

Software Testing

Quantitative Software Engineering Series
The Quantitative Engineering Series focuses on the convergence of systems engineering with
emphasis on quantitative engineering trade-off analysis. Each title brings the principles and
theory of programming in-the-large and industrial strength software into focus.

This practical series helps software developers, software engineers, systems engineers, and
graduate students understand and benefit from this convergence through the unique weaving
of software engineering case histories, quantitative analysis, and technology into the project
effort. You will find each publication reinforces the series goal of assisting the reader with
producing useful, well-engineered software systems.

Series Editor: Lawrence Bernstein

Late Professor Bernstein was Industrial Research Professor at the Stevens Institute of
Technology. He previously pursued a distinguished executive career at Bell Laboratories.
He was a fellow of the IEEE and ACM.

Trustworthy Systems for Quantitative Software Engineering / Larry Bernstein
and C.M. Yuhas

Software Measurement and Estimation: A Practical Approach / Linda M. Laird
and M. Carol Brennan

World Wide Web Application Engineering and Implementation / Steven A. Gabarro

Software Performance and Scalability / Henry H. Liu

Managing the Development of Software-Intensive Systems / James McDonald

Trustworthy Compilers / Vladimir O. Safonov

Oracle Database Performance and Scalability: A Quantitative Approach / Henry H. Liu

Enterprise Software Architecture and Design: Entities, Services
and Resources / Dominic Duggan

Software Testing: Concepts and Operations / Ali Mili and Fairouz Tchier

Software Testing
Concepts and Operations

Ali Mili
NJIT, USA

Fairouz Tchier
KSU, KSA

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by anymeans, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.
com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Mili, Ali.
Software testing : concepts and operations / Ali Mili.

pages cm
Includes bibliographical references and index.
ISBN 978-1-118-66287-8 (cloth)

1. Computer software–Testing. I. Title.
QA76.76.T48M56 2015
005.1 4–dc23

2015001931

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

Dedicated to my parents
in honor of their 68 years of mutual devotion

and to Amel, Noor, Farah Aisha, and Serena Aida.
May they realize their hopes and dreams.

A.M.

Dedicated to my loving parents,
my husband Jamel, and my children Sarah, Bellal, and Amine.

May their lives be filled with happiness and success.
F.T.

Contents

PREFACE xiv

PART I INTRODUCTION TO SOFTWARE TESTING 1

1 Software Engineering: A Discipline Like No Other 3

1.1 A Young, Restless Discipline / 3
1.2 An Industry Under Stress / 5
1.3 Large, Complex Products / 5
1.4 Expensive Products / 7
1.5 Absence of Reuse Practice / 9
1.6 Fault-Prone Designs / 9
1.7 Paradoxical Economics / 10

1.7.1 A Labor-Intensive Industry / 10
1.7.2 Absence of Automation / 11
1.7.3 Limited Quality Control / 11
1.7.4 Unbalanced Lifecycle Costs / 12
1.7.5 Unbalanced Maintenance Costs / 12

1.8 Chapter Summary / 13
1.9 Bibliographic Notes / 13

vii

2 Software Quality Attributes 14

2.1 Functional Attributes / 15
2.1.1 Boolean Attributes / 15
2.1.2 Statistical Attributes / 15

2.2 Operational Attributes / 17
2.3 Usability Attributes / 18
2.4 Business Attributes / 19
2.5 Structural Attributes / 20
2.6 Chapter Summary / 21
2.7 Exercises / 21
2.8 Bibliographic Notes / 22

3 A Software Testing Lifecycle 23

3.1 A Software Engineering Lifecycle / 23
3.2 A Software Testing Lifecycle / 27
3.3 The V-Model of Software Testing / 32
3.4 Chapter Summary / 33
3.5 Bibliographic Notes / 34

PART II FOUNDATIONS OF SOFTWARE TESTING 35

4 Software Specifications 37

4.1 Principles of Sound Specification / 38
4.1.1 A Discipline of Specification / 38

4.2 Relational Mathematics / 39
4.2.1 Sets and Relations / 39
4.2.2 Operations on Relations / 39
4.2.3 Properties of Relations / 41

4.3 Simple Input Output Programs / 42
4.3.1 Representing Specifications / 42
4.3.2 Ordering Specifications / 46
4.3.3 Specification Generation / 48
4.3.4 Specification Validation / 53

4.4 Reliability Versus Safety / 60
4.5 State-based Systems / 61

4.5.1 A Relational Model / 62
4.5.2 Axiomatic Representation / 64
4.5.3 Specification Validation / 70

4.6 Chapter Summary / 72
4.7 Exercises / 72
4.8 Problems / 76
4.9 Bibliographic Notes / 78

viii CONTENTS

5 Program Correctness and Verification 79

5.1 Correctness: A Definition / 80
5.2 Correctness: Propositions / 83

5.2.1 Correctness and Refinement / 83
5.2.2 Set Theoretic Characterizations / 85
5.2.3 Illustrations / 86

5.3 Verification / 88
5.3.1 Sample Formulas / 89
5.3.2 An Inference System / 91
5.3.3 Illustrative Examples / 94

5.4 Chapter Summary / 98
5.5 Exercises / 99
5.6 Problems / 100
5.7 Bibliographic Notes / 100

6 Failures, Errors, and Faults 101

6.1 Failure, Error, and Fault / 101
6.2 Faults and Relative Correctness / 103

6.2.1 Fault, an Evasive Concept / 103
6.2.2 Relative Correctness / 104

6.3 Contingent Faults and Definite Faults / 107
6.3.1 Contingent Faults / 107
6.3.2 Monotonic Fault Removal / 109
6.3.3 A Framework for Monotonic Fault Removal / 114
6.3.4 Definite Faults / 114

6.4 Fault Management / 116
6.4.1 Lines of Defense / 116
6.4.2 Hybrid Validation / 118

6.5 Chapter Summary / 121
6.6 Exercises / 122
6.7 Problems / 123
6.8 Bibliographic Notes / 124

7 A Software Testing Taxonomy 125

7.1 The Trouble with Hyphenated Testing / 125
7.2 A Classification Scheme / 126

7.2.1 Primary Attributes / 127
7.2.2 Secondary Attributes / 131

7.3 Testing Taxonomy / 136
7.3.1 Unit-Level Testing / 136
7.3.2 System-Level Testing / 138

7.4 Exercises / 139
7.5 Bibliographic Notes / 140

ixCONTENTS

PART III TEST DATA GENERATION 141

8 Test Generation Concepts 143

8.1 Test Generation and Target Attributes / 143
8.2 Test Outcomes / 146
8.3 Test Generation Requirements / 148
8.4 Test Generation Criteria / 152
8.5 Empirical Adequacy Assessment / 155
8.6 Chapter Summary / 160
8.7 Exercises / 161
8.8 Bibliographic Notes / 162
8.9 Appendix: Mutation Program / 163

9 Functional Criteria 165

9.1 Domain Partitioning / 165
9.2 Test Data Generation from Tabular Expressions / 171
9.3 Test Generation for State Based Systems / 176
9.4 Random Test Data Generation / 184
9.5 Tourism as a Metaphor for Test Data Selection / 188
9.6 Chapter Summary / 190
9.7 Exercises / 190
9.8 Bibliographic Notes / 192

10 Structural Criteria 193

10.1 Paths and Path Conditions / 194
10.1.1 Execution Paths / 194
10.1.2 Path Functions / 196
10.1.3 Path Conditions / 201

10.2 Control Flow Coverage / 202
10.2.1 Statement Coverage / 202
10.2.2 Branch Coverage / 204
10.2.3 Condition Coverage / 207
10.2.4 Path Coverage / 209

10.3 Data Flow Coverage / 214
10.3.1 Definitions and Uses / 214
10.3.2 Test Generation Criteria / 217
10.3.3 A Hierarchy of Criteria / 220

10.4 Fault-Based Test Generation / 220
10.4.1 Sensitizing Faults / 221
10.4.2 Selecting Input Data for Fault Sensitization / 225
10.4.3 Selecting Input Data for Error Propagation / 227

10.5 Chapter Summary / 228

x CONTENTS

10.6 Exercises / 229
10.7 Bibliographic Notes / 232

PART IV TEST DEPLOYMENT AND ANALYSIS 233

11 Test Oracle Design 235

11.1 Dilemmas of Oracle Design / 235
11.2 From Specifications to Oracles / 238
11.3 Oracles for State-Based Products / 242

11.3.1 From Axioms to Oracles / 243
11.3.2 From Rules to Oracles / 244

11.4 Chapter Summary / 250
11.5 Exercises / 251

12 Test Driver Design 253

12.1 Selecting a Specification / 253
12.2 Selecting a Process / 255
12.3 Selecting a Specification Model / 257

12.3.1 Random Test Generation / 257
12.3.2 Pre-Generated Test Data / 263
12.3.3 Faults and Fault Detection / 266

12.4 Testing by Symbolic Execution / 269
12.5 Chapter Summary / 274
12.6 Exercises / 275
12.7 Bibliographic Notes / 279

13 Test Outcome Analysis 280

13.1 Logical Claims / 281
13.1.1 Concrete Testing / 281
13.1.2 Symbolic Testing / 282
13.1.3 Concolic Testing / 283

13.2 Stochastic Claims: Fault Density / 284
13.3 Stochastic Claims: Failure Probability / 287

13.3.1 Faults Are Not Created Equal / 287
13.3.2 Defining/Quantifying Reliability / 289
13.3.3 Modeling Software Reliability / 291
13.3.4 Certification Testing / 294
13.3.5 Reliability Estimation and Reliability Improvement / 295
13.3.6 Reliability Standards / 299
13.3.7 Reliability as an Economic Function / 300

13.4 Chapter Summary / 307

xiCONTENTS

13.5 Exercises / 308
13.6 Problems / 310
13.7 Bibliographic Notes / 310

PART V MANAGEMENT OF SOFTWARE TESTING 311

14 Metrics for Software Testing 313

14.1 Fault Proneness / 314
14.1.1 Cyclomatic Complexity / 315
14.1.2 Volume / 316

14.2 Fault Detectability / 317
14.3 Error Detectability / 320
14.4 Error Maskability / 323
14.5 Failure Avoidance / 324
14.6 Failure Tolerance / 326
14.7 An Illustrative Example / 327

14.7.1 Cyclomatic Complexity / 327
14.7.2 Volume / 328
14.7.3 State Redundancy / 328
14.7.4 Functional Redundancy / 328
14.7.5 Non-injectivity / 329
14.7.6 Non-determinacy / 329
14.7.7 Summary / 330

14.8 Chapter Summary / 330
14.9 Exercises / 331
14.10 Bibliographic Notes / 332

15 Software Testing Tools 333

15.1 A Classification Scheme / 333
15.2 Scripting Tools / 334

15.2.1 CppTest / 334
15.2.2 SilkTest / 335

15.3 Record-and-Replay Tools / 336
15.3.1 TestComplete / 336
15.3.2 Selenium IDE / 337

15.4 Performance-Testing Tools / 338
15.4.1 LoadRunner / 338
15.4.2 Grinder / 339
15.4.3 QF-Test / 340
15.4.4 Appvance PerformanceCloud / 340
15.4.5 JMeter / 341

xii CONTENTS

15.5 Oracle Design Tools / 342
15.5.1 JUnit / 342
15.5.2 TestNG / 343

15.6 Exception Discovery / 343
15.6.1 Rational Purify / 343
15.6.2 Astree / 344

15.7 Collaborative Tools / 345
15.7.1 FitNesse / 345

15.8 Chapter Summary / 345

16 Testing Product Lines 347

16.1 PLE: A Streamlined Reuse Model / 347
16.2 Testing Issues / 351
16.3 Testing Approaches / 353
16.4 Illustration / 354

16.4.1 Domain Analysis / 354
16.4.2 Domain Modeling / 356
16.4.3 A Reference Architecture / 359
16.4.4 Domain Implementation / 360
16.4.5 Testing at Domain Engineering / 365
16.4.6 Testing at Application Engineering / 369

16.5 Chapter Summary / 372
16.6 Exercises / 372
16.7 Problems / 372
16.8 Bibliographic References / 373

BIBLIOGRAPHY 374

INDEX 377

xiiiCONTENTS

Preface

Software engineering is the only engineering discipline where product testing is a
major technical and organizational concern, as well as an important cost factor.
Several factors contribute to this state of affairs:

• The first factor that makes software testing such a big concern is, of course, the
size and complexity of software products, which make the design of software
products a high-risk, error-prone proposition.

• The second factor is the lack of a standardized development process for software
products, which means that product quality cannot be ensured by process con-
trols, and has to be ensured by product controls instead.

• The third factor is the scarcity of practical, scalable methods that can ensure prod-
uct quality through static product analysis, shifting the burden to dynamic
methods.

• Other factors include the absence of a general reuse discipline, the lack of scal-
ability of correctness-preserving development methods, and the pervasiveness of
specification changes through the development, maintenance, and evolution
process, etc.

The subject of this book is the study of software testing; amongst the many books
that are currently available on the same subject, this book can be characterized by the
following premises:

• Software testing as an integral part of software quality assurance. We view soft-
ware testing as part of a comprehensive strategy for software quality assurance,
alongside many other techniques. The law of diminishing returns advocates the

xiv

use of a variety of diverse techniques, which complement each other, in such a
way that each is used wherever it delivers the greatest return on investment.
Hence software testing is better studied in a broader context that also encom-
passes other methods rather than to be studied as an isolated set of techniques.

• Software testing as a complementary technique to static analysis. Since the early
days of software engineering, we have witnessed a colorful debate on the respec-
tive merits of software testing versus static program analysis in terms of effec-
tiveness, scalability, ease of use, etc. We take the position that each of these
techniques is effective against some type of specifications and less effective
against other types; also, very often, when we find that one technique or another
is difficult to use, it is not the result of any intrinsic shortcoming of the technique,
rather it is because the technique is used against the wrong kind of specification.
Of course, we do not always get to choose the specification against which we
must ensure product correctness; but we can, in fact, decompose a complex spec-
ification into components and map each component to the technique that is most
adapted to it. This is illustrated in Chapter 6.

• Software testing as a systematic stepwise process. Early on, software testing
earned the reputation of being a means to prove the presence of faults in pro-
grams, but never their absence; this is an undeserved reputation, in fact, because
testing can be used for all sorts of goals, as we discuss in Chapter 7. Nevertheless,
whether deserved or not, this reputation has had two consequences: first, the
assumption that the only possible goal of testing is fault exposure, diagnosis,
and removal. Second, the (consequent) belief that testing amounts merely to test
data generation, specifically the generation of test data that has the greatest
potential to expose faults. By contrast, we argue that testing follows a multiphase
process that includes goal identification and analysis, test data generation, oracle
design, test driver design, test deployment, and test outcome analysis. We devote
different chapters to each one of these phases.

• Software testing as a formal/formalizable process. Because it requires relatively
little analysis of the software product under test or its specification, testing is
often perceived as an activity that can be carried out casually, and informally.
By contrast, we argue that testing ought to be carried out with the same level
of rigor as static program verification, and that to perform testing effectively,
one must be knowledgeable in software specifications, in program correctness,
in relative correctness, in the meaning of a fault, in fault removal, etc.. This is
discussed in more detail in Chapter 6.

• Software testing as a goal-oriented activity. We argue that far from being solely
dedicated to finding and removing faults, testing may have a wide range of goals,
including such goals as estimating fault density, estimating reliability, certifying
reliability, etc. This is discussed in detail in Chapter 7.

This book stems from lecture notes of a course on software testing and quality
assurance and hence is primarily intended for classroom use; though it may also be
of interest to practicing software engineers, as well as to researchers in software

xvPREFACE

engineering. The book is divided into five broad parts, including 3 or 4 chapters per
part, to a total of 16 chapters.

• Part I introduces software testing in the broader context of software engineering
and explores the qualities that testing aims to achieve or ascertain, as well as the
lifecycle of software testing.

• Part II introduces mathematical foundations of software testing, which include
software specification, program correctness and verification, concepts of soft-
ware dependability, and a software testing taxonomy. It is uncommon for a soft-
ware testing book to discuss specifications, verification, and dependability to the
extent that we do in this book. We do it in this book for many reasons:
○ First, we believe that it is not possible to study software testing without a sound
understanding of software specifications, since these capture the functional
attributes that are testing candidate programs against and are the basis for ora-
cle design.

○ Second, when we test a program in the context of product certification or in the
context of acceptance testing, what is at stake is whether the candidate program
is correct; surely, we need to understand what correctness means, for this
purpose.

○ Third, if dynamic program testing and static program analysis are to be used in
concert, to reach a more complete conclusion than any one method alone, they
need to be cast in the same mathematical model.

○ Fourth, the act of removing a fault from a program, which is so central to test-
ing, can only be modeled by defining the property of relative correctness,
which provides that the program ismore-correct once the fault is removed than
it was prior to fault removal; relative correctness, in turn, can only be defined
and understood if we understand the property of (absolute) correctness.

The taxonomy of software testing techniques classify these techniques according
to a number of criteria, including in particular the criterion of goals: It is impor-
tant to recognize the different goals that one may pursue in conducting software
testing, and how each goal affects all the phases of the testing lifecycle, from test
data generation to oracle design to test deployment to test outcome analysis.

• Part III explores a phase of software testing that has so dominated the attention of
researchers and practitioners that it is often viewed as the only worthwhile issue
in software testing: test data generation. In this part, we briefly discuss some gen-
eral concepts of test data generation and then we explore the two broad criteria of
test data generation, namely: functional criteria (Chapter 9) and structural criteria
(Chapter 10). We discuss test data generation for simple programs that map ini-
tial states onto final states, as well as for state-bearing programs, whose output
depends on their input history.

• Part IV discusses the remaining phases of the software testing lifecycle that arise
after test data generation and include test oracle design, test driver design, and

xvi PREFACE

test outcome analysis. Test oracles (Chapter 11) are derived from target specifi-
cations according to the definition of correctness and depend on whether we are
talking about simple state-free programs or about programs that have an internal
state. Test driver design (Chapter 12) depends on whether test data has been gen-
erated offline and is merely deployed from an existing medium, or whether it is
generated at random according to some probability law. As for the analysis of
test outcomes (Chapter 13), it depends of course on the goal of the test and ranges
from reliability estimation to reliability certification to fault density estimation to
product acceptance, etc.

• Part V concludes the book by surveying some managerial aspects of software test-
ing, including software metrics (Chapter 14), software testing tools (Chapter 15),
and software product line testing (Chapter 16).

In compiling the material of this book, we focused our attention on analyzing and
modeling important aspects of software testing, rather than on surveying and synthe-
sizing the latest research on the topic; several premises determined this decision:

• This book is primarily intended to be an educational tool rather than a research
monograph.

• In an area of active research such as software testing, students are better served by
focusing on fundamental concepts that will serve them in the long run regardless
of what problem they may encounter rather than to focus on the latest techniques,
which by definition will not remain latest for too long.

In the perennial academic debate of whether we serve our students best by making
them operational in the short term or by presenting them with fundamentals and
enabling them to adapt in the long run, we have decided to err on the side of the latter
option.

ACKNOWLEDGMENT

Special thanks are due to the late Professor Lawrence Bernstein for inviting us to
write this book for inclusion in his distinguished series.

We thank our successive cohorts of students, who tolerated our caprices as we fine-
tuned and refined the contents of our lecture notes term after term. We also thank Slim
Frikha, a summer intern from ParisTech, France, who reviewed and evaluated soft-
ware testing tools to help us with Chapter 15. This publication was made possible
in part by a grant from the Qatar National Research Fund NPRP 04-1109-1-174.
Its contents are solely the responsibility of the authors and do not necessarily represent
the official views of the QNRF.

F. TCHIER

A. MILI

xviiPREFACE

Part I

Introduction to
Software Testing

In this part we introduce software testing by discussing what makes software engineer-
ing so special that testing should occupy such an important part of its lifecycle. Then
we survey software qualities that testing techniques may be used to assess. Finally we
review the various lifecycle models of software testing that may be followed depending
on the context and goal of testing.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

1

1
Software Engineering:

A Discipline Like No Other
On the face of it, software engineering sounds like an engineering discipline among
others, such as chemical engineering, mechanical engineering, civil engineering, and
electrical engineering. We will explore, in this chapter, in what way and to what extent
software engineering differs from other engineering disciplines.

1.1 A YOUNG, RESTLESS DISCIPLINE

Civil engineering and mechanical engineering date back to antiquity or before, as one
can see from various sites (buildings, road networks, utility infrastructures, etc.) around
the Mediterranean basin. Chemical engineering (Lavoisier and others) and electrical
engineering (Franklin and others) can be traced back to the eighteenth century. Nuclear
engineering (Pierre and Marie Curie) emerged at the turn of the twentieth century and
industrial engineering emerged around the time of the Second World War, with issues
of logistics. By contrast, software engineering is a comparatively young discipline,
emerging as it did in the second half of the twentieth century. The brief history of this
discipline can be divided into five broad eras, lasting approximately one decade each,
which are as follows:

• The Sixties: The Era of Pioneers. This era marks the first time that practitioners
and researchers came face to face with the complexities, paradoxes, and anomalies
of software engineering. Software projects of this era were ventures into unchar-
tered territory, characterized by high levels of risk, unpredictable outcomes,
and massive cost and schedule overruns. The programming languages that were
dominant in this era are assembler, Fortran, Cobol, and (in academia) Algol.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

3

• The Seventies: Structured Software Engineering. This era is characterized by the
general belief that software engineering problems are of a technical nature and
that if we evolved techniques for software specification, design, and verification
to control complexity, all software engineering problems would be resolved.
Given that structure is our main intellectual tool for dealing with complexity, this
era has seen the emergence of a wide range of structured techniques, including
structured programming, structured design, structured analysis, structured speci-
fications, etc. The programming languages that were dominant in this era are
C and (in academia) Pascal.

• The Eighties: Knowledge-Based Software Engineering. This era is characterized
by the realization that software engineering problems are of a managerial and
organizational nature more than a technical nature. This realization was concur-
rent with the emergence of the Fifth Generation Computing initiative, which
started in Japan and spread across the globe (the United States, Europe, Canada),
and was focused on thinking machines designed with extensive use of artificial
intelligence techniques. This general approach permeated the discipline of soft-
ware engineering with the emergence of knowledge-based software engineering
techniques. The programming languages that were dominant in this era are
Prolog, Scheme/Lisp, and Ada.

• The Nineties: Reuse-Based Software Engineering. As it became increasingly
clear that fifth-generation computing was not delivering on its promise, and
worldwide fifth-generation initiatives were fading, software researchers and
practitioners turned their attention to reuse as a possible savior of the discipline.
Software engineering is, after all, the only discipline where reuse is not an inte-
gral part of the routine engineering process. It was felt that if only software engi-
neers had large databases of reusable software components readily available, the
industry would achieve great gains in productivity, quality, time to market, and
reduced process risk. This evolution was concurrent with the emergence of
object-oriented programming, which supports a bottom–up design discipline that
facilitates product reuse. The programming languages that were dominant in this
era are C, C++, Eiffel, and Smalltalk.

• The First Decade of the Millennium: Lightweight Software Engineering.While
software reuse is not practical as a general paradigm in software engineering, it
is feasible in limited application domains, giving rise to product line engineer-
ing. Other attributes of this era include Java programming, with its focus on
web applications; agile programming, with its focus on rapid and flexible
response to change; and component-based software engineering, with its focus
on software architecture and software composition. The programming
languages that were dominant in this era are Java, C++, and (in academia)
Python.

Perhaps as result of this young and eventful history, the discipline of software engi-
neering is characterized by a number of paradoxes and counter-intuitive properties,
which we explore in this chapter.

4 SOFTWARE ENGINEERING

1.2 AN INDUSTRY UNDER STRESS

Nowadays, software runs all aspects of modern life and accounts for a large and
increasing share of the world economy. This trend started slowly with the advent
of computing in the middle of the twentieth century and was further precipitated
by the emergence of the World Wide Web at the end of the twentieth and the begin-
ning of the twenty-first century. This phenomenon has spawned a great demand
for software products and services and generated a market pressure that the software
industry takes great pains to cater to.

Many fields of science and engineering (such as bioinformatics, medical informat-
ics, weather forecasting, and modeling and simulation) are so dependent on software
that they can almost be considered as mere applications of software engineering. Also,
it is possible to observe that many computer science curricula are slowly inching
toward more software engineering contents at the expense of traditional theoretical
material, which may be perceived as less and less relevant to today’s job market.
Some engineering colleges are preempting the trend by starting software engineering
degrees in computer science departments or by starting complete software engineering
departments alongside traditional computer science departments.

Concurrent with a widening demand for software to serve ever-broader needs, we are
also witnessing higher and higher expectations in terms of product quality. As software
takes on ever more vital functions in life-critical and mission-critical applications and in
applications that carry massive financial stakes, it becomes increasingly important to
ensure that software products fulfill their function with a high degree of dependability.
This requires that we deploy a wide range of techniques, including the following:

• Process controls, ensuring that software products are developed and evolved
according to certified, mature processes.

• Product controls, ensuring that software products meet quality standards com-
mensurate with their application domain requirements; this is achieved by a com-
bination of techniques, including static analysis, dynamic testing, reliability
estimation, fault tolerance, etc.

In summary, it is fair to argue that the software industry is under massive stress to
deliver both quantity and quality; as we discuss in subsequent sections, this is both
difficult and expensive.

1.3 LARGE, COMPLEX PRODUCTS

The demand for complex hardware/software systems has increased more rapidly
than the ability to design, implement, test and maintain them.

Michael Lyu, Handbook of Software Reliability Engineering, 1996

Not only is it critical for us to build software products that are of high quality, it
is also very difficult, due to their size and complexity. When it was built in the

51.3 LARGE, COMPLEX PRODUCTS

mid-60s, the IBM operating system OS360 (©IBM Corporation), with a million
lines of code and a price tag of 500 million dollars, was considered as the most
complex human artifact ever produced up to then. This size was subsequently
dwarfed by Microsoft’s Windows operating systems (©Microsoft): The 1993 ver-
sion (Windows NT 3.1) is estimated to be 5 millions lines of code, whereas the
2003 version (Windows Server 2003) is estimated to be 50 million lines of code.
Completing projects of this kind of size is not only a major engineering
undertaking but also a major organizational challenge; it is estimated that the pro-
duction of the Windows Server 2003 involved 2000 software personnel (program-
mers, analysts, engineers) for development and 2400 software personnel for software
testing.

Another example of software size growth is given by NASA’s flight software.
A study published in 2009 by NASA’s Jet Propulsion laboratory under the title
NASA Study on Flight Software Complexity (Jet Propulsion Laboratory, 2009) plots
the evolution of flight software size of the various human and robotic space pro-
grams from 1968 to 2005. Both series (flight software for human missions and flight
software for robotic mission) show a near-perfect linear evolution through the years,
except that they are plotted on a logarithmic scale for size, meaning in effect that
flight software size grows exponentially from year to year. Hence for human mis-
sions, flight software grows from 8.5 kilo lines of code (KLOC) for the Apollo
program in 1968 to 470 KLOC for the space shuttle program in 1980 to 1.5 million
lines of code (MLOC) for the international space station in 1989. For robotic mis-
sions, software size grows from 30 line of code (LOC) for the Mariner-6 mission in
1968 to 3 KLOC for Voyager in 1977 to 8 KLOC for Galileo in 1989 to 349 KLOC
for DS1 (Deep Space 1) in 1999 to 545 KLOC for MRO (Mars Reconnaissance
Orbiter) in 2005. The same Jet Propulsion Laboratory (JPL) report describes the
recent evolution of military avionics software in the following terms: between
1960 and 2000, the percentage of flight control functionality that is delegated to
software jumped from 8 to 80%, leading to an increase in size from one generation
of aircrafts to another; hence it went from 1000 lines of code for the F-4A to 1.7
million lines of code for the F-22 to 5.7 million lines of code for the F-35 Joint Strike
Fighter. The authors of the report argue that the increase in the size and complexity
of flight software stems from software serving as a ‘complexity sponge,’ whereby
complexity migrates from other parts of the system to software, on account of its
flexibility and its adaptability.

A panel convened by the Software Engineering Institute (www.sei.cmu.edu) in
2005–2006 to analyze software systems of the future and draw a research agenda
to manage such systems estimates that future software systems are expected to have
sizes up to a billion lines of code. Along with this dry measure of size, such systems
will be large in terms of other dimensions, such as (www.sei.cmu.edu/uls/) the amount
of data stored, accessed, manipulated, and refined; the number of connections and
interdependencies; the number of hardware elements; the number of computational
elements; the number of system purposes and user perception of these purposes;
the number of routine processes, interactions, and emergent behaviors; the number
of overlapping policy domains and enforceable mechanisms; and the number of

6 SOFTWARE ENGINEERING

http://www.sei.cmu.edu
http://www.sei.cmu.edu/uls/

parties involved in the operation of the system (developers, maintainers, end users,
stakeholders, etc.).

Size changes everything: such systems (referred to as ultra-large–Scale (ULS)
systems) challenge all our knowledge and assumptions about software and are estimated
to have a number of distinguishing features, such as the following:

• Decentralization in fundamental dimensions, such as decentralized development,
decentralized evolution, and decentralized operation.

• Conflicting, unknown, and diverse requirements: Whereas the traditional view in
software engineering is that requirements must be analyzed, compiled, and spe-
cified prior to software design and development, the view taken by the ULS
approach is that at no time can we claim that all relevant requirements have been
collected and specified.

• Continuous evolution and deployment: Whereas the traditional view of software
engineering is that a software product proceeds sequentially through successive
phases of development, then maintenance, then phase out, ULS systems are
developed, evolved, and deployed concurrently (made up of parts that are at dif-
ferent stages in their evolutionary process).

• Heterogeneous, inconsistent, changing elements: Whereas a traditional software
product is developed as a cohesive monolithic system by a development team,
ULS systems emerge as the aggregate of many components, which may have
evolved independently, using different paradigms and different technologies,
by different teams, and from different stakeholder classes. Also, different com-
ponents of the system are expected to evolve relatively independently.

• Deep erosion of the people-system boundary: Whereas traditional systems are
defined in terms of a distinct boundary that separates them from the outside
world, ULS systems are envisioned to include human users as an integral part
so that when a user interacts with a ULS system, she/he may be engaging human
actors along with system behavior.

• Failure is normal and frequent: Whereas in traditional software systems we think
of failures as exceptional events and consider that failure avoidance is contin-
gent upon fault removal, in ULS systems, we take a broader view of successful
(failure-free) operation, which does not exclude the presence of faults but makes
provisions for system redundancy and requirements nondeterminacy to make up
for the presence of faults.

1.4 EXPENSIVE PRODUCTS

Not only are software products very large and complex, they are also very expensive
to produce. Of course, if a product is large, one expects it to be costly, but what is
surprising is that the unitary cost of software, that is, the cost per LOC, does, itself,
increase with size. Whereas any programmer one asks may say that they can produce a
hundred lines of code in a day or more, a more realistic figure, across all areas of

71.4 EXPENSIVE PRODUCTS

software development, is closer to about 10 lines of code per day, or about 200 lines
of code per person-month. This figure includes all costs that are spent producing
software, including the cost of all phases of the software lifecycle, from requirements
analysis and specification to software testing. If we assume the cost of a person-month
to be 20,000 dollars (in salary, fringe benefits, and related expenses), this amounts to
about $100 per LOC. If, for the sake of argument, we apply Boehm’s COnstructive
COst MOdel (COCOMO) cost estimation model to a bespoke (custom-tailored) soft-
ware project of size 500,000 source lines of code developed in embedded mode
(the hardest/most costly development mode), we find 80 source lines of code per
person-month.

In most other engineering disciplines, one way to mitigate costs is to use economies
of scale, that is, to produce in such a large volume as to lower the unitary cost. Econo-
mies of scale are possible because in most engineering disciplines, the production
process requires an initial up-front cost that is all the better amortized as the volume
of production increases. The same process applies in software engineering: If we
invest resources to acquire software tools, to train software professionals, or to set
up a programming environment, then the more software we produce the better our
investment is amortized. But in software we are also dealing with a phenomenon
of diseconomy of scale: the more software we produce within a single product, the
more interdependencies we create between the components of the product so that
the unitary cost (per LOC) of large software products is larger than that of smaller
products. This phenomenon of diseconomy of scale overrides the traditional economy
of scale (that comes from amortizing up-front investments); the net result is a disecon-
omy of scale, which is all the more acute that the software product is larger or more
complex; see Figure 1.1.

Many of these costs are mitigated nowadays by the use of a variety of coarse-
grained software development methods, which proceed to build software by compos-
ing existing components, rather than by painstakingly writing code from scratch line

Production cost as a function
of production size

Production volume

Production cost

Unitary cost as a function
of production size

Production volume

Unitary cost

Software engineering
Other engineering disciplines

Figure 1.1 Diseconomies of scale in software engineering.

8 SOFTWARE ENGINEERING

by line. Another trend that is emerging recently to address software cost and quality is
the use of so-called Agile methodologies. These methodologies control the costs and
risks of traditional lifecycles by following an iterative, incremental, flexible lifecycle,
where the user participates actively in the specification and development of successive
versions of the targeted software product.

1.5 ABSENCE OF REUSE PRACTICE

In the absence of economies of scale, one would hope to control costs by a routine
discipline of reuse; in the case of software, it turns out that reuse is also very difficult
to achieve on a routine basis. In any engineering discipline, reuse is made possible by
the existence of a standard product architecture that is shared between the producer
and the consumer of reusable assets: for example, automobiles have had a basic archi-
tecture that has not changed for over a century; all cars have a chassis, four wheels, an
engine, a battery, a transmission, a cab, a steering column, a braking system, a horn, an
exhaust system, shock absorbers, etc. Thanks to this architecture, the design of a new
car is relatively straightforward and is driven primarily by design and marketing con-
siderations; the designer of a new model does not have to reinvent a car from scratch
and can depend on a broad market of companies that provide standard components,
such as batteries, tires, and spare parts. The standard architecture of a car dictates mar-
ket structure and creates great efficiencies in the production and maintenance of a car.

Unfortunately, no standard architecture exists in software products; this explains,
to a large extent, why the expectations that software engineering researchers and prac-
titioners pinned on a discipline of software reuse never fully materialized. Several
software reuse initiatives were launched in the last decade of the last century, making
available a wide range of software products and sophisticated search and assessment
algorithms; but they were unsuccessful because software reuse requires not only func-
tional matching between the available components and the requirements of the user
but also architectural matching, which was often lacking. The absence of a standard
architecture of software products also explains why software product lines have
achieved some degree of success: product line engineering is a form of software reuse
that is practiced in the context of a narrow application domain, in which it is possible
to define and enforce a reference architecture. As an example, if we define a product
line of e-commerce systems, wemay want to define the reference architecture as being
composed of the following components: a web front-end; a shopping cart component;
an order-processing component; a banking component; a marketing and recommen-
dations component; a network interface; and a database interface.

1.6 FAULT-PRONE DESIGNS

In other engineering disciplines, the presence of a standard product architecture, the
availability of usable product components, the availability of compiled engineering
knowledge, and the application of mandated safety requirements all contribute to

91.6 FAULT-PRONE DESIGNS

reducing the design space of a product so as to make it manageable. The design of an
engineering product (e.g., a bridge, a road, or a car) within this limited design space is
a fairly straightforward operation that proceeds from requirements to finished product
in a systematic, predictable manner.

In software engineering, the situation is significantly more complex, for several
reasons, which are as follows:

• There is no standard software architecture, except perhaps for some vague archi-
tectures of broad families of software products, such as data-processing applica-
tions, transaction-processing applications, event-processing applications, and
language-processing applications.

• There is little or no availability of software reusable assets, in the traditional
sense of engineering assets that can be used to compose software products;
the only assets that may be used widely across the industry are small assets
(such as abstract data types (ADTs)) that deliver limited gains in terms of reduced
lifecycle costs or reduced process risk.

• There is little software engineering knowledge that may be used across applica-
tions in the same way that engineering knowledge is reused in complied form
across products in other engineering disciplines.

• Software specifications are very complex artifacts that typically involve vast
amounts of detailed functional information; the breadth of the specification space
precludes the ability to organize the design space in a systematic manner.

Because the design space of software products is so vast, software design is sig-
nificantly more error prone than design in other engineering disciplines.

1.7 PARADOXICAL ECONOMICS

While technology can change quickly, getting your people to change takes a great deal
longer. That is why the people-intensive job of developing software has had essentially

the same problems for over 40 years.
Watts Humphrey, Winning with Software: An Executive Strategy, 2001

1.7.1 A Labor-Intensive Industry

If we consider the cost of an automobile, for example, and ponder the question of what
percentage of this cost is due to the design process and what percentage is due to man-
ufacturing, we find that most of the cost (more than 99%, perhaps) is due to manu-
facturing. Typically, by the time one buys a car, the effort that went into designing
the new model has long since been amortized by the number of cars sold; what
one is paying for is all the raw materials and the processing that went into manufac-
turing the car. By contrast, when one is buying a software product, one is paying

10 SOFTWARE ENGINEERING

essentially for the design effort, as there are no manufacturing costs to speak of
(loading compact disks or downloading program files). Table 1.1 shows, summarily,
how the cost of a software product differs from the cost of another engineering product
in terms of distribution between design and manufacturing.

1.7.2 Absence of Automation

The labor-intensive nature of software engineering has an immediate impact on the
potential to automate software engineering processes. In all engineering processes,
one can achieve savings in manufacturing by automating the manufacturing process
or at least streamlining it, as in assembly lines. This is possible because manufacturing
follows a simple, systematic process that requires little or no creativity. By contrast,
design cannot be automated because it requires creativity, artistic appreciation, aes-
thetic sense, and so on. Automating the manufacturing process has an impact in tra-
ditional engineering disciplines because it helps reduce a cost factor that accounts for
more than 99% of production costs; but it has no impact in software engineering
because it affects less than 1% of production costs. Hence the automated development
of software products is virtually impossible in general.

The only exception to this general rule is the development of applications within a
limited application domain, where many of the design decisions may be taken a priori
when the automated tool is developed and hardwired into the operation of the tool.
One of the most successful areas of automated software development is compiler con-
struction, where it is possible (thanks to several decades of intensive research) to pro-
duce compilers automatically, from a syntactic definition of the source language and
relevant semantic definitions of its statements. Not surprisingly, this is a very narrow
application domain.

1.7.3 Limited Quality Control

The lack of automation and hence the absence of process control make it difficult to
control product quality. Whereas in traditional engineering disciplines, the production
process is a systematic, repeatable process, one can control quality analytically by cer-
tifying the process or empirically by statistical observation. Because the production of
software proceeds through a creative process, neither approach is feasible, since the
process is neither systematic nor repeatable. This shifts the control of product quality
to product controls, such as static analysis, or dynamic program testing.

TABLE 1.1 Lifecycle cost distribution: design versus
manufacturing

Software engineering, % Other engineering, %

Design >99 <1
Manufacturing <1 >99

111.7 PARADOXICAL ECONOMICS

1.7.4 Unbalanced Lifecycle Costs

In most other engineering disciplines, products are produced in large volume and are
generally assumed to behave as expected; in software engineering, due to the forego-
ing discussion, such an assumption is unfounded, and the only way to ensure the qual-
ity of a software product is to subject that product to extensive analysis. This turns out
to be an expensive proposition, in practice, and the source of another massive paradox
in software engineering economics. Whereas testing (and more generally, verification
and quality assurance) takes up a small percentage of the production cost of any engi-
neering artifact, it accounts for a large percentage of the lifecycle cost of a software
product. As a practical example, consider that the development of Windows Server
2003 (©Microsoft Corp.) was carried out by a team of 4400 software engineers, of
whom 2000 formed the development team and a staggering 2400 formed the test team.
More generally, testing accounts for around 50% of lifecycle costs, which is much
higher than traditional manufacturing industries (where the likelihood of a defective
product is so low as to make any significant amount of testing wasteful) (Table 1.2).

Good software engineering practice dictates that more effort ought to be spent
on up-front specification and design activities and that such up-front investment
enhances product quality and lessens the need for massive investment in a posteriori
testing. While these practices appear to be promising, they have not been used suffi-
ciently widely to make a tangible impact; so that software testing remains a major cost
factor in software lifecycles.

1.7.5 Unbalanced Maintenance Costs

It is common to distinguish in software maintenance between several types of main-
tenance activity; the two most important types (in terms of cost) are as follows:

• Corrective maintenance, which aims to remove software faults

• Adaptive maintenance, which aims to adapt the software product to evolving
requirements

Empirical studies show that adaptive maintenance accounts for the vast majority of
maintenance costs. This contrasts with other engineering disciplines, where there is
virtually no adaptive maintenance to speak of: it is not possible for a car buyer to
return to the dealership to make her/his car more powerful, add seats to it, or make
it more fuel-efficient. Hence, it is possible to distinguish between software products

TABLE 1.2 Lifecycle cost distribution: development versus
testing

Software engineering, % Other engineering, %

Development ≈50 >99
Testing ≈50 <1

12 SOFTWARE ENGINEERING

and other engineering products by the distribution of maintenance, as shown in
Table 1.3.

While it is not realistic to expect a car dealership to change a car to meet different
specifications, it is certainly their responsibility to repair if it no longer meets its orig-
inal specifications. Another distinguishing feature arises when one considers correc-
tive maintenance: Whereas in software products corrective maintenance consists in
changing the design or implementation of the product, in other engineering disciplines
products need (corrective) maintenance due to wear and tear (Table 1.4).

The only cases where a maintenance action on a brick-and-mortar product (e.g.,
a car) is of type design are cases where a manufacturer makes a product recall; these
are sufficiently rare that they are usually newsworthy and are broadly advertised in
public forums.

1.8 CHAPTER SUMMARY

This chapter introduces the discipline of software engineering with all its specific
characteristics and paradoxes, contrasts it with more traditional engineering disci-
plines, and elucidates the role that software testing plays within this discipline.

1.9 BIBLIOGRAPHIC NOTES

For more information on the COCOMO cost model, consult (Boehm, 1981) or (Boehm
et al., 2000); for more information on the JPL report on the evolution of avionics and
space flight software, consult (Jet Propulsion Laboratory, 2009); for more information
on the classification of software products into broad families of applications, consult
(Somerville, 2004).

TABLE 1.3 Maintenance cost distribution: corrective versus adaptive

Software engineering, % Other engineering, %

Corrective ≈20 >99
Adaptive ≈80 <1

TABLE 1.4 Corrective maintenance cost distribution: design versus
wear and tear

Software engineering, % Other engineering, %

Design ≈100 1
Wear and tear ≈0 99

131.9 BIBLIOGRAPHIC NOTES

2
Software Quality Attributes

When one buys a car, one may be interested in any number of quality attributes,
including purchase price, maintenance cost, reliability, safety, fuel efficiency
(mpg), engine size/power, acceleration (0–60 mph), comfort, roominess, looks, noise
level, trunk size, environmental impact, and so on. Likewise, a software product may
feature many quality attributes, which we review briefly in this chapter, focusing
in particular on those that may be of interest with respect to software testing.
We distinguish between five categories of software quality attributes which are as
follows:

• Functional attributes, which characterize the input/output behavior of the
software product

• Operational attributes, which characterize the operational conditions of the
software product

• Usability attributes, which characterize the extent to which the software product
can be used and adapted to user needs

• Business attributes, which characterize the cost of developing, using, and
evolving the software product

• Structural attributes, which characterize the internal structure of the software
product

We consider these families of attributes in turn, in this chapter. For each attribute,
we will present a definition and, possibly, a quantification (i.e., a way to measure the
attribute quantitatively). This classification is not perfectly orthogonal, and many
attributes may be listed in more than one category; but it helps us to define some struc-
ture in the set of attributes.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

14

2.1 FUNCTIONAL ATTRIBUTES

Functional attributes characterize the input/output behavior of software products. We
distinguish between two broad categories of functional attributes: those that are of a
Boolean nature (a software product has them or does not have them) and those that are
of a statistical nature (a software product has them to a smaller or larger extent). The
functional attributes of a software product depend on the existence of a specification,
which describes a set of situations the product is intended to face, along with a
prescription of correct program behaviors for each situation. We refer to the set of
relevant situations as the domain of the specification.

2.1.1 Boolean Attributes

We recognize two attributes of a Boolean nature in a software product, which are as
follows:

• Correctness, which is the property that the software product behaves according
to its specification for all possible situations in the domain of the specification.

• Robustness,which is the property that the software product behaves according to
its specification for all possible situations in the domain of the specification and
behaves reasonably for situations outside the domain of the specification. Of
course, reasonable behavior is not a well-defined condition, hence robustness
is only partially defined; but it generally refers to behavior that alerts the user
to the anomaly of the situation and acts prudently and conservatively (avoiding
irreversible operations, avoiding irretrievable losses of information, etc.).

As defined, robustness logically implies correctness: whereas correctness refers
solely to the behavior of the software product within the domain of the specification,
robustness also refers to the behavior of the product outside the domain of the
specification. Conversely, we can argue that robustness is not distinguishable from
correctness since it is merely correctness with respect to a stronger specification
(one that specifies the behavior of candidate programs inside the original specifica-
tion’s domain, as well as outside it); nevertheless, for a given specification, these
are distinct properties.

2.1.2 Statistical Attributes

Correctness and a fortiori robustness are notoriously difficult to establish for software
products of any realistic size; hence we introduce statistical attributes, which measure
(over a continuum) how close a software product is to being correct or robust. We
distinguish between two broad families of statistical attributes, depending on whether
the obstacles to correctness and robustness are inadvertent (product complexity, pro-
grammer incompetence, etc.) or voluntary (malicious attempts to cause product
failure).

152.1 FUNCTIONAL ATTRIBUTES

• Dependability: Dependability is the probability that the system behaves accord-
ing to its specifications for a period of operation time. We recognize two
attributes within dependability, namely, reliability and safety, that differ by
the stakes attached to satisfying the specification.
○ Reliability reflects the probability that the software product operates for a
given amount of time without violating its specification.

○ Safety reflects the probability that the software product operates for a given
amount of time without causing a catastrophic failure.

Both reliability and safety are related to the product’s ability to operate according
to its specification; but whereas reliability reflects the product’s ability to adhere
to all the clauses of its specification, safety focuses particularly on high-stakes
clauses, whose violation causes a catastrophic loss, in terms of human lives, mis-
sion success, high financial stakes, etc. Safe systems are sometimes referred as
fail-safe, in the sense that it may fail to satisfy its specification but still satisfy the
high-stakes requirements of its specification. A system may be reliable but
unsafe (fails seldom but causes a catastrophic loss whenever it fails); and a sys-
tem may be safe but unreliable (fails often, but causes low-stakes losses, and
never causes catastrophic losses).

The most commonly used metric to quantify reliability is the mean time to
failure, which is the mean of the random variable that represents the operation
time until the next system failure; the same metric can be used to quantify safety,
if we just replace failure by catastrophic failure. Older metrics include the mean
time between failures, which is the mean of the random variable that represents
the time between two successive failures. More recent metrics include the mean
failure cost, which measures the mean of the random variable that measures the
loss of a stakeholder as a result of possible system failures.

• Security: Whereas dependability refers to failures that result from system
design flaws, security refers primarily to voluntary actions by malicious per-
petrators, although one can argue that these actions are rendered possible by
system vulnerabilities, which also stem from system design flaws.We find four
attributes that can be considered as aspects of security, which are as follows:
○ Confidentiality: Confidentiality refers to a system’s ability to prevent unau-
thorized access to confidential data entrusted to its custody.

○ Integrity: Integrity refers to a system’s ability to prevent loss or damage to
critical data entrusted to its custody.

○ Authentication: Authentication refers to a system’s ability to properly iden-
tify each user that gains access to its resources and to grant users access
privileges according to their rightful status.

○ Availability: Availability refers to a system’s ability to continue delivering
service to its user community; it can be measured as a percentage. This
attribute is usually the casualty of denial of service attacks: when the system
is under attack, its ability to deliver services to its legitimate users suffers.

16 SOFTWARE QUALITY ATTRIBUTES

There is nowidely acceptedmeasure of system security. To the extent that security
attacks result fromsystemvulnerabilities, it ispossible toquantifyalldimensionsof
security (including availability) by mean time to detection (MTTD), which is the
meanof the randomvariable thatmeasures the time it takes perpetrators to uncover
system vulnerabilities, and by mean time to exploitation (MTTE), which is the
mean of the random variable that represents the time it takes perpetrators to find
a way to exploit discovered system vulnerabilities.

2.2 OPERATIONAL ATTRIBUTES

Whereas functional attributes characterize the functions/services that a software prod-
uct delivers to its users, operational attributes characterize the conditions under which
these services are delivered. We find four attributes that can be considered as opera-
tional attributes, which are as follows:

• Latency: Latency (or response time) is the time that elapses between the submis-
sion of a query to the system and the response to the query; this attribute is relevant
for interactive systems and can be measured in seconds. Because the time between
a query and its response varies, of course, from query to query, and varies accord-
ing to the system workload at the time the query is submitted, this attribute is
understood to be an average over many queries, for an average workload.

• Throughput: Throughput is the volume of processing that the system can deliver
per unit of operation time; this attribute is relevant for batch systems, such as the
program that a bank runs in the middle of the night to update all the transactions of
the day, and can be measured in transactions per second. Though latency and
throughput appear to be related, as they both reflect the speed with which the sys-
tem can process transactions, they are fairly orthogonal, in the sense that a system
can have short (good) latency and small (bad) throughput (if it spends much of its
time switching between queries), and long (bad) latency and large (good) through-
put if its scheduler favors keeping the processor busy over the concern of fairness.

• Efficiency: The efficiency of a software product is its ability to deliver its
functions and services with minimal computing resources, such as CPU cycles,
memory space, disk space, and network bandwidth. It is difficult to quantify this
attribute for a given software product in a way that prorates resource consump-
tion to the services rendered by the product, but very easy to use this attribute to
compare candidate software products for a given application.

• Capacity: The capacity of a system is the number of simultaneous users that a
system can sustain while preserving a degree of quality of service (in terms of
response time, timeliness, precision, size of data, etc.). This definition is ambig-
uous in a number of ways (what does it means to be simultaneous? At what level
of granularity are we defining simultaneity? What degree of quality are we con-
sidering? etc.), but is a useful metric nevertheless.

172.2 OPERATIONAL ATTRIBUTES

• Scalability: The scalability of a system reflects its ability to continue delivering
adequate service when its workload exceeds its original capacity. This attribute is
sometimes referred to as graceful degradation: of course, as the workload
increases beyond the system’s preplanned capacity, one expects some degrada-
tion of the quality of service; scalability consists in ensuring that this degradation
remains graceful (i.e., a progressive, continuous function of the workload).

2.3 USABILITY ATTRIBUTES

Whereas functional attributes measure the services rendered by the software product
to the end user, and operational attributes reflect the operational conditions under
which these services are rendered, usability attributes reflect the extent to which
the software product is easy to use, and to customize to the end user’s needs and cir-
cumstances. We identify five such attributes, which are as follows:

• Ease of Use: Ease of use is important especially in systems whose user commu-
nity is broad, diverse, heterogeneous and possibly unskilled; this includes, for
example, an online system in a public space. Qualities that support ease of
use include simplicity of system interactions, uniformity of interaction patterns,
availability of help menus, use of simple vocabulary, tolerance to misuse, and
so on.

• Ease of Learning: Ease of learning is important especially in systems whose user
community is homogeneous in terms of skill level (e.g., all the clerical staff of an
organization) and who envisions to use the software product on a long-term basis
(e.g., an accounting application). Qualities that support ease of learning include
intuitiveness of system interactions, consistency of interaction protocols, uni-
formity of system outputs, and so on.

• Customizability: The customizability of a software product is its ability to be
tuned to specific functional requirements of the end user, by the end user. The
more control the end user has over the functionality of the software product,
the better the customizability.

• Calibrability: The calibrability of a software product is its ability to be tuned to
specific operational requirements of the end user, by the end user. The more con-
trol the end user has over the operational attributes of the software product, the
better the calibrability.

• Interoperability: The interoperability of a software product is its ability to work
in conjunction with other applications; it is difficult to give a general quantitative
metric for this attribute, but it can be qualitatively characterized by the range of
applications with which it can collaborate (for example, the breadth of file for-
mats it can analyze and process, or by the range of file formats in which it can
produce its output); it can also be qualitatively characterized by the range of tech-
nologies with which it is compatible.

18 SOFTWARE QUALITY ATTRIBUTES

The functional attributes, the operational attributes, and the usability attributes of a
software product constitute all the attributes of the product that are of interest to the
end user; in the remainder of this chapter, we consider other stakeholders of a software
product, and review attributes that are of interest to them.

2.4 BUSINESS ATTRIBUTES

Broadly speaking, business attributes reflect the stakes of a software manager in the
development, operation and evolution of a software product. They include the follow-
ing attributes:

• Development Cost: Development cost is clearly an important attribute, and a
business attribute at that. We usually quantify it in person-months invested in
the development of the software product, from its requirements analysis to its
acceptance testing.

• Maintainability: The maintainability of a software product is the amount of effort
invested in the maintenance of the product during its operation phase (post
delivery). We can quantify it in absolute terms, by means of person-months
of maintenance effort per year, or in relative terms, by means of person-months
of maintenance effort par year per line of code. Since most maintenance costs are
typically spent on adaptive maintenance, which is driven by user demands rather
than by any intrinsic attribute of the software product, we may want to normalize
the measure of maintainability to the volume of adaptive maintenance, or
exclude adaptive maintenance altogether from the person-month calculation
of maintenance effort.

• Portability: The portability of a software product is the average cost of porting
the product from one hardware/software platform to another. Portability is
enhanced by reducing the platform-dependent functionality as much as possible,
or by confining it to a single component of the product (hence confining changes
to this component in the event of a migration of the product from one platform to
another). Though it is usually thought of as a qualitative attribute, portability can
be quantified by the average cost (in person-months) of a migration.

• Reusability: Whereas the three previous attributes reflect product cost, this attrib-
ute reflects potential benefits. The reusability of a software product is its ability to
be reused, in whole or in part, in the design and development of other software
products within the product’s application domain. Reusability is the aggregate of
two orthogonal properties, which are as follows:
○ Usefulness, which is the extent to which the product (or component) is widely
needed in the product’s application domain

○ Usability, which is the ease (lower cost) with which it is possible to adapt the
product (or component) to the requirements of an application within the
domain

192.4 BUSINESS ATTRIBUTES

Whereas usefulness is a property of the product’s (or component’s) specification,
usability is a property of its design: well-designed components can be adapted to
related requirements at lowcost, bysuchdevices asgenericity andparameterization.

2.5 STRUCTURAL ATTRIBUTES

Like business attributes, structural attributes are of interest to system custodians/
developers/maintainers/operators; but whereas business attributes deal with economic
aspects of system management, structural attributes deal with their technical aspects.
In other words, whereas business attributes are relevant to software managers, struc-
tural attributes are of interest to engineers, designers and other technical personnel.
We identify four structural attributes, which are as follows:

• Design Integrity: The quality of a design is easier to recognize than to define,
which is in turn much easier than to quantify. Qualities of a good design
include simplicity, orthogonality (the quality of a design that results from a
set of independent decisions), economy of concept, cohesiveness of the design
rationale, consistency of design rules, adherence to a simple design discipline,
and so on.

• Modularity: Modularity can be defined in terms of a single design principle:
information hiding. The main characteristic of a modular design is that each
component of the system hides a design decision that other components need
not know about (i.e., be influenced by). Hence one of the main features of a
modular design is the separation between the specification of a module and
its implementation. Modularity can be quantified by two attributes, which are
as follows:
○ Cohesion: The cohesion of a component represents the volume of information
flow within the component, and can be quantified using information theory.

○ Coupling: The coupling between two components represents the bandwidth of
information interchange that takes place between the components, and can be
quantified by the entropy of the random variable that represents the flow of
information interchange.

• Testability: The testability of a software product reflects the extent to which one
can test the system or components thereof to an arbitrary level of thoroughness.
Testability can be quantified by means of two attributes, which are as follows:
○ Controllability: The controllability of a component in a system is the band-
width (breadth) of input values we can submit (as test data) to the component
by controlling system inputs. This can be quantified by the conditional entropy
of the system’s input given an input value of the component.

○ Observability: The observability of a component is the extent to which we can
infer the output produced by the component by observing the system output.
This can be quantified by the conditional entropy of the component’s output,
given the system’s output.

20 SOFTWARE QUALITY ATTRIBUTES

• Adaptability: The adaptability of a system is the ease with which it can be mod-
ified to satisfy changing requirements. This attribute sounds similar to customiz-
ability, in that they both deal with adjusting the software product to meet
different sets of requirements. In fact they are different in two crucial ways,
which are as follows:
○ Whereas customizability refers to changes carried out by the end user (hence
accessible to her/him, by design), adaptability refers to changes carried out by
the software engineer.

○ Whereas customizability refers to changes that are planned for within the
design of the system, adaptability refers to changes in the system requirements.

In many instances, we find that structural attributes support business attributes; for
example, modularity supports maintainability. But we consider them as distinct, on
the grounds that one is a business attribute while the other is a structural/technical
attribute. Also, there is no one-to-one correspondence between them: modularity sup-
ports not only maintainability but also development cost (which it reduces); also,
maintainability is supported not only by modularity but also by testability.

2.6 CHAPTER SUMMARY

This chapter provides us a vocabulary for discussing software properties and enables
us to explore the effects of software testing on achieving or measuring these proper-
ties, as we will do in subsequent chapters. We have presented five classes of software
quality attributes, which we divide broadly into three categories, which are as follows:

• Attributes that are relevant to software users: These include functional attributes,
operational attributes, and usability attributes and reflect the overall quality of
service delivered by the software product.

• Attributes that are relevant to software operators: These include business attri-
butes and reflect the cost of developing, maintaining, and evolving the software
product.

• Attributes that are relevant to software engineers: These include structural attri-
butes and reflect the engineering qualities of the product and their impact on
analyzing and working with the software product for the duration of its lifecycle.

2.7 EXERCISES

2.1. Your colleague Joe argues that since reliability is the probability that the product
operates free of failure for some unit of time and safety is the probability that the
product operates free of catastrophic failures, and since catastrophic failures are
failures, then a reliable system is necessarily safe. Do you agree with Joe? Why
or why not?

212.7 EXERCISES

2.2. Can a system be reliable but not secure? Can a system be secure but not reliable?

2.3. Can a system have high reliability but low availability? Can a system have high
availability but low reliability?

2.4. Consider a queue simulation moduleM that uses an implementation of an first in/
first out (FIFO) queue Q. Using information theory, propose a formula for the
cohesion ofM and the coupling ofM andQ. What information do you need about
the implementation ofM andQ to compute the cohesion ofM and the coupling of
M and Q.

2.8 BIBLIOGRAPHIC NOTES

Some of the terminology introduced in Section 2.1, pertaining to functional attributes,
is inspired by Avizienis et al. (2004); because the definitions of Avizienis et al. are too
detailed for our purposes, we have not adopted them wholesale but have simplified
them a little. The quantification of security by means of MTTD and MTTE is due
to Nicol et al. (2004). For more information on information theory, consult Csiszar
and Koerner (2011).

22 SOFTWARE QUALITY ATTRIBUTES

3
A Software Testing Lifecycle
Testing is the process of executing a software product on sample input data and
analyzing its output. Unlike other engineering products, which are usually fault-free,
software products are prone to be faulty, due to an accumulation of faults in all the
phases of their lifecycle (faulty specifications, faulty design, faulty implementation,
etc.). Also, unlike other engineering products, where faults arise as a result of product
wear and/or decay, the faults that arise in software products are design faults, which
are delivered with the new product.

3.1 A SOFTWARE ENGINEERING LIFECYCLE

The simplest model of a software product lifecycle views the process of developing
and evolving the product as a set of phases proceeding sequentially from a require-
ments analysis phase to a product operation and maintenance phase. While this
process model is widely believed to be simplistic, and not to reflect the true nature
of software development and evolution, we adopt it nevertheless as a convenient
abstraction. If nothing else, this process model enables us to situate software testing
activities in their proper context within the software engineering lifecycle. For the
sake of argument, we adopt the following sequence of phases:

• Feasibility Analysis: Feasibility analysis is the phase when the economic and
technical feasibility of the development project is assessed, and a determination
is made of whether to proceed with the development project, within a given
budget, schedule, and technological means.

• Requirements Analysis: The phase of requirements analysis is the most difficult
of the software lifecycle, at the same time as it is the most fateful phase, in terms
of determining the fate of the project (its success or failure, its scope, its cost, its
value to users, etc.). Whereas a naïve view may understand this phase as

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

23

consisting of a user dictating user requirements and a software engineer who is
carefully taking notes, the reality of this phase is typically much more complex:
The requirements engineer (a software engineering specializing in analyzing
requirements) must conduct a vast data gathering operation that consists in
the following steps: identifying system stakeholders; gathering relevant domain
knowledge (pertaining to the application domain of the system); identifying
relevant outside requirements (relevant laws of nature, applicable regulations,
relevant standards, etc.); collecting requirements from all relevant stakeholders
(system end users, system operators, system custodians, system managers, etc.);
documenting the requirements; identifying possible ambiguities, gaps, inconsis-
tencies; resolving/negotiating inconsistencies; specifying the functional and
nonfunctional requirements of the system; and finally validating the requirements
specification for completeness (all relevant requirements are captured) and
minimality (all captured requirements are relevant). As we shall see in
Chapter 5, validating a specification hasmuch in commonwith testing a program.

• Product Architecture: The phase of product architecture consists in determining
the broad structure of the product, including a specification of the main compo-
nents of the architecture, along with a specification of the coordination and
communication mechanisms between the components, as well as decisions
pertaining to how the system will be deployed, how it will be distributed,
how data will be shared, and so on. The architecture is usually evaluated by
the extent to which it supports relevant operational attributes (see Chapter 2).

• Product Design: In the product design phase, system designers make system-
wide design decisions pertaining to data structures, data representation, and algo-
rithms, and decompose the software product into small units to be developed
independently by programmers. This phase is verified by ensuring that if all
the units perform as specified, then the overall system performs as specified.

• Programming: The phase of programming can be carried out by a large number of
programmers working independently (ideally, at least), and developing program
units from unit specifications. This phase is verified by means of Unit Testing,
where each unit is tested against the specification that it was developed to satisfy.

• System Integration: Once all the units have been developed, the system is put
together according to its design and tested to ensure that it meets its system wide
specification. This is referred to as Integration Testing, as it tests the integration
of the units into the overall system. This phase takes usually a significant portion
of the project’s budget and schedule. This phase can also be used to carry out
another form of testing: Reliability Testing, where fault removal is accompanied
by an evolving estimate of reliability growth, until a target reliability is reached;
this differs from integration testing in that its focus is not on finding faults, but on
improving reliability (hence targeting those faults that have the greatest negative
impact on reliability).

• Delivery: Once the system has gone through integration testing and has been
deemed to be ready for delivery, it is delivered to the customer, in an operation
that includes Acceptance Testing. Like integration testing, acceptance testing is a

24 A SOFTWARE TESTING LIFECYCLE

system-wide test. But whereas integration testing is focused on finding faults,
acceptance testing is focused on showing their absence, or at least highlighting
their sparsity. This phase can also be used to carry out another form of testing:
Certification Testing, whose goal is to certify (or not) that the product meets
some quality standard; this differs from acceptance testing in that the goal is
not to make a particular customer happy, but rather to satisfy a generic quality
standard.

• Operations andMaintenance: If during the operation phase, the software product
fails, or the software requirements change, then a maintenance operation is
initiated to alter the software product accordingly. Upon the completion of the
maintenance operation, the software system must be tested; but given that the
maintenance operation may involve only a limited portion of the source code,
or only limited aspects of system functionality, it may be advantageous to focus
the testing effort to those portions of the code that have been modified, or those
functional aspects that are part of the altered requirements; this is called
Regression Testing.

Figure 3.1 illustrates this lifecycle, and highlights the testing activities that take
place therein. Each phase of this lifecycle concludes with a verification and
validation step, intended to ensure that the deliverable that is produced in the
phase is sufficiently trustworthy to serve as a launchpad for the next phase.
Strictly speaking, validation ensures that the specification is valid (in the sense
that it record all the valid requirements, and nothing but the valid requirements),
whereas verification ensures that the product is correct with respect to the
specification; hence, in theory, validation is used at the end of the requirements
specification phase, and verification is used in all subsequent phases (see Fig. 3.2
for a summary illustration). But in practice, it is a good idea to maintain a healthy
suspicion of the specification throughout the lifecycle, to test it at every oppor-
tunity (we will explore means to this end in subsequent chapters), and be prepared
to adjust it as necessary.

As Figure 3.2 shows, it is much harder to ascertain specification validation than it is
to ascertain program verification, for the following reasons:

• Assuming the requirements specification is written in a formal notation, the
verification step consists in checking a relationship between two formal docu-
ments (the specification and the program); as hard as this may be, it is a well-
defined property between two formal artifacts. By contrast, validation involves
a formal artifact (the specification) and a heterogeneous collection of require-
ments and facts from diverse sources.

• Because verification involves a well-defined property between two well defined
artifacts, it is a systematic, repeatable, possibly automatable operation.

• Because validation involves interaction with multiple stakeholders, it is an
informal process that is neither repeatable nor automatable. Its success depends
on the competence, cooperation and dependability of several human actors.

253.1 A SOFTWARE ENGINEERING LIFECYCLE

In addition to this chronological decomposition of the lifecycle into phases, we can
also consider an organizational decomposition the lifecycle into activities, where each
activity represents a particular aspect of the software project carried out by a special-
ized team. A typical set of activities includes the following:

• Requirements Analysis

• Software Design

• Programming

• Test Planning

• Configuration Management and Quality Assurance

Architecture

Maintenance

Integration

Programming

Delivery

Design

Regression testing

Acceptance testing, certification testing

 Integration testing, reliability testing

Unit testing

Design verification

Architecture verification

Specification validation

Requirements

Figure 3.1 A reference software lifecycle.

26 A SOFTWARE TESTING LIFECYCLE

• Verification and Validation

• Manuals

• Project Management

So that a complete view of the lifecycle is given by a two-dimensional table that
shows phases and activities; in principle, all activities are active at all phases, though
to different degrees.

3.2 A SOFTWARE TESTING LIFECYCLE

So far, we have seen many testing processes, including unit testing, integration testing,
reliability testing, acceptance testing, certification testing, and regression testing. We
will review other forms of testing in the next chapter. While they may differ in many
ways, these forms of testing all follow a generic process, which includes the following
phases:

• Preparing a Test Environment: With the possible exception of regression testing,
which takes place during the operations and maintenance, most testing happens

Stakeholders, requirements

Software product

Requirements specification

Validation

Verification

Figure 3.2 Verification and validation.

273.2 A SOFTWARE TESTING LIFECYCLE

in a development environment rather than its actual operating environment.
Hence, it is incumbent on the test engineer to create a test environment that
mimics the operational environment as faithfully as possible. This may be a non-
trivial task, involving such steps as simulating the operational environment;
creating stubs for missing parts of the operational environment; and simulating
workload conditions by creating fictitious demands on the system.

• Generating Test Data: Ideally, to test a program, we would like to execute it on
all possible inputs or combinations of inputs or combinations of inputs and inter-
nal states (if the program carries an internal state), and observe its behavior under
these circumstances. Unfortunately, that is totally unrealistic for all but the most
trivial programs. Hence, the challenge for the program tester is to find a set of test
data that is small enough to be feasible, yet large enough to be representative.
What do we mean by representative: we mean that if the program executes
successfully on the test data, then we can be fairly confident that it would execute
successfully on any input data (or more generally any configuration of input
data and internal state). Quantitatively, if we let S be the set of all possible
configurations of inputs and internal states, and D the subset of S that includes
all the configurations on which the program was tested successfully; and if we let
σ and δ be, respectively, the events “the program runs successfully on all
elements of S” and “the program runs successfully on all elements of D,” then
we want the conditional probabilityΠ(σ | δ) to be as close to 1.0 as possible. This,
in general, is a very difficult problem; hence Dijkstra’s often-cited quote that
“testing can be used to prove the presence of faults, never their absence.”While
one can hardly argue with this premise, we will see in later chapters that while
testing cannot be used to prove a program correct, it can be used to establish
lesser goals, that are useful nevertheless, such as: to estimate the reliability of
a program; to estimate the fault density of the program; to certify that the relia-
bility of a program exceeds a required threshold; or, if used in conjunction with
fault diagnosis and removal, to enhance the reliability of a program.

In practice, test data is generated by means of what is called a test selection
criterion. This is a condition that characterizes elements of S that are in D. It is
not difficult to generate a test selection criterion that produces a small setD; what
is very difficult is to generate a test selection criterion that is representative of S
(a much harder case to make). The generation of a test selection criterion is one of
the most important attributes of software testing; it is also a very difficult decision
to make, as we discuss in Part III of the book, and the aspect of software testing
that hasmobilized the greatest share of researcher attention. Selectingwhat data to
run the product on determines the fate of the test process, in the sense that it affects
the extent to which the test achieves its goal. We can identify three broad cate-
gories of test selection criteria, which are as follows:
○ Functional criteria of test data selection: These criteria consist in generating
test data by inspecting the specification of the software product; the goal of
these criteria is to exercise all the functionalities and services that the product
is supposed to deliver.

28 A SOFTWARE TESTING LIFECYCLE

○ Structural criteria of test data selection: These criteria consist in generating test
data by inspecting the source code of the product; the goal of these criteria is to
exercise all the components of the product.

○ Randomtestdata selection:Thesecriteria consist ingenerating testdata randomly
over all of S (the combination of the input space and the internal state space); but
this is usually done according to a specific usage pattern. In practice, the com-
bined configurations of inputs and internal states are not equally likely to occur;
some may be more likely to occur than others; in order for this type of selection
criterion to be effective,weneed to have a probability distribution functionoverS
that quantifies the likelihood of occurrence of any element of S in normal usage.
By adhering to the same probability distribution during the testing phase, we
ensure thatwhateverbehavior isobservedduring the testingphase is likely toarise
during field usage; another advantage of this approach is that test data can be gen-
erated automatically (using random data generators), so that a software product
can be tested on much more inputs than if test data were generated by hand.

• Generating an Oracle: Whenever we test a software product, we need an oracle,
that is, an agent that tells us, for each execution, whether the software product
behaved correctly or not. The most obvious candidate for an oracle is the
specification that the software product is meant to satisfy; and the safest way to
implement an oracle is to write a certified Boolean function that takes as
input the test data and the output of the program and rules onwhether the observed
input/output behavior satisfies the specification. But there are several situations
where this ideal solution is impractical, or unnecessary, which are as follows:
○ First, the specificationmaybe socomplex thatwriting aBoolean function to test it
is difficult and/or error-prone; if the Boolean function that represents the oracle is
more complex than the program under test, then this solution defeats the purpose
of the test, and may in fact mislead us into the wrong conclusions and actions.

○ Second, it may be unnecessary to test the program against all the clauses of the
specification: we may be interested in testing safety properties of the software
product, in which case the oracle will only reflect safety critical requirements;
or we may verify the correctness of the program against some aspects of the
specification using alternative means (e.g., static analysis).

○ Third, the process of storing the test data prior to each test and executing the
oracle after each test may be prohibitively expensive in terms of computer
resources, compelling us to consider more cost-effective options.

○ Fourth, there are cases where we want to use an oracle that is in fact stronger
(more demanding) than the specification: when the goal of the test is to find
faults, it is not sufficient to know that the program satisfies the specification;
rather it is necessary to check that the program computes the exact function
that the designers intended it to compute; any deviation from this function
may be an indication of a fault in the program.

• Generating a Termination Condition: Any test process aims to achieve a goal:
For example, unit testing aims to diagnose faults in the program unit before

293.2 A SOFTWARE TESTING LIFECYCLE

integrating it into the project’s configuration; integration testing aims to diagnose
faults in the design of the system or the specifications in the system’s unit;
reliability testing aims to estimate the reliability of the software product, or to
remove enough faults from the system to raise its reliability beyond a required
threshold; acceptance testing aims to establish the dependability of the software
product to the satisfaction of the customer (or to the terms of the development
contract); and so on. The Termination Condition of a test is the condition that
characterizes the achievement of the goal, that is, the condition that we test to
know that we have achieved the goal of the test, hence we can terminate the test.

• Producing a Test Driver: The test driver is the process whereby the program is
executed on the selected test data, its output is tested against the selected test
oracle, and a course of action is defined for the case of a successful test and the case
of an unsuccessful test, until the condition of termination is realized. If test data is
generated automatically (e.g., using random test data generation, or by reading from
apredefined test data repository), and if the termination condition canbe checkedon
the fly (e.g., generatingapredefinednumberof testdata samples, or exhaustinga file
of test data), and if the analysis of the test outcome can be done off-line, then the test
driver can be automated. A generic pattern for such a test driver may be as follows:

void function testdriver()
{statetype state, initstate;
while (! testTermination())

{generateTest(state); initstate=state;
Program(state); // candidate program

// modifies state
if (oracle(initstate, state))

{successfultest(initstate);}
else

{unsuccessfultest(initstate);}}
cout << “test report”;}

At each iteration, the driver generates a new test data sample, stores it into var-
iable initstate, then lets the program under test run, modifying the current
state but keeping the initial state intact. Then, the test oracle is called to check the
execution of the program on the current test data sample, and depending on the
outcome of the test, takes some action; if the test is successful, it may record the
initial state on which the test was successful, or simply increment a counter
recording the number of successful tests; if the test is unsuccessful it may write
a failure report on some file intended for the analysis of the test outcome.

• Executing the Test: This phase consists merely of executing, whether by hand or
automatically, the test driver that is defined in the previous phase.

• Analyzing Test Outcome: The whole test would be in vain if we did not have a
phase in which we analyze the outcome of the test and draw the conclusion that is
called for, depending on the goal of the test. If the goal of the test is to find faults,
then this phase consists in analyzing the outcome of the test to identify faults and
remove them; if the goal of the test is to judge acceptance, then this phase

30 A SOFTWARE TESTING LIFECYCLE

consists in determining whether the product can be deemed acceptable; if the
goal of the test is to estimate reliability, then this phase consists in computing
the estimated reliability on the basis of the observed successes and failures of
the program under test; and so on.

The process of executing the test varies according to the type of test, but broadly
follows the process depicted in Figure 3.3. There are instances where the test loop exits

Termination
condition
satisfied?

Analyzing test
outcome, exit

Produce next
test data

Execute the
product on the test

data

Oracle
satisfied?

Yes

No

Yes No

Take relevant
action

Depending
on

test driver

Record successful
execution

Figure 3.3 A generic testing lifecycle.

313.2 A SOFTWARE TESTING LIFECYCLE

whenever an unsuccessful execution is encountered; in such cases, the fault that
may have caused the failure of the program is diagnosed, then removed, and the test
resumes by reentering the loop. In other instances, an unsuccessful test does not disrupt
the loop, but does cause a record to be stored to document the circumstances of the fail-
ure. These cases will be explored in Chapter 7, when we discuss a taxonomy of testing
methods.

3.3 THE V-MODEL OF SOFTWARE TESTING

Even though testing is usually thought of as a single phase, the last phase, of the
software lifecycle, it is actually best viewed as an activity that proceeds concurrently
through all the phases of the lifecycle, from start to finish. The following model,
called the V-model, illustrates the nature of testing as an ongoing activity through
the software lifecycle, and shows how testing can be planned step by step as the
lifecycle proceeds; it superimposes, in effect, the software lifecycle with the testing
lifecycle. We discuss later how each pair of phases connected by a horizontal arrow
in the Figure 3.4 are related to each other: generally, the phase on the left branch of
the V prepares the corresponding phase on the right branch; and the latter tests the
validity of the former.

• It is possible to start planning for acceptance testing as soon as the phase of
requirements analysis and software specification is complete. Indeed, the soft-
ware specifications that emerge from this phase can be used to prepare the test
oracle, and can also be used to derive, if not actual test data, at least the criteria for
selecting test data, and the standards of thoroughness that acceptance testing
must meet. On the other hand, acceptance testing checks the final software
product against the specifications that were derived in the phase of requirements
analysis and software specification.

• Whereas acceptance testing is a service to the end user, system testing is a service
to the development team. Whereas the goal of acceptance testing is to show that
the software behaves according to its specifications within the parameters of the
agreement between the developer and the user, the goal of system testing is to
find as many faults as possible prior to acceptance testing (if there are any faults,
we want them to show up at system testing rather than acceptance testing).
Planning for system testing can start as soon as the software architecture is
drawn, when we have some idea about what function the software system fulfills,
and how it operates; this information affects test data generation and oracle
design.

• Whereas system testing tests the software system as a monolith, by considering
its external behavior and its global specification, integration testing tests a
specific attribute of the software product, namely, the ability of the system
components to interact according to the design of the system. Accordingly,
test data has to be targeted to exercise component interactions, and the test

32 A SOFTWARE TESTING LIFECYCLE

oracle focuses on whether the exercised interactions are consistent with the
intent of the designer.

• Unit testing focuses on testing individual modules against module specifications
generated as part of the system design. Test data may be generated in such a way
as to cover all aspects of the specification, or all structural features of the unit.

3.4 CHAPTER SUMMARY

In this chapter, we have reviewed two broad lifecycles, which are as follows:

• The lifecycle of software development and maintenance, focusing in particular
on the various forms of testing that take place along this lifecycle, including unit

Requirements
analysis/software

specifications

Software
design

Software
architecture

Programming Unit testing

Acceptance
testing

System
testing

Integration
testing

Figure 3.4 The V-model of software testing.

333.4 CHAPTER SUMMARY

testing, integration testing, system testing, reliability testing, acceptance testing,
certification testing, and regression testing.

• The lifecycle of software testing, as a sequence of phases that include preparing
a test environment, generating test data, generating a test oracle, generating a
termination criterion, generating a test driver, executing the test, and analyzing
the outcome of the test.

3.5 BIBLIOGRAPHIC NOTES

Though there are several sources that discuss software lifecycles, the ideas presented
in this chapter are most influenced by Boehm (1981), most notably his view of the
software lifecycle as a two-dimensional structure that decomposes the software
development process into a chronological dimension (phases) and an organizational
dimension (activities). The V-model is inspired from Culbertson et al. (2002). Other
examples of lifecycle models can be found in Black (2007), Kaner et al. (1999), and
Kit (1995).

34 A SOFTWARE TESTING LIFECYCLE

Part II

Foundations of
Software Testing

Whereas in the previous part, we looked at software, software qualities, software engi-
neering, and the role that testing plays in the software engineering process, in this part,
we focus our attention on software testing and survey its foundations. This part includes
four chapters:

• In Chapter 4, we discuss a relation-based specification model that we use
throughout the book; specifications play a central role in software testing, as
we always test a program against a specification that captures the properties
we are interested in.

• In Chapter 5, we define the concept of program correctness, and we briefly pres-
ent an inductive method to prove program correctness by static analysis.

• In Chapter 6, we introduce the fundamental concepts of fault, error, failure, and
relative correctness and discuss how these concepts can be used to elucidate the
goals and means of software testing.

• Finally, in Chapter 7, we present a software testing taxonomy, which charac-
terizes each testing effort by a number of (nearly) orthogonal attributes.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

35

4
Software Specifications

The specification of a software product is a description of the functional requirements
that the product must satisfy. It is not common to study software specifications in the
context of software testing; we do so in this book for a variety of reasons, which are as
follows:

• Specifications are the Basis for Test Oracles: As we discuss in Chapter 3, the
design of a test oracle is a critical step in software testing; this step consists
primarily in selecting a specification against which we test the program and in
implementing it. This step plays an important role in determining the effective-
ness of the test.

