

14

Part One

The Comtext of Systems Developmant Projects

Regardless of where systems analysts are assigned within the organization, it is lm-
portant to realize that they come together in grofect tecomis. Project teams are usually
created and disbanded as projects come and go. Project teams omist also inclode ap-
propriate representation from the other stakeholders that we previously discussed
{system owners, system users, system designers, and svstem builders). Accordingly,
we will emphasize team bullding and teamrwork throughout this book.

5kills Neaded by the Systems Analyst For those of you with aspirations of be-
coming a systems analyst, this section describes the skills you will need to develop

This book introduces many systems analysis and design concepts, tools, and tech-
nigues. But you will also need skills and experiences that neither this book nor your
systemis analysis and design course can tully provide,

When all else fails, the systems analyst who remembers the basic concepts and
principles of “systems thinking” will still succeed No tool, technigue, process, or
methodology is perfect in all situations! But concepts and principles of systems think-
ing will always help you adapt to new and different siruations, This book emphasizes
systems thinking.

Mot too long ago. it was thought that the systems analyst's only real tools were pa-
per, pencil, and a flowchart template. Over the years, several tools and technigues
have been developed to help the systems analyst. Unformunately, many books empha-
size a specific class of tools that is associated with one methodology or approach to
systems analysis and design. 1o this book, we propose a“toolbox™ approach to systems
analysis and design. As you read this book, your toealbox will grow to Include many
tools from different methodologies and approaches to systems analysis and design
Subsequently. vou should pick and use tools based on the many different situations
vou will encounter as an analyst—the right tool for the right job!

In addition to having formal systems analysis and design skills, a systems analyst
must develop or possess other skills, knowledge, and trits to complete the job. These
Include:

= Working knowledge of énformation techrologies—The analyst must be
aware of both existing and emerging information technologies. Such knowl-
edge can be acquired in college courses, professional development seminars
and courses, and inhouse corporate tmining programs. Practicing analysts
also stay current through disciplined reading and participation in appropriate
professional societies. (To get started, see the Suggested Readings at the end
of this and subseguent chapters.)

» Compder propranuning experfence and expertise—It is difficult to imagine
how systems analysts could adequately prepare business and technlcal specifi-
cations for a programmer If they didn’t have some programming experience.
Most systems analysts need to be proficient in one or more highlevel pro-
gramming languages

* General kmorcledge of business processes and termiinology—Systems analysts
must be able to communicate with business experts to gain an understanding
of their problems and needs. For the analyst, at least some of this knowledge
comes only by way of experience. At the same time, aspiring analysts should
avall themselves of every opportunity to complete basic business lteracy
courses avallable in colleges of business. Relevant courses mav include finan-
clal accounting, management or cost accounting, finance, marketng, man-
ufacturing or operations management, quality management, economics, and
business Lw:.

= General problemsoliing skills—The systems analyst must be able to rake a
large business problem, break down thit problem into its parts, determine
problem causes and effects. and then recommend a solution. Analysts must
avoid the tendency to suggest the solution before analyzing the problem.

For aspiring analysts, many colleges offer philosophy courses that teach

The Contaxt of Systermns Andlysis and Design Methods

Similarty, the trend toward collaboration extends heyond the organization to in-
clude other organizations— sometimes even competitors, Organizations choose to di-
vectly collaborate as partners in business ventures that make good business sense.
Microsoft and Oracle sell competitive database manigement systems. But Microsoft
and Oracle also partner to ensure that Oracle applications will operate on a Microsoft
darabase. Both companies benefit Anancially from such coopemtion

In a similar vein, businesses have learned that it can be benefictal for their infor-
matipn systems to interoperate with one another. For example, while Wal-Mart could
generate its own restocking orders for merchandise and send them to its suppliers,
it makes more sense to Integrate thelr respective inventory control systems. Sup-
pliers can monitor WalkMart's Inventory levels directly and can automatically initiate
businessto-business transactions to keep the shelves stocked with their mer
chandise. Both companles benefit. (Of course, this also raises the atorementioned

issue of reqoirements for good security.)

> Knowledge Asset Management

What is knowledge? Knomwdedge Is the resalt of a continuum of how we process raw
data into useful information. Information systems collect raw data by capturing busi-
ness facts (about products, employees, customers, and the like) and processing busi-
ness transactions. Data gets combined, Altered, organized, and analyzed to produce
information to help managers plan and operate the business, Ultimately, information
is refined by people to create knowledge and expertise. Increasingly, organizations
are asking themselves, “How can the company manage and share knowledge for com-
petitive advantage? And as workers come and go, how can the workers’ knowledge
and expertise be preserved within the organization?™

Thirty vears of data processing and informition systems have resulted in an enor-
mous volume of dati, information, and knowledge. All three are considered crivical
Business resources, equal In importance to the olassic economic resources of land,
labor, and capital.

The need for knowledge asset management impacts information systems on a va-
rlety of fronts. Although we have captured (and continue to capture) 2 great amount
of daty and information in information systems, they are loosely integrated In most
organizations—indeed, redundant and contradictory data and information are com-
mon in information systems. As new information systems are bullt, we will Increas-
ingly be expected to focus on integration of the data and Information that can create
and preserve knowledge in the organizations for which we work. This will greatly
complicate systems analysis and design. In this book. we plan to Introduce you to
may tocls and technigoes that can help you integrate systems for improved
knowledge management,

> Confinvous Improvement and
Total Quality Management

Information systems automate and support business processes, Inan effort to con-
tinuously improve a business process, continuons process improvement (CPT)
examines & business process to implement a seres of small changes for improvement.
These changes can result in cost reductions, improved efficlencies, or increased value
and profit Systems analysts are both affected by continnous process improvements
and expected to indtiate or suggest such improvements while designing and Imple-
menting information systems,

Another ongoing business driver is total guality management (TOM). Businesses
have learned that guality has become a critical success factor In competition. They
have also learned that quality management does not begin and end with the products
and services sold by the business. Instead, it begins with a culture that recognizes that

Chapter Ona 21

data raw facts about paopla,
places, evants, and things that
are of importancs In an orga-
nization. Each fact is, by itsalf,
relativaly meaningless.

information data thathas
been processed or reorga-
nized imto-a more meaningful
form for someone. Information
Iz formed from combinations
of data that hopafully have
meaning to the racipient.

knowledge data and infor-
mation that are further refined
basad on the facts, truths, be-
liegfs, judameants, expariences,
and expertise of the recipient.
Idaally imformation leads to
wisdom.

business processes tasks
that respond to businass
avants (e.g., an order), Busi-
ness processas ara the work,
procedures, and rules re-
quirad to complete the busi
ness tasks, indapendant of
ary imformaton techinology
uged to automate or support
them.

CONtImons 058
improvement (CP1) the
continuous mandtoring of
businass processes o affect
small but measurable
improsvameants in cost
reduction and value added,

toial guality managemsens
(TOM) a comprahansive ap-
proach to faciltating quality
improvemeants and managa-
miant within a businass.

32 Part One

PIOCESS MANAZEMETIT
the ongoing activity that
dafines, Improvas, and
coordinates the use of an
organization’s chosan
methodolagy (tha “procass”)
and standards for all systam
devalopment projects.

sSysiem initianon the initial
planning for & project 1o dafine
initial business scopa, goals,
schadule, and budget.

system analysis the study
of a business problam domain
to recommend improvamants
and specify tha business
requirements and prioritias
for the solution.

The Cortext of Systems Developmant Projects

managed according to the same development process, we have lncluded process
management as an ongoing activity, Notice that project and process management
overlap all of the process phases.

Let's brigfly examine our system development process In Figore 1-12 to expand
vour understanding of each phase and activity in the process. Given a problem to be
solved or a need to be tulfilled, what will we do during system initiation, analysis, de-
stgn, and implementation? Also, who will be involved in each phase?

> System Initiation

Information system projects are usually complicated. They require a significant time,
effort. and economic investment. The problems to be solved are frequently stated
vaguely, which means that the tnitial envisioned solurien may be premature. For these
reasons, system projects should be carefully plinned. System initiation establishes proj-
ect scope and the problem-solving plin. Thus, as shown in Figore 1-12, we see that
system Initiaton establishes the project scope, goals, schedule, and budget required
o solve the problem or opporunity represented by the project. Project scope defines
the area of the business to be addressed by the project and the goals to be achieved.
Scope and goals ultimately impact the resource commitments_ namely, schedule and
budget, that must be made o successtully complete the project. By establishing a proj
ect schedule and hudget against the fmitlal scope and goals, you also establish a base-
fine against which all stakeholders can accept the reality that any future changes in
scope of goals el lmpact the schedule and budget.

Figure 1-12 also shows that project managers, system analysts, and system own-
ers are the primary stakeholders in a system analysis. This book will teach you
ety tools and techndques for initiating a system project and establishing a suitable
project plan.

> System Analysis

The next step in our system development process s svstem analysis. System
analysis Is Intended to provide the project team with a more thorough under-
standing of the problems and needs that triggered the project. As such, the busi-
ness areil (scope of the project—as defined during system initiation) may be
studled and analyzed to gain a more detalled understanding of what works, what
doesn't, and what's needed. As depicted in Flgure 1-12, the system analysls requires
working with system users to clearly define business requirements and expecta-
tions for any new system that is to be purchased or developed. Also, business pri-
orities may need to be established in the event that schedule and budget are
Insufficient to accomplish all that is desired.

Recall the business drivers discussed earlier in the chapter These (and future)
business drivers most closely affect system analysis, which often defines business re-
quirements in response to the business drvers. For example, we discossed a corrent
trend towird e-business and ecommerce. This business defver may influence the busi-
ness requirement for any information system, leading us to establish project goals to
conduct all business transactions on the Weh.

The completion of a system amalysis often results in the need to update many of
the deliverables produced earlier, during system initiation. The analysis may reveal the
need to revise the business scope or project goals—perhaps we now feel the scope
of the project is too Large or too small. Accordingly, the schedule and budget for the
profect may need to be revised. Finally, the feasibility of the project itself becomes
guestionable. The project could be canceled or could proceed to the next phase.

As shown in Figure 1-12, project managers, system analysts, and system users
are the primary stakeholders o a system analysis. Typically, results must be sumima-
rized and defended to the system owners, who will pay to design and implement an
information system to fulfill the business requirements. This book will teach you

50 Part One

da requirement a
represantation of users' data
in terms of antities, attributas,
relationships, and ruas.

The Comtext of Systems Developmant Projects

intelligent decisions that support the organizition’s mission, goals, objectives, and
competitive edge,

Business knowledge may initially take the form of a slmple list of business entities
and business rules. Examples of business entities might include cusToMeRs. FRODUCTS,
EQUIPMENT, BUILDINGS, ORDERS, and pavmmdsrs, What do business entitles have to do with
knowledge? Information ts produced from raw data that describe these business
entities. Therefore, it makes sense that we should quickly ldentify relevant business
entities about which we need to capture and store data.

It is also useful o understand simple business associations or rules that describe
low the business entities Interact. Examples of useful business rules for a sales system
might include the following:

* A custoMEer can place orpms—an oromr must be placed by a custommem
* AnompmE sells ropocTs—a prooucT may be sold on an oro.

Intuitively, @ system's database needs to track these business entities and rales in order
Lo produce pseful information (for example, “Has costosmem 2846 placed any unfilled
ORDERS?™).

System owners are concerned with the big picture. They are generally not inter-
ested in detatls (such as what fields describe a costosm or an orpm). The primary role
of system owners in a systems development project should be to define the scope and
vislon for the project. For knowLEDsE, scope can be defined In simple terms such as
the aforementioned business entities and rules. System owners define project vision
and expectations in terms of their insight into problems. opportunities, and con-
straints as they relate to the business entities and rules,

System Ussrs” View of Knowiesce Information system users are knowledgeable
about the data that describe the business. As information workers, they capture,
store, process, edit. and use that data every day. They frequently see the data only
tn terms of how data are corrently stored or how they think data should be stored
To them. rthe data are recorded on forms. stored in file cabinets, recorded in hooks
and binders, organized Into spreadsheets, or stored in computer files and data-
bases. The challenge in systems development is to correctly identify and verify
users' business data requirements. Data requirements are an extension of the
business entitles and rules thar were initially identified by the system owners, 5ys
tem users may identity additional entities and rules hecause of their greater famdl-
tarity with the data. More importantly, system users must specify the exact data
attributes to be stored and the precise business roles for mainraining that data.
Consider the following example:

A system owner may identify the need to store data about a business emtity called
customeRr. System vsers might tell us that we need to differentiate between
PROSPECTIVE CUSTOMERS, ACTIVE CUSTOMERS, and miacTive customers because they know
that slightly different types of data describe each type of customer. System users
can also tell us precisely what data must be stored about each type of customer
For example, an sactve custoser might require such data attributes as customes
NUMBER, MAME, BILLING ADDEESS, CREDIT RATING, and currenT marance. Finally, system
users are also knowledgeable about the precise rules that govern entities and re-
lationships. For example, they might tell us that the credit rating for an actve
CUSTOMER Mus be PREFERRED, NORMAL, OF PROBATIONARY and that the defmult for a new
customer |5 morsart. They might also specify that only an actve cosToMER can
place an crom, but an acmive cosTomer might not necessarily have any corrent
ORDERS it any given time,

Notice from the above example that the system wser’s data requirements can be
Identified independently of the parapase TecaNoLosy that can or will be used to store
the data System users tend to focus on the “business™ issues as they pertain o

54 Part One

work flow the flow of trans-
actions through businass
processas 1o ensure appropri-
ate checks and approvals are
implameantad.

sofiware specifications
the technical design of
business processas 10 ba
automated or supportad by
aomputar programs o be
writtan by system buildars,

The Comtext of Systems Developmant Projects

CREDIT APFROVAL |5 4 policy. It establishes a set of rules for determining whether or
oot to extend credit to a customer. That credit approval policy is usually applied
within the context of a specific crawt caeck procedure that established the cor-
rect steps for checking credit against the credit policy.

Process requirements are also frequently specified in terms of work flow. Most
businesses are very dependent on checks and halances to implement work flow. For
example, a purchase requisition may be initiated by any employee. But that reguisition
follows a specific work flow of approvals and checks before it becomes a purchase
order transaction that is entered into an information processing system. OF course,
these checks and balances can become cumbersome and bureaucratic, Systems ani-
tysts and users seek an approproriate balance between checks and balances and
service and performance

Ohnce again, the challenge in systems development is to identify, express, and an-
alyze business process requirements exclusively in business terms that can be under-
stoodd by system wsers. Tools and technigues for process modeling and documentation
of policles and procedures are taught extensively in this book.

System Designers’ View of Processes As was the case with the knowrenas build-
ing block, the system designer's view of business processes 15 constrained by the
limitations of specific application development technologies such as fava, Visual
Baste. NET, ©++_ and &% Sometimes the analyst is able to choose the software tech-
nology: however, often the choices are limited by software architecture standards that
specify which software and hardware technologies must be used. In either case, the
deslgner’s view of processes is technlcal.

Given the business processes from the system users' view, the designer must first
determine which processes to automate and how to best automate those processes
Models are drawn to document and communicate how selected business processes
are, or will be, implemented vsing the software and hardware.

Today. many businesses purchase commercial off-theshelf (COTS) software in-
stead of building that sofrware in-house. In fact, many businesses prescribe thar soft-
ware that can be purchased should never be bullt—or that only software that
provides true competitive advantage should be built. In the case of purchasing soft-
ware, business processes must usually be changed or adapted to work with the soft-
ware, Hence, in this scenario the business process design specifications moust
document how the software package will be integrated Into the enterprise.

Alternatively, in the case of building software in-house, business processes are
usually designed first. And the business process specifications must then be sup-
plemented with sofiware specifications that document the technical design of
computer programs to be written. You may have encountered some of these soft-
ware specifications ln a programming course. As was the case with gNowLEDGE,
some of these technical views of procEsEs can be understood by users but most
cannot. The designers’ intent s to prepare software specifications that (1) fulfill the
business process requirements of system users and (2) provide sofficient detail and
consistency for communicating the software design to system bullders The sys
tems design chapters in this book teach tools and techniques for transforming busi-
ness process regquirements into both business process design and software design

specifications,

System Builders” View of Processss System builders represent processes using pre-
clse computer programming bmguages or application development environments
(ADEs) that describe lnputs, outputs, logie, and conteol. Examples include ©+4,
Visual Basic NFET, Cz (part of the Microsoft Visual Studio NET' ADE), and jova
{avallable In ADEs such as IBM WebStbere and BEA WebLogic). Additionally. some
applications and database management systems provide their own internal languages
tor programming Examples include Visnal Basic for Applfcations (in Access) and

Information Systam Bullding Blocks

tmportant thin the technlcal formut. The inpuots and outputs represent how the pro-
posed system would interact with users. employees, business units, customers, and
ather businesses.

The details of those inputs and outputs are important. System users might spec-
ify the detalls in the form of a list of fields (and their values) that make up the inputs
or cutputs. Alternatively, and because system users have become comfortable with
the graphical user interface (e.g., Windoivs or Web browsers) for the system, the
details might be specified in the form of prototypes. System users are Increasingly
demanding that their custom-built information system applications have the same
“look and feel™ as their frvorite PC tools such as word processors and spreadsheets
This common graphical user Interface makes each new application easter to learn
and use.

Both list and prototype approaches to documenting the system users' view of
commurcaTion will be addressed in vardous chapters of this book

System Designers” View of Communication System designers must be concerned
with the technical design of both the user and the system-to-system communication in-
terfaces. We call these intevface specifications. Let's begin with the user interface

Users and deslgners can be invobred in interface design. But whereas system users
are interested in requirements and format, system designers have other interests such
s consistency, compatibility, completeness, and vser dialogues. The wser dialogue
tsometimes called fnterfice navigation) specifies how the user will navigate through
an application to perform useful work.

The trend toward graphical user interfaces (GULs) such as Windows and Web
browsers has simplified life for system users but complicated the design process for
system designers. In a typical Windows application, there are many different things
users can do at any given time—type something, click the left mouse button on a menu
ttem or toolbar lcon, press the FI key for help, maximize the current window, mini-
mize the corrent window: switch to a different progrm, and many others. Accordingly,
the system designer views the interdace in terms of vadous system stites, events that
change the system from one state to another, and responses to those events. Today,
there are many more design decisions and considerations the system designer must ad-
dress to document the dialogue of @ graphical vser interface solution. Tools used to
document user dialogues will be discussed in the design unit of this book.

Web interfaces have turther complicated the designer’s activities. Soclery has come
to expect more glitz in Web interfaces, For that reason, it is not at all uncommen for the
design team to include graphical desipn specialists and human-computer interface spe-
clalists o ensure that the interface for a Wieb server is both compelling and easy o use.

Although not depicted in Figure 26, modern system designers may also design
keyless interfaces such as bar coding, optical character recognition. pen, and voice or
handwriting recognition. These altematives reduce errors by eliminating the key-
board as a source of human error. However, these interfaces, like graphical user inter-
taces, must be carefully designed to both exploit the underlying technology and
miximize the return on what can be a sizable investment.

Finally, and as suggested earlier, svstem designers are also concerned with system-
to-system Interfaces. Increasiogly, system Interfaces are the most difficult to design
and implement. For instance, consider a procurement information system that s used
to Initiate and purchase everything from supplles to equipment. A procurement sys-
tem must interface with other information systems such as human resources (to
determine authority to purchase and approve orders), accountng (to determine (f
funds are avallable against an account), receiving (1o determine if ordered goods were
recelved, and accounts payable (to initiate payment) These interfacing systems muay
use very different software and dutabases. This can greatly complicare system interfice
design. System Interfaces become even more complex when the interface is between
Information systems in different businesses. For example. in the aforementioned sys-
tem, we might want to enable our procurement system to directly interface with a
supplier's order fulfillment system.

Cheptor Two 57

interface specificaions
technical dasigns that doou-
ment how systanm usars are to
interact with & system and
how a system imaracts with
othar systams.

n=er dialogoe a specifica-
fion of how tha user moves
from window to window or
page to page, interacting with
the application programs to
perform useful work.

74 Part One

PrOCESS MEANAZEMENL 8n
ongoing actvity that docu-
mants, taaches, ovarsses the
usa of, and improves an orga-
nization's chosen mathodal-
ogy (the “process’) for
systems devalopmant,
Procoss managamernt is con-
camead with phases, activities,
daliverables, and quality stan-
darcls that should ba consis-
tartly applied to all projects.

PrOjECT management e
process of scoping, planning,
staffing, organizing, directing,
and controlling a project to
denralop an information system
at minimum cost, within a
spacified time frama, and with

acceptable quality.

The Comtext of Systems Developmant Projects

An information technology architecture typically standardizes on the following (note:
it Is not Important that you know what all these sample technologies are);

* Database technology—What database engine(s) will be used (e.g.. Onicle,
IBM BB2, Microsoft SOL Server)? On what platforms will they be operated
(eg, UNIY, Linux, Windows XP MWV What technologies will be used to
load data into online transaction processing (OLTP) databases, operational
data stores, and duta warehouses (i.e., Extract Transform and Load [ETL])#

= Saftware techrology—What application development environment{s)/lan
guage(s) will be used to write software (e.g., IBM's Webspbere with Jau,
Microsoft's Vsl Stadio NET with Vispa! Basic NET, Visual ¢+ +, andfor
Visia! % Svebase’s Powerbuilder, Orade's Ovacle Forms)

* Interface technology—How will user interfaces be developed—with A3
Windows components or Web languages and components (e.g., an xHTME
editor such as Macromedia’s Dreamivearer a portal engine such as IBM's
Webispbere? How will data be exchanged between different tnformation sys
tems {e.g., 4 data broker such as IBM's MO Messaging, an XMLbased data
exchange, or a custom programmed interface)?

Notice how these architectural questions closely correspond to the technology
drivers in your information system model,

In the absence of an IT architecture, each information system and application
iy be built using radically different technologies. Mot only does this make it difficul
to integrate applications, but it creates resource management problems—IT organiz-
Hions cannot as easly move developers between projects as priorties change or emer-
gencles ocour because different teams are staffed with technical competencies based
on the varions technologies used and being nsed to develop information systems. Cre-
ating an enterprise [T architecture and driving projects and teams to that architecture
mike more sense

As pew techmologies emerge, an IT architecture must change. But that change
can be managed. The chief technology officer (CTO) In an organization is fre-
guently charged with technology exploration and IT architecture management
Given that architecture, all information systems projects are constrained to imple-
ment new systems that conform to the architecture (unless otherwise approved by
the CTO},

Principle & Manage the Procsss and Projects Most organizations have a system
development process or methodology, but they do not always nse it consistently on
projects. Both the process and the projects that use it must be managed. Process
managemnent ensuares that an organization's chosen process or management is used
consistently on and across all projects. Process management also defines and lm-
proves the chosen process or methodology over me. Project man agement ensiures
that an information system is developed at minimwim cost, within a specified time
frame. and with acceptable quallty (using the standard system development process
ior methodology), Effective project management is essential to achieving CMM Level 2
success. Use of 4 repeatable process gets us to CMM Level 3. CMM Levels 4 and 5 re-
quire effective process management. Project management can oconr without a stan-
dard process, but in muture organizations all projects are based on a standardized and
managed process.

Process management and project mmanagement are intluenced by the need for
gquality management, Quality standards are built into a process to ensure that the ac-
tivities and deliverables of each phase will contrbute to the development of a high-
guality information system. They reduce the likelihood of missed problems and
requirements, as well as flawed designs and program errors (bugs). Standards also
miake the IT organization more agile. As personnel changes ocour, staff can be relo-
cated between projects with the assurance that every project is following an under-

stood and accepted process,

Information Systems Developmeont

elght phases to better define perlodic milestones and the deliverables. The grid below
compares the FAST phases to the classic phases. As you can see, both sets of phases
cover the same ground, but FAST is more detailed.

Classic Phases

Project System Syitem Svstem
FAST Phases Initintion Analyzis Diesign Implementation
Scope defirition X
Pmklem anshyss x X
Recquiramants analysis X
Legical desiqn %
Dlecision analysis (a sy=tem analysis transiion phass)
Phiysical design and integration bt
Conatruction and tasting X by
Inztallation and delivany X

Figure 3-5 llustrates the phases of the F4ST methodolegy. Each phase produces de-
liveralles that are passed to the next phase. And documentation acoumulates as you
complete each phase. Notice that we have included an lconic representation of the
bullding blocks to symbolize this accumulaton of knowledge and workin process ari-
facts during system development. Notice also that a peoject starts with some combina-
tion of ProBLEMS, oFPORTUNITIE, and omecTives from the user community (the green
arrow) and finishes with a workme musmess sowron (the red arrow) for the user
COMITITY.

Figure 3-6 shows the FAST methodology from the perspective of your information
system building blocks that you learned in Chapters | and 2. The phases are on the
right-hand side. The deliverables are built around the building blocks for knowledge,
processes, and communications. The stakeholders are on the lefthand side. Notice
how we have expanded and duplicated some stakeholders to reflect their involve-
ment opposite the phases in which they primarily participate.

NOTE: The remainder of this section briefly describes each of the eight basic
phases. Throughouot this discussion, we will be referring to the process flowchart
in Figure 3-5, as well as the building blocks view of the process in Figore 3-6. Also
throughout the discussion, all terms printed in smaLt caps refer to phases, prereg
nisites (inputsy, and deliverables (outputs) shown in Figures 3-5 and 3-6,

S5cope Definition The first phase of a typical project is score permNmTion. The pur
pose of the scope definition phase is twotold. Frst. it answers the question, “Is this
problem worth looking at?" Second. and assuming the problem /5 worth looking at, it
estahlishes the size and boundaries of the project, the project vison, any constraints
ur limitations, the required project participants, and, finally, the bodget and schedule,

In Figure 345, we see that the participants in the scope definition phase primarily
Include sysTEM owWNERS, PROTECT MANAGERS, and 5YSTEM ANAIVSTS. SYSLCM USers are gener
ally excluded because it is too early to get into the level of detail they will eventually
bring to the project.

Chapter Threa

79

82 Part One

problem s@atement a
statemant and categorization
of problems, opportunities,
and diractives; may also
include canstraints and an
imitial vigion for the solution.
Synormyms includs predmi-
nary siwdy and feasitylity
AESESSMar.

CONStraint any factor,
[imitation, or rastraint that may
[imit & solution or tha problam-
solving process.

SODPE COCER @ COMMan
phenomenon wherain tha
requiramants and expacta-
tions of & project increass,
often without regard to the
impact on budget and
schadula,

starement of work a
contract with managemant
and the user community to
develop or enhance an jrfor-
mation systam; defings vision,
scope, constraints, high-leval
usar requiremants, scheduls,
and budget Synomems include
project charter, proyect pian,
and senvico-lovel aroomant.

The Comtext of Systems Developmant Projects

In Figure 3-5, we see that the scope definition phase is triggered by some combi-
nation of ProRURME, orppoRTUNTIES, and omecTives (to which we will add constrameTs and
viston). There are severil deliverables or outcomes of a scope definition. One impor-
tant outcome is a PROBLEM STATEMENT, a stccinct overview of the problems. opportuni-
ties, and/or directives that triggered the project. The PIECES framework provides an
excellent outline for a problem statement. The goal here 15 not to solve the prob-
lemmns, opportunities. and directives but only to catalog and categorize them. We should
also Identify any consteaints that may impact the proposed project. Examples of con-
straints include budget limits, deadlines, human resources available or not available,
business policies or government regulations, and technology standards. Finally, the
systemn owners should be asked for at least a highdevel wvision for the system
improvements they are seeking.

Given a baslc understanding of problems, opportunitles, directives, constralnts,
and vision. we need to establish tnitial scope. Thus, an initial score starew is another
important outcome of this phase. Scope defines how big we think the project is. Your
information system building blocks provide a useful framework for defining scope
Figure 3-6 lllustrates that scope and vision can be defined ln terms of rosMatioN,
FUNCTIONS. dind INTEREACES. Scope can. and frequently does. change during a project. But
by documenting initial scope, you establish a baseline for controlling scope creep on
both the budget and the schedule,

tiven the initial problem and scope statements for the project, the analyst can
staff the project team, estimate the budget for system development, and prepare a
schedule for the remaining phases. Ultimately, this phase concludes with a “go or no-
go” decision from system owners. Either the system owners agree with the pro-
posed scope, budget. and schedule for the project. or they must reduce scope (to
reduce costs and time) or cancel the project. This feasibility checkpoint is illustrated
tn Figure 3-5 as a diamond.

The final and most important deliverable is a staTesENT OF WoRk. A statement of
work s i contract or sgreement to develop the information system. It consolidates
the problem statement. scope statement, and schedule and budget for all parties who
will be involved in the project.

Problem Analysis There is always an existing system, regardless of whether it cur-
rently uses information technology. The rroBiew aracyss phase studies the existing sys
tem and analyzes the findings to provide the project team with a more thorough
understanding of the problems that triggered the project. The analbyst frequently nncov-
ers new problems and answers the most important guestion,“Will the benefits of solv-
ing these problems exceed the costs of building the system to solve these problems?”

Once again. Figure 3-6 provides a graphical overview of the problem analysis
phase in terms of vour information system building blocks. Notice that the partici-
pants still tnclude the sysTea owmrs but that this phase begins to actively involve the
sysTEM UsERs a5 ‘well The system users are the business subject matter experts in any
project. (Notice the intentional expansion of the system users’ perspective to overlap
many phases—remember principle 1:°Get the system users involved™) OF course,
PROJECT MAMAGERS and sysTeM amarysTs are abways involved in all phases of a project.

As shown in Figure 35, the prerequisites for the problem analysis phase are the
scoPE and PROBUM STATEMENTS 48 defined and approved in the scope definition phase.
The deliverable of the problem analysis phase is a set of sySTEM IMPROVEMENT OBJECTIVES
derived from a thorough nnderstanding of the business problems. These objectives do
not define inputs, outputs, or processes, Instead. they define the business criteria on
which any new system will be evaluated. For instance, we might define a system
improvement objective as any of the following:

Reduce the time between order processing and shipping by three days.
Reduce bad credit losses by 45 percent.
Comply with new tinancial aid federal qualification requirements by January 1.

Information Systems Development

Think of system lmprovement objectives as the grading criteria for evaluating any
new system that vou might eventually design and implement. System Improvement
objectives may be presented to system owners and users as a written recommendi-
tion or an oral presentation.

Depending on the complexity of the problem and the project schedule, the team
muy or may not choose to formally document the existing system. Such documenta-
tion frequently oceors when the business processes are consldered dated or overly
bureaucratic. Documentation of the existing system s sometmes called in “as 157
pusNess MoDEL. The asis model may be accompanied by analysis demonstrating ineffi-
clencies, bortlenecks, or other problems related to the business processes.

Every existing system has its own terminology. history, culture, and noances.
Learning those aspects of the system is an important by-product of this phase. From
all of the information gathered, the project team gains a better understanding of the
existing system’s problems and oppormnities. After reviewing the findings, the system
owners will either agree or disagree with the recommended system improvement ob-
jectives. And consistent with the creeping commitment principle, we include another
go or no-go feasibility checkpoint (the red diamondy at the end of the phase. The
project cin be either:

= Canceled if the problems are deemed no longer worth solving,

= Approved to continue to the next phase.

* Reduced or expanded in scope (with budget and schedule modifications) and
then approved to continue to the next phase.

Requirements Analysis Given system owner approval to continue from the prob-
lem analysis phase. now you can design a new system, right? Mo, not vet! What capa-
bilities should the new system provide for lts users? What data must be captured and
stored? What performance level is expected? Careful! This requires decisions about
twhat the system must do, sof bore it should do those things. The REQUIREMENTS ANALYSES
phase defines and prioritizes the business requirements. Simply stated, the analyst
approaches the users to find out what they need or want cut of the new system. care-
fully avolding any discussion of technology or technical implementation. This s per
haps the most important phase of systems development. Errors and omissions in
requirements analysis result in user dissatisfaction with the final system and costly
modifications.

Returning ugain to Figure 3-6, notice that the participants primarily include both
systeM UsERs (which may inchade owners who will actoally wse the system) and systvs
AMALYSTS, PROJECT sanaGErs are also involved. SysTem peEsichers are omitted from this
phise in order to prevent premature attention to technology selutions. The bullding
Blocks can themselves provide the framework for defining many business require-
ments, including BUSINES DATA REQUIREMENTS, BUSINESS PROCESS REQUIREMENTS, and BusiNEs
AND SYSTEM INTERFACE REQUIREMINTS. Because the business requirements are intended to
solve problems, the FIECES framework can also provide a useful outline, this time for

il requirements statement.
In Figure 3-5, we see that the system iMprovEMeENT ogrcTives from the problem

analysis phase are the prerequisite to the requirements analysis phase. The deliverable
I5 4 BUSIMESS REQUIREMENMTS STATEMENT. Again. this requirements statement does not spec-
ify any technical possibilities or solutions. The requirements statement may be o doc-
ument #5 small as a few pages, or it may be extensive with a page or more of
documentation per requirement.

To produce a business requirements stitement, the systems analyst works
closely with system users to ldentify needs and priorities. This information is col
lected by way of interviews, questionnaires, and facilitated meetings. The challenge
tir the team is to validate those requirements. The system improvement objectives
provide the “grading key” for business requirements: Does each requirement
contribute to meeting ore or more system improvement obfectives? Chapters 6

Chapter Threa

83

84 Part One

sysiem model a picture of
a systam that represants
reality or a desired reality.
Systemn models facilitate
improvad communication
betwean system usears,
gystem analysts, system
dasigners, and systam
buildars.

logical design the transla-
tion of business usar
requiremeants into a systam
model that dapicts only the
businass requirements and
not any possibla tachnical
design or implamentation of
those requirements. Comman
synonyms include concepiial
design and essentia dasign,
the latter of which refers ta
modeling tha "essence” of a
system, or the “assantial
requiremeants” independant of
amy technology, The antorym
of logical dasign is physical
design (defined later in this
chapter).

amalysis paralysis a
satifical term coined to
describe a common project
condition in which excessiva
system modeling dramatically
slows progress toward imple-
mantation of tha intanded
system solution,

The Comtext of Systems Developmant Projects

and 7 will introduce systems analysis tools and rechnigues for identifving and doc-
umenting user requirements,

Typically, requirements must also be prioritized Priorities serve two purposes.
First. if project timelines become stressed, requirements priorities can be used to
rescope the project. Second, priorities can frequently be used to define iterations of
design and construction to create staged releases or verstons of the final product.

The requirements analysis phase should never be skipped or shortchanged, One
of the most common complaints about new systems and applications is that they
don't really satisfy the users’ needs. This usually happens when system designers and
builders become precccupled with a technical solution before fully understanding
the buosiness needs. System designers and builders are dependent on competent
systems analvsts to work with users to define and document complete and accurate
business requirements betore applylng any technology.

Logical Design Business requirements (above) are usually expressed in words. Sys-
lems analysts have found it useful to translate those words into plctures called system
models to validate the requirements for completeness and consistency. (Figure 35 Is
an example of a common system model called a data flow diagram.) System model
ing implements a timeless concept:“A picture is worth a thousand words”

The vocicar pesicy prASE translates business requirements into system models: The
term logical design should be interpreted as “technology independent.” meaning the
pictures illustrate the system independent of any possible technical solution—hence,
they model business requirements that must be fulfilled by any techndeal solution we
might want to conslder,

Different methodologles require or recommend different amounts and degrees of
system modeling or logical design. Prescriptive methodologles like seructured analy-
sig and design, information engineering, and the Rattonal Unified Process (RUFP)
usaally require that many types and/or instances of system models be drawn in vark
ots levels of detall. Fortunaitely, computer-automated tools are available to assist the
systems analyst in these drawing tasks. Alternatively, agile methodologles like arcii-
tected vapid apiplication develofnment and extreme programming recommend “fust
enough modellng ™ This so-called agile modeling seeks to prevent the project from
degenerating into a condition called analysis paralysis. This textbook leans toward
agile methods but recognizes that complex problems may best be solved using more
prescrptive approaches.

In Figure 3-6, we see that the participants Include system asarysts (who deaw the
maodels) amnd sysreq vses (who validate the models). Project Manaces are always in-
cluded to ensure that modeling meets standards and does not deter overall project
progress. We can draw (1) wocical pata mopers that depict data and information re-
quirements, {2} LoGieaL pRoCESs Mobas that depict business processes requirements, and
(3) LOGICAL INTEREACE MODELS that depict business and system interface requirements.”

In Figure 3-5, we see that the prerequisite to logical design is the BusmNESs REQUIRE-
MENTS STATEMENT from the previous phase. In practice. the requirements analysis and
logical design phases almost always have conslderable overlap, In other words, as
business requirements are identified and documented, they can be modeled. The de-
liverables of logical design are the LOGICAL SYSTEM MODELS AND SPECIFICATIONS themselves.
Depending on the methodology used, the level of detail in the specifications will vary.
For example, we may define 1 business rule that specifies the legitimate vahues for a
data attribute such as Credir Rating or a rule that specifies the business policy for a
Credir Check.

*Thoeese of you alrendy familinr with cfyec-oeiemied modeling should note thar objecr tacdels rend to blur the boundaries
of out famewotk somewhat, but the fmmework can still be applied since the problem o be sobved s stll dtiven by the
thiee fitdn et bosiness goals Blasttared in oot framewatk. This will be demohattated in the objectotienmed chabss
uhd desigh chapters of this book.

Information Systems Development

Before we move on to the next phase. we should note that the scort pEaMTION,
PROBLEM ANALYSIS, REQUIREMENTS ANALYSIS, and toGrcar pesicn pHASE are collectively recog-
nized by most experts as sysfem analysis Some experts would also include our next
phase, pEcsion anarysis. But we consider it to be a svstem analysis to system design
transition phase because it makes the transition from the business concerns of system
awners and users to the technology concerns of system designers and bullders. And
of course, svstems amilysts are the common thread that ensures continuity us we
milke this transition. Let's examine the transition.

Decision Analysis Given business requirements and the logical system models,
there are usually numerous alternative ways to design a new information system to
tulfill those requirements, Some of the pertinent questions include the following:

= How much of the system should be sutomated with tnformaton technology?

= Should we purchase software or build it ourselves (called the make-versus-buy
decisiony?

= Should we design the system for an Internal network, or should we deskgn a
Web-based solution?

* What information technologles (possibly emerging) might be useful for this
application?

These questions are answered in the peasion anaryas phase of the methodology. The
purpase of this phase is to (1) identify candidite technlcal solutions, (2) analyze those
candidate solutions for feasibility, and (3) recommend 4 candidate system as the target
solution to be designed

In Flgure 36, we see that the decision analysis phase s positioned halfway
throwgh the development process. Half the building blocks are positioned higher, and
half are positioned lower. This is consistent with the decislon analysis phase's role as
a transition from analysis to design—and from business concerns of sysTea vsms to
those of systTeM peieners Cand, ultimately, system bullders). Designers (the technical
experts in specific technologles) begin to play i role here along with system osers and
SYSTEM aNarysTs. Analysts help to define and analyze the altermatives. Decisions are
made regarding the technologies to be used as part of the application’s architecture.
Ultimately, system owsers will have to approve or disapprove the approved decisions
since they are paying for the project.

Figure 35 shows that a decision analysis is triggered by validated business
reguirements plus any logical system models and specifications that expand on those
reguirements. The project team solicits ideas and opinions for technical design and
tmplementation from a diverse audience, possibly Including IT software vendors, Can-
didate solutions are identified and characterized according to various criteria. Tt
shoubd be noted that many medern organizations have information technology and ar-
chitecture standards that constrain the number of candidate solutions that might be
considered and analyzed. (The existence of such standards is {llusteated at the bottom
of your information system building blocks model in Figure 36.) After the candidate
solutions have been ldentified. each one Is evaluated by the following criteria:

= Technical feasibiliny—Is the solution technically practical? Does our staff
hiave the technical expertise to design and build this solution?

= Operational feasibditp—Will the solution fulfill the user's requirements? To
what degree? How will the solution change the user's work environment?
How do users feel about such a solutlon?

= Feonomic feasibility—Is the solution cost-effectve (as defined eardier in the
chapter)y?

» Schedule feasibifity—Can the solution be designed and implemented within
an acceptable time period?

= Risk feasibility—What's the probability of a successful implementation using
the technology and approachy

Chapter Threa

a5

86 Part One

physical design the
transkation of business usar
raquiramants into a systam
model that depicts a technical
implameantation of the usars'
businass requirements.
Comman synonyms includs
techinical design or, in
daszcribing the output, fmple-
mentation modal, The
antorym of physical design is
fogical dosign (defined aarlier
in this chaptar)

The Comtext of Systems Developmant Projects

The project team |s usaally looking for the mose feasible solution—the solution that
uffers the best combination of technical, operational, economic, schedule, and risk
feasibility. Different candidate solutions may be most feasible on a single criterion;
however, one solution will usually prove most feasible based on all of the criteria.

The key deliverable of the decision analysis phase is a system rroposar. This pro-
posal may be written and/or presented verbally, Several outcomes are possible. The
creeping commitment feasibility checkpoint (agaln. the red dismond) miry result in
any one of the following options:

= Approve and [und the system proposal for design and construction (possibly
inchiding an Increased budget and timetable if scope has significantly
expanded).

* Approve or tund one of the altermative candidate solutions,

* Reject all the candidate solutions and either cancel the project or send it
back for new recommendations.

= Approve a reduced-scope version of the proposed solution.

Optionally, the decislon analysis phase may also produce an APPLICATION ARCHITECTURE
for the approved soluton. Such a mode] serves as a high-level blueprint (like a simple
house floor plan} for the recommended or approved proposal,

Betore we move on, you may have noticed in Fgure 36 a variation on the systes pro-
posal deliverable called a reguesT FoR svsTEM PROPOSALS (of BFP). This varation is for a rec-
ommendition to purchase the hardware and/or softeare solution as opposed o buillding
it in-house. We'll defer any further discossion of this option untl later in the chapter
when we discuss the commercial package integration variation of our basle process,

Physical Design and Integration Given approval of the systea rroposar from the
decision analysis phase, you can finally design the new system. The purpose of the
PHYSICAL DESIGN AND INTEGRATION phase is to transform the business requirements
(represented fn part by the wocicar sysTEM MODELS) INto PHYSICAL DESIGN SFECIFICATIONS
thar will guide system construction. In other words, physical design addresses greater
detail about four technology will be used in the new system. The design will be con-
strajned by the approved srcanEcToral Mopes from the previous phase. Also, design
requires adherence to any internal technical design standards that ensure complete-
ness, usability, reliability, perfformance, and quality,

Physical design is the opposite of logical design. Whereas logical design dealt ex-
clusively with business requirements independent of any technical solurion, physical
design represents a specific technical solution. Figure 36 demonstrates the physical
design phase from the perspective of your building blocks. Notice that the design
phase is concerned with technology-based views of the system: (1) PHYSICAL DATABASE
DESIGN SPECIFICATIONS, (2} PHYSICAL BUSINESS PROCESS dnd SOFTWARE DESIGN SPECIFICATIONS,
and (3) FHYSICAL USER AMD SYSTEM INTEREACE SPECTICATIONS, The sysTEM DESIGNER and sysTEm
anaLysT {possibly overlapping roles for some of the same individuoals) are the key par-
tcipants: however, certain aspects of the design usually have to be shared with the
SYSTEM USHERS (£ g., screen deslgns and work flow). You may have already had some
exposure to physical design specifications in either programming or database courses

There are two extreme philosophies of physicil design.

* Design by specification—Physical system models and detailed specifications
are produced as a serles of written (or computergenerated) blueprints for
CONSLrucTon.

* Design by protolyping—Incomplete but functioning applications or subsys
tems {called prototypes) are constructed and refined based on feedback from
users and other designers.

Inn practice, some combination of these extremes is usually performed.

Mo new information system exists in isolation from other existing information
systems in an organization. Consequently, a design must also reflect system integration
concerns. The new system must be integrated both with other information systems

Information Systems Development

and with the business's processes themselves. Integration is usually reflected Io phys-
ical system models and destgn specifications,

In summary, Figare 3-5 shows that the deliverables of the physicil deskgn and in-
tegration phase include some combination of FEYSICAL DESIGN MODELS AND SPECIFICATIONS,
DESIGN PROTOTYPES, and REDESIGMED DUSINESS PROCESSES. Motice that we have included one
tinal go or no-go feasibility checkpoint for the project (the red diamond). A project is
rarely canceled after the design phase unless it is hopelessly over budget or behined
schedule. On the other hand. scope could be decreased to produoce i mindmum ac-
ceptable product in a specified time frame. Or the schedule could be extended to
luild a more complete solution in multiple versions. The project plan (schedule and
budget) would need to be adjusted to reflect these decisions.

It should be noted that in modern methodologies, there is a trend toward merg-
ing the design phase with our next phase, construction. ln other words, the design
and construction phases usually oveelap

Construction and Testing Given some level of PHYSICAL DESIGN MODELS AND SPECIFICA-
Trows (and/or DESIGN PROTOTYPES), We can begin to construct and test system compo-
nents for that design. Figure 3-5 shows that the primary deliverable of the coNstrucTion
anp TESTING phase is 4 mncnonal systes that is ready for implementation. The purpose
ot the construction and testing phase is twofold: (1) to build and test a system that ful-
tills business requirements and physical design specifications, and (2) to tmplement the
interfices between the new system and existing systems. Additionally, Frar pocusMes-
Tarion (e.g., help systems, tralning manuals. help desk support, production control in-
structions) will be developed in préparation for tminlng and system operation. The
construction phase mmy also involve installation of purchased sofrware.

Your information system framework (Figure 36) identifies the relevant building
blocks and activities for the construction phase. The focus is-on the last row of build
ing blocks. The project team must construct or install:

= Darassses— Databases may Include enfine ftransaction processing (OLTP)
databases to suppont day-to-day business transactions, operatfonal data siores
{O08) to support dayto-day reporting and queries, and data warebouses to
support data analysis and decision support needs.

* COMMERCIAL SOFTWARE PACEAGES and/or costos-eimr soFTwarE— Packages are
installed and customized as necessary. Application programs are constructed
according to the physical design and/or prototypes from the previous phase.
Both packages and costom software must be thoroughly tested.

* LUsER AMD SYsTEM INTERFACES— User fnterfaces (e.g.. Windows and Web interfaces)
must be constructed and tested for usability and stability. System-to-system
interfaces must be either constructed or implemented using application Inte-
gration technologles, Notice that mmoLEware (a type of system software) is
odten used to lntegrate disparate database, software, and interace rechnolo-
gies. We'll talk more about middleware in the design unit of this book.

Figure 3-6 also ldentifies the participants in this phase as sysTmm BOUnDERS, SYSTEM
AMATYSTS, SYSTEM USERS, nd PROJECT MAMAGERS. SYSTEM DESIGNERS nuay also be involved to
clarify design specifications.

You probably already have some experlence with part of this activity—application
programming. Programs can be written in many different languages. but the current
tremd is toward the use of visual and object-oriented programming languages such as
Java, C++, or Visnal Basic. As components are constructed, they are typically
demonstrated to users in oeder to sollcit feedback

One of the most Important aspects of construction is conducting tests of both in-
dividuwil system components and the overall system. Once tested. a system (or version
of a system) is ready for N5TALLATION AND DELTVERY.

Installation and Delivery What's left to do? New systems usually represent a de-
parture from the way business is currently done: therefore, the analyst must provide

Chapter Threa

87

Information Systems Developmeont

methodology, process modeling remains a viable and important technigue, Recall that
your information system bullding blocks lnclude several possible focuses: EnowLEDGE,
reocEssEs, and inTErFacEs. Process modeling focuses on the moces column of building
blocks. Flowwebarts are one type of process model (used primarily by sysTes sunners)
that you may have encountered in a programming course. Process modeling has en-
|oyed something of a renalssance with the emergence of business process redesign
fntroduced in Chapter 1),

Data flow diagrams and structure charts have contributed significantly to reduc-
ing the communications gap that often exists between nontechnical system owners
anel users and technical system designers and builders. Process modeling is taught in
this book.

Data Modeling Recall that xwowince improvement is a fundamental goal and ser
of building blocks in vour famework. Knowledge is the product of fnformaiion,
which in torn is the product of dara. Data modeling methods emphasize the knowl
edge building blocks, espedially data. In the data modeling approach, emphasis is
placed on diagrams that capture business data requirements and translate them into
database designs. Arguably, data modeling Is the most widely practiced system
modeling technique. Hence, it will be taught in this book.

Object Modsling Object modeling is the result of technical advancement. Today,
most programming languages and methods are based on the emergence of object
techoology. While the concepts of object technology are covered extensively
throughout this book. a brief but oversimplified Introduction is appropriate here.

For the past 30 years, techniques like process and data modeling deliberately sep-
arated the concerns of rrocesses from those of para: In other words, process and data
models were separate and distinet. Because virtually all systems Included processes
and data, the techniques were frequently used in parallel and the models had o be
curefully synchronized. Object technigques are an attempt to eliminate the separation
of concerns, and hence the need for synchronization of data and process concerns,
This has given rse to object modeling methods.

Business objects correspond to real things of importance in the business such as
customers and the onders they place for products. Each object consists of both the
data that describes the abject and the processes that can create, read, update, and
delete that object. With respect to your information system building blocks, object-
oriented analysis and design (OOADY) significantly changes the paradigni The para
and process columns (and, arguably, the wrErrace column as well) are essentially
merged inte a single opject column. The models then focus on identifying objects,
building objects, and assembling appropriate objects, as with Legos. Into aseful
information systems.

The current popularity of object technology is driving the interest in object
models and OCAD. For example, most of today’s popular operating systems like
Microsoft Windows and Apple Mac/ 08 have object-oriented nser interfaces (* point
and click” using objects such as windows, frames, drop-down menus. radio but-
tons, checkboxes, scroll bars, and the like) Web user interfaces like Microsoft
Iniernet Fxplorer and Netscape Navigaror are also based on object technology.
Object programming languages such as fova, C++, Cz, Smalitalk, and Visual
Hasic NET are used to constroct and assemble such object-oriented operating sys
tems and applications. And those same languages have become the tools of cholce
for butlding nextgeneration information system applications. Not surprisingly,
ubject modeling technigues have been created Lo express business and software
requirements and designs in terms of objects. This edition of this book extensively
Integrates the most popular object modeling techoiques to prepare you for systems
analysis and design that uitimately produces roday's object-based information
systems and applications.

Chapter Threa o7

data modeling a data-
cantarad tachnique usad to
model business data require-
ments and design database
systems that fulfill thosa
requiremants. The most fra-
quantly encounterad data
medels are endly relzfonship
Nagrams.

object modeling a tech-
niqua that attempts 1o marge
the data and process con-
carns imto singular constructs
called objects. Objact modaks
are diagrams that documeant a
systam in terms of its abjects
and thair imaractions, Object
modaling is the basis for
object-oriented analysis and
design methodalogias.

