




Software Performance
and Scalability



Press Operating Committee

Chair
Linda Shafer

former Director, Software Quality Institute
The University of Texas at Austin

Editor-in-Chief
Alan Clements

Professor
University of Teesside

Board Members

David Anderson, Principal Lecturer, University of Portsmouth
Mark J. Christensen, Independent Consultant

James Conrad, Associate Professor, UNC Charlotte
Michael G. Hinchey, Director, Software Engineering Laboratory, NASA Goddard Space Flight Center

Phillip Laplante, Associate Professor, Software Engineering, Penn State University
Richard Thayer, Professor Emeritus, California State University, Sacramento

Donald F. Shafer, Chief Technology Officer, Athens Group, Inc.
Janet Wilson, Product Manager, CS Press

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available frommost retail outlets.
Visit the CS Store at http://computer.org/cspress for a list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to
produce a number of exciting new titles in areas of computer science, computing and networking with a
special focus on software engineering. IEEE Computer Society members continue to receive a 15%
discount on these titles when purchased through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals e-mail j.wilson@computer.org.
Telephone þ1-714-821-8380.
Additional information regarding the Computer Society authored book program can also be
accessed from our web site at http://computer.org/cspress.



Software Performance
and Scalability

A Quantitative Approach

Henry H. Liu



Copyright # 2009 by IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written per-
mission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or
on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for
a particular purpose. No warranty may be created or extended by sales representatives or written sales
materials. The advice and strategies contained herein may not be suitable for your situation. You should
consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental, consequential,
or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Liu, Henry H.
Software performance and scalability : a quantitative approach/Henry H. Liu

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-46253-9 (cloth)

1. Computer software—Development. 2. System design. I. Title.
QA76.76.D47L577 2009
005.1—dc22 2009005654

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


To my family





Contents

PREFACE xv

ACKNOWLEDGMENTS xxi

Introduction 1
Performance versus Scalability / 1

PART 1 THE BASICS 3

1. Hardware Platform 5

1.1 Turing Machine / 6
1.2 von Neumann Machine / 7
1.3 Zuse Machine / 8
1.4 Intel Machine / 9

1.4.1 History of Intel’s Chips / 9
1.4.2 Hyperthreading / 9
1.4.3 Intel’s Multicore Microarchitecture / 13
1.4.4 Challenges for System Monitoring Tools / 17

1.5 Sun Machine / 17
1.6 System Under Test / 18

1.6.1 Processors / 18
1.6.2 Motherboard / 19
1.6.3 Chipset / 20

vii



1.6.4 Storage / 22
1.6.5 RAID / 24
1.6.6 Networking / 27
1.6.7 Operating System / 29

1.7 Odds Against Turing / 30
1.7.1 Memory Leaks / 30
1.7.2 SLAs / 35

1.8 Sizing Hardware / 35
1.9 Summary / 37
Recommended Reading / 37
Exercises / 38

2. Software Platform 41

2.1 Software Stack / 42
2.2 APIs / 44

2.2.1 Windows APIs / 45
2.2.2 Java APIs / 45
2.2.3 Google APIs / 46

2.3 Multithreading / 47
2.4 Categorizing Software / 53

2.4.1 Systems Software / 53
2.4.2 Application Software / 54
2.4.3 Middleware Software / 55

2.5 Enterprise Computing / 55

2.5.1 What Is Enterprise Software? / 55
2.5.2 Enterprise Software Architecture / 57
2.5.3 Monolithic Architecture / 57
2.5.4 Client/Server Architecture / 58
2.5.5 Three-Tier Architecture / 59
2.5.6 N-Tier Architecture / 60
2.5.7 Software Componentry / 61
2.5.8 Service-Oriented Architecture / 61

2.6 Summary / 63
Recommended Reading / 64
Exercises / 64

3. Testing Software Performance and Scalability 65

3.1 Scope of Software Performance and
Scalability Testing / 67

3.1.1 Performance Regression Testing / 68
3.1.2 Performance Optimization and

Tuning Testing / 70
3.1.3 Performance Benchmarking Testing / 75

viii CONTENTS



3.1.4 Scalability Testing / 75
3.1.5 QA Testing Versus Performance Testing / 82
3.1.6 Additional Merits of Performance Testing / 82

3.2 Software Development Process / 83

3.2.1 Agile Software Development / 83
3.2.2 Extreme Programming / 84

3.3 Defining Software Performance / 86

3.3.1 Performance Metrics for OLTP Workloads / 87
3.3.2 Performance Metrics for Batch Jobs / 92

3.4 Stochastic Nature of Software Performance Measurements / 95
3.5 Amdahl’s Law / 97
3.6 Software Performance and Scalability Factors / 99

3.6.1 Hardware / 100
3.6.2 Operating System / 103
3.6.3 Database Statistics / 107
3.6.4 SQL Server Parameterization / 108
3.6.5 Database Deadlocks / 110
3.6.6 Licensing / 110

3.7 System Performance Counters / 111

3.7.1 Windows Performance Console / 112
3.7.2 Using perfmon to Diagnose Memory Leaks / 118
3.7.3 Using perfmon to Diagnose CPU Bottlenecks / 119
3.7.4 Using perfmon to Diagnose Disk I/O Bottlenecks / 121
3.7.5 Using Task Manager to Diagnose System Bottlenecks / 125
3.7.6 UNIX Platforms / 128

3.8 Software Performance Data Principles / 129
3.9 Summary / 131
Recommended Reading / 132
Exercises / 133

PART 2 APPLYING QUEUING THEORY 135

4. Introduction to Queuing Theory 137

4.1 Queuing Concepts and Metrics / 139

4.1.1 Basic Concepts of Queuing Theory / 140
4.1.2 Queuing Theory: From Textual Description

to Mathematical Symbols / 141

4.2 Introduction to Probability Theory / 143

4.2.1 Random Variables and Distribution Functions / 143
4.2.2 Discrete Distribution and Probability

Distribution Series / 144

CONTENTS ix



4.2.3 Continuous Distribution and Distribution
Density Function / 145

4.3 Applying Probability Theory to Queuing Systems / 145

4.3.1 Markov Process / 146
4.3.2 Poisson Distribution / 148
4.3.3 Exponential Distribution Function / 150
4.3.4 Kendall Notation / 152
4.3.5 Queuing Node versus Queuing System / 152

4.4 Queuing Models for Networked Queuing Systems / 153

4.4.1 Queuing Theory Triad I: Response Time, Throughput,
and Queue Length (Little’s Law) / 154

4.4.2 M/M/1 Model (Open) / 155
4.4.3 Queuing System: With Feedback versus

Without Feedback / 159
4.4.4 Queuing Theory Triad II: Utilization, Service Time,

and Response Time / 159
4.4.5 Multiple Parallel Queues versus Single-Queue

Multiple Servers / 160
4.4.6 M/M/m/N/N Model (Closed) / 162
4.4.7 Finite Response Time in Reality / 166
4.4.8 Validity of Open Models / 169
4.4.9 Performance and Scalability Bottlenecks in a

Software System / 170
4.4.10 Genealogy of Queuing Models / 171

4.5 Summary / 172
Recommended Reading / 174
Exercises / 175

5. Case Study I: Queuing Theory Applied to SOA 177

5.1 Introduction to SOA / 178
5.2 XML Web Services / 179
5.3 The Analytical Model / 181
5.4 Service Demand / 183

5.4.1 Web Services Handle Creation / 184
5.4.2 XML SOAP Serialization/Deserialization / 184
5.4.3 Network Latency / 185
5.4.4 XML Web Service Provider / 186
5.4.5 Database Server / 186
5.4.6 Data Storage / 187

5.5 MedRec Application / 188

5.5.1 Exposing a Stateless Session EJB as an XML
Web Service / 188

5.5.2 Consuming an XMLWeb Service Using SOAP / 189

5.6 MedRec Deployment and Test Scenario / 189

x CONTENTS



5.7 Test Results / 191

5.7.1 Overhead of the XMLWeb Services Handle / 192
5.7.2 Effects of Caching Web Services Handle / 193
5.7.3 Throughput Dynamics / 194
5.7.4 Bottleneck Analysis / 195

5.8 Comparing the Model with the Measurements / 198
5.9 Validity of the SOA Performance Model / 200
5.10 Summary / 200
Recommended Reading / 201
Exercises / 202

6. Case Study II: Queuing Theory Applied to Optimizing and
Tuning Software Performance and Scalability 205

6.1 Analyzing Software Performance and Scalability / 207

6.1.1 Characterizing Performance and
Scalability Problems / 207

6.1.2 Isolating Performance and Scalability Factors / 208
6.1.3 Applying Optimization and Tuning / 215

6.2 Effective Optimization and Tuning Techniques / 220

6.2.1 Wait Events and Service Demands / 221
6.2.2 Array Processing—Reducing Vi / 223
6.2.3 Caching—Reducing Wait Time (Wi) / 226
6.2.4 Covering Index—Reducing Service Demand (Di) / 228
6.2.5 Cursor-Sharing—Reducing Service

Demand (Di) / 229
6.2.6 Eliminating Extraneous Logic—Reducing Service

Demand (Di) / 231
6.2.7 Faster Storage—Reducing Data Latency (Wi) / 232
6.2.8 MPLS—Reducing Network Latency (Wi) / 233
6.2.9 Database Double Buffering—An Anti Performance

and Scalability Pattern / 235

6.3 Balanced Queuing System / 240
6.4 Summary / 244
Recommended Reading / 245
Exercises / 246

PART 3 APPLYING API PROFILING 249

7. Defining API Profiling Framework 251

7.1 Defense Lines Against Software Performance and
Scalability Defects / 252

7.2 Software Program Execution Stack / 253
7.3 The PerfBasic API Profiling Framework / 254

CONTENTS xi



7.3.1 API Profile Logging Format / 255
7.3.2 Performance Log Parser / 256
7.3.3 Performance Maps / 258
7.3.4 Performance Summarization File / 260

7.4 Summary / 260
Exercises / 261

8. Enabling API Profiling Framework 263

8.1 Overall Structure / 264
8.2 Global Parameters / 265
8.3 Main Logic / 266
8.4 Processing Files / 266
8.5 Enabling Profiling / 267
8.6 Processing Inner Classes / 270
8.7 Processing Comments / 271
8.8 Processing Method Begin / 272
8.9 Processing Return Statements / 274
8.10 Processing Method End / 275
8.11 Processing Main Method / 276
8.12 Test Program / 277
8.13 Summary / 279
Recommended Reading / 279
Exercises / 280

9. Implementing API Profiling Framework 281

9.1 Graphics Tool—dot / 281
9.2 Graphics Tool—ILOG / 284
9.3 Graphics Resolution / 286
9.4 Implementation / 287

9.4.1 driver / 287
9.4.2 Global Parameters / 289
9.4.3 logReader / 291
9.4.4 logWriter / 292
9.4.5 Node / 293
9.4.6 Link / 293
9.4.7 CallRecord / 294
9.4.8 utility / 294
9.4.9 parser / 295
9.4.10 xmlProcessor / 298
9.4.11 analyzer / 299
9.4.12 adapter / 300

9.5 Summary / 300
Exercises / 301

xii CONTENTS



10. Case Study: Applying API Profiling to Solving Software
Performance and Scalability Challenges 303

10.1 Enabling API Profiling / 304

10.1.1 Mechanism of Populating Log Entry / 305

10.1.2 Source and Target Projects / 306
10.1.3 Setting apf.properties File / 306
10.1.4 Parsing Workflow / 308
10.1.5 Verifying the Profiling-Enabled

Source Code / 310
10.1.6 Recommended Best Coding Practices / 311
10.1.7 Enabling Non-Java Programs / 312

10.2 API Profiling with Standard Logs / 313

10.2.1 Generating API Profiling Log Data / 313
10.2.2 Parsing API Profiling Log Data / 314
10.2.3 Generating Performance Maps / 316
10.2.4 Making Sense Out of Performance Maps / 319

10.3 API Profiling with Custom Logs / 320

10.3.1 Using Adapter to Transform
Custom Logs / 320

10.3.2 Generating Performance Maps with
Custom Logs / 321

10.4 API Profiling with Combo Logs / 325

10.4.1 Client Side Performance Map / 325
10.4.2 Server Side Performance Map / 327

10.5 Applying API Profiling to Solving Performance and
Scalability Problems / 333

10.5.1 Baseline / 333
10.5.2 Optimization / 335
10.5.3 Analysis / 336

10.6 Summary / 337
Exercises / 338

APPENDIX A STOCHASTIC EQUILIBRIUM
AND ERGODICITY 339

A.1 Basic Concepts / 339
A.1.1 Random Variables / 339
A.1.2 Random Variable Vector / 340
A.1.3 Independent and Identical Distributions (IID) / 341
A.1.4 Stationary Processes / 342
A.1.5 Processes with Stationary

Independent Increments / 342

CONTENTS xiii



A.2 Classification of Random Processes / 343
A.2.1 General Renewal Processes / 343
A.2.2 Markov Renewal Processes / 343
A.2.3 Markov Processes / 343

A.3 Discrete-Time Markov Chains / 345
A.3.1 Transition Probability Matrix and C-K Equations / 345
A.3.2 State Probability Matrix / 347
A.3.3 Classification of States and Chains / 348

A.4 Continuous-Time Markov Chains / 349
A.4.1 C–K Equations / 349
A.4.2 Transition Rate Matrix / 349
A.4.3 Imbedded Markov Chains / 350

A.5 Stochastic Equilibrium and Ergodicity / 351
A.5.1 Definition / 351
A.5.2 Limiting State Probabilities / 353
A.5.3 Stationary Equations / 354
A.5.4 Ergodic Theorems for Discrete-Time Markov Chains / 354
A.5.5 Ergodic Theorems for Continuous-Time Markov Chains / 356

A.6 Birth–Death Chains / 357
A.6.1 Transition Rate Matrix / 357
A.6.2 C–K Equations / 358
A.6.3 Limiting State Probabilities / 359
A.6.4 Ergodicity / 359

APPENDIX B MEMORYLESS PROPERTY OF THE
EXPONENTIAL DISTRIBUTION 361

APPENDIX C M/M/1 QUEUES AT STEADY STATE 363

C.1 Review of Birth–Death Chains / 363
C.2 Utilization and Throughput / 364
C.3 Average Queue Length in the System / 365
C.4 Average System Time / 365
C.5 Average Wait Time / 366

INDEX 367

xiv CONTENTS



Preface

Software platforms are a written product of the mind.
—D. S. Evans, A. Hagiu, and R. Schmalensee

WHY THIS BOOK

Few people would disagreewith the fact that building a large-scale, high-performance,
and scalable software system is a complex task. This is evidenced by the magnitude of
required up-front and ongoing financial costs and personnel commonly seen at every
large software development organization. Seeking effective, efficient, and economical
approaches to developing large-scale software is of interest to the entire software
community.

Regardless of its complexity and scope, every software development project is
driven by a few common factors:

† It is required to be on schedule because of urgency to be first to market in order
to gain a competitive edge.

† It is required to be within budget under the pressure of showing profit and return
on investment (ROI) as soon as possible.