• Testing and Relative Correctness: We cannot talk about testing without talking
about faults (testing means exposing, identifying, and/or removing faults); and
we cannot talk about faults without talking about relative correctness (a program
from which we have removed a fault is more correct, in some sense, than the
original faulty program); and we cannot talk about relative correctness without
talking about correctness (as correctness is the ultimate form of relative correct-
ness); and we cannot talk about correctness without talking about specifications
(correctness is relative to a specification).

• A Bridge Between Testing and Verification: It is customary to argue that dynamic
testing and static verification are complementary techniques to ensure the
correctness or reliability of software products. But complementarity is meaning-
ful only if the results of these two techniques can be expressed in the same broad
framework; specifications make this possible.

• A Basis for Hybrid Verification: In the perennial debate about the comparative
merits of static analysis and dynamic testing, an important detail often gets
overlooked: the observation that what makes a method ineffective is not any
intrinsic shortcoming of the method but rather the fact that it is used against
the wrong specification. A cost-effective approach to software quality may be

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

37

to use testing for some parts of the specification and use static analysis for other
parts; this is discussed in Chapter 6. This approach is possible only when the two
methods are designed to deal with the same specification framework.

• Testing in the Context of Verification and Validation: Testing is best viewed as
part of a broader policy of verification and validation. The study of software
specifications will give us an opportunity to practice the activities of software
verification and validation and the role that testing may play in carrying out these
activities.

With these premises in mind, we discuss the topic of software specifications as an
important aspect of the study of software testing. While there is a wide range of
specification languages that are used in research circles, some of which are relatively
widely used in industry, we choose not to commit to any language, but rather to use
mathematical notation, and focus on models rather than languages.

4.1 PRINCIPLES OF SOUND SPECIFICATION

4.1.1 A Discipline of Specification

The specification of a software product is a description of the properties that the
product must have to fulfill its purpose. The specification is usually derived by
identifying all the relevant stakeholders of the (existing or planned) software product,
eliciting the requirements that they expect the product to meet, formulating and
combining these requirements, and compiling them into a cohesive document. While
specifications typically pertain to functional and operational requirements, we focus
primarily on functional requirements in this book, that is, requirements that pertain to
the input/ output behavior of the software product.

As a product, a specification must meet two conditions, which are as follows:

1. Formality: The specification must be represented in such a way as to describe
precisely what functional behavior is required.

2. Abstraction: The specification must describe what requirements the software
product must satisfy, not how to satisfy them. In other words, it must focus
on what candidate programs must do rather than how they must do it, the latter
being the prerogative of the designer.

As a process (the process of identifying stakeholders, eliciting requirements,
compiling them, etc.), a specification must meet two conditions, which are as follows:

1. Completeness: The specification must capture all the relevant requirements of
the product.

2. Minimality: The specification must capture nothing but the relevant requirements
of the product.

38 SOFTWARE SPECIFICATIONS

A specification that is deemed to be complete and minimal is said to be valid. In
Sections 4.2 and 4.3, we will have an opportunity to discuss how to ensure the validity
of specifications; in the remainder of this section, we introduce elements of relational
mathematics, which we use throughout the book, starting in this chapter.

4.2 RELATIONAL MATHEMATICS

4.2.1 Sets and Relations

We represent sets using a programming-like notation, by introducing variable names
and associated data type (sets of values). For example, if we represent set S by the
variable declarations

x: X; y: Y; z: Z,

then S is the Cartesian product X × Y × Z. Elements of S are denoted in lower case s
and are triplets of elements of X, Y, and Z. Given an element s of S, we represent its
X component by x(s), its Y component by y(s), and its Z component by z(s). A relation
on S is a subset of the Cartesian product S×S; given a pair (s,s) in R, we say that s is an
image of s by R. Special relations on S include the universal relation L=S × S, the
identity relation I={(s,s)| s =s}, and the empty relation ϕ={}. To represent relations
graphically, we use the Cartesian plane in which set S is represented on the abscissas
(for s) and the ordinates (for s). Using this device, we represent an arbitrary relation on
S, as well as L, I, and ϕ in Figure 4.1.

4.2.2 Operations on Relations

Because a relation is a set, we can apply to relations all the operations that are
applicable to sets, such as union (), intersection (), difference (∕), and complement
(). In addition, we define the following operations:

• The converse of relation R is the relation denoted by R and defined
by R= s,s s,s R .

R L I ϕ

Figure 4.1 Special relations.

394.2 RELATIONAL MATHEMATICS

• The domain of relation R is the subset of S denoted by dom(R) and defined
by dom R = s s s,s R .

• The range of relation R is the subset of S denoted by rng(R) and defined as the
domain of R.

• The (pre)restriction of R to (sub)set A is the relation denoted by A\R and defined
by A R= s,s s A s,s R .

• The postrestriction of R to (sub)set A is the relation denoted by R/A and defined
by R A = s,s s,s R s A .

Figure 4.2 depicts a graphic illustration of a relation, its complement, and its
converse.

Given a set A (subset of S), we define three relations of interest, which are as
follows:

• The vector defined by A is the relation A × S.

• The inverse vector defined by A is the relation S × A.

• The monotype defined by A is the relation denoted by I(A) and defined
by I A = s,s s A s = s .

Figure 4.3 represents, for set A (a subset of S), the vector, inverse vector, and
monotype defined by A.

R RR

Figure 4.2 Complement and inverse.

A Vector(A) Inverse vector(A) Monotype(A)

A

A

A A

A A A

A

Figure 4.3 Relational representation of sets.

40 SOFTWARE SPECIFICATIONS

Given two relations R and R , we let the product of R by R be denoted by R•R (or
RR , if no ambiguity arises) and defined by R•R = s,s s s,s R
s ,s R . The Figure 4.4 illustrates the definition of relational product.
If we denote the vector and the inverse vector defined by A by, respectively, ω(A)

and μ(A), then the following identities hold, by virtue of the relevant definition:

• ω A = I A •L

• μ A = L•I A

• ω A = μ A

• I A = ω A I = μ A I

Vectors are a convenient (relational) way to represent sets, when we want every-
thing to be a relation. Hence, for example, the domain of relation R can be represented
by the vector RL, and the range of relation R can be represented by the inverse vector
LR (Fig. 4.5).

Note that we can represent the prerestriction and the postrestriction of a relation to
a set, sayA, using the vector and inverse vector defined byA, as shown in the Figure 4.6.

4.2.3 Properties of Relations

Among the properties of relations, we cite the following:

• A relation R is said to be total if and only if RL=L.

• A relation R is said to be surjective if and only if LR=L.

S Sʹ

R Rʹ

R Rʹ

Figure 4.4 Relational product.

R RL LR

Figure 4.5 Multiplying with universal relation.

414.2 RELATIONAL MATHEMATICS

• A relation R is said to be deterministic if and only if RR Ι.

• A relation R is said to be reflexive if and only if I R.

• A relation R is said to be symmetric if and only if R R.

• A relation R is said to be transitive if and only if RR R.

• A relation R is said to be antisymmetric if and only if R R I.

• A relation R is said to be asymmetric if and only if R R ϕ.

• A relation R is said to be connected if and only if R R= L.

• A relation R is said to be an equivalence relation if and only if it is reflexive,
symmetric, and transitive.

• A relation R is said to be a partial ordering if and only if it is reflexive, antisym-
metric, and transitive.

• A relation R is said to be a total ordering if and only if it is a partial ordering and
is connected.

The Figure 4.7 illustrates some of these properties.

4.3 SIMPLE INPUT OUTPUT PROGRAMS

While the study of relations may sound alien to software testing, relations can be used
to model specifications, which are an important part of software testing. They are the
basis for the design and implementation of oracles, and more generally, they serve to
define what is program correctness, what is a fault, what is fault removal, and what is
relative correctness, all of which are essential aspects of software testing.

4.3.1 Representing Specifications

If one asks junior computer science (CS) students in a programming course to write
a C++ function that reads a real number and compute its square root, they would

A\ R = R ∩ W(A) R /A = R ∩ μ(A)R, A

A A A

Figure 4.6 Pre and post restriction.

42 SOFTWARE SPECIFICATIONS

rush immediately to their computers to write code and run it; and yet this problem
statement, despite being simple and short, leaves many questions unanswered.
Consider that this statement may be interpreted in a wide range of manners, leading
to a wide range of possible specifications, where space S is defined to be the set of
real numbers:

1. Only nonnegative arguments will be submitted; the output is a (positive or non-
positive) square root of the input value:

R1 = s,s s≥ 0 s 2 = s

2. Only non-negative arguments will be submitted; the output is the nonnegative
square root of the input value:

R2 = s,s s≥ 0 s 2 = s s ≥ 0

Total Surjective Deterministic Reflexive

Symmetric Antisymmetric Asymmetric Equivalence

Connected Partial ordering Total ordering

Figure 4.7 Properties of relations.

434.3 SIMPLE INPUT OUTPUT PROGRAMS

3. Only nonnegative arguments will be submitted; the output is an approximation
(within a precision ε) of a (positive or non-positive) square root of the input value:

R3 = s,s s≥ 0 s 2 = s < ε

4. Only nonnegative arguments will be submitted; the output is an approximation
(within a precision ε) of the non-negative square root of the input value:

R4 = s,s s≥ 0 s 2 = s < ε s ≥ 0

5. Negative arguments may also be submitted; for negative arguments, the output
is −1; for nonnegative arguments, the output is a (positive or nonpositive)
square root of the input value:

R5 = s,s s ≥ 0 s 2 = s s,s s < 0 s = −1

6. Negative arguments may also be submitted; for negative arguments, the output
is −1; for nonnegative arguments, the output is the nonnegative square root of
the input value:

R6 = s,s s≥ 0 s 2 = s s ≥ 0 s,s s< 0 s = −1

7. Negative arguments may also be submitted; for negative arguments, the output
is arbitrary; for nonnegative arguments, the output is an approximation (within a
precision ε) of a (positive or nonpositive) square root of the input value:

R7 = s,s s≥ 0 s 2 = s < ε s,s s< 0

8. Negative arguments may also be submitted; for negative arguments, the output
is arbitrary; for nonnegative arguments, the output is an approximation (within a
precision ε) of the non-negative square root of the input value:

R8 = s,s s≥ 0 s 2 = s < ε s ≥ 0 s,s s< 0

9. Only nonnegative arguments will be submitted; the output must be within ε of
the exact square root of the input (comparison with specification R4: Precision ε
applies to the square root scale rather than the square scale):

R9 = s,s s≥ 0 s − s < ε

44 SOFTWARE SPECIFICATIONS

We could go on and on. This simple example highlights two lessons: First, the
importance of precision in specifying program requirements and second, the premise
that relations enable us to achieve the required precision.

As a second illustrative example, consider the following requirement pertaining to
space S defined by an array a[1..N] of some type, whereN is greater than or equal to 1,
a variable x of the same type, and an index variable k, which we use to address array a:
Search x in a and place its index in k. Again, this simple requirement lends itself to a
wide range of interpretations, some of which we write as follows, along with their
relational representation:

1. Variable x is known to be in a; place in k an index where x occurs in a.

F1 = s,s h 1≤ h ≤N a h = x a k = x

2. Variable x is known to be in a; place in k the first (smallest) index where x occurs
in a.

F2 = s,s h 1≤ h ≤N a h = x a k = x h 1 ≤ h < k a h x
=F1 s,s h 1 ≤ h < k a h x

3. Variable x is known to be in a; place in k an index where x occurs in a, while
preserving a and x.

F3 =F1 s,s a = a x = x

4. Variable x is known to be in a; place in k the first (smallest) index where x occurs
in a, while preserving a and x.

F4 =F2 s,s a = a x = x

5. Variable x is not known to be in a; if it is not, place 0 in k; else place in k an index
where x occurs in a.

F5 =F1 s,s h 1 ≤ h ≤N a h x k = 0

6. Variable x is not known to be in a; if it is not, place 0 in k; else place in k the first
(smallest) index where x occurs in a.

F6 =F2 s,s h 1 ≤ h ≤N a h x k = 0

7. Variable x is not known to be in a; if it is not, place 0 in k; else place in k an index
where x occurs in a, while preserving a and x.

F7 =F3 s,s h 1 ≤ h ≤N a h x k = 0

454.3 SIMPLE INPUT OUTPUT PROGRAMS

8. Variable x is not known to be in a; if it is not, place 0 in k; else place in k the first
(smallest) index where x occurs in a, while preserving a and x.

F8 =F4 s,s h 1 ≤ h≤N a h x k = 0

Note that F1 can be written simply as F1 = s,s a k = x since the clause
h 1 ≤ h ≤N a h = x is a logical consequence of a k = x. We draw the reader’s

attention to the importance of carefully watching which variables are primed and
which are unprimed in a specification. By writing F1 as we did, we mean that the final
value of k points to a location in the original array a where the original value of x is
located. As written, this relation specifies a search program. If, instead of F1, we had
written the specification as follows:

F1 = s,s a k = x ,

then it would be possible to satisfy this specification by the following simple
program:

{k=1; x=a[1];}

If, instead of F1, we had written the specification as follows:

F1 = s,s a k = x ,

then it would be possible to satisfy this specification by the following simple program:

{k=1; a[1]=x;}

If, instead of F1, we had written the specification as follows:

F1 = s,s a k = x ,

then it would be possible to satisfy this specification by the following simple program:

{k=1; x=0; a[1]=0;}

Neither of these three programs is performing a search of variable x in array a.

4.3.2 Ordering Specifications

When we consider specifications on a given space S, we find it natural to order them
according to the strength of their requirement, that is, some of them impose more
requirements than others. Let us, for the sake of illustration, consider the specifica-
tions of the search program written in the previous section:

46 SOFTWARE SPECIFICATIONS

1. F1 = s,s h 1 ≤ h ≤N a h = x a k = x

2. F2 = F1 s,s h 1 ≤ h < k a h x

3. F3 =F1 s,s a = a x = x

4. F4 =F2 s,s a = a x = x

5. F5 =F1 s,s h 1 ≤ h ≤N a h x k = 0

6. F6 =F2 s,s h 1 ≤ h ≤N a h x k = 0

7. F7 =F3 s,s h 1 ≤ h ≤N a h x k = 0

8. F8 =F4 s,s h 1 ≤ h ≤N a h x k = 0

It is natural/ intuitive to consider that F2 is stronger than F1 since the latter would be
satisfied with k pointing to any occurrence of x in a, while the former requires that k
points to the smallest such occurrence. Also, it is natural to consider that F3 is stronger
than F1 since the latter requires that a and x be preserved whereas the former does not;
for the same reason, F4 is stronger than F2. On the other hand, F5 can be considered
stronger than F1 since the latter makes provisions for the case when x is not in a,
whereas the former does not; for the same reason, we can consider that F6 is stronger
than F2, that F7 is stronger than F3, and that F8 is stronger than F4. These ordering
relations are depicted in Figure 4.8.

We notice that F2 and F5 are both considered stronger than F1, but while the former
is a subset of F1, the latter is a superset thereof. There appears to be two (nonexclusive)
ways for a specification R to be considered stronger than a specification R : by having
a larger domain, and by having fewer images for elements in the common domain.
Whence the following definition.

F8

F7
F6

F5

F1

F3
F2

F4

Figure 4.8 A lattice of refinement.

474.3 SIMPLE INPUT OUTPUT PROGRAMS

Definition: Refinement Given a set S and two relations R and R on S. We say that R
refines R if and only if R has a larger domain than R and has fewer images for
elements in the domain of R . Formally, RL R L and R L R R .

Henceforth, we use the term refines to refer to the property of being a “stronger’”
specification. We admit without proof that the relation refines is a partial ordering
between specifications, that is, that it is reflexive, antisymmetric, and transitive.
We refer to this relation as the refinement ordering. The graph in Figure 4.9 shows
two relations, R and R , that refine relation R.

4.3.3 Specification Generation

Let space S be defined by a real array a[1..N] and a real variable x and an index vari-
able k. We are interested to write a relation to reflect the following requirement:

Place in x the largest value of a and in k the smallest index where the largest value occurs.

For example, if array a has the following values,

1 2 3 4 5 6 7 8 9 10 11 12

8.9 9.1 5.2 9.4 9.4 0.12 4.3 8.2 9.4 3.1 2.6 9.4

1

2

3

4

5

6

1

2

3

4

5 5 5 5 5

6 6 6 6 6

4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 1

RʹʹRʹR

Figure 4.9 R and R refine R.

48 SOFTWARE SPECIFICATIONS

then we want x to be equal to 9.4 and k to be equal to 4. Because it is too difficult to
specify all the requirements at once, we consider them one by one:

1. Place in x a value larger than all the values in the array:

M1 = s,s h 1 ≤ h ≤N x ≥ a h

2. Place in x an element of the array (note that M1 alone ensures that x is greater
than all the elements of the array but does not ensure that it is the maximum:
500.0 could be a possible value, for the array aforementioned):

M2 = s,s h 1 ≤ h≤N x = a h

3. Place in k an index of a where the maximum of the array occurs:

M3 = s,s x = a k

4. Ensure that no index smaller than k carries the maximum of the array (hence
ensuring that k is the smallest index):

M4 = s,s h 1≤ h < k x a h

Then we compute the overall specification as the intersection of M1, M2, M3, and
M4, that is,

M =M1 M2 M3 M4

As a second example, we consider space S made up of three nonnegative real
variables x, y, z, and a variable t that represents the enumerated type: {notri,
scalene, isosceles, equilateral, right, rightisoceles}. We consider the following
requirement:

Given that x, y, and z represent the sides of a triangle, place in t the class of the triangle
represented by x, y, and z from the set {notri, scalene, isosceles, equilateral, rightisoceles,
right}. We assume that the label “isosceles” is reserved for triangles that are isosceles but
not equilateral and that the label ‘right’ is reserved for triangles that are right but not
isosceles.

To write this specification, we write one relation for each type of triangle, then form
their union. To this effect, we define the following predicates in triplets of real
numbers:

• Tri x,y,z ≡ x ≤ y+ z y ≤ x+ z z ≤ x+ y

• Equi x,y,z ≡ x = y y= z

494.3 SIMPLE INPUT OUTPUT PROGRAMS

• Iso x,y,z ≡ x= y y= z x= z

• Right x,y,z ≡ x2 = y2 + z2 y2 = x2 + z2 z2 = x2 + y2

Using these predicates, we define the following relations:

1. T1 = s,s Tri x,y,z Equi x,y,z t = equilateral

2. T2 = s,s Tri x,y,z Iso x,y,z ¬Equi x,y,z ¬Right x,y,z t = isoceles

3. T3 = s,s Tri x,y,z Iso x,y,z Right x,y,z t = rightisoceles

4. T4 = s,s Tri x,y,z Right x,y,z ¬ Iso x,y,z t = right

5. T5 = s,s Tri x,y,z ¬ Iso x,y,z ¬ Equi x,y,z ¬ Right x,y,z t = scalene

6. T6 = s,s ¬ Tri x,y,z t = notri

Using these relations, we form the relational specification of the triangle classifi-
cation problem:

T = T1 T2 T3 T4 T5 T6

From these two examples, we want to discuss the question of how do we generate a
complex specification from simple/ elementary specifications?

1. In the case of the specification that finds the maximum of the array, we compute
the overall specification as the intersection of elementary specifications; in the
case of the specification of triangle classification, we compute the overall spec-
ification as the union of elementary specifications.

2. It appears that we use the intersection when the domains of the elemen-
tary specifications are identical and we use the union when the domains of
the elementary specifications are disjoint. In the former case we generate
the compound specification as the conjunction of elementary properties;
whereas in the latter case, we generate the compound specification by case
analysis.

The question that we wish to address then is as follows: Given two relations
R1 and R2 on space S, how do we compose them into a specification that
captures all the requirements of R1 and all the requirements of R2 (for the sake of
completeness) and nothing more (for the sake of minimality), assuming that the
domains of R1 and R2 are neither (necessarily) identical nor (necessarily) disjoint?
Consider the following graph depicting the configuration of dom(R1) and dom(R2)
(Fig. 4.10).

If we want R to capture all the specification information of R1 and all the
specification information of R2, then R has to be identical to R1 outside the domain
of R2 and identical to R2 outside the domain of R1, and for each element of the

50 SOFTWARE SPECIFICATIONS

intersection of the domains of R1 and R2, it has to be identical to the intersection of R1
and R2. This justifies the following definition.

Definition: Join of Specifications The join of two relations R1 and R2 on set S is
denoted by R1 R2 and defined by R1 R2 = R2L R1 R1L R2 R1 R2 .

This formula is a mere relational representation of the Figure 4.10, depicting how
R=R1 R2 can be derived from R1 and R2 The following proposition, which we
present without proof, gives an important property of the join operator.

Proposition: Compatibility Condition Let R1 and R2 be two relations on set S.
If R1 and R2 satisfy the following condition,

R1L R2L= R1 R2 L

which we call the compatibility condition, then R1 R2 is the least refined relation
that refines R1 and R2 simultaneously. If R1 and R2 do not satisfy the compatibility
condition, then there exists no relation that refines them both.

The Figure 4.11 shows an example of two relations R1 and R2 that satisfy the com-
patibility condition and shows their join.

dom(R1)

dom(R2)

R(s) = R1(s)

R(s) = R2(s)

R(s) = R1(s) ∩R2(s)

Figure 4.10 Least upper bound of relations R1 and R2.

514.3 SIMPLE INPUT OUTPUT PROGRAMS

To check whether R1 and R2 verify the compatibility condition, we compute the
following:

• R1L= 1,2,3,4,5 × S.

• R2L= 2,3,4,5,6 × S.
○ R1L R2L = 2,3,4,5 × S.

• R1 R2 = 2,2 , 3,3 , 4,4 , 5,5 .
○ R1 R2 L= 2,3,4,5 × S.

Hence the condition is verified. Since R1 and R2 verify the compatibility condition,
their join (R=R1 R2) represents the least refined relation that refines them both. On
input 1 (outside the domain of R2), R behaves as R1; on input 6 (outside the domain of
R1), R behaves like R2; and on inputs {2,3,4,5} (the intersection of the domains of R1

and R2), R behaves like the intersection of R1 and R2 (which includes {(2,2),(3,3),
(4,4),(5,5)}).

As a second example, consider the following relations R1 and R2 (Fig. 4.12).
In this case, R1 and R2 do not satisfy the compatibility condition since 4 belongs to

the domain of each one of them but does not belong to the domain of their intersection.
Indeed, it is not possible to find a relation that refines them simultaneously since R1

R1 R2 R = R1⊕ R1

1

2

3

4

5

6

1

2

3

4

5 5 5 5 5

6 6 6 6 6

4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 1

Figure 4.11 The Join of compatible relations.

52 SOFTWARE SPECIFICATIONS

assigns images 5 and 6 to 4, where R2 assigns images 2 and 3; there is no value that
R may assign to 4 to satisfy both R1 and R2.

4.3.4 Specification Validation

The software engineering literature is replete with examples of software projects that
fail, not because programmers do not know how to write code or how to test it, but
rather because analysts and engineers fail to write valid specifications, that is, speci-
fications that capture all the relevant requirements (for the sake of completeness) and
nothing but relevant requirements (for the sake of minimality). Consequently, it is
important to validate specifications for completeness and minimality and to invest
the necessary resources to this effect before proceeding with subsequent phases of
the software lifecycle. In this section, we briefly and cursorily discuss the process
of specification validation, in the narrow context of the relational specifications that
we introduce in this chapter, with the modest goal of giving the reader some sense of
what it may mean to validate a specification.

Let us start with a very simple illustrative example: We consider space S defined by
natural variables x and y, and we consider the following requirement:

Increase x while preserving the sum of x and y.

R1 R2 R = R1 ⊕ R2

1

2

3

4

5

6

1

2

3

4

5 5 5 5 5

6 6 6 6 6

4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 1

Figure 4.12 Incompatible relations.

534.3 SIMPLE INPUT OUTPUT PROGRAMS

We submit the following relations as possible specifications for this requirement:

1. N1 = s,s x≤ x x + y= x + y

2. N2 = s,s x+ y = x + y y ≥ y

3. N3 = s,s x = x + 3 y = y−3

4. N4 = s,s x < x y> y

5. N5 = s,s x−x = y −y y> y

6. N6 = s,s x < x x−x = y −y

7. N7 = s,s x = x + 1 x+ y = x + y

8. N8 = s,s x+ y = x + y y = y−2

We invite the reader to ponder the following questions: which of these specifica-
tions is complete; and for those that are complete, which are minimal. The following
table shows our answers to these questions (if a specification is not complete, it makes
no sense to check its minimality):

Specification Complete? Minimal? Valid?

N1 = s,s x ≤ x x + y = x + y No N/A No

N2 = s,s x + y = x + y y ≥ y No N/A No

N3 = s,s x = x +3 y = y−3 Yes No No

N4 = s,s x < x y > y No N/A No

N5 = s,s x−x = y −y y > y Yes Yes Yes

N6 = s,s x < x x−x = y −y Yes Yes Yes

N7 = s,s x = x +1 x + y = x + y Yes No No

N8 = s,s x + y = x + y y = y−2 Yes No No

Specifications N5 and N6 are complete and minimal (and are identical, in fact); they
specify that xmust be increased while preserving the sum of x and y. Specifications N1

and N2 are not complete because they do not stipulate that x must increase (they allow
it to stay constant); and specification N4 is not complete because it fails to specify that
the sum of x and y must be preserved. Specifications N3, N7, and N8 are complete but
not minimal because they specify by how much x must be increased, which is not sti-
pulated in the requirement.

In the example aforementioned, we wrote the specifications on the basis of the pro-
posed requirement (to Increase x while preserving the sum of x and y) and we judged
the completeness and minimality of candidate specifications by considering the same
source, that is, the proposed requirement. If the same person or group is tasked with
generating the candidate specifications and judging their validity (completeness and
minimality), then the same biases that cause the person to write invalid specifications
may cause him/ her to overlook the invalidity of their specification. The only way to
ensure a measure of confidence in the validation of the specification is to separate the
team that generates the specification from the team that validates it. To this effect, we
propose the following two-team, two-phase approach:

54 SOFTWARE SPECIFICATIONS

Activity
Phase Specification Generation Specification Validation

Specification
Generation

Generating the specification from
sources of requirements

Generating validation data from the
same sources of requirements

Specification
Validation

Updating the specification according to
feedback from the validation team

Testing the specification against the
validation data generated earlier

• The Specification Generation Phase: In the specification generation phase, the
specification team generates the specification by referring to all the sources of
requirements (requirements documents). Using the exact same sources, the valida-
tion team generates validation data that it intends to test the specification against.
We distinguish between two types of validation data, which are as follows:
○ Completeness properties: These are properties that the specification must have
but the validation team suspects the specification team may fail to record.

○ Minimality properties: These are properties that the specification must not have
but the validation team suspects the specification teammay record inadvertently.

For the sake of redundancy, the specification team and the validation team must
work independently of each other.

• The Specification Validation Phase: In the specification validation phase, the
validation team tests the specification against completeness and minimality data
generated in the previous phase, while the specification team updates the spec-
ification if it turns out that it was not complete or not minimal.

It remains to discuss the following: what form does the validation data take, and
how does one test a specification against the generated validation data. The answers to
these questions are given in the following definitions.

Definition: Completeness Given a requirements document, a completeness
property V is a relation that represents requirements information that candidate
specifications must capture. A specification R is said to be complete with respect to
V if and only if R refines V.

Implicit in this definition is that a good completeness property is one that has the
potential to detect an incomplete specification; in other words, a good completeness
property is one that the validation team believes the specifier teammay have overlooked.

Definition: Minimality Given a requirements document, a Minimality Property W
is a relation that represents requirements information that candidate specifica-
tions must not capture. A specification R is said to be minimal with respect to
W if and only if R does not refine W.

Implicit in this definition is that a good minimality property is one that has the
potential to detect a nonminimal specification; in other words, a good minimality

554.3 SIMPLE INPUT OUTPUT PROGRAMS

property is one that the validation team believes the specifier team may have inadvert-
ently recorded in the specification.

Completeness and minimality are not absolute attributes but rather relative with
respect to selected completeness and minimality properties, as provided in the follow-
ing definition.

Definition: Validity A specification R is said to be valid with respect to complete-
ness properties V = V1, V2,…, Vn , and minimality properties W = W1,W2,…,
Wm if and only if R is complete with respect to every element of V and minimal
with respect to every element of W.

We admit without proof that if R refines all of V1, V2, …, Vn, then it refines their
join. Hence, the range of valid specifications with respect to completeness properties
V = V1, V2,…, Vn and minimality propertiesW = W1, W2,…, Wm is represented
in the Figure 4.13.

As a illustrative example of specification validation, consider the following
requirement pertaining to space S defined by an array a[1..N] of some type, a variable
x of the same type, and an index variable k, which we use to address array a: Given that
x is known to be in a, place in k the smallest index where x occurs. This is a variation
of the example discussed in Section 4.2.1.

4.3.4.1 Specification Generation Phase Examples of completeness proper-
ties include the following:

1. If each cell of array a contains the index of that cell and if x=1, then k should
be 1.

V1 = s,s h 1 ≤ h ≤N a h = h x = 1 k = 1

…

…

Range of valid specifications

W1

V1⊕V2⊕ ... ⊕Vn

Vn

Wm

V1 V2 V3 V4 V5

W2

Figure 4.13 Range of valid specifications.

56 SOFTWARE SPECIFICATIONS

2. If array a contains 1 everywhere and x=1, then k should be 1.

V2 = s,s h 1≤ h ≤N a h = 1 x= 1 k = 1

3. If array a contains the sequence 1..N in increasing order and x=N, then k should
be N.

V3 = s,s h 1 ≤ h ≤N a h = h x =N k =N

Examples of minimality properties include the following:

1. There is no requirement to preserve x.

W1 = s,s h 1 ≤ h ≤N a h = x x = x

2. There is no requirement to preserve a.

W2 = s,s h 1 ≤ h≤N a h = x a = a

4.3.4.2 Specification Validation Phase So far, we have looked at the require-
ments documentation, but we have not looked at candidate specifications; generating
validation data independently of specification generation is important, for the sake
of redundancy. Now, let us consider a candidate specification and check whether
it is complete with respect to the completeness properties and minimal with
respect to the minimality properties. We consider specification F2, introduced in
Section 4.2.1 as

F2 = s,s h 1 ≤ h≤N a h = x a k = x h 1 ≤ h< k a h x

To prove that F2 refines V1, we must prove that F2 has a larger domain than V1

and that the restriction of F2 to the domain of V1 is a subset of V1. We find the
following:

F2L= s,s h: 1 ≤ h ≤N a h = x

V1L= s,s h 1 ≤ h ≤N a h = h x = 1

Clearly, V1L is a subset of F2L. We compute the restriction of F2 to V1L, and we
find the following:

F2 V1L

574.3 SIMPLE INPUT OUTPUT PROGRAMS

= {substitution}

s,s h 1 ≤ h ≤N a h = h x= 1

h 1 ≤ h ≤N a h = x a k = x h 1 ≤ h< k a h x

= {simplification}

s,s h 1≤ h ≤N a h = h x= 1 a k = x h 1 ≤ h< k a h x

= {logic simplification}

s,s h 1≤ h ≤N a h = h x = 1 k = 1 h 1 ≤ h< k a h x

= {logic simplification}

s,s h 1 ≤ h ≤N a h = h x= 1 k = 1

= {substitution}

V1

We now consider the completeness property V2. To prove that F2 refines V2, we
must prove that F2 has a larger domain than V2 and that the restriction of F2 to the
domain of V2 is a subset of V2. We find the following:

F2L= s,s h 1≤ h≤N a h = x

V2L= s,s h 1≤ h ≤N a h = 1 x = 1

Clearly, V2L is a subset of F2L. We compute the restriction of F2 to V2L, and we
find the following:

F2 V2L

= {substitution}

s,s h 1 ≤ h ≤N a h = 1 x= 1

h 1 ≤ h ≤N a h = x a k = x h 1 ≤ h < k a h x

= {simplification, redundancy}

s,s h 1 ≤ h ≤N a h = 1 1 ≤ k ≤N x = 1 h 1 ≤ h < k a h 1

58 SOFTWARE SPECIFICATIONS

= {logic}

s,s h 1 ≤ h ≤N a h = 1 x = 1 k = 1

= {substitution}

V2

We now consider the completeness property V3. To prove that F2 refines V3, we
must prove that F2 has a larger domain than V3 and that the restriction of F2 to the
domain of V3 is a subset of V3. We find the following:

F2L= s,s h 1 ≤ h ≤N a h = x

V3L= s,s h 1 ≤ h ≤N a h = h x=N

Clearly, V3L is a subset of F2L. We compute the restriction of F2 to V3L, and we
find the following:

F2 V3L

= {substitution}

s,s h 1 ≤ h ≤N a h = h x =N

h 1 ≤ h ≤N a h = x a k = x h 1 ≤ h < k a h x

= {simplification}

s,s h 1 ≤ h ≤N a h = h x =N a k =N h 1 ≤ h< k a h x

= {logic}

s,s h 1 ≤ h ≤N a h = h x =N k =N h 1 ≤ h< k a h x

= {simplification, redundancy}

s,s h 1 ≤ h ≤N a h = h x=N k =N

= {substitution}

V3

We turn our attention to checking the minimality of F2 with respect to W1 andW2.

594.3 SIMPLE INPUT OUTPUT PROGRAMS

F2 = s,s h 1 ≤ h ≤N a h = x a k = x h 1 ≤ h < k a h x

W1 = s,s h 1 ≤ h ≤N a h = x x = x

Because F2 and W1 have the same domain, the only way to prove that F2 does not
refine W1 is to prove that F2 W1L is not a subset of W1. To this effect, we compute
the following:

F2 W1L

= { F2 and W1 have the same domain}

F2

which is not a subset ofW1. Hence F2 is minimal with respect toW1. We can prove,
likewise, that it is minimal with respect to W2. Indeed, F2 does not preserve x, nor a.

4.4 RELIABILITY VERSUS SAFETY

The introduction of the refinement ordering introduced in this chapter enables us to
revisit a concept we had discussed in Chapter 2, namely, the contrast between relia-
bility and safety. As we remember, the reliability of a system is its ability/likelihood of
avoiding failure whereas the safety of a system is its ability/likelihood of avoiding
catastrophic failure; because catastrophic failures are failures, one may be tempted
to argue that a reliable system is necessarily safe but that is not the case. Indeed, reli-
ability and safety are not logical/Boolean properties but stochastic properties, hence
the argument that catastrophic failures are failures does not enable us to infer that reli-
able systems are necessarily safe. Rather, because the stakes attached to meeting the
safety requirements are much higher than those attached to meeting the reliability
requirement, the threshold of probability that must be reached for a system to be con-
sidered safe is much higher than the threshold of probability that must be reached for a
system to be considered reliable.

This idea can be elucidated by means of the refinement ordering: Let R be the spec-
ification that represents the reliability requirements of a system, and let F be the spec-
ification that represents its safety requirements. For the sake of illustration, we
consider a simple example of a system that controls the operation of traffic lights
at an intersection.

• Specification R captures the requirements that the traffic light must satisfy in terms
of how it schedules the green, orange, and red light of each incoming street, along
with the walk and do not walk signs for pedestrians crossing the streets. Such
requirements must dictate the sequence of light configurations (which streets have
green, which streets have orange, which streets have red, which walkways have
a walk signal, which walkways have a flashing walk signal, which walkways

60 SOFTWARE SPECIFICATIONS

have a do not walk signal, etc.), as well as how much each configuration lasts in
order to optimize traffic flow, fairness, pedestrian safety, and so on.

• Specification F focuses on two safety critical requirements: First that no orthog-
onal streets have a green light at the same time; and second no street has a green
light for cars and pedestrians at the same time.

The following observations are typical of a reliability–safety relationship:

• The stakes attached to violating a safety requirement are much heavier than the
stakes attached to a reliability requirement. Violating a reliability requirement
may cause a relatively minor inconvenience, such as a traffic jam or a low through-
put of vehicles and pedestrians across the intersection; by contrast, violating a
safety requirement may cause an accident that involves injuries or loss of life.
○ As a consequence of this difference in stakes, we impose different probability
thresholds to the different properties. To consider that a system is reliable, it
suffices that it meets the reliability requirements with a probability of 0.99 over
a unit of operation time (e.g., an hour): having a traffic jam 1% of the time is
acceptable. But to consider that a system is safe, we need a higher probability
of meeting the safety requirements: having a fatal accident 1% of the time is
not acceptable; a probability threshold of 0.999999 is more palatable.

• The reliability requirements specification (R) refines the safety requirements
specification (F). If we consider the sample example of traffic lights and we
assume that the requirements specification is valid, then the reliability require-
ment clearly subsumes the safety requirement since any behavior that abides
by the reliability requirement excludes that two orthogonal streets have a green
light simultaneously or that a street has a green light while at the same time a
walkway that crosses it has a walk signal.

• It is much easier to prove that a candidate program satisfies a safety requirement
(F) than it is to prove that it satisfies the reliability requirement (R), for the simple
reason that a reliability requirement is typically significantly more complicated.
Fortunately, because the safety requirement is simpler, we can verify candidate
programs against it with greater thoroughness, hence achieve greater confidence
(reflected in higher probability) that a candidate program meets this requirement.

The Figure 4.14 shows specifications R and F, ordered by refinement, and illus-
trates the relationship between the various possible behaviors of candidate programs,
with corresponding probabilities of the behaviors in question: reliable behavior,
(possibly unreliable but) fail-safe behavior, and unsafe behavior.

4.5 STATE-BASED SYSTEMS

Whereas specifications we have studied so far are adequate for specifying programs
that take an input (or initial state) and map it onto an output (or final state), they are

614.5 STATE-BASED SYSTEMS

inadequate to represent programs whose response depends not only on their input but
also on their internal state; the subject of this section is to explore ways to specify such
systems.

4.5.1 A Relational Model

As we recall from our discussion in Section 4.1, specifications have to have two key
attributes, which are formality and abstraction. We can achieve formality by using a
mathematical notation, which associates precise semantics to each statement. As for
abstraction, we can achieve it by ensuring that the specifications describe the exter-
nally observable attributes of candidate software products, but do not specify, dictate,
or otherwise favor any specific design or implementation.

We consider the following description of a stack data type: A stack is a data type
that is used to store items (through operation push()) and to remove them in reverse
order (through operation pop()); operation top() returns the most recently stored item
that has not been removed, operation size() returns the number of items stored and not
removed, and operation empty() tells whether the stack has any items stored; operation
init() reinitializes the stack to an initial situation, where it contains no elements. Imag-
ine that we want to specify a stack without saying anything about how to implement it.
How would we do it? Most data structure courses introduce stacks by showing a data

F
Unsafe behavior. Probability: 0.000001

R

Fail safe behavior.
Prob: 0.999999 – 0.99

= 0.009999

Failure free behavior.
Probability: 0.99

Figure 4.14 Safety vs. reliability.

62 SOFTWARE SPECIFICATIONS

structure made up of an array and an index into the array and by explaining how push
and pop operations affect the array and its index; but such an approach violates the
principle of abstraction since it specifies the stack by describing a possible implemen-
tation thereof. An alternative could be to specify the stack by means of an abstract list,
along with list operations, without specifying how the list is implemented. We argue
that this too violates the principle of abstraction as it dictates a preferred implemen-
tation; in fact, a stack does not necessarily require a list of elements, regardless of how
the list is represented, as we show here.

• Consider that a stack that stores identical elements can be implemented by a sim-
ple natural number, say n:

• init(): {n=0;}
• push(a): {n=n+1;} // a is the only value that can be

//stacked
• pop(): {if (n>0) {n=n-1;}}
• top(): {if (n>0) {return a;} else {return error;}}
• size(): {return n;}
• empty(): {return (n==0);}

• Consider that a stack that stores two possible symbols (e.g., ‘{’ and ‘}’) can also
be implemented without any form of list, using a simple natural number, say n:

• init(): {n=1;}
• push(a): {n=2�n+code(a);} // where code(a) maps the two

//symbols onto 0 and 1.
• pop(): {if (n>1) {n=n div 2;}}
• top(): {if (n==1) {return error;} else {return decode

(n mod 2);}} // decode() is the inverse of code().
• size(): {return floor(log2(n));}
• empty(): {return (n==1);}

• We can likewise implement a stack that stores any number (k) of symbols by
using base-k numeration rather than base 2 (used earlier).

Hence, for the sake of abstraction, we resolve to specify the stack by describing its
externally observable behavior, without making any assumption, regardless of how
vague, about its internal structure. To this effect, we specify a stack by means of three
parameters, which are as follows:

• An input space, say X, which includes all the operations that may be invoked on
the stack. Hence,
X = init pop top size empty push × itemtype,
where itemtype is the data type of the items we envision to store in the stack.

634.5 STATE-BASED SYSTEMS

We distinguish, in set X, between inputs that affect the state of the stack (namely,
AX = init, push, pop) and inputs that merely report on it (namely,
VX = top, size, empty).

From the set of inputs X, we build the set of input histories, H, where an
input history is a sequence of inputs; this is needed because the behavior of
the stack is not determined solely by the current input but involves past inputs
as well.
○ Hence, we introduce the set of input histories, H = X∗.

• An output space, say Y, which includes all the values returned by all the elements
of VX. In the case of the stack, the output space is as follows:
Y = itemtype error integer boolean,
which correspond, respectively, to inputs top, size, and empty.

• A relation fromH to Y, which represents the pairs of the form (h, y), where h is an
input history and y is an output that the specifier considers correct for h. We
denote this relation by stack and we use the notation stack (h) to refer to the
image of h by stack (if that image is unique) or to the set of images of h by stack
(if h has more than one image). We present here some pairs of the form (h, y) for
relation stack:
○ stack pop init push a init push a top = a.
○ stack pop init pop push a push b top top = b.
○ stack init pop push a pop push a pop push a size = 1.
○ stack pop push a pop init pop push a top push a top push a
pop empty = false.

○ stack init pop pop pop push a push b push c top push c push b
empty top = b.

We can go on describing possible input histories and corresponding outputs. In
doing so, we are specifying how operations interact with each other but we are not
prescribing how each operation behaves; this leaves maximum latitude to the
designer, as mandated by the principle of abstraction.

It is clearly impractical to specify data types by listing elements of their relations; in
the next section, we explore a closed-form representation for such relations.

4.5.2 Axiomatic Representation

We propose to represent the relation of a specification by means of an inductive nota-
tion, where we do induction on the structure of the input history; this notation includes
two parts, which are as follows:

• Axioms, which represent the behavior of the system for trivial input histories.

• Rules, which represent the behavior of the system for complex input histories as a
function of its behavior for simpler input histories.

64 SOFTWARE SPECIFICATIONS

4.5.2.1 Specification of a Stack As an illustration, we represent the specifica-
tion of the stack using axioms and rules. Throughout this presentation, we let a be an
arbitrary element of itemtype and y an arbitrary element of Y; also, we let h, h , h be
arbitrary elements of H and h+ an arbitrary non-null element of H.

Axioms. We use axioms to represent the output of input histories that end with an
operation in set VX (that reports on the state), namely in this case top, size, and empty.
It is understood that input histories that end with an operation in set AX (that affects the
state) produce no meaningful output; hence we assume that for such input histories,
the output is any element of Y.

• Top Axioms
○ stack(init.top) = error.
Seeking the top of an empty stack returns an error.

○ stack(init.h.push(a).top) = a.
Operation top returns the most recently stacked item.

• Size Axiom
○ stack(init.size) = 0.
The size of an empty stack is zero.

• Empty Axioms
○ stack(init.empty) = true.
An initial stack is empty.

○ stack(init.push(a).empty) = false.
A stack that contains element a is not empty.

Rules: Whereas axioms characterize the behavior of the stack for simple input sequences,
rules establish relations between the behavior of the stack for complex input histories and
their behavior for simpler input histories.

• Init Rule
○ stack(h’.init.h) = stack(init.h).
Operation init reinitializes the stack; whether sequence h intervened prior to init
or did not makes no difference for the future behavior (h) of the stack.

• Init Pop Rule
○ stack(init.pop.h) = stack(init.h).
A pop operation on an empty stack has no effect: whether it occurred or did not
occur makes no difference for the future behavior (h) of the stack.

• Push Pop Rule
○ stack(init.h.push(a).pop.h+) = stack(init.h.h+).
A pop operation cancels the most recent push: whether the sequence push(a).
pop occurred or did not makes no difference to the future behavior of the stack,
though not to the present (if h ends with an operation in VX, we could not say
that stack(init.h)=stack(init.h.push(a).pop) as the left-hand side returns a spe-
cific value but the right-hand side returns an arbitrary value).

654.5 STATE-BASED SYSTEMS

• Size Rule
○ stack(init.h.push(a).size) = 1+stack(init.h.size).
We assume that the stack is unbounded; hence any push operation increases
the size by 1.

• Empty Rules
○ stack(init.h.push(a).h’.empty) stack(init.h.h’.empty).
○ stack(init.h.h’.empty) stack(init.h.pop.h’.empty).
Removing a push or adding a pop to the input history of a stack makes it more
empty (i.e., if it was empty prior to removing push or adding pop, it is a fortiori
empty afterward).

• VX Rules
○ stack(init.h.top.h+) = stack(init.h.h+).
○ stack(init.h.size.h+) = stack(init.h.h+).
○ stack(init.h.empty.h+) = stack(init.h.h+).
VX operations leave no trace of their passage; once they are serviced and
another operation follows them, they are forgotten: whether they occurred
or did not occur has no impact on the future behavior of the stack.

We have written a closed-form specification of the stack in such a way that
we describe solely the externally observable properties of the stack, without any
reference to how a stack ought to be implemented; a programmer who reviews
this specification has all the latitude he/she needs to implement this stack as he/she
sees fit.

4.5.2.2 Specification of a Queue We discuss how to represent the specifica-
tion of a queue, in the same way that we wrote the specification of a stack earlier. We
represent in turn the input space (from which we infer the set of input histories), then
the output space, then the relation, which we denote by queue.

Input Space. We let X be defined as X = {init, dequeue, front, size, empty}
{enqueue} × itemtype. We partition this set into AX = {init, enqueue, dequeue}
and VX = {front, size, empty}. We let H be the set of sequences of elements of X.

Output Space. We let the output space be defined as Y = itemtype integer
Boolean {error}.

Axioms. We propose the following axioms:

• Front Axioms
○ queue(init.front) = error.
Invoking front on an empty queue returns an error.

○ queue(init.enqueue(a).enqueue∗().front) = a,
where enqueue(_)∗ designates an arbitrary number (including zero) of

66 SOFTWARE SPECIFICATIONS

enqueue operations, involving arbitrary items as parameters. Interpretation:
Invoking front on a non-empty queue returns the first element enqueued.

• Size Axioms
○ queue(init.size) = 0.
The size of an empty queue is zero.

• Empty Axioms
○ queue(init.empty) = true.
○ queue(init.enqueue(a).empty) = false.
An initial queue is empty. A queue in which an element has been enqueued is
not empty.

Rules: We propose the following rules.

• Init Rule
○ queue(h’.init.h) = queue(init.h).
The init operation reinitializes the stack, that is, renders all past input history
immaterial.

• Init Dequeue Rule
○ queue(init.dequeue.h) = queue(init.h)
A dequeue operation executed on an empty queue has no effect.

• Enqueue Dequeue Rule
○ queue(init.enqueue(a).enqueue∗(_).dequeue.h) = queue(init.enqueue∗(_).h)
A dequeue operation cancels the first enqueue, by virtue of the first in, first out
(FIFO) policy of queues.

• Size Rule
○ queue(init.h.enqueue(a).size) = 1+queue(init.h.size).
Assuming queues of unbounded size, any enqueue operation increases the size
of the queue by 1.

• Empty Rules
○ queue(init.h.enqueue(a).h’.empty) queue(init.h.h’.empty).
○ stack(init.h.h’.empty) stack(init.h.dequeue.h’.empty).
Removing an enqueue or adding a dequeue to the input history of a queue
makes it more empty (i.e., if it was empty prior to removing enqueue or adding
dequeue, it is a fortiori empty afterward).

• VX Rules
○ queue(init.h.front.h+) = queue(init.h.h+).
○ queue(init.h.size.h+) = queue(init.h.h+).
○ queue(init.h.empty.h+) = queue(init.h.h+).
VX operations leave no trace of their passage; once they are serviced and
another operation follows them, they are forgotten: whether they occurred
or did not occur has no impact on the future behavior of the queue.

674.5 STATE-BASED SYSTEMS

4.5.2.3 Specification of a Set As a third illustrative example, we discuss how
to represent the specification of a set, in the same way that we wrote the specifications
of a stack and a queue earlier. We represent in turn the input space (from which we
infer the set of input histories), then the output space, then the relation, which we
denote by set.

Input Space: Before we introduce the input space, let us review quickly what we
want this set abstract data type (ADT) to do: we want the ability to reinitialize the set,
pick a random element of the set, enumerate all its elements, and return its smallest
element and its largest element (assuming its elements are ordered). Also, we want to
be able to insert, delete, and search designated elements of the set. Hence, we let X be
defined as

X = {init, pick, min, max, enumerate, size} {insert, delete, search}× itemtype.

We partition this set into AX = {init, insert, delete} and VX = {pick, min, max, size,
enumerate, search}. We let H be the set of sequences of elements of X.

Output Space: We let the output space be defined as

Y = itemtype P(itemtype) {error} integer boolean,

where P(itemtype) is the power set of itemtype.

Axioms: We propose the following axioms:

• Pick Axioms
○ set(init.pick) = error.One cannot pick an element from an empty set.
○ Set(init.h.insert(a).pick) = a.If a is an element of the set, then it is a possible
pick; we will add a commutativity rule later to make it possible to pick other
elements than the most recently inserted element.

• Size Axiom
○ set(init.size) = 0.
The size of an empty set is zero.

• Enumerate Axiom
○ set(init.enumerate) = .
The enumeration of an empty set returns empty.

• Search Axiom
○ set(init.search(a)) = false.
The search of a in an empty set returns false.

• Min Axiom
○ set(init.min) = +∞.
Plus infinity is the neutral element of operation min.

68 SOFTWARE SPECIFICATIONS

• Max Axiom
○ set(init.max) = −∞.
Minus infinity is the neutral element of operation max.

Rules: We propose the followng rules:

• Init Rule
○ set(h’.init.h) = set(init.h).
Operation init makes the previous history irrelevant.

• Null Delete Rule
○ set(init.delete(a).h) = set(init.h).
A delete operation has no effect on an empty set.

• Insert Delete Rule
○ set(init.insert(a).delete(a).h) = set(init.h).
Operation delete cancels the effect of operation insert.

• Idempotence Rule
○ Insert Insert Rule
set(init.h’.insert(a).insert(a).h) = set(init.h’.insert(a).h) if is already in the set,
inserting it makes no difference.

• Commutativity Rule
○ set(init.h’.op1(a).op2(b).h) = set(init.h’.op2(b).op1(a).h).
where op1 and op2 are any of insert and delete and a and b are distinct. Inter-
pretation: The order of operations of insert and delete of distinct elements is
immaterial.

• Size Rules
○ If set(init.h.search(a)) = true then set(init.h.insert(a).size) = set(init.h.size).
○ If set(init.h.search(a)) = false then set(init.h.insert(a).size) = 1+set(init.h.size).
Operation insert(a) increases the size of the set only if element a is not in the
set prior to insertion.

• Inductive Rules
○ set(init.h.insert(a).search(b)) = (a=b) set(init.h.search(b)).
If (a=b) then return true (since b is found in the set), else check prior to the
insertion of a.

○ set(init.h.insert(a).enumerate) = {a} set(init.h.enumerate).
If a has been inserted, it should be enumerated.

○ set(init.h.insert(a).min) = MIN (a, set(init.h.min)).
Inductive argument on the min.

○ set(init.h.insert(a).max) = MAX (a, set(init.h.max)).
Inductive argument on the max.

• VX Rules
○ set(init.h.search(a).h+) = set(init.h.h+).
○ set(init.h.pick.h+) = set(init.h.h+).

694.5 STATE-BASED SYSTEMS

○ set(init.h.enumerate.h+) = set(init.h.h+).
○ set(init.h.size.h+) = set(init.h.h+).
○ set(init.h.min.h+) = set(init.h.h+).
○ set(init.h.max.h+) = set(init.h.h+).
VX operations leave no trace of their passage once they have been passed.

4.5.3 SPECIFICATION VALIDATION

In the previous section, we have written specifications of a number of ADTs, namely,
a stack, a queue, and a set. How do we know that our specifications are valid, that is,
that they capture all the properties we want them to capture (completeness) and noth-
ing else (minimality)? To bring a measure of confidence in the validity of these spe-
cifications, we envision a validation process, similar to the process we advocated in
Section 4.2.3, though this time (for the sake of simplicity) we focus solely on com-
pleteness. We imagine that while we are writing these specifications, an independent
verification and validation team is generating formulas of the form

stack h = y

for different values of h and y, on the grounds that whatever we write in our specifi-
cation should logically imply these statements. Then the validation step consists in
checking that the proposed formulas can be inferred from the axioms and rules of
our specification. If they do, then we can conclude that our specification is complete
with respect to the proposed formulas; if not, then we need to check with the verifi-
cation and validation team to see whether our specification is incomplete or perhaps
the validation data is erroneous.

For the sake of illustration, we check whether our specification is valid with respect to
the formulaswritten in Section 4.3 as sample input/output pairs of our stack specification:

• V1 stack pop init push a init push a top = a

• V2 stack pop init pop push a push b top top = b

• V3 stack init pop push a pop push a pop push a size = 1

• V4 stack pop push a pop init pop push a top push a top push a
pop empty = false

• V5 stack init pop pop pop push a push b push c top
push c push b empty top = b

For V1, we find the following:
stack(pop.init.push(a).init.push(a).top)
= {by the init Rule}
stack(init.push(a).top)
= {by the second top axiom}
a. QED

70 SOFTWARE SPECIFICATIONS

For V2, we find the following:
stack(pop.init.pop.push(a).push(b).top.top)
= {by the init Rule}
stack(init.pop.push(a).push(b).top.top)
= {by the VX Rule pertaining to top}
stack(init.pop.push(a).push(b).top)
= {by the second top axiom}
b. QED

For V3, we find the following:
stack(init.pop.push(a).pop.push(a).pop.push(a).size)
= {by the init pop Rule}
stack(init.push(a).pop.push(a).pop.push(a).size)
= {by the push pop Rule, applied twice}
stack(init.push(a).size)
= {by the size Rule}
1+stack(init.size)
= {by the size axiom}
1. QED

For V4, we find the following:
stack(pop.push(a).pop.init.pop.push(a).top.push(a).top.push(a).pop.empty)
= {by the init rule}
stack(init.pop.push(a).top.push(a).top.push(a).pop.empty)
= {by the init pop rule}
stack(init.push(a).top.push(a).top.push(a).pop.empty)
= {by the VX rule, as it pertains to top}
stack(init.push(a).push(a).push(a).pop.empty)
= {by the push pop rule}
stack(init.push(a).push(a).empty)

{by the empty rule}
stack(init.push(a).empty)
= {by the empty axiom}
false.
If the left-hand side logically implies false, then it is false. QED

For V5, we find the following:
stack(init.pop.pop.pop.push(a).push(b).push(c).top.push(c).push(b).empty.top)
= {by virtue of the VX rules, applied to empty}
stack(init.pop.pop.pop.push(a).push(b).push(c).top.push(c).push(b).top)
= {by virtue of the second top axiom}
b. QED

Because our specification has survived five tests unscathed, we gain a bit more
confidence in its validity.

714.5 STATE-BASED SYSTEMS

4.6 CHAPTER SUMMARY

The main ideas/concepts that you need to keep from this chapter are the following:

• The algebra of relations, including operations, and properties.

• Principles of sound specification, and how relations support these.

• The concept of join of relations, its significance, and its role in specification
generation.

• The concept of refinement, its significance, and its role in specification validation.

• The relational specification of systems that maintain an internal state.

• The axiomatic representation of the relational specification of systems that main-
tain a state.

• The generation and validation of axiomatic specifications.

4.7 EXERCISES

4.1. Given relationsR andQ on set S, write a relational expression that represents the
following: the prerestriction of R to the domain of Q; the prerestriction of R to
the range ofQ; the postrestriction of R to the domain ofQ; the postrestriction of
R to the range of Q.

4.2. Consider the following relations on the set S of natural numbers:
R = {(s,s)| s = 7s}

R = {(s,s)| s = s+5}
Compute the following:
a. dom(R), rng(R).

b. dom(R), rng(R).

c. R•R . dom(R.R).

d. R •R. dom(R .R).

e. Prerestriction of R to A = {s| s mod 5=0}.

f. Postrestriction of R to B = {s| s<4}.

4.3. Consider the following relations on the set S of natural numbers (starting
at zero).

R ={(s,s)| s = s-7}

R ={(s,s)| s = 5s – 32}
Compute the following expressions:
a. dom(R), rng(R).

b. dom(R), rng(R).

c. R R, and R R

72 SOFTWARE SPECIFICATIONS

d. R R , and R R .

e. R R , and dom (R R).

f. R R, and dom (R R).

4.4. For each relation R given here on space S defined by natural variables x and y,
tell whether R has the properties defined in Section 4.2.3.

a. R = {(s,s)| x+y = x +y }

b. R = {(s,s)| x = x+1 y = y−1}

c. R = {(s,s)| x ≥ x y’ = y}

d. R = {(s,s)| x−y ≥ x − y }

e. R = {(s,s)| x ≥ 1 y ≥ x}

4.5. Let S be the set of persons and let P and M be the following relations on S:

• P = {(s,s’)| s’ is a parent of s}.

• M = {(s,s’)| s is male}.

From these three relations, compose the following relations: female (the
complement of male), mother, father, daughter, son, half-sibling, sibling, half
brother, half sister, brother, sister, maternal grandfather, paternal grandfather,
maternal grandmother, paternal grandmother, grandson, granddaughter,
uncle, aunt, niece, nephew, and cousin. All of these relations can be built from
P and M.

4.6. Consider the square root specification given in Section 4.3.1; give five more pos-
sible interpretations of the square root requirement, and present a relation for each.

4.7. Consider the specification of the search programs, given in Section 4.3.2. Write
five new interpretations, along with corresponding relations. Hint: Consider, for
example, the situation where a and x are preserved whether x is or is not in a; or
the case where no output requirement is imposed when x is not in a.

4.8. Consider the following specifications on space S defined by an array a[1..N] of
real numbers and a variable x of type real and say whether or not they represent
the specification of a program to compute the sum of a into x; if not, give an
example of a program that satisfies the specification but is not computing
the sum of a into x.

a. M1 = s,s x =
N

i = 1
a i

b. M2 = s,s x =
N

i = 1
a i

c. M3 = s,s x=
N

i = 1
a i

d. M4 = s,s x =
N

i = 1
a i a = a

734.7 EXERCISES

4.9. Consider the square root specifications R1 … R9 given in Section 4.3.1. Rank
them by the refinement ordering and draw a graph showing their refinement
relations, similar to that given for the search specifications F1 … F8.

4.10. Consider a space S defined by an array a[1..N] of type T, an index variable k and
a variable x of type T. Write the following specifications and rank them by
strength:

a. Place in x the largest element of a.

b. Place in x the largest element of a and in k an index where the largest element
of a occurs.

c. Place in x the largest element of a and in k the largest index where the largest
element of a occurs.

d. Place in x the largest element of a and in k an index where the largest element
of a occurs, while preserving a.

4.11. Consider a space S defined by an array a[1..N] of type T, an index variable k and
a variable x of type T. Write the following specifications and rank them by
strength:

a. Place in x a value less than or equal to all the elements of the array.

b. Place in x an arbitrary value of the array.

c. Place in x an arbitrary value of the array and in k an index where x occurs.

d. Place in x the smallest element of the array and in k an index where x
occurs.

e. Place in x the smallest element of the array and in k the smallest index where
x occurs.

4.12. Prove that the refines relation between relational specifications is a partial
ordering relation; that it is reflexive, antisymmetric and transitive.

4.13. Let space S be defined by three variables a, b, c of type natural, and consider the
requirement that these three variables be rearranged in increasing order, that is,
we want to permute their values in such a way that a ≤b ≤c . Write the relational
specification of this requirement, by proceeding: first by case analysis (consider
all the possible orderings of the three values of a, b, c) and second, by conjunc-
tion of properties (consider all the relations that must hold between a, b, c and
a , b , c).

4.14. Consider the following specifications on space S defined by an array a[1..N]
of some type, a variable x of the same type, and an index variable k, which we
use to address array a.

a. F1 = s,s h 1 ≤ h ≤N a h = x a k = x

b. F5 =F1 s,s h 1 ≤ h ≤N a h x k = 0

74 SOFTWARE SPECIFICATIONS

Do these specifications satisfy the compatibility condition? If so, compute
their join. If not, explain why.

4.15. Consider the following specifications on space S defined by an array a[1..N] of
some type, a variable x of the same type, and an index variable k, which we use
to address array a.

a. F1 = s,s h 1 ≤ h ≤N a h = x a k = x

b. F5 =F1 s,s h 1 ≤ h ≤N a h x k = 0

c. F9 =F1 s,s h 1 ≤ h ≤N a h x

Do specifications F5 and F9 satisfy the compatibility condition? If so,
compute their join. If not, explain why.

4.16. Consider the following specifications on space S defined by an array a[1..N] of
some type, a variable x of the same type, and an index variable k, which we use
to address array a.

a. F1 = s,s h 1 ≤ h ≤N a h = x a k = x

b. F5 =F1 s,s h 1 ≤ h ≤N a h x k = 0

c. F10 =F1 s,s h 1 ≤ h ≤N a h x k = −1

Do specifications F5 and F10 satisfy the compatibility condition? If so, com-
pute their join. If not, explain why.

4.17. Check whether Specification F1 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal with
respect to minimality properties W1, W2.

4.18. Check whether Specification F3 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal with
respect to minimality properties W1, W2.

4.19. Check whether Specification F4 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal with
respect to minimality properties W1, W2.

4.20. Check whether Specification F5 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal with
respect to minimality properties W1, W2.

4.21. Check whether Specification F6 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal with
respect to minimality properties W1, W2.

4.22. Check whether Specification F7 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal with
respect to minimality properties W1, W2.

754.7 EXERCISES

4.23. Check whether Specification F8 (given in Section 4.3.2) is complete with
respect to completeness properties V1, V2, V3 and whether it is minimal
with respect to minimality properties W1, W2.

4.24. Generate validation data for the stack specification given in Section 4.5.2.1, and
check its validity against your data.

4.25. Generate validation data for the queue specification given in Section 4.5.2.2,
and check its validity against your data.

4.26. Generate validation data for the set specification given in Section 4.5.2.3, and
check its validity against your data.

4.27. Follow the example discussed in Section 4.5.1 to derive a stack that stores four
symbols, e.g. the arithmetic operators +, −, ∗, and /.

4.8 PROBLEMS

4.1. This ADT stores and retrieves elements in a linearly ordered structure. We let the
list be defined by the following operations:

AX-operations: These are operations that alter the state of the ADT but
produce no visible output.

• init: This operation initializes or re-initializes the list to empty.

• insertlast (itemtype x): This operation inserts x at the end of the list.

• insertfirst (itemtype x): This operation inserts x at the beginning of the list.

• insertat (itemtype x, integer n): If the size of the list allows, this operation
inserts x at position n; else it does not change the list.

• deletelast (): This operation deletes the element at the end of the list.

• deletefirst (): This operation deletes the element at the beginning of the list.

• deletetat (integer n): If the size of the list allows, this operation deletes the
element at position n; else it does not change the list.

VX-operations: These are operations that return values but do not change
the state.

• boolean: empty (): It returns T if and only if the list is empty.

• integer: size (): It returns the number of elements in the list.

• boolean: search (itemtype x): It tells whether x is in the list.

• integer: multisearch (itemtype x): It gives the multiplicity of x in the list.

• itemtype: choose (): It returns an arbitrary element of the list.

• itemtype: first (): It returns the first element in the list.

• itemtype: last (): It returns the last element in the list.

• itemtype: smallest (): It returns the smallest element.

• itemtype: largest (): It returns the largest element.

76 SOFTWARE SPECIFICATIONS

Write this specification and validate it. If this work is done in a team, divide
the team in two, for specification and specification validation. Hint: Convert all
insert operations into insertlast operations, and all delete operations into dele-
telast operations; then specify insertlast and deletelast.

4.2. In discrete mathematics, a multiset is a collection of objects where duplication is
permitted. We let multiset be defined by the following operations:

• AX-operations: These are operations that alter the state of the ADT but
produce no visible output.
○ init: This operation initializes or re-initializes the multiset to empty.
○ insert (itemtype x): If x is not in the multiset, this operation adds it; if not,
it increments its multiplicity.

○ insert (itemtype x, integer n): Inserts n copies of x, where n is non-
negative.

○ remove (itemtype x): If x is not in the set, then this operation is null; if x
does belong in a single copy, it no longer exists in the set; if x belongs in
multiple copies, its multiplicity is reduced by 1.

○ remove (itemtype x, integer n): It performs remove(x) n times.
○ removeall (itemtype x): If x does not belong to the multiset, then this
operation is null; else all instances of x are removed.

○ removeany(): It removes an arbitrary element of the set, reducing its
multiplicity by 1; if the set is empty, this operation is null.

○ eraseany(): It removes all the instances of an arbitrary element; if the
multiset is empty, this operation is null.

• VX-operations: These are operations that return values but do not change
the state.
○ boolean: empty (): It returns T if and only if the set is empty.
○ integer: size (): It returns the number of distinct elements.
○ integer: multisize (): It returns the multisize of the multiset.
○ boolean: search (itemtype x): It tells whether x is in the multiset.
○ integer: multisearch (itemtype x): It gives the multiplicity of x.
○ itemtype: choose (): It returns an arbitrary element of the multiset.
○ itemtype� list (): It lists the elements of the multiset.
○ itemtype� list (integer n): It lists the elements of the multiset with a
multiplicity greater than or equal to n.

○ itemtype: least (): It returns an element with minimal multiplicity.
○ itemtype: most (): It returns an element with maximal multiplicity.
○ itemtype: smallest (): It returns the smallest element.
○ itemtype: largest (): It returns the largest element.

774.8 PROBLEMS

Write this specification and validate it. If this work is done in a team, divide
the team in two, for specification and specification validation.

4.9 BIBLIOGRAPHIC NOTES

Software specification has been the subject of active research since the early days of
software engineering, highlighting both the criticality and the difficulty of this phase
and its products; it is impossible to do justice to all the work that was published in this
area or to any significant portion thereof. Wewill merely cite a few of the specification
languages that have emerged: Z, a relational notation that has been widely used in
industry and academia (Spivey, 1998); B, a relational notation that has an object-
oriented flavor, and supports refinement, in addition to specification (Abrial,
1996); Alloy, a language inspired by Z and B and used to represent structures by
means of sets of constraints (Jackson, 2011). For a general overview of specification
languages and issues, consult (Habrias and Frappier, 2013).

78 SOFTWARE SPECIFICATIONS

5
Program Correctness and

Verification
This being a book on software testing, one may wonder why we need to talk about
program correctness. There are several reasons and some of them are as follows:

• The focus of software testing is to run the candidate program on selected input
data and check whether the program behaves correctly with respect to its
specification. The behavior of the program can be analyzed only if we knowwhat
is a correct behavior; hence the study of correctness is an integral part of software
testing.

• The study of program correctness leads to analyze candidate programs at arbitrary
levels of granularity; in particular, it leads tomake assumptions on the behavior of
the program at specific stages in its execution and to verify (or disprove) these
assumptions; the same assumptions can be checked at run-time during testing,
giving us valuable information as we try to diagnose the program or establish
its correctness. Hence the skills that we develop as we try to prove program
correctness enable us to be better/more effective testers.

• It is common for program testers and program provers to make polite statements
about testing and proving being complementary and then to assiduously ignore
each other (each other’s methods). But there is more to complementarity than
meets the eye. Very often, what makes a testing method or a provingmethod inef-
fective is not an intrinsic attribute of themethod, but rather the fact that themethod
is used against the wrong type of specification. Hence it is advantageous, given a
complex/compound specification, to decompose it into two broad components—
one that lends itself to testing and the other that lends itself to proving—and apply
each method against the appropriate specification component. Consider a simple

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

79

example: imagine that we want to verify a sorting routine, whose specification is
Sort(s,s) = Ord(s) Prm(s,s), where s designates an array of elements with
some ordering key, Ord(s) means that s is ordered (according to selected
key), and Prm(s,s) means that s is a permutation of s. Testing the sorting rou-
tine against specification Prm(s,s) is at the same time inefficient, complex, and
error prone: it is inefficient because it requires that we save the initial array s to
check the property Prm(s,s) at the end; it is complex because checking that two
sequences are permutations of each other is difficult, especially if we allow
multiple identical elements; it is error-prone because it is complex. But proving
that a sorting routine satisfies the condition Prm(s,s) is very easy: it suffices to
ensure that whenever the array is modified, it is modified in the context of a
swap of two of its cells, thereby ensuring the preservation of Prm(s,s) at each
step. By contrast, proving that the sort routine achieves the property Ord(s)
may be tedious and error-prone, as it involves a painstaking inductive argu-
ment, and may depend on the stepwise update of index variables and on main-
taining complex program invariants; however, checking Ord(s) at run-time can
be done efficiently and reliably; it is efficient because it does not require saving
a prior state and can be carried out in O(n) steps (n: the size of the array), and it
is reliable because its formula is very simple (ensuring that each element of s is
not greater than the next element). Hence by testing the program against
specification Ord(s) and proving it against Prm(s,s), we achieve great gains
in efficiency, quality, and reliability.

• It is best to view software testing, not as an isolated effort, but rather as an integral
part of a broad, multi-pronged policy of quality assurance that deploys each
method where it is most effective by virtue of the Law of Diminishing Returns.

• The study of program verification, which we conduct in this chapter, prepares the
ground for the next chapter, where we discuss faults and fault removal.

5.1 CORRECTNESS: A DEFINITION

We let space S be the set of natural numbers and let R be the following specification
on S:

R= 0,0 , 0,1 , 0,2 , 1,1 , 1,2 , 1,3 , 2,2 , 2,3 , 2,4 , 3,3 , 3,4 , 3,5

We consider the following candidate programs (represented by their functions on
S), and we ask the question: which of these programs is correct with respect to R?

P1 = 0,1 , 1,2 , 2,3 , 3,4

P2 = 0,1 , 1,2 , 2,3 , 3,4 , 4,5 , 5,6 , 6,7

P3 = 0,0 , 1,2 , 2,4

P4 = 0,0 , 1,2 , 2,4 , 4,8 , 5,10 , 6,12

80 PROGRAM CORRECTNESS AND VERIFICATION

P5 = 0,0 , 1,2 , 2,4 , 3,6 ,

P6 = 0,0 , 1,2 , 2,4 , 3,6 , 4,8 , 5,10 , 6,12 ,

We submit:

• Only programs P1 and P2 are correct with respect to specification R since
they return correct values for all the inputs of interest for R (which are inputs
0, 1, 2, 3).

• We say that programs P3 and P4 are partially correct with respect to R: they are
not defined for all relevant inputs (which are 0, 1, 2, 3) since they are not defined
for 3; but whenever they are defined for a relevant input (which is the case for
0, 1, 2), they return a correct value.

• We say that programs P5 and P6 are defined with respect to R (or that they
terminate normally with respect to R): they produce an output for all relevant
inputs (which are 0, 1, 2, 3), though for 3 they produce an incorrect output
(6, rather than 3, 4, or 5).

As a second example, we let space S be defined by two integer variables x and y, and
we let R be the following relation (specification) on S:

R= s,s x s = x s + y s

We consider the following candidate programs (written in C-like notation), and we
ask the question: which of these programs is correct with respect to R?

p1: {while (y<>0) {x=x+1; y=y-1;}}.
p2: {while (y>0) {x=x+1; y=y-1;}}
p3: {if (y>0) {while (y>0) {x=x+1; y=y-1;}

else {while (y<0) {x=x-1; y=y+1;}}

Before we make judgments on the correctness of these programs, we compute their
respective functions:

P1 = s,s y ≥ 0 x = x+ y y = 0 ,

P2 = s,s y ≥ 0 x = x + y y = 0 s,s y< 0 x = x y = y ,

P3 = s,s x = x + y y = 0

We submit:

• That P1 is partially correct with respect to R; it is not (totally) correct because it
is not defined for negative values of y; but it is partially correct with respect
to R because whenever it is defined (for nonnegative values of y), it satisfies
specification R (computing the sum of x and y into x).

815.1 CORRECTNESS: A DEFINITION

• That P2 is defined with respect to R; it is not totally correct because for negative y
it fails to compute the sum of x and y into x; but it is defined because it produces a
final state for all relevant initial states (which, in the case of R, are all states in S).

• That P3 is totally correct with respect to R because it is defined for all relevant
initial states and satisfies specification R for all relevant states, by computing the
sum of x and y into x.

As a third example, we consider the following program on space S defined by
integer variables x and y:

p: {while (y<>0) {x=x+1; y=y-1;};}

and we consider the following specifications:

R1 = s,s x = x+ y ,

R2 = s,s y ≥ 0 x = x+ y ,

R3 = s,s y > 0 x = x + y ,

R4 = s,s y> 10 x = x + y ,

R5 = s,s y ≥ 0 x = x + 1 y = y−1 ,

R6 = s,s y = 1 x = x+ 1 y = y−1 ,

R7 = s,s x = x + 1 y = y−1

As a reminder, consider that the function of program p is:

P= s,s y ≥ 0 x = x + y y = 0

Whence we submit:

• Program p is not correct with respect to R1 because it does not terminate for all
relevant initial states (which, according to specification R1 are all initial states).

• Program p is correct with respect to specifications R2,R3, R4, and R6. For all these
specifications, the program terminates normally for all relevant initial states and
delivers a correct final state.

• Program p is defined with respect to specification R5; it is defined for all relevant
inputs (which are states such that y ≥ 0), but it is not partially correct, since it
delivers a different output from what specification R5 demands.

• Finally, program p is neither correct, nor partially correct, nor defined with
respect to specification R7.

We are now ready to cast the intuition gained through these examples into formal
definitions.

82 PROGRAM CORRECTNESS AND VERIFICATION

Definition: Correctness Let R be a specification (relation) on space S and let p be
a program on space S whose function we denote by P. We say that program p is
correct (or totally correct) with respect to R if and only if:

s s dom R s dom P s,P s R

Definition: Partial Correctness Let R be a specification (relation) on space S and
let p be a program on space S whose function we denote by P. We say that program
p is partially correct with respect to R if and only if:

s s dom R s dom P s,P s R

Note that partial correctness provides for the correct behavior of the program
only whenever the program terminates; so that a program that never terminates is,
by default, partially correct with respect to any specification. Despite this gaping
weakness, partial correctness is a useful property that is often considered valuable in
practice.

Definition: Termination Let R be a specification (relation) on space S and let p be a
program on space S whose function we denote by P. We say that program p is
defined (or terminates) with respect to R if and only if:

s s dom R s dom P

We conclude this section with a simple proposition, which stems readily from the
definitions.

Proposition: Correctness Properties Let R be a specification (relation) on space
S and let p be a program on space S whose function we denote by P. Program
p is totally correct with respect to specification R if and only if it is partially correct
and defined with respect to R.

5.2 CORRECTNESS: PROPOSITIONS

In this section, we introduce a number of propositions pertaining to correctness, partial
correctness, and termination; for the sake of readability, we do not prove them, but
comment on their intuitive significance.

5.2.1 Correctness and Refinement

As we remember, the refinement ordering was introduced in Chapter 4 to rank
specifications in terms of strength, reflecting how demanding a specification is or
how hard a specification is to satisfy. As we recall, this ordering plays a role in

835.2 CORRECTNESS: PROPOSITIONS

determining whether a given specification is complete with respect to a completeness
property andwhether agiven specification isminimalwith respect to aminimality prop-
erty. Surprisingly, or on second thought not surprisingly, the same refinement ordering
plays an important role in defining program correctness, as the following propositions
provide. For the sake of simplicity, we restrict our attention to deterministic programs
(i.e., programs that produce a uniquely determined final state for any given initial state).

Proposition: Correctness, Refinement-based Formula Let R be a specification
(relation) on space S and let p be a program on space S whose function we denote
by P. Program p is correct with respect to specification R if and only if P refines R.

Function P refines relation R if and only if it has a larger domain that R and for all
elements s in the domain of R, the pair (s,P(s)) is an element of R; this is exactly how
we defined (total) correctness in Section 5.1.

Proposition: Partial Correctness, Refinement-based Formula Let R be a specifi-
cation (relation) on space S and let p be a program on space S whose function we
denote by P. Program p is partially correct with respect to specification R if and
only if P refines R PL .

Unlike with total correctness, in partial correctness P does not have to satisfyR for all
initial states in the domain of R; rather it suffices that it satisfies R for elements of the
domain of R for which p terminates normally (whence the term PL). Note that if we take
P= (i.e., programp fails to terminate for all initial states), then this condition is satisfied.

Proposition: Termination, Refinement-based Formula Let R be a specification
(relation) on space S and let p be a program on space S whose function we denote
by P. Program p is defined with respect to R if and only if P refines RL.

Relation RL has the same domain as relation R, but because it assigns all the
elements of S to any element of the domain of R, it imposes no condition on the final
state; this is exactly what termination is about.

We conclude this section by revisiting the definition of refinement: so far we have
interpreted the refinement to mean that a specification is stronger than another, more
demanding than another, and so on. There is a simple way to characterize refinement,
now that we have defined correctness; it is given in the following proposition.

Proposition: Characterizing Refinement by Correctness Given two specifica-
tions R and R on space S, R refines R if and only if any program p that is correct
with respect to R is correct with respect to R .

Isn’t the essence of being a stronger specification to admit fewer correct programs?
Any program that is correct with respect to the stronger/more demanding/more refined
specification is necessarily correct with respect to the weaker/less demanding/less
refined specification. The necessary condition of this Proposition is a mere

84 PROGRAM CORRECTNESS AND VERIFICATION

consequence of the transitivity of the refinement ordering: if a program p is correct
with respect to R, then its function P refines R; since R refines R , then a fortiori P
refines R , hence p is correct with respect to R .

5.2.2 Set Theoretic Characterizations

Whereas in Section 5.1 we introduced definitions of correctness and in Section 5.2.1
we introduced propositions that formulate correctness in terms of refinement, in this
section we introduce propositions that formulate correctness in terms of set theoretic
formulae. In practice, these are more tractable than either the definitions or the
refinement-based characterizations.

Proposition: Correctness, Set Theoretic Formula Let R be a specification (rela-
tion) on space S and let p be a program on space S whose function we denote by P.
Program p is correct with respect to specification R if and only if

dom R P = dom R .

Interpretation of this formula: The set dom(R) is the set of initial states for which
program pmust behave as Rmandates. The set dom R P is the set of initial states for
which programpdoes behave asRmandates (see Fig. 5.1 for an illustration). Programp
is correct with respect to specification R if and only if these two sets are identical.

