense, patient’s information can be accessed in real time from anywhere, providing
medical assistants to improve their services.

Similar to the EMR system proposed by Rolim et al. [23], Méndez and Ren
designed a basic medical data recording system with limited conditions and less
scalability. Nonetheless, this system enhances nurse’s data-recollecting activity by
retrieving patient’s data from ECG sensors, oximeters, thermometers, and pulse
meters. Méndez and Ren decided to utilize commercial existing technologies such
as Spot Vital Signs LXi® for the sensors, an EMR system known as Centricity Prac-
tice Solution® developed by GE Healthcare® for the interface, and Citrix Servers
which comprises all the cloud storage functionalities. In contrast to other existing
cyber-physical systems for vital signs recollection, this enhancement uniquely rec-
ollects and stores patient’s data, it never analyzes it. Consequently, it reduces the
time an individual has to spend at a hospital, but still has further improvements to
come. It communicates the sensors with the EMR system through the Internet, but
not wirelessly.

In addition to vital signs recording features, the emergencies-area of medical
institutions has had many improvements due to HIT. Specifically, ambulance–hospital
communication through Internet-wirelessly-technologies could aid to the reduction
of physician’s procedural workload, enabling them to improve performance in crit-
ical situations. There are a few commercial systems that have been implemented

p , g

194 Managing the Internet of Things: architectures, theories and applications

in real hospitals. But further research is required due to costs reduction and better
communication performance.

Although EMRs have improved the patients’ record management among institu-
tions, Personal Health Records (PHRs) propose optimized information management
and security services due to lighter and simplified capabilities. In PHR systems each
user/patient has total control over personal data access/sharing [25]. Beyond PHR,
a tendency of Emergency Medical Systems (EMS) was raised, which in contrast to
EMR or PHR systems, EMS operates with ubiquitous real-time capabilities, address-
ing personal data security issues with cloud-computing protocols. Koufi et al. [25]
discuss the implementation of EMS through a PHR interface, and cloud computing
access management. The flexible, scalable infrastructure proposed all-time-anywhere
accessibility to health records. Scalable in a sense that it can operate independently
of diverse platforms, and at the same time provide security to sensitive data. Their
system NefeliPortal is a prototype portal application that enables access to a PHR-
cloud via web services deployed through Business Process Execution Languages
(BPEL).

SOA systems that guarantee coverage of all security issues are highly irregu-
lar. Similar to the NefeliPortal application, Poulymenopoulou et al. [26] proposed
an electronic emergency personal record (E-EPR) system in charge of managing
patient’s information in critical scenarios. Its implementation was intended for the
use of ambulance–hospital systems, E-EPR ubiquitous functionalities enhance its
scalability and platform independence due to its security components. In order to
satisfy the Health Insurance Portability and Accountability Act of 1996 (HIPAA) pri-
vacy norms, and still provide a high-quality service, this system’s security steps are
mount on the Amazon cloud infrastructure. In addition, instead of performing all the
data storage and analysis through a single cloud structure, the authors proposed two
different servers: one for the patient or ambulance station, and the other for the static
station (hospital, laboratory, etc.). This E-EPR architecture organized domain context
information into domain ontology. The former approach enabled context sharing in a
semantic manner with context reasoning. By addressing server-error-prone situations,
this system guarantees communication’s reliability.

There are several cases of domain-oriented service computing, origins of cloud
computing, which manipulate medical data on server side.Among the information that
is retrieved from patients there are image files. Images that are usually in the Digital
Imaging and Communications in Medicine (DICOM) format, which provides vast
data about specific inquiries (personal records, X-ray results, mammography results,
etc.). For this purpose, several processing and analysis is required from the doctor
and physicians in order to provide an accurate response to the patient’s problems.
Performing the analysis from the server side is exhaustive and high costly when
the number of images increases. Huang et al. [27] proposed a medical information
integration based cloud computing center that through the usage of web-services
provides medical image data storage and analysis at an application level. This system
utilizes the Apache Hadoop open-source software framework for the image storage
features and analysis. Adding the MapReduce framework capabilities, this system
provides accessibility to relevant data from anywhere in the world. The key feature

p , g

Healthcare Internet of Things 195

of this medical information center is the development of all the heavy processes on
the server side.

Generalizing in healthcare disease-assistance systems development is quite hard
due to irregularities that are present in most chronic illnesses. The level of intelligence
of current systems, even when high, does not provide a percentage of reliability that
allows technicians to introduce them into a full time healthcare monitoring system.
Nonetheless, several enhancements have been proposed to assist issues such as blood
glucose and digestive system monitoring.

For assisting diabetes mellitus record monitoring, Jara et al. [28] designed an
ambient assisting living (AAL) application based on the IoT, which alleviates patient’s
constant monitoring by connecting the glucometers through IPv6LoWPAN protocol
and other technologies such as Bluetooth and RFID tags. Blood glucose levels are
recorded into RFID tags that are later used by physicians in order to verify blood
glucose levels and insulin therapy of the patients.

The development of swallowable capsules has been around since late 1970s.
Major approaches were proposed in the early 2000s. Because of those, a whole dif-
ferent research area was open, addressing mini robotic technologies. The original
motivation was to assist the embarrassed and uncomfortable process of endoscopy or
colonoscopy studies. Once utilizing RF sensors and high quality cameras addressed
this solution, further technology has been developed to assist strong diseases that
concerns to the digestive system. In addition, developed work such as the Vec-
tor Project [29] have been studying the capacities of capsule-size robots that can
operate inside the human body. Furthermore, in 2010, Olympus Medical Systems
Corp and Siemens Healthcare developed a magnetically guided endoscopic capsule
(MGEC) for gastrointestinal endoscopy, which operates with wireless technologies
[30]. Also, Caprara et al. [31] designed a capsule with water propulsion capability,
which enhances capsule-camera visibility, in order to assist gastric cancer. In this
case, the camera communicates to a desktop station wirelessly.

10.3.2 Smart drug intake

The healthcare sector has to deal with capacitances of drug intake in order to prevent
cases of adverse drug reaction (ADR), which its prevalence is of 6.7% throughout
hospitals worldwide. Even when the rates of mortality due toADR maintain low, there
is a necessity to eradicate this problem. Not deadly situations of ADR tend to lead to
lifelong issues that are uncomfortable and expensive. In addition, wrong drug intake
could lead to chaotic scenarios and deadly circumstances.

A typical scenario resides in over taking or not taking the necessary dosage
of drugs as prescribed by doctors or physicians. Cases of incomplete treatment are
extremely common once a person self-evaluates her/his relief. This misbehavior leads
to unsuccessful recovery, and in chronic cases treatments, to null improvements. On
the other side, there is the over dosage, which in the long run reduces general drugs’
effectiveness.

Only in the United States, an amount of US$177 billion could be saved from
the medication noncompliance area. Due to this fact, there is a need to implement

p , g

196 Managing the Internet of Things: architectures, theories and applications

smart systems that assist this issue. For instance, Jara et al. [32] in collaboration
with the WHO have developed a multitechnologies system to improve drug delivery
service, providing a guarantee that a high percentage of the population has access
to medicines. Also, the system enhances appropriate consumption by tracking drug–
patient activity. The system strongly avoids clinical caused by dosage mistakes. The
system, Movital, establishes functionality through RFID MiF are Desfire tag systems,
which communicate through the IPv6LoWPAN protocol, improving effectiveness and
reliability of the pharmaceutical sector. In general, Movital provides an identification
system for medicines that provides further information of the dosage and usability of
them. Although RFID achieves excellent performance, its implementation is afford-
able for the high-income countries of the world. Due to costs concerns, Jara et al.
additionally proposed the same system’s structure with different and less expensive
technologies. The Infrared Data Association (IrDA) interest group releases protocols
for wireless infrared communications. By taking advantage of IrDA TBTag, the costs
diminished significantly in comparison with the RFID. Other technologies not as
expensive as RFID MiF are Desfire systems, but less economic than IrDA TBTags
are RFID Ultrafire and RFID I-Code SLI.