† It is required to provide customers with all major functionalities at a minimum.
† And it is required to meet customer’s expectations on performance and scala-
bility to be usable.

While management is responsible for providing sufficient budget to cover per-
sonnel, development, test infrastructure, and so on, we, the technical staff (developers,
quality assurance engineers, and performance engineers), are accountable for deliver-
ing the software product under development on schedule and within budget while
meeting high standards on performance and scalability.

xv



However, it’s not uncommon to see that performance and scalability are pushed
aside by the following higher priority activities:

† Analyzing system functionality requirements
† Deciding on the right architecture and design patterns
† Choosing appropriate programming paradigms and efficient development tools
† Starting coding and delivering early builds that meet major functionality require-
ments as soon as possible

† Implementing automated functionality test frameworks

Performance and scalability are often an afterthought during the last minute of
product release. And even worse, performance and scalability issues might actually
be raised by unsatisfied customers as soon as the product is rushed to the market.
Under such circumstances, intense pressure builds up internally, and panic and
fire-fighting-like chaos ensues.

On the other hand, software performance and scalability are indeed very challen-
ging technical issues. Precautions must be taken with every major effort to improve
the performance and scalability of a software product. A few industrial pioneers
have issued warnings:

† “More computing sins are committed in the name of efficiency (without necess-
arily achieving it) than for any other single reason—including blind stupidity.”
—W. A. Wulf

† “Premature optimization is the root of all evil.”—Tony Hoare and Donald Knuth
† “Bottlenecks occur in surprising places, so don’t try to second guess and put
in a speed hack until you have proven that’s where the bottleneck is.”—Rob Pike

So, how can we implement an effective, efficient, and economical approach to
building performance and scalability into software? Establishing a very capable per-
formance and scalability test teamwould certainly help. However, it is my observation
that this approach is insufficient for guaranteeing that performance and scalability
issues are dealt with properly, as it may easily exclude software developers from
taking performance and scalability concerns into account in the first place. It’s a reac-
tive and less efficient approach to let the performance and scalability test engineers
find the performance and scalability defects and then fix them with the developers.
It’s a lot more costly to fix software performance and scalability defects without
having the developers take care of them in the first place.

That’s the motivation behind this book, which promotes a proactive approach of
letting the software developers build the performance and scalability into the product
and letting the performance and scalability test engineers concentrate on the perform-
ance and scalability verification tests with a larger volume of data, more representative
workloads, and more powerful hardware. This approach requires a mindset shift
for the software developers that their job is just to make the software work and

xvi PREFACE



the performance and scalability problems can be fixed outside their job scope.
Software developers should think consciously from performance and scalability
perspectives whenever they make a design or an implementation decision.

Software developers already possess strong, valuable, and hard-to-obtain software
design and implementation skills. Regardless of their experience, they can comp-
lement their existing coding skills by acquiring from this book knowledge about
designing and implementing performance and scalability into their products in the
first place during the various life cycles of development.

Of course, it’s impractical to have only the software developers take care of all
the performance and scalability challenges. Building a software system that performs
and scales is a cross-team effort. This book provides a common knowledge platform for
all stakeholders to work together to tame the challenging performance and scalability
issues so that the product they are all responsible for is built to perform and scale.

WHO THIS BOOK IS FOR

If you are reading this book, probably you are interested in learning how you can help
design and build performance and scalability into your software for which you are one
of the stakeholders, either from the technical or management perspective. No matter
what your roles are, I am very confident that you will learn something from this
book that can help you become more knowledgeable, more productive, and more
efficient in solving your performance and scalability issues.

I wrote this book with some specific groups of readers in my mind. In deciding
what material to include in this book and how to write it, I tried my best to make
this book pertinent and useful for the following groups of readers:

† Software developers who have the most influence on how well the software pro-
duct they develop will actually perform and scale. If software developers are
equipped with adequate knowledge and experience in software performance
and scalability, fewer defects will slip out of their hands into the builds
they deliver.

† Software engineers who conduct the performance and scalability tests to make
sure that the product will not be released to themarket without catching and resol-
ving major performance and scalability defects. Nowadays, it’s very hard to find
experienced software performance engineers.Most of the engineers who conduct
the performance and scalability tests are from other job responsibilities, such
as quality assurance, system administration, database administration, or pro-
gramming. This book can help them get up to speed quickly in helping resolve
software performance and scalability issues they discover through their tests.

† Software performance managers and development managers who are interested
in understanding software performance and scalability problems at a high level
so that they can lead more effectively in getting various performance and
scalability defects resolved in time.

PREFACE xvii



† The book can also be used as a textbook in various ways. First of all, it can be
used as a textbook for university courses related to computer performance evalu-
ation and software non-functional testing at the upper-division undergraduate
and graduate levels. It can be used as a required supplement to the computer
organization texts now in use that every CS and CpE student must take. It is
an ideal text as well to supplement a course in queuing theory that is available
in many universities for the students majoring in mathematics, probability and
statistics.

Many books available today on the subject of software performance and scalability
do not provide the same level of quantitativeness, which is one of the most distinctive
merits of this book. In my opinion, quantitativeness is a requirement for dealing
with software performance and scalability issues, as performance and scalability are
quantitatively measurable attributes of a software system.

I hope that the quantitative approach and the real-world quantitative case studies
presented throughout this book can help you learn about software performance and
scalability faster and more effectively. And more importantly, I am confident that
by applying everything you learn from this book to your product, you can make a
huge difference in improving the performance and scalability of your product to the
satisfaction of your company and customers.

HOW THIS BOOK IS ORGANIZED

Software Performance and Scalability: A Quantitative Approach is the first book to
focus on software performance and scalability in a quantitative approach. It introduces
the basic concepts and principles behind the physics of software performance and
scalability from a practical point of view. It demonstrates how the performance and
scalability of your products can be optimized and tuned using both proven theories
and quantitative, real-world examples presented as case studies in each chapter.
These case studies can easily be applied to your software projects so that you can
realize immediate, measurable improvements on the performance and scalability of
your products.

As illustrated in Figure A, this book elaborates on three levels of skill sets for
coping with software performance and scalability problems.

Figure A Three levels of skill sets for solving software performance and scalability challenges.

xviii PREFACE



Specifically, this book consists of the following three parts:

† Part 1: The Basics. This part lays the foundation for understanding the factors
that affect the performance and scalability of a software product in general.
It introduces the various hardware components of a modern computer system
aswell as software platforms that predetermine the performance and scalability of
a software product. It concludes with how to test quantitatively the performance
and scalability of a software product. Through quantitative measurements, you
can determine not only which hardware and software platforms can deliver
the required performance and scalability for your products, but also how to
optimize and tune the performance and scalability of your products over time.

† Part 2: Applying Queuing Theory. Queuing theory is the mathematical study
of waiting lines or queues for a system that depends on limited resources to com-
plete certain tasks. It is particularly useful as a quantitative framework to help
identify the performance and scalability bottlenecks of a computer software
system. The efficacy of queuing theory in solving software performance and
scalability problems is demonstrated in two subsequent chapters using quantita-
tive case studies.

† Part 3: Applying API Profiling. API profiling provides quantitative information
about how a software program is executed internally at the API level. Such
information is useful in identifying the most expensive execution paths from
performance and scalability perspectives. Based on such information, devel-
opers can design more efficient algorithms and implementations to achieve the
best possible performance and scalability for products. This part introduces a
generic API profiling framework ( perfBasic), which can be implemented
easily in any high-level programming languages. It concludes with a case
study chapter showing quantitatively how one can use the performance maps
generated with the API profiling data out of this API profiling framework to
help solve software performance and scalability issues.

In order to make this book more suitable as a textbook for an upper division under-
graduate or graduate level course for computer and software engineering students,
exercises have been provided at the end of each chapter. In most cases, the exercises
have been designed to encourage the reader to conduct his/her own research and come
upwith the quantitative solutions to the exercises. In addition, the reader is encouraged
to think and practice, rather than simply writing a program or filling in a formula
with numbers. Dealing with software performance and scalability problems is more
challenging than simply coding, and oftentimes, it’s really passion and discipline
that can make a difference.

I havemade every effort to make this book concise, practical, interesting, and useful
for helping you solve your software performance and scalability problems. I hope
you’ll enjoy reading this book, apply what you learn from this book to your work,
and see immediate positive results. In addition, be conscious that by developing
high-performance and scalable software that consumes less electric power to run,

PREFACE xix



you are not only contributing to the success of your company and your customers, but
also helping reduce global warming effects, for which we are all responsible.

HOW TO REACH THE AUTHOR

All mistakes and errors, if any, in the text are my responsibility. You are more than
welcome to email me your comments about the contents of this book, or errors found
therein, at henry@perfmath.com For any downloads and updated information about
the book, visit the book’s website at http://www.perfmath.com.

HENRY H. LIU, PHD
Folsom, California
September 2008

xx PREFACE



Acknowledgments

First, I would like to thank all of the colleagues I had worked with in the field of
physics research. Some of the greatest physicists that I was so lucky to have had a
chance to work for and with include: Professor S. Liu, Professor J. Xie, Dr. J. Le
Duff, Professor Dr. A. Richter, Dr. J. Bisognano, Dr. G. Neil, and Dr. F. Dylla.
Because of them, my previous physics research career had been so enjoyable and
fruitful. I’d like to mention that my current career as a software performance engineer
has benefited tremendously from my previous career as a physicist. Although I left
physics research and jumped to computers and software about a decade ago, the
spirit of pursuing a subject in a rigorous, quantitative, and objective manner culti-
vated through my earlier physics research career has never left me. I have had this
hopelessly immutable habitude of trying to deal with every software performance
issue as quantitatively as possible as if it were a physics research subject. I have
been totally soaked with that spirit, which gives me the power and energy for pursuing
every challenging software performance and scalability problem quantitatively, and
thus this book—Software Performance and Scalability: A Quantitative Approach.

With my career as a software performance professional, I’d like to especially thank
Pat Crain, who introduced me to applying queuing theory to solving software per-
formance challenges. Pat also encouraged me to write my first research paper on soft-
ware performance, which was presented and awarded the best paper award in the
category of software performance at the 2004 CMG Conference held in Las Vegas.
I owe a debt of gratitude to Keith Gordon, who was the VP of the software company
I worked for. Keith had enthusiastically read draft versions of my papers prior to pub-
lication and had always encouraged me to publish and share my software performance
experience with the greater software community. I also feel excited to mention one of
my fellow software performance engineers, Mary Shun, who encouraged me towrite a
book on software performance someday. Many thanks and this is it, Mary!

xxi



Special thanks are also due to Engel Martin, one of the greatest software perform-
ance group managers I have ever worked for. While taking on a tremendous amount of
managerial responsibilities, Engel has demonstrated an extremely sharp and accurate
sense of software performance and scalability issues at high levels. The atmosphere
Engel created within the group he manages has always made me feel comfortable
to express my opinions freely and to make my own judgments objectively on technical
issues, as I used to as a scientist, for which I am truly grateful.

I would like to take this opportunity to thank the nonanonymous yet never-met
authors of some hundreds of books I bought in mathematics, physics, computers,
and software. The books they wrote fed my knowledge-hungry mind at various
stages of my careers.

I sincerely thank those anonymous referees who offered very useful opinions on
how to make this book more valuable to the readers and more suitable as a textbook
for an upper division undergraduate or graduate level course for students majoring
in computers and software. Their very helpful suggestions have been incorporated
in the various parts of this book.

I also owe thanks to Dr. Larry Bernstein, who kindly recommended my book pro-
posal to Wiley. The structure of this book has been deeply influenced by his seminal
works published by Wiley in the series of Quantitative Software Engineering.

Paul Petralia at Wiley-Interscience mentored me as a first-time book writer through
each step of the entire process. It would have not been such a smooth process without
Paul’s guidance and high professionalism. Michael Christian helped me achieve
the next milestone for the book—to get it into production at Wiley—with his hard
work and high efficiency. My production manager, Shirley Thomas, production
editor, Christine Punzo, compositor (Techset Composition Ltd.), and illustration man-
ager, Dean Gonzalez, at Wiley were the hard-working, efficient engines behind com-
pleting the last stage of publishing this book. Needless to say, without such a highly
efficient and professional team at Wiley, my software performance experience
accumulated over a decade would have still been scattered in various publications
and work notes. So many thanks to everyone involved at Wiley.

I’d like to thank my wife, Sarah Chen, who sacrificed so much to take care of our
newborn son, William, most of the time, in order to let me sit down and focus
on writing this book using my weekends, nightly hours, and even vacation times.

You as a reader are greatly appreciated as well. Your interest in this book has
shown your strong motivation to further the success of your company and also your
willingness to help contain global warming by developing high-performance and
highly scalable software that burns less electric power.

HENRY H. LIU

xxii ACKNOWLEDGMENTS



Introduction

All good things start with smart choices.
— Anonymous

PERFORMANCE VERSUS SCALABILITY

Before we start, I think I owe you an explanation about what the difference is between
performance and scalability for a software system. In a word, performance and scal-
ability are about the scalable performance for a software system.

You might find different explanations about performance versus scalability from
other sources. In my opinion, performance and scalability for a software system
differ from and correlate to each other as follows:

† Performance measures how fast and efficiently a software system can complete
certain computing tasks, while scalability measures the trend of performance
with increasing load. There are two major types of computing tasks that are
measured using different performance metrics. For OLTP (online transaction
processing) type of computing tasks consisting of interactive user activities,
the metric of response time is used to measure how fast a system can respond
to the requests of the interactive users, whereas for noninteractive batch jobs,
the metric of throughput is used to measure the number of transactions a
system can complete over a time period. Performance and scalability are insepar-
able from each other. It doesn’t make sense to talk about scalability if a software
system doesn’t perform. However, a software system may perform but not scale.

† For a given environment that consists of properly sized hardware, properly con-
figured operating system, and dependent middleware, if the performance of a
software system deteriorates rapidly with increasing load (number of users
or volume of transactions) prior to reaching the intended load level, then it is

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

1



not scalable and will eventually underperform. In other words, we hope that the
performance of a software system would sustain as a flat curve with increasing
load prior to reaching the intended load level, which is the ideal scalability
one can expect. This kind of scalability issue, which is classified as type I
scalability issue, can be overcome with proper optimizations and tunings, as
will be discussed in this book.

† If the performance of a software system becomes unacceptable when reaching a
certain load level with a given environment, but it cannot be improved even with
upgraded and/or additional hardware, then it is said that the software is not scal-
able. This kind of scalability issue, which is classified as type II scalability issue,
cannot be overcome without going through some major architectural operations,
which should be avoided from the beginning at any cost.

Unfortunately, there is no panacea for solving all software performance and scal-
ability challenges. The best strategy is to start with the basics, being guided by queuing
theory as well as by application programming interface (API) profiling when coping
with software performance and scalability problems. This book teaches how one
can make the most out of this strategy in a quantitative approach.

Let’s begin with the first part—the basics.

2 INTRODUCTION



Part 1

The Basics
I went behind the scenes to look at the mechanism.