98 Part One

rapid application
development (RAD) a
systam davelopmant stratagy
that emphasizes spaad of da-
velopmant through extensiva
usar invohement in the rapid,
iterative, and incramerntal
congtruction of a series of
functioning prototypes of a
systam that arantually evolvas
imto thi final system (or a
wversion),

provorype a small-scals,
repregentative, or warking
maodel of the users' requine-
ments or a proposed design
fiar an information systam. Amy
gnan prototype may omit car-
tain functions or features unti
such fimea as the prototype
has sufficienty evolved into an
accaptable implemantation of
raguiraments.

The Comtext of Systems Developmant Projects

> The Rapid Application Development Strategy

In response to the faster puce of the economy in general, rapid a pplication devel-
opment (RAD) has become a popular route for accelerating systems development
The basic ideas of RAD are:

* To more actively involve system users in the analysis, design. and construc-
Hon activities,

* To organize systems development into a seres of focused, intense workshops
jointly involving SYSTEM OWNERS, USERS, ANALYSTS, DESIGNERS, and BUILDERS,

* To accelerate the requirements analysls and design phases through an iten-
tive construction approasch.

* To reduce the amount of time that passes before the users begin to see i

working system.

The basle principle behind prototyping is that users know what they want when they
see [t working. In RAD. a prototype eveninally evolves into the final information sys-
tem. The RAD route for FAST is illustrated in Figure 3-1 1. Again. the red text and flows
tndicate the deviations from the basic FAST process We call your attentlon 1o the
following notes that correspond to the numbered bullets,

@ The emphasis is on reducing time in developing applications and systems;
therefore, the initial problem wnalysis, requirements analysis, and decision
analysis phases are consolidated and accelerated. The deliverables are ryp-
ically abbreviated, again tn the interest of time. The delivenibles are said to
be mirnaL. meaning “expected to change™ as the project progresses.

After the above initial anslysis, the RAD uses an terative approach, as dis-
cussed earller in the chapter. Bach iteration emphasizes only enough new
functonality to be accomplished within a few weeks

€} LoGICAL AMD PHYSICAL DESIGN SPECIFICATIONS are usually significantly abbreviated
and accelerated. In each fteration of the cycle, only some design specifications
will be considered. While some system models may be drawn, they are selec
tively chosen and the emphasis continues to be on rapid development. The
assumption is that errors can be canght and fixed in the next itemtion

& 1o some, but rarely all, frerations, some business processes may need to be
redesigned to reflect the likely integration of the evolving software application,

O In each iteration of the cycle, soME DESIGN PROTOTYPES 0 SOME PARTIAL
FUNCTIONAL SYSTEM elements are constructed and tested. Eventually, the
completed application will result from the final iteration through the cycle.

© After each prototype or partial functional subsystem is constructed and
tested, system users are given the opportunity to experience working with
that prototype, The expectation is that users will clarify requirements,
identify new requirements, and provide pusiNess FEEDRAcE on design (e.g., ease
of learning, ease of use) for the next fteration through the RAD cycle.

@ After ench prototype or functoning subsystem s constructed and tested,
system analysts and designers will review the application architecture and
design to provide Tecaracar FEnRace and direction for the next iteration
through the RAD cyvcle.

@ Based on the feedback, systems analysts will identify rerMED sYSTEM
TAPROVIMENT oRfECTIVES and/or nusivess egumevenTs. This analysis tends to
foous on revising or expanding objectives ind requirements and identifving
user concerns with the design

@ Based on the feedback, systems analysts and system designers will identify a
REFINED APPLICATION ARCHITECTURE and/or DESIGN CHANGES.

© Eventually. the system (or a version of the system) will be deemed worthy of
implementation. This CANDIDATE RELEASE VERSION OF THE FUNCTIOMAL SYSTEM is sps
tem tested and placed loto operation. The next version of the system may
continue {terating through the BAD cyde

Information Systems Developmeont

The FAST methodology's route for commercial application package integration is
not really intended for ERP projects. Indeed, most ERP vendors provide their own
tmplementation methodology (and consulting partners) to help thelr customers
Implement such a massive software solution. Instead, our FAST methodology provides
a route for implementing all other types of information system solutions that may be
purchased by a business. For example, an organlzation might purchase a commercial
application package for a single business Function such as sccounting, human
resources, or procurement The package must be selected. tnstalled, customized, and
integrated into the business and its other existing information systems.

The hasic ideas behind our commercial application package implementation
route are:

= Packaged sofrovare solutions must be carefully selected to fulfill business
needs—"You get whit vou ask and pay for”

= Packaged sofrware solutions not only are costly to purchase but can be costly
to implement. In fact, the package route can actually be more expensive to
implement than un in-house development route.

= Software packages muost usually be customized for and integrated into the
business. Additionally, softwiare packages usaally require the redesign of exist
ing business processes to adapt to the software.

» Software packages rarely fulfill all business requirements to the users’ com-
plete satisfaction. Thus, some level of in-house systems development is neces
sury tn order to meet the unfulfilled requirements,

The commercial application package implementation route is (lusrated in Fig-
ure 3-12. Once again, the red typeface and arrows indicate differences from the basic
FAST process. We call your attention to the following notes that correspond to the
numbersd bullets,

@ It should be noted that the decision 1o purchase a package ts determined in
the problem analysis phase. The red diamond represents the “make versus
buy® decision. The remainder of this discussion assumes that a decision 1o
buy has been approved,

@ Problem analysis usually indudes some initial TECHNOLOGY MARKET RESEARCH to
identify what package solutions exist, what features are in the software, and
what criteda should be used to evaluate such application packages, This
research may involve software vendors, IT research services (such as the
Gartner Geoupy), or consultants.

© After defining business requirements, the requirements must be communicated
to the software vendors who offer viable application soluticns. The business
fand technicaly requirements are formatted and communicated to candidate
software vendors as elther 4 REQUEST FOR PROPOSAL (RFP) O 4 EEQUEST FOR
puoTanon (RFQ). The doohble-ended arrow implies that there may need to be
some cladfication of requirements and criteria.

2 Vendors submit proPosaLs or guotanons for thelr application solutions. These
proposals are evaluated against the business and technical requirements spec-
ified in the RFE The doubleended arrow indicates that claimed festures and
capabilities must be validated and in some instances clarified. This occurs
during the decision analysis phase.

£ A cowtRaCT aND onDER {5 negotiated with the winning vendor for the software
and possibly for services necessary to Install and maintiin the software.

@ The vendor provides the rasmINE CcovMERCIAL aPPiCaToN software amd docomen-
tation. Services for installation and implementation of the software are fre-
guently provided by the vendor or its service providers (certified consultants),

£ When an application package is purchased. the organization must nearly always
change its business processes and practices to work efficiently with the package.
The need for REDESIGHMED BUSINESS PRI is rarely greeted with enthusiasm,

101

request for propos:il
{RFF) a formal document

that communicates businass,
technical, and support re-
quirements for an application
software packape to vandors
that may wish to competa for
the zale of that application
package and sarvices..

request for qumation
{RF(Y) aformal document
that communicates business,
technical, and support ra-
quirements for an application
software package o a single
vandor that has bean detar-
mined as being able to supply
that application package and
sarvices,

information Systems Developmont 103

but they are uswally necessary. In many cases, the necessary changes are not
wrong—they are just different and vnfamiliar System users tend to be uncom-
fortable with changing the way they hive always done something.

@ An application package rarely meets all business requirements upon installa
tion. Typically, 2 gap analysis must be perdformed to determine which busi-
ness requirements are not fullilled by the package's capabilities and features,
For requirements that will not be fulfilled, the following options exist:

gap analysis a comparnson
of businass and technical re-
quiremeants for a commercial
application package against
the capabilities and featuras
of a specific commercial
application package for tha
purpose of defining the
requiraments that cannot

be met

= Request customizations of the package within allowable limits as specified
by the software vendor. Most commercial application packages allow the
purchaser to set specific options, preferences, and defined values and
ranges for certain parameters, Within limits, these customizations allow vou
to “personalize” the package o the business accounting and business pric-
tices. Such necessary cusToMmaTon REgUREMENTS need tw be specifled

* Define appon soFTWARE REQUIREMENTS. Add-on software requirements specify
programs that must be designed and constructed to augment the commercial
application package and deliver additional functionality. It should be noted
that add-on programs carry some risk that they may have to be modified in
the fisure when a new version of the software becomes available. But this
risk is nominal, and most organizations take the risk in order to provide addi
tional functionality

* Define ADDAN SOFTWARE REQUIREMENTS. Addidn softwire requiremnents are very
dangerous! They specify changes to the actual commercial application pack-
age to meet business requirements. In other words, users are requesting that
changes be made to the purchased software, its database_ or its user inter-
faces. At best, such changes can make version upgrades extremely difficolt
and prohibitively expensive. At worst, such changes can invalidate technical
support trom the vendor. (And most vendors encourage keeplog versions
relatively current by canceling technical support on older versions.) Changing
program code and database structures should be discouraged. Insistence by
users is often a symptom of unwillingness to adapt business processes to
work with the application Many organizations prohibit changes to application
packages and force users to adapt in order to preserve their upgrade path.

) The BASELME COMMERCIAL APPEICATION i5 installed and tesred. Allowahle changes
based on optons, preferences, and parameters are completed and tested.
Mote: These customizations within the lmits specified by the softwiare
vendor will typically carry forward to version vpgrades. In most Instances the
vendor has provided for this level of cusToMzm COMMERCIAL APPLICATION.

) Aoy addon (or addin) software changes are designed and constructed to meet
additional business requirements. The system 15 subsequently tested and placed
into operation using the same activities described in the basic FAST process.

The commercial application package steategy offers its own advantages and
disachvantages:

Advantages

* MNew systems can ustially be imple-

Disadvantages
* A successtul COTS implementation Is

mented more quickly because exten-

sive programming is not required.
= Many businesses cannot afford the
staffing and expertise required to
develop in-house solutions,
Application vendors spread their
development costs across all cus-
tomers that purchase their software.
Thus, they can invest in continuous

dependent on the longterm success
and viability of the application
vendor—Iif the vendor goes out of
husiness, you can lose your technical
support and future Improvements,

A purchased system rarely reflects
the ideal solution that the business
might achieve with an inhonse-
developed system that could be

Project Managenment

= By now, you've already learned that the phases and activities that make up a
system development methodology are genermlly sequential. While some tasks
may overlap, many tasks are dependent on the completion of other tasks.

* The development of an information system represents 2 goal Several objec
tives miy need to be met to achieve that goal.

= Although many information system development projects do not have
ahsolute deadlines or specified times (there are exceptions), they are notori-
ously completed later than orginally projected. This is becoming less accept-
able to upper management given the organizationwide pressures to reduce
cvele times for products and business processes.

* Few Information systems are completed within budget. Again. upper manage-
ment is increasingly rejecting this tendency.

= Information systems must satisfy the business, user, and management expecta

tions accopding to specifications (which we call regudrerments throughoat
this book),

For any systems development project, effective project management s neces
sary to ensure that the project meets the deadline, is developed within an acceptable
Fudget.and fulfills customer expectations and specilications. You learned in Chapter 3
that project manigement is a cross lifecycle activity because it overlaps all phases
of any systems development methodology.

Corporate rightsizing has changed the structure and culture of most crganizations
amud, hence. project management. More flexible and temporary interdepartmental teams
that are given greater responsibility and authority for the success of organizations have
replaced rigid hierarchical command structures and permanent teams. Comtemporiry
svstem development methodologies depend on having teams that Include both techni-
cal and nontechnical users, managers, and information technologists all direcred to the
project goal These dynamic teams require leadership and project management,

Organizations take different approaches to project management. One approach is
to appoint a project manager from the ranks of the team (once it has been formed),
Alternatively, many organizations believe that successful project managers apply a
urgue body of knowledge and skills that must be learned. These organizations tend
to hire and/or develop professional project managers who are then assigned to one or
more projects.

The prerequisite for good project management is a well-defined system develop-
ment process. In Chapter 3, we introduced the Capabiliry Maturity Model (CMM) asa
tramework for quality mamnagement thit is based on a sound systems development
process. In Chapter 3 we differentiated between project and process minagement,
Project management was defined above. Process management Is an ongoing activ-
ity that documents, manages the use of and Improves an organization’s chosen
methodology (the *process™) for systems development. Process management is con-
cerned with the activities, deliverables, and quality standards to be applied to alf prof
ects, The scope of process management {s all projects, whereas the scope of project
management is a single project This chapter will focus on project management.

> The Causes of Failed Projects

What causes a project to succeed or fail? Chapter 3 introduced 10 basic principles of
systems development that are crtical success factors for all projects. See Chapter 3 tor
a review of those princlples. From a project management perspective, a project is
considered a success if:

* The resulting information system is acceptable to the customer

* The system is delivered “on time™

* The system Is delivered “within budget”

= The system development process had a minimal impact on ongoing business
operations.

cChapter Four 121

project mEnagemeni e
process of scoping, planning,
staffing, organizing, directing,
and controlling the develop-
ment of an accaptable systam
at a minimum costwithin a
spacifisd time frame.

process ounage ment the
activity of documenting,
managing, and continually
improsing the process of
systams development

122 Part One

scope creep the une-
pacted and gradual growth of
requirements during an infar-
mation systems projact.

femunre creep the uncon-
trofled addition of technical
featuras to & system.

The Context of Systems Developmant Projects

Not all projects meet these criterla, and as a resuolt, not all projects are successful

Failures and Hmited successes far outnumber snccessful information systems. Proj
ect mismanagement can undermine the best application of the systems anmalysis and
design methods taught in this book We can develop un appreciation for the impor-
tampce of project management by studying the mistakes of some project managers.
Let's examine some project mismanagement problems and consequences:

Fatltire to establish apperimanagement commmitment to the froject—Some-
times commitment changes duorlng a project.

Lack of orpantzatfon’s commitment to the system derelopment metbodology—
Many system development methodologies do littte more than collect dusi
Taking shortcuts through or around the system development methodology—
Project teams often take shortcuts for one or more of the following reasons;

— The project gets behind schedule, and the team wants to catch up.

— The project is over budger, and the team wants to make up costs by
skipping steps,

— The team is not tralned or skilled in some of the methodology's activities
and reguirements, so it skips them.

Poor expectations management—all vsers and managers have expectations
of the project. Over time, these expectations may change. This can lead to
two undesirable sitmations:

— Scope creep s the unexpected growth of user expectations and busk
ness requirements for an information system as the project progresses,
The schedule and budget can be adversely affected by such changes.

— Feature creep is the uncontrolled addition of technical features to a
system under development withour regard to schedule or budget.

Prepwatiore conrritment tooa fixed bidget and schedule—You can mrely
mike iccurate estimates of project costs and schedule before completing a
detalled] problem analysis or requirements analysis. Premature estimates are
inconsistent with the ereeping commitment approach introduced in Chapter 3.
Poar estiniating tochnigues—Many systems analysts estimate by making a
best-calculated estimate and then doubling that number. This is not a scien-
tific approach.

Oweroptinism—Systems analysts and project managers tend to be optimists,
As project schedules slip, they respond, "No big deal. We can make it up
later” They fail to recognize that certaln tasks are dependent on other tusks.
Because of these dependencies, a schedule slip in one phase or activity will
cause corresponding slips in many other phases and activities. thus contribut-
ing to cost overmus,

The mythical man-month®—As the project gets behind schedule, project
leaders frequently tey to solve the problem by assigning more people to the
team. It doesn’'t work! There ts no linear relitionship between time and num-
ber of personnel. The addition of personnel usually creates more communica-
tion problems, causing the project to get even further behind schedule.
Inadequate people management skills—Managers tend to be thrust into
management positions and are not prepared for management responsibilities.
This problem is easy to identity. Mo one seems to be in charge; customers
don't know the status of the project; teams don't meet regolarly to discuss
and monitor progress; team members aren't communicating with one
another; the project is always sald to be “95 percent complete”

Failure to adape to business change—If the project’s Importance changes
during the project, or if the management or the business reorganizes,

hred Brooks. The Mysbical Mas-Month (Renading MA: Addisoh-Wesley, 1975).

Project Managenment

For those primitive tisks that are not milestones, we must estimate duration. In
estimating task duration. it is important to understand the concept of elapsed ifme
Elapsed time takes lmto consideration two important factors with respect to people:

= Effictency—No worker performs at 100 percent efficiency. Most people take
coffee breaks, lunch breaks, restroom breaks, and time o read their e-mail,
check their calendars, participate in nonproject work, and even engage in
fdle conversation. Experts differ on just how productive the average worker
is, but one commonly used fgure is 75 percent,

= [Interruptions—People experence phone calls, visitors, and other unplanned
interruptions that increase the tme required for project work, This s variable
for different workers. Interruptions can consume as little as 10 percent of a
worker's day or as much as 50 percent,

Why is this important? Given a task that could be completed in 10 hours with 104 per-

cent efficiency and no interruptions, and assuming a worker efficlency of 75 percent
and 15 percent interruptions, the true estimate for the task would be

10 hours = 0,75 effidency = 13.3 hours + (1.00 — (L15 interruptions)
= 15.7 hours

There are many techoigues for estimating tisk duration. For the sake of demon-
straticn, we offer the following classic technique:

L. Estimate the minivmum amount of time §f would take to perform the tash
We'll call this the optimistic duration (OD). The optimistic duration assumes
that even the most lkely interruptions or delays, such as occasional employee
illnesses, will nor happen.

2. Estimaate the nuncmum amotnt of tme it woaeld take to perform the task.
We'll call this the pessimistic duration (PD). The pessimistic duration
assumes that nearly amything that can go wrong will go wrong, All possible
interruptions or delays. such as labor strikes. lllnesses. inaccurate specification
of requirements. equipment delivery delays, and underestimation of the sys
tem's complexity, are assumed to be inevitable,

3. Estimate the expected duration (ED) tiar will be needed to perform the
task Don't just take the median of the optimistic and pessimistic durations,
Attempt to identify interruptions or delays that are most likely to poour. such
as vecasional employee lnesses, inexperienced personnel, and occasional

tralning.
4. Calculate the most likely duration (D), as follows:

_ (1 X 0Dy + (4 X D) + (1 X PD)
6

where 1, 4. and 1 are default weights used o calculate a weighted average of
the three estimates.

D

Developing O, PD), and FD) estimates can be tricky and require experience. Sev-
eral techmiques are used in estimating. Three of the most commoen techndgues are:

* Decomposition—a simple technique wherein a project is decomposed into
small, manageable pieces that can be estimated based on historical data of
past projects and similarly complex pleces,

= COCOMO (propounced like “Eokomo™—a modelbased rechnique wherein
standard parameters based on prior projects are applied to the new project
to estimate duration of a project and its tasks,

* Function points—a modelbased technique wherein the “end product” of a
project s measured based on number and complexity of Inputs. outputs,
files, and gueries. The number of function points is then compared to prof
ects that had a similar number of functon polnts to estimate duratlon

cChapter Four 133

optimistic duration (01
the estimated minimum
amount of ime neaded to
completa a task

pessimisiic duraiiomn
{PI3} the estimated maxi-
mum amount of tima needad
o complata a task.

expecied duration (ED)
the astimated amount of time
required to completa a task.

miost likely duraiion (D)
an astimated amount of me
required to complets a task,
based on a weightad average
of optimistic, pessimistic, and
axpacted durations.

138 Part One

resource leveling a srat-
eqy for cormecting resource
overallacations.

crivical path the ssquence
of dependent tasks that doter-
mines tha earliest complation
date for a project.

slack vme the amount of
delay that can be tolerated
betwesan the starting time and
tha complation imea of a task
without causing a delay in the
complation date of a project

The Comtext of Systems Developmeant Projects

Assigning People to Tasks Recruiting the right team members cian make or break
a project. The following are guldelines for selecting and recruiting the team:

* Recruir talented. bighly motivated people. Highly skilled and motivated team
members are more likely to overcome project obstacles unaided and are
more likely to meet project deadlines and produce quality work.

* Select the best task for each person. All workers have strengths and weak
nesses. Effective project managers learn to exploit the swengths of team mem-
bers and avold assigning tasks to team members not skilled in those areas.

= Promaoie tean barmor)t Project mamagers should select team members who
will work well together

= Plan for the futire. Junior personnel with potential to be mentored by prof
ect leaders must be considered. Although junior personnel might not be as
productive as the seasoned vererans, project managers will need them and
have to rely on them on future projects,

* Keep tbe feant size small By limiting the team size, communication overhead
and difficulties will be reduced. A 2person team has only | communication
path: a dperson team has & communication paths; and a 50-person team has
at least 1200 commundcation paths. The more communication paths there are,
the greater the probability that there will be increased communication prob-
lems. By the same token the teams should be large enough to provide ade-
quate baclkup and coverage in key skills if a team member is lost

Resource Leveling So far, we have identified tasks, task durations, and intertask de-
pendenicles and assigned resources to each task to produce the project schedule. It is
common to overallocate resources when assigning resources to tasks, Geerallocare
refers to the act of assigning more resources than are available.

For example, during a specific period in the project (day, week, etc.). a project
manager may have assigned a specific person to work on multiple tasks that add up to
more hours than the person has available to work durdng thit period. This renders the
overall schedule infeasible because the overallocated resource cannot reasonably
complete all assigned tasks according to schedule. To correct this problem, project
managers must use a technigue called resource leveling. Resource leveling is a strat-
egy used to correct resource overallocations by some combination of delaylng or
splitting tasks. Let's briefly explain both approaches.

Delaying tasks is based on the concepts of critdcal prath and sfack time. When it
comes to the project schedule, some tasks are more sensitive to schedule delays than
others. For this reason, project managers must become aware of the critical path for a
project. The critical path for a project is the sequence of dependent tasks that have
the largest sum of mose ey dicvations The critical path determines the earliest pos-
sible completion date of the project. {We previously described how 1o estimate seost
fikely duration for a task.) The critical path tasks have no slack time avallable—thus,
any debay in completion of any of the tasks on the critical path will cavse an overall de-
lay in the compledon of the entire project. The opposite of a critical task is one that has
some slack time. The slack time avallable for any noncritical task is the amount of de-
lay that can be tolerated between the starting time and the completion time of a task
without causing a delay in the completion date of the entire project. Tasks that have
slack time can get behind schedule by an amount less than or equal to the slack time
without having any impact on the project’s final completion date. The availability of
slack time in certain tasks provides an opportunity to delay the start of the tasks to
level resources while not affecting the project completion date. OF course_ it muy be
necessuty to delay a critical path task to level resources. unless you can split the rask

Splitting tasks involves breaking a task into multple tasks to assign alternate
respurces to the tasks. Thus, a single task for which a resource was overallocated is
now apportioned to two or more resources that are (presumably) not overallocated.
Splitting tasks requires identifylng and assigning new resources such as analysts,
contractors, or consultants,

Systoms Analysis Chegstar Five 171
Problem Statements

Project Memizer services informmation systermn Project manager: Sandma Shepherd

Created by Sandra Shepherd Lt updated by Roboert Martingz

Date cregtec) January @, 2003 Cate last uodated: Jaruary 15, 2003
Brief Statements of Problem; Annual Priority Proposed

Opportunity, or Directive Urgency Yisibility | Benefits | or Rank Solution

1. Onder resporse time as measured from ASAp High £175,000 2 Mew development
time of order receipt to time of cus-
tomer delivery has increased o an
average of 15 days.

2, The recent acquisitions of Private & months Med 75,000 2 Mew development
Screenings Video Cluby and Game-

Screen will further stress the through-
put requirements for the cument system.

3, Cumently, three different order entry & months Med 515,000 2 Mew development
systerns sevice the audio, video, and
game divisions. Each system 15 de-
signed to interface with a different
warehousing system; therefore, the
intent to merge inventory into a single
warehouse has been delayed.

4, There s a generd lack of access to 18 months Loy 15,000 3 Adter new system is
mianagement and decision-making developed, provide
imformation. Thiswill become ax- users with
asperated by the acquisition of fweo easy-to-leam and
additional order processing systenms s reporting boaols,
(from Private Screenings and Game-

SCreen),

3, There cumently exist data incon- 3 menths High 35,000 1 Cuick fix; then new
sistencies in the member and order development
files.

&, The Private Screenings and & moriths Med Uinknowm g Mew development.
GameScreen file systems are Additional quardti-
incompatible with the SoundStage fication of benefit
equivalents, Business data protclems might increase
include data Inconsistencies and lack Urgericy,
of input edit controls,

7. There is an oppaortunity to opsen order 1% menths Lowey Lnknown 4 Furture version of
systems o the Intemet, but security nevhy
and cantrol are an issue, ceveloped system

8. The cumert crder eniry system Is 2 months High 65,000 1 Caiick fixg then mew
incompatible with the forthcoming developrment
automatic identification {barcoding)
systern being developed for
the wareholuse.

FIGURE 5-8 Sample Problem Statements

172

Part Two

Systems Anclysis Methods

= Priority—Based on the above answers, what are the consensus priorities for
each problem. opportunity, or directive, If budget or schedule becomes a
problem, these priorities will help to adjust project scope.

= Possibie solutions (OPT)—At this early stage of the project. possible solu-
tons are best expressed in simple terms such as (a) leave well enough alone,
by use a quick fix, {c) make a simple to moderate enhancement of the exist-
ing system, (<) redesign the existing system, or {g) design a new system, The
participants listed for this task are well snited to an appropriately highdevel
discussion of these options.

The PIECES framework that was introduced in Chapter 3 can be used as ¢ framework
for categorizing problems, opportunities, directives, and constraints. For example,
Problem 1 in Figure 58 could be classified according to PIECES as PB.—Performance,
Response Times, (See Figure 34 in Chapter 3). Problem 4 in Figore 58 could be clas-
sified as LA 2—Information, Outputs, Lick of necessary information.

The primary techniques used to complete this task lnclode fact-finding and meet-
inges with sv=rmv owners, These techniques are taught in Chapter 6

> Task 1.2—Negotiate Baseline Scope

Scope defines the boumdary of the project—those aspects of the business that will and
will not be included in the project. Scope can change during the project; however, the
initial project plan must establish the preliminary or baseline scope. Then If the scope
changes significantly, all parties invobved will have a better appreciation for why the bud-
get and schedule have also changed. This task can ocour in parallel with the prior task.

Omnce again, a sendor systems analyst or project manager usually leads this task.
Most of the other participants are broadly classified as system owners, This includes the
executive sponsor, managers of all organizational units that may be impacted by the
systent, and possibly information systems nunagers. SYSTEM USERS, 5YSTEM DESIGNERS, and
SYSTEM BUIIDERS dne not typleally involved in this task.

As shown In Figure 5-6, this task uses the prEuMiNazY PROBLEM STATEMENT produced
by the previous task It should make sense that those problems, opportunities, and di-
rectives form the basis for defining scope. The starevEats or PROJECT scopk dare added
to the repository for later use. These statements are also formally documented as the
task deliverable, PRELMINARY PROBLEM STATEMENT WITH SCOPE.

Scope can be defined easily within the context of your information system build-
ing blodks, For example, a project’s scope can be described in terms of

* What types of para describe the system being studied? For example, a sales
information system may require data about such things as CUSTOMERS. ORDERS,
PRODUCTS, d11d SALES REPRESEMIATIVES.

* What business rrocesses are tncluded in the system being studied? For exam-
ple; a sales information system may inchade business processes for catavoc
MANAG EMENT, CUSTOMER MANAGEMENT, ORDER ENTHY, ORDER FULFILLMENT, ORDER
MANAGEMENT, dfid CUSTOMER RELATIONSHIP MAMAGEMENT.

* How must the system mrmrace with users, locations, and other systems? For
example, potential interfices for a sales Information system might include
CUSTOMERS, SALES REPRESEMTATIVES, SALES CLERES AND MAMAGERS, REGIONAL SALES OFICES,
ard the accounTs RECHVABLE and INVENTORY CONTROL INFORMATION SYSTEMS,

Notice that each statement of scope can be described as a simple list. We don't
necessarily “define” the items in the list. Nor are we very concerned with precise re-
guirements analysis. And we definitely are not concemed with any time-consuming
steps such as modeling or prototyping.

Once again, the primary technlques used to complete this task are factfinding
and meetings. Many analysts prefer to combine this task with both the previous and
the next tasks and accomplish them within a single meeting.

174 Part Two Systams Analysis Mathods

organizations assign the direct reports of vice presidents to the steering body. And
some organizations utilize two steering bodies, one for vice presidents and one for
their direct reports. Information systems managers serve on the steering body only to
answer questions and to commundcate priorities back to developers and project
MEANAZETs.

Regardless of whether or not a project requires steering committee approval itis
equally important to formally launch the project and communicate the project, goils,
and schedule to the entire business community, Opening the lines of communication
is an important capstone to the preliminary investigation. For this reason. we advocate
the “best practices” of conducting a profece kickoff event and creating an intranet
project Web site. The project kickoff meeting is open to the entire business commu-
nity, not just the business units affected and the project team. The intranet project
Web site establishes a community portal to all nonsensitive news and documentation
concerning the project,

Ideally, the executive sponsar should jointly facilitate the task with the chosen
project manager. The visibility of the executive sponsor establishes instant credibility
and priority to all who participate in the kickoff meeting. Other kickoff meeting par-
ticipants should include the entire project team, including assigned sysTeM owNERS.
USERS, ANALYSTS, DEIGNERS, and srmoims, Edeally, the kickoff meeting should be open to
any and all interested staff trom the business community. This bullds community
awareness and consensus while reducing both the volume and the consequences of
rumor and misinformation. For the intranet component, #@ Webmaster or Web author
should be assigned to the project team

As shown in Figure 56, this task is triggered by the completion of the naseune
PROJECT PLAM AND SCHIDULE, The PROBLEM STATBMENTS AMD 5C0PE are avallable from the
repository. The deliverable is the project cHarTER. The project charter is usually a
document. It includes various elements that define the project in terms of partici
pants, problems, opportunities. and directives, scope; methodology, statement of
work 1o be completed, deliverables, guality standards; schedule; and budget. The
project charter should be added to the project Web site for all o see. Elements of the
project charter may also be reformutted as shides and handouts (using software such
as Microsoft PowerPofnt) for inclusion in the project kickoff event.

Effective interpersonal and communications skills are the keys to this task. These
tnclude principles of persuasion, selling change, business writing, and public speaking

This concludes our discussion of the scope definition phase, The participants in
the scope definition phase might decide the project is not worth proposing. It s alsa
possible the steering body may decide that other projects are mare important. Or the
executive sponsor might not endorse the project. In each of these instances, the proj-
ect is termimated. Little time and effort have been expended. On the other hand. with
the blessing of all the system owners and the steering committee, the project cin now

proceed to the problem analysis phase.

The Problem Analysis Phase

There Is an old saylng, “Don’t try to fix it unless you understand 0" That statement
aptly describes the grrablent analysis phase of systems analysis. There Is always a cur-
rent or existing svstem, regardless of the degree to which it is automated with infor-
mation technology. The problem analysis phase provides the analyst with a more
thorough understanding of the problems, opportunities, and/for directives that trig-
gered the project. The problem analysis phase answers the gquestions, “Are the prob-
lems really worth solving?™ and “Is a new system really worth bullding?™ In other
methodologies, the problem analysis phase may be known as the study phase, study
af the current systen, delalled Investipation phase, or feasibility analysis fhase.
Can you ever skip the problem analysis phase? Rarely! You almost always need
some level of understanding of the current system. But there may be reasons to

Systoms Analysis

accelerate the problem analysis phase. First, if the project was triggered by a strate-
gic or tactical plan, the worthiness of the project Is probably not in doubt—the
problem analysis phase would be reduced to understanding the current system,
not analyzing it. Second. a project mav be Initiated by a directive (such as compli-
ance with a governmental directive and deadline). Again, in this case project wor-
thiness is not in doubt. Finally, some methodologles and organizations deliberately
consalidate the problem analysis and requirements unalysis phases to accelerate
systems analysis.

The goal of the preblem analysis phase is to study and understand the problem
domain well enough to thoroughly analyze its problems, opportunities, and con-
straints. Some methodelogies encourage a very detalled understanding of the cur-
rent system and document that svstem in painstaking detail using system models
such as data flow dlagrams. Today, except when business processes must be re-
designed, the effort required and the value added by such detalled modeling Is ques-
tioned and wsually bypassed. Thus, the current version of our hypothetical FAST
methodology encourages only enough system modeling to refine our understanding
of project scope and problem statement, and to define a common vocabulary for
the system.

The context for the problem analysis phase is shaded in Figure 59. Notice that
the problem analysis phuse s concerned primarily with both the system owners'
and the sysTed vsers’ views of the existing systemn. MNotice that we bulld on the lists
created in the preliminary investigation phase to analyze the xnowLEDGE, PROCES, anid
cosmvuricanons bullding blocks of the existing system. Also notice that we imply
minimal system modeling, We may still use the PIECES framework to analyze each
building block for problems, causes, and effects.

Figure 510 is the task diagram for the problem analysis phase. The final phase de-
liverable and milestone is producing sysTe iMproVEMENT oRECTVES that address prob-
lems, oppormnities, and directives, Depending on the size of the system. fts
complexity, and the degree to which project worthiness is already known, the illos-
trated tasks may consume one 1o six weeks, Most of these tsks can be accelerated by
JEPike sesdons. The problem analysis phase typically includes the following tasks:

2.1 Upderstand the problem domain.

2.2 Analyze problems and opportunites.

2.3 Analyze business processes.

2.4 Establish system improvement objectives,

2.5 Updite or refine the project plan.

2.6 Communicite findings and recommendations.

Let's now examine each of these tasks in greater derail.

s Task 2.1—Understand the Problem Domain

During the problem analysis phase, the teqm initially attempts to learmn about the cur
rent system. Each svstev owner, vser, and ananyst brings a different level of under-
standing to the system—different derail, different vocabulary, different perceptions,
and different opinjons. A well-conducted study can prove revealing to all parties, in-
cluding the system's own management and users. It is Important to study and wnder
stand the problem domafn, that domain in which the business problems,
apportunities; directives. and constralnts exist,

This task will be led by the project manager but facilitated by the lead systems
analyst. It Is not uncommon for one individual to play both roles (as Sandm does in
the SoundStage case), Other sysTeMs aNarysTs may also be involved since they con-
duct interviews, scribe for meetings, and document findings. A comprehensive
study should Include representative sysTmv owners and osers from all business units
that will be supported or impacted by the system and project. It is extraordinarily
important that enough wvsers be included w encompass the full scope of the

Chepotar Five

175

178

Part Two

Systems Anclysis Methods

schedule. Another approach might be to use your Information system building blocks
as a framework for listing and defining the system domain:

* Knowiepce—List all the “things” about which the system currently stores data
{in files. databases, forms, etc). Define each thing in business terms. For
example, “An oromE is a business transaction ln which a customer requests to
purchase products”

Additionally, we could lst all the reports produced by the current system
and describe thelr purpose or use. For example, “The open orders report
describes all orders that have not been filled within one week of their
approval to be filled. The report Is used to initiate customer relationship man-
agement through personal contact”

* Proceses— Define each business event for which a business response
(process) is currently implemented. For example, “A customer places a new
order] or “A customer requests changes to a previously placed order” or "A
customer cancels an order”

= Comunicanions—Define all the locations that the current system serves and
all of the users at each of those locations. For example, *The system is cur-
rently used at regional sales offices in San Diego, Dallas. St. Louis. Indianapolis,
Atlanta, and Manhattan. Fach regional sales office has a sales manager, assis-
tant sales manager, administrative assistant, and 5 o 10 sales clerks, all of
whom use the corrent system. Each reglon is also home to 5 to 30 sales rep-
resentatives who are on the road most days but who opload orders and other
transactions each evening."

Another facet of interfaces is system interfaces—that is, imterfaces that
exist between the current information system and other information systems
and computer applications. These can be quickly listed and described by the
informution systems staff

Ultimztely, the organization's systems development methodology and project plan
will determine what types and level of documentation are expected

The business vocabulary deliverable is all too often shontchanged. Understanding
the business vocabulary of the system is an excellent way of nnderstanding the sys-
tem itself. It bridges the communication gap that often exists or develops between
business and technology experts,

If yon elect to draw systed mooes during this task, we suggest that “if you want to
learn amyebing, you must not wry to kearn everyrbing—at least not all i this task” T
avold analysis piralysis, we suggest that the following system models may be appropriate:

* KnowiencE—A one-page data model is very useful for establishing business
vocabulary and rules. Data modeling Is taught in Chaprer 8.

= Processes— Today, it is widely accepted that a one- or two-page functional
decomposition diagram should prove safficient to ger a feel for the current
systemn processing. Decomposition modeling is taught in Chapter 9.

¢ CoMMUNCATIONS—A one-page context diagram or use-case diigrams are very
wsefunl for illustrating the system’s nputs and outputs with other organiza-
tions, business units, and systems. Context diagrams are discussed below. Use
case diagrams are taught in Chapter 7.

Several other techniques and skills are useful for developing an understanding of an
existing system. Obvlously, fact-finding technlques (taught in the next chapter) are crith-
cal to learning about any existing system. Also, joimt requirements planning, or JRP tech-
nigues (also taught in the next chapter) can accelerate this task. Finally, the ability to
cleardy communicate back to users what you've learned about a system is equally cructal

Context Diagram The purpose of a context diagram 5 to anatyze how the system
interacts with the world around it and o specify in general terms the system inputs
and curputs. Context diagrams can be drawn in varlous ways. Chapter 9 presents the
traditional format. which was done as the first step in drawing data flow diagrams

180 Part Two

canse-and-effect analysis
a technique in which problams
ara studied to datarmine their

causes and effects.

Systems Anclysis Methods

that can quickly clutter the diagram: consolidate them as needed to keep the diagram
reqdable. During other phases in the process they will be analyzed separately

W certainly couldn't bulld an information system from a context diagram. Bt it
Is a solid first step. From this simple diaggram we know what inputs the system must
respond to amnd what outputs it must produce. In other words, it helps us understand
the problem domain. We will see in Chapter 7 how to detect use cases from a context
diagram. That will be the first step in cracking open the “black box " We are following
the principles for systems development presented In Chapter 2: *use i problem-
solving approach” and *divide and conguer”

> Task 2.2—Analyze Problems and Opportunities

In addition to learning about the current system, the project team must work with
system owners and system users to analpze problems amd opfortunities. You
might be asking, “Weren't problems and opportunities identified earlier, in the pre-
liminary investigation phase? " Yes, they were. But those initial problems may be only
symptoms of other problems, perhaps problems not as well known or understood
by the users. Besides. we haven't vet really amalyzed any of those problems In the
classic sense.

True problem analysis is a difficult skill to master, especially for inexperienced sys
tems analysts. Experience suggests that most new systents analysts (and many system
owners and usersy try to solve problems without truly analyzing them. They might
state a problem like this “We need to ., 7 or “We want to ., 7 In doing so. they are stat-
ing the problem In terms of a solution. More effective problem solvers have learned to
truly analyze the problem before stating any possible solution. They unalyze each per-
ceived problem for canses and effects. In practice, an effect may actnally be a symp-
tom of a different, more deeply rooted or basic problem. That problem must also be
anilyzed for causes and effects. and so on untl] such a time as the causes and effects
dio not yield symptoms of other problems. Cavse-and-effect analysis leads to true
understanding of problems and can lead to not-soobvious but more creative and
waluable solutiens.

SysTems amarysTs facilitate this task: however. all sysrovs ownens and usms should
actively participate in the process of cause-and-effect analysis. They are the problem
domain experts. 5ysTeM pEsiGNERs and sunners are not usually involved in this process
unless they are called on to analyze technical problems that may exist in the corrent
systent.

" As shown in Figure 510, the team’s understanding of the sysTev poMam amp
BUSIMESS VOCaBULARY triggers this task. This understanding of the problem domain s
crocial becanse the team members should not attempt to analyze problems unless
they understand the domain in which those problems occur The other informational
toput to this task is the inital propies sTarEMBETs (from the scope definltlon phase)
The deliverables of this task are the updated Prosrev staTevEsTS and the cavse-erFecT
anaryss for each problem and opportunity. Figure 512 illustrates one way to docu-
ment i ciuse-and-effect analysis.

Once again, factdinding and JRP techniques are crucial to this task. These tech-
nigues, a5 well as cause-and-effect analysis, are taught in the next chapter

> Task 2.3—Analyze Business Processes

This task is appropriate only to business process redesign (BPE) projects or system
development projects that build on or require significant business process redesign
In such a project, the team is asked to examine its business processes in much
greater detail to measure the value added or subtracted by each process as it relates
to the rotal organization. Business process analysis can be politically charged. Sys
tem owners and users alike can become very defensive about their existing business

Systems Analysis

Chegstar Five 181

PROBLEMS, OPPORTUMITIES, ORJECTIVES, AND COMSTRAINTS MATRIX

Project: Memier Services Infommation System Project Manager:

Sandra Shepherd

Created b Robert Martinez Last Updated v

Robert Martinez

Date Created January &1, 2003

Date Last Updated:, January 31, 2003

CAUSE-AMD-EFFECT AMALYSIS SYSTEM IMPROYEMENT ORIECTIVES
Problem or
Opportunity Causes and Effects System Objective System Constraint

1, Crder response time
is tnacceptable,

. Throughput has increased

while number of order
Clerks was downsized.
Time to process a single
ardler has remained
relatvely constant

. System Is too keyboad

. Decrease the time

required to process a
single order by 30%.

. Eliminate keyoand data

entry foras mudh as 50%
of all orders.

-:.‘ependlmt. Mary of wfeﬂ : E&E?::g;mms
same values are keyed far strokes as possible by

most crders, Metresult is
{with the current system)
each order takes longer to
process than is ideal.

. Data editing is performed

by the ASM00. As that
computer has approached
its capacity, arder edit

for QRdErs Wene never
designed to maxmize the
efficiency of order fillers.
Aswarehouse operations
grewy, arder filling delays
were inevitable.

replacing keystrokes with
point-and-click objects
on the computer display
SCresr.

- Mowe data editing from a

shared computer to the
deskrop,

responses have slovwed, . Replace existing picking
Because order clerks are tickets with a paperess
trying o wiork faster to communication system
keep up with thevalume, Detween member
the number of emors has services and the
Increased. wiarehiouse.

. Wanehouse picking tickets

1. Ther will be no indease
In the order processing
workforce.

2. Any system developed

must be compatible with
the exsting Windows 95
desktop standard.

3. New system must be
compatiole with the
alreadly approved
adtomatic identification
gystem (for bar coding).

FIGURE 5-12 ASample Cause-and-Effect Analysis

processes, The analysts involved must keep the focus on the processes, not the
people who perform them, and constantly remind everyone that the goal is to
identify opportunities for fundamental business change that will benefit the business
and everyone in the business,

One or more systems analysts or business analysts fucilitate the task. Ideally, the
araarysTs should be experienced, trained. or certified In BPR methods. The only other
participants should be appropriate systiv owraers and vsers, Business process analysis
should avoid any temptation to focus on information technology solutions unedl well

182 Part Two

objective a maasura of
succass. It is somathing that
you expact to achieve, if given
sufficient rasources.

comsieaint someathing that
will Timit your flexibility in
defining a solution to your
objectives. Essentially, con-
straints cannot be changed.

Systems Anclysis Methods

after the business processes have been redesigned for maximum efficiency. Some
analysts find it useful to assume the existence of *perfect people” and “perfect tech-
nodogy™ thit can make anything “possible” They ask, “If the world were perfect, would
we need this process?”

As depicted in Figure 5-10, a business process analvsis task is dependent only on
sOME PROBLEM DomMad knowledge (from Thask 2. 1) The deliverables of this task are busi-
fiess “as 15" PRoCESS MoDEs and Proces amarysss. The process models can look very
much like data flow diagrams (Figure 5-2) except they arve significantly annotated to
show (1) the volume of data flowing through the processes. (2) the response times of
each process, and (3) any delays or bottlenecks that occur in the system. The process
analysis data provides additional information such as (a) the cost of each process.
(b) the value added by each process, and (c) the consequences of eliminating or
streamlining the process. Based on the asis models and their analysis, the team
develops“to be” models that redesign the business processes to eliminate redundancy
and bureaucricy and increase efficlency and service,

Severil techniques are applicable to this rask. Once again, fact-finding rechoigues
and facilitated team meetings (Chapter &) are invaluable. Also, process modeling tech-
nigues (Chapter 93 are critical to BPR success.

> Task 2.4—Establish System Improvement Objectives

Given our understanding of the current system's scope, problems, and opportunities,
We Cinl now estallish system mprovement obfectives. The purpose of this task is to
establish the criteris against which any improvements to the system will be measured
and to dentify any constraints that may limit flexibility in achieving those Improve-
ments. The criteria for success should be measured in terms of objectives. Objectives
represent the first attempt to establish expectations for any new system. In addition
to identifving objectives, we must also identify any known constraints. Constraints
place limitations or delimitations on achieving objectives. Deadlines, budgets, and
regquired technologies are examples of constraints,

The sysrems anarrsTs facilitate this task. Other participants include the same sysmm
owners and vsers who have participated in other tasks in this problem analysis phase.
Again, we are not yet concerned with technology: therefore. system psienms and
punnes are not involved in this task.

This task is triggered by the rroBund amaryses completed in Tasks 2.2 and 2.3, For
each verified and significant problem. the analysts and users should define specific
SYSTEM IMPROVEMENT offeCTIvES. They should also ldentify any constramTs that may Hmit
or prevent them from achieving the system improvement objectives.

System Improvement objectives should be precise. measurable statements of
business performance that define the expectations for the new system. Some
examples are:

Beduce the number of uncollectible customer accounts by 50 percent within
the next year

Increase by 25 percent the number of loan applications that can be processed
during an eight-hour shift,

Decrease by 50 percent the time required to reschedule a production lot when
a workstation malfunctions.

The following is an example of a peor objective:
Create a delinguent accounts report

This is a poor abjective becanse it states only a requirement, not an actual objective
Now, let's reword that objective:

Reduce credit losses by 20 percent through earlier identification of delinguent
ACCOUNTS.

Systoms Analysis

come from various sources including sysTmis ANALYSTS. SYSTEMS DESIGHERS, technical con
sultants. and other 15 professionals. And some technical cholces muy be limited by a
predefined. approved technology architecture. It is the intent of this task not to eval-
uate the candidates but. rather. dmply to define possible candidate solutions to be
considered.

The svsTems anarysts facilicate this task. Systmv owwms and vses are not normally
directly involved in this task. but they may contribute ldeas and opindons that start the
task. For example. an owner or user may have read an article about, heard about, or
learned how some competitor's or scquaintance’s similar system was implemented,
In amy case, it is politicilly sound to consider the ideas. Sysrem peGrERs and BUILDERS
such as database administeators, network administrators, technology architects, and
programmers are also a source of ideas and opinions.

As shown in Figure 5-19, this task is formally triggered by the sprrovarTo coMmNUE
THE PROJECT FROM THE REQUIREMENTS analyss phase. In reality, ideas and opinlons have
been generated and captured since the preliminary investigation phase—it is human
nature to suggest solutions throughout any problem-solving process. Notice that. in
addition to coming from the project team itself, iDEas anp oraons can be generated
from both internal and external sources. Each idea generated is considered to be a
CANDIDATE SOLUTION Lo the BUSINESS REQUIREMENTS.

The amount of information describing the chamcteristics of any one candidate so-
lution may become overwhelming. A candidate matrix, such as Figure 5-20, is a useful
tool for effectively capruring, organizing, and comparing the characteristics of differ-
ent candidate sohations,

As has been the case throughout this chapter, fact-finding and group facilitation
technigues like JRP are the principle technigues used to research candidate system
solutions. Fact-finding and group facilitation techniques are taught in the next chapter.
Also, Chapter 10, *Feasibility Analysis and the System Proposal” will teach you how to
actually generate candidate system solutions and document them in the matrix

> Task 5.2—Analyze Candidate Solutions

Each candidate system solution must be analyzed for feasibility. This can occur as each
candidate is identified or after all candidates have been identified. Feasibility analysis
should not be Hmited to costs and benefits. Most analysts evaluate solutions against at
least four sets of criterda:

= Techmical feasibility—Is the solution technically practical? Does our staff
have the technical expertise to design and build this solution?

= perattonal feasibilitp—Will the solotion fulfill the user's requirements? To
whiut degree? How will the solution change the users work environment?
How do users feel about such a solution?

* Fconomic feasilility—Is the solution cost-effective?

= Schedule feastbilfty—Can the solution be designed and implemented within
in acceptable time perdod?

When completing this task, the analysts and users must take care not to make
comparisons between the candidates. The feasibility analysis is performed on each in-
dividual candidate without regard to the feasibility of other candidates. This approach
discourages the analvst and users from prematorely making a decision concerning
which candidate is the best,

Again, the sysTes amarysts facilitate the task. Usnally systevs owwers and vsens
analyze operational. economic, and schedule feasibility. Sysrmvs pesicumes and
suoers usually contribute to the analyses and play the critical role In analyzing
technical feasihility.

Figure 5-19 shows that the task s triggered by the completion of each candidate
solution; however, it is acceptable to delay the task untl all candidate solutions have
been identified. Input to the actual feasibility analyses comes from the various team

Chepotar Five

195

Fact-Finding Techniques for Requirements Discovery

and desires for the functionality and features of the new system. The goal of the
reguirements amalysls activity Is to discover and resolve the problems with the
requirements and reach agreement on any modifications to satisfy the stakeholders.
The process is concerned with the “initial” requirements gathered from the stake-
holders. These requirements are usually incomplete and documented in an informal
way in lnstruments such as use cases, tables, and reports. The focus at this stage 15 on
reaching agreement on the stakeholder's needs; in other words, the analysis should
answer the gquestion, “Do we have the right system requirements for the project?”
Inevitably, the dmft requirements contain many problems, such as:

= Missing requirements

= Conflicting requirements
= Infeasible requirements

= Owverlapping requirements
= Ambiguous requirements

These types of requirements problems are very common in many of the requirement
documents written today. If lefi unresolved, they can be extremely costly to fix later
In the development cvele.

It was previously mentioned that stakeholders should agree on the resulting sys-
tem requirements—thus there s an inevitable negotiation process that exists among
stakeholders during analysis. If multiple stakeholders submir requirements that are in
conflict with eich other or if the proposed requirements are too ambitious, the stake-
holders most negotiate, often onder the goidance of the systems analyst, to agree on
any modifications or simplifications to the system requirements. They also must agree
ot the criticality and priority of the requirements. This is crucial to ensure the success
of the development effort.