Proposition: Partial Correctness, Set Theoretic Formula Let R be a specification
(relation) on space S and let p be a program on space S whose function we denote
by P. Program p is partially correct with respect to specification R if and only if

dom R P = dom R dom P

R

1 1

2

3

4

5

6

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

P dom(R ∩ P)

Figure 5.1 Interpretation of dom(R P).

855.2 CORRECTNESS: PROPOSITIONS

Interpretation of this formula: The set dom R P is the set of initial states for
which program p behaves as R mandates (see Fig. 5.1 for an illustration). The set
dom R dom P is the set of states for which program p terminates and specification
R has a requirement. Program p is partially correct with respect to specification R if
and only if it behaves according to R whenever it terminates.

Proposition: Termination, Set Theoretic Formula Let R be a specification (rela-
tion) on space S and let p be a program on space S whose function we denote by P.
Program p is defined with respect to R if and only if dom R dom P = dom R .

This condition simply means that dom(R) is a subset of dom(P).

5.2.3 Illustrations

As an illustration of the propositions given in the previous section, we revisit the
examples of Section 5.1 and check the formulas of these propositions to ensure that
we reach the same conclusions. We consider the specification and the candidate
programs of the first example:

R= 0,0 , 0,1 , 0,2 , 1,1 , 1,2 , 1,3 , 2,2 , 2,3 , 2,4 , 3,3 , 3,4 , 3,5

P1 = 0,1 , 1,2 , 2,3 , 3,4 ,

P2 = 0,1 , 1,2 , 2,3 , 3,4 , 4,5 , 5,6 , 6,7 ,

P3 = 0,0 , 1,2 , 2,4 ,

P4 = 0,0 , 1,2 , 2,4 , 4,8 , 5,10 , 6,12 ,

P5 = 0,0 , 1,2 , 2,4 , 3,6 ,

P6 = 0,0 , 1,2 , 2,4 , 3,6 , 4,8 , 5,10 , 6,12 ,

The following table shows, for each candidate program P, the values of dom R P ,
dom(R), dom(P), and the correctness property of P: total correctness (TC), partial
correctness (PC), termination (T), or none (N).

Candidate dom R P dom R dom P TC PC T N

P1 {0,1,2,3} {0,1,2,3} {0,1,2,3}

P2 {0,1,2,3} {0,1,2,3} {0,1,2,3,4,5,6}

P3 {0,1,2} {0,1,2,3} {0,1,2}

P4 {0,1,2} {0,1,2,3} {0,1,2,4,5,6}

P5 {0,1,2} {0,1,2,3} {0,1,2,3}

P6 {0,1,2} {0,1,2,3} {0,1,2,3,4,5,6}

86 PROGRAM CORRECTNESS AND VERIFICATION

These are indeed the conclusions we had reached earlier for the first example.
For the second example, we list the specification and programs, then we draw the
same table.

R= s,s x s = x s + y s

P1 = s,s y ≥ 0 x = x+ y y = 0 ,

P2 = s,s y ≥ 0 x = x + y y = 0 s,s y < 0 x = x y = y ,

P3 = s,s x = x + y y = 0

Candidate dom R P dom R dom P , TC PC T N

P1 s,s y≥ 0 S s,s y ≥0

P2 s,s y≥ 0 S S

P3 S S S

These are indeed the conclusions we had reached earlier for the second example.
For the third example, we had a single program and many specifications, which we
present below:

p: {while (y<>0) {x=x+1; y=y-1;};}

R1 = s,s x = x+ y ,

R2 = s,s y ≥ 0 x = x+y ,

R3 = s,s y > 0 x = x +y ,

R4 = s,s y > 10 x = x +y ,

R5 = s,s y ≥ 0 x = x +1 y = y−1 ,

R6 = s,s y= 1 x = x+ 1 y = y−1 ,

R7 = s,s x = x +1 y = y−1

We remember that the function of program p is P= s,s y ≥ 0 x =
x +y y = 0 , whence the domain of P is s y ≥ 0 ; for each specification R we write,
in the table below, the values of dom R P , dom(R), and dom(P), then make a
judgment about the correctness properties of P with respect to the specification in
question.

875.2 CORRECTNESS: PROPOSITIONS

Specification dom R P dom R dom P , TC PC T N

R1 s,s y ≥ 0 S s,s y ≥0

R2 s,s y ≥ 0 s,s y ≥ 0 s,s y ≥0

R3 s,s y> 0 s,s y> 0 s,s y ≥0

R4 s,s y> 10 s,s y> 10 s,s y ≥0

R5 s,s y= 1 s,s y ≥ 0 s,s y ≥0

R6 s,s y =1 s,s y= 1 s,s y ≥0

R7 s,s y =1 S s,s y ≥0

5.3 VERIFICATION

All the formulas of correctness we have seen so far have an important attribute in
common: They define correctness by an equation that involves the function of the
candidate program as well as the specification that the program is judged against.
In order to use any of these formulas, we need to begin by computing the function
of the program. This approach raises two problems: First, computing the function
of a program is very complex and error-prone and does not lend itself to automation
because it depends (to capture the function of iterative loops) on inductive arguments
that are virtually impossible to codify; second, computing the function of a program
in all its detail may be wasteful if the specification refers to only partial functional
attributes of the program.

For the sake of illustration, consider the following program p on natural variables
n, f, k:

{natural n, f, k;
f=1; k=1; while (k!=n+1) {f=f*k; k=k+1;}}

and consider the following specifications

R1 = s,s n = n

R2 = s,s k = n + 1

R3 = s,s k ≤ k

R4 = s,s f ≤ f

According to the foregoing definitions and propositions, in order to prove that
program p is correct with respect to any of the proposed specifications, we must first

88 PROGRAM CORRECTNESS AND VERIFICATION

compute the function of p. Given that the specifications refer to very partial aspects of
the function of the program, it seems very wasteful to have to compute the function of
the program in all its minute detail before we can prove correctness.

In this section, we present an alternative verification method that is commensurate
with the complexity of the specification, and proceeds by recursive descent on the
control structure of the program at hand. The core formula of this method takes
the form of a triplet:

{ϕ} p {ψ}

Where p is a program or program part and ϕ and ψ are assertions on (variables of)
the space of the program. This formula is interpreted as follows: If ϕ holds prior to
execution of program p and p executes and terminates, then ψ holds after the execu-
tion of p. Such formulas are calledHoare formulas; ϕ is called a precondition andψ is
called a postcondition to program p.

5.3.1 Sample Formulas

As a way to nurture the reader’s understanding of this notation, we give below a
number of formulas, which we want to consider as valid (in reference to the definition
above); we let x and y be integer variables and we classify the sample formulas by the
control structure of the program p.

Assignment statement:
• {x=1} x=x+1; {x=2}

• {x≥1} x=x+1; {x≥2}

• {x≥1} x=x+1; {x≥1}

• {x=1 y=4} x=x+1; {x=2 y=4}

• {x=x0} x=x+1 {x=x0+1}, for some constant x0.

• {x=x0 y=y0} x=x+1 {x=x0+1 y=y0}, for some constants x0 and y0.

• {x=x0 y=y0} x=x+1 {x≥x0+1 y≥y0}, for some constants x0 and y0.

Sequence statement:
• {x=3} x=x+3; y=x*x; {x=6 y=36}

• {x=3} x=x*x; y=x+9 {x=9 y=18}

• {x=x0 y=y0} x=x+3; y=x*x; {x=x0+3 y=(x0+3)2}, for some constants
x0 and y0.

• {x=x0 y=y0} x=x*x; y=x+9; {x=x02 y=x02+9}, for some constants x0
and y0.

• {x=x0 y=y0} x=x+y; y=x–y; x=x–y; {x=y0 y=x0}, for some constants x0
and y0.

• {x=x0 y=y0} x=x+1; y=y–1; {x=x0+1 y=y0–1}, for some constants x0
and y0.

895.3 VERIFICATION

• {x=x0 y=y0} x=x+1; y=y–1; {x+y=x0+y0}, for some constants x0 and y0.

• {x+y=A} x=x+1; y=y–1; {x+y=A}, for some constant A.

Conditional statement:

• {true} if (x<0) {x=−x;} {x≥0}.

• {x=x0} if (x<0) {x=–x;} {x=|x0|}.

• {true} if (x<y) {x=x+y; y=x−y; x=x−y;} {x≥y}.

• {x=x0 y=y0} if (x<y) {x=x+y; y=x–y; x=x–y;} {x=max(x0,y0) y=min
(x0,y0)}, for some constants x0 and y0.

Alternation statement:

• {x=x0 y=y0 x>0 y>0 x y} if (x>y) {x=x–y ;} else {y=y–x ;}
{gcd(x,y)=gcd(x0,y0)}, for some constants x0 and y0.

• {gcd(x,y)=A x>0 y>0 x y} if (x>y) {x=x–y ;} else {y=y–x ;} {gcd
(x,y)=A}, for some constant A.

Iteration:

• {true} while (y 0) {x=x+1; y=y–1;} {y=0}

• {y≥0} while (y 0) {x=x+1; y=y–1;} {y=0}

• {y<0} while (y 0) {x=x+1; y=y–1;} {y=0}

• {x=x0 y=y0} while (y 0) {x=x+1; y=y–1;} {x=x0+y0 y=0}, for some
constants x0 and y0.

• {y≥0} while (y>0) {x=x+1; y=y–1;} {y=0}

• {x=x0 y≥0} while (y>0) {x=x+1; y=y–1;} {x≥x0}

• {y<0} while (y>0) {x=x+1; y=y–1;} {y<0}

• {x=x0 y=y0 y≥0} while (y>0) {x=x+1; y=y–1;} {x=x0+y0 y=0}, for
some constants x0 and y0.

• {x=x0 y=y0 y<0} while (y>0) {x=x+1; y=y–1;} {x=x0 y= y0
y<0}, for some constants x0 and y0.

• {y<0} while (y 0) {x=x+1; y=y–1;} {y=–1}

• {y<0} while (y 0) {x=x+1; y=y–1;} {y=1}

• {y<0} while (y 0) {x=x+1; y=y–1;} {y=2}

We leave it to the reader to ponder, by reference to the definition of this notation,
why each one of the formulas above is valid. So far we have established the validity of
these formulas by inspection, in reference to the definition. For larger and more com-
plex programs, this may not be practical; in the next section, we introduce a deductive
process that aims to establish the validity of complex formulas by induction on the
complexity of the program structure.

90 PROGRAM CORRECTNESS AND VERIFICATION

5.3.2 An Inference System

An inference system is a system for inferring conclusions from hypotheses in a
systematic manner. Such a system can be defined by means of the following artifacts:

• A set F of (syntactically defined) formulas.

• A subset A ofF, called the set of axioms, which includes formulas that we assume
to be valid by hypothesis.

• A set of inference rules, which we denote by R, where each rule is made up
of a set of formulas called the premises of the rule, and a formula called the
conclusion of the rule. We interpret a rule to mean that whenever the premises
of a rule are valid, so is its conclusion; we usually represent a rule by listing its
premises above a line and its conclusion below the line.

An inference in an inference system is an ordered sequence of formulas, say
v1, v2,…, vn, such each formula in the sequence, say vi, is either an axiom or the
conclusion of a rule whose premises appear prior to vi, that is, amongst
v1,v2,…,vi−1. A theorem of a deductive system is any formula that appears in an
inference.

In this section, we propose an inference system that enables us to establish the
validity of Hoare formulas by induction on the complexity of the program component
of the formulas. To this effect, we present in turn, the formulas, then the axioms, and
finally the rules.

• Formulas. Formulas of our inference system include all the formulas of logic,
as well as Hoare formulas.

• Axioms. Axioms of this inference system include all the tautologies of logic,
as well as the following formulas:
○ {false} p {ψ}, for any program p and any postcondition ψ.
○ {ϕ} p {true}, for any program p and any precondition ϕ.

• Rules. Wepresent below a rule for each statement of a simpleC-like programming
language.

Assignment Statement Rule: We consider an assignment statement that affects a
program variable (and implicitly preserving all other variables), and we interpret it
as an assignment to the whole program state (changing the selected variable and
preserving the other variables), which we denote by s=E(s), where s is the state of
the program. We submit the following rule,

ϕ ψ E s
ϕ s = E s ψ

915.3 VERIFICATION

Interpretation: If we want ψ to hold after execution of the assignment statement, when
s is replaced by E(s), then ψ (E(s)) must hold before execution of the assignment;
hence the precondition ϕ must imply ψ(E(s)).

Sequence Rule: Let p be a sequence of two subprograms, say p1 and p2. We have
the following rule,

int:

ϕ p1 int

int p2 ψ

ϕ p1;p2 ψ

Interpretation: if we can find an intermediate predicate int that serves as a postcondi-
tion to p1 and a precondition to p2, then the conclusion is established.

Conditional Rule: Let p be a conditional statement of the form: if
(condition) {statement;}. We have the following rule,

ϕ t B ψ
ϕ − t ψ

ϕ if t B ψ

Interpretation: The two premises of this rule correspond to the two execution paths
through the flowchart of the conditional statement (Fig. 5.2).

Alternation Rule: Let p be an alternation statement of the form: if (condition)
{statement;} else {statement;}. We have the following rule,

ϕ t B1 ψ
ϕ ¬t B2 ψ

ϕ if t B1 else B2 ψ

t
TF

B

Ψ

ϕ

Figure 5.2 Flowchart of if-statement.

92 PROGRAM CORRECTNESS AND VERIFICATION

Interpretation: The two premises of this rule correspond to the two execution paths
through the flowchart of the conditional statement (Fig. 5.3).

Iteration Rule: Let p be an iterative statement of the form: while (condition)
{statement;}. We have the following rule,

E inv
ϕ inv

inv t B inv
inv ¬t ψ

ϕ while t B ψ

Interpretation: The first and second premises establish an inductive proof to the effect
that predicate inv holds after any number of iterations. The third premise provides that
upon termination of the loop, the combination of predicate inv and the negation of the
loop condition must logically imply the postcondition. Predicate inv is called an invar-
iant assertion. It must be chosen so as to be sufficiently weak to satisfy the first prem-
ise, yet sufficient strong to satisfy the third premise (and the second). See the flowchart
below, which highlight the points at which each of the relevant assertions is supposed
to hold. Note that inv is placed upstream of the loop condition; hence the loop con-
dition is never part of inv (since upstream of the loop condition we do not know
whether t is true or not) (Fig. 5.4).

Consequence Rule: Given a Hoare formula, we can always strengthen the precon-
dition and/or weaken the postcondition. We have the following rule:

ϕ ϕ
ψ ψ
ϕ p ψ
ϕ p ψ

tT F

B2

Ψ

ϕ

B1

Figure 5.3 Flowchart of if-else statement.

935.3 VERIFICATION

Interpretation: This rule stems readily from the definition of these formulas.

Using the proposed axioms and rules,we can nowgenerate theorems of the form {ϕ}
p {ψ}. The question that arises then is: what good does it do us to generate such theo-
rems? What does that tell us about p? The following Proposition provides the answer.

Proposition: Proving Partial Correctness If the formula

{ϕ} p {ψ}

is a theorem of the deductive system, then p is partially correct with respect to the
specification R = s,s ϕ s ψ s .

In the following section, we present sample illustrative examples of the inference
system presented herein.

5.3.3 Illustrative Examples

Weconsider the following programon space S defined by variables x and y of type real,
and we form a triplet by embedding it between a precondition and a postcondition:

• Program: while (y 0) {x=x+1; y=y–1;}.

• Precondition: x= x0 y = y0, for some constants x0 and y0.

• Postcondition: x = x0 +y0.

We form the following formula and we attempt to prove that this formula is a
theorem of the proposed inference system:

v: x = x0 y = y0 While (y≠0){x=x+1;y=y−1;} x = x0 +y0

We apply the iteration rule to v, using the invariant assertion inv≡ x +y= x0 +y0 .
This yields the following three formulas:

inv

ϕ

t
TF

B

Ψ

Figure 5.4 Flowchart of while statement.

94 PROGRAM CORRECTNESS AND VERIFICATION

v0 x = x0 y = y0 x + y = x0 + y0

v1 x + y = x0 + y0 y 0 x=x+1;y=y–1 x + y = x0 + y0

v2 x + y = x0 + y0 y = 0 x = x0 + y0

We find that v0 and v2 are both tautologies and hence they are axioms of the
inference system. We consider v1, to which we apply the sequence rule, with the
intermediate assertion int≡ x + y = x0 + y0 + 1 . This yields two formulas:

v10 x + y = x0 + y0 y 0 x=x+1 x + y = x0 + y0 + 1

v11 x + y = x0 + y0 + 1 y=y–1 x + y = x0 + y0

We apply the assignment statement rule to v10 and v11, which yields the following
formulas:

v100 x + y = x0 + y0 y 0 x + 1 + y = x0 + y0 + 1

v110 x + y = x0 + y0 + 1 x + y−1 = x0 + y0

We find that v100 and v110 are both tautologies and hence they are axioms of the
inference system. This concludes our proof to the effect that v is a theorem, since the
sequence

v100,v110,v10,v11,v0,v1,v2,v

is an inference, as the reader may check: each formula in this sequence is either an
axiom or the conclusion of a rule whose premises are to the left of the formula. By
virtue of the proposition labeled Proving Partial Correctness, we conclude that
program p is partially correct with respect to the following specification:

R = s,s x0,y0 x = x0 y = y0 x = x0 + y0 = s,s x = x + y

It may be more expressive to view this inference as a tree structure, where
leaves are the axioms and internal nodes represent the rules that were invoked in
the inference; the root of the tree represents the theorem that is established in the
inference (Fig. 5.5).

As a second illustrative example, we let space S be defined by three integer
variables n, f, k, such that n is nonnegative, and we let program p be defined as:
{f=1; k=1; while (k≠n+1) {f=f*k; k=k+1;};}.

We choose the following precondition and postcondition:

• ϕ s ≡ n = n0

• ψ s ≡ f = n0

This produces the following formula:

v : {(n = n0)} f=1; k=1; while (k≠n+1) {f=f*k; k=k+1;} {f = n0!}.

955.3 VERIFICATION

We apply the sequence rule to v, using the intermediate predicate
int≡ n = n0 f = 1 k = 1 . This yields

v0 n= n0 f=1;k=1 n = n0 f = 1 k = 1

v1 n = n0 f = 1 k = 1 while (k≠n+1) {f=f*k; k=k+1;} { f = n0!}.

We apply the sequence rule to v0, using the intermediate assertion
int≡ n = n0 f = 1 . This yields

v00 n= n0 f=1 n= n0 f = 1

v01 n = n0 f = 1 k=1 n = n0 f = 1 k = 1

We apply the assignment statement rule to v00 and v01. This yields respectively:

v000 n= n0 n= n0 1 = 1

v010 n= n0 f = 1 n= n0 f = 1 1 = 1

We find that v000 and v010 are both tautologies and hence axioms of the inference
system. We now focus on v1, to which we apply the iteration rule, with the invariant
assertion inv≡ n = n0 f = k−1 . This yields:

v10 n= n0 f = 1 k = 1 n= n0 f = k−1

v11 n = n0 f = k−1 k n+ 1 f=f*k;k=k+1 n = n0 f = k−1

v12 n = n0 f = k−1 k = n + 1 f = n0

We find that formula v10 is a tautology, since the factorial of 0 is 1, and we find
that formula v12 is a tautology, by simple substitution. Hence we now focus on v11,

v0 v1

v

v11 v10

v100 v110

v2

Figure 5.5 Structure of an Inference.

96 PROGRAM CORRECTNESS AND VERIFICATION

to which we apply the sequence rule, with the intermediate assertion int≡ n =
n0 f = k . This yields:

v110 n= n0 f = k−1 k n+ 1 f=f*k n = n0 f = k

v111 n = n0 f = k k=k+1 n = n0 f = k−1

Application of the assignment statement rule to v110 and v111 yields:

v1100 n= n0 f = k−1 k n + 1 n = n0 f × k = k

v1110 n= n0 f = k n = n0 f = k + 1−1

We find that v1100 and v1110 are both tautologies and hence axioms of the inference
system. This concludes our proof; we leave it to the reader to verify that the following
sequence is an inference in the proposed inference system:

v1100,v1110,v110,v111,v11,v10,v12,v000,v010,v00,v01,v0,v1,v

Because v is a theorem,we conclude that program p is partially correct with respect to
the following specification (formed from the precondition and postcondition of v):

R= s,s n0 n = n0 f = n0 = s,s f = n

As a third example, we consider the following GCD program on positive integer
variables x and y:

{while (x≠y) {if (x>y) {x=x–y;} else {y=y–x;};},

and we consider the following precondition/postcondition pair:

• ϕ s ≡ x = x0 y = y0 ,

• ψ s ≡ x = gcd x0,y0

We form the following formula:

v x = x0 y= y0

while(x≠y){if(x>y){x=x–y;}else{y=y–x;}}

x= gcd x0,y0

We apply the iteration rule to v with the following invariant assertion:
inv≡ gcd x,y = gcd x0,y0 . This yields:

v0 x = x0 y = y0 gcd x,y = gcd x0,y0 ,

v1 gcd x,y = gcd x0,y0 x y

if(x>y){x=x–y;} else {y=y–x;}

gcd x,y = gcd x0,y0

v2 gcd x,y = gcd x0,y0 x = y x= gcd x0,y0

975.3 VERIFICATION

We find that v0 and v2 are tautologies and hence axioms of the inference system.
We focus on v1, to which we apply the alternation rule, which yields:

v10 gcd x,y = gcd x0,y0 x y x > y

x=x–y

gcd x,y = gcd x0,y0

v11 gcd x,y = gcd x0,y0 x y x ≤ y

y=y–x

gcd x,y = gcd x0,y0

We apply the assignment statement rule to v10 and v11, which yields:

v100 gcd x,y = gcd x0,y0 x y x > y gcd x−y,y = gcd x0,y0

v110 gcd x,y = gcd x0,y0 x y x ≤ y gcd x,y−x = gcd x0,y0

We find that both of these formulas are tautologies and hence axioms of the
inference system. This concludes the proof that v is a theorem; hence program p is
partially correct with respect to

R= s,s x0,y0 x= x0 y= y0x = gcd x0,y0 = s,s x = gcd x,y

5.4 CHAPTER SUMMARY

Among the most important lessons to retain from this chapter, we cite:

• Understanding that the study of program testing requires that we understand the
meaning of program correctness.

• Understanding that a program under test is considered to fail with respect to
a specification if it fails to terminate for an initial state in the domain of the
specification, or if it does terminate but fails to deliver a state that the specifica-
tion considers correct.

• Understanding the hierarchy of correctness levels, including total correctness,
partial correctness and termination.

• Understanding that all three levels of program correctness can be captured by
means of the refinement ordering; in particular, total correctness means precisely
that the function of the program refines the specification.

• Understanding the construct of an inference system and how it mechanizes the
process of inferring theorems from hypotheses.

98 PROGRAM CORRECTNESS AND VERIFICATION

• Knowing how to use the proposed inference system to prove that a program is
partially correct with respect to a specification that takes the form of a precon-
dition/postcondition.

• Understanding the mapping between a relational specification and a specification
that takes the form of a precondition/postcondition.

• Understanding how constants are introduced (and eliminated) from specifica-
tions that take the form of a precondition and a postcondition.

5.5 EXERCISES

5.1. Prove that the following formula is a theorem of the inference system
presented in Section 5.3. Draw a conclusion about the partial correctness of the
program.

v x = x0 y= y0 y ≥ 0 while(y>0){x=x+1;y=y–1;} x= x0 + y0 .

5.2. Consider the following program on space S defined by variables x, y, z of
type integer.

{z=0; while (y≠0) {y=y–1; z=z+x;};}

This program computes the product of x and y into z. Write an appropriate
precondition and postcondition for this program and prove the resulting formula;
compute the binary relation that stems from the precondition/postcondition pair
and infer a partial correctness property of the program.

5.3. Consider the following program on space S defined by variables n and f of
type integer.

{f=1; while (n≠0) {f=f*n; n=n–1;};}

Write an appropriate precondition and postcondition that capture the function of
this program, and prove the resulting formula; compute the binary relation that
stems from the precondition/postcondition pair and infer a partial correctness
property of the program.

5.4. Same as Exercise 3, for the following program on integer variables x, y, z.

{z=0;while(y 0){if(y%2==0){x=2*x;y=y/2;}else{z=z+x;y=y–1;};};}.

5.5. Same as Exercise 3, for the following program on real array a of size N (≥1),
variable x of type real, and index variable k:

{x=0; k=0; while (k<N) {x=x+a[k]; k=k+1;};}.

995.5 EXERCISES

5.6. Same as Exercise 3, for the following program on real array a of size N (≥1),
variable x of type real, variable f of type Boolean, and index variable k:

{k=N–1; a[0]=x; while (a[k]≠x) {k=k–1;}; f=(k>0);}

5.7. Draw the inference tree of the proof of the second example (the factorial
program) in Section 5.3.3.

5.8. Draw the inference tree of the proof of the third example (the gcd program)
in Section 5.3.3.

5.6 PROBLEMS

5.1. Imagine that we have a program p on space S and a specification R on S, and
we wish to prove that p is partially correct with respect to R using the inference
system of Section 5.3. Howwe do convert specification R into a precondition and
a postcondition? Is this conversion unique? Give illustrative examples.

5.2. When we are given a precondition ϕ and a postcondition ψ of a program p,
we can use them to form a relational specification R by the formula
R= s,s ϕ s ψ s . When constants (such as x0 and y0) are involved in
the precondition or postcondition, we must quantify them existentially in the
formula of R; justify this step. Give an example of a precondition/postcondition
pair that adequately describes the function of a program but can be defined
without reference to constants.

5.7 BIBLIOGRAPHIC NOTES

The definitions and propositions pertaining to program correctness are due to Linger
et al. (1979) and Mills et al. (1986) or inspired from Mili et al. (1994). The proof
method that is presented in Section 5.3.2 is due to C.A.R. Hoare (1969).

100 PROGRAM CORRECTNESS AND VERIFICATION

6
Failures, Errors, and Faults
To the extent that software testing is the task of finding and removing faults in pro-
grams, the study of software testing requires that we study the nature and properties
of faults; these are usually viewed as part of a hierarchy that also includes errors
and failures; hence the subject of this chapter.

6.1 FAILURE, ERROR, AND FAULT

Now that we know what a correct program is, we can easily define what a program
failure is: it is any behavior of the program that belies, or is in contradiction with, its
claim of correctness with respect to a given specification. Defining errors or faults is
more complicated, because it relies on detailed design knowledge that has no officially
sanctioned existence (in the way that a specification is an officially sanctioned doc-
ument, which is part of the lifecycle deliverables), except possibly in the mind of the
designer.

We use a simple example to introduce these concepts and then we present tentative
definitions thereof. Let S be the space defined by a variable of type integer, and let R be
the following specification:

R= s,s s = s+ 1 2mod 3 + 12

and let p be the following program on space S:

{s=s+1; // line 1
s=2*s; // line 2
s = s % 3; // line 3
s=s+12;} // line 4

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

101

Given the expression that the specification mandates to compute, we would expect
the candidate program to add 1 to s, then compute the square of the result, then com-
pute the remainder by 3, then add 12; yet on line 2, the programmultiplies s by 2 rather
than raise it to the power 2. Hence it may be natural to consider that line 2 is a fault,
and that it should be s=s*s rather than s=2*s. Notice that in order to determine that
line 2 is a fault, we have to refer to a hypothetical design, which we assume the pro-
grammer had intended to follow; this matter will be discussed in subsequent sections.

We consider possible initial values of s and investigate how the program behaves
on each:

• For initial state s=1, line 1 produces state s=2, which line 2 maps into 4. Because
for s=2, 2*s and s*s are the same, the fault has no impact on this execution. We
say that the fault is not sensitized, that is, it is not causing the state to be different
from the correct state.

• For initial state s=2, line 1 produces state s=3, which line 2 maps onto 6. Because
the correct state at this step of the computation is 3*3=9 rather than 2*3=6, we
say that we are observing an error. In this case, we say that the fault has been
sensitized: unlike in the previous case, it has produced a state that is distinct from
the expected state at this step. Notice that in the same way that the identification
of a fault refers to a hypothetical program design against which individual state-
ments of program parts are judged, the identification of an error refers to a
sequence of expected/correct states against which actual states are compared.
Even though the fault is sensitized and generates an error, it causes no long-term
impact, since by line 3 the program generates a correct state: indeed (6 mod 3) is
the same as (9 mod 3). So that at the end of the program (after line 4), the state of
the program is s=12. We say that the error has been masked.

• For initial state s=3, line 1 produces state s=4, which line 2 maps onto state s=8.
Because the correct state at this step of the computation ought to be s=16 instead
of s=8, we observe again that the fault has been sensitized and has caused an
error. By line 3, the state becomes (8 mod 3)=2 rather than (16 mod 3)=1, hence
the error is propagated to the next state. By line 4, the state becomes s=2+12=4
rather than s=1+12=13. The error is again propagated causing a failure of the
program.

Hence in this example,

• The fault is the statement in line 2, which should be (s=s*s) rather than (s=2*s);

• An error is the impact of the fault on program states; not all executions of the
program give rise to an error; those that do are said to sensitize the fault. Execu-
tions on initial states s=2 and s=3 lead to errors.

• A failure is the event whereby an execution of the program on some initial state
violates the specification; not all errors give rise to a failure; those that do are said
to be propagated; those that do not are said to be masked.

102 FAILURES, ERRORS, AND FAULTS

In this example, the specification is total and deterministic and the program is
expected (if it weren’t for its fault) to compute the function defined by the specification.

6.2 FAULTS AND RELATIVE CORRECTNESS

6.2.1 Fault, an Evasive Concept

The discussions in Section 6.1 make it sound like faults are a simple concept, they are
easy to characterize and locate, and easy to remove; reality is more complicated
than that.

Let us consider again the program of Section 6.1:

{s=s+1; // line 1
s=2*s; // line 2
s = s % 3; // line 3
s=s+12;} // line 4

We assume that the fault is in line 2 and that correcting the fault consists in replacing
the statement (s=2*s) by the statement (s=s*s). Alternatively, we could also argue that a
way to correct this program is to change line 3 from (s=s%3) to (s=((s/2)**2)%3). Alter-
natively, we could also argue that a way to correct the program is to insert a statement
between lines 2 and 3 that reads (s=(s/2)**2). Alternatively, we could also argue that a
way to correct the program is to change line 1 from (s=s+1) to (s=(s+1)**2–2) and line 2
from (s=2*s) to (s=s+2). Alternatively, we could argue that a way to correct the program
is to change line 1 from (s=s+1) to (s=(s+1)**2) and to remove line 2. Of course, all
these alternatives sound convoluted and far-fetched, but any definition of fault ought
to make equal provisions for all these possibilities.

Furthermore, if we consider a non-deterministic specification, then we now have
two degrees of failure: the program may fail because it violates its (non deterministic)
specification or because it fails to compute the function it was designed to compute.
This distinction is important in practice: if we are conducting unit testing, for example,
then we want to judge the program against its intended function, but if we are conduct-
ing acceptance testing, then we want to judge it against its (possibly non-deterministic,
much less-refined) specification.

We let space S be the set of natural variables and let R be the following specifi-
cation on S:

R= s,s s mod3 = s + 1 2mod3

Imagine that upon inspecting R, the programmer decides to write a program that
computes the following function:

π = s,s s = s+ 1 2mod 3

1036.2 FAULTS AND RELATIVE CORRECTNESS

We consider the following candidate programs on S:

• p1: {s=s+1; s=s*s; s=s%3; s=s+12}

• p2: {s=s+1; s=s*s; s=s%6; s=s+12}

• p3: {s=s+4; s=s*s; s=s%3; s=s+12}

These programs are not correct with respect to π but they are correct with respect
to R. Hence whether these programs have faults or not depends on whether we are
judging them against R or against π.

From these discussions, we draw the following conclusions about faults in
programs:

• A fault is not a characteristic of a program but rather depends on a program and a
specification.

• Neither the existence, nor the number, nor the location, nor the nature of faults is
uniquely determined: the same faulty program behavior can be remedied in a num-
ber of different ways, involving a number of locations and involving different
types of corrective actions (changing an existing statement, adding a statement,
removing a statement, changing the location of a statement, etc.). This observation
should give us an opportunity to ponder what it means tomeasure fault density in a
program, or fault proneness, or other fault-related metrics.

• Designating a particular statement as a fault is often a tentative decision that is
contingent on assumptions made about other parts of the program; as such, the
designation of a statement as faulty is as valid as the assumptions made about
other parts of the program.

• Very often, when we designate a program part (a statement or a set of statements
that may or may not be contiguous) as faulty, we do so on the basis of an assump-
tion we have about the specification of the program part; hence we are in effect
second-guessing the designer by presuming to know what his intent is with
respect to the designated program part. Clearly, our diagnosis of the fault is only
as good as our assumption.

In this chapter, we give a definition of a fault that has the following attributes:
It involves the program, the (possibly) faulty program part, and the specification;
it makes no assumption on the correctness of incorrectness of any other part except
the faulty program part; and it makes no assumption about the intent of the program
designer.

6.2.2 Relative Correctness

Implicit in the definition of a fault is the idea that the program would be better off
without it. If we are talking about the last remaining fault of a program (how do
we ever know that?), then we can characterize it by the fact that with the fault, the

104 FAILURES, ERRORS, AND FAULTS

program is incorrect, and without the fault, the program is correct. But in general, pro-
grams have (many) more than one fault, and removing one fault does not make
the program correct, but it ought to make it more-correct. Whence the following
definition.

Definition: Relative Correctness Let R be a specification on space S and let p and
p be two programs on space S, whose functions are P and P . We say that p is
more-correct than p with respect to R if and only if

dom R P dom R P

We say that P is strictly-more-correct than P with respect to R if and only if:

dom R P dom R P

Interpretation: dom R P represents the set of initial states on which program p
delivers an output that specification R considers correct; we refer to this set as the
competence domain of program p with respect to specification R. Clearly, the larger
the competence domain, the better: when p is more-correct than p with respect to R,
then whenever p behaves correctly on an initial state, so does p . The following prop-
osition links the novel concept of relative correctness to a well-known property:
reliability.

Proposition: Relative Correctness and Reliability Let R be a specification on
space S and let p and p be two programs such that p is more-correct than p with
respect to R. Then program p is more reliable with respect to R than p.

The proof of this proposition is straightforward: We equate reliability with prob-
ability of a successful execution of a program on an arbitrary element of the domain of
R; reliability is usually quantified in terms of MTTF, which is clearly monotonic with
respect to the said probability. If we consider a probability distribution over the
domain of R, which reflects the likelihood of inputs submitted to the programs, then
it is clear that the probability of a successful execution of p is larger than the prob-
ability of a successful execution of p, since each probability of successful execution is
computed as the integral of the probability distribution over the competence domain.
See the Figure 6.1; the gain in probability is indicated by the integral (or the sum, for
discrete probability distributions) of the probability distribution over the range of
inputs in dom R P dom R P .

Given that dom R P is, by construction, a subset of dom(R), the best that a pro-
gram p can do is to achieve the equality dom R P = dom R . But we have seen in
Chapter 5 that this is the condition under which p is correct with respect to specifi-
cation R. Whence the following proposition.

1056.2 FAULTS AND RELATIVE CORRECTNESS

Proposition: Maximum Relative Correctness Let R be a specification on space S
and let p be a program on space S. If and only if p is correct with respect to R, p is
more-correct with respect to R than any program p on space S.

The interest of this proposition is that it presents program correctness as an extreme
form of relative correctness: a faulty program can become fault-free by shedding its

dom(R ∩ P′)
dom(R ∩ P)

dom(R)

Figure 6.1 Relative correctness and relative reliability.

1

2

3

4

5

6

1

2

3

4

5 5 5 5 5

6 6 6 6 6

4 4 4 4

3 3 3 3

2 2 2 2

1 1 1 1

PʹPR

Figure 6.2 To be more-correct without duplicating correct behavior.

106 FAILURES, ERRORS, AND FAULTS

faults and augmenting its competence domain dom R P until it reaches its maxi-
mum value, that is, dom(R), when the program become totally fault-free.

Note that for program p to be more-correct than program p with respect to spec-
ification R, p has to behave correctly with respect to R for all initial states for which p
behaves correctly. Note that this does not mean that program p and program p behave
identically on dom R P . Because R may be non-deterministic, programs p and p
may both satisfy specification R on dom R P while being distinct. In particular,
several programs may be correct with respect to specification R and still be distinct
from each other, even within dom(R). See the Figure 6.2. In this example, program
p is more-correct than program p; yet program p does not coincide with program
p on dom R P = 4,5 .

6.3 CONTINGENT FAULTS AND DEFINITE FAULTS

6.3.1 Contingent Faults

Now that we have defined the concept of relative correctness, whereby a program
can be considered more-correct than another (in a way: getting closer to a correct
program), we are ready to define a fault. A fault may be localized at an arbitrary
level of granularity: at the level of a line of code, or at the level of a simple state-
ment (e.g., assignment statement and condition), or the level of a compound state-
ment (sequence, if-then, if-then-else, while-loop), or the level of a block (unnamed
block, with variable declarations and executable statements, or named block,
such as a function body), and so on. We want to define faults in such a way that
the definition applies equally to any scale of granularity. Hence in general, we
view a program as an aggregate of components linked by programming constructs;
the size of these components determines, for our purposes, the level of granularity
at which we want to localize faults in a program. As an example, we consider the
following program:

#include <iostream> … … … // line 1
void count (charq[]) {int let, dig, other, I, l; char c; // 2
i=o; let=0; dig=0; other=0; l=strlen(q); /* init */ // 3
while (i<l) { /* t */ // 4

c=q[i]; /* b0 */ // 5
if (‘A’≤c && ‘Z’>c) let=+2; /* c1, b1 */ // 6
else // 7
if (‘a’≤c && ‘z’≥c) let=+1; /* c2, b2 */ // 8
else // 9
if (‘0’≤c && ‘9’≥c) dig=+1; /* c3, b3 */ // 10
else // 11
other+=1; /* b4 */ // 12

i++;} /* inc */ // 13
printf(“%d %d %d\n”, let, dig, other);} /* print */ // 14

1076.3 CONTINGENT FAULTS AND DEFINITE FAULTS

Using the abbreviations given in the comments (between /* and */), we can rewrite
this program as follows:

{init;
While(t) {b0; if (c1) {b1} else if (c2) {b2} else if (c3) {b3}
else b4; inc};
Print;}

We can rewrite this program at a finer grain (by decomposing conditions into their
conjuncts, for example) or at a coarser grain (by coalescing statements into larger
blocks), depending on the precision with which we wish to identify/localize faults.
The definition of a fault, which we give below, is based on two assumptions:

1. First, we are not questioning the structure of the program; rather we are only
questioning the correctness of each part thereof. If we feel that the structure
may be at fault, then we need to rewrite the program at a coarser level of
granularity.

2. Second, the designation of a particular program part as faulty is somewhat dis-
cretionary: we are assuming for a moment that other components are not in
question and pondering whether modifying the selected component will make
the program more-correct. This explains why we refer to these faults as contin-
gent faults: They are faulty if we assume for the time being that other parts are
not; also once the designated fault is corrected, the existence, number, location,
and nature of other faults may change.

Whence the following definition.

Definition: Contingent Fault We let R be a specification on space S and we let p
be a program on space S, which is written at some level of granularity as
p =C p1,p2,p3,…,pi,…,pn .We say that pi is a contingent fault (or simply a fault)
in program p with respect to specification R if and only if there exists a program
component pi such that the program p defined by p = C p1,p2,p3,…,pi,…,pn is
strictly-more-correct with respect to R than p.

Note that we require that p be strictly-more-correct than p; it is not sufficient that it
be merely more-correct. The reason for this requirement is that if we accepted that p
be more-correct than p, then any statement of p will be considered a fault—of course
we do not want that; we want to consider as faults statements whose modification
leads to an effective increase in the competence domain of the program.

As an illustration, we consider the program above and investigate its faults with
respect to the following specification:

R= s,s q list char os = os #A q #0 q # # q ,

108 FAILURES, ERRORS, AND FAULTS

where:

• os designates the output stream of the program (declared by the #inclu-
de<iostream> statement),

• represents concatenation,

• # A(q), # 0(q), # #(q) designate, respectively, the number of alphabetic characters,
numeric characters, and special symbols in array q.

We argue b1 is a fault in p with respect to R; to this effect, we must offer an
alternative statements b1 that makes the set dom R P larger. We propose b1 =
(let+=1;) and we show that this yields a more-correct program. We find,

dom R P = s q list char CHAR ,

where CHAR represents the set of upper case alphabetical characters. Indeed, this pro-
gram works correctly with respect to R as long as the input sequence does not include
any upper case letters: all upper case letters from “A” to “Y” are counted twice in let,
and “Z” is counted as a special character (variable other) rather an alphabetical char-
acter (let). As for program p , which is obtained by changing b1 into b1 , we find

dom R P = s q list char Z

Indeed, now the program counts the number of all upper case letters properly,
except for “Z”; as it is written, the program counts occurrences of “Z” as special char-
acters (variable others), rather than alphabetical characters (variable let). Clearly, we
do have

dom R P dom R P ,

hence p is strictly-more-correct than p and hence b1 is a contingent fault.

6.3.2 Monotonic Fault Removal

All programmers have war stories about a program that was running fine until they
made a slight alteration to its code thinking they were improving it, when all of a
sudden it started behaving erratically. Yet, fixing programs is supposed to make them
behave better, nor worse. Whence the following definition.

Definition: Monotonic Fault Removal We let R be a specification on space S and
we let p be a program on space S, which is written at some level of granularity as:
p = p1,p2,p3,…,pi,…,pn . We assume that pi is a fault in program p with respect
to specification R and we let component pi be a program component on S. We say
that the replacement of pi by pi constitutes a monotonic fault removal if and only if

1096.3 CONTINGENT FAULTS AND DEFINITE FAULTS

the program p defined by p =C p1,p2,p3,…,pi,…,pn is strictly-more-correct
with respect to R than program p.

Note the distinction between being a fault, which is a unary property that charac-
terizes a component of program p, and being a monotonic fault removal, which is a
binary property, that characterizes a faulty program part and its candidate substitution.
Just because pi is a fault does not mean that any pi we substitute it with will be a mon-
otonic fault removal. In other words, the fact that pi is a fault means that there exists (at
least one) pi that will make p more-correct than p. To obtain a monotonic fault
removal we need to find such a pi, whereas to prove that pi is a fault, it suffices to
prove that such a pi exists.

As an illustration of the concept of monotonic fault removals, we consider again
the program introduced in Section 6.3.1, and we let p be the program obtained from p
by substituting condition c1 by c1 defined as:

A ≤ c && Z ≥ c

Because this program is correct with respect to R, we know that dom R P =
dom R , which we write as:

dom R P = s q list char

For the sake of comparison, we also write the domains of correctness of programs
p and p :

dom R P = s q list char CHAR ,

dom R P = s q list char Z

Clearly, we have

dom R P ⊂dom R P dom R P = dom R

Hence the transition from program p to program p via program p is uniformly
monotonic: with each fault removal, we obtain a more-correct program, until all faults
are removed and we get a correct program.

Let us consider for a moment the case when we remove faults in reverse order: let
p be the program obtained from p by changing condition c1 into condition c1 defined
as above:

A ≤ c && Z ≥ c

We write below the domain of correctness of this program:

dom R P = s q list char CHAR

110 FAILURES, ERRORS, AND FAULTS

Because this is not a strict superset of the domain of correctness of pwith respect to
R, the transition from p to p does not represent a monotonic fault removal. However,
if we take program p and change statement b1 therein into b1 = (let+=1), we find
program p , which is strictly-more-correct than p . Whereas the transition from p
to p via p is uniformly monotonic, the transition from p to p via p is not, because
p is not strictly-more-correct than p. These relations are illustrated in Figure 6.3.

As another illustrative example, consider the following specification on space
S = natural:

R= s,s s mod7 = s2mod 3 + 8 mod7

And we consider the following three programs:

p = {s= 2*s; s= s mod 6; s= s+8;}
p’ = {s= 2*s; s= s mod 3; s= s+8;}
p” = {s= s^2; s= s mod 3; s= s+8;}

We find that p is not correct with respect to R. Indeed,

dom R P = s 2smod6 = s2mod3 ,

while dom(R)=S. We conjecture that the statement {s= s mod 6;} is a contingent
fault; to prove our claim, we consider program p , where this statement is replaced by
{s= s mod 3;} and we prove that p is strictly-more-correct than pwith respect to R.
To this effect, we compare the competence domains of programs p and p . We find:

dom R P = s 2smod3 = s2mod3

p p°

p′

c1 c1′

c1 c1′

b1 b1′

b1 b1′

p″

Figure 6.3 Ordering candidate programs by relative correctness.

1116.3 CONTINGENT FAULTS AND DEFINITE FAULTS

We argue that dom R P ⊂dom R P , since if 2smod6 = s2mod3, then 2s mod6
is necessarily between 0 and 2, in which case 2s mod6 is identical to 2s mod3. Hence
p is strictly-more-correct than p: indeed, p stems from p by replacing the statement
{s= s mod 6;} by the statement {s= s mod 3;}. But we are not out of the woods
yet: Program p is not correct with respect to R since the expression of the domain of
competence of p , which is evaluated above, is not equal to the domain of R, which is
S. We consider statement {s= 2*s;} in program g , and we resolve to replace it with
statement {s= s*s;}, yielding program p . We find that p is correct with respect to
R, since we have:

dom R P = dom R

The following table shows, for some values of the initial state s, the final states deliv-
ered by programs p, p , and p ; we also show, by a shaded box, whether each program
behaves correctly with respect to specification R. Note that while p behaves correctly
once out of three times (whenever s is a multiple of 3), and while program p behaves
correctly twice out of three times (whenever s is amultiple of 3, or 2 plus amultiple of 3),
program p behaves correctly with respect to R every time (for all initial states).

s P P P

Value Correct? Value Correct? Value Correct?

0 8 8 8

1 10 10 9

2 12 9 9

3 8 8 8

4 10 10 9

5 12 9 9

6 8 8 8

7 10 10 9

8 12 9 9

9 8 8 8

10 10 10 9

11 12 9 9

12 8 8 8

13 10 10 9

We have moved from program p to program p via program p by successive tran-
sitions that yielded more and more correct programs; but things are not always so

112 FAILURES, ERRORS, AND FAULTS

smooth. If instead of changing the second statement of program p (from {s= s mod 6;}
to {s= s mod 3;}) before the first (from {s= 2*x;} to {s= s*s;}), we changed the
first statement first, we would have obtained the following program, which we
denote by po:

{s= s*s; s= s mod 6; s= s+8;}.

We are unable to prove that po is more-correct than p, and for good reason: the
table below shows that it is not, since the column that corresponds to po does not
subsume the column that corresponds to P.

s P po P

Value Correct? Value Correct? Value Correct?

0 8 8 8

1 10 9 9

2 12 12 9

3 8 11 8

4 10 12 9

5 12 9 9

6 8 8 8

7 10 9 9

8 12 12 9

9 8 11 8

10 10 12 9

11 12 9 9

12 8 8 8

13 10 9 9

We conclude this section by asking a simple question: do all fault removals
have to be monotonic in practice? As we can see from the transitions from p to
p in the two examples above, a substitution may be perfectly reasonable in the
sense that it is bringing the program (syntactically) closer to being correct, and
yet not produce a monotonic fault removal. While ideally it would be desirable
if every substitution produced a monotonic fault removal, those that do not ought
to be part of a sequence of substitutions that, together, yield a strictly-more-correct
program. This is the case for the transition from p to p via p in the two exam-
ples above.

1136.3 CONTINGENT FAULTS AND DEFINITE FAULTS

6.3.3 A Framework for Monotonic Fault Removal

The discussion of monotonic fault removal leads us to consider a logical framework
for software testing that mimics/parallels the well-known frameworks of program
derivation:

• In the same way that refinement calculi provide us with a mathematical frame-
work for program derivation by successive correctness-preserving transforma-
tions starting from specifications and culminating in a correct program,

• we argue that relative correctness provides us with a mathematical framework for
fault removal by means of successive correctness-enhancing transformations
starting in an incorrect program and culminating in a correct program.

This framework is illustrated in Figure 6.4.

6.3.4 Definite Faults

Let us consider the following program, which is obtained from the program discussed
in Section 6.3.1 by changing c1 into c1 , as discussed above:

#include <iostream> … … … // line 1
void count (charq[]) {int let, dig, other, I, l;

char c; // 2
i=o; let=0; dig=0; other=0;

l=strlen(q); /* init */ // 3
While (i<1) { /* t */ // 4

Specification

Correct
program

Faulty
program

Successive
correctness
preserving
transformations

Successive
correctness
enhancing
transformations

Imperfect
design

Figure 6.4 A framework for monotonic fault removal.

114 FAILURES, ERRORS, AND FAULTS

c=q[i]; /* b0 */ // 5
if (‘A’≤c && ‘Z’≥c) let=+2; /* c1’, b1*/ // 6
else // 7
if (‘a’≤c && ‘z’≥c) let=+1; /* c2, b2 */ // 8
else // 9
if (‘0’≤c && ‘9’≥c) dig=+1; /* c3, b3 */ // 10
else // 11
other+=1; /* b4 */ // 12

i++;} /* inc */ // 13
printf(“%d %d %d\n”, let, dig, other);} /* print */ // 14

If we are interested to make this program correct with respect to specification R,
defined by

R= s,s q list char os = os #A q #0 q # # q ,

we can do so by changing b1 into b1 defined as (let+=1;). But we can also correct it
by changing b2 into b2 defined as (let+=2), and changing print into print defined as
(printf(“%d%d%d\n”, let/2, dig, other);). Alternatively, we can correct it by changing
b2 into b2 and adding a statement between lines 13 and 14 that divides let be 2. Our
point is that there is some degree of discretion in designating faults: often, a statement
can be considered faulty only if we resolve, arbitrarily, to assume that other parts of
the program are not; this is why we refer to this type of faults as contingent faults. Yet
there are cases where we do not get the luxury to decide which parts of the program to
question and which parts to absolve; whence the following definition.

Definition: Definite Fault We let R be a specification on space S and we let p
be a program on space S, which is written at some level of granularity as
p =C p1,p2,p3,…,pi,…,pn . We say that pi is a definite fault in program p with
respect to specification R if and only if for all p1,p2, ..pi−1,pi + 1,…pn, the program
p defined as C p1,p2,p3,…,pi,…,pn is not correct with respect to R.

In other words, component pi is single-handedly precluding program p from being
correct: assuming that the program structure (defined by C) is not in question (only
the components of the structure are), no change to the program that preserves pi can
make the program correct with respect to R. We consider two simple situations where
definite faults are easy to characterize; we briefly review them in turn, below. In both
cases, we do not present any theory but rather content ourselves with offering a simple
illustrative example; also in both cases we take a simple sequential structure for
program p.

6.3.4.1 Loss of Injectivity Let S be the set of natural numbers and let R be the
specification defined on space S by:

R= s,s s = 5 + smod6

1156.3 CONTINGENT FAULTS AND DEFINITE FAULTS

We let p be a program of the form p= p1;p2 and we consider a number of pos-
sibilities for p1:

• p1= {s = s % 6;}. Then p2 may be {s=s+5;}.

• p1= {s = s+6;}. Then p2 may be {s = 5 + s % 6;}.

• p1= {s = s+5;}. Then p2 may be {s = 5 + (s–5) % 6;}

• p1= {s = s % 12;}. Then p2 may be {s = 5 + s % 6;}.

But if we choose p1 = {s = s % 3}, then no function p2 can salvage the state of the
program and produce a correct outcome; knowing the value of (s mod 3) does not
inform us on the value of (s mod 6), yet we need this information to ensure a successful
execution. Hence component p1 is definitely faulty because program p cannot be cor-
rect with respect to R unless p1 is changed.

6.3.4.2 Loss of Surjectivity We consider space S defined as the set of naturals
and we let R be the following relation on S:

R= s,s s = s2mod6

We let p be a program of the form p= p1;p2 and we consider a number of pos-
sibilities for p2:

• p2= {s = s % 6;}. Then p1 may be {s=s*s;}.

• p2= {s = (s+5) % 6;}. Then p1 may be {s = s*s–5;}.

But if we choose p2 = {s = s % 3}, then there is nothing that function p1 can do to
make up for the loss of surjectivity inflicted by p2. Unlike the first two examples, the
third example of p2 has caused a loss of surjectivity beyond what R can tolerate (the
range of R is the interval [0..5] whereas the range of P2 is [0..2]). We say that p2 is a
definite fault because there is nothing that p1 can do to ensure that p = p1;p2 is cor-
rect with respect to R.

6.4 FAULT MANAGEMENT

6.4.1 Lines of Defense

Programs fail to be correct or reliable because they have faults. Hence any effort to
improve reliability and/or to enhance the probability of correctness ought to focus on
faults. Ways to deal with faults are traditionally divided into three broad categories:

1. Fault Avoidance. Methods that fall under the header of fault avoidance focus
on developing software products that are free of faults by construction. These
methods use the type of techniques that we discuss in Chapter 5 to verify that

116 FAILURES, ERRORS, AND FAULTS

programs are correct as they are constructed. More sophisticated methods turn
the verification techniques around to generate methods for developing pro-
grams from specifications, by stepwise manipulation of the specification, in
a way that ensures the correctness of the final program by construction, rather
than by inspection; some models of program construction cast the task of pro-
gram derivation as a calculation involving the target specification and a design
that is taking shape as design decisions are taken. The main difficulty with fault
avoidance methods is that they do not scale up easily or reliably to large scale
development.

2. Fault Removal. If we cannot avoid faults at program construction, perhaps we
can try to remove them once the program is developed; this is the philosophy of
fault removal methods and the focus of software testing. Fault removal methods
face two obstacles in practice:

• First, we can never be sure that we have removed all the faults in a program;
the methods discussed in Chapter 5 are intended to ensure the absence of
faults, to the extent that they scale up to programs of realistic size.

• Second, we can never be sure that while removing one fault we are not inad-
vertently introducing others. The framework of monotonic fault removal
introduced in this chapter is intended to ensure that the programs become
increasingly more-correct with each fault removal, to the extent that it can
scale up to programs of significant size and complexity.

One way to increase the effectiveness of fault removal is to ensure that we
target the most egregious faults first, that is, those that have the greatest (neg-
ative) effect on reliability, to maximize the return on investment on the fault
removal effort; also it is generally agreed that a software may be reliable
despite having faults, provided the residual faults have a low impact on
reliability.

3. Fault Tolerance. If we can neither avoid faults as we develop software pro-
ducts, nor remove them from the product after development, we ought to tol-
erate them and learn to live with them. Fault tolerance consists in admitting
the presence of faults in operating software products but taking steps to ensure
that faults do not cause failures. This is possible if we monitor program states for
any sign that a fault has caused an error and we intervene upon detecting an error
to ensure that we avoid failure. Fault tolerance includes run-time steps, namely
error detection, damage assessment, and error recovery; it also includes off-line
steps, which are to analyze error reports to diagnose the fault that may have
caused the error.

Each of these three families of methods has its strengths and weaknesses. The
Law of Diminishing Returns advocates using them in concert, deploying each one
where it is most effective. The focus of this book is on fault removal, but we may
overstep the boundaries of fault removal to the extent that program testing includes
any technique that involves observing and analyzing the behavior of candidate pro-
grams in execution.

1176.4 FAULT MANAGEMENT

6.4.2 Hybrid Validation

According to the foregoing discussion, it is advantageous to deploy more than one
method of verification, by virtue of the law of diminishing returns; according to this
law, each method offers high returns on some aspects of verification and lower returns
on others. If we deploy different methods that offer high returns on complementary
aspects, then we can afford the luxury of applying each method where its returns are
high. As a simple illustration of this philosophy, we consider the following algorithm
for selection sort. While this algorithm is fairly straightforward, one may be forgiven
for having some doubt that it is correct; some examples are as follows: Are all the
indices initialized properly? Are they incremented properly? Are they tested properly,
against the right boundaries? Are the inequalities correct (strict or large)? Does this
algorithm work for N=1?

void somesort (itemtype a[MaxSize], indextype N) // line 1

{ // 2

indextype i; i=0; // 3

while (i<=N-2) // 4

{indextype j; indextype mindx; itemtype minval; // 5

j=i; mindx=j; minval=a[j]; // 6

while (j<=N-1) // 7

{if (a[j]<minval) {mindx=j; minval=a[j];} // 8

j++;} // 9

itemtype temp; // 10

temp=a[i]; a[i]=a[mindx]; a[mindx]=temp; // 11

i++;} // 12

} // 13

To lift these doubts, one may want to use the technique discussed in Chapter 5; to
this effect, we would have to derive a precondition and a postcondition for this routine.
To check that the function sorts array a, we would write the following precondition/
postcondition pair:

• Precondition: ϕ(s) ≡ (s=s0).

• Postcondition: ψ(s) ≡ prm(s,s0) sorted(s),

where prm(s,s0) means that array a is a permutation of array a0, and sorted(s) means
that array a is sorted.

Applying the proof technique presented in Chapter 5 involves a few pages of proof,
and requires the invention of several intermediate assertions, and two invariant asser-
tions, one for each loop. Any wrong choice of an intermediate assertion or an invariant
assertion will leave us in limbo, unsure whether the program is incorrect or our choice
of assertion is inappropriate. On the other hand, if we wanted to test this program using
the same specification as an oracle, then we would have to write a Boolean function

118 FAILURES, ERRORS, AND FAULTS

that checks whether the final array is a permutation of the initial array; such a Boolean
function is difficult to write and is perhaps more complex and more error prone than
writing the sort algorithm itself.

As an alternative, we choose to prove the correctness of the programwith respect to
prm(s,s0) and to test the program using the oracle sorted(s). As far as proving the cor-
rectness of the program with respect to prm(s,s0), it suffices to consider that the only
location in the programwhere array a is changed at all, is line 11, where cells a[i] and a
[mindx] are swapped. Swapping two cells of an array preserves the property prm
(s,s0), hence this specification is satisfied. Specifically, we would define the following
precondition/postcondition pair:

• Precondition: ϕ(s) ≡ (s=s0),

• Postcondition: ψ(s) ≡ prm(s,s0),

which would yield the following verification condition:

v: {s=s0}
indextype i; i=0;

while (i<=N-2)
{indextype j; indextype mindx; itemtype minval;
j=i; mindx=j; minval=a[j];

while (j<=N-1)
{if (a[j]<minval) {mindx=j; minval=a[j];}
j++;}

itemtype temp;
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp;
i++;}

{prm(s,s0)}

By virtue of the consequence rule, we derive the following verification condition:

v0: {prm(s,s0)}
indextype i; i=0;

while (i<=N-2)
{indextype j; indextype mindx; itemtype minval;
j=i; mindx=j; minval=a[j];

while (j<=N-1)
{if (a[j]<minval) {mindx=j; minval=a[j];}
j++;}

itemtype temp;
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp;
i++;}

{prm(s,s0)}

1196.4 FAULT MANAGEMENT

We can easily verify this formula, using prm(s,s0) as an intermediate assertion
and an invariant assertion throughout the program (it is preserved vacuously since
most statements do not affect array a), until we generate the verification condition:
w:{prm(s,s0)} temp=a[i];a[i]=a[mindx];a[mindx]=temp; {prm(s,s0)}
which we assume to hold since all it does is to permute two cells of array a.

Now, to test this routine for specification sorted(s), we write the following test
driver:

#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
#include "rand.cpp"
using namespace std;

// types
typedef int itemtype;
typedef int indextype;

// constants
const indextype MaxSize = 60;
const itemtype ValueRange = 200;
const int TestLength = 10000;

// variables, current state
indextype N;
itemtype a [MaxSize];

// working variables
int testnumber=0; // counting tests
int nbfail = 0; // counting failures
string tf="testfile.dat";

// function headers
int drawint (int ValueRange);
void generatetestdata (itemtype a [MaxSize], indextype& N);
bool moretests ();
void testreport();

// program and specification/ oracle
void somesort (itemtype a[MaxSize], int N); // any sorting

algorithm
bool Oracle(itemtype a[MaxSize], indextype N);

120 FAILURES, ERRORS, AND FAULTS

fstream teststream (tf.data(), ios::out);

int main ()
{SetSeed(684); // random value
Iwhile (moretests())
{generatetestdata (a,N);
somesort(a,N);
if (!Oracle(a,N)){nbfail=nbfail+1;}};

testreport();}

int drawint (int ValueRange)
{int val; val = 1+ int(NextRand()*ValueRange);
return val;}

void generatetestdata (itemtype a [MaxSize], indextype& N)
{N = drawint(MaxSize);
for (int k=0; k<N; k++) {a[k]=drawint(ValueRange);}}

bool Oracle(itemtype a[MaxSize], indextype N)
{bool sorted; sorted=true;
for (int k=0; k<N-1; k++) {sorted = sorted && (a[k]<=

a[k+1]);};
return sorted;}

The oracle of this test is very simple, since it merely checks that the current array is
sorted. Also because this test driver is written on the basis of the specification of a
sorting algorithm, it can be applied to any sorting function; it is not specific to the
selection sort.

Execution of the test driver on the selection sort function, generating ten thousand
random arrays of random size between 1 and 60, of random values between 1 and 200,
yields no failure. While we have not proven that the program has no faults, we have
shown that if it does have faults, they do not appear to be causing frequent failures; this
does not prove that the program never fails but makes it unlikely that failure is fre-
quent. We have reached this conclusion with relatively little effort.

6.5 CHAPTER SUMMARY

The most important ideas to remember from this chapter are the following:

• The hierarchy of fault, error, and failure, and the cause–effect relationships between
them; also the concepts of fault sensitization, error masking, error propagation.

• The difference between failure with respect to the intended function versus fail-
ure with respect to the relevant specification. To the extent that the intended

1216.5 CHAPTER SUMMARY

function is just an example of (highly refined) specification, it is important
to remember that failure, error, and fault are all defined with respect to a
specification.

• The concept of relative correctness and its intuitive significance.

• The concept of contingent fault and what the attribute of contingent refers to; the
concept of definite fault and their intuitive significance.

• The classification of software improvement methods according to how they deal
with the presence and possible sensitization of faults.

• The law of diminishing returns and its application in dealing with faults.

6.6 EXERCISES

6.1. Consider the second sample example presented in Section 6.1, with space
S defined as the set of natural variables, the specification R, and the intended
function π, defined by:

R= s,s s mod 3 = s+ 1 2mod3

π = s,s s = s+ 1 2mod 3

a. Show that π refines R.

b. Show that p1: {s=s+1; s=s*s; s=s%3; s=s+12} is correct with respect to R.

c. Show that p2: {s=s+1; s=s*s; s=s%6; s=s+12} is correct with respect to R.

d. Show that p1: {s=s+4; s=s*s; s=s%3; s=s+12} is correct with respect to R.

6.2. Consider the sample program given in Section 6.3.1 and the following specifi-
cation; tell if the program has any faults; if you believe it does, show that they are
faults, using relevant definitions.

R= s,s q list char CHAR os = os #A q #0 q # # q ,

6.3. Consider the sample program given in Section 6.3.1 and the following specifi-
cation; tell if the program has any faults; if you believe it does, show that they are
faults, using relevant definitions.

R= s,s q list char os = os #A q #0 q # # q ,

where char is the set of all ascii characters excluding lower case alphabetic char-
acters. Consider that in this case the print statement (line 14) may be considered a
fault (if only we printed let/2 rather than let).

122 FAILURES, ERRORS, AND FAULTS

6.4. Consider the sample program given in Section 6.3.1 and the following specifi-
cation; tell if the program has any faults; if you believe it does, show that they are
faults, using relevant definitions.

R= s,s q list char Z os = os #A q #0 q # # q ,

where char is the set of all ascii characters excluding lower case alphabetic
characters.

6.5. Consider the sample program given in Section 6.3.1 and the following specifi-
cation; tell if the program has any faults; if you believe it does, show that they are
faults, using relevant definitions.

R= s,s q list char tail2 os = #0 q tail os = # # q ,

where char is the set of all ascii characters excluding lower case alphabetic char-
acters and operation tailn(os) represents the nth most recently written element of
stream os.

6.6. Consider the sample program given in Section 6.3.1 and the following specifi-
cation; tell if the program has any faults; if you believe it does, show that they are
faults, using the relevant definitions.

R= s,s q list char tail2 os = #0 q ,

where char is the set of all ascii characters and operation tailn(os) represents the
nth most recently written element of stream os.

6.7. Apply the method discussed in Section 6.4.2 to an insertion sort function.

6.8. Apply the method discussed in Section 6.4.2 to a quick sort function.

6.7 PROBLEMS

6.1. In the definition of contingent fault, we have assumed that faults involve a single
component. Show on the sample program of Section 6.3.1 that there are cases
when more than one component must be considered as the locus of a fault. What
impact does this new definition have on the concept of monotonic fault removal?
Can all fault removals be monotonic?

6.2. Let p1 and p2 be two programs on space S and let P1 and P2 be their respective
functions. Show that if P1 refines P2, then p1 is more-correct than p2with respect
to any specification R. Show that if p1 is more-correct than p2 with respect to any
specification R, then P1 refines P2.

1236.7 PROBLEMS

6.8 BIBLIOGRAPHIC NOTES

The hierarchy of faults, errors, and failures is due to Laprie et al. (Laprie, 1992, 1995;
Avizienis et al., 2004). The concepts of relative correctness, contingent fault, and def-
inite fault are due to Mili et al. (2014); an earlier analysis of the concept of fault is due
to Offutt and Hayes (1996).

124 FAILURES, ERRORS, AND FAULTS

7
A Software Testing

Taxonomy
7.1 THE TROUBLE WITH HYPHENATED TESTING

When reading about software testing, we often encounter types of testing that
include such samples as black box testing, white box testing, unit testing, system
testing, regression testing, mutation testing, stress testing, and so on. The trouble
with this list is that the qualifiers that we put before testing refer to different attri-
butes of the testing activity: depending on the case, they may refer to a test data
selection criterion, or to the scale of the asset under test, or to the assumptions of
the test activity, or to the product attribute being tested, and so on. The purpose
of this chapter is to classify software testing activities in a systematic manner, using
orthogonal dimensions; like all classifications schemes, ours aims to capture in a
simple abstraction a potentially complex set of related attributes. A software testing
activity can be characterized by a number of interdependent attributes; in order to
build an orthogonal classification scheme, we must select a set of independent attri-
butes that is sufficiently small so that its elements are indeed independent, yet suf-
ficiently large to cover all classes of interest. In Section 7.2, we introduce this
classification scheme, by identifying the set of attributes that we use for the purpose
of classification, along with the secondary attributes that depend on these. In
Section 7.3, we consider a number of important testing activities, analyze how they
can be projected on our classification scheme, and discuss what inferred attributes
they have by virtue of their classification.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

125

7.2 A CLASSIFICATION SCHEME

While all testing activities consist in executing a software product on selected input
data, observing its outputs and analyzing the outcome of the experiment, there is a
wide variance in how testing is conducted, depending, broadly, on the goal of the test,
the asset under test, the circumstances of the test, and the assumptions being made
about the product and its environment. We identify four independent attributes of a
software testing activity, and seven dependent attributes. We refer to the first set as
primary attributes and refer to the second set as secondary attributes.

• The primary attributes of a software testing activity are as follows:
○ Scale: This refers to the scale of the product under test, and can be a module, a
subsystem, a system, and so on.

○ Goal: There is a wide range of reasons why one may want to test a program,
including finding faults, estimating the number of faults, estimating the relia-
bility of the product, improving the reliability of the product, certifying that the
product exceeds some reliability threshold, and so on.

○ Property: While testing is most often used to check functional properties of
software assets and systems, it may also be used to assess their average per-
formance, their performance under stress, their robustness, and so on.

○ Method: This attribute refers to the method that is used to generate test data and
can, broadly, take three possible values; one may choose test data by consid-
ering the specifications (to cover all services, all functions, all circumstances)
or by considering the software product (to exercise all components, all inter-
faces, all data flows, all control flows, etc.) or by random data generation,
possibly adhering to a usage pattern (defined by a probability distribution).

• Once these primary attributes are selected, a number of secondary attributes fall
in place in a nearly deterministic manner. We identify the following secondary
attributes:
○ Oracle: The oracle of a test is the agent that determines, for each execution,
whether the outcome of the execution is consistent with the correctness of
the product under test. The oracle of a test depends first and foremost on
the property that we want to prove: while most typically we want to test the
functional properties of a program, we may also want to test some operational
attribute; clearly, the oracle depends on this choice. Also, for a given property,
the oracle depends on the goal that we want to achieve through the test; the
more ambitious the goal, the stronger the oracle.

○ Test life cycle: The life cycle of a test is the set of phases that the test has to
proceed through. As such, the life cycle depends, of course, on goal of the test;
it also depends on the property being tested and on the method being deployed
to generate test data.

○ Test assumptions: Each test makes assumptions about the product, what may
or may not be at fault, and to what extent the test environment mimics the oper-
ating environment of the software product.

126 A SOFTWARE TESTING TAXONOMY

○ Test completion: Test completion is the conditionunderwhich the test activity is
deemed to have achieved its goal. Of course, this attribute depends heavily on
what the goal is, and consequently on what product property is being tested.

○ Required artifacts: To plan and conduct a test, one may need any combination
of the source code, the executable code, the specification of the product, the
intended function of the product, the intended properties of the product, the
design documentation of the product, the test data, and so on. This is heavily
dependent on the goal of the test, the property being tested, and the test data
generation method.

○ Stakeholders: Different testing activities throughout the software life cycle
involve different stakeholders/ participants, such as developers, designers,
specifiers, users, verification and validation teams, quality assurance teams,
and so on. This attribute depends on the goal of the test as well as the scale
of the software product, and the phase of the software life cycle where the test
takes place.

○ Test environment: The environment of a test is the set of interfaces that the
product under test interacts with as it executes. A software product may be
tested in a variety of environments, depending on the scale of the product
and the phase of the life cycle: the development environment, the operating
environment, or a simulation of the operating environment.

○ Position in the life cycle: Each phase of the software life cycle lends itself to a
verification step, which can be carried out through testing. The position in the
life cycle affects the scale of the asset to be tested, and thereby affects all the
other primary attributes (goal, property, and method).

In Sections 7.2.1 and 7.2.2, we review in turn the primary then the secondary attri-
butes, by discussing what values each attribute may take, and any dependencies that
each value entails.

7.2.1 Primary Attributes

We consider four primary attributes: the scale, the goal, the property, and the method.
We review these in turn in the following:

The Scale: We consider three possible values for this attribute:

• A unit: This represents a programming unit that implements a data abstraction or
a functional abstraction. As such, it can be a class in an object-oriented language,
the implementation of an abstract data type, or a routine.

• A subsystem: This represents a component in an integrated software system. To
test such a component in a credible manner, wemay have to run the whole system
and observe the behavior of this particular component within the system. This
situation arises in the context of maintenance, for example, where we may
change a component and then test the whole system to check whether the

1277.2 A CLASSIFICATION SCHEME

changes are satisfactory, and whether the new subsystem works smoothly within
the overall system.

• A system: This represents a complete autonomous software system.

The Goal: This is perhaps the most important attribute of a test. The values it may take
include the following:

• Finding and removing faults: The most common goal of software testing is to
observe the behavior of the program on test data, and to diagnose and remove
faults whenever the program fails to satisfy its specification.

• Proving the absence of faults/certifying compliance with quality standards:
While in practice it is virtually impossible to test a program on all possible com-
binations of inputs and configurations, this possibility cannot be excluded in the-
ory. Also, we can imagine cases where the set of possible input data is small, or
cases where we can design a test dataD such that if the program runs successfully
on D, then it runs successfully on all the input space S.

• Estimating fault density: Software testing can be used to estimate the fault den-
sity of a product, as will be discussed in Chapter 13. This is done by seeding
faults, then running a test to compute how many seeded faults have been recov-
ered and how many unseeded faults have been uncovered; fault density can then
be estimated by interpolation.

• Estimating the frequency of failures: While the previous goals are concerned
with faults, this and the next goal are concerned with failures instead; there is
a sound rationale for focusing on failures rather than faults, because it is better
to reason about observable/relevant effects than about hypothetical causes. To
pursue this goal, we run the software product under conditions that simulate
its operational environment, and estimate its failure rate; the estimate is reliable
only to the extent that the test environment is a faithful reflection of the operating
environment, and that the test data reflects, in its distribution, the usage pattern of
the software product. It is only under such conditions that the failure rate
observed during testing can be borne out during field usage. We identify three
possible instances of this goal, depending on whether we want to estimate the
reliability, the safety, or the security of the product:
○ Estimating reliability
○ Estimating safety
○ Estimating security
We get one instance or another, depending on the oracle that we use for the test: To
estimate reliability, we use the functional specifications of the software product; to
estimate safety, we use the safety-critical requirements of the product; to estimate
security, we use the security requirements of the product.

• Ensuring the infrequency of failures: As an alternative to proving the absence of
faults, we may want to prove that faults are not causing frequent failures; after all,
a program may have faults and still be reliable, or more generally experience
infrequent failure. Also, as an alternative to estimating the frequency of failures,
we may simply establish that the frequency of failure is lower than a required

128 A SOFTWARE TESTING TAXONOMY

threshold. Whereas estimating the frequency of failure is a mere analytical proc-
ess, that analyzes the product as it is, ensuring the infrequency of failures may
involve diagnosing and removing faults until the frequency of failures of the soft-
ware product is deemed to be lower than the mandated threshold. As we argued
in the last item, in order for the estimate of the failure rate to be reliable, the soft-
ware product must be tested in an environment that mimics its operating envi-
ronment, and the test data must be distributed according to the usage pattern
of the product in the field. Also, this goal admits three instances, depending
on what oracle is used in the test:

• Certifying reliability

• Certifying security

• Certifying safety
We get one instance or another, depending on the oracle that we use for the test.

Method: Given a limited amount of resources (time, manpower, and budget), we
cannot run the software product on the set S of all possible input data; as a substi-
tute, we want to run the software product on a set of test data, sayD (a subset of S),
that is large enough to help us achieve our goal, yet small enough to minimize
costs. The test data generation method is the process that enables us to derive
set D according to our goal; the criterion that we use to derive D from S depends
on the goal of the test, as follows:

• If the goal of the test is to diagnose and remove faults, then D should cause the
maximum number of failures, that is, uncover/sensitize the maximum number of
faults.

• If the goal of the test is to prove correctness, then D should be chosen in such a
way that if the program runs successfully on D, we can be reasonably confident
(or assured) that it runs successfully on all of S.

• If the goal of the test is to estimate the product’s failure rate or to ensure that the
product’s failure rate exceeds a mandated threshold, then D must be a represen-
tative sample of the usage pattern of the product.

Test data generation methods are usually divided into three broad families:

• Structural methods, which generate test data by analyzing the structure of the
software product and targeting the data in such a way as to exercise relevant com-
ponents of the product.

• Functional methods, which generate test data by analyzing the specification of
the software product or its intended function, and targeting the data in such a way
as to exercise all the services or functionalities that are part of the specification or
intended function.

• Random, with respect to a usage pattern. This method generates test data in such
a way as to simulate the conditions of usage of the software product in its oper-
ating environment.

1297.2 A CLASSIFICATION SCHEME

It is possible to map the goal of the test to the test data generation method in a nearly
deterministic manner, as shown in the following table:

Method Structural Functional Random

Goal

Finding and removing faults √

Proving the absence of faults √

Estimating the frequency of failure √

Ensuring the infrequency of failure √

Estimating fault density √

Target Attribute: Most typically, one tests a software product to affect or estimate
some functional quality of the product, such as correctness, reliability, safety, security,
and so on; but as the following list indicates, one may also be interested in testing the
product for a broad range of attributes.

• Functionality: Testing a software product for functional properties such as
correctness, reliability, safety, security, and so on is the most common form
of testing, and is the default option is all our discussions.

• Robustness: Whereas correctness mandates that the software product behaves
according to the specification for all inputs in the specifieddomain, robustness further
mandates that the program behaves reasonably (whatever thatmeans: we can all rec-
ognize unreasonable program behavior when we see it) outside of the specification
domain, that is,on inputsor situations forwhich thespecificationmadenoprovisions.

• Design and structure: In integration testing, the focus of the test is on ensuring that
the parts of the software system interact with each other as provided by the design;
here the attribute we want to test or ensure is the proper realization of the design.

• Performance: Wemaywant to test a software product for the purposeof empirically
analyzing its performance under normal usage conditions (e.g., normal workload).

• Graceful degradation: In the same way that we distinguish between correctness
(functional behavior for normal inputs) and robustness (functional behavior for
exceptional or unplanned inputs), we distinguish between performance (opera-
tional behavior under normal workloads) and graceful degradation (operational
behavior under excessive workloads). To test a software product for graceful
degradation, we operate it under excessive workloads and observe whether its
performance decreases in a continuous, acceptable manner.

In Section 7.2.2, we review the secondary attributes and discuss how they are
affected by the choices made for the primary attributes reviewed in this section.

130 A SOFTWARE TESTING TAXONOMY

7.2.2 Secondary Attributes

We consider the secondary attributes listed earlier and review the set of values that are
available for each attribute, as well as how these values are impacted by the primary
attributes.

The Oracle: If the target attribute of the test is an operational attribute, such as the
response time of the product under normal workloads, or under exceptional workloads,
then the oracle takes the form of an operational condition (a response time, or a function
plotting the response time as a function of the workload). If the target attribute of the test
is functional, then the oracle depends on whether the goal of the test is to find faults or to
certify failure freedom. The following table highlights these dependencies.

The Test Life Cycle: Whereas in Chapter 3 we have presented a generic test lifecycle,
we can imagine three variations thereof, which we present in the following text:

• A sequential life cycle, which proceeds sequentially through three successive
phases of test data generation, test execution, and test outcome analysis. An algo-
rithmic representation of this cycle may look like this

{testDataGeneration(D); // D: test data set;
T=empty; // T: report

while (not empty(D))
{d=removeFrom(D);
d’=P(d);
if (not(oracle(d,d’)) {add(d,T;}}

analyze(T);}

Oracle Target attribute

Functionality Robustness Design Performance Graceful
degradation

G
o
al

o
f
te
st
in
g

Fault
removal

Use the strongest
(most refined) possible
oracle, e.g., the intended
program function

Oracle
checks
relevant
interactions

Performance requirements under
normal/exceptional conditions

Proving
absence
of faults

Estimating
frequency
of failures

Use the weakest (least refined)
possible oracle that the end
user considers
acceptable.

Oracle
checks
overall
system
function

N/A

Ensuring
infrequency
of failures

The Oracle as a Function of the Goal of Testing and the Target Attribute Being Tested

1317.2 A CLASSIFICATION SCHEME

In this cycle, the phases of test data generation, test execution, and test analysis take
place sequentially.

• A semisequential life cycle, where the execution of tests pauses whenever a
failure is observed; this life cycle may be adopted if we want to remove faults
as the test progresses. An algorithmic representation of this cycle may look
like this:

{testDataGeneration(D); // D: test data set;
while (not empty(D))
{repeat {d=removeFrom(D); d’=P(d);}
until not(oracle(d,d’));
offLineAnalysis(d); // fault diagnosis and removal

}
}

• An iterative life cycle, which integrates the test data generation into the iteration.
An algorithmic representation of this cycle may look like this:

{while (not completeTest())
{d=generateTestData();
d’=P(d);
if (oracle(d,d’)) {successfulTest(d);}
else {unsuccessfulTest(d);}
}

}

The following table shows how the value of this attribute may depend on the
primary attributes of goal and method.