—Charles Babbage, 1791–1871, the father of computing

The factors that can critically impact the performance and scalability of a software
system are abundant. The three factors that have the most impact on the performance
and scalability of a software system are the raw capabilities of the underlying hardware
platform, the maturity of the underlying software platform (mainly the operating
system, various device interface drivers, the supporting virtual machine stack, the
run-time environment, etc.), and its own design and implementation. If the software
system is an application system built on some middleware systems such as various
database servers, application servers, Web servers, and any other types of third-
party components, then the performance and scalability of such middleware systems
can directly affect the performance and scalability of the application system.

Understanding the performance and scalability of a software system qualitatively
should begin with a solid understanding of all the performance bits built into the
modern computer systems as well as all the performance and scalability implications
associated with the various modern software platforms and architectures. Understand-
ing the performance and scalability of a software system quantitatively calls for a test
framework that can be depended upon to provide reliable information about the true
performance and scalability of the software system in question. These ideas motivated
me to select the following three chapters for this part:

† Chapter 1—Hardware Platform
† Chapter 2—Software Platform
† Chapter 3—Testing Software Performance and Scalability

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

3



Thematerial presented in these three chapters is by nomeans the cliché you have heard
again and again. I have filled in each chapter with real-world case studies so that you
can actually feel the performance and scalability pitches associated with each case
quantitatively.

4 THE BASICS



1
Hardware Platform

What mathematical problems should a computing machine solve?
—Konrad Zuse, 1934

To build new specifications from given specifications by a prescription.
—His answer in 1936

Computing is the deviation of result specifications to any specifications by a prescription.
—His extended definition in 1946

What performance a software system exhibits often solely depends on the raw speed of
the underlying hardware platform, which is largely determined by the central proces-
sing unit (CPU) horsepower of a computer.What scalability a software system exhibits
depends on the scalability of the architecture of the underlying hardware platform as
well. I have hadmany experiences with customers who reported that slow performance
of the software system was simply caused by the use of undersized hardware. It’s fair
to say that hardware platform is the number one most critical factor in determining the
performance and scalability of a software system. We’ll see in this chapter the two
supporting case studies associated with the Intelw hyperthreading technology and
new Intel multicore processor architecture.

As is well known, the astonishing advances of computers can be characterized
quantitatively by Moore’s law. Intel co-founder Gordon E. Moore stated in his
1965 seminal paper that the density of transistors on a computer chip is increasing
exponentially, doubling approximately every two years. The trend has continued for
more than half a century and is not expected to stop for another decade at least.

The quantitative approach pioneered by Moore has been very effective in quantify-
ing the advances of computers. It has been extended into other areas of computer and
software engineering as well, to help refine the methodologies of developing better
software and computer architectures [Bernstein and Yuhas, 2005; Laird and

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

5



Brennan, 2006; Gabarro, 2006; Hennessy and Patterson, 2007]. This book is an
attempt to introduce quantitativeness into dealing with the challenges of software
performance and scalability facing the software industry today.

To see how modern computers have become so powerful, let’s begin with the
Turing machine.

1.1 TURING MACHINE

Although Charles Babbage (1791–1871) is known as the father of computing, the
most original idea of a computing machine was described by Alan Turing more
than seven decades ago in 1936. Turing was a mathematician and is often considered
the father of modern computer science.

As shown in Figure 1.1, a Turing machine consists of the following four basic
elements:

† A tape, which is divided into cells, one next to the other. Each cell contains a
symbol from some finite alphabet. This tape is assumed to be infinitely long
on both ends. It can be read or written.

† A head that can read and write symbols on the tape.
† A table of instructions that tell the machine what to do next, based on the current
state of the machine and the symbols it is reading on the tape.

† A state register that stores the states of the machine.

A Turing machine has two assumptions: one is the unlimited storage space and the
other is completing a task regardless of the amount of time it takes. As a theoretical
model, it exhibits the great power of abstraction to the highest degree. To some
extent, modern computers are as close to Turing machines as modern men are close
to cavemen. It’s so amazing that today’s computers still operate on the same principles

Figure 1.1 Concept of a Turing machine.

6 HARDWARE PLATFORM



as Turing proposed seven decades ago. To convince you that this is true, here is a
comparison between a Turing machine’s basic elements and a modern computer’s
constituent parts:

† Tape—memory and disks
† Head—I/O controllers (memory bus, disk controllers, and network port)
† Table þ state register—CPUs

In the next section, I’ll briefly introduce the next milestone in computing history,
the von Neumann architecture.

1.2 VON NEUMANN MACHINE

John von Neumann was another mathematician who pioneered in making computers a
reality in computing history. He proposed and participated in building a machine
named EDVAC (Electronic Discrete Variable Automatic Computer) in 1946. His
model is very close to the computers we use today. As shown in Figure 1.2, the
von Neumann model consists of four parts: memory, control unit, arithmetic logic
unit, and input/output.

Similar to the modern computer architecture, in the von Neumann architecture,
memory is where instructions and data are stored, the control unit interprets instruc-
tions while coordinating other units, the arithmetic logic unit performs arithmetic
and logical operations, and the input/output provides the interface with users.

A most prominent feature of the von Neumann architecture is the concept of stored
program. Prior to the von Neumann architecture, all computers were built with fixed
programs, much like today’s desktop calculators that cannot run Microsoft Office
or play video games except for simple calculations. Stored program was a giant
jump in making machine hardware be independent of software programs that can
run on it. This separation of hardware from software had profound effects on evolving
computers.

Figure 1.2 von Neumann architecture.

1.2 VON NEUMANN MACHINE 7



The latency associated with data transfer between CPU and memory was noticed as
early as the von Neumann architecture. It was known as the von Neumann bottleneck,
coined by John Backus in his 1977 ACM Turing Award lecture. In order to overcome
the von Neumann bottleneck and improve computing efficiency, today’s computers
add more and more cache between CPU and main memory. Caching at the chip
level is one of the many very crucial performance optimization strategies at the chip
hardware level and is indispensable for modern computers.

In the next section, I’ll give a brief overview about the Zuse machine, which was the
earliest generation of commercialized computers. Zuse built his machines independent
of the Turing machine and von Neumann machine.

1.3 ZUSE MACHINE

When talking about computing machines, we must mention Konrad Zuse, who was
another great pioneer in the history of computing.

In 1934, driven by his dislike of the time-consuming calculations he had to perform
as a civil engineer, Konrad Zuse began to formulate his first ideas on computing. He
defined the logical architecture of his Z1, Z2, Z3, and Z4 computers. He was comple-
tely unaware of any computer-related developments in Germany or in other countries
until a very late stage, so he independently conceived and implemented the principles
of modern digital computers in isolation.

From the beginning it was clear to Zuse that his computers should be freely pro-
grammable, which means that they should be able to read an arbitrary meaningful
sequence of instructions from a punch tape. It was also clear to him that the machines
should work in the binary number system, because he wanted to construct his compu-
ters using binary switching elements. Not only should the numbers be represented in a
binary form, but the whole logic of the machine should work using a binary switching
mechanism (0–1 principle).

Zuse took performance into account in his designs even from the beginning. He
designed a high-performance binary floating point unit in the semilogarithmic rep-
resentation, which allowed him to calculate very small and very big numbers with
sufficient precision. He also implemented a high-performance adder with a one-step
carry-ahead and precise arithmetic exceptions handling.

Zuse even funded his own very innovative Zuse KG Company, which produced
more than 250 computers with a value of 100 million DM between 1949 and 1969.
During his life, Konrad Zuse painted several hundred oil paintings. He held about
three dozen exhibitions and sold the paintings. What an interesting life he had!

In the next section, I’ll introduce the Intel architecture, which prevails over the
other architectures for modern computers. Most likely, you use an Intel architecture
based system for your software development work, and you may also deploy your
software on Intel architecture based systems for performance and scalability tests.
As a matter of fact, I’ll mainly use the Intel platform throughout this book for demon-
strating software performance optimization and tuning techniques that apply to other
platforms as well.

8 HARDWARE PLATFORM



1.4 INTEL MACHINE

Intel architecture based systems are most popular not only for development but also
for production. Let’s dedicate this section to understanding the Intel architecture
based machines.

1.4.1 History of Intel’s Chips

Intel started its chip business with a 108 kHz processor in 1971. Since then, its
processor family has evolved from year to year through the chain of 4004–8008–
8080–8086–80286–80386–80486–Pentium–Pentium Pro–Pentium II–Pentium
III/Xeon–Itanium–Pentium 4/Xeon to today’s multicore processors. Table 1.1
shows the history of the Intel processor evolution up to 2005 when the multicore
microarchitecture was introduced to increase energy efficiency while delivering
higher performance.

1.4.2 Hyperthreading

Intel started introducing its hyperthreading (HT) technology with Pentium 4 in 2002.
People outside Intel are often confused about what HTexactly is. This is a very relevant
subject when you conduct performance and scalability testing, because you need to
know if HT is enabled or not on the systems under test. Let’s clarify what HT is here.

First, let’s see how a two physical processor system works. With a dual-processor
system, the two processors are separated from each other physically with two indepen-
dent sockets. Each of the two processors has its own hardware resources such as arith-
metic logical unit (ALU) and cache. The two processors share the main memory only
through the system bus, as shown in Figure 1.3.

TABLE 1.1 Evolution of the Intel Processor Family Prior to the Multicore
Microarchitecture Introduced in 2005

Year Processor CPU Speed Addressable Memory

1971 4004 108 kHz 640 bytes
1972 8008 200 kHz 16 kilobytes (kB)
1974 8080 2MHz 64 kB
1978 8086 10MHz 1MB
1985 80386 16MHz 4 GB
1989 80486 50MHz 4 GB
1993 Pentium 66MHz 4 GB
1995 Pentium Pro 200MHz 4 GB
1997/98 Pentium II/Xeon 300/400MHz 4/64GB
1999 Pentium III/Xeon 500/555MHz 4/64GB
2001 Xeon/Itanium 1.7/0.8 GHz 64 GB/1 TB
2001 Pentium 4/Xeon 2 GHz 4 GB
2003 Pentium 4 HT/Xeon 3/3 GHz 4/64GB
2004 Itanium 2 1.6 GHz 1 TB
2005 Pentium 4/Xeon MP 3.7/3.6 GHz 4/64GB

1.4 INTEL MACHINE 9



As shown in Figure 1.4, with hyperthreading, only a small set of microarchitecture
states is duplicated, while the arithmetic logic units and cache(s) are shared. Compared
with a single processor without HT support, the die size of a single processor
with HT is increased by less than 5%. As you can imagine, HT may slow down
single-threaded applications because of the overhead for synchronizations between

Figure 1.3 Two physical processors in an Intel system.

Figure 1.4 Hyperthreading: two logical processors in an Intel system.

10 HARDWARE PLATFORM



the two logical processors. However, it is beneficial for multithreaded applications.
Of course, a single processor with HT will not be the same as two physical
processors without HT from the performance and scalability perspectives for very
obvious reasons.

B Case Study 1.1: Intel Hyperthreading Technology

How effective is hyperthreading? I had a chance to test it with a real-world OLTP
(online transaction processing) application. The setup consisted of three servers: a
Web server, an application server, and a database server. All servers were config-
ured with two single-core Intelw XeonTM processors at 3.4-GHz with hyperthread-
ing support. The test client machine was on a similar system as well. The details of
the application and the workload used for testing are not important here. The inten-
tion here is to illustrate how effective hyperthreading is with this specific setup and
application.

Figure 1.5 shows the average response times of the workload with and without
hyperthreading for different numbers of virtual users. The workload used for the
tests consisted of a series of activities conducted by different types of users. The
response time measured was from end to end without including the user’s own
think times. It was averaged over all types of activities.

With this specific test case, the effectiveness of HT depended on the number of
users, ranging from 7%, to 23%, and to 33%, for 200, 300, and 400 users, respect-
ively. The maximum improvement of 33% for 400 users is very significant.

As a matter of fact, the effectiveness of HT depends on how busy the systems
are without HT when an intended load is applied to the systems under test. If
CPUs of a system are relatively idle without HT, then enabling HT would not

Figure 1.5 Performance enhancements from hyperthreading (TH) in comparison with non-
hyperthreading (NTH) based on a real-world OLTP application.

1.4 INTEL MACHINE 11



help improve the system performance much. However, if the CPUs of a system are
relatively busy without HT, enabling HT would provide additional computing
power, which helps improve the system performance significantly. So the effective-
ness of HT depends on whether a system can be driven to its fullest possible
utilization.

In order to help prove the above observation on the circumstances under which
HT would be effective, Figure 1.6 shows the CPU usages associated with the Web
server, application server, and database server for different numbers of users with
hyperthreading turned off and on, respectively. I have to explain that those CPU
usage numbers were CPU utilizations averaged over the total number of processors
perceived by the Microsoft Windowsw 2003 Enterprise Edition operating system.
With hyperthreading not turned on, the two single-core processors were perceived
as two CPUs. However, when hyperthreading was turned on, the two single-core
processors were perceived by the operating system as four processors, so the
total CPU utilization would be the average CPU utilization multiplied by
four and the maximum total CPU utilization would be 400%.

As is seen, the average CPU utilizations with HT turned on were lower than
those with HT off. Take the Web server for 200 users as an example. With HT
off, the average system CPU utilization was 27%. However, with HT on, the aver-
age system CPU utilization turned to 15%. This doesn’t mean that the physical
CPUs were about twice busier with HT off than with HT on. If we take into account
the fact that those CPU utilization numbers were averaged over the total number

Figure 1.6 Comparisons of server system CPU utilizations between nonhyperthreading (NHT)
and hyperthreading (HT).

12 HARDWARE PLATFORM



of CPUs, it means that with HT off, each of the two CPUs of the Web server was
27% busy, whereas with HT on, each of the four CPUs of the sameWeb server was
15% busy; so overall the four CPUs in the case of HT-enabled did more work than
the two CPUs in the case of HT-disabled; thus the overall system performance has
been improved.

In the next section, I’ll help you understand what Intel’s multicore microarchitec-
ture is about. Of course, multicore is a lot more powerful than hyperthreading, since a
dual-core processor is closer to two physical processors than a single-core hyper-
threaded processor is.

1.4.3 Intel’s Multicore Microarchitecture

In contrast to hyperthreading, the Intel multicore microarchitecture shares nothing
above L2 cache, as shown in Figure 1.7 for a dual-core configuration. Therefore both
single-threaded andmultithreaded applications can benefit from themultiple execution
cores. Of course, hyperthreading andmulticore do not contradict each other, as one can
have each core hyperthreading enabled.

The Intel multicore microarchitecture resulted from the marriage of the other two
Intel microarchitectures: NetBurst and Mobile, as shown in Figure 1.8. Note that
Intel started to enter the most lucrative market of high-end server systems as early
as Pentium Pro. That’s how the NetBurst microarchitecture was born with the Xeon
family of processors. The Mobile microarchitecture was introduced to respond to

Figure 1.7 Two execution cores in an Intel processor.

1.4 INTEL MACHINE 13



the overheated mobile computing demands, for which low-power consumption was
one of the most critical requirements. Combining the advantages of high performance
from NetBurst and low power consumption from Mobile resulted in the new Intel
multicore microarchitecture.