The fact-finding and requirements analysis activities are very closely assoclated
with exch other and in fact are often interwoven. If requirements discovered during
the fact-finding process are found to be problematic, the snalyst may go ahead and
perform analysis activities on the select items in order 1o resolve the problems before
continuing to elicit additional system needs and desires,

This chapter focuses prmarily on the business side of requirements, or, in other
waords, the logical requirements, but it is important to note that additional technical
requirements exist that are physical in nature. Examples of technfcal requirements in-
clude specifying a required software package or hardware platform. These types of
reguirements will be discossed in depth in Chapter 1 1.

Formalizing Requirements System requirements are usually documented in a for-
mil way to communicate the requirements to the key stakeholders of the system . This
document serves as the contract berween the system owners and the develop-
ment team on what is going to be provided in terms of a new system. Thus, it may go
through many revisions and reviews before everyone agrees and authorizes its contents,
There is no standard mame or format for this document. In fact, many organizations
use iifferent names such as requirements statement, requirements specification,
requirements definition, functional specification. and the like, and the format is use-
ally tatlored to the organization’s needs. Companies that provide information systems
and software to the 108, government must use the format and naming conventions
specified in the government's published standards document MIL-STD-498.* Many or
ganizations have created thetr own standards adapted from MILSTD-98 because of
its thoroughness and because many people are already familiar with it In this book
we will use the term requirements definition document, and Figure 62 provides
a sample outline of one. Please note that this document will be consclidated with

MILETD %8 = o manclatd thar merges DODSTO ETA and DODSTIT 9354 o defibe o set of activities and documen-
tatinh saimble for the development of both wenon systetres abd miomated informat ol sysems

chapter Six 213

requireéments definition
docwment a formal docu-
ment that communicatas the
requiremeants of a proposed
systam to key stakeholders
and sarves as a confract

for the systems project. Syn-
oryms include requirements
statamant, requiraments
spacification, and functional
spacitication

218 Part Two

observaiion afactfinding
tachnigqua wharain the sys-
tems analyst eithar partici-
pates inor watches a parson
parform activities to learn
about the systam,

Systems Anclysis Methods

Exploring the Internet and intranet via personal computer can provide immeasarmble
amounts of Information.

A stmilar type of research involves visiting other companies or departments that
have addressed similar problems. Memberships in professional societies such as the
Association for Information Technology Professionals (ATTP) or Association for In-
formation Systems (AlS), among others, can provide a network of useful contacts

> Observation of the Work Environment

Ohservation is one of the most effective data-collection technigues for learning about
a system. Observation lnvolves the systems analyst becoming an observer of people
and activities in order to learn about the system. This technique is often used when
the validity of data collected through other methods is in question or when the com-
plexity of certain aspects of the system prevents a clear explanation by the end users

Collecting Facts by Observing People at Work Even with a well-conceived
observation plan, the systems analyst is not assured thar factfinding will be successful
The following story, which appears in a book by Gerald M. Weinberg called Rerbindk-
ing Systers Analysis and Deslgn, gives us an entertaining yet excellent example of
same of the pitfalls of observation

The Railroad Paradox

Abowt thirty miles from Gotham Clry lay the commuter communiry of Suburbyin-
toown. Each morning, thousands of Surburbanites rook the Central Railroad
to work In Gotham Gty Each evening, Central Railroad returned them to their
witlting spouses, children, and dogs.

Suburbantown was a wealthy suburb. and many of the spouses liked to leave
the children and dogs and spend an evening in Gotham City with their mates. They
preferred to precede their evening of dinner and theater with browsing among
Gotham Ciry's lush markets. But there was a problem. To allow time for proper
shopping, a Suburbanite would have to depart for Gotham City at 2:30 or 3:00 in
the afterncon. At that hour, no Central Railroad train stopped in Suburbantown.

Some Suburbanites noted that a Central train did pass through thelr station at
2:30, but did not stop. They decided to petition the milroad. asking that the train
be scheduled to stop at Suburbantown. They readily found supporters in their
doorto-door canvass. When the petition was mailed, it contained 253 signatures
About three weeks later, the petiton committee received the following letter
from the Central Railroad:

Dear Committee

Thank you for your continuing interest in Central Railroad operations, We take se-
riously our commitment to providing responsive service to all the people living
ameng our routes, and greatly appreciate feedback on all aspects of our business
In response to your petition, our customer service representative visited the Sub-
urbantown station on three separate days, each time at 2:30 in the afterncon.
Although he ohserved with great care, on none of the three occasions were therve
any passengers watting for a southbound train.

We can only conclude that there is no real demand for a southbound stop ar
2:30, and must therefore regretfully decline your petition.

Yours sincerely,
Customer Service Agent
Central Railroad

$Gerald M. Weinbetg, Rethinbing Sysiems dralysis and Design, pp. 23- 24 Copytight @ 1988, 1962 by Getakd M.
Weinbety, Reptinted by periission of Dotset House Pabillshing, 353 W 12th St Mew York, MY 10014 (21 262004053/
BODHBOOK S fwrww dotsethouse cam Al ights reserved.

222 Part Two

inerview a factfinding
tachniqua wheraby tha sys-
tems analyst collects informa-
ticn from individuals through
face-to-face interaction.

Systems Anclysis Methods

2. For rating questions, the respondent is given a statement and asked to use
supplied responses to state an opinion. To prevent built-in bias, there should be
an equal number of positive and negative ratings: The followlng is an example of
a rating fixed-format question:

The implementation of quantity discounts would ciuse an increase In customer
orders.

O strongly agree

[Agree

O No opinion

O Dvisagree

 strongly disagree

3. For ranking questions, the respondent is given several possible answers, which
are to be ranked in order of preference or experience. An example of a ranking
fixed-format question is!

Rank the following transactions according to the amount of time you spend
processimng them:

new customer orders

order cancellations

order modifications

payments

Developing a Questionnaire Good questionnaires can be diffionlt to develop, The
following procedure can prove helpful in developing an effective questdonnaire:

1. Determine what facts and opinions must be collected and from whom you should
get them. If the number of people is large. consider using a smaller, randomly
selected group of respondents.

2. Based on the facts and opinlons sought, determine whether free- or fixed-
format questions will produce the best answers. A combination format that
permits optional free-format clarification of fixed-format responses is often
used.

3. Write the questions. Examine them for construction errors and possible misin-
terpretations. Mike sure that the questions don't reveal your personal bias or
apinions, Edit the questions.

4. Test the gquestions on i small sample of respondents. If your respondents had
problems with them or iF the answers were not useful, edit the questions.

5. Duplicate and distribute the questionnaire

> Interviews

The personal interview Is generally recognized as the most important and most
often used fact-finding technigue. Personal interviews involve soliciting require-
ments through direct, faceto-face interaction. Interviewing can be used to achieve
any or all of the following goals: find facts, verify facts, clarify facts, generate en-
thusiasm, get the end user Involved. identify requirements. and solicit ideas and
opinions. There are two roles assumed in an interview. The systems analyst is the
{nterviewsr, responsible for organizing and conducting the interview. The system
user or system owner is the {nferefenee, who is asked to respond to a series of
(uestions.

There may be one or more Interviewers and/or interviewees. In other words, in-
terviews may be conducted one-on-one or many-to-many. Unfortunately, many systems
analysts are poor interviewers. In this section you will learn how to conduct proper
interviews.

228 Part Two

proxemics the relationship
betwean people and tha
spaca amund them.

Systems Anclysis Methods

For this discussion, we will focus on just three aspects of body language: facial dis-
closure, eve contact, and posture. Facial disclosure means you can sometimes under-
stand how a person feels by watching the expressions on his or her face. Many
common emotions have easily recognizable facial expressions associated with them.
However, the face is one of the most controlled parts of the body. Some people whoe
are aware that their expressions often reveal what they are thinking are very good at
disguising these expressions.

Another form of nonverbal communication is eye cosmtact. Eye contact Is the least
controlled aspect of facial expresdon. Have you ever spoken to someone who will not
look directly at vou? How did it make you feel? A continual lack of eve contact may in-
dicate uncertainty. A normal glance is usually from three to five seconds in length:
however, direct-eve-contact time should increase with distance. Analysts need 1o be
caretul not to use excessive eye contact with users who seem threatened so that they
won't further intimidate them. Direct eye contact can cause strong feelings, either
positive or negative, in other people.

Posture is the least controlled aspect of the body. As such, body posture holds a
wealth of information for the astute analyst. Members of 4 group who are in agree-
ment tend to display the same postare. A good analyst will watch the audience for
changes in posture that could indicare anxiery, disagreement. or boredom. An analyst
should normally maintain an *cpen” body position, signaling approachability, accep-
tance, and receptiveness. In spedal circumstances, the analyst may choose to use a
confrontation angle of head-on or at 3 90-degree angle to another person in order to
establish control and dominance.

In addition to the information communicated by body language. individuals also
commudcate via proxemics. Proxemics, the relationship between people and the
space around them, is a Factor in communications that can be controlled by the
knowledgeable analyst.

Peaple still tend to be very territorial about their space. Observe where your
classmates sit in one of your courses that does not have assigned seats. Or the next
time you are involved in a conversation with someone, deliberately move much closer
or farther away from the person and see what happens. A good analyst s aware of
four spatial zones:

« [nttmate zone—closer than 1.5 feet,

* Porsonal rone—from 1.5 feet to 4 feet
* Social rone—irom 4 feet to 12 feer.

» Public ronre—beyond 12 feer.

Certain types of communications take place onty in some of these zones. For ex-
ample; an analyst conducts most interviews with system users in the personal zone
But the analyst may need to move back to the social zone if the vser displays any signs
{body language) of being uncomfortable. Sometimes increasing eye contact can make
up for a long distance that can't be changed Many people use the fringes of the social
zone 48 12 “respect” distance.

Wi have examined some of the informal ways that people communicate their
feelings and reactions. A good analyst will use all the information available, not just the
written or verbal communications of others.

> Discovery Prototyping

Another type of Bict-finding technigue is prototyping. Prototyping was introduced in
Chapter 3 for use in rapid application development (RAD). As you should recall, the
concept behind prototyping is building a small working model of the users’ require-
ments or a proposed design for an information system. This type of prototyping is usu-
ally a design technique, but the approach can be applied earlier in the system

Fact-Finding Techniques for Requirements Discovery

development life cycle to perform factfinding and requirements analysis. The process
uf bullding a prototype for the purpose of identifying requirements is referred to as
discovery prototyping.

Discovery prototvping 1s frequently applied to systems development projects. es-
pecially in cases where the development team is having problems defining the system
requirements. The philosophy is that the users will recognize their requirements
when they see them. It is important that the prototype be developed quickly so that
it can be used during the development process. Usnally, only the areas where the re-
guirements are not clearly understood are prototyped. This means that a lot of desired
funictionality may be left out and quality assurance may be ignored. Also. nonfunc-
tiomal requirements such as performance and reliability may be less stringent than
they would be for the final product. Technologies other than the ones used for the
tinal software are frequently used to build the discovery prototypes. In these cases,
the prototypes are most likely discarded when the system s finished. This “throw-
away” approach is primarity used to gather information and develop ideas for the sys-
tem concept Many areas of a proposed system may not be clearky understood, or
some features mury be a technical challenge for the developers, Creating discovery
prototypes enables the developers as well as the users to better understand and refine
the issues involved with developing the system. This technique helps minimize the
risk of delivering a system that doesn't meet the user's needs or that can't fulfill the
technical requirements.

DMMscovery prototyping has its advantages and disadvantages, which should
be welghed against those of other fact-finding technigues for every fact-finding
situation:

Advantages

= Allows users and developers to
experiment with the software and
develop an understanding of how .
the system might work

* Adds in determining the feasibility
and usefulness of the system before
high development costs are

Disadvantages

= Developers may need to be trained
in the protoryping approach

Users may develop unrealistic
expectations based on the perfor
mance, reliability, and features of
the prototype. Prototypes can only
simulate system functionality and

incurred. are incomplete in nature. Care must
* Sprves as a trining mechanism for be taken o educate the users about
USETS, this fact and not to mislead them.
= Alds in building system test plans * Dwoing prototyplig may extend the

and scenarios to be used last in the
SYstem testing process,

= May minimize the time spent on
factfinding and help define more
stable and reliable requirements,

development schedule and increase
the development costs.

» Joint Requirements Planning

Many organizations are using the group work session as a substitute for numerous and
separate interviews, One example of the group work session approach is joint
requirements planning (JRP), wherein highly structured group meetings are con
ducted for the purpose of identifving and analyzing problems and defining system re-
guirements. This and similar techniques generlly require extensive tralning to work
as intended. However, they can significantly decrease the time spent on factfinding in
one or more phases of the life cycle. JRP is becoming increasingly common in systems
planning and systems analysis to obtain group consensus on problems, objectives and
requirements. In this section, vou will learn about the participants of a JRP session

chapter Six 229

discovery prototyping
the act of building a small-
scale reprasentative or
warking modal of the usars’
requirements in ordar o
discover or verify those
requiremants.

joint FeQUiremedas
planning (JEF) a process
wharaby Highly structured
group mestings are conducted
for the purpose of analyzing
problams and defining
requiremants.

230

Part Two

Systems Anclysis Methods

and their roles. We will also discuss how to go about plaoning and conducting a JRP
session, the tools and techndques that are used during a JRP session, and the benefits
to be achieved through JRP

JRP Participants Joint requirements planning sessions include a wide variety of
participants and roles. Each participant is expected to attend and actively participate
for the entire JRP session. Let's examine the different types of individuals involved in
a typical JRP session and their roles:

» Sponsor—Any successful JRP session requires a single person, called the
sponsor, 1o serve as s champlon. This person s normally an individual
whao is In top management (nod IT or 15 management) and who has
authority that spans the different departments and users who are to be
involved in the systems project. The sponser gives full support to the sys
tems project by encouraging designated users to willlngly and actively
participate in the JRP session. Recalling the “creeping commitment”
approach to systems development, it is the sponsor (system owner) who
usially makes final decisions regarding the go or no-go direction of the
project.

The sponsor plays a visible role during a JRP session by kicking off the
meeting by intreducing the participants. Often, the sponsor will also make
closing remarks for the session. The sponsor also works closely with the JRE
leader to plan the session by helping identify individuals from the user com-
munity whao should attend and determining the time and location for the JRP
sessinn,

* Facilitator—JRP sessions involve a single lndividual who plays the role of the
leader or facilitator. The JRP facilitator is usually responsible for leading all
sessions that are held for a systems project. This individual is someone who
has excellent communication skills, possesses the ability to negotiote and
resolve group conflicts, has a good knowledge of the business, has strong
organizational skills. is impartial to decisions that will be addressed, and does
oot report to any of the JRP session participants.

It is sometimes difficult to find an individual within the company who
possesses all these traits. Thus, companies often must provide extensive JRP
tradning or hire an expert from outside the organdzation o fill this role. Many
systemns analysts are trained to become JRP facilitators,

The rale of the JRP facilitator is to plan the JRP session, conduct the
session, and follow theough on the results. During the session, the facilitator
is responsible for leading the discussion, encouraging the attendees to
actively participate_ resolving issue conflicts that mav arise, and ensuring that
the goals and ohjectives of the meeting are fulfilled. It is the JRP facilititor’s
responsibility to establish the ground rules that will be followed during the
meeting and ensore that the participants abide by these miles.

¢ Ulsers and managers—Joint requirements plnning includes & number of
partcipants from the user amd management sectors of an organization who
are given release time from their dayvto-day jobs to devote themselves to
active involvement in the JRP sessions. These participants are normally cho-
sen by the project sponsor. who must be careful to ensure that each person
has the business knowledge to contribute during the fact-finding sessions,
The project sponsor must exercise authority and encouragement to ensure
that these individuals will be committed to actively participating,

A typlcal JRP session may nvobre anywhere from a relatively small
number of user/management people to a dozen or more, The role of the
users during a JRP session Is to effectively communicate business rules and
requirements, review design prototypes. and make acceptance decisions.
The role of the managers during a JRP session is to approve project objec-
tives, establish project priorities, approve schedules and costs, and approve

Fact-Finding Techniques for Requirements Discovery chapter Six 231

identified training needs and implementation plans. Overall, both users and
managers are relied on to ensore that their critical success factors are
heing addressed

= Scribefs)—A JRP session also includes one or more scrfbes, who ane
responsible for keeping records pertaining to evervthing discussed in the
meeting. These records are published and disseminated to the attendees
immediately following the meeting in order to maintain the momentum
that has heen established by the JRP session and its members. The need to
guickly publish the records is reflected by the fact that scribes are increas
ingly using CASE tools to capture many ficts {documented vsing data and
process models) that are communicated during a JRP session. Thus, it is
advantageons for scribes o possess strong knowledge of systems analysis
and design and be skilled with using CASE tools. Systems analysts
frequently play this role

= T staff—A JRP session may alse inclode a number of IT personnel whi
primarily listen and take notes regarding issues and requirements voiced by
the users and ounagers. Normally, IT personnel do not speak up unless
Invited to do so. Rather, any guestions or concerns they have are usually
directed to the JRP facilitator immediately after or before the JHP session. It
is the JRP facilitator who initates and facilitates discussion of issues by users
and managers.

The IT staff in the JAP session usually consists of members of the prof
ect teamu These members may work closely with the scribe to develop
madels and other documentation related o facts communicated doring the
meeting. Specialists may also be called on to gain Information regarding
spectal technical issues and concerns that may arise. When the situation
warrants, the JRP facilitator may prompe an IT professional to address the
technical issue.

Hew to Plan JRP Sessions Most JRP sessions span three to five days and occa-
sionilly kast up to two weeks. The success of any JRP session depends on properly
planning and effectively carrying out the plan. Some preparation is necessary well be-
tore the JRP session can be performed, Before planning a JRP session, the analyst must
work closely with the executive sponsor to determine the scope of the project that is
to be addressed through JRP sessions, It is also important that the highJevel require-
ments and expectations of each JRP session be determined, This normally involves in-
terviewing selected individoals who are responsble for departments or functions that
are to be addressed by the systems project. Finally, before planning the JRP session,
the unalyst must ensure that the executive sponsor is willing to commit people. time.
and other resources to the session

Planning for a JRP session involves three steps: selecting a location for the JRP

session, selecting JRP participants, and preparing an agenda to be followed during
the JRP session. Let's examine each of these planning steps in detail:

L. Selecring a focation for [RP sessions—When possible, JRP sessions should be
conducted away from the company workplace. Most local hotels or unfversi-
ties have facilities destgned to host group meetings. By holding the JRP ses
siom at an offsite location, the attendees can concentrate on the issues and
activities related to the JRP session and avoid interruptions and distractions
that would occur at thelr regular workplace. Regardless of the locaton of the
JRP session. all attendees should be required to attend and be prohibited
from returning to their regular workplaces,

A JRP session typically requires several rooms. A conference room is
required In which the entire group can meet to address JRP Issues. Also. If the
JRP session incudes many people, several small breakout rooms may be needed
for separate groups of people to meet and focus discussion on specific issues.

Fact-Finding Techniques for Requirements Discovery

comfortable as possible. Creature comforts ire very Important since JRP ses-
sions are very intensive and often run the entire day.

2. Selecting JRP participants—As mentioned earlier, participants selected include
the IRP facilitator, sceibe(s), and representatives from the user commuanity. The
wsers should be key individuals who are knowledgeable about their business
areq. Unfortunately, managers are often very dependent on these individuals o
run thetr business areas und are often hesitant to release them from their
duties. Thus, the analyst must ensure that management is committed to the
IRP project and willing to not only permit but also require these key individu-
als to participate.

Various IT professionals may also be selected to be involved in the JRP
session. Usually all TT individuals assigned to the project team are involved in
the JRP sesston. Other IT spectalists may also be assigned to address specific
technical issues pertaining to the project

3. Preparing a JRP session agenda—Freparation is the key to a successful JTRP
session. The JRP facilitator must prepare documentation to brief the particl-
pants abowut the scope and objectives of the sessions. In addition, an agenda
for each JRP session should be prepared and disteibuted before each session.
The agenda dictates issues o be discussed during the session and the amount
of tme allotied to each item

The agenda should contain three parts: the opening, body, and conclusion.
The opening s Intended to communicate the expectations of the session, to
communicate the ground rules, and to influence or motivate the attendees to
participate. The body s intended to detall the topics or issues to be addressed
in the JRP session. Finally, the conclusion represents the time set aside to sum-
murize the day's session and to remind the attendees of unresolved Issues
(o be carried forward),

How to Conduct a JRP Session The JRP session begins with opening remarks, in-
troductions, and a brief overview of the agenda and objectives for the session. The
JRP facilitator will direct the sesskon by following the prepared script. To successfully
conduct the session, the facilititor should follow these guidelines:

= Do pot unreasonably deviate from the agenda,

= Stay on schedule (agenda toplcs are allotted specific times),

* Ensure that the scribe is able to rake notes (this may mean having the users
and managers restate thelr points more slowly or clearly).

* Avoid the use of techoical jargon.

= Apply conflict resolution skills.

= Allow for ample breaks.

= Encourage group CONsSensus.

= Encourage user and management participation without allowing individuals to
dominate the sesslon

= Make sure that attendees abide by the established ground rules for the
=ession.

One of the goals of a JRP sesslon is to generate possible ideas to solve a prob-
lem. One approach is brainstorming. Brainstorming involves encouraging partici-
pants to generate as many ideas as possible, without analvzing the validity of the
ideas.

Brainstorming is a formal technigue that requires discipline. The following guide-
lines should be used o ensure effective brainstorming:

1. Isolate the appropriate people in a place that will be free from distractions
and Interruptions.

2. Make sure that everyone understands the purpose of the meeting (to generate
tdeas to solve the problem) and focuses on the problemis).

chapter Six 233

brainsorming atachnigus
for generating ideas by en-
couraging participants to offar
as many ideas as possible in
a ghort pariod of time without
ary analysis until all the ideas
have been exhaustad.

Meodeling System Requiremants with Use Cases

discovery, use cases ire used to capture the essence of the business problems and
to model (at a high level) the functionality of the proposed system. Additionally,
they are the starting point for identifyving the data entities (covered in Chapter 8)
or objects of the system (covered in Chapter 113, During requirements anialysis the
use ciases are refined to model usage of the system in more detail. In other words,
they are updated o specity what the users are trying to accomplish and why. These
use cases ald in the definition «f any prototypes or user interfaces. During design
the use cases are refined to model how the users will actually use the system
with regard to any interface and system constraints (covered in Chapter 18}, These
types of use cases aid in ldentifving object or system behavior and in designing in-
terface and code specifications, as well as serve as the plan for testing the system.
In construction. use cases aid developers in programming and testing. These use
cases also serve as the baseline for preparing any user and system documentation,
plus they serve as tools for user training. And, because use cases contain an enor-
mous amount of system functionality detail, they will be & constant resource for
villidating the system.

> Actors

Use cases are initlated or triggered by external users called actors. An actor initi-
idles system activity, a use case, for the purpose of completing some business task
that produces something of measurable value. Let's use the example of 2 college
student enrolling for the fall semester’s courses. The actor would be the steden:,
and the business event, or nse case, would be Enrolfing in Course. An actor repre-
sents a role fullilled by a user interacting with the system and is not meant to por-
tray a single individual or job tide, In fact. an actor doesn't have to be human. Tt can
be an erganization, another information system, an external device such as a heat
sensor, or even the concept of dme (which will be discussed a little later) An ac-
tor is represented graphically as a stick figure labeled with the pame of the role the

actor plays
It is Important to note that there are primarily four types of actors:

= Primary bisiness actor—the stakeholder that primarily benefits from the
execution of the use case by recelving something of measurable or obsery-
able value, The primary business actor may or may not indtlate the business
event, For example, in the business event of an employee receiving a pay-
check (something of messurable value)y from the payroll system each Friday,
the employee does not initiate the event but is the primary recipient of the
something of valoe.

= Primary system actor—the stakeholder that directly Interfaces with the sys-
tem to initdate or trigger the business or svstem event. PAimary system actors
may interact with primary business actors for the purpose of using the actuoal
system. They facilitate the event through the direct nse of the system for the
benefit of the primary business actor. Examples include a grocery store
clerk who scans the items for the costomer buying groceries, a telephone
operator who gives directory assistance to a costomer, and a bank teller who
processes a banking transaction. The primary business actor and prinmry
systeim actor may be the same person for events where the business actor
interfaces with the system directly—for example, a person reserving a rental
car vin a Web sie.

= Extersal server actor—the stakeholder that responds to a request from the
nse case (e.g., a credit bureau authorizing the charging by a credit card),

» External receiver actor—the stalceholder that is not the primary actor but
recelves something of measurable or observable value (ourputy from the use
case (e.g., 2 warchouse recelving a packing order to prepare a shipment after
a1 customer has placed an order).

chapter Saven 247

actor anything that neads
to interact with the system to
exchange information.

Actor Bymbal

Meodeling System Requiremants with Use Coses

chapter Savan 253

Member Services Context
Diagram
Club Member
Submi Member Order ———————— — subinit Promotion fmonmation ——
— Inquire Account {order & paymant histony — Submit Subgcripton
B Frogram
& &
y¥¥ryYyr
L Geramate nqury Assponsss —— s a?uﬂﬁ"ﬁfngﬁ
Send Promation Offer Genarats Varkius
Promation Aspors
Potential Clun Ganarsts Varous
Member Salee Reparts —
Subenit Subscriplion Crdar
{Bppiy for memberzhip) >
#—— Send Subscription Offar — Sand Packing Order —————

s
Pegl Mamber
Submil Subsciption
AEnawal
Sand
——— Resubecrptian
Zrter
Submit Mambsr
Credt EehE
Aespansa

Accounis
Recalvald GEnarEE Variug

Member Raparts

Member Sarhies

FIGURE 7-9 SoundSmge Member Services System Context Diagram

not Indicate a separate nse case—such as a eredit card company responding to an
authorization request or, as presented in Figure 79, the Accounts Recervable actor
vesponding with Member Credit Starus Information,

Use cases are named with a verb phrase specifving the goal of the actor, such
as Submeit Subscriptfon Order. Use cases that are temporal events are usually

Dilgtrizution
Centar

258

Part Two

Systems Anclysis Methods

) Orber participating actors—Other actors that participate in the use case o
accomplish its goal include initiatdng actors, fcilitatiog actors, server/recelver
actors, and secondary actors. Always inchde the manner in which the actor
participates.

@ Mmirerested stakebolder(s)—A stakeholder is anybody who has a stake in the
development and operation of the software system. An interested stakeholder
is & person {other than an actor) who has a vested interest in the goal of
the use case.

(B Descripgion—A short summary description that consists of 4 couple of
sentences outlining the purpose of the use case and Its activities.

Documenting the Use-Case Course of Events Foreach highlevel use case iden-
tified, we must now expand it to include the use case’s typical course of events and
Its altermite courses. A use case’s typical course of events is @ step-by-step description
searting with the actor initisting the use case and continuing until the end of the busi-
ness event. In this section we inchede only the major steps that occar the majority of
the time (its typical course). The alternate course documents the exceptions or the
conditional branching of the use case. Figure 7-13 represents a requirements use-case
narrative for the Member Services System's Place New Order use case. Notice that it
includes the following additional irems;

@ Precondition—A precondition is 4 constraint on the state of the system
before the use case can be executed. Typically this refers to another ose case
that must be previously executed,

& Trigger—The trigger is the event that initiated the execution of the use
case: This often is a physical action, such as a customer walking up to a
sales counter or a check arriving in the mail Time can also trigger use
CASES,

€& Typdcal cosrse of voents—The rypical course of events is the normal
sequence of activities performed by the actor(s) and the system In order to
satlsfy the goal of the use case. These include the interactions between the
systemn and the actor and the activiies performed by the system in response
to the interactions. Note that the actions of the actor are recorded in the left
hand colomn while the actions of the systems are recorded in the right hand
coliumn.

O Alrernare conrses—Alternate courses document the behaviors of the use
case if an exception or variation to the typlcal course ocours. This can
happen when a decdision point occurs within the use case or an exception
oocurs that requires addidonal steps outside the scope of the typical
COUrse,

O concluston—The conclusion specifies when the use case successfully ends—in
other words, when the primary actor receives something of measurable value,

O Postcondition—A postcondition is a constraint on the state of the system
after the use case has been successtully executed. This could be data
recorded in a database or a receipt delivered to a customer.

@ Business rules—Business rules specify policles and procedures of the
business that the new system must ablde by, This could Include the calouls
tion of shipping charges or rules for granting credit terms.

@ Implementation constratnts and specifications—Implementation constraints
and specifications specify any nonfunctional requirements that may impact
the reallzation of the use case and may be helpful in any architectoral
planning and scoping. Items that may be included are security specifications,
interface requirements, and so on.

O Assumptions—Any assumptions that were made by the creator when docu-
menting the nse case.

O Open isswes—Any questions or issues that need 1o be resolved or investh
gated before the use case can be finalized.

Data Medeling and Analysis

in terms of kevs or attributes. The enterprise data model may or may notinclude rela-
tionships (depending on the planning methodology's standards and the level of detail
desired by executive management). If relatonships are incduded, many of them will
be nonspecific (a2 concept introduced earlier In the chapter).

How does an enterprise data model affect subsequent applications development?
Part of the information strategy plan identlfies application development projects and
priortizes them according to whatever criteria management deems appropriate. As
thase projects are started, the appropriate subsets of the information systems archi-
tecture, including a subset of the enterprise data model, are provided to the applica-
tions development team as 4 point of departure.

The enterprise data model Is usually stored In a corporate repository. When the
application development project is started. the subset of the enterprise data model (as
well as the other models) 15 exported from the corporate repository into a project
repository, Once the project team completes systems analysis and design, the
expanded and refined duta models are imported back into the corporate repository.

> Data Modeling during Systems Analysis

In systems analysis and in this chapter, we will focus on logical data modeling as a
part of systems analysis. The data model for a single information system is usually
cilled an applcation data model.

Drata models are rarely constructed during the scope deflnition phase of systems
analysis, The short duration of that phase makes them impractical. If an enterprise
dara model exists, the subset of that model that s applicable to the project might be
retrieved and reviewed as part of the phase requirement to establish context. Alter
natively, the project team conld identify a simple list of entities, the things about
which team members think the system will have to capture and store data.

Unfortunately, data modeling is rarely assoclated with the problem analysis phase
of systems analysis. Some analysts prefer to draw process models (Chapter 9) to doc-
ument the current system. but many analysts report that data models are far superior
for the following ressons:

= Drata models help analysts to quickly identify business vocabulary more com-
pletely than process models.

= Dnata models are almost always bullt more guickly than process models.

* A complete data model can fit on 4 single sheet of paper Process models
often require dozens of sheets of paper

* Process modelers frequently and too easily get hung up on unnecessary
detail.

= Data models for existing and proposed systems are far more similar than
process models for existing and proposed systems. Consequently, there is less
work to throw away as you move into later phases

We agree! A problem analysis phase model includes only entities and relationships,
but ne ateributes—It is called @ context data model. The intent is to refine our
understanding of scope, not to get into details about the entities and business rules,
Many relationships may be nonspecific.

Many automated tools provide the ability to read existing system files and data-
bases and translate them into “physical” data models. These physical data models can
then be transformed into thelr equivalent “logical” data model. This translatdon capa-
hility benefits both the problem analysis and the requirements analysis phases.

The requirements analysis results in a logical data model that Is developed in
stages as follows:

L. We begin by constructing the context data model to establish the project
scope. If o context data model was already developed during problem analysis,
that model may be revised to reflect new requirements and project scope.

chapter Eight 285

application dats model
a data maodel lor a complata,
single informatan systam,

comtexi daia model 5
data madal st includas
antities and relationships but
no attribites.

286 Part Two

key-based daa model a
data modal that includes ant-
lims and ralgtionships with
pradse cardinalities resaving
non-specific miationships into
associative antities, and also
including prmarny and atternate

fully attribused daia
model a data modal fhal
inciudes all antilies, attibules,
melafionships, sl beatting crite-
ria, and predse cardinaliies.

metidat data aboul data.

Systems Anclysis Methods

2. Next, i key-based data moodel will be drawn This model will eliminate non-
specific relationships, add associative eatities, and inclode prinvry and alternate
keys The key-based model will alse include precise cardimalities and any gener-
alization hierarchies.

3. Next. a fully attributed data model will be constructed. The fully attributed
model includes all remaining descriptve attributes and subsetting criterta, Each
attribute s defined in the repository with data rypes. domains, and defaults (in
what is sometimes called a fully described duta model),

4. The completed data model s analyzed for adaptability and flexibility through
a process called normalization, The final analyzed model is referred to as a
rormalized data model

This data requirements model requires a team effort that includes systems analysts,
users and managers, and data analysts. A data administeator often sets standards for
and approves all data models.

Ultinwately, during the decision analysis phase, the dati model will be used o
make implementation decisions—the best way to implement the requirements with
atabase technology. In practice, this decision may have already been standardized as
part of a database architecture. For example. SoundStage has already standardized on
two database management systems: Microsoft Access for personal and work-group
databases, and Microsoft SQL Server for enterprise databases.

Fimally, data models cannot be constructed without appropriate facts and infor-
mation as supplied by the user community. These facts can be collected through a
mumber of technigues such as sampling of existing forms and files, research of similar
systems. survevs of users and management, and interviews of nsers and mansgement.
The fistest method of collecting facts and Information and simultaneously constroct-
ing and verifying the data models is joint requirements planning. JRP uses a carefully
tacilitated group meeting to collect the facts, bulld the models, and verify the models—
usually in one or two foll-day sessions, Fact-finding and information-gathering tech-
niques were fully explored in Chapter 6. Thble 84 summarizes some guestions
that may be useful for fact-finding and information gathering as it pertains to data
modeling.

> Looking Ahead to Systems Design

During system design. the logical data model will be transformed into a physical
data model (called a database schema) for the chosen database management sys
temt This model will reflect the technical capabilities and limitations of that dara-
base technology, as well as the performance tuning requirements suggested by the
databuise administrator. Aoy further discussion of database design Is deferred until
Chapter 14,

> Automated Tools for Data Modeling

Data models are stored in a repository. In a sense, the data model is metadara—that
is, data about the business’s data. Computeralded systems engineering (CASE) tech-
nology. introduced In Chapter 3. provides the repository for storing the data model
and its detailed descriptions. Most CASE products support computer-assisted data
modeling and database design. Some CASE products (such as Logic Works' ERwin)
only support data modeling and database design. CASE takes the drudgery out of
drawing and maintaining these models ind their underlying details.

Using 2 CASE product, you can easily create professional, readable data models
without the use of paper, pendl. erasers, and templates. The models can be easily
modified to reflect corrections and changes suggested by end users—you don’t have
to start over! Also, most CASE products provide powerful analytical tools that can
check your models for mechanical errors, completeness, and consistency, Some CASE

Data Medeling and Analysis

> Entity Discovery

The first task in data modeliog s relatively easy. You oeed to discover the fandamen-
tal entities in the system that are or might be described by data. You should not re-
strict your thinking to entities about which the end users know they want to store
data. There are several techniques that may be used to idemtify entities:

= During interviews or JRP sessions with system owners and users, pay atten-
tion to key words in their discussion. For example, during an interview with
in individual discussing SoundStage's business environment and activities, o
nser oy state, “We have to keep track of all our members and thelr bound
agreements,” Notice that the key words in this statement are smemems and
AGREEMENTS, Both are entities!

* During interviews or JRP sessions, specifically ask system owners and users
to fdentify things about which they would like to capture, store, and produce
information. Those things often represent entities that should be depicted on
the data nrodel

» Another technique for identifying entities is to study existing forms, files. and
reparts. Some forms Identify event entities. Examples include orpers, sequms-
THOME, PAYMENTS, DEPOSITS, and so forth. But most of these same forms also
contan data thar describes other entities. Consider a registration form used
in your school’s course enrollment system. A rRecisTRATION 5 ftself an event
entity. But the avemge registration form also contains data that describes
other entities, such as sTooedr (a person), courses (which are concepts),
misTRUcToRs {(other persons), aovisor (yet another person), orvimons (another
concept), and so forth. Studying the computerized registration system's com-
puter files, databases, or outputs could also discover these same entities.

= If use-case narratives have been written during the requirements amalysis phase,
they can be a source of data attributes and entities, Scan each use-case narrative
for nouns. Every noun s 4 potential data atrbute or entity. You will have o
massage the resulting list of nouns because not all of them will be attributes or
entities. Some will be references to users or other infornation systems. Some
will be references to things that are part of the vser interface, not data. Some
will be synonyms for other attributes or entitles elsewhere on the list, and youo
waould not want to duplicate them. Chapter 10 explains how to do this, talking
an objectoriented approach to build a list of objects and their attribames. You
cin use o very similar approich to discover data entities and their attributes,

= Technology muy also help you ldentify entities. Some CASE tools can reverse
engineer existing fAles and databases into physical data models. The analyst
mist ustally clean up the resulting model by replacing physicil names,
codes, and comments with their logical. businessfriendly equivalents.

While these techniques may prove useful in identifving entities, they cccasionally
play tricks on you. A simple, gquick quality check can eliminate false entities. Ask vour
user to specify the number of instances of eiach entity. A troe entity has multiple
instances—dozens, hundreds, thousands, or more! If not, the entity does not exist.

As entities are discovered, give them simple, meaningful, businessorented
names. Entities should be named with nouns that describe the person. event, place,
object, or thing about which we want to store data. Try not to abbreviate or use
acronyms. MNames should be singular so as to disdnguish the logical conceprt of the en
tity from the actoal Instances of the entity. Names may include appropriate adjectives
or clauses to better describe the entity—for instance, an externully generated
cusToMer orper must be distinguished from an internally generated sTock orper.

For each entity, define it in business terms. Don't define the entity in technical
terms, and don't define it as “data about . . . " Try this: Use an English dictionary to cre-
ate a draft definition, and then customize it for the business at hand. Your entity names
and definitions should establish an initial glossary of business terminology that will
serve both you and future analysts and users for years.

chaptar Eight

289

202 Part Two

imelligent key a business
coda whoss struchine commu-
nicatas data about an antity
instance.

Systems Anclysis Methods

country/western and lightvock audiences might be Featured in the promotion
for both. Since products greatly outnumber promotions. most products are
never featured in a promotion.

£ A PrOMOTION generates nuiny MEMEER ORDERS. Implicitly, 3 MEMBER ORDER is

generated for zero or one rromoTIoN. Why zero? In the new system, a menw-
ber will be able to initiate his or her own order

@ It is permissible for more than one relationship to exist between the same

two entities iF the separate relationships communicate different business
events or associations, Thus, a svovser responds to zero, one, or MOTE MEMBER
oroms. This relationship supports the promotion-generated orders. A MevBm
places zero, one. or more MeMeer orpeRs. This relationship supports member-
initiated orders. In both cases, a mempm ornen is placed by (is responded to
by exactly one MevBER

Although we didn't need it for this double relationship, some CASE tools
{including Systers Architect) provide a symbol for recording Boolean relation-
ships (such as anp, or). Thus, for any two relationships, @ Boolean symbol
could be used to establish that instances of the relationships must be mutu-
ally exclusive {= or) or munually contingent (= anp).

& A mempm orper sells one or more rropucts. Implicitdy, a rropuct is sold on

ZEMD, One, 07 Mmore MEMBER oRDERS. Note that this is a nonspecific relationship.
which will later be resolved.

If you read each of the preceding items carefully, you probahly learned a great

deal about the SoundStage system. Thata models have become increasingly popular as
a tool for describing the business context for system projects.

> The Key-Based Data Model

The next task is to identify the keys of each entity. The following guldelines are sug-
gested for keys:!

I

4.

The value of a key should not change over the lifetime of each entity lnstance.
For example, sase would be a poor key since a person’s last name could
change by marriage or divorce.

. The value of a key cannot be null.

Controls must be installed to ensure that the value of a key is valid, This can
be accomplished by precisely defining the domatn and using the database
mirmgement system's valldation controls to enforce that domain.

Some experts (Broce) suggest you avold intelligent keys. An intelligent key is
a business code whose structure communicates data about an entity instance
(such as its classification, size, or other properties). A code is a group of char
acters and/for digiis that identifies and describes something in the business
system. Some experts argue that because those characteristics can change, it
violates rule 1 above.

We disagree. Business codes can return value to the organization because
they can be quickly processed by humans without the assistance of a
COMpUTEr.

@. There are several types of codes. They can be combined to lform effective
means for entity instance identification
(1} Serdal codes assign sequentially generated numbers to entity instances.
Many database management systems can generate and constrain serial
codes to a business's requirements.

Adapred firsm Thomas A Bruce, Desigrning Qeality Detobases cith IDEFEX fnformation Hodels Copytight © 1592

by Thestrns 4. Bruce. Reprinted by petmission of Dotsst House Publishing, 353 W 12th 5t New Yotk MY 10014
(21 220405 3] SO0LDH-BOORS e, dotsethopse c o, Al pights fesetred.

Data Medeling and Analysis

2y Block codes are similar to serial codes except that block numbers are
divided into groups that have some business meaning. For Instance, a
satellite televislon provider might assign 100-199 as pay per view channels,
200-299 as canLe channels, 300-399 as sroat channels, 400-499 as anur
PROGRAMMING channels, SI0-599 as music-onmy channels, 600-699 as
INTERACTIVE GAMING channels, 700-79% as ivrerner channels, 800-899 as
PrexIiM Captk channels, and 900-999 as rrEMM MOVIE AND EVENT channels.

(31 Alpbhabetie codes use finite combinations of letters (and possibly numbers)
Lo describe entity Instances. For example, each stare has @ unique rwo-
character alphabetic code. Alphabetic codes must usually be combined
with serfal or block codes to uniquely identify instances of most entities.

4y In significant position codes, each digit or group of digits describes a
measurable or identifiable chamcteristic of the entity instance. Significant
digit codes are frequently used to code inventory items. The codes you
see on tires and lightbulbs ire examples of significant position codes.
They tell us about characteristics such as tire size and wattage,
respectively,

5y Hierarchical codes provide 1 top-down interpretation for an entity
instance. Every item coded is factored into groups. subgronps, and so
torth: For instance; we could code employee positions as follows;
— First digit identifies clissification (clerical. faculy, etc.).
— Second and third digits indicate level within classification.
— Fourth and fifth digits indicate calendar of employment.

f. The following guidelines are sugzested when crearing a business coding
scheme:
{1} Codes should be expandable to accommodate growth.
2y The full code must result in 2 unique value for each entity instance,
3y Codes should be large encugh to describe the distinguishing characteristics
bt small enough to be interpreted by people witbonut a comjniter
(4) Codes should be convenient. A new instance should be easy to create.
5. Consider inventing a surrogate key instead to substitute for large concatenated
keys of independent entities. This suggestion Is not practical for associative
entities because each part of the concatenated key is a forelgn key that must

precisely match lts parent entity's primary key:

Figure 8-14 is the key-based data model for the SoundStage project. Notice that
the primary key s specified for each entity,

@ Many eatities have a simple, single-attribute primary key.

0 We resolved the nonspecific relationship between mpvem orpm and FrRoDUCT
by introducing the assoclative entity sevper oroeren FrooueT. Each assodative
entity instance represents one product on one member order. The parent
entities contributed their own primary keys to comprise the associative
entity’s concatenated key. System Architect places a “PE1" next to ORDER
suMeER Lo indicate that It 15 “part one” of the concatenated primary key and
2 “PK2" beside rropucT nuMemR to indicate that it is “part two" of the concare-
mared key. Also notice thar each attribute in that concatenated kevy, by irself,
is a foreign key that points back to the correct parent entlty lnstance.

Likewise, the nonspecific relationship berween propuct and rromoTIoN
wias resolved using an assoclative entity, TiTiE ProMOTION, that also inherits the
keys of the parent entities

When developing this model. look out for a couple of things. If you cannot define
keys for an entity, it may be that the entity doesn't really exist—that is, multiple
occurrences of the so-called entity do not exist. Thus, assigning keys is a good quality
check before fully attributing the data model. Also, if two or more entities have
identical keys, they are in all likelihood the same entity,

Chaptar Eight

293

302 Part Two

derived atiribuie an
aftribule whose value can be
calculated from other alirib-
uiles or dertved from the
values of othar attributes.

Systems Andlysis Methods

Another example of INF is shown in Figure 8-18 for the proMoTioN entity. As
before, we moved the repeating attributes to s different entity, TLE PROMOTION,
All other entities are already in INF because they do not contain any repeating

o,

Second Mormal Form The next step of daw analysis is 1o place the entities into
2ME Recall that it is required that you have already placed all entities lnto LNE Alsa
recall that 2MF looks for an attribute whose value is determined by only part of the
primary key—not the entire concatenated key. Accordingly, entities that have a
single-attribute primary key are already in 2NE That takes care of rropuct (and its
subtypes), MEMBER ORDER, MEMBER. FROMOTION, AGREEMENT, anud TransacTion, Thus, we need
to check only those entities that have a concatenated key—MEMBER ORDERID PRODUCT
and TITLE PROMOTION,

First, let's check the mmvee onvmen rropuct entlty. Most of the attributes are
dependent on the full primary key. For example, guantiTy orperen makes no sense
unless you have both an orpm NuMpe 20d a propuct nusEeR. Think about it! By it-
self. oppEr MuMpER is inadequate since the order could have as many quantities or-
dered as there are products on the order Similarly, by itself, propUCT NUMBER s
inadequate since the same product could appear on many orders. Thus, QuanTrTY
oRpERED requires both parts of the key and is dependent on the full key, The same
could be said of GUANTITY SHIPPED, QUANTITY BACKORDERED, PURCHASE UMIT PRICE, and
EXTENDED PRICE.

But what about orpERED PRODUCT DESCRIPTION and oRDERED PRODUCT TITLE? Do wee re-
ally need ornm mumam to determine @ value for either? No! Instead, the values of these
attributes are dependent only on the value of rropvcT Momeer. Thus, the attributes are
not dependent on the full key; we have uncovered a partial dependercy anomaly that
must be fixed. How do we fix this type of normalization error?

Refer to Figure 819 on the next page. To fix the problem, we simply move the
nonkey attributes, CROEED PRODUCT DESCRIFTION ind ORDERED PRODUCT TITLE, to an entity
that has oaly mropucT NuMBER as its key. If necessary, we would have to create this en-
tity, but the proouct entity with that key already exists. But we have to be careful be-
cause PRODUCT s a supertype. Upon Inspection of the subtypes, we discover that the
attributes are already in the smercranmise and 1rmiE entities, albeit under a synonym.
Thus, we didn't actually have to move the areributes from the MEMBER ORDERED PRODUCT
entity; we just deleted them as redundant attributes,

Next, let's examine the riree rosoTion entity. The concatenated key is the com-
bination of rrosorion Nosuer and Proouct s, Tre oF work is dependent on the
PRODUCT MUMBER portion of the concatenated key, Thus, torE oF work Is removed from
TITLE FROMOTION {see Flgure 8200 Notice that 1rmiE oF woRk already existed in the
entity rrnie which has a product number as its primary key.

Third Normal Form We can further simplify our entities by placing them into 3NE
Entities are required to be lo 2NF before beginning ANF analysis. Third normal form
anilysis looks for two types of problems, derfved data and transitive dependencies.
In both cases, the fundamental error is that nonkey attributes are dependent on other
nonkey attributes.

The first type of ANT analysis is easy—examine each entity for derived attributes.
Derived attributes are those whose values can be either calculated from other at-
tributes or derived through logic from the values of other attributes. If you think
aboaat it, storing a derived atribute makes little sense. First, 4t wastes disk storage
space. Second. it complicates what should be simple updates. Why? Every time you
change the base attributes, you muost remember to reperform the caleulation and also
change its result.

For example. lock at the mevpse orperen rropuct entlty In Figore 821, The at-
tribute ExTEvpED PRICE {5 calcnlated by multiplying guanmry orperes by PURCHASED
pricE. Thus, exrevpm rrece (a nonkey attribute) is not dependent on the primary key

Procass Modeling

In this chapter we will focus exclusively on fogical process modeling during sys-
tems analysis. Process modeling is a technique for organizing and docomenting the
structure and flow of data through a system’s processes and for the loglc, policies, and
procedures to be implemented by a system's rrocessss. In the context of information
system building Mocks (see the home page at the beginning of the chapter). logical
process models are used to document an information system's rrocess focus from the
system owners' and users' perspectve (the intersection of the rrocess column with
the system owner and system user rows), Also notice that one spectl type of process
model, called a comtext diagram. lllustrates the commurncanon focus from the system
owners” and users’ perspective,

Process modeling originated In classical software engineering methods: there-
fore. you may have encountered various types of process models such as program
structure charts, logle flowcharts. or deciston tables in an application program-
ming course. In this chapter, we'll focus on a systems analysis process model, data
Sflone dliagrams.

A data flow diageaim (DFDY) is a tool that depicts the low of data through a sys-
tem and the work or processing performed by that system. Synomyms include bbbl
chart, ransformation graph, and process model, We'll also introduce a DFD planning
tool called decomposition diagrams. Finally, we'll also study context diagrams, a
processiike model that actally Hlustrates a system's interfaces to the business and
outside world, including other information systems.!

A simple cata flow diagram is illustrated in Figure 9-1. In the design phase, some
of these business processes might be implemented s computer software (elther
built li-house or purchased from a software vendor). If yon examine this data flow
diagram, you should find it easy to read. even before you complete this chapter—
that has always been the advantage of DFDs. There are only three symbols and one
COnnection;

= The rounded rectangles represent processes or work to be done. Notice
thut they are Hustrated in the rroces color from your information system
framework.

= The squares represent ¢xternal agents—the boundary of the system. Notice
that they are llustrated in the wviereace color from vour information system
framework

= The openended boxes represent dafa stores, sometimes called files or data-
bases, If you have already read Chapter 8, these data stores correspond to all
instances of 4 single entity in a data model. Accordingly, they have been illus
trated with the para color from your information systems framework

= The arrows represent data flows, or inputs and outputs, to and from the
processes.

There is sometimes a tendency to confuse data flow diagrams with flowcharts be-
cause program design frequently involves the use of flowcharts. However, data flow
diagrams are very different. Let's summarize the differences.

= Processes on o data flow dingram can operate in parallel Thus, several
processes might be executing or working simultaneously. This is consistent
with the way businesses work. On the other hand. processes on Flowcharts
can execute only one at a time.

= Drata flow diagrams show the flow of data through the system: Thelr arcows
represent paths down which data can flow. Looping and branching are not
typically shown. On the other hand, flowchurts show the sequence of processes
ot pperations b an algorithm or progoom. Their arrows represent pointers to
the next process or operation. This may include looping and branching,

i classic structured analysis, contem dingmis are cotmdered oo be another type of process model. Bt in object-
ofietited anabsis, they dlnstute scope and ivtetfaces. In this edition, we have chosen the lceer definition

chapter Nina 317

process modeling a
techniqua used to arganiza
and document a system's
processas.

data flow diagram (DFD)
a procass model usad 1o
dapict the flow of data through
a systam and the work or
processing performad by the
systeam. Synonyms are bubble
chart tranafmation graph,
and process moded.