Similarly, a pervasive and preventive system for medication noncompliance and
daily monitoring was proposed by Pang et al. [33]. The intent of this approach was
to provide a smart Pervasive Healthcare Station in home. It is composed of three
different parts. First, an iTag, which is an unobtrusive wearable device, composed
of different sensors, which constantly retrieves vital signs and communicates to the
main system. Second, an iPackage, which is an electronic container for medicines that
controls patient’s access to medicines (i.e. denies access in case of tentative overdose).
Third, the main system, which is a 2D-Mesh-NoC based multicore architecture that
enables data analysis and communication. Controlled Delamination Material (CDM)
seals the iPackage and it is controlled by RFID. The iTag communicates with the
system using ZigBee technology, while the main system establishes Wi-Fi connection
to store and analyze data.

Similar to the Pervasive Healthcare Station, López-Nores et al. [34] designed
an iCabiNET that perform the same drug identification, but also performs reminder
activities. Once a drug is registered in the iCabiNET for further consumption, the
systems communicates with the user in order to perform a reminder of the intake. iCab-
iNET, as the Pervasive Healthcare Station, identifies each drug through RFID tags.
On the other hand, it utilizes Bluetooth from a mobile phone to establish connection
to OSGi-based residential networks.

10.3.3 Elderly care

One out of three adults aging 65 or older has a fall accident each year. These are the
leading cause of fatal and nonfatal injuries. The medical costs of these accidents were
US$34 billion by 2013 only in the United States. In addition, there are over 258,000
hip fractures each year due to falls, which is a condition that leads to a dependent
living, and in some cases, to an early death [35].

p , g

Healthcare Internet of Things 197

The elderly population has been increasing considerably in the past decades.
Research stated that by 2030, there would be 72.1 million older persons in the
United States, which is almost two times the population of 2012 [36]. This high-
lighted the necessity of effective fall-detection systems to assist cases immediately, in
order to achieve increase life expectancy rates, and significantly reduction of medical
costs.

Unfortunately, the older population also suffers from diverse diseases that obliged
them to live under constant monitoring. Dementia is among the main disabilities that
concern to the elderly. According to Alzheimer’s Disease International the number of
people living with dementia in 2014 was estimated at 44 million worldwide, and it
would be almost the double by 2030, and triple by 2050. The global cost of dementia
was about US$604 billion in 2010 in the United States [37].

Assisting the former needs, the research community has been involved in several
projects. Nonetheless, only a few proposals avoid obtrusive applications. In addition,
the development of smart systems to detect falls is still quite a novel field of study. The
IoT and the implementation of cyber-physical systems intent to develop fall-detection
systems preserving a high quality of life for the patients, and keep the costs as low as
new technologies enable.

WSNs have gained the main popularity among all proposals because they manage
large scales with smaller devices. For example, a pervasive computing model based
on WSN is presented by Díaz-Ramírez et al. [38], assisting patients with dementia
through monitor features. If a patient leaves a safe space, the system is designed to
emit alerts to the caregivers. This WSN uses binary sensors to detect the events, and
are combined with passive infrared sensors and magnetometers.

For instance, IoT intend to communicate the physical world through digital/cyber
options. Further studies have proposed different changes in current technologies
in order to optimize them for cyber-physical systems. Wang et al. [39] discuss a
secure healthcare application architecture: cyber-physical enhanced secured WSNs
integrated cloud computing for u-life care (CPeSC3). By implementing a communi-
cation core, a computation core, and a resource scheduling/management core, Wang
et al. described a system where medical institutions establish communication with
patient’s homes in order to detect and assist health emergencies. The authors com-
municating information through the Internet also proposed the usage of RFID tags or
ZigBee devices for the interchange of data between monitoring devices.

Among the commercial options there is iWander, an application for Android
mobile devices proposed by Sposaro et al. [40] to assist dementia patients and care-
givers. This approach utilizes a Bayesian network to interchange data, and determine
whether the behavior of the individual is normal or abnormal. The simplicity of this
project relies in the user-friendly unobtrusive application feature of using personal
mobile devices (i.e. smart phones, watches, etc.).

Ubiquitous healthcare (u-Healthcare) is an emerging approach for the healthcare
system. This technology proposes the development of ubiquitous computing appli-
cations that assist the medical sector. The usage of IP6LoWPAN or 3G/4G/Wi-Fi
communication protocols enables the development of ubiquitous applications since

p , g

198 Managing the Internet of Things: architectures, theories and applications

they enlightened and improve the process of data interchange. Tabish et al. [41] dis-
cussed a u-Healthcare system that monitors with real-time capabilities. The strict
usage of the newest version of IP alleviates the listening time of the server side and
enables the great velocity service.

The capabilities of the global positioning system (GPS) have been widely studied
by the research community. This feature is mostly found in every mobile device. A
mobile device has multiple features that interact with the real world and permit the
detection of different information. Detection processes are enabled due to hardware
facilities such as accelerometers and weather sensors. Kau and Chen [42] discuss a
fall-detection system that is based on smartphones that are placed in the pockets of
low-body clothing. Once their algorithm detect a real fall, the application sends an
alert to the user’s caregivers using 3G network and Wi-Fi technologies.

Body-mounted embedded Systems on Chip (SoC) devices are affordable alterna-
tives in patient’s monitoring. These could be watches, earrings, necklaces or bracelets
with accelerometer capabilities and micro-controller circuits. Rakhecha and Hsu [43]
used a smart watch, in which features are programmed on the micro-controller cir-
cuit to distinguish between activities of daily life (ADL) and genuine falls. The latter
avoids triggering false alarms, and permits the user to perform regular everyday activ-
ities. In this system, all the users must wear a personal watch, because communication
is establish wirelessly (radio waves) through these devices.

The development of intelligent systems for these scenarios is a hard task due
to the number of variables that must be taken into account. Genetic programming
(GP), which is a powerful evolutionary learning method, has helped in some projects
to add intelligence to the systems. GP proposes the minimization of human expert
intervention since it works on raw sensor input, not relying on manually selection
features. This implementation has been studied by Dau et al. [44]. By utilizing
smartphones communication capabilities the cost can be reduced significantly. Fur-
ther research is required in GP in order to combine its functionalities with other
IoT features.

10.3.4 Healthcare applications of AmI

AmI was first proposed by Philip Research back in 1999 [45]. Since then, Philip’s
alliance with the Massachusetts Institute of Technology (MIT) and the National
Institute for Research in Computer Science and Control (INRIA – Institut National
de Recherche en Informatique et en Automatique) motivated the development of
applications in the area.

This approach has attracted the attention not only of the research community, but
also of large companies worldwide. There are several plans such as 2020 or 2030,
where it is expected that AmI systems will be running in our everyday environment.

For instance, the AmI term refers as first mentioned by Philips as “people living
easily in digital environments in which the electronics are sensitive to people’s needs,
personalized to their requirements, anticipatory of their behavior and responsive to
their presence” [45]. In this sense, an intelligent system must be in constant com-
munication with the environment, managing real-time updates, and perform complex

p , g

Healthcare Internet of Things 199

analytics. Although AmI are directly connected to AI systems, they are not synony-
mous and operate differently [46]. In general, AmI systems are more complex and
implement diverse technologies not utilized by AI.

AmI has many research areas: AmI and Well-being, Social Robots, Evaluation,
City, among the most popular. This section is concentrated in AmI and Health-
care. This field investigates and evaluates different technologies that comprise the
development and implementation of AmI systems in the healthcare sector.