Life cycle

Goal of testing

Fault
removal

Proving
absence
of faults

Estimating
frequency
of failures

Ensuring
infrequency
of failures

T
es

t
d
at
a

g
en

er
at
io
n

m
et
h
o
d

Structural Semi
sequential

Sequential
Semi sequential

Functional

Random Iterative Iterative

132 A SOFTWARE TESTING TAXONOMY

Test Assumptions: A test can be characterized by the assumptions it makes about the
product under test and/or about the environment in which it runs. As such, this attrib-
ute can take three values, depending on the scale of the product being tested, as shown
in the following table.

Test Completion: Test completion is the condition under which the test activity is
deemed to achieve its goal. Such conditions are as follows:

• The software product has passed the certification standard.

• The software product has performed to the satisfaction of the user.

• It is felt that all relevant faults have been diagnosed and removed.

• The reliability of the software product has been estimated.

• The reliability of the software product has grown beyond the required threshold.

• The test data generated for the test have been exhausted, and so on.

The following table illustrates how this attribute depends on the goal of the test and
the test data generation method.

Assumptions
Scale

Unit Subsystem System

Test
assumption

The oracle/specification
of the unit is not in
question. Only the unit’s
correctness is.

Only the targeted
subsystem is in
question, not the
remainder of the
system.

The test
environment
mimics the
product’s
operating
environment.

Completion criterion

Goals of testing

Fault
removal

Proving
absence
of faults

Estimating
frequency
of failures

Ensuring
Infrequency
of Failures

T
es

t
d
at
a

g
en

er
at
io
n

m
et
h
o
d

Structural Test data
exhausted

Desired
conclusion
reached

N/A N/A

Functional Estimation
completed

Random Desired
level
of coverage
achieved

Target threshold
reached or
exceeded

1337.2 A CLASSIFICATION SCHEME

Required Artifacts: Many artifacts may be needed to conduct a test, including any
combination of the following artifacts:

• The source code

• The executable code

• The product specification

• The product’s intended function

• The product’s design

• The signature of the software product (i.e., a specification of its input space)

• The usage pattern of the software product (i.e., a probability distribution over its
input space)

• The test data generated for the test

This attribute depends on virtually all four primary attributes; for the sake of par-
simony, we only show its dependence on the goal of testing and on the test data gen-
eration method.

Stakeholders: A stakeholder in a test is a party that has a role in the execution of
the test, or has a role in the production of the software asset being tested, or has a
stake in the outcome of the test. Possible stakeholders include the product developer,

Artifacts

Goals of testing

Fault
removal

Proving
absence of
faults

Estimating
frequency of
failures

Ensuring
infrequency of
failures

T
es

t
d
at
a
g
en

er
at
io
n
m
et
h
o
d

Structural
Source +
Executable +
Function

Functional
Executable +
Specification +
Function

Executable +
Specification

Source +
Function +
Specification +
Signature +
Usage pattern

Random

Executable +
Function +
Signature +
Usage pattern

Executable +
Signature +
Usage pattern

Source +
Specification +
Signature +
Usage pattern

134 A SOFTWARE TESTING TAXONOMY

the product specifier, the product user, the quality assurance team, the verification
and validation team, the configuration management team, and so on. The
following table shows how this attribute depends on the goal of the test and the scale
of the asset.

Test Environment: The environment of a test is the set of interfaces that the product
under test interacts with as it executes. The following table shows the different values
that this attribute may take, depending on the goal of the test and the scale of the soft-
ware product under test.

Stakeholders

Goals of testing

Fault
removal

Proving
absence of
faults

Estimating
frequency of
failures

Ensuring
infrequency
of failures

S
ca

le

Unit Unit
developer

Unit developer,
CM/QA team

Subsystem
(maintenance)

Subsystem
developer,
maintenance
engineer

Subsystem
developer,
maintenance
engineer,
CM/QA team

System Verification and
validation team
Design team

Specifier team,
design team,
and end users

Test Environment

Goals of testing

Fault removal Proving
absence of
faults

Estimating
frequency
of failures

Ensuring
infrequency
of failures

S
ca

le

Unit Development
environment

Project
configuration

Subsystem
(maintenance)

Software system

System Development
environment

Operating
environment

Simulated operating
environment

1357.2 A CLASSIFICATION SCHEME

Position in the Life Cycle: As we have seen in Chapter 3, several phases of the
software life cycle include a testing activity. The software activity at each phase
can be characterized by primary attributes; the following table shows how the goal
of testing and the scale of the product under test determine the phase at which each
test activity takes place.

7.3 TESTING TAXONOMY

In this section, we consider a number of different test activities, analyze them, and
discuss to what extent the classification scheme presented in this chapter enables
us to characterize them in a meaningful manner.

7.3.1 Unit-Level Testing

We distinguish between two types of unit-level testing:

• Unit-Level Fault Removal: This test is carried out by the unit’s developer as part
of the coding and unit testing phase of the software life cycle; its purpose is to
detect, isolate, and remove faults as part of the development life cycle.

• Unit-Level Certification: This test is carried out by the configuration manage-
ment/quality assurance team for the purpose of ensuring that the unit under test
meets the quality standards mandated for the project.

The following table illustrates how these two tests differ from each other, by com-
paring and contrasting their attributes.

Position in the
Lifecycle

Goals of testing

Fault
removal

Proving
absence
of faults

Estimating
frequency of
failures

Ensuring
infrequency
of failures

S
ca

le

Unit Unit testing Adding the
asset into the
project
configuration

Subsystem
(maintenance)

Maintenance Regression
testing

System Integration
testing

Acceptance
testing

Reliability
estimation

Reliability
growth

136 A SOFTWARE TESTING TAXONOMY

Attributes Unit-level fault removal Unit-level certification

P
ri
m
ar
y
at
tr
ib
u
te
s

Scale Unit (module, routine,
function)

Unit (module, routine,
function)

Goal Finding and removing faults Certifying compliance
with project-wide quality
standards

Property Functionality Functionality

Method Structural (attempting to
sensitize and expose as
many faults as possible)

Functional (attempting
to exercise as many
functional aspects as
possible)

S
ec

o
n
d
ar
y
at
tr
ib
u
te
s

Oracle The function that the unit is
designed to compute

The specification that
the unit is designed
to satisfy

Test life cycle Semisequential Sequential (generate
test data, run the unit
on the test data, and
record outcomes,
rule on certification)

Test assumptions The intended function is not
in question (the correctness
of the unit is)

The unit specification
is not in question
(the correctness
of the unit is)

Completion criterion Confidence that most
egregious faults have been
removed

Confidence that the unit
has passed/ or has
failed the certification
standard

Required artifacts Executable code
+ Source code
+ test environment
+ Intended function

Executable code
+ test environment
+ Unit specification

Test stakeholders Unit developer Unit developer
+ Configuration
management/quality
Assurance team

Test environment Simulated environment Existing (evolving)
system
+ Simulated environment

Position in the SW life
cycle

During the programming
phase

Concludes the
programming phase for
each individual unit

1377.3 TESTING TAXONOMY

7.3.2 System-Level Testing

We consider three system-level tests:

1. Integration test, which arises at the end of the programming phase, when
programming units that have been developed, tested, and filed into the product
configuration are combined according to the product design to produce an inte-
grated product.

2. Reliability test, which arises as the end of the software development project,
prior to product delivery, to evaluate the reliability of the product (and eventu-
ally, ascertain that the product reliability exceeds the product’s required
reliability).

3. Acceptance test, which is conducted jointly by the development team and the
user team to check that the software product meets its requirements.

Even though these tests are all at the same scale (system-wide), they differ from
each other in significant ways, as we see in the table below.

Attributes Integration test Reliability test Acceptance test

P
ri
m
ar
y
at
tr
ib
u
te
s

Scale System System System

Goal Find and remove
design faults
(dealing with
inter-component
coordination)

Assess the reliability
of the product

Check whether
the system meets
its requirements to
the satisfaction of
the user

Property Design Functionality Functionality

Method Structural Functional
(compatible with
usage pattern)

Functional (as per
user requirements)

S
ec

o
n
d
ar
y
at
tr
ib
u
te
s

Oracle System function System
Specification (or
subspecification
with respect to which
we want to estimate
reliability)

System
specification

Test life cycle Semisequential Iterative Sequential

Test
assumptions

Units are not in
question; only
system design is

Test environment
mimics operating
environment

Test environment
mimics operating
environment

Completion
criterion

All relevant
interactions
exercised, all
possible faults
removed

Reliability
adequately
estimated/ or
reliability
requirement met

Contractual
obligation met

(continued)

138 A SOFTWARE TESTING TAXONOMY

7.4 EXERCISES

7.1. Consider the software product that operates an automatic teller machine at a
bank, and let S be the input space of the product:

• Define set S, assuming that each query to the automatic teller takes the form of
an identification sequence (including a card ID followed by a PIN), followed
by a query to the card database to authenticate the customer, followed (in case
of successful identification) by a customer query (account balance, cash with-
drawal, cash deposit, check deposit), followed by a query to the account data-
base (to perform the requested operation), followed by an actuation of the cash
dispenser (if the customer requests a withdrawal and it is approved), or fol-
lowed by an actuation of the deposit unit (that accepts cash or checks) and
updates the accounts database accordingly.

• Using empirical knowledge of how automated teller machines are usually
used, define the usage pattern of the software product as a probability distri-
bution over S.

• Write a program that generates random test data according to the probability
distribution you have computed in Question (b).

7.2. Regression testing takes place at the end of any maintenance operation. You are
asked to characterize the activity of regression testing in the context of corrective
maintenance, that is, maintenance that aims to correct a fault in a software
product.

7.3. Regression testing takes place at the end of any maintenance operation. You are
asked to characterize the activity of regression testing in the context of adaptive

Required
artifacts

Executable code +
source code +
design
documentation +
expected function

Executable code +
usage pattern +
Relevant
specification

Executable code +
contractual
requirements

Test
stakeholders

Product designers Product designers +
verification and
validation

Requirements
engineers + user
representative +
managers

Test
environment

Development
environment

Operating
environment (or
simulation thereof)

Operating
environment (or
simulation thereof)

Position in the
SW life cycle

Integration Prior to delivery At delivery

(continued)

1397.4 EXERCISES

maintenance, that is, maintenance that aims to accommodate a change in the
requirements of a software product.

7.4. Naik and Tripathy (2008) discuss the following types of tests:

• Functionality

• Robustness

• Interoperability

• Performance

• Scalability

• Stress

• Load and stability

• Regression

• Documentation

• Regulatory

Characterize these types of test using the classification scheme proposed in
this chapter.

7.5 BIBLIOGRAPHIC NOTES

Alternative classification schemes for software testing can be found in the following
references: Culbertson et al. (2002); Mathur (2008); Naik and Tripathy (2008);
Perry (2002).

140 A SOFTWARE TESTING TAXONOMY

Part III

Test Data Generation
Test data generation is one of the most critical phases of software testing in the sense
that it has the greatest impact on the success or failure of the test to achieve its purpose.
The problem of test data selection can be formulated simply as follows: Given an input
space S (which is assumed to be so large that it is impractical to test the program on all
elements of S), choose a small subset T of S such that we can achieve the goal of the
test by executing the candidate program on T rather than on S. Clearly, the requirement
that T must satisfy depends on the goal of the test. We consider two possible
requirements:

1. A Logical Requirement. Any program that runs successfully for all elements of
T runs successfully for all elements of S. Note that this is equivalent to the fol-
lowing property: If a candidate program P fails on some element s of S, then
there exists an element t of T such that execution of P on the element t fails.

2. A Stochastic Requirement. The reliability observed on the execution of a can-
didate program P on T is lower than, or the same as (an approximation of), the
reliability observed on the execution of a candidate program P on S. So that any
reliability claim made on the basis of observations made during the testing
phase, when input data is limited to T, will be borne out during the operation
phase, when the input ranges over all of S.

It is important to note that these two requirements are dependent on the oracle used in
the test; it is conceivable that for each requirement, the stronger the oracle (corre-
sponding to a more-refined specification), the larger is set T; this will be discussed
in Chapter 11.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

141

8
Test Generation Concepts

Whereas Chapters 9 and 10 explore strategies for test data generation, this chapter
introduces concepts that help us streamline the discussion of test data generation,
by reviewing such questions as the following: How does the target attribute that
we are trying to achieve through the test influence test data generation? What require-
ments does the generated test data satisfy?What criteria can we deploy to generate test
data? How do we assess the quality of generated test data (i.e., the extent to which the
generated test data fulfills its requirements)? How do we measure test coverage, that
is, the extent to which a test achieves its goal?

8.1 TEST GENERATION AND TARGET ATTRIBUTES

In Chapter 7, we have surveyed several different goals of a test operation, and several
distinct attributes that a test operation may aim to establish. If we focus exclusively on
test processes that aim to establish a functional property (dealing with input/output
behavior, rather than performance or resource usage, for example) then we can iden-
tify the following possible categories:

1. Testing a program to establish correctness with respect to a specification (as in
acceptance testing).

2. Testing a program to ensure that it computes its intended function (as in unit
testing).

3. Testing a program to ensure that it is robust (i.e., that it behaves appropriately
outside the domain of its specification).

4. Testing a program to ensure its safety (i.e., that even when it fails to meet its
specification, it causes no safety violations).

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

143

5. Testing a program to ensure its security, that is, that it meets relevant
security requirements, such as confidentiality (ability to protect confidential
data from unauthorized disclosure), integrity (ability to protect critical data
from unauthorized modification), authentication (ability to authenticate system
users), and so on.

In this section, we make the case that all these attributes can be modeled
uniformly as the property that the function of the candidate program refines a given
specification. What changes from one attribute to another is merely the form of the
specification at hand; so that in the sequel, when we talk about testing a candidate
program against a specification, we could be talking about any one of these
attributes.

We review in turn the five attributes listed earlier and model them as refinement
properties with respect to various specifications.

1. Correctness: According to Chapter 5, a program p is correct with respect
to a specification R if and only if the function P of program p refines
relation R.

2. Precision: Whereas correctness tests the candidate program against its spec-
ification, precision tests the candidate program against the function that it is
designed to compute, to which we refer as the intended function of the
program. By definition, the intended function of the program is a determin-
istic relation; for all intents and purposes, being correct with respect to a
deterministic specification is indistinguishable from computing the function
defined by this specification. Whereas the specification is used for accept-
ance testing, the intended function of the program is used for unit testing or
system testing (depending on scale) where the emphasis is not on proving
correct behavior, but rather on finding faults. To illustrate the difference,
consider the following simple example: We let space S be defined by pos-
itive natural variables x and y, and let specification R on S be defined as
follows:

R= s,s x = gcd x,y ,

where gcd (x, y) refers to the greatest common divisor of x and y. Assume that
upon inspecting the specification, the program designer decides to implement
the gcd using Euclid’s algorithm. The intended function is then

F = s,s x = gcd x,y y = gcd x,y

If the candidate program fails to deliver gcd (x, y) in variable y during accept-
ance testing, that does not count as a failure since the specification does not
require the condition y = gcd x,y . But if the candidate program fails to deliver
gcd(x, y) in variable y during unit testing (when the emphasis is on finding

144 TEST GENERATION CONCEPTS

faults), that does count as a failure, since it indicates that the program is not
computing its intended function.

3. Robustness: By definition, a program is said to be robust with respect to a spec-
ification if and only if it behaves appropriately (even) in situations for which the
specification makes no provisions; we do not have a general definition of what
is appropriate behavior, but it should at least encompass normal termination
in a well-defined final state, with appropriate alerts or error messages. For a
relational specification R, the set of initial states for which the specification
makes provisions is RL; hence, the set of states for which it makes no
provisions is RL. If we limit ourselves to specification RL for initial states
outside the domain of R, it means we merely want candidate programs to
terminate normally in such cases; if we want to impose additional appropriate-
ness conditions, we further restrict the behavior of candidate programs outside
the domain of R by taking the intersection of RL with some other term, say A.
Hence, a program that is correct and robust with respect to R refines the
following specification:

R RL A

As an illustration, we consider the space S defined by integer variables x and y,
and we consider the following specification:

R= s,s x > 0 y> 0 x = gcd x,y ,

where gcd (x, y) refers to the greatest common divisor of x and y. If we also want
candidate programs to be robust, then we can write a more refined specification
under this form:

R = R RL A

We find RL = s,s x≤ 0 y ≤ 0 ; if we choose to post an error message
in x whenever x or y are not positive, we find the following composite
specification:

R = s,s x > 0 y > 0 x = gcd x,y

s,s x ≤ 0 y ≤ 0 x = errormsg

A candidate program is robust if and only if it refines specification R .

4. Safety: By definition, safety means correctness with respect to safety-critical
requirements. Most typically, the product specification refines the safety critical
requirements; but because safety-critical requirements carry much heavier stakes
and their violation costs a great deal more than other requirements, they are the
subject of special scrutiny, and are the subject of more thorough testing and ver-
ification. From a logical standpoint, safety can be modeled by the property that
the function of the program refines the safety-critical requirements.

1458.1 TEST GENERATION AND TARGET ATTRIBUTES

5. Security: By definition, security means correctness with respect to security
requirements, such as confidentiality, integrity, authentication, availability,
and so on.

Hence, while correctness (with respect to a possibly nondeterministic specifica-
tion), precision (the property of computing the exact intended function), robustness
(the property of behaving appropriately for unexpected situations), safety (the prop-
erty of avoiding safety violations), and security (the property of evading or mitigating
security threats) all sound different, they can all be modeled as the property that the
function of the candidate program refines a specification; what varies from one
attribute to the next is the specification in question. These specifications are ranked
by the refinement ordering as shown in Figure 8.1.

Henceforth, we will talk about testing a program against a specification without
specifying what form the specification has, hence which attribute we are testing it for.

8.2 TEST OUTCOMES

It is clear, from the foregoing discussions, that when we want to test a program
against a specification R, there is no reason to consider test data outside the
domain of R. Indeed, even if we are testing the behavior of candidate programs
outside their normal operating conditions, as we must do for robustness, this

F: Intended
function

Security and
correctness

R: Correctness

Safety requirements

SecurityRobustnessRL ∩ A:

R ∩ RL ∩ A: Robustness
and correctness

Figure 8.1 A hierarchy of attributes.

146 TEST GENERATION CONCEPTS

amounts to testing the candidate program for correctness with respect to a more
refined specification. We consider the following definition:

Definition 1: Successful Execution We consider a specification R on space S,
whose domain is X, and we let s be an element of X. We say that execution
of a candidate program p on initial state s is successful if and only if:
s dom R P , where P is the function computed by program p.

The set of initial states on which execution of candidate program p yields a
successful outcome is dom R P . This set is clearly a subset of X = dom R . We
give two examples to illustrate the set of states that yield a successful outcome, for
a given specification R and a given program p.

We consider a specification R on space S defined by variables x and y of type
integer, which is defined as follows:

R = s,s x = x +y

We let p be the following candidate program on the same space S:

p: {while (y!=0) {y=y-1; x=x+1;}}.

The function P that this program computes on space S is defined as follows:

P = s,s y ≥ 0 x = x +y y = 0

From this, we find

dom R P

= {since P R}

dom P

= {quantifying over s , and simplifying}

s y ≥ 0

Indeed, execution of p on s yields a successful outcome only if y s ≥ 0.

As a second example, we consider a specification R on space S defined by variables
x, y, and z of type integer, which is defined as follows:

R = s,s y ≥ 0 z = xy

We let p be the following candidate program on the same space S:

p: {while (y!=0) {y=y-1; z=z+x;}}.

1478.2 TEST OUTCOMES

The function P that this program computes on space S is defined as follows:

P = s,s y ≥ 0 x = x y = 0 z = z +xy

From this, we find

dom R P

= {by substitution}

dom s,s y ≥ 0 x = x y = 0 z = z +xy z = xy

= {simplification}

dom s,s y ≥ 0 z = 0 x = x y = 0 z = xy

= {quantifying over s , and simplifying}

s y ≥ 0 z = 0

Indeed, execution of p on s yields a successful outcome only if y s ≥ 0 z = 0 .

8.3 TEST GENERATION REQUIREMENTS

The purpose of a test operation is to run a candidate program on sample inputs and
observe its behavior in order to draw conclusions about the quality of the program.
In general, we cannot make certifiable claims about the quality of the candidate pro-
gram unless we have observed its execution on all possible inputs under all possible
circumstances. Because this is most generally impossible, we must find substitutes;
this is the focus of test data generation.

Given a candidate program p and a specification Rwhose domain is X, we are inter-
ested to choose a subset T of X such that we can achieve the goal of the test by execut-
ing the candidate program on T rather than on X. Clearly, the requirement that Tmust
satisfy depends on the goal of the test. As we remember from Chapter 7, we identify
several possible goals of testing, including the following:

• Finding and removing faults

• Proving the absence of faults

• Estimating the frequency of failures

• Ensuring the infrequency of failures

148 TEST GENERATION CONCEPTS

These goals impose different requirements on T, which we review below:

• A Logical Requirement: Set T must be chosen in such a way that if there exists
an input x in X such that a candidate program p fails when executed on x, then
there exists t in T such that program p fails when executed on t. This requirement
provides, in effect, that set T is sufficiently rich to detect all possible faults in
candidate programs.

• A Stochastic Requirement: The reliability observed on the execution of a candi-
date program p on T is the same as (or an approximation of) the reliability
observed on the execution of the candidate program p on X. So that any
reliability claim made on the basis of observations made during the testing
phase, when input data are limited to T, will be borne out during the operation
phase, when the input ranges over all of X.

• A Sufficient Stochastic Requirement: The reliability observed on the execution
of a candidate program p on T is lower than, or the same as, the reliability
observed on the execution of a candidate program p on X. So that any
reliability claim made on the basis of observations made during the testing
phase, when input data is limited to T, will be matched or exceeded during
the operation phase, when the input ranges over all of X.

Given that the set of states that yield a successful execution of a candidate
program p is dom R P , the logical requirement can be expressed as follows:

X dom R P T dom R P

This requirement provides, in effect, that if program p has a fault, test data set T will
expose it; as such, this requirement serves the first goal, whose focus is to expose
all faults of the program. In order for T to serve the second goal of testing, it needs
to satisfy the following condition:

T dom R P X dom R P ,

which provides, in effect, that if program p executes successfully on T, then it executes
successfully on X (hence is correct). The following proposition provides that these
two conditions are equivalent.

Proposition: Test Data Adequacy Let R be a specification on space S, whose
domain is X and let p be a program on space S, and T a subset of X. The following
two conditions are equivalent:

• X dom R P T dom R P .

• T dom R P X dom R P .

1498.3 TEST GENERATION REQUIREMENTS

Proof
We proceed by equivalence:

X dom R P T dom R P

{De Morgan’s laws}

T dom R P = X dom R P =

by set theory, A B = is equivalent to A B

T dom R P X dom R P

{by set theory, A =A

T dom R P X dom R P

QED

This proves that a test set T is adequate for the first goal of testing (finding and
removing faults) if and only if it is adequate for the second goal of testing (proving
the absence of faults). Figures 8.2, 8.3, and 8.4, respectively, show three configura-
tions of X, dom R P and T: a case where a test data T is certainly inadequate, a case
where test data Tmay be adequate, and a set of two cases where test data T is certainly
adequate. The cases where T is provably adequate are both of limited practical interest:
one arises when the program is correct, the other arises when T is all of S.

The test data T of Figure 8.2 is certainly inadequate: The left-hand side of the impli-
cations in proposition test data adequacy is valid, but the right-hand side is not.

Test data T of Figure 8.3 may be adequate.

dom(R∩P)

X = dom(R)

T

Figure 8.2 Inadequate test data.

150 TEST GENERATION CONCEPTS

Figure 8.4 shows cases where T is certainly adequate: (a) if p is correct or (b) if T is
exhaustive test.

The testing goals can be mapped onto test data requirements as shown in the
following table:

Testing goals Test data requirements

Finding and removing faults Logical requirement

Proving the absence of faults Logical requirement

Estimating the frequency of failures Stochastic requirement

Ensuring the infrequency of failures
Stochastic requirement
Sufficient stochastic requirement

dom (R)
= dom(R∩P)

dom(R∩P)

dom (R)
= T

T

Figure 8.4 Certainly adequate test data.

dom(R∩P)

X = dom(R)

T

Figure 8.3 Possibly adequate test data.

1518.3 TEST GENERATION REQUIREMENTS

Note that the stochastic requirement logically implies the sufficient stochastic
requirement; hence, any test data set that satisfies the former satisfies the latter; for
the same reason, the former can be used whenever the latter is adequate. Note that
we focus our attention on X, the domain of the specification, rather than the domain
(or the state space) of the program, since candidate programs are judged for their
behavior on the domain of the specification they are supposed to satisfy.

In practice, it is very difficult to generate test data that meets these requirements,
especially the logical requirement; nevertheless, these requirements serve a useful
function, in that they define the goal that we must attain as we generate test data,
and a yardstick by which we judge the quality of our choices. In the next section,
we discuss the concept of a test selection criterion, which is a criterion by which
we characterize test data to satisfy some requirement among the three introduced
in this section.

8.4 TEST GENERATION CRITERIA

Given a test generation requirement, among the three we have discussed earlier, it is
common to generate a test generation criterion, that is, a condition on set T that
dictates how to generate it in such a way as to satisfy the requirement.

For the logical requirement, the most compelling (and most common) criterion is
to partition the domain of the specification by an equivalence relation, say EQ, and
to mandate that T contain one representative element for each equivalence class of
X modulo EQ. Formally, these conditions are written as follows:

• EQ T = X

• T ×T EQ I

The first condition provides that each equivalence class of X modulo EQ is
represented by at least one element of T, as illustrated in Figure 8.5 (where the
equivalence classes are represented by the quadrants). As for the second condition,
it merely provides that T contains no unnecessary elements, that is, no two elements
of the same equivalence class.

The rationale for this criterion depends on the definition of EQ: Ideally, EQ is
defined in such a way that all the elements of the same equivalence class of Xmodulo
EQ have the same fault diagnosis capability, that is, either the candidate program runs
successfully on all of them or it fails on all of them; hence, there is no reason to test
candidate programs on more than one element per equivalence class. Formally, this
condition can be written as follows:

EQ s,s s dom R P s dom R P

We refer to this condition (on EQ) as the condition of partition testing, and we have
the following proposition.

152 TEST GENERATION CONCEPTS

Proposition: Partition Testing Let R be a specification whose domain is X, and let
EQ be an equivalence relation on X. If relation EQ satisfies the condition of partition
testing, then any set T that satisfies the condition EQ T =X necessarily satisfies the
logical requirement of test selection.

Proof. We must prove:

T dom R P X dom R P

To this effect, we assume the left-hand side and prove the right-hand side. By
hypothesis, we have X =EQ T , from which we infer, by the left-hand side of the
aforementioned implication:

X EQ dom R P

On the other hand, from the condition of partition testing, we infer

X EQ dom R P ,

where

EQ = s,s s dom R P s dom R P

Now, we compute EQ dom R P :

EQ dom R P

T

X/EQ X

Figure 8.5 Partitioning the domain of the specification.

1538.4 TEST GENERATION CRITERIA

= {definition}

s s s dom R P s,s EQ

= {substitution}

s s s dom R P s dom R P s dom R P

= {logical equivalence}

s s dom R P s s dom R P s dom R P s dom R P

{simplification}

s s dom R P

{identity }

dom R P

QED

The condition EQ T =X provides, in effect, that each element of X is related to
at least one element of T; in other words, each equivalence class of X modulo EQ has
a representative in T. As for the condition T × T EQ I, it is not needed for the
proof of this proposition, because it only limits the size of T (it provides that no more
than one representative per equivalence class is needed in T). In practice, the hypoth-
esis that EQ does indeed satisfy this property is usually hard to support, and the
criterion is only as good as the hypothesis.

For the stochastic requirement and the sufficient stochastic requirement, the most
common generation criterion that we invoke provides that set T has the same prob-
ability distribution as the expected usage pattern of the software product. The rationale
for this criterion is to imitate the operating conditions of the software product to the
largest extent possible, so that whatever behavior we observe during testing is sure to
be borne out during the product’s operation. Given a specification R whose domain
is X, we consider the following criterion on a subset T of X: We let χ be a random
variable on X that reflects the usage pattern of candidate programs in operation,
and we let θ be a random variable on T that reflects the distribution of test data during
the testing phase. Then the probability distribution pθ of θ over Tmust be identical to
the probability distribution pχ of χ over X, in the following sense:

A,A X

x A

pθ x dx =

x A

pχ χ dχ

154 TEST GENERATION CONCEPTS

The probability of occurrence of a test data point in any sub set A of X is identical to
the probability of occurrence of an actual input data point in subset A during typical
system operation. As an additional requirement, T must also be large enough so that
observations of the candidate program on T provide a statistically significant sample
of the program’s behavior. In practice, depending on how large (or how dense) T is, it
may be impossible to define a probability distribution pθ that mimics exactly the prob-
ability distribution pχ; we then let distribution pθ approximate the probability distri-
bution pχ (Fig. 8.6).

In order to mimic the probability distribution pχ, set T must have more elements
where pχ is high than where pχ is low. This matter will be revisited in Chapter 9, when
we discuss random test generation.

8.5 EMPIRICAL ADEQUACY ASSESSMENT

Whereas in the foregoing discussions, we have attempted to characterize the adequacy
of a test data T with respect to test selection requirements by means of analytical argu-
ments, in this section we consider empirical arguments. Specifically, we ponder the
question: How can we assess the ability of a test set T to expose faults in candidate
programs? A simple-minded way to do this is to run candidate programs on a test set
T and see what proportion of faults we are able to expose; the trouble with this
approach is that we do not usually know what faults a program has. Hence, if execu-
tion of program p on test set T yields no failures, or few failures, we have no way to tell
whether this is because the program has no (or few) faults or because test set T is

pχ

A X

Figure 8.6 Mimicking a probability distribution.

1558.5 EMPIRICAL ADEQUACY ASSESSMENT

inadequate. To obviate this difficulty, we generate mutants of program p, which are
programs obtained by making small changes to p, and we run all these mutants on test
set T; we can then assess the adequacy of test set T by its ability to distinguish all the
mutants from the original p, and to distinguish them from each other. A note of caution
is in order, though: it is quite possible for mutants to be indistinguishable, in the sense
that the original program p and its mutant compute the same function; in such cases,
the inability of set T to distinguish the two programs does not reflect negatively on T.
This means that in theory, we should run this experiment only on mutants which we
know to be distinct (i.e., to compute a different function) from the original; but
because it is very difficult in practice to tell whether a mutant does or does not com-
pute the same function as the original, we may sometimes (for complex programs) run
the experiment on the assumption that all mutants are distinct from the original, and
from each other.

As an illustrative example, we consider the following sorting program, which we
had studied in Chapter 6; we call it p.

void somesort (itemtype a[MaxSize], indextype N) // line 1
{ // 2
indextype i; i=0; // 3
while (i<=N-2) // 4

{indextype j; indextype mindx; itemtype minval; // 5
j=i; mindx=j; minval=a[j]; // 6
while (j<=N-1) // 7

{if (a[j]<minval) {mindx=j; minval=a[j];} // 8
j++;} // 9

itemtype temp; // 10
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp; // 11
i++;} // 12

} // 13

Imagine that we have derived the following test data to test this program:

T Index N Array a[..] Comment/rationale

t1 1 [5] Trivial size

t2 2 [5,5] Borderline size, identical elements

t3 2 [5,9] Borderline size, sorted

t4 2 [9,5] Borderline size, inverted

t5 6 [5,5,5,5,5,5] Random size, identical elements

t6 6 [5,7,9,11,13,15] Random size, sorted

t7 6 [15,13,11,9,7,5] Random size, inverted

t8 6 [9,11,5,15,13,7] Random size, random order

156 TEST GENERATION CONCEPTS

The question we ask is: How adequate is this test data? If we run our sorting routine
on this data and all executions are successful, how confident can we be that our pro-
gram is correct? The approach advocated by mutation testing is to generate mutants of
program p by making small alterations to its source code and checking to what extent
the test data is sensitive to these alterations. Let us, for the sake of argument, consider
the following mutants of program p:

void m1 (itemtype a[MaxSize], indextype N) // line 1
{ // 2
indextype i; i=0; // 3
while (i<=N-1) // changed N-2 into N-1 // 4

{indextype j; indextype mindx; itemtype minval; // 5
j=i; mindx=j; minval=a[j]; // 6
while (j<=N-1) // 7

{if (a[j]<minval) {mindx=j; minval=a[j];} // 8
j++;} // 9

itemtype temp; // 10
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp; // 11
i++;} // 12

} // 13

void m2 (itemtype a[MaxSize], indextype N) // line 1
{ // 2
indextype i; i=0; // 3
while (i<=N-2) // 4

{indextype j; indextype mindx; itemtype minval; // 5
j=i; mindx=j; minval=a[j]; // 6
while (j<N-1) // changed <= into < // 7

{if (a[j]<minval) {mindx=j; minval=a[j];} // 8
j++;} // 9

itemtype temp; // 10
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp; // 11
i++;} // 12

} // 13

void m3 (itemtype a[MaxSize], indextype N) // line 1
{ // 2
indextype i; i=0; // 3
while (i<=N-2) // 4

{indextype j; indextype mindx; itemtype minval; // 5
j=i; mindx=j; minval=a[j]; // 6
while (j<=N-1) // 7

{if (a[j]<=minval) {mindx=j; minval=a[j];}
// changed < into <= // 8

j++;} // 9

1578.5 EMPIRICAL ADEQUACY ASSESSMENT

itemtype temp; // 10
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp; // 11
i++;} // 12

} // 13

void m4 (itemtype a[MaxSize], indextype N) // line 1
{ // 2
indextype i; i=1; // changed 0 into 1 // 3
while (i<=N-2) // 4

{indextype j; indextype mindx; itemtype minval; // 5
j=i; mindx=j; minval=a[j]; // 6
while (j<=N-1) // 7

{if (a[j]<minval) {mindx=j; minval=a[j];} // 8
j++;} // 9

itemtype temp; // 10
temp=a[i]; a[i]=a[mindx]; a[mindx]=temp; // 11
i++;} // 12

} // 13

void m5 (itemtype a[MaxSize], indextype N) // line 1
{ // 2
indextype i; i=0; // 3
while (i<=N-2) // 4

{indextype j; indextype mindx; itemtype minval; // 5
j=i; mindx=j; minval=a[j]; // 6
while (j<=N-1) // 7

{if (a[j]<minval) {mindx=j; minval=a[j];} // 8
j++;} // 9

itemtype temp; // 10
a[i]=a[mindx]; temp=a[i]; a[mindx]=temp;

// inverted the first two statements // 11
i++;} // 12

} // 13

Given these mutants, we now run the following test driver, which considers the
mutants in turn and checks whether test set T distinguishes them from the original
program p.

void main ()
{for (int i=0; i<=5; i++) // does T distinguish

// mutant (i) from p
{for (int j=1; j<=8; j++) // is p(tj) different from mi(tj)?

{load tj onto N, a;

158 TEST GENERATION CONCEPTS

run p, store result in a’;
load tj onto N, a;
run mutant i, compare outcome to a’;}

if one of the tj returned a different outcome from p, announce:
“mutant i distinguished”
else announce: “mutant i not distinguished”;}

}; // assess T according to how many mutants were distinguished

The actual source code for this is shown in the appendix. Execution of this program
yields the following output, in which we show for each test datum tj and for each
mutant mi whether execution of the mutant on the datum yields a different result from
execution of the original program p on the same datum.

Mutants

T m1 m2 m3 m4 m5

t1 True True True True True

t2 True True True True True

t3 True True True True True

t4 True True True False False

t5 True True True True True

t6 True True True True True

t7 True True True False False

t8 True True True False False

Mutant
distinguished?

No No No Yes Yes

Before we make a judgment on the adequacy of our test data set, we must first
check whether the mutants that have not been distinguished from the original pro-
gram are identical to it or not (i.e., compute the same function). For example, it is
clear from inspection of the source code that mutant m1 is identical to program p:
indeed, since program p sorts the array by selection sort, then once it has selected
the smallest N−1 elements of the array, the remaining element is necessarily the
largest; hence, the array is already sorted. What mutant m1 does is to select the Nth
element of the array and permute it with itself—a futile operation, which program p
skips. Mutant m3 also appears to compute the same function as the original program
p, though it selects a different value for variable mindx when the array contains
duplicates; this difference has no impact on the overall function of the program.
The question of whether mutant m2 computes the same function as the original
program is left as an exercise.

1598.5 EMPIRICAL ADEQUACY ASSESSMENT

In general, once we have ruled out mutants that are deemed to be equivalent to the
original program, we must consider the mutants that the test data did not distinguish
from the original program even though they are distinct and raise the question: What
additional test data should we generate to distinguish all these mutants? Conversely,
we can view the proportion of distinct mutants that the test data has not distinguished
as a measure of inadequacy of the test data, a measure that we should minimize by
adding extra test data or refining existing data.

Note that the test data t1, t2,t3,t5, and t6 does not appear to help much in testing the
sorting program, as they are unable to distinguish anymutant from the original program.

In addition to its use to assess test sets, mutation is also used to automatically
correct minor faults in programs, when their specification is available and readily
testable: one can generate many mutants and test them against the specification using
an adequate test set, until it encounters a mutant that satisfies the specification. There
is no assurance that such a mutant can be found, nor that only one mutant can be found
to satisfy the specification, nor that a mutant that satisfies the specification is more
correct than the original program; nevertheless, this technique may find some uses
in practice.

8.6 CHAPTER SUMMARY

From this chapter, it is important to remember the following ideas and concepts:

• One does not generate test data in an ad hoc manner; rather, one generates test
data to fulfill specific requirements, which depend on the goal of the test. We
have identified several possible requirements that a test data set must satisfy.

• It is customary to articulate a test data generation criterion, as a first step in test
data generation; this criterion defines what condition a test data must satisfy to
meet a selected requirement.

• Any test data selection criterion must be assessed with respect to the target
requirement: To what extent does the criterion ensure that the requirement is
fulfilled? This is usually very difficult to ascertain, but having well-defined
requirements, even if they are not ever fulfilled, serves as a yardstick against
which we can assess criteria.

• The adequacy of a criterion can be assessed analytically, by referring to the
targeted requirement, or empirically, using mutants. A test data set is all the more
adequate for finding program faults that it is capable of distinguishing the
candidate program against mutants thereof (obtained by slight modifications).

• The only mutants that should be used to assess the adequacy of a test data set are
those that are functionally distinct from the original candidate program. But
determining whether a mutant is or is not functionally equivalent to the original
program can take a great deal of effort, and may be error prone.

160 TEST GENERATION CONCEPTS

8.7 EXERCISES

8.1. Consider the following specification Ron space S defined by integer variables x,
y and z:

R = s,s z = x × y

and consider the following program p (whose function is P) on the same space:

{while (y!=0) {y=y-1; z=z+x;}}.

Compute dom R P , and interpret your results.

8.2. Same question as Exercise 8.1, for the space and specification, and the follow-
ing program:

{z=0; while (y!=0) {y=y-1; z=z+x;}}.

8.3. Same question as Exercise 8.1, for the space and specification, and the follow-
ing program:

{z=0; while (y>0) {y=y-1; z=z+x;}}.

8.4. Consider the following specification R on space S defined by integer variables
x, y and z:

R = s,s y ≥ 0 z = x × y ,

and consider the following program p(whose function is P) on the same space:

{while (y!=0) {y=y-1; z=z+x;}}.

Compute dom R P , and interpret your results.

8.5. Same question as Exercise 8.4, for the space and specification, and the follow-
ing program:

{z=0; while (y!=0) {y=y-1; z=z+x;}}.

8.6. Same question as Exercise 8.4, for the space and specification, and the follow-
ing program:

{z=0; while (y>0) {y=y-1; z=z+x;}}.

8.7. Consider the following specification R on space S defined by integer variables
x, y and z:

R = s,s y ≥ 0 z = z +x × y ,

and consider the following program p (whose function is P) on the same space:

1618.7 EXERCISES

{while (y!=0) {y=y-1; z=z+x;}}.

Compute dom R P , and interpret your results.

8.8. Same question as Exercise 8.7, for the space and specification, and the follow-
ing program:

{z=0; while (y!=0) {y=y-1; z=z+x;}}.

8.9. Same question as Exercise 8.7, for the space and specification, and the follow-
ing program:

{z=0; while (y>0) {y=y-1; z=z+x;}}.

8.10. Consider the mutantm2 in the example discussed in Section 8.5. If this mutant is
identical to the original program p, explain why. If not, find additional test data
to distinguish it from p.

8.11. Consider the following sorting program; generate five mutants for it and per-
form the same analysis as we present in Section 8.5, using the same test data.
If you conclude that the test data is inadequate for the mutants you generate,
generate additional test data.

void insertSort(int a[], int length)
{

int i, j, value;
for(i = 1; i < length; i++)
{

value = a[i];
for (j = i - 1; j >= 0 && a[j] > value; j--)
{

a[j + 1] = a[j];
}
a[j + 1] = value;

}
}

8.8 BIBLIOGRAPHIC NOTES

The concept of test data selection criterion is due to Goodenough and Gerhart (1975).
The concept of program mutations and mutation testing is due to Richard Lipton; an
early presentation of the topic is given in DeMillo et al. (1978).

162 TEST GENERATION CONCEPTS

8.9 APPENDIX: MUTATION PROGRAM

void m1 (int a[6], int N);
void m2 (int a[6], int N);
void m3 (int a[6], int N);
void m4 (int a[6], int N);
void m5 (int a[6], int N);
void m6 (int a[6], int N);
void loaddata (int j);

// state variables
int a[6];
int N;
int aa[9][7];
int Na[9];
int ap[6];

int main ()
{
Na[1]=1; aa[1][1]=5;
Na[2]=2; aa[2][1]=5; aa[2][2]=5;
Na[3]=2; aa[3][1]=5; aa[3][2]=9;
Na[4]=4; aa[4][1]=9; aa[4][2]=5;
Na[5]=6; aa[5][1]=5; aa[5][2]=5; aa[5][3]=5; aa[5][4]=5;
aa[5][5]=5; aa[5][6]=5;
Na[6]=6; aa[6][1]=5; aa[6][2]=7; aa[6][3]=9; aa[6][4]=11;
aa[6][5]=13; aa[6][6]=15;
Na[7]=6; aa[7][1]=15; aa[7][2]=13; aa[7][3]=11; aa[7][4]=9;
aa[7][5]=7; aa[7][6]=5;
Na[8]=6; aa[8][1]=9; aa[8][2]=11; aa[8][3]=5; aa[8][4]=15;
aa[8][5]=13; aa[8][6]=7;
for (int i=1; i<=5; i++) // does T distinguish mutant (i) from p
{bool discumul; discumul=true;
for (int j=1; j<=8; j++) // is p(tj) different from mi(tj)?

{// load tj onto N, a;
bool dis; dis=true;
loaddata(j);
p(a,N);
for (int k=0; k<N; k++) {ap[k]=a[k];}
// load tj onto N, a;
loaddata(j);
switch(i) {case 1: m1(a,N); case 2: m2(a,N);

case 3: m3(a,N);
case 4: m4(a,N); case 5: m5(a,N);}

for (int k=0; k<N; k++) {dis = dis && (a[k]==ap[k]);}

1638.9 APPENDIX: MUTATION PROGRAM

if (dis) {cout << “ test t” << j << “ returns True”
<< endl;}

else {cout << “ test t” << j << “ returns False”
<< endl;}

discumul=discumul && dis;
}

if (discumul) {cout << “mutant ” << i << “ not distinguished
from p.” << endl;}

else {cout << “mutant ” << i << “ distinguished from p.”
<< endl;}

};
}

void loaddata(int j)
{
N=Na[j];
for (int k=0; k<N; k++) {a[k]=aa[j][k+1];}
}

164 TEST GENERATION CONCEPTS

9
Functional Criteria

Given a program p and a specification R whose domain is X, we are interested to
generate test data T as a subset of X in such a way that when we execute the candidate
program p on all the elements of set T and observe its behavior, we can make meaning-
ful inference on the functional properties of program p. In Chapter 8, we have discussed
the requirements that set T must satisfy, depending on the goal of testing, and we have
analyzed possible generation criteria that yield such data sets. The generation of test
data may proceed either by analyzing the specification of the program or by analyzing
the source code of the program. In this chapter, we focus on the first approach.

9.1 DOMAIN PARTITIONING

The criterion of domain partitioning is based on the premise that the input space X of the
specification can be partitioned into equivalence classes such that in each
class, candidate programs either runs successfully on all the states in the class or
fails on all the states in the class; this criterion may be rationalized if we define
equivalence classes to include all the input data that are processed the same way. Under
such a condition, we can let T be a subset of S that includes a single element of each
equivalence class. The selection criterion on a test set T can be formulated as follows:

Test Data Selection Criterion: Domain Partitioning

Let EQ be an equivalence relation on set X, the domain of the specification, choose a
subset T of S such that

• EQ T =X,

• EQ T ×T I.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

165

The first condition means that all equivalence classes are represented in T; the
second condition means that each equivalence class is represented by no more than
one element in T.

A special example of equivalence relation arises when the specification of the
program is deterministic (in particular, when the specification used is the intended
function of the program); hence the following heuristic:

If we want to generate test data for a program p to satisfy the logical requirement with
respect to a deterministic specification F, we may apply the space partitioning technique
with the equivalence relation EQ= s,s F s =F s . We refer to this relation as the
nucleus of F.

This relation has as many equivalence classes as F has elements in its range; hence
for functions F with a finite and small range, this produces a small test data set T. The
rationale for this criterion may be that all the inputs that are mapped to the same output
are processed using the same sequence of operations; hence if the sequence is correct,
it will work correctly for all the inputs in the same class, and if it is incorrect, it will fail
for all the inputs in the same class. This criterion is as good as the assumption it is
based on.

As an illustration, we consider the following example: We let the input space be
defined by three real positive variables x, y, and z, which we assume to represent the
sides of a triangle, and we consider the following specification, which analyzes
the properties of the triangle represented by the input variables: Given that x, y,
and z represent the sides of a triangle, place in t the class of the triangle represented
by x, y, and z from the set {scalene, isosceles, equilateral, rightisosceles, right}. We
assume that the label “isosceles” is reserved for triangles that are isosceles but not
equilateral and that the label “right” is reserved for triangles that are right but not
isosceles.

This specification can be written by means of the following predicates:

• Equi x,y,z ≡ x = y y= z .

• Iso x,y,z ≡ x= y ∨ y = z ∨ x = z .

• Right x,y,z ≡ x2 = y2 + z2 ∨ y2 = x2 + z2 ∨ z2 = x2 + y2 .

Using these predicates, we define the following relations:

• T1 = s,s Equi x,y,z t = equilateral .

• T2 = s,s Iso x,y,z ¬Equi x,y,z ¬Right x,y,z t = isoceles .

• T3 = s,s Iso x,y,z Right x,y,z t = rightisoceles .

• T4 = s,s Right x,y,z ¬ Iso x,y,z t = right .

166 FUNCTIONAL CRITERIA

• T5 = s,s ¬ Iso x,y,z ¬Equi x,y,z ¬Right x,y,z t = scalene .

Using these relations, we form the relational specification of the triangle classifi-
cation problem:

T = T1 T2 T3 T4 T5

We leave it to the reader to check that T is a function; clearly, relation
EQ= s,s F s =F s is an equivalence relation on the domain of T. Its equiva-
lence classes are:

• C1 = s Equi x,y,z .

• C2 = s Iso x,y,z ¬Equi x,y,z ¬Right x,y,z .

• C3 = s Iso x,y,z Right x,y,z .

• C4 = s Right x,y,z ¬ Iso x,y,z .

• C5 = s ¬ Iso x,y,z ¬Equi x,y,z ¬Right x,y,z .

This partition is illustrated in Figure 9.1 (where it is superimposed on the division
of space S into the set of right triangles, the set of isosceles triangles, the set of
equilateral triangles, and the set of scalene triangles).

C3

C1

C4

C2 C5

Right triangles

Isosceles
triangles

Equilateral triangles

Scalene triangles

Figure 9.1 Partitioning the set of triangles.

1679.1 DOMAIN PARTITIONING

From this partition of S, we derive an arbitrary set of test data:

Partition Test data

Name Definition x y z

C1 Equi(x, y, z) 2 2 2

C2 Iso x,y,z ¬Equi x,y,z ¬Right x,y,z 2 2 1

C3 Iso x,y,z Right x,y,z 2 2 2 2

C4 Right x,y,z ¬ Iso x,y,z 3 4 5

C5 ¬ Iso x,y,z ¬Equi x,y,z ¬Right x,y,z 2 3 4

The rationale of space partitioning is that any program that runs successfully on
these five test data triplets will run successfully on any triplet of positive reals.
We have no reason to subscribe to this rationale, except for the fact that, in all
likelihood, candidate programs operate by comparing the relative values of x,
y, and z; hence any two states s and s’ whose x-, y-, and z-components are in
the same relations relative to each other are processed the same way by the pro-
gram; therefore the program succeeds for both or fails for both. Notice that,
because this test generation method is functional, then (by definition) we generate
the test data without ever looking at the program that we are supposed to test with
this data.

Now that the data has been generated, let us now look at a possible implementation
of the specification presented above:

#include <iostream>
#include <cmath>
using namespace std;
/* constants */
float eps = 0.000001;
/* state variables */
float x, y, z;
/* functions */
bool equal(float a, float b);
bool equi(float x, float y, float z);
bool iso(float x, float y, float z);
bool right(float x, float y, float z);
int main ()
{cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
if (equi(x,y,z))

{cout << “equilateral” << endl;}
else

168 FUNCTIONAL CRITERIA

{if (iso(x,y,z))
{if (right(x,y,z))

{cout << “isosceles right” << endl;}
else {cout << “isosceles” <<endl;}}
else

{if (right(x,y,z)) {cout << “right” << endl;}
else {cout << “scalene” << endl;}}}}

bool equal (float a, float b)
{return abs(a-b)<eps;}

bool equi(float x, float y, float z)
{return (equal(x,y) && equal(y,z));}

bool iso(float x, float y, float z)
{return (equal(x,y) || equal(y,z) || equal(x,z));}

bool right(float x, float y, float z)
{return (equal(x*x+y*y,z*z) || equal(x*x+z*z,y*y) ||

equal(y*y+z*z,x*x));}

Execution of this program on the proposed test data yields the following
results:

Input variables Output

x y z

2 2 2 Equilateral

2 2 1 Isosceles

2 2 2 2 Right isosceles

3 4 5 Right

2 3 4 Scalene

The behavior of the program on the selected test data is correct; according to the
heuristic of space partitioning, and to the extent that it is valid, we can infer from this
test that the program will behave correctly for any triplet of positive real numbers that
define a triangle.

So far we have assumed that the input values x, y, and z define a triangle and have
focused on the correctness of candidate programs with respect to a relation whose
domain is the set of triangles; but assume that, for the sake of robustness, we wish to lift
this assumption and consider cases where the input does not define a triangle (e.g., the
triplet (3,3,10) does not define a triangle). We introduce the following predicate:

• Tri x,y,z ≡ x ≤ y+ z  ∨  y ≤ x+ z  ∨  z ≤ x + y .

1699.1 DOMAIN PARTITIONING

Using this predicate, we define a new specification T in terms of the previous
specification T, according to the following formula:

T = s,s ¬Tri x,y,z t = notriangle s,s Tri x,y,z T

To make our program robust (i.e., able to handle any triplet of real numbers), we
modify it to be correct with respect to specification T .We obtain the following program:

#include <iostream>
#include <cmath>
using namespace std;
/* constants */
float eps = 0.000001;
/* state variables */
float x, y, z;
/* functions */
Bool tri(float x, float y, float z);
bool equal(float a, float b);
bool equi(float x, float y, float z);
bool iso(float x, float y, float z);
bool right(float x, float y, float z);
int main ()

{cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
if (!tri(x,y,z))

{cout << “not a triangle” << endl;}
else

{if (equi(x,y,z))
{cout << “equilateral” << endl;}

else
if (iso(x,y,z))

{if (right(x,y,z))
{cout << “isosceles right” << endl;}

else {cout << “isosceles” <<endl;}
else

{if (right(x,y,z)) {cout << “right” << endl;}
else {cout << “scalene” << endl;}}}}

bool tri (float x, float y, float z)
{return ((x<=y+z) && (y<=x+z) && (z<=x+y));}

bool equal (float a, float b)
{return abs(a-b)<eps;}

bool equi(float x, float y, float z)
{return (equal(x,y) && equal(y,z));}

bool iso(float x, float y, float z)

170 FUNCTIONAL CRITERIA

{return (equal(x,y) || equal(y,z) || equal(x,z));}
bool right(float x, float y, float z)

{return (equal(x*x+y*y,z*z) || equal(x*x+z*z,y*y) ||
equal(y*y+z*z,x*x));}

From the viewpoint of test data generation, this adds a new output value, hence a
new equivalence class in the domain of the specification, for which we must select a
representative. We choose (3,3,10), yielding the following table:

Input variables Output

x y z

2 2 2 Equilateral

2 2 1 Isosceles

2 2 2 2 Right isosceles

3 4 5 Right

2 3 4 Scalene

3 3 10 Not a triangle

Remember that for our purposes, if it weren’t for the fact that it is impractical, X is
the most effective test data set; selecting the test data set T = X would enable us, if it
were feasible, to run the program exhaustively on all its possible inputs. Notice
that the criterion of domain partitioning enables us, in effect, to run the program
exhaustively on all its possible outputs, instead.

9.2 TEST DATA GENERATION FROM TABULAR EXPRESSIONS

In the previous section, we have analyzed a criterion for test data selection that
applies to deterministic specifications and partitions the domain of the specifica-
tion (say F) using the nucleus of F as the equivalence relation EQ = s,s
F s =F s . In this section, we see instances where the nucleus of F is either
too coarse-grained or too fine-rained for our purposes, and we choose a different
equivalence relation.

Tabular specifications are a form of formal specifications where complex functions
that take different expressions according to many parameters can be represented in a
way that highlights their dependencies and facilitates their analysis and their under-
standing. As an example, consider a table that specifies the tax rates of individual tax-
payers in a particular jurisdiction, as a function of their income, their marital status,
and their number of dependents.

1719.2 TEST DATA GENERATION FROM TABULAR EXPRESSIONS

Function: Tax(X, d, t)

t:
Marital
status

d:
Number of
dependents

X:
Income bracket (in $K)

X ≤ 20 20 < X ≤ 60 60 < X ≤ 150 150 < X ≤ 250 250 < X

Single 1 0.08 × X 1.6 +
0.10×(X − 20)

5.6 +
0.15 × (X − 60)

19.1 +
0.20 × (X − 150)

39.1 + 0.25
× (X − 250)

2 0.07 × X 1.4 +
0.09(X − 20)

5.0 +
0.14 × (X − 60)

17.6 +
0.19 × (X − 150)

36.6 + 0.24
× (X − 250)

3 or more 0.06 × X 1.2 +
0.08(X − 20)

4.4 +
0.13 × (X − 60)

16.1 +
0.18 × (X − 150)

34.1 + 0.23
× (X − 250)

Married/
filing
singly

1 0.07 × X 1.4 +
0.09(X − 20)

5.0 +
0.14 × (X − 60)

17.6 +
0.19 × (X − 150)

36.6 + 0.24
× (X − 250)

2 0.06 × X 1.2 +
0.08(X − 20)

4.4 +
0.13 × (X − 60)

16.1 +
0.18 × (X − 150)

34.1 + 0.23
× (X − 250)

3 0.05 × X 1.0 +
0.07(X − 20)

3.8 +
0.12 × (X − 60)

14.6 +
0.17 × (X − 150)

31.6 + 0.22
× (X − 250)

4 or more 0.04 × X 0.8 +
0.06(X − 20)

3.2 +
0.11 × (X − 60)

13.1 +
0.16 × (X − 150)

29.1 + 0.21
× (X − 250)

We let X, d, and t be variables that represent, respectively, the taxpayer’s
income, his/her number of dependents, and his/her marital status (filing status).
The input space of this specification is defined by the set of values that these three
variables take, where X is a real number, d is an integer, and t is a binary value (sin-
gle, married). If we assume, for the sake of argument, that incomes of interest range
between 0 and 1000,000, and that taxes are rounded to the nearest dollar figure, then
the output of this function ranges between 0 and 186,600. If we were to apply the
criterion of domain partitioning strictly, we would find that this function partitions
its domain into 186,601 equivalence classes, hence T would have to have that many
elements.

Yet, without knowing how candidate programs compute this function, we can
assume with some level of confidence that each entry in this tabular expression cor-
responds to a distinct execution path; hence if we generated one test datum for each
entry rather than one test datum for each tax value, we would get a much smaller test
data set (35 elements rather than 186,601) without perhaps much loss of effectiveness.
To this effect, we apply domain partitioning to a function Tax derived from Tax by
replacing each expression in the tabular representation of Tax by a (distinct) constant.
The rationale for this substitution is the assumption that if and only if an expression in
the table of Tax produces a correct value for one element within its domain of appli-
cation, then it produces a correct value for all elements within its domain of applica-
tion. This yields the following function.

172 FUNCTIONAL CRITERIA

Function: Tax '(X, d, t)

t:
Marital status

d:
Number of
dependents

X:
Income bracket (in $K)

X ≤ 20 20<X ≤ 60 60 <X≤ 150 150 < X ≤ 250 250< X

t = Single d = 1 C1,1,1 C1,1,2 C1,1,3 C1,1,4 C1,1,5

d = 2 C1,2,1 C1,2,2 C1,2,3 C1,2,4 C1,2,5

d ≥ 3 C1,3,1 C1,3,2 C1,3,3 C1,3,4 C1,3,5

t =Married d = 1 C2,1,1 C2,1,2 C2,1,3 C2,1,4 C2,1,5

d = 2 C2,2,1 C2,2,2 C2,2,3 C2,2,4 C2,2,5

d = 3 C2,3,1 C2,3,2 C2,3,3 C2,3,4 C2,3,5

d ≥ 4 C2,4,1 C2,4,2 C2,4,3 C2,4,4 C2,4,5

Applying space partitioning to function Tax using the nucleus of this function,
we find the following test data.

Marital
status/
Taxpayer
status

Number of
dependents

Income bracket (X, in $K)

X ≤ 20 20 < X ≤ 60 60 < X ≤ 150 150 < X ≤ 250 250 < X

t = Single d = 1 (10, 1,S) (40, 1,S) (100, 1,S) (200, 1,S) (300, 1, S)

d = 2 (10, 2, S) (40, 2, S) (100, 2,S) (200, 2,S) (300, 2, S)

d ≥ 3 (10, 4, S) (40, 4, S) (100, 4,S) (200, 4,S) (300, 4, S)

t =Married d = 1 (10, 1,M) (40, 1,M) (100, 1,M) (200, 1,M) (300, 1,M)

d = 2 (10, 2,M) (40, 2,M) (100, 2,M) (200, 2,M) (300, 2,M)

d = 3 (10, 3,M) (40, 3,M) (100, 3,M) (200, 3,M) (300, 3,M)

d ≥ 4 (10, 5,M) (40, 5,M) (100, 5,M) (200, 5,M) (300, 5,M)

To check that the boundaries between the various income brackets are pro-
cessed properly by candidate programs, we may also want to duplicate this table
for all boundary values of X, namely X=20, 60, 150, 250, and 1000 (assuming
that 1M is the maximum income under consideration). This yields the following
test data.

1739.2 TEST DATA GENERATION FROM TABULAR EXPRESSIONS

Marital
status/
Taxpayer
status

Number of
dependents

Income bracket (X, in $K)

X ≤ 20 20 < X ≤ 60 60 < X ≤ 150 150 < X ≤ 250 250 < X

t = Single d = 1 (10, 1,S) (40, 1,S) (100, 1,S) (200, 1,S) (300, 1,S)

(20, 1,S) (60, 1,S) (150, 1,S) (250, 1,S) (1000, 1,S)

d = 2 (10, 2,S) (40, 2,S) (100, 2,S) (200, 2,S) (300, 2,S)

(20, 2,S) (60, 2,S) (150, 2,S) (250, 2,S) (1000, 2,S)

d ≥ 3 (10, 4,S) (40, 4,S) (100, 4,S) (200, 4,S) (300, 4,S)

(20, 4,S) (60, 4,S) (150, 4,S) (250, 4,S) (1000, 4,S)

t =Married d = 1 (10, 1,M) (40, 1,M) (100, 1,M) (200, 1,M) (300, 1,M)

(20, 1,M) (60, 1,M) (150, 1,M) (250, 1,M) (1000, 1,M)

d = 2 (10, 2,M) (40, 2,M) (100, 2,M) (200, 2,M) (300, 2,M)

(20, 2,M) (60, 2,M) (150, 2,M) (250, 2,M) (1000, 2,M)

d = 3 (10, 3,M) (40, 3,M) (100, 3,M) (200, 3,M) (300, 3,M)

(20, 3,M) (60, 3,M) (150, 3,M) (250, 3,M) (1000, 3,M)

d ≥ 4 (10, 5,M) (40, 5,M) (100, 5,M) (200, 5,M) (300, 5,M)

(20, 5,M) (60, 5,M) (150, 5,M) (250, 5,M) (1000, 5,M)

Assuming that the specification is valid (is not in question) and a candidate pro-
gram p computes taxes as a linear function of income within each partition of the input
space, it is highly unlikely that program p runs successfully on all the test data pre-
sented above, yet fail on any other valid input.

We consider a second example, where we show that the important criterion for
space partitioning is not the nucleus of the function, but rather how the specifica-
tion is represented in tabular form. We consider a (fictitious) tabular specification
that represents the graduate admissions criteria at a university, depending on stand-
ard graduate record examination (GRE) scores for quantitative reasoning (G) and
grade point average (GPA) (A); also the admissions committee lends different
levels of credibility to different institutions and hence interprets the GPA with dif-
ferent levels of confidence, according to whether the candidate did his undergrad-
uate degree in the same institution, in another North American institution, or
elsewhere, as shown by the table below. We assume that the specification provides
three distinct outcomes and they are admission (Ad), rejection (Re), and condi-
tional acceptance (Cond), where the latter outcome places the application on hold
until an admitted student declines the admission, thereby freeing up a spot for
admission.

174 FUNCTIONAL CRITERIA

Admission criteria

Institution, I GPA, A GRE score, G

G < 155 155 ≤G < 160 160 ≤G < 165 165 ≤G

Same
Institution

2.9 ≤A Ad Ad Ad Ad

2.3 ≤A < 2.9 Cond Cond Ad Ad

A < 2.3 Re Re Cond Cond

Another North
American
Institution

2.9 ≤A Cond Ad Ad Ad

2.3 ≤A < 2.9 Re Cond Ad Ad

A < 2.3 Re Re Cond Cond

Overseas 2.9 ≤A Re Cond Ad Ad

2.3 ≤A < 2.9 Re Re Cond Ad

A < 2.3 Re Re Re Cond

The input space for this function is the Cartesian product of three variables, namely
G, A, and I. If we apply space partitioning using the nucleus of this function, we
find three equivalence classes, corresponding to the three possible outputs. But in
practice, any candidate program most likely proceeds by combining the conditions
shown above; hence it makes more sense to partition the input space by combining
these conditions, which gives 36 classes rather than 3. If for each class we select a
test datum in the middle of the interval and at the boundary, we find the following
test data set.

Admission criteria

Institution, I GPA, A GRE score, G

G < 155 155 ≤G < 160 160 ≤G < 165 165 ≤G

Same
Institution
(S)

2.9 ≤A (120,S,3.5)
(0,S,2.9)

(158,S,3.5)
(155,S,2.9)

(162,S,3.5)
(160,S,2.9)

(168,S,3.5)
(165,S,2.9)

2.3 ≤A < 2.9 (120,S,2.5)
(0,S,2.3)

(158,S,2.5)
(155,S,2.3)

(162,S,2.5)
(160,S,2.3)

(168,S,2.5)
(165,S,2.3)

A < 2.3 (120,S,2.0)
(0,S,.0)

(158,S,2.0)
(155,S,.0)

(162,S,2.0)
(160,S,.0)

(168,S,2.0)
(165,S,.0)

1759.2 TEST DATA GENERATION FROM TABULAR EXPRESSIONS

Another
North
American
Institution
(N)

2.9 ≤A (120,N,3.5)
(0,N,2.9)

(158,N,3.5)
(155,N,2.9)

(162,N,3.5)
(160,N,2.9)

(168,N,3.5)
(165,N,2.9)

2.3 ≤A < 2.9 (120,N,2.5)
(0,N,2.9)

(158,N,2.5)
(155,N,2.9)

(162,N,2.5)
(160,N,2.9)

(168,N,2.5)
(165,N,2.9)

A < 2.3 (120,N,2.0)
(0,N,.0)

(158,N,2.0)
(155,N,.0)

(162,N,2.0)
(160,N,.0)

(168,N,2.0)
(165,N,.0)

Overseas
(O)

2.9 ≤A (120,O,3.5)
(0,O,2.9)

(158,O,3.5)
(155,O,2.9)

(162,O,3.5)
(160,O,2.9)

(168,O,3.5)
(165,O,2.9)

2.3 ≤A <2.9 (120,O,2.5)
(0,O,2.9)

(158,O,2.5)
(155,O,2.9)

(162,O,2.5)
(160,O,2.9)

(168,O,2.5)
(165,O,2.9)

A < 2.3 (120,O,2.0)
(0,O,.0)

(158,O,2.0)
(155,O,.0)

(162,O,2.0)
(160,O,.0)

(168,O,2.0)
(165,O,.0)

For completeness, we could enrich the data set by combining normal values with
boundary values.

9.3 TEST GENERATION FOR STATE BASED SYSTEMS

A state-based system is a system whose output depends not only on its (current) input
but also on an internal state, which is itself dependent on past inputs. As we discussed
in Chapter 4, such systems can be specified in relational form by means of the follow-
ing artifacts:

• An input space X, from which we derive a set H of sequences of X

• An output space Y

• A relation R from H to Y.

It is common to specify such systems in a way that makes their internal state
explicit, by means of the following artifacts:

• An input space X

• An output space Y

• An internal state space, Σ
• An output function, ω from X × Σ to Y

• A state transition function, θ from X × Σ to Σ.

We argue that it is possible to map a specification of the form (X,Y,R) into a
specification of the form (X,Y,Σ,ω,θ), as follows:

• X and Y are preserved.

176 FUNCTIONAL CRITERIA

• We define the equivalence relation E on H (=X*) by:

E = h,h h , y h h ,y R h h ,y R

In other words, the pair (h, h) is in E if and only if they are equivalent histories, in
the sense that they produce the same output now (for h empty) and in the future
(for h not empty). Using this equivalence relation, we define the internal state
space of the system as the quotient (H/E), that is, the set of equivalence classes of
H modulo E. Whereas the output of the system depends on its input history, this
does not mean that the system must remember its input history in all its detail;
rather it must only remember the equivalence class of its input history; this is
exactly the internal state of the system.

• The output function is defined as follows:

ω= x,σ ,y h σ h x,y R

Given a current internal state σ and a current input symbol x, we let h be an arbitrary
element of σ, and we let y be an image of (h. x) by R. Because σ is an equivalence
class of H modulo E, the choice of h within σ is immaterial, by definition.

• The state transition function is defined as follows:

θ = x,σ ,σ h σ σ =E h x ,

where E(h. x) designates the set of images of (h. x) by relation E, which is the
equivalence class of (h. x) modulo E.

We have made the observation that even software systems that carry an internal
state can, in theory, be modeled by a mere relation from an input set (structured as
the set of lists formed from the input space) to an output space. This observation is
important because it means that we can, in theory, select test data for such a system
in the same way as we do for a system that has no internal state, except for considering
the special structure of the input set.

As an illustration of themappingbetween the (X, Y, R)model of specification and the
(X, Y, Σ,ω, θ)model,we consider the specificationof the stack given inChapter 4 in the
(X, Y, R) format andwediscuss (informally) the termsof its (X, Y, Σ,ω, θ) specification.

• X: The input space of the stack is defined as

X = init, pop, top, size, empty push × itemtype,

where itemtype is the data type of the items we envision to store in the stack. We
distinguish, in set X, between inputs that affect the state of the stack (namely:
AX = init, push, pop and inputs that merely report on it (namely: VX =
top, size, empty).

◦ From the set of inputsX, we build the set of input histories,H, defined as,H =X∗.

1779.3 TEST GENERATION FOR STATE BASED SYSTEMS

• Y: The output space includes all the values returned by all the inputs of VX,
namely:

Y = itemtype error integer boolean

• Σ: The equivalence relation E includes two histories h and h if and only if any
subsequent history h produces the same outcomes. Examples of histories that
are equivalent modulo relation E include, for instance:

◦ pop.top.init.pop.push(a).

◦ init.push(a).

◦ init.pop.top.size.push(a).empty.push(b).top.pop.

◦ init.push(a).push(b).push(c).push(d).top.pop.pop.pop.

All these histories belong to the same equivalence class modulo E, that is, they
are part of the same state; we represent this state by its simplest element, which is

◦ init.push(a).

• ω: The output function of the stack maps an internal state σ and a current input x
into an output y by virtue of the equation:

h x,y R,

where h is an element of σ. If we consider the internal state σ that is the equiv-
alence class of init.push(a), and we let h = init.push(a) be a representative ele-
ment of state σ, then the output of the stack for internal state σ and input x is
characterized by the following equation:

init push a x,y stack

For x = top, y =ω σ,x = a.
For x = size, y =ω σ,x = 1
For x = empty, y =ω σ,x = false.
For x = pop, push(_), or init, y=ω σ,x is arbitrary (an arbitrary element of Y),
since these are elements of AX that change the state of the stack but generate no
output.

• θ: The state transition function of the stack maps an internal state σ and a current
input x into a new internal state σ by virtue of the equation:

σ =E h x ,

where h is an element of σ. If we consider the internal state σ that is the equiv-
alence class of init.push(a), and we let h = init.push(a) be a representative ele-
ment of state σ, then the next state of the stack for internal state σ and input
x is characterized by the following equation:

σ =E init push a x

178 FUNCTIONAL CRITERIA

The following table shows the result of applying function θ to the init.push(a)
and to the input sympols of AX.

x θ (init.push(a), x)

init init

push(b) init.push(a).push(b)

pop init

Because formally, state-based systems can be specified by binary relations, then in
theory we can apply to them any criterion that we apply to simple input/output systems
which are also specified by (homogeneous) binary relations. But in recognition of the
special structure that implementations of state-based systems have (in terms of an
input space, an internal space, and an output space), it makes sense to formulate test
data selection criteria accordingly. Among the test data selection criteria that we may
adopt, we mention the following:

• Select Test Data to Visit Every State. The question that arises with this criterion is
that the specification of the product is defined in terms of input sequences
and outputs and has no cognizance of internal states; also, even if we derive
the states from the trace specifications as we have discussed above, the
implementation does not have to adopt these very states. We obviate this
dilemma by considering that, for an outside observer, a state is characterized
by the values of all the VX operations at that state. In other words, to check that
the software product is in the right state (without looking at the internal data of
the product) with respect to the specification, we generate the sequence of
operations that leads us to that state, and then we append to it in turn all the
VX operations of the specification. The procedure that generates data according
to this criterion proceeds as follows:

◦ Partition the set of histories into equivalence classes modulo the equivalence
relation E defined above.

◦ Choose an element of each equivalence class, and add to it, in turn, all the VX
operations of the specification.

In practice, relation Emay have an infinity of equivalence classes, forcing us to
take supersets of it by merging in the same equivalence class input sequences
for which we suspect that candidate programs have the same behavior (i.e., they
succeed for both or fail for both); we will see examples of this merger below.
This criterion is illustrated in the Figure 9.2, where the quadrants represent
equivalence classes of H* modulo E, h1, h2,…, h8 represent the elements of
the equivalence classes, and v1, v2,…, vi represent the VX operations of the
specification.

1799.3 TEST GENERATION FOR STATE BASED SYSTEMS

• Select Test Data to Perform Every State Transition. We perform state transitions
by appending AX operations to existing sequences for all the AX operations of the
specification, then appending in turn all the VX operations to identify the new
state, and check its validity with respect to the specification. This criterion is
illustrated in the Figure 9.3, where the quadrants represent equivalence classes
ofH* modulo E, h1, h2,…, h8 represent the elements of the equivalence classes,
and v1, v2,…, vi represent theVX operations of the specification, and a1, a2,…, aj
represent its AX operations.

From this discussion we infer that the set of test data that we ought to
generate to visit all the states and traverse all the state transitions is the union
of two terms:

1. X∗ E ×VX (by virtue of the criterion of visiting all the states) and

2. X∗ E ×AX ×VX (by virtue of traversing all the state transitions).

h1 h2

h8

h7

h6 h5

h3 .v1 h3 .v2 ... h3 . vi

h4 .v1 h4.v2 ... h4.vi

H*

Y

Figure 9.2 Visiting each state.

180 FUNCTIONAL CRITERIA

Whence the following test data generation criterion:

If we want to generate test data for a program p to satisfy the logical requirement with
respect to a state-based specification R from input space X to output space Y, we let E be
the quivalence relation defined on H =X∗ by

E = h,h h H, y Y h h,y R h h',y R ,

and we generate test data T as:

T = X∗ E ×VX X∗ E ×AX ×VX

Whereas the formula of T (above) provides for composing sets (X*/E), AX, and VX
by means of the Cartesian product, we in fact mean to obtain a set of sequences

h8

h7

h6 h5

h1 a1

a2
h3

h3 .a1.v1 h3.a1.v2 ... h3.a1.vi

h3.a2.v1 h3.a2.v2 ... h3.a2.vi

Y

H*

Figure 9.3 Visiting each state transition.

1819.3 TEST GENERATION FOR STATE BASED SYSTEMS

constructed by concatenation of elements of these sets; this is illustrated in the
example below.

While AX and VX are usually small, (X*/E) is usually infinite, requiring some
additional assumptions to replace it by a finite/small subset. As an illustration, we con-
sider again the stack specification, and we argue that two input sequences of this
specification are equivalent if and only if they are reducible to the same sequence
of the form:

init push t1 push t2 push t3 …push tk

This set of states is clearly infinite, given that k can be arbitrarily large, and t1, t2, t3,
…, tk, can take arbitrary values. If we assume that the success or failure of a stack
implementation will not depend, perhaps, on the value that we store in the stack at
any position, then we can represent states as follows, where push − n represents a
sequence of n instances of push() for arbitrary values on the stack, then we can write
the states of the stack as:

init push − k

This set is also infinite, since k may take arbitrary natural values; hence further
assumptions are needed. We may assume (with some risk) that any implementation
of the stack that works for stacks of size 3 works for stacks greater than 3, provided
we have assurances that overflow is not an issue (either because our stack size is
bounded or because our supply of memory is unbounded). Hence (X*/E) can be
approximated with the following set:

init, init push , init push push , init push push push

This gives the following test data, which we present in two different tables that
correspond to the two terms of the union in the formula of T:

(X*/E)

init init.push(–) init.push(). push() init.push(). push().
push()

VX top init.top init.push(a).
top

init.push(–).
push(a).top

init.push(–).push(–).
push(a).top

size init.size init.push(a).
size

init.push(–).
push(a).size

init.push(–).push(–).
push(a).size

empty init.empty init.push(a).
empty

init.push(–).
push(a).empty

init.push(–).push(–).
push(a).empty

182 FUNCTIONAL CRITERIA

AX VX X∗ E ×AX ×VX

init init.push(–) init.push().
push()

init.push().
push(). push()

init top init.init.
top

init.push(a).
init.top

init.push(–).
push(a).init.
top

init.push(–).
push(–).push(a).
init.top

size init.init.
size

init.push(a).
init.size

init.push(–).
push(a).init.
size

init.push(–).
push(–).push(a).
init.size

empty init.init.
empty

init.push(a).
init.empty

init.push(–).
push(a).init.
empty

init.push(–).
push(–).push(a).
init.empty

push top init.push(b).
top

init.push(a).
push(b).top

init.push(–).
push(a).
push(b).top

init.push(–).
push(–).push(a).
push(b).top

size init
push(b).size

init.push(a).
push(b).size

init.push(–).
push(a).
push(b).size

init.push(–).push
(–).push(a).push
(b).size

empty init.push(b).
empty

init.push(a).
push(b).
empty

init.push(–).
push(a).
push(b).empty

init.push(–).
push(–).push(a).
push(b).empty

pop top init.pop.top init.push(a).
pop.top

init.push(–).
push(a).pop.
top

init.push(–).push
(–).push(a).
pop.top

size init.pop.size init.push(a).
pop.size

init.push(–).
push(a).pop.
size

init.push(–).
push(–).push(a).
pop.size

empty init.pop.
empty

init.push(a).
pop.empty

init.push(–).
push(a).pop.
empty

init.push(–).
push(–).push(a).
pop.empty

How do we test an implementation using this test data? Simply by declaring an
instance of the class that implements the specification R and by writing sequences
of method calls that represent the data shown in this table. For example,

#include <iostream>
#include “stack.cpp”
using namespace std;
/* state variables */
stack s;
itemtype t; int z; bool e; // to store outputs of VX operations

1839.3 TEST GENERATION FOR STATE BASED SYSTEMS

int main ()
{
s.init(); t=s.top(); cout << t; // test datum: init.top
// … … …
s.init(); s.push(c); s.push(d); s.push(a); s.push(b);
// test datum: init.push(_).push(_).push(a).pop.empty
}

As for the question of whether these executions took place according to the
specification, it will be addressed when we discuss oracle design, in Chapter 11.

9.4 RANDOM TEST DATA GENERATION

Test data generation is a difficult, labor-intensive, time-consuming and error-prone
activity. Like all such activities, it raises the question of whether it can be auto-
mated. To automate the generation of specific test data that meet specific generation
criteria using specifications is very difficult, especially if one considers that very
often the specification is not available in the form and with the precision that is
required for this purpose. What is possible, however, is to generate great volumes
of random test data, according to arbitrary probability distributions; there are many
cases where this approach provides an excellent return on investment, in terms of
test effectiveness versus testing effort. Random number generators are widely avail-
able, in conjunction with common programming languages, or as part of mathemat-
ical packages; they can be used to generate a wide range of probability laws. Also,
because they operate automatically, they can be used to generate arbitrarily large
volumes of data and provide arbitrary levels of test thoroughness at relatively little
cost and little risk.

• Using the package “rand.cpp”, we can generate random numbers between 0
(inclusive) and 1 (non-inclusive) by calling the function NextRand()as many
times as we need; prior to the first call, we must initialize the random generation
process by calling the functionSetSeed()with an arbitrary numeric parameter.

• Using function NextRand(), we can generate random real numbers that
range uniformly 0.0 inclusive andM (non-inclusive) for an arbitrary value of real
number M.

float function randomReal(float M)
{return M*NextRand();}

• Using function NextRand(), we can generate random integers that range
uniformly between 1 (inclusive) and N (inclusive), for an arbitrary positive
integer N.

