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goals. Although the matrix methods can be applied by hand to such problems as the
slider-crank mechanism, this is not the intent of this text, and often the rigor required for
such an attempt becomes quite burdensome in comparison with other techniques. The
matrix methods have been extensively tested, both in the classroom and in the world of
the engineering industry.
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Song of the Screw*

A moving form or rigid mass,
Under whate’er conditions
Along successive screws must pass
Between each two positions.
It turns around and slides along –
This is the burden of my song.

The pitch of screw, if multiplied
By angle of rotation,
Will give the distance it must glide
In motion of translation.
Infinite pitch means pure translation,
And zero pitch means pure rotation.

Two motions on two given screws,
With amplitudes at pleasure,
Into a third screw-motion fuse,
Whose amplitude we measure
By parallelogram construction
(A very obvious deduction).

Its axis cuts the nodal line,
Which to both screws is normal,
And generates a form divine
Whose name, in language formal,
Is “surface-ruled of third degree.”
Cylindroid is the name for me.

Rotation round a given line
Is like a force along,
If to say couple you decline,
you’re clearly in the wrong –
’Tis obvious upon reflection,
A line is not a mere direction.

So couples with translations too
In all respects agree;
And thus there centers in the screw
A wondrous harmony
Of Kinematics and of Statics –
Sweetest thing in mathematics.

The forces in one given screw,
With motion on a second,
In general some work will do,

Whose magnitude is reckoned
By angle, force, and what we call
The coefficient virtual.

Rotation now to force convert,
And force into rotation;
Unchanged the work, we can assert,
In spite of transformation.
And if two screws no work can claim,
Reciprocal will be their name.

Five numbers will a screw define,
A screwing motion, six;
For four will give the axial line,
One more the pitch will fix;
And hence we always can contrive
One screw reciprocal to five.

Screws – two, three, four, or five,
combined
(No question here of six),
Yield other screws which are confined
Within one screw complex.
Thus we obtain the clearest notion
Of freedom and constraint of motion.

In complex III, three several screws
At every point you find,
Or, if you one direction choose,
One screw is to your mind;
And complexes of order III
Their own reciprocals may be.

In IV, wherever you arrive,
You find of screws a cone,
On every line of complex V
There is precisely one;
At each point of this complex rich,
A plane of screws has given pitch.

But time would fail me to discourse
Of Order and Degree;
Of Impulse, Energy, and Force,
And Reciprocity.
All these and more, for motions small,
Have been discussed by Dr. Ball.

Anonymous

* Published annomymously in Nature, 14, 30–30 (11 May 1876). This poem accurately captures in
verse the main points of the mathematical theory of screws which forms a common thread of the
theory behind this book.
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Preface

This text presents a uniform and comprehensive treatment of the theory and use
of homogeneous coordinates and transformation matrices in the kinematic and
dynamic design analysis and the numeric simulation of mechanisms and multibody
systems.

The following observations, originally set down by Reuleaux in 1875,1 are every
bit as true today, and it would be difficult to state them better.

The whole study of the constitution of machines – the Kinematics of Machinery – naturally
divides itself into two parts, the one comprehending the theoretical and the other the
applied or practical side of the subject; of these the former alone forms the subject of this
work. It deals chiefly with the establishment of those ideas which form the foundation of
the applied part of the science, and in its treatment of these its method differs in great
part essentially from those heretofore employed.

As I have here to do chiefly with theoretical questions, it might seem that I could
hardly expect to interest other than those concerned only with the theoretical side of this
special study. But Theory and Practice are not antagonists, as is so often tacitly assumed.
Theory is not necessarily unpractical, nor Practice unscientific, although both of these
things may occur. Indeed in any department thoroughly elucidated by Science the truly
practical coincides with the theoretical, if the theory be right. The popular antithesis
should rather be between Theory and Empiricism. This will always remain, and the more
Theory is extended the greater will be the drawback of the empirical, as compared with
the theoretical methods. The latter can never be indifferent, therefore, to any who are able
to use them, even if their work be entirely “practical,” and although they may be able for
a while longer to get on without them. The theoretical questions, however, which are
here to be treated, are of so deep-reaching a nature that I entertain the hope that those
who are practically, as well as those who are theoretically concerned with the subject,
may obtain help from the new method of treating them.

Certainly, the science of kinematics has grown a great deal and today rests on a
much firmer foundation than it did in Reuleaux’s time. However, to a great extent,
the gulf between theory and empiricism still exists. On the one hand, we find that

1 Franz Reuleaux (1829–1905), Theoretische Kinematik, Grundzüge einer Theorie des Maschinenwe-
sens (Theoretical kinematics: Foundations of the theory of mechanisms), Friedrich Vieweg & Sohn,
Braunschweig, 1875; English translation by A. B. W. Kennedy, Reuleaux’ Kinematics of Machinery,
Macmillan and Co., London, 1876; reprinted by Dover Publications, Inc., New York, 1963.
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xiv Preface

academics have developed a vast body of science, steeped in the elegance and sophis-
tication traditional to their views. However, their efforts, almost to an individual,
are still directed toward further understanding of the four-bar linkage, the slider-
crank mechanism, and, more recently, the robotic manipulator, and rather simple
multibody systems. On the other hand, even today, we find that the inventor –
the completely practical person who develops a working machine or performs an
analysis of a complex multibody system, despite the richness of modern theoretical
developments – finds very little of modern theory truly usable as a practical design
technique or as a broadly applicable computational analysis tool.

Among the several reasons for this paradox is the fact that modern theoretic
approaches are difficult for the novice to comprehend and, by the very nature of the
problem, are quite tedious to apply. A thorough understanding of these methods
takes years of specialized study and, very likely, we find in the end that they do not
really solve the complex problems encountered in the design or analysis of present-
day equipment. Thus, to be of value, the methods presented in the following chapters
must accomplish two apparently conflicting goals. First, they must be applicable to
an extremely broad category of problems, including the large multifaceted problems
represented in the design of modern machinery and analysis of complex multibody
systems. Secondly, they must be put into a form that is useful to the practicing
engineer without years of advanced study.

It is our firm belief that the sole hope for accomplishing both of these purposes
lies with the development of a unified and powerful analytic method that can be
programmed for solution by computer. Only in this way can the more sophisticated
methods be made usable without requiring significant specialized training of every
user. Also, this is the only apparent method of dealing with some of the more complex
mechanisms and multibody systems, if only because the number of calculations
involved would be prohibitive by any other means. If sufficiently general software
can be written, however, the application of even the most sophisticated theoretical
approach to very complex multibody systems becomes a feasible goal. In presenting
such a general approach, however, we will be careful, from time to time, to also
present alternative – less general, but perhaps more intuitive – approaches. This is
intended to provide a balanced and better understanding of the methods presented,
and to illustrate the power of the more general techniques.

Furthermore, much of the more recent trends toward miniaturization and high
performance for mechanisms necessitate the inclusion of dynamic analysis along
with kinematics. In the broader category of multibody systems, dynamic analysis has
always played a key role. However, this book deals with an integrated approach to
both kinematic and dynamic analyses. The transformation matrix techniques pre-
sented are general and fully applicable to systems in either two or three dimensions.
In addition, they lend themselves to programming and digital computation and can,
therefore, be the basis of a usable tool for the designer. This book may appear to
place more emphasis on mechanisms because much of the techniques have their
roots in the kinematics and design literature. However, the techniques have broad
applicability to the design analysis of all multibody mechanical systems.

Another pitfall one must avoid when taking a general approach is that of replac-
ing the effort a designer or an engineer must spend in learning and applying the
analysis procedures with an equal or worse task of writing and testing complex
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computer programs. Whatever methods proposed for real design and analysis use
in the future – it seems to the authors – must include the generality and flexibil-
ity to handle a very broad class of problems and give a thorough analysis, without
requiring separate programming for each new problem. Only in this way can real
usability be achieved. The more powerful and more flexible the approach, and the
less specialization and reprogramming required for each application, the better.

The transformation matrix methods presented in the following chapters have
been developed using these as primary goals. The reader must keep these firmly in
mind throughout the book; they are essential to the appreciation and perhaps even
to the comprehension of the methods. Although the transformation matrix methods
can be applied by hand to such problems as the slider-crank mechanism, this is not
the intent of this text, and often the rigor required for such an attempt becomes quite
burdensome in comparison with other techniques.

The transformation matrix methods have been extensively tested, both in the
classroom and in engineering industry. In the classroom, the authors have tested the
drafts of this text in senior/graduate-level courses at the University of Wisconsin–
Madison and the University of Virginia, and more recently at the University of
California, Davis, and we are indebted to all of those students for their trials and
suggestions for improvements. As for use in engineering industry, the methods
presented herein have been the basis for the software system known as the Integrated
Mechanisms Program (IMP).2 First released in 1972, IMP has been extensively used
in many companies and academic institutions to analyze many different kinds of
mechanical systems. Although it is still not a perfect tool, IMP continues to be
used, and its many users also deserve much credit for the authors’ insights and the
experience reflected in the methods described herein.3

Developing methods for computer solution requires several radical alterations in
the approach taken from those of more traditional methods. It requires simplicity and
precision, almost to a fault. Because the computer has no reasoning capability, any
possible conflict in interpretation of the user’s intent will result in disaster. Definitions
of terms must be extremely precise; identification of parts must be unique; sign
conventions must be established, once and for all, in a clear understandable manner;
and the sequencing of the solution process must take every possible eventuality into
account, even those cases that seem trivial in the rational world of humans.

Again, Reuleaux expresses our thoughts very well:4

The remodeling which has become necessary requires undisturbed adherence to clear,
simple, logical principles. What, however, is to be drawn from our criticism of the system
heretofore used – what I have endeavored to illustrate and develop by single instances –
what the philosophical sentences I have quoted bring before us in a condensed form – we
may contract into one word. So far as our special problem is concerned, the question is to
make the science of machinery deductive. The study must be so formed that it rests upon
a few fundamental truths peculiar to itself. The whole fabric must be reducible to their

2 P. N. Sheth and J. J. Uicker, “IMP (Integrated Mechanisms Program), a Computer-Aided Design
Analysis System for Mechanisms and Linkages,” Journal of Engineering for Industry, ASME Trans-
actions, vol. 94, May 1972, pp. 454–64.

3 For an up-to-date version of IMP in open-source form (GNUPL, version 3), the reader should see
http://code.google.com/p/impsim/.

4 Reuleaux, op. cit.
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strictness and simplicity, and from them again we must be able, conversely, to develop
it. Here again is a point from which the weakness of the method heretofore employed
can be surveyed at a glance. Its difference from the ideal method is not that it employs
the inductive instead of the deductive method; that indeed would be no advantage but
it might still be defensible. No, it has been entirely unmethodical. It has chosen no fixed
method of investigation, or rather, it has not found any in spite of zealous search; indeed
it has so often cried “Eureka” that it now rests quietly in the impression that such fixed
standpoint has really been found.
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1 Concepts and Definitions

1.1 Mechanical Design: Synthesis versus Analysis

There are two completely different aspects of the study of mechanical systems: design
and analysis. The concept embodied in the word design might be more properly
termed synthesis, the process of contriving a scheme or a device for accomplishing
a given purpose. Design is the process of developing the sizes, shapes, material
compositions, types and arrangements of parts, and manufacturing processes so that
the final system will perform a prescribed task. Although there are many phases of
the design process that can be approached in a well-ordered scientific manner, the
process is, by its very nature, as much an art as a science. It calls for imagination,
intuition, creativity, judgment, and experience. The role of science in the design
process can be viewed as providing tools to be used as the designer practices this art.
Computer programs and computations that allow a designer to simulate a system
and evaluate its potential performance play an important role in helping the designer
practice the art. This is why scientific techniques such as the matrix methods discussed
in this text play such an important role in dealing with the design of three-dimensional
mechanisms and multibody systems.

In the synthesis of a mechanical system, from a functional point of view, there are
three basic stages that correspond approximately to three basic steps in the design
process. The first stage is designated type synthesis; it deals with the fundamental
decisions a designer makes regarding the style of machine, device, or system to
be used. Initially, for example, such decisions include whether a mechanical device
should be used at all, or whether an electronic circuit or hydraulic appliance should
be chosen instead. After deciding on the use of a mechanism or multibody system,
for example, we must then ponder the relative merits of linkages as compared with
gear trains or perhaps belts and pulleys.

Once the type synthesis has been accomplished, we have established some gen-
eral boundaries for the overall system; further study must then go into specifying
its basic internal characteristics. The numbers of parts and the types and numbers
of joints connecting them must be decided. This process is called number synthe-
sis. At this stage, we do not concern ourselves with the detailed shapes of the
parts or their strength or wear characteristics, but we are concerned with their

1
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Figure 1.1. The science of mechanics.

overall arrangement. Typical questions considered at this stage include “Will this
configuration have the desired degrees of freedom, and can it provide the function-
ality that is intended?”

Given at least tentative answers to these questions, we are in a position to
attempt the third step, dimensional synthesis. It is here that we assign dimensions,
materials, weights, strengths, and other properties to each of the members or parts
of the design. Either by calculation, by experiment, or by intuition and experience,
we make all of the detailed decisions that are necessary before the product or system
can be manufactured. It is during the process of evaluating the various interacting
alternatives and choosing among them that we find the need for a collection of
mathematical and scientific methods in the hope of finding at least a valid – and
perhaps even an optimal – selection for the given task. These scientific tools do not
make decisions for us; we have every right to exert our imagination and creative
abilities, even to the extent of overriding mathematical recommendations. Science-
based techniques are useful, however, in generating, comparing, and judging various
alternatives.

Probably the largest collection of scientific methods at our disposal falls into a
category called analysis. These are the techniques that allow us to critically examine
an already existing or proposed design in order to judge its suitability for a given task.
Thus, in itself, analysis is not a creative science, but rather is used for evaluating and
rating things already conceived. In fact, it can be used to help the creative process
by allowing a formal evaluation of a design and allowing the designer to accept or
dismiss a concept or to find ways to improve it. Therefore, analysis is a useful tool
in redesign or design improvement, and can be integrated with the creative process.
We should always bear in mind, however, that although the majority of our efforts
may be spent on analysis, the real goal is synthesis – the design of a product or
system. Analysis is simply a tool. It is, however, a vital tool and will invariably be
used during the design process. This is particularly true when the analysis techniques
lend themselves to computer software and programmed computations because this
allows a designer to simulate different concepts and compare the performance of
competing design alternatives.

The branch of scientific analysis that deals with motions and forces in a mechan-
ical system is called mechanics. As shown in Figure 1.1, it is made up of two parts,
called statics and dynamics. Statics deals with the analysis of stationary systems,
that is, those in which time is not a factor. Dynamics, on the other hand, deals with
systems that change with time.
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Dynamics is also made up of two major disciplines. The great Swiss mathemati-
cian, Leonhard Euler (1707–83), was the first to distinguish these [2]:

The investigation of the motion of a rigid body may be conveniently separated into two
parts, the one geometrical, the other mechanical. In the first part, the transference of the
body from a given position to any other position must be investigated without respect
to the causes of the motion, and must be represented by analytical formulae which will
define the position of each point of the body after the transference with respect to its
initial placement. This investigation will therefore be referable solely to geometry, or
rather to stereotomy [the art of stone-cutting].

It is clear that by the separation of this part of the question from the other, which belongs
properly to Mechanics, the determination of the motion from dynamic principles will be
made much easier than if the two parts were undertaken conjointly.

These two aspects of dynamics were later recognized as the distinct sciences of
kinematics and kinetics, which treat the motion and the forces producing it, respec-
tively. Kinematics was first defined as a separate study by the French mathemati-
cian and physicist, André Marie Ampère (1775–1836). He chose the French name
cinématique from the Greek word κiνημα (kinema), meaning motion [1]. An inter-
esting narrative on the history of kinematics is found in [3, pp. 1–27].

The field of kinematics, however, has grown to include not only the geometric
part of dynamics but also those aspects of statics that deal with the geometry, but
not the magnitudes, of the system of forces acting on the bodies. For this reason,
Figure 1.1 shows a dashed line indicating the interaction of kinematics with statics.
This should not be surprising because there is a well-established duality between the
geometry of a system of forces and a set of velocities in kinematics.

The predominant problem in multibody system analysis, as will become evident,
is often one of kinematics – a topic of major emphasis in this book. Statics and
kinetics, however, are also important parts of any complete design analysis, and
these topics are also covered in detail.

1.2 Multibody Systems and Mechanisms

A multibody system can be defined as a collection of bodies (mechanical parts)
in which some or all of the bodies may be interconnected by joints that constrain
the relative motions between the joined bodies. However, the presence of joints
or connections is not an absolute requirement for a multibody system; the bodies
may be “restrained,” rather than constrained, by interconnections with other bodies
by elements such as springs or dampers. There are a number of abstract concepts
that must be further considered for a rigorous understanding and for purposes of
modeling a multibody system; these include (1) body, (2) joint, (3) constraint, (4)
restraint, (5) spring, and (6) damper.

The general definition of a multibody system covers a very large variety and
many different kinds of mechanical systems. The radio-controlled model car shown
in Figure 1.2 is one example of a multibody system.

The NASA Mars Exploration Rover, Figure 1.3, is another example of a multi-
body system. Biomechanical models of the human body, as shown in Figure 1.4, and
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Figure 1.2. Multibody model of a radio-controlled car
showing the front and rear suspension systems.

Figure 1.3. NASA Mars Exploration
Rover.

(a) (b)

Figure 1.4. (a) A biomechanical model for studying human gait, (b) Detailed model of a
human knee. (Courtesy Prof. Darryl Thelen, University of Wisconsin, Madison, WI).
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Figure 1.5. Humanoid robot CHARLI-2, winner
of the RoboCup 2011 World Soccer Competition
(Courtesy John McCormick and Prof. Dennis Hong,
Robotics and Mechanisms Lab, Virginia Polytechnic
Institute, Blacksburg, VA).

also bipedal walking robots, such as that in Figure 1.5, represent additional examples
of multibody systems.

The Gough/Stewart platform, shown in Figure 1.6, has been a popular system
for a number of applications since the 1960s, including many recent adaptations in
parallel robotic systems.

Parallel (Figure 1.7) and serial (Figure 1.8) manipulators are also examples of
multibody systems.

Mechanisms constitute an important category of multibody systems. Of course,
the variety of possible systems is unlimited. One example of a mechanism is the
automotive suspension system shown in Figure 1.9.

Speaking rigorously, a mechanism is defined as an assemblage of mechanical
bodies, movably connected by joints to form a mechanical system with one body
fixed and having the purpose of transforming motion. Whereas a mechanism is

Figure 1.6. The Gough/Stewart platform. Parallel (Figure 1.7) and
serial (Figure 1.8) manipulators are also examples of multibody
systems.
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Figure 1.7. Parallel manipulators.

Figure 1.8. Serial manipulator.

Figure 1.9. Automotive independent front suspen-
sion mechanism.
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considered to have one of its bodies fixed, a general multibody system, in contrast,
may be an unrooted, free-floating system. This definition of a mechanism includes
several terms that must themselves be more precisely defined, which is the inherent
pitfall of any first definition. However, a start must be made somewhere, and as such,
this definition is perhaps as good as any.

Much of the material in this chapter is based on definitions originally established
by Professor Franz Reuleaux (1829–1905), a German kinematician whose work [6]
marked the beginning of a systematic treatment of kinematics. For an English trans-
lation, including additional reading, see British engineer and academic, Alexander
Blackie William Kennedy (1847–1928) [5]. Reuleaux’s second book [7] also made a
lasting impression but, unfortunately, has not been translated into English.

Some light is shed on the meaning of the word “mechanism” by discussing
what is not meant. Let us distinguish first between the words “mechanism” and
“structure.” A structure is also an assemblage of mechanical bodies connected by
joints, but its purpose is definitely not to transform motion. A structure, such as a
truss, is intended to be rigid. It can, perhaps, be mobile in the sense of being movable
from place to place. However, it has no internal mobility; no relative motion takes
place between its parts or members. A mechanism, on the other hand, does have this
freedom among its various members to move relative to one another. Indeed, the
whole purpose of a mechanism is to utilize these relative motions for transforming or
modifying a given input motion to produce a different output motion. For example,
a shaft set in a pair of bearings is not a mechanism, because the intent is to transmit
the input motion to the output, rather than to transform it, but it can be viewed as
a multibody system. A speed-reducing set of gears between input and output shafts,
on the other hand, does form a mechanism.

This brings us to distinguishing between the words “machine” and “mechanism.”
A machine is an assemblage of fixed and moving bodies for doing work, a device for
applying power or changing its direction. It differs from a mechanism in its purpose.
In a machine, force, torque, work, and power are the predominant concepts. In a
mechanism, even though it may transmit power or force, the predominant concept is
one of altering motion. Both machines and mechanisms are multibody systems with
multiple masses and may contain elements such as springs and frictional damping
elements.

1.3 Planar, Spherical, and Spatial Mechanisms

Mechanisms, like many other things, may be categorized in several different ways
in order to emphasize their similarities and differences. One such grouping divides
mechanisms into planar, spherical, and spatial categories. Of course, all three groups
have many things in common, but there must also be some criterion to distinguish
them. In this instance, the criterion is found in the characteristics of the motions of
the individual bodies.

A planar mechanism is one in which all moving points describe planar curves
and in which all of these curves lie in parallel planes. That is, the loci of all points
are planar curves, all parallel to a common plane. Owing to this characteristic, it
is possible to represent the locus of any chosen point in its true size and shape
in a single drawing or figure. The motion transformation of any such mechanism is
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Figure 1.10. Planar four-bar linkage.

called coplanar. The planar four-bar linkage (Figure 1.10), the disk-cam and follower
(Figure 1.11), and the slider-crank mechanism (Figure 1.12) are familiar examples
of planar mechanisms.

A spherical mechanism is one in which each moving body (or its extension) has
one point that remains stationary as the system moves, and in which the stationary
points of all bodies lie at a common location. That is, the locus of any point is a curve
contained in a spherical surface and the spherical surfaces defined by arbitrarily
chosen points are all concentric. The motions of all particles, therefore, can be
completely described by their radial projections on the surface of a sphere with a
properly chosen center. The Cardan/Hooke universal joint (Figure 1.13) is perhaps
a familiar example of a spherical mechanism.

Spatial mechanisms, on the other hand, include no restrictions on the relative
motions of their bodies. The motion transformation is not necessarily coplanar,
nor must it be concentric. A spatial mechanism may have particles with loci of
double curvature. Any linkage that contains a screw joint, for example, is a spatial
mechanism, because the relative motion within a screw joint is helical. Examples

Figure 1.11. Disk-cam and follower.
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of spatial mechanisms are industrial robots (Figure 1.14) and the human skeletal
system (Figure 1.4).

It should be pointed out that the overwhelmingly large category of planar mech-
anisms as well as the category of spherical mechanisms are only special cases or
subsets of the all-inclusive category – spatial mechanisms. They occur as a conse-
quence of special geometry in the locations and orientations of their joint axes.
Unique geometric situations yield their own particular mechanisms.

If planar and spherical mechanisms are only special cases of spatial mechanisms,
why is it desirable to identify them separately? Because of the particular geometric
conditions that identify these types, simplifications are possible in their design and
analysis. As previously mentioned, it is possible to observe the motions of all points
of a planar linkage in true size and shape from a single direction. In other words, all
motions can be represented graphically in a single view. Thus, graphic techniques
are well suited to their analysis, as demonstrated by the abundance of texts such as
[9] on the kinematics of mechanisms. Because spatial mechanisms do not enjoy this
special geometry, visualization can become difficult, and more powerful techniques
are needed for their analysis.

Because the vast majority of mechanisms in use today are planar, we may
question the need for the more complicated techniques developed in later chap-
ters. There are several reasons why more powerful methods are of value for such
systems, even though the “simpler” graphic techniques may have been mastered.
First, they provide new, alternative methods that solve problems in a different way.
Thus, they provide a means for checking results. Certain problems by their nature
may be more amenable to one method than to another. Second, methods that are
analytic in nature are better suited to solution by digital computation than are graphic
techniques and, therefore, can be analyzed with higher accuracy. Third, even though
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Figure 1.13. Cardan/Hooke universal
joint.
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Figure 1.14. An industrial robot.

the majority of useful linkages are planar and well suited to graphic solution, the
few remaining must also be analyzed, and techniques should be known for analyzing
them. Fourth, a possible reason that planar linkages are so common is that good
methods for analysis of the more general spatial systems have not been readily avail-
able until recent years. Therefore, their design and use have not been common, even
though they may be inherently better suited in certain applications.

Finally, spatial mechanisms are much more common in practice than their formal
description indicates. Consider a “planar” four-bar linkage (Figure 1.10). It has four
bodies connected by four pin joints whose axes are “parallel.” This parallelism is a
mathematical hypothesis; it is not a reality. The joint axes, as produced in a shop –
in any shop, no matter how good – are only approximately parallel. If the axes are
nearly parallel, the system operates because of looseness in the bearings or flexibility
of the bodies. If the joint axes are far out of parallel, there is binding in no uncertain
terms, and the system only moves because the bodies flex and twist, producing loads
in the bearings. A common way of compensating for non-parallelism is to connect the
bodies with self-aligning bearings, actually spheric joints allowing three-dimensional
rotation. Such a “planar” linkage is, thus, really a low-grade spatial mechanism.

1.4 Mechanical Body

Let us now look more closely at a term that has been used frequently in previous
sections. The term is “body,” or more precisely, “mechanical body.” In this text, a
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mechanical body is defined as a physical component of a machine, mechanism, or
multibody system that is considered completely rigid, and that may contain joint
elements for connecting it to other bodies.

The key concept in this definition is that of rigidity. Because the purpose of
a mechanism is to transform motion, its analysis usually begins with a study of its
kinematics. The assumption that bodies are rigid is a key in isolating kinematic
effects from those of kinetics; it allows major simplifications in the analysis process.
Stated explicitly, the assumption is that there is no change in distance between
arbitrarily chosen points of the same mechanical body no matter what load is applied.
Detailed consideration of deformations or flexibilities in mechanical bodies requires
a separate and comprehensive treatment and there is much past and recent literature,
for example [4], on the subject. For this reason, this topic is not covered in this
text.

It is true that no real machine member is completely rigid; each has elastic
(and also thermal) properties characteristic of its shape and material. As such, a
mechanical body is an idealization of a real machine component. However, it is
this idealization that allows the kinematics of a mechanical system to be studied
separately from kinetic (and thermal) effects. Machines that depend on flexibility of
their members for their motion, such as the four-bar linkage with nonparallel axes
discussed earlier, cannot be idealized as consisting of mechanical bodies. Analysis
techniques for such systems either must accept this approximation, or they will
necessarily be complicated by the need for simultaneous kinematic and kinetic (and
perhaps even thermal) analyses [8].

Whereas a real machine member is made up of particles of mass and has material
properties, a mechanical body has only geometric properties – that is, points or
locations, lines, and planes. This brings us to the concept of the extended mechanical
body. The entire three-dimensional space that contains a mechanical body and that
moves with the body can be thought of as an extension of that body. Because of
this concept, it can be quite proper to speak of points on a body that lie outside
of the boundaries of its physical shape. In addition, it is permissible to speak of
coincident points or locations on two or more bodies, even though two different
physical particles cannot occupy the same space at the same time.

As mentioned in its definition, a mechanical body may carry the elements (mat-
ing surfaces) of joints that connect it to other bodies. Thus, bodies can be subdivided
into categories wherein nullary bodies describe those carrying no joint elements,
unary bodies carry a single-joint element, binary bodies carry two, ternary bodies
carry three, and so on. It should be noticed that, in kinematics, the primary function
a body serves is to ensure that the relative locations and orientations of its joint
elements do not change – that is, the purpose of a body is to hold its joint elements
and other shape features in constant geometric relationships.

1.5 Mechanical Chain and Kinematic Inversion

When several mechanical bodies are movably connected by joints, they are said to
form a mechanical chain. If every body in the chain is connected to at least two others
as in Figure 1.15b,c the chain comprises one or more closed loops and is called a
closed chain; if not, the chain is referred to as open, as in Figure 1.15a. If the chain
consists entirely of binary bodies, as in Figure 1.15b, it is a simple chain. Compound
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(a) (b) (c)

Figure 1.15. (a) Open mechanical chain, (b) simple closed chain, (c) compound chain.

chains, however, contain other than binary bodies and may form more than a single
closed loop. An example is shown in Figure 1.15c.

Referring to the previous definition of a mechanism, we see that it is necessary to
have one body fixed. When we say that a body is fixed, we mean that it is chosen as the
frame of reference for the movement of other bodies; that is, that the motions of other
points of the mechanical system are measured with respect to a coordinate system
attached to the fixed body. The fixed body in a practical machine usually takes the
form of a stationary platform or base or housing rigidly attached to such a base, and
is called the frame or ground or base. The question of whether this reference frame
is truly stationary (in the sense of being an inertial frame of reference) is immaterial
in the study of kinematics because masses are neglected, but does become important
in the investigation of kinetics when inertial forces become important. In any case,
once a frame member is designated (and other conditions are met), as the inputs are
moved through continually changing positions, all other bodies have well-defined
motions with respect to the chosen frame.

If, for the same mechanical chain, a different body is chosen as the frame,
the relative motions between the various bodies are not altered, but their absolute
motions with respect to the new base may be dramatically different. The process of
changing the frame of reference or the base link of a mechanical system – that is,
designating a different body as the fixed frame – is known as kinematic inversion.
An example is shown in Figure 1.16.

1.6 Joints and Joint Elements

One contributing factor in determining the relative motions of two points in a
mechanical system is the assumption that all bodies are rigid and that, therefore,
two points of the same body can only move on spherical loci with respect to each
other. However, this fact alone is not enough to completely specify the kinemat-
ics of a mechanism or multibody system because it tells nothing about the relative
motions of points on different bodies. These relative motions between bodies can-
not be arbitrary. These too must be constrained or, at least, restrained to have the

Figure 1.16. Example of kinematic inversion.
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Figure 1.17. Hollow and solid elements of a revolute joint.

proper relative motions – those chosen by the designer for the particular task to be
performed.

In kinematics, a joint is defined as a mechanical connection between two (and
only two) bodies. The designer restricts, but does not necessarily eliminate, the
relative motions allowed between bodies by selecting the types and locations of joints
used in connecting the bodies. Thus, we are led to the conclusion that, in addition
to the constant (rigid) geometric relationship between joint elements on the same
body, the nature of the joints and the relative motions that they permit between
the attached bodies are essential in determining the kinematics of a mechanism
or multibody system. For example, in the human musculoskeletal system, it is the
joints that allow movement of the limbs with respect to one another, providing both
mobility and dexterity. For other mechanical systems such as robotic manipulators,
joints are chosen such that they can be easily driven by actuators, such that their
positions and/or velocities can be determined by sensors, and such that they can be
controlled by automatic control systems. It is therefore important to look closely at
the nature of joints in both general terms and through common types.

Another important reason to classify some of the common types of joints has
to do with developing a general method of analysis that will lend itself to digital
computation. In general, the bodies of different types of multibody systems come
in an unlimited variety of shapes, sizes, mass properties, and so on. The types and
variety of joints, however, is more limited and therefore, we can separately study and
catalogue the more common types. These can then be chosen as needed to provide
the governing equations for different multibody systems.

Because a joint connects two mechanical bodies, the joint is not a physical entity
in itself; it is composed of two constituents, the mating surfaces on the two connected
bodies. The two mating surfaces, when considered separately, are each referred to
as a joint element and, when they are joined together, they form a kinematic pair
(of elements) or a joint. If it is desirable to distinguish between the two elements
making up a joint, their shapes usually make it natural to refer to one as the hollow
element and the other as the solid or full element as shown in Figure 1.17. Some joint
elements do not have this obvious hollow and solid geometry, as for example in the
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case of a flat joint (see Figure 1.20f). The two may then be arbitrarily distinguished
by assigning one term to each.

The controlling factor that determines the relative motion(s) allowed by a given
joint are the shapes of the mating surfaces or elements. Each type of joint has its
own characteristic shapes for its elements, and each allows a given type of motion
that is determined by the possible ways in which these two elemental surfaces can
move with respect to each other. For example, a pin joint usually has cylindric
elements with provision on the ends to prevent axial motion. Assuming a good fit,
without backlash, these surfaces only permit relative rotational motion. Thus, a pin
joint allows the two connected parts to experience relative rotation with respect to
each other about their common axes. So, too, other joint types each have their own
characteristic element shapes and relative motions. These element shapes restrict
the otherwise arbitrary motions of two unconnected bodies to some prescribed type
of relative motion, thus producing constraints on the motion of the total mechanical
system.

It should be pointed out that the element shapes may sometimes be subtly
disguised and difficult to recognize. For example, a pin joint might include a roller
bearing, and the two mating surfaces, as such, may not be recognized as those of a
pin joint. Nevertheless, if the motions of the individual rollers are not of interest, the
overall relative motion allowed by such a joint is not different and the joint is still
of the same generic type; it allows relative rotation about a single axis. So, too, the
diameter of the pin used (and, in most cases, other dimensional data) are of no more
importance in kinematics than the exact sizes and shapes of the connected bodies.
Thus, the criteria that distinguish different joint types are the relative motions that
they permit rather than the detailed physical shapes of the elements, even though
these may provide vital clues.

As previously stated, the primary function of a mechanical body is to hold fixed
geometric relationships between its joint elements. In a similar way, the primary
kinematic function of a joint is to constrain the relative motions allowed between
the connected bodies. Other features are determined for other reasons and are
unimportant in the study of kinematics.

When a kinematic problem is formulated, it is necessary to recognize the types
of relative motion permitted by each of the joints and to assign to each some variable
parameters for describing these relative motions. Because many of these parame-
ters are required as degrees of freedom in relative motion allowed by the joint in
question, they are referred to as joint variables. Thus, the only joint variable of
a pinned joint is an angle measured between reference lines fixed in the adjacent
joint elements, whereas a ball-and-socket joint has three joint variables (perhaps
three angles) to describe the relative three-dimensional rotation allowed between its
elements.

1.7 The Six Lower-Pairs

Because a joint implies joining the elements of a pair of bodies, a kinematic pair was
the name given to a joint by Reuleaux [6]. He also divided pairs into two categories
that he called higher- and lower-pairs, the latter category consisting of precisely the
six types listed in Table 1.1, to be described in this section. He distinguished between
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Table 1.1. Characteristics of the lower-pairs

Joint Degrees of Relative Motion
Joint type Symbol Diagram variable(s) freedom motion type

Helical H(σ ) Δθ or Δs 1 helical spatial
Revolute R Δθ 1 rotation planar

Prismatic P Δs 1 rectilinear planar

Cylindric C Δθ and Δs 2 cylindric spatial

Spheric S Δθ , Δθ ′, Δθ ′ ′ 3 spheric spheric

Flat F Δs, Δs′, Δθ 3 planar spatial

the categories by noting that lower-pairs, such as the pin joint, have surface contact
between their joint elements, whereas higher-pairs, such as the connection between
a disk-cam and its roller follower, have line or point contact between their elemental
surfaces. However, as previously noted, this criterion may be misleading. Instead,
we should look for distinguishing features in the relative motion(s) that the joint
allows.

Consider two machine components – that is, two bodies of a multibody system –
labeled body b and body c (one circular and the other straight) rolling on each other
without slip as shown in Figure 1.18a. Choosing two coincident points – Pb and Pc of
bodies b and c, respectively – at the point of contact (Figure 1.18a), notice the locus
that each traces in a coordinate system fixed to the other body as the joint moves. In
this case, the point Pb traces a cycloid on body c, (Figure 1.18b), whereas the point
Pc of the straight body c traces an involute on the circular body b, (Figure 1.18c).
The characteristic to be noticed is the dissimilarity between the two curves; this is a
mark of a higher-pair.

In a lower-pair, such as a pin joint, on the other hand, the loci traced by a pair
of coincident points of the connected bodies are similar curves (circles for a pin
joint), differing only in the directions in which they are traced. A corollary to this
is the observation that interchanging the hollow and solid elements of a lower-pair
between the two bodies does not affect their relative motion. This is illustrated for
a pin joint in Figure 1.19.

The six joint types defined by Reuleaux [6] to form the category referred to as
lower-pairs are listed in Table 1.1 and are illustrated in Figure 1.20.

The simple kinematic notation for each joint, shown in column two of Table 1.1,
can be used to provide the following information about a mechanism or a robotic
manipulator as part of a multibody system: namely, the types of joints between

Link b
+

Link c Pc
Pc Link c

Pb

Pb

Link b
+

Pb

Pc

(a) (b) (c)

Figure 1.18. Contrast of relative motions between elements of a higher-pair.
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Figure 1.19. Inversion of the hollow and solid elements of a revolute
joint.

mechanical bodies and the order in which the joints appear in a chain. For example,
one can refer to a multibody system as an RSSR mechanism. This means that the
first joint in the chain is a revolute (R) joint connecting the fixed (or the first) body
to the second body of the system. Next, the second body is connected to the third
body by a spheric (S) joint and this third body is also connected to the fourth body
by another spheric (S) joint. Finally, the fourth body is connected back to the first
or fixed body by a revolute (R) joint.

The six lower-pair Reuleaux joints are sometimes described symbolically using
skeletal diagrams that simplify the sketching of different mechanisms, robotic manip-
ulators, or some multibody systems. These are shown for each of the six lower-pairs
in column three of Table 1.1.

The most general of the six lower-pairs defined by Reuleaux, the one from which
all others may be derived, is the helical or screw joint. It carries the symbol H(σ )
where σ represents the pitch of the helix. The helical joint consists of a solid element
borne by the “bolt” and a hollow element carried by the “nut” and, as with other
lower-pairs, the loci traced by coincident points are identical or, in this case, helical.
If one of the joint elements is turned through an angle Δθ relative to the other, it also
advances by an axial distance Δs. The ratio of Δs to Δθ is an invariant property of
the helix defined as its pitch, σ = Δs/Δθ , the axial advance per unit rotation. When
Δθ is specified then Δs is determined and conversely. Therefore, either Δθ or Δs
may be used as the joint variable defining the relative displacement of the elements.
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Figure 1.20. The six lower-pairs: (a)
helical joint, (b) revolute joint, (c)
prismatic joint, (d) cylindric joint, (e)
spheric joint, (f) flat joint.

However, because Δs and Δθ are interrelated through the pitch, the joint has only
one degree of freedom in relative motion, and only one of these variables may be
used as the joint variable.

Two other lower-pairs are formed by allowing the pitch of a helical joint to take
one of its two extreme values. On setting the pitch to zero, we see that Δs becomes
zero and the “threads” become circumferential bands; in this case, only relative
rotation is possible. This type of joint, which could be written H(0), is so common,
appearing as a pinned joint, that it is given its own symbol R and is called a revolute
joint. The revolute joint has only one degree of freedom and, because there is no
axial advance, the joint variable is the relative rotation Δθ between the elements.
The revolute joint is especially important in the design of many mechanisms or
multibody systems because it can be simply actuated with an electric or hydraulic
motor; it is in common use, for example, in robotic manipulators.

When the pitch of a helical joint is made infinite, the “threads” align themselves
axially, allowing only relative axial translation. This type of joint also has one degree
of freedom, and the joint variable is the relative axial translation Δs between the
joint elements. Again, this pair could be denoted symbolically as H(∞) but it is so
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important, appearing when there is rectilinear translation, that it is given the name
prismatic pair and is denoted by the symbol P. The prismatic joint is also very simply
actuated, as by a hydraulic or pneumatic cylinder.

Of these three types of joints – the helical joint and its two descendants, the
revolute and prismatic joints – each has a single degree of freedom; each has its
own unique type of relative motion – helical, circular, and rectilinear, respectively;
each is described by a single joint variable; and each is located by its distinctive
geometric axis. It is now clear that the motion of a helical joint can be obtained
by a coaxial combination of a revolute and a prismatic joint with a constant ratio
of the translational to the rotational motion. The remaining three lower-pairs each
have more than one degree of freedom and can be thought of as equivalent to series
combinations of revolute and prismatic joints.

The cylindric joint is equivalent to a revolute joint mounted coaxially in series
with a prismatic joint. It has two degrees of freedom because the axial advance and
the rotation are independent. There is no constraint between these two motions, as
there was in a helical joint. Thus, Δθ and Δs are both joint variables. The cylindric
joint is denoted by the symbol C.

The ball-and-socket joint is an example of a spheric or globular joint. It may
be visualized as a combination of three consecutive revolute joints with three non-
coplanar axes all intersecting at a central point. Although any three intersecting
non-coplanar axes are sufficient, mutually perpendicular axes are often used for
convenience in visualization and calculation. A spheric joint has three degrees of
freedom and the three joint variables may be chosen as Δθ , Δθ ′, and Δθ ′′, the relative
motions in each of the three independent revolutes. The symbol S is used to denote
a spheric joint. In robotic applications a spheric wrist is often used and consists of
three revolute joints all intersecting at one point that is referred to as the wrist center
point.

The sixth type of lower-pair is the flat or planar joint, denoted by the symbol
F. The joint elements of a flat joint are planar surfaces, constrained to remain in
contact but free to move by sliding on one another. The relative motion is general
planar motion, having three degrees of freedom. The motion may be visualized
as two non-parallel translations in the plane and one rotation about an axis nor-
mal to the plane. Thus, it is equivalent to two non-parallel prismatic joints and a
properly oriented revolute joint (perpendicular to the axis directions of the two pris-
matic joints) connected in series. Its three joint variables can be chosen as Δs, Δs′,
and Δθ .

As pointed out earlier, the lower-pairs are very common in the construction of
practical mechanisms and multibody systems and, in some cases, all of a mechanical
system’s joints are lower-pairs. A mechanism that consists entirely of lower-pairs is
referred to as a linkage.

Planar linkages utilize only revolute and prismatic joints. Although a flat joint
might theoretically be included, this would impose no constraints on the relative
motion in the plane and thus would be equivalent to an opening in the chain. Planar
motion also requires that the axes of all prismatic joints be parallel to the plane of
motion and that the axes of all revolute joints be normal to the plane of motion.

Spheric linkages must be constituted entirely of revolute joints because a spheric
joint would be equivalent to an opening in the chain and all other lower-pairs have
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Figure 1.21. Examples of higher-pairs.

non-spheric motion. In spheric linkages, the axes of all revolute joints must intersect
at the center of the spheric motion.

Robotic manipulators usually use single-degree-of-freedom joints because they
can easily be controlled by independent actuators. The most common joints used in
these are revolute and prismatic joints.

One could argue that Reuleaux should have included two more joint types in
his compilation of lower-pairs. One of these might be called a rigid joint; it is defined
here as a joint that has zero degrees of freedom and allows no motion between
the connected bodies. The other might be called an open joint; it is defined here
as a logical connection with six degrees of freedom and allows complete freedom
between the “connected” bodies. On the other hand, one could argue that these two
joint types do not truly fit the definition of a joint in the first place, and should not be
included. Nevertheless, these two additional joint types, although not lower-pairs, do
allow significant advantages in the simulation of multibody systems, and are included
in later chapters of this text.

1.8 Higher-Pairs and Kinematic Equivalence

In spite of the common occurrence of lower-pairs in practical systems, the methods
developed in later chapters would be quite inadequate if no consideration were
given to higher-pairs. However, by definition, the higher-pairs include all joint
types not mentioned in the list of lower-pairs, and thus are practically unlimited
in variety. A systematic accounting of all higher-pairs and their motion character-
istics is, therefore, not a realistic objective. Examples of higher-pairs are shown in
Figure 1.21.

Let us now return to the observation that two unconnected bodies have six
degrees of freedom in relative spatial motion – three in relative translation and
three in relative rotation – and that the objective of including a joint is to impose
conditions or constraints on these six independent relative motions, that is to make
them dependent on one another in a chosen relationship. For example, in a helical
joint, two translations and two rotations are completely constrained (eliminated) and
the remaining translation and rotation are made dependent on each other through
the ratio defined as the pitch.

One way of analyzing mechanical systems that include higher-pairs is to find a
proper combination of lower-pairs that enforces the same relative motion constraints
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Figure 1.22. Example of kinematic equivalence.

and thus can be used as a model for the higher-pair. Such a combination is referred
to as a kinematic equivalent. An example is shown in Figure 1.22. There are no
hard-and-fast rules for discovering these proper combinations and the process may
require a certain amount of ingenuity on the part of the analyst, especially as the
constraint conditions become more complex.

It should be pointed out that a kinematically equivalent combination of lower-
pairs may be found that properly restricts the relative motions as desired, but has
force transmission characteristics entirely different from the higher-pair being mod-
eled. Thus, attention must also be given to static and dynamic equivalence if these
types of analyses are to be performed on the resulting model.

1.9 Restraints versus Constraints

Joints provide connections between bodies and, in our modeling paradigm, they
restrict the relative motions between the connected bodies to specific types deter-
mined by the choice of the joint. For example, a revolute joint only allows relative
rotation about the joint axis between the two connected bodies. For modeling, joints
are thus considered to strictly enforce specific constraints on the relative motions of
the connected bodies.

On the other hand, bodies may be restrained by interconnections such as springs
or dampers, which do not strictly enforce relative motion constraints, but neverthe-
less restrain the relative motions of the interconnected bodies through energy storage
and/or release. Of course, a joint, however stiff in the directions of its constraints,
may be modeled as providing restraint in the directions of its relative motion. It
should be clear that the use of a joint (a constraint) or the use of a softer restraint
is a modeling decision, determined for the specific system and the complexity and
precision desired in modeling the system.
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2 Topology and Kinematic Architecture

2.1 Introduction

In order to make a systematic study of mechanisms and multibody systems and to
develop general methods for their analysis by digital computer, we must be able to
recognize and precisely describe certain basic information that governs their opera-
tion. For example, it is clear that, at some point, we must explicitly identify certain
dimensional information, such as part shapes and dimensions, in order to perform
the analysis. However, before we reach this stage, another even more fundamental
problem confronts us. We must first study each system enough to determine how its
various parts are interrelated – that is, which part is connected to which, and what
is the nature of each connection. In other words, we need to understand the kine-
matic architecture of the multibody mechanical device. In the kinematics literature,
the term “structural analysis” has sometimes been used for this type of analysis.
Here, however, we use the term “kinematic architecture” to avoid confusion with
the statics use of structural analysis.

In the classic methods of analysis, both graphic and analytic, the task of recogniz-
ing the architecture of a mechanism or multibody system did not require reduction
to a step-by-step procedure. No real difficulties arose because the analyst, through
experience, developed an intuitive feeling for analyzing problems of a given type.
As the analysis progressed, he or she could continually make decisions based on
experience as to what steps should be taken in what order and what techniques
might be applied to accomplish each step.

However, if a general method suitable for automated computation is to be
developed here, the problem of recognizing a system’s topology – the associations
between its parts – must be dealt with in a more systematic manner. It is not possible
to depend on a computer to “know” how to proceed through the solution process.
It is necessary to discover and adopt a unified procedure, common to all situations
that might be encountered.

The success of a generalized approach, therefore, depends on the development
of a general algorithm whereby a computer can recognize and manipulate systems
of widely differing kinematic architecture without placing awkward requirements or
special conventions on the task of data preparation. Insofar as possible, all problems
should be handled by one consistent procedure. The challenge, therefore, is to devise

22
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Figure 2.1. Hydraulic clamp (Lapeer Mfg. Co., Lapeer, MI).

a procedure powerful enough that it is applicable to as wide a variety of mechanisms
and multibody systems as possible.

In keeping with this philosophy, the purpose of this chapter is to develop a
general algorithm for studying the topology of a mechanism or multibody system –
that is, the number of bodies, the number and types of joints, the pattern in which
the bodies and joints are arranged, the number and pattern of closed loops, if any,
and other such characteristics that are determined solely by the connectivity of the
system. This phase of the analysis of a system is referred to as topological analysis
or analysis of the kinematic architecture of the system.

In order to describe the kinematic architecture of a mechanism or multibody sys-
tem explicitly and precisely, it is necessary to choose a format that can be understood
by others for purposes of communication. It is also advantageous if this format can
be manipulated directly to determine such features as closed loops. Several formats
are possible and each has its own advantages depending on what features are sought
through manipulation.

One way of describing topological characteristics, for example, is through a
photograph or drawing such as that shown in Figure 2.1. Clearly, this can provide a
complete description; however, it also includes a plethora of irrelevant information
that tends to disguise the true nature of the topology.

Another approach, common throughout the history of traditional kinematics,
is the use of schematic drawings such as that shown in Figure 2.2. Such schematics
suppress many of the features that are unimportant in topological analysis. However,
they still retain an aura of “shape” and can become misleading for this reason. Also,
although such diagrams are well suited to human communication, they are not well
suited to manipulation by computer; a numeric format would be preferable.

Body 2

Body 6

Body 5 Body 4

Body 3

Body 1

G

E

F

B C

D

A

Figure 2.2. Schematic drawing for the hydraulic clamp of Figure 2.1.
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2.2 The Incidence Matrix

We recall from Chapter 1 that all mechanisms and multibody systems are made up
of only two basic types of components: mechanical parts and joints. Their definitions
are repeated here:

Mechanical Part (Body): a mechanical part is a rigid body that may contain joint
elements for connecting it to other bodies.

Joint: a joint is a connection between two (and only two) joint elements of
separate bodies that provides constraints on the relative motions of the two
bodies joined.

Notice that a joint does not exist merely by the fact that both joint elements
exist; it also requires that they be joined. Therefore, a joint is considered a separate
entity in itself, distinct from the two elements.

Once all of the bodies and joints have been identified for a given system, the prob-
lem of topological analysis requires describing the relationships that exist between
them. Much of the remainder of this chapter relies on the branch of mathematics
titled graph theory; see [2] for example. Precise discussion of these relationships
requires two further definitions:

Incidence: a joint is said to be incident with each of the two bodies containing its
joint elements.

Mechanical Graph (Assembly): a mechanical graph or assembly consists of a
set of bodies, a set of joints, and a prescribed incidence relationship between
these two sets.

Thus, a mechanical graph uniquely defines the characteristics of a mechanism
or multibody system that are essential to its topological analysis, and at the same
time strips away all other features such as the geometry and material properties
of the bodies. These features will, of course, be reintroduced at a later stage in
the analysis, but are not pertinent to the analysis of a system’s kinematic architec-
ture. The incidence relationships for the clamp example of Figure 2.2 are given in
Table 2.1. In this example, letters rather than numbers are used for joint labels to
reduce confusion between joint labels and body labels, which are numeric. Notice
also that the stationary body is intentionally chosen to have the highest body label
(6); the reason for this becomes clear in section 2.5.

Table 2.1. Incidence table for figure 2.2

Joint Connects from body to body

A 6 3
B 3 5
C 3 4
D 1 4
E 2 5
F 6 1
G 2 6
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Body b Body c
Joint h

Figure 2.3. Graphic representation of kinematic architecture where each body is represented
as a node and each joint is represented as a directed arc connecting two nodes.

One further property is defined in order to achieve maximum capability in the
upcoming manipulation. Each joint is assigned an arbitrary orientation. When the
orientation of joint h is chosen as oriented from body b to body c, then joint h is
said to be negatively incident with body b and positively incident with body c. A
mechanical graph in which every joint is assigned an orientation is called an oriented
mechanical graph or an oriented assembly.

Another way to represent the topology of a complex multibody system, which
perhaps aids in visualization of its kinematic architecture, is through a graphic rep-
resentation in which each body is represented as a node (vertex) and each joint is
represented as a directed arc (edge) of a graph, and the arc (edge) connections of
the nodes (vertices) correspond to the joint connections of the bodies. When the
orientation of joint h is directed from body b to body c, then the arc for joint h
is directed from the node representing body b to the node representing body c, as
shown in Figure 2.3.

With this convention, the oriented graph for the clamp of Figure 2.2, using the
orientations given in Table 2.1, is depicted in Figure 2.4.

With the aforementioned definitions, we are now prepared to define a new
and very useful format for expressing the incidence relations of a mechanism or
multibody system. The information contained in the incidence table or in the oriented
graph can be written in the form of an incidence matrix, in which each row represents
a body, each column represents a joint, and the matrix entries define the incidence
between corresponding rows and columns. For a system having 	 bodies and n joints,

Body 1

A

B

C

D

F

G

EBody 2

Body 3

Body 4

Body 5

Body 6

Figure 2.4. The oriented graph of the
hydraulic clamp of Figure 2.2, using the
joint orientations given in Table 2.1.
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the incidence matrix Γ is (	 × n) matrix. The entry in row b and column h is defined
as follows:

Γ (b,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if joint h is positively+1
incident with body b;

b = 1, 2, . . . , 	,
if joint h is negatively−1
incident with body b;

h = 1, 2, . . . ,n,
if joint h is not incident

0
with body b.

(2.1)

Therefore, for the clamp example of Figure 2.2, with the orientations of the
joints chosen as shown in Table 2.1, the incidence matrix is

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 1 0
0 0 0 0 −1 0 −1
1 −1 −1 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 1 0 0

−1 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
4
5
6

.

A B C D E F G

The incidence matrix completely describes the topology of an oriented mechan-
ical graph and, therefore, completely describes the kinematic architecture of a mech-
anism or multibody system. It also has the advantage that it can easily be communi-
cated to and manipulated by a computer, and thus provides a working tool as well as
a convenient symbolism. A few further definitions bring out some simple tests that
can be performed on the incidence matrix.

A system is said to contain a self-loop whenever there is a joint for which both
joint elements are contained in the same body; that is, when a joint connects a
body to itself. Self-loops, such as that shown in Figure 2.5, are of no interest in
kinematics because they permit no relative motion. They can be easily detected,
however, because each valid joint is represented by a column of the incidence matrix
having exactly two nonzero entries, one positive and one negative. Any self-loops
should be eliminated from the incidence matrix (and from the count of joints) before
further manipulations are performed.

The degree of a body is defined as the number of joints that are incident with
that body. Thus, a nullary body has degree zero, a unary body has degree one, a
binary body has degree two; a ternary body has degree three, and so on. The degree
of a body can be found by summing the absolute values of the elements of the
corresponding row of the incidence matrix. Notice that the degree of a body should

Figure 2.5. Self-loop.
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count joint elements only when they are contained in joints. Thus, a “ternary” body,
for example, in which one joint element is not joined to another body, is only of
degree two. Equivalently, the degree of all bodies can be found as the diagonal
elements of the product of the incidence matrix with its transpose:

db = (Γ Γ t )(b,b), b = 1, 2, . . . , 	. (2.2)

Another interesting property can be found by summing this equation over all
bodies:

	∑
b=1

db = trace(Γ Γ t ) = 2n. (2.3)

This shows that because the number of joints in a mechanism or multibody
system is an integer, the number of bodies of odd degree must be even.

2.3 Connectedness and Assemblies

An assembly (mechanical graph) of a multibody system is said to be connected if and
only if its bodies cannot be grouped into subsets such that no joint is incident with
bodies from more than one subset; that is, if and only if it is not possible to group
the bodies and joints such that the incidence matrix becomes block diagonal:

Γ =
[
Γ11 0
0 Γ22

]
. (2.4)

In a connected mechanical graph or assembly, the degree of any node must
not be less than unity. Mechanisms and multibody systems usually have connected
mechanical graphs. If a mechanical graph is not connected, it does not represent a
single assembly, and its unconnected assemblies may (although they need not) be
analyzed as separate systems. An example of a situation where simultaneous analysis
may be desired, or even required, is when the analysis is considering possible collision
between bodies of unconnected assemblies. Physically unconnected assemblies may
be logically connected by means of an open joint; see section 4.6.8.

Because there are (	!n!) permutations of body and joint labels, Eq. (2.4) does
not provide a convenient test for connectivity. Such a test is provided, however, by
the following theorem, taken from graph theory [2]:

THEOREM 2.1. The incidence matrix of a mechanical graph containing 	 bodies and
including a connected subassemblies has rank (	 − a) .

2.4 Kinematic Loops

A task of utmost importance in the topological analysis of a mechanism or multi-
body system is the determination of any closed kinematic loops, if they exist. All
mechanism and multibody analysis techniques in one way or another depend on the
recognition of such loops for formulation of the essential constraint equations. In any
computer-aided analysis scheme involving mechanisms or multibody systems, either
the program must be restricted to a specified kinematic architecture, or the user must
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identify any kinematic loops, or an algorithm must be incorporated into the software
that can identify closed loops from known information. In this section, an algorithm
for discovering kinematic loops based on the incidence matrix is presented.

First, the terminology must be precisely defined:

Kinematic Path: a kinematic path is a sequence of joints (h1, h2, . . . , hk) for which
there exists a corresponding sequence of bodies (b0, b1, . . . , bk) such that joint
hj is incident with bodies bj−1 and bj for each joint of the sequence.

Kinematic Loop: a closed kinematic path (where bk = b0) is called a kinematic
loop.

Also, a kinematic path or kinematic loop is said to be oriented if the joints in the
sequence have designated orientations and a “direction” is chosen for the kinematic
path or loop.

Because we have chosen a matrix representation to denote the incidence rela-
tionships of a given system, it is natural to consider a similar notation for expressing
its kinematic loops. Therefore, we define the oriented-loop matrix L such that each
row represents an oriented loop and columns again correspond to the joints of the
system, taken in the same order as for the incidence matrix. We define the entry in
row i, column h, of the oriented-loop matrix as follows:

L(i,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if joint h is contained in loop i, and
+1 if the orientation of loop i and the

orientation of joint h are the same;

if joint h is contained in loop i, and
−1 if the orientation of loop i and the

orientation of joint h are opposite;

0 if joint h is not contained in loop i.

h = 1, 2, . . . ,n, (2.5)

For the clamp example of the preceding section, therefore, an oriented-
loop matrix containing all possible loops can be found by careful inspection of
Figure 2.2:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 −1 0 −1 0

−1 −1 0 0 1 0 −1

0 −1 1 −1 1 −1 −1

−1 0 −1 1 0 1 0

1 1 0 0 −1 0 1

0 1 −1 1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)

However, the desired algorithm need not generate all possible loops, as shown
here. It is clear, for instance, that the final three rows of matrix (2.6) represent loops
that are equivalent to those of the first three rows, but which are oppositely oriented.
Also, inspection verifies that the third row is equal to the sum of the first two rows.
It is only necessary to generate enough loops to completely characterize the system.
That is, we seek a complete set of independent kinematic loops.
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Body 6

G

F

Figure 2.6. Kinematic tree for Figure 2.2.

Returning our attention to the incidence matrix, consideration of theorem 2.1
ensures that it can be partitioned as follows:

Γ =
[
Γ11 Γ12

Γ21 Γ22

]
, (2.7)

where Γ 11 is the largest possible nonsingular square submatrix. Theorem 2.1 tells
us that Γ 21 and Γ 22, together, form a rows where a is the number of unconnected
subassemblies and that, therefore,Γ 11 is of order (	− a). Some reordering of the rows
and columns may be required to achieve the largest possible nonsingular submatrix
for Γ 11. However, this is assuredly possible because, according to theorem 2.1, the
rank of Γ is (	 − a).

For the clamp example that we have been following, reordering is not required.
The submatrices for this example are:

[
Γ11

Γ21

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0
0 0 0 0 −1
1 −1 −1 0 0
0 0 1 1 0
0 1 0 0 1

−−−−−−−−−−−−
−1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A B C D E

[
Γ12

Γ22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 −1
0 0
0 0
0 0

−−−−
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

F G

.

It is interesting to note the significance of this partitioning. The submatrices
Γ 11 and Γ 21, taken together, also represent a mechanical graph, but not the same
assembly as the original. This new system has the same bodies as the original, but has
certain of its joints (F and G) disconnected as shown in Figure 2.6. It is clear in this
example that a judicious selection of joints are disconnected so that the assembly
remains connected but no longer contains any kinematic loops.

Is this a coincidence? No. Theorem 2.1 ensures that a mechanism or multibody
system retains a connected assemblies because Γ 11 is nonsingular and contains (	 −
a) rows. Therefore, it is always possible to disconnect at least [n − (	 − a)] joints,
although the choice of which joints may not be arbitrary, without dividing any of
the assemblies. However, no more than this number of joints can be disconnected
because if one more joint were disconnected, Γ 11 would contain only (	 − a − 1)
columns and, according to theorem 2.1, the system would then consist of (a + 1)
assemblies.
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These partially disconnected assemblies have such interesting properties with
regard to topological studies that they are given a special name. A mechanical graph
that is connected but contains no loops is called a tree or kinematic tree. A kinematic
tree of a mechanical graph, therefore, is a subgraph that contains all the nodes of
the original mechanical graph but has no loops. One fundamental property of a
kinematic tree is that it possesses a unique kinematic path between any two of its
bodies. Therefore, as can be seen from Figure 2.6, when any of the disconnected
joints is reconnected, a unique loop is formed, consisting of the reconnected joint
and the joints of the unique path through the tree. It should be pointed out that most
mechanisms contain at least one closed loop, but some multibody systems, such as
serially connected robots, are characterized by tree-type kinematic architectures.

The set of [n − (	 − a)] joints that are disconnected to form the tree are called
the cut-set. Each joint of the cut-set can be reconnected, one at a time, and a unique
loop is formed for each. Also, because each of these contains at least one joint (the
reconnected joint) that appears in no other loop, the loops found in this manner
must be independent. Because joints are represented by arcs in a mechanical graph,
the arcs corresponding to these reconnections (that form independent loops) are
called chords of the mechanical graph. This means that the number of independent
loops in a mechanical graph is equal to the number of chords, which is the same as
the difference between the number of arcs of a mechanical graph and the number
of arcs of a tree of the same graph. However, because [n − (	 − a)] joints are
disconnected in forming the tree, this procedure shows that there are at least NL =
(n − 	 + a) independent kinematic loops in a mechanism or multibody system. The
digraph NL is used to avoid duplicate symbolism in later chapters. This number,
NL, has also found much significance in other applications of graph theory and
is alternatively referred to as the nullity, the connectivity, the cyclomatic number,
or the first Betti number of the graph [named after Italian mathematician, Enrico
Betti (1823–92)]. Later in this section we will show that the rank of the oriented-loop
matrix L cannot be greater than NL. Therefore, the set of kinematic loops generated
by this process also provides a complete set of independent kinematic loops for the
system.

Suppose that we are successful in finding the NL kinematic loops by the previ-
ously described procedure. Suppose also that we form the oriented-loop matrix L,
including only these NL independent loops. If they are taken in the proper order
and if the proper orientation is chosen for each, then the oriented-loop matrix can
be partitioned as follows:

L = [L1 −I], (2.8)

where − I is the (NL × NL) negative-identity matrix corresponding to the recon-
nected joints of the cut-set and the rows of L1 correspond to the unique, oriented
paths through the tree. The arbitrary negative sign is chosen to produce a positive
result in Eq. (2.10).

An extremely simple algorithm for generating the paths in L1 is based on another
important theorem from graph theory. Proof is omitted here; see, for example, [3,
p. 92]:
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D
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E

Figure 2.7. Oriented kinematic loops of Eq. (2.12) for Figure 2.2.

THEOREM 2.2. With the columns of the incidence matrixΓ and the oriented-loop matrix
L ordered consistently, these two matrices are orthogonal. That is

Γ Lt = 0, (2.9)

where Lt indicates the transpose of the matrix L.
Partitioning the matrices as indicated and applying this theorem, therefore,[

Γ11 Γ12

Γ21 Γ22

] [
Lt

1
−I

]
= 0,

and on expanding the top row of submatrices,

Γ11Lt
1 − Γ12 = 0.

Because Γ 11 was chosen to be nonsingular, this equation can be readily solved
for the unknown portion of the oriented-loop matrix:

L1 = (
Γ −1

11 Γ12

)t
. (2.10)

Using this procedure on our clamp example, by Eq. (2.10) we find that

Γ −1
11 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 0 0 1
1 0 0 1 0

−1 0 0 0 0
0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , Γ −1

11 Γ12 = Lt
1 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
0 −1
1 0

−1 0
0 1

⎤
⎥⎥⎥⎥⎥⎦ , (2.11)

and

L =

[
1 0 1 −1 0 −1 0

−1 −1 0 0 1 0 −1

]

A B C D E F G

. (2.12)

Successfully finding the rank of Γ for this example to be five while the number
of bodies is six verifies that the system consists of a = 1 assemblies. Checking the
entries of Eq. (2.12) against the first two rows of Eq. (2.6), we verify that we have
indeed found a valid, complete, and independent set of oriented kinematic loops for
the system. These are shown in Figure 2.7.

Previously we made use of the fact that the rank of Γ cannot be greater than that
which gives NL = (n − 	 + a) in order to show that NL loops form a complete and
independent set. This can now be shown directly from theorem 2.2. Because Γ and
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L are orthogonal, we know that the rank of Γ plus the rank of L cannot exceed the
dimension of their common vector space, the vector space of all joints in the system.
This is Sylvester’s law of nullity [3, p. 67], named after British mathematician, James
Joseph Sylvester (1814–97):

rank (Γ ) + rank (L) ≤ n.

Theorem 2.1 tells us that the rank of Γ is (	 − a). Therefore,

rank(L) = n − 	 + a = NL. (2.13)

In this section, we have seen that the incidence matrix Γ can be manipulated to
produce a complete set of independent kinematic loops that can be used for analysis
of the system. It should be noted from Eq. (2.10) that the matrix L1 can be found
directly by performing the row operations that are required to reduce the original
incidence matrix Γ to row-echelon form:[

Γ11 Γ12

Γ21 Γ22

]
⇒

[
I Lt

1
0 0

]
.

The valid row operations allowed for reducing to this form are:

(a) a row may be replaced by its negative,
(b) a row may be added to or subtracted from another,
(c) a row or column may be switched with another.

Switching rows is equivalent to relabeling bodies whereas switching columns is equiv-
alent to relabeling joints. If these operations are used, however, the rearranged order
of the original row and column labels must be recorded for later use when interpret-
ing the body and joint labels in the result.

2.5 Kinematic Paths

Another topological matrix for which we will find many uses in the coming chapters
is called the kinematic path matrix, and is labeled P. It is an (	 × n) matrix in which
each row shows the joints that appear in the kinematic path from the base body to
the corresponding body. These paths become useful, for example, in calculating the
motion of a chosen body by summing the relative motions of the joints along the
path from the base body to the chosen body.

The entry in row b, column h of the oriented path matrix, with columns taken
in the same order as in the incidence matrix, is defined as follows:

P(b,h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if joint h is contained in the path from the base
+1 body to body b, and if the orientation of joint

h and the orientation of that path are the same;

if joint h is contained in the path from the base
−1 body to body b, and if the orientation of joint

h and the orientation of that path are opposite;

if joint h is not contained in the path from the
0

base body to body b.

(2.14)
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The oriented-path matrix can be found by a procedure very similar to that used
in finding the oriented-loop matrix. The process is nicely shown by continuing the
clamp example previously shown. If, for that example, we augment the original
incidence matrix with an (	 × 	) identity matrix to its right, it appears as follows:

[Γ I] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 1 0 1 0 0 0 0 0

0 0 0 0 −1 0 −1 0 1 0 0 0 0

1 −1 −1 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 1 0

−1 0 0 0 0 −1 1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the row operations previously enumerated, this augmented incidence
matrix can be reduced to row-echelon form, exactly as was done to find the loop
matrix, but working also on the additional augmented columns of the identity matrix.
The final reduced form is:

⎡
⎣I Lt

1 Γ −1
11 0

−−−−−−−−−−
0 0 1 I

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 −1 1 1 1 1 1 0

0 1 0 0 0 0 −1 0 1 0 0 1 0

0 0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 1 0 −1 0 −1 0 0 0 0 0

0 0 0 0 1 0 1 0 −1 0 0 0 0
−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 0 0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sixth and seventh columns of this result confirm the Lt
1 portion of the loop

matrix. The operations that correctly reduce the top-left portion of the matrix to the
identity are the same operations that modify a portion of the augmented identity
matrix to give Γ −1

11 ; this shows how the inverse was found for Eq. (2.11). The final
row of unit entries in the later 	 columns will now be explained.

If the upper-right (Γ −1
11 ) portion of this result is transposed, it forms the upper-

left portion of the path matrix:

P =
⎡
⎣
(
Γ −1

11

)t
0

−−−−−−
0 0

⎤
⎦ . (2.15)

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 −1 0 0 0

1 1 0 0 −1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 0 0 0
−−−−−−−−−−−−−−
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

,

A B C D E F G
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where the last two columns of zeroes have been added for the cut-set joints F and G.
We can see from row 2 of this matrix, for example, that the path from the base (body
6) to body 2 passes through joints A and B with positive orientation and through joint
E with reversed orientation. This and the paths to other bodies can be confirmed by
comparison with Figure 2.2.

From this example it is clear that the path matrix can be found directly from the
transpose of Γ −1

11 . This is true for this example and is also true in general. However,
for mechanisms and multibody systems containing more than one assembly, another
phenomenon arises. We will see this by following through another example. Without
taking any notice of its unconnected, multi-assembly characteristics (that a computer
would not know), we form the incidence matrix for the system shown in Figure 2.8.
This is

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 −1 −1 0 0 0 0

0 0 0 −1 0 1 0

0 0 0 1 1 0 0

0 0 0 0 −1 0 1

0 0 0 0 0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

7

,

A B C D E F G

where, again, row and column labels have been added to indicate the body labels
(numeric) and joint labels (literals).

B

1

2

3

4

5

6

7 7

A

C

D

E

F G

Figure 2.8.
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Now, when this matrix is augmented with a (7 × 7) identity matrix,

A B C D E F G
1

2

3

4

5

6

7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 0 0 0 0

0 −1 −1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 −1 0 1 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 0 0 1 0 0

0 0 0 0 −1 0 1 0 0 0 0 0 1 0

0 0 0 0 0 −1 −1 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and when this augmented matrix is reduced to row-echelon form, it yields

A B D E F G C
1

2

4

5

6

7

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 0 0 0 1 1 1 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 1 1 0 0

0 0 0 1 0 −1 0 0 0 0 0 −1 0 0

0 0 0 0 1 1 0 0 0 1 1 1 0 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here we see that it becomes necessary to rearrange rows and columns of the
original Γ matrix in order to find this form, and we take note of the rearrange-
ment of the body and joint identifiers shown as labels for the rows and columns.
Because the rows for bodies 7 and 3 both become zeroes, we see that the Γ matrix
is only of rank 5. Thus, this mechanical system has a = 2 subassemblies and NL =
(n − 	 + a) = 2 kinematic loops.

Of course, it is possible to separate the bodies into two disjoint groups and
treat each assembly as a separate multibody system. It is also possible to artificially
include another fictitious joint into the graph (say, between bodies 3 and 7), a joint
that produces no constraint on the motions of the connected bodies, to logically,
although not physically, connect the two assemblies. Such a joint type is explained in
section 4.6.8; it is called an open joint. We choose not to do either in this example in
order to show how it is possible to proceed with multiple, unconnected subassemblies.

The oriented-loop and path matrices can now be formed in the same manner as
in the previous example. These are

L =
A B D E F G C[
0 0 1 −1 1 −1 0
1 1 0 0 0 0 −1

]
,
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and

P =

A B D E F G C⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 1 0 0
0 0 1 −1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/3
2/3
4/7
5/7
6/7
7/7
3/3

.

We note here that each path formed in this multi-assembly problem falls totally
within an individual subassembly. The fact that the rows that originally correspond
to bodies 3 and 7 are those that reduce to zeroes shows that bodies 3 and 7 may be
chosen as the two reference bodies of the two separate subassemblies. The entries in
the bottom-right quadrant of the row-reduced matrix show that the paths to bodies
1, 2, and 3 all have body 3 as the reference body for their subassembly, whereas the
paths for bodies 4, 5, 6, and 7 all have body 7 as their reference body.

If desired, we can now rearrange the columns of the oriented-loop and path
matrices to match the original order of the joint labels. This gives:

L =
A B C D E F G[
0 0 0 1 −1 1 −1
1 1 −1 0 0 0 0

]
,

and

P =

A B C D E F G⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 1 0 1 0

0 0 0 1 −1 1 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1/3

2/3

3/3

4/7

5/7

6/7

7/7

.

In order to find paths with respect to the body that is actually stationary, even
for a single-assembly mechanism or multibody system, it is necessary to choose the
original body labels such that the fixed body is represented by the final row of the
incidence matrix. We note that this is done in the previous examples. If it is not done,
then paths are found with respect to the highest body label of each subassembly.

We can see from the examples that the row-reduction operations are extremely
simply performed, even by hand computation. All entries remain either 1, 0,
or −1 throughout the procedure. This property, called the unimodular property,
is more fully discussed in [1]. Also, on a computer, integer arithmetic operations can
be used, avoiding any risk of rounding or truncation errors.
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PROBLEMS

2.1 Find the oriented-loop and -path matrices for the mechanism shown by
Figure P2.1 and the following incidence table P2.1:

B

1

2

4

5

3 6

7

8

1

C E G J

KA

D F H

Figure P2.1

Table P2.1. Incidence table P2.1

Joint from body to body
A 1 2
B 2 3
C 2 4
D 3 5
E 4 5
F 5 6
G 5 7
H 6 8
J 7 8
K 8 1

2.2 Figure P2.2b shows a model of a Gough/Stewart platform, one type of parallel
robotic system, pictured in Figure P2.2a.1 In this type of system, there are two main
bodies: the moving platform and the fixed base. The motion of the moving platform
relative to the fixed base is controlled by six struts. Each of these struts is attached
to the fixed base by a universal joint and to the moving platform by a ball joint.
These struts are linear actuators and we assume that hydraulic cylinders are used.
The schematic on the right in Figure P2.2c shows a typical strut. For modeling, the

1 An animation can be viewed at http://en.wikipedia.org/wiki/File:Hexapod general Anim.gif.
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actuator is shown as composed of two bodies, PISTONh and CYLh, and these two
bodies are connected by a prismatic joint Ph.

Moving
Platform

Piston

Fixed
Base

Cyi

Sh

Ph

Uh

Moving
Platform

Fixed
Base

S4

S5
S6

S1

S2

S3

U4

U5
U6

U1 U3
U2

(a) (b) (c)

Figure P2.2a–c.

A directed graph of the Gough/Stewart platform, with the orientations of the
joints selected arbitrarily, is shown in Figure P2.2d.

Moving
Platform

Cyl 1

S1

P1

U1

U2
U3 U4

U5

U6

P2

P3

P4 P5

P6

S2

S3

S4
S5

S6

Piston 1
Piston 2

Piston 3
Piston 4 Piston 5

Piston 6

Fixed
Base

Cyl 2

Cyl 3
Cyl 4 Cyl 5

Cyl 6

(d)

Figure P2.2d. Directed graph of the Gough/Stewart platform of Figure P2.2

The incidence matrix corresponding to the directed graph of Figure P2.2d is
shown in the following table:
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Table/Matrix

S1 P1 U1 S2 P2 U2 S3 P3 U3 S4 P4 U4 S5 P5 U5 S6 P6 U6

Moving
Platform

−1 0 0 −1 0 0 −1 0 0 −1 0 0 −1 0 0 −1 0 0

CYL1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PISTON1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CYL2 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
PISTON2 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
CYL3 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
PISTON3 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
CYL4 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0
PISTON4 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
CYL5 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
PISTON5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0
CYL6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
PISTON6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
Fixed Base 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

Utilize the incidence matrix and appropriate software to compute the oriented loops
for this system, and answer the following questions.

1. Which joints are cut to create trees?
2. How many independent loops are identified?

Write the oriented-loop matrix computed by your code arranged in the column
sequence of the incidence matrix corresponding to the columns of Table P2.2.

2.3 Figure P2.3a shows a model of a multibody system that represents the stance
posture of a walking bug robot. All joints are revolutes and are designated J1,
J2, . . . , J10. The various bodies are identified as B1 (ground), B2, and so forth and
there are a total of nine (9) bodies.

B1 B1

B2

B3

B4

B5

B6

B7

B8

B9

J1

J2

J3

J5

J4 J7

J8

J6

J9

J10

Figure P2.3a. Schematic diagram of a bug robot.

Select orientations for the various joints and, based on your choices, construct the
incidence matrix for this model.

Utilize appropriate software to compute the independent loops and show the
oriented-loop matrix, with columns in the sequence J1, J2, J3, . . . , J10.
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Suppose that this bug robot raises one of its feet as shown in Figure P2.3b and
that a new body (B10) is extended from B7 and a new revolute joint J11 is formed
between B7 and B10. The original joint J1 that formerly connected B1 and B2 in the
stance posture, now connects B2 to the new B10.

B1

B2

B3

B4

B5

B6

B7

B8

B9

J2

J3

J5

J4 J7

J8

J6

J9

J10
J1

J11

B10

Figure P2.3b. Second posture of the bug robot.

Modify your incidence matrix and utilize appropriate software to compute the
new oriented-loop matrix.

2.4 Figure P2.4a shows a model of a folding/unfolding deployable system.
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Figure P2.4a. Model of a deployable system.
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In this system, there are fifteen (15) bodies and twenty (20) joints. Joints J1
and J20 are prismatic whereas all others are revolute joints. A directed graph
of this system, with the orientations of the joints arbitrarily selected, is shown in
Figure P2.4b.

BODY 1

B2

J1

B4
J2

B5

J5

B6
J4

B7
J6

B8

B9

J7

J9

B3
J18

J20

B10

J3

B11

J15
J17J16

B15

J14

B14

J13

B12J12

J19

B13J11
J10

B4

J8

Figure P2.4b. Directed graph of the deployable system of Figure P2.4a.

The incidence matrix corresponding to the directed graph of Figure P2.4b is
shown in the table of Figure P2.4c.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20

B1 −1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
B2 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 −1
B4 0 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B5 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
B6 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B7 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
B8 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0
B9 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
B10 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
B11 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 −1 0 0 0
B12 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 −1 0
B13 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
B14 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
B15 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

Figure P2.4c. Incidence matrix for the deployable system of Figure P2.4b.

Utilize the incidence matrix and appropriate software to compute the oriented loops
for this system, and answer the following questions.

1. Which joints are cut to create a tree?
2. How many independent loops are identified?
3. Write the oriented-loop matrix computed by your code arranged in the

column sequence corresponding to the columns in the table of Figure P2.4c.



3 Transformation Matrices in Kinematics

3.1 Introduction

Before formulating a numeric method for design analysis of mechanisms and multi-
body systems, let us first consider the essential characteristics of the problem being
addressed. What are the chief difficulties encountered in the design analysis of
a mechanism or multibody system? It is not the laws of mechanics as such that
cause difficulty. It is the fact that, once a problem has been formulated, it is
often too formidable algebraically to be easily solved. This complexity does not
arise from static and dynamic force relationships, but from the kinematics – the
changing geometry. The basic constraint equations that govern the motions within
a machine or multibody system come from the fact that rigid bodies hold their
respective joint elements in constant spatial relationships to one another. This type
of constraint invariably leads to a set of highly nonlinear simultaneous algebraic
equations.

Because the difficulties in an analytic approach to mechanism and multibody
system analysis stem from the geometry, it is wise to choose a mathematical for-
mulation suited to this type of problem. One such formulation is based on the use
of matrices to represent the transformation equations between strategically located
coordinate systems fixed in successive bodies. This approach has been developed
into an extremely general and powerful technique for mechanism and multibody
system analysis, and the next several chapters are devoted to its presentation. Before
this can be presented effectively, however, we must become familiar with a num-
ber of basic operations that render matrix algebra so useful in performing coor-
dinate transformations. The purpose of this chapter, therefore, is to develop this
foundation.

3.2 Homogeneous Coordinates of a Point

The position of a point in three-dimensional Euclidean space is determined once
three independent coordinates are given. We are all familiar, for example, with
the Cartesian coordinates of a point as the projections of the point onto the three
axes of a Cartesian reference frame, first introduced in [5] by the French philosopher

42
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and mathematician, René Descartes (1596–1650). Once the point’s position is known,
unique x, y, z coordinates are determined. Also, conversely, if values correspond-
ing to the x, y, z coordinates are known, the position of the point is uniquely
determined.

However, it is also possible to define the position of a point in many other ways.
We will recall, for example, using cylindric or spheric coordinates in problems for
which these were more suitable. As a less common example, suppose we follow
the German geometer, Karl Wilhelm Feuerbach (1800–34), and instead of a set of
Cartesian reference axes, we define a reference tetrahedron whose fixed vertices are
A,B,C, and D. Suppose also that we wish to determine the location of a point P
that, for brevity, we assume to be inside of our tetrahedron of reference. Let us define
symbols for the volumes of the four smaller tetrahedra determined by the point P
and each of the four faces of the tetrahedron of reference. We identify these volumes
by the symbols VA = Vol(PBCD), VB = Vol(PCDA), VC = Vol(PDAB), and VD =
Vol(PABC). We could think of these four volumes as being four coordinates of the
point P because once the tetrahedron of reference and the point are chosen, these
coordinates are uniquely determined, and conversely. The fact that this method uses
four coordinates to locate a point in three dimensions is explained by the fact that the
four coordinates are not independent. They sum to the volume of the tetrahedron
of reference.