For this purpose, the following are actions that each AmI system applied in
healthcare must perform: activity recognition, behavior discovery, anomaly detection,
planning, decision support, and anonymization [47]. Although many technologies
enable the development of this type of systems, only a few of them allow optimization
and reduction of costs in both development and implementation. Approaches such as
Bluetooth BLT and ZigBee 3.0 provide capabilities for these purposes.

Furthermore, according to Acampora et al. [47], among the main applications
in the healthcare sector are: continuous health monitoring, continuous behavioral
monitoring, monitoring for emergency detection, assisted living, therapy and rehabil-
itation, persuasive well-being, emotional well-being, and smart hospitals. In addition,
the principal concerns of these systems are security issues. Because of that, a privacy-
by-design (PbD) model was proposed by Langheinrich [48], which only enables the
sensor systems once all the user’s privacy requirements have been analyzed. In addi-
tion, social and ethical concerns have been delaying the implementation of AmI in
our everyday environment, due to a lack of reliability on the privacy and security
features. The latter has gained the attraction of the research community in order to
develop new protocols that preserve individual intimacy.

A WSN system designed for long-term health monitoring in assisted living envi-
ronments was proposed by Wood et al. [49]. The system AlarmNet was designed with
two main features: individual adaptability to the environment providing feedback con-
stantly following the privacy policy, and extensibility, which enhance ubiquity and
robustness. Diverse technologies enabled the implementation of AlarmNet, overall,
sensors’ application for mobility and emplacement provides flexibility. This person-
alized system restricts access to all the stakeholders due to security/privacy concerns.
A strong characteristic of AlarmNet is its development by modules. In addition, its
implementation considered ZigBee-based sensors for monitoring and communicating
each module.

A similar approach to AlarmNet is proposed by Lu and Fu [50]. One of the
main differences between the two systems is that the latter communicates its network
through ambient-intelligence compliant objects (AICOs). These focus on estimating
resident’s activities. Also, instead of controlling management via different modules, it
controls through different layers. This system integrates strict concepts of IoT, since
it placed an AICO in almost each element (device/object) of a house environment.
Through thisAICO implementation it is possible to identify both objects and locations.
Due to the identification capabilities, it is easier and more efficient the detection of
certain activities and irregularities. At the core of this system is the implementation
of a Bayesian network with multiple naïve Bayes classifiers, which improves control
over error-prone wireless sensors.

p , g

200 Managing the Internet of Things: architectures, theories and applications

A main challenge when developing AmI systems is the different communication
protocols among diverse technologies. Although the IP (especially IPv6LoWPAN) is
a good candidate, many other approaches do no support equal capabilities. Assisting
this issue, an Intelligent Control Box was proposed by Bai and Huang [51], which
works as a signal converter. Through a UniversalAsynchronous Receiver/Transmitter
(UART) interface and an Intel 8051 control panel, the system manages each received
packet, and then the Intel 8051 in combination with an Arduino system format the
data, in order to convert it into specific commands to control the box. This Intelligent
Control Box can manage Wi-Fi-based, ZigBee-based, and Bluetooth-based signals,
alleviating significantly the implementation of AmI systems.

Modern technologies have enabled the development of more specific applica-
tions. Alharbe et al. [52] designed a Hospital Information Management System using
RFID and ZigBee technologies. They have implemented the concepts of IoT and
Cloud computing for patient/equipment/documents detection, locating and tracking.
The Hospital Information Management System utilizes the ZigBee technology to
communicate mobile patient-aware devices and the main-core system. Through RFID
tags identifies objects (individual information, location, and extra data). By providing
cloud-computing service enables networking access among the entire system. Each
element (separately) of this system is not considered as AmI, but the combination of
them follows the policies to belong to an AmI system.

10.4 Conclusions

The IoT is no longer an emerging field of study; however, with almost 20 years of
research and development from the research community and large companies, IoT
has been finding new ways among modern healthcare. In this chapter, a review of
the state of the art of IoT-applications that assist main health issues was discussed.
Emphasizing in those that are energy-aware, and implement the newest versions of
short-range network’s protocols Bluetooth and ZigBee. Although these technolo-
gies manage short-range reliable/effective communication, their performance is not
reliable enough to be implemented in a real-size healthcare system, which requires
error-free activity. That means, further research is required in the re-design of network
protocols, in order to achieve better communication performance, and preserve low
costs and green energies.

References

[1] World Health Organization (WHO). 10 Facts on the State of Global Health.
[cited 2015 June]; Available from: http://www.who.int/features/factfiles/
global_burden/en/.

[2] American Cancer Society, I., Management’s Discussion and Analysis and
Financial Statements. 2014, American Cancer Society, Inc.

p , g

Healthcare Internet of Things 201

[3] World Health Organization (WHO). Diabetes. [cited 2015 June]; Available
from: http://www.who.int/mediacentre/factsheets/fs312/en/.

[4] World Health Organization (WHO). Chronic Obstructive Pulmonary Disease
(COPD). [cited 2015 June]; Available from: http://www.who.int/mediacentre/
factsheets/fs315/en/.

[5] Deloitte. 2014 Global Health Care Outlook. 2014, Deloitte.
[6] International Organization for Standardization (ISO). ISO/TC 215 Health

Informatics. [cited 2015 June]; Available from: http://www.iso.org/iso/home/
standards_development/list_of_iso_technical_committees/iso_technical_com
mittee.htm?commid=54960.

[7] Acampora, G., Cook, D., Rashidi, P., et al., A survey on ambient intelligence
in healthcare. Proceedings of the IEEE, 2013. 101(12): 2470–2494.

[8] Waris, M., S.A. Khan, and M.Z. Fakhar, “Factors effecting service oriented
architecture implementation,” in Science and Information Conference 2013.
2013, IEEE: London. pp. 1–8.

[9] Oracle. Oracle SOA Suite for Healthcare Integration. Oracle White Paper
2013 [cited 2015 July 8]; Available from: http://www.oracle.com/us/products/
middleware/soa/soa-suite-for-healthcare-wp-2046692.pdf.

[10] Roberts, C.M., Radio frequency identification (RFID). Computers & Security,
2006. 25(1): 18–26.

[11] Yao, W., C.-H. Chu, and Z. Li, The adoption and implementation of RFID
technologies in healthcare: a literature review. Journal of Medical Systems,
2012. 36(6): 3507–3525.

[12] Rosenbaum, B., Radio frequency identification (RFID) in health care: privacy
and security concerns limiting adoption. Journal of Medical Systems, 2014.
38(3): 1–6.

[13] Yick, J., B. Mukherjee, and D. Ghosal, Wireless sensor network survey.
Computer Networks, 2008. 52(12): 2292–2330.

[14] Bokare, M. and A. Ralegaonkar, Wireless sensor network. International
Journal of Computer Engineering Science (IJCES), 2012. 2(3): 6.

[15] Mainetti, L., L. Patrono, and A. Vilei. “Evolution of wireless sensor networks
towards the Internet of Things: a survey.” in 2011 19th International Confer-
ence on Software, Telecommunications and Computer Networks (SoftCOM).
2011.

[16] ZigBee® Alliance. ZigBee 3.0: The Foundation for the Internet of Things.
2014 [cited 2015 July 15]; Available from: http://www.zigbee.org/zigbee-for-
developers/zigbee3-0/.

[17] ZigBee® Alliance. ZigBee Health Care. [cited 2015 July 15]; Available from:
http://www.zigbee.org/zigbee-for-developers/applicationstandards/zigbee-
health-care/.

[18] Bluetooth® SIG. A Look at the Basics of Bluetooth Technology. 2015 [cited
2015 July 14]; Available from: http://www.bluetooth.com/Pages/Basics.aspx.