184 FUNCTIONAL CRITERIA

int function randomInt(int N)
{return 1+ int(N*NextRand());}

• Using function NextRand(), we can generate a Boolean function that returns
true with a given probability (and false otherwise); the following function
returns true with probability p.

bool function randomBool(float p)
{return (NextRand() <= p);}

• Using function randomBool(), we can generate a Boolean function that
returns true, on average, once every N times that it is called.

bool function randomEvent(int N)
{return (randomBool(1.0/N));}

• Using function randomInt(), we can generate an integer function that ranges
uniformly between two values N1 and N2, where N1 ≤N2.

int function randomInterval(int N1, int N2)
{return (N1-1+randomInt(N2-N1+1));}

• Using function randomInterval(), we can generate an integer function that
ranges uniformly between –N and N, for N ≥ 0.

int function randomSym(int N)
{return (randomInterval(-N,N));}

• Using function NextRand(), we can generate a function that produces a set of
discrete outcomes with a specific probability distribution.

itemtype randomItems (itemtype items[],
float distribution[])

{float cumul[nbitems];
for (int i=0; i<nbitems; i++)
{cumul[i]=0;
for (int j=0; j<=i; j++) {cumul[i]=cumul[i]

+distribution[j];}}
float p; p=NextRand(); int i; i=0; while (p>cumul[i])
{i++;}
return (items[i]);

}

This function proceeds by taking the array that represents the probability distri-
bution and building an array of cumulative probability distributions, as follows:

1859.4 RANDOM TEST DATA GENERATION

index 0 1 2 3 … nbitems-1

items a0 a1 a2 a3 … anbitems−1

distribution. p0 p1 p2 p3 … pnbitems−1

cumul p0 p0 +p1 p0 +p1 +p2 p0 +p1 +p2 +p3 … 1.0

Once thecumulativearray is loaded, the functiondrawsa randomnumberpbetween
0.0 (inclusive) and1.0 (exclusive) and returns the first itemai forwhich p is less than
or equal to cumul[i]. Such a value i satisfies the following condition:

cumul i−1 < p ≤ cumul i

The length of this interval is the difference between cumul i−1 and cumul[i],
which is pi. The bigger the value of pi, the more likely p is to fall in this interval,
the more ai is to be selected. To test this function, we invoke a large number of
times and show that the distribution with which it generates the various items
mimics the given probability distribution. To this effect, we execute the follow-
ing program on a set of five items (which we represent by 0, 1, 2, 3, 4) with a
probability distribution of (0, 0.1, 0.2, 0.3, and 0.4). The program that runs this
experiment is given below:

#include <iostream>
#include “rand.cpp”
using namespace std;

// constants
int nbitems = 5;

// type defs
typedef int itemtype;

// functions
itemtyperandomItems(itemtypeitems[],floatdistribution[]);

int main ()
{SetSeed(684);
int stats[5];
itemtype items[5]; float distribution[5];
for (int k=0; k<5; k++)

{items[k]=k; distribution[k]=k/10.0;stats[k]=0;}
for (int k=0; k<100000; k++)

{stats[randomItems(items,distribution)]++;}
for (int i=0; i<5; i++)

186 FUNCTIONAL CRITERIA

{cout << stats[i] << “ ”;}
cout << endl;
}

Execution of this program yields the following outcome, which reflects a very
consistent behavior with respect to our original distribution.

0 100749 199899 300003 399349

As a simple illustration of this toolbox of functions for random test data generation,
we consider that we must generate test data for a small function that searches an item
in an array, where:

• Arrays vary in size between 1 and 100.

• The contents of arrays are integers that vary between −20 and 80.

• The item to be searched in the array is an element of the array in 34% of the cases

To this effect, we write the following program:

#include <iostream>
#include “rand.cpp”
using namespace std;

// constants
int maxN = 100; // max array size
int N1=-20; int N2=80; // range of array values
int maxX=200000;
float prob=0.34;

// type defs
typedef int itemtype;

// functions
int randomInt (int maxval);
int randomInterval (int N1, int N2);
int randomSym (int N);
bool randomBool (float p);

int main ()
{
itemtype a[maxN]; itemtype X; SetSeed(684);
int N; N=randomInt(maxN); cout << “array a: ” << endl;
for (int i=0; i<N; i++)

{a[i]=randomInterval(N1,N2); cout << a[i] << “ ”;}

1879.4 RANDOM TEST DATA GENERATION

cout << endl << “item to search, X: ” ;
if (randomBool(prob))

{int i; i=randomInt(N); X=a[i];} // assured to be in a
else {X=randomSym(maxX);} // unlikelytobeina
cout << X << endl;
}

If we iterate the sequence of code given in the main program an arbitrary number of
times, we get as many test data samples as we wish.

9.5 TOURISM AS A METAPHOR FOR TEST DATA SELECTION

In his book titled Exploratory Software Testing, JimWhittaker, test engineering direc-
tor at Google, discusses strategies for functional test data selection that equate testing a
software product to exploring its various recesses, nooks and crannies so as to expose
all its faults. Because these strategies are widely applicable, and cut across most exist-
ing techniques, we briefly present them in this section. The software product is
mapped into districts (just like a city), and the tours are partitioned by district (just
like city tours). Specifically, six districts are identified:

1. The business district, which is the code that performs the core functionality of
the product.

2. The historic district, which is the legacy code on which the application may
have been built.

3. The tourist district, which is the code that delivers elementary functionality for
novice system users.

4. The entertainment district, which is the code that delivers supportive features of
the product.

5. The hotel district, which is the code that is active when the software is at rest.

6. The seedy district, which is the code that few users ever activate, but that may
contain product vulnerabilities.

Many tours are scheduled for each one of these districts; we cite a few, referring the
interested reader to the original source.

• Tours of the Business District

◦ The guidebook tour: This tour advocates reading the user manual in detail and
exercising the product’s functionalities according to the manual’s guidelines.
This tour tests the system’s ability to deliver its advertised function, as well as
the user manual’s precision in describing the system’s function.

◦ The skeptical customer tour: This tour advocates running the software product
through a demo used by salespeople, but constantly interrupting the sequence

188 FUNCTIONAL CRITERIA

of the demo to try variations that an end-user may be interested in, such as the
following: What if I wanted to do this? How would I do that?

• Tours through the Historical District

◦ The bad neighborhood tour: This tour advocates running the software product
in such a way as to exercise parts of its codes that are likely to have faults; the
assumption is that faults tend to congregate in a software product, and the more
faults one finds in a part of the product, the more likely other faults are to be
found therein.

◦ The museum tour: This tour advocates running the software product in such a
way as to exercise parts of it that stems from legacy code; the rationale of this
tour is to expose any faults that may exist in the interface between legacy code
and new code.

• Tours through the Entertainment District

◦ The supporting actor tour: This tour advocates exercising features of the soft-
ware product that share the screen with core features that most users typically
use; they may be less visited than typical functions, but equally likely to have
faults.

◦ The back alley tour: This tour advocates exercising features that are at the low
end of the feature table of the software product, on the grounds that they may
also correspond to the least covered code of the product.

• Tours through the Tourist District

◦ The collector’s tour: This tour advocates running the application on a suffi-
ciently broad set of inputs and under a sufficiently diverse set of circumstances
that you can generate all the possible outcomes that the product is designed to
deliver.

◦ The supermodel tour. This tour advocates to test the application, not on the
basis of its functionality, but on the basis of its appearance.

• Tours through the Hotel District

◦ The rained out tour: This tour advocates initiating actions by the software
product and then canceling them as the earliest convenience offered by
the application, to check whether the product resets its state properly and
diligently.

◦ The couch potato tour: This tour advocates running the software product in
such a way as to provide as little data as possible, to check the product’s ability
to proceed with incomplete information or by using default values.

• Tours through the Seedy District

◦ The saboteur tour: This tour advocates initiating operations by the software
product and then interfering with the proper execution of these operations
(e.g., launching an I/O operation and disconnecting the relevant device);
the purpose of this tour is to test the product’s ability to handle exceptions.

◦ The obsessive compulsive tour: This tour advocates initiating the same opera-
tion with the same input data over and over again and observing whether the

1899.5 TOURISM AS A METAPHOR FOR TEST DATA SELECTION

behavior of the system (in terms of whether the successive operations are inter-
preted as multiple queries, whether they are properly separated from each other,
whether they override each other, etc.) is consistent with its requirements.

9.6 CHAPTER SUMMARY

The focus of this chapter is generating test data by considering the specification of the
software product for inspiration. We have reviewed a few criteria for test data gener-
ation, namely:

• Generating test data by recognizing, or assuming (on the basis of some rationale),
that some attributes of input test data are irrelevant from the standpoint of testing:
they have no effect on whether candidate programs succeed or fail on an input
data. By abstracting away the irrelevant attributes, we find an equivalence rela-
tion that places in the same equivalence class all the inputs that have the same
effectiveness in exposing faults in candidate programs. Once such an equiva-
lence relation is defined, we test candidate programs by selecting a single ele-
ment in each equivalence class.

• When the specification of the software requirements is structured in tabular form,
it is sensible to use the tabular structure as a guideline to generate test data.

• State-based systems can be specified by relations, albeit heterogeneous relations
defined on structured spaces, from which we can derive a theoretical state space,
which may or may not be the state space adopted by candidate implementations;
regardless, we can generate test data for such implementation using coverage
criteria of (theoretical) states and state transitions.

• It is possible to automatically generate random test data for a wide range of
purposes using elementary random data generators that are standard features
of common programming languages.

9.7 EXERCISES

9.1. Let F be a function. Compute the relation EQ=FF. Show that this is an equiv-
alence relation and define its equivalence classes. These are called the level sets
of function F; explain.

9.2. Show that the domains of relations T1, T2, T3, T4, and T5 form a partition of the
domain of T = T1 T2 T3 T4 T5.

9.3. Consider the specification of the Tax application given in Section 9.2, and write
a program that meets this specification.

a. Consider the test data generated for this program and use the specification to
record the expected output for each test datum.

190 FUNCTIONAL CRITERIA

b. Check that your program meets the specification, and correct it as needed.

c. Introduce five different faults in the program (in conditions, or assignments,
or structured statements, etc.); check whether the generated test data can
detect the fault.

9.4. Same exercise as above, for the admissions specification.

9.5. Consider a system that computes the tuition and fees for students at a university,
as a function of the following parameters:

a. The number of credits taken by the student for the current term, according to
some sliding scale.

b. Whether the student is graduate or undergraduate.

c. Whether the student is resident in the state, an out-of-state national, or an
international student.

Give a tabular specification of this function and generate test data accordingly.

9.6. Consider a system that checks whether a date, given by a month, day, and year
is legitimate. The year is an arbitrary positive number, the month is an integer
between 1 and 12, and the day is an integer between 1 and 31whose value varies
according to the month and (for February) according to the year. Write a tabular
specification of this system and generate test data accordingly. Discuss the
rationale of your test generation criterion.

9.7. Consider the specification of a queue ADT given in Chapter 4.

a. List the states of this ADT according to the formula presented in this chapter.

b. Generate test data to visit all the states and all the transitions of this ADT.

9.8. Consider the specification of a set ADT given in Chapter 4.

a. List the states of this ADT according to the formula presented in this chapter.

b. Generate test data to visit all the states and all the transitions of this ADT.

9.9. Consider the sample stack implementations discussed in Section 4.10.1, that
use an integer rather than an array and index. Run them on the test data gener-
ated in this chapter.

9.10. In the English language, the letters of the alphabet do not appear with the same
frequency. The following table shows their frequency of appearance:

a 0.082

b 0.015

c 0.028

d 0.042

e 0.126

f 0.022

1919.7 EXERCISES

g 0.020

h 0.061

i 0.070

j 0.002

k 0.008

l 0.040

m 0.024

n 0.067

o 0.075

p 0.019

q 0.001

r 0.060

s 0.063

t 0.091

u 0.028

v 0.010

w 0.024

x 0.001

y 0.020

z 0.001

Generate a function that produces characters of the alphabet with the given fre-
quency. Run a large number of times and estimate the frequency of appearance
of each letter; compare it with the table given above.

9.11. Generate a random sorted array whose values are included between a lower
bound Low and a higher value High.

9.8 BIBLIOGRAPHIC NOTES

For more details on tabular specifications and their semantics, consult (Janicki et al.,
1997; Janicki and Khedhri, 2001). The criterion of test data generation for state-based
software product, which provides for visiting all states and exercising all state transi-
tions, is due to Mathur (2008). Whereas in this chapter we used a simple random num-
ber generator that produces a uniform distribution over a unitary interval, specialized
environments such as MATLAB (©Mathworks) offer functions for a wide range of
probability laws. For a detailed discussion of James Whittaker’s criteria for explora-
tory software testing, consult (Whittaker, 2010).

192 FUNCTIONAL CRITERIA

10
Structural Criteria

Whereas the functional criteria discussed in Chapter 9 generate test data by analyzing
the specification of the product, the techniques we discuss in this chapter do so by
analyzing the source code of the product. Structural test generation criteria may sound
counter-intuitive, since they are using the program to test the program. It is like
recruiting the prime suspect in a crime to help in the crime investigation; in the same
way that the criminal will bias the investigation away from himself, a faulty program
may focus the attention of the tester away from its shortcomings. This is not an idle
comparison: Consider that if the program fails to make provisions for half of the input
data that it is supposed to process (a massive gap), no amount of structural testing will
expose this fault; only by referring back to the specification can we uncover such a
failure. More generally, when we endeavor to verify a program, our main resource
is redundancy (redundancy between a program and its specification, redundancy
between two presumably equivalent programs, redundancy between a program and
an executable specification, redundancy between a program and a test oracle, etc.);
if we use a program to test the same program, we have no redundancy to depend
on. On the other hand, consider that in order to make any claim about the
functional attributes of candidate programs, a test-generation strategy must focus
on the domain of the specification as a starting point; to the extent that structural test
generation analyzes the program rather than its specification, such information is not
available.

With these qualifications in mind, we focus our attention in this chapter on
generating test data by analyzing the candidate programs; the broad rationale for this
type of approach is that if we want to test a program for the purpose of exposing its
possible faults, it is sensible to try to exercise all its features, such as all its statements,
all its conditions, all its paths, etc. We may argue, in fact, that while functional criteria
are more effective at proving the absence of faults (or at least the infrequency of
failures caused by these faults), structural criteria are more effective at finding faults,
since they focus on the source of the faults.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

193

10.1 PATHS AND PATH CONDITIONS

10.1.1 Execution Paths

Now that we are interested in structural test data generation, we need to look at
programs rather than specifications. We assume that our programs are written in a
traditional C-like programming language, which includes the following statements:

• Variable declarations, of the form <data type><variable name>.
• Labeled statements, of the form <label>: <statement>.
• Assignment statements, of the form <variable name> = <expression>.
• Sequence statements, of the form <statement1> ; <statement2>.
• Conditional statements, of the form if <condition><statement>.
• Alternation statements, of the form if <condition><statement1> else
<statement2>.

• Iteration statements, of the form while <condition><statement>.
• Statement blocks, of the form {<statement>}.
• Function calls, of the form <function name> (<parameter list>).

Because we use structured constructs exclusively, any program is executed in
sequence from the first statement to the last statement (we have no exits or return
statements in the middle of a program). Hence all executions of our programs
start from the first statement and proceed through the code according to the
outcome of the various conditions that appear therein. Hence the following
definitions.

An elementary statement is any one of the following

• An assignment statement

• A function call

• A condition test of the form
○(<condition> ? true)
○(<condition> ? false)

A path through a program is a sequence of elementary statements separated by
semicolons such that whenever two elementary statements <es1> and <es2> follow
each other in the path, then one of the following conditions holds:

• <es1> and <es2> follow each other in the program, or

• <es2> is derived from the condition of a conditional statement or an alternative
statement or an iterative statement which follows <es1> in the program, or

194 STRUCTURAL CRITERIA

• <es1> is the last elementary statement of a conditional statement or an alternative
statement that precedes <es2> in the program, or

• <es1> is derived from the condition of an iterative statement that precedes <es2> in the
program.

• <es1> has the form (c? true), where c is the condition of a conditional statement
or an alternative statement, and <es2> is the first statement of the then-branch, or

• <es1> has the form (c? false), where c is the condition of an alternative statement
and (es2> is the first statement of the else branch, or

• <es1> has the form (c? true), where c is the condition of an iterative statement
and <es2> is the first statement of the loop body.

As an application, we consider the following program and write some of its paths.
Note that the definition of paths does not stipulate that they start from the beginning of
the programs nor that they end with its last statement, as we want to have the liberty to
define partial paths through the code. Nevertheless the sample paths we show below
start at the first statement of the program and end at its last statement.

Program g:

{int x; int y; read(x); read(y); // assuming x>0, y>0

while (x!=y) {if (x>y) {x=x-y;} else {y=y-x;}};

write(x);}

Sample paths through this program include the following:

• p0: int x; int y; read(x); read(y);
((x!=y)? false); write(x);

• p1: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

• p2: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

• p3: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

19510.1 PATHS AND PATH CONDITIONS

• p4: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

• p5: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

• p6: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

• p7: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

• p8: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

and so on. Each path represents a trace of execution through the original program.

10.1.2 Path Functions

The following definition introduces the semantics of paths, in terms of the function
that they define on their space.

• The effect of each variable declaration of the form “<type> x” is to change the
state of the program from what it was prior to the declaration (say, S) to
S × <type>.

• We assume that prior to any variable declarations, the space of the program is
limited to two implicit state variables, namely the input stream and the output
stream; both of these can be modeled as sequences, where read(x) returns
the first element of the input stream and removes it therefrom, while write
(x) appends x to the output stream.

• The semantics of an assignment statement is defined by:

x=E = s,s s def E x =E s s = s ,

196 STRUCTURAL CRITERIA

where def(E) is the set of states on which E can be evaluated, and the symbol _
stands for all the other (than x) variables of the space.

• The semantics of a condition is defined by the following equations:

c true = s,s s = s c s

c false = s,s s = s ¬c s

• The semantics of sequence is defined by the following equation:

es1;es2 = es1 es2

Definition: Path Function The function of a path is the function computed induc-
tively according to the semantic rules provided above.

As an illustration of these rules, we compute, for example, the function of path p8
in the gcd program, which reads as follows:

• p8: int x; int y; // line 1

read(x); read(y); // 2
((x!=y)? true); ((x>y)? false); y=y-x; // 3
((x!=y)? true); ((x>y)? true); x=x-y; // 4
((x!=y)? true); ((x>y)? false); y=y-x; // 5
((x!=y)? false); // 6
write(x); // 7

We let is and os designate, respectively, the input stream and the output stream, and
we let head and tail designate, respectively, the operation that returns the head of a
stream and its tail (remainder once the head is removed). We interpret the first line
as letting the space of the program be defined as:

S= is× os× int × int

The functions of line 2 and line 7 are then defined on space S by, respectively:

F2 = s,s length is ≥ 2 x = head is y = head tail is is = tail2 is os = os

F7 = s,s x = x y = y is = is os = os x ,

where we use the dot to designate concatenation. Lines 3 and 5 have the same code:
hence they compute the same function, which is:

F3 =F5 = s,s x < y x = x y = y−x is = is os = os

As for line 4, it computes the following function:

F4 = s,s x > y x = x−y y = y is = is os = os

19710.1 PATHS AND PATH CONDITIONS

Finally, line 6 computes a subset of identity, as follows:

F6 = s,s x = y x = x y = y is = is os = os

Computing the product F2 • F3 • F4 • F5 • F6 • F7, we find:

F2•F3•F4•F5•F6•F7

= {associativity, substitution}

F2• s,s x < y x = x y = y−x is = is os = os •

s,s x > y x = x−y y = y is = is os = os F5•F6•F7

= {relational product}

F2• s,s x < y x> y−x x = 2x−y y = y−x is = is os = os F5•F6•F7

= {associativity, substitution}

F2• s,s x < y x> y−x x = 2x−y y = y−x is = is os = os •

s,s x < y x = x y = y−x is = is os = os •F6•F7

= {relational product}

F2• s,s
x < y x> y−x 2x−y < y−x x = 2x−y y = 2y−3x is = is

os = os
•F6•F7

= {associativity, substitution (post-restriction)}

F2• s,s
x < y x> y−x 2x−y < y−x x = 2x−y y = 2y−3x is = is

os = os x = y'
•F7

= {simplification, assumption that x and y are both positive}

F2• s,s 5x= 3y x = 2x−y y = 2y−3x is = is os = os •F7

= {relational product, abbreviating each function by its initial}

s,s

l is ≥ 2 5 × h is = 3× h t is x = 2× h is −h t is

y = 2 × h t is −3 × h is

is = t2 is os = os

•F7

= {relational product}

s,s

l is ≥ 2 5 × h is = 3 × h t is x = 2 × h is −h t is

y = 2× h t is −3 × h is

is = t2 is os = os 2 × h is −h t is

198 STRUCTURAL CRITERIA

This function reflects the impact of the path on the state variables; remember that
l(is), h(is), and h(t(is)) are (respectively) the length, first element, and second element
of the input stream. Note that if the first element is 18 and the second element is 30,
then upon execution of this path, the input stream is truncated by two, and the output
stream is augmented by a new element, whose value is: 2 × 18 − 30 = 6. Indeed, 6 is
the greatest common divisor of 18 and 30.

Before we close this section, we give a useful rule on how to compute the product
of two functions that are written in the following form (on some space S defined by
two variables x and y):

s,s p x,y x =Ex x,y y =Ey x,y

Let functions F1 and F2 be written as:

F1 = s,s p1 x,y x =E1
x x,y y =E1

y x,y ,

F2 = s,s p2 x,y x =E2
x x,y y =E2

y x,y

Then the product of functions F1 and F2 is given by the following formula:

F1•F2 = s,s p1 x,y p2 E1
x x,y ,E1

y x,y

x =E2
x E1

x x,y ,E1
y x,y y =E2

y E1
x x,y ,E1

y x,y

As an illustration, consider the following functions on a space S defined by integer
variables x and y:

F1 = s,s x > y x = 2x+ y y = 2y + x ,

F2 = s,s x > 2y x = 3x+ 2y y = 3y + 2x

Then the product of these two functions yields the following result:

F1•F2 = s,s x > y 2x+ y > 2 2y + x x = 3 2x+ y + 2 2y+ x
y = 3 2y+ x + 2 2x+ y

After simplification, we find:

F1•F2 = s,s x > y y< 0 x = 8x+ 7y y = 8y+ 7x

The product of two functions takes a special, simpler, form whenever one of the
factors is a subset of the identity; specifically, we have

s,s q x,y s = s • s,s p x,y x =Ex x,y y =Ey x,y

= s,s q x,y p x,y x =Ex x,y y =Ey x,y

19910.1 PATHS AND PATH CONDITIONS

and

s,s p x,y x =Ex x,y y =Ey x,y • s,s q x,y s = s

= s,s p x,y x =Ex x,y y =Ey x,y q x ,y

In order to spare the reader the trouble of having to refer to the definition whenever
he/she must compute the product of two functions, we present below a set of rules that
streamline this process.

Computing the Product of Two Functions. We let space S be defined by two vari-
ables x and y of types X and Y, and we let F and G be defined as follows:

F = s,s f x,y x =Fx x,y y =Fy x,y

G = s,s g x,y x =Gx x,y y =Gy x,y

Where f and g are predicates and Fx, Fy,Gx,Gy are expressions that return values of
the right type (X, Y, X, Y). Then, the product F •G can be written as:

s,s f x,y g Fx x,y ,Fy x,y

x =Gx Fx x,y ,Fy x,y y =Gy Fx x,y ,Fy x,y

As an illustration of this formula, we consider the product of the following
functions on space S defined by natural variables n, f, and k:

• F = s,s k n + 1 n = n f = f × k k = k + 1 .

• G= s,s k ≤ n + 1 n = n f = f × n
k−1 k = n + 1 .

Applying the proposed formula, we find the following relation:

F •G

= {proposed formula}

s,s k n+ 1 k + 1 ≤ n+ 1 n = n f = f × k ×
n

k + 1 −1
k = n + 1

= {merging the preconditions, simplifying}

s,s k < n+ 1 n = n f = f × k ×
n

k
k = n + 1

= {because k = k × k−1 !}

s,s k < n+ 1 n = n f = f ×
n

k−1
k = n + 1

200 STRUCTURAL CRITERIA

10.1.3 Path Conditions

Definition: Path Condition The condition of a path is the domain of its path
function.

The condition of a path is the condition that an initial state must satisfy in order for
that path to be taken during an execution of the program. As an illustrative example,
we consider path p8, and we find that its path condition is:

s 5×h is = 3×h t is

We let the first and second elements of the input stream is be, respectively, 18 and
30; they clearly satisfy the path condition of path p8, since 5 × 18 = 3 × 30. We draw a
flowchart of program p and analyze what path the execution of this program follows
for the selected values.

statement is os x y (x!=y) (x>y)

(18, 30, ..) (..)

int x; int y; (18, 30, ..) (..) ? ? N/A N/A

read(x); (30, ..) (..) 18 ? N/A N/A

read(y); (..) (..) 18 30 N/A N/A

while (x!=0) (..) (..) 18 30 True N/A

if (x>y) (..) (..) 18 30 N/A False

y=y-x (..) (..) 18 12 N/A N/A

while (x!=0) (..) (..) 18 12 True N/A

if (x>y) (..) (..) 18 12 N/A True

x=x-y (..) (..) 6 12 N/A N/A

while (x!=0) (..) (..) 6 12 True N/A

if (x>y) (..) (..) 6 12 N/A False

y=y-x (..) (..) 6 6 N/A N/A

while (x!=0) (..) (..) 6 6 False N/A

Write(x); (..) (..).6 6 6 N/A N/A

The reader can see that the sequence of statements in the first column of the table
above does indeed correspond to path p8 (Fig. 10.1).

The ability to represent paths, compute their function, and their path condition, will
all be useful in the remainder of this chapter as we explore criteria for generating
test data.

20110.1 PATHS AND PATH CONDITIONS

10.2 CONTROL FLOW COVERAGE

Control flow coverage criteria provide for generating sufficient test data to exercise
various features of the control structure of candidate programs.

10.2.1 Statement Coverage

The statement coverage criterion provides for generating sufficient test data to execute
each statement of the candidate program at least once. This is a very weak criterion,
since the only faults it is likely to expose are those that are so egregious that any exe-
cution of the faulty statement will cause an error, and that the error is so extensive that
it will propagate and cause a failure; by statement, this criterion usually refers to ele-
mentary statements, typically assignment statements and atomic system calls. This
criterion can also be applied at a higher level of abstraction than the elementary state-
ment, and calls for exercising all the components of a composite system, with the same
qualification: it can only expose faulty components that are so egregiously faulty that
any execution of these components will sensitize their fault and subsequently prop-
agate the resulting error to cause failure. Because this criterion is so weak, a single
path may, conceivably, satisfy it, in some simple cases.

As an illustration, we consider the following simple program g:

{int x; int y; read(x); read(y); // assuming x>0, y>0
while (x!=y) {if (x>y) {x=x-y;} else {y=y-x;}};
write(x);}

T F

FT
Write(x);

x = x–y y = y–x

x > y

x ≠ y

int x; int y;
read(x); read(y);

Figure 10.1 Flowchart of a GCD program.

202 STRUCTURAL CRITERIA

Execution of the following path through the program will exercise all the
elementary statements:

p: int x; int y; // F0
read(x); read(y); // F1

((x!=y)? true); ((x>y)? true); {x=x-y;} // F2
((x!=y)? true); ((x>y)? false); {y=y-x;} // F3
((x!=y)? false); // F4
{write(x); // F5

The effect of F0 is to let the space of the program be defined by variables is and os
of type file stream and variables x and y of type integer; all subsequent functions will
be defined on this space. We find:

F1 = s,s length is ≥ 2 x = head is y = head tail is is = tail2 is os = os

F2 = s,s x > y x = x−y y = y is = is os = os

F3 = s,s x < y x = x y = y−x is = is os = os

F4 = s,s x = y x = x y = y is = is os = os

F5 = s,s x = x y = y is = is os = os x ,

The product of F2 by F3 yields:

F2•F3 = s,s x > y x−y< y x = x−y y = 2y−x is = is os = os

Whence, the product of F2 • F3 by F4 yields:

F2•F3•F4 = s,s x > y x−y < y x = x−y y = 2y−x is = is os = os x = y

which we simplify to become:

F2•F3•F4 = s,s 2x = 3y x = x−y y = x is = is os = os

Multiplying on the left by F1, we find

F1•F2•F3•F4 = s,s length is ≥ 2 2×head is = 3×head tail is
x = head is −head tail is
y = x is = tail2 is os = os

Multiplying on the right by F5, we find

PF1•F2•F3•F4•F5 = s,s length is ≥ 2 2×head is = 3×head tail is
x = head is −head tail is
y = x is = tail2 is os = os x

20310.2 CONTROL FLOW COVERAGE

The domain of this function is:

dom P = s,s length is ≥ 2 2×head is = 3×head tail is

Any element of this domain is a possible test data that satisfies the criterion of
statement coverage; we choose the initial state s defined by:

is = 21,14
os=
x =
y =

Even though a single path (and a single element in the domain of the path) enabled us
to satisfy the criterion of statement coverage, it may be beneficial, in practice, to cover
different statements with different paths (whenever possible) to minimize the likelihood
of error masking (the longer the path, the more likely it is for an error to be masked).
To this effect, we may satisfy the statement coverage with the following two paths:

p1: int x; int y; // F0
read(x); read(y); // F1
((x!=y)? true); ((x>y)? true); {x=x-y;} // F2
((x!=y)? false); // F3
{write(x); // F4

p2: int x; int y; // F0
read(x); read(y); // F1
((x!=y)? true); ((x>y)? false); {y=y-x;} // F2
((x!=y)? false); // F3
{write(x); // F4

We leave it as an exercise to the reader to generate test data from these two paths.

10.2.2 Branch Coverage

The criterion of branch coverage provides that we generate test data so that for each
branch in the control structure of the candidate program (whether it arises in an if-then
statement, an if-then-else statement, or a while statement), the program proceeds
through each of the True branch and the False branch at least once. As an illustration
of this criterion, we consider the following program:

#include <iostream>
#include <cmath>
using namespace std;
/* constants */
float eps = 0.000001;
/* state variables */

204 STRUCTURAL CRITERIA

float x, y, z;
/* functions */
Bool tri(float x, float y, float z);
bool equal(float a, float b);
bool equi(float x, float y, float z);
bool iso(float x, float y, float z);
bool right(float x, float y, float z);
int main ()

{cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
if (!tri(x,y,z))

{cout << “not a triangle” << endl;}
else
{if (equi(x,y,z))

{cout << “equilateral” << endl;}
else
if (iso(x,y,z))
{if (right(x,y,z)) {cout << “isoceles right” << endl;}

else {cout << “isoceles” <<endl;}
else
{if (right(x,y,z)) {cout << “right” << endl;}
else {cout << “scalene” << endl;}}}}
bool tri (float x, float y, float z)

{return ((x<=y+z) && (y<=x+z) && (z<=x+y));}
bool equal (float a, float b)

{return abs(a-b)<eps;}
bool equi(float x, float y, float z)

{return (equal(x,y) && equal(y,z));}
bool iso(float x, float y, float z)

{return (equal(x,y) || equal(y,z) || equal(x,z));}
bool right(float x, float y, float z)

{return (equal(x*x+y*y,z*z) || equal(x*x+z*z,y*y) ||
equal(y*y+z*z,x*x));}

The following set of paths allows us to traverse every branch at least once:

• p1: cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;

((!tri(x,y,z))? True) {cout << “not a triangle” << endl;}

• p2: cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;

((!tri(x,y,z))? False);((equi(x,y,z))? True)
{cout << “equilateral” << endl;}

20510.2 CONTROL FLOW COVERAGE

• p3: cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? True); ((right(x,y,z))? True);
{cout << “isoceles right” << endl;}

• p4: cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? True); ((right(x,y,z))? False);
{cout << “isoceles” << endl;}

• p5: cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? False); ((right(x,y,z))? True);
{cout << “right” << endl;}

• p6: cout << “enter the triangle sides on one line” << endl;
cin >> x >> y >> z;
((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? False); ((right(x,y,z))? False);
{cout << “scalene” << endl;}

A brief inspection of the paths presented above enables us to check that each
condition appears at least once with the outcome True and once with the outcome
False. In the following table, we list the paths, along with their path conditions
and a test vector that satisfies the path condition.

Path Path condition Test vector

p1 ((!tri(x,y,z))? True) 2 2 10

p2 ((!tri(x,y,z))? False); ((equi(x,y,z))? True) 2 2 2

p3 ((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? True); ((right(x,y,z))? True);

2 2 2 2

p4 ((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? True); ((right(x,y,z))? False);

2 2 1

p5 ((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? False); ((right(x,y,z))? True);

3 4 5

p6 ((!tri(x,y,z))? False); ((equi(x,y,z))? False);
((iso(x,y,z))? False); ((right(x,y,z))? False);

3 4 6

206 STRUCTURAL CRITERIA

10.2.3 Condition Coverage

A variation of the previous criterion can be applied for programs that have compound
conditions and it provides for generating test data to let each term of any condition
(rather than the condition as a whole) take both truth values, true and false. So that
if the condition has the form

a b,

it is not enough to let the condition be true then false, but we want to ensure that each
individual term takes both truth values through the test. To generate test data accord-
ing to this criterion, we proceed as follows:

For each term, say a, of each condition of the program, say C, choose a path in the
program that starts at the beginning of the program and ends atC; let P be the function
of this path. Then generate:

• A state in dom(P/a) and

• A state in dom(P/−a).

As an illustration, we consider the following triangle program, which we modify
specifically to create compound conditions.

#include <iostream>
#include <cmath>
using namespace std;
/* constants */
float eps = 0.000001;
/* state variables */
float x, y, z;
/* functions */
bool tri(float x, float y, float z); // triangle
bool equal(float a, float b); // equal, within eps
bool equi(float x, float y, float z); // equilateral
bool iso(float x, float y, float z); // isoceles
bool right(float x, float y, float z); // right triangle
int main () {cout << “enter the triangle sides on one line”
<< endl;

cin >> x >> y >> z;
if (!tri(x,y,z)) {cout << “not a triangle” << endl;}
if (tri(x,y,z) && equi(x,y,z)) {cout << “equilateral”

<< endl;}
if (tri(x,y,z) && (!equi(x,y,z)) && iso(x,y,z) &&

(!right(x,y,z)))
{cout << “isoceles” << endl;}

if (tri(x,y,z) && (!equi(x,y,z)) && (!iso(x,y,z)) &&
right(x,y,z))

20710.2 CONTROL FLOW COVERAGE

{cout << “right” << endl;}
if(tri(x,y,z)&&(!equi(x,y,z))&&iso(x,y,z)&&right(x,y,z))

{cout << “isoceles right” << endl;}
if (tri(x,y,z) && (!equi(x,y,z)) && (!iso(x,y,z)) &&

(!right(x,y,z)))
{cout << “scalene” << endl;}}

We can simplify this program by referring to the following identities:

• An equilateral triangle is isosceles; hence a non-isosceles triangle is not equilateral.

• A triplet (x, y, z) that satisfies right(x, y, z) necessarily satisfies tri(x, y, z).

• A triplet (x, y, z) that satisfies equi(x, y, z) necessarily satisfiestri(x, y, z).

We find:

int main(){cout<< “enterthetrianglesidesononeline”<<endl;
cin >> x >> y >> z;
if (!tri(x,y,z)) {cout << “not a triangle” << endl;}
if (equi(x,y,z)) {cout << “equilateral” << endl;}
if (tri(x,y,z) && (!equi(x,y,z)) && iso(x,y,z) &&

(!right(x,y,z)))
{cout << “isoceles” << endl;}

if ((!iso(x,y,z)) && right(x,y,z)) {cout << “right” << endl;}
if ((!equi(x,y,z)) && iso(x,y,z) && right(x,y,z))

{cout << “isoceles right” << endl;}
if (tri(x,y,z) && (!iso(x,y,z)) && (!right(x,y,z)))

{cout << “scalene” << endl;}}

In this particular example, all the if-statements refer to the same values of variables
x, y, and z. Indeed, though they are written sequentially, the if-statements are merely
printing messages to the output stream and are not altering the program variables that
are invoked in the conditions. A cursory inspection of the structure of the conditions
reveals that the criterion of condition coverage is satisfied if we generated test data
to ensure that each elementary function call returns both truth values, in turn. The
following table shows sample test data that satisfies this criterion.

Condition True False

tri(x,y,z) 5 6 7 5 6 12

equi(x,y,z) 6 6 6 6 7 6

iso(x,y,z) 5 5 12 5 7 6

right(x,y,z) 3 4 5 3 4 6

Note that the data generated to make iso(x, y, z) true does not define a triangle, nor
does it have to—it only has to make iso(x, y, z) true; such data will cause the program
to declare that the data entered does not define a triangle.

208 STRUCTURAL CRITERIA

10.2.4 Path Coverage

The criterion of path coverage provides that we generate test data to exercise every
execution path of candidate programs. If the program has no loops, then the set of
paths is finite, and can be easily catalogued; to get a sense of the work involved in
this task, we consider the two versions of the triangle analysis program (the nested
version and the sequential version). The flow chart of the nested version looks as
follows (Fig. 10.2).

Paths in the program correspond to paths from the first node to the exit node in this
graph; covering all the paths corresponds, in this case, to branch coverage. We

F

Cout << “isosceles”;

T

Cout << “isosceles
right”;

Cout << “enter..”;
Cin >>x>>y>>z;

!tri(x,y,z)

Cout << “not a triangle”;

T F

T F

Cout << “equilateral”;

T

Right(x,y,z)

F

Cout << “right”;

Cout << “scalene”;

T

Exit

Equi(x,y,z)

Iso(x,y,z)

Right(x,y,z)
F

Figure 10.2 Flowchart of a Triangle program: nested version.

20910.2 CONTROL FLOW COVERAGE

characterize each path by the sequence of conditions that it evaluates as it proceeds
from the start to the exit node, and we find the following paths.

Path Condition
Test Data

x y z

p1 !tri() 2 4 8

p2 tri()&& equi() 2 2 2

p3 tri() && !equi() && iso() && right() 1 1 2

p4 tri()&& !equi() && iso() && !right() 4 4 3

p5 tri() && !equi() && !iso() && right() 3 4 5

p6 tri() && !equi() && !iso() && !right() 2 3 4

We consider now the sequential version of the triangle analysis program
(Fig. 10.3). Topologically, this flowchart appears to have 26 paths, since it has six
binary conditions in sequence; but in fact many of these paths are not executable (their
path function is empty) due to the dependencies between the conditions. If we identify
each path by the sequence of True/False (T/F) values of the conditions, we find the
following paths:

Path !tri equi
tri && !equi &&
iso && !right

!iso &&
right

!equi && iso &&
right

tri && !iso
&& !right

p1 T F F F F F

p2 F T F F F F

p3 F F T F F F

p4 F F F T F F

p5 F F F F T F

p6 F F F F F T

Notice that in this table, each row is fully determined by the shaded area. For exam-
ple, in the first row (path p1), consider that if condition (!tri) returns True, then all
subsequent expressions necessarily return False: for example, the second column
(condition: equi) returns False since a set of three identical numbers define a triangle;
the third column (condition: tri && !equi && iso && !right) returns False since the
first conjunct (tri) is already known to be False; etc. Hence the paths p1, p2, p3, p4, p5,
p6 presented in this table are the only feasible paths (out of 26) of the program. The
following table characterizes each one of these paths and proposes a data item that
falls in their domain.

210 STRUCTURAL CRITERIA

Path Path Condition Test Data

p1 !tri 2 4 10

p2 equi 3 3 3

p3 tri && !equi && iso && !right 3 3 4

T F
!iso && right

Cout << “isosceles”;

!equi && iso && right

Cout << “right”;

Cout << “right isosceles”;
T F

tri && !iso && !right

Cout << “scalene”;

T F

Exit

Cout << “not a triangle”;

Equi(x,y,z)

T
F

T F

Cout << “equilateral”;

T
Tri && !equi && iso && !right

F

!tri(x,y,z)

Cout << “enter the triangle…”; cin >> x >> y >> z;

Figure 10.3 Flowchart of a Triangle program: sequential version.

(continued)

21110.2 CONTROL FLOW COVERAGE

p4 !iso && right 3 4 5

p5 !equi && iso && right 3 3 3 2

p6 tri && !iso && !right 4 5 6

The sample examples we have studied so far have a finite number of paths, since
they have no iterative statements; with while loops, we face the possibility of having
an infinite number of paths; for such cases the criterion of path coverage cannot be
fulfilled to the letter. We resort to approximations of this criterion, whereby we con-
sider upper bounds on the number of iterations for each loop. Because we may have
nested loops, even this approximate criterion may cause a combinatorial explosion,
producing up to Np paths, where N is the upper bound on the number of iterations
and p is the depth of nesting of the loops.

As an example, we consider the gcd program discussed in Section 10.1:

{int x; int y; read(x); read(y); // assuming x>0, y>0
while (x!=y) {if (x>y) {x=x-y;} else {y=y-x;}};
write(x);}

We resolve to apply the path coverage criterion to it, up to three iterations of the
while loop. We find the following paths, classified according to the number of
iterations:

• Path with Zero iterations:
○ p0: int x; int y; read(x); read(y);

((x!=y)? false); write(x);

• Paths with One iteration:
○ p11: int x; int y; read(x); read(y);

((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

○ p12: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

• Paths with Two iterations:
○ p21: int x; int y; read(x); read(y);

((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

(continued)

212 STRUCTURAL CRITERIA

○ p22: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

○ p23: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

○ p24: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

• Paths with Three iterations: In order to keep combinatorics under control, and
because x and y play symmetric roles, we do not show all eight paths; but rather
only four; the missing four can be retrieved by interchanging x and y.

○ p31: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

○ p32: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

○ p33: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? false); write(x);

○ p34: int x; int y; read(x); read(y);
((x!=y)? true); ((x>y)? true); x=x-y;
((x!=y)? true); ((x>y)? false); y=y-x; ;
((x!=y)? true); ((x>y)? false); y=y-x;
((x!=y)? false); write(x);

We leave it as an exercise to the reader to compute the path functions and the path
conditions of these paths; we show the results in the table below, along with test data
that meets the path conditions.

21310.2 CONTROL FLOW COVERAGE

Number of iterations Path Condition
Test data

x y

0 p0 x=y 5 5

1 p11 x=2y 10 5

p12 y=2x 5 10

2 p21 x=3y 15 5

p22 y=3x 5 15

p23 2x=3y 15 10

p24 3x=2y 10 15

3 p31 x=4y 20 5

p32 2x=5y 25 10

p33 3x=5y 15 9

p34 3x=4y 16 12

The test data for the four missing paths resulting from three iterations can be
computed by merely interchanging x and y in the test data of the paths of length 3;
we find,

Number of iterations Path Condition
Test data

x y

3 p31 y=4x 5 20

p32 2y=5x 10 25

p33 3y=5x 9 15

p34 3y=4x 12 16

10.3 DATA FLOW COVERAGE

Whereas in the previous section we explored how to generate test data by analyzing
the control flow of candidate programs in execution, in this section we explore how
we can use the data flow of the program as a guide to generate adequate test data.

10.3.1 Definitions and Uses

The life of a program variable during the execution of a program lasts from the time
the variable becomes known as part of the program state to the time it is no longer
accessible to the program as part of the state. Under static block-structured dynamic

214 STRUCTURAL CRITERIA

allocation, the name of a variable is known from the time of its declaration to the time
when execution of the program exists the block where it is declared; under dynamic
memory allocation, the name of a variable is known between the time the program
creates the variable through an instantiation (by means of a new statement), and
the time when the program explicitly returns the name (implicitly relinquishing the
memory space to which it refers) or terminates its execution. Several relevant events
arise during the lifecycle of a variable, including:

• Assignment of a value to the variable, through an assignment statement, or
through a read statement, or at instantiation time through invocation of the con-
structor method of a class, or at declaration time through compiler-generated
initializations, or through parameter passing of the variable as a reference
parameter to a routine. We refer to these events as definitions of the variable.

• Use of the value of the variable, to compute an expression, or through a write
statement, or in a branch condition, or as an index to an array, or through param-
eter passing of the variable as a value parameter to a routine. We refer to these
events as uses of the variable, and we distinguish between
○ c-uses, when the variable is used to compute an expression and
○ p-uses, when the variable is used to compute a Boolean condition that affects
the program control.

Notice that the same variable may be considered c-used and p-used if it inter-
venes in an expression to compute a Boolean condition; such is the case, for
example, for variable x in the following Boolean condition:

if ((x+2)>0) {…;}

Notice also that in a statement such as

a[i]=x+3;

for example, we consider that a is defined, i is c-used (even though it is used to
compute an address/a location rather than a value), and x is c-used; strictly speak-
ing, this statement only defines the ith cell of array a, but since we cannot identify
the exact cell that has beenmodified, we assume that all of a has been (re-) defined.

• Termination of the lifecycle of the variable, when the variable is no longer part of the
state of theprogram, either becausecontrol has exited theblockwhere itwasdeclared
(inblock structuredprograms)or because it has been explicitly relinquished (as is the
casewith somedynamicallocation schemes)or theprogram terminates its execution.

As an illustration of definitions and uses, we consider the gcd program, which
handles integer (natural) variables x and y:

{int x; int y; // 1
read(x); // 2
read(y); // 3
while (x!=y) // 4

21510.3 DATA FLOW COVERAGE

{if (x>y) // 5
{x=x-y;} // 6

else // 7
{y=y-x;}}; // 8

write(x); // 9
} // 10

The following table shows for each variable the statements in which the variable is
defined, c-used, p-used, and terminated.

Line x y

Defined c-used p-used Terminated Defined c-used p-used Terminated

1

2 √

3 √

4 √ √

5 √ √

6 √ √ √

7

8 √ √ √

9 √

10 √ √

We canwrite the lifecycle of each variable as follows, by indicating the sequence of
events that arose in the lifecycle, along with the lines where they did:

• Variable x: defined(2); p-used(4); p-used(5); c-used(6); defined(6); c-used(8);
terminated(10).

• Variable y: defined(3); p-used(4); p-used(5); c-used(6); c-used(8); defined(8);
terminated(10).

If we observe a program in execution and focus on the sequence of events that take
place during the lifecycle of any variable, we may find that some patterns are outright
wrong, and somepatterns,while theymay be correct, look suspicious nevertheless, hence
may deserve extra scrutiny. Among incorrect event sequences, we cite the following:

• A variable that is used (use, c-use, p-use) before being defined (without being
assigned a value).

• A variable that is used after its termination.

216 STRUCTURAL CRITERIA

As for suspicious patterns, we cite the following instances:

• A variable that is defined twice in sequence without being used in the interven-
ing time.

• A variable that is defined and then killed without being reused.

These patterns do not necessarily indicate the presence of a fault, but they do
warrant careful consideration. For strictly sequential programs, it is possible for the
compiler to detect incorrect patterns and suspicious patterns; but with control struc-
tures such as if-then statements, if-then-else statements and loops, the compiler cannot
predict execution sequences at compile time. The goal of data flow test generation
criteria is to generate test data in such a way as to execute all the paths that may have
incorrect or suspicious event sequences; we review a sample of these criteria in the
following sections.

10.3.2 Test Generation Criteria

The purpose of dataflow-based test generation criteria is to force the execution of the
program through combinations of definitions and uses in such a way as to detect all
possible faults in the sequencing of these events. We discuss four such criteria:

• All definition-use paths.A path in the program is said to be a definition-use path
(du-paths, for short) for some program variable x if and only if it starts with some
statement that defines variable x and ends with a statement that uses variable x.
○ All definition-clear paths.A path in the program is said to be a definition-clear
path for some program variable x if and only if it is a definition-use path for
variable x and the definition statement with which it starts is the only definition
statement for that variable in the path.

The criterion of All definition-use paths provides that one must generate test
data to exercise all the definition-use paths for all the variables of the program.
To apply this criterion, we proceed as follows:

○ First, we list all the variables of the program.
○ For each variable of the program, we list all the definition statements and all
the use statements.

○ For each definition/use pair, we check whether there exists a path from the
definition statement to the use statement.

○ For all the paths identified in the previous steps, we identify a pre-path, from
the beginning of the execution to the first statement of the path, and a post-
path, from the last statement of the path to the end of the execution.

○ For each triplet made up of a pre-path, a definition-use path, and a post-path,
we compute the function of the aggregate path.

21710.3 DATA FLOW COVERAGE

○ For each aggregate path, we compute the path condition as the domain of the
path function.

○ For each path that yields a non-False path condition, we generate test data that
exercises this path.

The set of test data so obtained constitutes our test data.

• All p-uses. A p-use path for a program with respect to variable x is a
definition-clear path from a definition of variable x to a p-use of x. The criterion
ofAll p-uses provides that onemust generate test data to exercise all the p-use paths
for all the variables of the program. To apply this criterion, we proceed in the same
way as we discuss above, but focusing exclusively on p-use paths.

• All c-uses. A c-use path for a program with respect to variable x is a definition-
clear path from a definition of variable x to a c-use of x. The criterion of All c-uses
provides that one must generate test data to exercise all the c-use paths for all the
variables of the program. To apply this criterion, we proceed in the same way as
we discuss above, but focusing exclusively on c-use paths.

• All uses. The criterion of All uses provides that one must generate test data to
meet the All p-uses criterion and test data to meet the All c-uses criterion.

• All definitions. The criterion of All definitions provides that one must generate
test data to ensure that all definitions are visited at least once.

For the sake of illustration, we briefly discuss the generation of test data according
to the four criteria presented herein for the gcd program. We apply the criteria in
turn, below:

• All du-paths. We consider in turn variable x, then variable y. For variable x, we
find the following definition statements:
○ Statements 2 and 6.

And the following use statements:
○ Statements 4, 5, 6, 8, and 9.

We choose the definition-use path that starts at the definition in statement 2
and ends at the use at statement 4. We write this path as follows:

read(x); read(y); ((x!=y)? XX);

The pre-path of this path is empty, since read(x) is the first executable
statement of the program. There is an infinity of post-paths; for the sake of illus-
trations, we do not take the shortest/simplest post-path, but choose instead the
following:

((x!=y)? true); ((x>y)? true); (x=x-y); ((x>y)? false);
write(x);

218 STRUCTURAL CRITERIA

We leave it to the reader to check that the function of this path is the following:

P= s,s length is ≥ 2 head is = 2×head tail is x = head tail is
y = head tail is os = os head tail is

The domain of this function can be written as:

dom P = s,s length is ≥ 2 head is = 2×head tail is

Possible test data:

is= 24,12,…

We leave it to the interested reader to continue reviewing other definition-use
paths, including those obtained by the combinations of statements (2,5), (2,6),
(2,8), (6,4), (6,5), and (6,8). Note that by the time we combine the selected path
with a pre-path and a post-path, we may find an aggregate path that we have ana-
lyzed before; in that case, we can rely on the test data we have generated before.

We must do the same analysis for all the definition-use paths that pertain
to variable y; to this effect, we list below the definition and use statements for
variable y.

○ Definitions: statements 3 and 8.
○ Uses: statements 4, 5, 6, 8.

• All p-uses. This criterion provides for covering all the definition-clear paths
that end with a p-use of some variable. The following table shows the list of
definitions and p-uses of each variable of the program.

x y

Definitions 2, 6 3, 8

p-uses 4, 5 4, 5

This includes definition-clear paths (2,4), (2,5), (3,4), and (3,5).

• All c-uses. This criterion provides for covering all the definition-clear paths that
end with a c-use of some variable. The following table shows the list of defini-
tions and p-uses of each variable of the program.

x y

Definitions 2, 6 3, 8

c-uses 6, 8 6, 8

This includes definition-clear paths (2,6), (6,8), (3,8).

21910.3 DATA FLOW COVERAGE

• All uses. The test data generated for this criterion is the union of the test data
generated by criterion All p-uses and criterion All c-uses.

• All definitions. The test data generated for this criterion must ensure that all the
definition nodes are visited at least once; these are 2 and 6 for x, and 3 and 8 for y.

10.3.3 A Hierarchy of Criteria

A test data generation criterion C subsumes a test data generation criterion C if and
only if any test data set that satisfies C satisfies C . The following subsumption
relations hold between the criteria discussed in this section (Fig. 10.4).

10.4 FAULT-BASED TEST GENERATION

Whereas the previous sections focus on generating test data to cover the control flow
and the data flow of the program, this section focuses on generating test data to
expose specific types of faults, namely faults in Boolean conditions in the program.

Statement coverage

All definitions Branch coverage

All p-usesAll c-uses

All paths

All uses

All du-paths

Figure 10.4 Hierarchy of test generation criteria.

220 STRUCTURAL CRITERIA

We distinguish between the following types of faults in Boolean expressions and
conditions:

• Variable Reference Fault, where a Boolean variable is replaced by another.

• Variable Negation Fault, where a Boolean variable is replaced by its negation.

• Expression Negation Fault, where a Boolean expression is replaced by its
negation.

• Associative Shift Fault, where a Boolean expression is parenthesized incorrectly;
for example, the expression x y z is written instead of x y z .

• Operator Reference Fault, where the wrong Boolean operator is used in an
expression; for example, the expression x y is written instead of x y.

• Relational Operator Fault, where the wrong relational operator is used in a Bool-
ean valued expression; for example, the expression x≥ y is used instead of x > y.

In this section, we discuss how we can generate test data to expose such faults, if
they arise in Boolean conditions and Boolean expressions of a candidate program. To
do so, we proceed in three steps:

1. First, for each type of fault, we want to characterize the local data that sensitizes
the fault, and converts it into an error.

2. Second, we want to characterize the input data that generates the necessary local
conditions for the fault to be sensitized.

3. Third, we want to further refine the data selection criterion to ensure that, in
addition to generating an error, the data will also propagate the error to lead
to an observable failure.

We review these three conditions in the following sections.

10.4.1 Sensitizing Faults

Let E be a Boolean expression in a program; we assume that E has one of the faults
classified above, and we let E be the Boolean expression obtained from E by correct-
ing the fault in question. For example, let E be the Boolean expression x y ¬x
and let there be a variable reference fault in E with respect to variable y (which should
have been z, say), then E is x z ¬x . We are interested to determine under what
condition (on program variables x, y, and z) can this fault be sensitized. In order for
expression E to be different from expression E , the following condition has to hold:

E E ,

where represents the operator of exclusive or: E E =E ¬E ¬E E . This
expression is true if and only if the Boolean values of expressions E and E are distinct

22110.4 FAULT-BASED TEST GENERATION

(one is True, the other is False). To understand the meaning of this condition, consider
the following simple example:

• E = x y .

• E = x z .

We find,

E E

= {Substitution, expansion}

x y x z x y x z

= {DeMorgan}

x y x z x y x z

= {Distributivity, simplification}

x y z y x z

= {Factoring, Definition of }

x y z

Indeed, if expression E is faulty and expression E is the correct expression,
then the only way to sensitize this fault is to let x be true and let y be different from
z. As long as y and z take the same values, we will never know that we are referring to
the wrong variable (y rather than z); also, as long as x is false, the value of the expres-
sion is false regardless of whether the second term is y or z. Hence the condition
x y z is indeed the condition under which the fault can be sensitized and produce
an error.

We review in turn all the classes of faults catalogued above and discuss what form
the condition of fault sensitization has for them.

• Variable Reference Fault. If expression E(x) depends on variable x and it should
be referring to y instead of x, then the condition of sensitization is:

E x E y

An example of such a situation is given above.

• Variable Negation Fault. If expression E(x) depends on variable x and it should
be referring to x instead of x, then the condition of sensitization is:

E x E x

222 STRUCTURAL CRITERIA

As an illustrative example, we consider expression E(x) defined as: E x = x y
and we assume that the reference to x should have been negated, hence
E x =E x = x y , then the condition of sensitization is:

x y x y

We analyze this expression, as follows:

x y x y

= {Expanding}

x y x y x y x y

= {De Morgan}

x y x y x y x y

= {Distribution, cancellation}

x y x y

= {Simplification}

y

Clearly, the only way to sensitize this fault is to let y be true, since if y were
false then the expression would be false regardless of the value of x. Whereas
with y at true, the expression would be equal to x and hence reflects whether
we have the right value or its negation.

• Expression Negation Fault. If the faulty expression is the negation of the fault-
free expression, then any evaluation of the expression sensitizes the fault. Indeed,
we have, by definition

E Ε = True

for all expression E.

• Associative Shift Fault. This fault arises when a Boolean expression is parenthe-
sized wrong. As an illustrative example, we consider the following expression
E = x y z and we assume that the fault free expression is E = x y z . We
analyze the expression E E to determine under what condition this fault
may be sensitized; rather than doing this algebraically (using logic identities),
we use truth tables to compute the two expressions and then characterize the rows
for which the two expressions are distinct:

22310.4 FAULT-BASED TEST GENERATION

x y z x y y z E E E E

F F F F F F F F

F F T F T T F T

F T F F T F F F

F T T F T T F T

T F F F F F F F

T F T F T T T F

T T F T T T T F

T T T T T T T F

Hence this condition can be simplified into z x . Indeed, if z is True and x is
False, then E = True regardless of the value of y and E =False regardless of
the value of y.

• Operator Reference Fault. We let E be the original expression and E be the cor-
rected expression, and we compute/analyze the expression E E . For example,
if we let E be the expression x y and E be the expression x y, then we find:

E E

= {substitution, expansion}

x y x y x y x y

= {De Morgan}

x y x y x y x y

= {Distributing, simplifying}

x y x y

= {Definition}

x y

In other words, in order to sensitize this fault, we must submit distinct values for
x and y ((true, false) or (false, true)); indeed, if x and y are identical, then their
conjunction () and their disjunction () are identical.

• Relational Operator Fault. If a relational operator is faulty, then we need to
proceed in two steps: first, we choose data that yields different Boolean values
for the relational expression; then we treat the relational expression as a variable

224 STRUCTURAL CRITERIA

reference fault. For example, let i and j be integer variables and let x be a Boolean
variable (or another Boolean valued expression). We let expressions E and E’ be
defined as follows:

○ E = x i ≤ j ,
○ E = x i < j .

Because i < j logically implies i ≤ j , the only way to make these conditions
distinct is to let the first condition be false while the second is true. To this effect,
we let i and j be equal. From then on, the question is how to make an expression
(x y) distinct from (x z) given that y is different from z. We have seen in the
study of the first class of fault that this requires the condition x y z . Since
y z is true by construction, the remaining condition for us is x.

All the sensitization conditions we have generated so far are local conditions, that
is. conditions that refer to the value of program variables at the state where the
Boolean expressions are evaluated; but generating test data requires that we compute
conditions that input data must satisfy. In the following section, we consider how to
generate test data that triggers sensitization conditions at chosen locations in the
program, where the targeted Boolean conditions are evaluated.

10.4.2 Selecting Input Data for Fault Sensitization

For the sake of this discussion, we introduce a program label that indicates the first
executable statement of the program, and we refer to it as the begin label. Also,
we consider a Boolean expression E and designate the program label where this
expression is evaluated by L. We consider a possible fault in expression E (among
the classes of faults catalogued in Section 10.4.1) and we let E be the expression
obtained from E when the fault is removed; also, we let C be the sensitization condi-
tion of the targeted fault at E, that is, C =E E . We have the following criterion:

We say that initial state s sensitizes the targeted fault in the Boolean expression E if
and only if:

• There exists a path p from label begin to label L; let P be the function of p (computed as
shown in Section 10.1).

• The post-restriction of P to sensitization condition C is not empty.

• State s is in the domain of the post-restriction of P to sensitization condition C.

As an illustrative example, we consider an array a of size 2 ×N for some natural
number N greater than 1 and an element x of the same data type as the contents of the
array; we assume that we are interested in checking whether x is in the first half of the
array. Hence we write the following program:

22510.4 FAULT-BASED TEST GENERATION

void main ()
{itemtype a[2*N]; itemtype x; indextype i; bool found;
i=0; L: while ((a[i]!=x) && (i<=N)) {i=i+1;}
found = (a[i-1]==x);}

We have a relational operator fault in this program, as the loop condition should
read ((a[i]!=x) && (i<N)) rather than ((a[i]!=x) && (i<=N)). As we
discuss in the previous section, this fault can be sensitized locally by ensuring that
(i<=N) holds while (i<N) does not, and ensuring that (a[i]!=x)is true. To this
effect, we let i be equal to N while ensuring that the condition (a[N]!=x) is true.
We write the local sensitization condition as:

C≡ i =N a N x

All these are local conditions; we must now determine what input data will create
these local conditions at label L? To this effect, we compute a path from the start of the
program to label L, take its post-restriction to the sensitization condition, check that it
is nonempty, then compute its domain. We find:

Path: i=0; ((((a[i]!=x) && (i<=N))? True) ; {i=i+1})*;

where the * is used to refer to an arbitrary number of instances of a path. The function
of this path is given by the following formula (where the star represents reflexive tran-
sitive closure):

P

= {Substitution}

s,s i = 0 − s = − s • s,s a i x i ≤N i = i + 1− s = − s

= {Transitive Closure}

s,s i = 0 − s = − s • s,s j 0 ≤ j < i a j x j ≤N i ≥ i − s = − s

= {Relational Product}

s,s j 0 ≤ j< i a j x j ≤N i ≥ 0 − s = − s

= {Simplification}

s,s i ≥ 0 − s = − s i ≤N + 1 j 0 ≤ j < i a j x

226 STRUCTURAL CRITERIA

Taking the post-restriction of this function to the sensitization condition, we find

P•I C

= {Substitution}

s,s i ≥ 0 − s = − s i ≤N + 1 i =N a N x j 0 ≤ j< i a j x

= {Simplification}

s,s − s = − s i =N j 0 ≤ j ≤N a j x

The domain of this function is:

dom P•I C = s j 0 ≤ j ≤N a j x

Any initial state in this domain will sensitize the fault: Indeed, since the condition
a j x holds for all indices between 0 and N inclusive, the second conjunct of the
while condition determines the value of this condition: For i=N, the condition
(i<=N) returns True, whereas the condition (i<N) returns False.

10.4.3 Selecting Input Data for Error Propagation

Whereas it is necessary to identify the conditions under which an initial state sensitizes
a fault to create an error, it is not sufficient. We also need to make sure the error pro-
pagates to cause an observable failure. Whence the following criterion:

We say that initial state s exposes the targeted fault in the Boolean expression E if and
only if:

• State s sensitizes the targeted fault in expression E.

• Further, state s satisfies the following condition: G s G s , where G is the function
of the original program g, and G is the function of the modified program, in which
expression E is replaced by expression E .

The first condition ensures that the fault is sensitized and the second condition
ensures that the resulting error is propagated to cause a failure, which can then be
observed to infer the existence of the fault. As an illustration, consider again the search
program we had introduced above:

void main ()
{itemtype a[2*N]; itemtype x; indextype i; bool found;
i=0; L: while ((a[i]!=x) && (i<=N)) {i=i+1;}
found = (a[i-1]==x);}

22710.4 FAULT-BASED TEST GENERATION

If we let g’ be the program obtained from g by changing the condition (i<=N) into
the condition (i<N), and we let s be an element of dom(P • I(C)), then we find that
application of functions G and G to s yield the following results:

• For G x = x a = a i =N + 1 found = True.

• For G x = x a = a i =N found = True.

Indeed, the images of s by G and G are distinct (distinct values of i); hence the
error caused by the identified fault is propagated to cause failure; had program
G altered variable i in a non-injective manner, such as (for example):

void main ()
{itemtype a[2*N]; itemtype x; indextype i; bool found;
i=0; L: while ((a[i]!=x) && (i<=N)) {i=i+1;}
found = (a[i-1]==x); i=0;}

then state s would no longer be an adequate choice to expose the selected fault, even
though it does sensitize the fault and causes an error.

10.5 CHAPTER SUMMARY

Structural criteria for test data generation aim to generate test data not by analyzing the
functional specification of the product but rather by analyzing the product itself; while
the idea of using a product under test as a guide to test may be counter-intuitive, it does
ensure some degree of coverage of the code that we are trying to test. Most criteria
used in this chapter involve computing feasible execution paths through the code, then
determining their path conditions, that is, for each path the condition under which that
path will in effect be taken during an execution; hence the first topic we must address,
and the most critical skill we must develop, is the ability to compute path conditions.
We use this ability to study a number of test data generation criteria, including the
following:

• Control flow criteria, which aim to ensure that we achieve a degree of coverage
of control flow configurations.

• Dataflow criteria, which aim to ensure that we achieve a degree of coverage of
various configurations of variable lifecycles.

• Fault-based criteria, which aim to ensure that we expose various configurations
of specific faults in the code.

Whereas functional criteria focus on exposing possible software failures, structural
criteria aim to expose various configurations of faults that may be causing observed
failures.

228 STRUCTURAL CRITERIA

10.6 EXERCISES

10.1. Consider the paths p0, p1, p2, and p3 derived on the gcd program of
Section 10.1.

a. Compute their path function.

b. Compute their path condition.

c. Derive test data to meet the path condition of each path.

10.2. Consider the paths p4, p5, p6, and p7 derived on the gcd program of
Section 10.1.

a. Compute their path function.

b. Compute their path condition.

c. Derive test data to meet the path condition of each path.

10.3. Generate four paths of the gcd program of Section 10.1 that proceed through
the loop four times.

a. Compute their path function.

b. Compute their path condition.

c. Derive test data to meet the path condition of each path.

d. How many paths are there that iterate four times through the loop?

10.4. Consider the following program, whose goal is to check whether x is located in
the second half of array a of size 2×N, where N>1:

void main ()
{itemtypea[2*N]; itemtypex; indextypei; boolfound;
i=2*N-1; L: while ((a[i]!=x) && (i>N)) {i=i-1;}

found = (a[i+1]==x);}

Find test data to sensitize the fault that the second conjunct of the loop
condition should be (i>=N) rather than (i>N).

10.5. Consider the following program, whose goal is to check whether x is located in
the second half of array a of size 2×N, where N>1:

void main ()
{itemtypea[2*N]; itemtypex; indextypei; boolfound;
i=2*N-1; L: while ((a[i]!=x) && (i>N)) {i=i-1;}

found = (a[i+1]==x); i=N;}

Find test data to expose the fault that the second conjunct of the loop
condition should be (i>=N) rather than (i>N).

10.6. Consider the two paths proposed at the end of Section 10.2.1. Compute their
path functions P1 and P2, then the domains of their path functions. Generate
test data from them.

22910.6 EXERCISES

10.7. Consider the following program on space S defined by natural variables x, y,
and z

{z=1; while (y!=0) {if (y%2==0) {y=y/2; x=x*x}
else {y=y-1; z=z+x;}}}.

a. Generate the paths of this program that iterate no more than three times
through the loop.

b. Compute the function of each path and its path condition.

c. Generate test data that satisfies the path condition of each path.

10.8. Complete test generation (started in Section 10.3.2) for the gcd program
according to the criterion of All du-paths.

10.9. Complete test generation (started in Section 10.3.2) for the gcd program
according to the criterion of All c-uses.

10.10. Complete test generation (started in Section 10.3.2) for the gcd program
according to the criterion of All p-uses.

10.11. Complete test generation (started in Section 10.3.2) for the gcd program
according to the criterion of All definitions.

10.12. Consider the following program on space S defined by natural variables x, y,
and z

{z=0; while (y!=0) {if (y%2==0) {y=y/2; x=2*x}
else {y=y-1; z=z+x;}}}.

Generate test data for this program using the criterion of All du-paths.

10.13. Consider the following program on space S defined by natural variables x, y,
and z

{z=0; while (y!=0) {if (y%2==0) {y=y/2; x=2*x}
else {y=y-1; z=z+x;}}}.

Generate test data for this program using the criterion of All u-uses.

10.14. Consider the following program on space S defined by natural variables x, y,
and z

{z=0; while (y!=0) {if (y%2==0) {y=y/2; x=2*x}
else {y=y-1; z=z+x;}}}.

Generate test data for this program using the criterion of All p-uses.

230 STRUCTURAL CRITERIA

10.15. Consider the following program on space S defined by natural variables x, y,
and z

{z=0; while (y!=0) {if (y%2==0) {y=y/2; x=2*x}
else {y=y-1; z=z+x;}}}.

Generate test data for this program using the criterion of All definitions.

10.16. Consider the followingprogramon spaceSdefinedbynatural variables x, y, and z

{z=1; while (y!=0) {if (y%2==0) {y=y/2; x=x*x}
else {y=y-1; z=z*x;}}}.

Generate test data for this program using the criterion of All du-paths.

10.17. Consider the following program on space S defined by natural variables x, y,
and z

{z=1; while (y!=0) {if (y%2==0) {y=y/2; x=x*x}
else {y=y-1; z=z*x;}}}.

Generate test data for this program using the criterion of All u-uses.

10.18. Consider the following programon space S defined by natural variables x, y, and z

{z=1; while (y!=0) {if (y%2==0) {y=y/2; x=x*x}
else {y=y-1; z=z*x;}}}.

Generate test data for this program using the criterion of All p-uses.

10.19. Consider the followingprogramon spaceSdefinedbynatural variables x, y, and z

{z=1; while (y!=0) {if (y%2==0) {y=y/2; x=x*x}
else {y=y-1; z=z*x;}}}.

Generate test data for this program using the criterion of All definitions.

10.20. Consider the sequential form of the triangle analysis program discussed in
Section 10.2.4. Review the table that characterizes paths p1–p6, and justify
the way this table is filled.

10.21. Compute the path functions and the path conditions of the paths generated for
the gcd program in Section 10.2.4.

10.22. Use fault-based test generation to produce test data for the sequential version
of the triangle analysis program.

10.23. Use fault-based test generation to produce test data for the nested version of
the triangle analysis program.

23110.6 EXERCISES

10.7 BIBLIOGRAPHIC NOTES

The discussion of fault-based test data generation uses results given by Kuhn (1999).
The discussion of dataflow-based test data generation uses results from Rapps and
Weyuker (1985) and Frankl and Weyuker (1988).

232 STRUCTURAL CRITERIA

Part IV

Test Deployment
and Analysis

In Part III, we have explored ways to generate test data; the generation of test data
is only a phase of the testing process. In this part, we discuss the remaining phases,
which include the design of the test oracle, the design of the test driver, and the
analysis of test outcomes; we devote one chapter to each one of these phases.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

233

11
Test Oracle Design

In this chapter, we discuss the design of the test oracle, that is, the agent whose task is to
observe executions of the candidate program on sample test data and to rule on whether
the program does or does not behave according to its specification. We review, in turn,
the tradeoffs that arise in oracle design, how to design an oracle from a relational spec-
ification, and how to design an oracle for a state-based software product.

11.1 DILEMMAS OF ORACLE DESIGN

All the test data in the world do not help us unless we have an oracle, a correct oracle,
to reliably check whether the candidate program behaves according to its specifica-
tion. The choice of an oracle is both critical and difficult.

• It is critical to have a reliable oracle because otherwise we run the risk of over-
looking faults (if failures are not detected) and the risk of acting on faulty diag-
noses (if correct behavior is reported to be incorrect).

• It is difficult and error prone to monitor the behavior of a program by having a
human operator watch its inputs and outputs; but developing automated oracles
poses challenges of its own, which we discuss in this section.

The general framework in which an oracle is invoked can be written as follows
(where g is the program under test and S is the space of the program):

main ()
{s = testdata; s_init=s;
g; // modifies s, keeps s_init intact
assert(oracle(s_init,s));}

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

235

The design of the oracle is subject to the following criteria:

• Simplicity. The oracle must be simple enough that we can ensure its reliability
with a great degree of confidence. In particular, it must be significantly
simpler to write and analyze than candidate programs. If the oracle is as complex
as the program being tested, then it is as likely to have faults as the candidate
program; this, in turn, defeats the purpose of using the oracle to test the
program.

• Strength. Ideally, we want the oracle to capture all the clauses of the requirements
specification, so as to test all the relevant functional properties of the program.
But this may prove too complex (hence violating the first criterion), too ineffi-
cient (in terms of resource usage), or too impractical (requiring a great deal of
context, for example). Hence we may often have to settle for capturing a subset
of the target requirements.

The criteria of strength and simplicity must be balanced against each other to reach
a tradeoff where we derive an oracle that is sufficiently strong to be useful, yet suf-
ficiently simple to be reliable. This tradeoff is very easy when it is easier to check that
a final state is correct than to compute a correct final state. Consider for example a
program that computes the roots of a quadratic equation: The space of this program
is defined by real variables a, b, c that represent the coefficients of the quadratic equa-
tion, and real variables x1and x2 that hold the roots. A specification of the quadratic
equation may be written as follows:

R= s,s positive b2-4ac root x1 root x2 positive x2 -x1

This specification provides that the quadratic equation is assumed to have two dis-
tinct roots, and that candidate programs are expected to produce the smaller root in x1
and the larger root in x2 . To account for possible loss of precision in computer arith-
metic, predicates positive and root are defined with respect to selected precision
thresholds; for example,

• positive x ≡ x > ε ,

• root x ≡ ax2 + bx + c < ε ,

for some small positive constant, ε. Whereas the program computes the roots of the
quadratic equation constructively, the oracle merely checks that the computed values
are indeed roots of the equation, and that they are distinct (hence the program is return-
ing all the roots, rather than twice the same root). We can think of many other exam-
ples where computing a result is significantly more complex than checking that a
computed result is correct:

• Consider the problem of computing the roots of a polynomial of higher
degree, or the roots of a functional that has no polynomial form altogether,

236 TEST ORACLE DESIGN

where no constructive solutions are known: candidate programs may com-
pute the roots by some iterative method of successive approximations;
yet all the oracle has to do is simply to check that the delivered values
are indeed roots to the equation.

• Solving a large system of linear equations may be a complex affair (e.g.,
Gaussian elimination), where we have to worry not only about the correct-
ness of the algorithm, but also about controlling round-off errors; yet check-
ing that the solution is correct amounts to little more than multiplying a
matrix by a vector.

• Computing the inverse of a N ×N matrix involves complex calculations (e.g., N
systems of linear equations), which are made all the more complex by the need to
control round off errors; yet checking that the solution is correct amounts to little
more than computing the product of two matrices.

• Computing the eigenvalues and eigenvectors of a N ×N matrix involves solving
polynomials of degree N, followed by solving systems of N linear equations,
where again the control of runaway round-off errors is a major concern; yet
checking that the solution is correct amounts to little more than multiplying a
matrix by a vector.

In all these cases, it is possible to test a complex program using a simple, reli-
able oracle. There are ample cases, however, where checking that a final program
state is correct is not much easier than generating a correct final state; in such
cases, we may have to settle for generating an oracle that tests only some aspects
of the target requirements specification, deferring the other aspects to other ver-
ification/quality assurance methods. As a simple illustrative example, consider the
specification of a gcd program on natural variables x and y. The specification can
be written as:

R= s,s x > 0 y > 0 x = gcd x,y

If we are given the initial values of variable x and y, and the final value x of
variable x, we have no easy way to tell whether x is the gcd of x and y, except
possibly to compute the gcd of x and y independently and compare it with x . But
doing so defeats the purpose of the oracle because it violates the requirement of
simplicity: if the oracle is as complex as the program we are testing, we have no
reason to trust the correctness of the oracle more than the correctness of the can-
didate program. As a substitute, we may want to settle for checking that x is a
common divisor of x and y, and renounce checking that it is the greatest common
divisor. The specification that corresponds to such a scaled-down oracle can then
be written as:

R = s,s x> 0 y > 0 xmodx = 0 ymod x = 0

23711.1 DILEMMAS OF ORACLE DESIGN

11.2 FROM SPECIFICATIONS TO ORACLES

Let g be a program on space S and let R be the specification against which we are
testing g; as we discussed in the previous section, the general format for testing pro-
gram g looks as follows:

main ()
{s = testdata; s_init=s;
g; // modifies s, keeps s_init intact
assert(oracle(s_init,s));}

The question we wish to address in this section is: How do we derive the oracle from
specification R? A naïve solution would be to simply let oracle(s_init,s) be
defined as: sinit,s R. As we will see in the following example, this is not a valid
choice. We consider the following specification on space S defined by natural vari-
ables x and y (where we want to compute the greatest common divisor of integers
greater than 10):

R= s,s x> 10 y > 10 x = gcd x,y ,

and we consider the following program:

// gcd program
void gcd(){while(x!=y){if(x>y){x=x-y;}else{y=y-x;}};}

Because of the difficulties we have alluded to above, we resolve to test this pro-
gram against a simpler specification than R, which checks that the final value of x
is a common divisor of the original values of x and y, but not the greatest common
divisor; this yields the following relation,

R = s,s x > 10 y > 10 xmodx = 0 ymodx = 0 ,

Let us consider the following program, whose goal is to check the correctness of
program gcd against specification R for the input data T = 5,5 .

#include <iostream>
using namespace std;
int x, y, x_init; y_init; void gcd();
int main () {x=0; y=0; x_init=x; y_init=y;

gcd(); // modifies x and y, keeps x_init and y_init
intact
if (!(x_init>0 && y_init>0 &&

x_init%x==0 && x_init%y==0))
{cout << “test failure”;}

else {cout << “test success”;}}

238 TEST ORACLE DESIGN

When we run this program on test data T = 5,5 , it prints “test failure,”
which appears to suggest that the program is incorrect, when in fact this program
is correct. The reason for this inconsistency is that the specification includes
clauses on the initial state and clauses on the final state, which have different
interpretations:

• Clauses on the initial state represent the conditions that candidate programs may
assume to hold prior to their call, whereas

• Clauses on the final state represent the conditions that candidate programs are
expected to ensure upon their execution.

An oracle ought to treat these two conditions separately:

1. If the condition on the initial state does not hold, then the program is off the
hook: since its assumption does not hold, whatever it does must be considered
correct.

2. The output condition of the specification is checked only if the input condi-
tion holds.

Hence the following proposition:

Proposition: Oracle Structure In order to test a program g with respect to a
specification R, we must use the following oracle:

oracle sinit, s ≡ sinit dom R sinit, s R

In Programming terms, we can write the generic form of the oracle as follows:

bool oracle (s_init, s)
{return (!(domR(s_init)) || R(s_init,s));}

As an example, we consider again the gcd program, and we rewrite it as
follows:

#include <iostream> // 1
using namespace std; // 2
int x, y, x_init, y_init; void gcd (); // 3
bool oracle (int x_init, int y_init, int x, int y); // 4
bool domR(int x_init, int y_init); // 5
bool R(int x_init, int y_init, int x, int y); // 6
int main () {x=355; y=215; x_init=x; y_init=y; // 7

gcd(); // changes x, y, keeps x_init and y_init // 8

23911.2 FROM SPECIFICATIONS TO ORACLES

if (oracle(x_init,y_init,x,y)) // 9
{cout << “test success” << endl;} // 10

else {cout << “test failure” << endl;} } // 11
void gcd()

{while (x!=y) {if (x>y) {x=x-y;} else {y=y-x;}};} // 12
bool oracle(int x_init, int y_init, int x, int y) // 13
{return (!(domR(x_init,y_init)) ||

R(x_init,y_init,x,y));} // 14
bool domR(int x_init, int y_init)

{return (x_init>10 && y_init>10);} // 15
bool R(int x_init, int y_init, int x, int y) // 16
{return (x_init>10 && y_init>10 &&

x_init%x==0);} // 17

The code of method ‘bool oracle’ can be used as a general template for oracles
(modulo differences in the state space): for any specification R, we must define
Boolean functions domR() and R()with the appropriate parameters and let function
oracle use them according to the formula of the proposition above.