These Feuerbach coordinates [7] are not the type we shall use in the coming
chapters. They are presented here solely to illustrate the fact that coordinates can be
defined in a variety of different ways. There is nothing sacrosanct about Cartesian,
or cylindric, or spheric coordinates; in fact, in certain applications, a completely
strange point-coordinate definition may add appreciably to the power, flexibility,
and ease of use of the formulae developed. The Feuerbach example also illustrates
that, although at least three coordinates are necessary to define the location of a
point in three dimensions, a redundant set with more than three coordinates may be
used as long as three and only three are independent.

Throughout the remainder of this text we will work with a definition of point
coordinates that forms a special case of homogeneous coordinates, sometimes
referred to as barycentric coordinates, introduced in [13] by the German mathemati-
cian and astronomer, August Ferdinand Möbius (1790–1868). With homogeneous
coordinates, four coordinates are used to define the location of a point in three
dimensions [12]. When these are written in column vector form, the position of a
point using homogeneous coordinates is given by

r =

⎡
⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎦ . (3.1)

The conditions that relate the four homogeneous coordinates to 3-D Cartesian
coordinates of the same point are as follows:

rx = r1

r4
, ry = r2

r4
, rz = r3

r4
. (3.2)



44 Transformation Matrices in Kinematics

Thus, if we are given the homogeneous coordinates of a point, we can quite easily
find the Cartesian coordinates of the same point by dividing all coordinates of the
four-dimensional homogeneous position vector r by its last coordinate r4

r =

⎡
⎢⎢⎣

rx

ry

rz

1

⎤
⎥⎥⎦ . (3.3)

One reason that these coordinates are referred to as homogeneous is that any
polynomial relating Cartesian position coordinates can be written in homogeneous
form by recasting it in terms of homogeneous coordinates. For example, if the
Cartesian coordinates are related by the quadratic equation

(rx)2 + 2rx + 12(ry)2 − 2ryrz + 3rz − 18 = 0,

this can be rewritten in homogeneous coordinates as

(r1)2 + 2r1r4 + 12(r2)2 − 2r2r3 + 3r3r4 − 18(r4)2 = 0.

We note that because each term is now of the same degree, all of the homo-
geneous position coordinates ri can be multiplied by an arbitrary nonzero scalar
without affecting the validity of the equation. Thus, using homogeneous coordi-
nates, we are free to rescale the position vector r by any nonzero multiplier at will.
When the problem solution is completed, the Cartesian coordinates can be found by
dividing r by its fourth element r4 as shown in Eq. (3.2).

Another interesting characteristic of homogeneous point coordinates is that,
with them, we can describe the location of a point infinitely distant from the origin
of coordinates. For example, the homogeneous position vector

r =

⎡
⎢⎢⎣

r · i
r · j
r · k

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

r cos(
�
r, i)

r cos(
�
r, j)

r cos(
�
r,k)

0

⎤
⎥⎥⎥⎥⎦ (3.4)

describes a point whose Cartesian coordinates are all infinite. This point is located
infinitely far from the origin along a line whose direction is determined by the vector
r, made up of the first three components. Note that the homogeneous coordinates
of such a point at infinity are all finite. Thus, a point at infinity is uniquely described
in a manner that can be manipulated on a computer without numeric difficulty. This
illustrates that homogeneous coordinates representing points at infinity can also be
used to represent free vectors such as unit vectors; this is described more fully later
in this chapter.

The study of homogeneous coordinates is rich in history and, since its beginnings,
has been closely connected with the study of kinematics [4]. Although we shall not
have need for all of the elegance in this book, you will find that this and the closely
related fields of affine and projective geometry provide fascinating reading and add
further insight into the work of the coming chapters.

Next, let us consider another characteristic of homogenous coordinates and the
underlying projective geometry, and that is the concept of geometric duality. When
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using homogenous coordinates, the equation of a plane in three-dimensional space
can be written as a linear equation of the form

Ax + By + Cz + Dw = 0

or, in matrix form, as

PtR = RtP = 0, (3.5)

where the superscript t indicates the transpose of the superscripted matrix, and

P =

⎡
⎢⎢⎣

A
B
C
D

⎤
⎥⎥⎦ , R =

⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦ . (3.6)

Just as R represents the homogeneous coordinates of a point, P also has four
coordinates and represents the homogeneous coordinates of a plane. The quantities
A, B, C, D are called plane coordinates of P and they are homogenous in the same
way that x, y, z, w are homogenous – namely, multiplying them by any nonzero scalar
does not change the plane that they represent.

Equation (3.5) illustrates the duality between points and planes in three-
dimensional projective space. Put into words, this equation represents a plane P
passing through point R when one highlights the homogeneous plane coordinates
or, alternatively, it represents a point R lying on plane P when one emphasizes the
homogeneous point coordinates. In three articles in his own journal [9], the French
mathematician, Joseph Diaz Gergonne (1771–1859), states the general principle of
geometric duality that, in the projective space of three dimensions, every theorem
connecting points and planes corresponds to another theorem in which the terms
points and planes are interchanged, provided that no metric relations are involved.
For example: three points determine a unique plane, and three planes determine a
unique point. Similarly: two points determine a unique line, and two planes deter-
mine a unique line. In three dimensions, a point is the geometric dual of a plane. A
line is a self-dual; that is, a line is the dual of a line.

3.3 Line Coordinates and Plücker Vectors

Another situation where more than the minimal number of coordinates is useful
to describe the location of a geometric entity in space is the use of Plücker line
coordinates. Line geometry is a branch of algebraic geometry that is closely related
to homogeneous coordinates and to screw coordinates (to be discussed later) and was
first elucidated in [15] by the German mathematician and physicist, Julius Plücker
(1801–68).

A homogeneous representation of a straight line in three dimensions is provided
by a 6-D vector of line coordinates or by a pair of 3-D Plücker vectors. The Plücker
vectors of a line are defined by two vectors with Cartesian coordinates

Ω = r × �

Ω =
⎡
⎣ a

b
c

⎤
⎦ ,

�

Ω =
⎡
⎣ d

e
f

⎤
⎦ , (3.7)
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H

O

P

Ω

Ω

r
Figure 3.1. Geometry of Plücker vectors.

where
�

Ω is a vector directed along the line and r is the Cartesian position vector of
a point on the line as shown in Figure 3.1.

The vector
�

Ω is often normalized to form a unit vector but need not be so. The
vector Ω is the moment that the

�

Ω vector makes about the origin of coordinates.

Thus, one Plücker vector,
�

Ω, defines the orientation of the line whereas the other,
Ω , uniquely defines its location in space and distinguishes this particular line from
all other lines parallel to it. The vector Ω is perpendicular to the plane OHP (Figure

3.1) and, when the vector
�

Ω is a unit vector, the magnitude of the moment Ω is the
distance from the origin O to the line 	, namely, the distance OH. It is clear from
vector algebra that Plücker vectors satisfy the Plücker identity:

�

Ω · Ω = �

ΩtΩ = Ω t �

Ω = 0. (3.8)

It should be pointed out that Plücker vectors represent an oriented line in space

because the vector
�

Ω describes the direction of the line, which includes both its
orientation and its sense.

The elements of Plücker vectors of a line are called Plücker coordinates and
can be found from the homogeneous coordinates of two points located on the line,
or from the homogeneous coordinates of two planes that intersect in the line, as
follows:

a = y1z2 − z1y2,

b = z1x2 − x1z2,

c = x1y2 − y1x2,

d = x1w2 − w1x2,

e = y1w2 − w1y2,

f = z1w2 − w1z2,

a = B1C2 − C1B2,

b = C1A2 − A1C2,

c = A1B2 − B1A2,

d = A1D2 − D1A2,

e = B1D2 − D1B2,

f = C1D2 − D1C2.

(3.9)

Here, xi, yi, zi,wi (i = 1, 2) are homogeneous coordinates of two points on the line
and Ai,Bi,Ci,Di (i = 1, 2) are their geometric duals, the plane coordinates of two
planes intersecting in the line.
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Conversely, the homogenous coordinates of points on a line can be found from
the Plücker coordinates of the line in terms of a parameter λ as follows:

x = ec − f b + λd(d2 + e2 + f 2),

y = f a − dc + λe(d2 + e2 + f 2),

z = db − ea + λ f (d2 + e2 + f 2),

w = d2 + e2 + f 2.

(3.10)

Different values of the parameter λ correspond to different points along the line.
Equations (3.10) are scalar forms of the vector equation

r = �

Ω−2(
�

Ω × Ω) + λ
�

Ω. (3.11)

This is derived from the geometry of Plücker vectors (see Figure 3.1) considering

the fact that r × �

Ω = Ω, and
�

Ω · Ω = 0, and using linear algebra.
This text presents matrix methods based on the use of (4 × 4) transformation

matrices. Therefore, it is desirable to represent Plücker vectors in a (4 × 4) matrix
format. Noting that the second of the two Plücker vectors is a free vector because it
represents the direction of a line, we can form a (3 × 3) skew-symmetric matrix by
arranging the components of this vector as follows:

∼�
Ω =

⎡
⎢⎢⎣

0 − �

Ω
z �

Ω
y

�

Ω
z

0 − �

Ω
x

− �

Ω
y �

Ω
x

0

⎤
⎥⎥⎦ . (3.12)

The first Plücker vector Ω can then be written in vector form as Ω = r × �

Ω, or in
(3 × 1) matrix form as

Ω = −
∼�
Ωr. (3.13)

The matrix form of the two Plücker vectors of a line can now be assembled into
a single (4 × 4) matrix as follows:⎡

⎢⎢⎢⎢⎣
0 − �

Ω
z �

Ω
y

Ωx

�

Ω
z

0 − �

Ω
x

Ωy

− �

Ω
y �

Ω
x

0 Ωz

0 0 0 0

⎤
⎥⎥⎥⎥⎦ =

[
�

Ω Ω

0 0

]
. (3.14)

3.4 Three-dimensional Orientation

One of the most fundamental problems of kinematics is that of describing three-
dimensional angular direction or, more precisely, of specifying the orientation of a
rigid body with respect to a known frame of reference. The word attitude can also be
used for orientation. Clearly, the orientation or attitude of a rigid body is completely
determined once a set of coordinate axes fixed to the body has been located relative
to the known reference frame. In this section we assume that the origins of the two
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Figure 3.2. Orientation of a spinning top.

coordinate systems are coincident so that we may concentrate solely on their relative
orientation.

A typical problem of this type is that of describing the orientation of a spinning
top such as that shown in Figure 3.2. The top carries a right-hand Cartesian coordinate
system x1y1z1 that must be located relative to a fixed coordinate system x2y2z2. Notice
that, as decided in Chapter 2, the higher label is used for the stationary body.

One fruitful way of describing the relative angular relationship between two
coordinate systems is through what are called direction cosines. If r is the position
vector of some arbitrary point on the top, and if i′, j′, k′ and i, j, k represent unit
vectors along the x1y1z1 and x2y2z2 axes, respectively, then the component of r along
the x2 axis can be expressed as follows:

rx2 = i · r = (i · i′)rx1 + (i · j′)ry1 + (i · k′
)rz1

= cos(
�
i,i ′)rx1 + cos(

�
i, j ′)ry1 + cos(

�
i,k ′)rz1 ,

where cos(
�
i, j ′), for example, denotes the cosine of the angle between the i and j′

unit vectors.
Taking dot products with j and k to express equations for the ry2 and rz2 compo-

nents of r in the same format, and grouping the results into a single matrix equation,
we obtain

⎡
⎣rx2

ry2

rz2

⎤
⎦ =

⎡
⎢⎢⎣

cos(
�
i,i ′) cos(

�
i, j ′) cos(

�
i,k ′)

cos(
�
j,i ′) cos(

�
j, j ′) cos(

�
j,k ′)

cos(
�
k,i ′) cos(

�
k, j ′) cos(

�
k,k ′)

⎤
⎥⎥⎦
⎡
⎣rx1

ry1

rz1

⎤
⎦ ,

or

r2 = Θ21r1. (3.15)

Such a (3 × 3) matrix is called a rotation matrix and is useful for transforming
any free vector from one coordinate system to another. The nine direction cosines
in the matrix Θ21 completely describe the instantaneous orientation of the x1, y1, z1

coordinate system with respect to the x2, y2, z2 coordinate system.
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We know, however, that the nine direction cosines cannot be independent
because a rigid body has only three degrees of freedom in spatial rotation. There
must be six additional equations relating these nine direction cosines. These may be
found by considering the fact that the magnitude of the vector r must be identical in
both coordinate systems,

(rx2 )2 + (ry2 )2 + (rz2 )2 = (rx1 )2 + (ry1 )2 + (rz1 )2.

Writing this in matrix form, we see that

rt
2r2 = rt

1r1,

where the superscript t indicates the transpose of the superscripted matrix. Now,
substituting Eq. (3.15) into this expression yields

rt
1Θ

t
21Θ21r1 = rt

1r1,

which can only be satisfied for an arbitrary choice of the point r1 if

Θ t
21Θ21 = I. (3.16)

This, in turn, shows that

Θ t
21 = Θ−1

21 . (3.17)

A matrix having this interesting property is said to be an orthogonal matrix,
and Eq. (3.16) is one expression for what are called the orthogonality conditions.
However, because we know that the orientation of a rigid body or a coordinate
system in three-dimensional space depends on only three parameters, this matrix
equation includes six conditions relating the nine direction cosines of Eq. (3.15). In
other words, the rotation matrix is not a minimal representation of orientation.

In two dimensions the rotation matrix reduces to a (2 × 2) matrix and the
positions of points in a rotated frame with respect to a fixed frame with coincident
origin are related by

[
rx2

ry2

]
=

⎡
⎣cos(

�
i,i ′) cos(

�
i, j ′)

cos(
�
j,i ′) cos(

�
j, j ′)

⎤
⎦[

rx1

ry1

]
. (3.18)

The direction cosines are again not independent and the orientation of a rigid body or
a coordinate system in two dimensions can be described by a minimal representation
of just a single angle, say ϑ , of the x1 axis with respect to the x2 axis as shown in
Figure 3.3.

The description of relative orientation in two dimensions in terms of a single
angleϑ is a minimal representation and is very convenient for use in two-dimensional
applications. However, the question now becomes: what minimal representation can
be used for orientation in three dimensions? For example, what minimal represen-
tation may be used as coordinate(s) to describe the attitude of the spinning top?
Initially, it may seem desirable to find a set of three independent parameters, hope-
fully angles like the two-dimensional case, for describing such a three-dimensional
orientation.

The great Swiss mathematician and physicist, Leonhard Euler (1707–83) is usu-
ally credited with being the first to show that a set of three angles is sufficient to
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y1

y2

x2

x1

ϑ

Figure 3.3. Minimal representation of orienta-
tion of a rigid body in two dimensions.

specify the relative orientation of two Cartesian coordinate systems in three dimen-
sions. Although he used various choices in his writings, any such set of three angles
now bears his name; they are called Euler angles. In order to illustrate them, the two
coordinate systems used to describe the orientation of the spinning top are shown
again in Figure 3.4, but now without the top. One form of a set of three Euler angles:
ξ , ϑ , and ϕ (see Euler, [6]) are shown in the figure. Various other definitions of Euler
angles are shown in Goldstein, [10]. Note in Figure 3.4 that the planes x1y1 and x2y2

intersect in a line 	 that is referred to as the line of nodes.
The three Euler angles shown here are defined as follows: the angle ξ is measured

from the positive x2 axis to the line of nodes 	 about the positive z2 axis in the plane
x2y2. The angle ϑ is measured from the positive z2 axis to the positive z1 axis about
the line of nodes 	 in the plane z2z1. The angle ϕ is measured from the line of nodes
	 to the positive x1 axis about the positive z1 axis in the plane x1y1.

The right-hand rule is used to define the positive sense of each angle; thus,
counterclockwise angles are positive. The convention, used throughout this text,
that counterclockwise angles are positive is not arbitrary. It is required by such
conventions as k = i × j and the assumption that we wish to use right-hand Cartesian
coordinate systems, with their y axes taken counterclockwise from their x axes as
seen from their positive z axes.

x2

�

y2

y1

x1
z1

z2

ϑ

ϕ

ξ

Figure 3.4. Euler angles ξ , ϑ , and ϕ of x1y1z1 with respect to
x2y2z2.
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Using elementary geometry to relate the orientations of the two coordinate
systems, we can show that the expanded form of Eq. (3.15) in terms of these three
Euler angles becomes:

⎡
⎣rx2

ry2

rz2

⎤
⎦=

⎡
⎣−sinξ cosϑ sinϕ + cosξ cosϕ −sinξcosϑcosϕ − cosξsinϕ sinξsinϑ

cosξcosϑsinϕ + sinξcosϕ cosξcosϑcosϕ − sinξsinϕ −cosξsinϑ
sinϑsinϕ sinϑcosϕ cosϑ

⎤
⎦
⎡
⎣rx1

ry1

rz1

⎤
⎦ .

(3.19)

We will further discuss the representation of orientation of a rigid body in
subsequent sections of this chapter. However, let us first consider the coordinates of
points in coordinate systems that do not share coincident origins.

3.5 Transformation of Coordinates

In section 3.4, we demonstrated that the position vector of a point in a Carte-
sian coordinate system can be transformed into an equivalent position vector in
another Cartesian coordinate system by multiplying by the rotation matrix as was
shown in Eq. (3.15). That transformation, however, was restricted to the case
where the two coordinate systems share coincident origins. In this section we will
remove this restriction and develop a general transformation of coordinates in three
dimensions.

Consider the arbitrarily chosen point r of Figure 3.5. The two Cartesian position
vectors rc in coordinate system c and rb in coordinate system b are related by the
vector equation

rc = rb + rOb
. (3.20)

If we write each of these vectors in terms of its components along its own
coordinate axes, then, referring to Figure 3.6, we have

rc = rxci + ryc j + rzck,
rb = rxbi′ + ryb j′ + rzbk′

,

rOb
= r

xc
Ob

i + r
yc
Ob

j + r
zc
Ob

k.
(3.21)

Adding these according to Eq. (3.20) we obtain

rxci + ryc j + rzck = rxbi′ + ryb j′ + rzbk′ + r
xc
Ob

i + r
yc
Ob

j + r
zc
Ob

k. (3.22)

Now taking the dot product of this equation with each of the unit vectors i, j,
and k in turn, we obtain three scalar equations:

rxc = rxbcos(
�
i,i ′) + rybcos(

�
i, j ′) + rzbcos(

�
i,k ′) + r

xc
Ob

,

ryc = rxbcos(
�
j,i ′) + rybcos(

�
j, j ′) + rzbcos(

�
j,k ′) + r

yc
Ob

,

rzc = rxbcos(
�
k,i ′) + rybcos(

�
k, j ′) + rzbcos(

�
k,k ′) + r

zc
Ob

.
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Figure 3.5. General 3-D coordinate transformation.
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Figure 3.6. General 3-D coordinate transformation.
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In terms of homogeneous position coordinates, these can be written

⎡
⎢⎢⎣

rx

ry

rz

1

⎤
⎥⎥⎦

c

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(
�
i,i ′) cos(

�
i, j ′) cos(

�
i,k ′) r

xc
Ob

cos(
�
j,i ′) cos(

�
j, j ′) cos(

�
j,k ′) r

yc
Ob

cos(
�
k,i ′) cos(

�
k, j ′) cos(

�
k,k ′) r

zc
Ob

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

rx

ry

rz

1

⎤
⎥⎥⎦

b

, (3.23)

where the final row of the new (4 × 4) transformation matrix simply expresses the
identity, 1 = 1. The simplicity of the bottom row of this matrix results from our
assumption of rigid body transformations; this is not the case in the more general
fields of affine or projective transformations. It can also be viewed as a constraint
that a unit distance in the c coordinate system is equal to a unit distance in the b
coordinate system.

We can extend the utility of the aforementioned equation by noting that a point
at infinity [in the sense of Eq. (3.4)] is also properly transformed by the same (4 ×
4) matrix, no matter what its orientation. The reader may wish to verify that, after
transformation, a point at infinity remains at infinity. Note how this results from
the special rigid body form of the last row of the matrix. Therefore, we can say
in complete generality that the transformation between any two three-dimensional
Cartesian coordinate systems labeled c and b is expressed by the equation

rc = Tcbrb, (3.24)

where rc and rb represent the homogeneous position vectors of a point expressed
in the c and b coordinate systems, respectively, and Tcb is a (4 × 4) transformation
matrix of the form

Tcb =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(
�
i,i ′) cos(

�
i, j ′) cos(

�
i,k ′) r

xc
Ob

cos(
�
j,i ′) cos(

�
j, j ′) cos(

�
j,k ′) r

yc
Ob

cos(
�
k,i ′) cos(

�
k, j ′) cos(

�
k,k ′) r

zc
Ob

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.25)

Note that the homogeneous transformation matrix Tcb completely describes the
location of the origin and the orientation of a coordinate system b with respect to
another coordinate system c and depends on six independent parameters. In other
words, the location and orientation of a coordinate system (or a rigid body) in three
dimensions can be characterized by six degrees of freedom. Note that the orientation
portion has three degrees of freedom and the portion dealing with the location of the
origin of the moving coordinate system contains the other three degrees of freedom.

We should also notice that Eq. (3.24) not only describes the relationship between
the coordinates of a point measured with respect to two different coordinate systems
but also the coordinate transformation of a unit vector as measured in the two
coordinate systems. A unit vector describes a direction (an orientation and sense) in
space and, therefore, can be viewed as a vector toward a particular point at infinity.
Its three direction cosines can be used as the first three homogeneous coordinates
of a point at infinity with a fourth coordinate of zero. Consider, for example, two
coordinate systems as shown in Figure 3.7.
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Figure 3.7. Coordinate transformation for unit vectors.

Consider the three unit vectors u, v, and w as shown; these three unit vectors in
coordinate systems xbybzb and xcyczc can be expressed, respectively, as

ub =
⎡
⎣ 1

0
0

⎤
⎦, vb =

⎡
⎣0

1
0

⎤
⎦, wb =

⎡
⎣0

0
1

⎤
⎦ , and uc =

⎡
⎣uxc

uyc

uzc

⎤
⎦, vc =

⎡
⎣vxc

vyc

vzc

⎤
⎦, wc =

⎡
⎣wxc

wyc

wzc

⎤
⎦ .

The homogeneous coordinates of a point at infinity corresponding to the unit vec-
tor u can be written in the xbybzb and xcyczc coordinate systems, respectively, as
rb = [1, 0, 0, 0]t , and rc = [uxc ,uyc ,uzc, 0]t .

Now, writing Eq. (3.24) with the objective of trying to determine the elements
of the homogeneous transformation matrix Tcb, we get

⎡
⎢⎢⎣

uxc

uyc

uzc

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
Θ (1, 1) Θ (1, 2) Θ (1, 3) r

xc
Ob

Θ (2, 1) Θ (2, 2) Θ (2, 3) r
yc
Ob

Θ (3, 1) Θ (3, 2) Θ (3, 3) r
zc
Ob

0 0 0 1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Θ (1, 1)
Θ (2, 1)
Θ (3, 1)

0

⎤
⎥⎥⎦ .

Equating elements of both sides we obtain: Θ (1, 1) = uxc, Θ (2, 1) = uyc,

and Θ (3, 1) = uzc . In a similar fashion, if we apply Eq. (3.24) to unit vectors v
and w, we obtain Θ (1, 2) = vxc, Θ (2, 2) = vyc, Θ (3, 2) = vzc, and Θ (1, 3) = wxc,

Θ (2, 3) = wyc, Θ (3, 3) = wzc . The corresponding homogeneous transformation
matrix becomes:

Tcb =

⎡
⎢⎢⎢⎢⎣

uxc vxc wxc r
xc
Ob

uyc vyc wyc r
yc
Ob

uzc vzc wzc r
zc
Ob

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (3.26)

It should be pointed out that the resulting elements of the matrix Tcb are obvious
from the definitions of the unit vectors and the location of the origin of the moving
coordinate system. They were found formally here only to show an example of the
utility of Eq. (3.24).
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Figure 3.8. Posture of a robotic end-effector with respect to a base or world coordinate system.

3.6 Positions, Postures, and Displacements

We are all familiar with the meaning of the word “position.” It is a term that tells
where an item is located. But let us be more precise. If the item in question is a
particle or point, its position can be specified by its distance from and direction with
respect to some set of reference axes whose location is assumed already known. If
we choose to work with a Cartesian coordinate system, we can specify the position
of a point by giving its x, y, and z coordinates. If we choose to work in cylindric or
spheric coordinates, on the other hand, another set of parameters would be given.
In section 3.2, we discussed a system of homogeneous coordinates for the position
of a point. In any case, the position of a point in three-dimensional space is a vector
quantity, having at least three scalar components called coordinates.

Let us next consider the term position when applied to something other than a
point. In order to specify the location of a body or system of points, for example,
it is necessary to specify more than just three coordinates. It is necessary to specify
enough coordinates that the location of every point of the item being located is
uniquely determined. If all of these coordinates are grouped into a single quantity
according to some agreed upon set of conventions, then the result describes the
location of the system of points.

In the case of a single rigid body, the location and orientation of a coordinate
system fixed to the body with respect to a reference or world coordinate system
describes the posture of that body. In section 3.5, we saw that this position can be
described in terms of the location of the origin of the coordinate system fixed to
the body as well as a (3 × 3) matrix describing the orientation of this coordinate
system, both specified with respect to the same world coordinate system. In fact, we
assembled these into a (4 × 4) matrix shown in Eq. (3.26).

In robotics, for example, this matrix is used to describe the location and orien-
tation (the posture) of a coordinate system attached to the end-effector with respect
to a base or world coordinate system. In this case, as shown in Figure 3.8, the unit
vector u is called the approach vector showing the direction in which the end-effector
would approach an object to grasp it. The unit vector v is called the orientation vec-
tor showing the orientation of the palm of the hand of the end-effector. Finally the
unit vector w is called the normal vector indicating the direction of the normal to
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the surface defined by the two fingers of the end-effector. It is clear by its definition
that w = u × v.

In some robotics literature, the word position is used loosely to describe the
location of only a single point (such as the origin) of a coordinate system attached
to the end-effector. In such literature, the end-effector is said to have a certain
position; the orientation may then be added and the term “pose” is often used for
the combination of the two. It should be pointed out, however, that the term posture
is more appropriate1 and is utilized throughout this text.

The term posture becomes even more suitable when dealing with a mechanism
or multibody system because we are not concerned with the position of only a single
point or of only a single rigid body, but of an assembly of rigid bodies, and we wish
to describe the position of the entire system. We use the term posture to describe
the configuration of a system, including both the locations and the orientations of
every body of the system, all at a given moment in time.

If a point or a body or a coordinate system has a known position or posture and
is subsequently moved to a new position or posture, it is said to have undergone
a displacement, defined as the difference between its later and initial positions or
postures. For a point, a displacement can be written in terms of a vector whose
components consist of changes in the position coordinates; that is, the differences
between the later position coordinates and those of the earlier reference position.
For a rigid body, a displacement results from a change in posture of the body; that
is, a change in location of a reference point and/or a change in orientation of the
body. Using the notation of the previous section and representing the posture of a
rigid body by a (4 × 4) transformation matrix, the displacement of a rigid body can
be described by the difference between two such matrices representing the later and
earlier postures (locations and orientations). For a mechanism or multibody system
consisting of 	 rigid bodies, the displacement of body b between some initial time
(t0) and some later time (t1) is given by

ΔT0b = T0b(t1) − T0b(t0), b = 1, 2, . . . , 	. (3.27)

Because a point remains fixed with respect to the coordinate system of its own
rigid body, the displacement of a point of rigid body b is

ΔRb = Rb(t1) − Rb(t0) = T0b(t1)rb − T0b(t0)rb = ΔT0brb, b = 1, 2, . . . , 	. (3.28)

We notice that displacement depends only on the two bounds of the interval.
No information regarding how the later position or posture is achieved is necessary
for its determination. If we fly from Chicago to London and return, we travel a great
distance but our displacement is zero.

Suppose we wish to describe the displacement of a rigid body as it moves from
some initial posture to a later posture. Suppose also that we wish to describe this
change in posture of the body starting with data for the displacements of only a few
points attached to the body. In three dimensions, a minimum of three non-collinear
points must be measured to define a body’s posture because their nine coordinates,

1 The Webster Comprehensive Dictionary: International Edition states under its definition of attitude,
“Synonyms: pose, position, posture. A posture is assumed without any special reference to expression
of feeling; . . . A pose is a position studied for artistic effect or considered with reference to such an
effect.”
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subject to the three constant-distance constraints between them, give sufficient data
for determining the six degrees of freedom of the body.

Suppose that we choose to measure the initial positions of three chosen points of
the body with respect to some stationary coordinate system, and denote these data
by Cartesian coordinate position vectors, R1(t0), R2(t0), and R3(t0). Suppose that
we also measure the position coordinates of the same three points after the body
has moved, R1(t1), R2(t1), and R3(t1). From these data, we wish to describe the
displacement of the body in such a way that we are able to find the new positions of
other points of the same body.

The moving body will carry a body coordinate system, x, y, z. Suppose we choose
this moving coordinate system coincident with the global system at the initial time
t0. This choice is convenient because it gives T(t0) = I and, by Eq. (3.24), R(t0) = r
identifies the homogeneous body coordinates of the points.

Notice that the subscript for body label is not used in this section. Because there
is only one moving body, moving with respect to the absolute frame, this should not
cause confusion. Also, the subscripts showing point number or time state are used
in this section only.

Now, to simplify the following calculations, we generate data for an additional
fourth point of the moving body. Suppose we choose this additional point by the
equation

r4 = r1 + [r2 − r1] × [r3 − r1] . (3.29)

Because the original three points are assumed distinct and non-collinear, this fourth
point is linearly independent of the first three.

Because all four points belong to the same rigid body, the later position of this
fourth point can be found by a similar calculation

R4(t1) = R1(t1) + [R2(t1) − R1(t1)] × [R3(t1) − R1(t1)].

According to Eq. (3.27), we can write in homogeneous coordinates that

R(t1) = (I + ΔT )r,

and, from this, we define a new matrix T that transforms the points from the initial
position r to the altered position R(t1).

T = I + ΔT, (3.30)

R(t1) = Tr. (3.31)

Writing this equation four times, once for each of our points, we can group these
into a single matrix equation as follows:

[R1(t1) R2(t1) R3(t1) R4(t1)] = T [r1 r2 r3 r4],

and because the matrix of initial point position data is square (4 × 4) and non-
singular (because the four points are not coplanar), this equation can be solved to
find the T matrix as follows:

T = [R1(t1) R2(t1) R3(t1) R4(t1)][r1 r2 r3 r4]−1. (3.32)
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Once this T matrix is known, any point of that same moving body can be specified
by its initial position r = R(t0), and its displaced position R(t1) can be found by
Eq.(3.31). A numeric example will illustrate.

EXAMPLE 3.1 Suppose we have data for the position coordinates of three points
of a moving body such that we know:

r1 =

⎡
⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎦ , r2 =

⎡
⎢⎢⎢⎣

2 in
0
0
1

⎤
⎥⎥⎥⎦ , r3 =

⎡
⎢⎢⎢⎣

0
5 in

0
1

⎤
⎥⎥⎥⎦ ,

R1(t1) =

⎡
⎢⎢⎢⎣

2.872 in
−4.757 in

6.469 in
1

⎤
⎥⎥⎥⎦ , R2(t1) =

⎡
⎢⎢⎢⎣

1.493 in
−3.927 in

5.281 in
1

⎤
⎥⎥⎥⎦ , R3(t1) =

⎡
⎢⎢⎢⎣

6.098 in
−1.137 in

5.251 in
1

⎤
⎥⎥⎥⎦ .

Using Eqs. (3.29) and its successor, we calculate data for two positions of an
independent fourth point

r4 =

⎡
⎢⎢⎢⎣

0
0

10 in
1

⎤
⎥⎥⎥⎦ , R4(t1) =

⎡
⎢⎢⎢⎣

6.162 in
−10.270 in
−1.197 in

1

⎤
⎥⎥⎥⎦ .

We now use Eq. (3.32) to find the T matrix

T =

⎡
⎢⎢⎢⎣

2.872 in 1.493 in 6.098 in 6.162 in
−4.757 in −3.927 in −1.137 in −10.270 in

6.469 in 5.281 in 5.251 in −1.197 in
1 1 1 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 2 in 0 0
0 0 5 in 0
0 0 0 10 in
1 1 1 1

⎤
⎥⎥⎥⎦

−1

,

T =

⎡
⎢⎢⎢⎣

−0.68936 0.64538 0.32904 2.87154 in
0.41461 0.72396 −0.55134 −4.75653 in

−0.59404 −0.24366 −0.76668 6.46932 in
0 0 0 1

⎤
⎥⎥⎥⎦ ,

and the displacement matrix for the body over this time interval is found from
Eq. (3.30),

ΔT = T − I =

⎡
⎢⎢⎢⎣

−1.68936 0.64538 0.32904 2.87154 in
0.41461 −0.27604 −0.55134 −4.75653 in

−0.59404 −0.24366 −1.76668 6.46932 in
0 0 0 0

⎤
⎥⎥⎥⎦ .

From the T matrix we can find the displaced position of any additional point(s)
of the body as follows

r5 =

⎡
⎢⎢⎢⎣

2 in
5 in

0
1

⎤
⎥⎥⎥⎦ , R5(t1) = Tr5 =

⎡
⎢⎢⎢⎣

4.720 in
−0.308 in

4.063 in
1

⎤
⎥⎥⎥⎦ ,
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or, from the displacement matrix �T, we can find the displacement of any
additional point(s) of the body:

ΔR5 = ΔT

⎡
⎢⎢⎢⎣

2 in
5 in

0
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2.720 in
−5.308 in

4.063 in
0

⎤
⎥⎥⎥⎦ .

From this example, we see that the T matrix appears similar in many ways to
our transformation matrix of previous sections. We see the characteristic zero and
unit entries in the bottom row and a quick check verifies that the upper-left (3 × 3)
submatrix is orthogonal with determinant of positive one, as a rotation submatrix
must be. Was this accidental or peculiar to this example? No; these properties are
true in the general case and proof is shown in the next section.

We see here that there are two quite different ways in which a transformation can
be viewed. It can be seen as a relationship between the postures of one coordinate
system and another. The matrix Tcb of the previous sections answers the question,
“Where is the coordinate system of body b when measured with respect to the
coordinate system of body c at a chosen moment in time?” Alternatively, it can be
seen as a relationship between two different postures of the same moving coordinate
system at two different values of time; the T(t1) matrix of this section answers
the question, “What is the displaced posture of this particular coordinate system at
time t1 with respect to its initial posture?”

The posture of a rigid body such that its body coordinate system coincides with
the fixed or global coordinate system, as shown in Figure 3.9, is usually referred to as
the reference posture. At this posture, vectors from the origins of the two coincident
coordinate systems to a point of the rigid body can be represented by rb in the body
coordinate system or by Rb in the fixed or global coordinate system. Thus, at the
reference or zero posture, T(t0) = I and Rb(t0) = rb.

When the body moves from this reference or zero posture to a new posture at
time t1, the new position of the point can be written as that given by Eq. (3.31).

Rb = Trb. (3.33)

In this equation, T = I + ΔT, but ΔT = T(t1) − T(t0) = T(t1) − I. Therefore, T =
I + T(t1) − I = T(t1) and T(t1) is the (4 × 4) transformation matrix representing
the posture of the moving body at time t1. This is the same (4 × 4) transformation

rb

Rb

rb

Figure 3.9. Zero or reference posture of a rigid body or
coordinate system.
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matrix of Eq. (3.24) that was used to represent a coordinate transformation. In other
words, Eq. (3.33) can be used to represent the displacement of a point of a rigid
body as the body moves from a reference or zero posture to an arbitrary posture or,
alternatively, it can be used to represent a coordinate transformation between the
body coordinate system of a rigid body and the global coordinate system.

As a rigid body moves from a reference posture through a set of displacements
in space, a point attached to the moving body takes positions R0, R1, . . . , RN in the
fixed space. Because these points represent different locations of the same point of
the rigid body, they are referred to as homologous points. If the body goes through
N displacements then there are N homologous points associated with a chosen
point of the body. As a rigid body moves in space, different points of the body
produce different sets of homologous points. In a mechanism or multibody system,
for example, a human musculoskeletal system, these sets of homologous points might
be sets of points representing the positions of the joints of the system.

3.7 Euler’s and Chasles’ Theorems

Euler’s and Chasles’ theorems are two fundamental theorems dealing with rigid
body displacements. Euler’s theorem deals only with a change in orientation of a
rigid body whereas Chasles’ theorem deals with a general displacement involving a
change in location as well as a change in orientation; that is, a change in posture.

Chasles’ theorem [3], named after the French mathematician, Michel Chasles
(1793–1880), states that,

Any general three-dimensional displacement of a rigid body can be achieved by a uniform
helical motion about a fixed axis.

We note that a helical motion consists of a rotation about and a translation along the
axis of a helix that is fixed. For a uniform helical motion, the ratio of the translation
along the axis to the rotation about the axis remains constant and is referred to as
the pitch of the helical motion. This means that, given any two separated postures of
a rigid body, there exists an axis in space with which the body can be brought from
its initial posture to its final posture by a rotation about, and a translation along this
axis with a fixed pitch. Such a motion can be mechanically realized by a bolt and a
nut (see Figure 3.10) where the motion of the nut on the bolt consists of a translation
along the axis of the bolt and a rotation about the same axis. This axis is referred
to as the screw axis. This is why a general rigid body displacement is sometimes
referred to as a screw displacement. The screw axis was first identified and defined
by the Italian mathematician, Giulio Mozzi (1730–1813), and was published in [14],
as is described in detail in [2] by Ceccarelli.

The amount of the relative translation (denoted here as φ) together with the
amount of the relative rotation (denoted here as θ) about the screw axis define
the extent of the displacement and are referred to as screw parameters. The pitch of
the displacement (denoted here as σ ) is defined in the same way that the pitch of a
screw is defined, and indicates the ratio of the magnitude of the relative translation
to the magnitude of the relative rotation about the helical axis. In this text, positive
rotation is taken to be counterclockwise and positive translation is taken in the
direction of the positive sense along the screw axis.
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Figure 3.10. A screw displacement performed by a
bolt and nut.

Euler’s theorem [6], defined six decades earlier, can be considered a special
case of Chasles’ more general theorem in that only the rotational component of a
displacement is considered. It can be stated as,

Any general three-dimensional displacement of a rigid body with one point fixed can be
achieved by a single rotation about a fixed axis through the fixed point.

In this case, where there is no translation, the axis is similar to the screw axis, but it
now becomes a rotation axis.

In conjunction with these two theorems, it is sometimes desirable to write the
equations, Eq. (3.33), governing rigid body displacements in terms of the screw
axis and screw parameters identified in Chasles’ theorem. Such equations were first
derived by the French mathematician, Benjamin Olinde Rodrigues (1794–1851), in
his work on the composition of multiple displacements [16]. Here a slightly different
derivation is presented.

Consider a rigid body in two different postures as shown in Figure 3.11. This
body can be considered to have gone through a spatial displacement from its first
posture to its second posture. A chosen point of the body assumes two different

R2

R1Figure 3.11. A spatial displacement of a rigid body.
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R2

θ

φ

R1

screw axis

Figure 3.12. The screw axis and screw parameters
of a displacement.

positions R1 and R2 with respect to the fixed coordinate system. Points R1 and R2
are homologous points because they are different positions of the same point as the
body goes through a displacement. The screw axis and the screw parameters, θ and
φ, for the displacement of the rigid body are shown in Figure 3.12.
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Figure 3.13. Geometry of a screw displacement.
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We are now interested in developing equations relating the positions of the two
homologous points R1 and R2 in terms of the screw axis and the screw parameters.
Recall that these are two positions of the same point of the moving body in its two
postures in space. In the fixed coordinate system, the screw axis can be specified in
terms of a vector from the origin of the coordinate system to one point P = [Px, Py,
Pz]t on the screw axis and a unit vector w = [wx, wy, wz]t parallel to the screw axis as
shown in Figure 3.13. The screw parameters, namely the counterclockwise rotation
about and the translation along the screw axis, are θ and φ, respectively. We are
interested in finding the functional relationship

R2 = f (R1,P,w, θ, φ).

In this expression R1 and R2 are two position vectors of point R of the moving body,
both measured in the fixed coordinate system, as the body goes through a helical
or screw displacement with the screw axis defined by vectors (P, w) and with screw
parameters (θ , φ).

From Figure 3.13, it is clear that:

ρ1 = R1 − P, (a)

and

R2 = P + −→
PO + ρ2. (b)

Also, considering |r1| = |r′
1|, it can be seen from Figure 3.13 that

ρ2 = r1cos θu + r1sin θv + φw.

In addition, we see that
−→
PO = (ρ1 · w)w,

and

v = w × u.

Substituting these into Eq. (b), we get

R2 = P + (ρ1 · w)w + r1[cos θu + sin θw × u] + φw.

Now, substituting

r1u = ρ1 − −→
PO,

and ρ1 from Eq. (a) and simplifying, we obtain our desired equation:

R2 = (R1 − P)cos θ + [(R1 − P) · w]w(1 − cos θ ) + w × (R1 − P)sin θ + P + φw.

(3.34)

Equation (3.34) is the vector form of the general spatial displacement equation
relating two positions of a point of a moving body as it goes through a screw dis-
placement expressed in terms of the parameters defined in Chasles’ theorem. The
equation given here explicitly finds the second position R2 of a point of the moving
body in terms of its first position R1, the screw axis (P, w), and screw parameters
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(θ , φ), and uses the total displacement angle. Olinde Rodrigues was the first to derive
such equations, although his equations were in implicit form and were expressed in
terms of half-angles.

Before we discuss the use of half-angles in section 3.8, we would like to express
Eq. (3.34) in matrix form. We note that, if we have two vectors a and b,

a =
⎡
⎣ax

ay

az

⎤
⎦ and b =

⎡
⎣bx

by

bz

⎤
⎦ ,

then the vector dot product a · b can be written in matrix form as atb. Also, if we
define the notation

ã =
⎡
⎣ 0 −az ay

az 0 −ax

−ay ax 0

⎤
⎦ ,

then the vector cross product a × b can be written in matrix form as ãb.
It can also be seen that

(b · a)a = (a · b)a = (at b)a = a(atb) = (aat )b. (c)

If we take the vector a to be the unit vector w that defines the orientation of the
screw axis, then

wwt =
⎡
⎣(wx)2 wxwy wxwz

wywx (wy)2 wywz

wzwx wzwy (wz)2

⎤
⎦ and w̃ =

⎡
⎣ 0 −wz wy

wz 0 −wx

−wy wx 0

⎤
⎦ .

However, because w is a unit vector – that is, wtw = 1 – it can be verified that
I − wwt = w̃w̃t, where I is the (3 × 3) identity matrix. Furthermore, because w̃ is
a skew-symmetric matrix, w̃t = −w̃, and we can write I − wwt = w̃w̃t = −w̃2, or
wwt = I + w̃2. Substituting this into Eq. (c ), we can write:

(b · w)w = (w · b)w = (wt b)w = w(wt b) = (wwt )b = (I + w̃2)b.

Using these vector-to-matrix conversion identities, with b = (R1 − P), we can
rewrite Eq. (3.34) in matrix form as

R2 = [I + w̃ sin θ + w̃2(1 − cos θ )](R1 − P) + P + φw. (3.35)

Equation (3.35) can also be written as

R2 = ΘR1 + d, (3.36)

where

Θ = [I + w̃ sin θ + w̃2(1 − cos θ )], (3.37)

and

d = (I − Θ)P + φw. (3.38)
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If we consider the moving body to have a coordinate system that is initially
coincident with the coordinate system of the fixed body (see Figure 3.9), then
Eq. (3.36) can be written in terms of a (4 × 4) homogeneous transformation
matrix as

⎡
⎢⎢⎢⎢⎣

Rx
2

Ry
2

Rz
2

1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
Θ (1, 1) Θ (1, 2) Θ (1, 3) dx

Θ (2, 1) Θ (2, 2) Θ (2, 3) dy

Θ (3, 1) Θ (3, 2) Θ (3, 3) dz

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Rx
1

Ry
1

Rz
1

1

⎤
⎥⎥⎥⎥⎦ , (3.39)

or R2 = T21R1, with

T =

⎡
⎢⎢⎣
Θ (1, 1) Θ (1, 2) Θ (1, 3) dx

Θ (2, 1) Θ (2, 2) Θ (2, 3) dy

Θ (3, 1) Θ (3, 2) Θ (3, 3) dz

0 0 0 1

⎤
⎥⎥⎦ =

[
Θ d
0 1

]
,

where the elements of the (4 × 4) matrix T are given by

Θ (1, 1) = [(wx)2 − 1](1 − cos θ ) + 1,
Θ (1, 2) = wywx(1 − cos θ ) − wz sin θ,

Θ (1, 3) = wzwx(1 − cos θ ) + wy sin θ,

Θ (2, 1) = wxwy(1 − cos θ ) + wz sin θ,

Θ (2, 2) = [(wy)2 − 1](1 − cos θ ) + 1,
Θ (2, 3) = wzwy(1 − cos θ ) − wx sin θ,

Θ (3, 1) = wxwz(1 − cos θ ) − wy sin θ,

Θ (3, 2) = wywz(1 − cos θ ) + wx sin θ,

Θ (3, 3) = [(wz)2 − 1](1 − cos θ ) + 1,

(3.40)

and

dx = φwx − [Θ (1, 1) − 1] Px − Θ (1, 2)Py − Θ (1, 3)Pz,

dy = φwy − Θ (2, 1)Px − [Θ (2, 2) − 1] Py − Θ (2, 3)Pz,

dz = φwz − Θ (3, 1)Px − Θ (3, 2)Py − [Θ (3, 3) − 1] Pz.

(3.41)

We will refer to Eq. (3.39) as the screw displacement equation because the elements
of its (4 × 4) homogeneous transformation matrix are given in terms of the screw
axis and the screw parameters as shown in Eqs. (3.40) and (3.41).

If we consider only the rotation part, Eq. (3.39) becomes

⎡
⎢⎣

Rx
2

Ry
2

Rz
2

⎤
⎥⎦ =

⎡
⎢⎣
Θ (1, 1) Θ (1, 2) Θ (1, 3)

Θ (2, 1) Θ (2, 2) Θ (2, 3)

Θ (3, 1) Θ (3, 2) Θ (3, 3)

⎤
⎥⎦
⎡
⎢⎣

Rx
1

Ry
1

Rz
1

⎤
⎥⎦ , (3.42)

or symbolically,

R2 = Θ21R1, (3.43)

where Θ21 is the (3 × 3) rotation matrix whose elements Θ21(i, j), with i, j = 1, 2, 3,
are given by Eqs. (3.40).
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Figure 3.14. Precession, nutation, and spin Euler angles.

Equations (3.42) and (3.43) provide an analytic representation of Euler’s theo-
rem. They can also be used to derive an equation for representing orientation using
Euler angles by considering the final orientation of a body as a composition of three
rotations. For example, as shown in Figure 3.14, the first rotation moves the line of
nodes around the fixed z1 axis, the second rotation is around the line of nodes, and
the third rotation is around the z4 axis fixed in the moving body. These three rota-
tions are called precession, nutation, and spin, respectively, and they are illustrated
in Figure 3.14.

The first rotation (called precession) is counterclockwise by the angle ξ about
the z1 axis as shown in Figure 3.14a. The screw or rotation axis for this rotation is z1

with direction cosines w1 = (0, 0, 1)t. Using Eqs. (3.40), the corresponding rotation
matrix for precession becomes:

Θ12 =
⎡
⎣cos ξ −sin ξ 0

sin ξ cos ξ 0
0 0 1

⎤
⎦ .

Next, we start with the coordinate system x2y2z2 as the reference and rotate about
the x2 axis by the counterclockwise angle ϑ (called nutation) to a new orientation
indicated as x3y3z3 in Figure 3.14b. The screw or rotation axis is x2 with direction
cosines w2 = (1, 0, 0)t. Using Eqs. (3.40), the rotation matrix for nutation becomes:

Θ23 =
⎡
⎣1 0 0

0 cosϑ −sinϑ

0 sinϑ cosϑ

⎤
⎦ .

Finally we perform one more rotation to a new orientation x4y4z4 as shown in
Figure 3.14c. This time the rotation (called spin) is by the counterclockwise angle ϕ

about the rotation or screw axis z3 that is fixed in the moving body. The direction
cosines of this axis are w3 = (0, 0, 1)t, and the rotation matrix for spin becomes:

Θ34 =
⎡
⎣cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎤
⎦ .

If we now consider the coordinates of a point in the coordinate system x4y4z4

and relate it to the coordinates of the same point in the coordinate system x1y1z1,
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we can write r1 = Θ12r2, r2 = Θ23r3, and r3 = Θ34r4. Substituting these equations into
one another, we find r1 = Θ12Θ23Θ34r4 and the final orientation is described by:

Θ14 =
⎡
⎣cos ξ −sinξ 0

sinξ cos ξ 0
0 0 1

⎤
⎦
⎡
⎣1 0 0

0 cosϑ −sinϑ
0 sinϑ cosϑ

⎤
⎦
⎡
⎣cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 1

⎤
⎦ ,

or

Θ14 =

⎡
⎢⎢⎣
−sin ξcosϑsinϕ + cos ξcosϕ −sin ξcosϑcosϕ − cos ξsinϕ sin ξsinϑ

cos ξcosϑsinϕ + sin ξcosϕ cos ξcosϑcosϕ − sin ξsinϕ −cos ξsinϑ

sinϑsinϕ sinϑcosϕ cosϑ

⎤
⎥⎥⎦ .

(3.44)

From Eq. (3.44) we can also write

Θ41 = Θ−1
14 = Θ t

14 = Θ t
34Θ

t
23Θ

t
12

=

⎡
⎢⎢⎣

−sin ξcosϑsinϕ + cos ξcosϕ cos ξcosϑsinϕ + sin ξcosϕ sinϑsinϕ

−sin ξcosϑcosϕ − cos ξsinϕ cos ξcosϑcosϕ − sin ξsinϕ sinϑcosϕ

sin ξsinϑ −cos ξsinϑ cosϑ

⎤
⎥⎥⎦ .

(3.45)

The reader may wish to verify that |Θ41| = |Θ14| = +1.
It should be pointed out that there are many different ways that Euler angles

can be defined by changing the choice of axes or the order in which the rotations
take place. In the previous derivation, for example, we could have taken the second
rotation by the amount ϑ in the counterclockwise direction about the y2 axis instead
of about x2. In such a case, the rotation matrix for the second rotation would have
become:

Θ23 =
⎡
⎣ cosϑ 0 sinϑ

0 1 0
−sinϑ 0 cosϑ

⎤
⎦ ,

and the final orientation would be described by

Θ14 =

⎡
⎢⎢⎣

cos ξcosϑcosϕ − sin ξsinϕ −cos ξcosϑsinϕ − sin ξcosϕ cos ξsinϑ

sin ξcosϑcosϕ + cos ξsinϕ −sin ξcosϑsinϕ + cos ξcosϕ sin ξsinϑ

sinϑcosϕ sinϑsinϕ cosϑ

⎤
⎥⎥⎦ .

Consider yet another case where we take the first rotation to be a counterclock-
wise angle α about the x1 axis, the second rotation to be a counterclockwise angle β

about the new y2 axis, and the final rotation to be a counterclockwise angle γ about
the modified z3 axis. The resulting rotation matrices are

Θ12 =
⎡
⎣1 0 0

0 cosα −sinα

0 sinα cosα

⎤
⎦ , Θ23 =

⎡
⎣ cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

⎤
⎦ ,

Θ34 =
⎡
⎣cos γ −sin γ 0

sin γ cos γ 0
0 0 1

⎤
⎦ .
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Figure 3.15. Cardan angles.

The final orientation of the body is now given by

Θ14 =

⎡
⎢⎢⎣

cosβcos γ −cosβsin γ sinβ

sinαsinβcos γ + cosαsin γ −sinαsinβsin γ + cosαcos γ −sinαcosβ

−cosαsinβcos γ + sinαsin γ cosαsinβsin γ + sinαcos γ cosαcosβ

⎤
⎥⎥⎦ .

(3.46)

This particular choice of Euler angles is shown in Figure 3.15 and, when taken
in this order and about these axes, is called a set of Cardan angles, named after the
Italian mathematician, Gerolamo Cardano (1501–76), who was the first to develop
such a minimal representation of orientation, two centuries before Euler (1707–83).
They are sometimes also called Tait-Bryan angles, after the Scottish mathematical
physicist, Peter Guthrie Tait (1831–1901), and George Hartley Bryan (1864–1928),
professor at University College, Bangor, Wales.

Furthermore, Cardan angles are still used to represent some very practical situ-
ations, such as describing the orientation of a spacecraft, a car or truck, or a nautical
craft. In these cases, if the x-axis is aligned along the fore-aft axis, with the y axis
lateral and the z axis vertical, then the three Cardan angles describe the roll, pitch,
and yaw of the vessel (see Figure 3.16) and are sometimes referred to as nautical
angles.

roll

pitch

yaw

α

β

γ

Figure 3.16. Roll, pitch, and yaw axes for an aircraft.
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Once the axes, the order, and the sign conventions are specified, three angles
are usually unique and sufficient to specify the relative orientation of two arbitrarily
oriented Cartesian coordinate systems. However, there are certain orientations (for
example, with the conventions used here, when the angle β is equal to ±90◦), for
which there are not unique values for α and γ for a given orientation because, at such
an attitude, the α and γ angles are measured about collinear axes. The same problem
occurs in Eq. (3.44) when angle ϑ = 0 or ϑ = ±180◦. Such an orientation does not
have three independent angles and full three-dimensional rotation about such an
orientation cannot be described by this choice of axes. All sets of Euler angles share
this difficulty. There is always at least one orientation where two of the rotation
axes become collinear, causing a singularity called “gimbal lock” in the description.
In fact, it has been shown [17] that it is not possible to have a parameterization
of the rotation matrix in terms of three parameters without singularities. However,
using four parameters, as with the Euler-Rodrigues parameters discussed in the next
section, this problem is eliminated.

3.8 Euler-Rodrigues Parameters

As mentioned in the previous section, there is a major difficulty with the use of any
set of Euler angles for the specification of spatial orientation. No matter which set
of conventions is chosen, there is always a singularity in the specification for some
values of the angles. It is desirable to have a method of specifying three-dimensional
rotation that does not display such a singularity for any orientation. The Euler-
Rodrigues parameters provide such a description. These parameters, referred to in
some literature as just Euler parameters, are based on half-angles. It is pointed out
here, however, that Euler only used full angles in all of his work and it was Rodrigues
who first introduced the use of half-angles for parameterization of rotation in his
derivation of the Rodrigues equations.

Here we start with Eqs. (3.40) and substitute the following two trigonometric
identities:

cos θ = cos 2(θ/2) − sin 2(θ/2) and sin θ = 2 sin(θ/2) cos(θ/2).

With these, the elements of the rotation matrix given by Eqs. (3.40) become:

Θ(1, 1) = 2[(wx)2 − 1]sin2(θ/2) + 1,

Θ(1, 2) = 2 sin (θ/2)[wywx sin (θ/2) − wz cos (θ/2)],

Θ(1, 3) = 2 sin (θ/2)[wzwx sin (θ/2) + wy cos (θ/2)],

Θ(2, 1) = 2 sin (θ/2)[wxwy sin (θ/2) + wz cos (θ/2)],

Θ(2, 2) = 2[(wy)2 − 1] sin2(θ/2) + 1,

Θ(2, 3) = 2 sin (θ/2)[wzwy sin (θ/2) − wx cos (θ/2)],

Θ(3, 1) = 2 sin (θ/2)[wxwz sin (θ/2) − wy cos (θ/2)],

Θ(3, 2) = 2 sin (θ/2)[wywz sin (θ/2) + wx cos (θ/2)],

Θ(3, 3) = 2[(wz)2 − 1] sin2(θ/2) + 1,

(3.47)
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Next we define the vector ⎧⎨
⎩

e1

e2

e3

⎫⎬
⎭ =

⎧⎨
⎩

wx

wy

wz

⎫⎬
⎭ sin (θ/2).

We note that this vector is aligned with a possible axis of rotation and, therefore,
the components of this vector are the same in both coordinate frames. However, we
also note that, although the w vector is aligned with a possible axis of rotation for the
total displacement through the finite angle θ , it may not be aligned with the actual
instantaneous axis of rotation at the beginning or end of the displacement.

We also define a fourth parameter, e4 = cos (θ/2), so that the total set becomes
a four-dimensional unit vector

e =

⎧⎪⎪⎨
⎪⎪⎩

e1

e2

e3

e4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

wx sin (θ/2)
wy sin (θ/2)
wz sin (θ/2)
cos (θ/2)

⎫⎪⎪⎬
⎪⎪⎭ , (3.48)

where

(e1)2 + (e2)2 + (e3)2 + (e4)2 = ete = 1. (3.49)

Expressed in terms of these Euler-Rodrigues parameters, the rotation matrix for
the orientation of the x1y1z1 coordinate frame with respect to the x2y2z2 coordinate
frame is

Θ21

=
⎡
⎣(e1)2 − (e2)2 − (e3)2 + (e4)2 2e1e2 − 2e3e4 2e1e3 + 2e2e4

2e1e2 + 2e3e4 −(e1)2 + (e2)2 − (e3)2 + (e4)2 2e2e3 − 2e1e4

2e1e3 − 2e2e4 2e2e3 + 2e1e4 −(e1)2 − (e2)2 + (e3)2 + (e4)2

⎤
⎦ .

(3.50)

For situations in which a numeric form of the rotation matrix is already known
and we wish to compute the corresponding Euler-Rodrigues parameters, we may
desire a numeric procedure to do this. The following procedure is adapted from
Friberg [8].

Let us suppose that the elements of the rotation matrix, with the symbolism Θ(i,
j) referring to the element of matrix Θ in row i and column j, have known numeric
values. Because the trace of a square matrix is defined as the sum of the terms on
the major diagonal, from Eq. (3.50) we see that

trace (Θ) = {Θ (1, 1) + Θ (2, 2) + Θ (3, 3)} = {−(e1)2 − (e2)2 − (e3)2 + 3(e4)2}.
However, because we know that (e1)2 + (e2)2 + (e3)2 + (e4)2 = 1, then (e4)2 =

1
4 {trace(Θ) + 1}, or

e4 = ±y
√

trace (Θ) + 1, (3.51)

where the sign may be selected arbitrarily.
Computation of the other three Euler-Rodrigues parameters now involves con-

sideration of numeric issues such as division by a small value or subtraction of
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numeric values that are nearly equal but not identical. For these reasons, we estab-
lish a precision threshold ε such that e4 is considered close to zero if |e4| ≤ ε.2 There
are two possible cases:

Case 1: In this case, |e4| > ε.
We note, by subtracting off-diagonal elements of Θ , that

e1 = [Θ(3, 2) − Θ(2, 3)]/(4e4),

e2 = [Θ(1, 3) − Θ(3, 1)]/(4e4), (3.52)

e3 = [Θ(2, 1) − Θ(1, 2)]/(4e4),

and, from the diagonal terms,

e1 = ± 1
2

√
1 + 2Θ (1, 1) − trace (Θ),

e2 = ± 1
2

√
1 + 2Θ (2, 2) − trace (Θ), (3.53)

e3 = ± 1
2

√
1 + 2Θ (3, 3) − trace (Θ).

Equations (3.52) might be used to compute the three parameters e1, e2, e3 once the
sign of e4 has been selected. However, a better numeric approach is to utilize the
magnitudes given by Eqs. (3.53) together with sign information from the numerators
of Eqs. (3.52). The reason for this choice is that when e4 approaches zero, the rotation
matrix Θ approaches symmetry and, in that situation, numerical cancellation effects
can occur in the numerators of Eqs. (3.52). It should also be noted that when e4 → 0,
then trace(Θ) → −1 might result, and nearly “zero divided by zero” situations may
occur in Eqs. (3.52) if the divisions are attempted.

Case 2: In this case, |e4| ≤ ε.
When |e4| is determined to be effectively zero numerically according to the threshold
ε, then we have

e2e3 = 1
4 [Θ (2, 3) + Θ (3, 2)] ,

e3e1 = 1
4 [Θ (3, 1) + Θ (1, 3)] , (3.54)

e1e2 = 1
4 [Θ (1, 2) + Θ (2, 1)] .

Also,

e1 = ±
√

1
2 [Θ (1, 1) + 1],

e2 = ±
√

1
2 [Θ (2, 2) + 1],

e3 = ±
√

1
2 [Θ (3, 3) + 1]. (3.55)

Because (e1)2 + (e2)2 + (e3)2 + (e4)2 = 1, with |e4| being numerically small, at least
one of the parameters e1, e2, or e3 must be nonzero. From Eqs. (3.55), we can select
the largest numeric value and arbitrarily assign it a plus or minus sign, and then we
can utilize Eqs. (3.54) to compute the remaining two Euler-Rodrigues parameters.

2 The IMP software system, for example, uses a default value of ε = 10−6 for this threshold.
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Figure 3.17. Example 3.2.

Thus, in this case, when the rotation matrix Θ is essentially symmetric, it is conve-
nient to use only the row and column of Θ corresponding to the largest diagonal
element.

EXAMPLE 3.2 As an illustrative example, consider the coordinate frames shown
in Figure 3.17. In this case, the x1y1z1 frame is oriented such that the x1 axis is
precisely opposite to positive z2, the z1 axis is opposite to positive y2, and the
y1 axis completes the right-handed coordinate system by aligning itself parallel
to x2. We wish to find the corresponding Euler-Rodrigues parameters for this
change of posture.

By inspection, the rotation matrix is:⎧⎪⎨
⎪⎩

x2

y2

z2

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

0 1 0

0 0 −1

−1 0 0

⎤
⎥⎦
⎧⎪⎨
⎪⎩

x1

y1

z1

⎫⎪⎬
⎪⎭ .

From this (3 × 3) rotation matrix and Eq. (3.51), we find

e4 = ± 1
2

√
trace(Θ) + 1 = ± 1

2

√
1 = + 1

2 ,

where we have arbitrarily selected the positive sign. We note that this is Case 1.
Next, Eqs. (3.53) give:

e1 = ± 1
2 , e2 = ± 1

2 , e3 = ± 1
2 ,

and using the signs of the numerators of Eqs. (3.52) gives:

e1 = + 1
2 , e2 = + 1

2 , e3 = − 1
2 .

Thus, we have both the magnitudes and the signs of the four Euler-Rodrigues
parameters: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
e1

e2

e3

e4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.500
0.500

−0.500
0.500

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Because e4 = cos(θ/2) = + 1
2 , we see that the angle of rotation is θ = 120◦

and the unit vector along the axis of rotation to achieve the orientation of the
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x1y1z1 frame is ⎧⎪⎨
⎪⎩

e1

e2

e3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0.500
0.500

−0.500

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

wx

wy

wz

⎫⎪⎬
⎪⎭ sin (θ/2) ,

which shows that⎧⎪⎨
⎪⎩

wx

wy

wz

⎫⎪⎬
⎪⎭ = 1

sin 60◦

⎧⎪⎨
⎪⎩

0.500
0.500

−0.500

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0.577
0.577

−0.577

⎫⎪⎬
⎪⎭ .

EXAMPLE 3.3 As another example, we wish to find the Euler-Rodrigues param-
eters for the relative orientations of the two coordinate frames shown in
Figure 3.18.

In this case, the rotation matrix is:⎧⎪⎨
⎪⎩

x2

y2

z2

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣−1 0 0

0 −1 0
0 0 1

⎤
⎥⎦
⎧⎪⎨
⎪⎩

x1

y1

z1

⎫⎪⎬
⎪⎭ ,

from which we find

e4 = ± 1
2

√
trace(Θ) + 1 = 0.

Note that this is Case 2. Therefore, from Eqs. (3.55):

e1 = 0, e2 = 0, e3 = ±1.

We select e3 = +1. Then, Eqs. (3.54) give e1 = 0 and e2 = 0. Thus, we now have
all four Euler-Rodrigues parameters,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
e1

e2

e3

e4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
0
1
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

x2

x1

z1

y1

y2

z2

Figure 3.18. Example 3.3.
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Because e4 = cos(θ/2) = 0, the angle of rotation is θ = 180◦. The unit vector
along the axis of rotation to achieve this orientation of the x1y1z1 frame is⎧⎪⎨

⎪⎩
e1

e2

e3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

wx

wy

wz

⎫⎪⎬
⎪⎭ sin (θ/2) =

⎧⎪⎨
⎪⎩

0
0
1

⎫⎪⎬
⎪⎭ ,

which shows that ⎧⎪⎨
⎪⎩

wx

wy

wz

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
0
1

⎫⎪⎬
⎪⎭ .

3.9 Displacement of Lines

The general rigid body displacement equations, Eqs. (3.39), describes displacment of
points of a moving body from its zero reference posture with respect to the fixed axes.
In some applications, however, it may be more appropriate to describe displacement
of lines of a moving body with respect to the fixed axes. In section 3.3, we showed
that Plücker vectors provide a method for representing lines in space that is based on
use of homogeneous quantities. It is interesting to investigate the form of the general
rigid body displacement equations if the emphasis were on the displacement of lines
represented by Plücker vectors rather than on points represented by homogeneous
coordinates.

Let us assume that Plücker vectors of a line 	 of a moving body are given by (σ,
�

σ)

in the coordinate system of the moving body and by (Ω,
�

Ω) in the fixed coordinate
system. Considering the (4 × 4) matrix representation for the Plücker vectors, and
the definition of these vectors, we can show that the equation for the displacement
of such a line is be given by:[∼�

Ω Ω

0 0

]
= T

[∼�
σ σ

0 0

]
T−1, (3.56)

where T is the usual homogeneous transformation matrix, namely, T =
[
Θ d
0 1

]
.

3.10 Quaternions

Quaternions are another mathematical notation, developed by the Irish physicist,
astronomer, and mathematician, Sir William Rowan Hamilton (1805–65), to rep-
resent three-dimensional orientation and rotation [11]. Like the two-dimensional
geometric algebra formed by complex numbers, quaternions form a geometric alge-
bra but in four dimensions.

A quaternion q is represented by an expression of the form q = q1i + q2j +
q3k + q4 where the coefficients qi, i = 1, . . . , 4, are real numbers and the basis units
i, j, k multiply as follows:

i2 = j2 = k2 = −1 and i j = k; jk = i; ki = j; ji = −k; k j = −i; ik = − j.

(3.57)
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Using these rules for multiplication, it is clear that quaternion multiplication, in
general, is not commutative. In other words, qq′, in general, is not equal to q′q.

The norm of a quaternion is the non-negative number defined by:

|q| =
√
(q1)2 + (q2)2 + (q3)2 + (q4)2, (3.58)

which is zero only when q1 = q2 = q3 = q4 = 0. The conjugate of a quaternion q is
defined as

q̄ = −q1i − q2 j − q3k + q4. (3.59)

From the last two equations, it follows that

qq̄ = (q1)2 + (q2)2 + (q3)2 + (q4)2 = |q|2. (3.60)

The inverse of a quaternion is derived from Eq. (3.60) as:

q−1 = q̄
|q|2 . (3.61)

A unit quaternion is a quaternion with unit norm. From Eq. (3.61), it is clear
that the inverse of a unit quaternion is given by its conjugate.

A quaternion can be viewed as having a vector part (q1i + q2j + q3k), and a
scalar part (q4). Because the first three Euler-Rodrigues parameters can be viewed
as components of a vector parallel to a screw axis and the fourth is a scalar, we can
assign them to the vector and scalar parts of a quaternion. The resulting quaternion
is

q = wxsin(θ/2)i + wysin(θ/2) j + wzsin(θ/2)k + cos(θ/2). (3.62)

We note that this is a unit quaternion because [(wx)2 + (wy)2 + (wz)2]sin2(θ/2) +
cos2(θ/2) = 1. The unit quaternion given by (3.62) can be interpreted as representing
a rotation of magnitude θ around a unit vector with direction w = wxi + wyj + wzk.

Although quaternions provide a compact representation of rotation, they are not
used in the remainder of this text. They are briefly presented here because of their
historic significance and their prevalence in some current literature. In this book,
however, the emphasis is on matrix methods that facilitate the application of unified
computer-aided techniques for design analysis. The Euler-Rodrigues parameters,
which are equivalent to a quaternion, are used for representing three-dimensional
orientation or rotation in matrix form.
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PROBLEMS

3.1 Prove that the four points whose homogeneous coordinates are A(1,2,3,4),
B(4,3,2,1), C(1,1,1,1), and D(3,1,−1,−3) are collinear.

3.2 Two circles, each of radius r, have the equations x2 + y2 = r2 and (x − r)2 +
y2 = r2. Find the four points of intersection between these two quadratic equations.
(Hint: recast the two quadratic equations into homogeneous coordinates.)

3.3 Two of the axes of a moving body 1 are in directions described by the vectors
i1 = [0.0, 1.0, 1.0]t and j1 = [1.0, −1.0, 1.0]t with respect to the fixed axes of body 2.
Determine the rotation matrix Θ21.

3.4 Two of the basis vectors of stationary body 2 are in directions described by j2 =
[0.0, 1.0, 1.0]t and k2 = [1.0, −1.0, 1.0]t with respect to the moving axes of body 1.
Determine the rotation matrix Θ21.

3.5 The end effector of a robot is to be located at [500, 150, 225]t where all distances
have units of millimeters. The approach vector is to be [1, 0, 0]t, and the orientation
vector is to be [0, 0, 1]t. Find the transformation matrix for this posture.

3.6 Verify that |Tik| = +1 for Eq. (3.26).

3.7 Measured data in millimeters for the position coordinates of three points of a
moving body are known such that:

r1 =

⎡
⎢⎢⎢⎣

50
0
0
1

⎤
⎥⎥⎥⎦ , r2 =

⎡
⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎦ , r3 =

⎡
⎢⎢⎢⎣

0
125

0
1

⎤
⎥⎥⎥⎦ ,

R1(t1) =

⎡
⎢⎢⎢⎣

37.325
−98.175
132.045

1

⎤
⎥⎥⎥⎦ , R2(t1) =

⎡
⎢⎢⎢⎣

71.800
−118.925

161.725
1

⎤
⎥⎥⎥⎦ , R3(t1) =

⎡
⎢⎢⎢⎣

152.450
−28.425
131.225

1

⎤
⎥⎥⎥⎦ .

Find the (4 × 4) homogeneous transformation matrix for this displacement.

3.8 Verify by direct computation that |Θ41| = +1 for Eq. (3.44).

3.9 Find the precession, nutation, and spin Euler angles that yield the rotation matrix
of problem 3.3.

3.10 Determine the roll, pitch, and yaw Euler angles that yield the rotation matrix
of problem 3.4.

3.11 A rigid body rotates by 60◦ about an axis defined by the vector [3, 4, 0]t. Find
the corresponding rotation matrix.

3.12 Determine the Euler-Rodrigues parameters for the displacement matrix of
problem 3.3.

3.13 Show that, when components of Plücker vectors of lines are used in the form of
the (4 × 4) matrix as discussed in this chapter, the displacement of lines is given by
a similarity transformation. In other words, using the notation of this chapter prove
that:
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[
�

Ω Ω

0 0

]
= T

[
�
σ σ

0 0

]
T−1.

3.14 Consider two lines whose Plücker vectors are (
�

�i�i); i = 1, 2. Show that if these
two lines are parallel, then

�

�1

�

�2 = 0 and if they are perpendicular, then
�

�1 · �

�2 = 0.

3.15 Consider a rigid body b with a body coordinate system xbybzb. The orientation
of this body with respect to the coordinate system xcyczc of another body c is specified
in terms of three direction cosines derivable from the three angles: �(xb, xc) = 45◦,
�(xb, yc) = 60◦, �(xb, yc) = 45◦. Show that these three independent direction cosines
lead to multiple possible orientations for body b with respect to body c. This problem
illustrates an ambiguity inherent in representation of three-dimensional orientation
of a rigid body when only three independent direction cosines are specified.

xc

xb yb

zb

w

vu

yc
zc

Figure P3.15

3.16 In order to standardize characterization of the kinematics of the human shoul-
der, the International Society of Biomechanics (ISB) has recommended the use of
the rotation sequence consisting of external rotation (E), followed by upward rota-
tion (U), then followed by posterior tilting (P) as shown in the figure for describing
scapular kinematics of the shoulder joint. Show that this rotation sequence results
in a different final orientation compared to a sequence consisting of (P)(U)(E).
Calculate the norm of the difference and the difference between the two norms of
the two orientations, if the mean angles are as follows:

posterior tilting P = 30◦, upward rotation U = 60◦, and external rotation E =
90◦.

External
rotation

Posterior
tilting

Upward
rotation

U

P

E

Figure P3.16. Human shoulder model.

3.17 Consider a robot end-effector with two coordinate systems attached to it as
shown in Figure P3.17a. One coordinate system is attached to the end-effector with



Problems 3.17–3.19 79

its origin at the wrist center point and the other is attached to the tip of the end-
effector. The kinematic structure of the wrist is a spherical linkage and is illustrated
in Figure P3.17b.

Show that if we use the coordinate system attached to the end-effector at the
wrist center point, the order in which we perform the roll, pitch, and yaw rotations
is irrelevant; however, if we use the coordinate system attached to the end-effector
at its tip, then the order does make a difference unless we are only concerned with
differential or instantaneous rotations.

(a) (b)

Wrist yaw

Wrist
roll

Wrist
pitch

Yaw

Roll

Pitch

Wrist
yaw Wrist

pitch

Wrist
roll

Figure P3.17 (a) (b)

3.18 In an industrial application, a part is to rotate 30◦ in the counterclockwise
direction about the rod shown in Figure P3.18 and move left along the rod by eight
inches. Determine the new coodinates of a point whose original coordinates were
(x, y, z).

z

y

x

(3,0,3)

+

–

(2,5,0)

Figure P3.18.

3.19 The rotation matrix as given by Eq. (3.37) shows that the rotation angle can be
computed from:

θ = tan−1

⎧⎨
⎩
∥∥∥∥∥∥
Θ(3, 2) − Θ(2, 3)
Θ(1, 3) − Θ(3, 1)
Θ(2, 1) − Θ(1, 1)

∥∥∥∥∥∥, (traceΘ − 1)

⎫⎬
⎭ .



4 Modeling Mechanisms and Multibody
Systems with Transformation Matrices

4.1 Introduction

A mechanism or a multibody system consists of several bodies or links that move
together in a coordinated fashion based on the nature of the connections between
them. The individual bodies or links are usually attached through joints such as
in robot manipulators, biomechanical systems, mechanisms and machines, or other
clever devices such as in aerospace systems. As a system moves, its posture changes,
including displacements of the individual bodies while maintaining the connections
through the joints.

The classical formulations of kinematics of rigid bodies discussed in Chapter 3
can be adapted to multibody systems. In order to do this, however, we must keep
track of all bodies and their interconnections and make sure that their displacements
and motions are described in a fashion that allows us to track the posture of the
entire mechanism or multibody system. The matrix method presented in this and
subsequent chapters provides a systematic method that allows such a development
with no ambiguities. When combined with the methods for topological examination
of mechanical systems from Chapter 2, the overall approach provides a powerful
tool for computer-aided analysis of mechanisms and multibody systems and for
development of general-purpose software tools for such applications.

Now that we are familiar with some of the methods of algebraic geometry and
kinematics of rigid bodies, we are ready to start defining a model for our mechanism
or multibody system. Of course, our spatial model must start with the definition of
proper coordinate systems. We do this in this chapter, where we carefully locate
coordinate systems on every link and before and after every joint. We also define
appropriate transformation matrices between these coordinate systems. These trans-
formations introduce the required geometric parameters of the bodies and also
define the constraints and the motion variables of the joints, which are essential for
the motion analysis methods that follow.

4.2 Body Coordinate Systems

Consider the problem of describing the shape of a rigid part of a mechanism or multi-
body system as pictured in Figure 4.1. From our topological analysis in Chapter 2,
we have already assumed that each body has an identifying label b, (b = 1, 2, . . . , 	);

80



4.3 Joint and Auxiliary Coordinate Systems 81

yb

xb

zb

Figure 4.1. Body coordinate system.

we now find it convenient to use these same identifying labels here. To allow a
precise definition of what we mean by “shape,” we assume that a right-hand Carte-
sian coordinate system xbybzb is chosen for each body of our system and is rigidly
attached to that body at some convenient, but arbitrary, posture.

The posture of a body is described by the transformation matrix describing the
posture of its body coordinate system with respect to some overall fixed global or
world coordinate system. Once we find the posture of the body’s coordinate system,
we know all that is necessary to define the location and orientation of the body and
all its features. How to do this will be shown later; at this time, we only note that
such a coordinate system must be defined for each body, and that it is the primary
coordinate system for locating other items such as points or lines attached to that
body. We note that this coordinate system can also be used as the reference for
specifying the shape of the body, the joint element postures, the center of mass
location, the mass moments of inertia, and so on, and that, as long as bodies are
considered rigid, each such geometric feature remains constant in its own body
coordinate system as the system moves.

4.3 Joint and Auxiliary Coordinate Systems

It was pointed out in section 1.4 that the primary function that a rigid body serves
is to ensure that the relative postures of its joint elements (and other geometric
features) do not change; that is, the purpose of a machine part is to hold its joint
elements and other features in constant geometric relationships. To reflect this, we
define another right-hand Cartesian coordinate system at each of the joint elements,
defined to be aligned conveniently with the natural motion axes of that joint. Such an
auxiliary coordinate system may also be convenient for locating an important shape
feature of a body such as a hole or a keyway, as shown in Figure 4.2, or for modeling
a force or torque applied to the body.

yb

xb

zb

vhwh

uh

Figure 4.2. Joint coordinate system attached to a
body.
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1

2

3

yb

xb

zb

vhwh

uh

Figure 4.3. Specifying data to locate a coordinate
system.

More will be said in later sections about how joint coordinate systems are chosen
to locate and orient each type of joint element; however, we need not be concerned
with such conventions at present. Here we only note the need to develop a technique
for specifying data for the initial posture of each joint or auxiliary coordinate system
and storing this data in a form that can be conveniently used in later parts of the
analysis.

4.4 Specifying Data for a Coordinate System

Information about the shapes of the bodies of a mechanism or multibody system is
usually available in the form of xyz Cartesian coordinate data for certain key points
or features. This comes about because, at least in early design stages, a sketch or
layout drawing is usually the primary source of geometric data for a mechanism
or multibody system. In a biomechanical system, such data may be provided by
measurement of a predefined set of target points on the system under study for
which detailed imaging data can be obtained. At other times, such as in the analysis
of an existing machine, perhaps the detailed drawings or computer-aided design
(CAD) data files for individual parts may provide a more convenient source of
dimensional data. In any case, it is usually quite easy to obtain xyz coordinate data
for strategic points of the bodies.

Here we assume that data is specified in a convenient measurement coordinate
system whose axes are labeled xyz and that we wish to locate another coordinate
system whose axes are labeled uvw. We want to establish a procedure for deter-
mining the posture of uvw with respect to xyz; that is, we wish to find data for the
transformation matrix of the equation⎡

⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

T (1, 1) T (1, 2) T (1, 3) T (1, 4)
T (2, 1) T (2, 2) T (2, 3) T (2, 4)
T (3, 1) T (3, 2) T (3, 3) T (3, 4)

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

u
v
w
1

⎤
⎥⎥⎦ , (4.1)

where the symbolism T (i, j) refers to the element in row i, column j, of the transfor-
mation matrix T.

To establish a general procedure, we require that the following data be specified,
all measured along the chosen set of xyz measurement axes:

(a) Coordinates x1y1z1 of the origin of the uvw coordinate system. This is shown as
the point labeled 1 in Figure 4.3.
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(b) Coordinates x2y2z2 of a point lying on the positive w axis, such as point 2 in
Figure 4.3.

(c) Coordinates x3y3z3 of a point lying on the positive u axis, such as point 3 in
Figure 4.3.

This measurement coordinate system is chosen for convenient measurement of all
data for this body. It need not be the same as that used for specifying data for other
bodies because, except for the base (frame), its location is not kept for later analysis.

From the definition of the first of these data points (point 1) we set u = v = w =
0, x = x1, y = y1, and z = z1 in Eq. (4.1). Doing this shows that T(1, 4) = x1, T(2, 4) =
y1, and T(3, 4) = z1 as we should expect. Procedurally, this means that the data for
the first point can be entered directly into the fourth column of the transformation
matrix without change.