[19] Townsend, K., Cufí, C., Davidson, R., et al., Getting Started with Bluetooth
Low Energy. 2014: O’Reilly Media.

p , g

202 Managing the Internet of Things: architectures, theories and applications

[20] Bluetooth® SIG. Updated Bluetooth® 4.1 Extends the Foundation of Blue-
tooth Technology for the Internet of Things. 2013 [cited 2015 July 14];
Available from: http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?
ItemID=197.

[21] Bluetooth® SIG. Bluetooth Innovation Training Series Removes Mystery from
Developing for IoT. 2015 [cited 2015 July 14]; Available from: http://www.
bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=229.

[22] Bluetooth® SIG. Bluetooth Technology Creates Huge Opportunities in
Medical. 2015 [cited 2015 July 14]; Available from: http://www.bluetooth.
com/Pages/Health-Wellness-Market.aspx.

[23] Mendez, E.O. and S. Ren, “Design of cyber-physical interface for automated
vital signs reading in electronic medical records systems,” in Proceedings of the
IEEE International Conference on Electro/Information Technology (EIT’12).
2012.

[24] Rolim, C.O., F.L. Koch, C.B. Westphall, J. Werner, A. Fracalossi, and G.S.
Salvador, “A cloud computing solution for patient’s data collection in health
care institutions,” in Proceedings of the 2nd International Conference on
eHealth, Telemedicine, and Social Medicine (eTELEMED’10). pp. 95–99,
Maarten, The Netherlands, February 2010.

[25] Koufi, V., F. Malamateniou, and G. Vassilacopoulos, “Ubiquitous access
to cloud emergency medical services,” in Proceedings of the 10th Interna-
tional Conference on InformationTechnology andApplications in Biomedicine
(ITAB’10), Crete, Greece, November 2010.

[26] Poulymenopoulou, M., F. Malamateniou, and G. Vassilacopoulos, “E-EPR: a
cloud-based architecture of an electronic emergency patient record,” in Pro-
ceedings of the 4th ACM International Conference on PErvasive Technologies
Related to Assistive.

[27] Huang, Q., L.Ye, M.Yu, F. Wu, and R. Liang, “Medical information integration
based cloud computing,” in Proceedings of the International Conference on
Network Computing and Information Security (NCIS’11), pp. 79–83, May
2011.

[28] Jara, A.J., M.A. Zamora, and A.F.G. Skarmeta, An internet of things–based
personal device for diabetes therapy management in ambient assisted living
(AAL). Personal and Ubiquitous Computing, 2011. 15: 431–440.

[29] Vector. Retrieved on August 2015 from: http://vector-project.com
[30] Keller, H., Juloski, A., Kawano, H., et al., “Method for navigation and control

of a magnetically guided capsule endoscope in the human stomach,” in Proc.
IEEE Int. Conf. Biomed. Robot. Biomechatron., 2012, pp. 859–865.

[31] Caprara, R., K.L. Obstein, G. Scozzarro, et al., A platform for gastric can-
cer screening in low- and middle-income countries. IEEE Transactions on
Biomedical Engineering, 2015. 62(5): 1324–1332.

[32] Jara, A.J., M.A. Zamora, and A.F. Skarmeta, Drug identification and interac-
tion checker based on IoT to minimize adverse drug reactions and improve
drug compliance. Personal and Ubiquitous Computing, 2012.

p , g

Healthcare Internet of Things 203

[33] Pang, Z., Q. Chen, and L. Zheng, “A pervasive and preventive healthcare
solution for medication noncompliance and daily monitoring,” in Proceedings
of the 2nd International Symposium on Applied Sciences in Biomedical and
Communication Technologies (ISABEL’09), November 2009.

[34] López-Nores, M., J.J. Pazos-Arias, J. García-Duque, andY. Blanco-Fernández,
“Monitoring medicine intake in the networked home: the iCabiNET solution,”
in Proceedings of the 2nd International Conference on Pervasive Computing
Technologies for Healthcare, pp. 116–117, February 2008.

[35] Centers for Disease Control and Prevention. Retrieved on August 2015 from:
http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

[36] Administration for Community Living. Retrieved on August 2015 from:
http://www.aoa.gov/Aging_Statistics/Profile/2011/4.aspx

[37] 2014 published by Alzheimer’s disease International (AdI), London.
[38] Díaz-Ramírez, A., F.N. Murrieta, J.A. Atempa, F.A. Bonino, “Non-intrusive

tracking of patients with dementia using a wireless sensor network,” in 2013
IEEE International Conference on Distributed Computing in Sensor Systems
(DCOSS’13), pp. 460–465, 20–23 May 2013.

[39] Wang, J., H. Abid, S. Lee, L. Shu, and F. Xia, A secured health care applica-
tion architecture for cyber-physical systems. Control Engineering and Applied
Informatics, 2011. 13(3): 101–108.

[40] Sposaro, F., J. Danielson, and G. Tyson, “iWander: an android application for
dementia patients, engineering in medicine and biology society (EMBC),” in
Annual International Conference of the IEEE, pp. 3875–3878, 2010.

[41] Tabish, R., A.M. Ghaleb, R. Hussein, et al., “A 3G/WiFi-enabled
6LoWPAN-based U-healthcare system for ubiquitous real-time monitoring
and data logging,” 2014 Middle East Conference on Biomedical Engineering
(MECBME’14), pp. 277–280, 17–20 February 2014.

[42] Kau, L.-J., and C.-S. Chen, A smart phone-based pocket fall accident detec-
tion, positioning, and rescue system. IEEE Journal of Biomedical and Health
Informatics, 2015. 19(1): 44–56.

[43] Rakhecha, S. and K. Hsu, “Reliable and secure body fall detection algorithm
in a wireless mesh network,” in Proceedings of the 8th International Confer-
ence on Body Area Networks (BodyNets’13). ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), ICST,
Brussels, Belgium, Belgium, pp. 420–426, 2013.

[44] Dau, H.A., F.D. Salim, A. Song, L. Hedin, and M. Hamilton, “Phone based fall
detection by genetic programming,” in Proceedings of the 13th International
Conference on Mobile and Ubiquitous Multimedia (MUM’14). ACM, New
York, NY, USA, pp. 256–257, 2014.

[45] Philips. Retrieved on August 2015 from: http://www.research.philips.com/
technologies/projects/ami

[46] Cook, D., J. Augusto, and V. Jakkula, Ambient intelligence: technologies,
applications, and opportunities. Personal and Ubiquitous Computing, 2009.
5(4): 277–298.

p , g

204 Managing the Internet of Things: architectures, theories and applications

[47] Acampora, G., D.J. Cook, P. Rashidi, and A.V. Vasilakos, A survey on ambient
intelligence in healthcare. Proceedings of the IEEE, 2013. 101(12): 2470–2494

[48] Langheinrich, M., “Privacy by design principles of privacy-aware ubiqui-
tous systems,” in UbiComp 2001: Ubiquitous Computing, vol. 2201. Berlin,
Germany: Springer-Verlag, 2001, pp. 273–291, Series Lecture Notes in
Computer Science.

[49] Wood, A.D., J.A. Stankovic, G. Virone, et al., Context-aware wireless sensor
networks for assisted living and residential monitoring. IEEE Network, 2008.
22(4): 26–33.

[50] Lu, C.-H. and L.-C. Fu, Robust location-aware activity recognition using wire-
less sensor network in an attentive home. IEEE Transactions on Automation
Science and Engineering, 2009. 6(4): 598–609.

[51] Bai, Z.Y. and X.Y. Huang, Design and implementation of a cyber physical
system for building smart living spaces. International Journal of Distributed
Sensor Networks, 2012. 2012: 9.