Amthor's Noe: there ara
several compating symbol
sats for DFDs. Throughout
this chapter, tha authors have
chosan to use the Gane and
Sarson notation bacauses of
its wids popularity.

324 Part Two

fumcton a st of related
and ongoing activities of a
business.

event a logical unit of work
that must by completed as a
whole, Somatimes called a
transacion,

Systems Anclysis Methods

tool for more detalled process models, mamely, data flow diagrams. The following
rules apply:

* Each process in a decomposition diagram is either a parent process. a child
process (of a parent), or both.

= A parent must have two or more children—a single child does not make
sense becouse that would not reveal any additional detail abour the system.

In most decomposition diagramming standards, a child may have only one
parent,

= Finally, a child of one parent may be the parent of its own children.

The upper and lower halves of the decomposition diagram in Figure 9-4 demon-
strate two styles for laying out the processes and connections. You may use either or
both as necessary w present an uncluttered model Some models may require multi-
ple pages for maximum clarity,

The connections on 4 decomposition diagram do not contain arrowheads be-
cause the diagram is meant to show structere, not ffow: Also, the connections are not
mamed. Implicitly they all have the same name—conssTs oF—slnce the sum of the
child processes for a parent process eguals the parent process.

Logical Processes and Conventions Logical processes are work or actions that
must be perdformed no matter how you implement the system. Each logical process
ts (or will be) implemented as one or more physical processes that may include
work pedformed by people, work pedformed by robots or machines, or work per-
formed by computer software. It doesn't matter which implementation is used,
however, because logical processes should only Indicate that there is work that
must be done.

Naming conventions for logical processes depend on where the process is in the
decomposition diagramy/data flow diagram and the type of process depicted. There
are three types of logical processes: functions, events, und elementary processes

A function (s a4 set of related and ongolng activities of the business. A function
has no start or end: it just continoously performs its work as needed. For example, a
manufacturing system may include the following functions (subsystems): PRODUCTION
PLANMING, PRODUCTION SCHEDULING, MATERIALS MAMAGEMENT, PRODUCTION CONTROL. QUALTTY
MaNaGEMENT, and movirony conTroL Each of these functlens may consist of dozens or
hundreds of more discrete processes to support specific activities and tasks, Function
names wre nouns that describe the entire function. Additional examiples are oRpEr
ENTRY, DRDER MANAGEMITST, SALES REPORTING , CUSTOMER RELATIONS, 3N RETURNS AND REFUNDS.

An event is a logical unit of work that must be completed as a whole. An event is
triggered by a discrete input and Is completed when the process has responded with
appropriate outputs. Events are sometimes called rransaceions. Functions consist of
processes that respond to events. For example, the MATERIALS MANAGEMENT function may
respond to the following events: TEST MATERIAL QUALTY, STOCE NEW MATERIALS, DISPOSE OF
DAMAGED MATERIALS, DISPOSE OF SPOILED MATERIALS, REQUISITION MATERIALS FOR PRODUCTION,
RETURN [TMTUSED MATERIALS FROM PRODUCTION, ORDER NEW MaTERALS, and so on. Each of these
events has a trigger and response that can be defined by its inputs and outputs,

Using wmodern structured amalysls techoiques such as those advocated by
McMenamin, Palmer, Yourdon, and the Robertsons (see the Suggested Readings at the
end of the chapter), analysts decompose system functions into business events. Each
business event Is represented by a single process that will respond to that event
Event process names tend to be very general. We will adopt the convention of nam-
Ing event processes as follows: process , RESPOND TO . Or
GENFRATE _ where the blank would he the name of the event (or its cor-
responding input). Sample event process names are PROCESS CHSTOMER ORDER, PROCESS
CUSTOMER ORDER CHANGE. PROCESS CUSTOMER CHANGE OF ADDRESS, RESPOND TO CUSTOMER
COMPLAINT, RESPOMND T ORDER INQUIRY, REFPOND TO FRODUCT PRICE CHECK, GENERATE BACK-ORDIR
REPORT, GENERATE CUSTOMER ACCOUNT STATEMENT, and GENERATE INVOICE.

Procass Modeling

to support and how the system being modeled must interact with other systems and
the business as a whole. In your foformation system framework, scope is defined as
the commuricanon focus from the sysTem ownes' perspective. [t Is documented with
a context data flow diagram. Because the scope of any project is always subject
to change, the context diagram is also subject to constant change. A synooym is
envimonmental model [Yourdon, 19907,

We suggest the following strategy for documenting the system’s boundary and

SCope:

I. Think of the system as a container in order to distingnish the inside from the
outside. lgnore the inner workings of the container. This is sometimes called
“hliack box” thinking.

2, Ask vour end users what business transactions a system must respond to. These
are the met ingnels to the systeni. For each net input, determine its source.
Sources will become external agenis on the context data flow diagram.

3. Ask vour end users what responses must be produced by the system. These are
the net outputs to the system. For each net output, determine its destination,
Destinations will also become external agents Requirements for reports and
queries can quickly dutter the diagram. Consider consolidating them into
composite data flows,

4. ldentify any external data stores, Many systems require access to the files or
databases of other systems. They may use the data in those files or databases.
Sometimes they muy update certain data in those files and databases. But
generally, they are not permitted to change the structure of those files and
databases—therefore, they are outside the project scope,

5. Draw a context dlagram from all of the preceding information.

If your try to include all the inputs and ourputs berween a system and the rest of
the business and outside world, a typical context data flow diagram might show as
many as 50 or more data flows, Such a diagram would hive little if any. communica-
tion valse, Therefore, we suggest you show only those data flows that represent the
main objective or most important ioputs and outputs of the system. Defer less
common data flows to more detailed DFDs to be drawn later.

The context data flow diagram contains one and only one process {(see
Figure 9-15), Sometimes, this process is identified by the number “07; however, our
CASE tool did not allow this. External agents are drawn arcund the perimeter. Data
flows define the interictions of your system with the boundaries and with the
external data stores,

As shown In the context data flow diagram, the main purpose of the system Is to
|PrOCEess NEW SUBSCRIPTICNS IN fesponse 1o SUBSCRIFTION OFFERS, CTeate NEW PROMOTIONS for
products, and respond to memBm orpes by sending pacxine orpms to the warehouse
to be filled. (Motice that we made all dara flow names singular.) Management has also
emphasized the need for vamous reronts. Finally, the Web extensions to this system
reguire that the system provide members with vamous mgumy responss regarding
orders and accounts,

> The Functional Decomposition Diagram

Hecall that a decomposition diagram shows the top-down functional decomposition
or structure of a system. It also provides us with the beginnings of an outline for draw-
ing our data flow diagrams,

Figure 9-16 on page 341 is the functional decomposition diagram for the Sound-
Stage project. Let's study this diagram. First, notice that the processes are depicted as
vectangles, not rounded rectangles. This is merely 4 limitation of our CASE tool's imple-
mentation of decomposiion diagrams—ryon also may have to adapt to vour CASE tool.

chapter Nina 339

comexi daca flow
diagram a process maodel
usad to documant the scopa
for a systam. Also called
envirmnmental model,

342 Part Two

use case an anahysis tool for
finding and identifying busi-
nass events and responses.

Systems Anclysis Methods

One of the more popular and successful approaches for finding and identifying
events and responses Is a techolque called wse cases (Chapter 7) developed by
D Ivar Jacobson. This technique s rooted in object-oriented anmalysis but is easily
adapted to stroctured analysis and data flow disgramming. Use-case unalysis is the
process of identifylng and modeling business events, who initiated them. and how the
system responds to them

Use cases identify and describe necessary system processes from the perspective
of users. Each use case is initiated by users or external systems called acfors. An actor
is anything that needs to interact with the system to exchange Information and so is
analogons to external agents in DFDs.

The context data flow diagram Identifies the key actors as external agenis. It also
identifies some of the use cases. The key word is “some” Recall that the context dia-
gram shows ooly the main dnputs and outputs of a system. There are almost always
mare fnputs and outputs than are depicted—usually many more, Some of the inputs
and outputs depicted are really composites of many types of and variations on those
inputs and outputs (e.g.. the “various reports™ on our context diagram). Also, the con-
text diagram may oot illustrate the many exce ption ioputs and outputs such as errors,
Inguiries. and follow-ups.

One way to expand the nse cases is to interview the external agents (actors)
depicted on the diagram. The agents can (1) identify the events (use cases) for
which they believe the system may have to provide a response and (2) identify
other actors (new external agents) thit were not originally shown on the context
diagram.

Another way to identify use cases (events) is to study the data model, assumling a
data model was developed before drawing data flow diagrams, and stody the lfe his
tory of each entity on that data model. Instances of these entities omast be created, up-
dated, and eventually deleted. Events or use cases trigger these actions on the entity.
It is not difficult to get users talking about the events that could create, update, and
delete entity instances. After all, they live these events dally. This approach was used
to build the use-case list for the SoundStage project.

A partial table of use cases is illustrated in Figure 917 (pages 343-344). For each
use case, you will fnd:

* The actor that initiates the event (which will become an external agent on
our DEDs).

* The event {which will be handled by a process on our DFDs).

The lnput or trigger (which will become a data or control flow on our
DFDs).

* Al cutputs and responses (which will also become data flows on our DFDs).
Notice that we used parentheses to denote temporal events.

= Cutpats {but be careful not to imply implementation). When we used the
term rgprort we were nof necessarly implying a paper-based document
Notice that owr responses inclhude changes to stored dara aboot entities from
the data model. These include create new instances of the entity, update
existing instamces of the entity, and delete instances of the entity,

The number of use cases for a system is usually quite large, This is necessary to en-
sure that the system designers build a complete system that will respond to all the busi-
ness events. As a final step, consider assigning each event to one of the subsystems and
tunctions identified in the decomposition diagram {(drawn in the previous step),

> Event Decomposition Diagrams

To further partition our functions in the decomposition diagram, we simply add event
handling processes (one per use case) to the decomposition (see Figure 918 on
page 345). If the entire decomposition diagram will not fit on a single page, add
separate pages for subsystems or functlons: The root process on a subsequent page

348 Part Two

Calendar

Systems Anclysis Methods
D1| Members DE| Agreements
Fulfillment
regment
Progress Ag
r_Y_V_\ Agreement
[Ev2? Defauit g
Exception Agreements
| _ _EndofMonth Report - Manager

. FIGURE 9-21 ATemporal Event Diagram (created with System Architect 2001)

balancing a concapt that
raguiras that data flow dia-
grams at different levals of
datail reflect consistency and
complatanass.

exist in isolation. They collectively define systems aind subsystems. It is, therefure,
useful to construct one or more system diagrams that show all the events in the
system or 4 subsystem.

The system diagram is said to be “exploded” from the single process that we cre-
ated on the orlginal context diagram (Figure 9-15). The system diagram shows either
(1) all the events for the system on a single disgram or (23 all the events for & single
subsystem on a single diagrim. Depending on the dze of the system, a single diagram
nury be too large.

While the SoundStage project is moderate ln size, it still responds to too many
events to squeeze all those processes onto a single diagram. Instead, Bob Martinez
elected to draw a subsystem diagram for each of the major subsystems. Figure 9-22
{pages 350-351) shows the subsystem diagram for the orpms suesvsTEM. It consoll-
dates all the transaction and report-writing events for that subsystem onto a single
diagrany. (The reporting events may be omitted or consolidated Into composites if the
diagram is too cluttered.) Notice that the system diagram demonstrates how event
processes commuricate using shared data stores,

If necessary, and after drawing the four subsystem diagrams for this project, Bob
could have drawn a system diagram that llostrates only the interactions between
those four subsystems. This is a relic of the original top-down data flow disgramming
strategy of the original structured analysis methodology. In practice, this higherlevel
diagram requires so much consolidation of data flows and data stores that its com-
munication value is questionable. To Bob, this was busywork. and his time was better
spent on the next set of data flow diagrams

W now have a set of event diagrams (one per business event) and one or more
system,subsystem diagrams. The event diagram processes are merged into the system
diagrams. It is very important that each of the data flows, data stores, und external
agents that were lhustrted on the event diagrams be represented on the system din-
grams. Notice that we duplicate data stores and external agents to minimize crossing
of lines. Most CASE tools Inclnde facilities to check for balancing errors,

Before we leave this topic, we should introduce the concept of balancing
Balancing is the synchronizing of data flow diagrams at difterent levels of detail to
preserve consistency and completeness of the models. Balincing is a quality assurance
techodgque. Balancing requires that, if you explode a process o another DFD to reveal

350

Part Two Systems Andlysis Methods
Transachons (
Products
Product and {
Availability
Relavant Transacticns
Imventory
Cammitment
Member Member Order > Pracass Warehouse
Mermber Crder Packing Order
® = 3 <
< M]
ember Order
Confirmation
%, e
-~
Member New Member
r Mew Ordered
J Member Products
Order
Updated Member
fram COrder Y
Members Member Orders Member Ordered
Frogucts
Updated A A “E_
Member
Crder
Updated Member
fram Updated Order
Mermber] COrdered
Crder | _Member ——— § Products
Change >
Reguest Process
U
> Member Crder Updated
W Membper Crder Confirmaton Revision Membar
Crderad
P } Products
Product and .
Awailability
Inventory
Commitment
rglia Warehouse
Facking Order
L }.
Products

FIGURE 9-22 ASystem Diagram (created with System Architect 2001)

Procoss Modoling chapter Nine 351
Product and Availability
-
Inventory Commitment
Member
Subscription Order S
Subseription
: Process Eun%:?nﬂaiﬂnn
Packing Order | Subscription
Ordar
- o
New Member Address

Ordered Products

New Member Order

Members
Member Ord (>
€ i Updated
Member Member
Orders Order
(% Deleted Member
Ordered Products) Member Order
Cancellation
Generate Process el Member
Order Analysis Member Order
Report " Cancellation
-
Member
Cirdear
T') —_— Canceliation
Notice
End of Day
Time ﬁfnlier_ Club
alysis I
| Report Directors

>

352 Part Two Systams Analysls Mathods
T valdsle | ¢ Memue Members
& - Membar s
Wm0 I
and padieas Updsted Member from Jrgee f
|
Inwalith Member 1D/
Ry Invakd Product ID 1
Quder i
Valizain
Crderad
— Pradsiol Produes <
Crddered
Prosuct it
Wl
i‘“““’“" Products
* Crdéerad I |
Meribes " [cnees 1 Pradutt Avaiability J
Mirnbar Cadni Quia , o Product
| Awadabidly
Inverory Commilrmend b,
Heiiie T Proiuscl Fm;LJ
Ceder Cogt
P B
Payment >
Check e l;luu.iq._i
I_I'.'am!lrned kbambuar Oradar Maimitas Lraai
|iBnBacnns
Credf Problem and strecton Feminuar T o nsacimng
&
Ciroar 10 be Filleg Y Qe b b Flled
Member Ceders
R
Membes
e -
Recond Seder Ralsaue Orad Pacxing
Mamoer Crdered Ordegi
Froducis New Mambar ——.}
irdsran Progucis
o

J

Members limdated Credite

=

-

Warehouse

k FIGURE 9-23 APrimitive Diagram (created with System Architect 2001)

Procass Modeling

The overall structure of a Structured English specification is built osing the fun-

damental constructs that have governed structured programming for neardy three
decades. These constructs (summarized in Figure 9-27) are:

A seguence of simple, declaratdve sentences—one after another Compound
sentences dare discouraged because they frequently create ambiguity. Each
sentence uses strong, action verbs such as GET, MND, RECORD, CREATE, READ,
UFDATE, DELETE, CALCULATE, WRITE, SORT. MERGE, of anything else recognizable or
understandable to users. A formula may be included as part of a sentence
{(€.2. . CALCULATE GROSS PAY = HOLES WORKED X HOURLY WAGE).

A condittonal or decision structure indicates thar a process must perform

different steps under wellspecified conditions. There are rwo varlations

(and a departure) on this construoct,

— The mraen-ese construct specifies that one set of steps should be taken if
a specified condition is true but that a different set of steps should be
specified if the specified condition is false. The steps to be taken are typi-
cally a sequence of one or more sentences as described abowve.

— The case construct s used when there are more than two sets of steps to
choose from, Once agaln, these steps osually consist of the aforementioned
seqpreentiod statements. The cise construct is an elegant substitute for an
[F-THEN-ELSE F-THEN-ELSE O-THEN . .. construct (which is very convoluted to
the average user).

— For logic based on multiple conditions and combinations of conditions
Cwhich programmers call a nested), decision tables are a far more ele-
gant logic modeling tool Decision tables will be introduced shortly,

An fteration, or repetition, structure specifies that a set of steps should be

repeated based on some stated condition There wre two varfations on this

construct:

— The pownne construct indicates that certain steps are repeated zero, one,
or mere times based on the value of the stated condition. Note thait these
steps may not execute at all if the condition Is pot true when the condi-
tion is first tested.

— The reFEsrowTIL construct indbcates that certaln steps are repeated one or
more mes based on the value of the stited condition. Note that 4 mwesy
vMriL ser of steps must execute at least once, unlike the powanEe set of
actions,

Additionally, Structured English places the following restrictions on process logle:

Only strong, imperative verbs may be used.

Only names that have been defined in the project dictonary may be used.
These names may include those of data Aows, data stores, eatities (from data
models; see Chapter 8), attributes (the specified data fields or properties con-
tained in @ data flow, data store, or entity), and domains (the specified legal
vilues for attributes),

Formulas should be stated cleardy using appropriate mathematical notations.
In short, you can use whatever notatien is recognizable to the users. Make
sure each operand in a formula is either input to the process ina data flow
or a defined constant.

Undefined adjectives and adverbs (the word good, for instance) are not per-
mitted unless clearly defined in the project dictionary as legal values for data
attribames.

Blocking and indentation are used to set off the beginning and ending of
constructs and to enhance readability. (Some authors and models encourage
the use of special verbs soch as mvoiR, ENDCASE, BNDDO, and ENDREPEAT 1o termi-
nite constructs, We dislike this practice because It gives the Structured
English too much of a pseudocode or programming look and feel)

When in doubt, user readability should always take priority over programmer
preferences,

chapter Nine

355

372 Part Two

object something that iz or
is capable of being s2an,
touched, or ctharwisa sensad
and about which usars stora
data and associate bahavior,

anribuwe the data that
represents characteristics of
imterest about an object,

object instance aach
spacific persan, place, thing,
ar ewvant, as well as the values
fior the attributes of that object
Sometimeas refarred to simphy
as an object.

bihavior the sat of things
that an object can do and that
correspond to functions that
act on the object's data (or
attributes). In object-orientad
circlas, an object's behavior is
commonly referred to as a
method operation, or service
{we may usa the terms intar-
changeably throughout cur
discussion),

encapsulation the packag-
ing of several items togathar
iro ane wnit

Systems Anclysis Methods

object-oriented approaches to systems development, the definition of an object is as
presented in the margin,

Three aspects of this definition need to be examined closely First, let's consider
the term sometiing, which can be characterized as a tvpe of object much like the ob-
Jects that we identified within your current environment: The types of objects may in-
clude a person, place, thing, or event. An employee, customer, instructor, and student
are examples of person objects. A particnlar warehouse, regional office, building, and
eoom are examples of place objects. Examples of thing objects include a product, a
vehicle, a computer, a videotape, or a window appearing on a user’s display monitor
Finally, examples of event objects include an order, payment, iovoice, application,
registration. and reservation.

Now let's consider the data aspect of our definition, In object-oriented circles,
this part of our definition refers to what are called attributes.

For example, we might be interested in the following attdbutes for an object
called “customer”™ CUSTOMER MUMBER, FIRST MAME, LAST MAME, HOME ADDRESS, WORK ADDRESS,
TYPE OF CUSTOMER, HOME FHONE, WORE PHONE, CEEDIT LIMIT, AVAILANLE CHEDIT, ACCOUNT
BarancE and account staTus: 1o reality, there may be many customer objects for which
we would be interested in these artributes. Each Individual castomer is referred to
as an object instance. For example, for each customer the attributes would assume
values specific to that costomer—such as 412209, Lonoie, Bentley, 2625 Darwin
Drrive, West Lafavette. Indlana, 47906, and so forth. Let's consider your current envi-
ronment. Pertuips there's another person In the room. Each of you represents an
instance of a person object. Each of you can be described acconding to some common
attributes such as tasT NAME, S0C1AL SECURFTY NUMBER, PHOME NUMBER, and Anpaess.

Thus. ebject-oriented approaches to systems development ure concerned with
identifying attributes thar are of interest regarding an object. With advances in tech-
nology, attributes have evolved to include more than simple data characreristcs
as those represented in the previous example. Today, objects may inchude newer
attribute types, such as a pleture, sound, or even video,

Let's now consider the last aspect of our definition for an object—the behavior
of an object. This represents a substantially different way of viewing ohjects, When
you look at the door object within your environment, you may simply see & motion-
less object that is incapable of thinking—much less carrying out some action. In
object-oriented approaches to systems development, that door can be associated with
behavior that it is assumed can be performed. For example, the door can open, it can
shut, it can fock, or it can walack All of these behaviors are associated with the door
and are accomplished by the door and no other object.

Consider another object—a telephone. What behaviors can be associated with a
phone? With advances in technology we actoally have phones that are voleeactivated
and can ausiwer, dial bang up. and carry out other behaviors. Thus, objectordented
approaches to systems development simply require an adjustment to how we com-
monly perceive objects.

Another important objectordented principle is that an object Is solely responsible
for carrying out any fonctions or behaviors that act on its own data (or attributes). For
example, anly vou (an object) may crance (behavior) your LasT HAME and BOME ADDRESS
{attributes about you). This leads us to an important concept in understanding ob-
|ects: encapsulation. Applied to an object, both attributes and behavior of the object
are packaged together They are considered part of that object. The only way to access
or change an object's artributes is theough that object's specific behaviors,

In ohjectoriented development. models depicting objects are often derwn. Let's ex-
amine the modeling notatlon (slgns and symbolsy used to represent an object in these
object models. Figure 10-1{2) shows two object instances, each driwn using a rectangle
with the name of the object instince. The name consists of the value of the attribute
that unicuely identifies it, followed by a colon. and then the name of the class inwhich
the object has been categorized, The entire name phrase is centered in the rectangle
and is also underlined. In Figure 10-1¢a) the attribute cusroser MuMBmR, whose value is

378 Part Two

multipliciey the minimum
and maximum number of oc-
currences of one object class
for a single cocourrance of the
relatad object class.

agEregaion a relationship
in which one largar “whaola"
class contains one ar more
smaller "parts” classas.
Comersaly, a smallar "part”
class is part of a "whole”
larger class,

COMPOSiton an aggrega-
tion relationship in which the
"whola” is responsible for the
creation and destruction of its
"parts” If the “whole” wara 1o

dis, tha “part would dis with it.

MEessage communication
that occurs when one object
imiokas another ocbjoct's
method (behavior) to request
imformation ar some action.

Systems Anclysis Methods

classes. UML refers to this line as an @ssoctatfon, and we will use this term through
the remaining parts of this chapter The verb phrase describes the association. All
relationships are implicitly bidirectional, meaning that they can be interpreted in both
directions (as suggested by the above business assertions).

Figure 10-5(a} also shows the complexity or degree of each association. For
example, for the above business assertions, we must also answer the following
questions:

* Must there exist an instance of cosromm for each instance of onpE? (Yes)

+ Must there exist an instance of oRner for each instance of cusToMER? {(No)

* How many Instinces of oepm can exist for each instance of cosrosaw? (Many)
= How many instances of coustomm can exist for each instance of orom? (One)

We cull this concept multiplicity. Because all associations are by default bidirec-
tonal, meaning the cosTosen class “knows about” the omnen class and the orom class
“knows about” the costomm class, multiplicity must be defined in both directions for
every association. The possible UML graphical notation for multiplicity between
classes is shown in Figure 10-5(b). If you have leamed data modeling in Chapter 8,
vou will pealize that multiplicity is essentially the same concept as cardinality. The
notations are different, but the relationships are nearly the same.

Some objects are made up of other nbjects. For example if you buy something
over the Internet, your one order could be composed of multiple items (a CD, a VD,
a book, ete.). Other examples include a club, which is made up of several club mem-
bers, and & computer contains a case, CPU, motherboard, power supply, and so on
This kind of relationship is called aggregation. This relationship is characterized by
the phrases“wholepart” and “is part of”

Composition is a stronger form of aggregation. Think of the word component
tor composition. In composition the “whole” is completely responsible for the cre-
atton and destroction of its parts, and each * part” is assoclated to only one*whole” ob-
fect. The relationship between club and club member would not be composition,
because members have a life outside the club and can, in fact. belong to multiple
clubs. But the Internet order and order items would be composition. If you cancel the
order, then all the items on that order will get canceled with it. A belavior performed
on the whole will also be performed on all its parts. For example, if we printed the
order, each order item would be automatically printed also.

In eadier versions of TML. aggregation was drawn with a hollow diamond, with
the diamond connected to the “whaole ™ object class, as shown in Figure 10-6(a). Notice
that multiplicity must be specified for both sides of the reladonship.

Composition is deown with a filled diamond, as shown in Figure 10-6(b). Because
each “part” can belong to only one “whole,” multiplicity needs to be specified onfy for
the “part” Figure D0-60by also tMustrated multilevel composition. A beok is composed
of chapters, which are each composed of pages, and so forth.

In LML 2.0 the notation for aggregation has been dropped. Why? While the com-
position relaticnship has definite distinctions that play out in programming. aggregs-
tion has always been more Indistinet. For example, couldn’t the relationship between
club and club member simply be & one-ormore association between independent ob-
ject classes? Because of this, some practiioners consider aggregation (the weaker
form) to be essentially meaningless in any practical sense.

> Messages and Message Sending

Object classes tnteract or “commumicate” with one another by passing messages.
Recall the concept of encapsulation, wherein an object is a package of atteibutes and
behavior Only that ehject can perform its behavior and act on its data.

Let's consider the cusrome and omper objects mentioned earler. A cusToMER
object checking the current status of an orpim sends 4 message to an orper object by

Ob|ect-Orlented Analysls and Medeling Using the UML

occur in parallel Because of this they are very useful to model actions that will be
petformed when an operation is executing as well as the results of those actions—such
as modeling the events that cause windows to be displayed or closed. Activity diagrams
are [lexible in that they can be used during both analysis and design. Figure 10-14 s an
example of an activity diagram constructed on the use case Enter New Member Order
At least one activity diagram can be constructed for each use case. More than one can
e constructed if the use case is long or contains complex logle. System analysts use ac-
tivity diagrams to better understand the flow and sequencing of the use<case steps.
Figure 1014 illustrates the following activity diagram notations:

B Initicl node—the solld circle representing the stant of the process.

2 Actions—the rounded rectangles representing individual steps. The sequence
of actions makes up the total activity shown by the diagram.

€} Flow—the arrows on the disgram indicating the progression through the
actions. Most flows do not need words to identfy them unless coming out of
decisions.

QO Decision—the diamond shapes with one flow coming in and two or more
flowrs going out, The flows coming out are marked to indicate the conditions.

2 Merge—the dinmond shapes with two or more flows coming in and one
flow going owt. This combines flows that were previously separated by deci-
sions. Processing continues with any one flow coming into the merge.

0 Fork—a black bar with one flow coming in and two or more flows going
out. Actions on parallel flows beneath the fork can eccur in any order or
concurrently

@ Join—a black bar with two or more flows coming in and one flow going
out, noting the end of concurrent processing. All actions coming into the
foin must be completed before processing continues,

0 Activiry final—the solid cirele inside the hollow circle representing the end

of the process.

The activity diagram shown in Figure 10-14 graphically illustrates the steps of the
use case, but it does not specify who Is doing those steps. That may not be a problem
Often you draw an activity diagram just to get a handle on the logic. But if you want
to specify who does what, you can divide the activity diagram into partftions show-
tng the actions performed by a specific class or actor. Figure 10-15 s an activity dis-
gram for the Place New Ohwder use case (Figure 101 1)y with a simple one-dimensional
partitioning of actions by member and system. The partitions are often called suoim
fanes because they resemble the lanes used by competition swimmers, Ao activity
diagram might have three or more swim [anes showing receiver actors You could also
partition an activity disgram into a two-dimenstonal grid.

Figure 10-15 llustrates two additional features of activity diagrams:

B Subsectiviey indicaror—the rake symbol in an action indicates that this action
Is broken out in another separate activity diagram. This helps yvou keep the
activity diagram from becoming overly complex.

@) Connecror—A letter inside a circle gives you another tool for managing com-
plexity. A flow coming into a connector jumps to the flow coming out of a
connector with a marching letter.

These two examples do not exhawst all the functonality of activity diagrams. Ac-
tlons can be invoked by signals based on time or an outskde process. Actions can also
send signals s well as receive them You can even indicate the passing of parmmeters
and other special kinds of information. But we have covered enough to get you
started in drawing activity diagrams.

So would you draw an activity disgram for every use case? Mo. save them for the
use cises (or even just sections of use cases) that have complex logic. Activity disgrams
can help you think through system logic. They also are useful for communicating that

Chapter Ten

391

420 Part Two

fixed cost a cost that
ocours at a regular interval
and at a ralatively fixad rate

viriable cosi a costthat
ocours in proportion to some

usans factor,

tangible benefit a banafit
that can be =asily quantified

Systems Anclysis Methods

project. The latter can be estimated only after specific computer-based solutions have
been defined. Let’s take a closer look at the costs of information systems.

The costs of developing an information system can be classtfied according to the
phase in which they occur. Systems development costs are usually onetime costs that
will not recur after the project has been completed. Many organizations have standard
cosl categories that most be evaluated. In the absence of such categories, the follow-
tg Hst should help:

= Personne! costs—The salaries of systems analysts, programmers, consultants,
data entry personnel, computer operators, secretaries, and the like, who work
on the project make up the personnel costs, Because mamy of these individu-
als spend time on many projects, their salaries should be prorated to reflect
the time spent on the projects being estimated.

= Computer usage—Computer time will be used for one or more of the follow-
ing activities: programming. testing, conversion, word processing, maintaining
a profect dictionary, prototyping, loading new data fles, and the like If a com-
puting center charges for usage of computer resources such as disk storage or
report printing, the cost should be estimated

= Training—If computer personnel or end users have to be trained. the train-
ing courses may incur expenses. Packaged training courses may be charged
out on a flat fee per site, a student fee (soch as $395 per student), or an
hourly fee (such as $75 per class hour).

= Supply, duplication, and equiinnent cosis.

= Cost af any ned' computer equipment and softiware.

Sample development costs for a typical solution are displayed in Figore 11-2. When
analysts are estimating development costs, it is Important that money be set aside for
the possibility that a system will incur costs after it is operating. The lifetime benefits
must recover both the developmental and the operating costs. Unlike system develop-
ment costs, operating costs tend to recor throughout the lifetime of the system. The
costs of operating a system over its nseful [ifetime can be classified as fiwed or variable.

Fixed costs occur at regular intervals but at relatively fixed rates. Examples of
fimed operating costs include:

* Lease payments and software license payments.

= Prorated saluries of information systems operators and suppornt personnel
{although salaries tend to rise, the rise is gradual and tends not to change
dramatically from month to month),

Variable costs occur in proportion to some usage factor. Examples include:

* Costs of computer usage (e.g., CPU time used. terminal connect time used.
storage used), which vary with the workdoad.

» Supplies (e.g, preprinted forms, printer paper used, punched cards, floppy
disks, magnetic tapes, and other expendables), which vary with the workload.

« Provated overhead costs (e.g, utllities, maintenance, and telephone service),
which can be allocated throughow the lfetime of the system osing standird
technigues of cost accounting.

Samiple operating cost estimates for a solution are also displayed in Figure 11-2.

> What Benefits Will the System Provide?

Benefits normally increase profits or decrease costs, both highly deslrable chamcter-
istics of 4 new lnformation system. As much as possible, benefits should be quantified
in dollars and cents; they should also be classified as tangible or intangible.

Tangible benefits are those that can be easily quantified. Tangible benefits are
usually measured in terms of monthly or annual savings or of profit to the firm. For ex-
ample, consider the following scenario;

Feaslbility Anclysis and the System Proposal

Lifetime benefits will overtake the lifetime costs between years 3 and 4. By charting
the cumulative lifetime timeadjusted costs and benefits. we can estimate that the
break-even point (when Costs + Benefits = 0) will occur approximately 3.5 years af
ter the system begins operating.

Is this information system a good or bad investment? It depends. Many companies
have a payback perdod guideline for all investments. In the absence of such a guide
line. you need to determine i reasonable guideline before you determine the payback
period. Suppase that the guideline states that all investments must hive a payback pe-
riod less than or equal to four years. Becavuse our example has a payback period of 3.5
yedrs, It Is a good Investment. If the payback period for the system were greater than
four years, the information system would be a bad investment.

It should be noted that vou can perform payback analysis without time-adjusting
the costs and benefits. The result, howewver, would show a 2.8 vear payback that looks
more attractive than the 3.5vear payback that we calculited. Thus, non-time-adjusted
paybacks tend to be overly optimistic and misleading.

Return-on-lnvestment Analysis The return-on-investment (ROY) analysis
technigue compares the lifetime profitability of alternative solutions or projects. The
RO1 for a solution or project is a percentage rate that measures the relationship
between the amount the business gets back from an investment and the amount
invested The lifetime ROIT for a potental solution or project is calenlated as follows:

Lifetime ROT = (Estimated lifetime benefits — Estimated lifetime costs) /
Estimated lifetime costs

Let's caloulate the lifetime ROI for the same systems solution we used in our discus
sion of payhack analysis. Once again, all costs and benefits should be time-adjusted over
a period of sbr years. The dme-adjusted costs and benefits were presented in rows 9 and
16 of Fgure 11-3. The estimated lifetime henefits minus estimated lifetime costs equal

795,440 — $488 692 = $306,748
Therefore, the lifetime ROIT is
Lifetime ROI = $306,T48/8488 692 = 628 = 634

This is a lifetime BOL, potf an annual ROL Simple division by the lifetime of the sys-
tem (63 + &) yields an average ROT of 10.5 percent per year. This solutlon can be
compared with alternative solutions. The solution offering the highest ROT is the best
alternative. However, a5 was the case with payback inalysis, the business may set s
minimum acceptable RO1 for all investments. If none of the alternative solutions
meets or exceeds that minimum standard. then none of the alternatives is economi-
cally feasible. Once again, spresdsheets can greatly simplify ROTL analysts through their
built-in financial analvsis functions.

As with payback analysis, we could have calculated the ROT without time-adjusting
the costs and benefits. This would, however, result in 4 misleading 129.4 percent
lifetime or a 21.6 percent annual ROL Consequently, we recommend time-adjusting all
costs and benefits to current dollars,

Met Present Value The net present value of an lovestment alternative is consid-
ered the preferred costbenefit technique by many managers, especially those who
have substantial business schooling. Cnce again, you initally determine the costs and
benefits for each vear of the system’s lifetime. And once again, we need to adjust all
the costs and benefits back to present dollar values,

Figure 11-5 illustrates the net present value techndgue, Costs are represented by
negative cash flows, while benefits are represented by positive cash flows. We have
brought all costs and benefits for our example back to present value. Notice again that
the discount rate for year O (used to accumulate all development costs) is 1.000 be-
cause the present value of a dollar in year (0 is exactly $1.

chapter Elavan 4325

CEC O-O0- i VeSS et
{(ROI) analysis a tachniqua
that compares the lifatime
profitability of attarnative
salutions.

net present value an
analysis tachnigue that com-
pares the annual discountad
costs and banefits of altema-
thie solutions.

4316

Part Two

Systems Anclysis Methods

Finally, practice the presentation in front of the most critical audience you can as-
semble. Play your own devil's advocate, or, better vet, get somebody else to ralse crit-
tcisms and ebjections. Practice your responses to these issues

Conducting the Formal Presentation Afew additionnl guidelines may improve
the actual presentation:

= Dress professionaily The way you dress influences people. John T Malloy's
books, Dvess for Success and The Woman's Dvess for Success Boolk, are excel
lent reading for both wardrobe advice and the results of studies regarding the
effects of clothing on management.

» Avold using the word "T" when making the presentation. Use “vou” and
“we” to assign ownership of the proposed system to management.

= Mailnetain eye contact with the group and keepr an v of confidence. If you
don't show management that you believe in your proposal. why should man-
agement belleve in ft?

= Be auware of your own manperisms Some of the most common ornnerisms
include using too many hand gestures. pacing, and repeatedly saving “vou
know™ or *OK” Althongh mannerisms alone don't contradice the message,
they can distract the audience,

Sometimes while you are making a presentation. some members of the audience
may not het listening. This lack of attention may take several forms. Some peaple may
be engaged in competing conversations, some may be daydreaming, some miy be
busy glancing ar their watches, some who are listening may have purzled expressions,
and some may show no expression. The following suggestions may prove useful for
keeping people listening:

= Stofr talling, The silence can be deafening. The best public speakers know
how to use dramatic panses for special emphasis

= Ask a guestion, and let someone in the audience answer (£ This lnvolves
the audience in the presentation and is a very effective way of stopping a
Compenng conversatiom

= Ty a letle Bumor You don't have to be a talented comedian. But evervbody
likes to laugh. Tell a joke on yourself

= [se props. Use some type of visnal ald to make your point clearer Deaw on
the dhalkboard, Hlustrare an the back of your notes, or create a physical
model to mike the message easier to understand.

* Change your voice fevel By making your voice louder or softer, you force
the audience to listen more closely or make it easier for the andience to
hear. Either way. vou've made a change from what the audience was used to,
and that is the best way to get and hold attention.

= Do something wnexpected. Drop a book; toss your notes, fingle vour keys.
Doing the mnexpected is almost always an attention grabber

A formal presentation will usually include time for guestions from the audience.
This time is very important because it allows you to clarify any points that were un-
clear and draw additional emphasis to important ideas. It also allows the audience to
interact with vou. However, sometimes answering questions after a presentation may
be difficult and frustrating. We suggest the following guidelines when answering
questions:

= Always ansuer a guestion seriously, even {f you think ¢ {s a silly question,
Remember, if you make someone feel stupid for asking a “dumb”™ question,
thiit person will be offended. Also, other members of the audience won't ask
their guestions for fear of the same treatment.

= Answer both the individual who asked the question and the entive audi-
ence. If you direct all your attention to the person who asked the guestion,

450

Part Threa

Systems Deslgn Mathods

There are also disadvantages or pitfalls to using the prototyping approach. Most
of these can be summed up in one statement Prototyping encourages ilkadvised
shortcuts through the life oycle. Fortunately, the following pitfalls can all be avoided

through proper discipline:

* Prototyping encourages a return to the “code, implement, and repair” life
cycle that used to dominate information systems. As many companies have
learned. systems developed in prototyping languages can present the same
maintenance problems that have plagued legacy systems developed in lan
guages such as COBOL

+ Prototyping does not negate the need for the systems analysis phases. A pro-
totype can sobve the wrong problems and opportunities just as easily as a
conventionally developed system can.

= You cannot completely substitute any prototype for a paper specification. No
engineer would prototype an engine without some paper design. Yet many
information systems professionals try to prototype without a specification.
Prototyping should be used to complement, not replace, other methodolo-
gies. The level of detail required of the paper design may be reduced, but it
Is not eliminared.

= Mumerous design issues are not addressed by prototyping. These issues can
be inadvertently forgotten if you are not careful.

* Prototyping often leads to premature commitment to a design (usually the
first design that is developed).

* During prototyping. the scope and complexity of the system can quickly
expand beyond original plans, This can easlly get out of control.

* Prototyping can reduce creativity in designs. The very nature of any
tmplementation—for instance, a prototype of a report—can prevent
arlysts designers, and end wsers from looking for better solutions.

= Prototypes often suffer from slower performance than their thirdgenemtion-
language counterparts (albeit this difference is rapidly becoming a nonissue).

Prototypes can be quickly developed using many of the 4GLs and object-
oriented programming languages avallable today. Figure 12-3 depicts a prototype
screen for a system, Prototypes can be built for simple outputs, computer
dialogues, key functions, entire subsystems, or even the entire system. Each proto-
type system is reviewed by end users and management, who make recommenda-
tiens ihout requirements, methods, and formats. The prototype is then corrected,
enhanced, or refined to reflect the new requirements, Prototyping technology
mikes such revisions In a relatively straightforward manner. The revision and
review process continues untll the prototype Is accepted. At that point, the end
users are accepting both the requirements and the design that fulfills those
requirements.

Design by prototyping doesa't necessarily fulfill all design requirements, For
instance, prototypes don't always address tmportant performance issues and storage
constraints. Prototypes rarely Incorporate internal controls. The analyst or deslgner
must still specify these.

Objecr-Oriemed Design Object-oriented design (OOD) is the newest design strat-
egy. The concepts behind this strategy (and technology) are covered extensively in
Chapter 1B, “Object-Oriented Deslgn and Modeling Using the UML" but a simplified
introduction is appropriate here This technigue is an extension of the object-oriented
analysis strategy presented in Chapter 10, Figure 124 shows one of the many dia-
grams used in object-oriented design:

Object technologies and techniques are an attempt to eliminate the separation of
concerns about para and erocess. OOD techniques are used to refine the object

Systems Daslgn

The kev inputs to this task are the facts, recommendations, and opinions that are
solicited from varions sources and the approved system proposal from the decision
analtysis phase. The principal deliverable of the task is the application architecture and
distribution analysis that serves as a blueprint for subsequent detalled design phase
activities,

> Task 5.2—Design the System Database(s)

Typically the next system design task is to develop the corresponding database design
specifications. The design of data goes far beyond the simple layout of records, Data-
bases are a shared resource. Many programs will typically use them: Future programs
muy use databases in ways not originally envisioned. Consequently. the designer must
be especially attentive to designing databases that are adaprtable to future require-
ments and expansion.

The designer must ilso analyze how programs will access the data in order to
improve performance. You may already be somewhat familiar with various pro-
gramming data strucitores and their impact on performance and flexibility. These
Issues affect database organization decisions. Other issues to be addressed during
database design include record size and storage volume requirements. Finally,
hecause databases are shared resources, the designer st also design internal con-
trols to ensure proper security and disaster recovery techniques, in case data is lost
or destroyed,

The purpose of this task is to prepare techndcal design specifications for a data-
base that will be adaptable to future requirements and expansion While the sysTmas
ArarysTs who may participate in database modeling facilitate this task, the sysTmv
DEsIGNERS are responsible for the completion of this activity. The dara administrator
may perticipace (or complete) the diatabase design. Recognlze that the new system
most likely uses some portion of an existing database. This {s where the knowledge of
the database administrator is crucial Finally, sysred somoms may also participate when
asked to bulld a prototype database for the project

As is Hlostrated in Figure 12-6, a key lnput to this activity Is the application ar-
chitecture and distribution analysis decisions from the prior design task. The deliv-
erable of the task tncludes the resulting database schemas. An example of a database
schema was presented earlier, in Figure 12-2. A dafabase schema 1s the structural
model for a database. It 4s a picture or map of the records and relationships to be im-
plemented by the database. You will learn how to develop database schemas in
Chapter 14,

> Task 5.3—Design the System Interface

Once the database has been designed and possibly a protorype built, the systems de-
signer can work closely with system users to develop input, output, and dialogue
specifications. Because end users and managers will have to work with Inputs and
outputs. the designers must be careful to solicit their ideas and suggestions, especially
regarding formuat. Thetr ideas and opintons must also be sought regarding an easy-to-
learn and easy-to-use dialogue for the new system.

Transaction outputs will frequently be designed as preprinted forms onto
which transaction details will be printed. Reports and other outputs are usually
printed directly onto paper ar displayed on i terminal screen: The precise format
and layout of the outputs must be specified. Finally, internal controls must be spec-
ified to ensure that the outputs are not lost, misrouted, misused, or Incomplete,
Figore 12-8 is a sample output design You will learn how to design outputs in
Chapter 15.

For inputs. it is crocial to design the data caprure method to be used, For instance,
you may design @ form on which data o be input will be initally recorded. You want

Chapter Twelve

457

Systems Design Chapter Twelve

those vendors offer it. For Instance, some companies have standardized on
specific brands of microcomputers, terminals, printers, dacabase management
systems, network managers, data communications software, spreadsheets, and
programming langages. A little homework here can save vou a lot of unnec-
essary research

» Informabion services are primarily intended to constantly survey the marker-
place for new products and advise prospective buyers on what specifications
to consider. They also provide Informution such as the number of installations
and general costomer satisfaction with the products.

= Trade newspapers and periodicals offer articles and experiences on varlous
types of hardware and software that vou may be considering. Many can be
found in school and company libraries. Subscriptions (sometimes free) are
also available,

The research should also identify potential vendors that supply the products to be
considered. After the analysts have completed their homework, they will initiate con-
tact with these vendors. Thus, the analysts will be better equipped to deal with ven-
dor sales pitches after doing their research!

The purpose of this task is to research technical alternatives to specify important
criteria and options that will be important for the new hardware and/or sofrevare that
is to be selected. This task is facilitated by the project manager SYSTEM DESIGNERS are
responsible for the completion of this task. The designer may seek input from various
technlcal experts, incheding dati and database administrators, network administritors,
and applications administrators.

As is illustrated in Figure 12-11, a key input to this task is the business require-
ments statement (for software) established n the requirements analysis phase. The
designer will also obtain additional product and vendor facts from various sources.
Designers are careful not to get thelr information solely from a salesperson—not that
sales representatives are dishonest, but the number-one rule of salesmanship is to
emphasize the product’s strengths and deemphasize Its weaknesses. The principal
deliverable of this task includes a list of potential vendors, product options, and
technical criteria,

To complete this task, designers must conduct extensive research to gain im-
portant facts concerning the hardware/software product and vendor. They must be
careful to screen their varous sources. The sources are vsed to tdentlly potential
vendors from which the products might be obtained. This step may be optional if
your company his a commitment or contract to acquire certain products from @
particular source. Finally, the designer must review the product, vendor, and sup-
plier findings.

> Task 4.2—Solicit Proposals or Quotes from Vendors

The next task is to solicit proposils or quotes from vendors. If your company is com-
mitted to boying from a single source (IBM, for example). the task is quite informal,
You simply contact the supplier and request price quotations and terms. But most de-
cisions offer numerous altermatives, In this situation, good business sense dictates that
youl use the competitive marketplice to your advantage.

The solicitation task requires the preparation of one of two documents: a request
for gquotations (REQ) or a request for proposals (RFP). The request for quota-
tlons is wsed when you have already decided on the specific product but that produect
cin be acquired from several distributors. Its primary lntent s to solicit specific con-
figurations, prices, maintenance agreements, conditions regarding changes made by
buyers, and servicing. The request for proposals is used when several different ven-
dors and/for products are candidates and vou want to sollcit competitive proposals
and quotes. RFPs can be thought of as a superser of RFQs. Both define selection
criteria that will be used in a later validation.

463

request for gquitation
{RFY) aformal document
that communicates businass,
technical, and support re-
quirements for an application
software packane o a singla
vandor that has bean detar-
mined as being able to supply
that application package and
sarvices.

request for proposil
{RFP) a formal document
that communicatas businass,
technical, and support re-
quirements for an application
softwara package 1o vandors
that may wish to competa for
the sale of that application
packape and sarvicas,

Systems Daslgn

Many of the skills you developed in Part Two, such as process and data modeling,
can be very useful for communicating requirements in the RFP, Vendors are very
receptive to these tools because they find it easler to match products and options and
package a proposal that is directed toward your needs. Other important skills include
report writing (discussed in Chapter 11} and questionnaires (covered in Chapter 6).

> Task 5A.1—Validate Vendor Claims and Performances

Soon after the REPs or RFQs are sent to prospective vendors, you will begin receiving
proposal{s) and/or quotation(s). Because proposals cannot and should not be taken at
face value, claims and performance must be validated. This task is performed inde-
pendently for each propaosal; proposals are nor compared with opne another

The purpose of this task is to validate requests for proposals and/or quotations
recelved from vendors, Sysim nesicrers are responsible for the completion of this
activity. Onoe again, the designer muy involve the following individoals Io validating
the proposals: data and database administrators, network admindstrators, and
applicaitons administrators.

This task is triggered by the recelpt of proposalis) and/or quotationds) from
prospective vendors. The key outputs of this task are those vendor proposals that
proved to be validated proposals or claims and others whose clalms were not
valldated.

To complete this task. the designer must collect and review all facts pertalning to
the product requirements and features. The designer must review the vendor propos-
als and should eliminate any proposal that does not meet all the mandatory require-
ments. If the requirements were clearly specified. no vendor should have submitted
such a proposal, For proposals that cannot meet one or more extremely important
requirements, verify that the requirements or features can be fulfilled by some other
means. For each vendor proposal not eliminated, the designer must validate the
vendor clalms and promises against validation criteria. Claims abont mandatory,
extremely important, and desirable requirements and features can be validated by
completed gquestionnaires and checklists (inchoded in the RFP) with appropriate
vendorsupplied references to user and technical muanuals. Prondses can be validated
only by ensuaring that they are written into the contract. Finally, performance is best
validated by a demonstration, which s particulacly important when yon are evaluat-
ing sofrware packages. Demonstrations allow you to obtain test results and findings
that confirm capahilities, features, und ease of use.

> Task 5A.2—Evaluate and Rank Vendor Proposals

The validated proposals can now be evahuted and ranked The evaluation and ranking is.
in reality, another costbenefit analysis performed during systems development The eval-
uation criteris and scoring system should be established before the actual evaluation oc-
curs so 45 not to blas the eriterda and scorng o subconsciously favor any one proposal

The executive sponsor, ideally, should facilitate this task. SysTEm DEsIGNERS dre
responsible for the completion of this activity. The designer may lnvolve several
experts In evaluating and ranking the proposals, including data and database
admindstrators, retwork administrators, and applications administrators.

The inputs to this task include validated proposals and the evaluation criterla to
be wsed to rank the proposals. The key deliverable of this task is the hardware and/or
software recommendations.

The ability to perform a feasibility assessment is an extremely important skill re-
guirement for completing this task. Feasibility assessment techniques and skills were
covered in Chapter 11.To complete this task, designers must first collect and review
all details concerning the validated proposals. They must then establish an evaluation
criteria and scoring system. There are many ways to go about this. Some methods

Chapter Twolve 465

484 Part Three

distribmed system a
systam in which componams
ara distribtnted across
miuitinls locatons and
computer netwarks.

cenralized sysiem a
systam in which all compo-
nanie are hosted by & cantral,
il ser computer.