We next use the difference between x2y2z2 and x1y1z1 and their definitions to
show that

⎡
⎢⎢⎢⎣

x2 − x1

y2 − y1

z2 − z1

0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T (1, 1) T (1, 2) T (1, 3) x1

T (2, 1) T (2, 2) T (2, 3) y1

T (3, 1) T (3, 2) T (3, 3) z1

0 0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0

0

w2

0

⎤
⎥⎥⎥⎦ = w2

⎡
⎢⎢⎣

T (1, 3)
T (2, 3)
T (3, 3)

0

⎤
⎥⎥⎦ .

In this matrix, the elements of the third column describe a unit vector along the
w axis, measured in the coordinate system x, y, z. Therefore,

w2 = √
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2,

wx = T (1, 3) = (x2 − x1)/w2,

wy = T (2, 3) = (y2 − y1)/w2,

wz = T (3, 3) = (z2 − z1)/w2.

Procedurally, this shows that we may fill the third column of our matrix with the
differences between the data for the second and first points, and that we should then
normalize this column to form a unit vector. This should be no surprise because the
third column of the transformation denotes the direction for the unit vector along
the w axis as measured in the xyz system.

In a similar fashion, we use the difference between points x3y3z3 and x1y1z1 and
their definitions (see Figure 4.3) to show that

u3 = √
(x3 − x1)

2 + (y3 − y1)
2 + (z3 − z1)

2,

ux = T (1, 1) = (x3 − x1)/u3,

uy = T (2, 1) = (y3 − y1)/u3,

uz = T (3, 1) = (z3 − z1)/u3.

Once the first and third columns of the matrix in Eq. (4.1), namely the u and w
unit vectors, are found and normalized, we can find the entries of the second column,
unit vector v, by taking the vector cross product v = w × u between unit vectors
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along the w axis (column 3) and the u axis (column 1) to form a unit vector along
the v axis (column 2). Thus, we form

vx = T (1, 2) = T (2, 3)T (3, 1) − T (3, 3)T (2, 1),

vy = T (2, 2) = T (3, 3)T (1, 1) − T (1, 3)T (3, 1),

vz = T (3, 2) = T (1, 3)T (2, 1) − T (2, 3)T (1, 1).

This completes entries for the entire transformation matrix. However, now it is
wise to question the quality of the result in a situation where inaccurate data might
be encountered. The previous procedure ensures that the origin of the uvw system is
precisely located to match the data for point 1. Similarly, the u and w axis directions
will exactly match those implied by the data points given. In addition, even though
the data points are not required to be separated by unit distances, columns 3 and 1
have been normalized to represent unit vectors for the w and u axes.

So where might faulty data cause a problem? First, if the data for points 2 and
1 show them to be coincident, or nearly so, then the value computed for w2 yields
a zero and the procedure must terminate (or produce a division by zero during
normalization). Similarly, the value of u3 must be tested for zero to protect against
nearly coincident data for points 3 and 1.

Second, if either w2 or u3 is smaller than some acceptable tolerance value, the
orientation of the w axis or u axis is of questionable accuracy. This also shows why
it is unwise to choose a measurement coordinate system x, y, z that is located very
distant from the points for which data are measured. Because a computer has finite
precision, it sacrifices accuracy (requiring small differences between large values) to
choose the global coordinate system of a car, for example, when specifying data for
the internal workings of the glove compartment lock.

Third, there is the possibility that the data for all three points prove them to be
collinear, or nearly so. This would result in all entries of the second column of the
matrix being unacceptably small or perhaps even zero. This must also be tested and
treated as an error in the data given.

Finally, it is likely that the three given data points, even though not collinear,
are probably not situated to form an exact right angle for points 3-1-2. In this case,
the u and w axes each become unit vectors, but are not exactly perpendicular to each
other. To guard against this, the second column of the final matrix is also normalized
after it is found. By normalization of the second column, we guarantee that the v
axis is a unit vector perpendicular to both the u and w axes. We then recalculate an
adjusted u axis that is perpendicular to both v and w by forming another vector cross
product overwriting the data for the u vector previously stored in column 1:

ux = T (1, 1) = T (2, 2)T (3, 3) − T (3, 2)T (2, 3),

uy = T (2, 1) = T (3, 2)T (1, 3) − T (1, 2)T (3, 3),

uz = T (3, 1) = T (1, 2)T (2, 3) − T (2, 2)T (1, 3).

In effect, this last step revises the original convention, stated as (c) near the start
of this section. To account for possible inaccuracy, the convention for choosing the
data for point 3 is now restated as follows:

(c) The coordinates x3y3z3 of a point lying in the half-plane defined by the w
axis and the positive u axis such as point 3 shown in Figure 4.3.
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4.5 Modeling Dimensional Characteristics of a Body

Let us now review our progress so far. In Chapter 2, we learned how a computer
program can be written to accept information on the kinematic architecture of a
mechanism or multibody system, and to discover any kinematic loops and the paths
from the fixed frame to each and every other body. In finding these, we assigned
identifying numbers (labels) to every body and to every joint.

We now assume that there exists an agreed upon absolute Cartesian coordinate
system x0y0z0 that is assumed stationary and becomes the primary coordinate system
in which results are expected. In most applications, this coordinate system is referred
to as the base or world or global coordinate system.

In section 4.2, we noted that each body of a mechanism or multibody system
carries a body coordinate system xbybzb, where b is the identifying label of the body.
Data for the initial posture of each of the body coordinate systems may be supplied
by the methods shown in section 4.4. For the initial position of a point of body b, we
have

Rb = T0brb, b = 1, 2, . . . , 	, (4.2)

where rb shows the homogeneous coordinates of a point attached to body b, mea-
sured with respect to xbybzb, and Rb shows the homogeneous coordinates of the
same point with respect to the absolute system, x0y0z0. Thus, for each part of the
mechanism or multibody system, we assume that data is supplied as described by
which we find initial numeric values for each of the (4 × 4) transformation matrices
T0b for the body coordinate frames with respect to the fixed frame. This assumes
that it is convenient to gather the initial data in the global coordinate system, as
from a layout drawing. These data, however, are all given for only one posture of
the mechanism or multibody system, and change when the system moves.

In section 4.3, we saw that there is also need for several joint and auxiliary
coordinate systems attached to the various bodies, to define joint element postures,
for example. Data for the initial postures of these may also be supplied in the same
way. If we consider a point of the joint or auxiliary coordinate system uhvhwh, then
we have:

Rh = T0hrh, h = 1, 2, . . . ,n, (4.3)

where subscript h identifies the label of a joint or auxiliary coordinate system, rh

shows the homogeneous coordinates of the point measured in coordinate system
uhvhwh, and the (4 × 4) homogeneous transformation matrix T0h represents the
posture of joint coordinate frame uhvhwh with respect to the global reference frame
x0y0z0; (see Figure 4.4).

For the case of joint or auxiliary coordinate systems, however, we do not choose
to store the T0h data as such. By setting Eq. (4.2) equal to Eq. (4.3) we find

T0brb = T0hrh.

Rearranging this, we find

rb = Sbhrh,
b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n,

(4.4)
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Figure 4.4. Geometry of body and joint
coordinates.

where

Sbh = T−1
0b T0h,

b = 1, 2, . . . , 	,

h = 1, 2, . . . ,n.
(4.5)

This Sbh matrix is called the shape matrix for joint or auxiliary coordinate system
h of body b. This shape matrix is the data that we store for later calculations because
this matrix remains constant as the system moves. Keeping the shape matrix constant
during the motion is our technique for enforcing the rigid body assumption for body
b; this ensures that each joint element and each auxiliary coordinate system on
body b retains a constant geometric posture with respect to its own body coordinate
system.

If we prefer to enter data for a body from a detailed drawing or a digital image
of that body alone, comparing Eq. (4.1) and Eq. (4.4) shows that the procedure of
section 4.4 can be used to find the Sbh matrix directly, by using the body b coordinate
system as the measurement coordinate system. If not, we can collect the T0h data for
the joint or auxiliary coordinate systems with respect to a convenient measurement
reference frame from the layout drawing or digital image as shown in Eq. (4.3). Then,
once the body coordinate systems have been located and the T0b data are complete,
Eq. (4.5) can be used to find the shape matrices.

The “measurement” coordinate system used for data collection need not neces-
sarily match the global or world coordinate system used during the final simulation
of the mechanism or multibody system. We need only be consistent until each shape
matrix is found. Because this is independent of the coordinate system in which the
data was gathered for finding it, we can use a different measurement coordinate
system for finding another shape matrix, or in later analysis.

By one of these procedures, we assume that a shape matrix Sbh is found for the
posture of each joint element and each auxiliary coordinate system with respect to
its body axes before any further analysis is attempted for the system. These form
the primary dimensional data for our computational model of the mechanism or
multibody system.

Once we have coordinate data for any chosen point of the system with respect
to its body axes, or with respect to one of the joint or auxiliary coordinate systems,
from which we can use Eq. (4.4) to find its position with respect to its body axes, we
can then use Eq. (4.2) to find its absolute global position. As the system moves, the
T0b matrices change, showing the movement of each body; these same T0b matrices



4.6 Modeling Joint Characteristics 87

may then be used to find the changed global positions of all points attached to
body b.

We also note that very detailed shape models of the bodies might be used, per-
haps finite element models for stress analysis, or solid models for animated picture
generation or for interference detection between the bodies. In each case, no matter
how complex the shape model, each mechanical part’s data can be stored unambigu-
ously with respect to its body coordinate system, and remains constant with respect
to that coordinate system as the system moves (as long as we accept the rigid body
assumption for part shapes). All movement of a mechanical body in a mechanism
or multibody system is simulated by modifying the T0b matrix for the body, and this
implicitly changes the global positions of all points of that body model simultane-
ously. Thus, we have a very general and widely applicable procedure for measuring
and storing all critical dimensional parameters of the moving bodies of a mechanism
or multibody system.

4.6 Modeling Joint Characteristics

The descriptions of the body shapes, however, do not tell the whole story. As pointed
out in Chapter 1, the primary purpose of a mechanism or multibody system is to
transform motion, and this is done by virtue of movement within the joints. Because
the mechanism or multibody system consists of a collection of rigid bodies, as is
assumed in this text, the shape matrices and local coordinate data for all points of
interest on the parts are treated as constants. We must now provide a means for
characterizing the motions allowed in the mechanism or multibody system; that is,
we must find a convenient matrix description for the relative motions allowed and
the constraints provided by the joints of the mechanism or multibody system.

In a mechanism or multibody system, joints are connections between adjacent
bodies. A joint, therefore, has mating elements on the two adjacent bodies that it
connects. The motion(s) taking place within a joint are fully described if we write
equations for the relative motion between that joint’s two elemental surfaces. We
let each of the two mating joint elements carry one of the Cartesian joint coordinate
systems discussed in section 4.3. These are the same joint coordinate systems that
were used for finding the shape matrices defined in section 4.5. We have assumed
for each joint h that a joint coordinate system uhvhwh is rigidly attached to the
“preceding” joint element and another u′

hv′
hw′

h is rigidly attached to the “follow-
ing” joint element, where the “preceding” and “following” elements are distin-
guished by the orientation defined for the joint as explained in section 2.2. We see
here the necessity of defining a joint such that it connects two and only two joint
elements. These coordinate axes for a helical joint are shown, as an example, in
Figure 4.5.

Because the transformation matrix of Eq. (3.24) can be adapted to describe the
relative posture of any two coordinate systems, we can formulate such an equation
by relating coordinate system u′

hv′
hw′

h to uhvhwh and it will result in a transformation
matrix. If we give this new transformation matrix the symbol Φh the transformation
for joint h will be of the form

rh = Φh(φh)r
′
h, h = 1, 2, . . . ,n, (4.6)
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where the relative posture is parameterized in terms of a vector φh that contains the
variables associated with the relative motion(s) within the joint. Such variables are
called joint variables and the total number of joint variables in a joint corresponds to
the number of relative degrees of freedom of the joint. Because a joint is movable, the
elements of the transformation Φh(φh) change value depending on the posture of the
joint. The remaining task, therefore, is to derive the form of the joint transformation
matrix Φh(φh) for each type of joint that we expect to encounter in our analysis. In
fact, in each class of multibody system, although we may encounter a large number of
shapes for the bodies, the types of joints encountered are typically more limited. This
indicates that deriving and cataloging the form of the joint transformation matrices
for a class of multibody systems can provide a basis for developing a framework for
a general-purpose computer code for analysis of such systems. Here we consider
the class of joint transformation matrices for the mechanical link works described in
Chapter 1.

Note that only two major limitations have been placed on our methods so far.
We have assumed that the system to be analyzed (1) consists entirely of rigid bodies,
and that (2) all of its joint types fall among those for which an explicit form of the
Φh(φh) matrix can be written and programmed for digital computation.

We observed in Chapter 1 that the helical joint is the parent of both the revolute
and the prismatic joints, and that the remaining lower pairs may be simulated as
kinematically equivalent combinations of these. Aside from the fact that helical,
revolute, and prismatic joints each have a single degree of freedom, the other feature
common to these three is that each has an easily identified axis for its relative motion.
These joint axes provide a convenient starting place for the mathematical description
of joint motions because the choice of the variables for these joint types can be based
on the relative posture of the joint axes.

4.6.1 Helical Joint

A helical or screw joint is shown in Figure 4.5 where it can be seen that the relative
motion consists of a rotation about and a translation along its helical axis. This joint,

wh, w′h

u′h

dh

v′h

vh

uh
θh

Figure 4.5. Coordinate systems for a helical joint.
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however, has only a single relative degree of freedom because its rotational and
translational motions are related by the pitch of the helix.

We impose the following conventions on the choice of the uhvhwh and u′
hv′

hw′
h

axes for a helical (screw) joint:

1. The wh and w′
h axes must be chosen along the joint motion axis; they must be

collinear and must have the same positive sense.
2. The uh and u′

h axes must be chosen such that they coincide at the position where
the joint variable is zero.

The translational motion in a helical joint is designated dh and is the distance
from uh to u′

h measured along positive wh, w′
h. The accompanying rotational motion

is designated θh, the angle from positive uh to positive u′
h, and is measured counter-

clockwise about positive wh, w′
h.

There are two possible choices for the joint variable of a helical joint. Only
one joint variable is permissible, however, because a helical joint only exhibits one
degree of freedom in relative motion, and the two variables dh and θh are related by
the pitch σ h of the screw:

φh = dh = σhθh. (4.7)

We define the sliding distance dh to be the joint variable φh because this leaves no
ambiguity when the rotation θh extends beyond a full revolution.

If we now consider the uhvhwh system as fixed and u′
hv′

hw′
h as a moving coordinate

system, we see (using the notation of section 3.7) that the wh,w′
h axis is the helical

axis for which we can write: P = 0 and w = [0 0 1]t. The screw parameters are d = φh

and θ = φh/σh. The elements of the (4 × 4) transformation matrix for the helical
joint can now be found using Eqs. (3.40) and (3.41) as follows:

Θ(1, 1) = [(wx)2 − 1](1 − cos θ ) + 1 = [0 − 1](1 − cos θh) + 1 = cos(φh/σh),

Θ(1, 2) = wywx(1 − cos θ ) − wz sin θ = 0 − 1 sin θh = − sin θh = − sin(φh/σh),

Θ(1, 3) = wzwx(1 − cos θ ) + wy sin θ = 0 + 0 = 0,

Θ(2, 1) = wxwy(1 − cos θ ) + wz sin θ = 0 + 1 sin θ j = sin(φh/σh),

Θ(2, 2) = [(wy)2 − 1](1 − cos θ ) + 1 = [0 − 1](1 − cos θh) + 1 = cos(φh/σh),

Θ(2, 3) = wzwy(1 − cos θ ) − wx sin θ = 0 − 0 = 0,

Θ(3, 1) = wxwz(1 − cos θ ) − wy sin θ = 0 − 0 = 0,

Θ(3, 2) = wywz(1 − cos θ ) + wx sin θ = 0 + 0 = 0,

Θ(3, 3) = [(wz)2 − 1](1 − cos θ ) + 1 = [1 − 1](1 − cos θh) + 1 = 1,

and

dx = φ jw
x − [Θ (1, 1) − 1] Px − Θ (1, 2)Py − Θ (1, 3)Pz = φh0 − 0 − 0 − 0 = 0,

dy = φ jw
y − Θ (2, 1)Px − [Θ (2, 2) − 1] Py − Θ (2, 3)Pz = φh0 − 0 − 0 − 0 = 0,

dz = φ jw
z − Θ (3, 1)Px − Θ (3, 2)Py − [Θ (3, 3) − 1] Pz = φh1 − 0 − 0 − 0 = φh.
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Therefore, the transformation matrix for a helical joint becomes:

Φh(φh) =

⎡
⎢⎢⎢⎣

cos(φh/σh) −sin (φh/σh) 0 0

sin (φh/σh) cos(φh/σh) 0 0

0 0 1 φh

0 0 0 1

⎤
⎥⎥⎥⎦ . (4.8)

If accurate numeric values are known for the elements of the matrix Φh(φh),
then the value of the joint variable may be found from

φh = Φh(3, 4), (4.9)

where Φh(3, 4) refers to row 3, column 4 of the matrix Φh.

4.6.2 Revolute Joint

A revolute joint is shown in Figure 4.6.
The following conventions are imposed on the choice of the uhvhwh and u′

hv′
hw′

h
axes for a revolute joint:

1. The wh and w′
h axes must be chosen along the joint motion axis; they must be

collinear and must have the same positive sense.
2. The origins of the two coordinate systems must be coincident.

These conventions are defined such that, in the case of a two-dimensional application,
the motion lies in the common uhvh and u′

hv′
h planes.

The joint variable for a revolute joint is designatedφh and is the counterclockwise
angle measured from positive uh to positive u′

h about the positive wh,w′
h axes.

The transformation matrix Φh(φh) is easily found by restricting Eq. (4.8) accord-
ing to the conditions stated. Note that for a revolute joint with these joint coordinate
systems, the rotation about the joint axis is θ = φh and the translation d along the
joint axis is zero. The resulting transformation matrix is:

Φh(φh) =

⎡
⎢⎢⎣

cosφh −sinφh 0 0
sinφh cosφh 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (4.10)

uh

wh, w′h
v′h

u′h

vh

φh

Figure 4.6. Coordinate systems for a revo-
lute joint.
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If accurate numeric values are known for the elements of the matrix Φh(φh) of
a revolute joint, then the value of the joint variable may be found as follows:

φh = tan−1
[
Φh(2, 1) − Φh(1, 2)
Φh(1, 1) + Φh(2, 2)

]
, (4.11)

where Φh(i, k) refers to row i, column k of the matrix Φh. The signs of the numerator
and denominator must be considered separately to resolve the proper quadrant for
φh. Also, the possible division by zero in Eq. (4.11) must be avoided.1

4.6.3 Prismatic Joint

A prismatic joint is shown in Figure 4.7
The conventions imposed on the choice of the uhvhwh and u′

hv′
hw′

h axes for a
prismatic joint are:

1. The uh and u′
h axes must be parallel to the joint motion axis; they must be

collinear and must have the same positive sense.
2. The vh and v′

h axes must be parallel and must have the same positive sense.

Within these restrictions, the axes may be chosen at will. The motion axis of a
prismatic joint is not unique. Any convenient axis parallel to the direction of the
relative joint motion may be chosen. The axis conventions are chosen here so that,
for a two-dimensional application, uh, vh and u′

h, v′
h may lie in the plane of motion,

as they do also for a revolute joint.
The joint variable for a prismatic joint is designated φh and is measured from vh

to v′
h in the direction of positive uh,u′

h.

For a prismatic joint, the screw axis is uh,u′
h and is located by the vectors: P = 0

and w = [1, 0, 0]t. The screw parameters are θ = 0 and d = φh and, using Eqs. (3.40)

wh

uh, u′h

w′h
v′h

vh

φh

Figure 4.7. Coordinate systems for a prismatic joint.

1 When programming for digital computation, the atan2(−,−) function serves both of these purposes.
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and (3.41) as we did for the helical joint, the transformation matrix for a prismatic
joint becomes:

Φh(φh) =

⎡
⎢⎢⎣

1 0 0 φh

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (4.12)

It should be noted that the transformation matrix for the prismatic joint can also
be easily obtained by inspection because the relative orientations of the coordinate
systems uhvhwh and u′

hv′
hw′

h remain identical during the motion of this joint. If
accurate numeric values are known for the elements of the matrix Φh(φh) of a
prismatic joint, then the value of the joint variable may be found from

φh = Φh(1, 4),

where Φh(1,4) refers to row 1, column 4 of the matrix Φh.

4.6.4 Cylindric Joint

A cylindric joint is shown in Figure 4.8.
The conventions imposed on the choice of the uhvhwh and u′

hv′
hw′

h axes for a
cylindric joint are:

1. The wh and w′
h axes must be chosen along the common joint motion axis.

2. They must be collinear and must have the same positive sense.

There are two joint variables

φh =
[
φ1

h

φ2
h

]
. (4.13)

vh

wh, w′h

v′h

u′h

uh

φ2
h

φ1
h

Figure 4.8. Coordinate systems for a cylindric joint.
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The first joint variable is the angle φ1
h from positive uh to positive u′

h measured
counterclockwise about positive wh,w′

h. The second joint variable is the distance φ2
h

from uh to u′
h measured in the direction of positive wh,w′

h.

With θ = φ1
h and d = φ2

h for screw parameters, the transformation matrix for a
cylindric joint under these conventions is:

Φh(φh) =

⎡
⎢⎢⎢⎢⎣

cosφ1
h −sinφ1

h 0 0

sinφ1
h cosφ1

h 0 0

0 0 1 φ2
h

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (4.14)

If accurate numeric values are known for the elements of the matrix Φh(φh) of
a cylindric joint, then the values of the joint variables may be found as follows:

φ1
h = tan−1

[
Φh(2, 1) − Φh(1, 2)
Φh(1, 1) + Φh(2, 2)

]
,

φ2
h = Φh(3, 4),

(4.15)

where Φh(i,k) refers to row i, column k of the matrix. The signs of the numerator
and denominator must be considered separately to resolve the proper quadrant for
φ1

h; also, the possible division by zero must be avoided.2

4.6.5 Spheric Joint

A spheric joint, sometimes called a ball-and-socket joint, is shown in Figure 4.9. The
only condition imposed on the placement of the uhvhwh and u′

hv′
hw′

h coordinate axes
for a spheric joint is that they must be chosen such that their origins are coincident
and are located at the center of the relative rotation of the spheric joint.

w′h

u′h

v′h

vh

wh

uh

Figure 4.9. Coordinate systems for a spheric
joint.

2 When programming for digital computation, the atan2(−,−) function serves both of these purposes.
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Euler-Rodrigues parameters are used to describe the spatial rotation between
the two spheric joint coordinate systems. The choice of Euler-Rodrigues parameters
rather than Cardan or other Euler angles avoids the difficulty of a “gimbal lock”
singularity, as discussed in section 3.7. Therefore, using Euler-Rodrigues parameters,
the spheric joint has four joint variables

φh =

⎡
⎢⎢⎢⎢⎢⎣

φ1
h

φ2
h

φ3
h

φ4
h

⎤
⎥⎥⎥⎥⎥⎦ , (4.16)

with the additional constraint that(
φ1

h

)2 + (
φ2

h

)2 + (
φ3

h

)2 + (
φ4

h

)2 = 1. (4.17)

The transformation matrix for a spheric joint under these conventions is:

Φh(φh ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
φ1

h

)2
−
(
φ2

h

)2
−
(
φ3

h

)2
+
(
φ4

h

)2
2φ1

hφ
2
h −2φ3

hφ
4
h 2φ1

hφ
3
h +2φ2

hφ
4
h 0

2φ1
hφ

2
h +2φ3

hφ
4
h −

(
φ1

h

)2
+
(
φ2

h

)2
−

(
φ3

h

)2
+
(
φ4

h

)2
2φ2

hφ
3
h −2φ1

hφ
4
h 0

2φ1
hφ

3
h −2φ2

hφ
4
h 2φ2

hφ
3
h +2φ1

hφ
4
h −

(
φ1

h

)2
−

(
φ2

h

)2
+
(
φ3

h

)2
+
(
φ4

h

)2
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.18)

If accurate numeric values are known for the elements of the matrix Φh(φh) of
a spheric joint, then the values of the Euler-Rodrigues parameters may be found as
shown in section 3.8. First, the fourth Euler-Rodrigues parameter φ4

h is found from
Eq. (3.51). Then, depending on its magnitude, the values φ1

h, φ2
h, and φ3

h can be found
from Eqs. (3.52) and (3.53) if |φ4

h| > ε, or from Eqs. (3.54) and (3.55) if |φ4
h| ≤ ε.

4.6.6 Flat Joint

A flat or planar joint is shown in Figure 4.10.

uh vh 

wh 

w′h

v′h

u′h

φ2
h

φ3
h

φ1
h

Figure 4.10. Coordinate systems for a
flat joint.
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The conventions for the assignment of the uhvhwh and u′
hv′

hw′
h coordinate axes

for a flat joint are:

1. The uhvh and u′
hv′

h planes must coincide and must be parallel to the plane of
motion.

2. The wh and w′
h axes must both be normal to and positively directed to the same

side of this common plane.

The three joint variables for a flat joint are the two rectilinear translation coordinates,
φ1

h measured along uh and φ2
h measured along vh, respectively, from wh to w′

h, and
φ3

h – the angle from positive uh to positive u′
h measured counterclockwise about the

positive w′
h axis:

φh =

⎡
⎢⎢⎣

φ1
h

φ2
h

φ3
h

⎤
⎥⎥⎦ . (4.19)

A flat joint can be thought of as a serial combination of three joints, each
with one degree of freedom. The first and the second would be prismatic joints
with translations along their uh and vh axes, respectively, and the third would be
a revolute joint with an axis of w′

h. The transformation matrix for the flat joint
can then be obtained as the product of three joint transformation matrices. Using
Eqs. (4.12) and (4.10), we would write:

Φh(φh) =

⎡
⎢⎢⎣

1 0 0 φ1
h

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 1 0 φ2

h
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

cosφ3
h − sinφ3

h 0 0

sinφ3
h cosφ3

h 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The resulting transformation matrix is:

Φh(φh) =

⎡
⎢⎢⎢⎢⎣

cosφ3
h −sinφ3

h 0 φ1
h

sinφ3
h cosφ3

h 0 φ2
h

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (4.20)

If accurate numeric values are known for the elements of the matrix Φh(φh) of
a flat joint, then the values of the joint variables may be found as follows:

φ1
h = Φh(1, 4),

φ2
h = Φh(2, 4),

φ3
h = tan−1

[
Φh(2, 1) − Φh(1, 2)
Φh(1, 1) + Φh(2, 2)

]
,

(4.21)

where Φh(i, k) refers to row i, column k of the matrix Φh. The signs of the numerator
and denominator must be considered separately to resolve the proper quadrant for
φ3

h; also, the possible division by zero must be avoided.3

3 When programming for digital computation, the atan2(−,−) function serves both of these purposes.
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vh, v′h

wh, w′h
uh, u′h

Figure 4.11. Coordinate systems for a
rigid joint.

4.6.7 Rigid Joint

A rigid joint is shown in Figure 4.11.
The single convention for the assignment of the uhvhwh and u′

hv′
hw′

h coordinate
axes for a rigid joint is that they must coincide.

The rigid joint allows no relative motion between the connected bodies; there-
fore, it has no joint variables. The rigid joint transformation matrix is as follows:

Φh =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1.

⎤
⎥⎥⎦ = I (4.22)

4.6.8 Open Joint

An open joint is shown in Figure 4.12.

wh

vh

φ1
h

uh φ2
h

φ3
h

w′h
u′h

v′h

Figure 4.12. Coordinate systems for an open joint.
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There are no restrictions on the assignment of the uhvhwh and u′
hv′

hw′
h coordinate

axes for an open joint; they may each be chosen completely arbitrarily. Convenience
for definition of motion input or interpretation of results, particularly force results,
may give advantages to a particular choice of axes; see Chapter 17 for details.

Because we choose Euler-Rodrigues parameters to describe the relative spatial
orientation between the two coordinate systems, the open joint has seven joint
variables. The first three joint variables for the open joint are the three rectilinear
coordinates defining the translations from the uhvhwh origin to the u′

hv′
hw′

h origin,
measured along the uhvhwh axes, respectively. These are followed by the four Euler-
Rodrigues parameters defining the relative orientation between the joint axes of the
“connected” bodies. The total vector of joint variables is

φh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1
h

φ2
h

φ3
h

φ4
h

φ5
h

φ6
h

φ7
h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.23)

with the additional constraint(
φ4

h

)2 + (
φ5

h

)2 + (
φ6

h

)2 + (
φ7

h

)2 = 1. (4.24)

Here, as with the spheric joint, the choice of Euler-Rodrigues parameters rather
than Cardan or other Euler angles for the rotational joint variables avoids the
possible “gimbal lock” singularity discussed in section 3.7.

Under these conventions, the open joint transformation matrix is as follows:

Φh(φh) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
φ4

h

)2
−

(
φ5

h

)2
−

(
φ6

h

)2
+

(
φ7

h

)2
2φ4

hφ
5
h − 2φ6

hφ
7
h 2φ4

hφ
6
h + 2φ5

hφ
7
h φ1

h

2φ4
hφ

5
h + 2φ6

hφ
7
h −

(
φ4

h

)2
+

(
φ5

h

)2
−

(
φ6

h

)2
+

(
φ7

h

)2
2φ5

hφ
6
h − 2φ4

hφ
7
h φ2

h

2φ4
hφ

6
h − 2φ5

hφ
7
h 2φ5

hφ
6
h + 2φ4

hφ
7
h −

(
φ4

h

)2
−

(
φ5

h

)2
+

(
φ6

h

)2
+

(
φ7

h

)2
φ3

h

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.25)

Because there are six degrees of freedom and seven joint variables with one
constraint, it is clear that the open joint places no constraints on the relative motions
between the bodies.

If accurate numeric values are known for the elements of Φh(φh), then the values
of the translational joint variables may be found as follows:

φ1
h = Φh(1, 4),

φ2
h = Φh(2, 4),

φ3
h = Φh(3, 4),

(4.26)

where Φh(i, 4) refers to row i, column 4 of the matrix Φh. The values of the
remaining four joint variables, the Euler-Rodrigues parameters for the rotation,
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may be found as discussed in section 3.8. First, the fourth Euler-Rodrigues parame-
ter φ7

h is found from Eq. (3.51). Then, depending on its magnitude, the values of φ4
h,

φ5
h, and φ6

h are found from Eqs. (3.52) and (3.53) if |φ7
h| > ε, or from Eqs. (3.54) and

(3.55) if |φ7
h| ≤ ε.

4.6.9 Parallel-Axis Gear Joint

A parallel-axis gear joint is shown in Figure 4.13.
This joint type is chosen as an example to illustrate how the proper transforma-

tion matrix may be derived for a higher pair. In concept, the same general procedure
can be applied to other higher pairs as the need arises, no matter what the joint
type. It is true that the relative motion in certain higher pairs may be difficult to
describe analytically. However, once this relative motion is modeled as a transfor-
mation between coordinate systems attached to the two mating elements, then the
transformation matrix provides a standard canonical representation for this type of
joint and the many methods of the coming chapters become immediately applicable.

The parallel-axis gear joint has four invariant parameters necessary for its char-
acterization: the two pitch-circle radii Rh and R′

h, the transverse pressure angle αh,
and the helix angle βh. The gear ratio is ςh = R′

h/Rh and the nominal center-to-center
distance is (Rh + R′

h) = (1 + ςh)Rh.

For a parallel-axis gear joint, the variety of tooth forms modeled here include
spur gears (with pressure angle αh), helical gears (with helix angle βh), and herring-
bone gears (by setting βh = 0), each having an involute tooth profile. A circular
disk rolling without slip against another can also be modeled by treating both the
pressure angle and helix angle as zero.

The helix angle is defined such that positive axial sliding movement of the u′
hv′

hw′
h

gear produces positive change in the angle of the u′
hv′

hw′
h gear with respect to the

uhvhwh gear.
The coordinate systems for a parallel-axis gear joint are chosen as shown in

Figure 4.13. The conventions are:

1. The wh and w′
h axes must lie along the respective rotation axes of the two mating

gears; they must be parallel, and must have the same positive sense.

vh

th

uh

Rh

φ1
h

u′h

v′h

R′h

Figure 4.13. Coordinate systems for a parallel-axis gear joint.
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2. The common perpendicular directed from wh to w′
h is designated positive th.

There must be one position of the joint (φ1
h = 0) for which the positive uh and

positive u′
h axes are both directed along positive th.

It is not assumed that the two gears lie in a common plane, nor that the center-
to-center distance of the two gears is equal to the sum of the pitch radii. These
constraints may be provided by other joints and body shapes of the system, those
that control the postures of the two shafts on which the gears are mounted. However,
it is assumed that the two gear axes are parallel. These assumptions are made to avoid
complexity in deriving the transformation matrix.

It is also assumed that the gears do not lose contact with each other and that
the teeth of one gear do not reach the bottom of the tooth space of the mating
gear. If either of these were to happen, the transformation matrix shown would not
accurately represent the relative motion of the joint.

The parallel-axis gear joint has three joint variables:

φh =

⎡
⎢⎢⎣

φ1
h

φ2
h

φ3
h

⎤
⎥⎥⎦ . (4.27)

The first joint variable is the angle φ1
h from positive uh to positive th and is

measured counterclockwise about positive wh. The second joint variable φ2
h is the

possible change in center-to-center distance beyond its nominal value, measured
from wh to w′

h along positive th. The third joint variable φ3
h is the distance measured

from the uhvh plane to the u′
hv′

h plane along positive wh,w′
h. The second and third

joint “variables” defined here are usually constant parameters, but treating them as
variables allows changes in center distance and axial adjustment during installation
or operation. Defining these as constants would result in the calculation of statically
indeterminate force components in these directions. See Chapter 17 for details.

Because of the assumption of involute tooth profiles, even though the center-
to-center distance may not exactly equal the nominal value (Rh + R′

h), or the axial
plane-offset distance φ3

h may not equal zero, the relative rotation θ of the gear
attached to u′

hv′
hw′

h with respect to the uhvhwh axes can be calculated

θ =
[
(Rh + R′

h)φ
1
j + sgn (F )

{√[(
Rh + R′

h + φ2
h

)]2 − [(Rh + R′
h)cosαh]2

− (Rh + R′
h)sinαh

}
+ φ3

h tanβh

]/
R′

h,

where F is positive when the tangential force transmitted between the gear teeth
tends to cause the counterclockwise rotation of the u′

hv′
hw′

h gear to increase, negative
if it tends to cause a decrease.

The term including sgn(F) may be ignored in the calculation of θ with very
little error, probably less than the manufacturing tolerances. This is a great saving
in the difficulty of kinematic analysis when forces need not be analyzed. The term
is included rather than ignored in these equations, however, because it cannot be
ignored in the calculation of fictitious derivatives and becomes very important in
finding the tooth force transmitted through the gear mesh. This term and its deriva-
tives cause the tooth force to be applied at the proper pressure angle, and ignoring



100 Modeling Mechanisms and Multibody Systems with Transformation Matrices

it causes the parallel axis gear joint to transmit force as high-friction disks with zero
pressure angle. This can be seen by studying the methods of Chapter 17.

These conventions yield the following transformation matrix for a parallel-axis
gear joint:

Φh(φh) =

⎡
⎢⎢⎢⎢⎢⎣

cosθ −sinθ 0
(
Rh + R′

h + φ2
h

)
cosφ1

h

sinθ cosθ 0
(
Rh + R′

h + φ2
h

)
sinφ1

h

0 0 1 φ3
h

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (4.28)

This transformation matrix is also valid for the case of an internal gear; however,
in such a case, the pitch radius of the internal gear, either Rh or R′

h, must be treated
as negative.

If accurate numeric values are known for the elements of the matrix Φh(φh),
then the values of the joint variables may be found as follows:

φ1
h = tan−1 [Φh(2, 4)/Φh(1, 4)] ,

φ2
h = √

Φh(1, 4)2 + Φh(2, 4)2 − (Rh + R′
h),

φ3
h = Φh(3, 4),

(4.29)

where Φh(i, k) refers to row i, column k of the matrix Φh. To resolve the proper
quadrant for φ1

h, the signs of the numerator and denominator must be considered
separately; also the possible division by Φh(1,4) = 0 must be avoided.4

4.6.10 Involute Rack-and-Pinion Joint

An involute rack-and-pinion joint is shown in Figure 4.14.
Because the transformation matrix for a parallel-axis gear joint is valid for both

internal and external gears, we might expect that it could also be used to describe
a rack and pinion. However, this is not the case; this would require locating the
coordinate system for the rack element at an infinitely remote center of curvature,
and would provide a very inconvenient description of such a joint.

uh

wh

φ1
h

vh

Rh

v′h

u′h
w′h

Figure 4.14. Coordinate systems for an
involute rack-and-pinion joint.

4 When programming for digital computation, the atan2(−,−) function serves both of these purposes.



4.6 Modeling Joint Characteristics 101

For the involute rack-and-pinion joint, the orientation must be chosen from the
rack to the pinion. This must be considered when setting the joint orientation, before
finding the kinematic loops and paths as discussed in Chapter 2. The coordinate
systems are chosen as shown in Figure 4.14. The conventions are:

1. The uhvhwh axes are fixed to the rack and the u′
hv′

hw′
h axes are fixed to the pinion;

the uhvh and u′
hv′

h planes are parallel. The axes are chosen such that uh lies along
the pitch surface of the rack, in the chosen direction of positive relative motion
of the pinion center.

2. The w′
h axis lies along the pinion axis of rotation. The wh axis, attached to the

rack, is parallel to w′
h, and has the same positive sense.

3. There is a position of the joint, where φ1
h = 0, for which uh and u′

h are parallel.

The involute rack-and-pinion joint has three joint variables:

φh =

⎡
⎢⎢⎣

φ1
h

φ2
h

φ3
h

⎤
⎥⎥⎦ . (4.30)

The three values – φ1
h, (R′

h + φ2
h), and φ3

h – are the relative coordinates of the u′
hv′

hw′
h

origin measured along the uhvhwh axes, respectively.
The joint also has three invariant parameters necessary for its complete charac-

terization, the transverse pressure angle αh, the helix angle βh (that may be zero),
and the pitch radius R′

h of the pinion. The pitch radius is positive when the pinion is
on the positive vh side of the rack, or negative when the pinion lies on the negative vh

side of the rack. The helix angle βh is defined such that positive axial sliding motion
φ3

h of the pinion produces positive rotational change in the angle of the pinion with
respect to the rack. For spur gear teeth on the pinion, the helix angle is zero; for
herringbone teeth, a helix angle of βh = 0 can be used.

The variety of tooth forms modeled include spur, helical, and herringbone teeth.
Each is assumed to have an involute tooth profile. A circular disk rolling without
slip against a flat surface may also be modeled by treating both the pressure angle
and helix angle as zero.

These conventions do not define that the pinion center offset distance from the
pitch surface of the rack must match the pitch radius of the pinion, or that the central
planes of the pinion and rack must be coplanar. These constraints can be provided
by other joints and body shapes of the system, those that control the posture of
the rack with respect to the pinion shaft. However, it is assumed that the central
planes of the rack and pinion are parallel, and that the teeth remain in proper
mesh. The second and third joint “variables” are usually small, nearly constant
parameters, but they allow small changes in center distance and axial adjustment
during installation or operation. If defined as constants, they result in the calculation
of statically indeterminate force components. See Chapter 17 for details.

Because of the involute tooth profile, even though the pinion center offset
distance (R′

h + φ2
h) may not exactly match the nominal pitch radius, the rotation

angle θ of the pinion u′
h axis with respect to the uh axis can be calculated

θ = −[
φ1

h + sgn(F )φ2
h tanαh − φ3

h tanβh

]/
R′

h,
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where F is positive when the tangential force transmitted between the gear teeth
tends to cause counterclockwise rotation of the u′

h axis to increase, negative if it
tends to cause a decrease.

The term including sgn(F ) may be ignored in the calculation of θ with very
little error, probably less than the error of ignoring manufacturing tolerances. This
is a great saving in the difficulty of kinematic analysis where forces need not be
analyzed. The term is included rather than ignored in these equations, however,
because it cannot be ignored in the calculation of fictitious derivatives and becomes
critical in finding the tooth force transmitted through the mesh. This term and its
derivatives cause the tooth force to be applied at the proper pressure angle and
ignoring it causes the rack and pinion joint to transmit force as would happen with a
high-friction disk with zero pressure angle. This can be seen by studying the methods
of Chapter 17.

These conventions for placement of the coordinate axes yield the following
transformation matrix for the involute rack-and-pinion joint:

Φh(φh) =

⎡
⎢⎢⎢⎢⎣

cosθ −sinθ 0 φ1
h

sinθ cosθ 0 R′
h + φ2

h

0 0 1 φ3
h

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (4.31)

If accurate numeric values are known for the elements of the matrix Φh(φh),
then the values of the joint variables may be found as follows:

φ1
h = Φh(1, 4),

φ2
h = Φh(2, 4) − R′

h,

φ3
h = Φh(3, 4),

(4.32)

where Φh(i, 4) refers to the element of matrix Φh in row i, column 4.

4.6.11 Straight-Tooth Bevel-Gear Joint

A straight-tooth bevel-gear joint is shown in Figure 4.15.
The straight-tooth bevel-gear joint has two invariant parameters, the two pitch-

cone half-angles γ h and γ ′
h, respectively.

For a straight-tooth involute bevel-gear joint, the coordinate systems are chosen
as shown in Figure 4.15. The conventions are:

1. The wh and w′
h axes intersect at the common apex for the two pitch cones and

lie along the respective rotation axes of the two bevel gears. Each is positively
directed outward from the apex toward one of the two gears.

2. The common perpendicular to both wh and w′
h is given the symbol th with positive

direction chosen in the sense of the vector cross product th = wh × w′
h. There

is one position, where φ1
h = 0, such that the positive uh and positive u′

h axes are
coincident and both are aligned along positive th.
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φ1
h

uh

th

θ

wh

w′h

u′h

Figure 4.15. Coordinate systems for a straight-
tooth bevel-gear joint.

The straight-tooth bevel-gear joint has two joint variables:

φh =
[
φ1

h

φ2
h

]
. (4.33)

The first joint variable is the angle φ1
h measured from positive th to positive uh,

measured counterclockwise about positive wh. The second joint variable φ2
h is the

possible increase in the shaft intersection angle beyond the sum of the two pitch-cone
half-angles, γ h and γ ′

h, measured counterclockwise from wh to w′
h about the positive

th axis.
These conventions do not define that the angle θ between the intersecting shaft-

axes match the sum of the two pitch-cone half-angles. This constraint may be pro-
vided by other joints and body shapes of the system, those that control the postures
of the two shafts on which the bevel gears are mounted. It is assumed that the gears
do not come out of contact and that the teeth of one do not touch the bottom of the
tooth-space of the mating gear. If either of these were to occur, the transformation
matrix shown would not accurately represent the relative motion of the joint.

Because of the assumption of involute tooth profiles, the rotation of the bevel
gear attached to u′

hv′
hw′

h with respect to the th axis may be calculated. This yields the
following transformation matrix for a straight-tooth bevel-gear joint:

Φh(φh)=

⎡
⎢⎢⎢⎢⎢⎣

cosφ1
hcosφ′ − sinφ1

hcosθsinφ′ −cosφ1
hsinφ′ + sinφ1

hcosθcosφ′ −sinφ1
hsinθ 0

−sinφ1
hcosφ′ + cosφ1

hcosθsinφ′ sinφ1
hsinφ′ + cosφ1

hcosθcosφ ′ −cosφ1
hsinθ 0

sinθsinφ′ sinθcosφ′ cosθ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦,

(4.34)

where

φ′ = (tanγh/tanγ ′
h)φ

1
h,

θ = γh + γ ′
h + φ2

h.
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This transformation matrix is also valid for a joint with a straight-tooth internal
bevel-gear; but, in such a case, the pitch-cone half-angle of the internal gear, either
γ h or γ ′

h, must be treated as negative.
If accurate numeric values are known for the elements of the matrix Φh(φh),

then the values of the joint variables may be found as follows:

φ1
h = tan γ ′

h

tan γh
tan−1

[
Φh(3, 1)
Φh(3, 2)

]
,

φ2
h = cos−1 [Φh(3, 3)] − γh − γ ′

h,

(4.35)

where Φh(i,k) refers to row i, column k of the matrix Φh. The signs of the numerators
and denominators must be considered separately to resolve the proper quadrant for
φ1

h. Also, division by Φh(3, 2) = 0 must be avoided.5

4.6.12 Point on a Planar-Curve Joint

A variety of different kinds of joints are treated together here because their formu-
lations and transformations are similar. Two typical cases are shown in Figure 4.16.
The name for this type of joint comes from their common characteristic. In each
case, the designer’s intent is to cause a chosen “point” of the “following” element of
the joint to follow a planar “curve” defined by the shape of the “preceding” element.
Typical examples include a pin constrained to follow a slot, or a circular roller center
to follow the pitch curve of a disk cam.

For this type of joint, the coordinate systems are chosen as shown. The conven-
tions are:

1. The uhvh and u′
hv′

h axes are attached to the joint elements containing the “curve”
and the “point,” respectively. Both are chosen in planes parallel to the plane
containing the “curve.” The wh and w′

h axes must be parallel and both must be
normal to and positively directed to the same side of the plane of the “curve.”
This must be considered when setting the joint orientation, before finding the
kinematic loops and paths as discussed in Chapter 2.

2. The “curve” is defined by two specified functions, u(φ1
h) and v(φ1

h). These func-
tions are continuous, single-valued, and at least twice-differentiable functions of
the same independent variable, φ1

h. As a practical matter, these functions must
be programmed for digital computation. Rather than program anew for each
new curve, it is highly advantageous to choose a standard form for the functions
that can be programmed once and is widely applicable.6

A point on a planar-curve joint has three joint variables:

φh =

⎡
⎢⎢⎣

φ1
h

φ2
h

φ3
h

⎤
⎥⎥⎦ . (4.36)

5 When programming for digital computation, the atan2(−,−) function serves both of these purposes.
6 Fourier series, for example, is chosen as the standard form in the IMP software.
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wh vh

uh

wh

(b)

(a)

uh

φ2
h

v(φ1
h)

u(φ1
h)vh

u(φ1
h)

φ2
h

v(φ1
h)

w′h
u′h

u′h

v′h

w′h

v′h

Figure 4.16. Typical situations modeled as a point on a planar-curve joint. Note placement
of coordinate systems. Note also in (b) that the u′

h, v′
h,w′

h axes would not be attached to the
roller but to the follower arm, as shown in (a).

The first joint variable φ1
h is the independent parameter for the functions, u(φ1

h) and
(φ1

h), defining the Cartesian coordinates of the curve. The second joint variable φ2
h is

the angle from the positive uh axis to the positive u′
h axis, measured counterclockwise

about the positive w′
h axis. The third joint variable is the distance φ3

h, from the uhvh

plane to the u′
hv′

h plane measured along the w′
h axis.

These conventions do not define that the uhvh and the u′
hv′

h planes must be
coplanar. This constraint may be provided by other joints and body shapes of the
system, those that control the relative posture of the bodies to which the “point”
and the “curve” are attached. However, it is assumed that the planes of the “point”
and “curve” bodies are parallel, resulting in the third joint “variable” remaining
nearly constant. If this third joint variable were defined as a constant, however, this



106 Modeling Mechanisms and Multibody Systems with Transformation Matrices

would result in the calculation of a statically indeterminate force component in the
wh direction. See Chapter 17 for details.

These conventions yield the following transformation matrix for a point on a
planar-curve joint:

Φh(φh) =

⎡
⎢⎢⎢⎢⎢⎣

cosφ2
h −sinφ2

h 0 u(φ1
h)

sinφ2
h cosφ2

h 0 v(φ1
h)

0 0 1 φ3
h

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (4.37)

If accurate numeric values are known for the elements of the matrix Φh(φh),
then the values of the joint variables may be found as follows:

φ1
h = f −1 [Φh(1, 4),Φh(2, 4)] ,

φ2
h = tan−1

[
Φh(2, 1) − Φh(1, 2)
Φh(1, 1) + Φh(2, 2)

]
,

φ3
h = Φh(3, 4),

(4.38)

where Φh(i,k) refers to row i, column k of the matrix Φh. The reason that a closed-
form solution for φ1

h is not shown results from the unspecified parametric form of the
functions defining the curve shape, and thus the inability to describe their inverses.
This solution is required in the software, however, to provide an initial value for this
variable, or at least a reasonable estimate, at the modeling posture. Also, the signs
of the numerators and denominators must be considered separately to resolve the
proper quadrant for φ2

h, and division by zero must be avoided.7

4.6.13 Line Tangent to a Planar-Curve Joint

A line tangent to a planar-curve joint is shown in Figure 4.17. The name for this type
of joint comes from its relative motion characteristic. Here the designer’s intent is to
constrain a chosen straight “line” of the “following” element to remain tangent to a

uhvh

wh

u(φ1
h)

φ2
h

v(φ1
h)

u′h

w′h
v′h Figure 4.17. A typical situation modeled by a line

tangent to a planar-curve joint. Note placement of
the coordinate systems. Note also that, as pictured,
the value of φ2

h is negative.

7 When programming for digital computation, the atan2(−,−) function serves both of these needs.
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planar “curve” defined by the shape of the “preceding” element. A typical example
is a flat surface constrained to remain in contact with a curved surface as exemplified
by a flat-faced follower sliding on the pitch curve of a disk cam.

For this type of joint, the coordinate systems are chosen as shown in Figure 4.17.
The conventions are:

1. The uhvh and u′
hv′

h axes are attached to the joint elements containing the “curve”
and the “line,” respectively. Both are chosen in planes parallel to the plane of
the “curve.” The wh and w′

h axes must be parallel and must be normal to and
positively directed to the same side of the plane of the “curve.” This choice must
be considered when setting the joint orientation, before finding the kinematic
loops and paths as discussed in Chapter 2.

2. The u′
h axis is defined along the “line” that is to remain tangent to the “curve.”

3. The Cartesian coordinates of the “curve” are defined by two specified func-
tions, u(φ1

h) and v(φ1
h). These functions are continuous, single-valued, and at

least triply-differentiable functions of the same independent variable, φ1
h. As a

practical matter, these functions must be programmed for digital computation.
Rather than program anew for each new curve, it is highly advantageous to
choose a standard form for the functions that can be programmed once and is
widely applicable.8

The line tangent to a planar-curve joint has three joint variables:

φh =

⎡
⎢⎢⎣

φ1
h

φ2
h

φ3
h

⎤
⎥⎥⎦ . (4.39)

The first joint variable φ1
h is the value of the independent variable for the “curve.”

The second joint variable φ2
h is the distance along the positive u′

h axis to the point of
tangency. The third joint variable is the distance φ3

h from the uhvh plane to the u′
hv′

h
plane measured along w′

h.

The assumptions do not define that the planes of the “line” and the “curve”
must be coplanar. This constraint may be provided by other joints and body shapes
of the system, those that control the postures of the bodies to which the “line”
and the “curve” are attached. However, it is assumed that the planes of the “line”
and “curve” are parallel, resulting in the third joint “variable” remaining nearly
constant. If this third joint variable is defined as a constant, however, this results in
the calculation of a statically indeterminate force component in the wh direction. See
Chapter 17 for details.

These conventions yield the following transformation matrix for a line tangent
to a planar-curve joint:

Φh(φh) =

⎡
⎢⎢⎢⎢⎢⎣

cosθ −sinθ 0 u
(
φ1

h

) − φ2
h cosθ

sinθ cosθ 0 v
(
φ1

h

) − φ2
h sinθ

0 0 1 φ3
h

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , (4.40)

8 Fourier series, for example, is chosen as the standard form in the IMP software.
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where

θ = tan−1

[
dv

(
φ1

h

)/
dφ1

h

du
(
φ1

h

)/
dφ1

h

]
.

If accurate numeric values are known for the elements of the matrix Φh(φh),
then the values of the joint variables may be found as follows:

θ = tan−1
[
Φh(2, 1) − Φh(1, 2)
Φh(1, 1) + Φh(2, 2)

]
,

φ1
h = f −1 [Φh(1, 4),Φh(2, 4)] ,

φ2
h = [

u
(
φ1

h

) − Φh(1, 4)
]

cos θ + [
v
(
φ1

h

) − Φh(2, 4)
]

sin θ,

φ3
h = Φh(3, 4),

(4.41)

where Φh(i,k) refers to row i, column k of the matrix Φh. The signs of the numerator
and denominator must be considered separately to resolve the proper quadrant for
θ , and division by zero must be avoided.9

The reason that a closed-form solution for φ1
h is not shown results from the

unspecified parametric form of the functions defining the curve shape, and thus the
inability to describe their inverses. This solution is required in the software, however,
to provide an initial condition value for this variable, or at least a close estimate.

PROBLEMS

4.1 Knowing that the translation from body axes xyz to joint axes uvw is by distance
d, find the transformation matrix Sbh shown by Figure 4.3.

4.2 Consider a robotic wrist mechanism consisting of three revolute joint with per-
pendicular axes as shown in Figure P4.2. Use joint transformation matrices to show
that this mechanism is kinematically equivalent to a single spherical joint positioned
at point O of the figure.

O

Figure P4.2. Robotic wrist mech-
anism.

4.3 When the relative motion of two bodies in close proximity to one another is
described in terms of a coincidence relationship between geometric features of
one body and geometric features of the other, the two bodies are said to have a
kinematic bond or coupling between them. For each of the two following kinematic
couplings shown, find a single equivalent joint transformation equation describing
the corresponding relative motion.

9 When programming for digital computation, the atan2(−,−) function serves both of these purposes.
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a) A cylinder moving in contact with a plane. (Note that the coupling is only
defined over a relatively small range of motion.)

ξ

φ

Δx

Δy

Figure P4.3a. Cylinder in contact with a plane.

b) A cylinder rolling and sliding on another cylinder without tilting. (Note again
that the coupling is only defined over a relatively small range of motion.)

φ

ξ

Δx

r

Figure P4.3b. Cylinder in contact with a cylinder.

4.4 Figure P4.4 shows a slider-crank linkage to be used in the design of a weighing
device. Enough information is shown to uniquely locate and orient all body axes
and joint axes. Modeling and analysis of this mechanism starts here and continues in
several chapters that follow. Here, in Chapter 4, we are concerned only with forming
certain elements of the model.

Y0 y4

uC

φC

φD

X0 x4 uA uD

uB

φA

φB

y3

x1 u′A

x3 u′D

x2 u′B

u′C

Figure P4.4. Linkage for a nonlinear weighing device.
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a) Form all shape matrices Sbh assuming that the lengths of the parts are equal
to some known length l.

b) Form the joint matrices Φh for each joint in symbolic form.

4.5 Figure P4.5 shows an exploded diagram of an Oldham shaft coupling with enough
information to locate all body and joint axes, which are all coincident at the center of
the coupling. The Oldham coupling is a well-known design for torque transmission
between two parallel shafts that may be slightly eccentric. The coupling accommo-
dates this eccentricity (e) while maintaining the same rotational speed for the two
shafts.

e

1

2
3

4

z1

z2

z4

wC

x2, u′B, x4

z3, w′D, wD

x1, u′A, uB

y1, v′A, vB

y2, v′B, u′C

y3, vC, vD

x3, uC, uD

v′C

w′B

u′D

wA
wB

Figure P4.5. Oldham coupling
for parallel but misaligned
shafts.

a) Form all shape matrices Sbh assuming that the shafts, slots and sliders are
centered on each of the circular parts, and that all axes are parallel and are
positive in the same directions. The orientations of the joints are chosen
such that the loop and path matrices of Chapter 2 are:

L = [
1 1 −1 −1

]
, P =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 1 −1 0
0 0 0 0

⎤
⎥⎥⎦ .

b) Form the joint matrices Φh for each joint in symbolic form.



5 Posture Analysis by Kinematic Equations

5.1 Introduction

One common means of describing the posture of a mechanism or multibody system
is by specifying a vector of coordinates listing the positions of a set of independent
“input” joint variables; that is, by giving the values of a number of joint variables
φ equal to f, the mobility of the system. These independent degrees of freedom
are called generalized coordinates and they are often used to specify the posture of
the system because, in most cases, their values uniquely determine the values of all
other joint variables and the position of each point of every body of the system. That
is to say, there is usually only one unique configuration or posture of the system
corresponding to a given set of generalized coordinates.

We will denote a generalized coordinate by the symbol ψ j and note that each
is equivalent to one of the joint variable values; that is, ψ j = φh for some j and
h. Listing the full vector of f generalized coordinates in a chosen order, we define
the generalized position vector that identifies the posture or the configuration of the
system:

ψ =

⎡
⎢⎢⎢⎣

ψ1

ψ2
...

ψ f

⎤
⎥⎥⎥⎦ . (5.1)

What allows only a subset of the joint variables to become generalized coordi-
nates, whereas others are dependent on these for their values? Well, for example, we
saw that for each spheric joint and each open joint, where Euler-Rodrigues param-
eters were used to describe orientation, we have a constraint equation that makes
one of the joint variables dependent on others. We also saw in Chapter 2 that some
mechanisms and multibody systems contain closed loops of bodies interconnected
by joints, and we will see in section 5.5 how each of these closed loops leads to a
set of “loop-closure” constraint equations. Each situation – where these or other
constraint equations allow the determination of some of the joint variable position
values from others – reduces the number of joint variables that remain independent;
that is, the number of independent generalized coordinates, f, that represents the
mobility of the system.

111
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(a) (b)

Figure 5.1. (a) Multiple closures of a planar four-bar linkage with the same input angle;
(b) multiple postures of a planar manipulator with the same end-effector posture.

This, however, is not the complete story. In some multibody systems, as is also
the case for some closed-loop mechanisms, the bodies can be configured in more
than one way, even for identical values of the generalized coordinates. In some
open-loop systems, such as robot manipulators, a point (or gripper posture) can be
reached by more than one system posture and depending on which posture is used,
the positions of some bodies may be quite different. Such a case is exemplified by
the closed-loop planar four-bar linkage shown in Figure 5.1a where broken lines
show a second possible configuration of the same system with the same setting for
the independent input angle. Also, in Figure 5.1b, an open-loop planar manipulator
has its end-effector reaching the same posture with two different configurations of
the system, as illustrated by broken lines.

In the different cases, each configuration is referred to as a “closure” of the
system. They result when the nonlinear posture equations have more than one set
of real solutions. In order to precisely describe a configuration of such a system,
it is necessary to specify additional information, over and above the generalized
coordinates, to distinguish one closure of the system from other possible closures.
Therefore, we define the posture of a system by a vector φ that explicitly includes
all of the joint variables rather than just the vector of generalized coordinates ψ .
It should be remembered here that some joints may require more than one joint
variable, and all joint variables are included in the φ vector:

φ =

⎡
⎢⎢⎢⎣

φ1
φ2
...
φn

⎤
⎥⎥⎥⎦ . (5.2)

These coordinates, of course, are not always independent. They may be related
by Euler-Rodrigues constraints or by kinematic loop-closure equations, as will be
explained later.

5.2 Consecutive Transformations

Just as in the construction of a real machine, we start by manufacturing the individual
parts before joining them together. Also, in the construction of a mathematical
model for a multibody system, we have begun by deriving analytic descriptions of
the individual components, the bodies and the joints. We will now join these pieces
together and show that, in combination, they provide a mathematical model that
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zh+

rh– zh–

yh–

xh–

vh

xh+

yh+

rh+

h+

h–

rh

w′h

v′hu′h

r′h

w′h

uh

Figure 5.2. Two adjacent bodies, h− and h+, con-
nected by joint h.

simulates the real system. Then, in later chapters, we will be in a position to use this
model to perform the various phases of mechanical analysis.

Let us start by showing how, in terms of our transformation matrices, we can
join two bodies by means of a joint with label h. We recall from Eq. (4.6) that

rh = �h(φh)r
′
h

where rh and r′
h refer to the uhvhwh and u′

hv′
hw′

h coordinates of the same point
measured in two different joint coordinate systems: those attached to the mating
joint elements of the two bodies connected by joint h.

Because we have allowed labeling of both bodies and joints in arbitrary orders,
we now define the ligatures h− and h+ to represent the labels of the two bodies that
immediately precede (negatively incident with) and follow (positively incident with)
the joint with label h, respectively, as specified by the chosen joint orientation. This
not very elegant notation is necessary to avoid confusion because, by symbolism,
joint label h does not infer a value for a body label, such as b or c, but does when
written as h− or h+. It is also important to emphasize that although h is a joint
label, h− and h+ are body labels. This is shown in Figure 5.2 where joint and body
coordinate axes are attached to the joint elements and to each adjacent body using
the notation of Chapter 4.

Now, applying Eq. (4.4) to each of the mating joint elements, we see that

rh− = Sh−,hrh,

and

rh+ = Sh+,hr′
h.

These are two more representations for the same point in the coordinate systems
of the two bodies joined by joint h. It should be noted that the shape matrix Sh−,h
is the transformation between the coordinate systems uhvhwh and xh−yh−zh− and
Sh+,h is the transformation between the coordinate systems u′

hv′
hw′

h and xh+yh+zh+.
This means that each body may contain more than one shape matrix, with one
corresponding to each of its joint axes. Referring to Figure 5.2, for example, the
body h− may have one shape matrix Sh−,h corresponding to joint h and another
shape matrix Sh−,(h− 1) corresponding to a previous joint with label (h − 1).
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Once we recognize that rh− and rh+ are merely different descriptions for the
same point (see Figure 5.2) with no restriction on what point is chosen, and noting
that rh and r′

h are related by the joint transformation matrix Φh(φh); that is, with
rh = Φh(φh)r

′
h, we can combine these three equations into a single transformation

as follows:

rh− = Sh−,hΦhS−1
h+,hrh+, h = 1, 2, . . . ,n. (5.3)

Note here that the order of the matrix multiplications is important. Matrix
multiplication is not commutative. Also, in general, a rotation of coordinate axes
followed by a translation, for example, is not equal to the same translation followed
by the same rotation; that is, ΦS �= SΦ.

Equation (5.3) says that if we know the position vector of an arbitrary point
in the xh+yh+zh+ coordinate system of the body following joint h, we can find its
position coordinates in the xh−yh−zh− coordinate system of the body preceding joint
h. This concept of transforming to coordinates in the axes of a different body is
extremely important, and is fundamental to the coming chapters. In other words,
this equation represents the kinematic relationship between two adjacent bodies in
a mechanism or a multibody system.

Before going further with our development, let us review our progress so far,
and perhaps tie together a few loose ends. Recall that in Chapter 2 we went to great
lengths to establish the path of each loop through the mechanism or the multibody
system and, in so doing, we started by assigning an identifying label to each body and
another to each joint, not necessarily in any particular order. We then used these
labels in an algorithm for determining the kinematic loops of the system, and the
kinematic paths from the fixed body to each of the moving bodies.

Then in Chapter 4 we defined a number of coordinate systems. Each body was
assigned a body coordinate system xbybzb that had a subscript b identifying the body
label. Several joint coordinate systems uhvhwh were also defined and each of these
carries a subscript h identifying the joint label to which it applies. In developing
the transformation matrices, we found the joint matrix Φh(φh) that describes the
relative position of each joint and each of these has a subscript h denoting the label
of the joint it describes. However, the shape matrix Sbh, which describes geometric
characteristics of a body, rather than being subscripted by the body label alone,
carries a double subscript; it shows first the body label b to which it belongs, and
then the joint label h to which it applies. Also, a body has as many shape matrices as
it has joint elements.

In Eq. (4.4), we have a means to transform the position coordinates of a point
from any joint or auxiliary coordinate system to its appropriate body coordinate
system. Then, in Eq. (5.3), we have a means to transform these to the position
coordinates of the same point in the coordinate system of the preceding body of
the kinematic loop or path. However, because this is possible, we can also apply the
procedure recursively and transform to position coordinates on any previous body in
the loop or path. If we presume for the moment that the bodies and joints are labeled
consecutively along the paths and if, for example, we have position coordinates r5 of
some point attached to body 5 and wish to transform them to position coordinates
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measured in body coordinate system 1, then by repeated applications of Eq. (5.3)
we find that

r1 = S1AΦAS−1
2AS2BΦBS−1

3BS3CΦCS−1
4C S4DΦDS−1

5Dr5.

Although the bodies and joints of a multibody system are usually not labeled in
consecutive order, this equation shows in concept how, knowing the position vector
of a point in the coordinate system of its own body, where it can be easily measured,
we can find its position vector in the coordinate system of any other body by repetitive
matrix transformations.

We notice in the above equations the continuing pattern of products of shape and
joint and inverse shape transformation matrices. These products appear throughout
our remaining work and are given their own symbol. For each joint h, connecting
and oriented from body number h− to body number h+, we define

Th−,h+ = Sh−,hΦhS−1
h+,h, h = 1, 2, . . . ,n. (5.4)

However, we must be careful here. This definition can only be applied consistent
with the defined orientation of each joint. If the opposite orientation is desired, then
Th+,h − = T−1

h−,h+ must be used as shown in Eq. (5.15) below. This is not the same as
Sh+,hΦhS−1

h−,h, but is equal to Sh+,hΦ
−1
h S−1

h−,h.

Then, for consecutive products of these transformations along the kinematic
paths, we define

Tbc = Tb,b+1Tb+1,b+2 · · · Tc−1,c, b, c = 0, 1, . . . , 	. (5.5)

In applying these equations, however, we must remember that the subscripts
do not usually occur in numeric order as implied by the subscripts “b+1,” “b+2,”
and “c−1,” “c,” but in the order of appearance of the body labels in the kinematic
paths and loops through the system as were determined in Chapter 2. This may
not be the most elegant mathematical notation; however, the meaning is clear and
comfortable to use for hand computation. For digital computation, a programming
language should be chosen that has provision for hierarchical data structures. Body
and joint data records may then be organized in linked lists (queues) in the order of
the kinematic loops and paths.

We note that Eq. (5.5) also gives us a very convenient and compact notation
because it shows that

TbcTcd = Tbd, b, c,d = 0, 1, . . . , 	. (5.6)

Thus, if we know the transformation Tbc from body b to body c and the trans-
formation Tcd from body c to body d, then their product gives the transformation
from body b to body d . Even though the two paths may each include several bodies
and joints, the total transformation – consisting of a product of several factors –
is naturally collapsed into a single digraph. With this notation, the transformation
between any two body (xyz) coordinate systems in the multibody system can be
expressed by the simple equation

rb = Tbdrd, b,d = 0, 1, . . . , 	. (5.7)
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h – 1

h + 1
vh+1

vh
yh

yh+1

uh+1

αh

ah

φ1
h

φ2
h

xh+1 xh

uh

wh+1
zh+1

zh

wh

h

w′h

u′h

Figure 5.3. Notation for the Denavit-Hartenberg transformation.

5.3 Denavit-Hartenberg Transformations

A special form of the transformation matrix Tbc can be found if we choose particular
postures for the joint and body coordinate systems in transforming from one joint
to the next in a serial multibody system. This special transformation, named after
its esteemed originators, is called the Denavit-Hartenberg (D-H) transformation
[1, 2, 3]. It combines a consecutive joint matrix and shape matrix into a single
(4 × 4) transformation and is well known in the mechanisms and robotics literature. It
describes the geometry of a joint and the subsequent body by a set of four parameters
known as Denavit-Hartenberg parameters. Here, we choose a cylindric joint to
illustrate the concept because the most commonly used joints in robotic devices,
namely revolute and prismatic joints, can be considered special cases of a cylindric
joint. In the case of a cylindric joint the D-H parameters are the joint angle φ1

h, the
joint offset φ2

h, the link length ah, and the link twist angle αh.
Consider a cylindric joint connecting two adjacent bodies of a mechanism as

shown in Figure 5.3. The joint angle φ1
h and the joint offset φ2

h for joint h in this figure
are the two joint variables for the cylindric joint. In the case of a revolute joint, the
joint angle φ1

h is the joint variable and the joint offset φ2
h = d is a constant parameter,

whereas for a prismatic joint, the joint angle φ1
h = θ is a constant parameter and

the joint offset φ2
h is the joint variable. In addition, the link shape requires two

more constant parameters to uniquely define its kinematic characteristics. One of
these constant parameters is ah – the length of the common perpendicular between
the two joint axes wh and wh+1. It should be noted that the length ah is not always
the physical length of the link, but is the length of the common perpendicular. In the
D-H notation, the uh+1 axis is chosen as the extension of this common perpendicular;
the vh+1 axis is then added to complete the coordinate system, uh+1vh+1wh+1. The
other constant parameter is the link twist αh, which is the angle from joint axis wh to
joint axis wh+1, and is positive when counterclockwise as viewed from the positive
end of the uh+1 axis. When the coordinate systems uhvhwh and uh+1vh+1wh+1 are
chosen in this fashion, the xhyhzh body axes are chosen coincindent with the uhvhwh

axes. Two joint parameters, φ1
h and φ2

h, describe the relative geometry of axis xh+1
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with respect to axis xh; similarly, two constant link parameters, ah and αh, describe
the relative geometry of axis zh+1 with respect to axis zh.

The corresponding transformation between the coordinate systems xhyhzh and
xh+1yh+1zh+1 written in terms of the Denavit-Hartenberg (D-H) parameters is called
the Denavit-Hartenberg transformation. Historically, this transformation has played
a key role in the development of methods for kinematic analysis of three-dimensional
mechanisms and robotic manipulators, but it can be considered a special case of the
more general method developed earlier in this chapter.

For the two consecutive links shown in Figure 5.3, let us consider the joint coordi-
nate systems uhvhwh, u′

hv′
hw′

h, and uh+1vh+1wh+1 as shown. The D-H transformation
relates the postures of the coordinate systems xhyhzh and xh+1yh+1zh+1. Here we
have chosen the body coordinate systems for bodies h and h + 1 to be coincident
with the joint coordinate systems uhvhwh and uh+1vh+1wh+1, respectively, so that
xhyhzh = uhvhwh and xh+1yh+1zh+1 = uh+1vh+1wh+1. In this manner, Sh−,h = I and
the D-H transformation can be derived using Eq. (5.4) as:

Th−,h+ = Sh−,hΦhS−1
h+,h = IΦhS−1

h+,h = ΦhS−1
h+,h.

In this last equation, the term Φh is the transformation for a cylindric joint. The
transformation S−1

h+,h is the coordinate transformation between coordinate systems
xh+1yh+1zh+1 and u′

hv′
hw′

h or the inverse of the transformation between the coordinate
systems u′

hv′
hw′

h and xh+1yh+1zh+1.
The coordinate transformation for a cylindric joint was derived in Eq. (4.14)

as:

Φh(φh) =

⎡
⎢⎢⎢⎢⎣

cosφ1
h −sinφ1

h 0 0

sinφ1
h cosφ1

h 0 0

0 0 1 φ2
h

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

In order to derive the transformation S−1
h+,h in terms of the D-H parameters,

we use a screw displacement from the coordinate system u′
hv′

hw′
h to the coordinate

system xh+1yh+1zh+1. Referring to Figure 5.3, the screw axis for this displacement is
the u′

h axis and the screw parameters are d = ah and θ = αh. Now, using Eqs. (3.40)
and (3.41), we find:

S−1
h+,h =

⎡
⎢⎢⎢⎢⎣

1 0 0 ah

0 cosαh −sinαh 0

0 sinαh cosαh 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The resulting total D-H transformation is given by:

Th−,h+ =

⎡
⎢⎢⎢⎢⎣

cosφ1
h −sinφ1

h 0 0

sinφ1
h cosφ1

h 0 0

0 0 1 φ2
h

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 ah

0 cosαh −sinαh 0

0 sinαh cosαh 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,
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or

Th−,h+ =

⎡
⎢⎢⎢⎢⎢⎣

cosφ1
h −sinφ1

hcosαh sinφ1
hsinαh ahcosφ1

h

sinφ1
h cosφ1

hcosαh −cosφ1
hsinαh ahsinφ1

h

0 sinαh cosαh φ2
j

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (5.8)

It should be noted that this D-H matrix is a (4 × 4) homogenous transformation
and acts like the transformation defined in Eq. (5.4) relating points in the coordinate
system of one body with respect to the adjacent body. This means that transfor-
mations along the kinematic path defined by Eq. (5.5) can be established in the
same manner using Th−,h+ matrices for each joint connecting adjacent bodies of a
multibody system. This type of matrix is commonly used in much of the robotics
literature. In this book, however, we utilize the more general matrix notation of
Eqs. (5.4) and (5.5). This not only provides a more general approach, with much
less need for conventions on the placement of axes, but also avoids difficulties that
sometimes arise in use of the D-H matrices. Such difficulties occur when consecutive
joint axes intersect or are parallel and, therefore, allow arbitrary choices for some of
the coordinate axes, or when adjacent joint axes are nearly parallel causing difficulty
in locating common perpendiculars and causing some joint offset values to become
very large. Ambiguity in notation also occurs when applying the D-H transformation
to multi-loop systems [12].

5.4 Absolute Position

The absolute position of a point on a moving body is often of major importance in
a design situation. Obviously, this can be found by applying Eq. (5.7) to transform
the local coordinates of the point, measured in the coordinate system of the body
to which the point is attached. However, to which coordinate system should the
position vector be transformed? Which xyz coordinate system is the primary frame
of reference?

To retain maximum flexibility, we choose a coordinate system x0y0z0 that we
define to be the absolute or world coordinate system. The only restriction we place
on the choice of this system is that it be an inertial coordinate system if the analysis
is to include dynamic effects. Otherwise, it is chosen totally arbitrarily to fit the
problem. This absolute coordinate system, carrying the subscript zero, is the one in
which all results are found. Positions measured in this coordinate system are called
absolute positions.

Reviewing section 4.5 reminds us that we reserved the symbol Rb to stand for
the absolute position vector of a point of the body with label b:

Rb =

⎡
⎢⎢⎢⎢⎢⎣

R
x0
b

R
y0
b

R
z0
b

1

⎤
⎥⎥⎥⎥⎥⎦ , b = 1, 2, . . . , 	, (5.9)
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and, from Eq. (4.2),

Rb = T0brb, b = 1, 2, . . . , 	. (5.10)

Recalling that the frame member of our multibody system is numbered body 	

as recommended in Chapter 2, we have already collected data for the transformation
matrix T0	 while we were collecting data for the shape matrices. If body 	 is stationary,
then the T0	 matrix remains constant as the system moves. If not, as in Figure 2.8, it
is variable; however, we have data for it at the initial position, and we may wish to
update T0	 at later values of time. In either case, we can write

Rb = T0	T	brb, b = 0, 1, . . . , 	, (5.11)

where T	b can be computed as shown in Eq. (5.5) according to the path found in
Chapter 2 from body 	 to body b.

5.5 The Loop-closure Equation (Kinematic Equation
for Position Analysis)

Because Eq. (5.7) holds for the position of a point on bodies b and c, suppose that we
choose to apply this to a multibody system containing one or more closed kinematic
loops such as those discovered in the loop matrix of Chapter 2. Suppose also that
we choose b to represent a certain body in loop i, then trace through the bodies and
joints in sequence until we meet body c. If we continue around the loop until it closes
on itself, we can write Eq. (5.7) with bodies c and b being the same body. In this case
we have

rb = Tbbrb, i = 1, 2, . . . ,NL,

or, transforming to the absolute coordinate system,

Rb = T0bTbbTb0Rb = T00Rb, i = 1, 2, . . . ,NL,

where the matrix T00 is the product of transformations from ground to the first body
of the loop, then around the loop, and then back to ground.

Because we have made no restrictions on the choice of the point Rb, this equation
must hold for all possible choices of the point. This condition can only be satisfied
in general if Tbb = I when we work in the coordinate system of some arbitrary body
b, or

T00 = T0bTbbTb0 = I, i = 1, 2, . . . ,NL, (5.12)

when we work in global coordinates.
This equation is the transformation matrix form of the loop-closure or kinematic

equation for position analysis. It shows that no matter which body is chosen as a
starting body, when consecutive transformations are made around a closed kinematic
loop, finally returning to the original coordinate system, this matrix product must
equal the identity transformation – the (4 × 4) identity matrix.

This loop-closure equation inherently contains all of the kinematic constraint
conditions that must be satisfied by a multibody system containing closed kinematic
loops such that the loops remain closed for all possible postures of the system. As
the system moves and the joint variables change, they must all change in unison such
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that this equation is always satisfied for each and every closed loop. This extremely
powerful equation can be used, as will be shown in this and subsequent chapters, to
derive all the kinematic position information possible for the multibody system.

In the case of an open-loop multibody system, such as many serial robotic
manipulators, the development follows in a similar fashion. In this case, however, the
starting body is typically chosen to be the world or base coordinate system and then
consecutive transformations are made until reaching the end-effector coordinate
system. For a robotic manipulator with six joints and six moving links numbered in
sequence, the resulting transformation can be written:

T01T12T23T34T45T56T67 = T07. (5.13)

The matrix T07 is the transformation describing the posture of the end-effector
coordinate system. In Chapter 3, we discussed several ways for specifying this T07
transformation. One example was to use direction cosines of three mutually orthog-
onal coordinate axes in the end-effector as was discussed in Eq. (3.26). Using this
equation, we have:

T07 =

⎡
⎢⎢⎢⎢⎣

ux vx wx Rx0
7

uy vy wy Ry0
7

uz vz wz Rz0
7

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

It is useful to point out that if we take the open-loop system described by
kinematic Eq. (5.13) and convert it into a closed-loop system by connecting its last
body or end-effector to ground by some kinematic joint such as an open joint –
making it into a closed-loop system with seven joints instead of an open-loop system
with six joints – then the loop-closure or kinematic equation becomes:

T01T12T23T34T45T56T67T70 = I. (5.14)

Comparing Eqs. (5.14) and (5.13), it is easy to see that T70 = T −1
07 . In other

words, the kinematics of the two systems are governed by similar equations. This is
why the kinematics of a six-revolute serial robotic manipulator is considered to be
similar to that of a seven-joint closed kinematic chain or mechanism. Another way
of stating this is to say that when we specify the posture of the final body of an open-
loop multibody system (for example, the end-effector of a robotic manipulator) and
require it to perform a specified motion, then, in a sense, we are defining a constraint
that is similar to closing a loop in the system.

Another very useful identity can be obtained from the loop-closure equation
by taking into account the recursive nature of the products of the transformation
matrices. From Eq. (5.6) we have

TbcTcb = Tbb = I.

By pre-multiplying this equation by the inverse of Tbc, we obtain

Tcb = T−1
bc , b, c = 0, 1, . . . , 	. (5.15)

Before continuing, it should be pointed out that, because of the special prop-
erties of rigid body transformations, the inverse of such a transformation matrix is
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extremely simple to form. If we choose the following notation for the translation
and rotation submatrices,

Tbc =
[
Θbc rOc

0 1

]
,

then, because of the orthogonality of the rotation submatrix, it is easily verified that
the inverse matrix is of the form

T−1
bc =

[
Θ t

bc −Θ t
bcrOc

0 1

]
. (5.16)

This explicit form of the inverse is very easily evaluated, even by hand compu-
tation. It is also easily programmed for digital evaluation, and operates much more
economically than a general matrix inversion technique.

The Denavit-Hartenberg transformation of Eq. (5.8) also enjoys the same prop-
erty and, in a similar fashion, its inverse is found to be

T −1
h−,h+ =

⎡
⎢⎢⎢⎢⎣

cosφ1
h sinφ1

h 0 −ah

−sinφ1
hcosαh cosφ1

hcosαh sinαh −φ2
h sinαh

sinφ1
h sinαh −cosφ1

h sinαh cosαh φ2
hcosαh

0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (5.17)

5.6 Closed-form Solution of Kinematic Equations
for Joint-variable Positions

According to the previous discussion, we see that in order to solve for the values of
the joint variables φ of a mechanism or a multibody system, we must first specify
the generalized coordinates ψ – the values of the f independent joint variables. We
may also be required to specify additional information if necessary to distinguish
between multiple closures or postures of the system.

Those with experience in applying classical graphic techniques may consider
that determining the posture of a system is a trivial problem because, once a layout
drawing is completed, any of the joint variables can be determined directly from the
drawing. For example, see [13], especially the first paragraph of section 3.7, p. 52,
where this is stated explicitly.

On the contrary, as we will come to appreciate in the remainder of this chapter,
the determination of the position values of the dependent joint variables for a given
set of generalized coordinates is usually the most difficult problem of kinematic
analysis. Once the dependent position values are known, the remaining problems
of kinematics are relatively easily solved. This observation holds true for most ana-
lytic methods and comes about primarily as a result of the nonlinear nature of the
constraints. The rigid-body condition, that two points of a body remain a constant
distance apart, as well as the rotational motions found in many types of joints, invari-
ably leads to quadratic and/or trigonometric equations. Because there must be at
least as many of these equations as unknown joint variables, their simultaneous
solution can be quite challenging.
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However, there are some systems – usually open-loop or single-loop systems,
where the numbers of bodies and joints are small – for which it is possible to
obtain closed-form solutions. We shall present a few examples here to illustrate
the approach. In general, the procedure is always the same; the necessary simulta-
neous equations are found by performing the matrix multiplications indicated in the
loop-closure equation, Eq. (5.12), and these are then solved by whatever algebraic
techniques the analyst is able to muster. More on methods for finding the solution
of the kinematic position equations is given in section 5.7.