[52] Alharbe, N., A.S. Atkins, and A.S. Akbari, “Application of ZigBee and RFID
Technologies in Healthcare in Conjunction with the Internet of Things,” in
Proceedings of International Conference on Advances in Mobile Computing
& Multimedia (MoMM’13). ACM, New York, NY, USA, pp. 5–191, 2013.

p , g

Index

Aarhus city vehicular datasets 167
activities of daily life (ADL) 198
ad hoc networks 2–3
adverse drug reaction (ADR) 195
AlarmNet 199
allocation rule 125–7
ambient assisting living (AAL)

application 195
ambient intelligence (AmI) 187–8,

198–200
ambient-intelligence compliant objects

(AICOs) 199
AMQP protocol 77
Apache Hadoop open-source software

framework 194
Apple AppStore 140
application layer 138–9
application programming model 29

event-based programming 29
thread-based programming 29

in event-driven OSes 29–30
application reprogramming 30

code dissemination protocol 30–1
optimization to the reprogramming

code size 30
performance 21, 23, 30, 45, 57, 67

Arena simulation software 112
ARM AT91SAM7x microcontroller

59–60
ARM microcontroller 59, 61–2
Artificial Intelligence (AI) 187
Atmel OTAU mechanism 57
attribute based access control (ABAC)

91
auxiliary microcontroller 63–4
average reputation 131–2, 134–5

AVR Atmega1281 microcontroller 49,
59

backup replicas 33
batch clone detection mechanism 87
Bertrand competition game 146–7,

149–50
best response function 151–3
big data 155–6

motivation 158–9
system implementation abstraction

177
smart city system implementation

abstraction 177–8
urban planning system

implementation abstraction
178–9

system real implementation and
evaluation 179–80

urban data analysis and discussion
166

environmental data analysis
175–6

flood data analysis 174–5
smart home data analysis 172–4
smart parking data analysis 171–2
vehicular traffic analysis 166–71

urban planning and smart cities,
proposed system for 159

IoT-based smart city 161–2
IoT-based urban planning 163
proposed system architecture and

implementation model 163–6
smart systems deployment and big

data generation 159–60
bindings 77

p , g

206 Managing the Internet of Things: architectures, theories and applications

Bluetooth 191, 196
Bluetooth 4.1 191
Bluetooth 4.2 191
Special Interest Group (SGI) 191

Bluetooth Low Energy (BLE) 191
Bluetooth Smart 191
body-mounted embedded Systems on

Chip (SoC) devices 198
broadcast communication 76
broadcasting notifications 78
BTnode 20
business layer 139
Business Process Execution

Languages (BPEL) 194

carbon monoxide 175–6
catalog service model 89–90
cellular wireless network 137–8
Centricity Practice Solution® 193
chronic lung diseases 185–6
clone attack detection 104
clone attack prevention 104
clone detection scheme 104, 112–14
clone detection system 108, 111

evaluation 112–16
event track formation 109
examples 110
rules 109
ν-value verification sequence 108

cloned RFID tag 86–7
cloned tags 85–7, 99, 104–5, 112, 117
Cloud computing 2, 193–4, 197, 200
coalescence-deferred mechanism 27–8
coalescence-deferred SF allocation

27–8
code dissemination protocol 30–1
code memory cost 48–9, 53, 57
Collector 74–5, 78–83
combined event 92–3, 95
communication cost 112–14
Communication layer 75, 78, 80, 138
communication redundancy 32, 58
communication subsystem, energy

conservation in 32
composition law 107–8

computation workload 112–13
consumers 77–8, 104
contention-based MAC protocols 32
Contiki 20, 25, 27–8, 35, 44, 51–3, 57
Contiki mmem system 28, 51–3
Contiki protothread 29
Continua Health Alliance 190
Controlled Delamination Material

(CDM) 196
Convergence layer 5–6
cooperative multithreading 23–4, 26

scheduling process of 23
coordinator 74
Cost and Benefit Sharing scheme 141
cost–benefit analysis (CBA) model

139, 141
CPU utilization rate 60–1
Cramer’s rule 154

DarjeelingVM 22
data aggregation mechanisms 31–3, 58,

63
data collection 157
data compression 31–3, 58
data consolidation model 89–90
data fusion 74
data memory cost 48–51
data prediction 31, 58
data processing ability 2–3
data-sending company 89–91
data transformer 74
debugging microcontroller 65–6
defragmented SF allocation 26, 28, 35
delay-efficient MAC protocols 32
DELETE 76
Deloitte Inc Company 186
demand function 140
Digital Imaging and Communications in

Medicine (DICOM) format 194
digital thermometers 186
disaster management 44
Discovery Service (DS) 86, 88–90, 95,

105, 109
double-track clone detection (DTD)

104, 114–16

p , g

Index 207

dynamic linking mechanism (DLM)
54–7

dynamic probabilistic model 31

E2ELatency 80–2
Earliest Deadline First (EDF) 26, 60–1
EasiLIR 30
economic models of IoT 139

cost–benefit analysis (CBA) 141
market model 140
utility model 140–1

efficient drainage system 173
electronic emergency personal record

(E-EPR) system 194
electronic health records (EHRs) 186,

193
electronic medical records (EMR)

193–4
electronic product code (EPC) 85–93,

103–9, 112, 117
embedded Java VM (EJVM) 22,

54–7, 66
Emergency Medical Systems (EMS)

194
energy conservation 31, 44

in communication subsystem 32
in sensing subsystem 31
in signal processing subsystem 31–2
LiveOS multi-core task assignment

for 58–60
energy consumption constraints 7–8
energy consumption management 178
energy-efficient IoT deployment,

optimization model for 9
energy-efficient routing protocols 32
energy preservation 4
Enix 24, 28, 35, 44
Enterprise Service Bus (ESB) 188
environmental data analysis 175–6
EPC C1G2 RFID tags 112
EPC-global Network 103
EPC Information Service (EPCIS)

database 88, 103, 109
local EPCISs 88–9, 95, 105

EPC reader/writer 87

event-based programming 29
event dissemination 95
event-driven OSes 23, 29, 46, 49–50
event-driven scheduler 25, 30, 46, 51
event-driven scheduling 23–4, 26, 46–7
event-driven system 23, 25, 29, 50
event-tracing algorithm 86, 94, 97, 99

flow chart of 96
event track formation 109
exchanges 77–8
Extensible Markup Language (XML)

188, 193
external memory fragmentation 27

fault tolerance 33, 63, 74–5, 78–9
finger print 86
fixed false detection rate 114
fixed-size block allocation 27
flood and water management module

178
flood data analysis 174–5
4G Long-Term Evolution (LTE) 2
FOUR-level binary tree 112
FreeRTOS 28
Friis free space model 8

GE Healthcare® 193
general-purpose input and output

(GPIO) 65
genetic programming (GP) 198
GET 76
global positioning system (GPS) 158,

198
Google Play 140
government authorities 161, 163, 171

Hadoop ecosystem systems 160, 165
Hadoop framework 155, 157
Hadoop HTFS system 178
Hadoop Pcap-Input libraries 179
Hadoop-pcap-lib 177, 179
Hadoop-pcap-serde 179
Hadoop technologies 181
HDFS 164–6

p , g

208 Managing the Internet of Things: architectures, theories and applications

healthcare disease-assistance systems
development 195

healthcare informatics 186
healthcare Internet of Things 185–200

applications 192–200
elderly care 196–8
healthcare applications of AmI

198–200
smart drug intake 195–6
vital signs 192–5

IoT elements for healthcare 187–92
ambient intelligence (AmI) 187–8
bluetooth 191
IPv6 and IPv6LoWPAN 191–2
radio frequency identification

(RFID) 188–9
service oriented architecture

(SOA) 188
wireless sensor network (WSN)

189–90
ZigBee 190–1

healthcare sector 156, 186–7, 189,
191–2, 195, 199

healthcare system 185–9, 191, 197–8
health information technology (HIT)