Systems Deslgn Mathods

> Distributed Systems

Today's information systems are oo longer monolithic, mainframe computer-based sys-
tems. Instead. they are built on some combination of networks to form distributed
systems. A distributed system is one in which the components of an information
system are distributed to multiple locations in a computer network. Accordingly, the
processing workload required to support these components is also distributed across
multiple computers on the network.

The opposite of distributed svstems are centralized systems. In centralized
systems, a central, multinser computer (usually @ mainframe) hosts all components
of an information system. The users Interact with this host computer via terminals
{or, today, a PC emulating a terminal), but viemally all of the actual processing and
work Is done on the host computer.

Distribured systems are inherently more complicated and more difficult to m-
plement than centralized sohutions, So why s the trend towarnd distributed systems?

= Modern businesses are already distributed, sind, thus, they need distributed
system solutions.

* Distributed computing moves information and services closer to the customers
that need them.

= Distributed computing consolidates the incredible power resulting from the
proliferation of personal computers across an enterprise (and sodery in gen-
eral). Many of these personal computers are only used to a fraction of their
processing potential when used as stand-alone PCs,

= In general, distributed system solutions are more user-friendly becanse they
use the PC as the wser interface processor.

* Persomal computers and network servers are much less expensive than main-
frames. (But admittedly, the total cost of ownership is at least as expensive
once the networking complexities are added in.)

There is 4 price to be paid for distributed systems. Network data traffic can cause con-
gestion that actually slows pedformance. Data security and integrity can also be more
easily compromised (n a distributed solution. Stll, there is no arguing the trend to-
ward distributed systems architecture. While many centralized, legacy applications
still exdst. they are gradually being transtormed into distributed information systems.

Figure 134 compares varlous disteibuted systems architectures. Conceproally, any
information system application can be mapped to five layers:

= The presentarfon layer is the actual vser interfice—the presentation of
inputs and outputs to the user

= The presentaiion logic layer Is any processing that must be done to generate
the presentation. Examples Include editing input data and formatting output
data.

* The applicarton logic fayer inclodes all the logic and processing required to
support the actual business application and rules. Examples include credit
checking, calculations, data analysis, and the like.

= The datae manipulation layer includes all the commands and logic required
to store and retrieve data to and from the database.

* The data laver is the actoal stored data In a database.

Figure 13-4 shows these concephual layers as rows. The columns in the figure llustraze
how the layers can be implemented in different disteibuted information system archi-
tectures. There are three types of distributed systems architecture:

* File server archifectire.
« Cllentsserver architecture.
« Imternel-based archifecture

Let's discuss each in greater detail.

Application Architecture and Modeling Chapter Thirtean

Internetbased models). A client/server system Is a solution lnwhich the presen-
tation, presentation logic, application logic, data manipulation, and data layers ure
distributed between client PCs and one or more servers,

The client computers may be any combination of personal computers or work-
stations, “sometimes connected” notebook computers, handheld computers (e.g.,
Palm or Windows Mobile Platforms), Web TVs, or any devices with embedded proces-
sors that could connect to the network (e 2. robots or controllers on a mamifacturing
shop floory, Clients may be thin or fit. A thin client is 4 personal computer that does
not huve to be very powerful (or expensive) In terms of processor speed and memory
because it only presents the interface (screens) o the user—in other words, it acts
only as a terminal Examples include Remote Desktop and X/Windows. In thindient
computing. the actual application logic executes on a remote application server. A far
client is a personal computer, notebook computer. or workstation that is typically
more powerful (and expensive) in terms of processor speed, memory, and stomge
cipacity. Almost all PCs are considered fat dients.

A server In the client/server model must be more powerful and capable than a
server In the fle server model. In fact. & mainframe computer can play the role of
server {n a client/server solution. More typlcal, however, are network servers running
client/servercapable operating systems such as UNIX, Windows Server 2003, or
Linux. Several types of servers may be used in a dient/server solution. These may
reside on separate physical servers or be consolidated into fewer servers:

* A database server hosts one or more shared databases (like a file server) b
itlso executes all database commands and services for lnformation systems
{(unlike a file server). Most datahase servers host an SQL database engine such
as Oveicle, Microsoft SOF Server or IBM DB2 Unfversal Detabase

= A wransaction server hosts services that ultimately ensure that all database
updates for a single business transaction succeed or fall as a whole, Examples
include IBM CFCS and BEA

* An application server hosts application logic and services for an informi-
Hon system. It must communleate on the front end with the elients (for pre-
sentation) and on the back end with database servers for data access and
opdate. An application server Is often Integrated with the transaction servern
Most application servers are based on either the £ORBA object-sharing stan-
dard or the Microsoft COM+ standard.

* A messaging of gronpware server hosts services for email, calendaring,
ind other work group functionality. This type of functionillty can actually be
integrated into informition system applications, Examples include Lotus Nares
ind Microsoft Exvchanpe Server

= A Web server hosts Internet or Intranet Web sites. It communicates with
fat and thin clients by returning to them documents (in formats such as
HTME) and data (in formats such as XMWL). Some Web servers are specifi-
cally designed to host eccommerce applications (e.g., 1BM's WebSpbere
Commerce Business).

Client/server architecture itself comes in several types, each of which deserves its
own explanation. Each of these C/S types s also compared to the others in Hgure 13-4

Client/Server—Distributed Pressntation Most centralized {or mainframe) com-
puting applications use an older character user interface (CUI) that 5 cumbersome
and awlward when compared to today's graphical vser interfaces (GUIs)y such as
Microsoft Windows and UNIX X/Windows (not to mention Web browsers such as
Mozilla Frrefox and Microsoft fnternet Explorer). As personal computers rapidly
replaced dumb terminals, users became increasingly comfortable with this newer
technology. And as they developed Familiarity and experience with PC productvity
tools such as word processors and spreadsheets. they wanted thelr centralized, legacy
computing applications to have a similar look and feel using the GUI model

487

clieni/server syswm a
distributed computing solution
in which the presentation,
presantation logic, application
logic, data manipulation, and
data lavers are distributed
betwean client PCs and one
oF More Saners.

ihin client & personal
computar that doas not have
o ba very powearful.

far client apersonal com-
puter, notebook computer, or
wark station that is typically
powearful.

database server a sarvar
that hosts one or maons
databazes,

ransaction server a
sarvar that hosts sarvices
which ensura that all data-
bass updatas for & Tansaction
succead or fall as & whola,

application server a
sarver that hosts application
logic and sarvicas for an
infarmation systam.

MESSARINE or Eroujrware
server asemnvar that hosts

services Tor groupware,

Web server a server that
haosts Intemet or intranet Web
sites.

490 Part Three

distribmied dars and
application a clientsaner
systam in which the data and
maripulation layvers are placed
an their own server(s), the
applcation logic i placedon
it own =erver, and the pre-
samation logic and presanta-
tion are piaced on the clants.
Also called three-tared, or
n-tiarad, ciientsanar
computing.

Systems Deslgn Mathods

systems, those data manipulation commands must be implemented on the cient. Dis-
triboted data dient/server solutions offer several advantages over file server solutions:

* There is much less network traffic because only the database requests and
the database records that are needed are actually transported to and from the
client workstations.

* Database integrity is easier to maintain. Only the records in use by a client
must typlcally be locked. Other clients can simultineously work on other
records In the same table or database

The client workstation must still be faicly robust *fat™) to provide the processing
for the application logic layer. This logic is usually written in a client/server program-
ming language such as Sybase Corporation’'s PowrerBuilder, Microsoft's Visnal Basic
NET or % Those programs must be compiled for and execute on the client To
improve application efficiency and reduce network traffic, some business logic may
be distributed to the database server in the form of stored procedures (discussed in
the next chapter),

The database server Is fundomental to this architecture. Datibxse servers store the
database, but they also execute the database instuctions directly on those servers.
The clients merely send their database instructions to the server. The server returns onlby
the result of the database command processing—not entire databases or tables. All high-
end database engines such as Chade and Microsoft SQL Server use this approach. A
distributed duta architecture may invobe more than one databsise server. Data may be
distributed across several database servers or duplicated on several database servers,

The key potential disadvantage to the two-tiered client/server is that the applica-
tion logic must be duplicated and thus matntained on all the clients, possibly hun-
dreds or thousands. The designer must plan for version upgrades and provide controls
to ensure that each client is running the most current relegse of the business logic. as
well as ensure that other software on the PC { purchased or developed in-house) does
no interfere with the business logic.

Client/Server—Distributed Date and Application When the number of clients
grows, two-tlered systems frequently suffer performance problems associated with
the inefficiency of executing all the application logic on the clients. Also. in muldple
user transaction processing systems (also called onfine application processing, or
AP, transactions must be managed by software to ensure that all the data assock
ated with the tmnsaction |s processed as a single unit. This generally requires a distri-
bution that uvses u multitiered client/server approach. A distsibuted data and
application client/server system is a solution in which (1) the data and data manip-
ulation layers are placed on their own server(s), (2) the application logic Is placed on
Its own server, and (3) only the presentation logle and presentation are placed on the
clients. This is also called tbreatiored, or ntiered, dient/seroer compuiing.

The three-tiered client/server solution uses the same database servers as those in
the two-tiered dpproach. Additionally, the three-tiered system introduces an apphica-
tion and/or transaction server. By moving the application logic to its own server, that
logic now only needs to be maintained on the server. The three-tiered solution is
depicted as a physical data flow diagram in Figure 13-9.

Three-tiered client/server logic can be written and partitioned across multiple
servers using languages such as Microsoft Visual Basfc NET and ©# in combination
with a transaction monltor, High-end tools such as Forté provide an even greater
opportonity to distribute application logic and data across a complex netwock. As
with the database server solution, some business logic could be distribured to the
database server in the form of stored procedures.

In a three-tiered system, the clients execute a minimum of the overall system's
components. Only the user Interface and some relatively stable or personmal applica-
tion logic need be exeaned on the clients. This simplifies client configuration and
Mmanagement,

492 Part Three

LHTAEt a sarvar nelwork
that uses Intamat tachnalogy
o integrate deskiop, work
g, and enterprise
computing.

Systems Deslgn Mathods

Very few new technolegies have witnessed as explosive a growth in business and
society as the Internet or the World Wide Web. The Internet extends the reach of our
information and transaction processing systems to lnclude potential customers, cus-
tomers, partners, remotely located emplovees. suppliers, the government. and even
competitors. During the late 1990s the Internet was largely being used to establish a
company's presence in a virtual marketplace and to disseminate public information
abvout products and services and provide a new foundation for customer-focused ser-
vice. Today, however, most businesses are focused on developing ecommerce solu-
tons that will allow customers to directly interact with and conduct business on the
Web (such as direct-toconsumer shopping). We've even seen the invention of the vir-
tural business, a business that *does business"entirely on the Web, such as Amazon.com
(books and media), ETrade (stocks and bonds), eBay (auctions), and Buy.com (elec-
tromics and appliances), One of the most Intrlguing debates is whether these “click-
and-mortar” virmal companies can toen a profit and actually compete with more
traditional “brick-andbmortar” compames—many of which are diversifying rapidly to
enter cybermarkets.

But the greatest potential of this Internet technology may actually be its applica-
tlon to traditional information systems ap plications and development on intranets. An
intranet is 1 secure network. usually corporate, that uses Internet technology to in-
tegrate deskrop, work groop, and enterprise computing into a single cohesive frame-
worde. Everything mns in (or at least from) a browser—your productivity applications
such as word processing and spreadsheets; amy and all traditional information systems
applications you need for your job (Anancials, procorement, hwman resources, etc.),
all e-mail, calendaring, and work group services (allowing, for example, virtual meet-
Ings and group editing of documents}, and of course all of the external Internet links
that are relevant to your job.

The appeal of this concept should not be hard to grasp. Each employee's “start
page” is a portad into all computer information systems and services he or she needs
to do his or her entire job. Because everything runs in a Web browser, there is no
longera need to worry about, or develop for, multiple different computer architectores
{Intel versas Motorela versus RISC) or worry about different desktop operating sys
tems. A phivsical data flow diagram for network computing is shown in Figure 13-10.
Notice that a Web server is added to the prior threetlered model. The DFD also shows
both eccommerce (businessto-consumer) and e-business (business-to-business)y dimen-
stons of network computing,

Does this all sound too good to be true? Something of 4 cyber-Camelot? By the
time you read this. our own institution will lave likely implemented its first mission
critical ebusiness information system. Purdue. like all enterprises, has a procurement
{or purchasing) fonction. We buy everything from pencils to furniture to computers
to radicactive isotopes—Hterally tens of thousands of different supplies. materials, and
other products. As we go to press, Purdue has redesigned its procurement system to
be a combination intranet/Internet/extranet application. Here's how it works:

The entire application runs lo & Web browser Any employee of the undversity,
once authenticated, can initiate a purchase requisition via his or her Web
browser {the intranet dimension). Employees can even “shop” for ltems from a
Web-mall of approved suppliers with which the university has standing con-
tracts (the Internet dimension). When a reguisition is submitted, it will be
smart enough to know who must approve it (at every level) based on cost and
type of items ordered. The system will be able to amtomatically check for avail-
able funds to pay for the purchase. Employees will be able to andit the elec-
tronic flow of the requisition through the approval process and into purchase
order status. Managers will be able to revise the approval flow to get additional
Input as needed. Most final orders will be transmitted electronically over a se-
cure businessto-businesses extranet between the university and its suppliers.

494 Part Three

distribmed relational
damabase management
system sofiware thal mpe-
miants distributed relational
databases.

Systems Deslgn Mathods

= The interface language of choice for the presentation and presentation logic
layers In network computing architectures is currently HTWEL or hypertext
matkup language. HTHE is wsed to create the pages that run in your browser,
Soon another player In this laver will dominate— XML the extensible murkup
language. This widely embraced standard allows developers to also define the
structure of the data to be passed to Web pages, a critical requirement for
Web-based ecommerce and intranet-based information systems. XHE may
eventually replace HTML or the two standards may merge into one very
powerful language.

* As with traditional lnformation systems, the data and data manipulation layers
will likely continue to be implemented with SQL database engines.

* Web browsers will continue o be important. In fact, Web browsers may uli-
mately be more important than your cholce of a desktop operating system. Is
it any wonder that Windowes, with each new version, looks and feels more
like a browser.

All of these Internet and intranet solutions Involve leading-edge technologies
and standards that have no doubt changed even since these words were written.
Technology vendors will undoubtedly play a significant role in the evolution of the
technology. However the specific rechnologies play out, we expect the Internet
and intranets to become the most common architectural models for tomorrow's
information systems.

So where are we ln our study of information technology architecture? You've
learned that several distributed systems and network options exist for modern infor-
mation systems. Most can be broadly classified as either client/server or network com-
puting architectures. To be sure, there Is much more for vou to learn about the
underlying communications technology, but that is the subject of at least one addi-
tonal book. The AIS/ACM/ATTP Model Corriculum for Undergraduare Information
Systems recommends that all information systems graduates complete at least one
course in Information technology architecture and one course In fundamental data
communications.

= Data Architectures—Distributed Relational Databases

The undertying technology of client/server and network computing has made it
possible to distribute datu without loss of control. This control is accomplished
through advances in distributed relational database technology, A relational data-
fase stores data in a tabular form. Each file is implemented as a table. Each field is
a column in the table. Each record in the file is a row In the table. Related records
between two tables (e.g., costomms and oroers) are Implemented by intentionally
duplicating columns in the two tables (in this example, cusToMER NUMEER is stored
in both the costosmeErs and oroers mbles). A disrribured relational database
distributes or duplicates tables to multiple database servers located in geographi-
cally important locations (such as different sales regions). The software required to
implement distributed relational databases is called a distribured relational data-
base management systern. A distributed relational database management
system (or Jdisiributed RDBMS) is a software program that controls access to
and maintenance of the stored data in the relational format: It also provides for
backup. recovery, and security. It is sometimes called a cllent/server database
MaAnageTRe Systent.

In a distributed RDBMS, the underlying datibase engine that processes all data-
base commands executes on the database server. This arrangement reduces the data
traffic on the network. This is a significant advantage for all but the smallest systems
(as measured In number of users). A distributed relational DBMS also provides more
sophisticated backup, recovery. security, integrity, and processing (although the
differences seem o erode with each new PC RDBMS release).

Application Architecture and Modeling Chapter Thirtean 501

level and then upload the code to the central computer for system testing, performunce
tuning, and production. Frequenty, the SDE could be interfaced with a CASE tool and
code generator to take advantage of process models developed during systems analysis,

Eventually. SDEs provided tools to develop distributed presentation client/server
systems. For example, the Micro Focus Dialog Manager provided COBOL Workbench
users with tools to build Windomesbased user interfaces that could cooperate with the
IS transaction mondtors und the malnfrime COBOL programs.

SDEs for Two-Tier Client/Server Today the typical SDE for two-tiered dient/server
applications (also called distributed diata) consists of a clientbased programming k-
guiage with bulltin SQL connectivity to one or more server database engines. Exam-
ples of two-tiered client/server SDEs include Sybase's PowwrBufider, Microsoft's
Visual Studio, and Borland's Dedpbd (Client/Server Edition), Typlcally, these SDEs
provide the following:

= Rapld application development (RAD) for guickly bullding the graphical user
interface that will be replicated and executed on all the client PCs.

» Antomatic generation of the template code for the above GUL and assockited
system events (such as mouseclicks, keystrokes, etc.) thut use the GUL The
programmer only has to add the code for the business logic.

= A programming language thar is complled for replication and execotion on
the client PCs.

= Connectivity (I the above language) for various relational database engines
and Interopembility with those engines. Interoperability is achieved by includ-
ing SQL database commands (e.g., to create, read, update, delete, and son
records) that will be sent to the database engine for execution on the server

= A sophisticated code testing and debugging environment for the client.

= A system testing environment that helps the programmer develop, maintain,
and run a reusable test script of vser data, actions, and events against the
complled programs to ensure that code changes do not introduce new or
nnforeseen problems.

= A report writing environment to slmplify the creation of new enduser
reports off a remote database.

= A help authoring system for the client PCs.

Today most of these tools come in the bundled SDE. bat independent software
tool vendors have emerged to produce replacement tools that often provide still
greater functionality and/or productivity than thoese provided in the basic SDE. To
learn more about such add-on tools, search the Internet for Programmers Paradise, a
software development tool Web storefront.

Some of the process logic of any two-tlered client/server application can be off-
loaded to the database server in the form of stored procedures. In this case, stored
procedures are written in a superset of the SOQL language. These procedures are then
“cilled” from the cllent for execution on the server. Different experts seem to love or
hate stored procedures. On the plus side, stored procedures can be made to better en-
force data integrity in database tables. They are rensable and verifiable, On the nega-
tive side. they blur the distinction berween the application and data manipulation
livers of our framework—they are application logic that executes on the database
servers. Many designers prefer a more cohesive design strategy called clearn lavering.
Clean layering reguires that the presentation. application, and data layers of an
application be physically separated. Clean layering is sald to allow components of
each layer ta be revised and enhanced without affecting other layers in the systenw

5DEs for Multitier Client/Server The current state of the art in enterprise appli-
cution development is occurring in SDEs for threetiered (and bevond) client/server
architectures. Unlike two-tered applications, n-tiered applications must support more
than 100 users with mainframelike transaction response nme and throughpur, with

clean layering a dasign
stratagy that e quires theat
presantation, application, and
data layars ba physically
saparatad,

506 Part Threa Systams Design Mathods

per se. Instead, they show highways over which data flows may truvel in either direc-
ton. Also, petwork topology DFDs indicate the following

L

Servers asd thelr pbysical locatfons—Servers are not always located at the
sites indicated on a location connectivity diagram. Network staff access to
servers Is usilly an issue. Some network management tasks can be accom-
plished remotely, and some tasks also reqguire hands-on access,

Clients and thefr physical locations—In this case, the location connectivity
dingram is useful in identifying “groups™ of like users (e.g., ORDER CLERES, SALES
REPRESENTATIVES, etc.) Who will be serviced by similar clienrs. A single proces
sor should represent the entire group at a single location. The same group
may be replicated in multiple locations. For example, yvou would expect each
satEs rEGION to have similar types of employees,

Processor specifications—The repository descriptions of processors can be used
to define processor spedfications sach as RAM, hard-disk capacity, and display:
Transpart protocols— Connections are labeled with transpont protocols deg.,
TCPAP) and other relevant physical parameters.

The network topology DFD can be used to either design a computer network or

document the design of an existing computer network. In either case, the network is
being modeled so that we can subsequently assign Information system processes, data
stores, and data flows o servers on the network.

> Data Distribution and Technology Assignments

The next step is to distribute data stores to the network processors. The required log-
ical data stores are already known from systems analysis—as data stores on the logical
DFDs (Chapter 9) or as entities on the logical FRDs (Chapter 8). We need only deter-
mine where each will be physically stored and how they will be implemented.

To distribuite the data and assign thelr implementation methods, the developers

utilize three resources:

If available, the data disteibution matrices from systems analysis (Chapters 8
and 9) model the data needs at business locations from a technology inde-
pendent perspective,

If an enterprise information technology architecture exists, that architecture
likely specifies the database vision and technologies that should be targeted.
The advice of data and database administrators should be solicited to deter-
mine what's in place, what's possible, and what impact the database may
have on the overall system.

The distribution options were described eardier in the chapter and are summarized

as follows;
¢ Store all data on a sftagle server In this case, the database (consisting of

multiple tablesy should be named, and that named database and its lmplemen-
tation method (e.g.. Oracle: dhmemberServices) should be added to the phys
fcal DFD and connected to the appropriite processor

Stove specific tables on different servers. In this case, and for darity’s sake,
we should record each table as a data store on the physical DFD and con-
nect each to the appropriate server

= Stove subsets of specific tabiles on different servers, In this case we record the

tahles exactly as above except that we Indicate which tables are subsets of the
tistal set of records, For example, the label DB2: orners Tans (REG sumser) would
indicate that a subset of all orders for a region is stored in a DB2 database table.
Replicate (duplicate) specific tables or subsets on different servers. In this
case, replicated data stores are shown on the physical DFD. One copy of any
replicated table is designated as the smaster, and all other coples are desig-
nated @5 COPY OF REPLICANT,

508 Part Thres Systams Design Mathods

deslgn units, you must assign an implementation method. the SDE that will be used 1o im-
Mement that process. You must also assign implementation methods to the data flows,
SoundStage's Member Services system will be implemented with & multitiered
client/server and network computing architecture. A sample DFD for one event to be
assigned to a client is shown in Fligure 13-13. Notice that the data stores are shown

Frapeemisd Fomm: Bk

i M] romea o) ‘
|
|

i, I
2, | i
—_— feistetl | LTI]
‘ . !4_ B0L Aeed: Origara Deweolroer |'l:|| S v

i
i
|
%
3
3

Mo S Sensc
| | L4 | P T e |-m-(—i-- >
| ————— —
¥y | <
i BOL Aesd Predustd
Salga Eml i
mmrmqg;ﬁmﬁm 1__. WaiPraducily |
e | : o SaL B
- I-— B0 Fad Pracrtolabibly | | P
i | - i da—
—— ; P :
i S IcMm [oL eew evemenommt
Orderec naus Sy | _ EOlpddw DdeFoounblen 0
|
w SemitisPro e Cy
:r_ |
| .
—VEREE 806 Rams FrodusiPrce
| .
Prgmenteeinadiedd mo e - Tolnrerfhice ENoTo ot
P ¢ ek ey T
""""" T WBAM Fews Crediftatngarilion |
FiatinCvoe | | l O TR dotecta_Nucors
‘ T A st et ot I
S Ly FkaiSkdlal |
- oy Y.
mll—] ! S EaL |] Wik AL
E Fiarm: PickingTicias | Pebassorer s L] | e (T Ermdilbimtefuchis | go) | MerlssbiECmls
I 1
| |
N ey — ;;
| [O] R = S it g
o0 e Te—— T pal Updabe: Aciheey Recont
! b| i] B0 Swrar
S0 Ve, Apresrmtani
£ _ . . Ty
. FIGURE 13-13 A Physical DFD for an Event)

Databass Design Chapter Fourtean 521

those courses will cover many more relevant technologies and techniques than we
can cover In this single chapter.

That said, we will first Introduce (or, for some of you, review) the database con-
cepts and Issues that are pertinent to the systems analyst’s responsibilities in informa-
tion system design. Although the chapter focus is on database design. experienced
readers will immediately notice that many of the concepts transcend the cholce
hetween files and databases.

= Fields

Fields are common to both files and databases. A Feld is the physical implementation
of a data artribute (introduced in Chapter 8). Fields are the smallest unit of meaning
Sfuf data to be stored in a file or database. There are four types of flelds that can be
stored: prémary keys, secondary keys, forelgn keys, and descripnive flelds.

A primary key is a field whose values identify one and only one record inoa data
entity. (This concept was Introduced previously in Chapter 8.) For example, custoMes
wumBeR uofquely identifies a single costomm record In a database, and orpEr rusBER
uniguely identifies a single oapm record In a database. Also recall from Chapter 8
that a primary key might be created by combining two or more fields (called a
concatomated ke,

A secondary key is an alternate identifier for a database. A secondary kev's
value may identify either 1 single record (as with o primary key) or 4 subset of all
records (such as all orpers that have the opper staros of back-ordiered), A single Ale in
i database may have only one primary key, but it may have several secondary keys. To
facilitate searching and sorting, an fmdex s frequently created for keys.

Foreign keys (also introduced in Chapter 8) are pointers to the records of a dif-
terent file in a dutabase. Foreign kevs enable the database to link the records of one
type to those of another tvpe, For example, an onom 1ecorn contains the forelgn key
cUSTOMER MUMBER to “ldentify” or “point to” the custoser recond that is associated with
the orpm. Notice that a foreign key in one file requires the existence of the corre-
sponding primary Eey In another table—otherwise, it does not point to anything!
Thus, the cosrosm suvser In an oroms file requires the existence of a cosTos s nuUMBER
in the cusrosmess file in order to link those files

A descriprive field is any other (nonkey) field that stores business dara. For
example, given an evrLoves file, some descriptive fields include evproves MaME, DatE
HIRETY, PAY HATE, i YEARTO-DATE WAGES,

The business regquirements for hoth keys and descriptors were defined when you
pedformed data modeling in systems anmalysis (Chapter 8),

> Records

Felds are organized into records. Records are common to both files and databases. A
record is a collecton of fields armnged in a predefined format. For example, a cos
Tos® REcoRn may be described by the following fields (notice the common notation):

CUSTOMER { MUMBER, LAST-MAME, FIRST-MAME, MIDDLEINITIAL, POSTSOFFICE-BOX-MUMBER, STREET-
ADDRESS, CITY. STATE, COUNTRY. POSTALCODE, DATECREATHD. DATEORLAS FORDER . CREDIT-RATIMNG,
CRIDIT-LIMIT, BALANCE, BALAMCEPASTLOUE . ..}

Druring systems destgn, records will be classified as either fixed-length or variable-
length records. Most database technologles impose a fixedfength record structiire,
meaning that each record instance has the same fields, same number of fields, and
same logical size. Some database systems will, however, compress unused fields and
values to conserve disk storage space. The database designer must generally under-
stand and specify this compression in the database design.

In your prior programming courses (especially COBOL), you may have encoun-
tered pariablodength record structures that allow different records in the same file to

field the smallest unit of
meaningful data to ba storad
in & file or databasa.

primary Key a field or
group of figlds that uniqualy
identifics a record.

secondary key a field that
idantifies a singls record or &
subsat of ralated records.

foreign key a fisld that
points 1o records in a difierant
fila in & databasea.

descripiive feld a nonkey
fiald.

record a collection of fialds
arranged in & predatamined
format.

522 Part Three

blocking factor the num-
ber of logical records includaed
in & single read or write
operation.

file the sat of all ocourrancas
of a given record structure.

table the relational databass
equivalant of a fila.

maser file a tabla
containing records that are
relatively permanant.

transacuon fle atable
containing records that
describe business avents.

docmednt file a tabla
containing historical data.

archival file a table con-
taining master and fransaction
file records that have bean
daeletad from online storage.

table look-np file atabls
containing relatvaly static
data that can be shared

audii file atable containing
records of updates to other
filas.

Systems Deslgn Mathods

have different lengths. For example. a vardablelength order record might contain cer-
tain common felds that occur once for every order (e.g., ORDER NUMHER, DRDER DATE,
and custosmen womeer) and other fields that repeat some number of times based on the
number of products sold on the order (e.g., PrODUCT NOMBER And QUANTITY ORDERED).
Database technologies typically disallow ({or at least discourage) variahle-length
records. This is not a problem, as we'll show later in the chapter.

When a computer program reads a record from a database, it actually retrieves
a group o ook (or page) of records at a time. This approach minimizes the num-
ber of actual disk accesses. A blocking factor is the number of Iogéical records in-
cluded in a single read or write operation (from the computer's perspective). A
block is sometimes called a physical record Today, the blocking factor is usaally
determined and optimized by the chosen database technology, but a qualified dara-
base administrator may be allowed to fine-tune thar blocking factor for perfor-
mance. Database mining considerations are best deferred to a database course or
textbook.

> Files and Tables

Similar records are organized into groups called #es. In database systems, a file is fre-
quently called a rabfe. A file is the set of all occurrences of a given record structure.
A table is the wlarional database equivalent of a file. Relational database technology
will be introduced shortly. Some types of conventional files and tables are;

= Master files or tables contain records thar are relatively permanent. Thus,
ance a record has been added to a master file, it remains in the system indef
initely. The values of fields for the record will change over its lifetime, but
the individual records are retained indefinitely. Examples of master fles and
tables include customers, PropucTs, and suPPLERS.

* Transaction fles or tables contain records that describe business events.
The data describing these events normally has a lmited useful lifetime. For
instance; an mvoece record is ordinarily useful until the invoice has been paid
or written off as uncollectible. In Information systems, tmansaction records are
frequently retained online for some period of time, Subsequent to their use-
ful lifetdme, they are archived offline. Examples of transaction files lndude
DRDERS, [MVOICES, BEQUISITIONS, and REGISTRATIONS,

* Document files and tables contain stored coples of historical data for easy
retrieval and review without the overhead of regenerating the document.

= Archival files and tables contain master and transaction file records that
have been deleted from online storage. Thus, records are rarely deleted; they
are merely moved from online storage to offline storage. Archival require-
ments are dictated by government regulation wnd the need for subsequent
audit or amalysis,

* Table look-up files contain relatively static data that can be shared by appli-
cations to maintain consistency and improve performance. Examples Inclade
SALES ‘TAX TABLES, ZIP CODE TABLES, ind INCOME TAX TARLES,

» Andit files are special records of updates to other files, especially master and
transaction files. They are vsed in conjunction with archival files to recover
“lost” data. Audit trails are typically built into better database technologies

In the not-too-distant past, file design methods required that the analyst specify
precisely how the records in a database should be sequenced (called file arganiza-
tony) and accessed (called fife access). In today’s database environment, the database
technology itself usually predetermines andsor limits the file organization for all tables
contained in the database. Once again, a trained database administrator may be given
some control over organization, storage location, and access methods for the purpose
of performance tuning.

Databass Design Chapter Fourtean 523

= Databases

As described earlier, stand-alone, application-specific files were once the lifeblood of
most information systems; however, they are being slowly but surely replaced with
databases. Recall that a database may loosely be thought of as a set of Interrelated files.
By Interrelated, we mean that records in one file may be associated or linked with the
records in a different file.

For example, a stunest record may be linked to all of that student's covmse records,
In turn, 3 cousse recond may be linked to the stonent records that indicate completion
of that course. This two-way linking and flexibility allow us to ellminate mose of the
need to redundantly store the same fields in the different record types. Thus, in a very
real sense, multiple files are consclidated into a single file—the database.

The idea of relationships between different collections of data was introduced in
Chapter 8. In that chapter, you learned to discover a system's dara requirements and
model those requirements as entitfes and relationsiips. The database now provides
tor the technoical implementation of those entities and relationships.

So many applications are now being built around database technology that data-
base design luas become an important skill for the analyst. The history of information
systems has led to one inescapable conclusion:

Dara is a resonurce tharl must be comtrolled and managed’

Date Architecture Data becomes a business resource in a database environment.
Information systems are bullt around this resource to give computer programmers
and end users flexible access to data. A business's data architecture defines how
that business will develop and use both files and databases to store all of the organi-
zaton's data, which file and database technology is to be used, and what kind of
administrative structure will be set up to manage the dita resource.

Figure 142 {llustrates the data architecture into which many companies have
evolved. As shown in the figure, most companies still have numerous conventional
fle-based information system applications, most of which were developed before the
emergence of high-performance database techoology. In many cases, the processing
efficiency of these files or the projected cost of redesigning these files has slowed
conversion of the systems to database,

As shown in Figure 142, operational (or transactional) databases are devel
oped to suppaort day-to-day operations and business transaction processing for major
information systems, These systems are developed (or purchased) over time to re-
place the conventional files that formerly supported applications. Access to these
databases is limited to computer programs that use the DBMS to process transactions,
muintain the data, and generate regularly scheduled manigement reports. Some query
access may also be provided,

Many information systems shops hesitate to give end users access to operational
databases for queries and reports, The volume of unscheduled reports and gueries
could overdoad the computers and hamper bosiness operations that the datibases
were intended to support. Instead, data warchouses are developed, possibly on sepa-
rate COMpUters.

Data warehouses store data extracted from the operational databases. Query
tools and decision support tools are then used to generate reports and analyses off
these data warehouses. These tools often allow users to extract data from both con
ventlonal files and operational databases. This Is sometimes called dara mining,

Figure 14-2 also shows personal and work growp (or deparimentaly databases,
Personal computer and local nerwork database technology has rapidly matored to al
low end users to develop personal and departmental databases. These databases may
contain unique data, or they may import data from conventional files. operational
darabases, and/or data warehouses. Personal databases are built using PC database
technology such as Access, dBASE and Visual FoxPro,

data archiecinre a
definition of how files and
databases are to be

devalopad.

operationil dmabase a
database that supports
day-to-day operations and
transactions for an informa-
tion systam. Ao callad
transactional database.

data warehouse a
database that storas data
axtractad from oparational
databazes.

530 Part Three

darabase schema a model
or blusprint represanting the
tachnical implameantaton of 2
databasa,

Systems Deslgn Mathods

> Goals and Prerequisites of Database Design

The goals of database design are as follows:

= A database should provide for the efficient storage, update, and retreieval of data,

* A database should be reliable—the stored data should have high integrity to
promote user trust in the data.

* A database should be adaptable and scalable to new and unforeseen require-
ments and applications.

* A database should support the business requirements of the Information system.

The system's logical data model—in our case, a fully attributed and normalized
entity relationship dizgram (ERD}—serves as the prerequisite. This mode!, from Chap-
ter &, ts reproduced in Figure 14-7. Bvery attribute o that model must be defined as to
its dara type. domain, and definlt These properties were ilso covered in Chapter 8.

> The Database Schema

The design of a database is depicted as a special model called a database schema. A
database schema s the physical model or blueprdnt for a database. It represents
the technical implementation of the logical data model. (Sysrem Architecr calls it a
Phrysical deta model)y

NOTE: We should acknowledge some potentially confusing terminology here
We are using the terms logical and plysfcal in a manner consistent with eardier
chapters in this book. Unfortunately, most darabase books use the terms concep-
tual (our logicaly and fogical (our physical). We apologize for this unavoldable
industry confusion

A relational database schema defines the database strocture in terms of tables,
keys, indexes. and Integrity rules. A database schema specifies details based on the
capabilities, terminology, and constraints of the chosen database management system.
Each DBMS supports different data types, integrity rules, and so forth

The transformation of the logical data model into a physical relational database
schema is governed by some falrly generdce rules and options. These rules and guide-
lines are summarized as follows:

I. Each fundamental, associative, and weak entity is Implemented as i separate
table. Table names may have o be formarted according to the naming rules
and size limitations of the DEMS. For example. a logical entity named samvem
croeren PRoDUCT might be changed to a physical table named thiMemberOrd
Prod. The prefix and compression of spaces is consistent with contemporary
naming standards and goidelines in modern programming languages.

o The prinury key is identified as such and implemented as an index into the
table.

. Each secondary key is implemented as its own index into the table.

¢. An index should be created for any nonkey attributes that were ldentified
as subsetting criteria requirements (Chapter 8).

d. Each foreign key will be implemented as such. The inclusion of these
foretgn keys implements the relationships on the data model and allows
tables to be joined in SQL and application programs

& Aftributes will be implemented with Aelds, These fields correspond o
columns in the table. The following technical details must usually be speci-
fied for each attribute. (These details may be automatically inferred by the
CASE tool from the logical descriptions in the data model.)

Field names may have to be shortened and reformatted according to
DBEMS constraings and tnternal rules. For example, in the logical data model,

532 Part Threa Systams Design Mathods

most attributes might be prefaced with the entity name (e.g., MEMEER NAME).
In the physical database. we might simply use rame.
L. Data type. Each DBMS sopports different data types and terms for those

iv,

data types. Figure 14-8 shows different physical data types for a few dif
ferent database management systems.

Stze af the field. Different DBMSs express precision of real numbers dif
ferently. For example, in SQF Sereer a size specification” of ~ovmm (3,2)
supports 4 range from —9.99 (o 9.99,

suer oF sor voin Must the field have a value before the record can be
committed to storage? Again, different DBMSs may require different
reserved words to express this property. By definition, primary keys can
never be allowed to have s values.

Dorradns. Many database management systems can automatically edit
data to ensure that flelds contain legal data. This can be a grear benefit
to ensuring data integrity independent from the application programs. 1f
the programmer makes a mistake, the DBMS catches the mistake, But
for DBMSs that support data integrity. the rules must be precisely speci-
fied in a language that is understood by the DBMS.

Pefault. Many database management systems allow a default value to be
automatically ser in the evenot that & user or programmer creates a
recond containing fields with no values. In some cases, ML serves as
the defult

Again, many of the ibove specifications were documented as part of a
complete loglcal data model. If that diata model was developed with a
CASE tool, the CASE tool may be capable of automatically translating
the data model into the physical language of the chosen database
technology.

2. Supertype/subtype entities present additional options as follows:

Each supertype and subtype can be implemented with a separate table

fall having the same primary key).

Alternatively, if the subtypes are of sfandlar aize and data content. a4 database
administrator may elect to collapse the subtypes into the sapertype to
create a single table. This presents certain problems for setting defaults and
checking domains. In a high-end DBMS, these problems can be overcome
by embedding the default and domain logic into stored procedures for

the rable,

Alternatively, the supertype's attributes could be duplicated in a table for
each subbype.

d. Some combination of the above options could be used.

o

fr.

[

3. Evaluxte and specify referential integrity constraints {described in the next section).

The Soundstage database schemi was amtomatically generated from the logical
idata model by our CASE tool Spstem Architect 1t s fllustrated in Fgore 149, We call
vour attention Lo the following aumbered bullets on the figure:

@ Each rounded rectangle defines a table. The named rows in the rectangle
actually correspond to the named columns that will be created for the

table.

€ SoundStage has defined a standard naming convention for tables and
columns, The conventions are based on the progamming guidelines called
Hungarian Notation. BEach object is named without spaces, dashes, or under-
scores. And each object is given a prefix thar defines all similar objects. For
database objects, the following standards were used:

thi
col

Indicates a database tahle.
Indicates a column in the rable.

5146 Part Three

referential integrity the
assurance that a foraign-key
walua Iin ong tabla has a
mafching primary-key value in
the related table.

Systems Deslgn Mathods

Domaln Integrity Appropriate controls must be designed to ensure that no fleld
takes on a vilue that Is outside the range of legal valnes. For example, if Graoe pomt
averack is defined to be a number berween 0.00 and 4.00, then controls must be
implemented to prevent negative numbers and numbers greater than <400,

Mot long ago.application programs were expected to perform all data editing. To-
day, most database management systems are capable of enforcing domain rules. For
the foreseeable future, the responsibility for data editing will continue to be shared
between the application prograns and the DBEMS

Referential Integrity The architecture of relational diatabases implements relation-
ships between the records in tables via foredgn beps The use of foreign keys Increases
the flexibility and scalability of any database, bt It also Increases the risk of referen-
tial integrity errors. A referential integrity error exists when a foreign-key value in
one table has no matching primary-key value in the related table. For example, an m-
voices table usually includes a forelgn key, costomer moMeEer, to “reference back " the
matching custosm numBER primary key in the custosmms table. Whit happens if we
delete a customer record? There is the potenifal that we may have mwwvolce records
whose custosm suseer has no matching recond in the costomess table. Essentially, we
lrave compromised the referential lntegrity between the two tahles.

How do we prevent referential Integrity errorst One of two things should hap-
pen. When considering the deletion of customen records, either we should automati-
cally delete all invorce records that have a matching costosm vomeen (which doesn't
make much business sense) or we should disallow the deletion of the cosromer recorc
until we have deleted all mvorce records.,

Referential integrity is specified in the form of deletion rules as follows*

= No pestriction—Any record in the table may be deleted withour regard to
any records in any other tables

In looking at the final SoundStage data model, we could not apply this
rule to any table.

= DeferexCascade—A deletion of i record In the table must be ntomatically
followed by the deletion of matching records in a related table. Many rela-
tional DBMSs can automatically enforce delete:cascade rules using triggers.

In the SoundStage data model, an example of a valid delete:cascade rule
would be from MEMBER ORDER 10 MEMBIR ORDERED PRODUCT. In other words, if
we delete a specific omper, we should antomatically delete all match-
ing MEMBER oRDERED PRODUCTS for than order

= Defere-Restrict—A deletion of a record in the table must be disallowed until
any matching records are deleted from a related table. Again, many relational
DBMSs can sutomatically enforce delete:restrict nales.

For example. in the SoundStage data model. we might specify that we
should disallow the deletion of any propuct as long as there exists mevmm
onpERED PRODUCTS for that product.

¢ DeleteSer null—A deletion of a4 record in the tible must be antomatically
followed by setting any matching keys in a related table to the value s
Again, many relational DBMSs can enforce such i rule through triggers.

The Delete:Set null optlon was oot used in the SoundStage data model It
is used only when you are willing to delete a master table record but you
don't want to delete corresponding transaction table records for historical
reasons. By setting the foreign key to wuny, you are acknowledging that the
record does not point back to a corresponding master record, but at least
you don't hiave it pointing to a nonexisting master record.

The final darabase schema, complete with referential integrity rules, is ilustrared in
Figure 14-10. This is the blueprint for writing the SQL code {or equivalent) to create
the tables and data structures.

2E borwrle dgeable database studetts khera that thete ade also iksettioh abd upsdate tules for tefeienta] mteghity. & full dis
cussioh af these fules is deferred o dambase conrses nhd pexthooks.

554 Part Three

"FIGURE 15-3

T'ﬂ::i-:ﬂj External
| Document

abular omtpu an output
that presants information as
columng of et and numbers.

poned ouipul an output
that presents texd and num-
bars in dasignated areas of 8
farm ar scraen.

Systems Deslgn Mathods

/@\1 SeundSigs Emerminment oo PUTROIELASIER

Thie following number must Appesr on 8l rslated corespondences,
ahipping and Invalces:
PO, NUMBER: T12812

Toe ShipTo:
CES Fex Video Diemibulicn SoundStegs EnterEnment Clut
2E253 Radas DA Shipping/Recating StEtion
Holyywood, CA Bulkding A
2830 Darsin Drlva
Indianapoila. IM 45213
P.0. DATE AEQUISTIONER SHIPVIA E:0.B. POINT TERMS
£3-0d Loe uPs Hat 20
ik DESCAIFTION URIT PRIGE TOTAL
20000 SHlar Wans: The Phantoim Menacs (VHS) 15.00 219,800.00
000 Sitar Wars: The Prarbam Manacs (DD Doy Dighal 18.88 58.970.00
B0 Star Wars: The Phantom Meneos (DVD DTS 24.00 1249500
B0 SHlar Wars: The Phantom Menscs (PlayStatian 1 16,09 195, 430.00
400 Star Wars: The Phantom Menscs Soundireck (GO 16,88 79600
a0 Sitar Wars: The Phanion Menaca Theatar Poster 4.08 2,884 00
Saibictal 7 75 00
Tax a7 BER25
Tootal 57580485

1. Ploasa send mocoplas o your rwolns.

& Erfer thiy DR IN A0omancs wih M pnces, mms, ol memog, B
spaa Ry tone Dsbed sh o, =

3 Ploasa rofly us mmeciaielyIFy o an onabda ioshio e peaifad.

Printed Output The most common medium for computer outputs is paper—
printed ourput. Currently, paper is the cheapest medium we will survey. Although
the paperless office has been predicted for many years, It has not yet become a reality
Perhaps there is a psychological dependence on paper as a medm. In any case,
paper output will be with us for a long time.

Printed output may be produced on Impact printers, but Increasingly it s printed
ot laser printers, which have become increasngly cost-effective. Internal outputs are
typlcally printed on blank paper (called steck paper). Exterpal outputs and turn-
around docoments are printed on prefrrinted forms The layout of preprinted forms
(such as blank checks and W-2 tax forms) is predetermined. and the blank documents
are massproduced. The preprinted torms are run through the printer to add the
variable business data (such as your pavcheck and W-2 tax form).

Perhaps the most common format for printed output is tabular Tabular ouwpuot
presents information as columns of text and oumbers. Most of the computer prograns
vou've written probahly generated tabular reports. The sample detailed, summary, and
exception reports Hlusteated earier in the chapter (Figure 152) were all tabular.

An alternative to tabular output is zoned ourput. Zoned output places text and
numbers into designated areas or boxes of a form or screen. Zoned ougpue s often used

Output Design and Prototyping Chopter Fiftean 555

SoundStage Entertainment inwicans. 01281
Club
2630 Darwin Drive -Bldg B
Indianapolis, IN 45213
317 496 0988 fax 317 494 (999 fNVﬂfCE
Customar
MNamea EATRINA SMITH Due Data 22403
Addess 318 DURACDR Order Mo. 346810
City LITTLE ROCK Stata AR ZIP 42653
Phone B2-430-4545 Paymaent Amt
" Distarh and rakim top podion Wil paymant
Qaty Descriptian Unit Price TOTAL
1 EAGLES HELL FREEZES OVER (DVD DD) $19.99 $189.99
1 THE GRAMMY BOX (CD) *=“COUNTS AS 3 CREDITS 22199 $21.99
1 GONE WITH THE WIND DIRECTORS CUT {DVD DS) 31799 s1T.oa
1 SIXTH SEMSE (VHE) FREE 55 CR $0.00
1 A BUG'S LIFE (VHS) FREE 8& CR §0.00
1 MASCAR 2000 (VHS) ™ CLOSEOUT (NO 55 CR) $9.99 $9.99
10 SOUNDSTAGE CREDITS WERE USED TO PAY
FOR PART OF THIS PURCHASE
WE APPRECIATE THE FINE MANNER IN WHICH YOU
HAVE PAID ON YOUR ACCOUNT. IN APPRECIATION
WE HAVE ADDED 7 SOUNDSTAGE CREDITS TO
YOUR ACCOUNT
YOU CANEARN T CREDITS BY PAYING THIS
INVOICE BY THE DUE DATE
SubTotal £69.96
Paymant Details Shipping & Handling $7.00
Cash Taxes 5295
Chack
Cradit Card TOTAL $78.91
Namee
CC# Office Lisa Only
Expires
Flaase return top portion imcoice with payment. Make checks payables o
SounadSiage Emertainment Cub.
RETURN TOP PORTION WITH PAYMENT
FIGURE 15-4 Typial Turnaround Document

Output Design and Prototyping

Without such precise requirements, discovery prototypes muy exist that were created
during requirements analysis. In either case, a good requirements statement should be
avallable in some formeat.

Step 2: Specify Physical Output Requirements Recall thar the dedsion anulysis
prhase should have established some expectation of how most outpant data flows will
eventmilly be implemented. Relative to outputs. the decisions were made by deter-
mining the best medium and format for the design and implementation based on:

= Typeand purpose of the output.
= Operational, technical. and economic feasibility,

Because feasibility is important to more than just outputs, the technigues for eval
uating feasibility were covered separately (in Chapter 10), The frst set of criteria,
lhowever, is described in the following list:

= Isthe output for internal or external use?
= Ifit's an internal output, is it a detalled, summary, or exception report?
= Ifit's an external report, is it a wmaround document?

After assuring yourself that you understand what type of report the output is and how
it will be used. you need to address several deslgn issues:

I. Whar implementation method would best serve the output? Various methods
were discussed eardier in the chapter You will have to understand the purpose
or use of the ourput 0 determine the proper method. You can select more than
one method for a single output—for Instance, screen output with optional
printout. Cleary, these decisions are best addressed with the system users.

a. What would be the best format for the report? Tabular? Zoned? Graphic? Some
combination?

. If a printout is desired, you must determine what type of form or paper will
be used. Stock paper comes in three standard sizes (all specified in inchesy:
Bl X 11,11 ¥ 14, and 8% ¥ 14 (nches. You need to determine the capabilities
and lEmitations of the intended printer.

¢ For screen output, you need to understand the Bmitations of the vsers’ display
devices. Despite the increase in larger 19- and 21-4nch high-resolution
moenitors, most users still have 15- and 174nch displays and have their screen
resolution set as low as 640 X 480 pixels (espectally as you reach out directly
to constmers in e-commernce applications). It is still recommended that screen
outputs (including forms or pages within your application) be designed for
the luwest common denominator.

i Form images can be stored and printed with modern laser printers, thereby
eliminating the need for dealing with forms manufacturers in some businesses.

2. How frequently is the output generated? On demand? Hourdy? Daily? Monthlv?
For scheduled outputs, when do system users need the repor?

. Users generate many reports on demand. Tt can be helpful to use automated
e-mail to notify users that new versions are availahle,

I 1F reports are to be printed by the Information services department, they must
be worked into the Information systems operations schedule. For instance, a
report the system user needs by 200 am. on Thursday may have to be
scheduled for 5:30 am. Thursday. No other ime may be available.

3. How many pages or sheets of output will be generated for a single copy of a
printed cutput? This information may be necessary to accurately plan paper and
forms consumption.

4. Does the output require multiple coples? If so0, how many?

. Impact printers are usually required to print all coples of & multicopy form at
the same time.

b laser printers can print multiple copies of a form only one after the other. This
means that if the copies are different in color or fields, the preprinted forms
must be collited before final printing,

Chapter Fiftean 563

564

Part Threa

Systems Deslgn Mathods

5. For printed outputs, have distribution controls been finalized? For online outputs,
access controls should be determined.

These design decisions should be recorded In the data dictionary/project repository.
Let's consider an example from our SoundStage Entertainment Club case.