The matrix loop-closure equation produces all of the simultaneous equations
necessary for the solution of a given problem and the method of formulation or
the number of equations is not left to chance. None of the essential equations is
overlooked, as might happen if a given problem is formulated intuitively. However,
there is no assurance that their solution by hand calculation is feasible.

EXAMPLE 5.1: CARDAN/HOOKE UNIVERSAL SHAFT COUPLING We choose the uni-
versal shaft coupling as a first example because solutions known from other
methods allow comparison of results. The Cardan/Hooke universal shaft cou-
pling, shown in Figure 5.4, is a spherical linkage consisting of four bodies con-
nected by four revolute joints. It also has two other distinguishing features: first,
that all four revolute axes intersect at a common point, and second, that three
of the four fixed angles at these intersections are right angles. This mechanism
is known both as a Cardan coupling and as a Hooke universal joint. An Italian
mathematician, physician, and astrologer, Girolamo Cardano (1501–76) was the
first to describe this joint, although it is unclear whether he ever constructed
one. An English architect and natural philosopher, Robert Hooke (1635–1703)
first applied it to the transmission of rotary motion.

d2

z4

x4

y
4

D

C

B

A

h

d1

β

Figure 5.4. Example 5.1: Cardan/Hooke universal shaft coupling.

It is assumed here that body 3, mounted at joint D, is the input shaft and
its rotation ψ = φD is a given function of time. The output shaft, body 1, has
rotation φA, whose functional relationship to ψ must be determined. We also
note that solutions for the dependent joint variables φB and φC, although not
of primary concern, may also be useful for predicting wear or choosing proper
bearings.
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d1

(a)

(b)

(c)

y3

d2

y1
, wB

uD

z1
, uB

uA

φA

φB

φC

x1
, vB

ψ

wA, w′A

u′A, vA 

z2, w′B, uC

x2, u′B, vC

y2, v′B, wC

vD, u′D

wD, w′D

v′D

v′C

x3, w′C

z3, u′C

v′A

Figure 5.5. Example 5.1: Placement of body and joint coordinate systems for (a) body 1,
(b) body 2, (c) body 3.

In this example it is not necessary to perform a formal topological analysis, as
discussed in Chapter 2, because the single loop is easily determined by inspection.
The loop matrix is

L = [ 1 1 1 1 ].

A B C D

With the body and joint axes chosen as shown in Figure 5.4 and Figure 5.5,
the shape matrices can be found, either directly by inspection of the figures or
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by the methods of section 4.4. They are:

T04 = I, S4,A =

⎡
⎢⎢⎢⎣

0 0 1 d1

1 0 0 h
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ , S1,A =

⎡
⎢⎢⎢⎣

0 0 1 d1

0 −1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦

S1,B =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ , S2,B = I,

S2C =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ , S3C =

⎡
⎢⎢⎢⎣

0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

S3D =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 d2

0 0 0 1

⎤
⎥⎥⎥⎦ , S4D =

⎡
⎢⎢⎢⎣

0 −sinβ cosβ d2cosβ
1 0 0 h
0 cosβ sinβ d2 sinβ

0 0 0 1

⎤
⎥⎥⎥⎦ .

Because all four joints are revolutes, Eq. (4.10) can be used to evaluate each
of the joint matrices:

Φh

(
φh

) =

⎡
⎢⎢⎢⎣

cosφh −sinφh 0 0
sinφh cosφh 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ , h = A,B,C,D.

Next, following Eq. (5.4), we evaluate the four matrix products. Notice that
joint D is defined here to be oriented from body 3 to body 4. Thus, the T34 matrix
is formulated rather than T43. See example 5.2 for contrast:

T41 = S4AΦAS−1
1A =

⎡
⎢⎢⎢⎣

1 0 0 0
0 sinφA cosφA h
0 −cosφA sinφA 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

T12 = S1BΦBS−1
2B =

⎡
⎢⎢⎢⎣

sinφB cosφB 0 0
0 0 1 0

cosφB −sinφB 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

T23 = S2CΦCS−1
3C =

⎡
⎢⎢⎢⎣

0 −cosφC sinφC 0
1 0 0 0
0 sinφC cosφC 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,
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T34 = S3DΦDS−1
4D =

⎡
⎢⎢⎢⎣

sinψsinβ cosψ −sinψcosβ −hcosψ
−cosψ sinβ sinψ cosψcosβ −hsinψ

cosβ 0 sinβ 0
0 0 0 1

⎤
⎥⎥⎥⎦ .

Based on these four transformations, we can write the loop-closure equation
from Eq. (5.12):

T41T12T23T34 = I.

However, in this particular problem, it is more convenient to rewrite this in
the form

T34T41 = (T12T23)
−1,

because T12 and T23 have no translation terms and, therefore, the matrix inver-
sion can be done very easily by Eq. (5.16).

Taking advantage of this, the previous equation becomes

⎡
⎢⎢⎢⎢⎣

sinψsinβ cosψsinφA + sinψcosφAcosβ cosψcosφA − sinψsinφAcosβ 0

−cosψsinβ sinψsinφA − cosψcosφAcosβ sinψcosφA + cosψsinφAcosβ 0
cosβ −cosφAsinβ sinφAsinβ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

cosφB 0 −sinφB 0

−sinφBcosφC sinφC −cosφBcosφC 0

sinφBsinφC cosφC cosφBsinφC 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

Because both sides of this equation must be equal, we may now equate
various individual terms to discover the relationships between the input variable
ψ and the remaining dependent joint variables φj. The input-output relationship,
for example, is found by equating the elements of the first row, second column.
This gives

φA = tan−1 (−tanψcosβ) .

The value of φB is found directly from row one, column one

φB = cos−1 (sinψsinβ) ,

and dividing the elements of row three, column one by those of row two, column
one we find an equation for φC in terms of ψ

φC = tan−1
(

1
cosψtanβ

)
.
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As discussed earlier, we can group these solutions into a single vector that
describes the posture (configuration) of the system as a function of the single
generalized coordinate ψ

φ =

⎡
⎢⎢⎢⎣

φA

φB

φC

φD

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

tan−1 (−tanψcosβ)

cos−1 (sinψsinβ)

tan−1 {1/(cosψtanβ)}
ψ

⎤
⎥⎥⎥⎦ .

Although we may be tempted to stop here, thinking this to be a complete
solution, we should note that the quadrants of φA, φB, and φC are not yet
determined. We conclude, however, that because the Cardan/Hooke universal
joint can only be rotated without interference in situations where β is an obtuse
angle, cos β is always negative. Also, we note from Figure 5.5b that sin φB always
remains negative. Using this information, we can determine from the remaining
elements of the previous matrix equation that sin φC is always positive and
that cos φA always carries the same sign as cos ψ . Thus, all quadrants can be
determined.

The reason that the quadrants could not be discovered directly from the
equations and that the figure had to be consulted for clues is that there is more
than one way in which this system can be assembled. The same equations also
describe the other possible closure, where the cross is rotated 180◦ about its
y2 axis and the output shaft is rotated 180◦ about y1. In order to remove this
ambiguity – to specify which closure is being analyzed – it is necessary to note
that sin φB remains negative.

The foregoing analysis only applies to a “perfect” Cardan/Hooke universal
joint; that is, one in which the joint axes truly intersect and do so in exact right
angles. If the angles are not exactly 90◦, the situation is not too bad because
the only effect on the previous equations is small. If, however, the axes do not
truly intersect, the linkage is no longer spherical. Such a case might happen, for
example, if the distances d1 and d2 appearing in the shape matrices of the frame
were slightly different than those in the shape matrices of the output and input
shafts. The analysis would proceed in the same fashion; however, the elements
of the fourth column of the matrix products would not produce exact identities.
At best, they might be equal for only discrete values of ψ rather than for a
continuous range of input motion. Also, because real machine parts are always
designed with tolerances because of imperfect manufacture, the real universal
joint (as manufactured) might not exactly match the dimensions used in the
previous equations. Yet it might still be movable, if only because of looseness in
the revolute joint bearings and slight flexing of the “rigid” parts.

EXAMPLE 5.2: DISK-CAM SYSTEM As a second example, let us choose the disk-cam
with reciprocating flat-faced follower system shown in Figure 5.6.

Again the loops and paths are obvious by inspection. The loop matrix is

L = [1 1 −1].
A B C
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uC

vC

R0 φA = ψ

φ2
BφC

e
y2, v′B, u′C

x1, u′A, uB

y1, v′A, vB

y0, y3, vA

x0, x3, uA

x2, u′B
v′C

Figure 5.6. Example 5.2: Disk-cam with reciprocating flat-faced follower.

The coordinate systems are chosen as shown in Figure 5.6. The shape matri-
ces, also obtained by inspection, are as follows:

T03 = S1A = S1B = S2B = S3A = I,

S2C =

⎡
⎢⎢⎢⎢⎣

0 −1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , S3C =

⎡
⎢⎢⎢⎢⎣

0 −1 0 e

1 0 0 R0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The shape of the cam is defined by the following functions:

u
(
φ1

B

) =

⎧⎪⎪⎨
⎪⎪⎩

[
R0+

L
2π

(
2φ1

B−sin2φ1
B

)]
sinφ1

B+ L
π

(
1−cos2φ1

B

)
cosφ1

B, 0≤φ1
B<π,[

R0+
L
2π

(
4π−2φ1

B+sin2φ1
B

)]
sinφ1

B+ L
π

(
1−cos2φ1

B

)
cosφ1

B, π≤φ1
B<2π,

v
(
φ1

B

) =

⎧⎪⎪⎨
⎪⎪⎩

[
R0+

L
2π

(
2φ1

B−sin2φ1
B

)]
cosφ1

B− L
π

(
1−cos2φ1

B

)
sinφ1

B, 0≤φ1
B<π,[

R0+
L
2π

(
4π−2φ1

B+sin2φ1
B

)]
cosφ1

B− L
π

(
1−cos2φ1

B

)
sinφ1

B, π≤φ1
B<2π.
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From these, using Eq. (4.40) to model cam joint B as a line tangent to a
planar curve joint, we find, after some effort, that

θ = tan−1

⎡
⎢⎢⎢⎣

d

dφ1
B

v
(
φ1

B

)
d

dφ1
B

u
(
φ1

B

)
⎤
⎥⎥⎥⎦ = tan−1 (−tanφ1

B

) = −φ1
B,

and

ΦB(φB) =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosφ1
B sinφ1

B 0 u
(
φ1

B

) − φ2
Bcosφ1

B

−sinφ1
B cosφ1

B 0 v
(
φ1

B

) + φ2
Bsinφ1

B

0 0 1 φ3
B

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Joints A and C are revolute and prismatic and are modeled by Eqs. (4.10)
and (4.12), respectively.

Because the cam is driven by ψ = φA, we can now formulate the following
matrix products:

T31 = S3AΦAS−1
1A =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosψ −sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T12 = S1BΦBS−1
2B =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosφ1
B sinφ1

B 0 u
(
φ1

B

) − φ2
Bcosφ1

B

−sinφ1
B cosφ1

B 0 v
(
φ1

B

) + φ2
Bsinφ1

B

0 0 1 φ3
B

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T23 = T−1
32 = S2CΦ

−1
C S−1

3C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 −e

0 1 0 −(R0 + φC)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Notice here that joint B is oriented from body 1 to body 2 and the matrix
ΦB is used to find T12. However, joint C is oriented from body 3 to body 2 and
Φ−1

C is required in finding T23. We might, instead, find T32 using ΦC and invert it.
Either way, an inversion is required in one or the other because the orientations
of joints B and C are not both consistent with the loop orientation. Another
approach would be to reorganize the loop-closure equation itself, as was done
in example 5.1; here we show the alternative approach.
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The loop-closure equation, (5.12), gives

T33 = T31T12T23 = I,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos (ψ − φ1
B) −sin (ψ − φ1

B) 0 u
(
φ1

B

)
cosψ − v

(
φ1

B

)
sinψ − (

φ2
B + e

)
cos (ψ − φ1

B) + (
R0 + φC

)
sin (ψ − φ1

B)

sin (ψ − φ1
B) cos (ψ − φ1

B) 0 u
(
φ1

B

)
sinψ − v

(
φ1

B

)
cosψ − (

φ2
B + e

)
sin

(
ψ − φ1

B

) − (
R0 + φC

)
cos (ψ − φ1

B)

0 0 1 φ3
B

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= I.

By equating the elements of rows 1 and 2, column 1, with those of the identity
matrix, we find

cos
(
ψ − φ1

B

) = 1, sin
(
ψ − φ1

B

) = 0, φ1
B = ψ.

Then, equating the elements of column 4 and simplifying gives

u
(
φ1

B

)
cosψ − v

(
φ1

B

)
sinψ − (

φ2
B + e

) = 0,

u
(
φ1

B

)
sinψ + v

(
φ1

B

)
cosψ − (R0 + φC) = 0,

φ3
B = 0.

Finally, rearranging and further simplifying, the solutions for the joint vari-
ables are

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φA

φ1
B

φ2
B

φ3
B

φC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ

ψ

L
π

(1 − cos2ψ) − e

0⎧⎪⎪⎨
⎪⎪⎩

L
2π

(2ψ − sin2ψ) , 0 ≤ ψ < π

L
2π

(4π − 2ψ + sin2ψ) , π ≤ ψ < 2π

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Taking these solutions back to Eq. (5.11), we find the transformation matri-
ces that show the absolute positions of the two moving bodies. These are

T01 = T03T31 =

⎡
⎢⎢⎢⎢⎢⎣

cosψ −sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,
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and

T02 = T03T31T12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 e

0 1 0

⎧⎪⎪⎨
⎪⎪⎩

R0 + L
2π

(2ψ − sin2ψ) 0 ≤ ψ<π

R0 + L
2π

(4π − 2ψ + sin2ψ) π ≤ ψ< 2π

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

EXAMPLE 5.3: SCARA ROBOT For the next example, we choose the Selec-
tive Compliant Articulated Robot for Assembly (SCARA robot), shown in
Figure 5.7.

Figure 5.7. Example 5.3: Selective Compliant Articulated Robot for Assembly
(SCARA). Adept model Cobra 600 (Courtesy of Adept Technology, Inc., Livermore,
CA).

The body and joint labels and the coordinate systems chosen for this robot
are shown in Figure 5.8. Note that this problem has no closed loops and that,
contrary to our usual convention, the fixed body here is labeled body 1. The
shape matrices, obtained by inspection, are as follows:

T01 =

⎡
⎢⎢⎢⎣

1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1

⎤
⎥⎥⎥⎦ , S1A =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 h1

0 0 0 1

⎤
⎥⎥⎥⎦ , S2A = I,

S2B =

⎡
⎢⎢⎢⎣

−1 0 0 d2

0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦, S3B =

⎡
⎢⎢⎢⎣

−1 0 0 d3

0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦, S3C =

⎡
⎢⎢⎢⎣

0 −1 0 0
0 0 1 0

−1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦,
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u′B
x2, u′A

x4, v′Cu′C

v′D

y4, w′C

Figure 5.8. Example 5.3: Placement of body and joint coordinate systems for SCARA
robot.

S4C =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎦ , S4D =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 h4

0 0 0 1

⎤
⎥⎥⎥⎦ , S5D =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 h5

0 0 0 1

⎤
⎥⎥⎥⎦ .

Recognizing that joint C is prismatic and all others are revolutes, we formu-
late the matrix products

T12 = S1AΦAS−1
2A =

⎡
⎢⎢⎢⎣

cosφA −sinφA 0 0
sinφA cosφA 0 0

0 0 1 h1

0 0 0 1

⎤
⎥⎥⎥⎦ ,

T23 = S2BΦBS−1
3B =

⎡
⎢⎢⎢⎣

cosφB −sinφB 0 d2 + d3cosφB

sinφB cosφB 0 d3sinφB

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

T34 = S3CΦCS−1
4C =

⎡
⎢⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 −1 −φC

0 0 0 1

⎤
⎥⎥⎥⎦ ,
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T45 = S4DΦDS−1
5D =

⎡
⎢⎢⎢⎣

cosφD −sinφD 0 0
sinφD cosφD 0 0

0 0 1 h4 + h5

0 0 0 1

⎤
⎥⎥⎥⎦ .

Next, multiplying these together along the path, we get

T02 = T01T12 =

⎡
⎢⎢⎢⎣

cosφA −sinφA 0 x0

sinφA cosφA 0 y0

0 0 1 z0 + h1

0 0 0 1

⎤
⎥⎥⎥⎦ ,

T03 = T02T23 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(φA + φB) −sin(φA + φB) 0 x0 + d2cosφA + d3

cos(φA + φB)

sin(φA + φB) cos(φA + φB) 0 y0 + d2sinφA + d3

sin(φA + φB)

0 0 1 z0 + h1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T04 = T03T34 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cos(φA + φB) −sin(φA + φB) 0 x0 + d2cosφA + d3

cos(φA + φB)

−sin(φA + φB) cos(φA + φB) 0 y0 + d2sinφA + d3

sin(φA + φB)

0 0 −1 z0 + h1 − φC

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T05 = T04T45

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cos(φA + φB − φD) −sin(φA + φB − φD) 0 x0 + d2cosφA + d3

cos(φA + φB)

−sin(φA + φB − φD) cos(φA + φB − φD) 0 y0 + d2sinφA + d3

sin(φA + φB)

0 0 −1 z0 + h1 − (φC

+ h4 + h5)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This last matrix tells the absolute posture, including orientation, of the grip-
per coordinate system x5y5z5, with respect to the x0y0z0 coordinate system. If,
for example, the tip of the tool held by the gripper is located at the position

r5 =

⎡
⎢⎢⎢⎣

0
0

4.0 in
1

⎤
⎥⎥⎥⎦ ,
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relative to body 5, then its absolute position is given by

R5 = T05r5 =

⎡
⎢⎢⎢⎢⎣

x0 + d2cosφA + d3cos(φA + φB)

y0 + d2sinφA + d3sin(φA + φB)

z0 + h1 − (φC + h4 + h5 + 4.0 in)

1

⎤
⎥⎥⎥⎥⎦ .

We notice that, in this problem, there is no closed loop. All joint variables
are independent; that is, the system has mobility four. Once four joint motions
are specified as functions of time, then all other position information is found
as shown here. This is the problem that the robotics community refers to as the
direct or forward kinematics problem.

EXAMPLE 5.4: INVERSE KINEMATICS OF THE SCARA ROBOT For our next example,
let us consider the problem of programming the SCARA robot of the previous
example to perform a specified motion. This is the problem that roboticists term
the inverse kinematics problem.

Suppose, for example, that we wish the robot of example 5.3 to cause the tip
of the tool held by the gripper to travel without rotation along a circular path in
an oblique plane. That is to say, suppose that we wish to cause the robot tool
motion, including its orientation, to be that specified by

T05(t) =

⎡
⎢⎢⎢⎢⎣

1 0 0 5cosπt

0 −1 0 4sinπt

0 0 −1 3sinπt

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Our task is to find the proper functions of time for each of the joint variables to
achieve this motion specification.

Setting the elements of this desired motion specification matrix equal to
those of T05 found in example 5.3, we find

−cos(φA + φB − φD) = 1,

−sin(φA + φB − φD) = 0,

x0 + d2cosφA + d3cos(φA + φB) = 5cosπt,

y0 + d2sinφA + d3sin (φA + φB) = 4sinπt,

z0 + h1 − (φC + h4 + h5) = 3sinπt.

If we have a robot for which the dimensions are

x0 = −12′′, y0 = 0, z0 = 0,

d2 = 12′′, d3 = 10′′, h1 = 8′′, h4 = 1′′, h5 = 1′′.
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Then, solving the equations for the joint variables, we find

φ =

⎡
⎢⎢⎢⎢⎣

φA

φB

φC

φD

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2tan−1

(
32sinπt + √

5616 + 2240cosπt − 1432cos 2πt − 240cos 3πt − 9cos 4πt
164 + 80cosπt + 3cos 2πt

)

−cos−1
(−28 + 40cosπt + 3cos 2πt

80

)
6 − 3sinπt

2tan−1

(
40sinπt − √

45744 + 20160cosπt − 8088cos 2πt − 2160cos 3πt − 81cos 4πt
356 + 220cosπt + 9cos 2πt

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that this is the solution for positive φA; there is another solution with
negative φA.

We see here that to meet the requirement that the gripper follow the spec-
ified path without rotation, it is necessary to specify and solve the “rotation”
equations of the T05(t) path. We find after solution that φD must be controlled
according to this equation to prevent the gripper from rotating.

As with other loop-closure problems, the task of finding closed-form position
solutions can be awkward, as shown by the form of the previous solutions. We
note also that a new solution must be found for each new command path to be
followed.

EXAMPLE 5.5: FERGUSON’S PARADOX For our next example, let us consider the
epicyclic gear train shown in Figure 5.9. This gear train, called Ferguson’s para-
dox, was first published as [5] in 1764 by James Ferguson (1710–76), a Scottish
physicist, instrument maker, astronomer, and fellow of the Royal Society. In this
device, sometimes called an orrery, sun gears 3, 4, and 5 are all in mesh with the
same planet gear 2. Sun gear 5 is fixed. The input is the rotation of the planet
carrier 1, whereas sun gears 3 and 4 provide two different output rotations.

The loops and paths for this problem, found by the methods of Chapter 2,
are

L =

⎡
⎢⎣1 1 0 0 0 0 −1

1 1 0 0 −1 −1 0
1 1 −1 −1 0 0 0

⎤
⎥⎦ ,

A B C D E F G

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .
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Figure 5.9. Example 5.5: Ferguson’s paradox.

The gears all have standard full-depth involute-spur (β j = 0) gear teeth with
pressure angle αj = 20◦ and diametral pitch P = 20 teeth per inch.1 The numbers
of teeth on the gears are:

N2 = 10, N3 = 101, N4 = 99, N5 = 100,

and, from these, as shown in many texts, we find the pitch circle radii. See, for
example, [16, chapter 7]:

R′
C = R′

E = R′
G = 0.250′′, RC = 2.525′′, RE = 2.475′′, RG = 2.500′′.

1 American Gear Manufacturers’ Association (AGMA) and American National Standards Institute
(ANSI) have published standards for interchangeable involute gear tooth forms. Contact American
Gear Manufacturers’ Association, 1001 N. Fairfax Street, Fifth Floor, Alexandria, VA 22314-1587;
www.agma.org or email: website@agma.org.
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From Figure 5.9, the shape matrices are:

T05 = S1B = S3C = S3D = S2E = S4E = S4F = S5G = I,

S1A =

⎡
⎢⎢⎢⎣

1 0 0 2.750′′

0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ , S2A =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 2′′

0 0 0 1

⎤
⎥⎥⎥⎦ ,

S5B =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 3′′

0 0 0 1

⎤
⎥⎥⎥⎦ , S2C =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1′′

0 0 0 1

⎤
⎥⎥⎥⎦ ,

S5D =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 2′′

0 0 0 1

⎤
⎥⎥⎥⎦ , S5F =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 1′′

0 0 0 1

⎤
⎥⎥⎥⎦ , S2G =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −1′′

0 0 0 1

⎤
⎥⎥⎥⎦ .

Notice that, as defined in matrix S1A(1,4), the center-to-center distance of pinion
2 from the shaft of gears 3, 4, and 5 are all 2.750′′. This produces a correct mesh
at G; however, the meshes at C and E are not mounted at their standard pitch-
circle distances. This explains how the three gear meshes, with different pitch
radii, all coexist. The actual meshes at C and E are not mounted properly and
are not operating at their nominal 20◦ pressure angles; notice in the following
matrices that the solutions for φ2

C and φ2
E do not result in zeroes, but φ2

G does.
From Eq. (4.28) we find the following joint matrices for the gear meshes.

Because we have no information about the direction of rotation or loading, we
assume that the sgn(F ) terms are negligible:

ΦC(φC) =

⎡
⎢⎢⎢⎢⎢⎣

cos
(
11.1φ1

C

) −sin
(
11.1φ1

C

)
0

(
2.775′′ + φ2

C

)
cosφ1

C

sin
(
11.1φ1

C

)
cos

(
11.1φ1

C

)
0

(
2.775′′ + φ2

C

)
sinφ1

C

0 0 1 φ3
C

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

ΦE (φE ) =

⎡
⎢⎢⎢⎢⎢⎣

cos
(
10.9φ1

E

) −sin
(
10.9φ1

E

)
0

(
2.725′′ + φ2

E

)
cosφ1

E

sin
(
10.9φ1

E

)
cos

(
10.9φ1

E

)
0

(
2.725′′ + φ2

E

)
sinφ1

E

0 0 1 φ3
E

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

ΦG(φG) =

⎡
⎢⎢⎢⎢⎢⎣

cos
(
11.0φ1

G

) −sin
(
11.0φ1

G

)
0

(
2.750′′ + φ2

G

)
cosφ1

G

sin
(
11.0φ1

G

)
cos

(
11.0φ1

G

)
0

(
2.750′′ + φ2

G

)
sinφ1

G

0 0 1 φ3
G

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .
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Having these, we now evaluate the matrix products for each joint:

T12 = S1AΦAS−1
2A =

⎡
⎢⎢⎢⎢⎢⎣

cosφA −sinφA 0 2.750′′

sinφA cosφA 0 0

0 0 1 −2′′

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T51 = S5BΦBS−1
1B =

⎡
⎢⎢⎢⎢⎢⎣

cosψ −sinψ 0 0

sinψ cosψ 0 0

0 0 1 3′′

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T32 = S3CΦCS−1
2C =

⎡
⎢⎢⎢⎢⎢⎣

cos
(
11.1φ1

C

) −sin
(
11.1φ1

C

)
0

(
2.775′′ + φ2

C

)
cosφ1

C

sin
(
11.1φ1

C

)
cos

(
11.1φ1

C

)
0

(
2.775′′ + φ2

C

)
sinφ1

C

0 0 1 φ3
C − 1

′′

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T53 = S5DΦDS−1
3D =

⎡
⎢⎢⎢⎢⎢⎣

cosφD −sinφD 0 0

sinφD cosφD 0 0

0 0 1 2

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T42 = S4EΦES−1
2E =

⎡
⎢⎢⎢⎢⎢⎣

cos
(
10.9φ1

E

) −sin
(
10.9φ1

E

)
0

(
2.725′′ + φ2

E

)
cosφ1

E

sin
(
10.9φ1

E

)
cos

(
10.9φ1

E

)
0

(
2.725′′ + φ2

E

)
sinφ1

E

0 0 1 φ3
E

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T54 = S5FΦF S−1
4F =

⎡
⎢⎢⎢⎢⎢⎣

cosφF −sinφF 0 0

sinφF cosφF 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T52 = S5GΦGS−1
2G =

⎡
⎢⎢⎢⎢⎢⎣

cos
(
11.0φ1

G

) −sin
(
11.0φ1

G

)
0

(
2.750′′ + φ2

G

)
cosφ1

G

sin
(
11.0φ1

G

)
cos

(
11.0φ1

G

)
0

(
2.750′′ + φ2

G

)
sinφ1

G

0 0 1 φ3
G + 1′′

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

Guided by the non-zero entries of the loop matrix L, we now formulate
the three loop-closure equations. By using Eq. (5.15), we see that negative
entries in the loop matrix always lead to inverse matrices in the loop-closure
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equation products. This is a direct result of the original choices of orientation in
defining the joints, and could be avoided by reversal of those choices. However,
reversing the choices of joint orientation affects the sign convention of the joint
variable(s) found and also the definitions and signs of the force components
found in Chapter 17. As shown, the three loop-closure equations are

T55 = T51T12T−1
52 = I

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
(
ψ+ sin

(
ψ+ 0 2.750′′cosψ − (

2.750′′ + φ2
G

)
φA − 11φ1

G

)
φA − 11φ1

G

)
cos

(
ψ + φA − 10φ1

G

)
sin

(
ψ+ cos

(
ψ + φA− 0 2.750′′sinψ − (

2.750′′ + φ2
G

)
φa − 11φ1

G

)
11φ1

G

)
sin

(
ψ + φA − 10φ1

G

)
0 0 1 φ3

G

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T55 = T51T12T−1
42 T−1

54 = I

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
(
ψ + φA− sin

(
ψ + φA− 0 2.750′′cosψ − (

2.725′′ + φ2
E

)
10.9φ1

E − φF

)
10.9φ1

E − φF

)
cos

(
ψ + φA − 9.9φ1

E

)
−sin

(
ψ + φA− cos

(
ψ + φA− 0 2.750′′sinψ − (

2.725′′ + φ2
E

)
10.9φ1

E − φF

)
10.9φ1

E − φF

)
sin

(
ψ + φA − 9.9φ1

E

)
0 0 1 φ3

E

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T55 = T51T12T−1
32 T−1

53 = I

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
(
ψ + φA− sin

(
ψ + φA− 0 2.750′′cosψ − (

2.775 + φ2
C

)
11.1φ1

C − φD

)
11.1φ1

C − φD

)
cos

(
ψ + φA − 10.1φ1

C

)
−sin

(
ψ + φA− cos

(
ψ + φA− 2.750′′sinψ − (

2.775′′ + φ2
C

)
11.1φ1

C − φD

)
11.1φ1

C − φD

)
sin

(
ψ + φA − 10.1φ1

C

)
0 0 1 φ3

C

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Setting the elements of these loop-closure equation products to those of the
identity matrix, we get the following independent equations:

ψ + φA − 11φ1
G = 0,

2.750′′cosψ − (
2.750′′ + φ2

G

)
cos

(
ψ + φA − 10φ1

G

) = 0,

2.750′′sinψ − (
2.750′′ + φ2

G

)
sin

(
ψ + φA − 10φ1

G

) = 0,

φ3
G = 0,

ψ + φA − 11.1φ1
C − φD = 0,
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2.750′′cosψ − (
2.775′′ + φ2

C

)
cos

(
ψ + φA − 10.1φ1

C

) = 0,

2.750′′sinψ − (
2.775′′ + φ2

C

)
sin

(
ψ + φA − 10.1φ1

C

) = 0,

φ3
C = 0,

ψ + φA − 10.9φ1
E − φF = 0,

2.750′′cosψ − (
2.725′′ + φ2

E

)
cos

(
ψ + φA − 9.9φ1

E

) = 0,

2.750′′sinψ − (
2.725′′ + φ2

E

)
sin

(
ψ + φA − 9.9φ1

E

) = 0,

φ3
E = 0,

and, from these, we can solve for the joint variables

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φA

φB

φ1
C

φ2
C

φ3
C

φD

φ1
E

φ2
E

φ3
E

φF

φ1
G

φ2
G

φ3
G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10ψ

ψ

(100/101) ψ

−0.025′′

0

(1/101) ψ

(100/99) ψ

0.025′′

0

− (1/99) ψ

ψ

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, guided by the entries of the path matrix, we now express the posture
of each body as a function of the independent variable ψ :

T01 = T05T51 =

⎡
⎢⎢⎢⎢⎣

cosψ −sinψ 0 0

sinψ cosψ 0 0

0 0 1 3′′

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

T02 = T01T12 =

⎡
⎢⎢⎢⎢⎣

cos (11ψ) −sin (11ψ) 0 2.750′′ cosψ

sin (11ψ) cos (11ψ) 0 2.750′′ sinψ

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

T03 = T05T53 =

⎡
⎢⎢⎢⎢⎣

cos (ψ/101) −sin (ψ/101) 0 0

sin (ψ/101) cos (ψ/101) 0 0

0 0 1 2′′

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,
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Table 5.1. Example 5.5: Ferguson’s paradox comparison of gear meshes

Nominal center Actual center Actual pressure Actual contact
Joint distance distance angle ratio

C 2.775′ ′ 2.750′ ′ 21.373◦ 1.612
E 2.725′ ′ 2.750′ ′ 18.502◦ 1.610
G 2.750′ ′ 2.750′ ′ 20.000◦ 1.611

T04 = T05T54 =

⎡
⎢⎢⎢⎢⎣

cos (ψ/99) sin (ψ/99) 0 0

−sin (ψ/99) cos (ψ/99) 0 0

0 0 1 1′′

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ,

T05 = I.

In the final analysis, we find that a single input crank turns by an angle ψ

carrying a thick planet gear 2 around the periphery of fixed sun gear 5. This also
causes two other almost identical-looking sun gears, 3 and 4, to rotate. However,
sun gear 3 rotates by (1/101)ψ in the same direction as the input crank, whereas
sun gear 4 rotates by (1/99)ψ in the opposite direction.

It was pointed out previously that the center-to-center distance of 2.750" is
not equal to the sum of the pitch radii for all three gear meshes. Therefore, all
three cannot properly mesh according to their design specifications. A compar-
ison is presented in Table 5.1.

5.7 General Styles for Closed-Form Solutions of Kinematic Equations

In general, finding closed-form solutions for joint variable positions of closed- or
open-loop multibody systems is difficult because of the fact that the describing equa-
tions are typically nonlinear, coupled, and trigonometric. If we take derivatives of
these equations, however, the resulting system of equations becomes linear in the
derivative variables and is much more easily solved. However, this produces a solu-
tion for velocities rather than positions. We will show, in Chapter 6, how linearized
equations can be used to provide numeric solutions to the nonlinear kinematic equa-
tions. In the mechanisms and robotics literature, other powerful and general tech-
niques have also been developed for solving such trigonometric equations. All such
methods first transform the trigonometric equations to algebraic form using identities
such as writing sines and cosines in terms of tangents of half-angles. They then exploit
methods for solving systems of polynomial equations. Among the most powerful of
these is the method of Raghavan and Roth [10, 11], in which they introduce a spe-
cial symbolic elimination method for finding the solution to the general six-revolute
robot manipulator, with later application to other problems of kinematic position
analysis. Another class of powerful methods is those that are based on the use of
homotopy methods of numerical algebraic geometry [14]. These homotopy-based
methods were first developed in kinematics by the pioneering work of Freudenstein
and Roth [6], and later works of Tsai and Morgan [15] and then Wampler, Morgan,
and Sommese [17].
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Figure 5.10. The Stanford manipulator showing body coordinate systems.

Here, we present a method that can be used in cases where there is a particular
arrangement of joint axes, typical in open serial-kinematic chains such as an open-
loop robotic manipulator. For a multibody system such as a robotic manipulator
consisting of six revolute joints, if three consecutive joint axes intersect, then we
can use their point of intersection to partition the kinematic equations, which leads
to simpler equations from which a closed-form solution can usually be found. Such
mechanisms are said to have a “solvable” kinematic architecture. Discussion of other
solvable kinematic architectures for a serial robot manipulator can be found in [8,
9]. It should also be pointed out that, although the main emphasis in this book is
on developing general methods suitable for computer applications, we sometimes
depart from this main goal and, as in this section, present more specialized techniques
to provide a balance between generality and developing intuitive understanding of
the problems being addressed.

Let us consider as an example, the robotic system with six serial joints shown
in Figure 5.10. This robot is called the Stanford manipulator [8]. We consider a
configuration of this robotic system that has its last three joints located such that
their axes intersect at a point referred to here as point C, the wrist center point. For
such a robot, we can write the following general kinematic equation:

T12T23T34T45T56T67 = T17,

where T17 is the matrix describing the posture of the end-effector, which can be
written as:

T17 =

⎡
⎢⎢⎢⎢⎢⎣

u
x1
7 v

x1
7 w

x1
7 Rx1

O7

u
y1
7 v

y1
7 w

y1
7 Ry1

O7

u
z1
7 v

z1
7 w

z1
7 Rz1

O7

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .
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This matrix, which we assume is specified, describes the desired posture for
the end-effector in terms of the three unit vectors describing the orientation of the
end-effector, and the position of the origin of the end-effector coordinate system,
namely:

u1
7 =

⎡
⎢⎢⎢⎢⎢⎣

u
x1
7

u
y1
7

u
z1
7

0

⎤
⎥⎥⎥⎥⎥⎦ , v1

7 =

⎡
⎢⎢⎢⎢⎢⎣

v
x1
7

v
y1
7

v
z1
7

0

⎤
⎥⎥⎥⎥⎥⎦ , w1

7 =

⎡
⎢⎢⎢⎢⎢⎣

w
x1
7

w
y1
7

w
z1
7

0

⎤
⎥⎥⎥⎥⎥⎦ , and RO7

=

⎡
⎢⎢⎢⎢⎣

Rx1
O7

Ry1
O7

Rz1
O7

1

⎤
⎥⎥⎥⎥⎦ .

The challenge now is to find values of the six joint variables corresponding to
this specified posture of the end-effector. Note that the body coordinate systems are
chosen with the origins of the fourth, fifth, sixth, and seventh coordinate systems
coincident at the wrist center point C. Therefore, the kinematic equations can be
partitioned into two sets: one set describing the position of the wrist center point C,
which is only dependant on the first three joint variables, and a second set describing
the orientations of the unit vectors of the coordinate system of the end-effector. The
two partitioned sets of kinematic equations are:

RC1
= T12T23T34rC4

, (5.18)

and (recalling section 3.5)

u1
7 = T12T23T34T45T56T67u7,

v1
7 = T12T23T34T45T56T67v7, (5.19)

w1
7 = T12T23T34T45T56T67w7.

Because the origins of the fourth and seventh coordinate systems are coincident
at the wrist center point C, then

RC1
= RO7

=

⎡
⎢⎢⎢⎢⎣

Rx1
O7

Ry1
O7

Rz1
O7

1

⎤
⎥⎥⎥⎥⎦ , and rC4

=

⎡
⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎦ .

It should be noted that Eq. (5.18) only involves the first three joint variables.
By pre-multiplying it with T−1

bc matrices, it can be written to form three kinematic
equations with the three unknown joint variables more evenly distributed on both
sides of the equation as follows:

T−1
12 (φ1)RC1

= T23(φ2)T34(φ3)rC4
,

T−1
23 (φ2)T

−1
12 (φ1)RC1

= T34(φ3)rC4
,

T−1
34 (φ3)T

−1
23 (φ2)T

−1
12 (φ1)RC1

= rC4
.

Once the first three joint variables are found from these equations, then the
matrix T14 can be formulated explicitly and Eqs. (5.19) can be rewritten as

u4
7 = T−1

14 u1
7, u4

7 = T45T56T67u7,

v4
7 = T−1

14 v1
7, and v4

7 = T45T56T67v7, (5.20)

w4
7 = T−1

14 w1
7 w4

7 = T45T56T67w7.
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Again, this last set of equations can be pre-multiplied by T−1
bc matrices to form

three kinematic equations where the three remaining unknown joint variables are
more evenly distributed on both sides of the equation, and can possibly be solved in
closed form:

T−1
45 (φ4)u

4
7 = T56(φ5)T67(φ6)u7, T−1

56 (φ5)T
−1

45 (φ4)u
4
7 = T67(φ6)u7,

T −1
45 (φ4)v

4
7 = T56(φ5)T67(φ6)v7, T−1

56 (φ5)T
−1

45 (φ4)v
4
7 = T67(φ6)v7,

T−1
45 (φ4)w

4
7 = T56(φ5)T67(φ6)w7, T−1

56 (φ5)T
−1

45 (φ4)w
4
7 = T67(φ6)w7,

and

T−1
67 (φ6)T

−1
56 (φ5)T

−1
45 (φ4)u

4
7 = u7,

T−1
67 (φ6)T

−1
56 (φ5)T

−1
45 (φ4)v

4
7 = v7, (5.21)

T−1
67 (φ6)T

−1
56 (φ5)T

−1
45 (φ4)w

4
7 = w7.

EXAMPLE 5.6 In applying this method to the Stanford manipulator, we choose
the body and joint coordinate systems such that the transformation matrices Tbc

are in the form of D-H matrices. These matrices become:

T12(φ1) =

⎡
⎢⎢⎢⎢⎢⎣

cosφ1 0 −sinφ1 0

sinφ1 0 cosφ1 0

0 −1 0 h

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , T23(φ2) =

⎡
⎢⎢⎢⎢⎢⎣

cosφ2 0 sinφ2 0

sinφ2 0 −cosφ2 0

0 1 0 a

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T34(φ3) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 φ3

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , T45(φ4) =

⎡
⎢⎢⎢⎢⎢⎣

cosφ4 0 −sinφ4 0

sinφ4 0 cosφ4 0

0 −1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

T56(φ5) =

⎡
⎢⎢⎢⎢⎢⎣

cosφ5 0 sinφ5 0

sinφ5 0 −cosφ5 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , T67(φ6) =

⎡
⎢⎢⎢⎢⎢⎣

cosφ6 −sinφ6 0 0

sinφ6 cosφ6 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .

The (4 × 4) matrix describing the command posture of the end-effector is as
follows:

T17 =

⎡
⎢⎢⎢⎢⎢⎣

u
x1
7 v

x1
7 w

x1
7 x1

7

u
y1
7 v

y1
7 w

y1
7 y1

7

u
z1
7 v

z1
7 w

z1
7 z1

7

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ .
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Now, using the first set of partitioned kinematic equations, we can write:

T −1
23 T −1

12 RC =T34r4
C,⎡

⎢⎢⎢⎢⎢⎣

cosφ2 sinφ2 0 0

0 0 1 −a

sinφ2 −cosφ2 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

cosφ1 sinφ1 0 0

0 0 −1 h

−sinφ1 cosφ1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1
7

y1
7

z1
7

1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 φ3

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎦ .

This results in three equations with the first three joint variables as the unknowns
as follows:

cosφ2

(
cosφ1x1

7 + sinφ1y1
7

) − sinφ2

(
z1

7 − h
) = 0,

−sinφ1x1
7 + cosφ1y1

7 − a = 0,

φ3 = sinφ2

(
cosφ1x1

7 + sinφ1y1
7

) + cosφ2

(
z1

7 − h
)
.

The second of these equations can be solved first for φ1 and then the remain-
ing two joint variables, φ2 and φ3, can be found sequentially from the first and
the third of these equations. Next, we can calculate the transformation matrix
T 14 = T 12T 23T 34 because φ1, φ2, and φ3 are now known.

The vectors u4
7, v4

7, and w4
7 can now be computed from the first set of

Eqs. (5.20). Then the three additional kinematic equations describing the ori-
entation parameters of the end-effector can be obtained using the second set of
Eqs. (5.20) as follows:

T −1
56 T −1

45 w4
7 = T67w7,T −1

56 T −1
45 v4

7 = T67v7, and T −1
56 T −1

45 u4
7 = T67u7. (5.22)

The first of these equations results in:

⎡
⎢⎢⎢⎢⎢⎣

cosφ5cosφ4 cosφ5sinφ4 −sinφ5 0

−sinφ4 cosφ4 0 0

sinφ5cosφ4 sinφ5sinφ4 cosφ5 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

w
x4
7

w
y4
7

w
z4
7

0

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

cosφ6 −sinφ6 0 0

sinφ6 cosφ6 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦ .

From the second row, we obtain the following equation: −sinφ4w
x4
7 +

cosφ4w
y4
7 = 0 that results in the solution for the fourth joint variable φ4. Once

φ4 is known, the third row allows us to find φ5. The second or the third set of
Eqs. (5.22) can then be used to find φ6.



Problems 5.1–5.3 145

REFERENCES

1. J. Denavit, “A Symbolic Approach to Mechanisms Leading to Electrical Computation
Methods,” MS Thesis, Department of Mechanical Engineering, Northwestern University,
Evanston, IL, 1953.

2. , “Description and Displacement Analysis of Mechanisms Based on (2 × 2) Dual
Matrices,” PhD Dissertation, Department of Mechanical Engineering, Northwestern
University, Evanston, IL, 1956.

3. J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms
Based on Matrices,” ASME Transactions, J. of Applied Mechanics, vol. 22, no. 2, 1955.

4. , “Approximate Synthesis of Spatial Linkages,” ASME Transactions, J. of Applied
Mechanics, vol. 27, no. 1, 1960, pp. 201–06.

5. J. Ferguson, The Description and Use of a New Machine Called the Mechanical Paradox,
London, 1764.

6. F. Freudenstein and B. Roth, “Numerical Solution of Systems of Nonlinear Equations,”
J. of Association of Computing Machinery, vol. 10, 1963, pp. 550–56.

7. R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT Press,
Cambridge, MA, 1981.

8. D. Pieper, “The Kinematics of Manipulators Under Computer Control,” PhD Disserta-
tion, Department of Mechanical Engineering, Stanford University, Stanford, CA, 1968.

9. D. Pieper and B. Roth, “The Kinematics of Manipulator Under Computer Control,”
Proc. 2nd International Congress for the Theory of Machines and Mechanisms, Zakopane,
Poland, vol. 2, 1969, pp. 159–68.

10. M. Raghavan and B. Roth, “Inverse Kinematics of the General 6R Manipulator and
Related Linkages,” ASME Transactions, J. of Mechanical Design, vol. 115, no. 3, 1993,
pp. 502–08.

11. , “Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mech-
anisms and Robot Manipulators,” ASME Transactions, J. of Mechanical Design, Special
50th Anniversary Issue, vol. 117, June 1995, pp. 71–79.

12. P. N. Sheth and J. J. Uicker, Jr., “A Generalized Symbolic Notation for Mechanisms,”
ASME Transactions, J. of Engineering for Industry, vol. 93, 1971, pp. 102–12.

13. J. E. Shigley, Kinematic Analysis of Mechanisms, 2nd ed., McGraw-Hill Book Co., New
York, 1969.

14. A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science, World Scientific Publishing Co., 2005.

15. L. W. Tsai and A. P. Morgan, “Solving the Kinematics of the Most General Six- and Five-
Degree-of-Freedom Manipulators by Continuation Methods,” ASME Transactions, J. of
Mechanisms, Transmissions, and Automation in Design, vol. 107, June 1985, pp. 189–95.

16. J. J. Uicker, Jr., G. E. Pennock, and J. E. Shigley, Theory of Machines and Mechanisms,
4th ed., Oxford University Press, New York, 2011.

17. C. W. Wampler, A. P. Morgan, and A. J. Sommese, “Numerical Continuation Meth-
ods for Solving Polynomial Systems Arising in Kinematics,” ASME Transactions, J. of
Mechanical Design, vol. 112, no. 1, 1990, pp. 59–68.

PROBLEMS

5.1 Find a set of Denavit-Hartenberg parameters to describe the mechanism of
problem 4.4.

5.2 Form the transformation matrices T h,h+1 for each link in problem 5.1.

5.3 Continue from the results of problem 4.4 to find the following:

a) Form the transformation matrices T0b for all four bodies.
b) Form the loop-closure equation T00 = I in symbolic form.
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c) Solve the loop-closure equation for closed-form expressions for each of the
joint variables as functions of the independent variable ψ = φA.

d) Substitute the results of c) into a) and form each of the T0b matrices as a
function of ψ alone.

5.4 Verify the inverse transformation matrix shown in Eq. (5.16) at the end of
section 5.5.

5.5 Continue from the results of problem 4.5 to find the following:

a) Form the transformation matrices T0b for all four bodies.
b) Form the loop-closure equation T00 = I in symbolic form.
c) Solve the loop-closure equation for closed-form expressions for each of the

joint variables as functions of the independent variable ψ = φA.
d) Substitute the results of c) into a) and form each of the T0b matrices as a

function of ψ alone.

5.6 Consider a robot manipulator as shown in Figure P5.6. The kinematic structure
of this robotic arm is very similar to that of the Stanford manipulator studied in
example 5.6 except that it has an offset (a) between the base and the shoulder (the
first two) joint axes. For this robotic arm, derive and solve the kinematic position
equations using shape and joint matrices.
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Figure P5.6

5.7 For the robot manipulator of problem 5.6, derive the kinematic position equa-
tions using Denavit-Hartenberg transformation matrices and find the solution to
these equations using the partitioning method of section 5.7.

5.8 A Cardan/Hooke universal shaft coupling was studied in example 5.1. This cou-
pling is usually used as a shaft coupling to transmit power between two shafts whose
center lines intersect at an angle. The variations in angular displacements of the two
shafts connected by such a coupling can be eliminated if two of such couplings are
used in series in a symmetrical fashion as shown in Figure P5.8. This results in a
constant velocity shaft coupling and is used in many applications such as in an auto-
mobile drive train. For this symmetrical arrangement of the two Cardan/Hooke’s
couplings, derive the kinematic loop equations. The notation used in example 5.1
can be adopted for this problem.
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Figure P5.8. Double universal
shaft coupling.

5.9 The DaVinci robot presently used in some medical applications involving surg-
eries is basically a SCARA-type robot such as the one studied in example 5.3 with
the exception that the last joint has a specialized articulated wrist attached to it as
shown in Figure P5.9. This articulated wrist adds five more degrees of freedom to
the system consisting of four revolute and one prismatic joints as shown. Derive the
kinematic equation for the posture of this robot.
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Figure P5.9. DaVinci robot.



6 Differential Kinematics and Numeric Solution
of Posture Equations

6.1 Introduction

In Chapter 5 we studied how the postures of some mechanisms and multibody sys-
tems can be found analytically using hand calculations to find closed-form solutions.
Typically, this requires forming the necessary transformation matrices, and ensur-
ing that all dependent position variables are made consistent with the constraints
expressed by the loop-closure equations. In Chapter 5 we solved several example
problems, in both 2-D and 3-D, to illustrate the process, but we also found that
the calculations quickly became burdensome, even for problems with only a few
unknown joint variables. In principle the methods look powerful, but in practice
they quickly reach a limit on practicality.

Does this mean that the methods are not adequate? Not exactly; rather, it means
that we are in need of a better means of calculating. Perhaps these tedious compu-
tations should be automated for solution by numeric methods using a computer.

Let us reflect on the nature of the problem of posture analysis of a multibody
system. In general, the number of bodies (	) is usually reasonably small, typically
limited by cost and the desire for simplicity and reliability to tens of moving parts or
less. The number of joints (n) is of the same order. The number of closed loops (NL)
is usually much smaller. The number of joint variables (φ) is of the same order as
the number of joints. However, the number of independent variables (ψ) is almost
always very small. After all, the whole point of our multibody system is to control
the movements of the parts to only those required for proper function of the system.
Thus, the mobility (f) is often only one, and is very rarely as many as ten.

Let us say, for example, that a complex industrial machine is comprised of a
single assembly and that it has mobility of f = 8; let us also say that it contains
only revolute and prismatic joints and has NL = 10 closed kinematic loops. With
these given, the topological formulae of Chapter 2 show that the number of bodies
is 	 = 59 and the number of joint variables is n = 68. These are fair estimates for a
quite complex mechanism or multibody system.

Now let us consider the nature of the constraint equations for such a system. The
loop-closure equations are products of transformation matrices containing trigono-
metric functions of ten or so joint variables each. Thus, each constraint equation is
a polynomial of approximately tenth degree in sines and cosines of unknown joint

148
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angles, and there are 6NL = 60 such independent equations. However, once we use
trigonometric identities to reduce all sines and cosines to tangents of half-angles,
we have 60 equations of degree 20 in our 60 unknown tangents of joint half-angles.
Eliminating one unknown from this set of equations doubles the degree of those
remaining; thus, we have only 59 equations in 59 unknowns, but of degree 40; then
58 equations of degree 80; 57 equations of degree 160; and so on. Are we getting a
message here?

When (and if) we finally get our long-sought single equation in one unknown,
its degree is horrendous; what will we do with it then to solve for that one unknown?
Because it is a polynomial of extremely high degree, we will take it to the computer
to find its many, many roots, won’t we? What else can we do? After all, a general
polynomial of degree higher than four cannot be solved in closed form [6, section
1.6.3]. Then we will take each of these roots in turn and return to the previous
equation to solve for the second-last unknown; again doing root extraction of a very
high-degree polynomial, collecting even more combinations of roots found. Then
the third-last unknown, and so on. Sure we will!

Fortunately, with the use of computers, there is a simpler way – namely seek-
ing a numeric solution from the very beginning. Because most numeric solutions
require iteration or incremental improvement, and with multibody systems we are
usually dealing with continuous movements, we need to investigate the differential
kinematics of such systems. Differential or infinitesimal kinematics is a rich subject
and includes velocity and acceleration analyses that will be discussed in subsequent
chapters. In this chapter, we start with a simple introduction of differential kinemat-
ics dealing only with first-order differentials, and introduce the important concepts
of derivative operator matrices and the instantaneous screw axis before we present
a systematic approach for numeric solution of the kinematic posture equations.

6.2 Differential Kinematics of a Helical Joint

In studying the differential kinematics of a multibody system, we start by studying the
movement of the helical joint because, based on Chasles’ theorem, it is the general
parent of all other single degree-of-freedom motions. From Chapter 4, we know
that for a helical joint connecting two bodies, the following body’s joint coordinate
system, u′

hv′
hw′

h, moves with respect to the preceding body’s joint coordinate system,
uhvhwh, with the helical motion of the joint itself. This movement is represented by
Eq. (4.8)

Φh(φh) =

⎡
⎢⎢⎣

cos(φh/σ j ) −sin(φh/σ j) 0 0
sin(φh/σ j) cos(φh/σ j) 0 0

0 0 1 φh

0 0 0 1

⎤
⎥⎥⎦ . (a)

Starting from an arbitrary value of φh as the reference position, let us con-
sider a differential (infinitesimal) displacement of the joint of size δφh. After this
displacement, the altered joint matrix becomes

Φh(φh + δφh) ≈ Φh(φh) +
[

∂

∂φh
Φh(φh)

]
δφh. (b)
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The partial derivative of the helical joint matrix of Eq. (a) is

∂

∂φh
Φh(φh) =

⎡
⎢⎢⎣

−1/σh sin(φh/σh) −1/σh cos(φh/σh) 0 0
1/σh cos(φh/σh) 1/σh sin(φh/σh) 0 0

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

However, the right-hand side of this equation can be factored into two matrices as
follows:

∂

∂φh
Φh(φh) =

⎡
⎢⎢⎣

0 −1/σh 0 0
1/σh 0 0 0

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos(φh/σh) −sin(φh/σh) 0 0
sin(φh/σh) cos(φh/σh) 0 0

0 0 1 φh

0 0 0 1

⎤
⎥⎥⎦ .

Observing that the second of these two matrices is identical with the original
form of the joint matrix for a helical joint, we define a symbol Qh for the first
matrix

Qh =

⎡
⎢⎢⎣

0 −1/σh 0 0
1/σh 0 0 0

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , (6.1)

that allows us to write Eq. (b) as

Φh(φh + δφh) ≈ Φh(φh) + [Qhδφh]Φh(φh),

where the scalar factor δφh has been moved inside the bracket. The equation for the
differential displacement of a helical joint then reduces to

δΦh = Φh(φh + δφh) − Φh(φh) ≈ [Qhδφh]Φh(φh). (6.2)

It is left as an exercise for the reader to verify, by a parallel development, that
the same Qh matrix can be used with the inverse of the Φh matrix as follows

δΦ−1
h ≈ Φ−1

h [−Qhδφh] . (6.3)

From Eq. (6.2), we can now write an equation for the helical joint transformation
matrix after a differential displacement:

Φh(φh + δφh) ≈ [I + Qhδφh]Φh, (6.4)

or, for the inverse matrix,

Φ−1
h (φh + δφh) ≈ Φ−1

h [I − Qhδφh]. (6.5)

From the beginning of this section, we have been working in the uhvhwh coor-
dinate system, aligned with the “preceding” element of the joint. However, it is
frequently more convenient to express the equations in the coordinate system of the
preceding body. Suppose, for example, that we identify a point attached to the body
labeled b that follows joint h and has coordinates rb with respect to that body. It may
appear that b is just another label for body h+. In the beginning, this is true. It is
advantageous, however, to carry two labels because we will see shortly that b can be
the label of any body “following” joint h; that is, any body for which joint h is in the
path to body b.
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If we now shift our viewpoint and imagine that we stand on the body labeled h−
immediately preceding joint h, then the position of our point, viewed from coordinate
system xh−yh−zh−, is given by Eq. (5.3)

rb(φh) = Sh−,hΦhS−1
h+,hrb,

where the symbol rb(φh) has been chosen to remind us that the point is attached to
body b, but is seen from coordinate system h− and moves when the joint variable φh

changes. After a displacement of the joint variable the position of the point changes
to

rb(φh + δφh) = Sh−,hΦh(φh + δφh)S
−1
h+,hrb,

or, if the joint is oriented in the reverse sense, then body b to which the point is
attached is body h−, but it now comes after joint h on the path from ground and it
is now seen from coordinate system of body h+:

rb(φh + δφh) = Sh+,hΦ
−1
h (φh + δφh)S

−1
h−,hrb.

Because δφh is assumed small, Eqs. (6.4) and (6.5) may be used to approximate
these two equations by

rb(φh + δφh) ≈ Sh−,h[I + Qhδφh]ΦhS−1
h+,hrb,

or, for the inverse matrix,

rb(φh + δφh) ≈ Sh+,hΦ
−1
h [I − Qhδφh]S−1

h−,hrb.

In these two equations, the square-bracketed expressions are both written in the
joint coordinate system preceding joint h; that is, in the coordinate system uhvhwh.
By insertion of appropriate identity factors, they may be expressed in the coordinate
system of the body preceding joint h on the path to body b. This yields

rb(φh + δφh) ≈ [
I + Sh−,hQhδφhS−1

h−,h

]
Sh−,hΦhS−1

h+,hrb, (6.6)

or, when joint h has reversed orientation,

rb(φh + δφh) ≈ [
I − Sh+,hΦ

−1
h QhδφhΦhS−1

h+,h

]
Sh+,hΦ

−1
h S−1

h−,hrb. (6.7)

Continuing to work in the coordinate system of the body preceding joint h on
the path to body b, we recognize the small displacement of our point of body b as

δrb ≈ [
Sh−,hQhδφhS−1

h−,h

]
rb(φh),

or

δrb ≈ −[
Sh+,hΦ

−1
h QhδφhΦhS−1

h+,h

]
rb(φh),

depending on the orientation of joint h.
We should notice here that body b is no longer required to be the body that is

immediately adjacent to joint h, as long as the displacement δrb is caused solely by
the displacement δφh of joint h. These equations are valid for a point attached to any
body b that is displaced by the movement of joint h where we recognize that rb and
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drb are expressed in the coordinate system of the body that precedes joint h along
the path to body b. If the displacement of joint h does not affect body b, then these
equations do not pertain. To keep this clear in the equation itself and to simplify the
treatment of joint orientation, we can take advantage of the topological path matrix
P of section 2.5 as follows:

δrb ≈ P(b,h)
[
Sh−,hQhδφhS−1

h−,h

]
rb,

b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n,

(6.8)

or

δrb ≈ P (b,h)
[
Sh+,hΦ

−1
h QhδφhΦhS−1

h+,h

]
rb,

b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n,

(6.9)

where P(b, h) symbolizes the entry in row b, column h of path matrix P. This
modification not only unifies the signs of the two equations with different joint
orientations, it directly yields zero displacement when joint h is not on the path to
the point in question.

We can perform an exactly parallel development while picturing ourselves using
the absolute coordinate system x0y0z0. Here the position of the point of body b is
expressed by

Rb = T0h−Sh−,hΦhS−1
h+,hTh+,brb = T0brb,

or if joint h happens to be oriented the other way, by

Rb = T0h+Sh+,hΦ
−1
h S−1

h−,hTh−,brb = T0brb.

Because we assume (for now) that all motion comes from the displacement of
helical joint h, a small displacement of the joint results in

Rb(φh + δφh) ≈ T0h−Sh−,h [I + Qhδφh]ΦhS−1
h+,hTh+,brb,

or

Rb(φh + δφh) ≈ T0h+Sh+,hΦ
−1
h [I − Qhδφh] S−1

h−,hTh−,brb.

Now, by insertion of appropriate identity factors, these become

Rb(φh + δφh) ≈ T0h−Sh−,h [I + Qhδφh] (T0h−Sh−,h)
−1(T0h−Sh−,h)ΦhS−1

h+,hTh+,brb,

or

Rb(φh + δφh) ≈ T0h+Sh+,hΦ
−1
h

(
S−1

h−,hSh−,h

)
[I − Qhδφh]

· (T0h+Sh+,hΦ
−1
h

(
S−1

h−,hSh−,h

))−1
(T0h+Sh+,hΦ

−1
h )S−1

h−,hTh−,brb.

Remembering that h− is the body that precedes joint h and body h+ follows
it in the originally defined joint orientation, we find that both orientations are now
expressed by the single equation

Rb(φh + δφh) ≈ [
I + P(b,h)(T0h−Sh−,h)Qhδφh(T0h−Sh−,h)

−1]Rb,
b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n,

(6.10)
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from which we find

δRb ≈ P(b,h)
[
(T0h−Sh−,h)Qhδφh(T0h−Sh−,h)

−1]Rb,
b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n,

(6.11)

and the displacement of body b caused by the small displacement of joint h is

δT0b ≈ P(b,h)
[
(T0h−Sh−,h)Qhδφh(T0h−Sh−,h)

−1]T0b,
b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n.

(6.12)

We can notice in all of these equations that the movement comes entirely from
the small displacement δφh of joint h. The Qh matrix carries the information about
the axis and motion capability of joint h and is naturally defined in the joint h
coordinate system. We see in Eqs. (6.6) and (6.7) and Eqs. (6.8) and (6.9) how this
axis and motion information is transformed into the preceding body h− coordinate
system or, in Eqs. (6.10), (6.11), and (6.12), into the absolute coordinate system. In
all cases, this is done by similarity transformations. Thus, in all of these equations,
the terms in the square brackets of each reflect the same information, the motion
freedom and axis information of Qh and the size of the motion increment δφh, but
each is transformed to a suitable coordinate system for the object being displaced.

We also notice that body index b is not referenced in the square bracketed
operators, and that joint index h and body index h− are only referenced in the square
brackets, not in the items being displaced. This makes perfect sense; joint index h
must appear in each square bracket operator because that joint is the only item
being displaced, and body index h− is sometimes used as the convenient coordinate
system for expressing its axis.

The conclusion from these observations is that when joint h is the only joint
being displaced, the previous formulae can be used for the small movement of an
item associated with any body b that is displaced as a result of the small movement
of joint h that is for any body b for which joint h is in the path to that body from
the ground. Of course, when multiple joint variables along such a path are displaced
simultaneously, the aforementioned formulae only predict the displacement of the
item associated with body b coming from the displacement of the single joint h.
Combinations with other simultaneous joint displacements will be discussed later.

6.3 Derivative Operator Matrices

Continuing our thinking with infinitesimally small – that is, differential – displace-
ments, it is clear, for example, that if we wish to find the differential displacement of
joint h, we can start from Eqs. (6.2) and (6.3). If we seek the displacement of a point
of body b resulting from the differential displacement of joint h, we can start from
Eq. (6.11).

If we look for the rate of change of the posture of body h+ with respect to
body h− resulting from the movement of the variable of helical joint h, then we are
looking for the derivative of Φh with respect to φh. Using Eq. (6.2), this can be found
directly from its definition:

∂

∂φh
Φh = QhΦh, h = 1, 2, . . . ,n. (6.13)
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If we seek the rate of change of the absolute position of a point attached to
body b with respect to the change in position of joint h, then we are looking for the
derivative of Rb with respect to φh. Using Eq. (6.11), this becomes

∂

∂φh
Rb = P (b,h)

[
(T0h−Sh−,h)Qh(T0h−Sh−,h)

−1]Rb,

and, similarly, for the rate of change of the absolute posture of body b itself with
respect to the change in position of joint h, we have from Eq. (6.12),

∂

∂φh
T0b = P(b,h)

[
(T0h−Sh−,h)Qh(T0h−Sh−,h)

−1]T0b.

Let us now define the following derivative operator matrix

Dh = (T0h−Sh−,h)Qh(T0h−Sh−,h)
−1, h = 1, 2, . . . ,n. (6.14)

We must be careful in interpreting the notation of this definition. Here the body h−
is the body immediately preceding joint h as it was originally defined, irrespective of
its orientation in the path to body b.

This definition immediately reduces the previous two equations to

∂

∂φh
Rb = P (b,h)DhRb,

b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n,

(6.15)

and

∂

∂φh
T0b = P (b,h)DhT0b,

b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n.

(6.16)

Of Eqs. (6.13) through (6.16), Eq. (6.13) is considered the most fundamental
because the others are a direct consequence of this one and the definition of Eq.
(6.14). If, for example, Eq. (6.13) is used to differentiate Eq. (5.10) with respect to
joint variable φh, and Eq. (6.14) is then used to simplify the notation, Eq. (6.15) is a
direct result.

It should be pointed out that partial differentiation symbolism is used in these
equations to remind us that they account only for displacements resulting from
changes in the single joint variable φh, and do not include possible additional simul-
taneous displacements resulting from other joint variable changes along the path to
body b. Similarly, the factor P(b, h) reminds us that joint h must be on the path from
ground to body b; if joint h is not on this path, then T0b, for example, is not a function
of φh and Eq. (6.16) yields zero.

We also stress here that Eqs. (6.13), (6.15), and (6.16) are not approximations;
they yield exact values of the derivatives! The approximation of infinitesimally small
displacement used in Eqs. (6.2) and (6.12) become exact when we pass to the limit
of δφh → 0. This observation is extremely important and will be raised again in
evaluating numeric accuracy in coming chapters. This ability to differentiate precisely
is a unique advantage of the matrix methods presented here over other numeric
methods where derivatives are usually replaced by approximate finite differences
and can lead to numeric error.

Reviewing this section reminds us that we started from the assumption of the
previous sections that our displacement is that of a helical joint. However, the same
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concepts can be applied to any single joint freedom, φh. Returning to Eq. (6.13),
let us generalize the idea. Let us simply define a derivative operator matrix, Qh, as
follows:

Qh =
[

∂

∂φh
Φh

]
Φ−1

h , h = 1, 2, . . . ,n. (6.17)

If joint h has more than one joint variable, then we define a derivative operator
matrix Qg

h for differentiation with respect to each of the joint variables, φg
h.

Once we define Qh in this way, Eq. (6.13) must hold true for any joint type or
any joint variable, helical or not. Also, Eqs. (6.14), (6.15), and (6.16) must hold true
as well. As usual, there is an attendant penalty; we must work out and program the
appropriate form of the Qh matrix for each type of joint and for each variable of
each type of joint. However, using Eq. (6.17), these are not hard to find and all of
the joint types of Chapter 4 are listed as follows.

6.3.1 Helical Joint

Qh =

⎡
⎢⎢⎣

0 −1/σh 0 0
1/σh 0 0 0

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ . (6.18)

6.3.2 Revolute Joint

Qh =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ . (6.19)

6.3.3 Prismatic Joint

Qh =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ . (6.20)

6.3.4 Cylindric Joint

Q1
h =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q2

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ . (6.21)
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6.3.5 Spheric Joint

Q1
h =

⎡
⎢⎢⎢⎢⎣

2φ1
h 2φ2

h 2φ3
h 0

−2φ2
h 2φ1

h −2φ4
h 0

−2φ3
h 2φ4

h 2φ1
h 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q2

h =

⎡
⎢⎢⎢⎢⎣

2φ2
h −2φ1

h 2φ4
h 0

2φ1
h 2φ2

h 2φ3
h 0

−2φ4
h −2φ3

h 2φ2
h 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q3
h =

⎡
⎢⎢⎢⎢⎣

2φ3
h −2φ4

h −2φ1
h 0

2φ4
h 2φ3

h −2φ2
h 0

2φ1
h 2φ2

h 2φ3
h 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q4

h =

⎡
⎢⎢⎢⎢⎣

2φ4
h 2φ3

h −2φ2
h 0

−2φ3
h 2φ4

h 2φ1
h 0

2φ2
h −2φ1

h 2φ4
h 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , (6.22)

with the additional constraint equation among the first-order differential displace-
ments that

2φ1
hδφ

1
h + 2φ2

hδφ
2
h + 2φ3

hδφ
3
h + 2φ4

hδφ
4
h = 0.

6.3.6 Flat Joint

Q1
h =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q2

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q3

h =

⎡
⎢⎢⎢⎣

0 −1 0 φ2
h

1 0 0 −φ1
h

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ .

(6.23)

6.3.7 Rigid Joint

The rigid joint has no joint variables. Therefore, no derivative operator matrices are
defined for it.

6.3.8 Open Joint

Q1
h =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q2

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q3

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

Q4
h =

⎡
⎢⎢⎢⎢⎣

2φ4
h 2φ5

h 2φ6
h −2φ1

hφ
4
h − 2φ2

hφ
5
h − 2φ3

hφ
6
h

−2φ5
h 2φ4

h −2φ7
h 2φ1

hφ
5
h − 2φ2

hφ
4
h + 2φ3

hφ
7
h

−2φ6
h 2φ7

h 2φ4
h 2φ1

hφ
6
h − 2φ2

hφ
7
h − 2φ3

hφ
4
h

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q5
h =

⎡
⎢⎢⎢⎢⎣

2φ5
h −2φ4

h 2φ7
h −2φ1

hφ
5
h + 2φ2

hφ
4
h − 2φ3

hφ
7
h

2φh 2φ5
h 2φ6

h −2φ1
hφ

4
h − 2φ2

hφ
5
h − 2φ3

hφ
6
h

−2φ7
h −2φ6

h 2φ5
h 2φ1

hφ
7
h + 2φ2

hφ
6
h − 2φ3

hφ
5
h

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , (6.24)
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Q6
h =

⎡
⎢⎢⎢⎢⎣

2φ6
h −2φ7

h −2φ4
h −2φ1

hφ
6
h + 2φ2

hφ
7
h + 2φ3

hφ
4
h

2φ7
h 2φ6

h −2φ5
h −2φ1

hφ
7
h − 2φ2

hφ
6
h + 2φ3

hφ
5
h

2φ4
h 2φ5

h 2φ6
h −2φ1

hφ
4
h − 2φ2

hφ
5
h − 2φ3

hφ
6
h

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q7
h =

⎡
⎢⎢⎢⎢⎣

2φ7
h 2φ6

h −2φ5
h −2φ1

hφ
7
h − 2φ2

hφ
6
h + 2φ3

hφ
5
h

−2φ6
h 2φ7

h 2φ4
h 2φ1

hφ
6
h − 2φ2

hφ
7
h − 2φ3

hφ
4
h

2φ5
h −2φ4

h 2φ7
h −2φ1

hφ
5
h + 2φ2

hφ
4
h − 2φ3

hφ
7
h

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

with the additional constraint equation among the first-order differential displace-
ments that

2φ4
hδφ

4
h + 2φ5

hδφ
5
h + 2φ6

hδφ
6
h + 2φ7

hδφ
7
h = 0.

6.3.9 Parallel-axis Gear Joint

Q1
h = Rh + R′

h

R′
h

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 Rh

(
1 + φ2

h

Rh + R′
h

)
sinφ1

h

1 0 0 −Rh

(
1 + φ2

h

Rh + R′
h

)
cosφ1

h

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q2
h = sgn(F )

(
Rh + R′

h + φ2
h

)
√[

Rh + R′
h + φ2

h

]2 − [(
Rh + R′

h

)
cosαh

]2

⎡
⎢⎢⎢⎣

0 −1 0 sinφ1
j

1 0 0 −cosφ1
h

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , (6.25)

Q3
h = tanβh

R′
h

⎡
⎢⎢⎢⎣

0 −1 0
(
Rh + R′

h + φ2
h

)
sinφ1

h

1 0 0 − (
Rh + R′

h + φ2
h

)
cosφ1

h

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ .

6.3.10 Involute Rack-and-Pinion Joint

Q1
h = −1

R′
h

⎡
⎢⎢⎢⎣

0 −1 0 φ2
h

1 0 0 −φ1
h

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

Q2
h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ − sgn (F ) tanαh

R′
h

⎡
⎢⎢⎢⎣

0 −1 0 − (
R′

h + φ2
h

)
1 0 0 1 − φ1

h
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , (6.26)
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Q3
h = −tanβh

R′
h

⎡
⎢⎢⎢⎣

0 −1 0 R′
h + φ2

h

1 0 0 φ1
h

0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ .

6.3.11 Straight-tooth Bevel-gear Joint

θ = γh + γ ′
h + φ2

h,

Q1
h =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ + tan γh

tan γ ′
h

⎡
⎢⎢⎢⎢⎣

0 −cos θ −cosφ1
h sin θ 0

cos θ 0 sinφ1
h sin θ 0

cosφ1
h sin θ −sinφ1

h sin θ 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q2
h =

⎡
⎢⎢⎢⎢⎣

0 0 −sinφ1
h 0

0 0 −cosφ1
h 0

sinφ1
h cosφ1

h 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (6.27)

6.3.12 Point on a Planar-Curve Joint

u′ = ∂

∂φ1
h

u
(
φ1

h

)
, v′ = ∂

∂φ1
h

v
(
φ1

h

)
,

Q1
h =

⎡
⎢⎢⎣

0 0 0 u′

0 0 0 v′

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q2

h =

⎡
⎢⎢⎢⎣

0 −1 0 v
(
φ1

h

)
1 0 0 −u

(
φ1

h

)
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ , Q3

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

(6.28)

6.3.13 Line Tangent to a Planar-Curve Joint

u′ = ∂

∂φ1
h

u
(
φ1

h

)
, v′ = ∂

∂φ1
h

v
(
φ1

h

)
, u′′ = ∂

∂φ1
h

u′, v′′ = ∂

∂φ1
h

v′,

θ = tan−1
(

v′

u′

)
, θ ′ = u′v′′ − v′u′′

(u′)2 − (v′)2 ,

Q1
h =

⎡
⎢⎢⎣

0 −θ ′ 0 u′ + θ ′v′

θ ′ 0 0 v′ − θ ′u′

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q2

h =

⎡
⎢⎢⎣

0 0 0 −cos θ

0 0 0 −sin θ

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q3

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

(6.29)
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6.4 Screw Axes and Ball Vectors for Differential Displacements

Considering an instantaneous or a differential screw displacement, we are now inter-
ested in finding its differential operator matrix. Because a differential displacement
is the limiting case of a finite displacement, we can start with the equation for finite
screw displacement with coordinate systems uvw and u′v′w′ arranged such that we
can write:

r = Φr′ =
[
Θ d
0 1

]
r′.

For a differential displacement,

δr = δΦr′ =
[
δΘ δd
0 0

]
r′.

However, because

r′ = Φ−1r =
[
Θ−1 −Θ−1d

0 1

]
r,

and, remembering that θ is the rotational screw parameter, the equation for a dif-
ferential displacement becomes

δr = δΦr′ =
(
∂Φ

∂θ

)
δθΦ−1r =

(
∂Φ

∂θ
Φ−1

)
δθr. (6.30)

Considering the definition of derivative operator matrices Q, as given in
Eq. (6.17), it is clear that the derivative operator matrix for a one-degree-of-freedom
screw displacement is

Q =
(
∂Φ

∂θ
Φ−1

)
=

⎡
⎣∂Θ

∂θ

∂d
∂θ

0 0

⎤
⎦[

Θ t −Θ t d
0 1

]
=

⎡
⎣∂Θ

∂θ
Θ t ∂d

∂θ
− ∂Θ

∂θ
Θ td

0 0

⎤
⎦ .

Recall from Chapter 3, Eq. (3.37) that Θ = I + w̃sin θ + w̃2(1 − cos θ ); therefore,

∂Θ

∂θ
= w̃ cos θ + w̃2 sin θ and Θ t = I − w̃ sin θ + w̃2(1 − cos θ ).

Observing that w is a unit vector and w̃ is skew symmetric, we can write:

w̃t = −w̃; w̃3 = −w̃; and w̃4 = w̃3w̃ = −w̃2.

We now find that (∂Θ/∂θ )Θ t simplifies to w̃(sin 2θ + cos 2θ ) = w̃. Therefore, the
derivative operator matrix for our one degree-of-freedom screw displacement
becomes:

Q =
(
∂Φ

∂θ
Φ−1

)
=

⎡
⎣w̃

∂d
∂θ

− w̃d

0 0

⎤
⎦ . (6.31)

Looking over section 6.3 for the different forms that the Qh derivative operator
matrices take for different joints and joint variables, we notice an interesting pattern.
We see that the bottom row is always zero and the upper-left (3 × 3) submatrix
is always skew-symmetric, which is the same as the form we used in Chapter 3,
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Eq. (3.14), to represent a pair of Plücker vectors in matrix form. We can therefore
rewrite Eq. (6.30) as follows:

δr =
[∼�
Ω Ω

0 0

]
rδθ, (6.32)

where
∼�
Ω = w̃ and Ω = ∂d/∂θ − w̃d.

Using vector notation, Eq. (6.32) reduces to:

δr = [
�

Ω × r + Ω]δθ. (6.33)

Eqs. (6.33) and (6.32) are respectively the vector and matrix forms of what can be
considered a fundamental equation for differential or instantaneous displacements
written in terms of the two vectors (Ω,

�

Ω).
Let us now find the components of Eq. (6.33) in the direction of the vector

�

Ω

by taking the dot product with that vector; that is, by pre-multiplying the equation

by
�

Ω t :

�

Ωtδr = �

Ωt
∼�
Ωrδθ + �

Ω tΩδθ

and because the vector
�

Ω is perpendicular to the vector
∼�
Ωr, this reduces to

�

Ω tδr = �

Ω tΩδθ.

However, this equation says that the component of the differential displacement
δr in the direction of

�

Ω is independent of the choice of the point, r. This is to say that
all points of the body have equal displacements in the

�

Ω direction. Remembering
from Chasles’ theorem that we expect the pattern to have the properties of a screw,
we can now identify that the

�

Ω unit vector shows the orientation of the screw axis. We
can also recognize the pitch of the screw as the rate of displacement in the direction
of the screw axis per unit rotation of the screw:

�

Ω t δr
δθ

= �

ΩtΩ = σ. (6.34)

This is the instantaneous pitch of the screw. Because we are dealing with the dis-
placement of an arbitrary joint type, not necessarily a true helical joint, the pitch
may change as the joint moves.

Let us next find the location of a point P that is on the screw axis, thus uniquely
locating the axis. Remembering that a point on the screw axis experiences only the
displacement along the axis, from Eq. (6.33) we write

δP
δθ

= Ω +
∼�
ΩP = σ

�

Ω.

Let us now take the vector cross product of the screw axis direction
�

Ω with all
terms of this equation:

∼�
Ω

δP
δθ

=
∼�
ΩΩ +

∼�
Ω
(∼�
ΩP

) =
∼�
Ω
(
σ

�

Ω
) = 0.
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When we replace this triple-vector product by the vector identity

�

Ω × ( �

Ω × P
) = ( �

Ω · P
) �

Ω − ( �

Ω · �

Ω
)
P,

which in matrix notation reads

∼�
Ω
(∼�
ΩP

) = ( �

Ω tP
) �

Ω − ( �

Ωt �

Ω
)
P,

then our equation for point P on the screw axis becomes

∼�
ΩΩ + ( �

Ωt P
) �

Ω − ( �

Ω t �

Ω
)
P = 0.

This equation, of course, fits all points on the screw axis and, therefore, does not
yield a unique solution for P. Because we seek a single point to locate the axis, let
us choose the particular point P on the screw axis for which the vector P from the

origin is perpendicular to the screw axis. This is the point P for which (
�

Ω tP) = 0.
The solution for this particular point P is

P =
∼�
ΩΩ
�

Ω t
�

Ω
. (6.35)

If we denote the components of the two vectors (Ω,
�

Ω) as follows:

Ω =
⎡
⎣ a

b
c

⎤
⎦ ,

�

Ω =
⎡
⎣ d

e
f

⎤
⎦ , (6.36)

then the expression for P in terms of these six parameters becomes

P = 1
d2 + e2 + f 2

⎡
⎣ 0 − f e

f 0 −d
−e d 0

⎤
⎦
⎡
⎣a

b
c

⎤
⎦ . (6.37)

Thus, overall, we have shown that the Q differentiation operator matrices carry
the full information of the screw axis for the corresponding differential displacement
of a single joint variable. The screw can now be identified because Eq. (6.36) gives
its orientation, Eq. (6.34) gives its pitch, and Eqs. (6.35) and (6.37) give a point on
its axis.

We notice that the (4 × 4) matrix form of Q is convenient for use as a differenti-
ation operator. However, there are only six independent parameters in the operator
and these can equally well be kept in the form of the two 3-D Cartesian vectors Ω

and
�

Ω of Eq. (6.36). These vectors are perhaps more convenient for geometric identi-
fication of the instantaneous screw axis. They were developed by Sir Robert Stawell
Ball (1840–1913), Lowndeen Professor of Astronomy and Geometry, Cambridge
University, and are called the Ball vectors of the screw [2].
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The same information can also be stored as a single six-dimensional vector,
called screw coordinates:

Ω̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
e
f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6.38)

This format may be best for computer storage, and will appear in later chapters. No
matter which format is chosen, the six parameters identify the same information: the
instantaneous screw axis and the pitch of the differential motion.