186, 193
Health Insurance Portability and

Accountability Act of 1996
(HIPAA) 194

Hermes 30
HEROS 25

hybrid scheduling model in 26
Hidden Node Problem 4
hierarchical sampling 31
hierarchical system framework 1, 7, 16
high-overhead real-time scheduling 60
Hospital Information Management

System 200
hybrid scheduling 24–5

LiveOS 46–7
Hyper-Text Transfer Protocol (HTTP)

76, 188

iCabiNET 196
identity law 107

iGLOO FPGA 59
iLive node 48–9, 59–60, 62
iMote2 20
incentive-compatible mechanism 123
incentive mechanism design 121–3,

125, 131
indirect interaction mechanism 21
industrial control 44
Information and Communications

Technologies (ICTs) 156, 158–9
Infrared Data Association (IrDA)

interest group 196
Infrastructure-as-a-Service (IaaS) 139
input event 93–5
Intelligent Control Box 200
intelligent transportation system 44,

122
interference/collision avoidance 4
internal memory fragmentation 27
International Organization for

Standardization (ISO) 186
Internet 1–2
Internet-oriented vision 20
Intranets 1
IoT deployment 1, 8–9

system framework for 5
iPackage 196
IP version 6 (IPv6) 191–2
IP version 6 over Low Energy Wireless

Personal Network
(IPv6LoWPAN) 192, 195–6,
200

IrDATBTag 196
iWander 197
IWoT node 63–4

Japan’s broadband access 156
JavaCard 22
JavaScript Object Notation (JSON) 188
Java VM/OS SimpleRTJ 22, 24
JavaVM simpleRTJ, cooperative

scheduling model of 24

Kalman filter model 31
K-means clustering algorithm 9

p , g

Index 209

layered IoT system 138–9
LeJOS 22
LiMid 45, 55–8, 66
link flow balancing constraints 8
LiteOS 35, 44
LiveOS 44

design concepts, discussion on 66
elementary diagram of LiveOS

hybrid scheduling 47
event-driven scheduling system 46
hybrid scheduler 48
implementation of LiveOS hybrid

scheduling 47
memory-efficient real-time

scheduling 45
discussion 51
hybrid scheduling 46–7
performance evaluation 48–50
shared-stack multithreading 47–8

middleware 54
memory-efficient and

energy-efficient middleware
LiMid 55–7

performance evaluation 57–8
multi-core debugging mechanism

64–6
concept and implementation of

65–6
traditional debugging approaches

65
multi-core fault-tolerant mechanism

63–4
concept and mechanism of 63–4
experimental evaluation 64

multi-core task assignment, for
energy conservation 58

concept of 58–9
performance of evaluation 59–60

multi-core task assignment, to
improve real-time performance
60–1

multi-core technique, for
context-aware applications
61–2

reactive-defragmentation dynamic
memory allocation 51

discussion 53–4
performance evaluation 52–3
reactive-defragmentation

allocation mechanism 52
shared-stack scheduler 48

LiveOS lmem system 51–4
6LoWPAN 192

machine-learning technique 87
Madrid highway vehicular traffic 166
magnetically guided endoscopic capsule

(MGEC) 195
Magnetic Resonance Image machines

186
malloc allocation 27
MantisOS 27, 44, 48–53, 67
MapReduce framework 194
MapReduce programming 155, 157,

164, 179
MapReduce system 166
market equilibrium 140
market structure analysis 137

economic models of IoT 139
cost–benefit analysis (CBA) 141
market model 140
utility model 140–1

monopoly 142
market analysis 143–5
market model 143

oligopoly 145
market analysis 146–50
market model 146

Massachusetts Institute of Technology
(MIT) 198

medical care 44
medium access control (MAC) layer

190
memory defragmentation 28, 48, 52
memory management 20, 26–9
Memory Management Unit (MMU)

hardware 28
memory optimization 20, 43–5

p , g

210 Managing the Internet of Things: architectures, theories and applications

memory utilization efficiency 27–8,
51–4

mesh network topology 190
MicaZ node 26, 44
Middleware 44–5, 54–8, 66, 76–7
MiLive node 62
Minimal Energy Consumption

Algorithm (MECA) 9, 17
MiWSN node 65
Mobile Ad hoc NETwork (MANET) 3
mobile devices 122, 158, 197–8
mobile proxy 74
mobility 3–5
modern technology 158, 187, 189, 200
modular-architecture OSes 21
module management 21, 48
monolithic architecture 21
monopoly market structure analysis of

IoT 142–5
multi-core EMWSN node 59–60
multi-core MiLive node 62
multipath routing mechanism 63
multithreaded OSes 23, 29, 45–50
multithreaded scheduler,

implementation of 25–6
multithreaded system 23, 35, 46, 48, 51

nanoRisc microcontroller 62
nanoVM 22
Nash equilibriums 149–50, 152, 154
National Institute for Research in

Computer Science and Control
(INRIA) 198

NefeliPortal 194
network control software 4
network data traffic 74
network lifetime 13–16
network reconstruction 63
network topology 2, 4–5, 32–3,

79, 190
network traffic analysis, IoT-based 169
nitrogen dioxide 175–6
nitrogen oxide 175
non-real-time tasks 46–7
nonRT_thread 46–7

NOTIFY 76
nursing home IoT system 137–8

object attributes 91
objects layer 138
oligopoly market structure analysis

of IoT 145–50
Olog model, for RFID-enabled supply

chain activities 106–7
Olympus Medical Systems Corp 195
OMCP Client 76–8
OMCP Protocol 75–6
OMCP Server 76, 78
openWSN 21, 35, 44
original equipment manufacturers

(OEMs) 191
OSIRIS architecture 75
OSIRIS framework 73

communication layer 75–8
implementation on RabbitMQ

76–8
OMCP protocol 76
OSIRIS modules communication

76
evaluation 80–3
OSIRIS modules 78

collector 78
function and external 80
SensorNet 78–9
VirtualSensorNet 79–80

output event 93–5
ozone 162, 175–6

parking lot dataset 171
parking study analysis 171
participatory sensing networks (PSN)

121
frequently used notations 126
performance evaluation 130

average reputation 131–2
simulation setup 130–1
truthfulness 131
weighted social welfare 131

problem formulation 125
allocation rule 126–7

p , g

Index 211

payment rule 127
proof of properties 127–30

system model 124–5
participatory sensing system 124–5,

130
particulate matter 175–6
passive replication system 33
pattern-matching approach 87, 117
pattern mining algorithm 116
payment rule 125–8
perception capability 2
Personal Area Network (PAN) 190
Personal Health Records (PHRs) 194
Pervasive Healthcare Station 196
physical network 78–9
Platform-as-a-Service (PaaS) 139
platform-centric model 123
point-to-point communication 76
pollution monitoring 162
position independent code (PIC) 21
POST 76
precision agriculture 44
preemptive multithreading 23
pre-linked machine code 55, 57, 66
pre-linked native-code middleware 44
pre-linking mechanism 55, 57
primary replicas 33
Printf 65
privacy-by-design (PbD) model 199
probability method 112
process control block (PCB) size 49–50
producers 77–8
proposed system architecture 159, 163,

177
PUT 76

query delay model 89–90
queues 25, 77–8

R2 30
RabbitMQ, implementation on 76–8
radio frequency identification (RFID)