Cie output for SoundStage |s the MEMBER RESPONSE SUMaRy REPORT, This report was re-
quested to provide internal management with information regarding astomer responses
tor the monthly promotional offers. The following design requirements were established

1. The manager will request the report from his or her own workstation. It was
determined that the information should be presented as a screen output in both
tabular and graphical formats (to be determined via prototypes).

a. All managers have 17-4nch or larger display monitors
i, Managers should have the option of obtaining a laser printer output via thetr
LAN configumtion. Printouts should be on 81 % 1l4nch stock paper

2. Managers must be able to display the report on demund. Managers have requested
automatic e-mall notification of the availability of any newly generated version of
the report. A hypetlink to the Latest version of the report should also be made
available in the standard home page of every Member Services manager. level 3
and above.

3. Graphical output should be displayable in a single screen and printable on a
single page. Tabular data may be printed on one to two pages. The volume of
pages is not consldered significant for this report.

4. The report must be restricted In access to managers whose network accounts
carry level 3 or higher acconmt privileges. The report should include 1 *Confi-
dential” watermurk and a message that prohibits external distribution or Infor-
mation sharing without the written permission of Internal Audit.

Step 3t Design Any Preprinted Forms External and turnaround documents are
separated here for special consideration becanse they contaln considerable con-
stant and preprinted information that must be designed before designing the fimal
output. In most cases, the design of a preprinted form Is subcontracted to a forms
manufacturer. The business. however, must specify the design requirements and
carefully review design prototypes. The design requirements address issues such as
the following:

* What preprinted information must appear on the form? This includes contact
Information, headings, labels, and other common information to appear on all
copies of the form,

* Should the form be designed for mailing? 1f so, address locations become
important based on whether or not windowed envelopes will be used.

= How many forms will be required for printing each day? Week? Month? Year?

* What will be the form's slze? Form size, along with volume (above), can impact
mailing costs,

« Will the form be perforated to serve as a umaround document? Also, for
turmaround documents the location of the address becomes more critical
because the return address for the external output becomes the mailing address
for the returned document.

= What legends. policies, and instructions need to be printed on the form (both
front and back)?

* What colors will be used, and for which copies?

For external documents, there are also several alternatives. Carbon and chemical
carbon are the most common duplicating techniques. Selective carbons are a variation
whereby certain fields on the master copy will not be printed on one or more of
the renmining coples. The flelds to be omitted must be communicated to the forms
mexmufacturer. Two-up printing is a technique wherely two sets of forms, possibly
including carbons, are printed side by side on the printer

584 Part Three

data capiure the identifica-
tion and acquisition of new
data.

source dociment a form
used to record data about a
transacton

daga entry the procass
of translating data into a
computar-readable format.

bawch processing a data
procassing method wharaby
data about many transactions
is collected as a single fike
which is than procassad.

onling processing a data
procassing method wharaby
data about & singhe transac-
tion is processad immediataly.

remone bawh processing
a data processing method
wharaby data i= enterad
onling, collectad as a batch,
and processed at a later tima.

Systems Deslgn Mathods

This brings us to our first fundamental question, What is the difference between
data capture and data entry? Data happens! It accompanies business events called
sramsactions, Examples inchude orpemrs, TiME carps, REservartons, and the like We must
determine when and how to capture the data when “it happens”

Data capture is the identification and acquisition of new data. When is easy! It's
abways best to caprure the data as soon as possible after |t originates. Houw is another
story! Historically, speclal paper forms called source dociments were used. Source
documents are forms used to record business transactions in terms of data that
describes those tansactions

Display screens that can duplicate the appearance of almost any paper-based
form are gradually replacing the paper forms. This trend Is being accelerated by Web-
based ecommerce and e-business, still, business forms are commonly used as source
documents for data entry. Design of source documents requires care. The layout and
readability will affect the speed of data entry.

Data entry is the process of translating the source data or document into a
computer-readable format. Because data entry used to be 100 percent keyboard-
based. businesses emploved armies of data entry clerks. As online computing became
more comimon. the responsibility for data entry shifted directly to system users. Today
another transformation is occurring. Thanks to personal computers and the Internet,
some data entry has shifted directly to the consumer. In all cases, data entry produces
input for data processing,

Entered data must subsequently be processed—dara processing. In this chapter,
we e nof concerned with how the data Is transformed Into outputs. But we are in-
terested in the Hming of input processing, When does the input data get processed?

Batch Processing Batch processing used to be the dominant form of darta process-
ing. In batch processing, the entered data is collected into files called batches. Each
file is processed as a batch of many transactions. Contrary to popular bellef, some data
is still processed in batches. Time cards are the classic example. Most batches are
vecorded as disk files (hence the term Bey-fo-disk). Some older systems may still
record batches on magnetic tape (bep-to-fafne)

Online Processing Today most (but not all) information systems have been con-
verted to online processing. In online processing, the captured data is processed
immediately, Initially, data was entered at terminals. Today, that same data s captured
o PCs and workstations to take advantage of thetr ability to perform some of the data
validation and editing before it gets sent to the server computers. Because of PCs,
we rarely hear the term ondine processing anymore. We usually hear the term
client/server, where the PC is the dient

Muost of today's applicatons present the user with a PC-hased grapbical user in-
terfiace (GUT), Microsott Wikdows is the dominant GUT in today's businesses. But the
emergence of the Web as a platform for Internet and lnteanet applications may make
a Web browser the most important user inferface in the future. Microsoft finterniet
Exgrlover and Mozilla Fivefox are the dominant browser interfaces in today’s market
This chapter will address loput design technigues for both the Windows client/server
interface and the browser interface.

Remote Barch Batch and online represent extremes on the processing spectrum: A
combination solutdon also exists—the remote batch. In remote batch processing,
data is entered using online editing techniques: however, the data is collected into a
batch instead of being immediately processed. Later, the batch is processed.

Modern remote batch can take several forms. A simple example uses a PC-based
frontend application to capture and store the data. The data can later be transmitted
across a network for batch processing. A more contemporary example of remote batch
processing nses disconnected laptop or handheld computers (or devices) to collect
data for later processing. If you've recently received a package from UPS or Federal
Express, you've seen such devices used by the drivers to record pickups and deliveries

Input Daslgn emd Prototyping Chepter Sixtean

Mumerous guidelines should be followed when using a text box on an nput
screen. A text box shounld be accompanied by a descriptive, meaningful caption. Avoid
using abbreviations for captions. Caly the first character of the caption's text should
be capitalized.

The location of the caption is also significant. The user should be able to clearly
assoclate the caption with the text box. Theretore, the caption should be locared to
the left of the actual text box or lef-aligned immediately abowve the text box. Finally,
it is also geperally accepted that the caption be followed by a colon to help the user
visnally distinguish the caption from the box.

Generally, the size of the text box should be large enough for all characters of
tixed-length input data to be entered and viewed by the user. When the length of the
data to be input is variable and could become quite long, the text box's scrolling and
word-wrapplng features should be applied

Radio Butten @ Radio buttons provide the user with an easy way to quickly iden-
tify and select a particular value from a value set. A radio button consists of a small
circle and an associated textual description that correspond to the value cholce. The
circle is located to the left of the textual description of the value choice. Radio but
tons normally appear in groups—one radio button per value choice. When a user se-
lects the appropriate cholce from the value set. the circle corresponding to that
choice is partally filled to indicate it has been selected, When a cholee s selected, any
default or previously selected cholce's circle is deselected. Radio buttons alse give the
user the flexibility of selecting via the keyboard or mouse.

Radio buttons are most appropriate when a user may be expected to input data
that has a Imited predefined set of mutually exclusive values. For example, a user muy
be asked to input an osper Tvee and cenper. Each of these has a limited, predefined,
mutually exclusive set of valid values. For example, when the users are to input an
orpER TYPE. they might be expected to indicate one and only one value from the value
set “regulbar order” “rush order”™ or “standing order” For ceaner, the user would be ex-
pected to indicate one and oaoly one value from the set “female,” “male” or “unknown™

There are several guidelines to consider when using radio buttons as a means for
data input. First, radio buttons should present the alternatives vertically aligned and
leftjustified to aid the user in browsing. If necessary, the choices can be presented
where they are aligned horizontally, but adequate spacing should be used to help
visually distinguish the cholces. Also, the group of choices should be visually grouped
to set them off from other toput controls appearing on the screen. The grouping
should also contaln an appropriate meaningful caption. For example, radio buttons
for male, female, and unknown might be vertically aligned and leftjustified with the
headingfcaption *Gender” lefijustified above the set.

The sequencing of the cholces should also be glven consideration. The larger the
mumber of choices, the more thought should be given to the ease of scanning and
identifving the cholces. For example, in some cases it may be more natural for the vser
to locate chodoes thit are presented in alphabetical order In other cases, the fre-
guency ln which a value is selected may be Important in regard to where it is located
in the set of cholces,

Finally, it is not recommended that radio buttons be used to select the value for
an Input data whose value is simply a yes/no (or on/off state). Instead. a check box
control should be considered.

Check Box €} As with text boxes and radio buttons, a check box also consists of
two parts. It consists of a square box followed by a textual description of the input
field for which the user is to provide the yves/ne value. Check boxes provide the user
with the flexibility of selecting the value via the keybourd or mouse. An input data
tield whose value is ves Is represented by a square that is filled with a “v The
absence of A" " means the input field's value is no. The user simply toggles the input
tield's value from one value/state to the other as desired.

593

594

Part Threa

Systems Deslgn Mathods

Often a user needs to input a data field whose value set consists of a simple ves
or no value. For example. a user may be asked for a yes/no value for such items as the
following lnput data: CLEMT APPROVED? SENIOR CITIZINP HAVE YOU EVER BEEM CONVICTED OF
FRAUD? dnd MAY WE CONTACT YOUR PREVIOUS EMPLOYER? In each situation a check box con-
trol could be used. A check box control offers a visual and intuitive means for the user
to input such data.

The previous example represented a simplified scenaro for the use of a stand-
alone check box. On a single input screen it may be desirihle to ask a user to enter
values for a number of related input fields having a yes/no value, For example, a re-
ceptionist at 4 health clinic may be entering data from a completed patient form.
Omn a section of that form;, the patient may have been asked about 2 number of ill-
nesses, The patient may have been asked about his or her past medical history and
tnstructed to “check all that apply™ from a list of types of vartous illnesses. If prop-
erly designed, the receptionist's input screen would represent each illness as a
separate input fleld using 4 check box coatrol. The contrels would be physically
assoclated into a group on the screen. The group would also be given an appropri-
ate heading/caption. Recognize that even though the check boxes may be visually
grouped on the screen, each check box operates as a separate independent
inpur field.

Following these recommended guidelines will improve the use of check box con-
trols. Make sure the textual description is meaningful to the user. Look for oppormuni-
ties to group check boxes for related yes/no input fields and provide a descriptive
group heading,

To aid in the user’s browsing and selecting from a group of check boxes, arrange
the group of check box controls so that they are aligned vertically and leftjustified. If
necessary, align horizontally and be sure to leave adequate space to visually separmte
the controls from one another. Finally, provide further assistance o the user by
appropriately sequencing the input fields according to their texiuil description. In
most cases, where the mumber of check box controls is large, the sequencing should
be alphabetical In cases where the text description represents dollar ranges or some
other measurement, the sequencing may be according to oumerical order. In other
cases_ such as those where a very limited aumber of controls are grouped, the basis
for sequencing may be according to the frequency that a ghven input data field's
vesfno value s selected. (All input data fields represented using 3 check box have 2
default valne—either checked or unchecked.)

List Box A list box s a control that requires that the user select a dita item’s
vilue from a list of possible choices. The Hstf box Is rectangular and contains one or
more rows of possible data values. The values may appear as efther a textual descrip-
ton or a graphical representation. List boxes having a large number of possible values
may include scroll bars for navigating through the list of choices.

It is also common for a list box's row to contain more than one column. For ex-
ample, i list box could stmply contaln rows having a single column of permissible val-
ues for an lnpot data item called jos cope. However, it may be asking too much to
expect the user to recognize what each job code actually represents. In this case, to
place the values of jos cope into @ meaningfl perspective, the list box could [nclude
a second colunm containing the corresponding jop T for each job code.

How does one choose between a radio button and a list box control? Both con-
trols are useful in ensuring that the user enters the correct value for a data item. Both
are also appropriate when it s desirable to have the value cholces constantly visible
to the user

The decision is nommally driven by the number of possible values for the data
item and the amount of screen space available for the control. Scrolling capabilities
make list boxes appropreiate for use ln cases where there Is limited screen space
available and the input data item has a large number of predefined, murtually exclusive
values from which to choose.

Input Daslgn end Prototyping Chegster Sixtean

There are several guldelines to consider when using a list box as a means for data
input. A list box should be accompanied by a descriptive caption. Avold using abbre-
vihations for captions, and capitalize caoly the first character of the caption's text. It Is
also generally accepted that the caption be followed by a4 colon to help the user visu-
ally distinguish the caption from the box.

The lecation of the caption is also significant. The user should be able 1o clearly
assoclate the caption with the list box. Therefore, the caption should appear left-
justified immediately above the actual list hox.

There are also several guidelines relating to the list box. First, it is recommended
thar a list box contain a highlighted defauk value. Second, consider the size of the list
box. Generally, the width of the list box should be large enough for most characters
of fixeddength input data to be entered and viewed by the user. The length of the box
should allow for at least three choices and be imited in size to conmining about seven
choices. In both cases, scrolling features should be used o suggest thar additional
choices are available to the user.

If graphical representations are wsed for value choices. make sure the griphics
are meaningful and truly representative of the chojce. IF textual descriptions are used,
use mixzed-case letters and ensure that the descriptions are meaningful. It Is impor-
tant that these decisions or judgments be based on the perspective and opinions of
the user!

YWou should also give careful thought to the ease with which a user can scan and
identify the choices appearing in the list box The list of cholces should be left-
justified to aid in browsing. Be sure to involve the user when addressing the order in
which choices will appear in the list. In some cases, it may be natural to the user if the
list of choices appears in alphabetical oeder. In other cases, the frequency lnwhich a
value is selected may be important in regard to where it is located in the list

Drop-Down st @ A drop-down list s another control that requires the user to
select 4 data ftem’s value from a list of possible choices. A drop-don Iist consists
of i rectangular selection field with 4 small button connected to its side. The small
button contains the image of o downward-pointing arrow and bar, This button is
intended to suggest to the user the existence of a hidden list of possible values for
a data ftem.

When requested, the hidden list appears to “drop or pull down” beneath the se-
lection field to reveal itself to the user. The revealed list has characteristics stmilir to
the list box control mentloned In the previous section. When the user selects a value
from the list of choices, the selected value is displayed In the selection field and the
list of cholces once again becomes hidden from the user.

A drop-down list should be used in cases where the data item has a large number
of predefined values and screen space avallability prohibits the use of a list box. One
disadvantage of a drop-down list is that it requires extra steps by the user, in compar-
ison to the previously mentioned controls,

Many of the guidelines for using Hst boxes directly apply to drop-down lists, One
exception Is the placement of the caption. The caption for a dropdown list s gener-
ally either leftaligned limmediately above the selection field portion of the control or
located to the left of the control.

Combination Box @ A combination bax, often simply called a combo box, is a
control whose name reflects the fact that it combines the capabilities of 1 ext box
andd list box. A combo box gives the user the flexibility of entering a data item's valoe
(s with a text box) or selecting its value from a st Cas with a st box).

At first glance, a combo box closely resembles 4 drop-down list control. Unlike
the drop-down list control, however, the rectangular box can serve as an entry field
for the user to directly enter a data Item’s value. Once the small button is selected. a
hidden list is revealed. The revealed list appears slightly indented beneath the rectan-
gular entry field

595

600 Part Thres Systams Design Mathods

CURRENT MONTH UMITS S0LD +
CURRENT YEAR UNITS SOLD +
TOTAL LIFETIME UNITS S0LD —+
TITLE OF WORE +

CATALDG DESCRIFTION +
COPYRIGHT DATE +

CREDIT VALUE +

PRODUCER +

DIRECTOR +

VIDED CATEGORY

The attribunes PRODUCT NUMBER, MONTHLY UMIT SALES, YEAR UNIT SALES, sind TOTAL UMIT SALES
are not to be entered by the user. Rather, these attributes are to be automatically gen-
erated by the system. Also, for the 11ne cove, the user will be expected to simply
specify a bitmap file that will contain an actual image of the new video title.

Step 2: Select Appropriate GUI Controls Now that we have an idea of the content
for our input. we can address the proper screen-based control to use for each attribute
to appear on our screen. Using the repository-based programming approach. we would
tirst check to see if such decisions and other attribute characteristics have already been
tnade and recorded as repository entries. If so, we would simply reuse the repository
entries that cormespond to the atteibures we will use on our input screens. In cases
where there is no repository entry, we will have to simply create them.

To choose the correct control for our attrbutes, we must begin by examining the
possible vatues for each attribute. Here are some preliminary decislons regarding our
fryput attributes identified in the previous step:

* PRODUCT NUMBER, CURRENT MONTH UNITS SOLD, CURRENT YEAR TINITS SOLD, TOTAL LIFETIME
UNITS S0LO, UNIVERSAL PRODUCT CODE, MANUFACTURER'S SUGGESTED RETAIL UMIT PRICE,
CLUE DEFALIT UNMIT PRICE, CURRENT SPECIAL UMIT PRICE, PRODUCEL, and nmector attrib-
utes all have input daca values that are unlimited in scope or noneditable,
Since the deslgner is unable to provide the user with a meaningful list of
values from which to choose, a singleline text box was chosen. Since the
attribure cararoc oscurnon also fits this criteria, a multipleline text box
(referred to as a “memo box” by some products) was selected,

¢ PRODUCT TYTE, LANGUAGE, VIDED ENMCODMNG, SCRERN ASPECT, and vineo menia TvvE all con-
tain a lmited predefined set of values, Therefore, it was determined that radio
buttons would be the preferred screenbased control for these input tems,

= It was determined that ciosep caption? is an input atiribute that contains a
ves/no value. Therefore. & check box was selected as the control for this
attribute.

* QUANTITY IN STOCK, RUNNING TIME, COPYRIGHT DATE, and creEoim vaiue contin data
values that can be sequenced in o predictable manner. Thus, a spin box with
an associated text box would be a good choice for these attributes,

+ The attributes vineo carecory and vipEo suscaTEGoRY contiin a large number
of predefined values. With so many attributes to display on our screen, it wis
determined that a drop-down list would be the best control choice.

= TITLE covEr presented an interesting challenge. Its value is actually a drive, direc-
tory, and name of a file that contains a bitmap image of the cover of the video
title. This attribute will make vse of an advanced control called an fmage box
to store @ ploture of the video dte cover. When this object is selected by the
user, a set of controls and special dialogue (user interaction) will be used o
capture the inpait for this item. We'll Hlusteite this input later n step 3.

Once again. there are many other screen-based controls that could be used to in-
put data. Our examples focus on the most commonly nsed controls. How well you
complete this activity will be 2 function of how knowledgeable you are about these
common controls and other more advanced controls,

602 Part Three

Systems Deslgn Mathods

& Edit masks were specified for these input fields. The vnvERsAL PRODUCT CODE
field contains dashes in specified locatdons. The user does not actually enter
these dashes. Rather, the user simply types in the numbers, and afterward the
entire content s redisplayed according to the specified edit mask. The same is
true for the MANUFACTURIR'S SUGGESTED RETAIL PRECE, CLUB DEFAULT UMIT PRICE dnd
CURRENT SPECIAL UNIT PRICE fields. For example, in either of these three fields the
wser could type the number 9 and press enter, and the content would be
redisplayed (according to the edit mask) with o dollar sign and decimal point.

€ Each feld on a screen has been given a label that s meaningful w the users.
Feedback from users indicated *CC" was @ commonly recognized abhreviation
for “closed caption” Also, the users indicated that a label was not necessary
for cATALOG DESCRIPTION.

) Related radio burtons have been wrtanged in a group box thar contains a
descriptive label. Group boxes are frequently used to visually associate 1 vari-
ety of controls thit are related. For example, the felds inside the group box
labeled “Common Information” were grouped because the user assodlates
these attributes with any type of SoundStage product. Also, each label that
corresponds to a radio button option is not what is actually input and stored
in the database. Rather, what you see is the meaning of the value. The actual
value that is stored is a code. For example, the code value E would actually
be stored instead of “English™ if the user selects the radio button kabeled
“English” for the attribute LamcUAGE.

© The multipleline text box has a vertical scroll bar feature if the text fills the
text box. This is a visual clue that there is additional text not appearing
Inside the cararoc pescrrrion feld.

In prototyping input screens, you need to let the user exercise or test the screens
Part of that experience should Involve demonstrating how the user may obtain
appropriate help or instructions. Mew versions of Microsoft prodocts use what are
called “tooltips™ to provide a brief description of buttons and boxes that appear on 2
screen. The tooltip descrption displays when the user positions the mouse over the
top of the object. Also, the Fl key Is universally sccepted as inittating context-sensitive
help. A help button is another option. Whichever approach(es) you use, it s not
necessary to actually implement the help in a prototype.

Finally, prototypes need not display all details to a user unless they are requested
(or triggered by a user action). For example, the drop-down list for Motion Picture
Association of America marine code displays only a default value. However, the
downward-pointing arrow is a visual clue that a list box containing possible values
exists, The lst box may be viewed by simply dicking on the downward pointing
arrow. The result of that action is illustrated In the margin.

The previous example wis fairly simple because it contained only data that might
be updated in one database table. But what if an input inclodes data to be updated in
mare than one table? And suppose there is a oneto-many relationship between the
tables. Consider sumBm oroer, which has a opeto-many relationship to meumer
ORDERID PrODUCTS. How do we design a single input to capture the data for both
tables?

Figure 169 represents a prototype screen for entering Mempen and MEMBER ORDERID
rropucTs on 4 single form. The form is segmented into two windowpanes. MpJeer
data is in the top pane, and MeMsER orpERER PrODUCT data s in the bottom pane. You
may be wondering what happens if the number of MeaEeR orRDERED PRODUCTS exceeds
the space allotted for that pane. In other words, where s the scroll bar for the bottom
pane? Many Windows GI controls are “intelligent ” If the number of rows in the bot-
tom pane exceeds the space, a vertical scroll bar will automatically appear

As one last Windows example, Hgure 16-10 shows a single-screen design that con-
solidates three different or similar inputs from our data flow diagrams NEw MEMBER,
MIMBER CAMCELLATION, ik MEvBE uPpaTE This form also uses the standard input controls

User interfoce Design Chapter Seventean 615

during the pesiey and consrroction phases ind that the activities result in the M-
FACE SPECHICATIONS (prototypes) and procram building blocks,

sysTiv vseRs can be broadly classified as either expert or novice—and either
nondiscretionary or discretionary.

An expert user is an experienced computer user who has spent considerable time
using specific application programs. The use of a computer is vsually considered nondis-
cretionary. In the malnframe computing er, this was called a dedicared user. Expert
users generally are comfortable with (but not necessarily experts in) the application’s
operating environment (e.g., Windows or 2 Web browser). They have invested time in
learning to use the computer. They will invest dme in overcoming less-than-friendly user
Interfaces. In general, they have memorized routine operations to an extent that they
neither seek nor want excessive computer feedback and instructions. They want to be
able to accomplish thetr task o as few actlons and keystrokes as possible.

The novice user (sometimes called a caswal user) is a less experienced com-
puter user who will generally use a computer on i less frequent, or even occasional,
basis. The use of a computer may be viewed as discretionary falthougly this is becom-
ing less and less true). Stated simply, the novice users need more help than the expert
users. Help takes many forms. including menus, dialogues. instructions. and help
screens. Most managers, despite their increasing computer literacy, fall into the novice
category, They are paid to recogolze and solve problems, exploit opportunities, and
create plins and manage the vision—not o learn and use computers, Computers are
consldered tools by modern managers. When the need arises, they want to realize
their benefit as gquickly as possible and move on.

Expert and novice users are actuully extremes on the continunm of all users. The
totally novice user who hasa't used a computer is becoming less common. Few college
curricula don't reguire computer literacy for all majors, and students in all majors have
discovered the value of increased interdisciplinary computer expertise (sometimes
called informatics), Novice users also usually graduate to expert users through prac
tice und experience. The net socketal impact of the Internet §s that more people are be-
coming increasingly comfortable with computers—cereating a class of users that is less
novice and more expert with each passing vear Is it any wonder that user interface de-
sign Is racing toward Web browserdike interfaces, even within Windows applications?

It is difficult to imagine today’s young students and professionals being uncom-
tortable with computers. Regardless, most of today's systems are designed for the
novice system user but adapting to the expert user, The focus is on user friendliness
or human engineering.

»> Human Factors

Before destgning user interfaces, you may find it useful to understand the elements
that frequently cause people to have difficulty with computer systems. Our favorite
user Interface design expert, Wilbert Galitz (see the Suggested Readings) offers the fol
lowing interface problems:

= Excessive use of computer jargon and acronyms,

= Nonobvious or less-than-ntuitive design.

= Inability to distinguish between alternative actions (“What do 1 do next®™).
+ Inconsistent problemsolving approaches,

= Design inconsistency.

According to Galitz, these problems result in confuslon, panic, frustration, boredom,
misuse, abandonment, and other undesirable consequences,

To solve these problems, Galitz offers the following overriding “commandments”
of user interface design:

= Understand your users and their tasks. This becomes Increasingly difficult
as we extend our information systems to implement businesstoconsumer
(B2C) and businesstobusiness (B2B) funcrionality using the Internet,

EXPET] USer an experianced
computer usar.

OOVICe NSer an inexpear-
ancad or casual computar
usar.

660

Part Threa

Systems Deslgn Mathods

A sequence diagram can be seen s a way to integrate the steps of 4 use case with
the objects of a dass diagram. Tt can be used as a communication tool with programmers
to specify what methods (behaviors) to call in iImplementing a use case. Figure 1811
shows one scenario for what is essentially step & of the Place New Order use case de-
scribed in Figoee 186, Figure 18-11 Hlustrates the following sequence diagram notations:

€ Actor—the actor interacting with the nser interface is shown with the ase
case actor symbol. Sometimes the actor is left off for the sake of simplicity
Sometimes the actor is represented with o box like the classes with a
notation <<actors> The dashed vertical line extending downwiard from the
actor indicates the life of the sequence,

@ Mrerface cliss—the box indicates the user interface class code: To make sure
there is no confusion as to what kind of class this is, <<interface>> is noted.
As with many things in UML, whatever communicates best is right. The colon
€3 15 standard seguence dizgram notation to indicate a ronning “instance”™ of
the class, The dashed vertical line extending downward fromy the class
indicates the life of the sequence,

€ controller class—every use case will have one or more controller clsses,
drawn with the same notation as the Interface class and noted as
<<controllerss.

O Ennty dlasses—add boxes for each entity that needs to collaborate in the
sequence of steps. Again, the colon () denotes an object Instance, in other
waords, i specific order, specific product, and so forth,

O Messapes—solid horizontal arrows Indicate messige Inputs sent to the
classes. Each message calls the behavior (or method) of the cliss to which
the arrow points. The UML convention for messages is to begin the first
word with a lowercase letter and append additional words with an initial
uppercase letter and no space. In parentheses, include any parameters thar
need to be passed, following the same naming convention and separating
individual parameters with commas.

O Activation bars—the bars that are set over the lifelines indicate the perod
of time during which each object instance exists. If vou are familiar with any
object-oriented progrmmming language, vou should recall Instantiating objects
to work with them in your program. The activation bars indicate the lifetime
of an instance in RAM. Generally, objects are instantiated in response to mes
sages. Persistent objects will, of course, continue to exist as stored data.

@ Return messages—dashed horizontal arrows are return messages. Every
behavior should return something, at least a true/ffalse message indicating
whether the beluivior was successful But for the sake of simplicity, return
messages are often assumed and left off the sequence diagram.

& Selfcall—an object can call its own method,

& Frame—we saw in Chapter 10 how to use a frame box in a system sequence
diagram to indicate that one or more messages were optional (opt) steps.
Here we use a frame to indicate thit the controller needs to leop through all
the items.

Let's walk through the sequence diagram shown in Figure 18-11 The Member
makes his or her selections using the on-screen tools provided in the orper winnow
(which is noted to be an interface class). The orpem winpow then passes those
selections with an ltem and quantity specification for each to the Controller class. The
conTROLER loops through each of the items. The use case says that for each ordered
ltem, the system must verify product avallability. To do that the covmmronss sends 2
message to rroouct, calling its calculateQrylnStock method. We may have already
identified calculateQtyInStock as a behavior of PropucT and so we can read it right off
the class diagram and plug it in here. If it isn't a behavior already. then we can deter-
mine a need for its exdstence from this sequence diagram and then add it to the class
diagram. Why would this behavior be assigned to rropuct? We see from Figure 1811

Object-Orlonted Design and Modeling Using the UML Chapter Eightean

thit proouCT has a quantitylnStock attribute, so it is the natural source of this infor-
matien. Proouct returns guantitvlnStock to the cormrocim. The use case Includes ver
biage to handle items not in stock, but we are not following that scenario. This
sequence diagram assumes all items are in stock

Each instock item must be added to the order. Should that be a responsibility of
MEMBER ORDER OF MEMBER ORDERED FRODUCT? We see from Figure 18-12 thar MEMBER CRDER

Address

661

Cugtomsr -sireatiddnes
is associated with By =
-gitEbe
1 0. |dpCode
Potential Mamber Club Member [|
-memberHumber Billing Address Emai Shipping Address
~membarLastMams HAcmn.
-memberFirstilams
-memberStans
1 1
is billed to
Active Member
-mamberDateHLastOrder 1." ;
-memberDaytimePhonsMNumber is shipped to
-memberBalancaCius Memi
-mamberBonusBalanceAveilabls v
-sudioCategoryPrefarances -crdarMumber L Py
~dateEnrollsd v -orderCraationDits
-gameCatagoryPreferance orderFillDate
-pamsMediaPreferance 1 0.* -shippinglnstructions
-numberCfCraditsEamed ~orderSubTotal
-privacyCode “rderSalesTax
-videoate goryPreferance -crderShippinghethod
-videoMediaPreferance ~orderShipping&Handling Cost
-ordarStatus
-orderPrepaldArmount
~orderPrepaymantiethod
1
has purchassd i
containg
Product i | P
-productMumbar
UPG Meamber Ordered Product
~quantity InStock
-produciType -qumTﬂ’[}lDrdereg
-sugpestedRetailPrics ~quarrilyEhippe 4
~defaulinitFrics - T r:;“
-currentSpaciallnitPrice i .- -pﬁnze by i
<currsniMonthUnitsSokd = v
~currentaar nitaSokd
otall i etirmelinitaSold

FIGURE 18-12 Partial Class Diagram for Place New Orider Use Case

664 Part Threa Systams Design Mathods
A ’
Mok sl product svaliabie i
receted
4

Member Ordar inlial
state

et refectsd baged|on Member's past history

Cder submitted

& —————

Order pending ewailng poayment or addiional member Infemation
in Process - Panding
Responas [ecelved Mmm mamber X J

Ondel releasad I he warshouss

MG Fie ol et e by the warshouss Ewer e
=
e, & L A

Oirder shipped o slub membe

Y
— p—

Oroel Invaiced invirkea s=nt to member o payment Crdar Shippad
€

—

Mambsr orier archived afley 80 days

Memer Crder nal

Constructed using Popkin Softwars's System Architect.,

FIGURE 18-15 Member Order Statechart Diagram

role playing the act of sim-
ulatimg object bahavior and
collaboration by acting out

an object's behayiors and

rasponsibilitios,

(a solid circle inside of a hollow one). Each arrow represents an event that triggers the
nEMBEL opDEn 1o change from one state to another

State machine diagrams are not required for all objects. Typically, a state miachine
diagram is constructed only for those objects that have clearly identifiable states and
complex behavior. In our experience, any object that has an attribuee called stams is
a pood candidate for constmcting a state machine diagram,

Finally, our last task is to verify the results from the previous tasks, This consists
of conducting walkthroughs with the appropriate users. One verification approach
that is commonly used is role playing. In role plaving, the use-case scenarios
are acted out by the participants. The participants may assume the role of an ac
tor or an object type that collaborates to process a hypothetical business event.
Message sending is simulated by using an item such as a ball that is passed (or

Systems Constructlon end Implementation Chapter Ninetean

data and process models, Using these technical design specifications to implement
the network architecture for an Information system s a prerequisite for the remaining
constrisction and implementation activities.

In many cases, new or enhanced applications are built around existing networks.
If so, skip this task. However, If the new application calls for new or modified net-
wiorks. they must normally be implemented before bullding and testing databases and
writing or installing computer programs thit will use those networks. Thus, the first
task of the construction phase may be to bulld and test nerworks.

This phase involves analysts, designers, and builders. A network designer and
network administrator assume the primary responsibility for completing this task The
network designer is a specialist in the design of local and wide area nerworks and
their connectivity. The network administrator has the expertise for bullding and test-
tng network technology for the new system. He or she will also be familkar with net
work architecture standards that must be adhered to for any possible new networking
technology. This person is also responsible for security. (The network designer and
network administrator may be the same person.) While the systems analyst nuy be in-
volved in the completion of this task. the analyst's role s more that of a facilitator and
ensures that business requirements are not compromised by the network solution.

= Task 6.2—Build and Test Databases

Building and testing databases are unfamiliar tasks for many students, who are accus-
tomed to having an instructor provide them with the test databases. This task must im-
mediately precede other programming activities because databases ure the resources
shared by the computer programs to be written. If new or modified databases are
required for the new system, we can now bulld and test those databases,

This task involves systems users, analysts, designers, and bullders. The same sys-
tem specialist that designed the databases will assume the primary responsibility in
completing this tusk. System users may also be Involved in this task by providing or
approving the test data to be used in the database. When the database to be built is a
noncorporate, applicationsorlented database. the systems analyst often completes
this task. Otherwise, systems analysts mostly ensure business requirements compli-
ance. The database designer will often become the system bullder responsible for the
completion of this activity. The task may involve database programmers to build and
populate the Inidal database and a database administrator to tune the database
pedformance, add security controls, and provide for backup and recovery.

The primary inputs to this task are the database schema(s) specified during sys-
tems design. Sample data from production dstabases may be loaded into tables for
testing the databases The final product of this task s an unpopulated darabase struc
trwe for the new database. The term pnpopulated means the database structure |s tm-
plemented but data has not been loaded into the database structure. As you'll soon
see, programmers will eventoally write programs to populate and maintain those new
databases. Revised database schema and test data details are also produced during this
task and placed In the project repository for fiture reference.

= Task 6.3—Install and Test New Software
Packages (if Necessary)

some systems solutions may have requirecd the purchase or lease of software pack-
ages. If so, once networks and diutabases for the new system have been built, we can
install and test the new software. This new sofreare will subsequently be placed in
the software library.

This activity typlcally involves systems analysts. designers, builders. and vendors
and consuftants. This is the first task in the life cycle that is specific to the applications
programmer. The systems analyst typlcally participates in the testing of the sofrware

687

688 Part Four

siub tesy a test parformed
on & subset of a program.

Bayond Systems Analysls and Design

package by clarifying requirements. Likewise, the system designer may be involved in
this task to clarify integration requirements and program documentation that is to be
used in testing the software. Network admindstrators may be Involved Lo actually fn-
stalling the software packaige on the network server. Finally, this task typlcally involves
participation from the software vendor and consultants who may assist in the instal-
lation and testing process.

The main inpt to this task is the new software packages and documentation that
are recelved from the system vendors, The applications progrimmer will complete
the installation and testing of the package according to integration requirements and
progeam docmentation developed during system design. The principal deliverable of
this task is the installed and tested software package that is made available In the soft-
ware library. Any modified software specifications and new integration requirements
that were necessary are documented and made avallable in the project repository to
provide a history and serve as future reference.

> Task 6.4—Write and Test New Programs

We are now ready to develop (or complete) any in-house programs for the new sys-
tem. Recall that prototype programs are frequently constructed in the design phase.
These prototypes are included as part of the technical design specifications for com-
pleting systems construction and implementation. However, these prototypes are
rarely fully functional or complete. Therefore, this activity may involve developing or
refining those programs,

This task Involves the systems analysts, designers, and builders. The systems an:-
lyst typlcally clartfies business requirements to be implemented by the programs. The
designer may have to clarify the program design, integration requirements, and pro-
gram documentation (developed during systems design) that is used in writing and
testing the progmms, The system bullders will assume the primary responsibility for
this activity. The applications programmer (bullder) is responsible for writing and test-
Ing in-house software. Most lirge programming projects require a team effort. One
popular organization strategy is the use of clief programmer teams, The team is man-
aged by the chief programmmer, a highly proficdent and experenced programmer who
assumes overill responsibility for the program design strategy, standards, and con-
struction. The chief programmer oversees all coding and testing activities and helps
with the most difficult aspects of the programs, Other team members inchide a
backup chief programmer, program Wbrarian, programmers, and spectalisis. The
applications programmer is often alded by an application or software tester who spe-
cializes in building and running test scripfs that are consistently applied to programs
to test all possible events and responses.

The primary Inputs to this activity are the technical design statement. plan for
programming, and test data developed during systems design. Since any new pro-
grams of program components may have already been written and be in use by other
existing systems_ the experienced applications programmer will know to first check
for possible rensible software components avallable in the software library, The prin-
cipal deliverables of this activity are the new programs and reusible softwire compo-
nents that are placed in the software Bbrary. This activity also results o program
documentation that miy need to be approved by a quality assurance group. Some in-
formation systems shops have a quality assurance group staffed by specialists who re-
view the final program docomentation for conformity to stndards. This group weill
provide appropriate feedback reganding quality recommendations and reguirements
The final program decumentation |s then placed in the project repository for Raiture
reference.

Testing is an important skill that is often overlooked In scademic courses on com-
puter programming. Testing should not be deferred antil after the entire program has
been written! There are three levels of testing to be performed: stub testing, unit or

program testing, and systems testing. Stub testing is testing pedormed on individual

Sy stomis Construction and Implementation Chapter Ninetean 691

identify databases to be installed, end-user training and documentation that need to be
developed, and a strategy for converting from the old system to the new system.

The project manager facilitates the activity. Systems analyst, system designer,
and system builder roles are not typically involved unless deemed necessary by the
project manager. Finally, many organizations require that all project plans be for
mally presented to a steering body (sometimes called a steerfng commidies) for final
approval.

This activity is triggered by the completion of a successful system test. Using the
design specifications for the new system, a detailed conversion plan can be assem-
Ied. The principal deliverable of this activity Is the conversion plan that will identify
darabases to be installed, end-user training and documentation that need to be devel
oped, and a strategy for converting from the old system to the new system.

The conversion plan may include one of the tollowing commonly used installa-
Hon stEtegies:

= Abrupt cutorer—On a specific dite (usually a date that colncides with an
official business period such as month, quarter, or fiscal vear), the old system
Is termimited and the new system Is placed into operation. This is a high-risk
approach because there may still be major problems that won't be uncovered
ontil the system hias been in operation for at least one business period On the
other hand, there are no transition costs. Abrupt cut-over may be necessary if,
for instance, a government mandate or business policy becomes effective on a
specific date and the system couldn't be implemented betore that date.

= Parallel converston—nder this approach, both the old and the new systems
ire operited for some time perilod. This ensures that all major problems in
the new system have been solved before the old system is discarded, The
final cut-over may be either abrupt (usually at the end of one business
period) or gradual, as portions of the new system are deemed adequate.

This strategy minimizes the risk of major flaws in the new system causing
irreparable harm to the business; however, it also means the cost of running
mwo systems over some period must be incurred. Because munning two edi-
tions of the same system on the computer could place an unreasonable
demand on computing resources, this may be possible only if the old system
is largely manual.

* Location conversfon—When the same system will be used in numerous geo-
graphical locations, it is usually converted at one location first (using either
abrupt or parallel conversion}, As soon as that site has approved the system,
it can be farmed to the other sites, Other sites can be cut over abruptly
because major errors have been fixed. Furthermore, other sites benefit from
the learning experiences of the fiest test site. The frst production test site Is
often called a beta test site

= Staged converston—Like location conversion, staged conversion is a variation
on the abrupt and parallel conversions. A staged conversion is based on the
version concept introduced earlter. Fach successive version of the new sys-
tem is converted as it is developed, Each version may be converted using the
abruopt, parallel, or location strtegy.

The converston plan also typically includes a systems acceptance test plan. The sys
tems scceptance test is the fiml opportunity for end users, management, and infor-
mation systems operations management to accept or reject the system. A systems
acceptance test is a finsl system test pecformed by end users using real data over an
extended time perfod. It is an extensive test that addresses three levels of acceptance
testing—verification resting, validation resting, and audit testing:

= Veriftcation testing runs the system o a simulated environment using simu-
lated data. This simulated test is sometimes called afpba tesring. The simu-
lated test is primarily looking for errors and omissions regarding enduser and

SYSLEMS 008 Pance iest
atest parformed on the final
systam wherain users conduct
varification, validation, and
audit tests.

692 Part Four

audit vest a test parformed
to ensure a new system &
ready fo be placed into
oparation

Bayond Systems Analysls and Design

design specifications that were specified In the earlier phases but pot fulfilled
during construction.

= Valddation testing runs the system o a live envirooment using real data This
is sometimes called beta testing. During this validation, a number of items
are tested:

a. Systems performance 1s the throughput and response dme for processing
adequate to meet @ normal processing workload? 1F not, some programs
may liave to be rewritten to lmprove efficiency or processing hardware
may have to be replaced or upgraded to handle the additional workload.

b Peak workload procvessing performance. Can the system handle the work-
lead during peak processing periods? 1IF not, improved hardware and/or
software may be needed to increase efficiency or processing may need to
be rescheduled—that is, consider dolng some of the less critical process-
ing during nonpeak periods.

¢ Humien engingering test. 1s the system as easy to learn and use as antici-
pated? If not. is it adequate? Can enhancements to human engineering be
deferred until after the system has been pliced into operation?

d. Merbods and procedures fest. During conversion, the methods and proce
dures for the new system will be put to their first real test. Methods and
procedures may have to be modified if they prove to be awkward and
inefficlent from the end users’ standpoint

& Backup and recovery testing. All baclup and recovery procedures should
he tested, This should include simulating a data loss disaster and testing
the time required to recover from that disaster. Also, a before-and-after
comparison of the data should be performed to ensure that data was
properly recovered. It is crucial to test these procedures. Don't wait until
the first disaster to find an error in the recovery procedures.

= Andit testing certlfies that the system s free of errors and is ready to be
placed Into opemtion. Not all organizations require o audit. But many firms
have an independent audit or guality assurance staff that must certify a sys
tem's acceptability and documentation before that system is placed into final
operation. There are independent companies that perform systems and soft-
ware certification for end users’ organizations.

> Task 7.3—nstall Databases

Recall that in a previous phase you built and tested databases To place the system into
operation, you will need fully loaded (or *populated ™) databases. Therefore, the next
task we'll survey is installation of databases. The purpose of this task is to populate the
new system's databases with existing data from the old system.

At first, this activity may seem trivial. But consider the implications of loading a
typlcal table, say, mevem: Tens or hundreds of thousands of records may have to be
loaded. Each must be input, edited, and confirmed hefore the database table is ready
Lo be placed into operation.

Systems bullders play a primary role In this activity. The task will normally be
completed by application programmers wiho will write the special programs to ex-
teact data from existing databases and programs to populate the new databases. Sys-
tems analysis and deslgners may play a small role in completing this activity. Thelr
primary involvement will be the calculating of database sizes and estimating of the
time reqguired to perform the installation. Finally, data entry personnel or hired help
nuy often be assigned to do data entry,

Spectal programs will have to be written to populate the new databases, Existing
data from the production databases. coupled with the database schema(s) models
and database structures for the new databases, will be used to write computer pro-
grams to populate the new databases with reswructured existing data. The principal

708

Part Four

Bayond Systems Analysls and Design

This task can be performed by the systems inalyst and/or programmer. Users
should also participate to ensure the test Is conducted under drcumstances that
simulate as closely as possible a normal working environment.

Test cases can be defined in either of two ways. First, past test dara may exist in
the repository as a form of svstem knowledge. If so, that data should be reexecuated to
establish or verify the benchmark. Usually, the test data should also be analyzed for
completeness and, if necessary, revised. New test scenarios may have been identified
since the system went into operation. Any revised test data should be recorded in the
repository for subsequent maintenance projects,

Altermatively, test diata can be antomatically caprored using a software-testing toal
As users enter test data, that data is recorded in a special type of repository as a fest
scripr. Later the analyst and user can document each test case in the same repository.
Ultimately. the test script is executed against the program to test that the program ex-
ecutes properly and also to measure the program's response time and/or throughput
As shown in Figore 20-4, the test data and benchmarks are stored in o test database
(not the production database) for the next sk

The analyst or programmer needs to have good testing skills (usually tanght in
progeamming courses) and muy require training in test tools. Nelther Is explicitly
taught in this rexthook:

> Task 8.1.3—5tudy and Debug the Program

The primary task in system maintenance is to make the required changes to the pro-
grams. This task, performed by the application programmer, s not dissimilar from that
described In the previous chapter on systems implementation. Essentially. the pro-
grammer responds to “bugfix” requirements that establish the expectation for fixing
the problem: The programmer debugs (edits) a copy of the problem program
Changes are not made to the production program. The result is a corrected version of
the program. This is 4 candidate release, meaning a candidate to become the next
production version of the program.

Usually, the original programmer is not making these changes. In fact, several pro-
grammers may have witten parts of any given program that s now being debugged.
Those programmers may no longer be wvailable for clarification. Even if they are avail
able, thetr memory of the application may not be sufficient or accurate. For this rea-
somn, the effective maintenance programmer requires system knowledge. Ideally, this
knowledge comes from the repositary, but thit assames that the knowledge has been
properdy maintained throughout the system’s lifetlime. Too often this is not true, espe-
cially for older systems. The programmer may need to seek out this knowledge or, in
some cases, reconstruct the knowledge through analysis of the program.

Application and program knowledge usually comes from studying the source
code, Program understandiing can take considerable time. This activity is slowed by
some combination of the following imitations:

* Poor program structure—examples include CO8OF programs written with
nonstroctured technoiques and Visuwal Basic or © programs written with
nonobject-oriented techndgues.

* Unstructured logic (from pre-strictured ena coding styles).

* Prior maintenance (quick fixes and poorly designed extensions).

* Dead code (instructions that cannot be reached or executed—often leftovers
from prior testing and debugging).

* Poor or inndequate documentation.