Throughout this section we have treated the Qh differentiation operator matrices
as expressed in the uhvhwh coordinate system of a joint. However, we have already
seen similar forms such as Sh−,hQhS−1

h−,h, which is expressed in the coordinate system
of body h−, immediately preceding joint h, and

Dh = (T0h−Sh−,h)Qh(T0h−Sh−,h)
−1,

which is expressed in the absolute coordinate system. Each of these is related to Qh

by a similarity transformation. Therefore, each is of the form

TQT−1 =
[
Θ d
0 1

][∼�
Ω Ω

0 0

][
Θ t −Θ td
0 1

]
=

[
Θ

∼�
ΩΘ t ΘΩ − Θ

∼�
ΩΘ t d

0 0

]
.

Here we see that these other forms of differentiation operator matrices also
have a bottom row of zeroes. The upper-left (3 × 3) rotation submatrix is of the
form Θ

∼�
ΩΘ tand because

∼�
Ωt = −

∼�
Ω , we find that (Θ

∼�
ΩΘ t )t = −(Θ

∼�
ΩΘ t ). Therefore,

the upper-left (3 × 3) submatrix remains skew-symmetric after the similarity trans-
formation. Therefore, these transformed differentiation operator matrices are of the
same characteristic form assumed in Eq. (6.36), and any of these can be used for
identifying an instantaneous screw axis or a set of Ball vectors or screw coordinates.
Equations (6.34), (6.35), (6.36), and (6.37) apply equally to all of these differentiation
operators, no matter in which coordinate system they happen to be expressed. The
resulting screw axis is found in coordinates corresponding to the form that is used.

The Ball vectors or screw coordinates discussed in this section uniquely identify
the axis and pitch of a screw, along and about which a moving body is displaced to
a new position with respect to a reference body. Thus, they each identify a unique
screw. It will be noticed, however, that they do not, in general, identify the magnitude
of the displacement taken on this screw. The six parameters Ω̂ = (a, b, c, d, e, f)t

form a homogeneous set in the sense that the set can be multiplied by any nonzero
constant and still identifies the same screw. Thus, they identify the screw, but not its
displacement. Also, because the set can be scaled by an arbitrary constant, only five
of the six parameters are independent.

Sometimes we may wish to specify the magnitude of the displacement on the
screw, a sixth independent value; we may choose to scale the screw coordinates to
express this magnitude. They will then identify the same screw and also the displace-
ment experienced, all within the same six-dimensional vector, which is no longer
homogeneous. Such a helical displacement of a given magnitude is called a twist, and
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a twist can be identified by properly scaled Ball vectors or screw coordinates. The
differential twist associated with our operator matrix Qh, for example, has scaled

Ball vectors of Ωhdφ and
�

Ωhdφ.

EXAMPLE 6.1 As an illustrative example, let us find the Ball vectors, the screw
coordinates, and the screw parameters for the differential displacement of the
first joint variable of a parallel-axis gear joint as defined by Eq. (6.25).

Assuming exact mounting of the gear joint, such that φ2
h = φ3

h = 0, we have

Q1
h =

(
Rh + R′

h

)
R′

h

⎡
⎢⎢⎢⎢⎣

0 −1 0 Rh sinφ1
h

1 0 0 −Rh cosφ1
h

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

From Eqs. (6.36) and (6.38), we can immediately write the Ball vectors and
the screw coordinates for this joint variable:

Ωh =

⎡
⎢⎣

Rh sinφ1
h

−Rh cosφ1
h

0

⎤
⎥⎦ ,

�

Ωh =

⎡
⎢⎣0

0
1

⎤
⎥⎦ ,

Ω̂h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rh sinφ1
h

−Rh cosφ1
h

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (6.34) gives σ h = 0 for the pitch, which makes perfect sense because
φ1

h allows only rotation. Equation (6.37) gives one point on the screw axis

P =

⎡
⎢⎣

Rh cosφ1
h

Rh sinφ1
h

0

⎤
⎥⎦ ,

and we recognize that the locus of this point as φ1
h changes is the pitch circle,

specified in uh, vh, wh coordinates, whereas the orientation of the screw axis as

specified by
�

Ωh is parallel to the wh joint axis.

6.5 Numeric Solution of Kinematic Posture Equations

Once a multibody system has been modeled on a computer, an analysis of the
kinematic architecture of the system is performed in accordance with the methods
of Chapter 2 to identify the complete topology, including numbers of bodies, joints,
joint types and joint variables, number of assemblies, and to identify any kinematic
loops and all kinematic paths. A data structure is then formulated in computer
memory that reflects the architecture of the system modeled.

Numeric data is entered next to specify the exact shapes, sizes, and initial pos-
tures of all bodies or components of the system. Of course, this data entry stage
requires many modeling decisions of the user. Not the least of these is the choice of
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an initial configuration, a single modeling posture of the system that is used for the
specification of numeric data. If a layout drawing of the design exists, the posture
shown in that drawing serves very nicely. If not, it may be worthwhile to create one,
either on paper or in a CAD system. An actual hardware system or a 3-D physical
scale model can serve here as long as we choose a specific position for each general-
ized coordinate. The important thing is to ensure that there is a source of accurate
geometric data, all captured at one consistent configuration of the system and known
to fit together into a real machine, at least at the initial posture.

Choices of postures of coordinate systems are also made at this time. Not only
must there be an agreed upon global coordinate system x0y0z0, but also a body
coordinate system xbybzb must be chosen for each body, two joint coordinate systems,
uhvhwh and u′

hv′
hw′

h, must be identified for each joint, and other auxiliary coordinate
systems may also be specified.

Next, the postures of all coordinate systems are entered and transformation
matrices are formulated numerically, perhaps by the methods of section 4.4. All
required shape matrices Sh−,h and Sh+,h are found and stored for later usage. Simul-
taneously, initial values of joint matrices Φh = S−1

h−,hT−1
0h−T0h+Sh+,h are formulated

numerically for each joint at this initial posture. From these, the methods of section
4.6 are used to extract initial numeric position values for all joint variables φh, each
depending on its own joint type. Some of these are, of course, the initial (modeling)
position values of the generalized coordinates ψ j. As all of this numeric data is being
collected, pertinent tests are made to ensure that the numeric values of each joint
matrix Φh are consistent with the assumptions made in section 4.6 with respect to the
placement and orientation of joint coordinate systems for the corresponding joint
types. When discrepancies are discovered between modeling assumptions and the
numeric values received, the computer software can warn the user with an appro-
priate message and allow the interactive correction of the model until all data are
consistent with these modeling assumptions.

Finally, when the data entry phase of analysis is completed, the computer mem-
ory contains a validated model of the mechanical system at the initial modeling
posture. This computer model may or may not match the real mechanical system
intended by the user. It may or may not be movable or, if it is, the motion may or
may not represent the true motion of the real machine. However, in any case, it is a
model of a possible mechanical system.

6.5.1 Solution for a Nearby Posture

Once all data are entered and conformity with assumptions is verified, accurate
numeric values are known for all joint variables φh at the initial posture of the
system. Suppose, however, that we wish to move the model to another nearby
posture. Suppose that the new desired posture is specified by the user by changing
some or all of the generalized coordinates ψ j to new position values that we assume
are “close” to their initial position values. The problem that we wish to solve now is
to find a way to update the other joint variable values to be consistent with the new
generalized coordinate values, thus moving the system model to this new posture.
The original research for this and subsequent sections, before the many extensions
shown here, was first published as [12].
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Because we assume that the new posture is close to the previously known pos-
ture, we now assume that the unknown values of the dependent joint variables are
also close to their preceding known values. That is, we assume that the unknown
values are of the form

φ∗
h = φh + δφh, h = 1, 2, . . . ,n, (6.39)

where δφh represent small unknown changes from the known position values. For
joints with more than one variable there will be as many φ

g
h and δφ

g
h values as there

are variables in each joint.
We must now consider how these small changes can be made consistent with the

constraints of the loop-closure equations. Because we have changed the generalized
coordinate position values ψ j, we must recalculate the numeric values of the joint
matrices Φh according to their joint types and the formulae in section 4.6 and the
values of the individual transformation matrices of Eq. (5.4)

Th−,h+ = Sh−,hΦhS−1
h+,h.

As we calculate new T0b products of transformation matrices along the paths
of the model and products of transformation matrices around the kinematic loops,
we find that the T00 products around the loops are no longer equal to the identity
transformation because some joint variables have been changed to new position
values and others have not. Because of this, the loop-closure equations are not
satisfied. Instead of the identity transformation, the products T00 for each loop are
in error by small amounts that we represent by the matrix Ei:

T00 = I + Ei, i = 1, 2, . . . ,NL.

Of course, if we knew the small changes δφh of Eq. (6.39), all calculations could
be redone and the errors Ei would not exist. Our problem, therefore, is to find the
δφh corrections necessary to eliminate the errors Ei in the loop-closure constraint
equations.

Let us expand the loop-closure equations in Taylor series in the neighborhood
close to the known values of φh. To first order this gives

T00 +
∑

h

∂T00

∂φh
δφh + · · · = I, i = 1, 2, . . . ,NL,

where there is one term in this summation for each joint variable φh that appears in
the loop being considered.

If we take advantage of the Dh differentiation operator matrices, then consistent
with Eq. (6.16), our Taylor series becomes

T00 +
n∑

h=1

L (i,h)DhT00δφh + · · · = I, i = 1, 2, . . . ,NL,

where L(i, h) symbolizes the loop matrix and is used to provide sign information in
conformity with the existence and orientation of each joint h in each loop i.

Post-multiplying this series by T−1
00 gives

I +
n∑

h=1

L (i,h)Dhδφh + · · · = T−1
00 , i = 1, 2, . . . ,NL.
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Then, dropping all quadratic and higher-order terms and rearranging this equation
slightly, it becomes

n∑
h=1

L(i,h)Dhδφh ≈ T−1
00 − I = Ei, i = 1, 2, . . . ,NL, (6.40)

which is a set of NL (4 × 4) matrix equations relating the n unknown joint variable
corrections, δφh.

Realizing that each matrix has only six independent entries, we can, without loss
of information, replace each of these matrices by its screw coordinates. Therefore,
referring to Eqs. (6.36) and (6.38) for form, we define the following screw coordinate
vectors:

D̂h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dh (1, 4)
Dh (2, 4)
Dh (3, 4)
Dh (3, 2)
Dh (1, 3)
Dh (2, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, h = 1, 2, . . . ,n, Êi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ei (1, 4)
Ei (2, 4)
Ei (3, 4)
Ei (3, 2)
Ei (1, 3)
Ei (2, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, . . . ,NL.

(6.41)

With these definitions, Eq. (6.40) reduces to

n∑
h=1

L (i,h) D̂hδφh ≈ Êi, i = 1, 2, . . . ,NL, (6.42)

where 6-D screw coordinate vectors have replaced the (4 × 4) matrices. There is an
equation of this form for each of the NL loops of the system, and they relate the n
error correction unknowns, δφh.

In addition to these equations, we must include an additional equation for each
joint that employs Euler-Rodrigues parameters for its joint variables. From a first-
order Taylor series expansion of Eq. (4.17) we have a constraint equation of the
form

2φ1
hδφ

1
h + 2φ2

hδφ
2
h + 2φ3

hδφ
3
h + 2φ4

hδφ
4
h = 1 − (

φ1
h

)2 − (
φ2

h

)2 − (
φ3

h

)2 − (
φ4

h

)2
, (6.43)

for each spheric joint and, from a similar expansion of Eq. (4.24), we have a constraint
equation of the form

2φ4
hδφ

4
h + 2φ5

hδφ
5
h + 2φ6

hδφ
6
h + 2φ7

hδφ
7
h = 1 − (

φ4
h

)2 − (
φ5

h

)2 − (
φ6

h

)2 − (
φ7

h

)2
, (6.44)

for each open joint of the system.
We now wish to display these equations in a more standard form; however, the

process is better shown by example. Suppose we take the gear train problem of
example 5.5, Figure 5.9; the loop matrix for this three-loop example was found to be

A B C D E F G

L =
⎡
⎣1 1 0 0 0 0 −1

1 1 0 0 −1 −1 0
1 1 −1 −1 0 0 0

⎤
⎦ .
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Developing the explicit form of Eq. (6.42) for this example, we find that it is

⎡
⎢⎣D̂A D̂B 0 0 0 0 −D̂G

D̂A D̂B 0 0 −D̂E −D̂F 0
D̂A D̂B −D̂C −D̂D 0 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δφA

δφB

δφC

δφD

δφE

δφF

δφG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣Ê1

Ê2

Ê3

⎤
⎥⎦ .

The procedure shown by this example can be generalized for any rigid-body
mechanical system. It always results in a set of linear equations of the form

J δφ = Ê. (6.45)

For a system with NL loops and n joint variables, the coefficient matrix J of this
set of equations has (6NL + NC ) rows and n columns, where NC is the number
of constraint equations for the Euler-Rodrigues parameters of spheric and open
joints in the system. The coefficient matrix of Eq. (6.45) is called the Jacobian. The
determinant of this matrix was studied in depth by the Prussian mathematician, Carl
Gustav Jacob Jacobi (1804–51), and was presented in [4].

This Jacobian matrix is always of the same form as the loop matrix L found in
Chapter 2 for the same problem, except that each non-zero entry of L that had a
value of ±1 is now replaced by a (6 × 1) screw coordinate vector of ±D̂h in the
column of J corresponding to the joint variable for joint h. The zero entries of
L are each replaced by columns of six zeroes. When a joint h has more than one
joint variable, then the corresponding screw vectors ±D̂g

h for each joint variable are
entered into successive columns of J . The coefficients of the constraint equations
of the form of Eqs. (6.43) and (6.44) relating the Euler-Rodrigues parameters of
each spheric and open joint are entered as NC additional rows of J using these
same columns. The column vector Ê is filled with the screw coordinate vectors of
Eq. (6.41) showing the errors in closure for each of the loops, with additional entries
from the right-hand sides of Eqs. (6.43) and (6.44) for the NC additional constraint
equations. The unknowns of this set of equations (6.45) are the error corrections δφh

(or δφ
g
h) for the joint variables, taken in the same order as the columns of J .

If our application had been a robotic manipulator with body number e being
the end-effector, then let us suppose that T ∗

0e represents the desired posture of the
end-effector. In this case, an exactly parallel development leads to the following
equation in place of Eq. (6.40):

n∑
h=1

P (e,h)Dhδφh ≈ T ∗
0eT−1

0e − I = Ee, (6.46)

that gives

n∑
h=1

P (e,h) D̂hδφh ≈ Êe, (6.47)

instead of Eq. (6.42) when put into screw coordinate form. This leads to a Jacobian
matrix that has either [6+NC ] or [6(NL+1)+NC ] rows, depending on whether the
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manipulator also includes any closed loops. Otherwise, a manipulator is identical to
other mechanism or multibody applications.

Of course, we started this section by assuming that one or more of the joint
variables had intentionally been changed to a nearby position; those joint variable(s)
already have new values and do not need “corrections.” We may as well delete
these columns from J , and the corresponding “corrections” from the column of
unknowns. Although we will show a better procedure later, for now, let us consider
these eliminated.

If the J matrix is square and non-singular, then Eq. (6.45) can be solved directly
by matrix inversion

δφ = J −1Ê.

More will be said later about problems in which J is either singular or is not square.
Once the δφ error corrections are found, they are added to the previous values of

the joint variables according to Eq. (6.39) giving improved values for the dependent
joint variables. However, because our equations were linearized by dropping higher-
order terms of the Taylor series, these may still not be of sufficient accuracy. If not,
the process is repeated iteratively until the accuracy is acceptable.

To repeat the process means accepting the improved joint variables to replace
the previous values of φh, recomputing the joint matrices Φh using these improved
values, finding new transformation matrices and products T0b and derivative operator
matrices Dh, new coefficient and error matrices J and E, and then new corrections
δφh.

With each iteration of this process, the values of the joint variables improve
to better fit the loop-closure constraints and the T00 matrix products more closely
approximate the identity matrix. Therefore, the E matrix entries, showing errors
in loop-closure, become smaller and the corresponding Êi columns of values also
become smaller, leading to smaller error corrections δφh. Ultimately, when all E
matrix entries and δφh corrections become smaller than an agreed upon tolerance
value, the process is declared finished. Much more will be said on this iteration
process and its convergence in the sections to follow. However, after convergence,
the new updated values of all joint variables and all transformation matrices and
derivative operator matrices are in conformance with the loop-closure constraints at
the new posture of the system.

6.5.2 Avoiding Convergence to a False Solution

Once the iteration process of the previous section converges to the specified tolerance
level, are we assured that this numeric solution represents a valid posture for the
real mechanical system? Unfortunately, there are conditions when this may not be
the case. Let us look more closely at what our numeric procedure has and has not
assured.

We have continued to monitor and are assured that the column of constants Êi

has become zero within our agreed tolerance. Comparing this with Eqs. (6.42) and
(6.41) and remembering from section 6.4 that the bottom row of each Dh matrix is
always zero assures us that all off-diagonal terms of each Ei matrix have become zero
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in Eq. (6.40). Thus, remembering the orthogonality conditions of all transformation
matrices, we are assured for each loop that

T00 =

⎡
⎢⎢⎣

±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 1

⎤
⎥⎥⎦ .

However, our iteration equation does nothing to ensure that the three diagonal
elements of the rotation submatrices have converged to positive unit values to match
the identity matrix.

We do know, in addition, from the properties of our transformations that the
determinant of each T00 matrix is always positive unity. However, it is still conceiv-
able that our iteration process could converge with a T00 matrix having two negative
unit values on its main diagonal. Geometrically, this would mean a rotation error of
180◦ in a loop about one of the major global axes without correction by our iteration
process. Worse yet, experience has proven that this can and sometimes has happened
in practice, even for very simple systems moving through small displacements.

Fortunately, once this problem was discovered, a very simple correction was
found. The definition of Êi in Eq. (6.41) is, therefore, modified as follows:

Êi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ei (1, 4)
Ei (2, 4)
Ei (3, 4)

Ei (3, 3) + Ei (3, 2) + Ei (2, 2)
Ei (1, 1) + Ei (1, 3) + Ei (3, 3)
Ei (2, 2) + Ei (2, 1) + Ei (1, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, . . . ,NL. (6.48)

This modification is equivalent to adding two of the diagonal terms to each
of the off-diagonal rotation terms in Eq. (6.40) before the screw coordinates are
extracted. However, because the Dh matrices have zeroes on their diagonals, this
causes no changes in the Dh values on the left side of the equation or in the D̂h

vectors or the J matrix. It only affects the Ei matrices on the right side of Eq. (6.40).
This change in definition of Êi has no effect on the convergence or accuracy of the
iteration process when converging toward a valid solution because the changes are
in the quadratic and higher-order terms of the Taylor series. The diagonal terms of
a helical transformation matrix are unity and cos θ where, hopefully, θ is a small
angle. However, the Taylor series of cos θ for small angles has no first-order term.

However, with this modification, if the process comes even remotely close to
one of the false solutions, a very large correction is made that prevents convergence
toward such a solution. This heuristic modification has been tested in software, has
totally eliminated the problem, and has shown no further problems in over forty
years of extensive use.

6.5.3 Numeric Solution of the Loop-closure Equation

In section 6.5.1, Eq. (6.45) was solved by inversion of the J matrix of coefficients
on the temporary assumption that it was square and non-singular. This strategy was
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used to simplify the explanation and reduce confusion for the reader; however, it is
not the full story.

Let us now consider, for example, the simulation of a simple four-bar linkage
after the input crank angle has been set to a new position. We discover that there
are only three dependent joint variables for which δφh corrections need be found.
Yet there are six equations. In that case, as for all planar linkages, the out-of-plane
components of the screw coordinate vectors are zeroes, thus leaving only three
nontrivial equations in the three unknowns. Similarly, if we consider a spherical
linkage, such as the universal shaft coupling of example 5.1, only the three rotational
components of the screw coordinates carry values and all translation equations are
null. Therefore, only three unknowns can be found per loop for planar or spherical
problems.

From these and many other situations with special geometry we can see that
there are not always six useful equations per loop. Often, some of the equations
become null or simple identities and cannot yield solutions for unknowns. The J

matrix may carry more rows than columns, yet still be meaningful. Still, it is not clear
at the time the software is being programmed which equations carry meaningful
information for a given problem, and which may be null or trivial identities.

Another circumstance that can lead to difficulty is when special geometric situ-
ations, such as parallelism or intersection of multiple joint axes, lead to some screw
coordinates that are linear combinations of others. Again, this gives a J matrix
that has no inverse, either because it is not square or because it is rank deficient.
The J matrix of Eq. (6.45) results from an algorithm that assures that it always has
(6NL+NC ) equations, but there is no guarantee that these equations are indepen-
dent and nontrivial. Similarly, there is no guarantee that there are (6NL+NC ) joint
variables that need corrections.

We can say with certainty that the (6NL+NC ) equations contained in J rep-
resent all of the kinematic constraints that must be enforced between the unknown
joint variables. There are no other kinematic constraints. No more than (6NL+NC )
joint variables can be found from the constraint equations. However, this does not
assure that (6NL+NC ) joint variable corrections can always be found because some
equations may be either trivial or redundant or linearly dependent.

It is also possible that a mechanism or multibody problem can be posed wherein
the J matrix has more than (6NL+NC ) unknown joint variables. This happens, for
example, in problems of higher mobility if less than the full number of generalized
coordinates are identified and given values by the user. In such a case, the additional
joint variables of the undiscovered degrees of freedom cannot be found from the
loop-closure constraints. The positions of those joint variables must be found in
some other way. They cannot be found from Eqs. (6.45).

In the general case, therefore, the J matrix may not be square and also it may be
singular in the sense that it may have rank less than (6NL+NC ). How then are we
to solve Eq. (6.45) for its unknown joint variable corrections δφh if standard matrix
inversion software cannot be used?

Historically, the earliest solution to this dilemma in this application [12] was
put forward for the case where J has more rows than columns; that is, where there
are more equations than unknown joint variables. The argument was made that
because the process is iterative, the best r.m.s. (root-mean-squared) approximation
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to all (6NL+NC ) equations could be accepted, and would then be corrected again,
if necessary, in later iterations. Therefore, Eq. (6.45) was approximated by

(J tJ )δφ = J t Ê,

and because the coefficient matrix was then square, the solution

δφ = (J tJ )−1J t Ê

was accepted. In general, this approach did give acceptable solutions for many
cases. However, later study showed that it sometimes converges more slowly to a
solution, thus requiring more iterations. Much worse, however, is the robustness of
this approach when the system moves into or near a posture of poor mechanical
advantage. Near such a posture, the determinant of J (if it is square) becomes small
and the determinant of (J tJ ) becomes quadratically smaller. Thus, the accuracy of
joint variable corrections becomes poor near such a posture and convergence to a
solution is sometimes in doubt.

Fortunately, a much more robust algorithm has been found [10] for the solu-
tion of Eq. (6.45). It is the Gauss-Jordan method of elimination, [6, Sec. 10.4],
named after German mathematician Carl Friedrich Gauss (1777–1855) and German
geodesist Wilhelm Jordan (1842–99), with a special variation of complete pivoting.
Other methods could be similarly adapted if the modified pivoting is tailored to fit.
Cholesky’s method or Crout’s method of lower-upper matrix factorization would be
good alternative choices. However, these have not been tested by these authors.

This algorithm starts by assuming that the joint variables are arranged such that
those representing known generalized coordinates ψ j carry the largest identification
labels and, therefore, are represented in the right-most columns of the J matrix.
Next the J matrix is filled with screw coordinate vectors as explained in section
6.5.1 and then augmented on the right by a [(6NL + NC ) × (6NL + NC )] identity
matrix, where we wish to develop the “inverse” of J . Subdividing the columns of J

into those for the unknown joint variables and those associated with the specified
generalized coordinates, we have

[J1 J3 I ].

Next, we proceed with the Gauss-Jordan elimination algorithm except for a small
but important variation. We seek the largest possible pivot element, but searching
only the J 1 submatrix. That is, we search only in those columns that do not represent
specified generalized coordinates. Finding the pivot element, we switch this row
to the top and switch this column to the left. Then we divide all elements of the
pivot row by that element, thus making the pivot element unity. Then, by adding or
subtracting correct multiples of that modified pivot row to each of the other rows
in succession, we zero all other elements in the pivot column, thus eliminating that
variable from all equations except the first.

We then identify the largest remaining pivot element, again searching only the
remaining portion of the modified J 1 submatrix. Switching that row and that column
to second, we also place it on the main diagonal. We then normalize that row and
eliminate that variable from all other equations by subtracting proper multiples from
each of the others. We continue in this same manner and the augmented J matrix
evolves as we do this.
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The Gauss-Jordan elimination operations are, of course, all valid matrix row
operations. Except for the reordering of rows and columns, these combined
operations are equivalent to pre-multiplying the original augmented J matrix as
follows

[
J −1

11 0− − −− −−
−J21J −1

11 I

][
J11 J12 J13 I 0− − −− −− −−
J21 J22 J23 0 I

]

=
[

I J −1
11 J12 J −1

11 J13 J −1
11 0− − − − − − − − − − − − − − − −− − − − − −−

0 J22 − J21J −1
11 J12 J23 − J21J −1

11 J13 −J21J −1
11 I

]
. (6.49)

Here the different submatrices of the original augmented J matrix are shown sep-
arated by horizontal and vertical dashed lines. A second row of symbols has been
added to distinguish rows above and below the current pivot element; also, the orig-
inal J1 columns have been separated into columns to the left (Ji1) and to the right
(Ji2) of the current pivot element.

Thus, as we continue with each new elimination step, we search out a new pivot
element in the lower submatrix containing

[
J22 − J21J

−1
11 J12

]
; we then switch this

pivot element to the top-left of this submatrix by changing rows and columns. When
we eliminate multiples of this row from all other rows, we again reach the state
shown, except that the identity matrix at the top-left has increased in size by one,
and the size of the area to be searched for the next pivot has decreased by one row
and column.

As we continue, we finally reach a state where either (a) we eliminate all rows
of the original J matrix, or (b) the largest pivot element found in the ever-shrinking[
J22 − J21J −1

11 J12

]
submatrix is either zero or essentially zero (less than a given toler-

ance). The tolerance used here may be set to the round-off tolerance of the computer
system used, but need not be smaller than the strictest dimensional tolerance of the
manufactured part dimensions.* When such a state is reached, the J matrix stored
in computer memory has, within this tolerance, reached the form

[
I J −1

11 J12 J −1
11 J13 J −1

11 0− − − − −− − − −− − − − − −−
0 0 0 −J21J −1

11 I

]
.

Notice that the entries in the rows below J −1
11 J13 are also shown as zeroes. These

remainders should be checked by the software. If they are not small – that is, if
non-negligible size elements still remain in this area – it is a signal that the user has
set as a specified generalized coordinate the position of a joint variable that can (and
should) be determined from others. Such a situation should be treated as an error in
the user’s input data.

Once the modified Gauss-Jordan elimination process finishes, the form of the
original Eq. (6.45),

J δφ = Ê,

* The IMP software uses a default tolerance of 10−10 length units or radians.
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has been reduced to

[
I J −1

11 J12 J −1
11 J13

0 0 0

]⎡
⎢⎣
δφ1

δφ2

δφ3

⎤
⎥⎦ =

[
J −1

11 0

−J21J
−1
11 I

][
Ê1

Ê2

]
, (6.50)

where Ê1 and Ê2 refer to portions of the original Ê vector, but shown subdivided to
fit the subdivision of the preceding matrix. δφ1 refers to the corrections just found.
δφ3 are “corrections” whose labels refer to the specified generalized coordinates ψ3

and because these are already set to “correct” positions, δφ3 is now set to zero. δφ2 is
a set of “corrections” for joint variables not yet converged, but that cannot be solved
from the loop-closure constraints. Lacking further information, these corrections are
also set to zero. Therefore, the set of equations becomes⎡

⎣ δφ1

δφ2

δφ3

⎤
⎦ =

⎡
⎣J −1

11 Ê1
0
0

⎤
⎦ , (6.51)

with the additional condition that the equations require

Ê2 = J21J −1
11 Ê1.

This condition may not be satisfied exactly, particularly in early iterations. How-
ever, when the iteration process converges, both Ê1 and Ê2 approach zero and the
condition is satisfied automatically.

In applying Eq. (6.51) we must remember that multiple row and column changes
take place during the pivoting steps of the modified Gauss-Jordan algorithm. While
this is happening the original row and column identification labels must be tracked
so that when Eq. (6.51) is applied, the modified ordering of the original J column
numbers can be used to tell which joint variables are to be corrected by the rearranged
elements of δφ1.

The astute reader might legitimately ask why the J matrix was augmented with
a full identity matrix, rather than just augmenting J with the single column Ê matrix.
Similarly, why were the columns of J 3 kept if we are to set δφ3 = 0 at the end? The
answers to these questions will become clear in the next and later chapters where we
will see that the information found in these columns at the completion of the iteration
process is extremely useful and meaningful, and comes as a “free” by-product of the
process.

6.6 Identification of Generalized Coordinates

One of the most valuable by-products of the iterative solution process described in
section 6.5.3 is that it automatically discovers the mobility of our mechanical system
and selects a suitable choice of independent generalized coordinates.

As the modified Gauss-Jordan algorithm is applied to the inversion of the J

matrix of the loop-closure equation coefficients, the modified pivoting algorithm
avoids choosing any of the user-specified generalized coordinates and avoids allow-
ing them to be “corrected” by the constraint equations. However, having said this,
the pivoting algorithm does use the largest available coefficients in the remaining
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part of J , in the order found, to solve for other joint variables where possible. The
choice of the largest available elements of J for use as pivot elements assures the
best possible numeric accuracy and minimizes roundoff and truncation errors.

As pivot elements are chosen, the choices are made implicitly of which joint
variables are to be corrected; that is, which are to be the dependent joint variables
of the system. All joint variables that are solved from the Euler-Rodrigues or loop-
closure constraints become dependent variables and those that are not solvable in
this way must be independent variables; that is, they are additional generalized
coordinates.

The positions of the generalized coordinates, as we have just seen, are not solved
from the kinematic constraints – the loop-closure equations. Their positions must
be set by other factors. They may be independently set by the user, or they may
take on positions as a result of static and dynamic forces imposed on them. These
are subjects for later chapters. Either way, the joint variables in the group δφ2 are
independent and are additional generalized coordinates ψ j not originally identified
by the user. This explains why we set their “corrections” δφ2 to zero, thus leaving
them in their previously known positions.

It may seem arbitrary to choose generalized coordinates for our mechanical
system based on numeric convenience. However, it becomes clear in later chapters
that the choice of the largest pivot elements also selects those joint variables that
have the best mechanical advantage and are, in this sense, not only suitable, but
optimal choices for generalized coordinates.

We should also take careful note that the final decision on the mobility of
our mechanical system is a by-product of our iterative kinematic analysis, not a
declaration made by the user; thus, it is not subject to errors of human intuition or
judgment. The mobility of our mechanical system is

f = n − rank (J ) . (6.52)

Also, the generalized coordinates for the system come in two groups. Some of
these (δφ3), which we call specified generalized coordinates (SGC), have positions
specified by the user. We give the symbol NS to the number of SGC joint variables.
Others (δφ2), which we call free generalized coordinates (FGC), numbering NF

joint variables, are discovered by the system during the previous iteration process.
Together they give f = NF + NS total generalized coordinates – the total mobility
of the system.

Note also that the number NF of free generalized coordinates, and the choice of
joint variables representing them, are discovered anew each time our system seeks a
new posture. There is no assurance either that the number NF or the choice of vari-
ables will be the same from one system posture to another. The choice of variables for
the FGCs may change as the system posture changes. As the system moves through
a “dead-center” or other special geometry, it is very possible that even the mobility
may change because a screw axis may become linearly dependent on others, and
there may result an additional (instantaneous) degree of freedom (an FGC) at such
a posture that did not exist at the previous posture and that may not exist at the next.
This is the nature of a dead-center posture. We must be watchful for this possibility
in later phases of the analysis where it can complicate our techniques. However, this
is the physical nature of such a system; such complications can not be avoided.
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6.7 Scaling Internal Length Units

So far in this text no mention has been made of units for the various physical
quantities. This is fitting because the laws of science must hold true in spite of the
choice of units used as long as the units chosen form a consistent set. Thus, there
has been no mention of whether distance units are to be measured in inches or
millimeters or feet or meters or even light years; it should not matter as long as we
are consistent for all distance measurements.

Yet experience shows that our choice of distance unit can have a major impact
on the convergence rate and numeric accuracy of the iterative solution of the loop-
closure equations. Perhaps this is most easily understood by considering the toler-
ance used in testing for convergence. Suppose, as an example, that an automotive
suspension system is being simulated and that, in view of manufacturing tolerances,
we hope to achieve solutions accurate to ±0.050 mm. Length and distance data are
entered in millimeters and vary from quite small to perhaps 5 000 mm. Thus, we
already see five orders of magnitude difference between what we consider “large”
and “small” distances for such a problem.

However, far more insidious, suppose that the same suspension problem con-
tains a rotating arm of length 500 mm. To what accuracy must we calculate the arm’s
orientation to ensure our required distance accuracy of ±0.050 mm? Remember
that angular quantities are always treated in radians in all higher-level programming
languages; the programmer has little choice. This implies an accuracy of approxi-
mately ±0.000 1 radians for calculation of angular quantities; if the arm were longer,
the angular accuracy requirement would be even more stringent. Recalling that our
iterative solution of the loop-closure equations is used to solve for a combination
of both distance and angular unknowns among the elements of δφ, what accuracy
should be chosen in testing for convergence?

We see that there can easily be about five orders of magnitude difference
between the magnitudes of distances and angular parameters even in a very reason-
able problem. Yet a typical digital computer with 32-bit accuracy in single-precision
calculations can only carry accuracy of about six significant figures. Does this mean
that we must, or even that we should, use double-precision calculations? No! The
real problem here is the difference in magnitude of distance and angular numeric
values and the fact that they mix together in the position equations. This is a problem
of scaling, and should be treated as such. It is the opinion of these authors that most
double-precision software is not required, but is the result of lack of care by the
analyst in problem formulation. Usually, in simulating problems of the mechanical
world, numeric ill-conditioning comes from poor problem formulation, not from the
laws of mechanics.

If, when all data are first entered, we seek out the maximum and minimum
values of all posture origins and point-position coordinate data in the problem, we
can discover the limiting dimensions of the rectangular volume in which the problem
is defined. Suppose that we take the diagonal distance across this volume and define
this distance to be one internal length unit. Then, using this distance as a scale factor,
all distance units for other data can be scaled to this distance as an internal unit of
length. This ensures that all distance values in the numeric model are less than unity,
as are typical angular values that are always in radians. All numeric values are now of
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the same general magnitude. On a 32-bit computer, all calculations are now carried
out to precision of about six significant figures of meaningful accuracy with respect
to each other. When results are printed, the internal distance units are converted
back to the user’s preferred units by inverse use of the same scale factor. J. Angeles
presents an extensive review [1] of many authors’ attempts to find a “characteristic
length,” and then he proves that such a length is not possible for the general case
because it must approach zero. He concludes that a problem-dependent engineering
definition must be used instead.

With this scaling procedure in place, experience shows that position solutions
can be iterated to an accuracy tolerance of about ±0.000 01 internal units with only
a few iterations for a typical problem. For our suspension example, this is equivalent
to accuracy of approximately ±0.000 57◦ for angular values and ±0.050 mm for
distances. With this scaling procedure, the accuracy is suited to the problem at hand
without the penalties on speed and memory caused by double-precision calculations.

6.8 Quality Index

In section 6.6 we discussed how the mobility of a particular problem may change if
the system reaches a posture where some of its screw coordinates become linearly
dependent on others. We noted that a new FGC may appear as we pass through such
a posture, and then disappear again once the dependency no longer exists. Such phe-
nomena do happen in real mechanism and multibody equipment simulation. Such a
posture might be called a “dead-center” posture in one application. In another, the
problem might be said to have a poor “pressure angle.” In another, we may have
reached the “end of stroke,” and cannot move the input any further. In yet another,
we may say that the system has reached a “toggle” posture. In many different appli-
cations we may hear that a machine has either good or poor mechanical advantage.
We are not yet ready to give a precise definition to the term mechanical advantage;
this must wait for our study of force analysis. Even now, however, we can define a
general measure of how well a system is likely to serve its intended purpose.

Reviewing the Gauss-Jordan elimination method of section 6.5.3, we see that as
each pivot element is identified, these can be multiplied together and, at completion,
this product gives the determinant of the J11 portion of the Jacobian, the submatrix
that is actually inverted. We define the absolute value of this determinant as Q,
which we call the quality index of the mechanical system being simulated:

Q = |det(J11)|. (6.53)

As the name implies, this value is a general indicator of how well a system is
suited to performing its function. Its definition allows the quality index to be found
for any kinematic system at a chosen posture with a chosen set of input variables, and
it describes a qualitative measure of performance similar to many of the application-
specific terms previously named (dead-center, pressure angle, toggle, etc.).

As a system moves from one posture to another, the quality index changes. When
its value is high, that is good; when it becomes small, that is an indication that the
system is approaching a special geometry (singularity) posture where the mobility
(NF ) may change. By itself, the value of the quality index Q means nothing, and
it depends very much on scaling. However, if this value is monitored as the system
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moves, it is a good indicator of increasing or decreasing functionality of the system
for the task simulated. Note that the quality index has units of internal length units
to a power that depends on the number of distance pivot-elements selected in J11.
Experience shows, however, that its value is far more stable from one problem to
another than without scaling, and, perhaps in the future, an acceptable range of
values may be found.

We will see in coming chapters that calculation of any derivatives for our
mechanical system is done by inverting the same Jacobian matrix. When its deter-
minant becomes small, this implies that all derivative equations become nearly ill-
conditioned. When the quality index becomes small, all derivatives of the system
become doubtful together. Thus, all aspects of the system’s performance (veloc-
ity ratios, force transmission, influence of friction, positioning accuracy, effects of
manufacturing tolerances, etc.) deteriorate. When one of these degenerates, they all
decay together. This is the meaning of a dramatically decreasing value of the quality
index.

6.9 Convergence and Robustness

The iteration procedure described in this chapter was first proposed in 1963 in
[12] by the first author of this text, and it has been discussed in depth by many
for a wide variety of mechanical systems. That author has been party to many
discussions and inquiries, and has supported the use of this algorithm in commercial
software since 1970; he has shared the experiences of literally hundreds of real-world
applications. Still, there is little agreement on the merits and disadvantages of the
approach. In fact, there is so much disinformation based on opinions of those with
no first-hand experience that this issue has become one motivation for this text. The
primary concerns of critics are on issues of computational speed, rate of convergence,
robustness of the algorithm, and on the size of the largest displacement for which it
will converge.

The first of these questions, that of computational speed and rate of conver-
gence, is often raised by a critic who assumes that any “iterative” technique must
take a “large number” of iterations to converge to an acceptable precision and
will therefore be slow and impractical. That criticism simply does not apply in this
case. Numerical analysis texts show that the Newton-Raphson iteration technique,
which is the technique used here, has quadratic convergence and is often the method
of choice for solution of nonlinear equations in multiple variables because of its
rapid convergence [11, pp.100–02]. This root-finding procedure was first published
by Joseph Raphson (1648–1715) in [9]. However, historians have shown that he had
become aware of private notes of Sir Isaac Newton (1643–1727) that were written in
1671, but were not published until almost fifty years later as part of [7].

The original publication on the application of this method to mechanisms [12]
reports an example set of calculations for a single-loop 3-D linkage with six depen-
dent joint variables. The rate of convergence, taken from that example, is shown in
Table 6.1.

The convergence rate shown by this example is not a fluke; it is typical of the
authors’ fifty years of experience, even for problems with many loops and many more
unknown variables. The first iteration usually corrects all variables so that errors are
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Table 6.1 Convergence rate for an iteration process example

Joint\Iteration 1 2 3 4

2 (deg) −5.150 0 −0.163 0.000 596 0.000 001 6
3 (in) 0.001 2 −0.112 0.000 740 0.000 000 1
4 (deg) 0.302 0 0.255 −0.000 569 0.000 000 5
5 (in) −0.863 3 0.170 −0.000 748 0.000 000 2
6 (deg) −5.560 0 −0.236 0.000 537 0.000 000 1
7 (in) −0.061 5 −0.151 0.000 796 0.000 000 1

all of the same general order-of-magnitude. Later iterations improve the accuracy
of all variables simultaneously at a rate of two or three orders-of-magnitude with
each iteration. Typical problems require three or four or (rarely) five iterations to
converge to accuracy close enough for all engineering applications.

Experience shows that a problem never iterates more than six times and still
reaches a solution. Either it converges in fewer iterations or it fails to converge at all.
If it fails to converge, then either (a) it reaches the limit of the computer’s accuracy
without achieving the requested tolerance (which is probably unnecessarily small),
or (b) it diverges quickly and dramatically, giving huge correction terms that become
larger rather than smaller with each iteration.

The first difficulty – decreasing size corrections that do not reach the requested
tolerance – indicates that the requested tolerance limit is too strict for the accuracy
of the computer. The only known choices under these conditions are to relax the
requested tolerance, or to change the software to use double-precision calculations.

The second problem – divergence of the iteration process – indicates that (a) the
posture sought cannot be reached, perhaps because it is past the limit of travel that
the input can physically achieve, or that (b) the new posture is not “nearby” to the
posture from which the iteration process was started, thus defying the assumption
of our Taylor series expansion. When this is the case, an intermediate posture can
be chosen and two (or more) increments can usually be used with success.

This, of course, raises the question of how close is “nearby.” How large a change
in posture can be found with success? How near to the requested posture is required
for the estimates to assure convergence? This question is not easy to answer with a
simply applied criterion.

Once a problem is modeled at some initial posture, it is probably unwise to try
to turn an input crank by 180◦ or more in a single step; however, it is surprising how
often this may be successful. It is the authors’ experience that it is much more likely
that a solution will be found than that the iteration process will diverge. However,
when a large displacement is taken in a single step, it is also possible that a valid
numeric solution may be found, but not necessarily the solution the user expected or
intended. We must remember that multiple real solutions may exist for the nonlinear
loop-closure equations. There may be more than one configuration in which the same
multibody system can be arranged for the requested input values. However, even if
the process converges to one of these alternate solutions, this does not assure that
the real system can move continuously from one solution to the other. If the iteration
process were to converge to an alternate configuration, then it may be necessary to
disassemble the physical system and reassemble it to reach the later posture. This
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other closure may be a clearly valid solution to the loop-closure equations, but not
one that the user expected or intended.

Fortunately, the iteration process, as presented, does not switch from one closure
to another as long as the new posture is in the neighborhood of the starting posture.
This still does not answer the question, however, of “how close is nearby?” The
author has no comprehensive answer for this. It is amazingly “far” when the system
is in a “nice” posture with a good-sized value for the quality index. However, as the
quality index decreases, it is wise to reduce to smaller displacement increments if
simulated motion is to continue.

Probably the most comforting advice the authors can offer from experience
is that if a real system – one that functions well in the physical world – is being
simulated, then the increment at which the user wishes to see the results reported –
that is, the step size for printing or graphing results – will not cause a problem. This
is not very scientific, but it is an honest report of many years of experience.

The most extensive study of convergence and robustness of this iteration process
was done in 1993 by Olsen in his study [8] of its applicability to the control of a six
degree of freedom serial manipulator. His purpose was to test the validity of the
following premise [3], expressed in different ways in various texts on robotics:

We will split all proposed manipulator solution strategies into two broad classes: closed-
form solutions and numerical solutions. Because of their iterative nature, numerical
solutions generally are much slower than the corresponding closed-form solution; in fact,
so much so that for most uses, we are not interested in the numerical approach to solution
of kinematics.

Olsen’s work was done specifically on a Cincinnati-Milacron model T3-726 robotic
manipulator; however, he used Denavit-Hartenberg parameters with the iterative
solution explained here so that his software would fit any serial, mobility-six robotic
arm without reprogramming, solely by changing data.

His tests were done by starting from a variety of postures, scattered throughout
the robot workspace, and giving commands to move to other specified postures,
also chosen haphazardly. In each case, he recorded the accuracy with which the
commanded displacement was achieved after one, then two, then three iterations.
Finally, he plotted the resulting displacement accuracy versus the requested displace-
ment distance after each iteration of the algorithm. The results of these experiments
are shown in the log-log plot of Figure 6.1.

The figure shows the expected scatter that comes from experimental work.
It also shows scatter coming from differences in the quality index (conditioning
of the equations) in different parts of the workspace. However, it shows amazing
consistency in spite of very large differences in the displacement distances requested.

Figure 6.2, also taken from Olsen, shows the same information as Figure 6.1,
but with the data curve fit to reduce scatter and make the graph easier to inter-
pret. The three shaded boundaries show limitations stemming from the application
itself. The vertical shaded boundary on the right shows the full reach of the robot
workspace. The robot physically cannot move to the right of this boundary. The
horizontal shaded boundary near the bottom of the figure shows the smallest errors
distinguishable by the sensors of the robot. This boundary represents a positioning



180 Differential Kinematics and Numeric Solution of Posture Equations

100

10

1

0.1

Tr
ac

ki
ng

 E
rr

or
 (i

n)

0.01

0.001

0.0001
1001010.1

Distance: Current Point to Target Point (in)
0.010.0010.0001

After
2 Iterations

After
1 Iteration

After 0 Iterations
Tracking Error - Current to Target Distance

After
3 Iterations
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rithm iterations (copied from Olsen [8]).

accuracy limit of the robot actuators. The third (slanted) boundary shows an accu-
racy limit that comes from the design of the controller on that robot and the fact
that it interpolates instructions in joint coordinates rather than in Cartesian coordi-
nates. This boundary was established experimentally and the solid boundary shows
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the best-case data; the dashed line represents the worst-case data for this type of
error. Overall, these boundaries set some limits on what accuracy can reasonably be
expected or is meaningful for this application.

Overall, the conclusion strongly suggested by Figure 6.2 is that even though the
algorithm is iterative, the application limitations are such that it seldom, if ever,
makes sense to iterate! When we consider the context in which the algorithm is
expected to be used, we don’t need (or even want) an algorithm that takes 30-inch
displacement increments. In analysis applications, we usually want results printed or
plotted at much smaller intervals. In a control system, the controller and its algorithm
usually requires much smaller increments. Thus, in general, our “iterative” algorithm
will usually not need to iterate to achieve an appropriate accuracy for the situation.

Olsen also addresses the question of computational speed, and whether this
provides a real limitation on the use of the numeric solution algorithm. He quotes
[3] as follows:

In many path control schemes . . . it is necessary to calculate the inverse kinematics of a
manipulator at fairly high rates, for example 30 Hz or faster. Therefore, computational
efficiency is an issue. These speed requirements rule out the use of numerical solution
techniques which are iterative in nature, and for this reason, we have not considered
them here.

Using this figure of 30 Hz as a guide, Olsen timed his own (iterative) software
running on different microprocessors of that time (1993) with different clock speeds.
Using a computer based on the Intel 386 microprocessor chip with a clock speed
of 20 MHz, his algorithm ran at 67 Hz for a single iteration per posture, or 34 Hz
when two iterations per posture were used. Using the same code on a computer
with an Intel 486 chip and a clock speed of 66 MHz, these rates became 620 Hz for
a single iteration per posture, and 310 Hz for two iterations per posture. We note
that these tests were done on computer chips of the early 1990s and all were faster
than the rate cited in [3] at that time; some were more than an order of magnitude
faster.

Although Olsen’s experiments and conclusions are all based on a particular
application – the control of a specific manipulator through the performance of a
chosen task – his arguments and his conclusions are applicable to an amazing range
of problems. Critics of the iterative approach to kinematic analysis have claimed
for many years that such a method suffers from problems in convergence and is
too inefficient for effective engineering use. Yet criticisms always come from those
who have no first-hand experience and no counter-examples are offered with data
comparable to Olsen’s study. Software operating on desktop microprocessor systems
today show that iteration can be a very effective method, and operates far faster than
the analyst can read or digest results.
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PROBLEMS

6.1 Continue from the results of problems 4.4 and 5.3 to find the following:

a) Form the Qh derivative operator matrix for each joint.
b) Form the Dh derivative operator matrix for each joint as a function of ψ .

6.2 Continue from the results of problem 6.1 as follows:

a) Form the Jacobian matrix J as a function of ψ .
b) Rearrange the rows and columns of the Jacobian matrix J and identify J11

and J12.
c) Find the determinant and inverse of J11.

6.3 Prove Eq. (6.3) for the small displacement of the inverse transformation matrix
as shown in section 6.2.

6.4 Continue from the results of problems 4.5 and 5.5 to find the following:

a) Form the Qh derivative operator matrix for each joint.
b) Form the Dh derivative operator matrix for each joint as a function of ψ .

6.5 Continue from the results of problem 6.4 as follows:

a) Form the Jacobian matrix J as a function of ψ .
b) Rearrange the rows and columns of the Jacobian matrix J and identify J11

and J12.
c) Find the determinant and inverse of J11.

6.6 For the Stanford manipulator of example 5.6, derive the Jacobian matrix relating
differential joint displacements to the differential displacement of an end-effector
coordinate system attached at the wrist center point.



7 Velocity Analysis

7.1 Introduction

In Chapter 3 we defined the words position and posture as the terms that tell “where”
an item is. Depending on the “item,” we find it convenient to use a Cartesian
coordinate system as a global reference and we choose homogeneous coordinates
to define the position of a point. We use the (4 × 4) transformation matrix T0b to
represent the posture of a rigid body, and we refer to “posture” to emphasize that
we include both the orientation of the body as well as the location of a reference
point. The posture of a mechanism or multibody system can usually be described
by a vector of generalized coordinates ψ equal in number to the mobility of the
system. However, because it is sometimes possible that a system can be assembled
in more than one way for identical values of the generalized coordinates, we choose
to represent the posture of a system by the vector φ that explicitly includes all of the
joint variables.

In Chapter 3 we defined the term displacement as the change in position or
posture of a point, a joint variable, a rigid body, or a system. Then, in Chapter 6, we
showed how the concept of differential displacement leads naturally to the derivative
of position or posture. We defined the very powerful derivative operator matrices,
Qh and Dh, to make the process of numeric differentiation both easy and precise.
However, a quick review shows that derivatives are taken first with respect to a
changing joint variable value because these are the variables on which the joint
transformation matrices explicitly depend. Little is said about the fact that, in most
mechanisms or multibody systems, many joint variables change simultaneously.

Because we wish to study motion, perhaps we should now identify what is meant
by the word motion. A motion is not just any haphazard set of positions or postures.
In a mechanical system, a motion is a systematic or orderly sequence of positions or
postures of a point, joint, body, or system that results in accordance with the laws of
mechanics.

From the beginning we have recognized the simultaneous change of many vari-
ables and we carefully identify the mobility f of our system as its number of indepen-
dent degrees of freedom. We even choose a particular subset of the n joint variables
φ, the generalized coordinates ψ , which we agree are to represent the independent
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variables. Still, we say little about the ordering or about the relative sizes of changes
in these generalized coordinates.

Ultimately, we must also ask where time enters into our problem or, for that
matter, what is the definition and meaning of time? This is a deep question that
has challenged philosophers throughout history. However, for the purposes of this
text, we say that time is defined by the symbol t and it is the ultimate independent
variable by which the order of events in nature is enumerated. It is a continuous
scalar variable that is always positive and that increases as events occur. Time is
physically measured by a clock and, in multibody and mechanical system dynamics,
is usually measured in units of seconds.

7.2 Definition of Velocity

The term velocity is defined as the time rate of change of position or posture. Just as
the positions or postures of different items have different sets of coordinates, so too
do their velocities.

The velocity of a point, for example, is the time rate of change of its position.
Because we find it convenient to use homogeneous coordinates to express the posi-
tion of a point, we define the absolute velocity of a point by taking the time derivative
of Eq. (5.9)

Ṙ = dR
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dRx0

dt

dRy0

dt

dRz0

dt

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.1)

where Rx0 , Ry0 , Rz0 are the point’s global Cartesian coordinates.
The velocity of body b is given by

Ṫ0b = dT0b

dt
, (7.2)

which may require the time derivative of its Ball vectors or screw coordinates. More
will be said about this shortly.

The (relative) velocities of joint variables are found from the time derivative of
Eq. (5.2)

φ̇ = dφ
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̇1

φ̇2

...

φ̇n

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7.3)
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where the velocities within any individual joint are given by the time derivatives of
the individual variables of the joint:

φ̇h = dφh

dt
=

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̇1
h

φ̇2
h

...

φ̇
fh
h

⎤
⎥⎥⎥⎥⎥⎥⎦

, h = 1, 2, . . . ,n. (7.4)

The velocity of the total system is fully defined by its vector of generalized
velocities that are the time derivatives of the vector of generalized coordinates.
Taking the time derivative of Eq. (5.1) we find

ψ̇ = dψ
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ̇1

ψ̇2

...

ψ̇ f

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7.5)

It is true that φ̇ of Eq. (7.3) also fully defines the velocity of the system, and may
better fit as the system velocity definition because we chose φ to represent the system
position. This is not necessary, however, because there is no ambiguity in velocity
for a chosen closure. We will have need for both ψ̇ and φ̇.

Once the independent motions are known, the motions of the dependent joint
variables are dictated by the motions of the generalized coordinates. They are explicit
functions of the generalized coordinates

φ = φ(ψ), (7.6)

and through these, they become implicit functions of time. Similarly, the motions
of bodies and points are explicit functions of the generalized coordinates and only
implicitly, through them, become functions of time. It is important to understand
this hierarchy as we proceed.

Of course, for each of these velocity quantities we will need a good operational
strategy for numerically finding the indicated derivatives. These methods, which first
appeared in [1], are the subject of this chapter. Before going into detail, however,
we should recognize that, ultimately, time is the underlying independent variable for
all. The f generalized coordinates, both the NS specified generalized coordinates
and the NF free generalized coordinates, are explicit functions of time:

ψ = ψ(t). (7.7)

The SGC motions are directly specified by the analyst, and the FGC motions
are found by the laws of mathematics and mechanics, but all are explicit functions of
time. Finding the FGC motions becomes the primary objective of Chapters 12, 13,
14, and 16.
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7.3 First Geometric Derivatives of Joint Variables

Thinking of this hierarchy of dependency, let us first find derivatives of the joint vari-
ables with respect to the generalized coordinates, on which they depend explicitly.
We call these first geometric derivatives, and we use a prime notation with subscripts
as the symbolism. For a joint that has more than a single joint variable, a superscript
may also be required:

φ′
h, j = ∂φh

∂ψ j
,

h = 1, 2, . . . ,n,

j = 1, 2, . . . , f.
(7.8)

How will we find these first geometric derivatives? Well, if we differentiate
the kinematic loop-closure equations with respect to generalized coordinate ψ j, we
recognize that the loops depend directly on the joint variables and we write

∂T00

∂ψ j
=

n∑
h=1

∂T00

∂φh
φ′

h, j = 0, j = 1, 2, . . . , f.

Next, from Eq. (6.16), we utilize the Dh derivative operator matrices to get

n∑
h=1

L (i,h)Dhφ
′
h, jT00 = 0,

i = 1, 2, . . . ,NL,

j = 1, 2, . . . , f.

In the case of a multi-variable joint h, multiple terms and superscripts are
required. If joint h is a spheric joint, for example, then

Dhφ
′
h, j = D1

hφ
′1
h, j + D2

hφ
′2
h, j + D3

hφ
′3
h, j + D4

hφ
′4
h, j.

Now we recognize that T00 = I and we eliminate redundancy by replacing each
(4 × 4) Dh matrix by its equivalent (6 × 1) vector of screw coordinates

n∑
h=1

L(i,h)D̂hφ
′
h, j = 0,

i = 1, 2, . . . ,NL,

j = 1, 2, . . . , f,
(7.9)

with an additional constraint equation of the form

2φ1
hφ

′1
h, j + 2φ2

hφ
′2
h, j + 2φ3

hφ
′3
h, j + 2φ4

hφ
′4
h, j = 0, j = 1, 2, . . . , f , (7.10)

for each spheric joint in the system, and another of the form

2φ4
hφ

′4
h, j + 2φ5

hφ
′5
h, j + 2φ6

hφ
′6
h, j + 2φ7

hφ
′7
h, j = 0, j = 1, 2, . . . , f, (7.11)

for each open joint in the system – a total of NC constraint equations, which come
from taking derivatives of Eqs. (4.17) and (4.24) with respect to generalized coordi-
nate ψ j.

Because these equations are of the same form as Eqs. (6.42), (6.43), and (6.44),
we can now write, similar to the form of Eq. (6.45), that

Jφ′ = 0, (7.12)

where J is the same [(6NL + NC ) × n] Jacobian matrix that resulted at convergence
of the numeric iteration process of section 6.5, and φ ′ is the (n × f) matrix of first
geometric derivatives φ′

h, j defined in Eq. (7.8).
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Reviewing the numeric iteration process of section 6.5.3, we recall that the
modified pivoting scheme used there has reordered the joint variables so that all
dependent joint variables are numbered first, followed by the FGC variables, and
finally by the SGC variables. Recognizing that both the FGC and the SGC vari-
ables have been accepted as the generalized coordinates ψ , we see that they are
independent of each other by definition. Therefore, the φ′ matrix must be of the
form

φ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1

∂ψ1

∂φ1

∂ψ2
· · · ∂φ1

∂ψ f

∂φ2

∂ψ1

∂φ2

∂ψ2
· · · ∂φ2

∂ψ f

· · · · · · · · · · · ·
∂φn− f

∂ψ1

∂φn− f

∂ψ2
· · · ∂φn− f

∂ψ f

−−−−−−−−−−−−−−−−
1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
φ′

dep

I

]
, (7.13)

where φ′
dep is an [(n−f) × f ] submatrix of the dependent first geometric derivative

values.
Once we recognize this form for φ′, we return to Eq. (7.12) and subdivide the

Jacobian into compatible size submatrices:

[Jdep Jind]

[
φ′

dep−−−
I

]
= 0.

However, remembering Eq. (6.50), we see that this is the same subdivision
that resulted from the modified Gauss-Jordan elimination process of section 6.5.3.
Reverting to the notation of Eq. (6.50), we have[

J11 J12 J13

J21 J22 J23

][
φ′

dep−−−
I

]
= 0,

and, after the elimination process is complete, these equations are reduced to the
form [

I J −1
11 J12 J −1

11 J13

0 0 0

][
φ ′

dep−−−
I

]
= 0,

which has for its solution

φ′
dep = − [

J −1
11 J12 J −1

11 J13

]
. (7.14)

Thus, we see that there is absolutely no calculation left to be done. Once the
numeric iteration process of section 6.5 has converged to a solution, the φ′

dep matrix
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of first geometric derivatives of Eq. (7.13) can be copied directly from the top-
right corner of the Gauss-Jordan row-reduced form of the J matrix, requiring only
negation and augmentation by an ( f × f) identity matrix. This is a very useful and
“free” by-product of our numeric iteration process.

These first geometric derivatives are not velocities, even though they are some-
times referred to in this manner. They are rates of change of the dependent joint
variables with respect to changes of the generalized coordinates. Time is not included
in them and they typically have units such as radians per radian. They represent
totally geometric information and are functions of ψ alone. They are very impor-
tant, however, and arise frequently in our coming work.

EXAMPLE 7.1 To illustrate the process, let us continue the analysis of the Cardan/
Hooke universal joint started in example 5.1. From that example, we have
already found solutions for the positions of all joint variables and the trans-
formation matrices of the various bodies. From those, we find the derivative
operator matrices for each of the joints. Entries are converted to functions of
the generalized coordinate ψ alone by use of the position solutions. After a bit
of algebra, these are

DA =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 −1 0

0 1 0 −h

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

DB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
cosψ√

1 − sin2β sin 2ψ

−cosβ sinψ√
1 − sin2β sin 2ψ

−hcosψ√
1 − sin2β sin 2ψ

−cosψ√
1 − sin2β sin 2ψ

0 0 0

cosβ sinψ√
1 − sin2β sin 2ψ

0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

DC =

⎡
⎢⎢⎢⎢⎢⎣

0 cosβ sinψ cosψ −hcosβ sinψ

−cosβ sinψ 0 −sinβ sinψ 0

−cosψ sinβ sinψ 0 −hsinβ sinψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

DD =

⎡
⎢⎢⎢⎢⎢⎣

0 −sinβ 0 hsinβ

sinβ 0 −cosβ 0

0 cosβ 0 −hcosβ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .
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Next, we formulate the terms of Eq. (7.12):

Jφ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−hcosψ√

1 − sin2β sin 2ψ
−hcosβ sinψ hsinβ

0 0 0 0

−h 0 −hsinβ sinψ −hcosβ

1 0 sinβ sinψ cosβ

0
−cosβ sinψ√

1 − sin2β sin 2ψ
cosψ 0

0
−cosψ√

1 − sin2β sin 2ψ
−cosβ sinψ sinβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

φ′
A,1

φ′
B,1

φ′
C,1−−

φ′
D,1

⎤
⎥⎥⎥⎥⎥⎦ = 0.

Recognizing that the first and third rows of coefficients are simply h multiples
of the sixth and negative fourth rows, respectively, and that because ψ1 = φD,
we have φ′

D,1 = 1. Therefore, the first three equations are equivalent to the lower

[ J21 J22 J23 ] portion of the Jacobian and can be dropped. Those remaining
can be rearranged into the form⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 sinβ sinψ

0
−cosβ sinψ√

1 − sin2β sin 2ψ
cosψ

0
−cosψ√

1 − sin2β sin 2ψ
−cosβ sinψ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣φ′

A,1

φ′
B,1

φ′
C,1

⎤
⎥⎦ =

⎡
⎢⎣−cosβ

0
−sinβ

⎤
⎥⎦ .

The resulting solution for the first geometric derivatives is

⎡
⎢⎢⎢⎣

φ′
A,1

φ′
B,1

φ′
C,1− −

φ′
D,1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cosβ
1 − sin2β sin 2ψ

sinβ cosψ√
1 − sin2β sin2ψ

sinβ cosβ sinψ

1 − sin2β sin 2ψ

−− − − − − −−
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can also be noted that the quality index, from Eq. (6.53), is

Q = |det(J11)| =
√

1 − sin2β sin 2ψ,

and that its value remains in the range (|cos β| ≤ Q ≤ 1.00). Because the
denominators of these geometric derivatives are either Q or Q2, there should
be no difficulty in the operation of the device or in the numeric evaluation of
these geometric derivatives for reasonable values of β.

7.4 Velocities of Joint Variables

The (relative) velocities of the joint variables, as shown by Eq. (7.3), can be found
in any of three ways. If we wish to do hand calculations, the expressions found for
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the positions of the joint variables can be directly differentiated analytically. This
approach, however, is highly susceptible to human error and is not easily adapted to
computer solution. The second approach is to differentiate the loop-closure equa-
tions with respect to time, as we will see later. The third approach is to take advantage
of the first geometric derivatives. Remembering the hierarchy of dependencies, we
write

φ̇h = dφh

dt
=

f∑
j=1

∂φh

∂ψ j

dψ j

dt
=

f∑
j=1

φ′
h, jψ̇ j, h = 1, 2, . . . ,n, (7.15)

which can be written in matrix form as

φ̇ = φ′ψ̇. (7.16)

Here we see that all dependent joint velocities vary linearly with the generalized
velocities. They are nonlinear functions of ψ , however, through the first geometric
derivatives.

As previously mentioned, we can differentiate the loop-closure equations with
respect to time. From Eq. (6.16) we get

n∑
h=1

L(i,h)DhT00φ̇h = 0, i = 1, 2, . . . ,NL,

where, again, in the case of a multi-variable joint h, multiple terms and superscripts
are required. If joint h is a spheric joint, for example, then

Dhφ̇h = D1
hφ̇

1
h + D2

hφ̇
2
h + D3

hφ̇
3
h + D4

hφ̇
4
h.

After recognizing that T00 = I, we eliminate redundancy by replacing each Dh

matrix by its equivalent (6 × 1) vector of screw coordinates
n∑

h=1

L(i,h)D̂hφ̇h = 0, i = 1, 2, . . . ,NL, (7.17)

with an additional constraint equation of the form

2φ1
hφ̇

1
h + 2φ2

hφ̇
2
h + 2φ3

hφ̇
3
h + 2φ4

hφ̇
4
h = 0,

for each spheric joint, and another of the form

2φ4
hφ̇

4
h + 2φ5

hφ̇
5
h + 2φ6

hφ̇
6
h + 2φ7

hφ̇
7
h = 0,

for each open joint in the system, thereby creating a total of NC constraint equations,
which come from taking derivatives of Eqs. (4.17) and (4.24) with respect to time.

Then, just as with first geometric derivatives in Eq. (7.12), like Eq. (6.42), we see
that

J φ̇ = 0. (7.18)

Recognizing that the highest numbered f of these joint variable velocities are
the generalized coordinate velocities, these equations can be written as⎡

⎣J11 J12 J13−− − − − − −−
J21 J22 J23

⎤
⎦[

φ̇dep

ψ̇

]
= 0
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and can then be solved as was Eq. (7.12):

φ̇dep = − [
J −1

11 J12 J −1
11 J13

]
ψ̇ = φ′

depψ̇. (7.19)

However, this is identical with Eq. (7.16) and shows no new advantages.

EXAMPLE 7.2 Let us continue the analysis of the Cardan/Hooke universal joint
of example 7.1. If the input shaft is driven at a rate of φ̇D = ψ̇ , then let us find
the velocities of the other joint variables. These are given directly by Eq. (7.16)
and the first geometric derivatives found in example 7.1:

φ̇ =

⎡
⎢⎢⎢⎢⎣

φ̇A

φ̇B

φ̇C

φ̇D

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cosβ
1 − sin2β sin2ψ

ψ̇

sinβ cosψ√
1 − sin2β sin2ψ

ψ̇

sinβ cosβ sinψ

1 − sin2β sin2ψ
ψ̇

−− − − − − −−
ψ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

7.5 First Geometric Derivatives of Body Postures

As with joint variables, before we find the time derivative of the posture of a body,
it is wise to consider the hierarchy of dependencies involved. We recall that the
posture of body number b with respect to ground is described by its transformation
matrix T0b. Because this is made up of a series of products of shape matrices Sbh and
joint matrices Φh(φh), the only variables in the T0b matrix are the joint matrices Φh,
which are functions of the joint variables φh. These joint variables are functions of
the generalized coordinates ψ j that, in turn, are functions of time, t.

Therefore, let us take derivatives with respect to each level of the hierarchy in
turn. From Eq. (6.16), we have

∂T0b

∂φh
= P (b,h)DhT0b,

b = 1, 2, . . . , 	,

h = 1, 2, . . . ,n.

Next, let us find the derivative of T0b with respect to a generalized coordinate
ψ j. Because there may be several joints on the path from ground to body b,

∂T0b

∂ψ j
=

n∑
h=1

∂T0b

∂φh

∂φh

∂ψ j
,

b = 1, 2, . . . , 	,

j = 1, 2, . . . , f.

However, in view of the previous equation and Eq. (7.8), this becomes

∂T0b

∂ψ j
=

n∑
h=1

P (b,h)DhT0bφ
′
h, j,

b = 1, 2, . . . , 	,

j = 1, 2, . . . , f,

where, in the case of a multi-variable joint h, multiple terms and superscripts are
required. If joint h is a spheric joint, for example, then

Dhφ
′
h, j = D1

hφ
′1
h, j + D2

hφ
′2
h, j + D3

hφ
′3
h, j + D4

hφ
′4
h, j.
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This particular form arises so often in coming developments that we find it
convenient to define another symbol as follows:

Wb, j =
n∑

h=1

P (b,h)Dhφ
′
h, j,

b = 1, 2, . . . , 	,

j = 1, 2, . . . , f,
(7.20)

so that the previous equation reduces to

∂T0b

∂ψ j
= Wb, jT0b,

b = 1, 2, . . . , 	,
j = 1, 2, . . . , f.

(7.21)

Studying the form of Eq. (7.20), we see that it is a weighted sum of Dh operator
matrices, weighted by the relative rates of change of each joint variable along the
path from ground to body b with respect to the change of generalized coordinate ψ j.
One immediate conclusion is that, because P(b, h) and φ′

h, j are both scalar factors,
the screw coordinate pattern of the Qh and Dh matrices is also preserved in the Wb,j

operator matrices.
The six independent elements of Wb,j define the instantaneous helical motion of

body b with respect to a change of one generalized coordinate, ψ j. Note that the six
elements can be interpreted geometrically as an instantaneous screw axis, uniquely
oriented and located in the global coordinate system as discussed in section 6.4, and
scaled in size to show the rate of the helical movement of body b with respect to a
change in generalized coordinate ψ j.

Note how, in Eq. (7.20), Wb,j is found by summing the contributions of the
relative rates of change of the joint variables along the path from ground to body b.
However, once these are summed, we have the rate of change of the posture of body
b with respect to ground. Note also that Eq. (7.21) answers our earlier question of
how the motions of several joint variables that change simultaneously combine to
fully describe the motion of a particular body.

EXAMPLE 7.3 Let us now continue the analysis of the Cardan/Hooke universal
joint of example 5.1 and example 7.1, and find the geometric derivative operator
matrices Wb,j for each of its bodies.

From Example 7.1 we have

DA=

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 −h
0 0 0 0

⎤
⎥⎥⎥⎦ ,

DB=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
cosψ√

1−sin2β sin2ψ

−cosβ sinψ√
1−sin2β sin 2ψ

−hcosψ√
1−sin2β sin2ψ

−cosψ√
1−sin2β sin2ψ

0 0 0

cosβ sinψ√
1−sin2β sin2ψ

0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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DC =

⎡
⎢⎢⎢⎣

0 cosβ sinψ cosψ −hcosβ sinψ

−cosβ sinψ 0 −sinβ sinψ 0
−cosψ sinβ sinψ 0 −hsinβ sinψ

0 0 0 0

⎤
⎥⎥⎥⎦ ,

DD =

⎡
⎢⎢⎢⎣

0 −sinβ 0 hsinβ

sinβ 0 −cosβ 0
0 cosβ 0 −hcosβ
0 0 0 0

⎤
⎥⎥⎥⎦ ,

and

⎡
⎢⎢⎢⎣

φ′
A,1

φ′
B,1

φ′
C,1− −

φ′
D,1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cosβ
1 − sin2β sin 2ψ

sinβ cosψ√
1 − sin2β sin2ψ

sinβ cosβ sinψ

1 − sin2β sin 2ψ−− − − − − −−
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With these, we use Eq. (7.20) to find

W1,1 = DAφ′
A,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0
cosβ

1 − sin2β sin 2ψ
0

0
−cosβ

1 − sin2β sin2ψ
0

hcosβ
1 − sin2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W2,1 = W1,1 + DBφ
′
B,1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−hsinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cos 2ψ

1 − sin 2β sin 2ψ
0

cosβ

1 − sin 2β sin 2ψ
0

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−cosβ

1 − sin 2β sin 2ψ
0

hcosβ

1 − sin 2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W3,1 = W2,1 + DCφ
′
C,1 =

⎡
⎢⎢⎢⎣

0 sinβ 0 −hsinβ

−sinβ 0 cosβ 0
0 −cosβ 0 hcosβ
0 0 0 0

⎤
⎥⎥⎥⎦ ,

W4,1 = W3,1 + DDφ′
D,1 = 0.

Note that W4,1 becoming zero confirms that no point of the frame, body 4,
moves when the input shaft is rotated.
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7.6 Velocities of Bodies

In Eq. (7.2) we defined the velocity of a body with respect to the global reference
frame to be the time derivative of its transformation matrix:

Ṫ0b = dT0b

dt
, b = 1, 2, . . . , 	.

From Eq. (6.16), we have

∂T0b(φh)

∂φh
= P(b,h)DhT0b(φh),

b = 1, 2, . . . , 	,
h = 1, 2, . . . ,n.

Therefore, employing chain-rule differentiation, we write

Ṫ0b =
n∑

h=1

∂T0b

∂φh

dφh

dt

=
n∑

h=1

P(i,h)DhT0iφ̇h, b = 1, 2, . . . , 	.

Following the lead of the previous section, we now define yet another derivative
operator matrix

ωb =
n∑

h=1

P(b,h)Dhφ̇h, b = 1, 2, . . . , 	. (7.22)

As shown previously, in the case of a multi-variable joint h, multiple terms and
superscripts are required. If joint h is a spheric joint, for example, then

Dhφ̇h = D1
hφ̇

1
h + D2

hφ̇
2
h + D3

hφ̇
3
h + D4

hφ̇
4
h.

From these equations we can write

Ṫ0b = ωbT0b, b = 1, 2, . . . , 	. (7.23)

By substituting Eq. (7.15) into Eq. (7.22), we find

ωb =
n∑

h=1

P(b,h)Dh

f∑
j=1

φ′
h, jψ̇ j, b = 1, 2, . . . , 	,

which can be rearranged to read

ωb =
n∑

h=1

f∑
j=1

P(b,h)Dhφ
′
h, jψ̇ j, b = 1, 2, . . . , 	,

and, comparing this with Eq. (7.20), we find that

ωb =
f∑

j=1

Wb, jψ̇ j, b = 1, 2, . . . , 	. (7.24)

This latest formula is simply another way of computing the ωb matrices for the
various bodies. Whether Eq. (7.22) or (7.24) should be used depends totally on
convenience.
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EXAMPLE 7.4 Continuing Example 7.3, the ωb matrices for each of the bodies of
a Cardan/Hooke universal shaft coupling are easily found by Eq. (7.24):

ω1 = W1,1ψ̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0
cosβ

1 − sin 2β sin 2ψ
ψ̇ 0

0
−cosβ

1 − sin2β sin2ψ
ψ̇ 0

hcosβ
1 − sin 2β sin 2ψ

ψ̇

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ω2 = W2,1ψ̇

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sinβ cos 2ψ

1 − sin 2β sin 2ψ
ψ̇

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ
ψ̇

−hsinβ cos 2ψ

1 − sin 2β sin 2ψ
ψ̇

−sinβ cos 2ψ

1 − sin 2β sin 2ψ
ψ̇ 0

cosβ

1 − sin 2β sin 2ψ
ψ̇ 0

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ
ψ̇

−cosβ

1 − sin 2β sin 2ψ
ψ̇ 0

hcosβ

1 − sin 2β sin 2ψ
ψ̇

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ω3 = W3,1ψ̇ =

⎡
⎢⎢⎢⎣

0 sinβψ̇ 0 −hsinβψ̇

−sinβψ̇ 0 cosβψ̇ 0
0 −cosβψ̇ 0 hcosβψ̇
0 0 0 0

⎤
⎥⎥⎥⎦ ,

ω4 = W4,1ψ̇ = 0.

7.7 First Geometric Derivatives of Point Positions

We recall from Eq. (4.2) that the global position of a point attached to body b is
given by

Rb = T0brb, b = 1, 2, . . . , 	.

Now, because the point is attached to body b, which remains rigid, the point’s
local coordinates rb are constants. The transformation matrix T0b for body b, how-
ever, is a function of the joint matrices along its path, which are functions of the joint
variables φh, and these are functions of the generalized coordinates ψ j that, in turn,
are functions of time.

Derivatives of our point’s position with respect to a single joint variable on its
path are found by Eq. (6.15). In this section, we wish to find the derivative of the
global position of our point with respect to the generalized coordinate ψ j. Using
Eq. (7.21) to differentiate the previous position equation and remembering that rb

is constant, we get

R′
b, j = ∂Rb

∂ψ j
= Wb, jT0brb = Wb, jRb,

b = 1, 2, . . . , 	,
j = 1, 2, . . . , f.

(7.25)
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7.8 Velocities of Points

Equation (7.1) defines the velocity of a point as the time derivative of its global
position. Using chain-rule differentiation we get

Ṙb = dRb

dt
=

f∑
j=1

∂Rb

∂ψ j

dψ j

dt
=

f∑
j=1

R′
b, jψ̇ j, b = 1, 2, . . . , 	.

Then, by Eq. (7.25), this becomes

Ṙb =
f∑

j=1

Wb, jRbψ̇ j, b = 1, 2, . . . , 	, (7.26)

and according to Eq. (7.24),

Ṙb = ωbRb, b = 1, 2, . . . , 	. (7.27)

Thus, we see that the same derivative operator matrices found for taking either
geometric or time derivatives of body postures are also used for differentiating point
positions.
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PROBLEMS

7.1 Continue from the results of problems 6.1 and 6.2 as follows:

a) Form the matrix of first geometric derivatives of the joint variables.
b) Form the matrix of first time derivatives of the joint variables.
c) Form the first geometric derivative operator matrix Wb,j for each body.
d) Form the velocity operator matrix ωb for each body.

7.2 Continue from the results of problems 6.4 and 6.5 as follows:

a) Form the matrix of first geometric derivatives of the joint variables.
b) Form the matrix of first time derivatives of the joint variables.
c) Form the first geometric derivative operator matrix Wb,j for each body.
d) Form the velocity operator matrix ωb for each body.

7.3 Consider the double Cardan/Hooke joint of problem 5.8. Derive the equation
for the velocity ratio of the output to input shafts and show that this mechanism is a
constant velocity coupling.



8 Acceleration Analysis

8.1 Definition of Acceleration

The term acceleration is defined as a time rate of change of velocity. The acceleration
of a point, for example, is the time rate of change of the velocity of that point. Because
we find it convenient to use homogeneous coordinates to express the position and
velocity of a point, we define the absolute acceleration of a point by taking the time
derivative of its absolute velocity from Eq. (7.1):

R̈ = d2R
dt2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2Rx0

dt2

d2Ry0

dt2

d2Rz0

dt2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.1)

where Rx0 , Ry0 , Rz0 are the point’s global Cartesian coordinates.
Consistent with our description of the velocity of body b in Eq. (7.2), the accel-

eration of body b is given by

T̈0b = d2T0b

dt2
, b = 1, 2, . . . , 	, (8.2)

that may require the second time-derivative of its screw coordinates. More will be
said on this shortly.

The accelerations of joint variables are the time derivatives of their velocities.
From the time derivative of Eq. (7.3) we have

φ̈ = d2φ

dt2
=

⎡
⎢⎢⎢⎢⎣

φ̈1

φ̈2
...
φ̈n

⎤
⎥⎥⎥⎥⎦ , (8.3)
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where the accelerations within an individual joint are given by the second time-
derivatives of the individual motion variables of that joint. That is

φ̈h = d2φh

dt2
=

⎡
⎢⎢⎢⎢⎢⎣

φ̈1
h

φ̈2
h
...

φ̈
fh
h

⎤
⎥⎥⎥⎥⎥⎦ . (8.4)

The acceleration of a complete mechanism or multibody system is defined by
its vector of generalized accelerations that are the time derivatives of the vector of
generalized velocities. From the time derivative of Eq. (7.5) we find

ψ̈ = d2ψ

dt2
=

⎡
⎢⎢⎢⎢⎢⎣

ψ̈1

ψ̈2
...

ψ̈ f

⎤
⎥⎥⎥⎥⎥⎦ . (8.5)

It is true that φ̈ of Eq. (8.3) also fully defines the accelerations of a mechanical
system, and may be better fit as the system acceleration definition because we defined
φ to represent the system posture. This is not necessary, however, because there is
no ambiguity in accelerations coming from multiple closures. We will have need for
both φ̈ and ψ̈ .

Of course, to solve acceleration problems by hand calculation, we can proceed
by directly differentiating with respect to time the velocity equations found in Chap-
ter 7. However, recalling that we are seeking a numeric method suited to digital
computation, we prefer to recall from section 7.2 that kinematic quantities are found
as functions of the joint variables φ that are functions of the generalized coordinates
ψ , and that these, in turn, are functions of time. The methods of subsequent sections
were first published as [1].

8.2 Derivatives of the Qh Operator Matrices

Because we will use chain-rule differentiation, we first seek the derivatives of our
Qh derivative operator matrices. Reviewing section 6.3, we recall that several of the
Qh matrices contain only zeroes and ones because their instantaneous screw axes
and Ball vectors remain constant in the coordinate system of the body preceding the
joint. However, for some of the joints, the instantaneous screw axes or Ball vectors
are not constant, but vary with changes of the joint variables. Thus, we need to seek
out formulae for derivatives of each of the Qh operators with respect to each of the
joint variables on which it depends. In general, remembering that a joint h may have
more than one joint variable, these are of the form

∂Qg
h

∂φi
h

= Q′g,i
h ,

h = 1, 2, . . . ,n,

g, i = 1, 2, . . . , fh.
(8.6)



8.2 Derivatives of the Qh Operator Matrices 199

The derivative of Qg
h with respect to a generalized coordinate ψ j, therefore, is

given by

∂Qg
h

∂ψ j
=

fh∑
i=1

Q′g,i
h φ′i

h, j,

h = 1, 2, . . . ,n,

g = 1, 2, . . . , fh,

j = 1, 2, . . . , f.