188–9
resource-limited RFID tags 87
RFID/EPC tags 86

RFID tag memory 87
RFID tag-related events 86

radio frequency identification
(RFID)-enabled supply chains
85, 103

access controls of secure Data DS
89–91

architecture of 88
background and related work 86–7
categorical perspective of 105–8
clone detection system 108

event track formation 109
examples 110
rules 109
ν-value verification sequence 108

discovery service mechanism 89
evaluation and comparison with peer

work 112–16
modeling and tracing events in

85–99
modeling of system 91

event dissemination 95
events 91–5

related work 116–17
RFID authentication protocol 87
system architecture 87–9
tracing events 95

algorithm 95–7
event-tracing examples 97–9

rain monitoring sensor 161
RAM resources 26, 51
random selection 130–1
rate-monotonic scheduling (RMS)

algorithm 26, 60
ratio method 112
reactive-defragmentation allocation 44
real-time algorithm 32, 60
real-time performance 20, 23, 26,

32–3, 43
real-time processing 155, 157, 181
real-time scheduling 32, 35, 45, 60–1
real-time tasks 46–7, 51, 60
real-time vehicular traffic information

161
real-world large size IoT 166

p , g

212 Managing the Internet of Things: architectures, theories and applications

recall event 92–3
regular event 92
Relay layer 5–7
relay nodes 3, 5–13, 15, 160, 165
Remote incremental update 30
Representational State Transfer (REST)

188
reprogramming code size, optimization

to 30
reputation-aware incentive mechanism

(RAIM) 121, 126, 130
resource-efficient middleware LiMid

45, 66
resource-limited RFID tags 87
retail systems 190
RETOS 33
reverse auction 130
reverse auction-based method 123
reward-based collaboration mechanism

123
Round-Robin (RR) scheduling 26
routing protocols 32

scalable energy-efficient IoT 1
framework of topology construction

for 4–6
modeling topology construction for

6–8
optimization model for 9–10
performance evaluation 10–15
topology construction algorithm for

9–10
scheduling clock cycles 50
scheduling efficiency 48, 50
secure data model 89, 90
security management module 178
semantic-oriented vision 20
sense gateway 74
SenseWeb 74
sensing layer 5–7, 9
sensing nodes 5–8, 10–11, 15
sensing subsystem, energy

conservation in 31
Sensor Cloud 74
sensor deployment scheme 6

sensor-embedded mobile devices 122
sensor-equipped mobile devices 122
sensor-generated data 137
SensorNet 74–5, 78–80
sensor node 6, 13
sensors deployment 160
sensor’s data transmission 5
service oriented architecture (SOA) 188
service-oriented platform 88
service provider (SP) 122–4, 137, 139,

141–53
non-commercial 125

shared-stack multithreading LiveOS
50–1

shared-stack multithreading mechanism
47, 66

shared-stack scheduling 43–5, 51
Siemens Healthcare 195
signal converter 200
signal processing subsystem, energy

conservation in 31–2
Simple Object Access Protocol (SOAP)

188
simpleRTJ 22–4, 57
simple segregated storage (SGS) 26–7,

51–3
simulation setup 130–1
single-core iLive node 59–60
single-core WSN node 61, 67
smart city concept, IoT-based 160
smart city system 155, 157–60

implementation abstraction 177–8
IoT-based 161–2

smart conversation 186–7
smart home 156, 159–61, 163, 165
smart home data analysis 172–4
smart home systems 190
smart parking 160–1, 163
smart parking data analysis 171–2
smartphone-assisted chronic illness

self-management system 122
smartphone users 121–5, 128, 130–1
smart systems deployment and big data

generation 159–60
smart traffic control, provision of 122

p , g

Index 213

snow melting sensors 161, 175
software-based virtual memory 28, 35
software developers 191
SOS 20–1, 44
split event 92–5
split-phase state-machine programming

29
Spot Vital Signs LXi® 193
stack memory 24, 46–8, 51, 66
standard information sharing and

scalability 188
static-scheme fixed-priority scheduling

algorithm RMS 46
Steiner tree algorithm 9
storage space requirement 112
subject attributes 91
sulfur dioxide 175
supply chain graph model 94
supply chain participant 87–9, 91–5,

103–9, 118
supply function 140
supply function curve 140
system budget constraint 8
system implementation abstraction

177–9

tag memory 87, 108, 115–16
TAPASCologne project 166
TDMA-based protocols 32
thing-oriented vision 20
Things 1
third Generation Partnership Project

(3GPP) organization 2
thread-based programming 25, 29–30
thread control block (TCB) size 49–50
tiered topology construction scheme,

communication policy for 6
TinyOS 20–2, 25, 29–30, 44, 48–50
TinyOS TOSThread 25, 29–30
t-kernel 28
topology construction algorithm

for scalable energy-efficient IoT
9–10

performance evaluation of 10–15
topology construction scheme 6, 10, 16
topology control (TC) 2–4

topology management mechanism 33,
63

TOSThread 25, 30, 48–50
toxic gases 162
track-and-trace-based

privacy-preserving clone
detection method 117

traditional multithreaded system 48
traffic information measurements 178
transceiver’s active period 32
transportation 122, 162, 175
truthful incentive mechanism 123,

125
TSCM 130–1

ubiquitous healthcare (u-Healthcare)
197

uCOS 21, 27, 34
Universal Asynchronous Receiver/

Transmitter (UART) 200
urban data analysis and discussion

166
environmental data analysis 175–6
flood data analysis 174–5
smart home data analysis 172–4
smart parking data analysis 171–2
vehicular traffic analysis 166–71

urban planning and smart cities,
proposed system for 159

IoT-based smart city 161–2
IoT-based urban planning 163
proposed system architecture and

implementation model 163
bottom tier 163
intermediate tier-I 164
intermediate tier-II 164–6

smart systems deployment and big
data generation 159–60

urban planning system implementation
abstraction 178–9

user-centric model 123
user-friendly thread-based

programming 29–30
users’ quality of service valuation 149
utility model 139–41

p , g

214 Managing the Internet of Things: architectures, theories and applications

ν-value verification sequence 108
Vector Project 195
vehicular traffic analysis 166–71
Vickrey-Clarke-Groves (VCG) scheme

126
virtual machine (VM) architecture 20,

22–4, 30
virtual memory mechanism 28–9
VirtualSensorBlending 79–80
VirtualSensorComposite 79
VirtualSensorLink 79
VirtualSensorNet 74–5, 78–80
VirtualSensors, types of 79
visibility attributes 91
volatile organic compounds (VOC) 175

weather and water information 161
Web Service Definition Language

(WSDL) 188
weighted social welfare 121, 123,

125–7, 131, 133–4
Wi-Fi access point 137–8
WiMAX access network 138
wireless body area networks (WBANs)

187
wireless mesh sensor networks

(WMSNs) 187
wireless multimedia sensor network

(WMSN) 44, 61
wireless sensor and actuator networks

(WSANs) 189
wireless sensor network (WSN) 2–3, 5,

20, 44, 73, 189–90, 197, 199
basic dynamic allocation mechanisms

26–7
debugging 65
fault-recovery mechanisms 33
WSN nodes 22, 26, 29, 31, 33, 35,

44–6, 49, 52, 55, 57–67
wireless sensor network operating

systems (WSN OS) 19–35, 43
application programming model 29

event-based programming 29
thread-based programming 29

thread-based programming in
event-driven OSes 29–30

application reprogramming 30–1
code dissemination protocol 30–1
optimization to reprogramming

code size 30
architecture 20–3

discussion 22–3
modular architecture 21
monolithic architecture 21
VM architecture 22

energy conservation 31–2
in communication subsystem 32
in sensing subsystem 31
in signal processing subsystem

31–2
fault-tolerant mechanisms 33
feature comparison of 33–5
memory management 26–9

basic dynamic allocation
mechanisms in WSN 26–7

coalescence-deferred SF allocation
27–8

defragmented SF allocation 28
virtual memory mechanism 28–9

real-time performance 32–3
research challenges of 35
scheduling model 23–6

cooperative multithreading 23–4
discussion 26
event-driven scheduling and

preemptive multithreading 23
hybrid scheduling 24–5
implementation of different

scheduling models 25–6
working microcontroller 63
world flood report from 1985 to 2014