The purpose of applicaton understanding is to see the big picture —that Is, how
the progrums fit into the total application and how they interact with other programs.
The purpose of program understinding is to gain inslght into how the program works
and doesn't work. You need to understand the felds (variables) and where and how
they are used. and you need o determine the potential impact of changes throughout

722 Glossary/Index

names, 295

subsetting criterin. T4

visibihty, 650-651, 665
avdit file A sable containing recordr of updates to other
Jiles., 522
audit test A resi performed to enstire @ niew system is ready fo
be placed inte operanon., 692

Automated tools
application development environments; ree application
development environment
CASE: ree computer-assistod software engineering
help anthormg, 631
mput design. 598, 6046105
for joini recpuirements planmng, 231
methodology support, 107108
outpat design, 558350
process manager apphcations, 111
project management, 111, 125-127. 134
prototypng, 558-359
report-wnting, 712
repositories; s£e repository
software configuration, 704, 709
softwore metrics, T13-714
user interface design, 614, 634
Automatic data capture, 585-587

backl og A repository of project propesals thar cannof be
Junded or staffed because they are a lower prionity than those
that have been approved for system development. Note thor
priovifies change over fime; therefore, a backlegged project
might be approved af some fire date.. 77
back-office information system An informarion system
that mipports infernal business aperations of an organization, o
well ax reaches onl o suppliers.. 45
balan cing A concept that requires that data flow diagrams at
different levels of detail reflect consistency and completeness.,
MR- 340
Bar codes, 498, 586
Barnes and Noble, 18
batch processing A data processing method whereby data
about many transactions is collected as a single file which is
then processed., 406, 584

controls, 539

remote. 497408, 584
BEA Svstems, 487

enterprise application intcgmiion, 29

WebLaogic, 54
Bensley, Reyvon AL 155
Beck. Kent. 65Tn
Beck. Robert, Jr., 1200, 124, 1 270, 155
behavior The ser of things that an ebiect can do and that cor-
respond fo finmciions that act on the object's data (o attributes).
In ehjeci-oriented circles, an object’s behavior is commenly
referred to ar a method, operation, or service (we may use the
termy interchangeably throughout owr discission)., 373, 656650
Bell. P., 699
Benehts

mtungible, 421422

mangible, 420421

Beodie, Douglas B, 240
Berstein, Phillip. 515
Bimetric technology, 587
Black holes, 325
Blaha. Michael, 411. 679
Blanchard, Kenneth, 139, (55
Block codes, 203
blocking factor Tie nuwnber of logical reconds included in a
single wead or write operation.. 512
Bluetooth, 24
Boar, Benard, 472
body language The nonverbal information we communicate.,
237-228
Boehm, Barry, 208210, 699
Booch, Grady, 117, 370, 371, 411, 6709
Borland
Dvelphi, 501
JTBuilder, 109, 502, 614
Boundery class: see interface class
Bovee, Conrtland L., 441
BPR; ree business process redesign
brainstorming A technique for genemting ideas by encour-
aging participanis 1o offer as many ideas as possible ina short
period of time withour any analysiz watil all fie ideas have been
exhausred., 233234
Brio, 712
BroadVision, 28
Brooks, Fred, 1220, 155, 244, 267, 699
Bruce, Thomas A., 2920, 313, 547
Bugs, 88; see also Progrom mmntenance
canses, 706
identifying, 706
Building blocks of information systems. 47
commumecanons, 35-55
knowledge, 47, 50-51
networks and, 58-59
process, 31-52, 3455
Burrowes, Hal, 139, 155
Business data. T4
Business events; see event
business function A group of relared processes thar sup-
port the buxiness, Functions can be decomposed info other
subfunctions and eventually info processes that do specific
rasks., S1-32
Business models: zee logical model
Business objects; see object
Business Objects Crystal Reports, 559, 712
business process redesign (BPR) The study, analysis,
and redesign of fundamental business processes to reduce costs
and/or improve value added to the business., X2
business process redesign [BPR) The application of
systems analyvsis methods (o the gool of dramatically
changing and improving the fundamental business processes
of an erganization, independent of information
technalogy.. 166
data flow disgrams nsed for, 319, 334335
s driver for mformation systems, 22
methods, 166
projects initated from, 77
business processes Tasks that respond to Business events
{e.g., an order), Business processes are the work, procedures,

and riles reguired o complete the business tasks, independenr
of any information technology wred ro awomate or suppart
them., 21
Business requirements; see system requirement
business requirements use case A use case created
during requirements analviis to caphire the interactions between
a wrer and the sysem free of technology and imple mentation
details. Alve colled an #ssential wre case,, 2583 ree also
use Case

dentifying, 252-254

nurratives, 256258
Battons, 596
Bay Com, 492

C

C#, 54,97, 490

C++, 25 54,97

Canceled projects, 73

candidate Il.’ll}" One of a number af kevs that may serve as the
primary key of an enrity. Also called candidate identifier, 274
candidate systems matrix A ol used 1o document simi-
larities and differences befween candidate systems., 195-197,
426-428

Capability Maturity Model [CMM) A sandandized

Sframeweork for assessing the mameity level of an orpaniza-
Hion's information svstems development and managemeni
pracesses and products. It consists af five levels of maturion,
69-T0, 127

cardinality The minimum and maximum number of oocur-
rences of one entity that may be related to a single acourrence of
the ather enfityv, 275

Cumegie Mellon University, Software Engincering Institute, 69
CASE: see computer-assisted software engineering

CASE repository A sysiem develapers' database where de-
velopers can store system models, detarled descripfions and
specifications, and other products of systems development.
Svnonyms include data dictionary and encyclopedia., 108, 111;
see also repository

Cush, William B Jr., 241

Cashman, T., 579

Catapult, Inc., 155

cause-and-effect analysis A rechnigue in which problems
are studied to determine their causes and effects., 180

Cell phones, 24

centralized system A sywtem in which all components are
hosted by a centmal, mudtinser computer, 484

CGL iComputer Gateway Interface), 502

Champy, J., 719

cha nge management A formal strotepy wherein a procesy
ix establizshed ro facilitare changes that occur during a profect.,
141-143, 142

Change monagement systems, 712

Charts, 556

Check bowes, 593504

Check digitz. 500

Chevralet, 24

child enfity A dara entity thar derives one or more antributes

from ancther ennity, called the parent. In a orme-to-many relation-
ship the clld ix the entity on the "many”™ side., 2T7

Chrissiz. Mary Beth, 117

Chnsterson, Magnus, 267, 411, 674

Glossary/Index 723

class di:lgrl:lm A graphical depiction of a system’s static ob-
Ject structire, showing object classes thar the system 15 com-
posed of ax well as the relationships between those object
classes. 44, 4015
Class responsibility collaboration (CRC) cards, 657-659
Classes; see ohject class
clean layering A design strategy that requires thar
presentanion, applicarion, and data layers be phyrically
separated,, 59, 501
client server system A distributed computing solution in
which the presentation, presentation logic, application logic,
data manipulation, and deta layers are distrbuted between
client PCy and one or maore servers., 436487
distributed data, 480400, 506507
distributed data and application, 490491
distributed presentution, 487-488, S00-501
softwars development enviromments, S0-502
thres-tiered, 400441, 501502
two-tiered, 4804900 301
closed-ended question A guestion that restricts answers
i either specific chotcer or short, direct responses., 223
CMM: see Capability Matority Model
Coad. P 411,472,670
Code conversion, 714
Code recrgemizetion, 714
Code slicing, 714
cohesion The degree to which the atiribuies and behaviors of
a single class are related to each other. 666-067
Caold Fugiom, 24, 58, 100
Collaboration diagram: see communication diagram
Columbia House Record Clob, 586
Combination boxes, 585506
Combination checks, 590
commercial application package A sofvware applica-
tion that can be purchased and customized (within limits) to
mest the business requirements af a large number of arganiza-
tions ora specific industry. A svaonym iz comme roial of-the-
shelf | COTS) svstem., 100
advantages and disadvantages, 1023104
FAST implementation strategy. [01-103
impact on systems development fife cyele, 460, 466467
implementation, 467
ingtallation, 687688
requests for proposals, 100, 463465
reverse enginesrng, 714
system design phase, 460462
contract negotistions. 466
decision analysis phase, 460, 462
evalunte and mank proposals, 465466
procurement phase, 460, 462465
proposal sohcitation, 463363
techmical crtena and options, 462463
vahidate vendor claims and performance, 465
vendor debrisfings, 466
testing, 687683
communication diagram Models the interaction of ob-
Jects vig messages, focusing on the structunal erganizafion of
objects in a nethwork format, Called o collaboration diagram
prior ta UML 2.0, 672
communications and collaboration system An
infarmarnon system that enables more effective communications

724 Glossary/Index

between workers, partners, curtomers, and seppliers fo enhance
their ability to collaborate. 7
Communicattons building blocks, 55-58
component A group of objects packaged together into ane
unit. An example af a component 15 a dynamic Link library (DLL)
or executable file., 671
component Iﬂﬂgrﬂrﬂ Depicts the organization of program-
mimg code divided into componenis and how the components in-
teract.. 672673
composite data flow A dasa flow that consists of other
data flows., 326-327
composition An aggregation relationship in which the
“whole" ix responsible for the crearion and destruction of its
“parts.” [fthe “whole" were to die, the “part™ would die with
ir., AT8
compound attribute An artribute that consises of other
aftributes, Synonyms n different data modeling languages are
numerons: concatenated affribute, composite attribute, and data
strachire., 272
Computer Associates

AllFusion Process Manpgement Suite, 125

Erwin, 108, 526, 529
Computer Ethics Instiouee, [5, 16
computer-assisted software engineering (CASE)
The use of automated software fools that support the drowing
and analvsis of system models and associated specificaiions,
Some CASE rools also provide prototyping and code
generaton capabifities., 108; se¢ also System
Awhitect 20801 (Poplan)

datn modeling, 286238, 306

database design, 526, 520, 532 535

databaze struciure generation, 539, 542

facilities, 103

torward enginesring, 105100

fature of, 199

mput design. 593

outpat design, 559

process modeling, 337

repositories, [08, 111

reverse enginesnng, 1081089, 165

system design models, 447

s In & vetems analysis, 162

iser interface design, 488, 634
CompurerWorld, 667
concatenated key A group of attributes that uniguely
identifics aninstance of an ensin, Synonvms include composite
key and compound key., 2T3-2T4
Conceptunl models; see logical model
Conclusion, report, 432
Connor, Denis, 472
constraint Any facror limitation, or restraint that may limit a
solunion or the problem-solving process., 32
constraint Something thar wil{ limit vour flexibility in
defining a solution to vour ohjectives. Essentially, constrainix
cannot be changed., 183
Construction phase; see systems construction
Conzultonts. 16
Consumer-style interfaces, 626
context data flow diagram A diagram that shows the
svstem as o "Wack bex" and ity main interfaces with s
emaronment., 335

context data flow diagram A process model used to
document the scope fora svstem Also called environmental
model., 335339
context data model A daw model thai includes entities
and relationships it no attvibutes., 285, 2002092
Context diagrom. 94, | TB-180. 252
continvous process improvement (CP1) The contin-
s monitoring of business processes fo effect small but
measrable improvements in cost reduction and value
added., 21
contrel class A object class thar contains application
logic. Examplers of such logic are business ruley and calcula-
tions that invelve multiple entity object classes. Control
classes coordinate messages bebween interface classes and
enfity classer and the seguences in which the messages
occtir, 649 656
contrel flow A condinen or nondarta evenr that triggers a
process., N37-328
Control flow knots, T3
Conventional files; see file
converging data flow The merger of multiple daia flows
infe a single data Toew., 3333
Converston, 694

plarmmg, 689, 691602, 654

strategies, 691
Copi. L B, 366
CORBA object-shuring standard, 487
Corel Flow, 447
Cost-benefit analysis

benefits, 4200422

cosis, 410420
cost-effectiveness The msult abiained by striking a balance
between the liferime costs of developing, mantaining, and
aperating an information system and the benefits derived from
thar system. Cost-sffectiveness is measwred by cost-benefit
analvsis., 75,421
Costs, 419420

fined, 420

operating, 420

opportunity, 423

resource, 136

gyatems development, 420

variable, 420
coupling The degree to which one class is connected to or re-
lies on other classes., H0H06T
CPL; see continuous process improvensent
Crane. David B, 1200, 124, 127n 155
CRC; see Class responsibility collnboration (CRC) cards
creeping commitment A srotegy in which feasibility
and risks are continvously reevaluated throughout a project.
Projecr budgets and deadlines are adjusted accordingly, 75,
414416
critical Pl:lfl'l The sequence of dependent tasks that deter-
mines the earliest completion date for a project., 138, 130,
147, 149
CRM: see customer relationship mansgenent
cross life-cycle activity Any activity that overlaps multiple
phases of the systerm development process. Exvamples include
fact finding, documentation, presenfation, estimation, feastbiliny
analysis, project and process management, change management,
and guality management., 88-580

cross-functional information system A sysrem thar
supports relevant business processex from several business func-
fons withou! regard to fradifional orgarizational bowndaries
such as divisions, departments, ceniers, and offices., 52
Crystal Reports, 559, 712

cofs Solutions. Risk 4, 125

cultural (or political) feasibility A measune af how
well te solutton will be accepted in a given organizational
climate., 417-4 18

Conmngham, Ward, 657Tn

Cuarmis, Bill. 117

customer relationship management (CRM) A
sofrware applicalion that provider customers with access fo a
bustness 's processes from inttial inguiry through postrale
yervice and sippert., 26, 2820

Cyele complexity, 713

D
¥ vee mwst likely duration
data Raw faces abour peaple, places, events, and things thar
are of imporiance i an organizatton. Each fact s, by itself
relafively meaningless., 21
data administrater A darabase specialist responsible for
dara planning, definition, architecrure, and management., 524
data analysis A rechnique used to improve a data model for
implementation as a database., 200, 518-520
data architecture A definition of how files and databarses
are to be developed., 533524
data attribute The smallest piece of dara that har meaning
e the users and the business.. 3M; see also attribute
data capture The identification ard acquisition af new
dara., 584
data conservation The praciice of ensuring that a
dara flow contains only data needed by the receiving
process., 329
data definition language (DDL) A fanguage wsed by a
DBMS to define a database or a view of a database.; 525
Data dictionary | see repository
Drata distribution: see distributed datu
data enfry The process of ranslating data infe a computer-
readable formar., 382-584; see also Inpat design
data How Dara that i inpur or ougpar to or froma
process,, 325
attributes, 330
composite, 326327
conscrvation, 229
cortrol Aows, 327-328
converging, 333334
in data flow dingrams, 317, 325-328
dtn stroctures, 326, 330-333
describing, 340
nomtion, 330-33 1
types, 330
diverging, 333-334
imput, 300500
logical. 481
names, 328, 4581
outpat, 562
physical, 481
data flow diagram [DFD) A process model ased to
depict the flow of data throwgh a system and the waork ar

Glossary/Index 725

processing performed by the svatemt. Svaonyms are bubble
chart, trangformation eraph, and process model.. 317; see
also process modeling
balancing, 348340
context, 335, 338339
data flows, 317, 325328
datn stores, 317, 320321
differences from flowcharts, 317319
event diagrams, 335
external agents, 317, 219-320
logical, 477
mechanical ermors, 325
phyzical; ree physical dara flow diagram
primitive, 335, 340
processes, 317, 324325
symbaols, 317,322
use in business process redesign, 319, 334335
use of, 97, 162, 163
data manipulation language (DML} 4 DEME lan-
prage used to create, read, wpdare, and delete reconds,, 526
Dinta mining, 523
data modeling A data-centered rechnigue used to model
business data requarements and design database sysems that
Julfill those requirements. The most frequently encowntered data
models are entity relationship diaprams., 97
data Mﬂdiling A technigque for organizing and
documenting o system's dota. Somenmes called daiabase
modeling,, 2T see alse entity; entity relafionship
dingram: normslization
automated tools, 286288, 3060
evaluation criteria, 298
location views, 306-308
process, 283, 285286, 288
analysis of model, 208204, 528 570
contexd data model, 235, 290202
entity discovery, 280-290
fully attributed data madel, 286, 205297
lezy-based dats model, 286, 202203
simplification by inspection, 306
reverse engineenng, 285, 287, 713
akills, 199
strategic, 283-183
sy hronizing with process models, 359-360
in systems analysis phases, 285-286
transfarmation into database schema, 530532
Data pertitioning, 495
Data processing
batch, 496, 584, 550
online, 420, 406497, 584
remaote batch, 497408, 584
Diata rephicapnon, 495
data requirement A represeniation of users' data in
terms of entities, attributes, relationships, and rules.. 50,
0303
data store Stored data intended for later uxe. Synonyms are
Mile and database., 320
in datn flow disgrams, 317, 320-321
entities ond, 320, 349
external, 339
numes, 320-321. 481
phyzical, 481

726 Glossary/Index

data structure A specific arrangement of data attributes
that defing a ringle instance of a data flow., 330

data flows, 326, 330-333

describing, 349

mportance, 333

mput data Rows, 599600

notaton, 330-331

outpat data flows, 562

types, 330
data type A property of an attriluite that identiftes what type
of data can be stored wm the arribute., 272
data type A class of data that can be stored in an artribute., 333

physical. 532

validation checks, 590
data warehouse A darabase dhat storer dara exrracted from
operational databaser., 523
database A collecion of internelated files., 518, 523; see also
dsta store; relational database

building and testing, 687

capacity planmmng, 539

compared to conventional files, S18-519

designing: see Database design

distributed data, 338-530

mstallanom, 692-693

metadata, 713

operational, 523

personal, 523

pros and cons, 520

prototyping, 530

recovery. 710

restructuring, 713

work group, 523
database administrator (DBA) A specialist responsible
Sfor database technology, destgn, conrtruction, securiry, backup
and recovery, and performance muning., 10, 524
database architecture The database technalary used to
support data architectre., S24-526
Diatabase design, 457; see also database schema

aptomnted tooks, 526, 520, 532535

data integrity, 535-536

goals, 530

guidelines, 570

prevequisites, 330

referential integrity, 336

S0L code generation, 529, 530, 542
Dhtabose cngmes, 525
database management system (DBMS) Special sofi-
ware wred o creaie, access, control, and manage a database.,
515 526; see alse relational database

data defimtion langunge (DXL), 525

dats manipulation language (DML), 526

ohject, 542

pros and cons, 524
Dratabase mddleware, 300
database schema A mode! or blueprint representing the
technical implementation of a database,, 330

creation of. 457, 530532

geoerated by System Architect, 532, 535

reletional, 526

S0L code generation, 529, 530, 542
database server A server that hosts one or more data-
bazes.. 487, 490

data-to-location-CRUD matrix A marix thar i used o
map data reguirements fo locations., 308
Diata-to-process-CRUD matrx, 353360
Data-type checks, 580
DaiaWatch Monarch/ES, 558
Daviz, William 8., 240
DBA; see database adminstrator
DBEMS: see datnbase management system
DAL see data definition language
Dreciziaon analysis phase, 192194

candidate solubion anolysis, 195197

candidate solution comparisen. (97, 436420

candidats solution identification, 194195, 477

commercial software scqusmion, 460, 462

FAST methodology, B5-86

feasibility anolysis, 195-197, 416417, 426

project plan updating, 197

system proposal, 197199
decision support system (DSS5) An information system
that either helps to identify decision-maling epportitnities or
provides information to help make decirions., 7
decision table A wahular form of presentation thai specifier
a set of conditions and their corresponding actions., 212, 355,
A57-358
decomposition The acr of breaking a svstem into
subcomponenis,, 322-324
decomposition diagram A ool used ro depict
the decomposition of a sysfem. Also called hierarchy
charr., 323334

event, M2, 345

functonal. 335, 330-340

purpose, 335
default value The value thai will be recorded ifa value is
not specified by the wser, 273, 532
dugrun The number of entinies that particvipate in a relation-
ship., XT5
DeHay=, In. W., 719
Diejoie, Foy, 240
DeMarce, Tom, 116, 130, 155, 366477
Dependency relationships. 650, 665
depends on A relarionship benween wse cases indicating thar
one wse case canne be performed until another use case har
been performed,, 249250
deployment diagram Depicts the configuration of sofi-
ware components within the physical archirecture of the system's
hardhware “nodes.”, 873674
derived atrOibute An airibace whose value can be calew-
lated from other atiribures or derived from the values of other
artribriter., M2-304
descriptive field A nonkey field., 521
design class diagram A dagrom thar depicis classes that
correspond fo sofiware components that are used to build the
software application., h5-665
Dresign closses, 656, 663
design pattern A common rolution to a given problem in a
given context, which supporty reuse of proven approaches and
fechnigues., 668671
dﬁlfgrl unit A self-contaned collection of processer, data
storexs, and data flows that share similar design ot tributes. . S,
S07-508, 562
Design use case, 652, 635
Diesigners; see system designer

detailed report An internal owpur that presents informaiion
with little or no filtering., 550
DFLDy; see data Aow diagram
Iﬂlllngl.l& The overall flow of screens and messages for an
application, 617; see also Menus; user dialogoe
directive A new naguinement that's imposed By management,
government, or some external influence., 77
Dhiscount mates, 423424
discovery prototyping A technigue used to identify
the wsers " buriness requirements by having them react to a
gt ck-and-dirty implementation of thove reguirements.,
Ied-165, 192
discovery prototyping The act of building a small-scale
representative orworking model of the wrers' requirements in
order to discover or verify those reguirements,, 228-229; see
also prototyping
Dhsplay monitors, 618619
distributed data A client'rerver syrrem in which the dara
and data manipularion kayers are placed on servers and other
lavers are placed on clients. Also called hwo-tiered client/server
compuiing., 4894090, 506-507

ophbons, 538539

rephcation. 538-530
distributed data and application A client/rerver sys-
term in which the data end manipulation layers are placed on
their own server s), the applicanon logic is ploced on itx own
server. dngd the presentalion logic and presearation are placed on
the clients. Also called three-tiered, or n-ftered, client/server
computing., 490491 501-502
distributed presentation A client/server rystem inwhich
presentation and presentation logie are shifted from the server to
reside on the client., 487488, 500-501
distributed relational database management
system Software that implements disrributed relational
databases., 494495
distributed system A sysem in which components are
distributed across mulnple locarions and computer nemworks.,
484 see also client server system

advantages and disadvantuges, 484

arc hitecture, 484

file server architeciore, 485486, 480400

partitionmgz, 491, 405
diverging data flow A data flow shar splits into multiple
dara flows., 333-334
DML; see data manipulation language
Document, zource: see source document
document file A wable containing historical data.. 522
Drocoment interchange, 499
decumentation The angoing activity of recording facts and
specifications for a system for curvent and future reference., 89

in agile development, 191

durng development, T3

existing, 215-217

out-of-date, T13

traming manmals, 69365
domain A proverty af an ateribute thar defines what
valies the attribute can legitimately toke on.. 272
domain The legitimare values for an
atiribute., 333

of database fields, 532

defiming. 297

wvabdation checks, 590

Glossary/Index 727

Domain usiegrity, 536

Drrop-diown lists, 595

DSE: see decision support system
Duncan, William B, 155

Dunlap, Doane, 611

Dunne, Peter, 241

Dhration. sk, 132-134

Dynusty, 502

E

EAI; see enterprise application integration
Eastman, David, 645

eBay, 407

E-businesz; sree electronic business
E-commerce; ree electronic commerce
economic feasibility A measure of the cost-effectiveness
of a praject or solwion., 419, 503

net present valoe, 425424

pavback annfy=iz, 423425

retm on wvesoment, 423

techniques, 422

tume value of money, 422423
ELY; see expetted duration
Eddy, Frederick, 411, 679
EDH: see electronic data interchange
EDS; ree Blectromic Diata Systems
Edwards, Jen, 515
EIS; see pxecutive information system
Electromagnetic transmission, 587
electronic businass (e-business) The use of the
Internet fo conduct and support daydo-day buxiness
activities., 18

appheation architectores, 491402

impul design, 605606

output design, ST0-573

procurement, 18-19
electronic commerce {e-commerce) The buying
and selling of goods and services by using the
Interned, 18

apphcation archifectores, 491402

business-to-business, [8-19

business-to-consumer, |18

imput design, 6053606

output design, 570573

sacunty msues, 630

shopping carts, 605604
electronic data interchange (EDI) The sundardized
electronic flow af business transactions or data betwesn
businesses., 499
Electrome Data Systems (EDS), 667
elementary process Discrete, detailed activity or task
required to complete the response to an event. Also called
primitive process,, 325, 340, 358
E-muail, 25-26, 400, 556
enca Pll.ll afion The packaging of several items together nto
one unit., 372
English, struc tored, 353358
Enhancement; see System enhancement
Enterprise application architec tures, 502503
enterprise application integration (EAl} The procers
and technolopies wsed to link applications to support the flow of

728 Glossary/Index

data and information benveen thore applications, EAL selutions
are usnally based on middleware., 26, 29-30
Enterprize applications, 26

customer relationship monagement, 26, 2220

enterprise resource planning, 26-27, 10)

supply chan inanagement, 26, 27-28
Enterprise data model, 284-285
Enterprise process model, 334
enterprise resource planning [ERP) A sofware appli-
cation that fully integmtes information sysiemr that span most
orall of the basic, core business functions (including transaction
processing and management information for those business
Juncions)., 2627, 100-1(H
enfity A class of persons, places, obfects, evenis, or concepts
abour which we need to capture and store data,, 11-272

associative, 276277, 280

atiributes; see atiribute

business, 50

child. 277

datn stores and, 320, 349

defimtons, 289

discovery of, 280-200

generohization, 283, 205

key, 273-274

life history of, 342

names, 280

parent, 277

reluonships; see relationship

strong (independent), 278

supertypes and sabtypes, 283, 295, 532

nse cases and, 342

weak, 279
enfity class An ohject class thar contains business-related
informanon and implements the analysr classes., b48, 656
enlity instance A single ocourrence of an entity, 272
entity relationship diagram (ERD) A daw model utiliz-
img several notations to depict data in terms af the entities and
relationships described by thar dava., 163, 270-2T71: ree also
data madeling
Environmental model; see context data flow disgram
E.piphany, 28
ERD); see enfity relationship diagram
Eriksson, Hans-Erik, 411, 678
Ernest, Kallman, 40
ERP: ser enferprise resource planning
ESP; see external service provider
Essential models; see logical model
estimation The calculated prediciion of the costs and effort
required for system development, A somewhat facetions svnonyem
is puesstimanon, usually meaning that the extimanion is based on
experience or emprnical evidence b 15 lacking in rigor—in
other words, a puess., 89
Ethics, 15
E-trade.com, 18, 492
Evans, C., 690
event A logical unit af work that must by completed as a
whaole, Sometimes called mansaction:, 324

business, 52, 324

external, 341

physical data flow diagrams for, 307-508

process descriptions, 346, 347

state, 341

temporal. 248, 341
Event decomposition dingrams, 342, 345
event diagram A data flow diagram for a single event han-
der and the agents and data xtores that provide inputs or re-
ceive oulpufs., 335
event diagram A data flow diagram that depicts the context
fora single event., 345-347
event handler A process thar handles a given event in the
eveni-response lise, 335
event partitioning A strctwred analysis sirategy in which
a sysiem is factored info subsystems based on business evenis
and responses to those events., 335
event-response list A lisr of the business events to which
the rystem must provide a responze. Similar to o use-case lis.,
335, 31342
excepltion report Aniniernal ouipui thar filiers daw to pre-
seni information thal reports exceplions fo some condition or
standand.. 551
execufive information system [EI5) An informanion
swxtem that supporis the planning and assessment needs af
EXECUNvVE managers,, T
Executive sumumary, 432
Existence checks, 500
expectations management matrix A fool wsed to -
derstand the dvnamics and impact of changing the parameiers of
a proyect.. 143147
expected duration (ED) The estimated amonnt of time
reguired o complefe atask., 133
expert system Aainformation system that captures the
expertise of workers and thea simulate s that expertise ta the
benefit of nonexperiz, 7
expert user An sxperienced computer user, 615
extension use case A uswe case consisting of sieps extraced
[from a more complex uxe care in onder fo simplify the origingl case
and thus extend its functionalitv. The extension use case extends the
functionality of the ortginal ure care., 248, 384, 385-386, 390
external agent An mutside person, orpanization wnit,
sywteny, or organization that interaces wirth a system. Also called
external entity, 319

im contexi data flow dingrams, 339, 342

in data flow diagrums, 317, 319-320

events mitiated by, 341

naumies, 320

physical, 481
External events, 341
external output Aa oufput that leaves the organization.,
553, 564
external service provider [ESP) A sywemys analys,
syrtem designer, or svstem builder who sells hix or her exper-
tise and experience to other businesses to help those businesses
purchase, develop, or integrate their information systems
solfutions: may be affiliated with a conmilting or services
organization., 16
Externul users, & 10
Extransts, 24
Extreme programming, 34

'Fﬂr.'l*-ﬁnding The fermal process of using research, inter-
views, meetings, guestionnaires, sampling, and other techmgues

e collect information about system problems, requirements,
and preferences. It is also called information gathering or data
collection., B850
fﬂtl‘-ﬁnding The process of collecting mformation about sys-
tem problems, opportunities, rolurfon reguirements, and priori-
ries. Also called information gathering., 165
'l‘l:ll.'l-ﬁrll:liﬂg The formal process of using research, meetings,
it rviews, guestionnaires, sampling, and other technigues to
collect information abour sysiem problems, reguirements, and
preferences. It is alse called information gathering or data
collection., 212
for proces: modeling, 337
strategy, 234235
technigqoes, [65-166, 215 see also joint requircments
planning (JRP)
discovery prototyping, 228-220
umerviews, 222218
ohservation of work environment, 218220
questionnaires, 220237
research and site visats, 217-218
samphing existing docomentation, 215-217
Facts secton, 432
Factual format, 431-432
FAST A hypothedcal methodology uxed throughour this book fo
demonsimile a represenintive systemys development process, The
acronym s letters siand for Framewonk for the Application of
Svstems Thinking., T1-72
as agile method, 02
commercial yppheation package implementation
strategy, 101-103
hybrid etrategies, 104
model-doven development, 92, 0456
phaszes, 7273, T7-T9
construction and testng, BT
decision analysis, B5-86
installation and delivery, 87-28
logical design, B4
physical design and integration. 83657
problem analysis, 8283
requirements anilysis, §3-84
scope defimhion, 79-82, 167
systems analysis, 160, 166-167
rapid application development strategy, 98100
systemn design strategies, 453
system mointenance, 104107
fat client A pervonal computer, notebook computer, or work
statton that ts fymeally powerful., 486, 487, 490
'F“lihi"fy’ A measure of how benefictal the
development of an information system would be to an
organization., 89
feasibility The measure af how bengficial or practical an in-
Sformanion yystem will be ro an oreanization., 414
culivral (politcal), 417418
econonuc, 419, 422, 503
legul, 419
operational, 417, 503
schedule, 418
technical, 418, 503
bests, 417410
feasibility analysis The activity by which feasibility is
measired and asresyed., 89

Glossary/Index 729

feasibility analysis The process by which feasibility is
meanired,, 414

checkpomts doring systems analysis, 416417

in decision analysis phose, [95-107

evalustion of commercinl software, 465466
feasibility analysis matrix A ool used to rank candidate
systems., 197, 429
Feazibility assessment; ser problem statoment
feature cregp The uncontrolled addition of technical features
o a rystem., 122
Federol Express, 498, 584
field The smallest unit of meaningfil data 1o be stoned in o file
or database.. 521

data types, 532

in database schema, 53(0-532

defauli values, 532

domains; 332

nmmes, 530-532, 538

sizes, 532
file A collection of stmilar reconds., 518
file The seiaf all occurrences of @ given record siruciure.; 522;
see also data store

archival, 522

aundit, 522

compered to databases, 512510

designing, 529

document, 522

master, 522

pros and cons, S18-510

sempling, 216-217

table look-up, 522

tremsaction, 522
file server system A LAN in which a server hosts the das
af an information system., 485486, 480400
Finkelstein, Clive, 313
Firefox, 584, 618
first normal form (1NF) An entity whose artribues have no
more than one value for a single instance of thar enrity, 299302
Fizgerald, Ardrn F, 240
Frizgerald. Jerry, 240, 611
fixed cost A cosr thar ooours ara regular interval and ar a
relanvely fixed rare., 420
fixed-format questionnaire A guestionnaire containing
qutestions that reguire selecting an answer from predefined
available responses., 221-222
Fixed-length record stractures, 521
Flowcharts, 97. 317-319
foreign key A primary key of an enity that is used in an-
other ennity to idennfy instances of a relationship., 277
foreign key A field that points to records in a different file in
a database., 521, 530

referential integrity, 536

mle names, 538
formal presentation A special meeting used to sell new
ideas and gom approval for new systems., 433

advantages and disadvantages, 433434

conducting, 436437

following up, 437

preparing for, 434436

visual nids, 435
Format checks, 500

730 Glossary/Index

forward engineering A CASE ool capability that can
generate initial software or database code directly from system
models., 108
ferward ll:l'lﬂ:'l.l"‘ng A propect scheduling approach thar
establizhes a project start date and then schediles forward from
thar date., 135
Fowler, George, 2440
Fowler, Marmn, 411, 665669, 6749
Fromes, 6200
“Framework for Information Systems Architecture”
i(Zachman), 58-59%
Framewark for the Application of Systems Thinking: ree FAST
free-format questionnaire A guestionnaire designed to
affer the respondent greater latthude tn the answer. A guestion
is asked, and the respondent records the answer in the space
provided after the guestion., 221
Freund, John E., 240
Friedlonder, Phillip, (43, 144, 145, 155
front-office information system An information system
that supports business functions that extend oud fo the ereaniza-
ftom s cuxfomers,, 4445
Fully deseribed dats model, 256
fully atiributed data model A data modei thar includes
all entittes, attributes, relationsheps, subsetting oritenia, and pre-
cise cardimalinies., 286, 705207
function A ser of relaied and onpaing activiries af a buriness.,
324; see also business funciion
Function klﬂ'fl A series of spectal kevboard kevs used io
program special operations, 619
functional decompeosition The act of breaking a system
imte sbcomponents., 246
functienal decomposition diagram A diagram thar
partifions the svitem into logical subs yvstems and/or functions.,
335330340
functional requirement A description of activities and
services q systerm muxd provide. . 1B5S; see also requiremenis
discovery

identifying, 208

prototyping. 192

stroctunng, 191

u=e cas=s, 187-188

validation, 192
Functional specification; see requirements definition
document

G
Galite, Wilkert O, 84, 579, 61 1. 615, 645
Gamma, Erich, 669
Gane, Chns, 116, 240, 472, 477, 515
Gantt, Henry L., 125
Gantt chart A bar charr used to depict praject tasks against a
calendar, 1235, 126127

mtertask dependencies, 134135

recording progress, 140141
gap analysis A comparison of business and techmical re-
gutrements fara commercial application package against the
capabilities and features of a specific commercial application
package for the purpore of defining the requirements that connot
be met. 103
Gartner Group, 68
Ganse, Donald C_, 41, 205, 2080, 240

generalization A concept wherein the attributes that are
commen o several types of an enniry are grouped into their own
enfity, 283, 205
generalization/specdalization A rechnigue wherein
the attributes and behaviars that ave commen to several byper
of ebject cdlasses are gprouped (or absiracted) into their own
class, called a rupertype. The attributes and metheds of
the supertype abject clasy are then inherired by those
object classes | ubtvpes). Sometimes abbreviated as
genfspec., 3TA-276
identifying hierarchies, 400, 402, 404405
Gilderslesve, Thomas B, T3n, 116, 226n, 240, 366441
Globabzation, 1 7-18
Goldman, James, 84, 515
Gordon, Jerry, 143
Gore, Marvin, 441
graphic output An ouiput that uses a pictorial chart to
canvey information., 556
Graphical user imterfaces (GUIE): ree also User interface
design
contrals, S00-592, 620
advanced. 596-598
buttons, 596
check bomes, 503594
cambination bomes, 595596
drop-down lLists, 595
=t bootes, 584505
radio buttons, 593
selectimg, 600
spin boxes, 506
temt boores, 392503
m Visnal Basie, 634
design 1ssues, 57
frames, 620
menug; s Menus
styles, 619
use of, 554
windows, 620
Gray holes, 325
Gregory, William. 313
Gnllo, John, 40
Groupware technology, 26, 487
Guengerich, Steve, 515
GUI; see Graoplocal user interfaces

H

Hammer, M., 205, TIO

Handheld computers, 24-25, 492, 585,618
Harkey, Dan, 515

Harmein. Paul, 411, 670

Harmon, Paul, 366

Hartzon, H. Rex, 645

Hay, David C., 313

Helm, Richard, 660

Help agents, 632

Help anthoring packages, 631

Help systems, 630633

Help wizards, 632

Hiermrchical codes, 203

Hierarchy chart; see decomposition diagram
Hix. Deborah, 645

Hoffer, L A.T19

Hoffer. Jeffrev. 347

Horton, William K., 6453

HF iPng. 24

HTML (Hypertext Markop Language), 487, 494, 502, 631
Human enginesnng guidelines, 616617

Human factors i user mterface design, 614, 615-616
Hunter, Richard, §8n

Hybrid Winmdeows "Web vzer interface, 627

Hypedlinks. 558, 572, 626627

Hypertext, 626627

|
12 Technologies, 27
IBM, 463, 525
CAA Source Code Manager, 704
CICS, 487
DB 2 Universal Diutabase, 74, 487, 495, 524, 528
enterprise application integration, 2%
Lotus Motes, 487, 400
MO Messaging, 74
Ratonal 447
Vismaldge, 502, 590, 614
Websphere, 54, T4, 109, 164, 487, 502
Teonic menus, 624625
Icons, 624625
identifying relationship A relationship in which the
parent entity’s key 1z alse part of the primary kev of the child
entiry, 279
IE; see mformation engineering
Imaging, 499
Implementation models; see physical design;
physical model
Implementation phase; see systems implemeniation
infermation Data thar har been processed or rearzanized
inte @ more meaningful form for someone. [nformation is formed
[from combinations of data that hapefully have meaning to the
recipient., 21
information engineering (IE) A model-driven and
data-centered, but process-sensitive, techaigue for planning,
amalyoing, and designing information systems. [E models are
pictunes that (lustrate and syachronize the rysiem’s data and
processes.. 163
design methods, 447448
models, B4, 163, 271
Informaton gathering; ree faci-finding
infermation system (I5) An arrangement of peaple, data,
processes, and information fechmology that mteract io collect,
process, store, and provide ax owput the information needed to
support an organization., &
buck-office, 45
building blocks, 47
comimmications, 55-38
Enowledge, 47, 50-51
networks ond, 5850
process, 31-52 5455
business drivers, 16-17
business process redesign, 22
colloboration and patnership, 20-21
contineons improvement and total goality
management, 21-22

Glossary/Index 731

electronic commerce and busincss, 1819
globalization. 17-18
knowledge asset management, 21
security and privocy, 1920
o= capiial investments, 75
classes, 6-7, 4546
oross-fanc tional, 52
fedemtion of, 4445
front-office, 4445
technology drivers
collaborstve technologies, 25-26
enterprise applications, 26
mobile and wirelzsz technolomes, 24-15
merworks ond Internet, 22-24
ohject technologies, 25
information systems analysis Those develapment
phases tn an information systems development profect that pri-
marily focus on the business problem and requirements, frde-
pendent af any technology that can or will be used to implement
a solulion to that problem. | 160; see also systems analysis
information systems architecture A wnifiing frame-
work into which various stakeholders with different perspectives
can srganize-and view the fundamental butlding blocks of infor-
matton systens.; 46
stakeholder perspectives, 4647
standards, T3-T4
information technology (IT) A contemporary term thar
describer the combination of computer iechnolagy { haraware
and saftware | with tel ccommumicanions rechnalogy (data, image,
and voice nefworks]., &
Information technology architecture, 7374, 483
infermation weorker Anv person whaose job imolves
creating, collecting, procesnng, distributing, and using
informanion., 7
inheritance I use cases, a relardonship beiween actors
created to simplify the dravwing when an absiract actor inherits
the role of multiple real actors., 250
inheritance The concept wherein methods andior atributes
defined in an ebject clags can be inherited or rewsed by another
object class., 3T3-3T76
Inprize Tbuilder, 590
Input design, 4574 58: see alvo Grophical user interfaces
(GUs); User interfuce design
architectores
barch processing, 496, 584
document mierchange, 494
clectronic data interchange, 494
e-mail, 499
imaging. 499
kevless datn entry, 498
i lewre, 40050
ooline processing, 496407, 584
pen mmput, 498
remote bateh, 407 498 584
work gronp technology, 490
automated tools, 598, 64605
controls, 580500
implementation methods
automatic data capture, S85-587
brometnc, 587

732 Glossary/Index

electromagnetic transmission, 387
keyboard. 585
magnetic nk, 536
mouse, 583
optical mork recogniton, 585584
pomt-of-sale terminals, 585
smnrt cards, 587
sound and speach, 585
touch screen. 585
nput taxonomy, 582
process, 309
GUI control selection, 600
lopical requirements, 590600
source docament design, G03-505
user feedback, G01-A03
prototyping, 582, 508, 601603
types of mpot, 382-584
user issues, 387580
Web-based inputs, 605606
Instaliaton, syztem, 87-58
[nstant messaging, 26
Instruction sets, 627620
[nstruction-driven mnterfaces, 627629
intangible benefit A benefit thot is believed to be difficuls
or impessible fo guantify, 421422
Integrated development environment (ADE); see application
development environmend
Integration; see systems integration
intelligent key A business code whose structure comnuni-
cates data about an enfity instance,, 292-293
interface class An object class thar provides the means by
which an actor can mterface with the system. Examples include
a windew; dialogue box, or sereen. For nonhuman actors, an
application pragram inferface (API) 15 the interface class.
Somenmes called a boundary class., 648-6440, 656
Interfoce design, 495-496; see alse Input design: Chatput design;
User interface design
interface specifications Technical dexigns that document
how rystem users are to interact with a system and how a system
interacts with other sysiems., 57
internal output An oufput for rystém owners and tsers
within an organizaiion.. 550, 5532
[nternol users, 9@
Intermest; see also electronic business; electronic commerce;
Web browsers
application architectures based on, 491404
as dnver for informaton systems, 22-24
c-mail, 25-26, 499, 556
mportance, 493
mstant messaging, 26
portals, 24, 402
software development environments, 302
Web services. 24
Imternet Explorer, 19
interview A face-finding technigue whe rebry the svstems
analyst collects information from individuals through face-to-
face interaction., 222
advintages and disadvintages, 223
body language and proxermcs, 227-228
condacting, 226

following ap, 226

guide, 224

fistening n, 226227

preparation, 224

questions, 223, 124

selectng interviewees, 224

gtmotured, 223

unstructored, 223
intranet A server network that uses Internet technofogy
to integrate desktop, work group, and enterprise compuiing.,
24, 492, 502
Introduction, report, 432
Intuie; see Chncken
I5; zee information systenn
Ishikawa, Koo, 211
Ishikawa diagram A graphical tool used to identify,
explore, and depict problems and the causes and effects of
those problems. It ix often referred to as @ caure-and-effect
diagram or a fishbone diagram (because it resembles the
skeleton of @ fish)., 211-212
Tzshiki, Eoichire B 466, 472
IT: see information technolegy
iterative development approach An appruch 1o
svstems analysis and dexign that completes that enfire informa-
ton gystem in succexsive temtions, Each fteration doer some
analvsis, some design, and some construction. Svnenyms include
incremental and spiral, 3992

J
Jacobsen, Ivar, 117, 245, 267, 342 370, 371, 411, 679
JADY; see Joant application development
Java, 24, 25 54, 58 74, 07, 493 502
TDBC (Javabean database connectivity). 500
Johnzon, Ralph, 6643
Johnzon, Spencer, 139, |55
Joint application development (JATY), 451453
joint project planning (JPP) A strarezy v which all stake-
halders attend an intensive workshop aimed at reaching consen-
sux agreement on project decisions., 127, 129
joint requirements planning (JRP) The use of facili-
tated workshops to bring together all of the svitem owners,
users, and analysis and some sysiems designery and Ritlders ro
Jotnily perforni systems analysis. JRP is genemally considered a
part af a larger method called jownn application development
(JADY, & more comprehensive application of the JEP techniguer
to the entire svstemys development process., 166
joint requirements planning (JRP) A process
whereby highly stnectiured group meetings are conducted
far the purpase of analyzing prablems and defining
reguirements., X290

agenda, 233

benefius, 234

conducting eessions, 233-2134

dats modeling and, 286

end produce, 234

Facilitntor, 230 233

locations, 231-233

participants, 23023, 233

planning, 23 | -233

for process modeling. 337

room layout, 232
sponsor, 230
Jomsson, Pamk, 267, 411, 679
Joshin, Edward O, 466, 472
JPP; ree joint project planning
JRP; see joini requirements planning
Jumctions, 327, 334

K
Kana, 23
Eamm, Daniel A, 515
Kawasaky, 211
Keane, Inc., 130, 140, 141
Eennedy, John E, 144
Kernzer, Harold, 155
kl‘r An attribute, or a group of artributes, that assumes a
unigue value for each ennvy instance, It 15 sometimes called an
rdentiffer, 273; see also forsign key

altemate. 774

candidate, 274

concatennted, 273-274, 521

intelligent, 292263

primary, 274

secondary, 274, 521, 330

selecting, 202203

of table, 521
Key imtegnity, 535
key-based data model A data model thar includes entities
and relationships with precise cardinalivies resolving non-
specific relafionships into associative entities, and also tncluding
primary and altérnare beys., 286, 202-203
Keyboards, 585, 610
Kevless data sairy, 408
Eing, William ., 64
knowledge Daw and information that are further refined
based on the facts, truths, beliefs, judpments, experiences, and ex-
pertize of the recipient, Ideally information leads to wisdom., 21
Enowledoe asset management, 21
Enowledge building blocks, 47, 50-51
knnwlndg- worker Anyworker whose responsibilities are
based on a specialized body of knowledge . 9
Koz, Kenneth, 611

L

LAN; see local area network

Languuge-bnsed syntux, 623

Lantz, Kenneth E., 473

Larman, Crmg, 261, 267, 411, 679

[eflour, Rom, 143

legal feasibility It a measure of how well a rolution can
be implemented within existing {egal and contractual obliga-
fions., 419

Letters of transmittal, 432

Leventhal, M. 5, 240

Levine, Martin, 41

Lindermon, James, 40

Linkletter, Art. 227

Lumx, 618

List boxes, 584505

Listening, 226-227

Glossary/Index 733

local area network (LAM] A ser of client computters con-
nected aver a relanvely short distance to one or more servers.,
485486
Location comverzion, 691
Logical data modeling; see dain modeling
Laogical design phase. 84, |89

acceptance test cases, 192

functonal requirements structurmg, 191

functional requirements vehidation, 192

prototyping, 192
Iogil:lll dnlign The translation of busness user reguire-
ments info a system madel that depicis only the business
requirements and nor any possible technical design or imple-
mentation af those reguirements. Commaon synonyms include
concepinal design and essennal design, the latter of which
refers to modeling the “essence™ of a system, or the " essential
reguirements” independent of any technelogv. The antonym of
logical derign is physical design (defined later in thiz
chapter)., 84
Ingi:-ul model A pictorial representation that depicis what a
system 5 or does. Syaonyms are essential model, concepial
model, and business model., 94
Ingh:ul model A nonrechnical picrerial representation that
depicts what a system iz or does. Synonyms are esseatial model,
concepiual model, and business model.. 316
Log-ins, 629
London, Keith, 139, 155, 240
Lovd, Kenmiston W, Jr., 240
Lovensen, William. 411, 670
Lotus

1-2-3, 558

Hotes, 487, 499

SameTime, 26

SmanSuits, 626

M
MeClure, Carma, 366
MeConnpell, Steve, 117
McDonnell Dopglas, 143
MecFadden, Fred. 547
Machiavelly, Miccola, 434
Meleod, Graham, 139, |55
McMenumin, Stephen M., 324, 366
McMealy, Scotr, 22
Macromedia
Cold Pusion, 24, 58, 109
Dreamwenver, 58, 74
RoboHelp, 631
Magnetic ink character recognition (MICR), 586

Majer, 143
Malloy, John T,, 436

management information system [MI5] A«
information sysiem that provides for manage menf-oriented
reporting based on transaction processing and opemittons of
the organizanon., G

Mandel, Theo, 645

Manugiztics, 27

Many-to-many relationship; see nonspecific relationship
Manga, Julie, 64, 515

Martin, Alexander, 645

734 Glossary/Index

Muortin, E. W., 719
Martin, I.. 411, 679
Martn, James, 271, 313, 366
master file A ekl concaining records that are relatively
permanent,, 512
Matthies, Leslie H., 354, 366
Mellor, Stephen 1., 313
Menu bar, 620621
menu driven A dinlogue srrategy thar requires thar the user
select an acrion from a menu of choices,, 620
Menus, 620
cascading, 620622
hiypertext and hyperlinks, 626-627
oomic, 624625
pop-up, 624
pull-down, 620-622
tear-off, 623
toolbars, 624
Mercator Software. 20
Mernll Lynch, 18
message Comemmnication thar occtirs when one object imoker
anather object’s method (behavior) to request information or
some action., AT8-380
messaging or groupware server A server that hosts
services for growpware., 487
metadata Data about data., 286 526, 713
methed The sofhvare logic that is executed in response toa
message., G5l
of design ohjects, 665
visibility, 650651
Methodology; see systems development methodology
Methods and procedures section, 432
Methodware; see process manager application
Metzger. Phalip W.. 699
MICR; see Magnetic mk characier recognition
Micro Focuz
COBOL Workbench, 500, 501
Daalog Monager, 501
Microfiche, 558
Wherofilm, 558
Wicrosaft. 525; see also Windows
Access, 164, 486, 524, 526, 5328, 558-550, 582, 500, 508,
B2B-620. 634
colloboration with Oracle, 21
COM+, 487
Excel, 558, 64
Exchange Server, 487, 400
FoxPro, 486, 528
help agents, 632
Intemet Explorer, 97, 584, 618
MSN Messenger Service, 26
Metmes=ting, 26
Office, 626, 631, 632
PowerPomi, 435
S0QL Server, 74, 487, 495 528
Tronsact S, 528
Vizio, 162, 447
Yisto Enterprise, 526
Visual Basic, 598, T14
Visual Basic NET. 25, 54, 97. 164, 400
Vizual SonrceSafe, TH

Vizual Studic .MET, 54, 58, 74, 109, 501, 590, 614, 634

Windows Mobile, 408, 618
Microsoft Project, 111, 125

budgets, 136

criticol path analysis, 147

Gantt charts, 126127, 134-135, 140-141

intertask dependencies, 134-135

milestones, 134

PERT charts. 127

recording progress, 140-141

resource assignment, 136

schedoling, 135

work breakdown stroctere, 13)
middleware Safrvare {uswally purchased) used to rronslare
and rowe data between different applications., M)
middleware Utility software thar allows application software
and systems software that uiilize differiag technologies to inter-
operate., 58, 111
middleware Uility software that enables communication
berween different processors in a system., $90-500
milestone An event signifving the completion of a major
project delivemble., 132, 134
Miller, Granville, 251n, 267, 411, 679
Miller, Trwin, 240
MIL-STD-498, 213
MIS; ser mamagement informmtion system
Mitchell. Tan, 241
MMnemomc syntax, 623
Maobile technology, 24-25
mobile user A wrer whose locaiton is constantly changing
bt who reguires access to_mformation systems from any loco-
fian., 10
medel A representation of either reality or vision. Stace “a
picture 15 worth a thowsand words," most models use piciures io
represent the reality or viston., 162
meodel A piciorial represeniation af realite, 316; see alro data
mindeling; process modeling: system model
model-driven analysis A problem-solving approach that
emphasizes the drawing of pictorial system models to documeny
and validate existing and/or proposed systems. Ultimately, the
svstem model becomes the blueprint for designing and con-
struching an improved systent, 161-1632
model-driven design A sysiem design approach thar
emphasizes drawing system models to document technical and
tmplementation aspects of a system., 447
model-driven development A system development strar-
egy that emphasizes the drawing of system models to help vismal-
ize antd analyze problems, define business requiremenis, and
design information svstems,, 84, 92, 9404
modern structured design A surem design technigue
that decompaoses the syrtem’'s processes into manageable
components., 447
Moszely, [n. 1., 699
Muoses, John, 241
most likely duration (D) An extimated amount of time
required to complete a task, baved on a weighted avempe af
aprimistic, pexsimistic, and expected dumitions., 133
mouse A device used 1o canse a pointer to move aoross a
display screen,, 585, 619
Mozilla Firefox, 584, 618
Mubtimedia outpuiz, 556

multiplicity The minimum and moxinum aumber of occur-
rences of one obyect class for-a single ococurrence of the relared
object class., 318

Matural language syntax, 628
net present value An analysis technigue that compares the
anneal discounted coste and benefits of alternative solutions:,
425426
Metscape

Commerce Server, 487

Mavigator, 19, 97
network computing system A multitiered solution in
which the presentation and presenration logic lavers are imple-
mented mn client-ride Web browsers using content downloaded
Sfrom a Web server, 491404
Metworks; see alro Intemet; local area network

architects, 10

arc hitectures, S05-506

building and testung, 684, 637

clean layering approach, 50

a: driver for information systems, 22-24

intranets, 24, 492, 502

role 1 mformation systems, 59
Meweomer, Eric, 515
Miku

open Waorkbench, 111

Project Manager, 111, 125
nonfunctional requirement A description of other fea-
tures, characteristics, and constraints that define a safisfactory
svstens., 185, 208
nonidentifying relationship A relaionship in which
each participating entity has itz own independent primary bev,
278270
nonspecific relationship A relationship where many
instances of an entity are associated with many instances
of another entity. Alro called many-to-many relationship.,
279232
normalization A data analvss technique thar organizes data
inte groups to form nonredundans, stable, fexible, and adaprive
entities.. 286, X0

antometed tools, 306

first normal form (1NF), 200302

as prereqmsite for dambase design, 525529

second normal form (2NF), 290, 302

third normal form (3NF), 299, 302-306
Mormalzed dats model, 286
novice USer Aninepperienced or caswal compiiter
wser, 615
MESA Report Web, 558
M-niered client server computing: see distributed data and
application

L8]

nhi-cl The encaprularion of the data (called properties) that
describes a discrete person, object, place, event, or thing, with
all of the processes (called methods) that are allowed ro use

or wupdare the data and properties. The only way to access or
ipdate the object's dala ix to use the object’s predefined
processes., 163