(8.7)

However, as we have done above, we will often write this with the reduced symbolism

∂Qg
h

∂ψ j
= Q′g

h φ
′
h, j,

h = 1, 2, . . . ,n,

g = 1, 2, . . . , fh,

j = 1, 2, . . . , f.

The derivative of Qg
h with respect to time is

dQg
h

dt
=

fh∑
i=1

Q′g,i
h φ̇i

h,
h = 1, 2, . . . ,n,

g = 1, 2, . . . , fh.
(8.8)

Again, in the interest of brevity, we will often write this in the reduced symbolism,

dQg
h

dt
= Q′g

h φ̇h,
h = 1, 2, . . . ,n,

g = 1, 2, . . . , fh.

Because the form of Q′g,i
h depends on the type of joint in question, we must seek

these out separately for each of the joint types.

8.2.1 Helical (Screw) Joint

A helical joint has only one joint variable and its Qh operator matrix consists entirely
of constants. Thus,

Q′
h = 0. (8.9)

8.2.2 Revolute Joint

A revolute joint also has only one joint variable and its Qh operator matrix also
consists entirely of zeroes and ones. Thus,

Q′
h = 0. (8.10)

8.2.3 Prismatic Joint

A prismatic joint also has only one joint variable and its Qh operator matrix also
consists entirely of zeroes and ones. Thus,

Q′
h = 0. (8.11)
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8.2.4 Cylindric Joint

A cylindric joint has two joint variables, and both of its Qi
h operator matrices consist

entirely of zeroes and ones. Thus,

Q′1,1
h = Q′1,2

h = Q′2,1
h = Q′2,2

h = 0. (8.12)

8.2.5 Spheric Joint

A spheric joint has four Euler-Rodrigues parameters as joint variables and the forms
of the four Qg

h operator matrices are given in Eqs. (6.22). Differentiating these, we
find

Q′1,1
h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ , Q′1,2

h =

⎡
⎢⎢⎣

0 2 0 0
−2 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′1,3
h =

⎡
⎢⎢⎣

0 0 2 0
0 0 0 0

−2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′1,4

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 −2 0
0 2 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′2,1
h =

⎡
⎢⎢⎣

0 −2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′2,2

h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′2,3
h =

⎡
⎢⎢⎣

0 0 0 0
0 0 2 0
0 −2 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′2,4

h =

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′3,1
h =

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′3,2

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 −2 0
0 2 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′3,3
h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ , Q′3,4

h =

⎡
⎢⎢⎣

0 −2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′4,1
h =

⎡
⎢⎢⎣

0 0 0 0
0 0 2 0
0 −2 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′4,2

h =

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′4,3
h =

⎡
⎢⎢⎣

0 2 0 0
−2 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′4,4

h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ . (8.13)
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In addition, each spheric joint has a constraint equation relating the second
geometric derivatives of its Euler-Rodrigues parameters with respect to generalized
coordinates ψ j and ψk.

2φ1
hφ

′′1
h, j,k + 2φ2

hφ
′′2
h, j,k + 2φ3

hφ
′′3
h, j,k + 2φ4

hφ
′′4
h, j,k

= −2φ ′1
h, jφ

′1
h,k − 2φ′2

h, jφ
′2
h,k − 2φ′3

h, jφ
′3
h,k − 2φ′4

h, jφ
′4
h,k. (8.14)

8.2.6 Flat Joint

A flat joint has three joint variables and the forms of the three Qg
h operator matrices

are given in Eqs. (6.23). Differentiating these gives

Q′1,1
h = Q′1,2

h = Q′1,3
h = 0, Q′2,1

h = Q′2,2
h = Q′2,3

h = 0,

Q′3,1
h =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 −1

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q′3,2

h =

⎡
⎢⎢⎢⎢⎣

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q′3,3

h = 0. (8.15)

8.2.7 Rigid Joint

A rigid joint has no joint variables and no Qh operator matrices. Therefore, there
are no Q′

h matrices.

8.2.8 Open Joint

An open joint has seven joint variables and the forms of the seven Qg
h operator

matrices are given in Eqs. (6.24). Differentiating these gives:

Q′1,1
h = Q′1,2

h = Q′1,3
h = Q′1,4

h = Q′1,5
h = Q′1,6

h = Q′1,7
h = 0,

Q′2,1
h = Q′2,2

h = Q′2,3
h = Q′2,4

h = Q′2,5
h = Q′2,6

h = Q′2,7
h = 0,

Q′3,1
h = Q′3,2

h = Q′3,3
h = Q′3,4

h = Q′3,5
h = Q′3,6

h = Q′3,7
h = 0,

Q′4,1
h = Q′4,2

h = Q′4,3
h = 0,

Q′4,4
h =

⎡
⎢⎢⎢⎢⎣

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q′4,5

h =

⎡
⎢⎢⎢⎢⎣

0 2 0 0

−2 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q′4,6
h =

⎡
⎢⎢⎢⎢⎣

0 0 2 0

0 0 0 0

−2 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q′4,7

h =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 −2 0

0 2 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,
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Q′5,1
h = Q′5,2

h = Q′5,3
h = 0,

Q′5,4
h =

⎡
⎢⎢⎣

0 −2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′5,5

h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′5,6
h =

⎡
⎢⎢⎣

0 0 0 0
0 0 2 0
0 −2 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′5,7

h =

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′6,1
h = Q′6,2

h = Q′6,3
h = 0,

Q′6,4
h =

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′6,5

h =

⎡
⎢⎢⎣

0 0 0 0
0 0 −2 0
0 2 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′6,6
h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ , Q′6,7

h =

⎡
⎢⎢⎣

0 −2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′7,1
h = Q′7,2

h = Q′7,3
h = 0,

Q′7,4
h =

⎡
⎢⎢⎣

0 0 0 0
0 0 2 0
0 −2 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′7,5

h =

⎡
⎢⎢⎣

0 0 −2 0
0 0 0 0
2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′7,6
h =

⎡
⎢⎢⎣

0 2 0 0
−2 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′7,7

h =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ . (8.16)

In addition, each open joint has a constraint equation relating the second geo-
metric derivatives of its Euler-Rodrigues parameters with respect to generalized
coordinates ψ j and ψk:

2φ4
hφ

′′4
h, j,k + 2φ5

hφ
′′5
h, j,k + 2φ6

hφ
′′6
h, j,k + 2φ7

hφ
′′7
h, j,k

= −2φ′4
h, jφ

′4
h,k − 2φ′5

h, jφ
′5
h,k − 2φ′6

h, jφ
′6
h,k − 2φ ′7

h, jφ
′7
h,k. (8.17)

8.2.9 Parallel-Axis Gear Joint

A parallel-axis gear joint has three joint variables and the forms of the three Qg
h

operator matrices are given in Eqs. (6.25). Differentiating these, we find

Q′1,1
h = Rh

(
Rh + R′

h + φ2
h

)
R′

h

⎡
⎢⎢⎢⎢⎣

0 0 0 cosφ1
h

0 0 0 sinφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,
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Q′1,2
h = Rh

R′
h

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 sinφ1
h

0 0 0 −cosφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Q′1,3
h = 0,

Q′2,1
h = sgn(F )

[
Rh + R′

h + φ2
h

]2

R′
h

√[
Rh + R′

h + φ2
h

]2 − [(Rh + R′
h)cosαh]2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 cosφ1
h

0 0 0 sinφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −sinφ1
h

0 0 0 cosφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Q′2,2
h =

sgn(F )
{[

Rh + R′
h + φ2

h

]3 − 2
[
Rh + R′

h + φ2
h

] [
(Rh + R′

h)cosαh

]2
}

{[
Rh + R′

h + φ2
h

]2 − [
(Rh + R′

h)cosαh

]2
}3/2

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 sinφ1
h

0 0 0 −cosφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Q2,3
h = 0,

Q′3,1
h = (Rh + R′

h)tanβh

R′
h

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 cosφ1
h

0 0 0 sinφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Q′3,2
h = tanβh

R′
h

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 sinφ1
h

0 0 0 −cosφ1
h

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Q3,3
h = 0. (8.18)
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8.2.10 Involute Rack-and-Pinion Joint

An involute rack-and-pinion joint has three joint variables and the forms of the three
Qg

h operator matrices are given in Eqs. (6.26). Differentiating these, we find

Q′1,1
h = 1

R′
h

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′1,2

h = 1
R′

h

⎡
⎢⎢⎣

0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′1,3

h = 0,

Q′2,1
h = sgn(F )tanαh

R′
h

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

Q′2,2
h = sgn(F )tanαh

R′
h

⎡
⎢⎢⎣

0 0 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′2,3

h = 0,

Q′3,1
h = tanβh

R′
h

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′3,2

h = tanβh

R′
h

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′3,3

h = 0.

(8.19)

8.2.11 Straight-Tooth Bevel-Gear Joint

A straight-tooth bevel-gear joint has two joint variables and the forms of its two Qg
h

operator matrices are given in Eqs. (6.27). Differentiating these give

Q′1,1
h = tanγh

tanγ ′
h

⎡
⎢⎢⎢⎢⎣

0 0 sinφ1
h sinθ 0

0 0 cosφ1
h sinθ 0

−sinφ1
h sinθ −cosφ1

h sinθ 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q′1,2
h = tanγh

tanγ ′
h

⎡
⎢⎢⎢⎢⎣

0 sinθ −cosφ1
h cosθ 0

−sinθ 0 sinφ1
h cosθ 0

cosφ1
h cosθ −sinφ1

h cosθ 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q′2,1
h =

⎡
⎢⎢⎢⎢⎣

0 0 −cosφ1
h 0

0 0 sinφ1
h 0

cosφ1
h −sinφ1

h 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

Q′2,2
h = 0. (8.20)
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8.2.12 Point on a Planar-Curve Joint

A point on a planar curve joint has three joint variables and the forms of the three
Qg

h operator matrices are given in Eqs. (6.28). Differentiating these give

u′′ = ∂u′

∂φ1
h

,

Q′1,1
h =

⎡
⎢⎢⎣

0 0 0 u′′

0 0 0 v′′

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′1,2

h = Q′1,3
h = 0,

v′′ = ∂v′

∂φ1
h

,

Q′2,1
h =

⎡
⎢⎢⎣

0 0 0 v′

0 0 0 −u′

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , Q′2,2

h = Q′2,3
h = 0,

Q′3,1
h = Q′3,2

h = Q′3,3
h = 0. (8.21)

8.2.13 Line Tangent to a Planar-Curve Joint

A line tangent to a planar curve joint has three joint variables and the forms of the
three Qg

h operator matrices are given in Eqs. (6.29). Differentiating these give

u′′′ = ∂u′′

∂φ1
h

, v′′′ = ∂v′′

∂φ1
h

, θ ′′ = [u′v′′′ − u′′′v′][(u′)2 + (v′)2] − 2[u′u′′ − v′v′′]

[(u′)2 − (v′)2]2 ,

Q′1,1
h =

⎡
⎢⎢⎢⎢⎣

0 −θ ′′ 0 u′′ + θ ′v′′ + θ ′′v′

θ ′′ 0 0 v′′ − θ ′u′′ − θ ′′u′

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Q′1,2

h = Q′1,3
h = 0,

Q′2,1
h =

⎡
⎢⎢⎢⎣

0 0 0 θ ′ sinθ

0 0 0 −θ ′ cosθ

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ , Q′2,2

h = Q′2,3
h = 0,

Q′3,1
h = Q′3,2

h = Q′3,3
h = 0. (8.22)

8.3 Derivatives of the Dh Operator Matrices

Using chain-rule differentiation for finding accelerations, we seek the derivative of
the Dh operator matrix, defined in Eq. (6.14),

Dh = (T0h−Sh−,h)Qh(T0h−Sh−,h)
−1,

where we recall that h− is the label of the body that precedes joint h according to its
defined orientation. Suppose that we seek the derivative of this Dh operator matrix
with respect to one of the joint variables, φg.
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We start by finding the geometric derivative of the inverse transformation matrix
T−1

0h−
. We differentiate the identity

T−1
0h−T0h− = I

as follows:

∂T−1
0h−

∂φg
T0h− + T−1

0h−
∂T0h−
∂φg

= 0,

which we rearrange to read

∂T−1
0h−

∂φg
= −T−1

0h−
∂T0h−
∂φg

T−1
0h−.

Eq. (6.16) is now used to reduce this to the form

∂T−1
0h−

∂φg
= −T−1

0h−P(h−, g)Dg,
h− = 1, 2, . . . , 	,

g = 1, 2, . . . ,n.
(8.23)

Next, we find the derivative of the Dh operator matrix with respect to the joint
variable φg:

∂Dh

∂φg
= ∂(T0h−Sh−,h)

∂φg
Qh(T0h−Sh−,h)

−1 + (T0h−Sh−,h)
∂Qh

∂φg
(T0h−Sh−,h)

−1

+ (T0h−Sh−,h)Qh

∂(T0hSh−,h)
−1

∂φg
,

which, with the aid of Eqs. (6.16) and (8.23), becomes

∂Dh

∂φg
= P(h−, g)Dg(T0h−Sh−,h)Qh(T0h−Sh−,h)

−1 + (T0h−Sh−,h)Q
′
hδh,g(T0h−Sh−,h)

−1

−(T0h−Sh−,h)Qh(T0h−Sh−,h)
−1P(h−, g)Dg,

where δh,g is the Kronecker delta, signifying that the second term does not appear
unless φh and φg refer to variables of the same joint; that is, unless h = g.

Comparing the first and third terms of this equation with Eq. (6.14), however,
and recognizing that P(h−, g) and δh,g are scalars, the previous equation simplifies
to the form

∂Dh

∂φg
= P(h−, g)[DgDh − DhDg]

+ δh,g[(T0h−Sh−,h)Q
′
h(T0h−Sh−,h)

−1], g,h = 1, 2, . . . ,n. (8.24)

To differentiate the Dh operator matrix with respect to the generalized coordi-
nate ψ j, we write

∂Dh

∂ψ j
=

n∑
g=1

∂Dh

∂φg
φ′

g, j.
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Here, again, in the case of a multi-variable joint h, multiple terms will be required.
If joint h is a spheric joint, for example, then

∂Dh

∂φg
φ′

g, j = ∂Dh

∂φ1
g
φ′1

g, j + ∂Dh

∂φ2
g
φ′2

g, j + ∂Dh

∂φ3
g
φ′3

g, j + ∂Dh

∂φ4
g
φ′4

g, j.

By Eq. (8.24), the equation that follows it becomes

∂Dh

∂ψ j
=

n∑
g=1

[P(h−, g)(DgDh − DhDg)φ
′
g, j] + [(T0h−Sh−,h)Q

′
hφ

′
h, j(T0h−Sh−,h)

−1],

and, by Eq. (7.20), this further simplifies to

∂Dh

∂ψ j
= Wh−, jDh − DhWh−, j

+ (T0h−Sh−,h)Q
′
hφ

′
h, j(T0h−Sh−,h)

−1,
h = 1, 2, . . . ,n,

j = 1, 2, . . . , f.
(8.25)

To differentiate the Dh operator matrix with respect to time, we write

dDh

dt
=

f∑
j=1

∂Dh

∂ψ j
ψ̇ j,

which, by Eq. (8.25), becomes

dDh

dt
=

f∑
j=1

[Wh−, jDh − DhWh−, j + (T0h−Sh−,h)Q
′
hφ

′
h, j(T0h−Sh−,h)

−1]ψ̇ j,

and, by Eqs. (7.24) and (7.15), this reduces to

dDh

dt
= ωh−Dh − Dhωh−

+ (T0h−Sh−,h)Q
′
hφ̇h(T0h−Sh−,h)

−1, h = 1, 2, . . . ,n. (8.26)

8.4 Second Geometric Derivatives of Joint Variables

Remembering the hierarchy of dependency explained in section 7.2, let us now find
the second derivatives of the joint variables with respect to the generalized coordi-
nates on which they explicitly depend. We call these second geometric derivatives
and, as in section 7.3, we use a prime notation with subscripts as the symbolism:

φ′′
h, j,k = ∂

∂ψk

(
∂φh

∂ψ j

)
=

∂φ′
h, j

∂ψk
,

h = 1, 2, . . . ,n,

j,k = 1, 2, . . . , f.
(8.27)

Of course, for a joint that has more than a single joint variable, superscripts may also
be required.

How will we find these derivatives? Well, in section 7.3 we differentiated the
loop-closure equations with respect to generalized coordinate ψ j and found that

n∑
h=1

L(i,h)Dhφ
′
h, j = 0,

i = 1, 2, . . . ,NL,

j = 1, 2, . . . , f,
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is a set of mandatory constraint equations among the first geometric derivatives that
ensures that their values change compatibly with the geometric requirements of loop
closure. However, a similar requirement also holds among the values of the second
geometric derivatives. Therefore, we differentiate again with respect to generalized
coordinate ψk:

n∑
h=1

L(i,h)
{

Dhφ
′′
h, j,k + ∂Dh

∂ψk
φ′

h, j

}
= 0,

i = 1, 2, . . . ,NL,

j,k = 1, 2, . . . , f.

Using Eq. (8.25) to take the indicated derivative gives

n∑
h=1

L(i,h)
{
Dhφ

′′
h, j,k + [

Wh−,kDh − DhWh−,k

+ (T0h−Sh−,h)Q
′
hφ

′
h,k(T0h−Sh−,h)

−1]φ′
h, j

} = 0,

which we rearrange to read

n∑
h=1

L(i,h)Dhφ
′′
h, j,k = −

n∑
h=1

L(i,h)
[
Wh−,kDh − DhWh−,k

+ (T0h−Sh−,h)Q
′
hφ

′
h,k(T0h−Sh−,h)

−1]φ′
h, j. (8.28)

We now define a new (4 × 4) matrix C′′
i, j,k for each loop as follows:

C′′
i, j,k = −

n∑
h=1

L(i,h)
[
Wh−,kDh − DhWh−,k

+ (T0h−Sh−,h)Q
′
hφ

′
h,k(T0h−Sh−,h)

−1]φ′
h, j,

i = 1, 2, . . . ,NL,

j,k = 1, 2, . . . , f,
(8.29)

so that Eq. (8.28) reduces to

n∑
h=1

L(i,h)Dhφ
′′
h, j,k = C′′

i, j,k,
i = 1, 2, . . . ,NL,

j,k = 1, 2, . . . , f.
(8.30)

We will see the individual terms of the sum included in C′′
i, j,k again. They will

appear in section 8.6 where we seek second geometric derivatives of body postures.
We will see that Eq. (8.28) is the specific case that states that the second geometric
derivative of the posture of the stationary body is zero. Compare this with the
definition of the Ai, j,k operator matrices in Eq. (8.47). Some economy can be gained
by calculating, summing, and storing the terms of Ai, j,k in the order in which joints
are met as the loop is traced along the paths to each successive body. Once each loop
is completely traced, the C′′

i, j,k matrix results.
It is left as an exercise to verify that the upper-left (3 × 3) submatrix of C′′

i, j,k
in Eq. (8.29) is skew-symmetric as were the Qh, Dh, and Wh−,j operator matrices.
We can also see that this must be true for compatibility with the left-hand side of
Eq. (8.30). Once this is recognized, we eliminate redundancy in Eq. (8.30) by putting
it into (6 × 1) screw coordinate form

n∑
h=1

L(i,h)D̂hφ
′′
h, j,k = Ĉ′′

i, j,k,
i = 1, 2, . . . ,NL,

j,k = 1, 2, . . . , f,
(8.31)
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where D̂h is as defined in Eq. (6.41) and

Ĉ′′
i, j,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C′′
i, j,k(1, 4)

C′′
i, j,k(2, 4)

C′′
i, j,k(3, 4)

C′′
i, j,k(3, 2)

C′′
i, j,k(1, 3)

C′′
i, j,k(2, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
i = 1, 2, . . . ,NL,

j,k = 1, 2, . . . , f.
(8.32)

In addition to these equations, of course, we also have a constraint equation of
the form

2φ1
hφ

′′1
h, j,k + 2φ2

hφ
′′2
h, j,k + 2φ3

hφ
′′3
h, j,k + 2φ4

hφ
′′4
h, j,k

= −2φ′1
h, jφ

′1
h,k − 2φ′2

h, jφ
′2
h,k − 2φ′3

h, jφ
′3
h,k − 2φ′4

h, jφ
′4
h,k, j,k = 1, 2, . . . , f,

for each spheric joint φh in the system, and another

2φ4
hφ

′′4
h, j,k + 2φ5

hφ
′′5
h, j,k + 2φ6

hφ
′′6
h, j,k + 2φ7

hφ
′′7
h, j,k

= −2φ′4
h, jφ

′4
h,k − 2φ′5

h, jφ
′5
h,k − 2φ′6

h, jφ
′6
h,k − 2φ′7

h, jφ
′7
h,k, j,k = 1, 2, . . . , f,

for each open joint φh in the system, a total of NC constraint equations, which
come from taking derivatives of Eqs. (7.10) and (7.11) with respect to generalized
coordinate ψk.

Because, for any particular choice of j and k, Eq. (8.31) is now of the same form
as Eq. (6.42), we can write, from Eq. (6.45), that

Jφ′′
j,k = Ĉ′′

j,k, j,k = 1, 2, . . . , f, (8.33)

where J is the same [(6NL + NC ) × n] Jacobian matrix that resulted from the
numeric iteration process of section 6.5, and φ′′

j,k for a given choice of j and k is an
(n × 1) vector of second geometric derivatives that are yet to be determined. The
[(6NL + NC ) × 1] column Ĉ′′

j,k is composed of the NL (6 × 1) vectors from the
right-hand sides of Eq. (8.31) for each loop, augmented by the NC right-hand sides
of Eq. (8.14) for each spheric joint and Eq. (8.17) for each open joint.

Reviewing the numeric iteration process of section 6.5, we recall that the modi-
fied pivoting used in the Gauss-Jordan process reordered the joint variables so that
all dependent joint variables are numbered first, followed next by the NF joint vari-
ables of the FGCs, and finally by the NS joint variables of the SGCs. Recognizing
that both the FGC and the SGC joint variables have been accepted as generalized
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coordinates ψ , we see that, by definition, they are independent of each other. There-
fore, for a particular choice of j and k, the φ′′

j,k matrix must be of the form

φ′′
j,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ′′
1, j,k

φ′′
2, j,k

...

φ′′
n− f, j,k−−−−

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

φ′′
dep, j,k−−−−

0

0

⎤
⎥⎥⎦ , j,k = 1, 2, . . . , f, (8.34)

where φ′′
dep, j,k is an [(n−f) × 1] submatrix of the dependent second geometric deriva-

tive values to be found for each combination of j and k.
Once we recognize this form for φ′′

dep, j,k, we return to Eq. (8.33) and subdivide
it into compatible-size submatrices:

[
Jdep Jind

] [φ′′
dep, j,k

0

]
=

[
Ĉ′′

j,k

]
.

However, we see that this is the same subdivision that resulted from the modified
Gauss-Jordan elimination process. Reverting to the notation of Eq. (6.49), we have⎡

⎣J11 J12 J13−− − − − − −−
J21 J22 J23

⎤
⎦
⎡
⎣φ′′

dep, j,k

0
0

⎤
⎦ =

[
(Ĉ′′

j,k)1

(Ĉ′′
j,k)2

]
,

and after the Gauss-Jordan process is complete, these equations are reduced to the
form of Eq. (6.50):⎡

⎣I J −1
11 J12 J −1

11 J13− − − − − − − − −−
0 0 0

⎤
⎦
⎡
⎣φ′′

dep, j,k

0
0

⎤
⎦ =

⎡
⎣ J −1

11 0
−−−−−−−−−
−J21J −1

11 I

⎤
⎦
⎡
⎣ (Ĉ′′

j,k)1−−−−
(Ĉ′′

j,k)2

⎤
⎦ ,

which has for a solution

φ′′
dep, j,k = J −1

11 (Ĉ′′
j,k)1, j,k = 1, 2, . . . , f, (8.35)

with the additional condition that

(Ĉ′′
j,k)2 − J21J −1

11 (Ĉ′′
j,k)1 = 0, j,k = 1, 2, . . . , f. (8.36)

Thus, the calculations for finding the set of all second geometric derivatives of
the joint variables can proceed in a set of nested loops, each incrementing counters
j and k from one to f. Of course, it reduces the computational load by half to notice
from Eq. (8.27) that

φ′′
h,k, j = φ′′

h, j,k,
h = 1, 2, . . . ,n,

j,k = 1, 2, . . . , f.
(8.37)

For each choice of j and k, the corresponding C′′
i, j,k matrix is formed by Eq. (8.29)

for all loops i and, from them, the Ĉ′′
i, j,k vectors are formed by Eq. (8.32). These
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are augmented by the NC right-hand sides of Eq. (8.14) for each spheric joint and
Eq. (8.17) for each open joint. Finally, Eq. (8.35) is used to provide values of φ′′

dep, j,k
for Eq. (8.34).

For each combination of j and k, it is also wise to check that Eq. (8.36) is satisfied
within a satisfactory numeric tolerance.1 However, from the authors’ forty-plus years
of experience, when a problem having physically realizable input data is properly
formulated, this test has never been found to fail.

The second geometric derivatives just found are not actual accelerations, even
though they are sometimes referred to as such. They are second rates of change of
dependent joint variables with respect to changes of generalized coordinates. Time is
not included in them and they typically have units such as radians per radian squared.
They represent totally geometric information and are functions of the generalized
coordinates ψ alone. They are very important, however, and arise frequently in our
coming work.

EXAMPLE 8.1 To illustrate the previous methods, let us continue the analysis
of the Cardan/Hooke universal joint studied in previous examples. In example
5.1, we found solutions for the positions of all joint variables and the various
transformation matrices. In example 7.1, we found the Dh derivative operator
matrices, the Jacobian, and the first geometric derivatives for each of the joints.
These are

DA =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 −h
0 0 0 0

⎤
⎥⎥⎥⎦ ,

DB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
cosψ√

1 − sin 2β sin 2ψ

−cosβ sinψ√
1 − sin 2β sin 2ψ

−hcosψ√
1 − sin 2β sin 2ψ

−cosψ√
1 − sin 2β sin 2ψ

0 0 0

cosβ sinψ√
1 − sin 2β sin 2ψ

0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

DC =

⎡
⎢⎢⎢⎢⎢⎣

0 cosβ sinψ cosψ −hcosβ sinψ

−cosβ sinψ 0 −sinβ sinψ 0

−cosψ sinβ sinψ 0 −hsinβ sinψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

DD =

⎡
⎢⎢⎢⎣

0 −sinβ 0 hsinβ

sinβ 0 −cosβ 0
0 cosβ 0 −hcosβ
0 0 0 0

⎤
⎥⎥⎥⎦ .

1 The IMP software system uses a default tolerance of 10−6 for this test.
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−hcosψ√

1 − sin2β sin2ψ
−hcosβ sinψ hsinβ

0 0 0 0

−h 0 −hsinβ sinψ −hcosβ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 0 sinβ sinψ cosβ

0
−cosβ sinψ√

1 − sin2β sin2ψ
cosψ 0

0
−cosψ√

1 − sin2β sin2ψ
−cosβ sinψ sinβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

φ′
A,1

φ′
B,1

φ′
C,1

φ′
D,1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cosβ
1 − sin2β sin2ψ

sinβ cosψ√
1 − sin2β sin2ψ

sinβ cosβ sinψ

1 − sin2β sin2ψ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In example 7.3, we found the Wb,1 derivative operator matrices

W1,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0
cosβ

1 − sin2β sin2ψ
0

0
−cosβ

1 − sin2β sin2ψ
0

hcosβ
1 − sin2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W2,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−hsinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cos 2ψ

1 − sin 2β sin 2ψ
0

cosβ

1 − sin 2β sin 2ψ
0

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−cosβ

1 − sin 2β sin 2ψ
0

hcosβ

1 − sin 2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W3,1 =

⎡
⎢⎢⎢⎣

0 sinβ 0 −hsinβ

−sinβ 0 cosβ 0
0 −cosβ 0 hcosβ
0 0 0 0

⎤
⎥⎥⎥⎦ ,

W4,1 = 0.

Recognizing that, for this example, all joints are revolutes and, therefore, that
all Q′

h matrices are zero, we formulate the following matrices:

(W4,1DA − DAW4,1)φ
′
A,1 = 0,
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(W1,1DB − DBW1,1)φ
′
B,1

= sinβ cosβ cosψ
(1 − sin2β sin 2ψ)2

⎡
⎢⎢⎢⎣

0 −cosβ sinψ −cosψ −hcosβ sinψ

cosβ sinψ 0 0 0
cosψ 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

(W2,1DC − DCW2,1)φ
′
C,1

= sinβ cosβ sinψ

(1 − sin2β sin2ψ)

⎡
⎢⎢⎢⎣

0 cosβ cosψ −sinψ −hcosβ cosψ
−cosβ cosψ 0 −sinβ cosψ 0

sinψ sinβ cosψ 0 0
0 0 0 0

⎤
⎥⎥⎥⎦,

(W3,1DD − DDW3,1)φ
′
D,1 = 0.

From these, we now form the C′′
1,1,1 matrix of Eq. (8.29). Noting that there is

only one loop and one degree of freedom, the result is

C′′
1,1,1 = sinβ cosβ

(1 − sin2β sin2ψ)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

0
sin 2β cosβ sin 3ψ cosψ

(1−sin 2β sin 2ψ)
1+ sin 2β sin 2ψ

−hsin 2β cosβ sin 3ψ cosψ

(1−sin 2β sin 2ψ)

−sin 2β cosβ sin 3ψ cosψ

(1−sin 2β sin 2ψ)
0 sinβ sinψ cosψ 0

−(1+ sin 2β sin 2ψ) −sinβ sinψ cosψ 0 hsinβ sinψ cosψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Next, we formulate the terms of Eq. (8.33):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−hcosψ√

1 − sin2β sin2ψ
−hcosβ sinψ hsinβ

0 0 0 0
−h 0 −hsinβ sinψ −hcosβ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 0 sinβ sinψ cosβ

0
−cosβ sinψ√

1 − sin2β sin2ψ
cosψ 0

0
−cosψ√

1 − sin2β sin2ψ
−cosβ sinψ sinβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

φ′′
A,1,1

φ′′
B,1,1

φ′′
C,1,1−−−

φ′′
D,1,1

⎤
⎥⎥⎥⎥⎥⎦

= sinβ cosβ
(1 − sin 2β sin 2ψ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−hsin2β cosβ sin3ψ cosψ
(1 − sin2β sin2ψ)

0
hsinβ sinψ cosψ

−−−−−−−−−−−−−−
−sinβ sinψ cosψ

1 + sin2β sin 2ψ

−sin 2β cosβ sin3ψ cosψ
(1 − sin2β sin2ψ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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As in example 7.1, we recognize that the second row of the right-hand column
is zero and the first and third rows are h multiples of the sixth and negative
fourth rows, respectively, and that because ψ = ψ1 = φD, we have φ′′

D,1,1 = 0 .
Therefore, these equations can be reduced to the form⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 sinβ sinψ

0
−cosβ sinψ√

1 − sin2β sin2ψ
cosψ

0
−cosψ√

1 − sin2β sin2ψ
−cosβ sinψ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
φ′′

A,1,1

φ′′
B,1,1

φ′′
C,1,1

⎤
⎥⎥⎦

= sinβ cosβ
1 − sin2β sin 2ψ

⎡
⎢⎢⎢⎢⎣

−sinβ sinψ cosψ

1 + sin2β sin 2ψ

−sin 2β cosβ sin3ψ cosψ
1 − sin2β sin 2ψ

⎤
⎥⎥⎥⎥⎦ .

The resulting solution for the second geometric derivatives is⎡
⎢⎢⎢⎢⎢⎣

φ ′′
A,1,1

φ′′
B,1,1

φ′′
C,1,1−−−

φ′′
D,1,1

⎤
⎥⎥⎥⎥⎥⎦ = sinβ cosβ

(1 − sin2β sin2ψ)2

⎡
⎢⎢⎢⎢⎢⎣

−2sinβ sinψ cosψ

−
√

1 − sin2β sin2ψ cosβ sinψ

(1 + sin2β sin2ψ)cosψ−−−−−−−−−−−−−−−−
0

⎤
⎥⎥⎥⎥⎥⎦ .

From example 7.1 and Eq. (6.53), the quality index is

Q = |det(J11)| =
√

1 − sin2β sin2ψ,

and its value remains in the range (cos β ≤ Q ≤ 1.00). We see here that the
denominators of the second geometric derivatives are the fourth power of the
quality index. Thus, as before, there should not be difficulty in the operation of
the device or in their numeric evaluation.

8.5 Accelerations of Joint Variables

The (relative) accelerations of the joint variables, as shown by Eq. (8.3) can be
found in any of three ways. For hand calculations, the expressions found for the
positions of the joint variables can be directly differentiated analytically on a case-
by-case basis. This approach, however, is highly susceptible to human error and is
not easily adapted to computer solution. The second approach is to differentiate
the loop-closure equations, as was done in the last section to find second geometric
derivatives. The third approach is to take advantage of the second geometric deriva-
tives. Remembering the hierarchy of dependencies, we can differentiate Eq. (7.15)
as follows:

φ̈h = d2φh

dt2
=

f∑
j=1

φ′
h, jψ̈ j +

f∑
k=1

f∑
j=1

φ′′
h, j,kψ̇ jψ̇k, h = 1, 2, . . . ,n. (8.38)

Here we see that all dependent joint accelerations vary linearly with the gen-
eralized accelerations and quadratically with the generalized velocities. They are
nonlinear functions of ψ , however, through the geometric derivatives. The double



8.5 Accelerations of Joint Variables 215

summation cannot be expressed in matrix form because φ′′
h, j,k is a three-dimensional

array.
As discussed earlier, we can differentiate the loop-closure equations with respect

to time. From section 7.4 we have
n∑

h=1

L(i,h)Dhφ̇h = 0, i = 1, 2, . . . ,NL.

Differentiating this again with respect to time gives

n∑
h=1

L(i,h)
[

Dhφ̈h + dDh

dt
φ̇h

]
= 0, i = 1, 2, . . . ,NL.

Here again, in the case of a multi-variable joint h, multiple terms will be required. If
joint h is a spheric joint, for example, then

Dhφ̇h = D1
hφ̇

1
h + D2

hφ̇
2
h + D3

hφ̇
3
h + D4

hφ̇
4
h.

Along with the use of Eq. (8.26), this can be rearranged to read

n∑
h=1

L(i,h)Dhφ̈h = −
n∑

h=1

L(i,h)[ωh−Dh − Dhωh−

+ (T0h−Sh−,h)Q
′
hφ̇h(T0h−Sh−,h)

−1]φ̇h, i = 1, 2, . . . ,NL, (8.39)

with an additional constraint equation of the form,

2φ1
hφ̈

1
h + 2φ2

hφ̈
2
h + 2φ3

hφ̈
3
h + 2φ4

hφ̈
4
h = −2

(
φ̇1

h

)2 − 2
(
φ̇2

h

)2 − 2
(
φ̇3

h

)2 − 2
(
φ̇4

h

)2
,

for each spheric joint in the system, and another of the form,

2φ4
hφ̈

4
h + 2φ5

hφ̈
5
h + 2φ6

hφ̈
6
h + 2φ7

hφ̈
7
h = −2

(
φ̇4

h

)2 − 2
(
φ̇5

h

)2 − 2
(
φ̇6

h

)2 − 2
(
φ̇7

h

)2
,

for each open joint in the system; a total of NC constraint equations, which come
from taking the derivatives of Eqs. (4.17) and (4.24) with respect to time.

Parallel to Eq. (8.29), we now define

C̈i = −
n∑

h=1

L(i,h)
[
ωh−Dh − Dhωh−

+ (T0h−Sh−,h)Q
′
hφ̇h(T0h−Sh−,h)

−1]φ̇h, i = 1, 2, . . . ,NL, (8.40)

and the corresponding screw coordinate vectors

ˆ̈Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̈i(1, 4)

C̈i(2, 4)

C̈i(3, 4)

C̈i(3, 2)

C̈i(1, 3)

C̈i(2, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, . . . ,NL, (8.41)

so that Eq. (8.39) becomes

J φ̈ = ˆ̈C. (8.42)
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After recognizing that φ̈ has the form

φ̈ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̈1

φ̈2
...

φ̈n− f−−−
ψ̈1
...

ψ̈ f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
φ̈dep− −̈
ψ

]
, (8.43)

we see that Eq. (8.42) is of the form⎡
⎣J11 J12 J13−−−−−−−−−−

J21 J22 J23

⎤
⎦[

φ̈dep− −̈
ψ

]
=

⎡
⎣ ˆ̈C1− −ˆ̈C2

⎤
⎦ ,

and can be solved in the same manner as for the second geometric derivatives. In its
reduced form, we have⎡

⎣I J −1
11 J12 J −1

11 J13−−−−−−−−−−−−−
0 0 0

⎤
⎦[

φ̈dep− −̈
ψ

]
=

⎡
⎢⎣ J −1

11 0
−−−−−−−−−
−J21J −1

11 I

⎤
⎥⎦
⎡
⎣ ˆ̈C1− −ˆ̈C2

⎤
⎦ .

Therefore, we see that the solution is

φ̈dep = J −1
11 ( ˆ̈C1 − [J12 J13]ψ̈ ), (8.44)

with the additional condition that

ˆ̈C2 − J21J −1
11

ˆ̈C1 = 0. (8.45)

EXAMPLE 8.2 Let us continue the Cardan/Hooke universal joint of example
8.1. If the input shaft is driven at a rate of φ̇D = ψ̇ , and if this rate is constant
(φ̈D = ψ̈ = 0), then let us find the accelerations of the other joint variables.
These are given directly by Eq. (8.39) and the second geometric derivatives
found in example 8.1:

φ̈ =

⎡
⎢⎢⎢⎢⎢⎣

φ̈A

φ̈B

φ̈C−−
φ̈D

⎤
⎥⎥⎥⎥⎥⎦ = sinβ cosβψ̇2

(1 − sin2β sin2ψ)2

⎡
⎢⎢⎢⎢⎢⎣

−2sinβ sinψ cosψ

−
√

1 − sin2β sin 2ψ cosβ sinψ

(1 − sin2β sin 2ψ)cosψ
−−−−−−−−−−−−−−−−

0

⎤
⎥⎥⎥⎥⎥⎦ .

8.6 Second Geometric Derivatives of Body Postures

Before we find the acceleration of a body or point, let us first find the geometric
derivative of the Wb, j operator matrices. From Eq. (7.20), we have

Wb, j =
n∑

h=1

P(b,h)Dhφ
′
h, j,

b = 1, 2, . . . , 	,

j = 1, 2, . . . , f.
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Differentiating this with respect to generalized coordinate ψk gives the new,
second geometric derivative operator matrix Ai, j,k, defined by

Ab, j,k = ∂Wb, j

∂ψk
,

b = 1, 2, . . . , 	,

j,k = 1, 2, . . . , f,
(8.46)

and, using Eq. (8.25), we find

Ab, j,k =
n∑

h=1

P(b,h)
{
Dhφ

′′
h, j,k + [

Wh−,kDh − DhWh−,k

+ (T0h−Sh−,h)Q
′
hφ

′
h,k(T0h−Sh−,h)

−1]φ′
h, j

}
,

b = 1, 2, . . . , 	,

j,k = 1, 2, . . . , f.
(8.47)

Here again, in the case of a multi-variable joint h, multiple terms will be required. If
joint h is a spheric joint, for example, then

Dhφ
′
h, j = D1

hφ
′1
h, j + D2

hφ
′2
h, j + D3

hφ
′3
h, j + D4

hφ
′4
h, j.

Now, to find the second geometric derivative of the posture of a body, we start
with Eq. (7.21)

∂T0b

∂ψ j
= Wb, jT0b,

b = 1, 2, . . . , 	,

j = 1, 2, . . . , f,

and differentiate again, with respect to the generalized coordinate ψk. Using
Eqs. (8.46) and (7.21), we find

T ′′
0b, j,k = ∂

∂ψk

(
∂T0b

∂ψ j

)
= (Ab, j,k + Wb, jWb,k)T0b,

b = 1, 2, . . . , 	,

j,k = 1, 2, . . . , f.
(8.48)

We note here that, in general, Ab,k, j �= Ab, j,k in spite of the fact that the order of
the subscripts implies an order of taking derivatives. Similarly, in general,

∂Wb,k

∂ψ j
�= ∂Wb, j

∂ψk
.

However, it is true for the general case that

Ab,k, j + Wb,kWb, j = Ab, j,k + Wb, jWb,k,
b = 1, 2, . . . , 	,

j,k = 1, 2, . . . , f.
(8.49)

EXAMPLE 8.3 Let us now continue the analysis of the Cardan/Hooke universal
joint of example 8.1 and example 8.2, and find the second geometric derivative
operator matrices for each of its bodies. From the previous examples we have

DA =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 −1 0

0 1 0 −h

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,
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DB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
cosψ√

1 − sin 2β sin 2ψ

−cosβ sinψ√
1 − sin 2β sin 2ψ

−hcosψ√
1 − sin 2β sin 2ψ

−cosψ√
1 − sin 2β sin 2ψ

0 0 0

cosβ sinψ√
1 − sin 2β sin 2ψ

0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

DC =

⎡
⎢⎢⎢⎣

0 cosβ sinψ cosψ −hcosβ sinψ

−cosβ sinψ 0 −sinβ sinψ 0
−cosψ sinβ sinψ 0 −hsinβ sinψ

0 0 0 0

⎤
⎥⎥⎥⎦ ,

DD =

⎡
⎢⎢⎢⎢⎢⎣

0 −sinβ 0 hsinβ

sinβ 0 −cosβ 0

0 cosβ 0 −hcosβ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

φ′
A,1

φ′
B,1

φ′
C,1− −

φ′
D,1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cosβ
1 − sin2β sin2ψ

sinβ cosψ√
1 − sin2β sin2ψ

sinβ cosβ sinψ

1 − sin2β sin2ψ−−−−−−−−−−
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W1,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0
cosβ

1 − sin2β sin2ψ
0

0
−cosβ

1 − sin2β sin2ψ
0

hcosβ
1 − sin2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W2,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−hsinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cos 2ψ

1 − sin 2β sin 2ψ
0

cosβ

1 − sin 2β sin 2ψ
0

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−cosβ

1 − sin 2β sin 2ψ
0

hcosβ

1 − sin 2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W3,1 =

⎡
⎢⎢⎢⎣

0 sinβ 0 −hsinβ

−sinβ 0 cosβ 0
0 −cosβ 0 hcosβ
0 0 0 0

⎤
⎥⎥⎥⎦ ,

W4,1 = 0,
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Q′
A = Q′

B = Q′
C = Q′

D = 0,

⎡
⎢⎢⎢⎢⎢⎣

φ ′′
A,1,1

φ′′
B,1,1

φ′′
C,1,1−−−

φ′′
D,1,1

⎤
⎥⎥⎥⎥⎥⎦ = sinβ cosβ

(1 − sin2β sin2ψ)

⎡
⎢⎢⎢⎢⎢⎣

−2sinβ sinψ cosψ

−cosβ sinψ
√

1 − sin2β sin2ψ

(1 + sin2β sin 2ψ)cosψ
−−−−−−−−−−−−−−−−

0

⎤
⎥⎥⎥⎥⎥⎦ .

Next, we calculate

[
W4,1DA − DAW4,1 + (T04S4A)Q′

Aφ′
A,1(T04S4A)−1]φ′

A,1 = 0,

A1,1,1 = DAφ′′
A,1,1 + [

W4,1DA − DAW4,1 + (T04S4A)Q′
Aφ′

A,1(T04S4A)−1]φ′
A,1

= sin2β cosβ cos2ψ
(1 − sin2β sin 2ψ)2

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 −h
0 0 0 0

⎤
⎥⎥⎥⎦ ,

[W1,1DB − DBW1,1 + (T01S1B)Q′
Bφ

′
B,1(T01S1B)−1]φ′

B,1

= sinβ cosβ cosψ
(1 − sin2β sin 2ψ)2

⎡
⎢⎢⎢⎢⎣

0 −cosβ sinψ −cosψ hcosβ sinψ

cosβ sinψ 0 0 0

cosψ 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

A2,1,1 = A1,1,1 + DBφ
′′
B,1,1 + [

W1,1DB − DBW1,1 + (T01S1B)Q′
Bφ

′
B,1(T01S1B)−1]φ′

B,1

= sinβ cosβ
(1 − sin2β sin 2ψ)2

×

⎡
⎢⎢⎣

0 −cosβ sin2ψ −(cos2ψ + sin2β sin 2ψ) hcosβ sin2ψ

cosβ sin2ψ 0 0 0

cos2ψ + sin 2β sin 2ψ 0 0 hsinβ sin2ψ
0 0 0 0

⎤
⎥⎥⎦,

[
W2,1DC − DCW2,1 + (T02S2C)Q′

Cφ
′
C,1(T02S2C)−1]φ′

C,1

= sinβ cosβ sinψ

(1 − sin2β sin2ψ)

⎡
⎢⎢⎣

0 cosβ cosψ −sinψ hcosβ cosψ

−cosβ cosψ 0 −sinβ cosψ 0
sinψ sinβ cosψ 0 −hsinβ cosψ

0 0 0 0

⎤
⎥⎥⎦,

A3,1,1 = A2,1,1 + DCφ
′′
C,1,1 + [W2,1DC − DCW2,1 + (T02S2C)Q′

Cφ
′
C,1(T02S2C)−1]φ′

C,1 = 0,

[W3,1DD − DDW3,1 + (T03S3D)Q′
Dφ′

D,1(T03S3D)−1]φ′
D,1 = 0,

A4,1,1 = A3,1,1 +DDφ′′
D,1,1 + [W3,1DD −DDW3,1 + (T03S3D)Q′

Dφ′
D,1(T03S3D)−1]φ′

D,1 = 0.
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Note the order of the calculations performed in this example; here we see
how the calculation of the portions of C′′ in example 8.1 is done in parallel with
building the Ab, j,k matrices. It may be instructive to compare the form of Eq.
(8.28) to that of Eq. (8.47). Because, for this problem, each row of the loop
matrix L is a possible path through the system back to the frame, body 4, it
should be expected that A4,1,1 = 0.

8.7 Second Geometric Derivatives of Point Positions

To find the second geometric derivative of the position of a point, we start with
Eq. (7.25)

R′
b, j = ∂Rb

∂ψ j
= Wb, jT0brb = Wb, jRb,

b = 1, 2, . . . , 	,

j = 1, 2, . . . , f,

and differentiate again, with respect to the generalized coordinate ψk. Using
Eqs. (8.46), (7.20), and (7.25) we find

R′′
b, j,k = ∂

∂ψk

(
∂Rb

∂ψ j

)
= (Ab, j,k + Wb, jWb,k)Rb,

b = 1, 2, . . . , 	,

j,k = 1, 2, . . . , f.
(8.50)

8.8 Accelerations of Bodies

In Eq. (7.22) we defined the velocity operator for a body as

ωb =
n∑

h=1

P(b,h)Dhφ̇h, b = 1, 2, . . . , 	.

Before finding the acceleration of a body, let us first define the new acceleration
operator αb

αb = dωb

dt
, b = 1, 2, . . . , 	, (8.51)

which can be found as the time derivative of the previous equation,

αb =
n∑

h=1

P(b,h)
{

Dhφ̈h + dDh

dt
φ̇h

}
, b = 1, 2, . . . , 	.

Again, in the case of a multi-variable joint h, multiple terms will be required. If joint
h is a spheric joint, for example, then

Dhφ̇h = D1
hφ̇

1
h + D2

hφ̇
2
h + D3

hφ̇
3
h + D4

hφ̇
4
h.
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By Eq. (8.26) the previous equation now expands to

αb =
n∑

h=1

P(b,h)
{
Dhφ̈h + [

ωh−Dh − Dhωh− + (T0h−Sh−,h)Q
′
hφ̇h(T0h−Sh−,h)

−1]φ̇h

}
,

b = 1, 2, . . . , 	, (8.52)

for evaluation.
As another alternative, we might start with Eq. (7.24)

ωb =
f∑

j=1

Wb, jψ̇ j, b = 1, 2, . . . , 	,

and use the chain rule to differentiate with respect to time

αb =
f∑

j=1

Wb, jψ̈ j +
f∑

j=1

f∑
k=1

Ab, j,kψ̇ jψ̇k, b = 1, 2, . . . , 	. (8.53)

This is an entirely separate but equivalent formula for αb to the previous one.
Whether Eq. (8.52) or Eq. (8.53) is preferable depends on the particular situation;
we will have future needs for both.

Next, we recall that in Eq. (8.2) we defined the acceleration of a body to be the
second derivative with respect to time of its transformation matrix with respect to
the global frame:

T̈0b = d2T0b

dt2
, b = 1, 2, . . . , 	.

From Eq. (7.23) we have

Ṫ0b = ωbT0b, b = 1, 2, . . . , 	,

and, differentiating this again with respect to time, we get

T̈0b = dωb

dt
T0b + ωb

dT0b

dt
, b = 1, 2, . . . , 	,

which, by use of Eqs. (8.51) and (7.23), becomes

T̈0b = (αb + ωbωb)T0b, b = 1, 2, . . . , 	, (8.54)

or, by Eqs. (8.53) and (8.54), can be written as

T̈0b =
⎡
⎣ f∑

j=1

Wb, jψ̈ j +
f∑

j=1

f∑
k=1

(Ab, j,k + Wb, jWb,k)ψ̇ jψ̇k

⎤
⎦T0b, b = 1, 2, . . . , 	. (8.55)
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EXAMPLE 8.4 Continuing from example 8.3, the αi matrices for each of the bodies
of a Cardan/Hooke universal shaft coupling are easily found by Eq. (8.53):

α1 = W1,1ψ̈ + A1,1,1ψ̇
2

=
(

cosβ
1 − sin2β sin2ψ

ψ̈ + sin2β cosβ cos2ψ
1 − sin2β sin 2ψ

ψ̇2
)
⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 1 0

0 −1 0 h

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

α2 = W2,1ψ̈ + A2,1,1ψ̇
2

= ψ̈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−hsinβ cos 2ψ

1 − sin 2β sin 2ψ

−sinβ cos 2ψ

1 − sin 2β sin 2ψ
0

cosβ

1 − sin 2β sin 2ψ
0

−sinβ cosβ sinψ cosψ

1 − sin 2β sin 2ψ

−cosβ

1 − sin 2β sin 2ψ
0

hcosβ

1 − sin 2β sin 2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ sinβ cosβψ̇2

(1 − sin 2β sin 2ψ)2

×

⎡
⎢⎢⎢⎢⎣

0 −cosβ sin2ψ −(cos2ψ + sin 2β sin 2ψ) hcosβ sin2ψ

cosβ sin2ψ 0 0 0

cos2ψ + sin 2β sin 2ψ 0 0 hsinβ sin2ψ

0 0 0 0

⎤
⎥⎥⎥⎥⎦,

α3 = W3,1ψ̈ + A3,1,1ψ̇
2

= ψ̈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 sinβ 0 −hsinβ

−sinβ 0 cosβ 0

0 −cosβ 0 hcosβ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ sinβ cosβ sinψψ̇2

1 − sin2β sin 2ψ

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 cosβ cosψ −sinψ −hcosβ cosψ

−cosβ cosψ 0 −sinβ cosψ 0

sinψ sinβ cosψ 0 −hsinβ cosψ

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

α4 = W4,1ψ̈ + A4,1,1ψ̇
2 = 0.
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8.9 Accelerations of Points

Next, we recall that in Eq. (8.1) we defined the acceleration of a point to be the
second derivative with respect to time of its global position vector:

R̈b = d2Rb

dt2
, b = 1, 2, . . . , 	.

From Eq. (7.27) we have

Ṙb = ωbRb, b = 1, 2, . . . , 	,

and, differentiating this again with respect to time, we get

R̈b = dωb

dt
Rb + ωb

dRb

dt
, b = 1, 2, . . . , 	,

which, by use of Eqs. (8.51) and (7.27), becomes

R̈b = (αb + ωbωb)Rb, b = 1, 2, . . . , 	, (8.56)

or, by Eqs. (8.53) and (8.54), can be written as

R̈b =
⎡
⎣ f∑

j=1

Wb, jψ̈ j +
f∑

k=1

f∑
j=1

(Ab, j,k + Wb, jWb,k)ψ̇ jψ̇k

⎤
⎦Rb, b = 1, 2, . . . , 	.

(8.57)

Thus, we see that the same derivative operator matrices found for taking either
second geometric or second time derivatives of body postures are also used for
finding second derivatives of point positions.
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PROBLEMS

8.1 Continue from the results of problems 6.1, 6.2, and 7.1 as follows:

a) Form the matrix φ′′ of second geometric derivatives of the joint variables.
b) Form the second geometric derivative-operator matrix Ab, j,k for each body.
c) Form the set φ̈ of second time derivatives of the joint variables.
d) Form the second time derivative (acceleration) operator matrix αb for each

body.

8.2 Verify that the upper-left (3 × 3) submatrix of C′′
i, j,k in Eq. (8.29) is skew

symmetric.
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8.3 Continue from the results of problems 6.4, 6.5, and 7.2 as follows:

a) Form the matrix φ′′ of second geometric derivatives of the joint variables.
b) Form the second geometric derivative-operator matrix Ab, j,k for each body.
c) Form the set φ̈ of second time derivatives of the joint variables.
d) Form the second time derivative (acceleration) operator matrix αb for each

body.



9 Modeling Dynamic Aspects of Mechanisms
and Multibody Systems

9.1 Introduction

In the very beginning of this text, section 1.1, we observed that the science of
mechanics is composed of two parts called statics and dynamics, first distinguished
by Euler in 1765. His advice is, perhaps, worth repeating here [1]:

The investigation of the motion of a rigid body may be conveniently separated into two
parts, the one geometrical, the other mechanical. In the first part, the transference of the
body from a given position to any other position must be investigated without respect
to the causes of the motion, and must be represented by analytical formulae which will
define the position of each point of the body after the transference with respect to its
initial placement. This investigation will therefore be referable solely to geometry, or
rather to stereomety [the art of stone-cutting].

It is clear that by the separation of this part of the question from the other, which belongs
properly to Mechanics, the determination of the motion from dynamic principles will be
made much easier than if the two parts were undertaken conjointly.

We also noted that dynamics is made up of two major disciplines, later recognized
as the distinct sciences of kinematics and kinetics, which treat the motion and the
forces producing it, respectively.

As should be evident from the preceding chapters, one predominate challenge
in the analysis of multibody systems, particularly those with closed-loop topology,
is that of kinematics, and one major emphasis of this book has been on that topic.
As Euler advised, the methods of the preceding chapters have been totally derived
from geometric principles. The units of all parameters defined up to this point have
been solely those of length and time.

Statics and kinetics, however, are also extremely important parts of a complete
design analysis. The engineer or designer is vitally concerned with the forces trans-
mitted between the parts of a system so that they can be designed to withstand the
stresses induced. The work and energy that the system produces or requires are of
significant interest. Therefore, these topics and units, including those of force and
energy, are also covered in depth in the coming chapters.

Of course, every student, from their first introduction to Newton’s laws, has
been taught that the first requirement when analyzing a system to find forces is to
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R

•
Rdm

Y

XZ

Figure 9.1 Differential particle of mass

“draw a free-body diagram” of the system being studied. This is excellent advice
for hand-calculation methods. However, such approaches do not lend themselves
to computer evaluation. Computers gain no guidance about the solution of such
problems from hand-drawn diagrams. The techniques that we seek here need not
depend on such an approach but, instead, will be based on energy. In the energy
approach, applied forces can be handled through work-energy principles where the
energy contribution of the applied forces are computed from the work performed
by such forces.

9.2 Modeling Kinetic Energy

In order to use an energy approach, we will require the formulation of an expression
for the kinetic energy of our multibody system. To derive such an equation, let us
start by considering a single differential particle of mass dm as shown in Figure 9.1.
In terms of the global components of the velocity of this moving particle, its kinetic
energy is

dH = 1
2 {(ṘX )2 + (ṘY )2 + (ṘZ)2}dm

= 1
2 [ṘX ṘY ṘZ 0]

⎡
⎢⎢⎢⎣

ṘX

ṘY

ṘZ

0

⎤
⎥⎥⎥⎦ dm

= 1
2 Ṙt Ṙdm.

Let us suppose that this is a single particle of mass on moving body number b
and, from Eq. (7.27), substitute our matrix form for its absolute velocity,

dHb = 1
2 rt

bT t
0bω

t
bωbT0brbdm.

On integrating this over all particles of body b, we see

Hb = 1
2

∫
rt

b

[
Tt

0bω
t
bωbT0b

]
rbdm.

Unfortunately, this formula presents a significant problem. When we consider
which elements of this integral change from one particle to another, we see that every
particle of body b uses the same transformation matrix T0b and the same velocity
operator matrix ωb. However, because rb changes for every particle of body b, and
because matrix multiplication is not commutative, we cannot factor the invariants
out of the integral. Therefore, if done in this way, the integration must be performed
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anew, probably numerically, every time the posture or the velocity of the body
changes. This is certainly not an attractive prospect.

Fortunately, there is another approach. Starting again in formulating the expres-
sion for the kinetic energy of the particle, and recalling that the trace of a square
matrix is defined as the sum of the terms on the principal diagonal, we can write

dH = 1
2 {(ṘX )2 + (ṘY )2 + (ṘZ)2}dm

= 1
2 trace

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

ṘX ṘX ṘX ṘY ṘX ṘZ 0

ṘY ṘX ṘY ṘY ṘY ṘZ 0

ṘZṘX ṘZṘY ṘZṘZ 0
0 0 0 0

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠dm

= 1
2 trace

⎛
⎜⎜⎝
⎡
⎢⎢⎣

ṘX

ṘY

ṘZ

0

⎤
⎥⎥⎦[

ṘX ṘY ṘZ 0
]
⎞
⎟⎟⎠dm

= 1
2 trace(ṘṘt )dm.

The huge advantage of this seemingly minor change does not become apparent
until we substitute Eq. (7.27) for the velocity of the differential particle into our new
energy expression. This now gives

dHb = 1
2 trace

(
ωbT0brbrt

bTt
0bω

t
b

)
dm, b = 1, 2, . . . , 	.

When we recognize that ωb and T0b are invariant for every particle of body b,
the integral can now be written

Hb = 1
2

trace
(
ωbT0b

[∫
rbrt

bdm
]

Tt
0bω

t
b

)
, b = 1, 2, . . . , 	. (9.1)

The integration over all particles of the body no longer depends either on the
posture of the body (T0b) or on its velocity (ωb). It is now an integral over the local
coordinates of the particles of mass. It is now possible to perform the integration
once, for all postures and all velocities of the body, as will be shown in the next
section.

9.3 The Inertia Matrix

Let us define the matrix

Jb =
∫

rbrt
bdm, b = 1, 2, . . . , 	. (9.2)

When we expand the terms, we see

Jb =
∫

⎡
⎢⎢⎢⎢⎢⎣

(
rx

b

)2
rx

bry
b rx

brz
b rx

b

ry
brx

b

(
ry

b

)2 ry
brz

b ry
b

rz
brx

b rz
bry

b

(
rz

b

)2
rz

b

rx
b ry

b rz
b 1

⎤
⎥⎥⎥⎥⎥⎦dm, b = 1, 2, . . . , 	.
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However, because integration is a process of repetitive summation and because
matrix sums are performed by summing individual terms, the integral can be per-
formed on a term-by-term basis. Therefore,

Jb =

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ (
rx

b

)2
dm

∫
rx

bry
bdm

∫
rx

brz
bdm

∫
rx

bdm∫
ry

brx
bdm

∫ (
ry

b

)2
dm

∫
ry

brz
bdm

∫
ry

bdm∫
rz

brx
bdm

∫
rz

bry
bdm

∫ (
rz

b

)2dm
∫

rz
bdm∫

rx
bdm

∫
ry

bdm
∫

rz
bdm

∫
dm

⎤
⎥⎥⎥⎥⎥⎥⎦

, b = 1, 2, . . . , 	.

Checking with any of a number of texts on mechanics reminds us that many of
these integrals are known from the definitions of the mass distribution parameters
of a rigid body, [2]. For example, if we denote the total mass of body b by the symbol
mb and the location of its center of mass, measured with respect to the local body
coordinate system by the vector rb, then the definition of the elements of the center
of mass location are given by

rx
b = 1

mb

∫
rx

bdm, ry
b = 1

mb

∫
ry

bdm, rz
b = 1

mb

∫
rz

bdm, b = 1, 2, . . . , 	, (9.3)

and the integrals in the fourth row and column of the Jb matrix become

Jb =

⎡
⎢⎢⎢⎢⎢⎢⎣

∫ (
rx

b

)2
dm

∫
rx

bry
bdm

∫
rx

brz
bdm mbrx

b∫
ry

brx
bdm

∫ (
ry

b

)2
dm

∫
ry

brz
bdm mbry

b∫
rz

brx
bdm

∫
rz

bry
bdm

∫ (
rz

b

)2
dm mbrz

b

mbrx
b mbry

b mbrz
b mb

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Checking further with mechanics texts [2] reminds us that the remaining off-
diagonal integrals are known as the mass products of inertia of the body. They
usually carry symbols such as

Ixy
b =

∫
rx

bry
bdm, Iyz

b =
∫

ry
brz

bdm, Izx
b =

∫
rz

brx
bdm, b = 1, 2, . . . , 	. (9.4)

Different texts do not agree on whether the mass products of inertia should include
a minus sign as a part of their definitions. No minus sign is shown here; however, the
reader is advised to use care if comparing with different texts.

Using our notation, the mass moments of inertia are usually defined as follows
[2]

Ixx
b =

∫ {(
ry

b

)2 + (
rz

b

)2
}

dm, Iyy
b =

∫ {(
rz

b

)2 + (
rx

b

)2
}

dm,

Izz
b =

∫ {(
rx

b

)2 + (
ry

b

)2
}

dm, b = 1, 2, . . . , 	. (9.5)

These are sometimes called “polar” moments of inertia and the definition of Izz, for
example, integrates the square of the distance of each mass particle from the z axis.
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Once we express the aforementioned Jb matrix in terms of these definitions for
the mass moments and products of inertia, we obtain an inertia matrix for each body:

Jb =

⎡
⎢⎢⎢⎢⎢⎣

1
2

( − Ixx
b + Iyy

b + Izz
b

)
Ixy

b Izx
b mbrx

b

Ixy
b

1
2

(
Ixx

b − Iyy
b + Izz

b

)
Iyz

b mbry
b

Izx
b Iyz

b
1
2

(
Ixx

b + Iyy
b − Izz

b

)
mbrz

b

mbrx
b mbry

b mbrz
b mb

⎤
⎥⎥⎥⎥⎥⎦ ,

b = 1, 2, . . . , 	. (9.6)

Because these are values that designers may already know about the mass dis-
tributions of the individual parts of their devices, or that they might find reasonable
to obtain through experiment or through their favorite CAD system, these values
form a very suitable model in which the user can be requested to supply the mass
distribution data for each moving body [4].

As might have been expected, we note that each Jb matrix is symmetric. This
becomes very important in section 10.3 when finding the equations of motion.

The data for the mass distribution of a body is collected totally in the local
coordinate system of the moving body. Thus, the Jb matrix is, by its very definition,
expressed in that coordinate system. However, when we substitute Eq. (9.2) into
Eq. (9.1),

Hb = 1
2 trace

(
ωbT0bJbTt

0bω
t
b

)
, b = 1, 2, . . . , 	,

we see the matrix product T0bJbTt
0b. After review of this derivation, we recognize

that this product, called a similarity transformation, yields the transformation of the
inertia matrix to the global coordinate system where it combines with the global
coordinate velocity matrix ωb of the same body. This matrix product is of size (4 × 4)
and all entries have the same arrangement and the same physical interpretation as
those of Eq. (9.6) except that they are transformed to the global coordinate system.

Of course, the total kinetic energy of the system is found by summing the kinetic
energies of all individual bodies:

H =
	∑

b=1

Hb = 1
2

	∑
b=1

trace
(
ωbT0bJbTt

0bω
t
b

)
. (9.7)

When the record for storage of the data for a body is formed in computer
memory, the software should require that each body record include storage locations
for the elements of the inertia matrix, preferably expressed in the local coordinate
system of the body. These storage locations can be initialized to zeroes. When data
are supplied by the user for the mass of the body, this data can be stored in row
four, column four, thus simulating a point mass located at the origin of the body
coordinate system. When the body coordinates of the center of mass are given, the
elements of the fourth row and column are formed; the mass data then still represents
a point mass, but at the newly specified location on the body. Finally, when mass
moments and products of inertia are supplied by the user, the remaining elements of
the matrix are formed and the inertia matrix no longer represents a point mass, but
a distributed mass. Any body for which mass data are not supplied is considered to
have negligible (zero) mass when compared to those for which nonzero mass data
are supplied.
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9.4 Systems of Units

The units of the data in the Jb inertia matrix are also of great importance. As is usual
in engineering design analysis, it is probable that time is measured in seconds. Up
to this point, it has been assumed that all data for lengths or distances are entered
in one self-consistent set of distance units, but no particular system of units has
been specified. Lengths might be measured in meters, millimeters, feet, or inches
depending on the application and the preference of the analyst. Any of these or
other length units can be chosen as long as all lengths are specified in the same units,
and the user must also be satisfied with these chosen units for all values reported as
simulation results involving distances.

As we progress in our study of dynamics, we will also choose a standard unit
for force, almost certainly the Newton if the meter or the millimeter is chosen for
length, or the pound if the inch or the foot is chosen as the unit of length.

Once these choices are made, then consistency demands that mass data must be
given in units of force seconds squared per unit length. This is called a gravitational
system of units. See, for example, [5] Uicker, op.cit., section 13.3.

With such a system, use of Newtons for forces and meters for lengths requires
that mass data be given in Newton seconds squared per meter (N·s2/m), which are
named kilograms (kg). However, use of Newtons for forces and millimeters for
lengths requires mass data in Newton seconds squared per millimeter (N·s2/mm),
which are named megagrams (Mg).

Similarly, use of pounds for forces and feet for distances requires mass data
in pound seconds squared per foot (lb·s2/ft). Pound seconds squared per foot are
named slugs in some texts. However, to the authors’ knowledge, this term is not
used anywhere outside of academia and, therefore, it is avoided in this text. Use
of pounds for forces and inches for distances requires mass data in units of pound
seconds squared per inch (lb·s2/in), which have no other name. The term pound
seconds squared per inch (lb·s2/in) must be used for mass.

For user friendliness, it may be preferable to allow the user to supply mass and
inertia data in terms of weight units and to have the software convert to mass units by
dividing by the standard gravitational constant. However, it is strongly recommended
that this be done as data are entered and that all data for a particular application be
stored in computer memory in one consistent system of units as just discussed.

9.5 Modeling Gravitational Effects

The mass distributions described by the Jb inertia matrices can also be used for
modeling the effects of gravitational loads in our multibody system. If we define
a homogeneous coordinate vector for the local position of the origin of a body
coordinate system,

r0 =

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦ , (9.8)
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then, from Eq. (9.6), we see that

Jbr0 =

⎡
⎢⎢⎢⎢⎢⎣

mbrx
b

mbry
b

mbrz
b

mb

⎤
⎥⎥⎥⎥⎥⎦ = mbrb, b = 1, 2, . . . , 	.

Transforming this homogeneous coordinate vector from local body coordinates
to global coordinates, we get

T0bJbr0 = T0b

⎡
⎢⎢⎢⎢⎢⎣

mbrx
b

mbry
b

mbrz
b

mb

⎤
⎥⎥⎥⎥⎥⎦ = mbT0brb = mbRb, b = 1, 2, . . . , 	, (9.9)

and because it is easily verified that Tt
0br0 = r0, the equation can also be written in

the form

T0bJbr0 = (
T0bJbTt

0b

)
r0, b = 1, 2, . . . , 	, (9.10)

if this proves to be more convenient when coding the software.
Next, we require the computer user to specify the magnitude and direction of

the gravitational force field, if any, which acts on the bodies having mass. This vector
is defined in homogeneous coordinate form with components along the global axes
and is given the symbol g:

g =

⎡
⎢⎢⎣

gX

gY

gZ

0

⎤
⎥⎥⎦ . (9.11)

Note that there is no stipulation that the g vector need have the magnitude of
standard gravity, although it often may, and it can conveniently default this way in
the software. Still, without this constraint, it occasionally becomes possible to use
the g vector to model a distributed force field that is not the result of gravity. For
example, if a vehicle is rounding a curve of known radius at a known speed, it may
be advantageous to model the centrifugal force field by specifying that g includes
an appropriately sized component in the outward radial direction in addition to the
vertical gravitational component. In this manner the vehicle can be subjected to a
centrifugal force field on all parts having mass, even though the simulation may be
done in a quasi-static mode.

With the gravitational g vector known, it becomes possible to write an expression
for gravitational potential energy. Assuming that a zero-reference position is defined,
where the center of mass of body b coincides with the global origin, the gravitational
potential energy of body b with respect to this reference is

Vb = −mbgtrb, b = 1, 2, . . . , 	.

The negative sign recognizes the convention used here that positive represents
energy contained within the body and signifies that when a body is moved opposite
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to the direction of the gravity vector, work is done and the potential energy of the
body is increased.

Using Eqs. (9.9) and (9.10), the gravitational potential energy of body b
becomes

Vb = −gt(T0bJbTt
0b

)
r0, b = 1, 2, . . . , 	.

Therefore, the total gravitational potential energy of the system is

V = −
	∑

b=1

gt(T0bJbTt
0b

)
r0. (9.12)

9.6 Modeling Joint Stiffness

Sometimes a real spring is designed to act directly with a joint variable, as is the
case with the struts of many automotive or aircraft suspensions, or the coil spring
of a clock or a wind-up toy. In other situations, the analyst may wish to simulate
the stiffness of a motor or control system that acts within a joint. Therefore, we
assume that our mechanical system model may include a stiffness value kh acting
directly with the movement of joint variable φh. Such a spring or stiffness provides
a linear restoring force of magnitude kh(φh − φh0), where φh0 represents the “free
position” of joint φh, at which position the restoring force is zero. Of course, when
the movement of joint variable φh is a rotation, then kh is a torsional stiffness, φh0 is
an angle, and kh(φh − φh0) is the magnitude of a restoring torque.

The potential energy stored in such a spring or joint stiffness is

Vh = 1
2 kh(φh − φh0)

2, h = 1, 2, . . . ,n,

and the total potential energy stored in all such springs of the model is

V = 1
2

n∑
h=1

kh(φh − φh0)
2. (9.13)

As previously explained for mass data, the record created in computer memory
to store each joint can include memory locations for storing values of a stiffness and
a free position associated with each joint variable. These can be initialized to have
values of zero. At a later step in the creation of the system model, data may (or may
not) be supplied to represent the existence of a nonzero spring rate or stiffness for
one or more of these joint variables.

9.7 Modeling Joint Damping

Just as a joint can display stiffness as modeled in the previous section, so too, it
can show energy dissipation through damping. Here we assume that this energy
dissipation can be modeled as viscous damping, that is, that there can be a resisting
force or torque acting against the motion of a joint variable, which is of magnitude
−chφ̇h proportional in size but opposite in sense to the (relative) velocity of the joint
variable. Here ch is the viscous-damping coefficient.
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During an infinitesimal displacement δφh of this joint variable at velocity φ̇h, the
energy loss from the system through such damping is

δUh = −chφ̇hδφh, h = 1, 2, . . . ,n.

If we express the displacement and velocity of this joint variable in terms of the
displacements and velocities of the generalized coordinates, then

δφh =
f∑

k=1

φ′
hkδψk, h = 1, 2, . . . ,n,

and

φ̇h =
f∑

j=1

φ′
h jψ̇ j, h = 1, 2, . . . ,n.

Then the infinitesimal energy loss from this joint variable is

δUh = −
f∑

k=1

f∑
j=1

(φ′
hkchφ

′
h jψ̇ j )δψk, h = 1, 2, . . . ,n.

The total energy loss from all viscous joint damping during this small displace-
ment is

δU = −
f∑

k=1

f∑
j=1

n∑
h=1

(φ′
hkchφ

′
h jψ̇ j)δψk. (9.14)

Again, the record created in computer memory to store each joint can include a
memory location for storage of a value for a viscous-damping coefficient associated
with each joint variable. These can be initialized to have coefficient values of zero.
At a later step in the creation of the system model, data may (or may not) be supplied
to represent the existence of nonzero viscous-damping coefficients for one or more
particular joint variables.

Many other types of energy dissipation have been proposed in the literature
beyond the viscous-damping model shown here. Coulomb damping, hysteretic damp-
ing, proportional damping, quadratic damping, and others are covered in various
texts, [3]. Arguments abound over which is the more appropriate model in a given
situation. However, these are not the purpose of this text, and only viscous damping
is presented here. Others can be implemented in matrix notation by similar methods
if the reader wishes to do so.

9.8 Modeling Point-to-Point Springs

Many multibody systems include one or more springs connected between points of
the moving bodies. If we assume that the endpoints of such a spring are the points
Rb and Rc of two different bodies labeled b and c, then we can define the symbol
Rbc to represent the vector between these two points. Note that the digraph bc as a
subscript signifies only a single spring, yet it includes a pair of points, the endpoints
of the spring, and a pair of integers are referenced. These are the labels of the bodies
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containing the two endpoints. Still, there is only a single spring – a single point pair –
for each such digraph

Rbc = Rb − Rc = T0brb − T0crc, b, c = 1, 2, . . . , 	. (9.15)

The distance between the two points is

	bc =
√

Rt
bcRbc, b, c = 1, 2, . . . , 	, (9.16)

and the unit vector showing the orientation of the vector between the two points is
defined by the symbol

ubc = Rbc/	bc, b, c = 1, 2, . . . , 	, (9.17)

so that

Rbc = 	bcubc, b, c = 1, 2, . . . , 	.

We now assume that our mechanical system model includes a linear spring with rate
kbc and free length 	bc0, which provides a tensile force of magnitude kbc(	bc − 	bc0)

directed onto point b from point c and having an equal and opposite reaction force
onto point c. The potential energy stored in such a spring is

Vbc = 1
2 kbc(	bc − 	bc0)

2, b, c = 1, 2, . . . , 	,

and the total potential energy stored in all such springs of the system is

V = 1
2

∑
bc

kbc(	bc − 	bc0)
2. (9.18)

Note that no symbol has been defined for the total number of such springs in
the model and no numbering convention or order has been chosen for their identifi-
cation. In the actual software, the records for these springs will, almost certainly, be
implemented in a linked list or queue, and the summation will be accomplished by
incrementing through this list.

9.9 Modeling Point-to-Point Dampers

Many multibody systems also include one or more dampers in the form of dashpots
connected between points of the moving bodies. As with point-to-point springs, we
assume that the two endpoints of such a damper are the points Rc and Rd of two
different bodies labeled c and d. We again assume that the energy dissipation can be
modeled as viscous friction; that is, that there is a resisting force that is proportional to
the relative velocity, −ccd 	̇cducd, acting along the line between the two points. During
an infinitesimal virtual displacement δRcd between the two points, the energy loss to
the system is

δUcd = −ccd 	̇cdut
cdδRcd, c,d = 1, 2, . . . , 	. (9.19)

Next, we express the displacement and the relative velocity across this damper
in terms of the motions of the generalized coordinates. The displacement is

δRcd =
f∑

j=1

(Wc jRc − WdjRd)δψ j,
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and we define

R′
cdj = Wc jRc − WdjRd = R′

c j − R′
dj,

c,d = 1, 2, . . . , 	,

j = 1, 2, . . . , f,
(9.20)

so that

δRcd =
f∑

j=1

R′
cdjδψ j, c,d = 1, 2, . . . , 	. (9.21)

From Eq. (9.16),

	2
cd = Rt

cdRcd,

2	cd	̇cd = Ṙt
cdRcd + Rt

cdṘcd = 2Rt
cdṘcd,

	̇cd = ut
cdṘcd,

= ut
cd

f∑
j=1

(Wc jRc − WdjRd )ψ̇ j,

	̇cd =
f∑

j=1

ut
cdR′

cdjψ̇ j, c,d = 1, 2, . . . , 	. (9.22)

Therefore, substituting Eqs. (9.22) and (9.21) into Eq. (9.19), the amount of
energy dissipated by such a damper is

δUcd = −
f∑

j=1

f∑
k=1

R′t
cdjucdccdut

cdR′
cdkψ̇kδψ j,

and the total energy dissipated by all such point-to-point dampers during such a
motion is

δU = −
f∑

j=1

f∑
k=1

∑
cd

R′t
cdjucdccdut

cdR′
cdkψ̇kδψ j. (9.23)

As previously explained, the record created in computer memory to store data
for each point-to-point damper can include a memory location for storage of a
viscous-damping coefficient associated with that damper. Also aforementioned,
many other types of energy dissipation are possible beyond the viscous-damping
model shown here. Coulomb damping, hysteretic damping, proportional damping,
quadratic damping, and others are covered in various texts, [3]. Others can be imple-
mented by similar methods using matrix notation if the reader wishes to do so.

Notice again that no symbol has been defined for the total number of dampers
in the model and no numbering convention or order has been chosen for their iden-
tification. In the actual software, the records for such dampers will almost certainly
be implemented in a linked list or queue, and the summation will be implemented
by incrementing through this list.

9.10 Modeling External Forces and Torques Applied with Joint Variables

For a good simulation tool for multibody dynamic systems, it is also necessary to
model applied forces and torques that may act on the system. There are two major
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categories of such applied forces or torques; some are external forces or torques
that act directly within the joints along with the joint variables whereas the other
type consists of external forces or torques applied at specific locations on the moving
bodies.

In this section, we will model the first category, where an external force acts
directly with a rectilinear joint variable or an external torque acts directly with
a rotational joint variable. Such a force might, for example, be the result of the
action of an electric or hydraulic motor or actuator within the joint labeled h that
is programmed to provide a prescribed force or torque as a given function of time,
or the force or torque might be applied by an intricate control system in joint h that
provides a force or torque as a known function of system geometry.

In any case, we assume that the functional variation of the force or torque acting
with joint variable h is described by a known function fh(φ, t).1 The software may
even allow reading a table of numeric data, possibly empirical, and when the data
is read, the software can perform a Fourier transform to produce a differentiable
periodic function.

We adopt the sign convention that the force or torque is positive when it acts
to cause a positive displacement of joint variable φh. Therefore, the work done by
such an applied force or torque onto the system during a small displacement is the
product of the force or torque and the displacement of the joint variable:

δUh = fh(φ, t)δφh =
f∑

j=1

φ′
h j fh(φ, t)δψ j, h = 1, 2, . . . ,n.

The total work done on the system by all such applied joint forces or torques
during a small displacement of the system is

δU =
f∑

j=1

n∑
h=1

φ′
h j fh(φ, t)δψ j. (9.24)

9.11 Modeling External Forces and Torques Applied to Bodies

The other major category of force systems is composed of external forces and torques
having specified magnitudes and orientations applied to the moving bodies. In order
to achieve a high degree of flexibility in modeling, we assume that each such force
is applied at a specified point, having location rb on the body labeled b; a torque is
applied anywhere on body b. Also, a force or torque is oriented to act along a line
directed toward specified point rc from specified point rd on bodies labeled c and d,
respectively.

Note that the bodies and points b, c, and d may be, but are not required to be,
distinct from each other. If, for example, both c and d refer to points on the same
body, then the force or torque always has a fixed orientation with respect to that
body, even though that body may rotate. If, as another example, c and d both refer to
points on the fixed frame while body b is moving, then the global orientation of the
force or torque is constant. The variety of modeling possibilities is almost unlimited,

1 Within the IMP software, there is an extensive library of functions that can be combined by mathe-
matical operators to describe most situations.
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and no situation has yet arisen that could not be modeled. The only restriction is that
points rc and rd never become coincident because this would cause the orientation
of the force or torque to become undefined.

As we did in section 9.8, we define

Rcd = Rc − Rd = T0crc − T0drd.

Then, as in Eq. (9.16), we define the distance between the two points as

	cd =
√

Rt
cdRcd,

and, as in Eq. (9.17), we define a unit vector showing the orientation of the line
between the two points as

ucd = Rcd

/
	cd.