It’s very necessary to differentiate among those three terms of architecture,
microarchitecture, and processor:

† Processor architecture refers to the instruction set, registers, and memory data-
resident data structure that is public to the programmer. Processor architecture
maintains instruction set compatibility so that processors will run the programs
written for generations of processors.

† Microarchitecture refers to the implementation of processor architecture in
silicon.

† Processors are productized implementation of microarchitecture.

For software performance and scalability tests, one always needs to know the
detailed specs of the systems being tested, especially the details of the processors as
the brain of a system. It actually takes time to learn all about Intel processors. Here
is a more systematic approach to pursuing the details of the Intel processors used in
an Intel architecture based system. One should start with the processor number,
which uniquely identifies each release of the Intel processors. It’s not enough just
to know the marketing names of the Intel processors. If you are using Intel architecture
based systems for your performance and scalability tests, it’s very likely that you are
using Intel Xeon processor based systems.

Table 1.2 shows the specs of the latest Intel server processors. The specs include
CPU type, CPU clock rate, front-side-bus (FSB) speed, L2/L3 cache, and hyper-
threading support. It’s interesting to see that Intel architecture is moving toward
more and more cores while keeping increasing front-side-bus speed and L2/L3
cache. Hyper-threading support becomes less important as more and more cores can

Figure 1.8 History of the Intel 32 bit microarchitecture.

14 HARDWARE PLATFORM



be packaged in a single processor. Also the clock rate is not necessarily going higher
with more cores. Most of the architectural design decisions were based on the goal of
increasing performance by maximizing the parallelism that a multi-core processor can
support.

On the desktop side, Intel has recently released a product family of Intel CoreTM i7
processors. The CoreTM i7 processors adopted a combination of multi-corewith hyper-
threading to maximize the multi-tasking capability for CPU processing power
demanding applications. To maximize the I/O performance, CoreTM i7 incorporated
many advanced Intel technologies such as Intelw Smart Cache, Intelw QuickPath
Interconnect, Intelw HD Boost, and integrated memory controller, etc, into the
design. See Figure 1.9 for the image of an Intel CoreTM i7 processor.

Now let’s say you are using a Dellw PowerEdgew 6800 server. From looking up
Dell’s website, you would know that this system is using Intel’s 3.0 GHz/800 MHz/
2 � 2 MB Cache, Dual-Core Intelw Xeon 7041 Processor. Then from Intel’s website
about viewing processor number details page for Xeon processors, you will find
further details about the Dual-Core Xeon 7041 processor: for example, its system
type is MP, which means that it can be configured with at least four or more processors.
Some processors are labeled UP or DP, which stands for uniprocessor (UP) or
dual-processor (DP). Also, it’s capable of hyperthreading (HT).

TABLE 1.2 Intel 32-Bit Server Processors Classified by CPU Model, CPU Clock Rate,
FSB (Front Side Bus) Speed, L2 and L3 Cache, and HT (Hyper-Threading) Support

CPU Clock Rate (GHz) FSB (NHz) L2/L3 (MB) HT

Xeon 3.00–3.80 800 2/2 Yes
Xeon MP 2.83–3.66 667 1/0–8 Yes
Dual-Core 1.66–3.50 667–1600 2/0–16 Some
Quad-Core 1.60–3.20 1066–1333 4–12/– No
Six-Core 2.13–2.66 1066 9/12 No

Figure 1.9 Intel CoreTM i7 processor.

1.4 INTEL MACHINE 15



It’s very important that you are not confused about the terms of processor, UP/DP/
MP, multicore, and hyperthreading when you communicate about exactly what sys-
tems you are using. Here is a summary about what these terms imply hierarchically:

† Processor implies the separate chip package or socket. A system with one, two,
or N processors with N . 2 are called one-way (UP), two-way (DP), or N-way
systems (MP).

† A processor could be a dual-core or quad-core processor with two or four cores in
that processor. Cores are called execution engines in Intel’s term.

† You can have hyperthreading turned on within each core. Then you would have
two computing threads within each core.

Next, I’ll provide a case study to demonstrate how important it is to keep up with the
latest hardware advances in order to tap the highest possible performance and scalabil-
ity potentials with a software application. A newer, faster computer system may even
cost less than the older, slower one purchased just a couple of years ago.

B Case Study 1.2: Performance and Scalability Comparison Between
Intel’s Single-Core and Multicore Processors

Figure 1.10 shows how effective the Intel multicore architecture could be compared
with its single-core architecture, demonstrated with a real-world enterprise appli-
cation that inserts objects into a database. The same tests were conducted with
two different setups. In each setup, two identical systems were used, one for the
application server, and the other for the database server.

Figure 1.10 Performance and scalability advantages of the Intel quad core over its single-core
architecture.

16 HARDWARE PLATFORM



With the above test setups, the single-core setup was configured with two
identical systems, each of which was equipped with four single-core Xeon pro-
cessors at 3.67 GHz, whereas the quad-core setup was configured with two identi-
cal systems as well, each of which was equipped with two quad-core Xeon
processors at 1.86 GHz. The total CPU power was the same between the single-
core and quad-core systems. However, the quad-core setup outperformed the
single-core setup consistently across all three different types of batch jobs by
about a factor of 2, while the cost of each quad-core system was about only half
of a single-core system. This shows how important it is to upgrade your hardware
in time in order to get the maximum performance and scalability for your appli-
cation while spending less.

New microarchitecture poses challenges for traditional system monitoring tools in
terms of how CPU utilizations should be interpreted when logical or virtual processors
are exposed to operating systems as if they were physical processors. This issue will be
briefly discussed in the next section.

1.4.4 Challenges for System Monitoring Tools

It is confusing with hyperthreading and multicore with regard to how many physical
CPUs a system actually has. For example, when you open up your Windows Task
Manager on your system, you might see four CPUs displayed. Then you would
wonder whether it’s a four-way system, or two-way system dual-core per processor,
or actually a single-processor dual-core system with hyperthreading enabled. If you
are not sure, ask your system administrator to find out what’s actually inside the
box regarding the number of CPUs, cores, and hyperthreading.

Keep in mind that with your performance and scalability testing, you need to know
exactly what systems you are using, becausewhat systems you use will determine what
performance and scalability you will observe for the software you test. Keep also
in mind that the traditional operating system utilities fall behind the multicore and
hyperthreading technologies. Whether it’s a physical processor, a hyperthreaded
logical processor, or a core, they all appear as a CPU to the operating system, which
imposes challenges for interpreting the log data you collect with the processor
performance counter.

Next, I’ll introduce Sun machines, which are popular for IT production systems.

1.5 SUN MACHINE

Sun Microsystemsw processor lines started with MicroSPARC I at 40–50MHz
introduced in 1992. Table 1.3 shows all Sun processors since 1998. The earlier Sun
processors may have been retired in every IT organization. Note that UltraSPARC
IV and IVþ are dual-core processors, whereas T1 and T2 are multicore, multithread-
ing processors based on Sun’s CoolThread technology. T1 and T2 were code-named
Niagara and Niagara II processors. T1 has six pipeline stages, whereas T2 has eight
pipeline stages, as shown in Figure 1.11.

1.5 SUN MACHINE 17



It is helpful to understand how the new generation of Sun processors work.
Essentially, one physically packaged processor can contain multiple cores, and one
core can contain multiple threads. Cores don’t share anything above L2 cache,
whereas threads share everything below the register level. Those threads are termed
computing threads in Sun’s throughput computing marketing programs.

One can use the command “psrinfo –vp” to check out the processor type and the
number of CPUs on a Sun system. However, it’s necessary to make sure how many
physical processors and logical CPUs or how many cores or threads are actually
installed on the system.

In the next section, I’ll show you how you can get to know quickly about your
performance and scalability testing systems based on the latest Intel processors.

1.6 SYSTEM UNDER TEST

1.6.1 Processors

Your machine, whether it’s a server class machine or a development desktop, is no
doubt much more powerful than the machines built more than half a century ago.
That’s because modern processors have become millions of times faster.

TABLE 1.3 Sun UltraSPARC Processors Since 1998

Model Speed (MHz) Year Threads/Core � Cores ¼ Total Number of CPUs

UltraSPARC IIi 333–480 1998 1 � 1 ¼ 1
UltraSPARC III 750–900 2001 1 � 1 ¼ 1
UltraSPARC IIIi 1064–1593 2003 1 � 1 ¼ 1
UltraSPARC IV 1050–1350 2004 1 � 2 ¼ 2
UltraSPARC IV þ 1500–1800 2005 1 � 2 ¼ 2
UltraSPARC T1 1000–1400 2005 4 � 8 ¼ 32
UltraSPARC T2 1400 2007 8 � 8 ¼ 64

Figure 1.11 Core pipelines for Sun T1 and T2 multicore, multithreading processors.

18 HARDWARE PLATFORM



In order to see the astronomical disparity, Table 1.4 compares the performance of
one of the von Neumann machines with one of the typical Intel servers. This von
Neumann machine was named the IAS machine, which was the first electronic digital
computer built by the Institute for Advanced Study (IAS) at Princeton, New Jersey,
USA, in 1952. A 3-GHz, dual-core, Intel Xeon 7041 processor is chosen arbitrarily
for comparison. This processor is based on the Intel Core microarchitecture.
In order to explain how we arrived at its performance for comparison, we need to
explain the concepts of latency and throughput in the context of the Intel Core
microarchitecture.

In the context of the Intel Core microarchitecture, latency is the number of pro-
cessor clocks it takes for an instruction to have its data available for use by another
instruction. Throughput is the number of processor clocks it takes for an instruction
to execute or perform its calculations. A floating-point addition operation takes a
latency of 3 processor clocks and a throughput of 1 processor clock. A single-precision
floating-point multiplication operation takes a latency of 4 processor clocks and
a throughput of 1 processor clock. Thus we can derive that the addition time and
multiplication time of a modern Intel Xeon processor would be about 1.3 nanoseconds
and 1.7 nanoseconds, respectively. Given its multicore and multithreading capability,
a modern processor could be a million times faster than one manufactured half
a century ago.

Even different models of the modern processors manufactured within a few years
apart could exhibit drastically different performance and scalability with your soft-
ware, as we have demonstrated with the preceding case study of the Intel multicore
versus single-core comparison.

In the next few sections, let’s expand more into the other parts of a computer
system that have significant impact on the performance and scalability of a software
system in general.

1.6.2 Motherboard

A powerful processor would starve to death without commensurate peripheral com-
ponents to keep feeding it with instructions and data. In other words, a powerful pro-
cessor needs a highly efficient environment to support it. That environment is provided
by a motherboard, as shown in Figure 1.12.

The server motherboard shown in Figure 1.12 contains two dual-core processors,
sixteen memory slots for installing up to 16 GB of RAM, two network ports, internal
redundant arrays of inexpensive disks (RAIDs) controllers, peripheral component
interconnect (PCI) slots, and a chipset. If you have a system of your own, you can

TABLE 1.4 Comparison of Performance Between the IAS Machine
and a Typical Modern Machine with Intel Xeon Processors

Spec IAS Modern Machine Improvement (Times)

Memory 5 kB 12GB .2 million
Addition time 62 (ms) 1.3 (ns) 50 thousand
Multiplication time 713 (ms) 1.7 (ns) 400 thousand

1.6 SYSTEM UNDER TEST 19



actually open the box yourself and get familiar with all the components on the
motherboard.

Keep in mind that all the components on a motherboard are crucial for achieving
super high performance out of today’s Intel architecture based systems. When you
evaluate your performance and scalability test results, you definitely need to know
all the specs of your systems under test. This is also very necessary when you docu-
ment your test results. I’d like to emphasize again that what performance and scalabil-
ity you get with your software has a lot to do with what you have inside your systems.

You may often hear the other two terms of chip and chipset. A chip is basically a
piece of integrated circuit that may contain millions of transistors. There are different
types of chips. For example, processor chips contain an entire processing unit, whereas
memory chips contain blank memory. Figure 1.13 shows the Intel Xeon uniprocessor
(left) and multiprocessor (right) chips.

In the next section, I’ll clarify what chipsets are.

1.6.3 Chipset

A chipset is a group of integrated circuits (“chips”) that are designed to work together
and are usually marketed as a single product. It is also commonly used to refer to
the specialized chips on a motherboard. For example, the Intel E7520 chipset consists
of three chips for facilitating data exchange between processors and memory
through the front-side bus, and also between processors and secondary storage through
the PCI bus.

Figure 1.14 shows that a chipset is partitioned into a memory bridge and an I/O
bridge. These two bridges are normally called north and south bridges. The chipset

Figure 1.12 Intel server board SE7520BB2 (courtesy of Intel).

20 HARDWARE PLATFORM



Figure 1.14 Chipset acting as hubs of communication between a processor and its peripheral
components.

Figure 1.13 Intel Xeon processor chips (courtesy of Intel).

1.6 SYSTEM UNDER TEST 21



determines the type of processor, memory, and I/O components that a particular
system can support. The chipset’s efficiency directly affects the overall system
performance.

Unfortunately, the components within a chipset are built-in and not very tunable
from system performance perspectives. However, you can choose high-end com-
ponents when you make a purchase to guarantee that you would get the highest
possible performance while your budget permits.

Next, let’s concentrate on the storage, which is as important as CPUs, since it deter-
mines how fast data can be moved among various data storage levels. Some examples
will be presented in Chapter 6 to show how important I/O could be for enterprise
applications from the system performance perspective.

1.6.4 Storage

Storage hierarchy is another important factor in determining the performance of
a system. Figure 1.15 shows the various levels of storage based on the proximity
of the storage layer to the processor, in the sequence of registers, caches, main
memory, internal disks, and external disks.

In order to understand the impact of storage on the performance of a system, let’s
take a look at what each level of storage does for the system following the hierarchical
sequence as shown in Figure 1.15:

† Registers are internal to a processor. They hold both instructions and data for
carrying out arithmetic and logical calculations. They are the fastest of all
forms of computer storage, since they are integrated on a CPU’s chip, function-
ing as switches representing various combinations of 0’s and 1’s, which is how
computers work as we all know.

† Cache memory consists of L1, L2, and L3 caches. L1 cache stores both
instructions and data for reuse in order to increase the performance or “through-
put” of a computer. L2 and L3 caches store the segments of programs that
have just been executed, as well as the data already fetched from main
memory for reuse in order to reduce the chances of refetching from the main
memory. From L1 to L3, the access speed gets slower while the capacity
gets larger.

† Main memory stores programs and data needed by the programs to be executed.
Typically, modern computer systems are either 32-bit or 64-bit systems. The
addressable memories for 32-bit and 64-bit systems are 4 GB and 1 TB, respect-
ively, although the actual memory installed may be smaller or larger. Main
memory is volatile in the sense that if the system is turned off, everything
stored on it will be lost. Main memory communicates with the processor through
the FSB (front-side bus).

† Hard disks are used for nonvolatile, mass storage of persistent data. There are a
few different types of hard disks, for example, IDE (integrated drive electronics),
SATA (serial advanced technology attachment), and SCSI (small computer
system interface). IDE disks are traditionally used for home PCs. SATA disks

22 HARDWARE PLATFORM



are used for video/audio production because of their affordability and large
capacity (e.g., .700 GB). SCSI drives are used for more demanding work-
stations and enterprise server systems.