As a second example, we consider the specification of the quadratic equation,
which we define on space S represented by variables a, b, c (coefficients of the equa-
tion) and variables x1 and x2 (roots of the equation):

R = s,s positive b2−4ac root x1 root x2 positive x2 −x1

From this definition, we infer the domain of this relation as:

dom R = s,s positive b2−4ac

Hence the oracle can be written as:

bool oracle
(float a_init, float b_init, float c_init, float x1_init,
float x2_init, float a, float b, float c, float x1, float x2)
{return (!(domR(a_init,b_init, c_init, x1_init,

x2_init)) ||
R(a_init, b_init, c_init, x1_init, x2_init, a, b, c,

x1, x2));}

Where predicates domR and R are defined as follows:

bool domR
(float a_init, float b_init, float c_init, float x1_init,
float x2_init)
{return (positive(b_init*b_init-4*a_init*c_init));}

240 TEST ORACLE DESIGN

bool R(float a_init,float b_init, float c_init,
float x1_init, float x2_init,
float a, float b, float c, float x1, float x2)

{return (positive(b_init*b_init-4*a_init*c_init)&&
root(x1)&&root(x2)&& positive(x2-x1));}

bool positive(float x) {return (x>epsilon);}
bool root(float x)

{return (abs(a_init*x*x+b_init*x+c) <epsilon);}

The following segment shows how this code is called to run the quadratic equation
program and test its operation:

int main ()
{a=1; b=8; c=9; x1=0; x2=0;
a_init=a; b_init=b; c_init=c; x1_init=x1; x2_init=x2;
//saving init state

quadratic(); // changes current state, keeps initial state
if (oracle(a_init, b_init, c_init, x1_init, x2_init,

a, b, c, x1, x2))
{cout << “test success” << endl;}

else {cout << “test failure” << endl;}}

where function quadratic is defined as follows:

void quadratic()
{float delta; delta = b*b-4*a*c; delta=sqrt(delta);
x1=(-b-delta)/2.*a; x2=(-b+delta)/2.*a;}

We have seen in Chapter 7 that the specification against which we test a soft-
ware product depends to a great extent on the goal of the test; in particular, if our
goal is to find (and remove) the maximum number of faults, then it is important
to use the most refined (strongest) specification possible, namely one that capture
every functional detail of the program as written. Hence, for the quadratic equa-
tion program, for example, the specification that captures all the functional detail
would look like:

R = s,s positive b2-4ac root x1 root x2 positive x2 -x1

a = a b = b c = c

Also, for the gcd program, the specification that captures all the functional detail
would look like:

R= s,s x> 0 y> 0 x = gcd x,y y = gcd x,y

24111.2 FROM SPECIFICATIONS TO ORACLES

As a tradeoff between simplicity and strength, we can use the following specifica-
tion as a substitute for R:

R = s,s x > 0 y > 0 xmod x = 0 ymod x = 0 x = y

This relationprovides that x is a commondivisor of x and y, and that y is equal to x ;
but it does not provide that x is the greatest common divisor of x and y; to ensure
this latter property, we can write the following Boolean function:

bool greatest(int x_init, int y_init, int x)
{// no number greater than x is a divisor of x_init and y_init;
int min;

if (x_init<y_init) {min=x_init;} else {min=y_init;};
bool isgreatest; isgreatest=true;
for (int i=x+1; i<=min; i++)

{isgreatest = isgreatest &&
!(x_init%i==0 && y_init%i==0);};

return isgreatest;}

11.3 ORACLES FOR STATE-BASED PRODUCTS

In the previous section, we have discussed how to choose a specification against
which we test a program and then how to derive a test oracle from a specification.
In particular, we have focused our attention on two possible specifications:

• A specification that is appropriate for acceptance testing, which is the weakest
specification that a user is willing to accept as a criterion for considering
that the contract (between the software provider and the software user) is
fulfilled.

• A specification that is appropriate for fault removal, which is the strongest pos-
sible specification that the candidate program must fulfill, reflecting the intent of
the programmer and the minute details of the program.

In this section, we consider software products that are based on an internal state. As
we have seen in Chapter 4, such products can be specified by means of relations from
input histories to outputs. The main advantage of this specification model is that it
absolves us from talking about system states, leaving this matter as a design decision
rather than a specification decision.

We consider a specification of the form (X, Y, R), where R is a relation from H =X∗

to Y and we let g be a candidate implementation of the specification, in the form of
a class (in the object oriented programming (OOP) sense). If we are interested in test-
ing class g for the purpose of fault removal, then we can specify each of its methods
in terms of how it affects the system state and how it generates outputs accordingly.

242 TEST ORACLE DESIGN

Each individual method can be viewed as a simple software component mapping
an initial state into a final state; testing such components falls under the model
we discussed in the previous section. Hence we focus our attention in this
section on testing a state-based system against a specification of the form
(X, Y, R), where R is a relation from H =X∗ to Y. We assume that such specifications
are represented by means of axioms and rules, as we discuss in Chapter 4. The
question then becomes: how do we test a candidate implementation against such a
specification? More specifically, how do we map such an axiomatic specification into
an oracle? In the following section we discuss, in turn, how we generate oracles from
axioms and how we generate oracles from rules. In the discussions that follow, we
assume that implementation g is a class that has a method for each symbol in X;
for the sake of simplicity, we assume that each method has the same name as the cor-
responding symbol; we postfix method names with parentheses, even when they have
no parameters.

11.3.1 From Axioms to Oracles

In the notation we introduced in Chapter 4, axioms have the form

• R h = y

where h is an (elementary) input history that ends with a VX symbol (representing a
method that returns a value but does not change the state) and y is the corresponding
output. History h can then be written as

• h = h vop,

where vop is a VX symbol. In order to test implementation g against this axiom, we
write the following sequence of code:

vtype y; y=y0; // y0: output specified by the axiom
g.m1(); g.m2(); g.m3(); … g.mk(); // sequence h’
if (g.vop==y) {successfultest;} else {unsuccessfultest;}

where vtype is the data type returned by operation vop, and y is the output
value provided by the axiom. As an illustration, we consider the following
axioms from the stack specification discussed in Chapter 4 and generate an oracle
for each.

• stack(init.top)=error.

itemtype y; y=error; // data type returned by top
g.init(); // sequence h’
if (g.top==y) {successfultest;} else {unsuccessfultest;}

24311.3 ORACLES FOR STATE-BASED PRODUCTS

• stack(init.h.push(a).top)=a.

itemtype y; y=a;// data type returned by top
g.init();
g.xx(); g.yy(); … g.zz(); // any sequence of AX methods
g.push(a); // arbitrary a
if (g.top==y) {successfultest;} else {unsuccessfultest;}

• stack(init.size)=0.

int y; y=0; // data type returned by size
g.init(); // sequence h’
if (g.size==y) {successfultest;} else {unsuccessfultest;}

• stack(init..empty)=true.

bool y; y=true; // data type returned by empty
g.init(); // sequence h’
if (g.empty==y) {successfultest;} else {unsuccessfultest;}

• stack(init.push(a).empty)=false.

bool y; y=false; // data type returned by empty
g.init(); g.push(a); // sequence h’, arbitrary a
if (g.empty==y) {successfultest;} else {unsuccessfultest;}

11.3.2 From Rules to Oracles

The vast majority of rules in axiomatic specifications has the form of an equality
between the images of two histories and expresses the property that two histories
are equivalent for all subsequent input sequences. Typically the two histories are
ordered (one is more complex than the other) and such rules can be used to infer
the output of the complex history from the output of the simpler history. We focus
on such rules first and then we consider other forms of rules.

Such rules can be written in generic form as:

h R h h =R h h ,

and can be interpreted as follows: for any input sequence h, the input sequence h . h
yields the same outcome as the input sequence h . h; in other words, the histories
h and h are equivalent now (if h is empty) and at any time in the future (if h is
not empty). Examples of such rules, in the stack specification given in Chapter 4,
include the following:

244 TEST ORACLE DESIGN

• stack(h .init.h) = stack(init.h).

• stack(init.pop.h) = stack(init.h).

• stack(init.h.push(a).pop.h+) = stack(init.h.h+).

• stack(init.h.top.h+) = stack(init.h.h+).

• stack(init.h.size.h+) = stack(init.h.h+).

• stack(init.h.empty.h+) = stack(init.h.h+).

Some rules have h+ (nonempty sequences) instead of h (possibly empty), but they
could be converted into rules with h by replacing h+ by xxx.h for each symbol xxx in
X. Hence we make no distinction between rules that end with an arbitrary history h
and rules that end with a nonempty history h+ . The same input sequence may lend
itself to more than one rule, yielding a different oracle for each rule, as we discuss
below. As an example, we consider the following input sequence:

• init.pop.push(a).size.push(b).pop.top.push(c).

We leave it to the reader to check that this input sequence lends itself to the
following rules:

• The Init-Pop Rule that reduces the sequence to
○ init.push(a).size.push(b).pop.top.push(c).

• The VX Rule (for size and top) that reduces the sequence to
○ init.pop.push(a).push(b).pop.push(c).

• The Push-Pop Rule that reduces the sequence to
○ init.pop.push(a).size.top.push(c).

Each one of these rules provides that the original sequence places the stack in the
same state as the simpler input sequence; since we want to write the oracle by inspect-
ing the specification rather than candidate implementations (and we want the same
oracle to work for all possible implementations), we abstain from referring to states.
The question that arises then is: how can we say that two states are identical if we
cannot refer to the states? The answer is that, as an approximation, we consider that
two states are identical if all the VX operations return the same values at these two
states. Hence if we have a rule of the form:

• R(init.h .h) = R(init.h .h),

where h is simpler than h , then the general template for an oracle that is derived from
the above rule is the following segment:

g.init(); g.m1(); g.m2(); … g.mk(); // sequence init.h’
if oracle() {successfultest();}
else {unsuccessfultest();}

24511.3 ORACLES FOR STATE-BASED PRODUCTS

where oracle() is defined as follows:

bool oracle()
{vx1type vx1; vx2type vx2; vx3type vx3; // VX types
vx1 = g.vop1(); vx2 = g.vop2(); vx3 = g.vop3();
// storing the current state, following init.h’
g.init(); g.m1’(); g.m2’(); … g.mh (); // sequence
init.h”
return ((vx1==g.vop1()) && (vx2==g.vop2()) &&

(vx3==g.vop3()));}

As an illustration, we consider the following input sequence:

• init.pop.push(a).size.push(b).pop.top.push(c).

and we generate oracles to test it, according to various applicable rules.

• The Init-Pop Rule. In order to test this sequence against the Init-Pop rule, we
apply the code pattern shown above, which we specialize to this rule.

itemtype a, b, c, v; int n; // working variables
g.init(); g.pop(); g.push(a); n=g.size(); g.push(b);
g.pop(); v=g.top(); g.push(c);
if oracleinitpop(){successfultest();}
else {unsuccessfultest();}

where we define oracle() as follows:

bool oracleinitpop()
{bool sempty; int ssize; itemtype stop; // VX values
sempty=g.empty(); ssize=g.size(); stop=g.top();
g.init(); g.push(a); n=g.size(); g.push(b); g.pop();
v=g.top(); g.push(c);
return ((sempty == g.empty()) && (ssize==g.size) &&

(stop==g.top()));}

• The VX Rule (for size). In order to test this sequence against the VX rule for size,
we apply the code pattern shown above, which we specialize to this rule.

itemtype a, b, c, v; int n; // working variables
g.init(); g.pop(); g.push(a); n=g.size(); g.push(b);
g.pop(); v=g.top(); g.push(c);
if oracleVXsize(){successfultest();}
else {unsuccessfultest();}

246 TEST ORACLE DESIGN

where we define oracle() as follows:

bool oracleVXsize()
{bool sempty; int ssize; itemtype stop; // VX values
sempty=g.empty(); ssize=g.size(); stop=g.top();
g.init(); g.pop(); g.push(a); g.push(b); g.pop();
v=g.top(); g.push(c);
return ((sempty == g.empty()) && (ssize==g.size) &&

(stop==g.top()));}

• The VX Rule (for top). In order to test this sequence against the VX
rule for top, we apply the code pattern shown above, which we specialize to
this rule.

itemtype a, b, c, v; int n; // working variables
g.init(); g.pop(); g.push(a); n=g.size(); g.push(b);
g.pop(); v=g.top(); g.push(c);
if oracleVXtop(){successfultest();}
else {unsuccessfultest();}

where we define oracle() as follows:

bool oracleVXtop()
{bool sempty; int ssize; itemtype stop; // VX values
sempty=g.empty(); ssize=g.size(); stop=g.top();
g.init(); g.pop(); g.push(a); n=g.size(); g.push(b);
g.pop(); g.push(c);
return ((sempty == g.empty()) && (ssize==g.size) &&

(stop==g.top()));}

• The Push-Pop Rule. In order to test this sequence against the Push-Pop rule, we
apply the code pattern shown above, which we specialize to this rule.

itemtype a, b, c, v; int n; // working variables
g.init(); g.pop(); g.push(a); n=g.size(); g.push(b);
g.pop(); v=g.top(); g.push(c);
if oraclepushpop(){successfultest();}
else {unsuccessfultest();}

where we define oracle() as follows:

bool oraclepushpop()
{bool sempty; int ssize; itemtype stop; // VX values
sempty=g.empty(); ssize=g.size(); stop=g.top();

24711.3 ORACLES FOR STATE-BASED PRODUCTS

g.init(); g.pop(); g.push(a); n=g.size(); v=g.top();
g.push(c);
return ((sempty == g.empty()) && (ssize==g.size) &&

(stop==g.top()));}

Whereas some rules provide that distinct input histories are equivalent, other rules
describe how the value of a VX method depends on the structure of the input history.
We write their general form as follows:

• C(R(init.h.vop), R(init.h .vop)),

where C is a binary predicate between values returned by vop. As such, these rules are
potentially applicable to any input sequence that ends with a vop symbol. The general
format of their oracle can be written as follows, where we assume that sequence h is
more complex than sequence h ’:

g.init(); g.m1(); g.m2(); … g.mk(); // sequence init.h
if oraclevoprule() {successfultest();}
else {unsuccessfultest();}

where oraclevoprule() is defined as follows:

bool oraclevoprule()
{vxtype vx; vx = g.vop(); // store R(init.h.vop)
g.init(); g.m1’(); g.m2’(); … g.mh (); // sequence init.h’
return (C(vx, g.vop);}

As an illustration, we consider the following input sequence

• init.pop.push(a).push(b).size.push(a).top.push(c).size

and we generate an oracle for it on the basis of the size rule. As we recall, the Size Rule
of the stack specification provides:

• stack(init.h.push(a).size) = 1 + stack(init.h.size).

We find:

itemtype a, b, c, v; int n; // working variables
g.init(); g.pop(); g.push(a); g.push(b); n=g.size();
g.push(a); v=g.top(); g.push(c); // sequence init.h
if oraclesize() {successfultest();}
else {unsuccessfultest();}

248 TEST ORACLE DESIGN

where oraclesize() is defined as follows:

bool oraclesize()
{int ssize; ssize = g.size(); // store R(init.h.vop)
g.init(); g.pop(); g.push(a); g.push(b); n=g.size();
g.push(a); v=g.top(); // sequence init.h’
return (ssize==g.size()+1);}

To illustrate the generation of oracles from the empty rules, we consider the fol-
lowing input sequence:

• init.pop.empty.push(a).push(b).size.pop.push(a).size.push(c).empty.

Using the two empty rules (copied from Chapter 4):

• stack(init.h.push(a).h .empty) stack(init.h.h .empty)

• stack(init.h.h .empty) stack(init.h.pop.h .empty)

From these rules, we generate the following oracles:

itemtype a, b, c, v; int n; bool e; // working variables
g.init(); g.pop(); e=g.empty(); g.push(a); g.push(b);
n=g.size();
g.pop; g.push(a); n=g.size(); g.push(c); // sequence init.h
if oracleempty1() {successfultest();}
else {unsuccessfultest();}

where oracleempty1() is defined as follows:

bool oracleempty1()
{bool sempty; sempty = g.empty(); // store R(init.h.vop)
g.init(); g.pop(); e=g.empty(); g.push(a); g.push(b);
n=g.size();
g.pop; n=g.size(); g.push(c); // sequence init.h’
return (!(sempty) || (g.empty()));}
// stack(init.h.push(a).h .empty) →
// stack(init.h.h .empty)

Whereas the first empty rule provides that removing a push operation makes the
stack more empty (so to speak), the second empty rule provides that adding a pop
operation also makes the stack more empty. Its oracle can be defined as follows,
for the selected input sequence:

24911.3 ORACLES FOR STATE-BASED PRODUCTS

itemtype a, b, c, v; int n; bool e; // working variables
g.init(); g.pop(); e=g.empty(); g.push(a); g.push(b); n=g.size();
g.push(a); n=g.size(); g.push(c); // sequence init.h
if oracleempty2() {successfultest();}
else {unsuccessfultest();}

where oracleempty2() is defined as follows:

bool oracleempty2()
{bool sempty; sempty = g.empty(); // store R(init.h.vop)
g.init(); g.pop(); e=g.empty(); g.push(a); g.push(b); n=g.size();
g.pop(); g.push(a); n=g.size(); g.push(c); // sequence init.h’
return (!(sempty) || (g.empty()));}

// stack(init.h.h .empty) →
// stack (init.h.pop.h .empty)

So far we have used axioms and rules to generate test data and design oracles; but in
fact, test data generation ought to be driven by coverage criteria. In Chapter 9, we had
explored ways to generate test data for state-based software products, using the criteria
that all states and all state transitions be visited at least once. In Chapter 12, we will see
how the data generated in Chapter 9 can be combined with the oracles introduced
herein to build test drivers.

11.4 CHAPTER SUMMARY

The subject of this chapter is the derivation of test oracles from relational specifica-
tions. This chapter covers two main themes, pertaining to the two main formats that
specifications may take:

• For simple programs that operate by mapping an initial state to a final state, we
find that if the specification of the program is a relation R, then the oracle has the
form Oracle(s,s) ≡ (s dom(R)→ (s,s) R).

• For state-based programs that maintain an internal state, we find that if the
specification of such programs is represented by axioms and rules, then any
sequence of method calls can be tested using an oracle derived from the
axioms or from the rules (depending on the structure of the method call
sequence).

We make it a point to separate the generation of test data from the generation of
test oracles; in Chapter 12, we see how these two artifacts are put together to produce
operational test drivers.

250 TEST ORACLE DESIGN

11.5 EXERCISES

11.1. We are interested in testing a program that searches an item x in an array a
[1..N] of the same type as x. If x is in a, the array returns its index; if not,
it returns 0.

a. Write a specification that is appropriate for acceptance testing. Use it to
derive a test oracle.

b. Write a specification that is appropriate for fault removal, if you know that
the candidate program operates by linear search starting from 1. Use it to
derive a test oracle.

c. Write a specification that is appropriate for fault removal, if you know that
the candidate program operates by linear search starting from N. Use it to
derive a test oracle.

d. Write a specification that is appropriate for fault removal, if you know that
the candidate program operates by binary search. Use it to derive a test
oracle.

11.2. We are interested in testing a program that solves a system of linear equations
of the form AX =B.

a. Write a specification for this problem, to be used in acceptance testing,
modulo some precision ε.

b. Use it to write a test oracle, assuming that you have a built-in function that
computes the determinant of a square matrix.

11.3. We are interested in testing a program that solves a cubic equation of the
form ax3 + bx2 + cx + d = 0.

a. Write a specification for this problem, which provides that the equation has
three distinct roots, and that candidate programs must return these roots in
variables x1, x2, and x3. Note: In order for a cubic equation to have three
roots, its discriminant must be positive, where the discriminant is defined
as 18abcd-4b3d + b2c2-4ac3-27a2d2.

b. Use this specification to write a test oracle for acceptance testing.

c. Write a program to solve this equation constructively (using analytical
formulas for the roots) and derive a corresponding oracle for fault
removal.

d. Write a program to solve this equation iteratively (find the roots of the
derivative and use these roots to apply the bisection method) and derive
a corresponding oracle for fault removal.

11.4. Consider the specification of the queue in Chapter 4. Generate oracles for
all the axioms of this specification and apply them to appropriate input
sequences.

25111.5 EXERCISES

11.5. Consider the specification of the queue in Chapter 4. Generate an oracle for
the Init Dequeue Rule of this specification and apply it to an appropriate
input sequence.

11.6. Consider the specification of the queue in Chapter 4. Generate an oracle for
the Enqueue Dequeue Rule of this specification and apply it to an appropriate
input sequences.

11.7. Consider the specification of the queue in Chapter 4. Generate oracles for the
Size Rule and the Empty Rules of this specification and apply them to appro-
priate input sequences.

11.8. Consider the specification of the queue inChapter 4.Generate oracles for all the
VX Rules of this specification and apply them to appropriate input sequences.

11.9. Consider the specification of the set in Chapter 4. Generate oracles for all the
axioms of this specification and apply them to appropriate input sequences.

11.10. Consider the specification of the set in Chapter 4. Generate an oracle for the
Null Delete Rule of this specification and apply it to an appropriate input
sequence.

11.11. Consider the specification of the set in Chapter 4. Generate an oracle for the
Insert Delete Rule of this specification and apply it to an appropriate input
sequences.

11.12. Consider the specification of the set in Chapter 4. Generate an oracle for the
Commutativity Rule of this specification and apply it to an appropriate input
sequences.

11.13. Consider the specification of the set in Chapter 4. Generate oracles for the
Size Rules of this specification and apply them to appropriate input sequences.

11.14. Consider the specification of the set in Chapter 4. Generate oracles for the
Inductive Rules of this specification and apply them to appropriate input
sequences.

11.15. Consider the specification of the set in Chapter 4. Generate oracles for all the
VX Rules of this specification and apply them to appropriate input sequences.

11.16. Following the example of Section 11.3.2, generate applicable oracles for the
following input sequence in the stack specification: init.push(_).push(_).
push(a).push(b).

11.17. Following the example of Section 11.3.2, generate applicable oracles for the
following input sequence in the stack specification: init.push(_).push(_).
push(a).push(b).size().

11.18. Following the example of Section 11.3.2, generate applicable oracles for the
following input sequence in the stack specification: init.push(_).push(_).
push(a).push(b).empty().

252 TEST ORACLE DESIGN

12
Test Driver Design

In Part III, we have explored means to generate test data, and in Chapter 11, we have
discussed ways to generate test oracles; in this chapter, we discuss how to compose
test data and test oracles to develop a test driver.

12.1 SELECTING A SPECIFICATION

In Chapter 11, we have discussed how to map a specification against which we want
to test a program into a test oracle; in this section, we discuss how to choose a
specification. One may argue that the question of what specification to test a program
against is moot, since we do not get to choose the specification. We argue that while
we do not in general have the luxury of deciding what specification we must test a
program against, we do have some latitude in choosing how to deploy different ver-
ification methods against different components of a complex, compound specifica-
tion. Indeed, each family of verification methods (fault avoidance, fault removal,
fault tolerance) works best for some type of specifications and works much less for
others; the law of diminishing returns advocates that we use a wide range of methods,
where each method is deployed against the specification components that are best
adapted to it. We consider each broad family of methods and briefly characterize
the properties of the specifications that are best adapted to it:

• Fault Avoidance/Static Analysis of Program/Static Verification of Program Cor-
rectness. We argue that specifications that are reflexive and transitive are very
well adapted to static verification methods. Imagine that one has to prove the
correctness of a complex program gwith respect to a specification R that is repre-
sented by a reflexive transitive relation. If g is structured as a sequence of two
subprograms, say g = g1;g2 , then to prove that G refines R, it suffices to prove
that G1 and G2 refine R (since R is transitive). Likewise, we find that if g is an

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

253

if-then statement, then to prove that G refines R, it suffices to prove that the then-
branch of g refines R; and that if g is an if-then-else statement, then to prove that
G refines R, it suffices to prove that each branch of the statement refines R; and
finally that if g is a while statement, then in order forG to refine R, it suffices that
the loop body of g refines R. More generally, the reflexivity and transitivity of R
greatly simplify the inductive arguments that are at the heart of many algorithms,
whereby reflexivity supports the basis of induction and transitivity supports the
inductive step.
As far as axiomatic program proofs are concerned (using Hoare’s logic), it is well
known that the most difficult aspects of such proofs (and the main obstacle to
their automation) is the need to generate intermediate assertions and invariant
assertions. When the specification at hand is reflexive and transitive, these asser-
tions often take the simple form

s0,s R,

where s0 is the initial state and s is the current state. A small illustration of this
situation is given in Chapter 6, where a reflexive transitive relation (prm(s0,s))
is uniformly used as an intermediate assertion and as an invariant assertion
throughout the program, and all the verification conditions have the same
assertion as precondition and postcondition.

• Fault Removal/Software Testing. Themain criterion that a specification must sat-
isfy to be an adequate choice for testing is the criterion of reliability: It must pro-
duce an oracle that can be implemented reliably, as a faulty oracle may throw the
whole test off-balance and may insert faults into the software product, rather than
remove existing faults.

• Fault Tolerance. In order to be an adequate specification for fault tolerance, a
specification has to meet the following criteria: first, lend itself to a simple, reli-
able oracle (the same criterion as for testing, for the same rationale); second, it
has to lend itself to an efficient run-time execution (since it may have to be
checked at run-time to detect errors); third, and most importantly, it has to refer
to current states rather than current and past states. In practice, this third require-
ment means that the specification is represented by an inverse vector, that is, a
relation R such that LR=R. Such relations refer to the current state but not to any
previous state; they offer the advantage that they can be checked by looking
exclusively at the current state and spare us from the burden of storing previous
states at designated checkpoints and from checking complex binary relations;
hence they represent a savings in terms of memory space and processing time.

To illustrate the kind of rationale that governs the mapping of sub-specification to
methods, we consider the following examples:

• We consider the example of the sorting routine discussed in Chapter 6, where we
showed that such a program is difficult to prove using static methods, and

254 TEST DRIVER DESIGN

difficult to test, but that that it is easy to prove its correctness with respect to some
part of the specification and very easy and efficient to test it against the other part
of the specification.

• We consider the specification of a program to perform a Gaussian elimination of
a system of linear equations defined by a square matrix of size N and a column
vector of size N. The specification that we consider for this program has the form:

Gauss=Eq Tri,

where Eq means that the original system of equations has the same set of solu-
tions as the final system of equations and Trimeans that the final system of equa-
tions is triangular. It is difficult to prove the correctness of the program with
respect to specification Gauss (since this requires that we deal with several
nested loops, we check the start and end values of several index variables, we
worry about the logic for finding optimal pivots, etc.); it is very complex, inef-
ficient, and unreliable to test the program using an oracle derived from specifi-
cation Gauss (due to the difficulty and inefficiency of ensuring that two systems
of equations have the same set of solutions); it gives us a great return on invest-
ment (in terms of required effort vs. achieved impact) to verify the correctness of
a candidate program with respect to specification Eq (since that can be done by
merely checking that the system of equations is never modified except by repla-
cing an equation by a linear combination of the equation with others) and to test it
using an oracle derived from specification Tri (since this can be done by a simple
scan of the lower half of the current matrix, without reference to any previously
saved data). Note that as an equivalence relation, Eq is reflexive and transitive
(hence satisfies the properties we have identified as making a specification ade-
quate for proving correctness).

Hence when we say that the first step in designing a test driver is to decide what
specification we want to test the program against, we mean it. The foregoing discus-
sions illustrate in what sense and to what extent the software engineer does have some
latitude in making this decision.

12.2 SELECTING A PROCESS

The structure of the test driver depends on the following (inter-dependent) parameters:

• The Goal of the Test. If the goal of the test is to certify the product or to rule on
acceptance, then it is driven by the mandated test data; if the goal of the test is to
find and remove faults, then it is driven by the observation of failures.

• Whether the Test Data is Extracted from a Prepared Set or Generated by a Ran-
dom Data Generator. If the test data is extracted from a prepared test data set,
then it runs until the set is exhausted; if the test data is generated at random

25512.2 SELECTING A PROCESS

(according to some law of probability) by a test data generator, then some other
criterion must be used to determine when the test terminates.

• Whether the Test Must Stop at Each Failure or Merely Record the Failure and
Continue. Depending on the process of testing, we may have to stop the test
whenever the program fails; this applies in particular if the test cycle includes
a repair phase, which takes place off-line.

• Whether Test Outcomes Are Recorded for Postmortem Analysis. In some cases,
such as certification testing or acceptance testing, the only relevant outcome of
the test is whether the candidate program has passed the test successfully; in other
cases, such as cases where the test results are used to identify and remove faults,
each test execution (or perhaps each execution that leads to failure) must be docu-
mented for postmortem analysis.

As an example, a certification test based on a predefined test set may look
like this:

bool certified ()
{bool c=true; stateType s, init_s;
while !(testSet.empty())
{testSet.remove(s); init_s=s;
g; // program under test; manipulates s, preserves init_s;
c = c && oracle(init_s, s);}
return c;}

This function returns true if and only if the candidate program runs successfully on
all the test data in testSet. If the same test data set is used for debugging purposes,
then the test driver may look as follows:

void testReport()
{stateType s, init_s;
while !(testSet.empty())
{testSet.remove(s); init_s=s;
g; // programundertest;manipulatess,preservesinit_s;
if (oracle(init_s, s)) {successfulTest(init_s,s);}
else {unsuccessfulTest(init_s,s);};}

}

If we have a test data generator that can produce data indefinitely, and we are
interested in running the test until the next failure (hopefully, the program will
fail eventually, if not we have an infinite loop), then the test driver may look as
follows:

void testUntilFailure()
{stateType s, init_s;

256 TEST DRIVER DESIGN

repeat
{generateTestData(s); init_s=s;
g; // programundertest;manipulatess,preservesinit_s;
}

until !oracle(init_s,s);
unsuccessfulTest(init_s, s);}

12.3 SELECTING A SPECIFICATION MODEL

For simple input/output programs, the test driver templates we have presented in the
previous section can be used virtually verbatim; all we need to do is instantiate the
functions that generate test data and execute the oracle. But for software products that
have an internal state, such as abstract data types (ADT’s), two complications arise:

• First, the oracle is not a closed form Boolean function, since the specification is
represented by axioms and rules rather than by a closed form logic formula.

• Second, test data does not take the form of values assigned to variables but rather
takes the form of method calls.

In this section, we discuss the design of test drivers for software products that carry
an internal state; we cover, in turn, the case where test data is generated randomly, then
the case where test data is pre-generated according to some criterion (such as those
discussed in Chapter 9).

12.3.1 Random Test Generation

We consider the specification of a state-based software product in the form of
axioms and rules, and we consider a candidate implementation in the form of a
class (an encapsulated module that maintains an internal state and allows access to
a number of externally accessible methods). In order to verify the correctness of
the proposed implementation with respect to the specification, we resolve to proceed
as follows:

• Verify the Implementation Against the Axioms. Each axiom of the specification
can be mapped onto a Hoare formula, whose precondition is True and whose
postcondition is a statement about the behavior specified by the axiom. We con-
sider the following axiom in the specification of the stack ADT:

stack(init.push(a).top)=a,

and we let g be a candidate implementation that has a method of the same name
as each input symbol of the specification. Then to verify the correctness of the
implementation we generate the following formula:

25712.3 SELECTING A SPECIFICATION MODEL

v: {true} g.init(); g.push(a); y=g.top(); {y = a}

where y is a variable of type itemType and a is a constant of the same type. Such
formulas typically deal with trivial cases (by definition) and hence involve none
of the issues that usually make correctness proofs complicated; in particular, they
typically give rise to simple intermediate assertions and do not involve complex
invariant assertion generation.

• Test the Implementation Against the Rules. Rules are typically used to build an
inductive argument linking the behavior of the specified product on simple input
histories to its behavior onmore complex input histories. The vast majority of rules
fall into two broad classes: a class that provides that two input histories are equiv-
alent and a class that provides an equation between the values of a VX operation at
the end of a complex input history as a function of the value of the VX operation
at the end of a simpler input history. Representative examples of these categories
of rules for the stack specification include the following:

stack(init.h.push(a).pop.h+) = stack(init.h.h+).

stack(init.h.push(a).size) = 1+stack(init.h.size).

We resolve to test candidate implementations against specification rules by gen-
erating random sequences for h and h+ (the latter being necessarily nonempty)
and checking these equalities for each random instance. For rules of the first cat-
egory, which require that we check the equivalence of two states, we resolve to
consider (as an approximation) that two states are equivalent if and only if they
deliver identical values for all the XV operations.

In light of these decisions, we write the outermost structure of our test driver
as follows:

#include <iostream>
#include “stack.cpp”
#include “rand.cpp”

using namespace std;

typedef int boolean;
typedef int itemtype;

const int testsize = 10000;
const int hlength = 9;
const int Xsize = 5;
const itemtype paramrange=7; // drawing parameter to push()

// random number generators
int randnat(int rangemax); int gt0randnat(int rangemax);

258 TEST DRIVER DESIGN

// rule testers
void initrule(); void initpoprule(); void pushpoprule();
void sizerule(); void emptyrulea(); void emptyruleb();
void vopruletop(); void voprulesize(); void vopruleempty();
// history generator
void historygenerator

(int hl, int hop[hlength], itemtype hparam[hlength]);

/* State Variables */
stack s; // test object
int nbf; // number of failures

int main ()
{
/* initialization */
nbf=0; // counting the number of failures
SetSeed (825); // random number generator

for (int i=0; i<testsize; i++)
{switch(i%9)
{case 0: initrule(); break;

case 1: initpoprule(); break;
case 2: pushpoprule(); break;

case 3: sizerule(); break;
case 4: emptyrulea(); break;

case 5: emptyruleb(); break;
case 6: vopruletop(); break;

case 7: voprulesize(); break;
case 8: vopruleempty(); break;}

}
cout << “failure rate: ” << nbf << “ out of ” << testsize << endl;
}

This loop will cycle through the rules, testing them one by one successively.
The factor testsize determines the overall size of the test data; because test
data is generated automatically, this constant can be arbitrarily large, affording us
an arbitrarily thorough test. The variable nbf represents the number of failing tests
and is incremented by the routines that are invoked in the switch statement, whenever
a test fails. For the sake of illustration, we consider the function pushpoprule(), which
we detail below:

void pushpoprule()
{
// stack(init.h.push(a).pop.h+) = stack(init.h.h+)

25912.3 SELECTING A SPECIFICATION MODEL

int hl, hop[hlength]; itemtype hparam[hlength];
// storing h

int hplusl, hplusop[hlength]; itemtype hplusparam
[hlength]; // storing h+

int storesize; // size in LHS
boolean storeempty; // empty in LHS
itemtype storetop; // top in LHS
boolean successfultest; // successful test

// drawing h and h+ at random, storing them in hop, hplusop
hl = randnat(hlength);
for (int k=0; k<hl-1; k++)

{hop[k]=gt0randnat(Xsize);
if (hop[k]==1) {hparam[k]=randnat(paramrange);}}

hplusl = gt0randnat(hlength);
for (int k=0; k<hplusl-1; k++)

{hplusop[k]=gt0randnat(Xsize);
if (hplusop[k]==1) {hplusparam[k]=randnat
(paramrange);}}

// left hand side of rule
s.sinit(); historygenerator(hl,hop,hparam);
itemtype a=randnat(paramrange); s.push(a); s.pop();
historygenerator(hplusl,hplusop,hplusparam);
// store resulting state
storesize = s.size(); storeempty=s.empty();

storetop=s.top();

// right hand side of rule
s.sinit(); historygenerator(hl,hop,hparam);
historygenerator(hplusl,hplusop,hplusparam);
// compare current state with stored state
successfultest =
(storesize==s.size()) && (storeempty==s.empty()) &&
(storetop==s.top());

if (! successfultest) {nbf++;}
}

where function historygenerator (shown below) transforms an array of
integers (which represent sequence h or h+) into a sequence of method calls, as
shown below:

void historygenerator (int hl, int hop[hlength],
itemtype hparam[hlength])

260 TEST DRIVER DESIGN

{int dumsize; boolean dumempty; itemtype dumtop;
for (int k=0; k<hl-1; k++)

{switch (hop[k])
{case 1: {itemtype a=hparam[k]; s.push(a);} break;
case 2: s.pop(); break;
case 3: dumsize=s.size(); break;
case 4: dumempty=s.empty(); break;
case 5: dumtop=s.top(); break;
}

}
}

and the random number generators are defined as follows:

int randnat(int rangemax)
{// returns a random value between 0 and rangemax
return (int) (rangemax+1)*NextRand();
}

int gt0randnat(int rangemax)
{// returns a random value between 1 and rangemax
return 1 + randnat(rangemax-1);
}

We have included comments in the code to explain it. Basically, this function pro-
ceeds as follows: First, it generates histories h and h+; then it executes the sequence
init.h.push(a).pop.h+, for some arbitrary item a; then it takes a snapshot of the current
state by calling all the VX operations and storing the values they return. Then it rein-
itializes the stack and calls the sequence init.h.h+; finally it verifies that the current
state of the stack (as defined by the values returned by the VX operations) is identical
to the state of the stack at the sequence given in the left hand side (which was previ-
ously stored). If the values are identical, then we declare a successful test; if not, we
increment nbf.

As an example of the second class of rules, those that end with a VX operation, we
consider the size rule, for which we write the following code:

void sizerule()
{// stack(init.h.push(a).size) = 1+stack(init.h.size)
int hl, hop[hlength]; itemtype hparam[hlength];

// storing h
int storesize; // size in LHS
boolean successfultest; // successful test

// drawing h and h+ at random,
// storing them in hop, hplusop

26112.3 SELECTING A SPECIFICATION MODEL

hl = randnat(hlength);
for (int k=0; k<hl-1; k++)

{hop[k]=gt0randnat(Xsize);
if (hop[k]==1) {hparam[k]=randnat(paramrange);}}

// left hand side of rule
s.sinit(); historygenerator(hl,hop,hparam);
itemtype a=randnat(paramrange); s.push(a);
// store resulting state
storesize = s.size(); // size value on the left hand side

// right hand side of rule
s.sinit(); historygenerator(hl,hop,hparam);
// compare current state with stored state
successfultest =(storesize==1+s.size());
if (! successfultest) {nbf++;}

}

Once we generate a function for each of the nine rules, we can run the test driver
with an arbitrary value of variable testsize (to make the test arbitrarily thorough),
an arbitrary value of variable hlength (to make h sequences arbitrarily large), and an
arbitrary value of variable paramrange (to let the items stored on the stack take their
values from a wide range).

Execution of the test driver on our stack with the following parameter values

• testsize = 10000;

• hlength = 9;

• paramrange = 7;

yields the following outcome:

failure rate: 0 out of 10000

which means that all 10,000 executions of the stack were consistent with the rules
of the stack specification. Of course, typically, when we are dealing with a large
and complex module, a more likely outcome is to observe a number of failures. Notice
that because test data generation and oracle design are both based on an analysis of
the specification, we have written the test driver without looking at the candidate
implementation; this means, in particular, that this test driver can be deployed on
any implementation of the stack that purports to satisfy the specification we are using;
we will uncover this implementation in Section 12.3.3.

262 TEST DRIVER DESIGN

12.3.2 Pre-Generated Test Data

In the previous section, we discussed how to develop a test driver using randomly
generated test data. Because we had a way to generate data on demand, we focused
the test driver on the rules of the specification; we let the rules determine what form the
test data takes. In other words, for each rule, we generate test data that exercises
the implementation of that rule. In this section, we take a different/complementary
approach, which is driven by test data generation, in the following sense: we consider
the test data that candidate implementations must be executed on, and for each test
case, we design a test oracle by invoking all the rules that apply to the test case. This
technique is best illustrated by an example, using the stack specification.

As we remember from Chapter 9, the criterion for visiting all the (virtual) states of
the stack as well as making all the state transitions produced the following set of test
data for stack implementations; so in order to meet this data selection criterion, we
must run the candidate implementation on all these test sequences. As far as the test
oracle is concerned, our discussions in Chapter 11 provide that for each sequence, we
must invoke all the applicable rules and consider that candidate implementations are
successful for a particular input sequence if and only if they satisfy all applicable rules.

(X */E)

init init.push (_) init.push(_).
push(_)

init.push(_). push(_).
push(_)

VX top init.top init.push(a).
top

init.push(_).
push(a).top

init.push(_).push(_).
push(a).top

size init.size init.push(a).
size

init.push(_).
push(a).size

init.push(_).push(_).
push(a).size

empty init.empty init.push(a).
empty

init.push(_).
push(a).empty

init.push(_).push(_).
push(a).empty

AX VX (X */E)

init init.push (_) init.push(_).
push(_)

init.push(_). push(_).
push(_)

init top init.init.
top

init.push(a).
init.top

init.push(_).
push(a).init.top

init.push(_).push(_).
push(a).init.top

size init.init.
size

init.push(a).
init.size

init.push(_).
push(a).init.size

init.push(_).push(_).
push(a).init.size

empty init.init.
empty

init.push(a).
init.empty

init.push(_).
push(a).init.
empty

init.push(_).push(_).
push(a).init.empty

(continued)

26312.3 SELECTING A SPECIFICATION MODEL

push top init.
push(b).
top

init.push(a).
push(b).top

init.push(_).
push(a).push(b).
top

init.push(_).push(_).
push(a).push(b).top

size init.
push(b).
size

init.push(a).
push(b).size

init.push(_).
push(a).push(b).
size

init.push(_).push(_).
push(a).push(b).size

empty init.
push(b).
empty

init.push(a).
push(b).
empty

init.push(_).
push(a).push(b).
empty

init.push(_).push(_).
push(a).push(b).
empty

pop top init.pop.
top

init.push(a).
pop.top

init.push(_).
push(a).pop.top

init.push(_).push(_).
push(a).pop.top

size init.pop.
size

init.push(a).
pop.size

init.push(_).
push(a).pop.size

init.push(_).push(_).
push(a).pop.size

empty init.pop.
empty

init.push(a).
pop.empty

init.push(_).
push(a).pop.
empty

init.push(_).push(_).
push(a).pop.empty

For the sake of illustration, we test a candidate implementation on a small sample
of this test data set, specifically those test cases that are highlighted in the tables
above. For each selected test case, we cite in the table below all the rules that apply
to the case, as well as the input sequence that must be invoked in the process of apply-
ing the rule.

Test case Applicable
Rule

Resulting Oracle

init.push(a).init.top Init Rule init.push(a).init.top = init.top

init.push(_).push(_).push
(a).size

Size Rule init.push(_).push(_).push(a).size = 1+init.
push(_).push(_).size

init.push(_).push(a).push
(b).empty

Empty Rule init.push(_).push(a).empty init.push(_).
push(a).push(b).empty

init.push(_).push(_).push
(a).pop.top

Push Pop
Rule

init.push(_).push(_).push(a).pop.top = init.
push(_).push(_).top

To this effect, we develop the following program:

#include <iostream>
#include <cassert>
#include “stack.cpp”
#include “rand.cpp”

(continued)

264 TEST DRIVER DESIGN

using namespace std;

typedef int boolean;
typedef int itemtype;

const int Xsize = 5;
const itemtype paramrange=8; // drawing parameter to push()

// random number generators
int randnat(int rangemax); int gt0randnat(int rangemax);
/* State Variables */
stack s; // test object
int nbtest, nbf; // number of tests, failures
itemtype a, b, c; // push() parameters

bool storeempty;
itemtype storetop;
int storesize;

int main ()
{
/* initialization */
nbf=0; nbtest=0; // counting the number of tests and

failures
SetSeed (825); // random number generator
a=randnat(paramrange); b=randnat(paramrange);
c=randnat(paramrange);

// first test case: init.push(a).init.top.
// Init Rule
nbtest++;
s.sinit(); s.push(a); s.sinit(); storetop=s.top();
s.sinit();
if (!(s.top()==storetop)) {nbf++;}

// second test case: init.push().push().push(a).size.
// Size Rule
nbtest++;
s.sinit(); s.push(c); s.push(b); s.push(a);
storesize = s.size();
s.sinit(); s.push(c); s.push(b);
if (!(storesize==1+s.size())) {nbf++;}

// third test case: init.push().push(a).push(b).empty.

26512.3 SELECTING A SPECIFICATION MODEL

// Empty Rule
nbtest++;
s.sinit(); s.push(c); s.push(a); s.push(b);
storeempty=s.empty();
s.sinit(); s.push(c); s.push(a);
if (!(!(s.empty()) || storeempty)) {nbf++;}

// fourth test case: init.push().push().push(a).pop.top
// Push Pop Rule
nbtest++;
s.sinit(); s.push(c); s.push(b); s.push(a); s.pop();
storetop=s.top();
s.sinit(); s.push(c); s.push(b);
if (!(s.top()==storetop)) {nbf++;}

cout << “failure rate: ” << nbf << “ out of ” << nbtest << endl;
}

Execution of this program produces the following output:

failure rate: 0 out of 4.

Hence the candidate program passed these tests successfully. Combining the test
data generated in Chapter 9 with the oracle design techniques of Chapter 11 produces
a complex test driver; fortunately, it is not difficult to automate the generation of the
test driver from the test data and the rules.

12.3.3 Faults and Fault Detection

The test drivers we have generated in Sections 12.3.1 and 12.3.2 are both based on the
ADT specification and hence can be developed and deployed on a candidate ADT
without having to look at the ADT. The executions we have reported in Sections
12.3.1 and 12.3.2 refer in fact to two distinct implementations:

• A traditional implementation based on an array and an index

• An implementation based on a single integer that stores the elements of the
stack as successive digits in a numeric representation. The base of the numeric
representation is determined by the number of symbols that we wish to store in
the stack.

The motivation of having two implementations is to highlight that the test driver
does not depend on candidate implementations; the purpose of the second imple-
mentation, as counterintuitive as it is, is to highlight the fact that our specifications

266 TEST DRIVER DESIGN

are behavioral, that is, they specify exclusively the externally observable behavior
of software systems, and make no assumption/prescription on how this behavior
ought to be implemented. Also note that the behavioral specifications that we
use do not specify individually the behavior of each method; rather they specify
collectively the inter-relationships between these methods, leaving all the neces-
sary latitude to the designer to decide on the representation and the manipulation
of the state data. The header files of the two implementations are virtually identical,
except for different variable declarations (an array and an index in the first case, a
single integer, and a constant base for the second). The .cpp files are shown below:

**
// Array based C++ implementation for the stack ADT.
// file stack.cpp, refers to header file stack.h.
//**

#include “stack.h”

stack :: stack ()
{
};

void stack :: sinit ()
{sindex =0;};

bool stack :: empty () const
{return (sindex==0);}

void stack :: push (itemtype sitem)
{sindex++;
sarray[sindex]=sitem;}

void stack :: pop ()
{if (sindex>0)

{ // stack is not empty
sindex--;}

}

itemtype stack :: top ()
{int error = -9999;
if (sindex>0)

{return sarray[sindex];}
else

{return error;}
}

26712.3 SELECTING A SPECIFICATION MODEL

int stack :: size ()
{return sindex;}

As for the integer-based implementation, it is written as follows:

**
// Scalar based C++ implementation for the stack ADT.
// file stack.cpp, refers to header file stack.h.
// base is declared as a constant in the header file, =8.
//**

#include “stack.h”
#include <math.h>

stack :: stack ()
{
};

void stack :: sinit ()
{n=1;};

bool stack :: empty () const
{return (n==1);}

void stack :: push (itemtype sitem)
{n = n*base + sitem;}

void stack :: pop ()
{if (n>1) { // stack is not empty

n = n / base;}
}

itemtype stack :: top ()
{int error = -9999;
if (n>1)

{return n % base;}
else

{return error;}
}

int stack :: size ()
{return (int) (log(n)/log(base));}

268 TEST DRIVER DESIGN

In order to assess the effectiveness of the test drivers we have developed, we have
resolved to introduce faults into the array-based implementation and the scalar-based
implementation, and to observe how the test drivers react in terms of detecting (or not
detecting) failure.

Considering the array-based implementation, we present below some modifications
we have made to the code, and document how this affects the performance of the test
drivers (the test driver that generates random test data, presented in Section 12.3.1, and
the test driver that uses pre-generated test data, presented in Section 12.3.2).

Locus Modification Random test data
generation

Pre-generated
test data

pop(); sindex>0 sindex>1 failure rate:
561 out of 10000

failure rate:
0 out of 4

push
();

sarray[sindex]=sitem;
sindex++;

failure rate:
19 out of 10000

failure rate:
0 out of 4

push
();

sindex++;
sarray[sindex]=sitem;
sindex++;

failure rate:
1964 out of 10000

failure rate:
1 out of 4

For the scalar-based implementation, we find the following results:

Locus Modification Random test data
generation

Pre-generated test
data

pop(); n>1 n>=1 failure rate:
281 out of 10000

failure rate:
0 out of 4

sinit(); n=1 n=0 failure rate:
822 out of 10000

failure rate:
0 out of 4

push(); n=n*base+sitem
n=n+base*sitem

failure rate:
1047 out of 10000

failure rate:
2 out of 4

12.4 TESTING BY SYMBOLIC EXECUTION

When we deploy a test driver on some test data and the oracle is satisfied, the only
evidence of correct behavior that we have collected pertains to the precise test data
on which the candidate program was tested; whether the test driver relies on randomly
generated test data, or on targeted, pre-generated test data, the space covered by test

26912.4 TESTING BY SYMBOLIC EXECUTION

data is typically a very small fraction of the domain of the specification. To overcome
this limitation, it is possible to simulate the execution of a program without commit-
ting to a particular value of the input; to this effect, we represent the input values by
symbolic names, rather than actual concrete values and analyze the effect of executing
the program on these values, so as to compare them with the requirements imposed by
the specification. For all intents and purposes, this is essentially a static verification
method, but it is considered as part of the toolbox of the software tester; we refer to this
technique as symbolic testing because it consists in effect in testing a program by
executing it symbolically (rather than actually) on symbolic data (rather than actual
concrete data). Whereas actual program execution produces an actual output for a spe-
cific actual input value, symbolic execution produces a symbolic expression of the
output as a function of a symbolic representation of the input; this amounts, in effect,
to computing the function of the program. In Chapter 5, we had talked about program
functions without discussing how these are derived; in this section, we briefly discuss
how this can be done in a bottom-up stepwise process, which proceeds inductively on
the program structure.

We can think of a program function as mapping inputs (from an input stream, say)
onto outputs (stored in an output stream); but very often, it is more interesting and
more convenient to think of a program function as mapping initial states to final states.
To accommodate these two perspectives without too much complexity overhead, we
generally focus on state transformation, but we may sometimes (especially when we
discuss I/O operations) assume that we have a default input stream (is) and a default
output stream (os) as part of the state space.We consider a simple C-like programming
language, and we consider, in turn, its elementary statements and then its compound
statements.

Elementary statements include assignment statements and input/output statements
(which we denote respectively by read()and write()). We denote by S the space
of the program (whose function we are computing), and by s and s arbitrary states of
the program.

• Assignment Statement. Let x be a variable of some type T, let E be an expression
on S that returns a value of type T, and let def(E) be the set of states on which
expression E is defined (can be computed). Then

x =E s = s,s s def E x = E x − s = − s ,

where − s respectively − s designates all the variable names in s (respec-
tively s) other than x.

• Read Statement. Let x be a variable of type T, and let is (the default input stream)
be structured as a sequence of T-type values. Then,

read x = s,s length is > 0 x = head is is = tail is − s = − s ,

270 TEST DRIVER DESIGN

where − s respectively − s designates all the variable names in s (respec-
tively s) other than x and is.

• Write Statement. Let x be a variable of type T, and let os be the default output
stream of the program. Then,

write x = s,s os = os x − s = − s ,

where − s respectively − s designates all the variable names in s (respec-
tively s) other than os and designates concatenation.

Compound statements include the structured control constructs of imperative pro-
gramming languages, most notably:

• The Sequence Statement, whose rule is defined as follows:

g1;g2 = g1 • g2 ,

where designates the relational product.

• The Conditional Statement, whose rule is defined as follows:

if t g1 = I t •g1 I ¬t ,

where I t = s,s s = s t s .

• The Alternative Statement, whose rule is defined as follows:

if t g1 else g2 = I t •g1 I ¬t •g2

• The Iterative Statement, whose rule is defined as follows:

while t b = I t • b • I ¬t

Because the formula of the while rule is difficult to apply in practice, we have a
theorem that characterizes such functions.

Theorem: (due to H.D. Mills (1975)) Let w: while (t) {b} be a while statement on
space S and let W be a function on S. Then w computes functionW if and only if the
following conditions are satisfied:

1. dom(W) is the set of states on which the loop terminates normally.

2. I ¬t •W = I ¬t .

3. I t •W = I t •B •W .

27112.4 TESTING BY SYMBOLIC EXECUTION

In order to apply this theorem, we need to derive function W based on our under-
standing of what the loop does, then check that W verifies the conditions set forth
above. We illustrate this theorem with two simple examples.

Let S be defined by variables x and y of type integer and let w be the following
loop on S:

w: while (y!=0) {x=x+1; y=y-1;}.

We consider the following function W:

W = s,s y ≥ 0 x = x+ y y = 0

The first condition of the theorem is satisfied, since the domain of W is the set of
states for which y is nonnegative, and that is exactly the set of states for which the loop
terminates. As for the next two conditions, we check them briefly below:

I ¬t •W

= {substitution}

s,s y= 0 s = s s,s y ≤ 0 x = x+ y y = 0

= {pre-restriction}

s,s y= 0 y ≥ 0 x = x + y y = 0

= {simplification}

s,s y= 0 x = x y = y

= {substitution}

I ¬t

As for the third condition, we write

I t •B •W

= {substitution, pre-restriction}

s,s y 0 x = x + 1 y = y−1 s,s y ≥ 0 x = x+ y y = 0

= {relational product}

s,s y 0 y−1 ≥ 0 x = x + 1 + y−1 y = 0

272 TEST DRIVER DESIGN

= {simplification}

s,s y > 0 x = x+ y y = 0

= {pre-restriction}

I y 0 • s,s y ≥ 0 x = x+ y y = 0

= {substitution}

I t •W

As a second example, we let S be defined by natural variables n, f, k, and we con-
sider the following loop on space S:

w: while(k!=n+1) {f=f*k; k=k+1;}.

We let W be the function on S efined by:

W = s,s k ≤ n+ 1 n = n f = f ×
n

k−1
k = n + 1

The domain of W is the set of states such that k ≤ n + 1, which is precisely the set of
states on which the loop terminates. We check in turn the two remaining conditions of
the theorem, as follows:

I ¬t •W

= {substitution}

s,s k = n + 1 s = s • s,s k ≤ n + 1 n = n f = f ×
n

k−1
k = n+ 1

= {pre-restriction}

s,s k = n + 1 n = n f = f ×
n

k−1
k = n+ 1

= {simplification}

s,s y = 0 x = x y = y

= {substitution}

I ¬t

27312.4 TESTING BY SYMBOLIC EXECUTION

As for the third condition, we write

I t •B •W

= {substitution, pre-restriction}

s,s k n + 1 n = n f = f × k k = k + 1

• s,s k ≤ n + 1 n = n f = f ×
n

k−1
k = n+ 1

= {relational product}

s,s k n + 1 k ≤ n + 1 n = n f = f × k ×
n

k + 1−1
k = n + 1

= {simplification}

s,s k < n + 1 n = n f = f ×
n

k−1
k = n+ 1

= {pre-restriction}

I k n+ 1 • s,s k ≤ n+ 1 n = n f = f ×
n

k−1
k = n+ 1

= {substitution}

I t •W

12.5 CHAPTER SUMMARY

In this chapter, we gather the artifacts we have collected in previous chapters to
develop a test driver, which is responsible for running tests on a candidate software
product and delivering a report from these tests. Specifically, we explore the following
issues:

• In what sense and to what extent we have latitude in choosing the specification
against which we can test a software product (whence the oracle that we derive
for the test).

• Howwe can derive a test driver using a specific oracle (computed from a selected
specification) and a specific test generation technique, for simple input/output
programs and for software products that have an internal state.

274 TEST DRIVER DESIGN

• How we can overcome some of the limitations of software testing by means of
symbolic execution, whereby we represent inputs by symbolic names (rather
than concrete input values) and we represent outputs by symbolic expressions
(rather than concrete output values).

12.6 EXERCISES

12.1. Consider the following C++ program:

void selectionSort () // given an array a of size N
{indexType i, j, smallest;
itemType t;
for (i=N-1; i>0; i--)

{smallest=0;
for (j=1; j<=i; j++)

{if (a[j]<a[smallest]) smallest=j;}
t=a[smallest]; a[smallest]=a[i]; a[i]=t;}

}

a. Prove the correctness of this program with respect to specification Sort.

b. Derive an oracle for this program from specification Sort.

c. Prove the correctness of this program with respect to specification Prm.

d. Derive an oracle for this program from specification Ord.

e. Conclude.

12.2. Same as Exercise 1, for a Gaussian elimination program, using the specifica-
tion: Gauss = Eq Tri.

12.3. Consider the sort program of Exercise 1 and the specification Ord.

a. Derive a test oracle from specification Ord.

b. Consider the following test set (giving values for N and a), build a set
datatype that has the relevant methods (empty, insert, remove), and load the
test data therein:

N a[]

1 [6]

2 [6, 9]

2 [9, 6]

8 [32, 28, 24, 20, 16, 12, 8, 4]

8 [32, 8, 24, 16, 4, 12, 20, 28]

27512.6 EXERCISES

c. Develop a test driver according to the pattern shown in Section 12.2 for
certification testing.

12.4. Consider the sort program of Exercise 1 and the specification Ord.

a. Derive a test oracle from specification Ord.

b. Consider the following test set (giving values for N and a), build a set
datatype that has the relevant methods (empty, insert, remove), and load the
test data therein:

N a[]

1 [6]

2 [6, 9]

2 [9, 6]

8 [32, 28, 24, 20, 16, 12, 8, 4]

8 [32, 8, 24, 16, 4, 12, 20, 28]

c. Develop a test driver according to the pattern shown in Section 12.2 for a test
intended to record the outcome of each execution for subsequent analysis.

12.5. Consider the sort program of Exercise 1 and the specification Ord.

a. Derive a test oracle from specification Ord.

b. Alter the program in such a way as to make it incorrect.

c. Develop a random test data generator that produces random values for N
and a.

d. Use the test data generator and the test oracle to develop a test driver that
iterates until the first failure.

e. How many executions did it take to cause the first failure?

12.6. In Section 12.3.1, we have shown the code for the push-pop rule. Taking inspi-
ration from this code, write code for the init rule; run the resulting test driver on
a candidate implementation of the stack.

12.7. In Section 12.3.1, we have shown the code for the push-pop rule. Taking inspi-
ration from this code, write code for the init-pop rule; run the resulting test
driver on a candidate implementation of the stack.

12.8. In Section 12.3.1, we have shown the code for the push-pop rule. Taking inspi-
ration from this code, write code for the VX rules; run the resulting test driver
on a candidate implementation of the stack.

12.9. In Section 12.3.1, we have shown the code for the size rule. Taking inspiration
from this code, write code for the empty rule; run the resulting test driver on a
candidate implementation of the stack.

276 TEST DRIVER DESIGN

12.10. In Section 12.3.1, we have shown the code for the size rule. Taking inspiration
from this code, write code for the top rule; run the resulting test driver on a
candidate implementation of the stack.

12.11. Consider the test data shown in the following table for the stack ADT. Select
two test cases from each of the tables below and develop a test driver accord-
ingly, following the pattern of Section 12.3.2 Deploy your test driver on the
stack implementations given in Section 12.3.3.

(X */E)

init init.push(_) init.push(_).
push(_)

init.push(_). push(_).
push(_)

VX top init.top init.push(a).
top

init.push(_).
push(a).top

init.push(_).push(_).
push(a).top

size init.size init.push(a).
size

init.push(_).
push(a).size

init.push(_).push(_).
push(a).size

empty init.empty init.push(a).
empty

init.push(_).
push(a).empty

init.push(_).push(_).
push(a).empty

AX VX (X */E)

init init.push(_) init.push(_).
push(_)

init.push(_). push
(_). push(_)

init top init.init.top init.push(a).
init.top

init.push(_).
push(a).init.top

init.push(_).
push(_).push(a).
init.top

size init.init.size init.push(a).
init.size

init.push(_).
push(a).init.size

init.push(_).
push(_).push(a).
init.size

empty init.init.
empty

init.push(a).
init.empty

init.push(_).
push(a).init.
empty

init.push(_).
push(_).push(a).
init.empty

push top init.push(b).
top

init.push(a).
push(b).top

init.push(_).
push(a).
push(b).top

init.push(_).
push(_).push(a).
push(b).top

size init. push(b).
size

init.push(a).
push(b).size

init.push(_).
push(a).
push(b).size

init.push(_).
push(_).push(a).
push(b).size

empty init. push(b).
empty

init.push(a).
push(b).
empty

init.push(_).
push(a).
push(b).empty

init.push(_).
push(_).push(a).
push(b).empty

27712.6 EXERCISES

pop top init.pop.top init.push(a).
pop.top

init.push(_).
push(a).pop.top

init.push(_).
push(_).push(a).
pop.top

size init.pop.size init.push(a).
pop.size

init.push(_).
push(a).pop.
size

init.push(_).
push(_).push(a).
pop.size

empty init.pop.
empty

init.push(a).
pop.empty

init.push(_).
push(a).pop.
empty

init.push(_).
push(_).push(a).
pop.empty

12.12. Use the technique discussed in Section 12.3.1 to write a test driver for a queue
implementation of the queue ADT. Write an array-based queue implementa-
tion and a scalar based queue implementation and deploy the test driver to
test them.

12.13. Use the technique discussed in Section 12.3.2 to write a test driver for a queue
implementation of the queue ADT. Write an array-based queue implementa-
tion and a scalar-based queue implementation and deploy the test driver to
test them.

12.14. Let x and y be integer variables and let MaxInt and MinInt be (respectively)
the largest (smallest) integer that can be represented in a given programming
language. Compute (by symbolic execution) the function of the following
statements.

a. x=x+1;
b. y=y-1;
c. x=x+1; x=x-1;
d. x=x-1; x=x+1;
e. x=x+1; y=y-1;

12.15. Let S be the space defined by variables x, y, z of type integer, and let w be the
following while loop:

w: while (y!=0) {y=y-1; z=z+x;}

And let W be the following function on S:

W = s,s y ≥ 0 x = x y = 0 z = z+ x × y

Prove that W is the function of w.

12.16. Let S be the space defined by integer variables x, y and z, and let w be the
following while loop:

278 TEST DRIVER DESIGN

w: while (y!=0)
{if (y%2==) {y=y/2; x=2*x;} else {y=y-1; z=z+x;}}

and let W be the following function on S:

W = s,s y ≥ 0 x = x y = 0 z = z+ x × y

Prove that W is the function of w.

12.17. Let S be the space defined by integer variables x, y and z, and let w be the
following while loop:

w: while (y>0)
{if (y%2==) {y=y/2; x=2*x;} else {y=y-1; z=z+x;}}

and let W be the following function on S:

W = I y < 0 s,s y ≥ 0 x = x y = 0 z = z+ x × y

Prove that W is the function of w.

12.7 BIBLIOGRAPHIC NOTES

The theorem that captures the function of a program is due to H.D. Mills (1972).
Because it requires a great deal of creativity (to derive a candidate functionW), practi-
tioners often replace it with an approximation of the loop function, whereby they do
not compute the function of the loop for an arbitrary number of iterations (which is
what this theorem does), but rather limit the number of iterations to a specific value
and evaluate the function of the loop under these conditions; this produces an approx-
imation of the program function, but still delivers much more information than a
single execution of the program over a single input value.

27912.7 BIBLIOGRAPHIC NOTES

13
Test Outcome Analysis

After we have gone through the trouble of generating test data, deriving a test oracle,
designing a test driver, running/deploying the test, and collecting data about the
test outcome, it is appropriate to ask the question: what claim can we now make
about the program under test? This is the question we focus on in this chapter. The
answer to this question depends, in fact, on the goal of the testing activity, which
in turn affects the testing process as well as the conclusions that can be drawn
therefrom.

We argue that if we test a software product without consideration of why are we
doing it and what claims we can make about the product at the end of the test, then we
are wasting our time. Testing a software product for the sole purpose of removing
faults at random, in the absence of an overarching V&V plan, may be counterproduc-
tive for several reasons: First, because of the risks that we may be introducing faults
as fast as we are removing other faults, or faster; second, because we have more
faith in a software product in which we have not encountered the first fault than in
a software product in which we have removed ten faults (hence our faith in the product
may have dropped rather than risen as a result of the test); third, because faults have
widely varying impacts on failure, hence are not equally worthy of our attention (we
ought to budget our testing effort and maximize our return on investment by
removing high impact faults before low impact faults).

We distinguish between two broad types of claims (of unequal value) that one
can make from a testing activity:

1. Logical claims

2. Stochastic claims

We review these in turn, below.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

280

13.1 LOGICAL CLAIMS

13.1.1 Concrete Testing

We consider the scenario where we run a candidate program g on space S against
an oracle derived from specification R, and we find that the program runs successfully
on all elements of the test data set T; then we ask the question: what claims can
be made about program g?

Before we answer this question, we need to specify precisely what we mean by
runs successfully (in reference to a program under test). The first interpretation we
adopt is that whenever the test oracle is executed, it returns true; we have no
assurance that the oracle will ever be invoked (in particular, if the program under
test does not terminate), but we know that if it is ever invoked, it returns true. Under
this interpretation of a successful test, we observe that in order for the oracle to be
invoked, the program g has to terminate its execution, that is, the initial state
has to be an element of dom(G). Hence we write:

t T t dom G oracle t,G t

We rewrite this expression, replacing oracle(t,G(t)) by its expression as a function
of the specification R (refer to the derivation of oracles from specifications, discussed
in Chapter 9):

t T t dom G t dom R t,G t R

By logical simplification, we transform this as follows:

t T t dom G t dom R t,G t R

By changing the quantification, we rewrite this as follows:

t S t T t dom G t dom R t,G t R

By logical simplification, we rewrite this as follows:

t S t dom G t T t dom R t,G t R

By tautology, we rewrite this as follows:

t S t dom G t T t dom R t T t,G t R

If we let R be the pre-restriction of R to T, we can write this as:

t S t dom G t dom R t,G t R

28113.1 LOGICAL CLAIMS

In other words, we have proven that program g is partially correct with respect
to R , the pre-restriction of R to T. Whence the following proposition:

If we test program g on space S using an oracle derived from specification R on test data
T and the program runs successfully for all the test data in T, we can conclude that pro-
gram g is partially correct with respect to R , the pre-restriction of R to T.

Because the domain of R is typically a very small subset of the domain of R,
this property is in effect very weak, in general. Yet, logically, this is all we can claim
from the successful execution of the test; it is possible that the successful test gives
us some confidence in the quality/reliability of the software product, but that is not
a logical property.

13.1.2 Symbolic Testing

Symbolic testing is, in general very complex, for not only does it involve complex
control structures such as loops, loops with complex loop bodies, nested loops,
and so on, but it may also involve complex data structures. In order to model
complex data structures, we need a rich vocabulary of relevant abstractions, as well
as an adequate axiomatization pertaining to these abstractions.

Not only is symbolic testing complex and error prone, it is often wasteful and
inefficient: Indeed, it is very common for programs to be much more refined than
the specification they are intended to satisfy; hence by trying to compute the function
of a program in all its minute detail, we may be dealing with functional detail that
is ultimately irrelevant to the specification that the program is written to satisfy
and even more irrelevant to the specification that the program is being tested against.
Consider the example of a binary search, which searches an item x in an ordered
array a by means of two indices l and h (for low and high), and imagine having
to characterize the final values of l and h as a function of a and x; it is very difficult,
as it depends on very minute details of the program (whether strict or loose inequalities
are used) on whether x is in a or not, and on the position of x with respect to cells
of a; and yet it is also of little relevance as the most important outcome of the
search is to determine whether x is in a, and eventually at what location. Performing
the symbolic execution of a binary search just to check whether it satisfies the
specification of a search is like going through an 8000 feet pass to climb a 3000 feet
peak.

If we do overcome the complexity, the error proneness, and the possibility
of excessive (and irrelevant) detail that come with full blown symbolic execution
of a program, then our reward is that we can prove any property we wish about
the program in question, with respect to any specification we wish to consider.
As a reminder, we present below a brief summary of the properties that we may
want to prove about a candidate program g on space S once we have computed
its function G.

282 TEST OUTCOME ANALYSIS

Given a program g on space S whose function is G, and given a specification R on S,

• Program g is correct with respect to R if and only if:

dom R G = dom R

• Program g is partially correct with respect to R if and only if:

dom R G = dom R dom G

• Program g is defined with respect to R if and only if:

dom R dom G = dom R

13.1.3 Concolic Testing

From a cursory analysis, it appears that

• Concrete testing, to the extent that it is carried out without fault removal, typi-
cally produces a very weak logical statement, pertaining to partial correctness
with respect to a typically weak specification.

• Symbolic Execution, to the extent that it is deployed in full, enables us to prove
any property we wish with respect to any specification, but it is very difficult to
deploy, is very prone to errors, and forces us to deal with functional detail that
may well be irrelevant to whatever property we wish to prove.

These two methods can be compared and contrasted in the following table.

Method Process Assumption Scope Assessment

Advantages Drawbacks

Concrete
testing

Dynamic
execution
and analysis

Faithful
reflection of
actual
operating
conditions

No
limitation

Ease of
deployment

Weak claims

Symbolic
execution

Static
analysis of
the source
code, impact
of execution
on symbolic
data

Rules used for
symbolic
execution
consistent with
actual
behavior of
computer

Limited to
aspects of
programs
that are
easy to
model

Arbitrarily
strong claims
with respect to
arbitrary
specifications

Difficulty/
complexity/
error
proneness of
deployment

28313.1 LOGICAL CLAIMS

Concolic testing is a technique that combines concrete testing and symbolic
testing in an effort to achieve a greater return on investment than each method
taken individually; the name concolic is in fact derived from combining the beginning
of concrete with the ending of symbolic.

Concolic testing is essentially a form of concrete testing, where the program is
executed on actual test data, but it uses symbolic execution techniques to compute
the path conditions of various execution paths through the program, hence improves
the coverage of the test. By focusing on execution paths rather than closed form
control structures, and by targeting the derivation of path conditions rather than fully
detailed path functions, concolic testing obviates the main difficulties of symbolic test-
ing. On the other hand, by taking a systematic approach to the derivation of path con-
ditions, it aims to achieve a degree of efficiency by ensuring that each new concrete test
data exercises a new execution path, rather than a previously visited execution path.

13.2 STOCHASTIC CLAIMS: FAULT DENSITY

It appears from the previous section that testing does not yield much in terms of
logical claims: Concrete testing yields very weak logical claims (in terms of partial
correctness with respect to very partial specifications), while symbolic testing may
yield stronger claims of correctness with respect to arbitrary specifications, provided
we have extracted the function of candidate programs in all its minute detail (a tedious,
complex, error-prone, and potentially wasteful task). In this and the following
sections, we consider stochastic claims, which focus on likely properties rather than
logically provable properties.

The first stochastic property we consider is fault density. A technique known
as fault seeding consists in injecting faults into the source code of the candidate
program and then submitting the program to a test data set T and counting:

• The number of seeded faults that have been uncovered and

• The number of unseeded faults that have been uncovered.

If we assume that the test data we have used detects the same proportion of
seeded faults as unseeded faults, we can use this information to estimate the
number of unseeded faults in the program. Specifically, if we let:

• D be the number of faults seeded into the program,

• D be the number of seeded faults that were discovered through test data T,

• N be the number of native faults that were discovered through test data T, and

• N be the total number of native faults in the program,

Then we can estimate the total number of native faults, say N, by means of the
following formula:

284 TEST OUTCOME ANALYSIS

N

N
=
D

D
,

Whence we can infer

N =
N ×D
D

This formula assumes that test T is as effective at finding seeded faults as it is at finding
native faults (see Fig. 13.1) and the estimation is only as good as the assumption.
Hence for example, if we seed 100 faults (D= 100) and we find that our test detects
70 faults of which 20 are seeded faults (D = 20), we estimate the number of native
faults as follows:

N =
50 × 100

20
= 250

This approach is based on the assumption that test T is as effective at exposing seeded
faults as it is at exposing native faults. If we do not know enough about the type of
native faults that the program has, or about the effectiveness of the test data set T to
expose seeded and native faults, then we can use an alternative technique.

The alternative technique, which we call cross testing, consists in generating two
test data sets of equivalent size, where the goal of each test is to expose as many faults
as possible, then to analyze how many faults they expose in fact, and how many of
these two sets of faults are common. We denote by:

• T1 and T2 the two test data sets.

• F1 and F2 the set of faults exposed by T1 and T2 (respectively); by abuse
of notation, we may use F1 and F2 to designate the cardinality of the sets, in
addition to the sets themselves.

D

N

D′

N′

Figure 13.1 Fault distribution (native vs. seeded).

28513.2 STOCHASTIC CLAIMS: FAULT DENSITY

• Q the number of faults that are exposed by T1 and by T2.

• N the total number of faults that we estimate to be in the software product.

If we consider the set of faults exposed by T2, we can assume (in the absence
of other sources of knowledge) that test data set T1 catches the same proportion
of faults in T2 as it catches in the remainder of the input space (Fig. 13.2). Hence
we write:

Q

F2
=
F1
N

From which we infer:

N =
F1 ×F2

Q

If test data T1 exposes 70 faults and test data T2 exposes 55 faults from which
30 are already exposed by T1 then we estimate the number of faults in the program
to be:

N =
70 × 55
30

128

So far we have discussed fault density as though faults are independent
attributes of the software product, which lend themselves to precise enumeration;
in reality, faults are very dependent on each other so that removing one fault may

N F1

QF2

Figure 13.2 Estimating native faults.

286 TEST OUTCOME ANALYSIS

well affect the existence, number, location, and nature of the other faults; this
issue is addressed in the exercises at the end of the chapter. It is best to view fault
density as an approximate measure of product quality rather than a precise census of
precisely identified faults. Not only is the number of faults itself vaguely defined
(see the discussions in Chapter 6), but their impact on failure rate varies widely
in practice (from 1 to 50 according to some studies); hence a program with
50 low impact faults may be more reliable than a program with one high impact
fault; this leads us to focus on failure probability as the next stochastic claim
we study.

13.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

13.3.1 Faults Are Not Created Equal

In Section 13.1, we have discussed logic claims that can be made on the basis of
testing a software product, and in Section 13.2 we have discussed probabilistic
claims on the likely number of faults in a software product. In this section, we
consider another probabilistic claim, namely failure probability (the probability
of failure of any single execution) or the related concept of failure frequency (expected
number of failures per unit of operation time); there are a number of conceptual and
practical arguments to the effect that failure frequency is a more significant attribute
of a software product than fault density.

• Not only is fault an evasive, hard to define, concept, as we have discussed
in Chapter 6, but so is the concept of fault density. The reason is that faults
are not independent attributes of the product but are rather highly interdependent.
Saying that there are 30 black marbles in a bucket full of (otherwise) white
marbles means that once we remove these 30 black marbles, we are left with
a bucket of uniformly white marbles. But saying that we have 30 faults in a
software product ought to be understood as an approximate indicator of product
quality; whenever one of these faults is removed, this may affect the existence,
number, location and/or nature of the other faults. Removing one black
marble from a bucket that has 30 black marbles in the midst of white marbles
leaves us with 29 black marbles, but removing a fault from a program that
has 30 faults does not necessarily leave us with 29 faults (due to the interactions
between faults).

• From the standpoint of a product’s end-user, failure frequency is a much more
meaningful measure of product quality/reliability than fault density. A typical
end-user is not cognizant of the structure and properties of the software product,
and hence cannot make any sense of an attribute such as fault density. But failure
frequency is meaningful, for it pertains to an observable/actionable attribute
of the software product: a passenger who boards an aircraft for a 3-hour flight
may well know that aircrafts sometimes drop from the sky accidentally, but
she/he does board anyway, because she/he estimates that the mean time to

28713.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

failure of the aircraft is so large that the likelihood that a failure happens over the
duration of the flight is negligible.

• Faults have widely varying impacts on product reliability. Some faults cause the
software product to fail at virtually every execution, whereas others may cause
it to fail under a very specific set of circumstances that arises very seldom
(e.g., specific special cases of exception handling). Consequently, faults are
not equally worthy of the tester’s attention; in order to maximize the impact
of the testing effort, testers ought to target high impact faults before lower
impact faults. One can achieve that by pursuing a policy of reducing failure
rates rather than a policy of reducing fault density. A key ingredient of this policy
is to test the software product under the same circumstances as its expected usage
profile; this ensures that the reliability growth that we observe through the testing
phase will be borne out during the operational phase of the product.

Figure 13.3 shows the difference between testing a product according to its
expected usage profile and testing it with a different profile; the horizontal axis
represents time and the vertical axis represents the observed failure rate of the
software product; the vertical line that runs across the charts represents the
end of the testing phase and the migration of the software product from its test
environment to its field usage environment. If we test the product according to its
usage profile (by mimicking whatever circumstances it is expected to encounter
in the field) then the observation of reliability growth during test (as a result of
fault removal) will be borne out once the product has migrated to field usage,
because most of the faults that the user is likely to expose (sensitize) have already

Figure 13.3 Impact of usage patterns.

288 TEST OUTCOME ANALYSIS

been exposed and removed; this is illustrated in the upper chart. If the product has
been tested under different circumstances from its usage profile, then the tester
likely removed many faults that have little or no impact on the user, while failing
to remove faults that end users are likely to expose/sensitize; hence when the
product is delivered, its failure rate may jump due to residual high impact faults.

• If a fault is very hard to expose, it may well be because it is not worth
exposing. Consider, as a simple example, a software product that is structured
as an alternative between two processing components: one (say, A) for normal
circumstances and one (say, B) for highly exceptional circumstances. Imagine
that in routine field usage, component B is called once for every ten thousand
(10000) times more often than A is called. Then we ought to focus our attention
on removing faults from A until the most frequent fault of B becomes more
likely to cause failure than any remaining fault in A (Fig. 13.4).

So that if faults in B prove to be very difficult to expose because executing
B requires a set of very precise circumstances that are difficult to achieve, the
proper response may be to focus on testing A until B becomes the bottleneck
of reliability, rather than to invest resources in removing faults in B at the cost
of neglecting faults in A that are more likely to cause failure.

For all these reasons, estimating the number of faults in a software product is
generally of limited value; in the remainder of this section, we focus our attention
on estimating failure frequency rather than fault density.

13.3.2 Defining/Quantifying Reliability

The reliability of a software product reflects, broadly speaking, the product’s
likelihood of operating free of failure for long periods of time. Whereas correctness
is a logical property (a program is or is not correct), reliability is a probabilistic
property (quantifying the likelihood that the program operates failure free for some
unit of time). The first matter that we need to address in trying to define reliability
is to decide what concept of time we are talking about. To this effect we consider
three broad classes of software products, which refer to three different scales of time:

A: Normal B: Exceptional

Figure 13.4 Targeted test coverage.

28913.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

1. A process control system, such as a system controlling a nuclear reactor, a
chemical plant, an electric grid, a telephone switch, a flight control system,
an autonomous vehicle, and so on. Such systems iterate constantly through
a control loop, whereby they probe sensors, analyze their input along with
possible state data, compute control parameters and feed them to actuators.
For such systems, time can be measured by clock time or possibly by the
number of iterations that the system goes through; these two measures are
related by a linear formula, since the sampling time for such system is usually
fixed (e.g., take a sample of sensor data every 0.1 second).