We assume that the functional description of the magnitude of the external force
or torque acting on body b is known and is described by a given function of time and
system geometry: fbcd(φ, t) for a force or τ bcd(φ, t) for a torque. We assume that the
force is positive when pointed toward the point rc from the point rd. Therefore, in
global coordinates, the force vector is

fbcd(φ, t) = ucd fbcd(φ, t), b, c,d = 1, 2, . . . , 	. (9.25)

As was done in the case of the force, the unit vector ucd for a torque is found
from two points on bodies c and d. Therefore, in global coordinates, the externally
applied torque vector is

τbcd(φ, t) = ucdτbcd(φ, t), b, c,d = 1, 2, . . . , 	. (9.26)

If we consider the combination of a force fbcd(φ, t) applied at point b along ucd

and a torque τbcd(φ, t) along the same line ucd, this force and torque pair is referred
to as a wrench.

Now let us consider a rigid body with a system of forces and torques applied to
it. We know from elementary statics that, at any general point of the body, such a
force and torque system is equivalent to a single resultant force f (φ, t) and a single
resultant torque τ (φ, t) acting at this point, as shown in Figure 9.2. This resultant
torque can be resolved into two components: one τ t(φ, t) in the direction of the
resultant force, and one τ n(φ, t) perpendicular to it as shown.

f

r

u

f

τt

τt

τn

τ

Figure 9.2 Resolving the resultant force (f) and torque (τ ) at a point into
an equivalent wrench (f, τ t). Note that r × f = −τn.
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Now an axis u can be found that is parallel to the line of f and is in the plane
perpendicular to τn, but is shifted by a distance r, where r × f = − τn. The resultant
force τ and torque τt can be replaced by a wrench consisting of a force f(φ, t) = uf(φ,
t) along and a torque τ t(φ, t) = uτ t(φ, t) about this axis (in a plane perpendicular to
the force). For any force/torque system acting on a rigid body, this axis u is unique
and the corresponding construction leads to Poinsot’s theorem [4], named for the
French mathematician, Louis Poinsot (1777–1859):

A general system of forces and torques acting on a rigid body is equivalent to a wrench
about a unique axis consisting of a force along this axis and a torque about this same axis.
The axis is called the screw axis for the wrench. Moreover, any system of wrenches acting
on a rigid body is equivalent to a single wrench acting on the screw axis.

In general, a screw is a line having a linear magnitude named pitch associated with
it. In the case of differential displacements, Ball vectors define a screw that we call a
twist that describes the velocity distribution of a rigid body. Similarly here, a wrench
defines a screw that describes the force distribution on a rigid body. This indicates
that Poinsot’s theorem can be considered a dual of Chasles’ theorem of differential
kinematics or that a form of duality exists between the velocity distribution of a rigid
body and the force distribution on a rigid body. A differential twist has an amplitude
that is the differential rotation of the body and the pitch of the twist is the ratio
of the differential translation to this amplitude, σ = δd(φ, t)/δθ(φ, t). Similarly, a
screw defined by a wrench has an intensity that corresponds to the magnitude of the
force and its pitch is defined as the ratio of the magnitude of the torque divided by
this intensity, h = τ (φ,t)/f(φ, t). When the pitch is zero, a twist represents a rotation
whereas a wrench represents a force. Similarly, an infinite pitch corresponds to a
translation for a twist and a torque for a wrench.

In Chapter 6, we showed that a (4 × 4) matrix can be used to represent a screw
corresponding to a given twist. Similarly, we can represent a screw associated with a
given wrench in terms of a (4 × 4) matrix in the following manner. We first define a
(3 × 3) skew-symmetric matrix ũ whose vector kernel is the unit vector u; observing
that τ = hf, we can then form a (4 × 4) matrix as follows:

f (φ, t)

⎡
⎢⎢⎣

0 −uz uy hux

uz 0 −ux huy

−uy ux 0 huz

0 0 0 0

⎤
⎥⎥⎦ = f (φ, t)

[
ũ hu
0 0

]
. (9.27).

In Eq. (9.27), the factor f(φ, t) corresponds to the intensity of the screw associated
with the wrench and the (4 × 4) matrix is a matrix representation of the screw. The
screw coordinates in the form of a (6 × 1) vector can be extracted from this (4 × 4)
matrix as:

û =
[

hu
u

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hux

huy

huz

ux

uy

uz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (9.28)
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and the corresponding wrench is

f̂ (φ, t) = f (φ, t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hux

huy

huz

ux

uy

uz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9.29)

However, the specification of a wrench depends on the choice of the coordinate
system. For example, the specification given in Eq. (9.27) is based on a coordinate
system that has its origin on the axis of the wrench. We know from Chapter 3,
however, that the (4 × 4) matrix representation of an axis can be written in terms
of any other coordinate system using a similarity transformation. Let us consider,
for example, shifting the origin of the coordinate system used for the specification
of the wrench axis in Eq. (9.29) while keeping its orientation. Then, if r represents a
vector from the origin of the new coordinate system to any point on the wrench axis,
the coordinate transformation between the two coordinate systems can be described
by

T =
[

I r

0 1

]
,

and, using a similarity transformation, the specification of the wrench in this new
coordinate system becomes:

T
[

ũ hu
0 0

]
T −1 =

[
I r
0 1

] [
ũ hu
0 0

] [
I −r
0 1

]
=

[
ũ hu − ũr
0 0

]
.

Therefore, in this new coordinate system, the wrench is given by

f (φ, t)
[

ũ hu − ũr
0 0

]
, (9.30)

Or, in (6 × 1) format,

f̂ (φ, t) = f (φ, t)
[

hu + r × u
u

]
. (9.31)

Now if the force distribution on body b of a multibody system is specified
by a wrench as given in Eq. (9.29), the wrench can be written in terms of any
other coordinate system of the multibody system by using the correct kinematic
transformation matrix T in the form of a similarity transformation applied to
Eq. (9.29).

Although wrenches provide an elegant representation of the force distribution
in a multibody system, we will treat forces and torques and their contributions to
the energy of the system separately in terms of the work performed by each. We
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do this because treating forces and torques separately provides more convenience
and flexibility for the user of a general purpose algorithm or computer program for
complex multibody systems. In the remainder of this text, therefore, we treat these
separately.

For the point of body b where an external force is applied, we can express a
small displacement in terms of displacements of the generalized coordinates

δRb =
f∑

j=1

Wb jRbδψ j =
f∑

j=1

R′
b jδψ j.

The work done onto the system by an external force during a small displacement,
then, is the vector dot product of the force and the displacement. Therefore,

δUbcd = δRt
bfbcd =

f∑
j=1

R′t
b jucd fbcd(φ, t)δψ j.

The total work done by all such externally applied forces acting on the system
during this small displacement is

δU =
f∑

j=1

∑
bcd

R′t
b jucd fbcd(φ, t)δψ j. (9.32)

For an arbitrary location on the body labeled c to which an external torque
is applied, we can express a small displacement in terms of displacements of the
generalized coordinates:

δRc =
f∑

j=1

Wc jRcδψ j.

After reviewing the material of section 6.4, however, and recalling that there is
no particular point of application for a torque, we see that the small twist of the body
labeled c is expressed by the form

δθc =
f∑

j=1

Wc jδψ j =
f∑

j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −δθ
z0
c

δψ j

δθ
y0
c

δψ j

δR
x0
cO

δψ j

δθ
z0
c

δψ j
0 −δθ

x0
c

δψ j

δR
y0
cO

δψ j

−δθ
y0
c

δψ j

δθ
x0
c

δψ j
0

δR
z0
cO

δψ j

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
δψ j.

If we rearrange these terms into Ball vector form as shown in Eq. (6.32), we find
that a small angular displacement of the body labeled c is given by the second Ball
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vector

δ
�

θ c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ
�

θ
x0

c

δ
�

θ
y0

c

δ
�

θ
z0

c

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
f∑

j=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δθ
x0
c

δψ j

δθ
y0
c

δψ j

δθ
z0
c

δψ j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
δψ j =

f∑
j=1

⎧⎪⎪⎨
⎪⎪⎩

Wc j(3, 2)

Wc j(1, 3)

Wc j(2, 1)

⎫⎪⎪⎬
⎪⎪⎭δψ j

=
f∑

j=1

�

W c jδψ j, c = 1, 2, . . . , 	, (9.33)

where Wcj(j, k) symbolizes the element from row j, column k of the (4 × 4) matrix
Wcj, and where

�

W c j signifies that elements of the (4 × 4) Wcj matrix have been
rearranged into a (3 × 1) column matrix in the order defined in Eq. (9.33) for the
second Ball vector. Throughout all software, the Wcj matrices and also the Qc, Dc,
and Acjk matrices can all be calculated and stored in Ball vector (screw coordinate)
form, thus saving time and redundant storage.

The work done onto the system by an externally applied torque during a small
displacement is the vector dot product of the torque and the small angular displace-
ment expressed by the second Ball vector:

δUcde = δ
�

θ
t

cτcde =
f∑

j=1

�

W
t

c judeτcde(φ, t)δψ j, c,d, e = 1, 2, . . . , 	.

Therefore, the total work done by all such externally applied torques during this
small twist is

δU =
∑
cde

δ
�

θ
t

cτcde =
f∑

j=1

∑
cde

�

W
t

c judeτcde(φ, t)δψ j. (9.34)

Again, no symbol has been defined for the number of such torques in the system
model and no numbering convention or order has been chosen for their identifi-
cation. In the actual software, the records for these torques are almost certainly
implemented in a linked list or queue, and the summation is accomplished by incre-
menting through this list.
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PROBLEMS

9.1 Form the inertia matrix entries for each of the geometric shapes shown:

a

b

c
x

z

y

Rectangular prism

x

y

z l

Thin rod

x

y

z

r
Circular disk

x
z

y

r

l

Solid Cylinder

x

a

b

z

y

l

Hollow cylinder
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xz

y

h

r

3h
4

Cone

y

xz
r

Sphere

9.2 Figure P9.2 shows a connecting rod made of steel with density of 7 830 kg/m3.
The dimensions are shown in mm. The thicknesses of the two hubs are each 50 mm,
and the shaft has constant thickness of 30 mm. Determine the inertia matrix for this
connecting rod with the body coordinate axes shown.

y

x

45
25

40 D 25 D

350

85 D
45 D Figure P9.2

9.3 Figure P4.5 shows an Oldham shaft coupling made of steel with density 2.8 lb/in3.
The two shafts are each 6.0 in length with 0.5 in diameter. The circular hubs are each
of 2 in diameter and 0.75 in thickness. The slots and rectangular ribs each have 0.50
in width and 0.375 in thickness. Determine the inertia matrix for each of the moving
links with local body axes oriented as shown in Figure P4.5.



10 Dynamic Equations of Motion

10.1 Introduction

Throughout earlier chapters we have carefully formulated our equations in a very
general, multi-degree of freedom form. In fact, our only two limiting assumptions
so far have been: (1) that all bodies of our system are totally rigid, allowing no
deformation or deflection, and (2) that all joints act precisely as described by their
mathematical models shown in section 4.6, exhibiting no effects such as backlash or
clearances. Indeed, our efforts have produced a kinematic model of our system that
is extremely general and powerful. Even though its solution may be tedious for hand
calculation, we recognize that evaluation is intended by digital computation and we
hope to continue this generality and precision throughout our work in dynamics.

10.2 Lagrange’s Equation

Although it may be possible to formulate the equations of motion for a general
dynamic system by sketching free-body diagrams, assigning sign conventions and
notation, and applying Newton’s laws, such an approach is not used here because
we are interested in complex and diversified three-dimensional mechanisms and
multibody systems and our focus is on developing methods that can be coded for
computation in a general setting. An approach based on energy and Lagrange’s
equation is adopted here, which results in a very general form and minimizes the
potential for errors in formulation. Before we discuss the method, however, let us
review a very brief history of energy methods in mechanics.

The concept of virtual work had been suggested by Aristotle (384–322 BC)
in [2] and by Galileo Galilei (1564–1642) in [3], and then by Johannes Bernoulli
(1667–1748), who stated the principle of virtual work in a letter, dated January 26,
1717, to French physicist Pierre Varignon (1654–1722), and it was later published
by Varignon in [10]. However, it was Pierre Louis Moreau de Maupertuis (1698–
1759) who first enunciated the principle of least action in a public session of the
Academy of France on April 15, 1744, and published it in [8]. Then it was Joseph
Louis Lagrange (1736–1813) in [7], and Sir William Rowan Hamilton (1805–65) in
[4], who developed methods based on work and energy that are especially applicable
to the class of dynamic systems that we now study.

244
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Maupertius’ principle of least action (sometimes called Hamilton’s principle)
states that nature is thrifty; that is, that nature finds a motion for a system between
some beginning state and some ending state for which action, the difference between
the system’s kinetic energy H and potential energy V, is a stationary value. Through
his ingenious first use of the calculus of variations, in [6] Lagrange developed this
principle into what is now called Lagrange’s equation. The particular form of this
equation that fits our situation is as follows:

d
dt

(
∂H

∂ψ̇i

)
− ∂H

∂ψi
+ ∂V

∂ψi
= Fi, i = 1, 2, . . . , f, (10.1)

where Fi are generalized forces applied at each of the f generalized coordinates
ψ i to account for effects that are not modeled by the kinetic and potential energy
functions, H and V. Consistent with our energy approach, this form of Lagrange’s
equation (see, for example, [9]) requires that these generalized forces be found by
modeling the work done during a small displacement of the system:

δU =
f∑

i=1

Fiδψi. (10.2)

Once the work is expressed in this form, the generalized forces Fi can be identified
for use with Eq. (10.1).

10.3 Generalized Momentum

In applying Lagrange’s equation, shown in Eq. (10.1), one of our first tasks is to find
the partial derivatives of the system’s kinetic energy with respect to its generalized
velocities. These derivatives yield the components of the generalized momentum of
the system. Because of this physical significance, we assign a new symbol pi to these
derivatives:

pi = ∂H

∂ψ̇i

, i = 1, 2, . . . , f. (10.3)

Using the model in Eq. (9.7) for the kinetic energy of our system, we write

pi = ∂

∂ψ̇i

[
1
2

	∑
b=1

trace
(
ωbT0bJbTt

0bω
t
b

)]
, i = 1, 2, . . . , f. (10.4)

Next, recognizing that ωb are functions of the generalized velocities, we refer to
Eq. (7.24) to recall that

∂ωb

∂ψ̇i

= ∂

∂ψ̇i

⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠ = Wbi,

b = 1, 2, . . . , 	,
i = 1, 2, . . . , f.

(10.5)

Using this in Eq. (10.4), and recognizing that all other factors are functions of
position, but are independent of velocity, we find

pi = 1
2

	∑
b=1

trace
(
WbiT0bJbTt

0bω
t
b

) + 1
2

	∑
b=1

trace
(
ωbT0bJbTt

0bWt
bi

)
.
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However, because the trace function produces a scalar result, which is identical to
its own transpose, we can transpose the second term here to show that

pi = 1
2

	∑
b=1

trace
(
WbiT0bJbTt

0bω
t
b

) + 1
2

	∑
b=1

trace
(
WbiT0bJt

bTt
0bω

t
b

)
,

and because the inertia matrix Jb is symmetric (Jt
b = Jb), we see that

pi =
	∑

b=1

trace
(
WbiT0bJbTt

0bω
t
b

)
, i = 1, 2, . . . , f. (10.6)

This equation gives the components of the generalized momentum of our system.
These show the components of momentum (or angular momentum) of the system,
as experienced at each of the generalized coordinates.

10.4 D’Alembert Inertia Forces

We can now continue with our development of the equations of motion of our
system. If we take the overall effects of the moving masses, as described by their
kinetic energy, these are the generalized d’Alembert inertia forces of the system.
Equation (10.1) gives these as

Gdyn
i = d

dt
(pi) − ∂H

∂ψi
, i = 1, 2, . . . , f,

and Eqs. (10.6) and (9.7) show these to be

Gdyn
i = d

dt

[
	∑

b=1

trace
(
WbiT0bJbTt

0bω
t
b

)] − ∂

∂ψi

[
1
2

	∑
b=1

trace
(
ωbT0bJbTt

0bω
t
b

)]
.

Next we use Eq. (7.24) to expand the forms for the angular velocity operator
matrices (ωb) so that the generalized velocities appear explicitly in the expressions

Gdyn
i = d

dt

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠

t⎤
⎦
⎫⎬
⎭

− ∂

∂ψi

⎧⎨
⎩ 1

2

	∑
b=1

trace

⎡
⎣
⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ .

We now perform the time derivative required in the first term by use of the chain
rule

Gdyn
i =

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
f∑

j=1

∂

∂ψ j

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ ψ̇ j

− ∂

∂ψi

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣
⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ ,
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and we use the derivative operator matrices of Eqs. (8.46) and (7.21) to perform the
derivatives indicated

Gdyn
i =

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
f∑

j=1

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣Abi jT0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ ψ̇ j

+
f∑

j=1

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣WbiWb jT0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ ψ̇ j

+
f∑

j=1

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0bWt
b j

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ψ̇ j

+
f∑

j=1

⎧⎨
⎩

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

k=1

Abk jψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ψ̇ j

−
⎧⎨
⎩ 1

2

	∑
b=1

trace

⎡
⎣
⎛
⎝ f∑

j=1

Ab jiψ̇ j

⎞
⎠T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭

−
⎧⎨
⎩ 1

2

	∑
b=1

trace

⎡
⎣
⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠WbiT0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭

−
⎧⎨
⎩ 1

2

	∑
b=1

trace

⎡
⎣
⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠T0bJbTt

0bWt
bi

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭

−
⎧⎨
⎩ 1

2

	∑
b=1

trace

⎡
⎣
⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠T0bJbTt

0b

⎛
⎝ f∑

k=1

Abkiψ̇k

⎞
⎠

t⎤
⎦
⎫⎬
⎭ .

By recognizing similar factors, we can regroup these terms as follows:

Gdyn
i =

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
	∑

b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

j=1

(Abi j + WbiWb j)ψ̇ j

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎫⎬
⎭

+
	∑

b=1

trace

⎧⎨
⎩WbiT0bJbTt

0b

⎡
⎣ f∑

j=1

f∑
k=1

(Ab jk + Wb jWbk)ψ̇ jψ̇k

⎤
⎦

t⎫⎬
⎭

− 1
2

	∑
b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

j=1

(Ab ji + Wb jWbi)ψ̇ j

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎫⎬
⎭

− 1
2

	∑
b=1

trace

⎧⎨
⎩
⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠T0bJbTt

0b

⎡
⎣ f∑

k=1

(Abki + WbkWbi)ψ̇k

⎤
⎦

t⎫⎬
⎭.
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Next, we transpose the last term to give

Gdyn
i =

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
	∑

b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

j=1

(Abi j + WbiWb j)ψ̇ j

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎫⎬
⎭

+
	∑

b=1

trace

⎧⎨
⎩WbiT0bJbTt

0b

⎡
⎣ f∑

j=1

f∑
k=1

(Ab jk + Wb jWbk)ψ̇ jψ̇k

⎤
⎦

t⎫⎬
⎭

− 1
2

	∑
b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

j=1

(
Aa ji + Wb jWbi

)
ψ̇ j

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎫⎬
⎭

− 1
2

	∑
b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

k=1

(
Abki + WbkWbi

)
ψ̇k

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̇ j

⎞
⎠

t⎫⎬
⎭,

and by interchanging the labels of the indices j and k in the last line, it combines
directly with the fourth line to yield

Gdyn
i =

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
	∑

b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

j=1

(Abi j + WbiWb j)ψ̇ j

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎫⎬
⎭

+
	∑

b=1

trace

⎧⎨
⎩WbiT0bJbTt

0b

⎡
⎣ f∑

j=1

f∑
k=1

(Ab jk + Wb jWbk)ψ̇ jψ̇k

⎤
⎦

t⎫⎬
⎭

−
	∑

b=1

trace

⎧⎨
⎩
⎡
⎣ f∑

j=1

(Ab ji + Wb jWbi)ψ̇ j

⎤
⎦T0bJbTt

0b

⎛
⎝ f∑

k=1

Wbkψ̇k

⎞
⎠

t⎫⎬
⎭.

However, according to the identity expressed in Eq. (8.49), we see that the
second and fourth lines of the previous set of equations nullify each other. This
leaves

Gdyn
i =

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
	∑

b=1

trace

⎧⎨
⎩WbiT0bJbTt

0b

⎡
⎣ f∑

j=1

f∑
k=1

(Ab jk + Wb jWbk)ψ̇ jψ̇k

⎤
⎦

t⎫⎬
⎭, i = 1, 2, . . . , f.

(10.7)



10.5 Generalized Restoring Forces 249

Also, using Eqs. (8.53) and (7.24) these can be written in the form

Gdyn
i =

	∑
b=1

trace
[
WbiT0bJbTt

0b(αb + ωbωb)
t], i = 1, 2, . . . , f. (10.8)

10.5 Generalized Restoring Forces

The next contribution to our equations of motion is the set of generalized restor-
ing forces, sometimes called generalized static forces. These are the effects that
are derived from potential energy expressions. Using the symbol Gst

i , we see from
Eq. (10.1) that

Gst
i = ∂V

∂ψi
, i = 1, 2, . . . , f. (10.9)

Reviewing the different sections of Chapter 9, we expect to find restoring forces
from the effects of gravity, joint stiffnesses, and point-to-point springs. Adding the
contributions of Eqs. (9.12), (9.13), and (9.18), we find that the total potential energy
from these three sources is

V = −
	∑

b=1

gtT0bJbTt
0br0 + 1

2

n∑
h=1

kh(φh − φh0)
2 + 1

2

∑
cd

kcd(	cd − 	cd0)
2. (10.10)

Before taking the derivative of this expression, let us first recall Eq. (9.16),

	2
cd = Rt

cdRcd, c,d = 1, 2, . . . , 	.

Defining another new symbol, 	′
cdi = ∂	cd/∂ψi, we take the derivative of the previous

equation with respect to the generalized coordinate ψ i, which gives

2	cd	
′
cdi = R′t

cdiRcd + Rt
cdR′

cdi = 2Rt
cdR′

cdi.

Dividing this by 2	cd, and using Eq. (9.17), we obtain

	′
cdi = ∂	cd/∂ψi = ut

cdR′
cdi = R′t

cdiucd,
c,d = 1, 2, . . . , 	,
i = 1, 2, . . . , f.

(10.11)

Finally, we are prepared to evaluate Eq. (10.9) by taking the derivative of
Eq. (10.10):

Gst
i = −

	∑
b=1

gtWbiT0bJbTt
0br0 −

	∑
b=1

gtT0bJbTt
0bWt

bir0

+
n∑

h=1

φ′
hikh(φh − φh0) +

∑
cd

	′
cdikcd(	cd − 	cd0).

It is easily verified from the definition of r0 that Wt
bir0 = 0; therefore, the second

term of this equation is null. Using Eq. (10.11) to express the final term, we obtain

Gst
i = −

	∑
b=1

gtWbiT0bJbTt
0br0 +

n∑
h=1

φ′
hikh(φh − φh0)

+
∑
cd

R′t
cdiucdkcd(	cd − 	cd0) i = 1, 2, . . . , f. (10.12)
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This is an expression for the restoring force experienced at each generalized
coordinate as the result of the combined effects of gravity, joint stiffnesses, and
point-to-point springs.

10.6 Generalized Applied Forces

The final step in finding the complete equations of motion is to evaluate the general-
ized applied forces, Fi. As explained following Eq. (10.1) and in Eq. (10.2), we must
first write an expression for the work done during a small displacement of the system.
However, a quick review reminds us that we have already written these expressions
in Chapter 9. Therefore, we can collect the expressions for the work done onto our
system by joint damping, from Eq. (9.14), point-to-point dampers, from Eq. (9.23),
forces applied at joint variables, from Eq. (9.24), forces applied at moving points,
from Eq. (9.32), and torques applied on moving bodies, from Eq. (9.34). In a single
expression, the overall work done on our system during a small displacement is as
follows:

δU =
f∑

i=1

[
−

f∑
j=1

n∑
h=1

(φ′
hichφ

′
h jψ̇ j) −

f∑
j=1

∑
bc

R′t
bciubccbcut

bcR′
bc jψ̇ j

+
n∑

h=1

φ′
hi fh(φ, t) +

∑
bcd

R′t
biucd fbcd(φ, t) +

∑
cde

�

W
t

ciudeτcde(φ, t)

]
δψi.

According to Eq. (10.2), we can now identify from this work expression the
generalized force Fi acting on each of the generalized coordinates during the small
displacement δψ :

Fi = −
f∑

j=1

n∑
h=1

φ′
hichφ

′
h jψ̇ j −

f∑
j=1

∑
bc

R′t
bciubccbcut

bcR′
bc jψ̇ j

+
n∑

h=1

φ′
hi fh(φ, t) +

∑
bcd

R′t
biucd fbcd(φ, t)

+
∑
cde

�

W
t

ciudeτcde(φ, t), i = 1, 2, . . . , f . (10.13)

10.7 Complete Equations of Motion

Finally, we collect all the parts of Eq. (10.1) to form the full equations of motion of
our multibody system. Collecting Eqs. (10.7), (10.12), and (10.13), we obtain

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ f∑

j=1

Wb jψ̈ j

⎞
⎠

t⎤
⎦

+
	∑

b=1

trace

⎧⎨
⎩WbiT0bJbTt

0b

⎡
⎣ f∑

j=1

f∑
k=1

(Ab jk + Wb jWbk)ψ̇kψ̇ j

⎤
⎦

t⎫⎬
⎭
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−
	∑

b=1

gtWbiT0bJbTt
0br0

+
n∑

g=1

φ′
gikg(φg − φg0) +

∑
cd

R′t
cdiucdkcd(	cd − 	cd0)

= −
f∑

j=1

n∑
h=1

φ′
hichφ

′
h jψ̇ j −

f∑
j=1

∑
bc

R′t
bciubccbcut

bcR′
bc jψ̇ j

+
n∑

h=1

φ′
hi fh(φ, t) +

∑
bcd

R′t
biucd fbcd(φ, t)

+
∑
cde

�

W
t

ciudeτcde(φ, t), i = 1, 2, . . . , f. (10.14)

However, because it is usual practice in mechanical system dynamics to show
the effects of gravity as applied forces and the effects of damping as restoring
forces – in spite of how we have derived their expressions – we may wish to rearrange
these equations into the following form:

	∑
b=1

trace

⎡
⎣WbiT0bJbTt

0b
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Wb jψ̈ j
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⎠
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⎤
⎦

t⎫⎬
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+
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φ′
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′
h jψ̇ j +

f∑
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∑
bc

R′t
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bcR′
bc jψ̇ j

+
n∑

g=1

φ′
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∑
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R′t
cdiucdkcd(	cd − 	cd0)

=
	∑

b=1

gtWbiT0bJbTt
0br0 +

n∑
h=1

φ′
hi fh(φ, t) +

∑
bcd

R′t
biucd fbcd(φ, t)

+
∑
cde

�

W
t

ciudeτcde(φ, t), i = 1, 2, . . . , f . (10.15)

These are the complete dynamic equations of motion of our system. They are
a coupled set of second-order (ψ̈ j), highly nonlinear (ψ̇ jψ̇k) differential equations
with variable coefficients. The solution of these equations is not a trivial task. This
will require numeric integration. Worse yet, although it does not show explicitly,
numeric iteration will be required repeatedly, throughout the motion, to insure that
the kinematic loops remain properly closed. Yet the solution of these differential
equations does describe how the motion of our system develops from some set of
initial conditions, and it is from the solution of these differential equations that the
values of the free generalized coordinates, and their velocities and accelerations, are
determined.
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The dynamic equations of motion can also be written in terms of acceleration
terms that were discussed in Chapter 8. For example, using Eq. (8.55), Eq. (10.15)
can be rewritten as:

	∑
b=1

trace
[
WbiT0bJbT̈ t

0b

] +
f∑

j=1

n∑
h=1

φ′
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′
h jψ̇ j +

f∑
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∑
bc

R′t
bciubccbcut

bcR′
bc jψ̇ j

+
n∑

g=1

φ′
gikg(φg − φg0) +

∑
cd

R′t
cdiucdkcd(	cd − 	cd0)

=
	∑

b=1

gtWbiT0bJbTt
0br0 +

n∑
h=1

φ′
hi fh(φ, t) +

∑
bcd

R′t
biucd fbcd(φ, t)

+
∑
cde

�

W
t

ciudeτcde(φ, t), (10.16)

where T̈0b = (αb + ωbωb)T0b, which can be computed recursively from positions,
velocities, and accelerations using:

T0b = T0,b−1Tb−1,b,

Ṫ0b = ωbT0b,

T̈0b = αbT0b + ωbṪ0b.

Let us now consider an open-loop serial multibody system such as a robot
manipulator with no springs or dissipative elements. If the system is composed of
	 = n + 1 links connected by n single-freedom joints, then, with the fixed link labeled
1 and the moving links labeled 2 through 	, the dynamic equations of motion further
simplify to:

	∑
b=2

trace
[
WbiT0bJbT̈ t

0b

] =
	∑

b=2

gtWbiT0bJbTt
0br0 +

n∑
h=1

φ′
hi fh(φ, t) + R′t

	iucd f	cd(φ, t)

+ �

W
t

	iudeτ	de(φ, t), i = 1, 2, . . . ,n, (10.17)

where the final two terms on the right-hand side represent force and torque loads
applied on the distal link of the chain, and fh(φ, t) is the functional variation or the
intensity of the joint torque/force in each joint h. If we assume no external force and
torque on the distal link and substitute from Eq. (8.55) into Eq. (10.17), we obtain
the so-called Uicker-Kahn formulation [5] of manipulator dynamics written in terms
of the more general notation of this book:

	∑
b=2

{
trace

⎡
⎣WbiT0bJbTt

0b

⎛
⎝ n∑

j=1

Wb jψ̈ j +
n∑

j=1
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k=1

(Ab jk + Wb jWbk)ψ̇ jψ̇k

⎞
⎠

t⎤
⎦

− gtWbiT0bJbTt
0br0

}

=
n∑

h=1

φ′
hi fh(φ, t), i = 1, 2, . . . ,n. (10.18)
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PROBLEMS

10.1 Continue from the results of problem 4.4 through 8.1 to write the nonlinear
dynamic equations of motion of that nonlinear weighing system under the following
assumptions:

a) Only body 3 has mass; its mass is symbolized by m.
b) There are no dampers.
c) The only spring acts within joint D; it has a stiffness of k with a free position

of φD0.
d) Gravity of magnitude g acts in the negative global Y direction.
e) A vertical load of weight W is applied at point E at the free (left) end of

body 2.

10.2 Verify that Wt
bir0 = 0.

10.3 Continue from the results of problem 4.5 through 9.3 to write the nonlinear
dynamic equations of motion of the Oldham shaft coupling under the following
assumptions:

a) Bodies have the dimensions and mass distributions specified in problem 9.3.
b) There are no dampers.
c) There are no springs or joint stiffnesses.
d) The effects of gravity are negligible in comparison with the applied loads.
e) The shaft coupling is driven by a torque on the shaft of body 1 against a

constant load torque MD on the shaft of body 3.

10.4 Continue from the results of problem 10.3 using a value of e = 0.25 in for
the shaft eccentricity. Make a plot of the steady state (ψ̈ = 0) variation with unit
rotational velocity of the input shaft torque for one cycle of operation.



11 Linearized Equations of Motion

11.1 Introduction

The general equations of motion, developed in Chapter 10, are, without question,
the complete and proper model of our dynamic system. However, because of their
nonlinear character, they are not directly amenable to the use of the many mathe-
matical tools that are available for linear systems. For example, many vibration and
automatic control techniques are directly valid only for linear systems. Indeed, even
the electronic instrumentation that is available for measurement of the dynamics of
multibody systems is often designed to operate in the frequency domain and, thus,
inherently assumes that the system treated is linear.

If there is any hope for a general solution technique for these equations of
motion, it is probably through numeric integration by digital computer. We will
investigate such an approach in Chapter 14. However, before looking at the general
case, let us first study the dynamics of our system in the local vicinity of its current
posture.

11.2 Linearization Assumptions

At its current posture, whatever posture this might be, we assert that the system in
question exists in accordance with our general dynamic equations of motion. If it is
not in equilibrium in the sense of being stationary or operating at constant velocity,
then it is in dynamic equilibrium, meaning that its accelerations are consistent with
these same equations of motion.

Also we expect that, during the next interval of time, our system will continue
in its current state of motion, perhaps with acceleration if the applied forces are
not in balance. Also, at least if the time interval is short, the system will not stray
very far from its current geometry and velocity. Thus, for the current time t* with
the current system posture and velocity described by ψ* and ψ̇∗, the motion will
proceed according to the equations

t = t∗ + t,
ψi(t

∗ + t) = ψ∗
i + xi(t),

ψ̇i(t
∗ + t) = ψ̇∗

i + vi(t), i = 1, 2, . . . , f,
ψ̈i(t

∗ + t) = v̇i(t),

(11.1)
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where we have defined the new variable t for the time increment commencing at
this instant, and xi(t) and vi(t) to represent the changes in the position and velocity
values of the generalized coordinates during the coming time increment. We should
note that the treatment of position and velocity as independent of each other was
an essential assumption in the derivation of the Lagrange equation by the calculus
of variations. The requirement that the new generalized velocities be equal to the
derivatives of the generalized positions is not included in their definitions, but will
be included as additional differential equations:

ẋi(t) = ψ̇∗
i + vi(t), i = 1, 2, . . . , f. (11.2)

At t = 0 we will have xi(t) = vi(t) = 0 and, at least for a short time interval t the
motion will persist in such a way that all xi(t) and vi(t) are small. Indeed, we assert
that there exists an upper bound on t that ensures that all xi(t) and vi(t) are small
for that interval. By small, it is meant that xi(t)2 � xi(t) and vi(t)2 � vi(t) so that all
quadratic and higher degree forms of xi(t) and vi(t) can be ignored in comparison
with xi(t) and vi(t).

11.3 Linearization

Therefore, for the general dynamic equations of motion, as found in Eqs. (10.15)
and repeated here,

f∑
j=1

	∑
b=1

trace
[
WbiT0bJbTt

0bWt
b j

]
ψ̈ j

+
f∑

j=1

f∑
k=1

	∑
b=1

trace
[
WbiT0bJbTt

0b(Ab jk + Wb jWbk)
t]ψ̇ jψ̇k

+
f∑

j=1

n∑
h=1

φ′
hichφ

′
h jψ̇ j

+
f∑

j=1

∑
bc

R′t
bciubccbcut

bcR
′
bc jψ̇ j

+
n∑

h=1

φ′
hikh(φh − φh0)

+
∑

bc

R′t
bciubckbc(	bc − 	bc0)

=
	∑

b=1

gtWbiT0bJbTt
0br0

+
n∑

h=1

φ′
hi fh(φ, t)

+
∑
bcd

R′t
biucd fbcd(φ, t)

+
∑
cde

�

W
t

ciudeτcde(φ, t), i = 1, 2, . . . , f, (11.3)
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we can make the substitutions indicated by Eqs. (11.1), expand all coefficients in
Taylor series about their current positions and velocities, and discard all terms that
are of quadratic or higher degree in the variables xi(t) and vi(t):

f∑
j=1

	∑
b=1

trace
(
WbiT0bJbTt

0bWt
b j

)∣∣∗v̇ j

+
f∑

j=1

f∑
k=1

	∑
b=1

trace
[
WbiT0bJbTt

0b(Ab jk + Wb jWbk)
t]ψ̇ jψ̇k

∣∣∗

+
f∑

j=1

f∑
k=1

	∑
b=1

2 trace
[
WbiT0bJbTt

0b(Ab jk + Wb jWbk)
t]ψ̇k

∣∣∗v j

+
f∑

j=1

n∑
h=1

(φ′
hichφ

′
h j )ψ̇ j

∣∣∗ +
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j=1
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h=1

(φ′
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′
h j)

∣∣∗v j

+
f∑
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∑
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R′t
bciubccbcut

bcR′
bc jψ̇ j

∣∣∗ +
f∑

j=1

∑
bc

R′t
bciubccbcut

bcR′
bc j

∣∣∗v j

+
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φ′
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f∑
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n∑
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φ′
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+
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∣∣∗x j, i = 1, 2, . . . , f, (11.4)

where new symbols are defined as follows

f ′
bg(φ, t) = ∂ fb(φ, t)/∂φg,

f ′
bcdg(φ, t) = ∂ fbcd(φ, t)/∂φg, (11.5)

τ ′
cdeg(φ, t) = ∂τcde(φ, t)/∂φg.

The coefficients in Eqs. (11.4) are all evaluated numerically at time t* and the
only variables remaining in these equations are t, xi(t), vi(t) and their time derivatives.

If we rearrange Eqs. (11.4) into standard form, in decreasing order of the deriva-
tives, we see

f∑
j=1

	∑
b=1

trace
(
WbiT0bJbTt

0bWt
b j

)∣∣∗v̇ j

+
f∑

j=1

f∑
k=1

	∑
b=1

2 trace[WbiT0bJbTt
0b(Ab jk + Wb jWbk)

t]ψ̇k

∣∣∗vj

+
f∑

j=1

n∑
h=1

(φ′
hichφ

′
h j)

∣∣∗vj +
∑

bc

R′t
bciubccbcut

bcR′
bc j

∣∣∗vj

+
f∑

j=1

n∑
h=1

φ′
hi jkh(φh − φh0)

∣∣∗x j +
f∑

j=1

n∑
h=1

φ′
hikhφ

′
h j

∣∣∗xj

+
f∑

j=1

∑
bc

R′′t
bci jubckbc(	bc − 	bc0)

∣∣∗x j +
f∑

j=1

∑
bc

R′t
bciubckbcut

bcR′
bc j

∣∣∗xj

+
f∑

j=1

∑
bc

R′t
bci

(
I − ubcut

bc

)
R′

bc jkbc(	bc − 	bc0)/	bc

∣∣∗x j

−
f∑

j=1

	∑
b=1

gt (Abi j + WbiWb j)T0bJbTt
0br0

∣∣∗x j

−
f∑

j=1

n∑
h=1

φ′
hi j fh(φ, t)

∣∣∗x j −
f∑

j=1

n∑
h=1

n∑
g=1

φ′
hi f ′

hg(φ, t)φ′
gj

∣∣∗xj

−
f∑

j=1

∑
bcd

R′′t
bi jucd fbcd(φ, t)

∣∣∗xj

−
f∑

j=1

∑
bcd

R′t
bi

(
I − ucdut

cd

)
R′

cdj fbcd(φ, t)/	cd

∣∣∗x j



258 Linearized Equations of Motion
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11.4 Linearized Equations of Motion

From the coefficients in Eqs. (11.6), we now define the following:

� the system mass matrix, [M]

Mi j =
	∑

b=1

trace
(
WbiT0bJbTt

0bWt
b j

)∗
,

i = 1, 2, . . . , f,
j = 1, 2, . . . , f,

(11.7)

� the system damping matrix, [D]

Di j =
n∑
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(φ′
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′
h j ) +

∑
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bcR′
bc j
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(11.8)

� the system stiffness matrix, [K]

Ki j =
n∑
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(11.9)

� and finally, we define the column vector of generalized applied forces, F

Fi(φ
∗, t) = −
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n∑

h=1

φ′
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∗, t) +

∑
bcd

R′t
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+
∑
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�
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ciu de

∣∣∗ τcde(φ
∗, t), i = 1, 2, . . . , f, (11.10)

where the notations fh(φ*, t), fbcd(φ*, t), and τ cde(φ*, t) signify that the applied forces
and torques fh(φ*, t), fbcd(φ*, t), and τ cde(φ*, t) are each evaluated for the current
posture, but may still be variable functions of time.

With these definitions of the coefficient matrices in Eqs. (11.7), (11.8), and (11.9)
and the column matrix of applied forces in Eq. (11.10), we are now able to express
the linearized equations of motion, from Eq. (11.6), in the very compact form

Mv̇ + Dv + Kx = F (φ∗, t), (11.11)
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where x is a column matrix of the changes xi(t) that are experienced by the f gen-
eralized coordinates ψ i

* after time t*, and v(t) is a column matrix of the changes
in velocity from their values of ψ̇∗

i after time t*, as expressed in Eqs. (11.2). This
set of differential equations must be solved simultaneously with Eqs. (11.2), subject
to the initial conditions that, at time t*, where t = 0, we have x(0) = v(0) = 0. It
must be emphasized again that the coefficient matrices and the column vector of
generalized forces have all been evaluated numerically at time t* and, for a short
time interval t, are treated in Eq. (11.11) as independent of changes in geometry.
We should remember that the variations of fh(φ*, t), fbcd(φ*, t), and τ cde(φ*, t) with
changes of geometry are approximated to first order and included in the stiffness
matrix through values of f ′

hg(φ*, t), f ′
bcdg(φ*, t), and τ ′

cdeg(φ*, t*) as defined in
Eq. (11.5).

By reviewing Eqs. (11.7), (11.8), and (11.9), we see that these coefficient values
cannot change unless or until the system moves to a new posture, or the velocities ψ̇∗

change. Experience also shows that, even for complex mechanisms and multibody
systems, these values are usually weak functions of system geometry and do not
change in surprising or dramatic fashion. Unless the system geometry changes –
say, by changes in x of a 0.25 radian (or length unit) or more – it is not likely that
these coefficient values will change noticeably, even if they are reevaluated. The
same holds true for the geometric factors in Eq. (11.10). However, depending on the
application to which the system is subjected, the applied forces and torques, fh(φ*,
t), fbcd(φ*, t), and τ cde(φ*, t) may be large and/or quickly changing, perhaps even
impulsive, functions of time.

11.5 Dynamic Equations with Specified Input Motions

In section 6.6, we separated the f degrees of freedom and, therefore, the generalized
coordinates into two groups. Those that have known input motions we defined
as specified generalized coordinates (SGCs); there are NS of these. Those whose
motions are not known we named free generalized coordinates (FGCs); there are
NF of these. We now give these two sets the symbolism {ψS} and {ψF}, respectively.

Next, we consider for which of these sets we have written the equations of
motion. There is no question; because our energy and virtual work expressions were
written to include all energy – regardless of cause or origin – we must agree that the
equations found, both the nonlinear equations found in Chapter 10, Eqs. (10.15),
and the linearized versions of Eqs. (11.11), are written for the combined sets of all
degrees of freedom, including both FGCs and SGCs.

Recalling from section 6.6 that the FGCs precede the SGCs in the order of their
identifying labels, we make the distinction between the two sets clear by subdividing
the matrices of Eqs. (11.11) as follows:

[
MFF MFS

MSF MSS

]{
v̇F

v̇S

}
+

[
DFF DFS

DSF DSS

]{
vF

vS

}
+

[
KFF KFS

KSF KSS

]{
xF

xS

}
=

{
FF

FS

}
. (11.12)

The upper submatrices describe the NF equations necessary to solve for the
motions of the FGCs; the lower submatrices represent the NS equations for the
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SGCs. If we expand the upper equations and rearrange them into the usual form,
putting known information on the right of the equal sign, we have

MFF v̇F + DFF vF + KFF xF = FF − MFSv̇S − DFSvS − KFSxS = GF , (11.13)

for the FGCs. Once these are solved for xF and vF, the remaining equations

FS = MSF v̇F + MSSv̇S + DSF vF + DSSvS + KSF xF + KSSxS, (11.14)

can be evaluated to find FS. These give the driving forces and torques that must be
applied at the SGC joint variables at each instant in order to actually achieve the
SGC motions that are specified. Thus, all the equations are useful, but only those in
Eqs. (11.13) need to be solved as differential equations. That is, only these need
to be time integrated. Those in Eqs. (11.14) need only to be numerically evaluated.
However, this last set is still very important in the sense of its engineering significance.

PROBLEMS

11.1 Continue from the results of problem 4.4 through 8.1, using the assumptions of
problem 10.1 and the following numeric data: l = 5 in, m = 9.6522 lb, k = 15 lb/in,
φD0 = 20 in. Find the linearized equation of motion near the posture whereψ = −30◦.

11.2 Continue from the results of problem 10.4 and determine the values of the
mass matrix, damping matrix, stiffness matrix and generalized forcing function for
the linearized equation of motion of the Oldham shaft coupling operating at ψ̇∗ =
100 rev/min.



12 Equilibrium Posture Analysis

12.1 Introduction

A challenge that arises occasionally in the analysis of mechanisms or multibody
systems is that of determining a posture of static equilibrium for a mechanism or
multibody system under a given set of applied loads. An example might be the
question of how much a vehicle suspension will be displaced by putting a variety of
known loads in its luggage compartment, or how much the rear axle will drop if the
vehicle is hoisted through a known distance by the right-rear bumper. Can these be
determined by analysis at the time the vehicle is being designed?

The description of such problems can be formulated from the equations of
motion of the system Eq. (10.15). The requirement, however, is to determine values
of the generalized coordinates ψF for which the system is in a posture of static
equilibrium.

One way to find such a posture is to time integrate the equations of motion until
all transients disappear through friction or damping. However, such a solution may
be slow and inefficient. In this chapter, we hope to find a more direct technique for
finding an equilibrium posture.

Once a system reaches a posture of static equilibrium and all transient effects
subside, the generalized velocities and accelerations vanish. Let us assume that the
applied loads are not time varying. However, they may still be functions of system
geometry. Therefore, until the final posture is found, their final values may not be
known.

At such an equilibrium posture, Eq. (10.15) takes the form:

n∑
h=1

φ′
hikh(φh − φh0) +

∑
bc

R′t
bciubckbc(	bc − 	bc0)

=
	∑

b=1

gtWbiT0bJbTt
0br0 +

n∑
h=1

φ′
hi fh(φ)

+
∑
bcd

R′t
biucd fbcd(φ) +

∑
cde

�

W
t

ciudeτcde(φ), i = 1, 2, . . . , f.
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12.2 Seeking a Nearby Posture of Equilibrium

As we begin with a new system, we may not know the equilibrium posture, and
we usually have no way to assure that the generalized coordinates are initially
in a proper position for equilibrium. Because the final geometry is unknown, the
previous equations may not be balanced initially; in fact, they are probably not
balanced. Therefore, we transfer all terms to the right side of the equation, and
give this total combination of forces the symbols Fi that, initially, represent the
generalized unbalanced loads. From these equations we hope to seek a position
for the generalized coordinates of our system for which these generalized forces Fi

become zero:

Fi = −
n∑

h=1

φ′
hikh(φh − φh0) −

∑
bc

R′t
bciubckbc(	bc − 	bc0)

+
	∑

b=1

gtWbiT0bJbTt
0br0 +

n∑
h=1

φ′
hi fh(φ) +

∑
bcd

R′t
biucd fbcd(φ)

+
∑
cde

�

W
t

ciudeτcde(φ), i = 1, 2, . . . , f. (12.1)

Let us now assert the hope that the true posture of static equilibrium is rea-
sonably close to the current geometry. Said in another way, there may be multiple
solutions and we will be satisfied with finding the equilibrium posture that is near-
est to the current geometry. With this in mind, we expand Eqs. (12.1) in Taylor
series to first order, dropping all quadratic and higher-order terms, just as we did in
Chapter 11. This gives us a new formula for the generalized forces Fi at a new posture
that, hopefully, is near the current posture. We then set the generalized forces at the
new posture to zero with the hope that this new posture will more nearly describe
an equilibrium posture:

F ∗
i +

f∑
j=1

∂Fi

∂ψ j

∣∣∣∣∣
∗
δψ j ≈ 0

−
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+
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From this expansion, we now collect all zero-order terms. This gives an expres-
sion for Fi identical to Eqs. (12.1), but which is numerically evaluated at the current
system posture and may not be zero.

Collecting the first-order terms, however, gives us
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From these we identify the system stiffness matrix K as follows. Note the sign
reversal; this resulted because, when we performed the Taylor series expansion, we
brought all terms to the right side of the equation whereas K is usually on the left:
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(12.2)

and we note with satisfaction that this matches our previous definition in Eqs. (11.9).
Fitting the pieces back together, these definitions allow us to write our Taylor

series expansion of Eqs. (12.1) in the form

Kδψ ≈ F, (12.3)

which, of course, we only expect to be approximately equal because we have dropped
the higher-order terms of the Taylor series. We can, however, proceed to solve
Eq. (12.3) as follows:

δψ ≈ K−1F, (12.4)
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and then use these changes to adjust the generalized coordinate position values

ψi ≈ ψ∗
i + δψi, i = 1, 2, . . . , f. (12.5)

Once the generalized coordinate positions are modified, we must apply the
numeric technique discussed in Chapter 6 to update the dependent joint variables,
the transformation matrices, and all other geometric data. When this is done, the
system should be at a new posture that is closer to equilibrium than the previous
posture, but perhaps is still not exact.

How closely we have achieved equilibrium can be determined by reevaluating
the unbalanced generalized forces of Eq. (12.1). From the magnitudes of these forces
and the posture changes of Eq. (12.4), we can evaluate whether we have achieved
an equilibrium posture within acceptable accuracy. If not, we can recursively apply
Eqs. (12.2), (12.4), (12.5), and the posture solution of Chapter 6 until the desired
accuracy is achieved.1 We can then declare that an equilibrium posture has been
found.

Of course, the process just described is a traditional Newton-Raphson numeric
iteration process looking for a zero of the function Fi. As with all Newton-Raphson
processes, it has an excellent (quadratic) convergence rate once in the vicinity of a
solution. However, it also sometimes experiences difficulties, as will be discussed in
the following section.

12.3 Seeking Equilibrium with Some Generalized Coordinates Specified

If we have a multiple degree of freedom system and some of the freedoms are SGCs,
then we may wish to find an equilibrium position for only some of the generalized
coordinates – the FGCs – under a given set of loads. An example of this might
be finding the equilibrium posture of a vehicle with a known load in the luggage
compartment, as previously described, but with the steering wheel set to a specified
angle (as an SGC).

This situation presents only one additional complication. Before seeking equi-
librium, any SGCs must be moved to their prescribed positions and the system geom-
etry must be updated by the iteration process of Chapter 6. After this is done, the
Newton-Raphson search for equilibrium can be performed in the manner described
in section 12.2, with the exception that Eqs. (12.1), (12.2), (12.4), and (12.5) need
only be formed for the FGCs rather than for all generalized coordinates, while hold-
ing the SGCs at their specified positions. Convergence is still excellent once in the
vicinity of a solution. However, sometimes difficulties are still encountered. These
are discussed next.

12.4 Large Increments of the Generalized Coordinates

One of the difficulties that can arise results when Eq. (12.4) predicts a very large
increment for one or more of the generalized coordinates; in fact, so large that the
iteration process of Chapter 6 does not converge, or converges to a different closure
of the kinematic loop equations. Experience shows that this problem is usually

1 The IMP software uses a default accuracy of |δψi| ≤ 10−5. The user can override this limit if desired.



12.5 Stable versus Unstable Equilibrium 267

(a)

P

P

(b)

Figure 12.1. (a) Unbalanced; (b) Equi-
librium posture.

the result of faulty data supplied by the user, such as with gravitational forces on
masses with data mistakenly supplied in grams rather than in kilograms, or with
stiffness matrix entries found from torsional spring rates erroneously supplied in
inch-pounds per degree rather than per radian.

Whatever the cause, failure of the posture analysis equations can be quite frus-
trating to the user of the software. To help avoid such failures, after the calculation
of the recommended increments for the generalized coordinates from Eq. (12.4) it is
wise to test the magnitude of the total δψ vector and to scale its components propor-
tionally smaller if the total vector is beyond a chosen limiting size.2 This may slow
convergence toward equilibrium, but it dramatically reduces the chance of failure of
the iterative posture solution.

12.5 Stable versus Unstable Equilibrium

If the Newton-Raphson search for equilibrium is applied exactly as described in
sections 12.2, and 12.3, it can lead to other unexpected situations. As an example,
consider the slider crank system shown in Fig. 12.1a. With a large force P applied on
the piston as shown and with gravity acting perpendicular to the plane of the page,
we would probably expect to find an equilibrium posture with the piston translated
to the far left and with the crank near the 180◦ position, as shown in Fig. 12.1b.
Without modification, however, our software would actually move the piston to the
right and would find equilibrium at a crank angle of very nearly zero!

How could this be? What would cause movement to the right when the force P
appears to demand movement to the left? Well, if we carefully reconsider what the
Newton-Raphson search procedure was asked to do, we see that it was only asked to
find a nearby posture with Fi equal to zero. It was not told to move in the direction
implied by the unbalanced forces. How can this be cured? First, if movement is in
the “wrong direction,” how can this be detected?

We also know that, for a posture of stable equilibrium, potential energy should
become a minimum. Does this result from our Newton-Raphson search procedure?
Again, our procedure was not formulated to assure this.

2 The IMP software uses a default limit of |δψ | ≤ 1.0 (radian or length unit) for this test. The user
may override this limit if desired.
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If we expand potential energy in Taylor series, we see

V = V ∗ +
f∑

i=1

∂V
∂ψi

δψi + · · · , (12.6)

and, from the Lagrange equations, Eqs. (10.1), we know that, under static con-
ditions,

∂V
∂ψi

= Fi, i = 1, 2, . . . , f. (12.7)

Therefore, using Eq. (12.6), we can write

δV = V − V ∗ = Ftδψ ≤ 0. (12.8)

This shows that the dot product of the vector of generalized unbalanced forces and
the vector of generalized position increments found from Eq. (12.4) tell us whether
the system’s potential energy will increase or decrease during such a change of
posture. Thus, we have found a very convenient test to tell whether our search is
progressing toward or away from a posture of less potential energy. However, this
test does not show how to cure the problem when the test shows that potential energy
is increasing.

However, looking again at Eqs. (12.7), we see that the generalized unbalanced
force vector F is equal to the gradient of the potential energy function, of which
we hope to find a minimum. Also, an abundance of numerical methods exist in the
literature that can generally be categorized as steepest descent methods; for example,
see [1], section 10.6. All of these require that, from some starting point, the search for
the minimum of a function should proceed in the direction of the negative gradient
of the function. For our situation, this gives

ψi = ψ∗
i − μFi, i = 1, 2, . . . , f, (12.9)

where μ controls the size of the vector increment of the generalized positions.
The increment size μ may be chosen in a variety of ways depending on which

search method is chosen, and much has been written about the advantages and
tradeoffs of the many methods available, and their rates of convergence toward a
solution. However, in our specific application, we already know that once we find
the neighborhood of a valid solution, the Newton-Raphson method of Eqs. (12.4)
and (12.5) exhibits quadratic convergence and none of the steepest descent methods
improve on this. Therefore, we only need Eq. (12.9) to avoid stepping toward a false
solution; that is, toward a posture of unstable equilibrium, as indicated by failure of
the test of inequality in Eq. (12.8).

Our newly modified algorithm starts each search increment by forming
Eq. (12.4). Next, the inequality (12.8) is tested and, if this test is passed, the gen-
eralized coordinates are incremented according to Eq. (12.5). For those situations
where the inequality test fails, however, Eq. (12.9) is applied instead with an appro-
priate value of μ. The software might use a default step size such as μ = 1.0/|F|.
This gives the system a noticeable change in posture (particularly because rotational
generalized coordinates are measured in radians) and, hopefully, the search will then
continue toward a posture of stable equilibrium by Eq. (12.4).
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12.6 Postures of Neutral Equilibrium

Another problem that can be encountered in seeking equilibrium is that, as we apply
the previous procedure, we may reach a posture where the stiffness matrix becomes
singular or nearly singular and Eq. (12.4) cannot be applied. Let us discuss how this
can occur and what can be done in such a situation.

Let us consider the portion of Eq. (12.3) that corresponds to the FGCs alone, as
discussed in section 12.3. The equations start in the form

[K] {δψ} = {F } .

Let us suppose that we employ a Gauss-Jordan row-reduction process with full
pivoting for the solution. As we proceed, the augmented K matrix evolves at each
step as follows:

[
K−1

11 0

−K21K−1
11 I

]⎡
⎣K11 K12 F1

K21 K22 F2

⎤
⎦ =

⎡
⎣I K−1

11 K12 K−1
11 F1

0 K22 − K21K−1
11 K12 F2 − K21K−1

11 F1

⎤
⎦ .

We seek out each new pivot element from the lower-right portion of the matrix,
the portion that contains

[
K22 − K21K−1

11 K12

]
, and attempt to continue the reduction.

If at some step we find that all elements of
[
K22 − K21K−1

11 K12

]
are too small to

consider,3 then the reduction process must cease. At such a step, the equations have
been reduced to the form[

I K−1
11 K12

0 ε

]{
δψ1
δψ2

}
=

{
K−1

11 F1

F2 − K21K−1
11 F1

}
.

That subset of the FGCs that, as the result of pivoting, has ended in the subgroup
{δψ2} can now be treated in either of two ways: we can set these {δψ2} to zero in
the hope that they may be corrected in the next search step, or we can use the
corresponding unbalanced generalized forces {F2 − K21K−1

11 F1} and Eq. (12.9) for
that subgroup and then use the solution of the upper equations; that is {δψ1} =
{K−1

11 F1 − K−1
11 K12δψ2} for the others.

Once the search for equilibrium concludes, any generalized coordinates that
remain in the subgroup {δψ2} of the FGCs are said to be in neutral equilibrium. If
Eq. (12.9) is used as the basis for its increment, it is important that such steps be
counted and an upper limit set. As an example, suppose that our vehicle with the load
in its luggage compartment is postured on a smooth horizontal road and suppose that,
as the result of numeric truncation error, a very small unbalanced load is calculated
in the forward direction even though there is no fore and aft stiffness for the vehicle;
then Eq. (12.9) will produce a small forward movement of the vehicle. Next, the
same unbalanced load is found again, and another small movement results. When
this happens repeatedly, no progress is made that can relieve this deadly embrace
and an endless loop is the result. Thus, an increment counter with an upper limit is
of critical importance.4

3 The IMP software uses ε = 10−5 for this test. The user can override this limit if desired.
4 A default upper limit of 25 steps is used by the IMP software for this test. The user can override this

limit if desired.
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PROBLEM

12.1 Continue problem 11.1 and find the equation relating W and ψ such that the
scale is in equilibrium at each posture. Plot a graph of W versus ψ under these
conditions for the range −85◦ ≤ ψ ≤ 0◦.



13 Frequency Response of Mechanisms
and Multibody Systems

13.1 Introduction

When a mechanism or multibody system such as a rotating machine powered by
an electric motor or an internal combustion engine is driven cyclically, it may oper-
ate with periodic motion, but not usually with harmonic motion. Such a system is
not characterized by the linearized equations of Chapter 11 because its kinematic
parameters and its dynamic equation coefficients change throughout the cycle of
operation. For these or other situations where the linearized equations of motion do
not pertain, the entire field of frequency response is not applicable and the methods
of this chapter should not be used.

However, there are situations where a mechanism or multibody system operates
over a limited amplitude range and is described quite well by linearized equations
of motion with approximately constant dynamic coefficients. Examples include the
vibratory motion of vehicle suspensions, belt-tensioning idler pulleys, or many vibra-
tion isolation systems. These and other situations, where the linearized equations of
motion do pertain, are the focus of this chapter.

13.2 Homogeneous First-order Equations of Motion

As early as 1750, Daniel Bernoulli (1700–82) [1] – the son of Johann Bernoulli
(1667–1748), Leonhard Euler (1707–83) [3], and Joseph Louis Lagrange (1736–
1813) [6], had been using trigonometric series to represent periodic functions, but it
was Marquis Pierre Simon Laplace (1740–1827) [7] and Baron Jean Baptiste Joseph
Fourier (1768–1830) [4] who showed how these can be used in the solution of linear
differential equations.

Let us start by considering the linearized equations of motion of our mechanical
system. Equation (11.13) for the free generalized coordinates is

MFF v̇F + DFF vF + KFF xF = GF , (13.1)

and these must be solved along with Eq. (11.2) to ensure that

vF = ẋF − ψ̇∗
F . (13.2)

271
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Here we consider only the equations dealing with the NF free generalized
coordinates (FGCs) because the motions of the specified generalized coordinates
(SGCs) are known a priori.

Because we believe that our system exhibits periodic motion for its transient
response to a disturbance, we attempt to use a harmonic form for a trial solution

xF = {ξ} eλt,

and, from Eq. (13.2),

vF = λ {ξ} eλt − ψ̇∗
F .

Substituting these into Eq. (13.1), taking the homogeneous part, and dividing by the
common factor of eλt leaves

[
λ2MFF + λDFF + KFF

]
ξ = 0. (13.3)

However, for this equation to have a nontrivial solution, the coefficient matrix must
be singular:

det
[
λ2MFF + λDFF + KFF

] = 0.

Because this determinant is of size (NF ×NF ) with elements that are each
quadratic functions of λ, it produces a polynomial of degree 2NF in λ. Assumedly,
the 2NF complex values of λ that satisfy as roots of this equation could be found by
a numerical search. This equation could have been studied in depth but, historically,
this was not to be. Instead, the following parallel linear form shown in Eq. (13.9) has
received much more attention.

Instead, we return to Eq. (11.13), including the applied forces. Augmenting these
with Eq. (13.2), in the form of the identity MFF ẋF − MFF vF = MFF ψ̇

∗
F , this set of

differential equations can be written in the form

[
0 MFF

MFF 0

]{
v̇F

ẋF

}
−

[
MFF 0
−DFF −KFF

]{
vF

xF

}
=

{
MFF ψ̇

∗
F

GF

}
.

However, by adding DFF ẋF − DFF vF = DFF ψ̇
∗
F , which is another variation of

Eq. (13.2), to the lower set of equations, they become[
0 MFF

MFF DFF

]{
v̇F

ẋF

}
−

[
MFF 0

0 −KFF

]{
vF

xF

}
=

{
MFF ψ̇

∗
F

DFF ψ̇
∗
F + GF

}
. (13.4)

This modification is important because it makes the coefficient matrices sym-
metric, and still follows the linearization assumptions of Chapter 11. Notice also that,
even though v̇F and ẋF may be large, vF and xF are both small.

Defining new coefficient matrices,

A =
[

0 MFF

MFF DFF

]
and B =

[
MFF 0

0 −KFF

]
, (13.5)
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and a new vector of unknowns,

y =
{

vF

xF

}
, (13.6)

of size 2NF , our system of Eqs. (13.4) is now described by a first-order set of
differential equations

Aẏ − By =
{

MFF ψ̇
∗
F

DFF ψ̇
∗
F + GF

}
, (13.7)

with the initial conditions that when t = 0, we must have y = 0. The vector space for
this form, which treats vF and xF as independent, is referred to as “state space.”

We take notice that because the MFF, DFF, and KFF coefficient matrices of the
original equations are real and symmetric, the form of the definitions of Eqs. (13.5)
show that the new A and B matrices are also real and symmetric. This becomes
important following Eq. (13.11).

As we did previously, we attempt a harmonic form for a trial solution

y = {η} eλt. (13.8)

Substituting this and its derivative into the homogeneous part of Eq. (13.7) and
dividing by the common factor of eλt, leaves

[λA − B] η = 0. (13.9)

In the form shown, where the coefficients are linear expressions in λ, Eq. (13.9)
is called the generalized eigenvalue problem. Alternatively, if pre-multiplied by A−1,
Eq. (13.9) can be put into the form

[λI − (A−1B)]{η} =
[
λI −

(−M−1
FF DFF −M−1

FF KFF

I 0

)]
{η} = 0, (13.10)

which is called simply the eigenvalue problem. This equation has been studied exten-
sively over many years, and software for its solution exists in almost all numerical
software libraries [8]. As one example of such software, EISPACK is a public domain
collection of FORTRAN subroutines for computing the eigenvalues and/or eigen-
vectors of various types of matrices. It includes software for both Eq. (13.9) and
Eq. (13.10). EISPACK was developed with the support of the National Science
Foundation (NSF) in the mid-1960s and was one of the first completely systematized
collections of linear algebra software. Since that time, however, much has changed
in computer architectures and mathematical algorithms, and a newer linear alge-
bra package, LAPACK, has been developed to supercede EISPACK. For further
information, see http://www.netlib.org/lapack/.

For either form of the equation to have a nontrivial solution, the coefficient
matrix must be singular. That is, starting from Eq. (13.9),

det [λA − B] = 0. (13.11)

The expansion of this determinant yields a polynomial of degree 2NF in λ that
is called the characteristic or secular equation of the system. This equation can be
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solved for 2NF values of λ, which are called characteristic values or eigenvalues of
the system. These values of λ, in general, are complex. However, because the A
and B matrices are real and symmetric in this case, it has been proven [5] that the
eigenvalues must either be real or must occur in complex conjugate pairs.

Assuming, as we now do, that all eigenvalues are distinct, they can be arranged
to form a diagonal matrix:

Λ =

⎡
⎢⎣
λ1 0 0

0
. . . 0

0 0 λ2NF

⎤
⎥⎦ .

Extension to the case of repeated eigenvalues is presented in section 14.3.
Each of the eigenvalues λi, in turn, can be back-substituted into either Eq.

(13.9) or Eq. (13.10), as appropriate, and solved for a complex column vector ηi

called an eigenvector. However, recalling Eq. (13.11), we know that the coefficient
matrix of Eq. (13.9) or Eq. (13.10) is singular; therefore, each eigenvector can only
be determined to the nearest arbitrary multiplying constant. However, once found,
these eigenvectors can be arranged in the same order as the diagonal elements of Λ
to form columns of another (2NF × 2NF ) complex matrix,

η = [η1 · · · ηi · · · η2NF ], (13.12)

which is called the modal matrix.
When we reconstruct the general form of Eq. (13.8), with all eigenvalues and

eigenvectors included, we get the full solution to the homogeneous linearized equa-
tions of motion

y = ηexp(Λt)C (13.13)

where exp(Λt) is a diagonal matrix with values of eλit as diagonal entries, t is the
time interval following the instant of linearization, and C is a column of 2NF yet
unknown complex constants that depend on the initial conditions. Note that these
constants compensate for the ability to determine each eigenvector to only an arbi-
trary multiplying constant.

Even though we have manipulated Eq. (13.9) into the form called the generalized
eigenvalue problem so that we can take advantage of available software for solution,
we should understand that the eigenvalues λi that are found must be the same as if
we had continued with the solution of Eq. (13.3) because the same physical system,
with the same characteristic frequencies and damping rates, is described in each case.

13.3 Modal Coordinates

We will return to the completion of the solution of Eq. (13.13) in Chapter 14.
However, in this chapter, as the title specifies, we wish to study the frequency
response of our mechanism or multibody system to a harmonic external disturbance.
In order to do this we have need for the eigenvalues and eigenvectors of the system.
That has been our reason for their introduction in the preceding section.
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Before completing our solution in the time domain in the next chapter, let us
consider further the implications of the form of Eq. (13.13). Suppose that we define
a new column vector of coordinates z, of size 2NF , called modal coordinates, with
the following definition

y = ηz. (13.14)

Although this might seem like a reverse manner for making a definition, recalling
Eq. (13.13) shows that this form is advantageous because it gives

z = exp (Λt)C.

This means that, if only one of the constants – Ci – is nonzero, then only that single
modal coordinate zi becomes active and the entire system responds with frequency
and damping defined by the ith eigenvalue λi alone, whereas all other modal coor-
dinates remain motionless (because eigenvalues occur in complex conjugate pairs,
the ideas here must be understood as referring to a single real eigenvalue or a single
complex conjugate pair). However, even more, if we now return to Eq. (13.14), we
see that each of the y coordinates – the NF FGC displacements and velocities –
respond at the same characteristic normal mode frequency and damping rate, but
with different amplitudes defined by the elements of ηi, the ith eigenvector. When
this happens, the system is said to be operating in the ith of its principal or normal
modes.

Next let us consider two copies of Eq. (13.9): one corresponding to the jth

eigenvalue and the other corresponding to the kth eigenvalue:

[λ jA − B]η j = 0,

[λkA − B]ηk = 0.

Let us pre-multiply the first of these by ηt
k and the second by ηt

j:

ηt
k[λ jA − B]η j = 0,

ηt
j[λkA − B]ηk = 0.

If we now subtract the second of these equations from the transpose of the first,
remembering that A and B are symmetric, we obtain

(λ j − λk)η
t
jAηk = 0. (13.15)

This equation says that, for j �= k, because we have assumed that λj �= λk, we must
have ηj

tAηk = 0 (extension to the case of repeated eigenvalues is presented in section
14.3). Furthermore, let us consider the form

ηt[ΛA − B]η = 0. (13.16)

If we define two new matrices,

A = ηt Aη and B = ηtBη,

then Eq. (13.15) shows that A must be a diagonal matrix because it has zeroes for
all off-diagonal elements where j �= k. Also, from Eq. (13.16), B must be diagonal as
well. Therefore, Eq. (13.16) is referred to as a set of orthogonality conditions. We
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see that the modal matrix η is not orthogonal in the usual sense because η−1 may not
equal ηt, but η is said to be orthogonal with respect to both A and B. As shown by
Eqs. (13.15) and (13.16) it diagonalizes both A and B.

Recalling that each of the eigenvectors is only determined to the nearest multi-
plying constant, each can now be scaled by an arbitrary constant. Therefore, we are
free to divide each eigenvector ηi by

√
ηt

iAηi, thus scaling them so that A becomes
equal to the identity matrix. Then Eq. (13.16) shows that B = Λ. If we consider
Eq. (13.5), we see that the only way in which this scale factor can be zero is if mass
has been ignored for enough bodies that [MFF] is singular; that is, such that it is
possible to find a set of nonzero velocities for the FGCs for which the system has no
kinetic energy. If this occurs, it is considered a modeling error; the user should be
notified and requested to modify the model with appropriate mass values.

If we also pre-multiply Eq. (13.7) by ηt and recall Eq. (13.14), we find that the
equations of motion, in modal coordinates, become

ż − Λz = ηt

{
MFF ψ̇

∗
F

DFF ψ̇
∗
F + GF

}
. (13.17)

Here we see that we have a set of 2NF first-order differential equations. How-
ever, because Λ is diagonal, they are now uncoupled and can be considered either
together, as in Eq. (13.17), or separately, as

żi − λizi = ηt
i

{
MFF ψ̇

∗
F

DFF ψ̇
∗
F + GF

}
, i = 1, 2, . . . , 2NF .

13.4 Laplace Transformed Equations of Motion

Instead of completing our solution in the time domain, let us now switch to the
frequency domain by taking the Laplace transform of our equations of motion.
Remembering the definition of GF from Eq. (11.13), the Laplace transform of
Eq. (13.17) is

[sz(s) − z0] − Λz(s)

= ηt

⎧⎪⎨
⎪⎩

1
s

MFF ψ̇
∗
F

1
s

DFF ψ̇
∗
F + FF (s) − MFS

[
s2xS(s) − sxS0 − ẋS0

] − DFS

[
sxS(s) − xS0

] − KFSxS(s)

⎫⎪⎬
⎪⎭ ,

where s represents the Laplace transform variable, xS0 and ẋS0 are the initial positions
and velocities of the SGCs, z0 are the initial values of the modal coordinates, and z(s),
FF(s), and xS(s) are the Laplace transforms of the modal coordinates, the generalized
applied forces, and the SGC displacements, respectively.

Remembering that the initial conditions require that xS0 = 0 and ẋS0 = ψ̇∗
S , this

equation can be rearranged to read

[sI − Λ] z(s) = z0 + ηt

⎧⎪⎨
⎪⎩

1
s

MFF ψ̇
∗
F

1
s

DFF ψ̇
∗
F + MFSψ̇

∗
S + FF (s) − [

s2MFS + sDFS + KFS

]
xS(s)

⎫⎪⎬
⎪⎭ .
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However, for what is usually called frequency response, we are only interested
in the sustained response of our system after the transients have been damped
to zero. Therefore, we eliminate the z0 initial condition terms of the previous
equation:

[sI − Λ] z(s) = ηt

⎧⎪⎨
⎪⎩

1
s

MFF ψ̇
∗
F

1
s

DFF ψ̇
∗
F + MFSψ̇

∗
S + FF (s) − [

s2MFS + sDFS + KFS

]
xS(s)

⎫⎪⎬
⎪⎭ .

The solution to this equation can be written

z(s) = [sI − Λ]−1
ηt

⎧⎪⎨
⎪⎩

1
s

MFF ψ̇
∗
F

1
s

DFF ψ̇
∗
F + MFSψ̇

∗
S + FF (s) − [

s2MFS + sDFS + KFS

]
xS(s)

⎫⎪⎬
⎪⎭ ,

and, from the definition of z in Eq. (13.14), this becomes

y(s) = η [sI − Λ]−1
ηt

⎧⎪⎨
⎪⎩

1
s

MFF ψ̇
∗
F

1
s

DFF ψ̇
∗
F + MFSψ̇

∗
S + FF (s) − [

s2MFS + sDFS + KFS

]
xS(s)

⎫⎪⎬
⎪⎭ ,

which, along with Eqs (13.6), gives{
vF (s)
xF (s)

}

= η[sI − Λ]−1ηt

⎧⎪⎨
⎪⎩

1
s

MFF ψ̇
∗
F

1
s

DFF ψ̇
∗
F + FF (s) + MFSψ̇

∗
S − [

s2MFS + sDFS + KFS

]
xS(s)

⎫⎪⎬
⎪⎭ .

(13.18)

Remembering that as long as the eigenvalues are distinct, the matrix [sI −
Λ] is diagonal and can be inverted term by term, we find that, in index notation,
Eq. (13.18) becomes

xi(s) =
2NF∑
k=1

ηNF +i,k

(s − λk)

NF∑
j=1

{
η jk

s

[
NF∑
h=1

Mjhψ̇
∗
h

]
+ ηNF + j,k

s

[
NF∑
h=1

Djhψ̇
∗
h

]

+ ηNF + j,k

⎡
⎣Fj(s) +

f∑
h=NF +1

Mjhψ̇
∗
h −

f∑
h=NF +1

(s2M jh + sDjh + Kjh)xh(s)

⎤
⎦
⎫⎬
⎭ ,

i = 1, 2, . . . ,NF . (13.19)

13.5 Frequency Response

Equations (13.18) and (13.19) show the Laplace transform of the response of the
FGCs to all generalized applied forces FF(s) and SGC motions xS(s) acting on the
system simultaneously. If we choose a particular one of these as the input of interest,
we can express the Laplace transform of the response of our system to excitation
from that particular source.
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For example, if we assume that the only input is an excitation coming from a
particular generalized force Fp alone, then the Laplace transform of the response of
FGC xi to force Fp is

xi,p(s) =
2NF∑
k=1

ηNF +i,k

(s − λk)

{
NF∑
j=1

[
η jk

s

NF∑
h=1

M jhψ̇
∗
h + ηNF + j,k

s

NF∑
h=1

Djhψ̇
∗
h

+ ηNF + j,k

f∑
h=NF +1

Mjhψ̇
∗
h

]
+ ηNF +p,kFp(s)

}
, i, p = 1, 2, . . . ,NF. (13.20)

However, if the excitation comes from the motion of SGC xp alone, then the
Laplace transform of the response of FGC xi is

xi,p(s) =
2NF∑
k=1

ηNF +i,k

(s − λk)

NF∑
j=1

{[
η jk

s

NF∑
h=1

Mjhψ̇
∗
h + ηNF + j,k

s

NF∑
h=1

Djhψ̇
∗
h + ηNF + j,k

f∑
h=NF +1

M jhψ̇
∗
h

]

− ηNF + j,k[s2M jp + sD jp + Kjp]xp(s)

⎫⎬
⎭,

i = 1, 2, . . . ,NF

p = NF + 1, . . . , f
(13.21)

Both of these sets of equations give the Laplace transforms of the motions of
the FGCs to specified excitations. However, it is much easier for the analyst to
judge their physical meaning if they are shown as functions of frequency, rather
than as Laplace transforms. The format called frequency response of either of these
equations can be determined by setting the Laplace operator s equal to jω [2] where
j = √−1. This results in a complex function of frequency ω for the chosen equation.
The magnitude and phase angle of the function can then be plotted versus frequency
in graphs called Bode plots. These plots are quite useful to a controls engineer in
judging the response, and in determining how to control it.
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PROBLEMS

13.1 Continue from the results of problem 11.1 and find the eigenvalues and eigen-
vectors of the spring scale under study when in equilibrium under a constant load W
in the posture of ψ = −30◦.

13.2 Continue from the results of problem 13.1 and make a Bode plot for small
oscillations around this posture.



14 Time Response of Mechanisms and
Multibody Systems

14.1 Inverse Laplace Transform

The overall purpose of this chapter is to complete the solutions to the equations of
motion of our dynamic system for the unknown motions of the FGCs as functions
of time. With these and the methods of the previous chapters, the overall motion of
the entire system becomes known.

There are two sets of equations for which we have yet to find final solutions:
1) the modal amplitude equations have not yet been integrated to provide explicit
functions of time, and 2) the Laplace transform solutions are still in the frequency
domain and have not yet been transformed back to the time domain. In this chapter,
we hope to finish both of these solutions.

Chapter 13 shows the Laplace transform of the response of the FGCs of our
system to any generalized applied forces FF(s) and SGC motions xS(s) that may be
acting on the system. Remembering Eq. (13.19), we have

xi(s) =
2NF∑
h=1

ηNF +i,h

(s − λh)

NF∑
j=1

{
η jh

s

[
NF∑
k=1

M jkψ̇
∗
k

]
+ ηNF + j,h

s

[
NF∑
k=1

Djkψ̇
∗
k

]

+ ηNF + j,h

⎡
⎣Fj(s) +

f∑
k=NF +1

Mjkψ̇
∗
k −

f∑
k=NF +1

(
s2Mjk + sDjk + Kjk

)
xk(s)

⎤
⎦
⎫⎬
⎭,

i = 1, 2, . . . ,NF . (14.1)

We must now consider how we will invert this Laplace transform and thereby
return our solution to the time domain. By definition, the inverse of any Laplace
transform can be written as follows:

xi(t) = lim
σ→0

[
1

2π j

∫ σ+ j∞

σ− j∞
xi(s)e

stds
]
, i = 1, 2, . . . ,NF , (14.2)

which is called the Bromwich integral after Thomas John l’Anson Bromwich (1875–
1929), Saint John’s College, Cambridge, England, or, sometimes, the Fourier-Mellin
integral after Robert Hjalmar Mellin (1854–1933), first professor of mathematics,
Technical University of Finland.

For a function such as xi(s) that is defined over the complex s plane, a location
where the denominator becomes zero produces an infinite value and is called a pole

280
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Figure 14.1. (a) Integration path for Bromwich integral; (b) Jordan curve.

of the function. As shown in Figure 14.1a, Eq. (14.2) is a line integral in the complex
s plane taken along a line parallel to the imaginary axis and taken to the right of all
poles of the integrand.

It is possible to evaluate an approximate value for this integral by numeric
integration; however, there is a better way that computes more quickly and avoids
approximation. The line integral of Eq. (14.2) can be extended along a semi-circular
curve at infinity surrounding the left half-plane as shown in Figure 14.1b, thus forming
a simple-closed curve called a Jordan curve [5], named after French mathematician,
Marie Ennemond Camille Jordan (1838–1922), which encloses all of the poles.

It has been shown [2] that the value of the portion of the integral of Eq. (14.2)
along the semi-circular arc at infinity is zero and does not change the value of the
total integral. Therefore, the integral sought is equal to the integral around the
closed curve shown in Figure 14.1b, where σ is chosen large enough that the curve
surrounds all poles of xi(s)

xi(t) = 1
2π j

∫
� xi(s)e

stds, i = 1, 2, . . . ,NF .

Remembering the definition of GF from Eq. (11.13), and substituting Eq. (14.1),
this integral becomes

xi(t) = 1
2π j

∫
�

2NF∑
h=1

ηNF + j,h

(s − λh)

NF∑
j=1

{
η jh

s

[
NF∑
k=1

Mjkψ̇
∗
k

]
+ ηNF + jh

s

[
NF∑
k=1

D jkψ̇
∗
k

]

+ ηNF + j,h

⎡
⎣ f∑

k=NF +1

Mjkψ̇
∗
k

⎤
⎦+ ηNF + j,hGj(s)

}
estds, i = 1, 2, . . . ,NF. (14.3)
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14.2 Cauchy’s Residue Theorem

The integrand of our equation is an analytic function of the complex operator s
throughout the region of the complex plane enclosed by the Jordan curve of Figure
14.1b, except at isolated singular points where the denominator becomes zero, such
as the origin and the 2NF points where s = λh. Additional singularities may occur
where there are zeroes in the denominators of the forcing functions, Gj(s). Let us
require that the forcing functions be replaced by partial fraction expansions [7] and,
thereby, expressed in the form

Gj(s) =
NP∑
k=1

gjk(s)

(s − λ2NF +k)
, j = 1, 2, . . . ,NF , (14.4)

where NP represents the number of additional values of λh, which are identified as
zeroes of the denominators of Eq. (14.4) and, through these, are poles of Eq. (14.3).
Let us also require that these additional poles be numbered consecutively to follow
the numbering of the eigenvalues. In keeping with our current assumption that the
eigenvalues of our system are distinct, we assume, temporarily, that the additional
poles of the forcing functions are distinct from each other, from the origin, and
from the eigenvalues. Thus, all (2NF + NP + 1) poles of the response function, we
assume for now, are simple poles. The extension to the case of multiple poles is
shown in section 14.3.