Glossary/Index 735

nh]ll.‘l‘ Something that is or is capable of being seen, fouched,
or otherwise sensed and about which wrers store data and arso-
ciate behavior, 3T1-372

attribates, 372

behaviors, 372

discovery of, 306, 300400

encapsulaton, 372

messages, 375320
n]:liﬂ.'l‘ dass A set of object inmances that share the same at-
tribates and behaviors. Offen referred to simply as a class.. 373

attrbates, 650651, 656, 665

be=haviars, 656650

control cleszes, 649, 656

coupling and coheston, 666667

design, 656, 663

design class diagrom, 665-666

entity classes, 548, 636

inhertanes, 373376

interac tions, 659

witerface classes, 648649, 656

life cycle, 663

meszages, 370380

methods, 650651, 665

persietent, 405, 640

palymarphism. 380

relafionships; see object class relationship

rensability, 667669

design patierns, 66867
object frameworks, 671

sobtypes and supertypes. 374, 400

system classes, 649

trangient, 405
object class relationship A nanuml business association
that exisis berween one or more obvects and classes., 3Te-3T8;
see also generalization specizliza ion

aggregation, 378, 405

dependencies, 650, 663

discovery of, 400

muluphicity, 378

novigability, 650, 665
Object datnbase management systems, 542
object framework A ser of related, interacting objects
that previde o well-defined rer of services for accomplishing a
fask.. 671
object instance Each specific person, place, thing, or event,
ax well ax the values for the anrbutes of that object, Sometimes
referred fo simply as an objeci., 372
Ohject Management Group (CWG), 371
object modeling A rechnique thar artempts to merge the
damta and process concerns inte singular conzimucts called ob-
Jects. Dhject models are diagrams that document a system in
terms of ity objects and thetr mteractions. Object modeling 5 the
basis for obfeci-oriented analysis and design methodologies., 97
object modeling A rechnique for identifing objects within
the systems snvironment and identifying the relationships be-
neeen those objects., 3N, see alse Unified Modeling Language
(UML); use-case modeling

concepts, 371

hastory, 370-371

notation, 372-373

process, 383

736 Glossary/Index

ageregation relationships, 405
analysis nze-case model, 383-385, 300
associations and mulopheity, 400
¢lass diagrama, 405
finding busmess ohjects, 306, 308400
functional description of system, 383
generalizntion/specinlizaton hierarchies, 400, 402,
404405
system sequence diagrams, 304306
uze-case activities, 300-30], 304
feverse engineering, 7 14
object responsibility The obligation that an object has to
pravide a service when requested and thur collaborate with
otfier oblects fo sansfy the request if reguined.. 651, 658
object state A condition of the obiject at ane point in ity
{iferime., 662664
nhlld‘ hﬂ:l‘lrlﬂlng_‘f A seftweare rechnology that defines a svs-
tem in rerms of objects that conzolidate dora and behavior (into
obgecis) Objecs become reusable and extensible componenis
Sfor the saftware developers., 25
Ohvjer telass matms, 400
nbll-rl'h- A measure of success, Iv i something thar you ex-
pect to achieve, if given sufficienr resoirces., 182183
object-oriented analysis (OOA) An approsch sed o
{d) srudy existing ebjects to see if they can be rensed or adapted
Sfor new uses and (2) define new or modified objects that will be
combined with exisiing objects inio a useful business compuiing
applicarion., 199, AN see also object modeling
object-oriented analysis and design (OOAD) A col-
e ction of tools and technigues for systems development thar will
utilize abyect technoelogies to conxtruct a syiter and ifs
software., 25, 97
object-oriented approach A medel-driven technigue that
imfegraies data and process concems iate constructs called ob-
Jects. Obfect models are pictures that illustmte the syxéem’s ob-
Jects from varous perspectives, such as the struchure, behavior,
and inferactions of the objects., 163
object-oriented design (OOD) An approach used to
specify the safhware solution in ferms of collaborating objects,
their attributes, and their methods., 648
process
modeling class interactions and behaviors, 656665
object model updating, 665666
role ployang, 664665
state machine diagrams, 663664
use-case model refinement, 651-652, 655
relutionships, 650
reusability, 667-669
use of, 450451
Object-artented programming langnages. 25
observation A fac-finding technique wherein the rystems
analyst either participates in or watches a person perform activ-
ities re learn abow the system.. 218-220
OCR; see Optical character recogmiion
OFY; see optimistic duration
ODBC; see Open datnbase connsctivity (ODBEC) tools
Odell. I, 411,670
office automation system An information system thar
mipparts the wide mnge of buriness office activities that provide
for improved work low befwean workers.. 7
OMG; ree Object Management Group

OME: see Opical mark recogmition
Oncken, William, Jr, 139, 155
Chmline help, 630633
online processing A dam processing method whereby data
abour a single rransaction is processed immediately, 490,
496407, 584
Q04 zee objoct-oriented amalysis
OOADY, see object-oriented ansbysis and design
QOLY, see object-oriented design
Crpen database connectivity (ODBC) tools, 58, 500
open-ended question A guestion that allows the inter-
viewee to respond in any way that seems appropriafe., 223
Cperating costs, 420
Chperating systems, user interfoces, 618
operational database A darabase thar supports day-to-
day operations and ransactions for an infeormation system. Also
called fransactional database., 523
ﬂpl:ﬂ:lﬂnnlll "‘ﬂll‘lh“il‘jl' A measure of how well o solution
meets the identified system requiremenis to solve the problems
and take advantage of the oppartunities envisioned for the
swsten, 417, 503
oppertunity A chance fo improve the erganization even in
the absence of an identified problem., T7T
Crpportunity costs, 423
Ciptical characier recognition (CCR), 498, 586
Crptic ol mark recognition (OMR), 408 585-586
optimistic duration (OD) The estimared minimum amount
af time needed 1o complete o wsk., 133
Crocle Corpormtion
collaboration with Microsoft, 21
Designer, 108, 526
Dieveloper, 109
enterprise resource planning, 26
Oracle daiabase, 21, 74, 487, 405, 524, 515, 528
Oracle Forms, 74
PL/SQL. 528
Cracle/PeopleSoft, 26, 28
Ohrfali, Robert, 515
Chrr, Ken, 117
Chatlook, 26
Chitput dezign, 437; see also User mtedface design
architectures
batch processing, 496
document interchange, 400
electronic data interchange, 420
e-mail, 400
imaging, 409
middlewiare, 499-500
anline processing, 496407
work group technology, 400
automated tools, 558-550
guidelines, 550-562
preprimted forms, 496, 554, 564
process
design, 565, 560
logical requirements, 562563
phy=ical output requirements, 563564
preprinted forms design, 564
prototyping, 363, 56¢
user feedback, S69-570
prototyping, 5500, 558550, 565, 560

Crutputs; ree alse Reports
distrbution and andience, 550, 553

external, 553, 554
implementation methods, 353
e-mal, 356
hyperlinks, 558, 572
microfilm, 558
multimedia, 556
point-of-sale terminals. 556
primted, 554556
soreen, 356
Web-bosed, 558, 570-573
imternal, 550, 553
tecxomommy, 550
turnaround, 553, 564
Overgaard, Guonar, 267,411, 679
override A rechnigue wherehy a rubdass (subipe) uses
an artribute or behavior of s own instead of an attribute or
bekavier inherited from the dass (saperivpe .. 380

p

Packnges: ree commaercial application package
paging Displaying a complete screen of characters ai
a fimee, 619
Palm, 24, 408 585 618
Palmer, John E, 324, 366
Paradice, David, 240
Parallel conversion, 631
parent entity A data entiiy thar contrilrites one or mare
attribuies to another entity, called the child. In a one-to-many
relationship the parent is the enfity on the "one™ fide., 277
Pamington, Morman, 241
partiiening The act af determining how to bext distribute
or duplicate application componenis across a rerwork.,
491, 495
Paulk, Mark C.. 117
Pl:lj“bllll:ll l:lm:ll'jl'ﬁi A rechmigue for determining if and when
an imestment will pay for imelf, 433425
payback period The period of time that will elapse before
accried benefits overtake accrued costs., 413
PD); see pessimistic duration
PDEDY: see physical data flow diagram
Penker, Magnus: 411, 679
Pens, 498, 619
Perkins, W, C., 710
persistent class A class that describes an object that our-
lives the execiition of the program that created ., 405, 649
Personal data assistantz (PDAs); see Handheld computers
Personal databases, 523
Person/muachine boundanes, 510
PERT chart A grophical nenvork model used ro depict the
inferdependencies between a profect s tasks., 125, 127, 147
pessimistic duration (PD) The estimated maxinim
amoint of fime needed fo complete a task., 133
physical data flow diagram A process model ured to
communicate the technical implementation characteristics of an
informanion rystem., 455, 4TT; see alro dats flow diagram
application architeciore modeling, S03-504
constrainis, 504503
detn flows. 481
dots stores, 481

Glossary/Index 737

design units, 504, SO7-508, 562

drawing. 504

external agents, 481

impui design using, SW0G00

network architecture, 505506

output design usmg, 562

person/mac hine boondares, 510

prevequisites, 504

processes, 477430

use of, 477, 482
Physical datw flows, 48]
Physical dots stores, 451
physical design The transfaron af business user require-
ments info a system miodel that depicts a technical implementa-
tion of the urers’ business requirements, Common synonyms
include technical design or in describing the output, imple-
mentation model, The antonym of physical design i5 {ogical
design (defined earlier in this chapier)., B6-87; see also
system design
physical model A rechnical picronial representaron thar
depicts what a systemis or does and how the svstem s imple-
mented. Synonyme are tmplementation model and technical
model,, 94, 316
Physical processes, 4774580
PIECES fromework, 77, 208, 417
Platform independence, 612
Plumber, Dionald H., 1300
PMBOE: res Project Management Body of Enowledge
Pomt-of-sale (POS) terminals, 556, 585
pﬂ“i.'jl' A ser of rdes that govern a business process., 5254
pﬂ“q‘ A sef of ndes that govern how a process (5 to be com-
Pleted., A5T
pdfmnrphilrn Literally meanting "many forms,” the conceps
thar different objects can respond to the same message i differ-
enf wavs., 380
Popkin; see System Architect 2001
Porials, 24, 492
POS; see Point-of-sale (POS) terminnls
Preliminary study; see problem statenent
Premertani, William. 411, 679
Prescott, Mary, 547
present wvalue The current value of @ doflar o any dime in
the future,, 424
presentation The ongoing activity af communicating
Sindings, recommendations, and documentation for review
by interested users and managers. Presentations may be
either written or verbal., #9; see alyo formal presentation;
Reports, wntten
Primary elements (of repona), 431
primary key A candidate key thas will most commonly be
uxed touniguely identify o single entity inseance.. 274
primary luy A field or group of fields that uniguely identi-
fiesa record., 321, 530, 525
Primnaverm. Project Planner and Project Manager, 125
primitive diagram A data fow diagram thar depicts the
elementary processes, data stores, and data flovws for a single
event., JA5, 340
Prnted outputs, 334-556
Printer spacing charts, 558
Prvacy, 19-20

738 Glossary/Index

prnhlnm An nndesirable sinuation that prevenis the organiza-
tion from fally achieving its mission, vision, goals, andfor
objectives., 11, 77
Problem analysis phase, 175-176

business process analysis, 1B0-]32

communication of findmgs, 183-184

dats modeling, 285

FAST methodology, 8283

feasibility analy=is, 416

goal, 175

problem and opportunity analysis, 180

problem domain, 175120

process modeling, 335

project plan updating, 183

system improvement objectives, 182-183
Problem discovery and analy=is, 210-212
prﬂhlnm statement A statement and categorization of
problems, oppornimities, and direcvives; may alro include con-
straints and an initial vision for the solution. Swonyms include
preliminary study and feasibility assessment., 82
Problem-solwving, 72
prncnd ure Siep-by-step sei-of insiriciions and logic for ac-
complirhing a lusiness process., 52
process Work performed by a system tn response to incoming
data flows or conditions. A rynonym is trangform., 322

business, 21

o data flow disgrams, 317, 321

decision tnbles, 3573538

decompasitian, 322324

distribution. 360 507

elementary, 323, 340, 358

mplementaton methods, 478480

matractions (logic), 349, 353

logical, 3243125, 478470

names, 479 480

person'machine boundanes, 510

physical, 477480

procedural lingnage, 353358

gystems as, 32]1-322
Process boilding block=. 51-52, 54-55
process management The engoing acnviry thar defines,
improves, and coondinates the use of an orgamizalion's chosen
methodology (the "process") and standards for all system devel-
opment projecis., 32
process management An ongoing acnary thar documents,
teaches, oversees the use of, ond improves an organization’s
choren methodology (the “process”) for systems developmens.
Process management is concerned with phases, aciovities, deli-
erables, and quality standards that should be conmstently ap-
plied to all prajeces., 74, B9
process management The activity of documenting, man-
aging, and confimually improving the process of systeny devel-
opment., 121
process manager application An automated tool that
helpr to document and manape a methadology and routes, ity
deliverables, and guality management wandards, An emerping
svnonym (5 methodware., 111
process rnud-ling A process-centered fechnigue popular-
ized by the structired analysis and design methodology that
used modelr of business process requirements to derive effective
sofrware designs for a system. Structured analysis introduced o

modeling fool called the data flow diggram e illustrate the flow
af data through a serfes of burine sz processes. Strucnired design
comveried data flow diagrams wmito a process model called struc-
aire charts ro llustmte o top-dewn software strucnire that ful-
Jills che business requirements., 9697
process modeling A rechnigue used ro organize and
document a system s processex., M7T; see alro data flow
disgram (DFLN)
automated tools. 337
for business process redesign, 319, 334335
event-driven, 335-336
process, 335, 338
balancing, 348349
context date flowr diagrams, 338-330
event decomposition dingrams, 342, 345
event diagrams, 345347
event-response lists, 34 [-342
fact-finding, 337
functional decomposition diagrams. 335, 330340
primitive diggrams, 335, 340
aystem diagrams, 347348
use-case lists, 341-342
reverse engineermg, 335
skills, 199
strategic, 334
synchromzing with data models, 350360
in systems analysis phases, 335-337
i systems design, 337
process requirements A wser's expeciation of the
pmcs.rsmg reguiremients for a business process and ity
rnformation systems., 52-54
prnms-tu-ln:nﬁnn-nlmiuﬁnn matrix A table wed
to document processes and the locations ot which they must be
performed., 360
Procurement phase, 460
Prodoction systems, TO2
Program library, TO2-T04, 709, T14
Program muintsnance, T4
objectives, 706
tasks, 706
benchmaorking, TO7-708
debugging, TOE-708
problem validation. T06-TOT
esting, 709
Propruommers. 10
Programmers Paradise, 501
Programmming; see systems constroction
Pmograms, 3453
analvsis, recovery, and restructuring, 713714
benchmarcing, 707-TO8
components, 671
modules, 447
reverse engmeering, 7 14
testing, 6GEE6H20
version contral, 700
project A sequence af aciivities that must be
completed on time, within budget, and according 1o
specificatton,, 120-121
budgers, 136, 173
canceling, 75
failares, 68, 80, 121-123, 244

impetus for, 77
launching, 174
schedule, 135, 139, 147140, 173
scope, 130, 141-142, |72
scope cresp, 82, 122
sponsors, 174
success critenia, 121
Project charters, 167, 174
project management The actiivity of defining, planning,
directing, monitoring, and coniralling a prewed fo develop an
acceptable systemy within the allovred time and budeet., 31
project management The process of scoping,
planning, staffing, orpanizing, direcring, and controlling a
provect to develop an information system of FURINLM CO5T,
within a specified rime frame, and with acceprable quality.,
74, 80, 92
project management The process of scoping, planning,
staffing, orpanigng, directing, and controfling the development
of an accepiable svstem af a minimum cost witlin a specified
time frame., 121
activities
change manapgement, 141-143
directon of tewm effort, 139
expectations management, 143147
intertask dependency specification, 134135
progress reporing. [40-141
resoarce psslgnment, | 36120
result pssessment. 149
schedule adjustments, 147-140
scope negotiation, 130
task durntion estimation, [32—134
task identification, 130-132
budgets. 136
functions, 124125
life cycle, 127-129
schedules, 135, 139
tools and techmgues, 125
Project Management Body of Knowledge (PMBOE), [23
Project Management Institute, 123
project manager An experienced professional who accepis
responmibility for planning, menitoning, and controlling projects
with respect to schedule, ludget, deliverables, custamie r satigfac-
tion, fechnical standards, and svstem gualitv, 16
project manager The person responsible for superasing a
yystens project from initiation to conclusion Swcces gl nroject
manggers porsess a wide range of techmical, manapement, lead-
ership, and communication skills,, 120
competencics, 123-124
leadership hinrs, 139
project manager application An auromated tool that
helps o plan system devel opment acnivitier (preferably wsing the
approved methodolopy), estimate and arsign resources (acld-
ing people and costs), schedule activities and resources, monitor
progress agamst schedule and budget, control and modify sched-
tile and resowrces, and report project progress:, 111, 125-127,
134 see also Microsoft Project
Project teams, 14
development stages, 130
recrunhng members, 138
resource assignment. 136139
roles, 136

Glossary/Index 739

prototype A small-soale, representative, or working model af
the wyers’ reguirements or a proposed design for an information
system. Any given protobype may omir certain funcrions or fea-
fures uatl such a fime as the protonipe har sufficiently evolved
into an acceprable implemenitation of reguirements., 98
prototype A small-scals incomplete, but working sample of
a desired sysiem., 163

databaze, 539

réverse enginecring, 165
prototyping A techrigue for quickly building a functioning
but incomplete model of the information sysiem using rapid
application development tools., 55; see also discovery
prototyping

advantages and disadvantages, 449450

automated tools, 558559

input design, 582, 508, 601603

ontput design, 550, 558-559, 565, 569

use mosystem design, 448450

use In systems analysis, 163165, 192, 228220

user interface desipn, 614, 634, 636630
proxemics The nelationship berween people and the space
aroend them.. 228
Purdue University. 492493

Q

QBE; see Query by Example

Cuality management, 21-22

Duery by Exnmple (QBE), 623

Ouestion-answer dinlogues, 630

questionnaire A doaiment thar allows the analyst to col-
leci informarion and opinions from respondents., 220222
Chuicken, 580, 627

R
RAD:; see rapid application develspment
Radio byttons, 503
Railroad Paradox, 218
randomization A sampling technigie characterized by
baving no predetermined pattern or plan for selecting sample
data,, 217
rapid application development (RAD) A system
development sfrategy that emphasizes speed of development
threwgh extensive user involvement in the mpid, deraiive, and
incremental construction of a series of functioning prototypes
of a system that evennially evelves into the final system {(or a
version).. 98
rapid application development [RAD) A systems
design approach that uillizes striuchured, protoryping, and JAD
technigues to guickly develop systems., 451

advantages and disadvantages, 100

anoly=is techmiqoes, 164

FAST methodology, 98100

future of, 199

logical modeling, 84

tmeboxmg, 100, 188
rapid architected analysis An approach thar
attempts to derive system models (s described earlier
in this section) from exisiing sysiems or discovery
prototypes,, 1HS
Rational ROSE. 108, 162
Ranonal Unified Process (BLIF), 84

740 Glossary/Index

Raowles, Phillip, 64, 515
record A collection of fields armnged in a predetermined
Sformar,, 521-522, 530
recursive relationship A relationship that exists berwesn
tnstances of the same entiry., 276
referential integrity The assumnce that o foreign-key value
in one table har a matching primary-key value tn the related
table,, 536
Regression testing. 709
Remgruber, Wichael, 313
relational database A daiabase thar implemenis data as a
series of two-dimensiomal rables that are related via foreien
kews., 526 see alro table

distributed, 494405

schema, 326, 530-532

SOL commands, 527
relationship A nanral business association benween one or
more entities., 274275

cardinality, 275

degree, 275

identifying, 279

multiple, 202

names, 275, 200

Neary, TT6

nomidentifying, X7 8-270

nonspecific (many-to-many), 270-253

Fecursive, 276
Relstionships in use-cise modeling, 248-250

azsociatons, 248

depends on, 249-250

extends, 243

inhentance, 250

uses (includes), 249
Relationships of ohjects and clnsses; see ohject class relstionship
remote batch processing A data processing method
whereby data is eniered online, collected ax a batch, and
processed af a later fime., 497408, 584
remote user A wser who is not physically located on
the premises but who sl reguines oocess to information
systems., 10
Renmod, Poul, 515
Replication, 538-539
Reports: see also Outputs

design wals, 550

detaibed, 550

exception, 353

formats, 5635, 560

prototypes, 565, 560

gummimary, 353

writing tools, 712
Reports, written

admimstrative formae, 432

factual format, 431432

length. 431

letters of transmital, 432

need for, 431

crganization of, 431432

writing, 432433
repositery A database andfor file directory where sysiem
developers store all documenration, knowledge, and artifacts for
OAE OF More INformaiion systems or projects. A reposirory i5

wsually mutomated for easy informalion stormee, retrieval, and
sharing.. 89
repositery A location (or set af lecations) where systems an-
alysis, syxtems designers, and system Bllders keep all of che
documentation associated with one or more systems or projects.,
160; see also CASE reposilory
datn models stored in, 286
implementation alematives, 160
role n systems support. TOZ 712
Repository-based programming, 500592, 600
request for proposal (RFP) A formal document thar
communicates business, fechnical, and support requivements for
an application raftware package to vendors that may wish to
compete for the sale of that applicarion package and services.,
101, 46365
request for quotation (RFQ) A formal document that
comnmnicales business, technical, ond support requiremenis for
an application roffwane package fo a single vendor that hax
been determined as being able to supply thai application pack-
age and services., 101, 463465
Requirements analysis phase, 125
communmecatiion of reguirements
statement, |89
dats modeling, 285-286
FAST methodology, B384
ongoing requirements management. |89
pricritzaton of requirements, 1583
project plan apdating, 188
requirements wdeniificaton, 185-188
requirements definition document A formal document
that communicates the reguirements of a proposed system o key
stakeholders and serves ax a contract for the systems project.
Svnonyms include requiremenis statement, requirements specifi-
canion, and funciional specification., 213-214
requirements diumry The process, wsed by yystems an-
alysis, of identifving or exiracting system problems and selution
requirements from the user community., 165
requirements discovery The process and rechniques wred
by syatems analysts Lo identify or extract yrvstem problems and
solution requirements from the user communicy., 208-210; see
also fact-finding: joint requirements planning (JRP); ose
case medeling
methods, 165-166
process
analysis of requirements, 212-213
documentation, 212, 215-214
fact-finding, 212
problem discovery and analyais, 210-212
requirements management, 214215
requirements management The process of managing
change to the requirements., 214-215
resource |wn|lng A strateey for correcting rescarce oveml-
focanons.. 138-130
return-on-investment (ROI) analysis A rechnigue
that compares the liferime profitabilicy of alternarive
solutions., 425
reverse engineering A CASE tool capability that can auto-
matically generate initial system models from software or data-
base cade., 108
reverse engineering The use of rechnology that reads the
program code for an existing databare, application program,

andier wier inferface and antomatically genermites the equivalent
systern model., 165

CASE waol support, 108-109, 165

date models, 285, 287, TI3

ohject models, 714

process models, 233

programs, 714

of prototypes, 165

of software packapes, 714
reverse scheduling A project scheduling smategy thar es-
rablisher a project deatlline and then schedid es backward from
thar dare., 135
RFF; see request for proposal
RF(), see request for quotation
RIM Blackbery, 24
risk management The process of identifying,
evaluating, and contralling whai might go wrongina
project before it becomes a threar to the successful
completion of the project or implemeniation of the informaiion
syntens. Risk management ix driven by risk analvsis or
assessment,, 16
Hobertson, James, 241, 324, 367
Robertson, Suzame, 241, 324, 367
RoboHelp, 631
Roectzheim, William H., 155
role name A foreign key name that reflects the purpose i
serves in a table., 538
role playing The acr of simulating object behaviar and
collaboration by acting out an object’s behaviors and
responnbilities., A6—-H65
Rozenblatt, H., 579
Rumbaugh, James, 117, 370, 371, 411, 670
RUP: see Rational Umfied Process

S
Salvendy, G.. 241
lumpling The process of collecting a representative sample
af docwmeniz, forms, and recards., 316-217
SAPAG 26 27 18
Sarson, Tosh, 477, 515
SAS,TI12
schedule fﬂﬂhm'l’r A meastre of how reasonable a project
timetable is.. 418
Schema; see database schoma
Schlaer, Sally, 313
Schmeizer, Liza, 645
SCM; see supply chain management
scope The boundaries of a projeci—the areas of a bisiness
that o project may {or may not) address., 130, 141-142, 169
scope creep A common phenomenon wherein the reguire-
ments and expectations of a project increase, often withour
regand fo the impact on udger and schedule., 82
scope creep The anexpected and gradeal growth of reguaine-
ments during an information svetems projeck., 122
Secope defimiton phase
baseline problem and opportunity identification, 169172
baseline project worthiness, |73
baseline schedole and budgzet, 173
baselins scope negotnton, 172
FAST methodology, T0-22. |67
fepabiliry analyvsis, 416

Glossary/Index 741

project manager mle, 130

project plan commumication. 173174
Scott, Kendall, 411
Screen outputs, 356; see glro Graphical user interfaces (GLUIs);
Ouiput design

designs, 565, 560

prototypes, 565, 560
Screen scrapers, 488
l:rﬂ“lng Displaying informarion wp or down a screen, one
line @i a time., 619
8CT, 27
SDE; see software developient environment
second normal form [2NF) An entity whose non-primary-
key artribute s are dependent on the full primary key.. 299, 302
Secondary elements (of reports), 421, 432
secondary key A field that identifies a single record or a
subset of related records. ; 321, 531 see also alternate key
Security

business issues, [9-20

of e-commerce, G630

log-ins, 629

privileges, 629630
Self-checking digits, 590
sequence diagram A UML diagram that models the logic
of a tise case by depicting the inferaction of messages between
obiects in ime sequence., b539-8H63: ree alio system sequence
diagram
Serenn, ChangeMan Professional, T4
Seral codes, 202
Servers; see also client server system

apphcation, 427

ditabaze, 427, 490

messAging or groupware, 4387

tranzaction, 487

Web, 487, 491
Sethi, Vikram, 64
Shelly, G., 579
Sichel, 28
Significant position codes, 293
Silver, Denise. 205, 241, 473
slack time The amouns of delay tha com be tolerared benveen
the starting time and the completion fime of a fask withowt cas-
ing @ delay in the completion date of a project.. 138, 139, 147
Shider contral, 637
Smallalk, 25,97, 667
Smmart cords, 587
Smuth, Derck, 139, 153
Smuth, Pamrick. 515
Smith, Randi Sigmund, 441
Software configuration tools, T4, 700
software development environment (SDE) A
language and ool kir for developing applicatons., SI0-502
Software Engineering [nstitate, Camegie Mellon University. 69
sofrware meftrics Mathemad cally proven measirements af
software guality and developer productivry,, T13-T14
Softwnre packapes; see Automated tools; commercial applica-
tion package
software specifications The rechnical design of business
processes fa be automated or supported by computer progrmms
to be written by svstem builders., 54
Sound inputs, 585

742 Glossary/Index

source decument A form wsed to record data about a
transachion., 384

designing, 587-589, 603605

prototyping. 604605
Specialization; see generalizationspecialization
Speach inputs, 585
Spin boxes, 306
Spreadsheets, 558, 604
SOL (Structwred Chery Language)

commands, 527

database gencration, 529, 530, 542

use by end uzers, 628
S8A. 26
Staged conversion, 601
stakeholder Any person who has an fnterest in an exisiing
or propesed mnformation sysiem. Stokeholders may inclide both
technical and nontechnical workers. They may also include both
internad and external workers., 7, 4647
Stalling=, Warren .. Ir., 240
Standish Groop, 244
Stnte events, 341
state machine diagram A UML diagram that depicts the
combination of states thar an ebject can assume during it life-
time, the events that trigoer transittons between states, and the
rules poverning the ohject's transition. Also called a matechart
diagram or state rronsinon diagram., 663664
state transition diagram {STD) A roal used to depict the
sequence and variahion of screens that can eccur dunng a user
sexsion., 635636
state transifion event An cocurrence that trigeers a
change in an obpect's state through the apdatmg of one or more
of its arrributes” values., 663
statement of work A contrac with management and the
ser commumity to develop or enhance an informanon svstem;
definer vision, scope, constraints, high-level wxer requirements,
schedule, and budger. Synonyms include project charter, projecy
plan, and servicedevel agreemens., 82
statement of work A narrative description of the work ia
be performed as part of 2 project. Common synonyms include
scope satement, project definifion, project ovendew, and docie-
ment of understanding., 130
ST, see state transition dingram
steering body A commitree of executive business and sysiem
managers that studiss and prionifizes compefing project propos-
als o determine which projecis will retum the most value io the
organization and thux shoild be approved for continued svstems
development. Also called a steering commitiee., 1TA-174
steering committee An adminisiraive body of sysiem own-
ery and information technology exvcurives thie prioritizes and
approves candidate system development projects., 7T
Steiner, James B., 240
Stewart, Charles 1., 241
stored prn-r.nd ures A programy embedded ina table that can
he called from an application program., 528
Strategic daia modeling, 283285
strategic enterprise plan A formal stratezic plan
{3 1o 5 vears) for an entire bustness thar defines its mission,
vision, goals, strategies, benchmarks, and measures af progress
and achievement. Usually, the strategic enterprise plan is
complemented by strategic business unit plans that define
how each business unit will contrilute 1o the enterprize plan.

The information systems plan (abové) is one of those unii-level
plans., 75
strategic information systems plan A formal strarepic
Pan (3 o 3 vears) for batlding and improving an information
fechnology infrastricture and the information system applica-
Hons that wse that infrasiructure., 75,77
Strategic planning, 77, 334
Strategy Pattern, 6604670
stratification A sysrematic rampling technigue that attempts
to reduce the variance of estimares by spreading out the
sampling—for example, choosing dociments or records by
formuda—and by aveiding very ligh or very low estimares., 217
Stracture chams, 97, 447 477714
structured l:lnllljl'liil A model-driven, process-centered tech-
néque wsed to either analvze an existing syrfem or define busi-
ness reguirements for a new system, or both. The models are
motures that illustrare the system's component pleces: processes
and their associated tnpufs, owipus, and files., 162-163; see
also data modeling; process modeling
Stuctured analy=is and desagn, 84, 9607, 335, 477
Structured English A language synrax for specifiing the
logic aof a process., 353358
structured interview An interview inwhich the intervewer
has a specific set of guestions to ask of the mrerviewee., 223
Stmctored methods, 25, B4
Stmactured programming, 355, 447
Stroctured Cuery Language; see SOL
Stoonk, William, Jr., 433
Stuort. Ann, 441
stub test A rest performed on a subset of a program. . 688659
Stubbe. John, 441
subseting criteria An anribuie s) whose finite values divide
eniity tnsance s inte subsets. Somenimes called inversion enrry, 274
IFl.Ihi’rpi An enfivy whose instances may inherii common
aftrilwte s from tix enfity superiype., 283, 205, 532
ll.lhl‘ﬂﬂl An object class that inherits attributes and behaviors
from.a supertype class and then may contain other attrilutes
and hehaviors thar are unique 1o i Alse referred o ar child
clars and, if it extsts qt the lowest level of the inheritance
herarchy, az concrete class., 374, 400
summary report An infernal cuipid that categonizes infor-
mafion for managers., 553
Sun Computer, 22
supertype An eatiry whose instances store anributes thar ane
commaon o one or more entity subtvpes., 283, 295, 532
supertype An entity that contains attributes and behaviars
that are commen te one oF mere class subtypes. Also referred to
as abstract or parent class., 74, 400
supply chain management (SCM) A sofrware applica-
tion that aptimizes business processes for raw material procure-
ment through finished product distribation by directly
integrating the logistical tnformation svstems of organizations
with those of their suppliers and diseributors.. 26, 217-28
Sybase Corporation, 525

Powerbulder, 5874, 100, 164, 490, 501, 580

Sybase dutahass, 405, 524, 528
Symantec Visual Café, 500
Symbol Tectmologies, 585
system A groap of inte rrelared components that fisnction
together to achieve a desired resulr.. 6

as process, 3X1-322

system analysis The sudy of a business problem domeain
fo recommend improvements and specify the business require-
ments and priovities for the solution., 32; see also systems
analysis
system analysis use case A e case that documents the
interaction berween the system user and the system. It is highly
detailed in describing what ix required bt &5 free af most imple-
mentation details and constraints.; 385, 652
Syetem Architect 2001 (Popkn), 108, 162
dats modeling, 288, 200, 538
dutabaze design, 526, 520, 532, 535, 530, 542
elementary process descnptions, 358
process modeling, 337, 340
soreen design, 339, 508 634
state transiiion disgrams, 636
svitem design models, 447
system builder A technical specialist who constrcts infor-
mation systems and components based on the derign specifica-
tions penerated by the system designers., 10-11
commumcatons building blecks and, 58
knowledge bolding blocks and, 51
pempectve on information system, 47
process boilding blocks and. 54-55
system class An ohjecr clasy thar handles aperating system-
specific functionality, 649
system dlﬁgn The specificanon or construction af a fechmi-
cal, computer-based solition for the business reguirements iden-
fified in a system analyss, [Nete: Increasngly, the design takes
the form of a working prototvpe.), X3
system design The specification af a detailed compurer-
based solution., 446
approaches, 446
FAST methodobogy, 8637, 453
goal, 433
model-driven spproaches, 447
mutomated ools, 447
information enginesting, 163, 347448
maodern structared design, 447
ohject-orented design, 430451, 643
process modeling, 337
prototypang, 4423450
rapad application development strategy, 451453
tasks for commercial software integration.
460462
contract negotiations, 466
decision analysis phase. 460, 462
cvaloate and rank proposals, 465466
procurement phase, 460, 462465
proposal solicitation, 463
techmical criterin and options, 462463
vendor claims and performance validation, 465
vendor debriefings, 466
tazks for in-howse development
apphication architectors, 453, 4535457
datebase design, 457
design specifications packaging, 459
project plan updating, 460
user mterface design, 457438
system dnl'ignar A technical specialist whe translates sys-
tem users ' business requinements and constraints info technical
solunons. She or he designs the compuwter databases, inputs,

Glossary/Index 743

o puts, screens, networks, and seftware that will mest the
rystem users” requiremenys., 10
commumcations buldmg blocks and, 57-58
knowledge building blocks and, 51
perspective on mformotion system, 47
process buillding blocks and, 54
specialties, 10
system development process A ser of activities, meth-
ods, best practices, deliverables, and awtomated tools thar stake-
holders use to develop and mainiain informarion systems and
software.. M
aliemuative routes, 92-94
Capability Maturity Model, 60-70, 127
oross lifecvele netivities, 8230
iterative approach, §0-02
problem-solving steps, 30
sequential approach, 89
stages, d0-31
standardized. 68, T0
waterfall approach, 289
system diagram A data flow diagram that merges event
diagramys for the enfire system or part of the system., 335,
347-34%
System enhancement, 34, TO5
reasans for, TI0-T11
tasks
enhancement request anal ysis, 712
auick fixes, 712
recovery of existing syarem, 713-714
system implementation The construciion, mstallation,
testing, and delivery of a system into production [meaning day-
to-day aperation ., XA} sée alvo systems implementation
systemn initiation The initial planning for a project to define
inittal business scope, poals, schedule, and budger., 32
system life cycle The factoring of the lifetime of an mforma-
Hon system into two stages, (1) svstems development and (2) sys-
tems operafion and mainienance—first you buld it; Men vou wre
and maintain i, Eventiielly vou cvele back to redevelopment of
anew pystem,, TO-T1
system model A picture of a rystem thar represents reality
of a desired realiiy. System models facilitate improved comming-
cation behveen system tisers, sysienr analvsis, system designers,
and system butlders.. 84
System obsolescence, 714
system owner Aqinformation system ' s sponsor and
exective advecate, uwsually responsble for funding the profecs
of developing, operating, and mainiining the information
systeni., 7. 8
commumcations buldmg blocks and, 55
knowledge building blocks and, 47, 50
perspective on nformation system, 4647
process building blocks and, 51-52
system proposal A neport or presentation of a recom-
mended solwion,, 197-199, 431 ; see alse Reports, wntten
System recovery, 88, TOS, 700710
system requirement Something that the informarion sys-
tem must do or a property that it must have. Also called a bus-
ness reguirement.. 208; see also Requirements analysis phase;
requirems nts discovery
costs of errors, 208200
crtena, 210

744 Glossary/Index

desirable, 188
functional: see fonctional requirement
mandotory, 1858
nomfunctional, 185, 208
PIECES classification, 208
system sequence diagram A digeram that depicts the
interaction berween an actor and the system for a wse case
seenario., M4-306; see alro sequence disgram
system support The engeing techrical support for usery
of a system, as well as the mainfenance reguired io deal
with any errors, omissions, or new regquirements thar pmay
arse., B8, 702
activitiez, B8
entropy of system, 76
FAST methodology, 88, 104107
program maintenance; se¢ Progrom mamtenance
projects, 34-35
sy stem enhancement; see System enhancement
system recovery, S8, TOS, TO-T10
technical support, TO3, T10
System nse cass; see system analyzis use case
system user A "customer” who will use or is affected by an
information system on o regular basis—capruring, validating,
entering, Fesponding to, storing, and exchanging data and infor-
mation,, -8, 9
communications bolding blocks and. 55-57
documentaiion for, 693604
external, 210
feedbock on pser nterface design, 569-570, 601603, 639
mi=rnal, 9
know ledge building blocks and, 50-51
perspective on information system, 46—37
process building blocks and, 52-54
tramnng, 693604
types, 614615
systems acceptance test A tex performed on the final
svstem wherein users conduct verification, validation, and audit
resty., 192, 691602
systems Ill'lll'rlii A problem-solving technique that decom-
PORes @ sysiem inte ity component pleces for the purpose of
stidying how well those component paris work and interact fo
accomplish their purpose., 160

approaches, 161
weoelerated, 163165
model-driven, 161-163
object-onent=d, 163
traditional, 162-163

decision analvsis phase, 192-194
cundidate solunon analys=is, 195-197
candidate zolution comperison, 197, 426420
candidate solunon identification,

194105427

frazibility analy=is, 195-197. 416417, 426
project plan updating, 197
system proposal. 197100

future of, 199

lopical design phass, 180
pcceptance test cases, 192
functional regquirements structunng, 9]
funcoonal requirements validation, 192
prototyping, 192

problem analysis phase, 1 75-176
basiness process anatysis, [B0-182
commumcation of findings, 183184
data modeling, 285
feazibility analysis, 416
goal, 173
problem mmd oppormmity amalysiz, 180
problem domain, 175180
process modeling, 335-337
project plan updating, 183
system improvement objectves, 182183
requirements mnalyvsis phose, |85
communication of requirements staterment, 130
data modelmg, 285-286
angoing requirements management, |80
poorization of requirements, 188
project plan updatng, 188
requirements ideniification, 185188
reguirements discovery: see reqoirements discovery
scope definmion; see Scope definimon phasze
systems analyst A specialist who studies the problems and
needs of an orgamization to defermine how people, daka,
processes, and infermation technology can best accomplish
improvements for the buginess., 11
carcer prospects, 13, 90
ethics, 15
place 1 orgamzation, 12-13
relations with other stakeholders, 7, 11
roles, 11-12
skills meeded, 14-15
systems construction The development, installation, and
testing of sysiem components. . 684
database bullding and esting, 687
FAST methodology, 87
oetwork building and esting, 684, 687
programming and testing, 688
software package mstallation and testing, 687-688
systems design A complementary problem-solving technique
(to systems analysis) that reassembles o svstem’s component
pieces back inte a complete system—hopefully, an improved
svstem. This may tvelve addmg, deléting, and changing pieces
relative fo the original systens, 100; see also system design
systems development methodology A formalized
anproach to the syrtems development process; a standardized
process that includer the activivies, methods, best practices,
deliverables, and aitomated tools to be wsed for infarmation
svstems development., T0; see also FAST; rapid application
development [RAD)
ngile, 25, 84, 92
autormnated tools, 107108
classfication of, 92
compaenson to system life cyele, TO-T1
examples, 72
model-driven, 84, 9Z, 0406
phases and actvities, T2-73
stroctured methods, 25, 84
underlying principles, T2-76
use of, T
systems development process A ret ofacrivities,
metheds, best pracices, delivemables, and awwomared tools thar
rtakeholders {from Chapter 1) use to develop and continuously

rmprove information systems and software (from Chapters |
and 2).. 68; see alvo system development process
systems implementation The mstallation and delivery of
the entire system into producion., 684

conversion, 94

conversion plan, 689, 601692

databaze mstallation, 692603

mystem testing, 629

user training. 693604
systems integration The process of building a unified
nformation system ol of diverse components of purchased
sofiware, custom-buils software, hardware, and
netwarking., 26
Systems operation, 702
Systems support; see system support
systems test A resr performed on an entire rystem., 689, 709

T
table The refational database equivalent af a file.. 512
indexes, 530, 535
ey, 521, 530, 535
numes, 330
records, 521-522, 530
relational, 526
mizes, 530
stored procedures, 523
table look-up files A rable containing relatively static
dara that can be shared., 522
Tahs, 637
tabular output An owfpur that presents information as
colimns of text and mwmbers., 554, 563
Tactical application archite ctore, 503
tangible benefit A benefir thar can be eanly guantified.,
420421
Tazk diagrams, 167
Tazks; ree also Gantt chart
dependencies, 134135
dumtions, 132134
identification, |30-132
PERT charts, 125, 127, 147
prmutive, 132
summary, |32
Taylor. David. 64, 411. 679
Teams; see Progect teams
Technical design: see physical design
technical feasibility A measure of the practicaliry of a
technical solution and the availability of fechnical resources
and expertise., 418, 503
Technical models; see phyvsical oodel
Technical support. TOS, 710
'I‘Irl'lpnrlll event A sysiem evenr thar 15 triggered by ime..
248,341
Teorey. Toby, 313, 547
Terwne, Alyvse D, 64
Testing
aoceptonce, 192, 601602
andit, H02
commercinl packeges, 68T-688
databases, 62T
networks, 65T
regrezsion, 700

Glossary/Index 745

stub, H88-689

systems, 680, 700

umt or progrom, G309, 700

updated programs, 709

user mterfuce, 639

walidation, 602

werification, 60602
Text bowes, 502-503
Theby, Stephen E.. 515
Thull, John V., 441
thin client A personal compuier that does not have to be very
powerful., 487
third normal form (3NF) An entirewhore non-primary-
kew antributes are not dependent on any other non-primary-key
attribuaes., 299, 302306
ThoughtWorks, 66890
Three-tered chient server computng; see distributed data and
application
TIBCO Software. 20
Time value of money, 4232423
timeboxing The imparition of & nonextendable period
af time, usually 60 1o 90 days, by which the first { or nex) version
of a svstem must be delivered info operation., 100
iimnbﬂing A techmigue that delivers information systems
Senchionality-and reguiremenix through versioning, The
development team selects the smallesi subset of the svsiem
thar, if fully implemenved, will rerurn immediate value 1o the
system owners and urers. That subsetis developed, (deally
with a fime frome of six te nine months or less. Subsequently
valie-added versions of the svstem are developed in similar
time frames., 188
Toal ups, 631-632
Toolbars, 624
total quality management (TGM) A comprehensive
appreach fo focilitting qualiy improve ments and managemeni
within a business., 21-22
Touch screns, 585
TPS; see transaction processing system
TOM; see total quality mansgement
Traming, user, 693-604
transaction file A iable convaining records thar describe
business evenis., 512
transaction processing system [TP5] An information
system that caprures and processes data about busine sy iransac-
fions., 6, 490
transaction server A server that hosis services which en-
sure that all database updates for a transaction micceed or fol
ax a whole., 487
Transnctions; see event
Transform; see process
transient object class A class thar describes an object thar
ix created remporanly by the program and lives only during thay
program’s execufion., 405
transitive dependency Wiken the value of a nonkey ar-
tribuite is dependenton the value of another nonkey attribute
other than by derivation., M4-306
trigger A progmam embedded within a table and 15 awtomei-
cally involed by updates to another mble., 518
turnaround output An exremal ouipar thart may reenter the
system ax an inpul.. 553, 564
Two-tiered client server computing; see distributed data

76 Glossary/Index

)
Unified Modeling Language (UML) A sev of modeling
conventions that iy used to specify or describe a software system
in terms of objects., 371
associatioms, 378
dingrams, 381
sctivity dingroms. 390-391, 304
class diagrams, 400, 405
commuanicaiion disgrams, 672
compancit diagrams, 672672
deployment diagrams, 673674
object dingrams, 163
sequence diagrams, 650663
state machine dingrams, 663664
system sequence diagrams, 394306
syntax, 373, 376
unit or program test A test performed on an entire pro-
gram., 689, T09
105, Department of Labor, 7, 13
.5, government, MIL-STD-408_ 213
LS. Navy, 125
UNEX, 618
unstructured interview An interview thar is conducted
with only a general poal or subject in mind and witk few, ifany,
specific questions. The interviewer counts on the inferviewee to
provide a frameweork and direct the comersation., 223
LIPS, 488, 584
Uns, Auren. 441
use case A buriness scemario or event for which the system
st provide a defined responge. Use cazes evolved out of
obyect-oriented analysis; however, their use has become
common in many other methodologies for svstems analysis
and design., 188
use case A behaviorally relared requence of steps
{a scenario), both automdted and manual, for the purpore
of completing a single lnisiness taxk, 246
use case An gnalvas rool for finding and identifying business
evenis and responsers., 342
abstract. 249, 384, 385-386, 300
actors, 247, 251
business requirements, 252-254
course of events, 258
dependencies, 261-262
design, 652, 655
discovery of, 252-253, 342
entittes and, 342
extension, 248, 384, 385-386, 300
glossary, 254
names, 253254, 157
runking, 26026
system analysiz, 385, 652
types, 257
use during bife cycle, 246-247
use-case dependency diagram A praphical depiction
of the dependencies among use cases.. 2361-262
use-case diugrum A diagram that depicts the interactions
between the svsiem and external systems and wsers, In other
words, it graphically describes who will use the system and in
what wavs the wser expects to inferact with the system. . 246,
254256, 384385
Use-case Lz, 335, 341-342

use-case mndnling The process of modeling a system's
functions in termr of lusiness events, whe initioted the evenis,
and hew the syatem responds to those evenis., 245
benetits, 245
design classes, 656
design usmg, 65 |-652. 655
development of, 245
objective, 251
process, 251
actor identification, 251
onalysis use-case model, 383383, 300
business requirements use cases, 232254
diagrom construction, 254-256
uss-case narratives; 256158
projec i management and, 260-262
relationsinps. 248-250
use-case narrative A teviual deseription of the business
event and how the user will imerace with the system o accom-
plish the rask, 246
course of events, 258
developing, 256-258
for sysiem analysis use cases, 385
use-case ranking and priority matrix A reol
used to evaluate wse cases and determine their priority.,
260261
User data, 526
user diﬂlng ue A specification of how the user moves
from window o wmdow or page io page, interaching with
the application programs to perform aseful work., 57; see
also Menus
User mterface design, 57, 457-458; see also Graphical nser
mierfaces (GUls); Input design; Output design
matomated toolks, 438, 614, 634
concepts, 614
conzumer-styls, 626
pontrols, 620, 634
dialogue tone and terminclogy, 617
guidelines, 615617
help systems, 630633
human factors, 614, 615-616
hybrd Windows/Web, 627
mstrocton-driven interfaces,
6276520
mternal controls, 629-630
log-ins, 620
menis; ser Menug
object-oniented. 97
prablems, 6135
process, 633634, 635
dialogue charting, 635636
prototyping, 636-4639
testing, 639
uzer feedheack, 639
prototyping. 614, 634, 636-630
question-answer dinlogues, 629
technology
display monitors. 615619
keyboards, 619
opernting systems, 618
pomting devices, 619
wser dialopue, 57

user-centered development A process of systems devel-
opment based on wnderstanding the needs of the smkeholders
and the reasons why the svstem should be developed., 245

Users: see system user

v

Validation testing, 692

variable cost A cost thar occurs in proportion to some wsage
Sfactor, 420

Variable-length record structures, 521-522

Vendors; see commercial application package
Verification testing, 691602

version contrel The tracking of chanpe made 1o a
progran., THY

WYirtual busincsses, 492

\I'il“.'li"‘l’f The level of access an external object has to an
attribite or method,, 650-651, 665

Visible Systems, Vieible Analyst, 108, 161 447

Visio Enterprise, 526

Viso Professional, 162, 447

Visual Basic, 598, 634, T14

WYisual Basic MET. 25, 54, 97, 164, 490

Visnal Smdic NET, 54, 58, 74, 109, 501. 500. 614. 634
Vitalarr, Nicholas B, 7T, 367

Vhemdes, John, 669

Volce recognition, 385

w
Wal-Mart. 21
Walton. Dionald. 2270, 241, 441
waterfall development appreoach An approach o
syvstems analysis and design that completes each phase one
after another and only once., 89,92
Watson, Mark; 366, 411, 670
WHS; see work breakdown structore
Web broweers; ree alro Internet
platform independence, 618
toolbars, 624
as user interface, 401404, 584, 500, 625626
Web server A server thar hosis internst or intranet
Web pites., 487, 491
Web services, 24
Web-based mputs, 605606

Glossary/Index 747

Web-based outputs, 558, ST0-573
Web-enabled apphications. 19, 524; see alsre electronic
busimess
Weber, Charles V., 117
Weinberg, Geruld M., 41, 205, 2080, 218, 240, 24]
Wemschenk, Susan, 645
Wetharbe, James, 77, 117, 205, 367, 441
Whie=, E. B, 433
Wholz-part relationships: see aggregation
Windows

advanced input controls, 596-508

merket dominance, 618

object-onented wser interface, 97

user dialogus, 620

uger interface, 584, 300
Windows Mobile, 498, 618
‘Wireless technology, 24-15
Wood, Jane, 205, 241, 473
work breakdown structure (WBS) A graphical iool
used to deptet the hisrarchical decomposition of a project into
phares, avtivites, ond tanks., 130-132
work flow The flow of trunsactions through brsinesy
Processes 1o ensire approp nate checks and approvals ar
implemenred,, 54
Work group dainbazes, 523
Work group technology, 400
worlke sampling A focr-finding technigue that imvolves a
larpe number of observations taken af random intervals., 200
Written reports; see Reports, writlen
Wysocks, Robert K, 120mn, 124, 1270, 155

X
*HTML (Extensible Hyperext Madoup Language), 23-2
XML (Extensible Marknp Langpage), 23-24. 58, 487, 404, 502

Y

Yeo, Samh C., 645
Yourdon, Edward, 205, 324, 335, 367, 411, 472, 473, 479

z

Zachman, John A., 5850, 6465, 205, 473

zoned output An cuip that presentr text anad numberx in
designated areas of a form or scieen., 554-556