2. A transaction processing system, such as an e-commerce system, an airline
reservation system, or an online query system. Such system operates on a
stimulus–response cycle, whereby they await user transactions, and whenever
a transaction arises, they process it, respond to it, and get ready for the next
transaction. Because such systems are driven by user demands, there is no direct
relation between actual time and the number of transaction cycles they go
through; for such systems, the passage of time can be measured by the number
of transactions they process.

3. Simple input/output programs, which carry no internal state, and merely com-
pute an output from an input provided by a user, whenever they are invoked. For
such software product, time is equated with number of invocations/executions.

Hence when we talk about time in the remainder of this chapter, we may be refer-
ring to different measures for different types of programs.

Another matter that we must pin down prior to discussing reliability is the
matter of input to a program; referring back to the distinction made earlier about
three families of software products, we observe that only the third family of software
products operates exclusively on simple inputs; software products in the other two
families operate on state information in addition to the current input data. When
we talk about the input to a program, we refer generally to input data provided
by the user as well as relevant state data or context/environment data.

As a measure of failure avoidance over time, reliability can be quantified in a
number of ways, which we explore briefly:

• Probability that the execution of the product on a random input completes
without failure.

• Mean time to the next failure.

• Mean time between failures.

• Mean number of failures for a given period of time.

• Probability of failure free-operation for a given period of time.

It is important to note that reliability is always defined with respect to an implicit
(or sometimes, explicit) user profile (or usage pattern). A user profile is defined by
a probability distribution over the input space; if the input space is a discrete set,
then the probability distribution is defined by means of a function from the set

290 TEST OUTCOME ANALYSIS

to the interval [0.0 .. 1.0]; if the set is a continuous domain, then the probability
distribution is defined by a function whose integral over the input space gives 1.0
(the integral over any subset of the input space represents the probability that the
input falls in that subset). User profile (or usage pattern) is important in the study
of reliability because the same system may have different reliabilities for different
user profiles.

It is common, in the study of reliability, to classify failures into several categories,
depending on the impact of the failure, ranging from minor inconvenience to a
catastrophic impact involving loss of life, mission failure, national security threats,
and so on. We postpone this aspect of the discussion to Section 13.4, where we
explore an economic measure of reliability, which refines the concept of failure
classification.

13.3.3 Modeling Software Reliability

A software reliability model is a statistical model that represents the reliability
of a software product as a function of relevant parameters; each model can be
characterized by the assumptions it makes about relevant parameters, their properties,
and their impact on the likelihood of product failure. It is customary to classify
reliability models according to the following criteria:

• Time Domain. Some models are based on wall clock time whereas others
measure time in terms of the number of executions.

• Type. The type of a model is defined by the probability distribution function
of the number of failures experienced by the software product as a func-
tion of time.

• Category. Models are divided into two categories depending on the number
of failures they can experience over an infinite amount of operation time:
models for which this number is finite and models for which it is infinite.
○ For Finite Failures Category. Functional form of the failure intensity in terms
of time.

○ For Infinite Failures Category. Functional form of the failure intensity in
terms of the number of observed failures.

We consider the reliability of a system under the assumption that the number
of failures it can experience is finite, and we let M(t) be the random variable that
represents the number of failures experienced by a software product from its first
execution (or from the start of its test phase) to time t. We denote by μ(t) the expected
value of M(t) at time t and we assume that μ(t) is a non-decreasing, continuous, and
differentiable function of t and we let λ(t) be the derivative of μ(t) with respect to time:

λ t =
d μ t

dt

29113.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

This function represents the rate of increase of function μ(t) with time; we refer to it
the failure intensity (or the failure rate) of the software product. If this failure rate is
constant (independent of time), which is a reasonable assumption so long as the soft-
ware product is not modified (no fault removal) and its operating conditions (usage
pattern) are maintained, then we find:

μ t = λt + c

for some constant c; given that time t = 0 corresponds to the first execution of the
product under observation, no failures are observed at t = 0, hence we find μ t = λt.

A common model of software reliability for constant failure intensity provides the
following equation between failure, intensity, time, and the probability of failure free
operation:

R t = e−λt

The probability F(t) that the system has failed at least once by time t is the complement
of R(t), that is,

F t = 1−R t = 1−e−λt

The probability density function f(t) of probability F(t) is the derivative of F(t)
with respect to time, which is:

f t = λe−λt

The probability that a failure occurs between time t0 and time t1 is given by
the following integral:

t1

t0

f t dt =
t1

t0

λe−λt dt = −e−λt t1
t0
= e−λt

0
−e−λt1

The probability that a failure occurs before time t is a special case of this formula, for
t0 = 0 and t1 = t, which yields:

F t = 1−e−λt,

which is what we had found earlier using the definition of R(t). The mean time to
failure of the system can be estimated by integrating, for t from 0 to infinity, the
function that represents the product of t by the probability that the failure occurs at
time t. We write this as:

MTTF =
∞

0
tλe−λtdt

292 TEST OUTCOME ANALYSIS

We compute this integral using integration by parts:

∞

0
tλe−λtdt

= {integration by parts}

∞

0
e−λtdt− te−λt ∞

0

= {evaluating the second term, which is zero at both ends}

∞

0
e−λtdt

= {simple integral}

−
1
λ
e−λt ∞

0

= {value at zero}

1
λ

We highlight this result:

Under the exponential reliability model, the mean time to failure is the inverse of the
failure intensity.

This equation enables us to correlate the mean time to failure with all the relevant
probabilities of system failure. For example, the following table shows the probability
that the system operates failure-free for a length of time t, for various values of t,
assuming that the system’s mean time to failure is 10,000 hours:

Operation time,
t (in hours)

Probability of failure
free operation

0 1.0

1 0.9999

10 0.999

100 0.99005

1,000 0.904837

10,000 0.367879

100,000 4.53999 × 10−5

Probabilities of failure free operation for MTTF = 10,000 hours

29313.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

From this table, we can estimate the probability that a failure occurs in each of the
intervals indicated in the table below, by virtue of the formula

P t0 ≤ t ≤ t1 = e−λt
0
−e−λt1

where P t0 ≤ t ≤ t1 designates the probability that the failure occurs between time t0
and time t1.

Operation time, t (in hours) Probability of failure free operation

Within the first hour 0.0001

After the first hour, within 10 hours 0.0009

After the first 10 hours, within 100 hours 0.00895

After the first 100 hours, within 1,000 hours 0.085213

After the first 1,000 hours, within 10,000 hours 0.536958

After the first 10,000 hours, within 10,0000 hours 0.367834

After the first 100, 000 hours 0.0000454

Total 1.0

Probabilities of failure per interval of operation time, for MTTF = 10, 000 hours

13.3.4 Certification Testing

Imagine that we must test a software product to certify that its reliability meets or
exceeds a given value; this situation may arise at acceptance testing if a reliability
standard is part of the product requirements. If the candidate program passes a long
enough test without any failure, we ought to certify it; the question that arises, of
course, is how long does the program have to run failure-free to be certified. The
length of the certification test depends on the following parameters:

• The target reliability standard, which we quantify by the MTTF (or its inverse,
the failure intensity).

• The discrimination ratio (γ), which is the tolerance of error we are willing to
accept around the estimate of the target reliability; for example, if the target
reliability is 10,000 hours and we are willing to certify a product whose actual
reliability is 8,000, or to reject a product whose actual reliability is 12,500, then
γ = 1.25.

• The producer risk (α), which is the probability that the producer tolerates of
having his product rejected as unreliable even though it does meet the reliability
criterion.

294 TEST OUTCOME ANALYSIS

• The consumer risk (β), which is the probability that the consumer tolerates of
accepting a product that has been certified even though it does not meet the
reliability criterion.

The length of the certification test is given by the following formula:

t =MTTF ×
log

1−α
β

λ−1

As an illustrative example, assume that the target reliability MTTF has been fixed
at 10,000 hours and the discrimination ratio γ has been fixed at 1.25. Further,
assume that:

• The producer tolerates no more than a probability of 0.1 that his product be
unfairly/inadvertently declined (due to estimation errors) even though its
reliability actually exceeds 12,500 hours; this means α is given value 0.1.

• Due to the criticality of the application, the consumer tolerates no more than a
probability of 0.06 that his product be inadvertently accepted (due to estimation
errors) even though its actual reliability falls below 8,000; this means β is given
value 0.06.

Using this data, we find that the size of the certification test set:

t = 10,000 ×
log 15
0 25

= 108,322 hours

If we were to run this test in real-time, this would take about 12 years; but of course
we do not have to, provided we have an estimate of the number of times that the
product is invoked per hour, say N, then we convert hours into number of executions/
invocations, and we obtain the number of tests we must run the program on, say n:

n = 108322 ×N

a much more realistic target.

13.3.5 Reliability Estimation and Reliability Improvement

The purpose of this section is to discuss how we can use testing to estimate the reli-
ability of a software product and how to use testing and fault removal to improve the
reliability of a product up to a predefined standard.

If we are given

• a software product,

• a specification that describes its requirements,

29513.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

• an oracle that is derived from the specification, and

• a usage profile of the product in the form of a probability distribution over the
domain of the specification,

then the simplest way to estimate its reliability is to run the product on randomly
generated test data according to the given usage profile, to record all the failures of
the product, and to compute the average time (number of tests/executions) that
elapses between successive failures. One may argue that what we are measuring
herein is actually the MTBF rather than the MTTF; while we agree that strictly speak-
ing this experiment is measuring the MTBF, we argue that it provides an adequate
indication of the mean time to failure.

The simple procedure outlined herein applies when the software product is
unchanged throughout the testing process and our purpose is to estimate its mean
time to failure as is. We now consider the case of a software product which is due
to undergo a system-level test for the purpose of removing faults therein until the
system’s reliability reaches or exceeds a target reliability requirement. This process
applies to the aggregate made up of the following artifacts:

• the software product under test,

• the specification against which the product is being tested, and the oracle that
is derived from this specification,

• a usage profile of the product in the form of a probability distribution over
the domain of the specification,

• a target reliability requirement that the product must reach or exceed upon
delivery, in the form of a MTTF,

and iterates through the following cycle until the estimated product reliability reaches
or exceeds the target MTTF requirement:

• Run the software product on randomly generated test data according to the pro-
duct’s anticipated usage pattern and deploy the oracle derived from the selected
specification, until a failure is disclosed by the oracle.

• Analyze (off-line) the failure, identify the fault that caused it, and remove it.

• Compute a new estimate of the product reliability, in light of the latest
removed fault.

The first step of this iterative process can be automated by means of the following
test driver:

void testRun (int runLength)
{stateType initS, s; bool moreTests;
runLength=0; moreTests=true;
while moreTests

{generateRandom(s); inits=s; runLength++;

296 TEST OUTCOME ANALYSIS

g(); // modifies s, preserves initS
moreTests = oracle(initS,s);}

runLength--;}

The second step is carried out off-line; each execution of the test driver and
removal of the corresponding fault is referred to as a test run. As for the third step,
a question of how we estimate/update the reliability of the software product after
each test run is raised. The obvious (and useless) answer to this question is: it
depends on what fault we have removed; indeed, we know that the impact of faults
on reliability varies a great deal from one fault to another; some faults cause more
frequent failures than others, hence their removal produces a greater increase in
reliability.

Cleanroom reliability testing assumes that each fault removal increases the mean
time to failure by a constant amount starting from a base value and uses the testing
phase to estimate the initial mean time to failure as well as the ratio by which the mean
time to failure increases after each fault removal. This model is based on the following
assumptions:

• Unit testing is replaced by static analysis of the source code, using verification
techniques similar to those we discuss in Chapter 5.

• Reliability testing replaces integration testing and applies to the whole system, in
which no part has been previously tested.

• Reliability testing records all executions of the system starting from its first
execution.

It we let MTTF0 be the mean time to failure of the system upon its integration and
we denote by MTTFN the mean time to failure of the system after the removal of the
N first faults (resulting from the N first failures), then we can write (according to our
modeling assumption):

MTTFN =MTTF0 ×R
N ,

where R is the reliability growth factor, which reflects by what multiplicative factor
the MTTF grows, on average, after each fault is removed. At the end of N runs, we
know what N is, of course; we need to determine the remaining constants, namely
MTTF0 and R. To determine these two constants, we use the historic data we have
collected on theN first runs, and we take a linear regression on the logarithmic version
of the equation above:

log MTTFN = log MTTF0 +N × log R

We perform a linear regression where log(MTTFN) is the dependent variable and N
is the independent variable. For the sake of argument, we show in the following table a
sample record of a reliability test, where the first column shows the ordinal of the runs

29713.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

and the second column shows the length of each run (measured in terms of the number
of executions before failure).

N Inter-failure run Log

0 24 1.33

1 20 1.30

2 36 1.56

3 400 2.60

4 510 2.71

5 10000 4.0

In the third column, we record the logarithm of the length of the test runs. When we
perform a regression using the third column as dependent variable and the first column
as independent variable, we find the following result:

LogMTTF = 0 95 + 0 52 N

Figure 13.5 gives a graphic representation of the regression, on a logarithmic scale.
The least squares linear regression gives the Y intercept and the slope of the regression
as follows:

–1

1

1 2 3

N

4 5

2lo
gM

T
T

F 3

4

5

6

0

(R2 = 0.871)

Active Model
Conf. interval (mean 95%) Conf. interval (obs. 95%)

0 6

Figure 13.5 Regression log(MTTF) by N.

298 TEST OUTCOME ANALYSIS

MTTF0 = 10
0 95 = 8 83

R= 100 52 = 3 35

From this, we infer the mean time to failure at the conclusion of the testing phase as
follows:

MTTF = 8 83 × 3 355 = 3725

In other words, if this software product is delivered in its current form, it is expected
to execute 3725 times before its next failure. If this reliability attains or exceeds
the required standard, then the testing phase ends; else, we proceed with the next
test run.

13.3.6 Reliability Standards

So far in this chapter, we have discussed how to certify a product to a given relia-
bility standard or how to improve a product to meet a particular reliability standard,
but we have not discussed how to set such reliability standards according to the
application domain or to the stakes that are involved in the operation of the software
product; this matter is the focus of this section. Broadly speaking, industry standards
provide for $1 per hour for tolerable financial losses; the following table shows the
required reliability of a software product as a function of the financial loss that a
system failure causes.

Stakes/cost of
failure ($)

Required
reliability, MTTF

$1 1 hour

$10 10 hours

$100 4 days

$1,000 6 weeks

$1,000,000 114 years

When human lives are at stake, the default industry standard is that the MTTF
must exceed typical life expectancy; if more than one life is at stake, this value must
be adjusted accordingly. The following table, due to Musa (1999), shows the link
between mean time to failure values and the probability of failure free operation
for 1 hour:

29913.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

Mean time to failure Probability of failure free
operation for 1 hour

1 hour 0.368

1 day 0.959

100 hours 0.990

1 week 0.994

1 month 0.9986

A month and a half 0.999

A year 0.99989

13.3.7 Reliability as an Economic Function

So far we have made several simplifying assumptions as we analyze the reliability of a
software product; in this section, we tentatively challenge these assumptions and offer
a more refined definition of reliability that lifts these restrictive assumptions:

• We have assumed that the stakeholders in the operation of a software product are
a monolithic community, with a common stake in the reliable behavior of the
system. In reality, a system may have several different stakeholders, having
widely varying stakes in its reliable operation. Hence reliability is best viewed,
not as a property of the product, but rather as an attribute of a product and a stake-
holder. We represent it, not by a scalar (the MTTF), but rather as a vector, which
has one entry per relevant stakeholder.

• We have assumed that the specification is a monolith, which carries a unique
stake for each stakeholder, when in fact typical specifications are aggregates
of several sub-specifications, representing distinct requirements whose stakes
for any given stakeholder may vary widely. Hence whereas in the previous
section we talked about the cost of a system failure as an attribute of the system,
in this section we consider the structure of a specification, and we associate dif-
ferent costs to different sub-specification, for each stakeholder.

• We have assumed that failure is a Boolean condition, whereby an execution
either fails or succeeds, when in fact failure is rather a composite event, where
the same system may succeed with respect to some requirements but fail with
respect to others. Hence in estimating probabilities of failure, we do not consider
failure as a single event, but rather as different events, having possibly different
probabilities of occurrence and carrying different stakes even for the same stake-
holder (let alone for different stakeholders).

To take into account all these dimensions of heterogeneity, we consider the random
variable FC(H), which represents, for stakeholder H, the cost per unit of time that she/

300 TEST OUTCOME ANALYSIS

he stands to incur as a result of possible system failures (FC stands for failure cost), and
we letMFC(H) be the mean of variable FC(H) over various instances of system oper-
ation. To fix our ideas, we quantifyMFC(H) in terms of dollars per hour of operation,
which we abbreviate by $/h. With this measure, it is no longer necessary to distinguish
between reliability (freedom from failure with respect to common requirements) and
safety (freedom from failure with respect to high stakes requirements), since the mean
failure cost takes into account the costs associated with all relevant requirements, ran-
ging from low stakes requirements to high stakes requirements.

We consider a system whose community of stakeholders includes n members
H1,H2,H3,…Hn, and whose specification R is structured as the aggregate of several
requirements, say

R=R1 R2 R3 …Rm

and we let P = P1,P2,P3,…Pm be the probabilities that the system fails to satisfy
requirements R1, R2, R3,… Rm during a unitary operation time (say, 1 hour of opera-
tion time). If we let ST(Hi, Rj) be the stakes that stakeholder Hi has in meeting require-
ment Rj, then the mean failure cost of stakeholder Hi can be approximated by the
following formula:

MFC Hi =
m

j = 1

ST Hi,Rj ×Pj

This formula is not an exact estimate of the mean failure cost but is an approxima-
tion thereof; this stems from two reasons, both of which result from the fact that spe-
cifications R1, R2, R3,… Rm are not orthogonal, but rather overlap:

• Costs are not additive: when we consider the costs associated with failure to sat-
isfy two distinct requirements Ri and Rj, the same loss may be counted twice
because the two specifications are not totally orthogonal, hence their failures rep-
resent related events.

• Probabilities are not multiplicative: If we consider two distinct specification
components Ri and Rj that are part of the system specification, failure with
respect to Ri and failure with respect to Rj are not statistically independent
because the same error may cause both events.

Hence strictly speaking, the formula above is best understood as an upper bound of
the mean failure cost, rather than an exact estimate; nevertheless, we use it as a con-
venient (easy to compute) approximation. We recast the formula of MFC given above
in matrix form, by means of the following notations:

• We let MFC be the column vector that has one entry per stakeholder, such that
MFC(Hi) represents the mean failure cost of stakeholder Hi.

30113.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

• We let P be the column vector that has one more entry than there are specification
components, such that P(Rj) represents the probability that the system fails to
satisfy requirement Rj during a unitary execution time (e.g., 1 hour) and the extra
entry represents the probability that no requirement is violated during a unitary
execution time.

• We let ST be the matrix that has as many rows as there are stakeholders and as
many columns as there are specification components and such that ST(Hi, Rj)
represents the loss that stakeholder Hi incurs if requirement Rj is violated; we con-
sider an additional column that represents the event that no requirement is violated.

Then the formula of mean failure cost can be written in relational form as follows
(where • represents matrix product):

MFC = ST•P

As a simple (and simple-minded) illustrative example, we consider the flight con-
trol system of a commercial aircraft, and we list in turn, a sample of its stakeholders, a
sample of its requirements, then we try to fill the stakes matrix (ST) and the failure
probability vector (P). For a sample of stakeholders, we cite the following:

• PL: The aircraft pilot

• PS: A passenger

• LIF: The passenger’s life insurance company

• AC: The airline company that operates the aircraft

• AM: The aircraft manufacturer

• INS: The insurance company insuring the aircraft

• FAA: The Civil Aviation Authority (e.g., FAA),

• NGO: An environmental NGO

• RES: A resident in the neighborhood of the origin or destination airport

Among the (massively overlapping and very partial/anecdotal) requirements, we
consider the following:

• AP: Adherence to the autopilot settings within acceptable tolerance thresholds

• SM: Smoothness of the transition between different autopilot settings

• ECO: Maximizing fuel economy

• NOI: Minimizing noise pollution

• CO2: Minimizing CO2 pollution

• SAF: Safety critical requirements

We review the stakeholders in turn and discuss for each, the stakes they have in
each requirement, as well as a tentative quantification of these stakes in dollar terms;
specifically, the quantitative figure represents the amount of money that a stakeholder

302 TEST OUTCOME ANALYSIS

stands to lose if the cited requirement is violated. In the column labeled XS, we write
X if the quantification is deemed exact and S if it is deemed a mere estimate.

The Pilot:

Requirement Stake XS Value ($)

AP Professional obligation S 100.00

SM Professional satisfaction, personal comfort S 60.00

ECO Professional satisfaction, loyalty to employer S 40.00

NOI Professional satisfaction, good citizenship S 30.00

CO2 Environmental consciousness, good citizenship S 70.00

SAF Professional duty, own safety S 1.0 M

The Passenger:

Requirement Stake XS Value ($)

AP No direct stake, so long as safety is not at stake S 0.00

SM Personal comfort S 60.00

ECO No direct stake X 0.00

NOI No direct stake X 0.00

CO2 Reducing carbon footprint S 40.00

SAF Personal safety S 1.0 M

The Passenger’s Life Insurance Company:

Requirement Stake XS Value ($)

AP Indirect impact, through increased risk S 80.00

SM No direct stake X 0.00

ECO No direct stake X 0.00

NOI No direct stake X 0.00

CO2 No direct stake X 0.00

SAF Life Insurance Payout X 1.0 M

30313.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

The Airline Company that operates the aircraft:

Requirement Stake XS Value ($)

AP Indicator of Fleet Quality S 1000.00

SM Positive Passenger Experience S 800.00

ECO Direct Pocketbook impact X 700.00

NOI Good corporate citizenship, PR value S 400.00

CO2 Good corporate citizenship, promotional value S 600.00

SAF Loss of aircraft, civil liability, corporate reputation, etc X 15.0 M

The Aircraft Manufacturer:

Requirement Stake XS Value ($)

AP Pilot confidence in aircraft quality S 1000.00

SM Positive Passenger Experience, impact on corporate
reputation

S 800.00

ECO Lower Operating Costs as a Sales Pitch S 800.00

NOI Good corporate citizenship, adherence to civil
regulations

S 900.00

CO2 Good corporate citizenship, corporate image S 800.00

SAF Corporate reputation, viability of aircraft, civil liability X 120.0 M

The Insurance Company Insuring the Aircraft:

Requirement Stake XS Value ($)

AP Indirect impact on safety S 1000.00

SM No direct stake X 0.00

ECO No direct stake X 0.00

NOI No direct stake X 0.00

CO2 No direct stake X 0.00

SAF Insurance Payout (price of aircraft + $1 M/passenger) X 350.0 M

304 TEST OUTCOME ANALYSIS

The Civil Aviation Authority:

Requirement Stake XS Value ($)

AP Core agency mission S 1000.00

SM No direct stake X 0.00

ECO No direct stake X 0.00

NOI Secondary agency mission S 200.00

CO2 Secondary agency mission S 200.00

SAF Core agency mission X 1000.00

An Environmental NGO:

Requirement Stake XS Value ($)

AP No direct stake X 0.00

SM No direct stake X 0.00

ECO No direct stake X 0.00

NOI Secondary organizational mission S 100.00

CO2 Core organizational mission S 600.00

SAF No direct stake X 0.00

A Resident in the Proximity of the Relevant Airports:

Requirement Stake XS Value ($)

AP Indirect stake, due to safety implications S 200.00

SM No direct stake X 0.00

ECO No direct stake X 0.00

NOI Viability of home, home value S 2000.00

CO2 Secondary homeowner/health concern S 20.00

SAF Indirect stake, due to safety implications S 200.00

30513.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY

In light of this discussion, we find the following Stakes matrix, where the column
labeled NOF refers to the event that no failure has occurred during a unitary opera-
tion time.

AP SM ECO NOI CO2 SAF NOF

PL 100 60 40 30 70 1,000,000 0

PS 0 60 0 0 40 1,000,000 0

LIF 80 0 0 0 0 1,000,000 0

AC 1000 800 700 400 600 15,000,000 0

AM 1000 800 800 900 800 120,000,000 0

INS 1000 0 0 0 0 350,000,000 0

FAA 1000 0 0 200 200 1,000 0

NGO 0 0 0 100 600 0 0

RES 200 0 0 200 20 200 0

As for computing the vector of probabilities, we advocate to proceed as follows:

• Design oracles for each of the requirements introduced above.

• Run reliability tests of the software product to estimate the reliability of the
product with respect to each relevant requirement.

• Use the estimates of reliability to determine the probability that the product fails
during a unitary operation time (e.g., 1 hour of operation).

For the sake of illustration, we consider the following vector of probabilities:

Requirement Probability of failure
per hour

AP 0.01

SM 0.01

ECO 0.005

NOI 0.005

CO2 0.008

SAF 0.0000001

NOF 0.9619999

306 TEST OUTCOME ANALYSIS

Computing the product of the stakes matrix with the probability vector, we find the
following vector of mean failure costs, which has one entry per stakeholder and is
quantified in dollars per hour.

Stakeholder Mean failure cost ($/hour)

PL 2.61

PS 1.02

LIF 0.90

AC 29.80

AM 44.90

INS 45.00

FAA 12.60

NGO 5.30

RES 3.16

This table represents, for each stakeholder, the mean of their loss, per hour of oper-
ation, as a result of possible system failure; this quantity is measured in dollars per
hour and can be used to make economically justified decisions.

13.4 CHAPTER SUMMARY

Testing is useless unless it can help us reach relevant, verifiable conclusions about the
product under test. The purpose of this chapter is to survey the various uses of a soft-
ware test, in terms of the claims that can be made about the product. We consider in
turn a number of claims:

• Logical Claims: The successful execution of a program under test on a given test
data set can be used as the basis of a claim of correctness of the product with
respect to the specification that gives rise to the test oracle. The trouble with such
claims is that they pertain to specifications that are very weak, hence are of lit-
tle value.

• Probabilistic Claims: Fault Density. Testing can be used in conjunction with
some assumptions on fault patterns in the program to estimate the density of
faults in candidate products. The trouble with this approach is that fault density,
even when estimated with great precision, is only tenuously correlated with fail-
ure frequency; and from the standpoint of a user, failure frequency is the only
meaningful measure of product quality.

• Probabilistic Claims: Failure Frequency. Carefully designed testing experi-
ments can be used to estimate the failure frequency of a product and can also

30713.4 CHAPTER SUMMARY

be used to enhance (lower) failure frequency beyond (below) a target value. Once
we know the failure frequency of a software product, we can compute a number
of relevant reliability attributes, such as the probability of failure within a given
time interval, or the mean time to failure.

Once we know the failure frequency of a software product with respect to a
given product requirement, and the stakes that a stakeholder has in meeting that
requirement, we can estimate the mean of the random variable that represents the
loss that the stakeholder stands to incur as a result of possible system failure with
respect to that requirement. If we integrate with respect to all the requirements, we
obtain the system’s mean failure cost for each stakeholder, measured in dollars per
unit of time.

13.5 EXERCISES

13.1. Consider the discussion of Section 13.1.1 and revisit its conclusion under the
assumption that a successful execution of the test means that for all test cases
(elements of T), the candidate program does terminate and the oracle, when
invoked, returns true.

13.2. If you seed 65 faults into your software product and test it using test data T,
which exposes 70 faults of which 30 are seeded, how many faults do you esti-
mate to exist in your product prior to removing all the exposed faults? How
many do you estimate to exist after removal of all exposed faults?

13.3. If you run your program on two test data sets, say T1 and T2, and you find that
T1 exposes 65 faults, and T2 exposes 58 faults of which 28 are also exposed by
T1, how many faults do you estimate to exist in your product prior to removing
all the exposed faults? How many do you estimate to exist after removal of all
exposed faults?

13.4. A flight control system has a mean time to failure with respect to safety critical
requirements of 20,000 hours.

a. If you take a 5 hour flight from Newark to Los Angeles, what is the like-
lihood that the system will experience a safety critical failure during your
flight?

b. If the aircraft operates 8 hours a day of actual flying time, what is the
likelihood that it will experience a safety critical violation on a
given day?

c. If the aircraft operates 8 hours a day of actual flight and is grounded for
maintenance one day a month, what is the likelihood that it will experience a
safety critical failure in its first ten years of operation?

d. Under the conditions cited above, what is the likelihood that its first safety
critical failure occurs during its 11th year of operation?

308 TEST OUTCOME ANALYSIS

13.5. Wewant to certify the reliability of a software product to the MTTF standard of
25,000 executions.

a. Given a discrimination ratio of 1.5, a producer risk of 0.25 and a consumer
risk of 0.15, how long does the certification test have to be?

b. This software product is used to control an industrial process in which data is
sampled every minute, analyzed, and actuators are adjusted accordingly.
What is the probability that this product will operate failure-free during
its first year of operation?

13.6. Consider a software product undergoing a process of reliability testing,
whereby it is repeatedly tested on randomly generated test data until it fails,
the failure is analyzed to identify and remove the presumed fault causing the
failure. Assume that the successive test runs that this experiment gives rise
to are as follows:

Number of faults
removed

Number of executions
between failures

0 14

1 48

2 36

3 260

4 1,020

5 8,060

6 10,435

Estimate the failure intensity of this product with respect to the selected ora-
cle, in terms of number of executions. If this product is invoked every ten min-
utes around the clock, what is the mean time to failure of this product in days
and in months (assuming 30 days per month)?

13.7. Consider a software product that has a mean time to failure of 10 months.

a. What is the probability that this product will fail within its first hour of
operation?

b. What is the probability that this product will fail within its first day of
operation?

c. What is the probability that this product will fail within its first month
of operation?

d. What is the probability that this product will fail within its first year of
operation?

e. What is the probability that this product will fail within its 6th month
of operation?

30913.5 EXERCISES

13.8. Consider a cloud computing infrastructure of a cloud services provider.

a. Identify classes of typical stakeholders.

b. Identify typical system requirements.

c. Estimate the corresponding stakes matrix.

d. Consider a realistic probability distribution of system failures, assuming the
system may not fail with respect to more than one requirement per unit of
time (e.g., an hour).

e. Estimate the mean failure cost of the system with respect to all the
stakeholders.

13.6 PROBLEMS

13.1. Consider that the fault seeding technique of fault density estimation assumes
that faults are independent of each other and that one can identify a number
of faults and then remove them. But the remedy to each fault may very well
depend on previously removed faults. Explore the consequences of this premise
on the technique of fault seeding.

13.2. Consider that the cross testing technique of fault density estimation assumes
that faults are independent of each other and that one can identify a number
of faults and then remove them. But the remedy to each fault may very well
depend on previously removed faults. Explore the consequences of this premise
on the technique of cross testing.

13.7 BIBLIOGRAPHIC NOTES

For more information on software reliability engineering, consult Musa (1999) and
O’Connor (2002). A recent snapshot of the state of the art in symbolic testing is given
by Cadar and Sen (2013); note that in this reference, as well as in many references on
symbolic execution, the focus is on individual execution paths rather than a compre-
hensive view of the program; as a result, loops are usually unfurled and converted into
an arbitrary number of iterations and treated as sequence (rather than captured by
means of Mills’ Theorem, as we do in this chapter). Concolic testing was introduced
by Larson and Austin (2003); for an example of a concolic testing paradigm, refer Sen
et al. (2005). The technique of Fault Seeding introduced in Section 13.1.1 is due to
Harlan D. Mills (1972); as for the technique of fault density estimation by cross-test-
ing, it is due to Shari Laurence Pfleeger and Joanne M. Atlee (2009).

310 TEST OUTCOME ANALYSIS

Part V

Management of
Software Testing

In Parts I–IV, we have focused primarily on technical aspects of software testing,
including test data generation, oracle design, test driver design, and test outcome
analysis. In this part, we consider some managerial aspects of software testing, includ-
ing software metrics, software tools, and software product line testing.

• In Chapter 14, we review some software metrics that are relevant from the
standpoint of software testing. These include metrics that quantify such
aspects of software testing as fault density, error proneness, failure probability,
fault tolerance, the ease of identifying faults from static analysis, and the ease of
detecting errors at run time.

• In Chapter 15, we review some representative software testing tools, which we
classify into six broad, slightly overlapping families of tools: scripting tools that
help engineers write test drivers; record and replay tools that help engineers
record complex user interactions for the purpose of test replay; performance
testing tools that enable the engineer to test a software product under specified
operating conditions; oracle design tools that help the engineer to design and
record a test oracle; exception discovery tools that help the engineer check a
software product for possible run-time exceptions; and finally collaborative
tools that are primarily intended to support collaborative multiparty communi-
cation in the context of software testing.

• In Chapter 16, we briefly review the emerging paradigm of software product
line engineering and discuss the unique issues that this paradigm raises with
respect to software testing; we explore some general principles that pertain to
the management of testing resources within this paradigm and illustrate them
by a sample example.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

311

14
Metrics for Software Testing
The discipline of software metrics is concerned with defining quality attributes of
software products and sizing them up with quantitative functions; such quantitative
functions can then be used to assess the quality attributes of interest and thereby pro-
vide a basis for quantitative analysis and decision-making. Metrics have been used to
capture such quality attributes as reliability, maintainability, modularity, verifiability,
complexity, and so on. In this chapter, we focus our attention on software metrics that
are relevant to testing and test-related attributes. We classify the proposed metrics into
six categories that espouse the lifecycle of a system failure, namely:

• Fault proneness—the density of faults within the source code.

• Fault detectability—the ease of detecting faults in the source code.

• Errordetectability—theeaseofdetectingerrors in the stateof aprograminexecution.

• Error maskability—the likelihood that an error that arises during the execution of
a program gets masked before it causes a program failure.

• Failure avoidance—the ease of detecting and avoiding program failure with
respect to its intended function.

• Failure tolerance—the likelihood that a program satisfies its specification despite
failing to compute its intended function.

We review these metrics in turn, below. But first, we briefly introduce some ele-
ments of information theory, which we use in subsequent sections of this chapter.
Given a random variable X on a finite set X (by abuse of notation we use the same
name for the random variable and the set from which it takes its values), we let the
entropy of X be the function denoted by H(X) and defined by:

H X = −
x X

p x log p x

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

313

where p(x) is the probability of occurrence of the event X=x and log is (by default)
the base 2 logarithm. We take the convention that 0 log 0 = 0, and we find that
H(X) is nonnegative for all probability distributions. H(X) is expressed in bits and
represents the amount of uncertainty we have about the outcome of random variable
X; for a set of given size n, this function takes its maximal value for the uniform
distribution on X, where p x = 1

n for all x; the maximal value in question is then
equal to log (n).

Given a random variable X on set X and a random variable Y on set Y, we consider
the joint random variable (X; Y) on the set X × Y with the probability distribution p2
(x, y) on X ×Y defined as the probability that variable X takes value x while variable
Y takes value y. Then we define the joint entropy of X and Y as the entropy of the
random variable (X; Y) on the set X × Y with respect to the probability distribution
p2(x, y). Using joint entropy, we let the conditional entropy of X with respect to Y be
the function denoted by H(X|Y) and defined by:

H X Y =H X;Y −H Y

The conditional entropy of X with respect to Y represents the uncertainty we have
about the outcome of random variable X once we knowwhat is the outcome of random
variable Y.

If we let X be a random variable on set X and Y be a random variable on set Y, and if
we let G be a function from X to Y then we have

H X ≥H Y ,

where the probability distribution of Y is derived from that of X by the following
formula:

p Y = y =
x G−1 y

p x

Entropies and conditional entropies will be used to define some of the metrics that
we discuss in the remainder of this chapter.

14.1 FAULT PRONENESS

What makes a software product prone to faults is its complexity; hence complexity
metrics are adequate measures of fault proneness. Empirical studies routinely show
a significant correlation between complexity metrics and fault density in software pro-
ducts. In this section, we present two widely known, routinely used metrics of struc-
tural complexity of control structures.

314 METRICS FOR SOFTWARE TESTING

14.1.1 Cyclomatic Complexity

In its simplest expression, the cyclomatic complexity of a program reflects the com-
plexity of its control structure and is computed by drawing the flowchart (say, F) of the
program, then deriving the value of the expression as:

v F = e−n + 2,

where

• e is the number of edges in F and

• n is the number of nodes in F.

We know from graph theory that if the flowchart is a planar graph (i.e., a graph that
can be drawn on a planar surface without any two edges crossing each other) then v (F)
represents the number of regions in F. Also, note that if the flowchart is merely a linear
sequence of nodes, then its cyclomatic complexity is 1, regardless of the number of
nodes; hence a single statement (corresponding to e= 0 and n = 1) has the same cyclo-
matic complexity as a sequence of 100 statements (e= 99 and n = 100). This is con-
sistent with our intuitive understanding of complexity as an orthogonal attribute to
size: a sequence of 100 statements is longer than a single statement but is not more
complex. As an illustration of this metric, we consider the following sample example:

int product (int a, int b)
{
int c; c=0;
while (b!=0)

{if (b%2==0) {b=b/2; a=2*a;}
else {b=b-1; c=c+a;}}

return c;
}

The flowchart of this program is given in Figure 14.1. From this flowchart, we
compute the number of nodes and edges, and we find:

• e=7,

• n=6

whence

v F = 3

Exercises 1 and 2 in Section 14.8 explore how this figure is affected after we make
the program more complex by additional tests.

31514.1 FAULT PRONENESS

14.1.2 Volume

Whereas cyclomatic complexity measures the complexity of a program by consider-
ing the density of its control structure, the metric of program volume measures
complexity by the amount of intellectual effort that it took to develop the program.
We can argue that unlike the cyclomatic complexity, which measures structure inde-
pendently of size, program volume captures size along with structural complexity.
Specifically, program volume is computed as follows:

• If N is the number of lexemes (operators, operands, symbols, constants, etc.) in a
program and

• n is the number of distinct lexemes (operators, operands, symbols, constants,
etc.) in the program,

then the volume of the program is given by the following formula:

V =N × log2 n

Interpretation: n is the size of the vocabulary in which the program is written; log2(n)
measures the number of binary decisions one has to make to select one symbol in a
vocabulary of size n; N × log2 n measures the total development effort of the
program, viewed as the selection of N symbols in a vocabulary of size n, and quanti-
fied in terms of binary decisions. Alternatively, log2(n) can be interpreted as the
entropy of the random variable that represents each symbol of the program and
N × log2 n is then the entropy of the whole program (quantity of information
contained within its source text).

If we consider again the product program given above, we find the following
quantities:

int c; c=0;

b=b/2; a=2*a; b=b–1; c=c+a;

int c; c=0;b!=0

b%2==0

F

F T

T

Figure 14.1 Counting nodes and edges.

316 METRICS FOR SOFTWARE TESTING

• Number of lexemes, N: 66.

• Vocabulary: {int, product, (, a, ‘,’, b,), {, c, ;, =, 0, while, !=, if, %, 2, ==, /, *, },
else, −, 1, +, return}. Hence n=26.

The volume of this program is:

V = 66 × log2 26 = 310 23 bits

Generating this program requires the equivalent of 310 binary (yes/no) decisions.

14.2 FAULT DETECTABILITY

Whereas complexity is a reliable indicator of fault proneness/fault density, the metrics
we explore in this section reflect the ease of detecting the presence of faults (in a test-
ing environment) or, conversely, the likelihood of fault sensitization (in an operating
environment).

We consider a program g on space S and a specification R on S, and we let T be
a test data set which is a subset of dom (R). Assuming that program g is faulty,
we define the following metrics that reflect the level of effectiveness of T in exposing
faults in g:

• The P-Measure, which is the probability that at least one failure is detected
through the execution of the program on test data T.

• The E-Measure, which is the expected number of failures detected through the
execution of the program on test data T.

• The F-Measure, which is the number of elements of test data T that we expect to
execute on average before we experience the first failure of program g.

These metrics can be seen as indicators of the effectiveness of test set T in exposing
program faults, but if we let T be a random test data set, then these metrics can be seen
as characterizing the ease of exposing faults in program g.

These three metrics can be estimated in terms of the failure rate of the program (say,
θ), which is the probability that the execution of the program on a random element s of
the domain of R produces an image G (s) such that s,G s R. Under the assumption
of random test generation (where the same initial state may be generated more than
once), we find the following expressions:

• The P-Measure. The probability that n tests generated at random do not cause the
program to fail is 1−θ n. Hence the P-measure of the program is:

P = 1− 1−θ n

31714.2 FAULT DETECTABILITY

• The E-Measure. The expected number of failures experienced through the exe-
cution of the program on n randomly generated test data is:

E = n∗θ

• The F-Measure. Under the assumption of random test generation, the probability

that the first test failure occurs at the ith test is 1−θ i−1θ. Statistical analysis
shows that for this probability distribution, the mean (F) and the median (Fmed)
of the number of tests before the first failure are respectively:

F =
1
θ

Fmed =
− log 2
log 1−θ

,

where is the ceiling operator in the set of natural numbers.

All these calculations depend on an estimation of θ, the probability of failure of the
execution of the program on a randomly chosen initial state. This probability depends
on the following two parameters:

• The set of initial states on which the candidate program g fails to satisfy spec-
ification R; as we have seen in Chapter 6, this set is defined (in relational form)

as dom R G

• The probability distribution of initial states.

If the space of the program is finite and if the probability distribution is finite then the
probability of failure can be written as:

θ =
dom R dom R G

dom R

where represents set cardinality.
As an illustrative example, we consider the space S defined by natural variables x,

y, and z, and the following specification R on S.

R= s,s y = x + y z < 99

We let g be the following program on space S:

g: {y = x+y; z = y%100;}

whose function is:

G = s,s x = x y = x + y z = x + y mod 100

318 METRICS FOR SOFTWARE TESTING

To estimate the probability of failure () of this program, we compute dom R G .

dom R G

={substitution}

dom s,s y = x + y z < 99 x = x y = x+ y z = x+ y mod 100

={simplification}

dom s,s x + y mod 100 < 99 x = x y = x+ y z = x + y mod 100

={taking the domain}

s s x+ y mod 100 < 99 x = x y = x+ y z = x + y mod 100

={logical simplification}

s x+ y mod 100 < 99 s x = x y = x+ y z = x+ y mod 100

={logical simplification}

s x+ y mod 100 < 99

Taking the complement of this relation, we find:

dom R G

={logic}

s x+ y mod 100 ≥ 99

={since a mod 100 function returns values between 0 and 99}

s x+ y mod 100 = 99

Hence θ=0.01, since 99 is one value out of 100 that the mod function may take. With
this value of probability failure, we can now compute the various measures of interest
for a random test sample of size, say, 400:

• P-Measure.

P= 1− 1−θ n = 1−0 99400 = 0 98205

31914.2 FAULT DETECTABILITY

• E-Measure.

E = n∗θ = 400∗0 01 = 4

• F-Measure.
○ Mean:

F =
1
θ
= 100

○ Median:

Fmed =
− log 2
log 1−θ

=
− log 2
log 0 99

= 68 9676 = 69

In other words, there is a 0.98205 probability that a random test of size 400 will
expose at least one failure, the expected number of failures exposed by a random test
of size 400 is four, the mean number of random tests before we observe the first failure
is 100, and the median number of tests before we observe the first failure is 69.

Of course, in practice, these metrics are not computed analytically in the way we
have just shown; rather they are estimated or derived empirically by extrapolating
from field observations. Also regardless of how accurately we can (or cannot) estimate
them, these metrics are useful in the sense that they enable us to reason about how easy
it is to expose faults in a program and what test generation strategies enable us to opti-
mize test removal effectiveness.

14.3 ERROR DETECTABILITY

What makes it possible to detect errors in a program?We argue that redundancy does;
more specifically, what makes it possible to detect errors is the redundancy in the way
program states are represented. When we declare variables in a program to represent
data, we have in mind a relation between the data we want to manipulate and the rep-
resentation of this data by means of the program variables. We refer to this relation as
the representation relation; ideally, we may want a representation relation to have the
following properties:

• Totality: each datum has at least one representation.

• Determinacy: each datum has at most one representation.

• Injectivity: different data have different representations.

• Surjectivity: all representations represent valid data.

It is very common for representation relations to fall short of these properties: in fact it
is common to have none of them.

320 METRICS FOR SOFTWARE TESTING

• When a representation relation is not total, we observe an incomplete
representation: for example, not all integers can be represented in computer
arithmetic.

• When a representation is not deterministic, we observe ambivalence: for
example, in a sign-magnitude representation of integers, zero has two distinct
representations, −0 and +0.

• When a representation is not injective, we observe a loss of precision: for exam-
ple, real numbers in the neighborhood of a representable floating point value are
all mapped to that value.

• When a representation is not surjective, we observe redundancy: for example, in
a parity-bit representation scheme of bytes, not all 8-bit patterns represent legit-
imate bytes.

More generally, redundancy in the representation of data in a program stems from
the non-surjectivity of the representation relation of program data, which maps a small
data set to a vast state space of the program. If the representation relation were sur-
jective, then all representations would be legitimate; hence if by mistake one repre-
sentation were altered to produce another representation, we would have no way to
detect the error; by contrast, if the representation relation were not surjective, and
one representation were altered to produce another representation that is outside
the range of the representation relation, then we would know for sure that we have
an error. Hence the essence of state redundancy is the non-surjectivity of the repre-
sentation relation. Whence the definition:

Definition: State Redundancy Let g be a program on space S, and let σ be the
random variable that represents actual values that the program state may take
at a particular stage in its execution. The state redundancy of program g at a stage
in its computation is defined as the difference between the entropy of its state space
S and the entropy of σ at that stage; the state redundancy of program g is defined
as the interval formed by its state redundancy at its initial state and its state
redundancy at its final state.

As an illustration, let us consider three program variables that we use to represent:
the year of birth of a person, the age of the person, and the current year. The variable
declarations of the program would look like:

int yob, age, thisyear;

If we assume that integer variables are coded in 32 bits, then the entropy of the
program state is 3 × 32 bits = 96 bits. As for the entropy of the actual set of
values that we want to represent, we assume that ages range between 0 and 150, years
of birth range between 1990 and 2090 (101 different values), and current year ranges
between 2014 and 2140 (127 different values). Because we have the equation yob
+age = thisyear, the condition that age is between 0 and 150 is redundant and

32114.3 ERROR DETECTABILITY

age can be inferred from the other two variables. Hence the entropy of the set of
actual values is log(101) + log(127) = 27.62 bits. Hence the redundancy (excess bits)
is 96 − 27.62 = 62.38 bits.

The redundancy of a state reflects the strength of an assertion that we can check about the
state. For example, a redundancy of 32 bits means that we can check an assertion in the
form of an equality between two 32-bit integer expressions.

Now that we know how to compute the redundancy of a state, we use it to define
the redundancy of a program: to this effect, we observe that while the set of program
variables remains unchanged through the execution of the program, the range of
values that program states may take shrinks, as the program establishes new relations
between program variables; for example, a sorting routine starts with an array whose
cells are in random order and rearrange them in increasing order. Given that the
entropy of a random variable decreases as we apply functions to it, we can infer that
the entropy of the final state of a program is smaller than the entropy of the initial
state (prior to applying the function of the program) and the redundancy of the
final state is greater than the redundancy of the initial state (assuming the set of
program variables remains unchanged, that is, no variables have been declared or
returned through the execution of the program). We can define the redundancy
of a program by

• The state redundancy of its initial state, or

• The (larger) state redundancy of its final state, or

• The pair of values representing the initial and final state redundancies.

As an illustration, we consider the following program that reads two integers
between 1 and 1024 and computes their greatest common divisor.

{int x, y; cin << x << y ;
// initial state
While (x!=y) {if (x>y) {x=x-y;} else {y=y-x;}}
// final state

}

The set defined by the declared variables which are two integers; which we assume to
be 32 bits wide; hence the entropy of the declared state is 2 × 32 bits = 64 bits. Because
the variables range from 1 to 1024, the entropy of the set of values that these variables
take is actually 2 × log(1024) = 20 bits. Hence the redundancy of the initial state is
44 bits. In the final state the two variables are identical and hence the entropy of
the final state is merely log(1024), which is 10 bits. Hence the redundancy of the final
state is 54 bits. The state redundancy of this program can be represented by the pair
(44 bits, 54 bits).

322 METRICS FOR SOFTWARE TESTING

14.4 ERROR MASKABILITY

Maskability is the ability of a program to mask an error that arises during its execution.
In the testing phase, maskability may be seen as an obstacle to fault diagnosis, since
(by definition) it masks errors and hence prevents the observer from exposing the
impact of faults, while in the operating phase, maskability may be seen as a blessing,
since it helps the program avoid failure. Either way, this metric is relevant from the
standpoint of testing.

If we consider deterministic programs, tha is, programs that map initial states into
uniquely determined final states, then each program defines an equivalence class on its
domain that places in the same class all the initial states that map to the same final
state. See Figure 14.2.

A program is all the more non-injective that the equivalence class of each final state
is larger. To quantify this attribute, we let X be the random variable that represents the
initial states of the program and we let Y be the random variable that represents
the final states of the program. Then one way to quantify the size of a (typical)
equivalence class is to compute the conditional entropy of Xwith respect to Y; in other
words, we quantify the non-injectivity of a program by the uncertainty we have about
the initial state of the program if we know its final state; the more initial states map
to the same final state (the essence of non-injectivity), the larger this conditional
entropy. Whence the definition:

Definition: Non-injectivity Let g be a program on space S, let X be a random var-
iable that takes its values in the domain of G and Y a random variable that takes
its values in the range of G. The non-injectivity of g is defined as the following
conditional entropy:

μ g =H X Y

Because Y is a function of X, this conditional entropy can simply be written as:

μ g =H X −H Y

X

Y

Figure 14.2 Measuring non-injectivity.

32314.4 ERROR MASKABILITY

As illustrative examples, we consider the following:

• Let g be the following program on space S defined by a single integer variable i:
g = {i=i+1;}. Then μ g = 0, since H X =w, and H Y =w, where w is the
width of an integer variable. Ignoring the possibility of overflow, this program is
injective; if variable i has an erroneous value prior to this statement, then it has an
erroneous value after this statement.

• Let g be the following program on space S defined by three integer variables i, j,
and k: g = {i=j+k;} Then μ g =w, since H X = 3w, and H Y = 2w, where
w is thewidth of an integer variable. Indeed, this programhas the potential tomask
an error of size w: if variable i had a wrong value prior to this statement, then that
error will be masked by this statement since the wrong value is overridden.

• Let g be the following program on space S defined by three integer variables i, j,
and k: g = {i=0; j=1; k=2;}. Then μ g = 3w, since H X = 3w, and
H Y = 0, where w is the width of an integer variable. Indeed, this program
has the potential to mask an error of size 3×w: if variables i, j, and k had wrong
values prior to this statement, then that error will be masked by this statement
since all the wrong values are overridden.

We submit the following interpretation:

The non-injectivity of a program measures the size of damage to its state (error) that the
program can mask by its execution.

The more non-injective a program, the more damage it can mask; in fact non-
injectivity aims to measure in bits the amount of erroneous information that can be
masked by the program.

14.5 FAILURE AVOIDANCE

Whereas state redundancy reflects excess information in representing a state, func-
tional redundancy represents excess information in representing the result of a func-
tion. For example, if a function is duplicated (for the sake of error detection) or
triplicated (for the sake of error recovery) then in principle we are getting one or
(respectively) two extra copies, that is, two instances of excess information. But func-
tional redundancy need not proceed in discrete quantities; as we define in this
section, functional redundancy quantifies the (continuous) duplication of functional
information. In the same way that state redundancy stems from the non-surjectivity
of representation functions, functional redundancy stems from the non-surjectivity
of program functions. Figure 14.3 illustrates graphically in what sense a duplicated
function is more redundant than a single function, by virtue of being less-surjective:
while the range of function F is isomorphic to the range of the duplicated function
F, F , the output space of F, F is much larger than the output space of F, making
for a smaller ratio of range over output space, which is the essence of non-surjectivity.

324 METRICS FOR SOFTWARE TESTING

Definition: Functional Redundancy We consider a program g that computes a
function G from input space X to output space Y, and we let ρ be a random
variable that takes its values in the range of G. Then the functional redundancy

of gis denoted by φ(g) and defined by: φ g = H Y
H ρ −1.

Whereas we are accustomed to talking about a program space as a structure that
holds input data and output data, in this definition we refer separately to the input
space and the output space of the program. There is no contradiction between these
two views: X may encompass some program variables along with input media
(keyboard, sensors, input files, communication devices, etc.) and Y may encompass
some program variables along with some media (screen, actuator, output file, commu-
nication devices, etc.).

As an illustration, we consider the following functions and show for each function:
its input space (X), its output space (Y), its expression, its range (ρ), its functional
redundancy (φ), and possibly some explanation of the result. We let B5 be the set
of natural numbers that can be represented in a word of five bits.

Name Exp X Y ρ φ Comments

F1 X B5 B5 B5 0 All 5 bits are used

F2 2X B5 B5 {0, 2, ..30} 0.25 Rightmost bit always 0

F3 X % 4 B5 B5 {0,1,2,3} 1.5 2 bits of information, 3 bits at 0

F4 X% 16 B5 B5 {0,1,.. 15} 0.25 4 bits of information, 1 bit at 0

F5 X/ 2 B5 B5 {0,1,.. 15} 0.25 Leftmost bit always 0

S

S

S×S

rng(F)

rng(F)

rng(〈F, F〉)

Figure 14.3 Enlarging the output space, preserving the range.

32514.5 FAILURE AVOIDANCE

G1 F1, F1 B5 B5×B5 B5×B5 1.0 1+2×ϕ(F1)

G2 F2, F2 B5 B5×B5 {0, 2, ..30}2 1.5 1+2×ϕ(F2)

G3 F3, F3 B5 B5×B5 {0, 1, 2, 3}2 4.0 1+2×ϕ(F3)

G4 F4, F4 B5 B5×B5 {0, 1,.. 15}2 1.5 1+2×ϕ(F4)

G5 F5, F5 B5 B5×B5 {0, 1,.. 15}2 1.5 1+2×ϕ(F5)

14.6 FAILURE TOLERANCE

The quality attributes of software products such as reliability, safety, security, and avail-
ability depend not only on the products themselves but also on their specifications.
Hence, if we want to define metrics that reflect software quality attributes, our metrics
need to take into account specifications as well as software product per se. In this sec-
tion, we consider a metric that captures relevant attributes of specifications.

Functional redundancy, which we have discussed in the previous section, reflects
the ability of a software product to avoid failure and compute the intended behavior
despite the presence and sensitization of faults and the emergence of errors. But if a
specification is sufficiently non-deterministic, a programmay fail to compute its exact
intended function and still satisfy the specification. The question that we raise in this
regard is: How do we measure the extent to which a program may deviate from its
intended behavior without violating its specification. The measure of specification
non-determinacy is an attempt to answer this question.

We consider a relation R on space S and we let X and Y be random variables that take their
values in the domain (respectively) and range of R. The non-determinacy of R is the con-
ditional entropy v R =H Y X .

The conditional entropy of Y with respect to X represents the uncertainty we have
about the value of Y if we know the value of X. The bigger the non-determinacy of
R, the bigger this conditional entropy. As an illustrative example, we consider the fol-
lowing relation on space S defined by three variables i, j,and k.

R = s,s k = 2i + j i' = i+ j j' = i− j

The non-determinacy of this relation is v R =H Y X =H X;Y −H X . The reader
may notice that (in this particular case) the inverse of relation R is a function; in other
words, X is a function of Y, hence the join entropy H(X,Y) is the same as the entropy
of Y. Hence the non-determinacy of this specification can be written as:

v R =H Y −H X

326 METRICS FOR SOFTWARE TESTING

In order to derive the entropies of X and Y, we must first compute the domain and
range of relation R. We find:

X = dom R

= s,s s k = 2i+ j i = i + j j = i− j

= s,s k = 2i + j s i = i + j j = i− j

= s,s k = 2i + j

Y = rng R

= s,s s k = 2i + j i = i' + j' j = i'− j'

= S

Hence, under the assumption of uniform probability distribution, we find
H X = 2w, since we have only two independent variables (i and j), and
H Y = 3w, since we have three independent variables. We find:

v R =H Y −H X =w,

whichwe interpret as follows:Aprogrammay lose asmuch aswbits of information (i.e.,
thewidth of an integer value) and still not violate specificationR. Indeed, specificationR
mandates final values for i and j, but no final value for k, which means that a candidate
programmay lose track of k and still be correct; this is themeaning of non-determinacy.

14.7 AN ILLUSTRATIVE EXAMPLE

As further illustration, we consider the following sorting program and briefly compute
its metrics as well as the non-determinacy of three possible sorting specifications that
the program may be tested against.

int N=100;
void sort ()

{int c, d, p, swap; c=0;
while (c<N-1)

{p=c; d=c+1;
while (d<N) {if (a[p]>a[d]) {p=d;} d++;}
if (p!=c) {swap=a[c]; a[c]=a[p];

a[p]=swap;} c++;}}

14.7.1 Cyclomatic Complexity

If we draw the flowchart of this program, we find that it has 14 edges and 11 nodes.
Hence its cyclomatic complexity is 14 − 11 + 2 = 5.

32714.7 AN ILLUSTRATIVE EXAMPLE

14.7.2 Volume

If we analyze the source code of this program, we find that it has 108 lexemes taken
from a vocabulary of 27 distinct lexemes. The volume of this program is:

108 × log 27 = 513 53

14.7.3 State Redundancy

If we assume that integer variables are represented by 32 bits, then the entropy of the
state of this program is 104 × 32 bits = 3328 bits. Now, if we assume that the cells of
the array (as well as variable swap) range between 1 and 400 and that index variables
(c, d, p) range between 0 and 100, then the entropy of the random variable that repre-
sents the initial data of the program is 101 × log(400) + 3 × log(100) = 893 bits. Hence
the state redundancy of the initial state is 3328 − 893 bits = 2435 bits.

In order to compute the state redundancy of the final state of this program, we refer
to a result to the effect that when an array of size N is sorted, its entropy drops by
N × log N . Hence the entropy of the final sorted array is N × log 400 −
N × log N . For N = 100, this expression evaluates to 200 bits. Because the final
values of variables c and d are determined by the program, they are not counted in
the entropy of the final state; we only count the entropy of the array and that of
variables p and swap. We find that 200 + log(101) + log(400) = 213 bits. Hence the
redundancy of the final state is 3328 − 213 bits = 3115 bits. Therefore, the state redun-
dancy of this program can be represented by the interval: [2435 bits… 3115 bits]; the
state redundancy of the program evolves from 2435 initially to 3115 in the final state.
State redundancy measures the bandwidth of assertions that can be checked between
variables of the state; in the final state it is almost 10 integers’worth of assertions (i.e.,
nearly 10 assertions that equate 2 integer expressions to each other).

14.7.4 Functional Redundancy

According to the definition of functional redundancy, the functional redundancy of
the sort program is obtained by the following formula,

H Y

H ρ
−1,

where Y is the output space of the program and ρ is the (random variable representing
the) range of the program. For the output space, we let Y be the space of the S program,
whose entropy we have found to be 3328 bits. For the range of the program, we have
computed its entropy in the previous section and found it to be 213 bits. Hence the
functional redundancy of this program is:

3328
213

−1 = 14 62

328 METRICS FOR SOFTWARE TESTING

Much of this redundancy stems from the fact that we are using 32-bit words (100 of
them) to represent integers between 1 and 400 only (when 9 bits would have been
sufficient). Another factor that further reduces the entropy of the output (hence
increases its redundancy) is that the output array is sorted; as a result, each cell of
the array limits the range of possible values for the remainder of the array (e.g., if
the first cell is 200, then the remainder of the array is restricted to the range
[201...400] rather than [1...400]).

14.7.5 Non-injectivity

The non-injectivity of a program is the conditional entropy of its input (or initial state)
given its output (or final state). Because this program sorts arrays, we know that each
sorted array of sizeN stems fromN ! distinct initial arrays (assuming, as we do, that all
array cells are distinct). If we take the hypothesis of uniform probability distribution,
and if we focus on the array (rather than auxiliary index variables), we find that this
conditional entropy is log(N !). According to Stirling’s approximation, this quantity
can be approximated by

N × log N −N = 564 bits,

for N = 100.

14.7.6 Non-determinacy

While all the previous metrics reflect properties of the program, non-determinacy
reflects properties of the specification that the program is intended to satisfy and
against which it is judged and tested. We consider three possible specifications for
the sort program and compute the non-determinacy of each:

• Ord, which specifies that the output is ordered.

• Prm, which specifies that the final array is a permutation of the initial array.

• Sort = Ord Prm.

According to the definition of non-determinacy, we must compute the conditional
entropy H Y X , where X is the random variable that takes its values over the domain
of the specification and Y is the random variable that ranges over the image set of X by
R (i.e., such that X,Y R). We find the following:

• Ord: This specification provides that the output array is sorted but bears no
relation to the input array. In this case, H Y X =H Y . The entropy of a sorted
array of size N whose values may take V values (in our case V = 400) is given
by the formula N ×W −N × log N . For N = 100 and V = 400, we find
H Y = 2536 bits. This is the extent to which a candidate program can deviate
from the function of sorting and still not violate the specification Ord.

32914.7 AN ILLUSTRATIVE EXAMPLE

• Prm: This specification provides that the final array is a permutation of the initial
array but it does not stipulate that it must be ordered. For an array of size
N (whose cells we assume to be distinct), there exist N! distinct arrays that satisfy
this specification. Under the assumption of uniform probability, this entropy is
H Y X = log N , which we estimate by means of the Sterling approximation
as N × log N −N = 564 bits. This is the extent to which a candidate program can
deviate from the function of sorting and still not violate the specification Prm.

• Sort:Because this specification is deterministic,H Y X = 0.Anydeviationof a can-
didate program from the mission of sorting the array will violate this specification.

14.7.7 SUMMARY

The following table summarizes the discussion of the sorting routine’s metrics.

Metric Value Unit Interpretation/meaning/relation to testing

Cyclomatic complexity 5 Fault proneness

Volume 513.53 Fault proneness

State Redundancy 2435
3115

Bits Bandwidth of assertions that can check for
errors, in initial state and final state

Functional Redundancy 14.62 Factor by which state space is larger than
the result of the computation

Non-injectivity 564 Bits Bandwidth of data that the program may
lose and still recover spontaneously

Non
Determinacy

Ord 2536 Bits Amount of data a program can lose and
still manage to satisfy the specification

Prm 564

Sort 0

14.8 CHAPTER SUMMARY

In this chapter, we have presented syntactic and semantic metrics that have relevance
from the standpoint of software testing and fault analysis:

• Fault proneness—the density of faults within the source code.

• Fault detectability—the ease of detecting faults in the source code.

• Error detectability—the ease of detecting errors in the state of a program in
execution.

330 METRICS FOR SOFTWARE TESTING

• Error maskability—the likelihood that an error that arises during the execution of
a program gets masked before it causes a program failure.

• Failure avoidance—the ease of detecting and avoiding program failure with
respect to its intended function.

• Failure tolerance—the extent to which a program may satisfy its specification
despite failing to compute its intended function.

14.9 EXERCISES

14.1. Consider the product routine given in Section 14.1.1. Imagine that for the
sake of speeding up the calculation of the product, we add a test for (b%
4==0), and if the test is positive we divide b by 4 and multiply a by 4. Change
the program accordingly and compute the new cyclomatic complexity.

14.2. Consider the product routine given in Section 14.1.1. Imagine that for the
sake of robustness (to avoid divergence) we check whether b is nonnegative
before we engage in the loop. Change the program accordingly and compute
the new cyclomatic complexity.

14.3. Consider the product routine given in Section 14.1.1. Imagine that for the
sake of speeding up the calculation of the product, we add a test for (b%
4==0), and if the test is positive we divide b by 4 and multiply a by 4. Change
the program accordingly and compute the volume of the new program.

14.4. Consider the product routine given in Section 14.1.1. Imagine that for the
sake of robustness (to avoid divergence) we check whether b is nonnegative
before we engage in the loop. Change the program accordingly and compute
the volume of the new program.

14.5. Redo the calculations of the P-measure, E-measure, and F-measures on the
program given in Section 14.2, with respect to the following specification:

R= s,s y = x+ y z < 90

14.6. Redo the calculations of the P-measure, E-measure, and F-measures on the
program given in Section 14.2, with respect to the following specification:

R= s,s y = x + y z > 4

14.7. Draw the flowchart of the sort program shown in Section 14.7, and compute its
cyclomatic complexity.

14.8. Continuing the discussion of Section 14.7.6, compute the non-determinacy of
the following specification:

33114.9 EXERCISES

a. EqSum = s,s
N

i = 1
a i =

N

i= 1
a i

b. EqSum Sort.

c. EqSum prm.

14.10 BIBLIOGRAPHIC NOTES

The definition of cyclomatic complexity is due to Thomas McCabe (1976). The vol-
ume metric is due to Maurice Halstead (1977). The semantic metrics presented in this
chapter are due to Mili et al. (2014). Other semantic metrics may be found in Bansyia
et al. (1999), Etzkorn and Gholston (2002), Gall et al. (2008), Morell and Murill
(1993), Morell and Voas (1993), and Voas and Miller (1993). For more information
on Software Metrics, consult Abran (2012), Ebert and Dumke (2007), and Fenton and
Pfleeger (1997). For more information on entropy functions and information theory,
consult Csiszar and Koerner (2011).

332 METRICS FOR SOFTWARE TESTING

15
Software Testing Tools

Like all software engineering activities, software testing is a labor-intensive task that
is difficult to automate because it depends on a great deal of creativity and because it is
difficult to cast in a systematic process. Still, there is much scope for automated sup-
port, to help with clerical or repetitive aspects of software testing. The subject of this
chapter is to review some of the tools that are available in the market and to classify
them by means of some orthogonal attributes.

15.1 A CLASSIFICATION SCHEME

When we look at all the software products that purport to be testing tools, it is difficult
to imagine that they bear the same name, given how different they look. To help char-
acterize each tool, we propose a classification scheme, which is defined by a number
of attributes and a set of values for each attribute. The classification scheme includes
the following attributes:

• Life cycle phase: unit testing, integration testing, system testing, acceptance testing.

• Test data generation method: specification-based, code-based, scenario-based.

• Testing phase/activity: test data generation, test driver design, test execution, test
outcome analysis.

• Target language, if applicable: some tools are restricted to specific languages or
are geared toward programs written in a specific language.

• Target development environment, if applicable: some tools are compatible with a
limited set of development environments.

In addition to information pertaining to these attributes, we may present, for each
tool, information such as the following: URL where the tool is described, whether the

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

333

tool is available for purchase or it is free, whether it is open source, whether it has a
trial version, and so on.

Of course, our purpose is not to promote nor to unduly criticize any tool we review
but merely to give the reader some sense of the kind of functionality that existing test-
ing tools may provide; we do our best to represent our experience with each tool as
faithfully and as objectively as possible. Note that the information reported in this
chapter is based on a survey conducted in the summer of 2013, hence reflects the attri-
butes of the tools as of that date.

We have reviewed a total of 14 tools; rather than presenting a monolithic sequence
of tools, we have resolved to enhance readability by grouping them into six broad
categories, which are as follows:

1. Scripting Tools, which enable us to codify and store test data and test execution
traces for repeated use; these tools are useful to test an application after each fault
removal (in corrective maintenance, for example); they are not directly useful in
adaptive maintenance because they cannot be reused if the specification changes.

2. Record-and-Replay Tools, which can be used in applications with a complex inter-
face (such as web applications) to record the scenario of interactions of the tester
with the application. This scenario can be replayedwhenever wewant to reexecute
the test (e.g., after each corrective maintenance operation to retest the application).

3. Performance-Testing Tools, which simulate workload conditions for applica-
tions under test to check how their performance evolves according to their
workload or how they behave under specific workload conditions.

4. Oracle Design Tools, which enable the tester to write code to codify the oracle
of a test for the sake of automation.

5. Exception Discovery Tools, which alert the tester to the possibility that the pro-
gram may run into an exceptional condition, such as an infinite loop, an over-
flow/underflow, an array reference out of bounds, an illegal pointer reference,
or a division by zero.

6. Collaborative Tools, which are tools whose main function is to serve as com-
munication media between the stakeholders of a test, including end users,
developers, and testers.

In the remainder of this chapter, we devote one section to each family of tools.

15.2 SCRIPTING TOOLS

15.2.1 CppTest

CppUnit is a unit-testing framework for the C++ programming language, described as
a C++ port for JUnit. The library can be compiled for a variety of portable operating
systems interface (POSIX) platforms, allowing unit testing of “C” sources as well as
C++ with minimal source modifications.

334 SOFTWARE TESTING TOOLS

CppTest

Source Freeware

Web page http://sourceforge.net/apps/mediawiki/cppunit/index.php?
title=Main_Page

Access Open source

Target language(s) C++

Life cycle phase Unit testing

Test phase Test driver design and execution

Test scripts are written in the syntax of a C++ class and include specialized
test_add() statements, where each test_add() statement refers to separately
defined routines that invoke tests in the form of logical assertions. Each such a routine
is declared as a void C++ method that includes assertions of the form TEST_
ASSERT(), which takes logical assertions as parameters. Using these statements
and structures, the tester can define arbitrarily complex test scripts.

In order to run a test script, the user has to define an output handler, which records
and organizes the output produced by the TEST_ASSERT() statements; a number of
formats are available, including a text format, that may be shipped to the stdout
stream and an html format, among others.

Among the strengths of CppTest, we cite that it puts the power of C++ at the dis-
posal of the tester, to define arbitrarily sophisticated test scripts; in particular, the tester
may use the exception-handling mechanisms of C++ in conjunction with the assert
statements of CppUnit to handle any exceptions that may arise during the test in a
controlled manner.

15.2.2 SilkTest

SilkTest is a suite of related test tools that offer a range of interrelated functionalities,
including the following:

• SilkTest Classic, which uses a domain-specific scripting language inspired from
C to support the development of test scripts.

• Silk4J, which uses Java as a scripting language to support the derivation of test
scripts in Eclipse.

• Silk4Net, which uses Visual Basic or C# as a scripting language to support the
derivation of test scripts in Visual Studio.

• SilkTest Workbench, which uses VB.NET as a scripting language to support test
automation.

33515.2 SCRIPTING TOOLS

http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page

SilkTest

Source Borland Software

Web page http://www.borland.com/products/silktest/

Access Commercial

Target language(s) Java, visual basic (VB), C#

Life cycle phase System-level

Test phase Test management

In order to operate SilkTest, we open a new project, give it a name, associate the
project name to the application we want to test (possibly a web-based application), con-
figure SilkTest to a particular browser, then record the sequence of tests we want to run.
This sequence of tests defines the test script; once this script is saved, it can be run by
merely calling the project name and invoking its execution, possibly unattended.

Among the strengths of this tool, we cite its ability to support integrated testing of
graphical user interface (GUI) applications, its ease of use (notably that it does not require
any programming knowledge, hence can be operated by the end user of the application),
and the availability of test templates that provide standard test frameworks. Silk has
two drawbacks: first, it can only support two browsers, namely, Internet Explorer
(© Microsoft) and Firefox (© Mozilla). Also, it does not support migration between
the two browsers, that is, a script composed on one browser cannot be run on the other.

SilkTest can be seen as a scripting tool but can also be seen as a save-and-replay
tool, to the extent that it stores tests by recording an interactive session on the web-
based application. The tools of the next section fall exclusively in the latter category.

15.3 RECORD-AND-REPLAY TOOLS

15.3.1 TestComplete

TestComplete is an automated testing tool that aims to enable testers to create, record,
edit, and save complex test scripts; it also saves failure logs that correspond to test scripts.

TestComplete

Source SmartBear

Web page http://smartbear.com/products/qa-tools/automated-testing-tools/

Access Commercial

Target language(s) No restriction

Life cycle phase Performance testing, reliability testing

Test phase Test data generation, test outcome analysis

336 SOFTWARE TESTING TOOLS

http://www.borland.com/products/silktest/
http://smartbear.com/products/qa-tools/automated-testing-tools/

Sample example of use: We use this tool to edit, save, then replay a test sequence.

• First, we click on the button labeled “record a new test” on the TestComplete
start page.

• This brings up the window to create a new test project and allows us to give it a
name and to decide where to save it; also, it allows us to associate the project to
an application that we want to test.

• Upon this, the TestComplete window minimizes down to a small recording tool-
bar; from now on and until we click on the stop button, everything we do with the
selected application is recorded in the test script.

• Once the test script is saved, it can be reexecuted by clicking on the button labeled
“run the test” in the window that corresponds to the TestComplete project.

Among its strengths, TestComplete offers the ability to record arbitrary interac-
tions between the tester and the application, can run unattended, and does not require
any programming or scripting skills. Nevertheless, for users who have adequate pro-
gramming skills, TestComplete offers the ability to integrate sophisticated testing
scenarios written in a wide variety of scripting languages, such as VBScript, JScript,
C++Script, C#Script, or DelphiScript.

15.3.2 Selenium IDE

Selenium interactive development environment (IDE) is a Mozilla Firefox add-on that
provides an interface for running test cases or complete test suites via a simple mech-
anism of record and playback of browser transactions. It can be applied to any appli-
cation whose user interface is supported by a browser; this includes virtually all web
applications.

Selenium IDE

Source Freeware

Web page http://docs.seleniumhq.org/

Access Open source

Target language(s) SQL, http, Java

Life cycle phase System-level

Test phase Test data generation, test data recording, test execution

Sample example of use: We can start an experiment by opening a tab of Firefox
and running the Selenium IDE through its Tools tab; once Selenium IDE is on, we
push the record button to start the recording process. From then on, Selenium IDE
records any operation we do on the browser, such as visiting URLs, navigating
through Web pages, and searching keywords on Web pages. When we initiate the

33715.3 RECORD-AND-REPLAY TOOLS

http://docs.seleniumhq.org/

replay, Selenium runs all the interactions that were recorded and displays the reactions
of the web application under test.

Among the strengths of Selenium IDE, we cite that it requires no programming
experience, hence can be run by an end user; that it provides for extensions and cus-
tomizations; and that its scripts can be converted to a variety of programming lan-
guages, such as Java, Ruby, C#, and Python. The main weakness of Selenium IDE
is, of course, that it can only run on Mozilla Firefox.

15.4 PERFORMANCE-TESTING TOOLS

15.4.1 LoadRunner

LoadRunner is a testing tool for performance and load testing of software applica-
tions; it proceeds by simulating arbitrary levels of workload (in the form of concurrent
users) on an application under test and observing its behavior.

LoadRunner

Source Hewlett Packard

Web page http://www8.hp.com/us/en/software-solutions/loadrunner-load-
testing/index.html?#.Udr82zs9-td

Access Commercial

Target language(s) Web apps, mail, databases, and so on

Life cycle phase Performance testing

Test phase Test management

Sample example of use: The main artifact that LoadRunner deals with is that of a
load scenario; a load scenario is defined by a set of virtual users, along with charac-
teristics of their demands on the system under test. LoadRunner enables the tester to
create, edit, save, and invoke load scenarios. When a load scenario is invoked on an
application, it enables the tester to observe and analyze the behavior of the system
under the workload imposed by the load scenario. Once the scenario has completed
its execution, Load Runner delivers a table of statistics, which may include such
details as the following:

• Tables showing the number of active virtual users, the number of processed
transactions, and the number of failed transactions.

• Graphs plotting a variety of parameters as a function of time, including number
of virtual users, response time, number of hits per second, and system resources.

338 SOFTWARE TESTING TOOLS

http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html?#.Udr82zs9-td
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html?#.Udr82zs9-td

• Statistics (such as Max, Min, Average, and Standard deviation) of relevant para-
meters, such as rate of occupancy of processor time, file data operations per sec-
ond, processor queue length, and page faults per second.

The main strength of LoadRunner is clearly its ability to simulate arbitrary levels of
workload, along with its ability to capture detailed statistical information on the
behavior of the program under test; this information is a great resource to a tester
who wants to analyze the operational properties of a software application.

15.4.2 Grinder

Grinder is a desktop application that enables the tester to test a software application
under controlled workload conditions; to this effect, Grinder uses a specialized script-
ing language called Jython, which is derived from Python.

Grinder

Source Freeware

Web page http://grinder.sourceforge.net/

Access Open source

Target language(s) Web applications

Life cycle phase Performance testing, load testing

Test phase Test management

Sample example of use: When Grinder is called, a window opens with four tabs,
labeled Graphs, Results, Processes, and Scripts. Under the Processes tab, we config-
ure the agent processes that act upon the application under test. Under the Script tab,
we are given the opportunity to edit test scripts or to invoke test scripts that are already
written in Jython.We start the test codified in the selected script by pressing the button
labeled “start process.”Upon completion of the test, we obtain statistics about the per-
formance of the target application. For a transaction processing application, these may
include such details as the following:

• Number of tests, divided into number of successful tests and number of failures.

• Mean number of transactions per second and peak number of transactions per
second.

• Mean response time, divided into mean time to resolve host, mean time to estab-
lish connection, and mean time to access the first byte.

• Mean response length and number of response bytes per second.

33915.4 PERFORMANCE-TESTING TOOLS

http://grinder.sourceforge.net/

Among the strengths of the Grinder, we can cite its ability to load test any appli-
cation that has a Java API, its ability to support detailed test scripts written in Jython,
and its ability to deploy a wide range of distributed load injectors (i.e., processes that
simulate the workload on the system).

15.4.3 QF-Test

QF-Test is a tool for the creation, execution, and management of automated system
and load tests for Java and Web applications with a GUI. It is compatible with a
wide range of development technologies and development environments, including
Swing, JavaFX, and SWT and supports cross-browser testing of web GUI. It can test
static html web pages as well as dynamic web applications developed in Ajax
technologies.

QF-Test

Source Quality first software

Web page http://www.qfs.de/

Access Commercial

Target language(s) Java, web applications

Life cycle phase Performance testing, reliability testing

Test phase Test management

Sample example of use: QF-Test has a capture-and-replay function that enables it
to run individual tests or complete test suites by merely starting the recording function
then manually executing whatever test script the tester wants. Whenever the test script
is invoked, it executes the test on the application and produces a configurable report of
the execution including statistics about possible errors. Because of its scalability, this
tool can be used for system-level testing.

15.4.4 Appvance PerformanceCloud

Appvance PerformanceCloud is a tool that specializes in testing the performance and
load capabilities of web applications. It is compatible with Ajax development envir-
onments, supports end-to-end testing to a great level of detail through all the steps of
the application, can simulate millions of simultaneous users using a wide variety of
web browsers, down to fine detail such as every keystroke and every message transfer,
and supports pervasive agile integration. In addition, it requires little or no coding and
supports customizable report generation, thereby providing faster test development.

340 SOFTWARE TESTING TOOLS

http://www.qfs.de/

Appvance performanceCloud

Source Appvance

Web page http://appvance.com/products/#sthash.ihZqzsRq.dpbs

Access Commercial, free demo, free trial

Target language(s) Web applications

Life cycle phase Performance testing, load testing

Test phase Test scripts, test execution

For a simulated user load, the tool provides a detailed analysis of system perfor-
mance, including information about the performance of individual transactions, their
rate of success, their resource usage, their execution path, and so on. It also offers a large
menu of measures one can collect on the application under test, such as its overall
resource usage, its failure history, its performance scalability, or its throughput.

15.4.5 JMeter

Apache JMeter enables the tester to analyze the performance of an application under
controllable workload conditions; it can be used to evaluate system performance on
static and dynamic resources and to simulate a transaction load on a server, a group of
servers, or a network. It provides performance data under a wide variety of textual and
graphic formats, under arbitrarily controllable heavy workloads.