† Note that disks can be used as separate ones or configured as RAID (redundant
array of inexpensive disks). I’ll discuss more about RAID later, but for the time
being, just take it as a logical approach to reorganizing disks for built-in redun-
dancy for failure protection and parallel access to multiple disks for better
performance.

† Hard disk drives are accessed over one of a number of bus types, including IDE,
SATA, SCSI, and fiber channel. Host adapter or host bus adapter bridges the
computer’s internal system bus to its I/O bus to enable communications between
a processor and its peripheral disk storage devices. Note that most enterprise
storage adopts external SAN (storage area network) storage for storing and

Figure 1.15 Memory and storage hierarchies in a computer system.

1.6 SYSTEM UNDER TEST 23



processing enterprise data. In this case, a host bus adapter card is needed to
connect the host computer with the remote external SAN storage through a
fiber-channel switch.

Enterprise applications typically adopt external SAN storage to store business criti-
cal data. For performance and data protection purposes, SAN storage devices are con-
figured with mirroring, striping, and error recovery techniques, resulting in various
levels of RAID. Let’s get to the details of RAID in the next section.

1.6.5 RAID

RAID stands for redundant arrays of inexpensive disks. We mentioned RAID in the
previous section, but did not elaborate on it. Most of the IT organizations rarely use
local independent disks for their data storage needs. Instead, RAID has been used
as a standard approach to storing both static and dynamic enterprise data. From the
software performance and scalability perspectives, properly configured RAID may
improve data read/write throughput substantially. Therefore, we recommend using
RAID rather than local independent disks, especially not one single local disk, for
the performance and scalability tests with your enterprise software.

No matter how it is configured, the purposes with a RAID configuration are one,
or more, or all of the following:

† Fault tolerance, which guarantees that if some disks of a RAID fail, the system
can continue to be operational for sufficiently long so that the failed disks can be
fixed without interrupting normal business uses of the system.

† Data integrity, which guarantees that if the data is partially lost or corrupted,
the entire original data set can be recovered based on the remaining healthy
and valid data.

† Higher data transfer throughput relative to a single or more separate disks, as data
can be read from or written to multiple disks in parallel.

With a RAID configuration, multiple physical disks appear as one logical unit to the
operating system. There are software RAID configurations and hardware RAID con-
figurations. With a software RAID configuration, an abstraction software layer sits
above the disk device drivers, which manage data transfer between physical disks
and the operating system. Since this software layer consumes the CPU time of a
local system, a software RAID configuration in general is much slower than a hardware
RAID configuration. Therefore, if performance is a concern, a hardware RAID
configuration is preferred over a software RAID configuration.

With a hardware RAID, a RAID controller is used to perform all calculations
for managing the disks and maintaining the properties specified for a RAID
configuration. This offloads RAID-related computing tasks from the main CPUs
of the host system to RAID controller hardware, which improves the overall system
performance. Another advantage of using a hardware RAID is that the built-in
cache from a hardware RAID can help improve the overall system performance
further.

24 HARDWARE PLATFORM



A RAID could be internal or external to a system. An internal RAID uses the
internal local disks and built-in on-board RAID controller of a system to realize a
RAID configuration. An external RAID uses a fiber-channel switch to connect a
RAID provided by an SAN (storage area network) to the host system.

How to configure and administrate a RAID is beyond the scope of this book. Here
we will only provide enough information about the most commonly used RAID con-
figurations so that you know how to choose a RAID configuration for conducting your
performance and scalability tests for which I/Os are important.

RAID configurations are also termed RAID levels. The following RAID levels are
most commonly seen in today’s IT environment:

† RAID 0 (stripping). This RAID configuration spreads data across multiple disks.
As shown in Figure 1.16a, multiple disks are connected to a RAID controller,
which in turn is connected either internally or externally through a fiber channel

Figure 1.16 (a) RAID 0 (stripping) configuration; (b) RAID 1 (mirroring) configuration; (c) RAID 10
(mirroring þ stripping) configuration; and (d) RAID 5 (stripping þparity) configuration.

1.6 SYSTEM UNDER TEST 25



to the system. With the RAID 0 configuration, there is no redundancy or error
recovery as data blocks are just written to multiple disks sequentially in a
round-robin fashion.

† RAID 1 (mirroring). This RAID configuration duplicates data on multiple disks.
As shown in Figure 1.16b, data is written twice on mirroring disks, which pro-
vides data redundancy but not error recovery. Also note that with RAID 1, twice
the data storage capacity is required. This RAID configuration might be used in
production, but not in performance and scalability testing environment.

† RAID 10. This RAID configuration is a combination of mirroring and stripping
with mirroring first and then stripping, as shown in Figure 1.16c.

† RAID 5 (stripping with distributed parity). This RAID configuration spreads
both user data and error correction data across multiple disks, as shown in

Figure 1.16 (Continued).

26 HARDWARE PLATFORM



Figure 1.16d. With this RAID configuration, error recovery is provided through
distributed parity. Further details about various parity distribution algorithms are
beyond the scope of this book, and interested readers should consult more
specific texts about this subject.

There are other RAID levels such as RAID 2, 3, 4, 6, 7, 0 þ 1, and 50, which rep-
resent different combinations of stripping, mirroring, and parity algorithms. Since
these RAID levels are not used as commonly as the four RAID levels of 0, 1, 10,
and 5, they are not explained here. From the performance and scalability testing
perspectives, it’s sufficient just to know those four most typical RAID configurations.

In a production environment, typically it’s either RAID 10 or RAID 5 that
is adopted. There is a tendency to recommend RAID 10 over RAID 5 in the published
literature for database-intensive enterprise applications. See Table 1.5 for a summary
of the advantages and disadvantages of those four typical RAID levels of 0, 1, 10,
and 5.

For performance and scalability tests, I typically use RAID 0, which is not only
easy to set up but also a good compromise between storage capacity and performance.
If you don’t have the option of using a RAID configuration other than the local disks,
you should use at least three separate local disks for your enterprise data so that you do
not always hit one disk hard with your I/O-intensive applications.

In addition to processors, main memory, and secondary storage, networking is
another important factor that affects the performance and scalability of a software
system under test. In the next section, I’ll briefly introduce the concepts that are crucial
for understanding the impact of networking on the performance and scalability of a
software system.

1.6.6 Networking

Networking is essential for computers to communicate with each other, as computers
rarely stand alone. Computers may sit on a LAN (local area network) to communicate
with each other, for which the network latency is negligible. If computers communi-
cate with each other across the continents, then the network latency would be a
great concern.

TABLE 1.5 Comparison Among Various RAID Levels

RAID Level Advantages Disadvantages

0 High read and write performance No fault tolerance
1 Fault tolerance and twice the read

throughput of single disks
Same write performance of
single disks

10 Fault tolerance and high read and write
performance

More disk space used than
RAID 5

5 Fault tolerance and high read and write
performance with less disk space used
than RAID 1

Might be slower than RAID 0
because of parity calculations

1.6 SYSTEM UNDER TEST 27



In understanding how computer networking works, it’s important to understand the
following physical and logic entities:

† Network Adapter. A network adapter is the physical hardware that enables net-
working connectivity from a computer to a computer network. Figure 1.17
shows a typical Intelw Pro/1000 MT Dual Port Server Adapter which enables
two Gigbit copper server connections in a single PCI slot. This adapter is
designed to automatically scale with growing networks by auto-negotiating
10/100/1000 Mbps performance. It can enhance server performance further
by teaming the two connections or teaming with other Intelw Pro Server
Adapters to achieve multi-Gigbit scalability and redundant failover capability.

† Network Bandwidth. Network speed is typically measured by the amount of
data that can be transferred in unit time. It is quantified by megabits/second
(Mbps) or gigabits/second (Gbps). For example, your home network might be
able to run at a maximum theoretical speed of 36 Mbps with your wireless
port or at a maximum theoretical speed of 100 Mbps with your regular wired
port. When you have two computers at home, you can actually connect your
two computers through a crossover cable, which would be much faster than
going through the wireless port if you have large amounts of data to transfer
from one computer to the other. This is the simplest example of how network
bandwidth could determine the networking performance of computers.

† Network Types. A network might be as simple as two computers connected
through a crossover cable or as complicated as the entire Internet. Between
these two extremes, there are many different types of networks whose names
end with “AN,” such as LAN, (local area network) and WAN (wide area
network).

† Network Latency. Network latency is a different concept from network band-
width. It measures how long it takes for a network packet to travel from
point A to point B. Typically, network latency is less than 1 ms on a LAN,
about 40 ms on a WAN, and 400 ms across continents. You can use the com-
mand of ping ,IP. -l size to check out the latency for the systems that you
are concerned with.

Figure 1.17 Intel Pro/1000 MT Dual Port Server Adapter.

28 HARDWARE PLATFORM



† Network Protocol. A network protocol governs how data is exchanged between
various end points, which are typically the network ports of the computers which
send and receive network data packets. The most popular network protocols are
the TCP/IP protocols, which stand for transmission control protocol and Internet
protocol. A network protocol essentially is the language that all computers and
network routers use when they are configured to communicate with each other
with that protocol.

From the software performance and scalability testing perspectives, you should
have well-isolated networks for the computer servers under test, otherwise the results
would be unpredictable. If you have to run your tests with your servers sitting on your
corporate business network, you should verify your performance testing results at
different times, for example, during busy morning hours and idle night hours, to
isolate the effects of the shared network.

If your enterprise applications support global deployment architecture, you may
want to use the servers spread across the continents to mimic the effects of network
latency from a customer’s usage perspectives.

As a software performance engineer, sometimes you may need to troubleshoot
some network problems yourself. For example, one of the simplest tasks is to check
if a remote server is up using the command “ping [serverName j serverIPAddress]”
which works both on Windows and UNIX platforms. You can add the “-l byteSize”
option to the ping command to obtain the network latency between two systems for
a given packet size.

Another a little bit more advanced command is “netstat” which is helpful for
checking the availability of the network ports on a system. Network ports cannot be
shared among different applications on a system, and each application requires its
own port number. For example, to check if a port number, say port 3269, is available,
use the command “netstat –a j find “3269””on Windows or “netstat –a j grep 3269”
on UNIX.

Usually, these two commands (ping and netstat) are sufficient for trouble-shooting
some very basic network problems. For more complicated network issues, you need to
contact your network administrator who has the authority to check the network routers
and switches, etc.

1.6.7 Operating System

In addition to hardware, operating systems play a critical role in determining not only
the performance and scalability but also the reliability of a software product. It’s
beyond the scope of this text to discuss in detail how to configure an operating
system for the maximum performance, scalability, and reliability for a software pro-
duct. However, one should be aware of some of the major features of an operating
system, for example, the version and the latest service pack, and whether it’s a 32-
bit or 64-bit system.

It is especially important to know whether the operating system in use is 32-bit or
64-bit, as the performance, scalability, and reliability of a software product may be

1.6 SYSTEM UNDER TEST 29



eventually limited by the amount of addressable memory space and the amount of total
physical RAM. You can check whether an operating system is 32-bit or 64-bit by run-
ning some OS-specific script, for example, the sysdm.cpl script from the Run dialog
box on Windows, or isainfo –v on Solaris.

In the next section, we’ll discuss what would happen if those Turing assumptions
were not satisfied in reality.

1.7 ODDS AGAINST TURING

The Turing model has been very useful as an abstract model for studying the concepts
of computing. However, there is a gap between academic research and practical engin-
eering. In this section, I’ll show you what it implies when the assumptions made
behind the Turing model could not be satisfied in reality.

Of those two assumptions associated with the Turing model, one is related to the
unlimited memory or storage, and the other is related to the unlimited time for
completing a computing task. Essentially, with these two assumptions, the Turing
model doesn’t care about how much memory a computer has and how fast the
CPUs are. In reality, violation of the first assumption would result in system crashing
and violation of the second assumption would result in slow performance, which
would result in loss of revenues for customers and possibly penalties on the software
vendor as well.

Although today’s systems can be built with more and more RAM and faster and
faster CPUs, various resource-intensive applications have been pushing the hardware
resource limits as well. Issues such as memory leaks and slow CPUs still hinder ade-
quate performance for more and more demanding software systems. Software devel-
opers and performance professionals must be committed to making sure that these two
typical issues have been addressed properly with their products.

The effect of slow CPUs on the performance and scalability of a software system
is obvious, and the impact of memory leaks is obvious as well. If a software product
has severe memory leaks, sooner or later, it will crash with out-of-memory errors.
In the next section, I’ll help you understand what memory leaks are and how to
monitor memory leaks. However, be aware that fixing memory leaks might be an
unattainable task due to the difficulties of determining where memory leaks occur
in the source code.

1.7.1 Memory Leaks

What is memory leak? Memory leak is a term describing the phenomenon of continu-
ous memory consumption growth as a software application keeps running. We cannot
expect zero memory growth. In the meanwhile, we cannot tolerate unlimited memory
consumption growth without seeing software malfunctioning.

Software applications run as processes on computer systems. It’s necessary to
monitor the processes of a software application to see whether they have memory
leaks or not over time.

30 HARDWARE PLATFORM



Let’s first take a look at a few memory-related performance counters from the perf-
mon utility on the Windows platform. I typically use the following process-related
performance counters to monitor memory consumption of the processes I care about:

† Private bytes. This counter represents the current size, in bytes, of memory that a
process has allocated that cannot be shared with other processes.

† Working set. This counter represents the current size, in bytes, of the working set
of a process. The working set is the set of memory pages touched recently by the
threads in a process. If free memory in a computer is above a threshold, pages are
left in the working set of a process even if they are not in use. When free memory
falls below a threshold, pages are trimmed from working sets. If they are needed,
they will then be soft-faulted back into the working set before leaving main
memory.

† Virtual bytes. This counter represents the current size, in bytes, of the virtual
address space a process is using. Use of virtual address space does not necess-
arily imply the corresponding use of either disk or main memory pages.
Virtual space is finite, and a process can limit its ability to load libraries.

These explanations of each counter are from perfmon help. I found that private
bytes and working set are essentially the same, since they are not distinguishable
from each other when they are drawn on the same chart, as you will see soon.
Virtual bytes is more like a chunk of memory allocated for a process at a certain
point of time. When private bytes or working set gets close to virtual bytes, more vir-
tual memory will be allocated, which leads to a staircase-like pattern for virtual bytes
when more and more memory spaces are needed by a running process.

B Case Study 1.3: Memory Leaks

Figure 1.18 shows memory leaks from an application server process. The virtual
bytes went beyond 2 GB three times. The working set and private bytes curves
overlapped and spiked whenever the virtual bytes went beyond 2 GB.

This memory leak test was conducted on a Windows 2003 server. The 32-bit
Windows operating system has a 4-GB total addressable address space, which is
divided into two 2-GB for the operating system itself and applications, respectively.

One can also monitor memory leaks using the perfmon counter of Available
Memory in MBytes, as shown in Figure 1.19. It’s interesting to note that
Available Memory in Mbytes shown in Figure 1.19 is almost a reverse reflection
of the virtual bytes shown in Figure 1.18.