174

Zanetti’s work 104, 114–16
Zephyr 30
ZigBee 164–5, 190–1, 196–7, 200
ZigBee 3.0 190, 199
ZigBee Alliance 190
ZigBee Health Care 190

	Cover
	Title
	Copyright
	Contents
	1 Topology control for building scalable energy-efficient Internet of Things
	Abstract
	1.1 Introduction
	1.2 Overview of TC in IoT
	1.3 A framework of topology construction for scalable energy-efficient IoT
	1.4 Modeling topology construction for scalable energy-efficient IoT
	1.5 Topology construction algorithm for scalable energy-efficient IoT
	1.6 Performance evaluation
	1.7 Conclusions
	References

	2 Wireless sensor network operating systems: a survey
	Abstract
	2.1 Introduction
	2.2 OS architecture
	2.2.1 Monolithic architecture
	2.2.2 Modular architecture
	2.2.3 VM architecture
	2.2.4 Discussion

	2.3 OS scheduling model
	2.3.1 Event-driven scheduling and preemptive multithreading
	2.3.2 Cooperative multithreading
	2.3.3 Hybrid scheduling
	2.3.4 Implementation of different scheduling models
	2.3.5 Discussion

	2.4 Memory management
	2.4.1 Basic dynamic allocation mechanisms in the WSN
	2.4.2 Coalescence-deferred SF allocation
	2.4.3 Defragmented SF allocation
	2.4.4 Virtual memory mechanism

	2.5 Application programming model
	2.5.1 Event-based programming
	2.5.2 Thread-based programming
	2.5.3 Thread-based programming in the event-driven OSes

	2.6 Application reprogramming
	2.6.1 Optimization to the reprogramming code size
	2.6.2 Code dissemination protocol

	2.7 Energy conservation
	2.7.1 Energy conservation in the sensing subsystem
	2.7.2 Energy conservation in the signal processing subsystem
	2.7.3 Energy conservation in the communication subsystem

	2.8 Real-time performance
	2.9 Fault-tolerant mechanisms
	2.10 Feature comparison and ongoing research challenges
	2.10.1 Feature comparison of different WSN OSes
	2.10.2 Research challenges of the WSN OSes

	Acknowledgments
	References

	3 Wireless sensor network operating system: concept, new design, and implementation
	Abstract
	3.1 Introduction
	3.2 LiveOS memory-efficient real-time scheduling
	3.2.1 Hybrid scheduling
	3.2.2 Shared-stack multithreading
	3.2.3 Performance evaluation
	3.2.4 Discussion

	3.3 LiveOS reactive-defragmentation dynamic memory allocation
	3.3.1 LiveOS reactive-defragmentation allocation mechanism
	3.3.2 Performance evaluation
	3.3.3 Discussion

	3.4 LiveOS middleware for user-friendly application development environment
	3.4.1 LiveOS memory-efficient and energy-efficient middleware LiMid
	3.4.2 Performance evaluation

	3.5 LiveOS multi-core task assignment for the energy conservation
	3.5.1 Concept of the LiveOS multi-core energy conservation mechanism
	3.5.2 Performance evaluation

	3.6 LiveOS multi-core task assignment to improve the real-time performance
	3.7 LiveOS multi-core technique for the context-aware applications
	3.8 LiveOS multi-core fault-tolerant mechanism
	3.8.1 Concept and implementation of the LiveOS multi-core fault-tolerant platform
	3.8.2 Experimental evaluation

	3.9 LiveOS multi-core debugging mechanism
	3.9.1 Traditional debugging approaches
	3.9.2 Concept and implementation of the LiveOS multi-core debugging approach

	3.10 Discussion on the LiveOS design concepts
	3.11 Conclusions and ongoing works
	Acknowledgments
	References

	4 OSIRIS framework: sensOr-baSed monItoRIng Systems
	Abstract
	4.1 Introduction
	4.2 OSIRIS Communication Layer
	4.2.1 OMCP Protocol
	4.2.2 OSIRIS modules communication
	4.2.3 Implementation on RabbitMQ

	4.3 OSIRIS modules
	4.3.1 Collector
	4.3.2 SensorNet
	4.3.3 VirtualSensorNet
	4.3.4 Function and External

	4.4 Evaluation
	4.5 Conclusion
	References

	5 Modeling and tracing events in RFID-enabled supply chains
	Abstract
	5.1 Introduction
	5.2 Background and related work
	5.3 The RFID-enabled supply chain system
	5.3.1 System architecture
	5.3.2 The discovery service mechanism
	5.3.3 Access controls of the secure Data DS

	5.4 Modeling of the system
	5.4.1 Events
	5.4.2 Event dissemination

	5.5 Tracing events
	5.5.1 The algorithm
	5.5.2 Event-tracing examples

	5.6 Conclusion
	References

	6 A new clone detection approach in RFID-enabled supply chains
	Abstract
	6.1 Introduction
	6.2 A categorical perspective of RFID supply chains
	6.3 The clone detection system
	6.3.1 ν-Value verification sequence
	6.3.2 Event track formation
	6.3.3 Clone detection rules
	6.3.4 Clone detection examples

	6.4 Evaluation and comparison with peer work
	6.5 Related work
	6.6 Final remarks
	References

	7 Participatory sensing network: a paradigm to achieve applications of IoT
	Abstract
	7.1 Introduction
	7.2 System model
	7.3 Problem formulation
	7.3.1 Allocation rule
	7.3.2 Payment rule
	7.3.3 Proof of properties

	7.4 Performance evaluation
	7.4.1 Simulation setup
	7.4.2 Truthfulness
	7.4.3 Weighted social welfare
	7.4.4 Average reputation

	7.5 Conclusion and discussion
	Acknowledgements
	References

	8 Economics of Internet of Things (IoT): market structure analysis
	Abstract
	8.1 Introduction
	8.2 Economic models of IoT
	8.3 Monopoly market structure analysis of IoT
	8.3.1 Monopoly market model
	8.3.2 Monopoly market analysis

	8.4 Oligopoly market structure analysis of IoT
	8.4.1 Oligopoly market model
	8.4.2 Oligopoly market analysis

	8.5 Conclusions
	Appendix A
	References

	9 IoT and big data: application for urban planning and building smart cities
	Abstract
	9.1 Introduction
	9.2 Motivation
	9.3 Proposed system for urban planning and smart cities
	9.3.1 Smart systems deployment and big data generation
	9.3.2 IoT-based smart city
	9.3.3 IoT-based urban planning
	9.3.4 Proposed system architecture and implementation model

	9.4 Urban data analysis and discussion
	9.4.1 Vehicular traffic analysis
	9.4.2 Smart parking data analysis
	9.4.3 Smart home data analysis
	9.4.4 Flood data analysis
	9.4.5 Environmental data analysis

	9.5 System implementation abstraction
	9.5.1 Smart city system implementation abstraction
	9.5.2 Urban planning system implementation abstraction

	9.6 System real implementation and evaluation
	9.7 Conclusion and future work
	References

	10 Healthcare Internet of Things: fundamental technologies, state-of-the-art standards, and current practices
	Abstract
	10.1 Introduction
	10.2 IoT elements for healthcare
	10.2.1 Ambient intelligence (AmI) in general
	10.2.2 Service oriented architecture (SOA)
	10.2.3 Radio frequency identification (RFID)
	10.2.4 Wireless sensor network (WSN)
	10.2.5 ZigBee
	10.2.6 Bluetooth
	10.2.7 IPv6 and IPv6LoWPAN

	10.3 IoT applications in healthcare
	10.3.1 Vital signs
	10.3.2 Smart drug intake
	10.3.3 Elderly care
	10.3.4 Healthcare applications of AmI

	10.4 Conclusions
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Back Cover