Apache JMeter

Source Apache software foundation

Web page http://jmeter.apache.org/

Access Open source

Target language(s) SQL, http, Java

Life cycle phase System-level

Test phase Test driver design and execution, test outcome analysis, performance
analysis

Sample example of use: The basic artifact in JMeter testing is the test plan, which is a
sequence of steps that JMeter executes whenever it is invoked. JMeter supports the tester
in editing a test plan, which may contain any combination of the following elements:

• One or more thread groups, where each thread group is a collection of concurrent
processes submitting simultaneous queries to the system under test.

34115.4 PERFORMANCE-TESTING TOOLS

http://appvance.com/products/#sthash.ihZqzsRq.dpbs
http://jmeter.apache.org/

• Logic controllers, which coordinate the deployment of the thread groups by
means of control constructs (similar to programming language constructs).

• Sample-generating controllers, which generate requests (e.g., http requests) that
each thread group will produce when they are activated.

• Listeners, which are JMeter functions that collect performance data and store it as
part of the application performance analysis.

• Assertions, which are test scripts that enable the tester to check whether the appli-
cation under test is returning the expected results.

The output of JMeter depends on the format the tester has specified in the Listener
and may include detailed information about the execution of the system under test
(functions invoked in the system, number of http queries, number of database queries,
number of ftp requests, number of active and sleeping tasks, etc.) as well as the
resource usage of the system (CPU usage, memory usage, buffer usage, communica-
tion infrastructure bandwidth, etc.).

Among the strengths of JMeter, we may mention the following:

• Because JMeter is an open-source tool, a user may adapt to her/his needs and
customize it as needed.

• Onemay build a relatively sophisticated test plan without prior knowledge of test
scripts or scripting languages; also, the process of constructing test plans is fairly
simple, thanks to a user-friendly GUI.

15.5 ORACLE DESIGN TOOLS

15.5.1 JUnit

JUnit is an open-source framework for writing test oracles in Java to perform unit testing
on Java code. It comes with a .jar executable file thatmust be added as an external jar file
to libraries in the user’s project. It enables the user to deploy predefined functions to per-
form unit testing. Oracles are modeled as Java classes that compute Boolean assertions.

JUnit

Source Freeware

Web page http://www.junit.org/

Access Open source

Target language(s) Java

Life cycle phase Unit testing

Test phase Oracle design

342 SOFTWARE TESTING TOOLS

http://www.junit.org/

Sample example of use: JUnit oracles can be composed by means of Java classes
of type @Test and can be arbitrarily hierarchical (higher-level oracles calling more
elementary oracles). Once a JUnit class is written, it can be compiled in Java; its exe-
cution yields a report in the form of a tree structure showing each assertion of the hier-
archy, and whether it returned true or not.

The main strength of JUnit is that it enables the user to write arbitrarily complex
test oracles in a structured, hierarchical manner; also, it supports a neat separation
between production code and test code and makes it possible for developers and tes-
ters to work independently.

15.5.2 TestNG

TestNG is a testing framework for the Java programming language; it is designed to
cover a wide range of testing categories, including unit testing, integration testing, sys-
tem testing, and so on. TestNG is an annotation-based testing framework that aims to
make up for some of the shortcomings of JUnit by offering a higher level of flexibility;
whereas JUnit tests are structured by means of the class hierarchy of Java, TestNG tests
are composed from elementary test classes by means of an XML file structure.

TestNG

Source Freeware

Web page http://www.testng.org/

Access Open source

Target language(s) Java

Life cycle phase Unit testing, integration, system-level

Test phase Oracle design, test execution

Sample example of use: In order to build a test suite in TestNG, the testermustwrite
elementary tests in Java classes; then he must compose these elementary tests into suites
by means of an XML file structure. Execution of the test suite returns a report on which
elements of the suite were successful and which elements were not; whereas in JUnit a
test that fails causes its dependent tests to fail, in TestNG, when a test fails, its dependent
tests are skipped, and the remainder of the test suite is allowed to proceed.

15.6 EXCEPTION DISCOVERY

15.6.1 Rational Purify

Rational Purify is a testing tool that checks for run-time memory-related exceptions,
such as out-of-bounds array references, pointer references, uninitialized memory

34315.6 EXCEPTION DISCOVERY

http://www.testng.org/

references, buffer overflow, inappropriate deallocation of memory, unauthorized
write operations, and so on. It supports a diverse set of languages (Java, C++, and
.NET) and a wide range of development environments (Visual Studio, .NET, and
Eclipse).

Rational purify

Source Rational IBM

Web page http://www-03.ibm.com/software/products/en/rational-purify-family/

Access Commercial

Target language(s) Java, C++, .Net

Life cycle phase Unit testing, integration testing

Test phase Test driver design and execution

Sample example of use: Rational Purify requires no setup in the way that other
tools do; all we need is to run the tool on the source code of the program under test;
the tool returns its diagnosis in the way a compiler does, that is, by pointing to the
offending statement and posting an appropriate error message. This tool operates
on intact source code; no modifications are needed, provided it is written in one of
the supported programming notations.

15.6.2 Astree

Astree takes its name from the French translation of Real-Time Embedded Software
Static Analyzer. It is a static analyzer of C code whose purpose is to check C programs
for a range of run-time errors. The operation of this tool is based on the theory of
abstract interpretation, which reasons about program semantics by means of abstrac-
tions. The abstractions must be selected in such a way as to be sufficiently high to be
computationally tractable yet sufficiently detailed to enable effective reasoning.

Astree

Source Ecole Normale Superieure, Paris, France

Web page http://astree.ens.fr/, http://www.absint.de/astree/

Access Commercial

Target language(s) C

Life cycle phase Unit testing, integration testing, system testing

Test phase Test deployment, outcome analysis

344 SOFTWARE TESTING TOOLS

http://www-03.ibm.com/software/products/en/rational-purify-family/
http://astree.ens.fr/
http://www.absint.de/astree/

Astree is deployed on source code and produces a report in the form of possible
warnings or error messages pertaining to run-time errors such as arithmetic overflow
or underflow, array references out of bounds, division by zero, as well as any user-
defined assert statements. Astree is guaranteed to signal all possible errors, though
it can also signal errors that cannot happen (i.e., false alarms).

15.7 COLLABORATIVE TOOLS

15.7.1 FitNesse

FitNesse is a collaborative tool whose purpose is to serve as a medium for commu-
nication between the various stakeholders of testing, namely, programmers, testers,
customers, verification and validation (V&V) team members, and so on. It is essen-
tially a wiki that enables stakeholders to share information and artifacts pertaining to
the testing activities of an ongoing software development and evolution process.

FitNesse

Source Freeware

Web page http://www.fitnesse.org/

Access Open source

Target language(s) Primarily Java but also C++, Python, Ruby, Delphi, C#

Life cycle phase Integration, acceptance

Test phase Records generated data, posts expected output versus actual output

Sample example of use: Imagine that we want to test a division function. FitNesse
offers the means to develop a routine to check the operation of this function by pro-
viding a set of test data and a test oracle. Regardless of which stakeholder provides
which information, the fact that this information is shared in FitNesse ensures that it is
double checked and vetted by all relevant stakeholders.

15.8 CHAPTER SUMMARY

In this chapter, we have presented a set of 14 software testing tools, which we have
tentatively divided into 6 (non-disjoint) classes, which are as follows:

1. Scripting Tools

2. Record-and-Replay Tools

3. Performance-Testing Tools

34515.8 CHAPTER SUMMARY

http://www.fitnesse.org/

4. Oracle Design Tools

5. Exception Discovery Tools

6. Collaborative Tools

It is clear, from a casual reading of this chapter, that most software tools presented
herein do not support any of the creative (and difficult) aspects of software testing;
rather, they support many of the tedious, clerical, bookkeeping aspects of testing. This
does not make them any less useful but does mean that the tester remains in charge in
terms of generating test data, deciding on and codifying the test oracle, and analyzing
and interpreting the outcome of the test.

346 SOFTWARE TESTING TOOLS

16
Testing Product Lines

Like all engineering disciplines, software engineering relies on a reuse discipline to
achieve economies of scale, improved product quality, shorter production cycles, and
reduced process risk. But contrary to all other engineering disciplines, reuse is very
difficult in software engineering and has been found to be effective only within the
confines of product line engineering (PLE). The purpose of this chapter is to briefly
introduce the reader to the reuse discipline of PLE and to focus specifically on testing
software products produced and evolved within this discipline.

16.1 PLE: A STREAMLINED REUSE MODEL

Given that software is very labor-intensive (hence hard to automate), that software
labor is very expensive (as it requires a great deal of specialized expertise), and that
software products are very hard to produce (due to their size and complexity), one
would expect software reuse to be an indispensable component of software engineer-
ing. Indeed, for an industry that is under as much stress as the software industry, reuse
offers a number of significant advantages, including the following:

• Enhanced productivity, which stems from using the same product in a wide
variety of applications at little or no extra cost.

• Enhanced quality, which stems from investing an adequate amount of effort in
the quality assurance of the product, with the knowledge that this effort will be
amortized through the multiple uses of the product.

• Shorter time to market, which can be achieved by saving, not only the develop-
ment effort but also the development schedule required for a custom product
development.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

347

• Reduced risk, which stems from trading the risk inherent in any software project
development for the safety and predictability of using an existing component that
has survived extensive field testing and field usage.

Despite all these advantages, software reuse has not caught on as a general routine
practice in software engineering, for a number of reasons, chief among them is the
absence of a reference architecture in software products. Indeed, in order for reuse
to happen, the party that produces reusable assets and the party that consumes them
need to have a shared product architecture in mind. In the automobile industry, for
example, component reuse has been a routine practice for over a century because
the basic architecture of automobiles has not changed since the late nineteenth cen-
tury: All cars are made up of a chassis, four wheels, a cab, an engine, a transmission,
a steering mechanism, a braking mechanism, a battery, an electric circuitry, a fuel
tank, an exhaust pipe, an air-conditioning system, and so on. As a result of this stand-
ard architecture, many industries emerge around the production of specific parts of
this architecture, such as tire manufacturers, battery manufacturers, transmission man-
ufacturers, exhaust manufacturers, and air-conditioning manufacturers, as well as
other more specialized (and less visible to the average user) auto parts manufacturers.
This standard architecture supports reuse on a large scale: when they design a new
automobile, car manufacturers do not reinvent what is a car every time; rather, they
may make some design decision pertaining to look, styling, engine performance char-
acteristics, standard features, and optional features, then pick up their phone and order
all the auto parts that they envision for their new car. Unfortunately, such an efficient/
flexible process is not possible for software products, for lack of a standard architec-
ture for such products.

But while software products have no common architecture across the broad range
of applications where software is prevalent, they may have a common architecture
within specific application domains—whence PLE. PLE is a software development
and evolution process that represents a streamlined form of software reuse. It is geared
toward the production of a family of related software products within a particular
application domain and includes two major phases, which are as follows:

• Domain Engineering, which consists in developing the necessary infrastructure
to build and evolve applications within the selected application domain. This
phase includes the following steps/activities:
○ Domain Analysis, which is the PLE equivalent of the requirements engineering
phase in traditional waterfall lifecycles and consists of analyzing the applica-
tion domain to understand its domain-specific knowledge (abstractions,
assumptions, axioms, rules, etc.).

○ Domain Scoping, which consists of determining the boundaries of the domain
by specifying which applications fall within and which fall outside the selected
domain.

○ Economic Rationale, which consists of making a case for the product line
based on an estimation of the return on investment achieved by this product

348 TESTING PRODUCT LINES

line; the calculation of the return on investment depends on the domain engi-
neering costs, the application engineering costs, the number of applications we
envision to sell every year, and the number of years we envision the product
line to be active.

○ Variability/Commonality Analysis, which consists of deciding what features
domainapplicationshave incommon(tomaximize reusepotential) andhowthey
differ from each other (to broaden the market that can be served by the domain).
Variabilities are definedby specifyingwhat features vary fromone application to
another and what values each feature may take. For example, if we are talking
about database applications, then one variability could be the back-enddatabase,
and the values on offer could include Oracle, SQL, and Access.

○ Reference Architecture, which consists in deriving a common architecture for
all the applications in the domain.

○ Asset Development, which consists in developing adaptable components that
fit in the proposed architecture and support the variabilities that have been
selected in the aforementioned analysis.

○ Application Modeling Language (AML): For well-designed, well-modeled
product lines, it is possible to define a language in which one can specify
or uniquely characterize individual products within the application domain.
In some simple cases, it is possible to design translators that map a specifica-
tion written in this AML onto a finished application.

○ Application Engineering Process: In addition to producing the necessary
assets that the application engineer needs to compose an application, the
domain engineering team must deliver a systematic application engineering
process that explains how applications are produced from domain engineering
assets according to application requirements.

• Application Engineering, which consists in using the assets produced in the
domain engineering phase to build an application according to the steps detailed
in the application engineering process.

As a simple illustration, consider a product line developed to cater to the IT needs
of banks in some jurisdiction (e.g., the state of New Jersey in the United States).

• Domain analysis consists of getting acquaintedwith the banking domain andwith
the relevant requirements of an ITapplication in the selected jurisdiction.Thismay
require that we read relevant documentation and legislation in the jurisdiction of
the bank and that we talk to bank managers, bank employees, bank tellers, bank
customers, fiscal authorities, state and federal regulators of the banking sector, and
so on. At the end of this phase, we ought to become fluent in the banking domain;
we also need to record our expertise and domain knowledge in the form of domain
models, including relevant abstractions, rules, terminology, and so on.

• Domain scoping consists of deciding what applications are or are not part of our
domain. For example, we consider all the types of banks, such as retail banks,

34916.1 PLE: A STREAMLINED REUSE MODEL

investment banks, credit unions, online banks, savings and loans banks, local
banks, statewide banks, nationwide banks, offshore banks, and international banks.

• To build an economic rationale for our product line, we must consider the scope
that we have defined earlier and evaluate the cost of developing a product line to
cater for banks within our scope, then balance this cost against the benefits
reaped from selling applications to banks; this, in turn, requires that we estimate
the length of our investment cycle, the discount rate that we want to apply from
one year to the next, the number of applications that we envision to sell to banks,
the price at which we envision to sell the applications, and so on.

• Variability/Commonality Analysis: Once we have defined the scope of our
domain,we can analyze the common attributes that the applications of our domain
have: for example, if we decide to cater to nationwide retail banks, commonalities
include that they are all subject to federal banking laws, federal tax laws, and
federal employment laws; other commonalities include that they allmaintain bank
accounts, customer databases, loan departments, and so on. As for variabilities,

Domain
analysis

Asset
development

Architecture
design

D
om

ain m
odels

R
eusable assets

D
om

ain architecture

Domain engineering

Application A

Application C

Application B

Application C

Requirements
analysis

R
equirem

ents specs

Product
design

A
pplication design

A
pplication requirem

ents

Product
composition

Final application

Figure 16.1 Domain engineering and application engineering lifecycles.

350 TESTING PRODUCT LINES

banks may be subject to different state laws depending on where they are
headquartered, they may have significantly distinct banking policies, they may
differ by the range of services that they offer their clients, and so on.

• Reference Architecture: Oncewe knowwhat kinds of bankswe are catering to and
what kinds of commonalities and variabilities exist among the needs of these
banks, we can draw an architecture that may be shared by all applications of
the domain. Such an architecture may include a database of accounts, a database
of customers, and a database of loans, along with a customer interface (for online
customer transactions), a teller interface (for teller in-branch operations), an
automatic teller interface (for ATMs), and so on.

• Once the common architecture is drawn, we can proceed with developing
adaptable software components,which can be adjusted to fulfill specific customer
needs within the scope of the product line and integrated into the architectural
framework to produce a complete application.

Figure 16.1 illustrates the lifecycles of domain engineering and application
engineering and how they relate to each other.

16.2 TESTING ISSUES

To get a sense of the issues that arise in testing product lines, we review the traditional
lifecycle of software testing then we explore how this lifecycle can be combined with
the PLE process discussed earlier (and illustrated in Fig. 16.1). Given a software
product P and a specification R, and given that we want to test whether P is correct
with respect to R, we proceed through the following phases:

• Test Data Generation, whereby we inspect program P or specification R or both
to generate test data T on which we envision to test P.

• Test Oracle Design, whereby we derive a test oracle Ω from specification R,
which for any element s of T tells whether the pair (s, P(s)) represents a correct
execution of program P on initial state s.

• Test Driver Design, whereby we combine the test data generation criterion with
the oracle design to derive a test driver that runs program P on test data T and
stores the outcome.

• Test Outcome Analysis, whereby we analyze the outcome of the test and take
action according to the goal of the test (fault density estimation, fault removal,
reliability estimation, product certification, etc.).

Of course, we can carry out these steps for each application that we develop at the
application engineering phase, but this raises the following issues:

• This is extremely inefficient: Indeed, each application is made up of common
parts (that stem from commonality analysis) and application-specific parts

35116.2 TESTING ISSUES

(that stem from the specific variabilities of the application). The common parts
have been tested each time an application is tested; and the variable parts have
been tested each time an application with the same variability has been tested.
Ideally, we would like to focus the testing effort on those aspects of the
application that have not received adequate coverage.

• This is incompatible with the spirit of PLE: The whole paradigm of PLE revolves
around streamlined reuse of reuse artifacts and processes; it is only fitting that
reuse should extend to testing artifacts (such as test data) and processes (such
as testing common features only once, rather than repeatedly for each application).

• This alters the Economics of PLE: The economics of PLE is based on the
assumption that a great deal of effort is invested in domain engineering in order
to support the rapid, efficient, cost-effective production of applications at appli-
cation engineering time. If we burden the application engineering phase with the
task of testing each application, this may undermine the economic rationale of
the product line.

• The application specification is not self-contained: The specification of an
application for the purposes of application engineering (written in the AML,
for example) is cast in the context of domain engineering and merely specifies
the attributes that characterize the application within the scope of the domain; as
such, it is not self-contained. To write the specification of the application in a
self-contained manner (for the purpose of oracle design), one needs to refer to
all the implicit domain requirements that arise in domain engineering.

In light of these issues, it is legitimate to consider shifting the bulk of testing to
the domain engineering phase, rather than the application engineering phase. Unfor-
tunately, this option raises a host of issues as well, such as the following:

• Absence of Executable Assets: At the end of domain engineering, we do not
have any self-contained executable assets to speak of. What we typically have
are adaptable software components that are intended to be used as part of
complete applications.

• Absence of Verifiable Specifications: Not only dowe not have completely defined
operational software products we also do not have precise requirements specifica-
tions to test applications against. Instead, we have domain models and feature
models that capture domain knowledge and represent domain variabilities.

• Combinatorics of Variabilities: Testing a single software product is already hard
enough due to the massive size of typical input spaces. PLE compounds that
complexity by adding the extra dimensions of variability: If a product line has
five dimensions of variability, and each variability may take four possible values
(considered a toy-size example), we have in effect 45 = 1024 possible configura-
tions to test. If we assume that (some or all of) the variabilities are optional (i.e., a
user may opt out of a variability), then the number of application configurations
can reach 55 = 3125.

352 TESTING PRODUCT LINES

• Feature Interactions: One way to deal with the combinatorial explosion alluded
to earlier is to consider the variabilities one at a time, falling back on default
options. The trouble with that option is that it fails to uncover problems that arise
when variabilities are combined; in particular, it fails to detect feature interac-
tions that may arise.

• Failure to Certify the Composition Step: Testing that takes place at the domain
engineering phase precedes, by definition, the application engineering phase,
hence it fails to detect issues that may arise at the latter phase. In particular, it fails
to ensure that variabilities are bound appropriately according to the specification.

16.3 TESTING APPROACHES

There is no simple, integrated, widely accepted, solution to the problems raised
earlier. Rather, there are general guidelines that one ought to pursue in designing a
testing policy for any particular product line; we review these guidelines in this
section and illustrate them on a simple example in the next section. These guidelines
are driven by the following principles:

• All commonalities must be tested at domain engineering time. This principle is
intended to save testing effort: commonalities are thoroughly tested at domain
engineering time so that we do not need to retest them at application engineering
time for each application. We envision two broad methods to optimize common-
ality testing at domain engineering time:
○ Either through the creation of a reference application that may take default
variability values or, alternatively, frequently used variability values.

○ Or, if we are confident about the validity of the reference architecture and the
soundness of component specifications, through individual testing of the vari-
ous components of the reference architecture.

• Variability-specific test artifacts must be generated at domain engineering time
and deployed at application engineering time. This principle is intended to save
test data generation effort: For each variability option, the application engineering
has a set of test data that she/he must use to test the variability within the
application.

• Variability bindings must be tested at application engineering time. Because
variability bindings are application-specific, it is fitting that they should be carried
out by the application engineer.

• Applications must undergo some degree of integration testing, to make sure the
composition of the application was carried out properly and that the components
of the application work together as intended.

These principles are illustrated in the next section, through a sample product line,
its implementation, and its test.

35316.3 TESTING APPROACHES

16.4 ILLUSTRATION

16.4.1 Domain Analysis

Wewish to develop a product line of applications that simulate the behavior of waiting
queues at service stations. These may represent customers standing in line at checkout
counters at a store, travelers standing at airline check-in counters at an airport, arriving
passengers standing at immigration stations in an international arrivals terminal,
postal customers standing in line for service at a post office, or processes being queued
at a shared resource allocation post. The purpose of the applications in this product
line is to enable managers to simulate various queuing and servicing policies and
analyze their performance in terms of waiting time, fairness, throughput, and so on.

Among the commonalities that we envision between all the applications of this
product line, we cite the following:

• The Input Data to the Simulation: The user must enter the following information:
○ The duration of the simulation, as a function of a virtual unit of time (e.g., the
minute for simulations of customers and the millisecond for simulations of
processor allocation).

○ The arrival rate, that is, the average length of time between two successive
arrivals, expressed in the unit time selected earlier. If there are more than
one category of customers, then a rate for each category.

○ The service rate, that is, the average length of service time required by each
customer. If there are more than one category of customers, then a rate for each
category.

• The Format of the Output Data: The user may be interested to collect a variety of
statistics pertaining to the simulation. The set of possible functions she/he may be
interested in varies from one application to another and is determined at appli-
cation engineering time, as we discuss later.

• A Standard Record Structure for Customers: We could make the customer record
structure a variability, but for the sake of simplicity we choose to adopt a generic
structure that will represent most of the relevant data, such as some identification
of the customer, his time of arrival, his category (if there are more than one), his
requested service time, his priority (if queuing is based on priority), and his time
of departure.

• An Illustration of the Simulation: The simulation may be illustrated at run time by
showing the evolution of the waiting queues and the service stations throughout
the simulation process.

Among the variabilities between applications in this product line, we cite the
following:

• Topology of Service Stations: An application may have a single service station
or several service stations; if there are several service stations, they may be

354 TESTING PRODUCT LINES

interchangeable (offering the same service) or not (offering different services,
e.g., first-class passengers vs. business-class passengers vs. coach passengers
at an airline check-in area; or self check-out counters vs. attended check-out
counters vs. check-out counters for small orders at a store’s cash registers; or
citizens vs. permanent residents vs. visitors at immigration posts at an
international arrivals hall of an airport). Another dimension of variability is
whether a service station, if it is available, may serve customers from a different
class, if such customers are not being served by their corresponding service
station (e.g., if a first-class check-in station is available and there are coach
passengers in the coach waiting queue, we may want to have them served at
the first-class station).

• Service Time: The service time of a customer may be fixed (the same for all
customers) or it may be variable (most typical, in practice). If it is variable, its
length may depend solely on the customer (some customers need more service
than others) or it may depend on the customer and on the service station
(combining the customer needs with the productivity/efficiency of the service
station attendant). If the service time is variable, it may be subject to a maximum
allocation (as is the case in round-robin allocation of CPU cycles to competing
processes in an operating system).

• Topology of Queues: Given a configuration of service stations (one or many,
interchangeable or distinct, with or without cross-servicing), we may have
one queue per service station or one queue per category of service stations.

• Arrival Distribution: We can imagine a number of probability laws that govern
the arrival of new customers. Possible options may include the following:
○ A uniform probability distribution
○ A Markovian probability distribution
○ A Poisson probability distribution

• QueuingPolicy: This policy dealswith two questions: given an arriving customer,
what queue dowe put him in, and where in the queue dowe place him. In terms of
the first question, options include the following:
○ Each category of customers is assigned to a particular type of queue, if there is
one queue per category.

○ Each category of customers is assigned to the shortest queue that corresponds
to his category, if there are more than one queue per category.

○ Customers are randomly assigned to a queue that corresponds to their
category.

As for how to place each customer in the selected queue, we consider two
options: an FIFO policy or a priority-based policy.

• Dispatching Policy: Whereas queuing policy deals with where to place an
incoming customer in the queue system, the dispatching policy deals with which
customers to pick for service whenever a service station becomes available. The
simplest situation is to have a queue associated to each service station and not to
allow cross-queue transfers. Other options include the situation where several

35516.4 ILLUSTRATION

interchangeable service stations take their customers from a shared queue and
the situation where an idle service station can take customers from the queue
of another service station.

• Measurements: Measurements include any combination of the following:
○ Average, median, minimum, or maximum waiting time, that is, time spent in
waiting queues.

○ Average, median, minimum, or maximum sojourn time, that is, time spent in
the system overall.

○ Fairness, that is, the extent to which waiting time is proportional to requested
service time.

○ Occupancy rate of the service stations, that is, the extent to which service
stations were busy.

○ Throughput of the service stations, that is, the number of customers serviced
per unit of time.

○ Total duration of the simulation (if the simulation is allowed to proceed until
all customers are serviced).

○ Total number of customers serviced.

• Wrap Up Policy: When the user of an application determines the length of the
experiment, a number of decisions must be made as to how the simulation winds
down:
○ The simulation is stopped abruptly when the selected time elapses; then all
remaining customers are flushed out, possibly taking their statistics.

○ When the time of the simulation is exhausted, no new customers are generated
but the simulation continues until all the current customers have been serviced
and have exited the system.

In the next section, we consider a possible reference architecture for applications
in this domain, then we implement some reusable/adaptable components of this archi-
tecture and outline how such components are composed to produce an application.

16.4.2 Domain Modeling

We have to make provisions for all possible configurations of the service stations and
corresponding queues, namely, variable number of service stations, variable number
of queues, variable number of service station types, various mappings from queues to
service stations, and so on. In order to cater for all possible configurations, we resolve
to introduce a basic building block, which we call the queue-station block; each such a
block is made up of a number of interchangeable service stations and a single queue
feeding customers to these stations. We represent such a block by the symbol QS(n),
where n is the number of service stations and QS stands for queue-service station.
We leave it to the reader to check that all possible queue/station configurations can
be implemented by a set of such blocks, with varying values of n. For example, if
we want to simulate the situation of an airline check in counter that has two stations

356 TESTING PRODUCT LINES

for first class, three stations for business class, and five stations for coach, we
write (in the style of a type-variable declaration) as follows:

QS(2) firstclass; QS(3) businessclass; QS(5) coach.

In addition to specifying the number of service stations in a QS component, wemay
want to also specify the queuing policy; if we want the first-class and business-class
queues to adopt an FIFO policy but want to adopt a priority-based policy for
coach queues (e.g., award some privileges to frequent flyers who still fly coach), we
may write the following:

QS(FIFO, 2) firstclass; QS(FIFO, 3) businessclass; QS(PRIORITY, 5) coach.

If, for example, we want to simulate the situation of waiting queues at a gas station,
where each pump has its own queue of cars and cars are served by order of arrival, then
we write the following:

QS(FIFO, 1) pump1, pump2, pump3, pump4, pump5;

In addition to specifying the configuration of queue/station sets, we may also want
to specify policies pertaining to how some service station may serve the queues of
other service stations; for example, in an airline check-in counter, it is common for
first-class stations to serve coach passengers if the station is free and the coach queue
is not empty. To this effect, we use the feature CrossStation, and we consider the
following options to this feature:

• CrossStation(NONE): no such a possibility is available.

• CrossStation(S,Q): specifies the station that offers the service and the queue to
which the service is offered.

For example, in the case of an airline check-in counter, we may write the following:

• CrossStation(firstclass, businessclass);

• CrossStation(firstclass, coach);

• CrossStation(businessclass, coach).

To feed customers to the simulation, we create a component called Arrivals, which
generates customers according to the arrival rate provided by the user at run time. This
component implements the arrivals distribution of the application and is responsible
for the implementation of the queuing policy, at least as far as dispatching arriving
customers to QSs, according to their category or to some other criterion. We assume
that the Arrivals component takes two parameters, which are as follows:

1. The law of probability that determines the arrival of new customers at each unit of
clock time:UNI (foruniform),MARKOV(forMarkov),orPOISSON(forPoisson).

2. The rule that determines where each new arriving customer is queued:
We assume that we have three options, as discussed earlier, namely, CAT

35716.4 ILLUSTRATION

(by category), SHORT (to shortest queue), and ANY (random assignment to
queues).

In addition to specifying where incoming customers are placed, we may also want to
specifywhether the assignment of customers to queues is permanent (until the customer is
served) or whether a customer may jump from one queue to another. We use the feature
CrossQueue to this effect, and we consider the following options to this feature:

• CrossQueue(NONE): The assignment of customers to queues is permanent.

• CrossQueue(FRONT, n), where n is a natural number: If a queue is of length n or
greater and another queue is empty, the front of the first queue is sent to the
empty queue.

• CrossQueue(BACK, n), where n is a natural number: if a queue Q1 is longer than
a queue Q2 by n elements or more, then the back of queue Q1 is moved to the
back of queue Q2.

We assume that CrossQueue transfers take place only within QS sets of the same
category.

Also, to collect statistics pertaining to the simulation, we create a component called
Statistics, that is called by the QSs whenever a customer is about to leave the system
after being serviced; it may also be called by the QSs at each iteration if the user is
interested in measuring the rate of occupancy of service stations. This component
collects data about individual customers, then computes simulation-wide statistics
at the end of the simulation and posts it to the user. We assume that this component
lists as parameters all the statistics that are selected at application engineering time,
including the following:

• Waiting Time (parameter:WT), includingminimum,maximum, average,median

• System Response Time (parameter: SRT), that is, time spent by customers in the
system, including minimum, maximum, average, median

• Occupancy rate for each station (parameter: OR)

• Maximum queue length for each queue (parameter: MQL)

• Throughput of the system, that is, number of customers served per unit of time
(parameter: TP)

• System Fairness (parameter: FAIR)

It is possible to envision an AML that we use to characterize each application of
this domain. In addition to all the details specified earlier, the language may include an
indication of whether the simulation ends abruptly when the simulation time runs out
or whether it winds down smoothly until all residual customers have been serviced
and leave the system. This can be written as follows:

• WrapUp (ABRUPT) or

• WrapUp (SMOOTH)

358 TESTING PRODUCT LINES

Hence, for example, if we wanted to specify the simulation of waiting queues in a
gas station, we would write the following:

Simulation gasStation
{
QS(FIFO, 1) pump1, pump2, pump3, pump4; // four gas pumps
CrossStation(NONE); // each pump services its own queue
Arrivals (MARKOV, ANY); // arrival law, random assignment to queues
CrossQueue(NONE); // each car stays in its queue
Statistics (WT, OR,MQL); // wait time, occupancy rate, maximum queue length
WrapUp (SMOOTH); // at closing, serve remaining cars
}

Ideally, one may want to define a formal AML, and build a compiler for it, in such a
way that an application description such as this could be compiled into a finished
application.

16.4.3 A Reference Architecture

The foregoing discussion yields a natural reference architecture for the proposed prod-
uct line, whose main components include instances of the queue/station structure
(QS), an Arrivals component, a Statistics component, and a main program to coordi-
nate all these; this is illustrated in Figure 16.2. This figure describes the dataflow
between these components; as for the control flow, it is basically limited to the main
component invoking all the others in a sequential manner.

We review the variabilities that we have listed in Section 16.4.1 and see how these
map onto this architecture; in other words, once we decide on the value of a variability,
we must determine which components must be modified and how. We consider the
variabilities, in turn:

• Topology of Service Stations: This variability affects the main program, as
well as the queue/station instances. This variability determines the number
of QS instances we create and the number of service stations we declare
for each.

• Service Time: This variability affects the Arrivals component as it determines
how service requests are computed for incoming customers.

• Topology of Queues: This variability affects the main program, as well as the
queue/station instances. This variability determines the number of QS instances
we create and how queues are associated with service stations.

• Arrival Distribution: This variability affects the Arrivals component.

• Queuing Policy: This variability affects the declared instances of the QS compo-
nents, as well as the relationships between them.

• Dispatching Policy: This variability affects the declared instances of the QS
components, in the sense that it determines how idle stations determine where

35916.4 ILLUSTRATION

their next customer comes from; it also affects whether an idle station may take a
customer from another QS component.

• Measurements: This variability affects the Statistics component, by determining
what functions to collect data for during the simulation and to summarize at the
end of the simulation.

• Wrap Up Policy: This variability affects the main program, in the sense that it
determines the main simulation loop of the main program, by dictating the exit
condition of the loop: To exit when the end of the simulation is up (abrupt) or
when all the customers have cleared the system (smooth).

16.4.4 Domain Implementation

We choose to implement this product line in C++. In this section, we outline the broad
structure of the main program, then we implement the main building blocks that are
used in this product line. The main program reads as follows:

#include <iostream> line 1
#include “qs.cpp” 2
#include “arrivals.cpp” 3
#include “statistics.cpp” 4

Arrivals

Statistics

S1 S2 S3 S1 S3 S1 S2 S3S2

Figure 16.2 Reference architecture of the queue simulation product line.

360 TESTING PRODUCT LINES

using namespace std; 5
typedef int clocktimetype; 6
typedef int durationtype; 7

/� State Objects �/ 8
qsclass qs1, qs2; 9
arclass arrivals; 10
stclass stats; 11
/� State Variables �/ 12
durationtype expduration; 13
int arrivalrate1, servicerate1; // for class 1 14
int arrivalrate2, servicerate2; // for class 2 15
int nbcustomers; 16
/� Working Variables �/ 17
clocktimetype clocktime; 18
customertype customer; 19
bool newarrival; 20
int locsum, locmin, locmax; 21

/� functions �/ 22
bool ongoingSimulation(); 23
void elicitParameters(); 24
int main () 25

{ 26
elicitParameters(); 27
while (ongoingSimulation()) 28

{ 29
arrivals.drawcustomer(clocktime, expduration, 30
arrivalrate1, servicerate1, customer, newarrival); 31
if (newarrival) {nbcustomers++; qs1.enqueue
(customer);} 32

arrivals.drawcustomer(clocktime, expduration, 33
arrivalrate2, servicerate2, customer,

newarrival); 34
if (newarrival) {nbcustomers++; qs2.enqueue
(customer);} 35

qs1.update(clocktime, locsum, locmin, locmax); 36
stats.record(locsum,locmin,locmax); 37
qs2.update(clocktime, locsum, locmin, locmax); 38
stats.record(locsum,locmin,locmax); 39
clocktime++; 40

}; 41
cout << “concluded at time: ” << clocktime << endl; 42
stats.summary(nbcustomers); 43
} 44

bool ongoingSimulation() 45

36116.4 ILLUSTRATION

{ 46
return ((clocktime<=expduration) || 47

(!qs1.done()) || (!qs2.done())); 48
}; 49

void elicitParameters() 50
{ 51
nbcustomers=0; 52
cout << “Length of Simulation” << endl; 53
cin >> expduration; 54
cout << “Arrival rate, Service Rate, Station 1” << endl;55
cin >> arrivalrate1 >> servicerate1; 56
cout << “Arrival rate, Service Rate, Station 2” << endl;57
cin >> arrivalrate2 >> servicerate2; 58

}; 59

As written, this main program refers to two identical QS components; but in gen-
eral, it may refer to more than one type of QS components (as we recall, QS compo-
nents may differ by their number of stations and their queuing policy). Also, this main
program refers to an arrivals component, that determines the rate of customer arrivals,
and a statistics component, that collects statistics. For the sake of simplicity, we have
opted for a straightforward (tree-like) #include hierarchy between the various compo-
nents of this program; the price of this choice is that most data has to transfer through
the main program rather than directly between the subordinate components. Hence the
decision of whether there is a new arrival and the selection of the new customer para-
meters transits through the main program (lines 30–31 and 32–34) on its way to the
QS component that stores incoming customers (lines 32 and 35); likewise, statistical
data is sent from the QS components (lines 36 and 38) to the statistics components
(lines 37 and 39) via the main program. Note that while the topology and configura-
tion of the queues and service stations is decided at application engineering time, the
actual simulation parameters (experiment duration, arrival rate of each class of cus-
tomers, service rate of each class of customers) are decided at run-time (line 27).

The QS component is defined by the following header file:

//��
// Header file qs.h
//
//��
const int maxq = 1000; // max size of queue line 1
const int nbs = 3; // number of stations for

single queue 2
const int largewait=2000; // used for min wait 3
typedef int clocktimetype; 4
typedef int servicetimetype; 5
typedef int durationtype; 6
typedef int customeridtype; 7

362 TESTING PRODUCT LINES

typedef int indextype; 8
typedef struct 9

{customeridtype cid; 10
clocktimetype at; 11
servicetimetype st; 12
int ccat; 13
} customertype; 14

typedef struct 15
{customertype guest; 16
durationtype busytime; 17
int busyrate; 18
} stationtype; 19

class qsclass 20
{public: 21

qsclass (); // default constructor 22
bool done (); 23
void update (clocktimetype clocktime, 24

int& locsum, int& locmin, int& locmax); 25
bool emptyq () const; // tells whether q is empty 26
void enqueue (customertype qitem); 27
void dequeue (); 28
void checkfront (customertype& qitem) const; 29
int queuelength (); 30

31
private: 32

customertype qarray [maxq]; 33
stationtype sarray [nbs]; 34
indextype front; 35
indextype back; 36
int qsize; 37

}; 38

The nbs parameter in this header file (line 2) indicates the number of service
stations in the QS component; ideally, we would like to define a single QS component
for each queuing policy (e.g., FIFO), and let nbs be a parameter (hence, e.g., writing
QS(3) or QS(5) depending on the number of stations we want to have for each queue)
but we do not believe C++ allows that; hence in practice we write a separate QS class
for each different value of nbs and each different value of the queuing policy; in the
case of this product line, if we adopt FIFO as the only queuing policy and nbs= 3 as
the only viable number of stations per queue, then only one QS class is needed. The
state variables of this class include the queue infrastructure (qarray, front, back, qsize)
as well as an array of service stations, of size nbs. In addition to the queue methods
(emptyq, queuelength, checkfront, enqueue, dequeue), this class has two QS-specific
methods, which are (Boolean-valued) done() and (void) update(clocktime, locsum,
locmin, locmax). The former indicates that the QS component has no residual

36316.4 ILLUSTRATION

customers in its queue or its service stations; the latter updates the queue and service
stations on the grounds that a new unit of time (minute, second, millisecond, etc.) has
elapsed:

• If a service station is still busy, it updates the remaining busy time thereof.

• If a service station has just completed serving a customer, it frees the customer
and collects statistical data on it.

• If a service station is free and the queue is not empty, then it dequeues the
customer at the front of the queue and loads it on the service station.

The arrivals component reads as follows:

�� line 1
// 2
// arrivals component; 3
// file arrivals.cpp, refers to header file arrivals.h. 4
// 5
//�� 6
#include “arrivals.h” 7
#include “rand.cpp” 8
arclass :: arclass () 9

{SetSeed(673); customerid=1001; 10
}; 11

void arclass :: drawcustomer (clocktimetype clocktime,
int expduration, 12
int arrivalrate,
int servicerate, 13
customertype& customer,
bool& newarrival) 14

{float draw = NextRand(); 15
newarrival = ((clocktime<=expduration) && 16

(draw<(1.0/float(arrivalrate)))); 17
if (newarrival) 18

{customer.cid = customerid; customerid =
customerid+3; 19
customer.at = clocktime; 20
customer.st = 1+int(NextRand()�servicerate); 21

} 22
} 23

This component calls a random number generator using the parameters of arrival time
to determine whether or not there is an arrival at time clocktime, and if there is an arrival,
it uses the parameter of service time to draw the length of service needed by the new
arriving customer, assigns it a customer ID, and timestamps its arrival time. This
information is used subsequently for reporting purposes and/ or to compute statistics.

364 TESTING PRODUCT LINES

The header of the statistics component reads as follows:

//��� line 1
// Header file statistics.h 2
// 3
//��� 4
class stclass 5

{public: 6
stclass (); // default constructor 7
void summary (int nbcustomers); 8
void record (int locsum, int locmin, int locmax); 9

private: 10
int totalwait, minwait, maxwait; 11
int totalstay, minstay, maxstay; 12

}; 13

As written, this component maintains some information about wait times and stay
times of customers in the system; it is adequate if all we are interested in are statistics
about these two quantities; but it needs to be expanded if we are to support all the
variabilities listed in Section 16.4.1. As written, this component has two main func-
tions, which are as follows:

1. Collecting data pertaining to wait times and stay times, which transits through
the main program (rather than directly from the QS components)

2. Summarizing the collected data and printing it to the output at the end of the
simulation

16.4.5 Testing at Domain Engineering

In order to test the product line commonalities at domain engineering, we can proceed
in one of the following two ways:

1. Either we consider the components of the architecture, derive their specification
as it emerges from the design of the reference architecture, and test them as self-
standing components.

2. Or we derive a reference application, that takes default values for the domain
variabilities, or adopts frequently used variabilities.

Focusing on the first approach, we propose to consider individual components, pin
down their specification as precisely as possible to derive their test oracle, build ded-
icated test drivers for them, and test them to an arbitrary level of thoroughness, as a
way to gain confidence in the correctness and soundness of the product line assets.

As an illustration, we consider, for example, the arrivals components, and write a
test driver for it, in such a way that its behavior can be checked easily. For example, if
we invoke the arrivals component 10,000 times with an arrival rate of 4 and a service

36516.4 ILLUSTRATION

rate of 20, then we expect to generate about 2,500 new customers whose average
service rate is about 10 units of time. Note that to write this test driver, we need not
see the file arrivals.cpp (in fact it is better not to, for the sake of redundancy); we only
need to see the (specification) file arrivals.h. We propose the following test driver:

#include <iostream> line 1
#include “qs.cpp” 2
#include “arrivals.cpp” 3
using namespace std; 4
typedef int clocktimetype; 5
typedef int durationtype; 6

/� State Objects �/ 7
arclass arrivals; 8
/� Working Variables �/ 9
customertype customer; bool newarrival; 10
int nbcustomers; durationtype totalst; 11

int main () 12
{for (int clocktime=1; clocktime<=10000;
clocktime++) 13

{arrivals.drawcustomer(clocktime,10000,4,20,
customer,newarrival); 14
if (newarrival) {nbcustomers++;
totalst=totalst+customer.st;} 15

}; 16
cout << “nb customers: ” << nbcustomers << endl; 17
cout << “average service time: ” << float(totalst)/
nbcustomers << endl;18

} 19

Execution of this test driver yields the following output:

nb customers: 2506
average service time: 10.7027

which corresponds to our expectation and enhances our faith in the arrivals
component.

We could, likewise, test the QS component by generating and storing a number of
customers in its queue, then monitoring how it handles the load. For example, we can
generate 300 customers that each requires 20 units of service time, and see to it that it
schedules them in 2000 minutes. We consider the following test driver:

#include <iostream> line 1
#include “qs.cpp” 2
#include “statistics.cpp” 3
using namespace std; 4

366 TESTING PRODUCT LINES

5
typedef int clocktimetype; 6
typedef int durationtype; 7

8
/� State Objects �/ 9
qsclass qs; 10
stclass stats; 11
/� Working Variables �/ 12
clocktimetype clocktime; 13
customertype customer; 14
durationtype expduration; int nbcustomers; 15
int locsum, locmin, locmax; 16
/� functions �/ 17
bool ongoingSimulation(); 18

19
int main () 20

{clocktime=0; 21
expduration = 0;//terminate wheneverqsisempty 22
customer.cid=1001; customer.at=0; customer.st=20; 23
for (int i=1; i<=300; i++) {qs.enqueue(customer);}; 24
nbcustomers=300; 25
while (ongoingSimulation()) 26

{qs.update(clocktime, locsum, locmin, locmax); 27
stats.record(locsum,locmin,locmax); 28
clocktime++; 29

}; 30
cout << “concluded at time: ” << clocktime << endl; 31
stats.summary(nbcustomers); 32

} 33
bool ongoingSimulation() 34

{return ((clocktime<=expduration) ||(!qs.done())); 35
}; 36

The outcome of the execution of this test driver is the following output, which
corresponds to our expectation: The 300 customers kept the 3 stations busy nonstop
for a total of 100 × 20 minutes, that is, 2000 minutes. The sum of waiting times is an
arithmetic series, of the form

1 + 2 + 3 + + 99 20

Dividing this sum by the number of customers on each station (100) and replacing the
arithmetic series by its closed form expression, we find

9,910,020
2,100

= 990

36716.4 ILLUSTRATION

The minimum waiting time is 0, of course since the stations were available
at the start of the experiment. The maximum waiting time is the waiting
time of the last customer in each queue, which had to wait for the 99 customers
before it, hence the maximum waiting time is 99 × 20 = 1980. All this is
confirmed in the following output, delivered by the test driver (except for the
minor detail that the test driver shows the closing time at 2001 rather than
2000, but that is because the main loop increments the clocktime at the bottom
of the loop body).

concluded at time: 2001
nb customers 300
statistics, wait time (total, avg, min, max):
297000 990 0 1980

Interestingly, running this test driver enabled us to uncover and remove a fault in the
code of the QS component, which was measuring stay time rather than wait time. As
far as domain engineering is concerned, we can perform testing under the following
conditions:

• We test individual components rather than whole applications. Individual com-
ponents lend themselves more easily to simple, compact specifications, which
can be used as oracles.

• We test preferably components that have the least variability, or whose variabil-
ities are trivial. Ideally, we want any confidence we gain about the correctness of
a component to survive as the component is adapted to other applications.

In our case study, we have tested component qs with nbs= 3; we can be reasonably
confident that changing the value of nbs for the purposes of another application does
not alter significantly the confidence we have in its correctness. But changing the
queuing policy, however, (e.g., from FIFO to priority) will require a new testing effort.
We are able to single out individual components, write test drivers for them, and
design targeted test data that will exercise specific functionalities, and for which
we know exactly what outcome to expect.

All the testing effort that we carry out at the domain engineering phase is expended
once, but will benefit every application that is produced from this product line. While
the test we have conducted so far, and other tests focused on system components one
at a time, give us confidence in the correctness of the individual components, they give
us no confidence in the soundness of the architecture, nor in the integration of the
components to form an application.

One way to test the architecture is to run experiments that exercise the interactions
between different components of the architecture. Consider, for example, the interaction
between two queue-station components in the context of a CrossStation() relation. We
assume that the queue-station components are declared by the following AML
statements:

368 TESTING PRODUCT LINES

QS(3) coach; QS(2) firstclass;
CrossStation(firstclass, coach);
Wrap-Up(Abrupt);

Then one way to test the interaction between the two queue-station components is to
run the simulation with far more coach passengers than the coach service station can
serve, and virtually no first passengers at all, and observe that the simulation proceeds
as though we had a single coach queue for five coach stations. A sample of data that
makes it possible is as follows:

1. Coach arrival rate: one every 2 minutes, on average

2. Coach service rate: 20 minutes, on average

3. First Class arrival rate: 4000 minutes

4. First Class service rate: 1 minute

5. Duration of the Simulation: 2000 minutes

Then upon termination of the simulation, we may find that all five workstations were
busy virtually 100% of the time.

16.4.6 Testing at Application Engineering

In the application engineering phase, we take the domain engineering assets and use
them to build an application on the basis of specific requirement specifications. In
application engineering, we avail ourselves of an executable product for which we
have a product specification; hence we have everything we need to run a test; the issue
here is to maximize return on investment by targeting test data to those aspects of the
application that have not been adequately tested at domain engineering or have not
been adequately covered by the test of other applications within the same domain.
Also, we must test that the variabilities are bound correctly with respect to the
AML specification.

We consider a sample application in our queue simulation domain, specified by the
following AML statements:

Simulation airlineCheckin
{
QS(FIFO, 4) coach;
QS(FIFO, 2) firstClass;
CrossStation(NONE); // each class services its own queue
Arrivals (UNIFORM, CAT); // arrival law, assignment by category
CrossQueue(NONE); // each passenger stays in his/her queue
Statistics (WT); // wait time
WrapUp (SMOOTH); // when check-in ends, take no new

// passengers, but clear lines
}

36916.4 ILLUSTRATION

In light of this specification, we propose to define two QS classes, one with four
service stations, and one with two service stations. Also, we envision that the user spe-
cifies the arrival rate and service rate of each class of service (coach, first class), and to
deliver statistics about wait times. This yields the following simulation program.

#include <iostream>
#include “qs2.cpp”
#include “qs4.cpp”
#include “arrivals.cpp”
#include “statistics.cpp”
using namespace std;

typedef int clocktimetype;
typedef int durationtype;
/� State Objects �/
qsclass2 qs2;
qsclass4 qs4;
arclass arrivals;
stclass stats;
/� State Variables �/
durationtype expduration;
int arrivalrate2, servicerate2; // for class 2
int arrivalrate4, servicerate4; // for class 4
int nbcustomers;
/� Working Variables �/
clocktimetype clocktime;
customertype customer;
bool newarrival, newdeparture;
int locsum, locmin, locmax;
/� functions �/
bool ongoingSimulation();
void elicitParameters();
int main ()

{elicitParameters();
while (ongoingSimulation())

{arrivals.drawcustomer(clocktime, expduration,
arrivalrate2, servicerate2, customer, newarrival);

if (newarrival) {nbcustomers++; qs2.enqueue
(customer);}
arrivals.drawcustomer(clocktime, expduration,
arrivalrate4, servicerate4, customer,
newarrival);

if (newarrival) {nbcustomers++; qs4.enqueue
(customer);}

qs2.update(clocktime, locsum, locmin, locmax);

370 TESTING PRODUCT LINES

stats.record(locsum,locmin,locmax);
qs4.update(clocktime, locsum, locmin, locmax);
stats.record(locsum,locmin,locmax);
clocktime++;
};

cout << “concluded at time: ” << clocktime << endl;
stats.summary(nbcustomers);

}
bool ongoingSimulation()

{return ((clocktime<=expduration)||(!qs2.done())
||(!qs4.done()));

};

void elicitParameters()
{nbcustomers=0;
cout << “Length of Simulation” << endl;
cin >> expduration;
cout << “Arrival rate, Service Rate, First Class” << endl;
cin >> arrivalrate2 >> servicerate2;
cout << “Arrival rate, Service Rate, Coach” << endl;
cin >> arrivalrate4 >> servicerate4;

};

Successive executions of this program with different arrival rates and service rates
give the following results:

This table shows the test data used for the experiment, as well as the output
produced by the simulation. For completeness, we need an oracle that tells us whether
the output produced by the simulation is correct; because of the random nature of the
simulation, the oracle is not a deterministic function but rather the mean of a random
variable. Hence, in terms of an oracle, we need to build an analytical model that shows
the expected results of the simulation according to the parameters of the application
(decided at application engineering time) and according to the parameters of the

Duration First class Coach Time
ended

Customers
served

Average
wait

Maximum
wait

Arrival
rate

Service
rate

Arrival
rate

Service
Rate

900 4 24 3 19 1573 542 152 665

900 4 20 3 15 1321 542 95 415

900 4 16 3 12 1076 542 41 173

900 4 14 2 7 987 688 13 92

900 4 10 2 5 906 688 0.89 13

1000 5 20 4 14 1086 465 21 82

37116.4 ILLUSTRATION

simulation (decided at run time). This model would be developed at domain engineer-
ing and applied for each application to serve as a test oracle.

16.5 CHAPTER SUMMARY

This chapter highlights the difficulty of testing software product lines, due to unbound
specifications and to the combinatorial explosion that stems from multiple variabilities,
and proposes some general principles to guide the testing process, which are as follows:

• All commonalities must be tested at domain engineering time.

• Variability-specific test artifacts must be generated at domain engineering time
and deployed at application engineering time.

• Variability bindings must be tested at application engineering time.

• Applications must undergo some degree of integration testing, to make sure the
composition of the application was carried out properly and that the components
of the application work together as intended.

16.6 EXERCISES

16.1. Consider the following application specification in the domain of queue simu-
lation, which represents a gas station that has four pumps:
Simulation gasStation
{
QS(FIFO, 1) pump1, pump2, pump3, pump4;
CrossStation(NONE); // each pump services its own queue
Arrivals (UNIFORM); // arrival law
CrossQueue(NONE); // each car stays in its queue
Statistics (WT); // wait time
WrapUp (ABRUPT); // when the station closes, the pumps stop

}
Develop a reference application according to the AML specification and use it
to test the commonalities of the product line.

16.2. Insert five faults in the code of the queue simulation presented in Section 16.4.
Deploy domain engineering tests and application engineering tests and identify
which tests uncover the faults and which faults have been uncovered.

16.7 PROBLEMS

16.1. Build an analytical statistical model of the queue simulation that can predict, for
each configuration and each set of input parameters, what are the expected
values of the various statistical functions cited in the queue simulation.

372 TESTING PRODUCT LINES

16.2. Develop a product line that simulates the behavior of a prey–predator model,
develop it, and design a testing policy for the product line. Consider that the
model may involve an arbitrary number of species, with an arbitrary network
of prey–predator relationships, and an arbitrary array of external factors
(drought, disease, floods, etc.) that may affect some or all of the species.

16.8 BIBLIOGRAPHIC REFERENCES

The field of software product line testing is still in its infancy; while many researchers
agree on the broad challenges facing the discipline, there is no consensus on a general
solution. John McGregor (2001) was the first to draw attention to the unique nature
and unique challenges of product line testing. Recent surveys of the field include
Machado et al. (2014) and Engstrom and Runeson (2011). The sample example of
the queue simulation product line is due to Mili et al. (2002). The domain engineering
methodology adopted in this chapter is FAST, which is due to Weiss and Lai (1999).
For more on software product lines, consult Weiss and lai (1999), Pohl et al. (2005),
or Linden et al. (2007). Another source is the annual Software Product Line
Conference(s) (SPLC) conferences at http://www.splc.net/.

37316.8 BIBLIOGRAPHIC REFERENCES

http://www.splc.net/

Bibliography

Abran A. Software Metrics and Software Metrology. Hoboken (NJ): Wiley; 2012.

Abrial JR. The B Book: Assigning Programs to Meanings. Cambridge: Cambridge University
Press; 1996.

Avizienis A, Laprie JC, Randell B, Landwehr C. Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans Dependable Secure Comput 2004;1 (1):11–33.

Bansyia J, Davis C, Etzkorn L. An entropy based complexity measure for object oriented
designs. Theory Pract Object Syst 1999;5 (2):1–9.

Black R. Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional.
Indianapolis (IN): Wiley; 2007.

Boehm BW. Software Engineering Economics. Englewood Cliffs (NJ): Prentice-Hall; 1981.

Boehm BW, Abts C, Brown AW, Chulani S, Clark BK, Horowitz E, Madachy R, Reifer DJ,
Steece B. Software Cost Estimation with COCOMO II. Upper Saddle River (NJ): Prentice
Hall; 2000.

Cadar C, Sen K. Symbolic execution for software testing. Commun ACM 2013;56 (2):82–90.

Csiszar I, Koerner J. Information Theory: Coding Theorems for Discrete Memoryless Systems.
Cambridge: Cambridge University Press; 2011.

Culbertson R, Brown C, Cobb G. Rapid Testing. Upper Saddle River (NJ): Prentice Hall; 2002.

DeMillo RA, Lipton RJ, Sayward FG. Hints on test data selection: Help for the practicing
programmer. IEEE Comput 1978;11 (4):34–41.

Ebert C, Dumke R. Software Measurement: Establish, Extract, Evaluate, Execute. Berlin:
Springer Verlag; 2007.

Engstrom E, Runeson P. Software product line testing: a systematic mapping study. Inf Softw
Technol 2011;52 (1):2–13.

Etzkorn L, Gholston S. A semantic entropy metric. J Softw Maint Evol Res Pract
2002;14:293–310.

Fenton NE, Pfleeger SL. Software Metrics: A Rigorous and Practical Approach. London: PWS
Publishing Co.; 1997.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

374

Frankl PG, Weyuker EJ. An applicable family of dataflow testing criteria. IEEE Trans Softw
Eng 1988;14 (10):1483–1498.

Gall CS, Lukin S, Etzkorn L, Gholston S, Farrington P, Utley D, Fortune J, Virani S. Semantic
software metrics computed from natural language design specifications. IET Softw
2008;2 (1):17–26.

Goodenough JB, Gerhart SL. Towards a theory of test data selection. IEEE Trans Softw Eng
1975;SE-1:26–37.

Habrias H, Frappier M. Software Specification Methods. Hoboken (NJ): John Wiley & Sons;
2013. ISTE series.

Halstead MH. Elements of Software Science. Amsterdam: North-Holland; 1977.

Hoare CAR. An axiomatic basis for computer programming. Commun ACM
1969;12 (10):576–585.

Jackson D. Software Abstractions: Logic, Language and Analysis. Cambridge (MA): MIT
Press; 2011.

Janicki R, Khedhri R. On a formal semantics of tabular expressions. Sci Comput Program
2001;39 (2, 3):189–213.

Janicki R, Parnas DL, Zucker JI. Tabular representations in relational documents. In: Brink C,
Kahl W, Schmidt G, editors. Relational Methods in Computer Science. New York: Springer
Verlag; 1997. p 184–196.

Jet Propulsion Laboratory. NASA Study on Flight Software Complexity. 2009. Available at
http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf. Accessed November
26, 2014.

Kaner C, Falk J, Nguyen HQ. Testing Computer Software. 2nd ed. New York: John Wiley &
Sons; 1999.

Kit E. Software Testing in the Real World: Improving the Process. Reading (MA): Addison-
Wesley; 1995.

Kuhn DR. Fault classification and error detection capability of specification based testing.
ACM Trans Softw Eng Methodol 1999;8 (4):411–424.

Laprie J-C. Dependability: a unifying concept for reliable, safe, secure computing. IFIP
Congress 1992;1:585–593.

Laprie J-C. Dependability: its attributes, impairments, and means. In: Randell B, Laprie J-C,
Kopetz H, Littlewood B, editors. Predictably Dependable Computing Systems. New York:
Springer; 1995. p 3–24.

Larson E, Austin T. High coverage detection of input-related security faults. Proceedings of the
12th USENIX Security Symposium; August 4–8, 2003, Washington, DC.

Linden FJ, Schmidt K, Rommes E. Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Berlin: Springer Verlag; 2007.

Linger RC, Mills HD, Witt BI. Structured Programming: Theory and Practice. Reading (MA):
Addison-Wesley; 1979.

Machado I d C,McGregor JD, Cavalcanti YC, de Almeida ES. On strategies for testing software
product lines: a systematic literature review. Inf Softw Technol 2014;56:1183–1199.

Mathur AP. Foundations of Software Testing: Fundamental Algorithms and Techniques. Upper
Saddle River (NJ): Pearson Education; 2002.

McCabe TJ. A complexity measure. IEEE Trans Softw Eng 1976;2 (4):308–320.

McGregor JD. Testing a software product line. Technical report, CMU/SEI-2001-TR-022.
Pittsburgh (PA): Carnegie Mellon University; 2001.

375BIBLIOGRAPHY

http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf

Mili A, Desharnais J, Mili F. Computer Program Construction. New York: Oxford University
Press; 1994.

Mili H, Mili A, Yacoub S, Addy E. Reuse Based Software Engineering: Techniques, Organ-
ization and Controls. New York: John Wiley & Sons; 2002.

Mili A, Frias MF, Jaoua A. On faults and faulty programs. Proceedings, RAMICS 2014; April
28–May 1, 2014; Marienstatt, Germany. p 191–207.

Mills HD. Mathematical Foundations for Structured Programming. Gaithersburg, MD: IBM
Federal Systems Division; 1972.

Mills HD. The new math of computer programming. Commun ACM 1975;18 (1):43–48.

Mills HD, Basili VR, Gannon JD, Hamlet RG. Principles of Computer Programming:
A Mathematical Approach. New York: McGraw Hill; 1986.

Morell L, Murill B. Semantic metrics through error flow analysis. J Syst Softw
1993;20 (3):207–216.

Morell L, Voas JM. A framework for defining semantic metrics. J Syst Softw
1993;20 (3):245–251.

Musa J. Software Reliability Engineering: More Reliable Software, Faster Development and
Testing. New York: McGraw Hill; 1999.

Naik K, Tripathy P. Software Testing and Quality Assurance: Theory and Practice. Hoboken
(NJ): John Wiley & Sons; 2008.

Nicol DM, Sanders WH, Trivedi K. Model based evaluation: from dependability to security.
IEEE Trans Dependable Secure Comput 2004;1 (1):48–65.

O’Connor PDT. Practical Reliability Engineering. 4th ed. New York: Wiley; 2002.

Offutt AJ, Hayes JH. A semantic model of program faults. Proceedings of 1996 International
Symposium on Software Testing and Analysis; January 1996; San Diego, CA. ACM Press.
p 195–200.

Perry WE. Effective Methods for Software Testing. Indianapolis (IN): Wiley; 2002.

Pfleeger SL, Atlee JM. Software Engineering: Theory and Practice. Prentice Hall: Upper
Saddle River (NJ); 2009.

Pohl K, Boeckle G, Linden FJ. Software Product Line Engineering: Foundations, Principles
and Techniques. New York: Springer Verlag; 2005.

Rapps S, Weyuker EJ. Selecting test data using dataflow information. IEEE Trans Softw Eng
1985;11 (4):367–375.

Sen K, Marinov D, Agha G. CUTE: a concolic unit testing engine for C. Proceeding, Fifth Joint
Meeting of the European Software Engineering Conference and ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering; 2005; Lisbon, Portugal. p 263–272.

Somerville I. Software Engineering. 7th ed. Harlow: Pearson Education; 2004.

Spivey JM. The Z Notation: A Reference Manual. Englewood Cliffs (NJ): Prentice Hall; 1998.

Voas J, Miller K. Semantic metrics for software testability. J Syst Softw 1993;20 (3):207–216.

Weiss DM, Lai CTR. Software Product Line Engineering: A Family Based Software Develop-
ment Process. Reading (MA): Addison-Wesley; 1999.

Whittaker JA. Exploratory Software Testing: Tips, Tricks, Tours and Techniques to guide Test
Design. Upper Saddle River (NJ): Addison-Wesley/Pearson Education; 2010.

376 BIBLIOGRAPHY

Index

absence of automation, 11
absence of reuse practice, 9
acceptance test, 138
agile methodologies, 9
all c-uses, 218
all definition-clear paths, 217
all definition-use paths, 217
all du-paths, 218
all p-uses, 218
all uses, 218
alternation rule, 92
alternation statement, 90
asset development, 349
assignment statement rule, 91
axioms, 64

back alley tour, 189
bad neighborhood tour, 189
Boolean attributes, 15
branch coverage, 204
business attributes, 14
business district, 188

certification testing, 25
certifying compliance, 128
certifying reliability, 129
certifying safety, 129
certifying security, 129
characterizing refinement by correctness, 84
classification scheme, 125
collector's tour, 189
combinatorics of variabilities, 352
commutativity rule, 68
compatibility condition, 51
complexity sponge, 6
conclusion of the rule, 91
concrete testing, 281
conditional rule, 92
conditional statement, 90
condition coverage, 207
conflicting, 7
consequence rule, 93
contingent fault, 108
continuous evolution, 7
control, 4

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

377

control flow coverage, 202
converse, 39
corrective maintenance cost
distribution, 13

corrective versus adaptive, 13
costs, 8
cost distribution, 11
couch potato tour, 189
c-uses, 215
cyclomatic complexity, 315

data flow coverage, 214
decentralization, 7
deep erosion, 7
definite faults, 107
design, 4
development cost, 19
discipline of specification, 38
dispatching policy, 355
district, 188
domain analysis, 348
domain engineering, 348
domain of correctness, 110
domain of relation, 40
domain partitioning, 165
domain scoping, 348

ease of learning, 18
ease of use, 18
economic rationale, 348
E-measure, 317
empirical adequacy assessment, 155
empty axioms, 65
empty rules, 66
enhanced productivity, 347
enhanced quality, 347
enqueue dequeue rule, 67
equivalence relation, 42
era of pioneers, 3
error detectability, 320
error maskability, 313
error propagation, 121
estimating reliability, 128
estimating safety, 128
estimating security, 128
estimating the frequency of failures, 128
executable assets, 352
execution paths, 92

failure avoidance, 7
failure probability, 287
failure tolerance, 313
fault avoidance, 116
fault detectability, 313
fault detection, 266
fault management, 116
fault removal, 7
fault sensitization, 121
feature interactions, 353
finite failures category, 291
F-measure, 317
formulas, 70
front axioms, 66
functional attributes, 14
functional criteria, 28
functional methods, 129

generating an oracle, 29
generating test data, 28
generation phase, 55
graceful degradation, 18
guidebook tour, 188

hierarchy of criteria, 220
historic district, 188
hotel district, 188
hybrid validation, 118
hybrid verification, 37
hyphenated testing, 125

inconsistent, 7
inductive rules, 69
industry under stress, 5
inference system, 91
infrequency of failures, 128
init dequeue rule, 67
init pop rule, 65
init rule, 65
input space, 29
insert delete rule, 69
integration test, 138
iteration rule, 93

join, 51

labor, 10
limited quality control, 11

378 INDEX

logical claims, 280
logical requirement, 141

max axiom, 69
maximum relative correctness, 106
measure, 6
measurements, 356
min axiom, 68
monotonic fault removal, 109
more-correct, 105

null delete rule, 69

obsessive compulsive tour, 189
operational attributes, 14
operations and maintenance, 27
outcome analysis, 131
output space, 64

paradoxical economics, 10
partial correctness, 83
partial ordering, 42
path conditions, 194
path functions, 196
pick axioms, 68
P-measure, 317
position in the lifecycle, 136
post-restriction, 198
pre-generated test data, 263
premises of the rule, 91
primary attributes, 126
probability of occurrence, 155
process, 4
process controls, 5
producing a test driver, 30
product, 4
product architecture, 9
product controls, 5
product design, 24
product line engineering, 4
program, 6
proving partial correctness, 94
proving the absence of faults, 128
push pop rule, 65

quality standards, 5
quantifying reliability, 289
queuing policy, 355

rained out tour, 189
random test data generation, 30
range, 4
rational purify, 343
reference architecture, 9
refinement ordering, 48
refines, 48
reflexive, 42
relative correctness, 35
reliability standards, 299
required artifacts, 127
requirements analysis, 8
requirements engineer, 24
restless discipline, 3
rule, 11

saboteur tour, 189
scale, 6
search axiom, 68
secondary attributes, 125
seedy district, 188
selenium, 337
semantics of a condition, 197
semantics of an assignment statement, 196
sensitizing faults, 221
sequence statement, 89
service time, 354
set theoretic, 85
set theoretic characterizations, 85
silk, 336
simple input output programs, 42
size, 5
size axioms, 65, 67
size rule, 66
skeptical customer tour, 188
software quality attributes, 14
software specifications, 10
software testing taxonomy, 35
sound specification, 38
specification of a queue, 66
specification of a set, 68
specification of a stack, 65
stakeholders, 7
state, 28
state based systems, 176
statement coverage, 202
static analysis, 5
statistical attributes, 15

379INDEX

stochastic requirement, 141
streamlined reuse model, 347
structural attributes, 14
structural criteria, 29
structural methods, 129
successful execution, 31
supermodel tour, 189
supporting actor tour, 189
symbolic execution, 269
symbolic testing, 270
system integration, 24
system-level testing, 138

target attributes, 130, 143
target language, 333
test assumptions, 126
test completion, 127
test data, 20
test data generation, 30
test deployment, 233
test driver design, 253
test environment, 27
test generation concepts, 143
test generation criteria, 152
test generation requirements, 148
test oracle design, 235
test outcomes analysis, 131, 146
testing and verification, 37
testing approaches, 353

testing lifecycle, 23
testing product lines, 347
testing taxonomy, 35
time, 3
time domain, 291
top axioms, 65
topology of queues, 355
total, 41
totality, 320
total ordering, 42
tour, 188
tourist district, 188

unbalanced maintenance costs, 12
unitary cost of software, 7
unit-level certification, 136
unit-level fault removal, 136
unit-level testing, 136
usability attributes, 14
usage pattern, 29
uses, 22

validation phase, 55
validity, 71
verifiable specifications, 352
VX Rules, 66

wear and tear, 13
wrap up policy, 356

380 INDEX

wiley end user license agreement
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Title Page
	Copyright Page
	Contents
	Preface
	Part I Introduction to Software Testing
	Chapter 1 Software Engineering: A Discipline Like No Other
	1.1 A YOUNG, RESTLESS DISCIPLINE
	1.2 AN INDUSTRY UNDER STRESS
	1.3 LARGE, COMPLEX PRODUCTS
	1.4 EXPENSIVE PRODUCTS
	1.5 ABSENCE OF REUSE PRACTICE
	1.6 FAULT-PRONE DESIGNS
	1.7 PARADOXICAL ECONOMICS
	1.7.1 A Labor-Intensive Industry
	1.7.2 Absence of Automation
	1.7.3 Limited Quality Control
	1.7.4 Unbalanced Lifecycle Costs
	1.7.5 Unbalanced Maintenance Costs

	1.8 CHAPTER SUMMARY
	1.9 BIBLIOGRAPHIC NOTES

	Chapter 2 Software Quality Attributes
	2.1 FUNCTIONAL ATTRIBUTES
	2.1.1 Boolean Attributes
	2.1.2 Statistical Attributes

	2.2 OPERATIONAL ATTRIBUTES
	2.3 USABILITY ATTRIBUTES
	2.4 BUSINESS ATTRIBUTES
	2.5 STRUCTURAL ATTRIBUTES
	2.6 CHAPTER SUMMARY
	2.7 EXERCISES
	2.8 BIBLIOGRAPHIC NOTES

	Chapter 3 A Software Testing Lifecycle
	3.1 A SOFTWARE ENGINEERING LIFECYCLE
	3.2 A SOFTWARE TESTING LIFECYCLE
	3.3 THE V-MODEL OF SOFTWARE TESTING
	3.4 CHAPTER SUMMARY
	3.5 BIBLIOGRAPHIC NOTES

	Part II Foundations of Software Testing
	Chapter 4 Software Specifications
	4.1 PRINCIPLES OF SOUND SPECIFICATION
	4.1.1 A Discipline of Specification

	4.2 RELATIONAL MATHEMATICS
	4.2.1 Sets and Relations
	4.2.2 Operations on Relations
	4.2.3 Properties of Relations

	4.3 SIMPLE INPUT OUTPUT PROGRAMS
	4.3.1 REPRESENTING SPECIFICATIONS
	4.3.2 ORDERING SPECIFICATIONS
	4.3.3 SPECIFICATION GENERATION
	4.3.4 SPECIFICATION VALIDATION

	4.4 RELIABILITY VERSUS SAFETY
	4.5 STATE-BASED SYSTEMS
	4.5.1 A Relational Model
	4.5.2 AXIOMATIC REPRESENTATION
	4.5.3 SPECIFICATION VALIDATION

	4.6 CHAPTER SUMMARY
	4.7 EXERCISES
	4.8 PROBLEMS
	4.9 BIBLIOGRAPHIC NOTES

	Chapter 5 Program Correctness and Verification
	5.1 CORRECTNESS: A DEFINITION
	5.2 CORRECTNESS: PROPOSITIONS
	5.2.1 Correctness and Refinement
	5.2.2 Set Theoretic Characterizations
	5.2.3 Illustrations

	5.3 VERIFICATION
	5.3.1 Sample Formulas
	5.3.2 An Inference System
	5.3.3 Illustrative Examples

	5.4 CHAPTER SUMMARY
	5.5 EXERCISES
	5.6 PROBLEMS
	5.7 BIBLIOGRAPHIC NOTES

	Chapter 6 Failures, Errors, and Faults
	6.1 FAILURE, ERROR, AND FAULT
	6.2 FAULTS AND RELATIVE CORRECTNESS
	6.2.1 Fault, an Evasive Concept
	6.2.2 Relative Correctness

	6.3 CONTINGENT FAULTS AND DEFINITE FAULTS
	6.3.1 Contingent Faults
	6.3.2 Monotonic Fault Removal
	6.3.3 A Framework for Monotonic Fault Removal
	6.3.4 Definite Faults

	6.4 FAULT MANAGEMENT
	6.4.1 Lines of Defense
	6.4.2 Hybrid Validation

	6.5 CHAPTER SUMMARY
	6.6 EXERCISES
	6.7 PROBLEMS
	6.8 BIBLIOGRAPHIC NOTES

	Chapter 7 A Software Testing Taxonomy
	7.1 THE TROUBLE WITH HYPHENATED TESTING
	7.2 A CLASSIFICATION SCHEME
	7.2.1 Primary Attributes
	7.2.2 Secondary Attributes

	7.3 TESTING TAXONOMY
	7.3.1 Unit-Level Testing
	7.3.2 System-Level Testing

	7.4 EXERCISES
	7.5 BIBLIOGRAPHIC NOTES

	Part III Test Data Generation
	Chapter 8 Test Generation Concepts
	8.1 TEST GENERATION AND TARGET ATTRIBUTES
	8.2 TEST OUTCOMES
	8.3 TEST GENERATION REQUIREMENTS
	8.4 TEST GENERATION CRITERIA
	8.5 EMPIRICAL ADEQUACY ASSESSMENT
	8.6 CHAPTER SUMMARY
	8.7 EXERCISES
	8.8 BIBLIOGRAPHIC NOTES
	8.9 Appendix: Mutation Program

	Chapter 9 Functional Criteria
	9.1 DOMAIN PARTITIONING
	9.2 TEST DATA GENERATION FROM TABULAR EXPRESSIONS
	9.3 TEST GENERATION FOR STATE BASED SYSTEMS
	9.4 RANDOM TEST DATA GENERATION
	9.5 TOURISM AS A METAPHOR FOR TEST DATA SELECTION
	9.6 CHAPTER SUMMARY
	9.7 EXERCISES
	9.8 BIBLIOGRAPHIC NOTES

	Chapter 10 Structural Criteria
	10.1 PATHS AND PATH CONDITIONS
	10.1.1 Execution Paths
	10.1.2 Path Functions
	10.1.3 Path Conditions

	10.2 CONTROL FLOW COVERAGE
	10.2.1 Statement Coverage
	10.2.2 Branch Coverage
	10.2.3 Condition Coverage
	10.2.4 Path Coverage

	10.3 DATA FLOW COVERAGE
	10.3.1 Definitions and Uses
	10.3.2 Test Generation Criteria
	10.3.3 A Hierarchy of Criteria

	10.4 FAULT-BASED TEST GENERATION
	10.4.1 Sensitizing Faults
	10.4.2 Selecting Input Data for Fault Sensitization
	10.4.3 Selecting Input Data for Error Propagation

	10.5 CHAPTER SUMMARY
	10.6 EXERCISES
	10.7 BIBLIOGRAPHIC NOTES

	Part IV Test Deployment and Analysis
	Chapter 11 Test Oracle Design
	11.1 DILEMMAS OF ORACLE DESIGN
	11.2 FROM SPECIFICATIONS TO ORACLES
	11.3 ORACLES FOR STATE-BASED PRODUCTS
	11.3.1 From Axioms to Oracles
	11.3.2 From Rules to Oracles

	11.4 CHAPTER SUMMARY
	11.5 EXERCISES

	Chapter 12 Test Driver Design
	12.1 SELECTING A SPECIFICATION
	12.2 SELECTING A PROCESS
	12.3 SELECTING A SPECIFICATION MODEL
	12.3.1 Random Test Generation
	12.3.2 Pre-Generated Test Data
	12.3.3 Faults and Fault Detection

	12.4 TESTING BY SYMBOLIC EXECUTION
	12.5 CHAPTER SUMMARY
	12.6 EXERCISES
	12.7 BIBLIOGRAPHIC NOTES

	Chapter 13 Test Outcome Analysis
	13.1 LOGICAL CLAIMS
	13.1.1 Concrete Testing
	13.1.2 Symbolic Testing
	13.1.3 Concolic Testing

	13.2 STOCHASTIC CLAIMS: FAULT DENSITY
	13.3 STOCHASTIC CLAIMS: FAILURE PROBABILITY
	13.3.1 Faults Are Not Created Equal
	13.3.2 Defining/Quantifying Reliability
	13.3.3 Modeling Software Reliability
	13.3.4 Certification Testing
	13.3.5 Reliability Estimation and Reliability Improvement
	13.3.6 Reliability Standards
	13.3.7 Reliability as an Economic Function

	13.4 CHAPTER SUMMARY
	13.5 EXERCISES
	13.6 PROBLEMS
	13.7 BIBLIOGRAPHIC NOTES

	Part V Management of Software Testing
	Chapter 14 Metrics for Software Testing
	14.1 FAULT PRONENESS
	14.1.1 Cyclomatic Complexity
	14.1.2 Volume

	14.2 FAULT DETECTABILITY
	14.3 ERROR DETECTABILITY
	14.4 ERROR MASKABILITY
	14.5 FaILURE AVOIDANCE
	14.6 FAILURE TOLERANCE
	14.7 AN ILLUSTRATIVE EXAMPLE
	14.7.1 Cyclomatic Complexity
	14.7.2 Volume
	14.7.3 State Redundancy
	14.7.4 Functional Redundancy
	14.7.5 Non-injectivity
	14.7.6 Non-determinacy
	14.7.7 SUMMARY

	14.8 CHAPTER SUMMARY
	14.9 EXERCISES
	14.10 BIBLIOGRAPHIC NOTES

	Chapter 15 Software Testing Tools
	15.1 A CLASSIFICATION SCHEME
	15.2 SCRIPTING TOOLS
	15.2.1 CppTest
	15.2.2 SilkTest

	15.3 RECORD-AND-REPLAY TOOLS
	15.3.1 TestComplete
	15.3.2 Selenium IDE

	15.4 PERFORMANCE-TESTING TOOLS
	15.4.1 LoadRunner
	15.4.2 Grinder
	15.4.3 QF-Test
	15.4.4 Appvance PerformanceCloud
	15.4.5 JMeter

	15.4.5 ORACLE DESIGN TOOLS
	15.5.1 JUnit
	15.5.2 TestNG

	15.6 EXCEPTION DISCOVERY
	15.6.1 Rational Purify
	15.6.2 Astree

	15.7 COLLABORATIVE TOOLS
	15.7.1 FitNesse

	15.8 CHAPTER SUMMARY

	Chapter 16 Testing Product Lines
	16.1 PLE: A STREAMLINED REUSE MODEL
	16.2 TESTING ISSUES
	16.3 TESTING APPROACHES
	16.4 ILLUSTRATION
	16.4.1 Domain Analysis
	16.4.2 Domain Modeling
	16.4.3 A Reference Architecture
	16.4.4 Domain Implementation
	16.4.5 Testing at Domain Engineering
	16.4.6 Testing at Application Engineering

	16.5 CHAPTER SUMMARY
	16.6 EXERCISES
	16.7 PROBLEMS
	16.8 BIBLIOGRAPHIC REFERENCES

	 Bibliography
	Index
	EULA