Figure 1.20 shows the application server process CPU usage associated with
the memory leaks shown in Figure 1.18. It’s interesting to note that whenever the
virtual bytes reached that 2-GB limit, the application server restarted itself, resulting
in all memory releases in the application server process. Similar measures in pro-
duction environment can be taken in combating memory leaks by manually restart-
ing the applications during the maintenance windows, either weekly or biweekly.

1.7 ODDS AGAINST TURING 31



Of course, memory leaks are not remedyless. One can use certain tools such as
IBM/Rational PurifyTM to detect and fix memory leaks effectively. Figure 1.21
shows the memory consumption of the same application server with the same
test after the memory leaks were fixed. It’s seen that all memory consumption
curves were flat. The virtual memory started with 278.5567 MB and ended with
278.5567 MB.

Figure 1.18 An example of memory growth of an application server process.

Figure 1.19 Total available memory on the application server.

32 HARDWARE PLATFORM



Although a 32-bit system has a 4-GB addressable virtual address space only, more
than 4-GB physical memory can be installed on 32-bit editions of Windows systems
with the help of the Intel’s Physical Address Extension (PAE) technology. In addition,
the 2 GB/2 GB default partition can be adjusted to 3 GB for an application and 1 GB
for the kernel with a combination of the 4-GB tuning (4GT) feature and the
IMAGE_FILE_LARGE_ADDRESS_AWARE value of the LOADED_IMAGE

Figure 1.21 Flat memory growth after memory leaks were fixed.

Figure 1.20 Application server restarted itself whenever its memory leaked beyond the
2-GB limit.

1.7 ODDS AGAINST TURING 33



structure. On 64-bit editions of Windows, one can increase the 2-GB limit up to 4 GB
by setting the parameter IMAGE_FILE_LARGE_ADDRESS_AWARE for a 32-bit
application.

One might think that moving to a 64-bit version of an operating system might help
combat the memory barrier to some extent. Keep in mind that for the same application
with the same workload it might take more memory in a 64-bit environment than in a
32-bit environment. This needs to be taken into account when sizing the physical
memory requirements for your applications.

Although the maximum addressable space in a 64-bit environment can be as
large as 1 TB, the actual addressable space will still be limited by the amount
of physical memory installed on the system. Of course, one can adjust the virtual
memory (swap space on UNIX or paging file size onWindows) to allow an application
to use a largest possible addressable space. Both the swap space on UNIX and paging
file size on Windows are configured very conservatively by default. On Windows,
the paging file size is typically 2 GB or less by default, while on UNIX, the
swap space is configured to be the same as the amount of total physical memory
available by default. However, you should check the virtual memory configured
on your system if you know that memory is one of the most limiting resources
for your application.

On Windows, you can reconfigure paging file size by accessing Performance
Options from System Properties! Performance! Settings! Advanced! Virtual
Memory [Change]. On Solaris, follow the below procedure:

† Run command “mkfile –v 10000 m /export/data/mySwapFile” to create your
swap file. This command creates a 10GB swap file named mySwapFile in the
directory /export/data. Of course, you can be flexible with the amount of
space, file name and the directory name to suit your needs.

† Add an entry of “/export/data/mySwapFile - - swap – no –” in the file /etc/
vfstab.

† Issue the command “swap –a /export/data/mySwapFile”.
† Check the swap file added with the command “swap –l”.

The actual amount of virtual memory (swap or paging file size) to configure is
application-dependent. The general rule of thumb is not to exceed 2–3 times the
total amount of physical memory installed on the system.

Some of the latest Intel Xeon-based systems support both 32-bit and 64-bit operat-
ing systems. Xeon processors are intrinsically 32-bit, but can be extended to 40 bits
with Intel’s EM64T technology. Therefore, when you have a 64-bit operating
system running on a Xeon-based system, the maximum amount of physical
memory that can be installed might be limited to 64 GB. Check with the vendor of
your system to make sure the exact configurations you have on your system.

In the next section, I’ll discuss the service level agreements (SLAs) that have some-
thing to do with the other assumption made for the Turing model.

34 HARDWARE PLATFORM



1.7.2 SLAs

Today’s business corporations strongly depend on software to manage their daily
operations and generate revenue. Apparently, the software they buy should not only
do what it is supposed to do, but it should also perform adequately. This means that
we do not have unlimited time for the software program to do what it is supposed
to do. For some critical business services, there are certain performance requirements
that must be met in order to achieve the projected business objectives. When such soft-
ware performance requirements are written into a service contract, they effectively
constitute a service level agreement (SLA) as part of a service contract between service
providers and their customers. So the purpose of an SLA is to help make sure that a
service provider lives up to its commitments by providing the level of services that
both parties agreed upon.

The customers want to get what they paid for, and they cannot tolerate unbounded
performance of the software they purchase without having their critical businesses
impacted. For example, a stock exchange software program must guarantee the com-
pletion of a buy or sell order transaction within a certain amount of time; otherwise the
customer may lose money. For Web-based online retailers, their transaction systems
must be able to process purchases within a reasonable time frame so that users
would not lose patience and go away, causing loss of revenue.

However, just as life insurance doesn’t guarantee life, SLAs don’t guarantee levels
of service. When SLAs are broken in production, the customers would lose revenue
and the service providers may get monetary penalties, which would cause hardships
to both parties. That’s why it’s important to have performance designed and built
into a product before deploying at a customer’s site so that SLAs, if any, will not
be broken. This book provides many performance optimization and tuning techniques
that can be applied in general to help make sure that the SLAs bound to a software
product will be satisfied.

1.8 SIZING HARDWARE

Sizing hardware for a software system is about establishing a quantitative,
empirical formula describing the performance that a specific hardware platform is
capable of delivering, or for a given performance requirement, what hardware platform
would be required to achieve it. Such a sizing guideline would be extremely handy
for the customers to decide on what hardware to acquire, or for a software
provider to troubleshoot the customer performance escalations caused by undersized
hardware.

In order to arrive at an effective sizing guideline, one should try to optimize and
tune the software under test for the best possible performance and leave the hardware
as the only factor that determines the performance of the software. This section pro-
vides an example of the throughput of the software being predominated by the CPU
power of both the database server and the application server. The sizing formula
has worked very well for many real customer occasions.

1.8 SIZING HARDWARE 35



B Case Study 1.4: Sizing Hardware

Figure 1.22 shows the test configuration, which consists of two servers, a database
server, and an application server, for an enterprise software application. The two
server systems were identical, with four single-core Intel Xeon processors at
3.68 GHz on each system. Both the application server and the database server
were optimally configured with the best performance optimization and tuning prac-
tices obtained through extensive internal lab tests. In addition, the two server sys-
tems were located on the same subnet, which was another important test condition.

With a specific enterprise application batch job and a rigorous, repeatable test
procedure, the following sizing formula, at which level this configuration was
capable of processing, was found:

2 Transactions per second per CPU GHz of the application server

with the assumption that the database server is equal to or more powerful than the
application server. The CPU power or CPU GHz of the application server was
defined as follows:

Total CPU GHz of the application server ¼ 4� 3:68 GHz ¼ 14:72 GHz

Based on the above specs, this setup was able to deliver a throughput of 29
transactions/second.

This sizing formula has been consistently verified with several internal and
external customer tests. It has been used successfully for resolving a few customer
performance escalations, which fell into the following categories:

† Undersized hardware attributed to the low throughput, which was improved to
what the sizing formula predicted after upgrading the hardware.

† Inappropriately configured database and application caused low throughput,
which was improved to what the sizing formula predicted after configuring the
systems to the recommended optimal settings.

This case study is provided as a reference for you to size your application when
applicable. Keep in mind that a sizing formula needs to be adjusted with time as the

Figure 1.22 A test configuration for sizing hardware.

36 HARDWARE PLATFORM



performance of the application gets improved or degraded due to the changes that
have to be introduced in the worst case.

1.9 SUMMARY

Understanding software performance and scalability begins with understanding
computers, because it’s the hardware that will eventually determine the performance
and scalability of a software program after all optimizations and tunings have been
exhausted on the software side. In order to help enhance the consciousness of the
dependency of software performance and scalability on the underlying hardware plat-
form, we have spent this entire chapter going over all major aspects of computers such
as CPUs, memory, disks, and networking. Hopefully, this helps establish a baseline
for necessary hardware knowledge required for doing performance and scalability
test work, whether it’s for benchmarking, sizing, optimization, or tuning.

This chapter is about hardware in general. The next chapter will be about
software in general. Chapter 3 will be focusing on all concepts associated with testing
software performance and scalability in general. These three chapters constitute the
foundations for performing actual software performance and scalability test work. I
hope that after studying these three chapters, you will be able to start asking the
right questions about software performance and scalability and carry out your tests
efficiently to help resolve any performance and scalability challenges associated
with your products.

RECOMMENDED READING

For Moore’s law, see his publication:

Gordon E. Moore, Cramming more components onto integrated circuits, Electronics, Vol. 38,
No. 8, April 19, 1965.

To understand computers in general, the following two textbooks are excellent
sources:

W. Stallings, Computer Organization and Architecture—Designing for Performance, 4th
edition, Prentice Hall, 1996.

D. Patterson and J. Hennessy, Computer Organization & Design—The Hardware/Software
Interface, Morgan Kaufmann, 1994.

See the following texts for quantitative approaches applied to refining software
engineering and development:

L. Bernstein and C. M. Yuhas, Trustworthy Systems Through Quantitative Software
Engineering, John Wiley & Sons, 2005.

S. Gabarro,Web Application Design and Implementation: Apache 2, PHP5, MySQL, JavaScript
and Linux/UNIX, John Wiley & Sons, 2006.

L. Laird and M. Brennan, Software Measurement and Estimation: A Practical Approach, John
Wiley & Sons, 2006.

RECOMMENDED READING 37



The following text is an excellent source for applying the quantitative approach to
understanding computer hardware architecture:

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 4th edition,
Morgan Kaufmann, 2007.

EXERCISES

1.1. Get to know your computers. If you have access to a system (Windows or UNIX
or Linux), find out the following specs on the system:
† System model
† Operating system

The exact version

32 bit or 64 bit
† Processors

Processor model

Number of sockets or processors

Number of cores per processor

CPU clock rate

Hyperthread support if applicable

Front-side bus speed if applicable

L1/L2/L3 caches

Any other differentiating features
† Memory

Total amount of physical memory
† Network ports

Number of network ports and the speed that is supported
† Storage

File system

Internal or external

RAID level if applicable

1.2. This applies to the 32-bit Windows 2-GB limit. Develop a memory-intensive
32-bit sample application and run it on 32-bit Windows. Observe how the appli-
cation would crash when the 2-GB limit is reached. Apply the Microsoft/Intel
memory tuning techniques on the 32-bit Windows to increase the memory to
3 GB for the application and rerun. Observe the application behavior as the
memory usage goes up with the application.

1.3. There is a popular perception that UNIX is faster than Windows. Envision the
potential pitfalls and consequences of a recommendation based on such a percep-
tion if not verified with actual performance and scalability tests.

38 HARDWARE PLATFORM



1.4. This concerns sizing hardware. The tests show that a setup similar to Figure 1.22,
except that each server was equipped with two quad-core CPUs at 1 GHz, was
able to deliver a throughput of 19 transactions/second. Apply the sizing formula
introduced in Section 1.8 to this test configuration and calculate the expected
throughput. Compare the measured throughput with the calculated throughput
and what conclusion could you draw from it?

1.5. This concerns sizing hardware. A customer reported a low throughput of 0.8
transactions/second with a setup similar to Figure 1.22, except that both the
application server and the database server were installed on a same system
with 3 RISC processors at 1.6 GHz each. Based on the regression test, it was
known that the application performance had been degraded by about 25%.
Using the sizing formula in Section 1.8 with a 25% degradation taken into
account, it was calculated that this test configuration should be able to process
3.6 transactions/second. The customer was advised to apply all recommended
database and application configuration settings, rerun the test, and look for an
expected throughput of 3.6 transactions/second. The customer reported back
that processing 15,900 transactions took about 71 minutes after the database
server and application server were optimally configured as advised. Compare
the newly measured throughput from the customer with the calculated throughput
and what conclusion could you draw from it?

1.6. This concerns sizing hardware. A customer reported a low throughput of
2.8 transactions/second with a setup similar to Figure 1.22, except that the
application server was equipped with four CPUs with the clock rate either at
2.2 GHz or 3 GHz and the database server had a total CPU power of 16 GHz.
The exact CPU frequency of the application server was not provided and the
2.2 GHz or 3 GHz was looked up from the vendor’s website based on the server
model. In this case, it was estimated using the sizing formula in Section 1.8 that
this setup should be able to deliver a throughput of 18–24 transactions/second
based on the uncertainty of the application server CPU frequency. After further
communications with the customer, it was found that the reported low throughput
was due to turning the logging on. The customer was advised to rerun the test
with logging off and expect a throughput in the range of 18–24 transactions/
second. The customer reported back that a throughput of 22 transactions/
second was achieved after logging was turned off and they were happy with
that throughput. Calculate the impact of logging on the performance of the
system in this case and what conclusion could you draw from it?

1.7. How can you effectively prevent customers from starting with undersized
hardware for your software applications? What are the benefits of doing so?

EXERCISES 39





2
Software Platform

Well, it’s a very, very exciting time . . . and that’s where vision is . . .
—Bill Gates

In the simplest sense, software controls what computers do. Since there are an
unlimited number of things that computers can do, there are an unlimited number of
software programs developed for various kinds of computing tasks. Regardless of
the computing tasks, all software programs share some commonalities in how they
are created and how they run on computers.

Understanding the performance and scalability of a software system quantitatively
requires a good understanding of how a software program is developed inside out.
Poorly designed and implemented software will not run fast on fast hardware. Even
well-designed software may not perform and scale optimally on fast hardware without
going through a full cycle of optimization and tuning for the best possible performance
and scalability.

In this chapter, we’ll begin with the concept of the software stack, which consists of
multiple layers. How each layer performs and scales is critical to the overall perform-
ance and scalability of a system as a whole. Then I’ll elaborate on the concept of appli-
cation programming interfaces (APIs), which are the building blocks for constructing
various software programs. Because of its absolute importance for performance and
scalability, multithreading is discussed with the help of a quantitative case study.
I’ll also categorize different types of software so that we would know our battlefields
for combating software performance and scalability issues. The last section is dedi-
cated to introducing enterprise computing, which probably is one of the largest
fields of computing where software performance and scalability are most critical.

I am sure that the topics covered in this chapter are not new to you. However,
when reading each section, try to think consciously from software performance and
scalability perspectives, which is how each section was prepared. Let’s start with
the software stack first.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

41



2.1 SOFTWARE STACK

Computers do not have their own intelligence and they do not speak our languages.
They can only understand electronic signals that have two states: on and off. These
electronic signals are represented in binary numbers of 0 and 1. A mixed string of
0’s and 1’s can constitute instructions or commands that instruct computers what to do.

Without showing computer instructions in assembly language, you may still
remember what assembly languages are from your college computer classes.
Assembly language is the symbolic version of the computer instructions that is a
step closer to our language. An assembly statement is translated into a mixed string
of 0’s and 1’s by an assembler whose job is to translate instructions from symbolic
version to binary version. For example, an assembly statement of add x, y would be
translated into a string of 0’s and 1’s by an assembler as shown below:

add x,y (assembly)

¼>10001101100011100011011100110110 (binary)

Although much closer to the way we humans think, assembly language is still not
flexible enough for constructing complicated programs, as it requires programmers
to write one line for every instruction that a computer can understand, forcing pro-
grammers to think like machines.