When a function f(s) has an isolated singular point (a pole) at the location in
the complex plane where s = λm, then the value defined by

Res f (λm) = [(s − λm) f (s)]|s=λm
, m = 1, 2, . . . , 2NF + NP + 1, (14.5)

is called the residue of the function at that location. With this definition, the Cauchy
residue theorem, named after the French mathematician, Baron Augustin Louis
Cauchy (1789–1857) [1], states that the integral of a complex function around a
closed curve is equal to 2π j (where j = √−1) times the sum of the residues of the
function at all poles surrounded by the curve.1 Where there are only simple poles,
this theorem (see [2, section 67]) says that∫

� f (s)ds = 2π j
∑

m

Res f (λm) = 2π j
∑

m

{(s − λm) f (s)}|s=λm
. (14.6)

For our situation, the residue theorem can be used to replace the integral of
Eq. (14.3) with a summation

xi(t) = 2π j
2π j

2NF∑
h=1

NF∑
j=1

NF∑
k=1

ηNF +i,h

−λh

(
η j,hMjk + ηNF + j,hD jk

)
ψ̇∗

k

+ 2π j
2π j

2NF +NP∑
m=1

2NF∑
h=1

NF∑
j=1

[
(s − λm)ηNF +i,h

(s − λh)s

NF∑
k=1

(
η j,hM jk + ηNF + j,hDjk

)
ψ̇∗

k

1 There is a (bad) joke about a mathematician who named his dog Cauchy because it left a residue at
every pole.
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+ (s − λm)ηNF +i,hηNF + j,h

(s − λh)

f∑
k=NF +1

M jkψ̇
∗
k

+ (s − λm)ηNF +i,hηNF + j,h

(s − λh)

NP∑
k=1

gjk(s)

(s − λ2NF +k)

]
est

∣∣∣∣∣
s=λm

, i = 1, 2, . . . ,NF ,

(14.7)

where the first line results from the pole at the origin.
Careful evaluation shows that when the λm value is taken for s in the terms of

the second and third lines, the numerator produces zero for the (s − λm) factor for
every term of the summation over m except when m = h or when m = 2NF + k. For
those particular terms, the (s − λm) factor in the numerator, which evaluates to zero
for most terms, is balanced by one of the factors in the denominator. Also, the first
line combines with the first set of terms of the second line, leaving

xi(t) =
2NF∑
h=1

ηNF +i,h

λh

NF∑
j=1

NF∑
k=1

(
η j,hM jk + ηNF + j,hD jk

)
ψ̇∗

k (e
λht − 1)

+
2NF∑
h=1

ηNF +i,h

NF∑
j=1

ηNF + j,h

f∑
k=NF +1

Mjkψ̇
∗
k eλht

+
2NF∑
h=1

ηNF +i,h

NF∑
j=1

ηNF + j,h

NP∑
k=1

gk(λh)

(λh − λ2NF +k)
eλht

+
2NF∑
h=1

ηNF +i,h

NF∑
j=1

ηNF + j,h

NP∑
k=1

gk(λ2NF +k)

(λ2NF +k − λh)
eλ2NF +kt, i = 1, 2, . . . ,NF ,

which can be rearranged to read

xi(t) =
2NF∑
h=1

(eλht − 1)
ηNF +i,h

λh

NF∑
j=1

NF∑
k=1

(
η j,hM jk + ηNF + j,hD jk

)
ψ̇∗

k

+
2NF∑
h=1

ηNF+i,h

NF∑
j=1

ηNF+ j,h

⎡
⎣ f∑

k=NF+1

M jkψ̇
∗
k eλht+

NP∑
k=1

gk(λh)e
λht −gk(λ2NF+k)e

λ2NF+kt

(λh −λ2NF+k)

⎤
⎦,

i = 1, 2, . . . ,NF . (14.8)

A little reflection shows what powerful advantages we have achieved by use
of the residue theorem for performing the integral of Eq. (14.3). We see that the
integration required for the inversion of the Laplace transform has become a sum-
mation over a discrete and fairly small set of terms, and no approximation has been
required. Although finding eigenvalues is thought by some to be a time-consuming
calculation, it must be remembered that even a complex mechanism or multibody
system usually has mobility (f) of less than ten. Therefore, for this application, the
computation is actually quite rapid.

Although the formula may look a little foreboding, it is really quite straightfor-
ward. Typically, the several terms of the nested summations combine numerically
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into damped sinusoidal oscillations at NF natural frequencies of the system, defined
by the complex conjugate pairs of eigenvalues in the first line of the previous equa-
tion. In the second line, we see a set of response terms with damped frequencies
coming from forces caused by the SGC motions in the first sum over h, and in the
final sum over h, we see NP more response terms with damped frequencies caused
by applied forces and torques.

14.3 Systems with Repeated Eigenvalues

In the preceding sections, we found it convenient to assume that the eigenvalues
of our system are distinct. Although this is usually the case, we now wish to find a
solution to our linearized equations of motion that is not subject to this restriction.

If, while using the residue theorem to invert the Laplace transform of Eq. (14.1),
we encounter a repeated eigenvalue or a multiple pole coming from Eq. (14.4) with
value of λk, – say, with multiplicity mk – then in the inverse transform of Eq. (14.7),
there will be mk terms, all of which are of the form

2π j(s − λk) f (s)est |s=λk
. (14.9)

If mk is more than unity, these must be replaced with a sum of mk terms of the form

2π j
mk−1∑
h=0

dh

dsh

{(
s − λk

)mk f (s)
} t(mk−1−h)

h!
est

∣∣∣∣∣
s=λk

. (14.10)

However, further expansion of this case is left to the reader as an exercise. Instead,
we will extend the modal solutions of Chapter 13 to include the case of repeated
eigenvalues.

For the class of systems considered in this text, we found in Eq. (11.13), that the
linearized equations of motion for the free-generalized coordinates are

MFF v̇F + DFF vF + KFF xF = FF − MFSv̇S − DFSẋS − KFSxS = GF ,

and, in Eq. (13.4), we wrote these in first-order form as[
0 MFF

MFF DFF

]{
v̇F

ẋF

}
−

[
MFF 0

0 −KFF

]{
vF

xF

}
=

{
MFF ψ̇

∗
F

DFF ψ̇
∗
F + GF

}
.

Using the definition of Eq. (13.6)

y =
{

vF

xF

}
,

and multiplying these equations by the inverse of the lead matrix, we can put them
into the form

ẏ −
[
−M−1

FF DFF −M−1
FF KFF

I 0

]
y =

{
M−1

FF GF

ψ̇∗
F

}
. (14.11)

From the values at the linearization set point, the initial conditions for this system
are that when t = 0, we have vF = xF = y = 0.

As pointed out in Eq. (13.10), the homogeneous form of Eq. (14.11) gives
an eigenvalue problem, and has the same eigenvalues as previously found from
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Eq. (13.9). However, in this section, we are no longer willing to assume that the
eigenvalues are distinct. Nevertheless, we still define a modal matrix η, as we did in
Eq. (13.12), and define a set of modal coordinates z:

y = ηz. (14.12)

In terms of these modal coordinates, Eq. (14.11) becomes

ηż −
[
−M−1

FF DFF −M−1
FF KFF

I 0

]
ηz =

{
M−1

FF GF

ψ̇∗
F

}
,

which can be pre-multiplied by η−1 to show that

ż − η−1

[
−M−1

FF DFF −M−1
FF KFF

I 0

]
ηz = η−1

{
M−1

FF GF

ψ̇∗
F

}

with the initial conditions that at t = 0, z = 0.
Let us now define two new symbols,

Λ = η−1

[
−M−1

FF DFF −M−1
FF KFF

I 0

]
η and ζ = η−1

{
M−1

FF GF

ψ̇∗
F

}
, (14.13)

which reduce our modal differential equations of motion to the form

ż − Λz = ζ . (14.14)

In previous sections, where we assumed all eigenvalues to be distinct, the Λ

matrix formed in Eq. (14.13) was of size (2NF × 2NF ) and became diagonalized with
values equal to the eigenvalues on its diagonal. Now, however, where we consider
that some of the eigenvalues may be repeated, this diagonalization may not be
possible. In such a case, the system is said to be defective. However, even with a
defective system, it is always possible to find a matrix η that reduces the Λ matrix
to what is called Jordan normal form [4, 6, 8, 9] (this is the same Jordan as for the
Jordan curve of section 14.1). Such a form is block diagonal

Λ = η−1

[
−M−1

FF DFF −M−1
FF KFF

I 0

]
η =

⎡
⎢⎢⎢⎣
Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λm

⎤
⎥⎥⎥⎦ , (14.15)

where each Λk block is called a Jordan block.
Each Jordan block Λk is of size (mk × mk) to match the number of times that

each distinct eigenvalue λk is repeated, and m1 + m2 + · · · + mm = 2NF . Each
Jordan block has mk equal values of the eigenvalue λk on its diagonal and, for blocks
where mk is greater than one, the block has values of unity on its first super-diagonal,
whereas all other entries of the block are zeroes. Therefore, each is of the form

Λk =

⎡
⎢⎢⎢⎢⎣
λk 1 · · · 0

0 λk
. . .

...
...

. . .
. . . 1

0 · · · 0 λk

⎤
⎥⎥⎥⎥⎦ , k = 1, 2, . . . ,m. (14.16)
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Many of the Jordan blocks Λk are of size mk equal to one. In this, the usual
case, the eigenvalue λk is not repeated; ηk becomes an eigenvector and Λk contains
one distinct eigenvalue on the diagonal, as dealt with previously. However, with
a defective system, the Jordan normal form is the simplest form possible for the
corresponding equations of motion of Eq. (14.14).

There are now mk equations of motion corresponding to each Jordan block, and
each set is of the form

żk − Λkzk = ζk, k = 1, 2, . . . ,m. (14.17)

There are two possible cases: the value of λk for a particular Jordan block may
be zero or it may be nonzero. When the value of λk for a particular Jordan block is
nonzero, the homogeneous equations are

{żk}H − [Λk]{zk}H = 0,

and because λk may be repeated in a particular Jordan block, the form of the
homogeneous solution is

{zk}H = [Ṫk(t)]Ckeλkt,

where [Ṫk(t)] is an (mk × mk) matrix of the form

[Ṫk(t)] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 t · · · t(mk−1)

(mk − 1)!

0
. . .

. . .
...

...
. . .

. . . t
0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 1, 2, . . . ,m, (14.18)

and Ck is a column of complex constants that depend on the initial conditions.
By assuming that the form of the particular solution is {zk}P is constant, we find

from Eq. (14.17) that

{zk}P = −[Λk]−1ζk,

with

[Λk]−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λk

−1
λ2

k

· · · (−1)mk−1

λ
mk
k

0
. . .

. . .
...

...
. . .

1
λk

−1
λ2

k

0 · · · 0
1
λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 1, 2, . . . ,m. (14.19)

Therefore, combining the homogeneous and particular solutions, the complete solu-
tion for a Jordan block with nonzero λk is

zk = [Ṫk(t)]Ckeλkt − [Λk]−1ζk.
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With the initial conditions that at t = 0, zk = 0, Eq. (14.18) shows that [Ṫk(t)] = I and
the previous equation gives Ck = [Λk]−1ζ k. Therefore, the complete solution for the
response of a Jordan block with nonzero λk is

zk = [Ṫk(t)e
λkt − I][Λk]−1ζk, k = 1, 2, . . . ,m. (14.20)

The remaining case is when the value of λk for a particular Jordan block is λk =
0. In this case, the Jordan block of Eq. (14.16) takes the form

Λk =

⎡
⎢⎢⎢⎢⎣

0 1 · · · 0

0 0
. . .

...
...

. . .
. . . 1

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦ .

Equations (14.17) for such a block have a solution of the form

zk = [Ṫk(t)]Ckeλkt + [Tk(t)]ζk, k = 1, 2, . . . ,m, (14.21)

where

[Tk(t)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t
t2

2
· · · tmk

mk!

0
. . .

. . .
...

...
. . . t

t2

2
0 · · · 0 t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, k = 1, 2, . . . ,m. (14.22)

With the initial conditions that at t = 0, zk = 0, Eq. (14.18) shows that [Ṫk (0)] = I
and Eq. (14.22) gives [Ṫk(0)] = 0. Therefore, Eq. (14.21) shows that Ck = 0, and the
complete solution for the response of a Jordan block with λk equal to zero is

zk = [Tk(t)]ζk, k = 1, 2, . . . ,m. (14.23)

To summarize the total solution process, we must first reduce our total set of
first-order equations of motion for the system FGCs to Jordan normal form as shown
by Eqs. (14.14), (14.15), and (14.16). Once the Jordan blocks are identified, we can
form the overall modal response matrix

[Z(t)] =

⎡
⎢⎢⎢⎣

Z1(t) 0 · · · 0
0 Z2(t) · · · 0
...

...
. . .

...
0 0 · · · Zm(t)

⎤
⎥⎥⎥⎦ , (14.24)

where the [Zk(t)] blocks are of sizes (mk × mk) as found from the Jordan blocks,
and have values of

[Zk(t)] =
⎧⎨
⎩

[Ṫk(t)e
λkt − I][Λk]−1 for λk �= 0,[

Tk(t)
]

for λk = 0,
k = 1, 2, . . . ,m, (14.25)
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and [Λk]−1, [Ṫk], and [Tk] are given by Eqs. (14.19), (14.18), and (14.22), respectively.
Finally, from these, we can find the modal amplitude response vector

z = [Z(t)]ζ (14.26)

for the total system. From Eq. (14.12), z gives the state space response vector y that
includes values for both the changes in position x and the changes in velocity v from
those at the linearization set point:[

v
x

]
= y = ηz = η [Z(t)] ζ . (14.27)

For purposes that will become clear in section 14.5, we also have need to find
the time derivative of these, in order to find the accelerations v̇ of the system
FGCs: [

v̇
ẋ

]
= ẏ = ηż = η[Ż(t)]ζ , (14.28)

where

[Ż(t)] =

⎡
⎢⎢⎢⎣

Ż1(t) 0 · · · 0
0 Ż2(t) · · · 0
...

...
. . .

...
0 0 · · · Żm(t)

⎤
⎥⎥⎥⎦ , (14.29)

[Żk(t)] =
⎧⎨
⎩

[
T̈k(t) + Ṫk(t)λk

]
eλkt [Λk]−1 for λk �= 0,[

Ṫk(t)
]

for λk = 0,
k = 1, 2, . . . ,m, (14.30)

and

[T̈k(t)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 t · · · t(mk−2)

(mk − 2)!

0 0 1
. . .

...
...

. . .
. . .

. . . t

0
. . . 0 0 1

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, k = 1, 2, . . . ,m. (14.31)

14.4 Time Integration Algorithm

As we have progressed through the methods of Chapter 13 and then the preceeding
material of this chapter, our real intent has been to find the form of the solution for
the nonlinear equations of motion, Eqs. (10.15), in order to compute the time history
of the FGCs of our mechanism or multibody system. Because the time histories of
the SGCs are known a priori, this completes our full knowledge of the motions of
the generalized coordinates and, therefore, of the entire system. From these and the
methods of Chapters 6, 7, and 8, the full kinematics of all parts of our system become
known.
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Well, that has been our intention. However, as usual, things are never quite so
simple. Instead of this original goal, we found it necessary to linearize the equations
around some set point, which we did in Chapter 11, and then to solve this linearized
set to find Eqs. (14.27). The intention has been that this set of solutions could
be applied recursively over short time intervals in an incremental time integration
algorithm. However, a major question remains. How large should our time increment
be? If the increment is too large, errors coming from the linearization approximation
will accumulate and the solution will be inaccurate. If the time increment is too small,
the algorithm will operate unacceptably slowly.

The solutions that we found in Eqs. (14.27) are only valid as long as our lineariza-
tion assumptions hold. The primary assumption has been that the M, D, K, and G
matrices remain essentially constant during each time increment. Well, experience
shows that this assumption remains suitably valid as long as (a) the changes in system
geometry remain reasonably small, and (b) the time variation of the forces contained
in G are reasonably approximated. However, as the time increment increases, both
assumptions fall more and more into question. Ultimately, there is a limit on the
time increment for which they hold. The solution to this dilemma, of course, is to
keep the time increment small enough to assure compliance with these assumptions.

Let us declare that we are starting the simulation of our dynamic multibody
system at a known value of time t = t0, from a known set of FGC positions ψF(t0),
and with a known set of FGC velocities ψ̇F (t0). We can also choose a value for the
desired time interval �t between printing or display of results, and an estimated
value for a time interval t ≤ �t to be used for the calculation time increment. Then
we can apply the following recursive procedure:

1. Evaluate current values of the SGC positions ψS(t), velocities ψ̇S(t), and accel-
erations ψ̈S(t).

2. Apply the numeric methods of Chapter 6 to ensure that all dependent position
information for the system is known precisely at the current time.

3. Evaluate the M, D, and K coefficient matrices of the system equations of motion
using Eqs. (11.7), (11.8), and (11.9), and the applied forces F using Eq. (11.10),
and GF using Eq. (11.13).

4. Form the coefficient matrices M−1
FF DFF , M−1

FF KFF , and M−1
FF GF of Eq. (14.11).

5. Find the Jordan normal formΛ and the generalized eigenvectors η of Eq. (14.15).
6. Form the forcing functions ζ of Eq. (14.13).
7. Find a predicted set of FGC position increments x(t) from Eq. (14.27). If any

are large, reduce the time increment t → t/2 and repeat this step.
8. Evaluate predicted values of the SGC positions ψS(t + t), velocities ψ̇S(t + t),

and accelerations ψ̈S(t + t) from their definitions.
9. Predict new FGC positions ψF(t + t) = ψF(t) + x(t) from Eq. (11.1).

10. Attempt the numeric posture solution procedure of Chapter 6 to find the depen-
dent φ positions for time t + t. If this procedure fails, reduce the time increment
t → t/2 and repeat from step 7.

11. Find new FGC velocity increments v(t) from Eq. (14.27).
12. Predict new FGC velocities ψ̇F (t + t) = ψ̇F (t) + v(t) from Eq. (11.1). Find all

dependent velocities for time t + t.
13. Set time to t → t + t.
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14. Evaluate the M, D, and K coefficient matrices of the system equations of motion
using Eqs. (11.7), (11.8), and (11.9), the applied forces F from Eq. (11.10), and
GF from Eq. (11.13).

15. Find the FGC accelerations from Eq. (11.13), ψ̈F (t) = v̇F (t) = M−1
FF (GF − DFFvF

− KFFxF). Find all dependent accelerations.
16. Test whether time t has reached the value for the next printing time and/or

output display time; if so, process and output data as necessary.
17. Test whether time t has reached the proper value for ending the simulation; if

not, return to step 4 to continue.

Before finishing this section, it is very important that we review the class of problems
being considered in this text and contrast the time integration method presented
here with others that might be considered. Let us first remember that the number
of degrees of freedom being considered is, perhaps, between ten and twenty in a
very complex system. Therefore, it is quite feasible to consider solving the iterative
loop-closure computation of Chapter 6 at every time step, particularly with the
extremely quick convergence reported in that chapter. For the same reason, solving
for the Jordan normal form, as in step 5, or for eigenvalues and eigenvectors is not
unreasonable at every time step.

However, the very fact that the numeric algorithm of Chapter 6 is being used does
imply that this algorithm makes a new decision at each time step as to which and even
how many FGC variables exist for each new time step, and there is no assurance that
these will be the same variables from one time step to the next. In many problems,
the decision of which joint variables are chosen as FGCs does change as the system
geometry changes. Also, if the system being simulated passes through a singular (for
example, a dead-center) posture, the number of FGCs increases at such a posture
and then decreases again after leaving that posture. These considerations do not
totally prevent use of some of the better-known numeric integration algorithms, but
they do provide additional complications not present in other applications, such as
in predictor/corrector techniques, and not addressed in numerical analysis texts.

It must be understood that the software being considered here is for simulating
multibody dynamic systems. This is an extremely different class of problems from
the class addressed in finite element analysis (FEA). In that class:

(a) The bodies being simulated may be of high stiffness, but they are not rigid.
Indeed, in that class, the strain (change of geometry) variables are among the
fundamental unknowns being sought.

(b) The number of degrees of freedom is often in the hundreds or even in the
thousands.

(c) The solution of FEA problems is not expected to operate quickly enough for
real-time animation during a dynamic simulation. Much slower solution methods
are usually acceptable, with animation done only by post-processing.

Traditional wisdom in numerical analysis texts advises that the time step in the
numeric solution of an initial value problem should not be greater than about one-
tenth of one cycle of the highest frequency of the problem being simulated. The
natural frequencies of typical problems being considered here often range from a
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single Herz or less for the low frequency, to tens of MegaHerz for the high frequency.
Therefore, this advice suggests a typical time-step size of t ≈ (10)−8 seconds, or
100 million integration steps per second simulated. It must be understood that this
advice is based on the recognition that almost all well-known methods of numeric
integration are based on power series in the independent variable t. Here we have
used a harmonic series – recall eλkt in Eqs. (14.8) and (14.30) – and we have found
the complete and exact theoretical solution to the linearized differential equations
during the time increment being integrated. Our approximation has been in assuming
that the linearized equations are a good approximation throughout the time step.
This assumption is limited only by the size of the time step and the changes in
geometry and applied forces, not by the natural frequencies involved.

In relatively recent times, numeric methods have been developed for integrating
the class of problems known as stiff differential equations [3]. This is the class in which
the spectrum of resonant frequencies range over several orders of magnitude and,
therefore, traditional methods have called for thousands or even millions of time
steps per cycle of progress in the overall simulation. This is precisely the class usually
represented in multibody dynamic systems. However, as just explained, the method
developed is such a method. Particularly with the improvements of the next section,
it can and often will pass over hundreds, thousands, or even millions of cycles of high
frequencies during a single time step, particularly when their amplitudes within the
actual response are small because of the energy required and because those modes
are not excited.

14.5 Adaptive Time-step Control

Sometimes there are difficulties with the time integration algorithm presented in the
previous section. As shown in steps 7 and 10, for example, there may be situations
where the algorithm predicts egregiously large changes in the FGCs positions and
it becomes necessary to reduce the size of the time increment, if only to keep the
numeric loop-closure process under control.

However, even if extremes are avoided successfully, this does not ensure that the
algorithm produces reliable accuracy. How can we tell if the time increment might
still be too large? Well, one way to test this might be to perform the simulation
again with a smaller time increment, and to compare results to see if they agree
within acceptable limits. However, this does not seem reasonable as a continuing
requirement. Is there some way to test as the time integration process evolves? Yes,
there is.

Immediately after step 12 in our time integration process explained in the previ-
ous section, we can predict for time t + t the expected new values of the accelerations
v̇ of the FGCs by using Eq. (14.28). These are the accelerations that occur according
to the prediction of the linearized equations of motion. They should be of acceptable
accuracy if the time step is within the range for which the linearized equations are
valid.

However, in step 13, we set the time to t + t and, in step 15, we recalculate these
same accelerations with new data that are updated for the modified geometry. These
values are accurate in the sense that they fit the nonlinear Lagrange equations at the
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new posture. By subtracting the earlier predictions from this later calculation, we can
determine the differences in the FGC accelerations that result from the inaccuracy
of using the linearized equations for our nonlinear system.

If this difference in accelerations is found to be larger than some chosen upper
limit, then the size of the time increment should be reduced, for example, to t → t/2.
If the error is well beyond this upper limit, then it may be considered necessary to
repeat the current step with the smaller time increment.

Of course, it is to be expected that there will always be some difference in accel-
erations; this is true for any numeric solution of nonlinear differential equations, no
matter what method is used. In fact, if this difference in accelerations is smaller than
some chosen lower bound, then the time step being used is probably too small and
integration is progressing more slowly than necessary. Under these circumstances,
the time increment may be increased, say to t → min(2t,�t). This will ensure that
the time integration proceeds more quickly, but also that the time step does not
exceed the interval between desired output time steps.

Before finishing this section, we should recognize that step 10 of our integration
algorithm is continuously ensuring that all geometric constraints of our system are
enforced to good accuracy. Therefore, even though forces in various parts of our
system may include errors, the geometry of the system being simulated is always
valid. That is, it always represents a possible posture that can realistically be expe-
rienced by the modeled system. We should also recognize that error in acceleration
is a very sensitive test. It is a convenient technique for sensing linearization error
because we predict with the linearized equations and then recalculate with the non-
linear equations. Moreover, numeric errors should be expected to be larger when
calculating derivatives. Therefore, controlling error in acceleration should control
errors in velocity and position even more accurately.

Another improvement has been found in helping the user to estimate or eval-
uate the limits to be used in controlling error. The calculation technique can pro-
ceed as previously explained. However, by redefining error so that it includes pre-
multiplication by the mass matrix – that is, ε = M[ ψ̈ − v̇] – we can recast error
into units of error in force. Most users find it more intuitive to choose an accuracy
limit that they wish to attain in terms of accuracy in force rather than accuracy in
acceleration.
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PROBLEM

14.1 Continue from Eq. (14.9), using Eqs. (14.6) and (14.10), to apply the residue
theorem to the inversion of the Laplace transform where there is a single pair of
equal eigenvalues; write the solution out explicitly for the case of f = 2, NF = 2,
NP = 1, g j,1(s) = 1, and gj,2(s) = 0, with λ3 = λ4.



15 Collision Detection

15.1 Introduction

Through simulation of multibody systems as explained in the preceeding chapters, we
can solve a variety of useful problems with no further enhancement. However, with
the methods explained so far, we still lack the capability to simulate collisions, either
between moving bodies or between a single moving body and its fixed surroundings.
Simulation software developed strictly with the formulae presented so far assumes
that a moving body may simply pass through others with no interference or impact.
Clearly, this can benefit from enhancement.

Collision or contact between bodies cannot be detected unless it is through com-
putations relating the geometries of the bodies’ surfaces. Therefore, we must have
accurate geometric shapes for all bodies for which collisions are to be considered,
and in as much detail and accuracy as we wish to monitor their possible contact. We
need data for vertices, edges, and surfaces, and we need to distinguish the material
from the exterior sides of such surfaces. Therefore, we need solid models of the
bodies to be considered. Either constructive solid geometry (CSG) or boundary rep-
resentation (B-Rep) or hybrid combinations may be considered, but wire-frame data
are not sufficient.1

On review of the material of Chapter 3, we see that each body has a body
coordinate system, and that the posture of that body (with label b) is found by
determining its transformation matrix T0b as explained in Chapters 4 and 6. Each
body has such a transformation, even the stationary body. Therefore, each body can
be given geometric shape by attaching one or more solid models with data measured
with respect to that body’s coordinate system. That is, for every geometric feature
of the shape, the local coordinate data rb are known.

The only difference between a stationary body and a moving body is whether its
transformation matrix with respect to the fixed body changes or remains constant.
Also, each geometric feature of each shape takes on the motion of the body to which
it is attached. Thus, each shape has a velocity matrix ωb and an acceleration matrix
αb as found in Chapters 7 and 8, and these motions include both translation and
rotation data.

1 The IMP software uses a half-edge polyhedral B-Rep data structure similar to that explained in [3].
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The simulation of collisions consists of two main tasks: collision detection and
impact analysis. Solution of the first of these tasks is the intent of this chapter; the
second is covered in Chapter 16. Collision detection involves determining when (the
value of time) and where (the point rb of each body at which) contact occurs between
bodies of the system simulated.

Because testing for collision may be required during every interval of time in
a simulation, and possibly between many combinations of objects, it is extremely
important that the algorithm for collision detection be very efficient. For this reason,
we limit ourselves to consideration of only two shapes coming into contact at a
time. If more than two bodies make simultaneous contact, the software can find the
contacts in consecutive pairs if necessary.

Conceptually, because we require that solid models of body shapes be available,
it is possible to perform a complete intersection calculation by the algorithms of
solid modeling between each pair of bodies considered at every moment in time.
Without further improvement, however, this approach is quite inefficient. We also
find that those algorithms known to date that offer efficiency advantages, do so partly
by restricting their consideration to pairs of convex polyhedra. The assumption of
convexity is not an unreasonable constraint because more than one convex subshape
may be simultaneously attached to the same body coordinate system. The assump-
tion of polyhedral geometry implies that body shapes are bounded solely by flat
surfaces. Curved surfaces may be approximated by flat facets, but as the number of
facets becomes large, the efficiency again decreases; a realistic compromise between
accuracy and efficiency must be sought.

In order to avoid monitoring an unnecessarily large number of body pairs – thus
causing slow performance – we can require that the user explicitly identify those
pairs of shapes (or convex subshapes) to be monitored. However, it is advised that
two shapes of the same body, or two that are directly connected by a joint (except
for an open joint), not be acceptable for collision monitoring because they would be
in continual contact at their elemental surfaces.

15.2 Vertex-Face Contact

At the moment that a vertex of one body labeled b actually makes contact with a
flat facet of a surface of another body labeled c, such a contact may be represented
by an equation of the form

AcXb + BcYb + CcZb + Dc = 0,

where capital letters recognize that this equation is written in terms of the global
coordinate system. The plane coefficients are normalized so that the first three
coefficients [ Ac Bc Cc ] form a unit normal vector directed outward from the shape.
If we choose the symbol Pc to represent the column vector of the data of this planar
facet, then, in global homogeneous coordinates, the equation has the form

[Ac Bc Cc Dc]

⎡
⎢⎢⎣

Xb

Yb

Zb

1

⎤
⎥⎥⎦ = Pt

cRb = 0. (15.1)
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Remembering Eq. (3.5), we know how the local coordinates of the vertex rb

relate to their global values Rb, and thus, we can also find the relation that must hold
for the local coordinate data pc of the planar facet:

pt
cTt

0cT0brb = 0. (15.2)

Now, assuming that the contact does not begin until a short time increment τ

after the current time t,

pt
cTt

0c (t + τ )T0b (t + τ ) rb = 0,

pt
cTt

0c

[
I + ωt

cτ
]

[I + ωbτ ] T0brb = 0,

Pt
c ω

t
cωbRbτ

2 + Pt
c

(
ωt

c + ωb

)
Rbτ + Pt

cRb = 0.

If we assume that τ is small enough to ignore the very small τ 2 term, we can
solve for the time increment at which contact begins:

τ = −Pt
cRb

Pt
c

(
ωt

c + ωb

)
Rb

= −pt
c

[
Tt

0cT0b

]
rb

pt
c

[
Tt

0c

(
ωt

c + ωb

)
T0b

]
rb

. (15.3)

Notice that the factors in square brackets in both the numerator and the denom-
inator of this equation can be computed at each time interval during our time inte-
gration as soon as bodies b and c are identified. This is usually worthwhile because
many vertices and faces from these bodies may require testing.

If the value of τ found from this equation is negative, then the time of contact
is either fictitious or has already passed. However, finding a positive time increment
does not assure that contact actually occurs; it only signifies that the vertex rb reaches
the plane of the facet pc at a future time. We must also find the implied point of
contact on the planar surface of body c at the indicated time

(I + ωcτ )T0crc = (I + ωbτ )T0brb,

rc = [
T−1

0c (I + ωcτ )
−1(I + ωbτ )T0b

]
rb, (15.4)

and we must verify that this point rc falls within the boundary of the actual face of
body c contained in the plane pc. If this is true, then – and only then – we have verified
that τ represents a time increment at which contact may actually occur between the
vertex rb and the flat facet pc.

15.3 Edge-Edge Contact

Next, let us consider the situation when two edges come into contact. Let us say, for
example, that an edge of a body labeled b is defined by the intersection of planar
faces 1 and 2, whereas an edge of a body labeled c lies at the intersection of planar
faces 3 and 4. Then, at the time τ at which these two edges come into contact, a new
point of contact with global coordinates R is defined by the four equations⎡

⎢⎢⎢⎢⎣
pt

1Tt
0b(I + ωt

bτ )

pt
2Tt

0b(I + ωt
bτ )

pt
3Tt

0c(I + ωt
cτ )

pt
4Tt

0c(I + ωt
cτ )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎥⎦ = ER = 0, (15.5)



15.4 Finding the Time Increment until Contact 297

where the matrix of coefficients E is of size (4 × 4) and every element is a linear
expression in the unknown time increment τ .

However, for this set of homogeneous equations to have a nontrivial solution,
the matrix of coefficients must have a zero determinant, det (E) = 0, from which we
get a quartic equation in τ . We are interested in finding the smallest nonnegative
value of τ ≤ t that satisfies this equation, if such a root exists. If such a value of τ is
found, then any three of the four Eqs. (15.5) become solvable for R. This solution,
however, must still be tested to ensure that it falls between the two limiting vertices
(r′ and r′′) on each of the two edges. This may be done by solving any two components
of the conditions

R = μb(I + ωbτ )T0br′
b + (1 − μb)(I + ωbτ )T0br′′

b

= μc(I + ωcτ )T0cr
′
c + (1 − μc)(I + ωcτ )T0cr′′

c (15.6)

for the unknown parametersμb andμc, and verifying that each lies within the interval
0 ≤ μ ≤ 1. Once this is verified, then τ refers to the time increment until a possible
contact between the edges tested. If not, then such an edge-edge contact does not
occur within the coming time interval.

15.4 Finding the Time Increment until Contact

As explained in section 14.4, the overall simulation process takes place under the
control of a time integration process for the solution of the equations of motion
for the system FGCs. As this time integration process progresses, it is necessary to
continually monitor each of the possible contact pairs chosen by the user and, as
a contact approaches, to anticipate and meet the precise moment of contact at a
transition between time steps in the integration process.

Consider the effect of error in finding the precise time of contact. If we suppose
that the onset of contact is not met exactly, then two bodies may already have
penetrated each other as the end of a time step is reached. If there is a stiffness
associated with that contact, then that stiffness may have already become deflected
by the end of the time step and, far worse, no energy would have been required to
produce such a state of strain. With the stiffnesses associated with typical mechanical
parts, this may represent a significant energy increase in the system. Even worse,
once this energy enters the system – even through numeric error – it remains there,
causing errors in future velocities or other motion parameters. For this reason, it
is extremely important that the moment of contact be met precisely so that high
stiffnesses do not produce strain or errors in system energy.

As the simulation develops, the size of the time increment t of the integration
process is controlled as explained in sections 14.4 and 14.5. In addition, as described
there, the user may have requested that possible contact be monitored between
particular pairs of bodies. For each possible contact pair, we know that we are to
monitor the motion of body c with respect to body b. What we wish to do next is to
predict the time increment from the current moment t to the onset of that contact.
What we wish to know is whether we anticipate the initiation of a contact within the
coming time interval t. If so, by how much is it necessary to reduce this time step to
exactly match the time of the initial contact.
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In section 15.2, we discussed the contact of some vertex rb of body b with some
flat facet pc of body c and in section 15.3, between two edges of these bodies. The
choice of the two bodies was identified by the user, but we have not yet spoken of
how this particular vertex and this particular facet or how this pair of edges will
be identified. The question of collision detection has seen much research over the
past several years. The algorithm presented here is a variation of one of the faster
and better-known algorithms, called the GJK minimum-distance algorithm from the
initials of its authors [2], with subsequent extensions by Cameron [1].

As a start, a single face is chosen arbitrarily from each body, b and c. Let us
identify these as pb and pc. We also choose an arbitrary vertex rc on face pc to start
the following recursive procedure:

1. Test each vertex rb of face pb using Eq. (15.3) to find the minimum nonnegative
time increment τ for contact of rb with face pc. If none is found, choose a different
face pc and repeat.

2. Test each vertex r′
b connected by an edge to vertex rb, using Eq. (15.3), seeking a

vertex with smaller nonnegative time increment τ ′. If found, change rb and τ to
r′

b and τ ′ and, if necessary, change pb to a new face that includes the new vertex
rb.

3. If rb was changed by step 1 or step 2, repeat from step 1 until no further change
is found.

4. Test each face pb containing vertex rb for the contact time with vertex rc, using
Eq. (15.3), seeking a smaller nonnegative time increment τ ′, and updating the
face pb and time increment τ to this new minimum.

5. If pb was changed from that of step 1, repeat from step 1.
6. Test each vertex rc of face pc using Eq. (15.3) to find the minimum nonnegative

time increment τ for contact of rc with face pb.
7. Test each vertex r′

c connected by an edge to vertex rc, using Eq. (15.3), seeking
a vertex with smaller nonnegative time increment τ ′. If found, change rc and τ

to r′
c and τ ′ and, if necessary, change pb to a new face that includes the new rc.

8. If rc was changed by step 6 or step 7, repeat from step 6 until no further change
is found.

9. Test each face pc connected to vertex rc for the contact time with vertex rb, using
Eq. (15.3), seeking a smaller nonnegative time increment τ ′, and updating the
face pc and time increment τ ′ to this new minimum.

10. If pc was changed from that of step 6, repeat from step 6.
11. If any of these data has changed from that of step 1, repeat from step 1.
12. After iterating in this manner and finding the minimum time increment τ and

locations rb and rc until no further improvement is found; then, using Eq. (15.5),
test all edges connected to vertex rb for contact with each edge connected to
vertex rc to see if an even smaller initial contact time τ is found.

Once this iteration process has finished, we have found the time increment τ

until the initial contact between bodies b and c. We must then repeat the process for
the next contact pair that was chosen by the user until all requested pairs have been
tested. When finished with all, we know the smallest time increment τ before the first
contact. We have also found the body numbers b and c for this contact, the type of
that contact (vertex-face or edge-edge), and the corresponding vertex, face, and/or



References 299

edge data at the location of impending contact. All of this information becomes very
important in Chapter 16 where we analyze how this collision affects the dynamics of
the rest of our system.

Before doing this, however, we should look back to section 14.4 and understand
that this entire process is to be inserted after step 16 of the time integration algorithm
explained there. As the previous time step is completed, the search for possible
collision is performed before completion of the next time step takes place. Upon
completion of the impending contact algorithm explained here, the time step t for
time integration must be set equal to τ , if it is smaller, before recursing in step 17
to continue the time integration. This ensures meeting the precise time of contact
at the completion of the next integration step. At that time, the impact analysis of
Chapter 16 is applied, and the time step is set back to t before continuing.
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16 Impact Analysis

16.1 Applied Impulsive Loads

Before continuing the analysis of the impact resulting from a collision between
moving bodies and how these can be incorporated into our time integration of the
dynamic equations of motion, let us consider the effects of applied impulsive loads
in general.

It should be noted that the material of this entire chapter is based on the research
of Dr. W. Wisutmethangoon [4], and is presented here with his permission.

As we saw in section 10.2, the general Lagrange equations of motion for our
dynamic system are given by Eq. (10.1):

d
dt

(
∂H

∂ψ̇i

)
− ∂H

∂ψi
+ ∂V

∂ψi
= Fi, i = 1, 2, . . . ,NF ,

where H and V are the kinetic and potential energies of the system and Fi is the
generalized force acting at the free generalized coordinate ψi.

If we integrate this equation over a short interval of time from t to t+δt, we
obtain∫ t+δt

t

d
dt

(
∂H

∂ψ̇i

)
dt −

∫ t+δt

t

∂H
∂ψi

dt +
∫ t+δt

t

∂V
∂ψi

dt =
∫ t+δt

t
Fidt, i = 1, 2, . . . ,NF .

Because the time interval for an impact is very short, there is insufficient time
for changes in geometry, even though velocities can change under impulsive accel-
erations. Therefore, the second and third terms of this equation are very small and
the equations reduce to(

∂H

∂ψ̇i

)∣∣∣∣
t+δt

−
(
∂H

∂ψ̇i

)∣∣∣∣
t

= Δ

(
∂H

∂ψ̇i

)
=

∫ t+δt

t
Fidt, i = 1, 2, . . . ,NF . (16.1)

From Eq. (10.3), we recognize that this set of equations shows the changes in the
components of the generalized system momentum and, from Eq. (10.6), we have

pi = ∂H

∂ψ̇i

=
	∑

b=1

trace
(
WbiT0bJbTt

0bω
t
b

)
, i = 1, 2, . . . ,NF ,
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and, using Eq. (7.24), this becomes

pi = ∂H

∂ψ̇i

=
f∑

j=1

	∑
b=1

trace
(
WbiT0bJbTt

0bWt
b j

)
ψ̇ j, i = 1, 2, . . . ,NF .

Again recognizing that the time interval is too short for changes in system
geometry, but that system velocities can change, Eq. (16.1) becomes

Δpi =
NF∑
j=1

	∑
b=1

trace
(
WbiT0bJbTt

0bWt
b j

)
Δψ̇ j =

∫ t+δt

t
Fidt, i = 1, 2, . . . ,NF ,

and from Eq. (11.7), we recognize here the elements of the system mass matrix.
Therefore, this equation reduces to

NF∑
j=1

Mi, jΔψ̇ j =
∫ t+δt

t
Fidt , i = 1, 2, . . . ,NF . (16.2)

In section 9.10, we defined a model for a force fh(φ, t) acting within a joint with
identifying joint label h. This force was modeled as a function of time t and of system
geometry φ. Here, we take the same approach with the exception that now we take
the time variation of the force to be an impulsive load acting within joint h, and we
give this impulse the symbol ih(φ, t):

ih(φ, t) =
∫ t+δt

t
fh (φ, t) dt, h = 1, 2, . . . ,n.

From Eqs. (9.23) and (10.13), the generalized force resulting at generalized
coordinate ψ i from a force applied within joint h is

Fi = φ′
hi fh (φ, t) ,

h = 1, 2, . . . ,n,
i = 1, 2, . . . , f,

and when such a force is impulsive in nature, the generalized impulse becomes∫ t+δt

t
Fidt = φ′

hiih (φ, t) ,
h = 1, 2, . . . ,n,
i = 1, 2, . . . , f.

(16.3)

Similarly, in section 9.11, we defined a model for a force fbcd(φ, t) applied at a
point on body b with direction defined by points on bodies c and d. Here, we define
a similar impulsive load ibcd(φ, t) acting at a point on body b with direction defined
by points on bodies c and d:

ibcd(φ, t) =
∫ t+δt

t
fbcd(φ, t)dt, b, c,d = 1, 2, . . . , 	.

In Eqs. (9.25) and (10.13), we found the generalized force resulting at generalized
coordinate ψ i from such an applied force to be

Fi = R′t
biucd fbcd (φ, t) ,

b, c,d = 1, 2, . . . , 	,
i = 1, 2, . . . , f,
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and when such an applied force is impulsive, its generalized impulse is

∫ t+δt

t
Fidt = R′t

biucdibcd (φ, t) ,
b, c,d = 1, 2, . . . , 	,
i = 1, 2, . . . , f.

(16.4)

Then, in section 9.12, we defined a model for a torque τ cde(φ, t) applied on body
c with direction defined by a line through points on bodies d and e. Here, we define
a similar impulsive torque tcde(φ, t) applied on body c with direction defined by a
directed line through points on bodies d and e:

tcde (φ, t) =
∫ t+δt

t
τcde (φ, t)dt, c,d, e = 1, 2, . . . , 	.

In Eqs. (9.29) and (10.13), we found the generalized force at generalized coor-
dinate ψ i from such an applied torque to be

Fi = �

W
t

ciudeτcde (φ, t) ,
c,d, e = 1, 2, . . . , 	,
i = 1, 2, . . . , f,

where
�

W bi is defined in Eq. (9.28). When the applied torque is impulsive in nature,
its generalized impulse is

∫ t+δt

t
Fidt = �

W
t

ciudetcde (φ, t) ,
c,d, e = 1, 2, . . . , 	,
i = 1, 2, . . . , f.

. (16.5)

Finally, when we allow multiple impulses and collect the elements from
Eqs. (16.3), (16.4), and (16.5), then Eq. (16.2) expands to

NF∑
j=1

Mi jΔψ̇ j =
n∑

h=1

φ′
hiih (φ, t) +

∑
bcd

R′t
biucdibcd (φ, t)+

∑
cde

�

W
t

ciudetcde (φ, t) = Ii (φ, t),

i = 1, 2, . . . ,NF . (16.6)

As the time integration process of section 14.4 advances, it must be continually
monitored to ensure that it results in incrementing a time step at the precise moment
of occurrence of an impulse. At that instant, the right-hand side of Eq. (16.6) is
evaluated and yields a vector of length NF of applied impulses IF (φ, t). However,
because we assume that the SGC coordinates do not change velocities under impul-
sive loading, the set of Eqs. (16.6) referring to the NF velocities of the FGCs is of
the form

MFFΔψ̇F = IF .

Because MFF is positive definite, it cannot be singular and these equations can be
solved for the changes in the FGC velocities at that time:

Δψ̇F = M−1
FFIF . (16.7)

These changes are added to the FGC velocities before continuing with the next step
in the time integration process.
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Figure 16.1. Coordinate axes at a point of contact.

16.2 Location and Type of Contact

The other way in which impulsive loading can be induced within our mechanism or
multibody system is through collisions between moving bodies. This is the reason
for our detailed discussion of detecting such collisions in Chapter 15. Through the
algorithms presented there we can detect the precise instant of contact between
colliding bodies.

At the moment detected for a collision, the time integration process is inter-
rupted and we know: (1) the identification of the contact pair h being monitored
and of the two bodies, b and c, which are making contact; (2) the global coordinates
Rh = T0brb = T0crc of the point of contact, and the velocities of the two contacting
points, Ṙb = ωbRh and Ṙc = ωcRh; and (3) the type of contact, either vertex-face or
edge-edge.

Let us define νh to be the unit vector normal to the plane of contact pointing in
the direction from body b toward body c as shown in Figure 16.1. For a vertex-face
contact, we find vh from the data for the face of body b or of body c, whichever is
the face in contact. For an edge-edge contact, we find νh from the cross product of
vectors along the two contacting edges. Next, we take τ h to be the unit vector in the
plane of contact directed parallel to the relative velocity between the two points of
contact. This is found by taking and normalizing the vector difference τh = Ṙb − Ṙc;
if the magnitude of this vector difference is less than some tolerance, then τh is
chosen arbitrarily in the plane of contact. Next, we find and normalize the bi-normal
vector vh to be a unit vector orthogonal to both τh and τh such that βh = vh × τh.
Finally, we recalculate and normalize the tangent vector τ h to be the unit vector
orthogonal to both βh and vh such that τh = βh × vh. The global coordinates of these
unit vectors can be determined from the geometry of the contacting shapes, their
locations T0b and T0c, and velocities ωb and ωc at the instant of contact.

16.3 Simple Impact Model

As a beginning, let us assume that, at the point of contact, the only reaction between
the two bodies is an impulse normal to the plane of contact. Let the normal impulse
acting from body b onto body c be symbolized by iνhνh, where iνh is an unknown scalar
signifying the amplitude of the impulse. There is an equal and opposite normal
impulse −iνhνh acting as a reaction from body c back onto body b. Then, from
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Eq. (16.4) we can write the generalized impulse caused by this contact as

Iν
h (φ, t) = R′t

biνhi
ν
h − R′t

ciνhiνh,

= νt
h(R

′
bi − R′

ci)i
ν
h, i = 1, 2, . . . ,NF ,

= νt
h(Wbi − Wci)Rhi

ν
h,

and from this, the Lagrange impulse equations for this contact can be written as
shown in Eq. (16.6):

NF∑
j=1

Mi jΔψ̇ j = νt
h(Wbi − Wci)Rhi

ν
h, i = 1, 2, . . . ,NF . (16.8)

However, because the magnitude of the impulse iνh is still unknown, this is a set
of NF equations with (NF + 1) unknowns. Another equation is needed to make
the set solvable. This additional equation can be obtained from the definition of the
normal coefficient of restitution, eν

h, which is the ratio of the relative normal velocity
between the contacting points after the impact to that before it. That is,

eν
h = −νt

h(Ṙ
+
b − Ṙ+

c )

νt
h(Ṙb − Ṙc)

,

where Ṙ+
b and Ṙ+

c (or similar symbols) indicate values after the impact and the neg-
ative sign shows the reversal in sense of the relative velocity at the points of contact.
The coefficient of restitution is a value representative of the materials making con-
tact and varies from unity for completely elastic impact to zero for plastic impact.
The value of this coefficient can be determined experimentally and must be supplied
by the user as data for this model of impact. A good discussion of coefficient of
restitution and test procedures for measuring it is given in [2].

Once this coefficient is supplied, the equation expressing its definition can be
rearranged to read

νt
h(Ṙ

+
b − Ṙ+

c ) = −eνhν
t
h(Ṙb − Ṙc),

νt
h(ω

+
b − ω+

c )Rh = −eνhν
t
h(ωb − ωc)Rh,

f∑
j=1

νt
h(Wb j − Wc j)Rhψ̇

+
j = −eνh

f∑
j=1

νt
h(Wb j − Wc j )Rhψ̇ j. (16.9)

The set of Eqs. (16.8) and (16.9) can now be brought together into a single set,
and written in the form[

Mi j νt
h(Wbi − Wci)Rh

νt
h(Wb j − Wc j)Rh 0

]{
ψ̇+

j

iνh

}
=

[
Mi j

−eνhν
t
h(Wb j − Wc j )Rh

]
{ψ̇ j}.

These equations are solvable for the modified velocities of the free generalized
coordinates that result after the impact and for the magnitude of the impulse that
results. Typically, this model suits well for simulating the collision of objects with
smooth, hard surfaces.
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16.4 Impact Model with Tangential Impulse

In the case of collision between objects with rough or soft surfaces, when a relative
tangential velocity exists between them, it is likely that a tangential impulse may
also be transmitted by the impact. Unless we assume that this tangential impulse is
zero, another unknown is present in the system. Therefore, yet another equation is
needed for solution.

Two approaches have been proposed [1] for formulating another equation. The
first is to define a coefficient μh reflecting the ratio of the tangential and normal
impulse components, very similar to a coefficient of friction:

i
τ
h = μhi

ν
h.

The system of equations for this impact model is⎡
⎢⎣

Mi j νt
h(Wbi − Wci)Rh τ t

h(Wbi − Wci)Rh

νt
h(Wb j − Wc j )Rh 0 0

0 −μh 1

⎤
⎥⎦
⎧⎪⎨
⎪⎩
ψ̇+

j

iνh

iτh

⎫⎪⎬
⎪⎭

=

⎡
⎢⎣

Mi j

−eν
hν

t
h(Wb j − Wc j)Rh

0

⎤
⎥⎦ {ψ̇ j}. (16.10)

This model, with an appropriate value of μh, fits quite well for collisions with high
relative tangential velocity.

In another model, the definition of a tangential coefficient of restitution is intro-
duced. The definition is similar to that in the normal direction; that is,

eτh = −τ t
h(Ṙ

+
b − Ṙ+

c )

τ t
h(Ṙb − Ṙc)

.

The system of equations using this model is⎡
⎢⎣

Mi j νt
h(Wbi − Wci)Rh τ t

h(Wbi − Wci)Rh

νt
h(Wb j − Wc j )Rh 0 0

τ t
h(Wb j − Wc j )Rh 0 0

⎤
⎥⎦
⎧⎪⎨
⎪⎩
ψ̇+

j

iνh

iτh

⎫⎪⎬
⎪⎭

=

⎡
⎢⎣

Mi j

−eν
hν

t
h(Wb j − Wc j)Rh

−eτ
hτ

t
h(Wb j − Wc j )Rh

⎤
⎥⎦ {ψ̇ j}. (16.11)

This model is more appropriate with small relative tangential velocity at the contact
points or for objects with high, shear elastic surfaces.

Figure 16.2 shows a typical graph of experimental data obtained from impact of a
steel specimen with a stationary steel block [3]. A plot of relative tangential velocity
before and after impact typically follows the solid lines. This graph shows that for
low relative tangential velocity, the tangential coefficient of restitution model better
fits experimental evidence, whereas the frictional tangential impulse model is more
suitable for higher relative tangential velocity.
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Figure 16.2. Typical experimental data
for tangential impulses.

Also suggested by Brach [1] is a bilinear model, which is a combination of the two
previously described models, with appropriate values of μh and eτh to fit experimental
data. The way this model is used is to solve both Eqs. (16.10) and (16.11), and then to
accept the solution that results in the higher relative tangential velocity after impact.

16.5 Impact Model with Normal Torsional Impulse

Next, we consider the case where the impact is not isolated to a single point, but is
distributed over an area on the contacting surfaces. The normal impulse generated
during impact in such a case may be accompanied by a torsional impulse in the plane
of contact if there is a relative angular velocity about the surface normal at the time
of impact. Again, because of the added unknown in this case, an additional equation
is required. Similar to the normal coefficient of restitution, a torsional coefficient of
restitution can be defined as the negative ratio of the relative angular velocity after
the impact to that before,

eνh = −νt
h

( �̇

Θb
+ − �̇

Θc
+)

νt
h

( �̇

Θb − �̇

Θc

) ,

where
�̇

Θb, for example, is the angular velocity vector of body b that is expressed by
the second Ball vector of its velocity,

�̇

Θb = �
ωb =

f∑
j=1

⎧⎪⎨
⎪⎩

Wb j(3, 2)
Wb j(1, 3)
Wb j(2, 1)

⎫⎪⎬
⎪⎭ψ̇ j =

f∑
j=1

�

Wb jψ̇ j.

This additional equation can be used for the case of small relative angular veloc-
ity about the surface normal axis. However, another model based on the coefficient
of friction, which is more suitable with higher relative angular velocity, is

tνh = sgn
[
νt

h(
�̇

Θb − �̇

Θc)
]
μhrpi

ν
h.

Here, the use of the sgn function accounts for the direction of the torsional impulse
caused by friction, which must be in the direction opposite to the relative angular
velocity about the normal to the surface. The symbol rp denotes a characteristic
distance called the pitch radius, which relates the torsional impulse to the normal
force impulse. This pitch radius is assumed constant and must be given as data by
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the user. It may be evaluated from different theories. For example, with a uniform
pressure distribution over a circular contact region, rp = 2

3 r, where r is the radius of
the contact area.

As with the tangential impulse case, the two models can be combined and used
as a bilinear model.

16.6 Impact Model with Moment Impulse

The normal impulse generated during impact may be accompanied by an impulsive
moment about an axis in the plane of contact. If this moment impulse is considered
to have components in both the tangential and the bi-tangential directions, this
introduces two more unknowns into the system. In order to formulate two additional
equations, a definition of moment coefficient of restitution [2] is introduced. For the
tangential direction, it is defined in a manner similar to the previous case:

eτ
h = −τ t

h

( �̇

Θb
+ − �̇

Θc
+)

τ t
h

( �̇

Θb − �̇

Θc

) = −
τ t
( �

W b j − �

Wc j

)
ψ̇+

j

τ t
( �

Wb j − �

W c j

)
ψ̇ j

,

and a similar equation can be written for the bi-tangential direction

eβh = −βt
hbig(

�̇

Θb
+ − �̇

Θc
+)

βt
h

( �̇

Θb − �̇

Θc

) = −
β t
( �

W b j − �

W c j

)
ψ̇+

j

βt
( �

Wb j − �

Wc j

)
ψ j

.

16.7 Integrated Model of Impact

The general set of equations for an impact, using all of the aforementioned models,
can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi j νt
h(Wbi − Wci )Rh τ t

h(Wbi − Wci )Rh νt
h(

�

Wbi − �

Wci ) τ t
h(

�

Wbi − �

Wci) βt
h(

�

Wbi − �

Wci)

νt
h(Wb j − Wc j )Rh 0 0 0 0 0

τ t
h(Wb j − Wc j )Rh 0 0 0 0 0

νt
h(

�

Wb j − �

Wc j ) 0 0 0 0 0

τ t
h(

�

Wb j − �

Wc j ) 0 0 0 0 0

βt
h(

�

Wb j − �

Wc j ) 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̇+
j

iνh

iτh

tνh

tτh

tβh

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi j

−eν
hν

t
h(Wb j − Wc j )Rh

−eτ
hτ

t
h(Wb j − Wc j )Rh

−eν
hν

t
h(

�

Wb j − �

Wc j )

−eτhτ
t
h(

�

Wb j − �

Wc j )

−eβ

hβ
t
h(

�

Wb j − �

Wc j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{ψ̇ j}, (16.12)
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or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi j νt
h(Wbi − Wci)Rh τ t

h(Wbi − Wci)Rh νt
h(

�

Wbi − �

Wci ) τ t
h(

�

Wbi − �

Wci) βt
h(

�

Wbi − �

Wci)

νt
h(Wbj − Wc j )Rh 0 0 0 0 0

0 −μh 1 0 0 0

0 −sgn
[
νt

h(
�

Θb − �

Θc)
]
μhrp 0 1 0 0

τ t
h(

�

Wbj − �

Wc j ) 0 0 0 0 0

βt
h(

�

Wbj − �

Wc j ) 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ̇+
j

iνh

iτh

tνh
tτh
tβh

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi j

−eν
hν

t
h(Wbj − Wc j )Rh

0
0

−eτ
hτ

t
h(

�

Wbj − �

Wc j )

−eβhβ
t
h(

�

Wbj − �

Wc j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{ψ̇ j}. (16.13)

Equations (16.12) use tangential and torsional coefficients of restitution for the tan-
gential and torsional impulses, respectively. Equations (16.13), however, implement
tangential and torsional coefficient of friction models. The bilinear combination
model can be used in place of either or both if the user prefers.

The impact equations, as presented in this and the previous sections, show
only the effects of a single collision of a single contact pair of moving bodies. If
more than one collision is to happen in a simulation, they are treated in succession.
Only one collision happens at a particular instant. This collision causes changes in
the generalized coordinate velocities. The time integration is then continued with
the modified velocities, and another collision may then take place. In fact, several
collisions may take place before another printing or output display time comes to
pass.

16.8 Impact Analysis with SGCs

The impact equations previously presented have been developed with the point of
view that all generalized coordinates are free to respond to impacts and that none
are driven by power sources able to resist changes in velocity; that is, that all are
FGCs. In some cases of dynamic simulation, various of the independent generalized
coordinates are SGCs and the number of unknowns in the dynamic impact equations
can be reduced to only those of the FGCs.

For example, consider the case of Eqs. (16.12) when the system includes both
FGC and SGC independent generalized coordinates. Then, these equations are of
the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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W
cF
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(

�
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τ t
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− �
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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=

⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
ψ̇

F

ψ̇
S

}

where the subscripts F and S refer to the subsets of free and specified generalized
coordinates, respectively. If we assume that the velocities of the SGCs are not
modified by the impact – that is, that ψ̇+

S = ψ̇S – as is required for the motions
specified to actually be achieved, then these equations reduce to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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h(
�

WbS − �

WcS )

−eτhτ
t
h(

�

WbF − �

WcF ) −(eτh + 1)τ t
h(

�

WbS − �

WcS )

−eβhβ
t
h(

�

WbF − �

WcF ) −(eβ

h + 1)βt
h(

�

WbS − �

WcS )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
ψ̇F

ψ̇S

}
. (16.14)
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PROBLEM

16.1 Continuing problem 11.1, let us assume that the weight W that resulted in
equilibrium for the scale at the posture where ψ = −30◦ was originally put in place
with a downward impulse as shown in Eq. (16.4) of ibcd = 0.10 l · bs. Find the FGC
velocity that results, and that must be attenuated before equilibrium is achieved.



17 Constraint Force Analysis

17.1 Introduction

From the very beginning of this text, the primary purpose has been to provide
background for the development of a digital simulation system as a computational
aid to a designer in the creation or modification of a complex mechanism or multibody
system. Although such simulation can assure that the designed system moves through
its desired trajectory with proper timing, this can usually be done by other means. By
far, the biggest advantage of simulation comes from helping the designer to predict
the forces transmitted between connected bodies so that the component parts, and
the joints between them, can be designed to withstand the imposed loads without
overloading and resultant failure, and without undue factors of safety or overdesign.

As pointed out in Chapter 9, however, computers gain no guidance about the
solutions of problems from scanning free-body diagrams. Therefore, techniques
based on the application of Newton’s laws are probably not the best approach for
simulation. Here again, as in our formulation of the equations of motion, we very
much prefer methods based on work and energy.

As an example, suppose that we wish to find the torque T delivered to the crank
by the force P of expanding gas pressure on the piston of the slider-crank linkage
shown in Figure 17.1.

If we suppose a small displacement of the system from its current posture,
then the crank moves by a small angle δφA while the piston slides through a small
increment δφD. However, we know that the total work done during this displacement
must be zero. Therefore,

δW = PδφD − TδφA = 0,

where the negative sign indicates energy leaving the system.
Also, we know that these increments are related by the closure constraint of

the kinematic loop. Therefore, because this is a single degree of freedom system, we
know that, although the independent variable moves by δψ1, the other joints move
by

δφD = φ′
D1δψ1 and δφA = φ′

A1δψ1.

310
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T
C P

D

B
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3

Figure 17.1. Slider-crank linkage.

Substituting these into the work equation, we can solve for the torque T:

Pφ′
D1δψ1 − Tφ′

A1δψ1 = 0,

T = (φ′
D1/φ

′
A1)P.

This is the style of solution that we hope to generalize to find the constraint
forces of any mechanism or multibody system fitting the conditions of the preceding
chapters.

17.2 Fictitious Displacements

In order to generalize this work and energy approach, let us first consider the dis-
placements that will be needed. In the previous example, we are very fortunate that
the torque that we wish to find happens to coincide with the axis of motion of a joint.
Therefore, the displacement in this case is possible as a real displacement. However,
how will we make a displacement that allows us to find a force or torque component
that does not align with the motion of a joint variable [1]?

Let us recall the uvw coordinate system preceding a joint. Each joint, no matter
what type, has such a coordinate system. In Chapter 4, we modeled each type
of joint so that the transformation from the xyz coordinate system of the body
preceding the joint, to the uvw coordinate system preceding the joint, then to the
u′v′w′ coordinate system following the joint, and then to the xyz coordinate system
of the body following the joint, is represented by Eq. (5.3) that reads

rh− = Sh−,hΦhS−1
h+,hrh+, h = 1, 2, . . . ,n.

Suppose, as an example, that we wish to find the component in the uh direc-
tion of the force transmitted through the pin joint shown in Figure 17.2. Then we

wh, w′h
v′h

vh

u′h

uh

φh

Figure 17.2. Joint axes associated with a
typical joint.
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wΔ

vΔδΔ

φΔ

Δ−

Δ+

v′Δ

u′Δ

uΔ

w′Δ

Figure 17.3. Fictitious displacement δΔ

along the uΔ
axis direction of joint Δ.

choose to imagine a fictitious displacement δΔ in that chosen direction as shown in
Figure 17.3. It is true that this displacement cannot happen as a physical possibility,
but that is why it is called a fictitious displacement. Let us note carefully, however,
that, even though this one constraint (the one for which we seek the force) is violated
by the fictitious displacement, all other constraints, such as the (other) loop-closure
conditions, continue without violation.

Now that we see in the figure the fictitious displacement that we wish to use, we
must consider how this will be modeled mathematically. After some consideration,
we see that the previous equation must be modified to the form

rΔ− = SΔ−,Δ(I + QΔδΔ)ΦΔS−1
Δ+,ΔrΔ+, (17.1)

where the symbol Δ is used in several ways. First, Δ refers to the label of the joint
at which the displacement is made, and where the force is sought. Second, Δ− and
Δ+ refer to the labels for the bodies before and after joint Δ. Third, Δ implies the
particular component of the force or torque sought and, therefore, the axis along or
about which the displacement is made. Fourth, the symbol δΔ after the QΔ matrix
denotes the magnitude of the fictitious displacement.

For a displacement in the uΔ direction, as is our first case, we choose the QΔ

matrix to read

Qu
Δ =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ for δΔ along uΔ. (17.2)

If, on the other hand, we wish to find the component of force in the vΔ direction,
then Eq. (17.1) still holds, but we set the QΔ matrix to

Qv
Δ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ for δΔ along vΔ, (17.3)
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and to find the component of force in the wΔ direction, we set the QΔ matrix to

Qw
Δ =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ for δΔ along wΔ. (17.4)

If we seek the component of torque exerted through this joint about the uΔ

axis, then we need a fictitious twist of magnitude δΔ about the uΔ axis. We can still
represent such a fictitious displacement using Eq. (17.1) by setting the QΔ matrix to

Q
θu
Δ =

⎡
⎢⎢⎣

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦ for a twist of δΔ about uΔ. (17.5)

For the component of torque about the vΔ axis, the fictitious twist is defined by
setting the QΔ matrix to

Q
θv
Δ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ for a twist of δΔ about vΔ, (17.6)

and, finally, for the component of torque about the wΔ axis, we define the fictitious
twist by setting the QΔ matrix to

Q
θw
Δ =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ for a twist of δΔ about wΔ. (17.7)

This covers all possible cases, all six components of force and torque that can be
transmitted through the chosen joint Δ. Once these forces and torques are found,
we can then switch to a different joint and use these same six fictitious displacements
again, but with a different choice of joint Δ.

17.3 Fictitious Derivatives

Our next task is to find how other parts of our system move under the action of
the fictitious displacement chosen. To determine this, we take the derivative of the
loop-closure equations with respect to the fictitious displacement. Let us first define
the symbol

φ ′
h,Δ = ∂φh

∂Δ
, h = 1, 2, . . . ,n. (17.8)

Of course, we must recognize that, while traversing a certain one of the kinematic
loops, we may or may not come across the fictitious displacement itself, depending
on whether joint Δ is included in the particular loop being traced. That is, the
loop-closure conditions, including the fictitious displacement, are of the form

T0Δ−SΔ−,Δ [I + L(i,Δ)QΔδΔ]ΦΔSΔ+,ΔTΔ+,0 = I, i = 1, 2, . . . ,NL.



314 Constraint Force Analysis

Now, if we define

DΔ = (T0,Δ−SΔ−,Δ)QΔ(T0,Δ−SΔ−,Δ)−1, (17.9)

then the loop-closure conditions above become

[I + L(i,Δ)DΔδΔ]T00 = I, i = 1, 2, . . . ,NL, (17.10)

which we see become equal to the original loop-closure conditions when δΔ = 0.
If we differentiate the loop-closure equations starting from Eqs. (17.10) with

respect to the fictitious displacement δΔ, then pass to the limit for which δΔ = 0 and
T00 = I, we can write

L(i,Δ)DΔ +
n∑

h=1

L(i,h)Dhφ
′
h,Δ = 0, i = 1, 2, . . . ,NL.

Putting this result into equivalent screw-coordinate form, it can be rearranged
to read

n∑
h=1

L(i,h)D̂hφ
′
h,Δ = −L(i,Δ)D̂Δ = Ĉ′

i,Δ, i = 1, 2, . . . ,NL, (17.11)

where we define

Ĉ′
i,Δ = −L(i,Δ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DΔ(1, 4)

DΔ(2, 4)

DΔ(3, 4)

DΔ(3, 2)

DΔ(1, 3)

DΔ(2, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, . . . ,NL, (17.12)

with an additional constraint equation of the form

2φ1
hφ

′1
h,Δ + 2φ2

hφ
′2
h,Δ + 2φ3

hφ
′3
h,Δ + 2φ4

hφ
′4
h,Δ = 0, (17.13)

for each spheric joint in the system, and another

2φ4
hφ

′4
h,Δ + 2φ5

hφ
′5
h,Δ + 2φ6

hφ
′6
h,Δ + 2φ7

hφ
′7
h,Δ = 0 (17.14)

for each open joint in the system; a total of NC constraint equations for joints that
are modeled with Euler-Rodrigues parameters.

Therefore, we recognize that Eqs. (17.11), (17.13), and (17.14) finally reduce to
the form

Jφ′
Δ = Ĉ′

Δ, (17.15)

where J is the same [(6NL + NC ) × n] Jacobian matrix that resulted from the
numeric iteration process of section 6.5 and, for a given choice of Δ, φ′

Δ is an (n × 1)
vector of fictitious derivatives that are yet to be determined. The [(6NL + NC ) × 1]
column Ĉ′

Δ is composed of the NL vectors from the right-hand sides of Eq. (17.11)
for each loop, augmented by the NC right-hand sides of zeroes for Eq. (17.13) for
each spheric joint and Eq. (17.14) for each open joint.
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Reviewing the numeric iteration process of section 6.5, we recall that the pivot-
ing scheme used in the modified Gauss-Jordan process reordered the joint variables
so that all dependent joint variables are numbered first, followed next by the NF

joint variables of the FGCs and finally by the NS joint variables of the SGCs. Rec-
ognizing that both the FGC and the SGC joint variables are accepted as generalized
coordinates ψ , we see that, by definition, they are independent of each other and of
Δ. Therefore, for a particular choice of Δ, the φ′

Δ matrix must be of the form

φ′
Δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ′
1,Δ

φ′
2,Δ
...

φ′
n− f,Δ−−−−

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣ φ′

dep,Δ−−−
0

⎤
⎦ . (17.16)

However, remembering Eq. (6.43), we see that this is the same subdivision that
resulted from the Gauss-Jordan elimination process. Reverting to the notation of
Eq. (6.47), we have

⎡
⎣J11 J12 J13−−−−−−−−−

J21 J22 J23

⎤
⎦
⎡
⎢⎢⎣

φ′
dep,Δ−−−−
0
0

⎤
⎥⎥⎦ =

⎡
⎣ (Ĉ′

Δ)1−−−−
(Ĉ′

Δ)2

⎤
⎦ ,

and, after the Gauss-Jordan process is complete, these equations are reduced to the
form of Eq. (6.48)

⎡
⎣I J −1

11 J12 J −1
11 J13−−−−−−−−−−−−−

0 0 0

⎤
⎦
⎡
⎢⎢⎣

φ′
dep,Δ−−−−
0
0

⎤
⎥⎥⎦ =

⎡
⎣ J −1

11 0
−−−−−−−−−
−J21J −1

11 I

⎤
⎦
⎡
⎣ (Ĉ′

Δ)1−−−−
(Ĉ′

Δ)2

⎤
⎦ ,

which has for a solution

φ′
dep,Δ = J −1

11 (Ĉ′
Δ)1, (17.17)

with the additional condition that

(Ĉ′
Δ)2 − J21J

−1
11 (Ĉ′

Δ)1 = 0. (17.18)

Finally, in Eq. (17.17), we have the solution we have sought for the fictitious
derivatives with respect to our chosen fictitious displacement, and we find that they
are extremely easy to compute. All that is required, after choosing the desired
fictitious displacement, is to form QΔ and, from it, the DΔ operator of Eq. (17.9).
From this we form Ĉ′

Δ according to Eq. (17.12) and, finally, because the Gaus-
Jordan process of Chapter 6 has been completed, Eq. (17.17) requires only a matrix
multiplication.

However, it is critically important that we not forget to verify Eq. (17.18). Unlike
previous chapters, where this additional condition was satisfied automatically, that
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is not always true with these fictitious derivatives. On the contrary, when Eq. (17.18)
is satisfied, it shows that the result of Eq. (17.17) is valid. However, when Eq. (17.18)
is not satisfied, then the result of Eq. (17.17) is not valid. How can this happen? This
happens when it is not possible to make the chosen fictitious displacement without
violating another constraint of the system geometry, and this is what happens when
we try to evaluate a force component in an indeterminate direction. The failure of the
condition of Eq. (17.18) is an immediate signal that the fictitious displacement chosen
corresponds to a statically indeterminate component of force or torque. No further
computation is required and none will be useful because statically indeterminate
forces cannot be determined from a rigid body model. Note that the precision of
this test should not be more stringent than that used in testing loop-closure, in the
Gauss-Jordan method of Chapter 6.1

It should be noted that if the force computations had been formulated according
to Newton’s laws, we would have formulated a large set of simultaneous equations
for all unknown force components. Failure to solve for one or more because of static
indeterminacy would mean failure to solve for any. In such problems, we would
find no force results because some are indeterminate. With the work and energy
approach taken here, each component is found independently and only unsolvable
component(s) fail to yield a result. This is another key advantage of our transforma-
tion matrix approach.

17.4 Lagrange Equation for Constraint Force

Now that we have found the fictitious derivatives corresponding to a chosen fictitious
displacement, how will we proceed from these to find a constraint force? Well, if we
think carefully, we see that what we have done is to imagine our real system, which,
in physical reality, has f degrees of freedom, and imagined it to have one additional
degree of freedom, namely our fictitious displacement Δ. However, if we accept this
point of view, then the Lagrange equation of motion for the additional degree of
freedom is

d
dt

(
∂H

∂Δ̇

)
− ∂H

∂Δ
+ ∂V

∂Δ
= FΔ (17.19)

where FΔ is the component of force we seek. Of course, in order to correspond
to the physical system, we must evaluate this equation under the conditions that
Δ = Δ̇ = Δ̈ = 0; that is, under the conditions that the fictitious displacement is not
moving.

Now, in order to carefully derive the terms of Eq. (17.19), it is necessary to
formulate kinetic and potential energy formulae that are functions of all f degrees of
freedom and of Δ and Δ̇, and to take the derivatives specified, carefully evaluating
each term as indicated. The authors have done this in full detail. The extension
of these methods to include dynamic forces was first published in [2]. However,
rather than to show each step here, it should not surprise the reader to see that
the final result reads exactly parallel to the equations of motion of Eq. (10.15).

1 The IMP software tests that this condition is satisfied within a default tolerance of 0.0001.
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This is

FΔ =
	∑

a=1

trace

⎡
⎣WaΔT0aJaTt

0a

⎛
⎝ f∑

j=1

Wa jψ̈ j

⎞
⎠

t⎤
⎦

+
	∑

b=1

trace

⎧⎨
⎩WbΔT0bJbTt

0b

⎡
⎣ f∑

j=1

f∑
k=1

(Ab jk + Wb jWbk)ψ̇kψ̇ j

⎤
⎦

t⎫⎬
⎭

+
f∑

j=1

n∑
h=1

(φ′
hΔchφ

′
h j)ψ̇ j +

f∑
j=1

∑
bc

R′t
bcΔubccbcut

bcR′
bc jψ̇ j

+
n∑

h=1

φ′
hΔkh(φh − φh0) +

∑
bc

R′t
bcΔubckbc(	bc − 	bc0) −

	∑
b=1

gtWbΔT0bJbTt
0br0

−
n∑

h=1

φ′
hΔ fh(φ, t) −

∑
bcd

R′t
bΔucd fbcd(φ, t) −

∑
cde

�

W
t

cΔudeτcde(φ, t), (17.20)

where the following additional notation using the fictitious derivatives has been
defined

Wb,Δ =
n∑

h=1

P(b,h)Dhφ
′
h,Δ, b = 1, 2, . . . , 	, (17.21)

R′
b,Δ = ∂Rb

∂Δ
= Wb,ΔT0brb = Wb,ΔRb, b = 1, 2, . . . , 	, (17.22)

R′
bcΔ = R′

bΔ − R′
cΔ = WbΔRb − WcΔRc, b, c = 1, 2, . . . , 	. (17.23)

In order to properly use, Eq. (17.20), it is necessary to understand the sign
conventions chosen in the derivation. The force FΔ is the single component of force
or torque acting from body Δ− onto body Δ+ along or about one of the uΔ, vΔ, or
wΔ axes consistent with the choice of QΔ. The component FΔ is positive when it acts
onto body Δ+ in the positive direction of the corresponding displacement axis. The
sign conventions for fh(φ, t), fbcd(φ, t), and τbcd(φ, t) are those explained in sections
9.10, 9.11, and 9.12, respectively.

EXAMPLE 17.1 To illustrate the previous process, let us continue the analysis
of the Cardan/Hooke universal joint started in example 5.1 and continued in
examples 7.1 and 8.1. Suppose we now wish to find the six components of force
and torque in the input joint D for a given static load torque PA at output joint
A. Because we have no mass distribution data, we seek only the static forces.
From these previous examples we have already found

T04S4D =

⎡
⎢⎢⎢⎣

0 −sinβ cosβ d2 cosβ
1 0 0 h
0 cosβ sinβ d2 sinβ

0 0 0 1

⎤
⎥⎥⎥⎦ ,
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−hcosψ√

1 − sin2β sin2ψ
−hcosβ sinψ hsinβ

0 0 0 0
−h 0 −hsinβ sinψ −hcosβ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 0 sinβ sinψ cosβ

0
−cosβ sinψ√

1 − sin2β sin2ψ
cosψ 0

0
−cosψ√

1 − sin2β sin2ψ
−cosβ sinψ sinβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and we have already noted that the first three rows of J are either trivial or ±h
multiples of other rows. That is, these three rows form [J 21 J 22]; the final three
rows form [J 11 J 12].

First, using Eq. (4.13), we find

(T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 1 0 −h
−sinβ 0 cosβ 0
cosβ 0 sinβ −d2

0 0 0 1

⎤
⎥⎥⎥⎦

and, from Eq. (17.10), using Eqs. (17.2) through (17.7), the six DΔ matrices for
joint D are

Du
D = (T04S4D)Qu

Δ(T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ ,

Dv
D = (T04S4D)Qv

Δ(T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 0 0 −sinβ

0 0 0 0
0 0 0 cosβ
0 0 0 0

⎤
⎥⎥⎥⎦ ,

Dw
D = (T04S4D)Qw

Δ(T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 0 0 cosβ
0 0 0 0
0 0 0 sinβ

0 0 0 0

⎤
⎥⎥⎥⎦ ,

D
θu
D = (T04S4D)Q

θu
Δ (T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 0 1 −d2 sinβ

0 0 0 0
−1 0 0 d2 cosβ

0 0 0 0

⎤
⎥⎥⎥⎦ ,

D
θv
D = (T04S4D)Q

θv
Δ(T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 −cosβ 0 hcosβ
cosβ 0 sinβ −d2

0 −sinβ 0 hsinβ

0 0 0 0

⎤
⎥⎥⎥⎦ ,
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D
θw
D = (T04S4D)Q

θw
Δ (T04S4D)−1 =

⎡
⎢⎢⎢⎣

0 −sinβ 0 hsinβ

sinβ 0 −cosβ 0
0 cosβ 0 −hcosβ
0 0 0 0

⎤
⎥⎥⎥⎦ .

Now, extracting the negative Ball vectors from each of these, according to
Eq. (17.12),

C′
Δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 sinβ −cosβ d2 sinβ −hcosβ −hsinβ

−1 0 0 0 d2 0

0 −cosβ −sinβ −d2 cosβ −hsinβ hcosβ

0 0 0 0 sinβ −cosβ

0 0 0 −1 0 0

0 0 0 0 −cosβ −sinβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

However, as we have noted before, for compatibility with the Jacobian
matrix, the first row of each of these should be an h multiple of the sixth row, the
second row should be zero, and the third row should be the negative h multiple
of the fourth row. However, these conditions are only met by the sixth column;
that is, by the δθw fictitious displacement; all other fictitious displacements give
contradictory equations. This implies that only the δθw fictitious displacement
can be made without violating another of the constraints and, consequently, only
the torque about the wD axis can be found; the other five components of force
and torque in joint D are each statically indeterminate.

The equations for the fictitious derivatives for this one valid fictitious dis-
placement are

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 sinβ sinψ cosβ

0
−cosβ sinψ√

1 − sin2β sin2ψ
cosψ 0

0
−cosψ√

1 − sin2β sin2ψ
−cosβ sinψ sinβ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
′θw
A

φ
′θw
B

φ
′θw
C−−−

φ
′θw
D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣−cosβ

0
−sinβ

⎤
⎥⎦ ,

and this set of equations has the solution

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
′θw
AΔ

φ
′θw
BΔ

φ
′θw
CΔ−−−

φ
′θw
DΔ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cosβ
1 − sin2β sin2ψ

sinβ cosψ√
1 − sin2β sin 2ψ

sinβ cosβ sinψ

1 − sin2β sin2ψ−−−−−−−−−−
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is no surprise that these particular fictitious derivatives are identical to the
first geometric derivatives found in example 7.1 because this fictitious displace-
ment is aligned directly in series with the real generalized coordinate of joint
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D. Thus, this particular displacement duplicates the ideas shown in section 17.1;
however, that section gave no indication that other components are statically
indeterminate. This is now proven.

Finally, with the given conditions, because positive PA represents a torque
that is counterclockwise about the positive wA axis, Eq. (17.20) reduces to

F
θw

D = −φ
′θw
AΔ

PA,

F
θw

D = cosβ
1 − sin2β sin2ψ

PA. Ans.

This says that, for a counterclockwise load torque PA, the driving torque is
also positive and therefore, counterclockwise. Isn’t this contradictory? No. This
driving torque is counterclockwise about the wD axis. Careful study of Figure
5.4 shows that, for small angles of β, this is directed almost opposite to the wA

axis.
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PROBLEMS

17.1 Continue problem 11.1 and find all components of force and torque from link 4
onto link 3 through joint D of the spring scale when in equilibrium under a constant
load W in the posture of ψ = −30◦.

17.2 Continue problem 10.4 and find all components of force and torque from link
4 onto link 1 through joint A of the Oldham shaft coupling under a constant output
shaft load MD. Plot the input shaft torque F

θw
A versus ψ for one revolution.
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