Note that an assembler is a software program as well. Following a similar line of
thinking that we could write a program (the assembler) to translate a program (written
in assembly language) into machine code, why couldn’t we write another program
to translate programs written in some high-level programming languages into a
program in the format of assembly language? This wonderful idea resulted in the
birth of compilers, which can compile x þ y into add x, y as shown below:

xþ y ¼> add x, y

This concept of high-level programming language was a huge leap in advancing
the use of computers. It liberated programmers from thinking like a machine to think-
ing in a more natural language expressed in English words and algebraic notation.
It also opened the door to the ideas of creating programs for dedicated purposes
such as I/O (input/output) libraries and common system management software,
which is called operating system.

Some of the most popular high-level programming languages in the 1970s and
1980s include FORTRAN, COBOL, C, and Cþþ. The first three are procedure-
oriented programming languages, whereas Cþþ is an object-oriented programming
language. Programs written in these languages are enabled to call libraries for
common functions such as I/O. They are made executable by being compiled and
then assembled into machine code. Their executable form is called binaries, which
are run with the coordination of operating systems. So the procedure of developing
such software consists of the following:

† Coding the logic of a program in a high-level programming language
† Compiling the developed program with linking to libraries to be called

42 SOFTWARE PLATFORM



† Assembling the developed program into machine code
† Running the developed program on specific computer hardware with the assist-
ance of a specific operating system

The dependency of one program on another forms the software stack as shown in
Figure 2.1. Apparently, the performance of a software program developed in high-
level programming languages depends not only on how the application logic was
designed and implemented, but also on the workings of the compiler, the assembler,
the operating system, and the hardware.

With given computer hardware and operating system, one can often achieve better
performance with the programs written in high-level programming languages by
applying various compiler optimization options during the compile stage. Compilers
were designed and implemented for yielding the optimal performance for the pro-
grams they compile by targeting specific underlying computer hardware.

With the advent of Java in the 1990s, another revolutionary idea was introduced,
that is, the Java virtual machine (JVM). JVM was designed to bridge the gaps
among different operating systems by abstracting various program run-time environ-
ments. Java has become more and more popular, partially because of the new waves of
Internet-based computing. The programs written in Java can be run on different plat-
forms without being modified or recompiled, be it Windows or UNIX. This reflects
something very deep: all programs written in Java are a universal abstraction in the
format of byte code. We come back to what Alan Turing depicted seven decades ago!

The idea of JVM was extended to virtual systems that can be configured with vir-
tualization software such as VMWareTM. This level of virtualization allows you to run
multiple applications on multiple operating systems on a single physical system. This
introduces another layer of virtualization software in the software stack, as shown in
Figure 2.2. It is interesting that one can install a VMWare server directly on the
bare metal hardware or on a host operating system such as Windows or Linux.

Apparently, as stated previously, every layer of the software stack shown in
Figure 2.2 is a performance and scalability factor for the programs built to run on

Figure 2.1 Software stack.

2.1 SOFTWARE STACK 43



that stack. Some layers are more tunable than others from the software performance
and scalability perspectives. It’s important to make sure that all optimization opportu-
nities at every layer have been tapped properly.

In the next section, I’ll discuss application programming interfaces (APIs), which
are as pivotal to software as nerves are to the human body. The performance of a
software system eventually drills down to its API performance.

2.2 APIs

Software programs are built in a layered approach. Different layers constitute various
components, which consist further of subcomponents. Layered approaches have
the advantage of divide and conquer. However, different layers need to communicate
with each other properly, which is made possible by exposing collections of common
functions as APIs. It’s important to understand the following:

† An API is an abstract specification about the basic functions provided for
building software that needs to use it.

† The software that provides the functionality described by an API is said to be
an implementation of the API. An API implementation is presented to users
as a part of a software development kit (SDK). An SDK contains not only the
implementation of an API, but also the documents and code samples about
how to use the APIs.

† Access paths to APIs must be specified when calling programs are compiled
and built.

Figure 2.2 Virtual machines and virtual systems in the software stack.

44 SOFTWARE PLATFORM



† An API is different from an ABI (application binary interface). An API defines
the interface between source code and libraries so that the same source code will
compile on any system supporting that API, whereas an ABI allows compiled
object code to function without changes on any system using a compatible ABI.

In the next few subsections, we’ll look at some of the most well-known examples
of APIs to get an idea about what APIs exactly are and why they are important from
the performance and scalability perspectives. Let’s start with the Windows APIs first.

2.2.1 Windows APIs

A Microsoft Windows system is built with many different classes of APIs, which
include the following:

† Base Services API. This provides access to the fundamental resources available
to a Windows system.

† Graphics Device Interface API. This provides the functionality to output
graphic content to monitors, printers, and other output devices.

† User Interface API. This provides the functionality to create and manage screen
windows and most basic controls such as buttons and scrollbars, the functional-
ity to receive mouse and keyboard input, and other functionality associated with
the GUI part of Windows.

† Common Dialog Box Library API. This provides applications with standard
boxes for opening and saving files, choosing color and font, and so on.

† Common Control Library API. This gives applications access to some advanced
controls provided by the operating system.

† Windows Shell API. This allows applications to access, change, and enhance the
functionality provided by the operating system shell.

† Network Services API. This gives access to the various networking capabilities
of the operating system. Winsock is one of its most well-known subcomponents.

I am sure that Windows is part of your daily work, so you are already familiar with
what Windows APIs do to fulfill whatever tasks you need to accomplish using various
application programs installed on your system.

Next, let’s take a look at Java APIs, which are another huge category in developing
software applications.

2.2.2 Java APIs

Java APIs include the essential APIs for the following common functionalities:

† Character and String API. This performs character and string operations.
† Collection API. This groups multiple elements into a single unit (collection).
Collections let you store, retrieve, manipulate, and transmit data from one
method to another.

† Error Handling API. This enables handling errors using exceptions.

2.2 APIs 45



† JavaBean Technology API. This can be used to create reusable, platform-
independent software components that you can combine into applets, appli-
cations, or composite components.

† Language Basics API. This enables supporting basic data types and operations
using variables, arrays, operators, flow of control, and scope.

† Number and Math Operation API. This enables supporting fundamental and
complex mathematical operations.

† Input and Output API. This enables exchanging data between a program and
external storage, including serialization and custom protocol handling.

Even if you have never programmed in Java, it should still be easy to picture
why those Java APIs are needed for constructing high-level applications.

Another interesting example of APIs is Google APIs. I have included more
Google APIs than Windows APIs and Java APIs just in case you want to know
upon what APIs this most popular search engine has been built.

2.2.3 Google APIs

Google API is the newest API kid on the block. Google APIs are helping Google
make a lot of money everyday as Windows APIs do for Microsoft. It’s interesting
to see what APIs have been working behind the scenes for a multibillion dollar
business. The following is a list of Google APIs that are available in public from
Google’s website at http://code.google.com/apis/:

† AdSense API. This enables you to integrate AdSense signup, ad unit manage-
ment, and reporting into your Web or blog hosting platform.

† AdWords API. This lets developers engineer computer programs that interact
directly with the AdWords server.

† Google Base Data API. This allows client applications to view and update
stored data in the form of Google data API (“GData”) feeds.

† Google Data API. This provides a simple standard protocol for reading and
writing data on the Web.

† Google Earth KML. This keyhole markup language is a grammar and file
format for modeling and storing geographic features such as points, lines,
images, and polygons for display in the Google Earth Client. KML gives you
the ability to do amazing things with Google Earth.

† Google Apps API. This provides domain administration APIs for customers.
† Google Maps API. This integrates Google’s interactive maps with your data on
your site.

† Google Search Appliance API. This allows search administrators to have com-
plete control over how search results are requested and presented to end users.

† Google Toolbar API. This lets you create custom buttons for the Google
Toolbar using XML.

46 SOFTWARE PLATFORM



† Google SOAP Search API. This enables software developers to query billions of
Web pages directly from their own computer programs. The Google Web search
API uses the SOAP and WSDL standards.

I hope you have been convinced that APIs are the basic building blocks for software
as atoms andmolecules are for matter in the physical world. It’s important to recognize
that high-performance software stems from the high-performance APIs on which
it is built.

In the next section, I’ll discuss multithreading, which is one of the most impor-
tant implementation choices for achieving high performance and scalability for a
software system.

2.3 MULTITHREADING

First of all, a thread is different from a process in computer science. A process is a
stand-alone program, while threads typically are spawned within a process without
crossing the boundary of that process.

Multithreading is one of the most important software technologies for boosting the
performance and scalability of all types of software. It allowsmultitasks to be executed
simultaneously or in parallel to make the most of the computer hardware with multiple
CPUs. Even on a single-user system such as a PC, multithreading can help create the
illusion of simultaneity to an end user by switching among different tasks sufficiently
fast. For example, you can enjoy streaming video while surfing the Internet on your
single-processor laptop.

Multithreading is a must for enterprise software. Enterprise software typically runs
on multiprocessor computers, which are designed for running multithreaded programs
or multiple programs in parallel. I had an experience in helping solve an application
performance escalation for a high-profile customer. It turned out that the performance
issue that the customer was experiencing was largely due to a single-threaded appli-
cation running on a 12-CPU 400-MHz outdated system. There couldn’t be a worse
combination of massive CPUs, low CPU clock rate, and single-threaded application
for creating performance issues.

This book is not about programming, so we do not delve into the details of how
to write a multithreaded program in C/Cþþ or Java. However, I’d like to share the
multithreaded performance of a real-world, multithreaded enterprise application to
help you gain insights into the common performance and scalability characteristics
of multithreaded enterprise applications in general.

B Case Study 2.1: Multithreading

This application creates objects in a database by calling the APIs of an application
server directly. As you can imagine, this would involve heavy disk activities and
it’s really important to interlace disk I/Os incurred through the database server

2.3 MULTITHREADING 47



with the validation logic on the application server. The test environment was
simple. It consisted of the following test configuration:

† A 4-CPU Intel Xeon 3.6-GHzWindows 2003 system used as the database server
with Oracle 10g installed. It had an internal RAID 0 stripped across four physical
disks with a single channel RAID controller.

† An identical Intel Xeon 3.6-GHz Windows 2003 system used as the application
server. Both the database server and the application server had 12GBofRAMand
gigabits per second network connections.

† The object creation program was a multithreaded Java program that could be
configured to run with multiple threads.

So what kind of throughput in terms of objects/second would you expect out of
such a configuration? It depends on how many threads you would run with such an
application. Figure 2.3 shows the throughput of this application with different num-
bers of threads from 1 to 15 configured with the object creation client program.

With this test, the application server was configured with a thread pool of 46
threads, which was an empirical thread number for the best possible performance
and scalability for this enterprise application. From the test results shown in
Figure 2.3, we can see the following:

† The measured throughput doesn’t scale up linearly with the number of threads
configured for creating objects in the client program. Does this mean that the
application is not scalable or the underlying platform of Windows 2003 or
Intel architecture is not scalable?Wewill leave this question to be answered later.

† No substantial gain in throughput was observed beyond 8 threads, which was
also equal to the total number of CPUs out of both the database server and the
application server. In general, the maximum throughput is achieved when
every processor is fully busy.

† Although it’s far from linearly scalable, the three-digit multithreaded through-
put that can be achieved with this application is quite impressive. That’s about
a factor of 4 improvement compared with the single-threaded throughput. This
clearly shows how important it is for the software to take advantage of the
underlying hardware in order to achieve the best possible performance and
scalability.

Now let’s try to answer the question of why it wasn’t linearly scalable and what
was the bottleneck.

Remember that whenever we analyze a performance or scalability issue, we
always start with CPU utilizations of each system being tested. On Windows, we
use a Microsoft performance monitoring tool called perfmon. With this tool, you
can capture almost every performance metric you can imagine on a Windows
system. But most of the time, we only need to monitor a few that will be most
likely responsible for the performance problem that an application is experiencing.

Perfmon works by monitoring certain system resources called the performance
object in perfmon’s term with certain performance metrics called performance

48 SOFTWARE PLATFORM



counters. For monitoring system CPU utilizations, we use the Processor perform-
ance object with the %Processor Time performance counter. The following excerpt
is Microsoft’s definition of what this counter is about:

% Processor Time [counter] is the percentage of elapsed time that the processor spends to
execute a non-idle thread. It is calculated by measuring the duration that the idle thread is
active in the sample interval, and subtracting that time from interval duration. (Each pro-
cessor has an idle thread that consumes cycles when no other threads are ready to run.)
This counter is the primary indicator of processor activity, and displays the average per-
centage of busy time observed during the sample interval. It is calculated by monitoring
the time that the service is inactive and subtracting that value from 100%.

As explained in the above excerpt, this counter essentially measures how busy a
system is. With our multithreaded application being discussed here, we’d like to
know how CPU utilizations of the application server and database server evolve
as we increase the number of threads for the object creation program.

The CPU utilizations recorded for both the application server and database
server during each test run are displayed in Figure 2.4. It is seen that both appli-
cation server and database server CPUs leveled off at 12 threads. The maximum
CPU utilization was 35% for the application server and 46% for the database
server. Apparently, both servers were less than half busy, which indicates that
the bottleneck was somewhere else.

As this is an enterprise application that involves a lot of disk I/O activities, we
certainly need to check out the disk activities incurred during each test run. Before

Figure 2.3 Performance of a real-world, three-tier, multithreaded enterprise application. Each
data point is labeled with its x (horizontal) and y (vertical) values and the Linear line represents
the ideal linear scalability for comparison purposes.

2.3 MULTITHREADING 49



showing the disk activity data, let’s become familiar with the following disk
counters first:

† % Idle Time. This counter reports the percentage of time during the sample inter-
val that the disk was idle.

† Disk Reads [Writes]/sec. This counter is the rate of read [write] operations on the
disk.

† Avg. Disk Read [Write] Queue Length. This counter is the average number of
read [write] requests that were queued for the selected disk during the sample
interval.

† Avg. Disk sec/Read [Write]. This counter is the average time, in seconds, of a
read [write] operation associated with the disk.

It’s important to keep in mind that perfmon doesn’t seem to record %Disk Time
for actual disk busy time correctly, so we used 1002%Idle Time for the %Disk
Busy Time as a workaround. Figure 2.5 shows the disk utilizations of the RAID
0 logical disk for this application with increasing number of threads. As seen,
the disks were quite busy during each test, ranging from an average utilization of
23% for 1 thread to 60% for 16 threads.

Next, we want to see whether these disk activities were read or write operations.
This can easily be determined by looking at the disk reads and writes/second
counters. The result is shown in Figure 2.6. It’s so clear from the data shown in
Figure 2.6 that the disk activities were overwhelmingly dominated by write oper-
ations, ranging from 87 writes/second for 1 thread to 456 writes/second for 16
threads. The read operations were a few per second only with all numbers of threads.

Figure 2.4 CPU utilizations of the application server and database server with increasing
number of threads for the object creation program.

50 SOFTWARE PLATFORM



When disks are flooded with I/O requests, the read and write queues that hold
those I/O requests for processing will accumulate. This can easily be verified with
the average disk read and write queue lengths. The associated queue length data is
shown in Figure 2.7, in which only averagewrite queue length is shown, since aver-
age read queue length is close to zero for each test run across all numbers of threads.

Figure 2.5 Disk utilizations of the RAID 0 logical disk with increasing number of threads for the
enterprise application that incurred a lot of disk read and write activities.

Figure 2.6 Read and write operations incurred during each test run with increasing number of
threads.

2.3 MULTITHREADING 51



A rule of thumb is that a resource is a bottleneck when the queue length associ-
ated with it is over 2 per unit. Since the RAID 0 configuration used for this test had
four disks, the threshold would be 8. This threshold of 8 had been exceeded with a
write average queue length of 20 with 4 threads. With 16 threads, the associated
average write queue length even went up to 132, which was over 16 times the
threshold value of 8. It is clear that the system was disk write bottlenecked. It’s
necessary to point out that whenever you test the performance and scalability of
an enterprise application that incurs excessive I/O activities, always look out for
potential I/O bottlenecks. Most likely, disk I/O would become the bottleneck
prior to CPUs. Diagnosing bottlenecks properly helps you to come up with the
right solutions that can help further improve system performance. I’ll provide
many such examples in the later chapters of this book.

The consequence of excessive I/O request accumulation in write queue is
increasing disk write time for each write operation. This is further confirmed by
Figure 2.8, which shows that the average disk write time had increased from 4milli-
seconds with 1 thread to 233 milliseconds with 16 threads. This explains why
throughput was not going up much beyond 8 threads, as with more than 8 threads,
disk write time began to go up drastically. Faster disk storage with more I/O
channels will help alleviate this bottleneck to some extent.

I hope this section has convinced you that multithreading is critical for any appli-
cation where performance and scalability matter. I also hope you have gotten a preview
about how performance and scalability bottlenecks can be nailed down quickly and
decisively by following a disciplined and quantitative methodology, as has been
demonstrated with this real-world multithreaded enterprise application.

Figure 2.7 Average disk write queue length incurred during each test run with increasing
number of threads (average disk read queue length was omitted as it was less than one for
every test run from 1 through 16 threads).

52 SOFTWARE PLATFORM



In the next section, I’ll try to categorize software so that we know what our
battlefields are when we come to fight software performance and scalability
problems, whether it’s during the development stage or after being deployed at a
customer’s site.

2.4 CATEGORIZING SOFTWARE

Software is built in a layered approach. The layer that is closest to the hardware is
categorized as systems software, the layer that is closest to the user is categorized as
application software, and the layer between the two is classified as middleware
software.

In order to illustrate the above categorization methodology, let’s look at some of the
examples at each layer. Let’s start with the systems software first.

2.4.1 Systems Software

Systems software is anything that has to be part of hardware in order for the entire
system to function as a complete computing platform. There are three types of systems
software:

† BIOS (Basic Input/Output System). BIOS is sometimes called firmware. It is
run when a PC computer is powered on. The primary function of the BIOS is
to set up the stage for other software programs stored on hard drives, floppies,
and CDs to load, execute, and assume control of the PC. This process is
commonly known as booting up. With Intel architecture based systems, one
can enable or disable hyperthreading (HT) at the BIOS level during the start-
up process. This is the most reliable way of knowing whether your system
has HT turned on or not.

Figure 2.8 Average disk write time in milliseconds with increasing number of threads for the
object creation program.

2.4 CATEGORIZING SOFTWARE 53



† Device Drivers. Device drivers are interfaces in the form of software that control
how various hardware components interact with the operating system. A device
driver is a layer between a hardware device and an operating system. It translates
commands written in high-level programming languages into the machine
language that the hardware devices can understand. For example, when you
buy a printer, you need to install the printer driver on your PC to enable printing,
if it’s not already included with your operating system.

† Operating System (OS). An operating system is software that can translate user
commands into machine instructions for the computer hardware to execute.
It also coordinates the use of hardware resources by performing basic tasks
such as controlling and allocating memory, scheduling system requests,
controlling input and output devices, facilitating networking, and managing
disk storage usage through a file system. Popular operating systems available
today on the market include Windows fromMicrosoft, Mac from Apple, various
flavors of UNIX operating systems such as IBM’s AIX, HP’s HP-UX, and Sun’s
Solaris, and also the free operating system, Linux.

Systems software provides a platform or run-time environment for application
software to run on computers. Computers are useful because there are so many
applications that can be run to do useful things. In the next section, we’ll look at
what types of applications are typically run on computers.

2.4.2 Application Software

Application software refers to the class of software that can help individuals or
business organizations do something more efficiently by employing the capabilities
of a computer or networked computers. There are many types of application software
based on their purposes:

† Business Software. This class of application software addresses the needs of
business organizations for more efficient business processes and management.
ERP (Enterprise Resource Planning) is one of the typical types of business
software, which has modules such as CRM (Customer Relation Management),
HR (Human Resources), SC (Supply Chain), Financials, Manufacturing, and
so on. ITSM (IT Service Management) is another typical type of business
software, which includes components such as HD (Help Desk), CM (Change
Management), PM (Problem Management), and IM (Incident Management).
More broadly, any type of software used in an enterprise that helps facilitate acces-
sing and managing enterprise data belongs to the category of business software.

† Media and Entertainment Software. This class of application software addresses
the needs of individuals or organizations for consuming digital media such as
video gaming, video conferencing, and streaming media.

† Product Engineering Software. This class of application software addresses the
needs of professional individuals for enhancing their productivity and efficiency.
It includes CAD (Computer Aided Design), CAE (Computer Aided
Engineering), and IDE (Integrated Development Environment).

54 SOFTWARE PLATFORM



Based on other classification schemes, you may also encounter:

† Internal Applications. This class of applications is developed for internal use
only. They are also called in-house applications.

† Single-User Applications. This class of applications is intended for individual
users such as Microsoft Office Suite, Turbo Tax for filing tax returns, and any
other applications you can run on a PC.

† Web Applications. This class of applications is made available through the
Internet. Users employ a Web browser to access such applications. All online
search portals such as Google, Yahoo, and MSN belong to this category. Pure
play online retailers such as Amazon.com and eBay, as well as theWeb shopping
sites from traditional retailers, belong to this category as well.

† Database-Centric Applications. This class of applications is characterized by its
strong dependencies on databases. Most of the business software applications are
typical database-centric applications.

Application software tops the software stack. There is another layer in the middle
between an operating system and an application that provides specialized functio-
nalities. This is the so-called middleware software that will be introduced in the
next section.

2.4.3 Middleware Software

The middleware software business began with those messaging software products
such as IBM’s MQ, Microsoft’s MSMQ, and those pure players such as Tibco and
webMethods. During the past decade, it has expanded substantially to include appli-
cation servers such as IBM’s WebSphere, BEA’s WebLogic, and Microsoft’s .NET
platform. Specialized infrastructure server software such as email servers and network
and security management servers belong to this category as well.

Middleware software is designed to support enterprise computing which is the
topic for the next section.

2.5 ENTERPRISE COMPUTING

Enterprise computing is a broad concept that refers to all the necessary building
blocks needed for establishing an enterprise application ecosystem that can support
business operations more efficiently. The entire platform for enterprise computing
includes computer hardware, networks, all supporting middleware software systems,
and enterprise applications.

However, we’ll focus on the software aspect of enterprise computing only. Let’s
start with understanding what enterprise software is first.

2.5.1 What Is Enterprise Software?

The word enterprise refers to a business organization in general. Enterprise software
refers to a special class of software that enables running businesses on computers.

2.5 ENTERPRISE COMPUTING 55



At the highest level, one can divide enterprise software into two categories: infrastruc-
ture enterprise software and application enterprise software.

Infrastructure enterprise software provides a platform on which application
enterprise software is run. All application server software and database server software
belong to this category. Here are some examples of the infrastructure enterprise
software systems:

† J2EE application server software such as BEA’s WebLogic, IBM’s WebSphere,
and Microsoft’s .NET platform that includes many server components for
different purposes.

† Database server software such as Oracle, DB2 (IBM), and SQL Server
(Microsoft).

Application enterprise software is characterized by the business functions it
supports and automates, such as:

† Intranet portal application
† Internal inventory management application
† Sales order entry application
† Accounting system
† Production scheduling system
† Customer relationship management system
† Customer billing system
† IT service management system

Application enterprise software typically depends on backend databases to support
enterprise data management and information retrieval. Figure 2.9 shows the architec-
ture of a generic enterprise Web application. It consists of a database server,

Figure 2.9 Architecture of a typical enterprise Web application.

56 SOFTWARE PLATFORM



an application server, and a Web server. Enterprise data such as customer profiles,
purchase orders, internal HR data, and so on is stored on the dedicated databases.
An application server implements the business logic that may involve retrieving
data based on authorized permissions, applying certain business rules such as data
validation when inserting new data and modifying existing data, and so on. A Web
server receives users’ requests, processes the requests, and renders the responses
back to the user. External clients need to go through the firewall to access the appli-
cation. Internal clients can either access the application server directly or access the
Web server without going through the firewall.

How an enterprise application is accessed by its users adds another layer of
complexity to the performance and scalability of the application. In the next few
sections, we’ll explore various common enterprise software architectures. A good
understanding of the architecture that a software system is built upon is necessary
for understanding the performance and scalability characteristics of the system and
coming up with better design, implementation, and testing strategies.

2.5.2 Enterprise Software Architecture

Software architecture conveys two major pieces of information about software:

1. The software components that constitute a whole system to provide certain
functions at the system level.

2. How the components communicate with each other to fulfill the system
functions.

With application enterprise software, the system functions are divided into various
tasks such as:

1. Storing, retrieving, and managing data.

2. Applying business logic, which is also known as application logic.

3. Optionally displaying data to users through user interfaces.

Based on how these tasks are implemented in software, application enterprise software
architecture has gone through a series of evolutions since the inception of software in
the 1960s with the advent of computers. The following sections describe how each
generation of application enterprise software architecture evolved chronologically.
A minimum understanding of various enterprise software architectures is required
for being able to help solve efficiently the performance and scalability challenges
facing large-scale enterprise software applications.

2.5.3 Monolithic Architecture

Monolithic architecture was the product of mainframe times. In a mainframe system,
all computing resources are assembled into a single stand-alone system. All software
functions such as data and application logic reside on the same mainframe system.
User access to the system is provided with terminals, as shown in Figure 2.10.

2.5 ENTERPRISE COMPUTING 57



Terminals don’t have much computing power other than being used as display devices
for entering commands to the system and displaying data from the system.

2.5.4 Client/Server Architecture

Mainframe systems were powerful, yet expensive and hard to maintain. As time went
by, especially with the advent of the PC (personal computer) era with its economy of

Figure 2.10 A mainframe computer for monolithic applications.

Figure 2.11 Client/server or two-tier architecture.

58 SOFTWARE PLATFORM



scale achieved through massive production, a new generation of software architecture,
the client/server architecture, emerged, as shown in Figure 2.11.

With client/server architecture, system functions are cut in the middle of the appli-
cation logic function; namely, some of the application logic is deployed with data on
a more powerful server system, and some of the application logic is deployed on less
powerful and much cheaper client systems together with the user interface.

Client/server architecture is also known as two-tier architecture, as there is a
clear boundary between the client and the server. Email servers and file servers are
some of the typical examples of client/server architecture. Although it’s relatively
old, client/server architecture is still widely in use today.

2.5.5 Three-Tier Architecture

The next natural step seems to be separating data, application logic, and user interface
onto three separate, independently deployable tiers, and that’s the three-tier architec-
ture, as shown in Figure 2.12.

A three-tier architecture typically consists of a datatier with database servers, an
application logic tier with application servers, and user interface tier that consists of
internal clients who can access the application server either directly through the
client applications without going through a Web server or through a Web server.

Note that tiered architecture is defined from the deployment and operational point
of view in order to meet performance and scalability requirements. One can install all
three tiers on one physical server machine for development purposes, but it still is
called three-tier architecture because of the separable deployment options of all
three tiers.

Internet applications such as Web applications and electronic commerce
websites are typical examples of the three-tier architecture. For example, almost

Figure 2.12 Three-tier architecture.

2.5 ENTERPRISE COMPUTING 59



every company has a website that users can browse to ascertain the services and pro-
ducts it provides and also register for more service privileges and restricted accesses.
The behind-the-scenes supporting infrastructure of an Internet application consists of
the following:

† A front tier running on one or more Web servers that redirect user requests and
provide static content

† A middle tier running on one or more application servers, such as J2EE servers,
that handle dynamic content and user-specific requests such as retrieving user
profile

† A back end tier running on one or more database servers that manages and
provides access to the data

We are not done with tier segregation yet. As business logic becomes more and
more complicated, application tier might be split further into multiple tiers, which
leads to the concept of N-tier architecture. Let’s elaborate on N-tier architecture in
the next section.

2.5.6 N-Tier Architecture

In some literature, the term N-tier implies any number of tiers, from 2 to more than 3
tiers. In some context, the term N-tier implies blurred boundaries and resultant com-
plexities among various application tier components from the functionality point of
view. The latter seems to be a more logical extension to the reality that one application
component can rarely fulfill all business logic.

Let’s take a mobile phone company billing application system as an example of
N-tier architecture. Such an application may need to be able to support tens of millions

Figure 2.13 N-tier architecture.

60 SOFTWARE PLATFORM



of customers. As shown in Figure 2.13, the application architecture may need to
have at least the following application components working collaboratively to fulfill
various functions:

† Accounting component that manages user account
† Product catalog component that provides service plans for users to choose from
† Sales order component that can process online purchases from users
† Billing component that bills customers for their purchases and uses of the
services according to the available service contracts

In this architecture, each application component is reusable and might be a
mature stand-alone application by itself. It’s also possible that different application
components might come from different vendors, and some integration work is
required to make all of them work together. This extension naturally leads to the
new generations of software architecture, for example, software componentry and
service-oriented architecture (SOA), which are our subjects for the next two sections.

2.5.7 Software Componentry

Software componentry is based on the idea that software components, like the equiv-
alent of hardware components, can be made swappable so that composite software
can be built using commercial off-the-shelf (COTS) components. The motivation
for using COTS components is that they will reduce the overall system development
cost and time because the components can be bought instead of being developed
from scratch. However, it comes with a significant side effect that the software com-
ponent integration work and dependency on a third-party component vendor may
incur significant additional cost.

The concept of COTS is further extended to the concept of modifiable off-the-shelf
(MOTS). A MOTS product is typically a COTS product with its source code modifi-
able. A MOTS product can be customized by the purchaser, by the vendor, or by
another party to meet the customer requirements. Because a MOTS product is adapted
for a specific purpose, it can be purchased and used immediately. However, since
MOTS software components are developed by external sources, a purchaser has
less control over the course of change down the road. This may create some depen-
dency on the MOTS component vendor and impose upgrade challenges as well.

During the past few years, software architecture evolved from COTS and MOTS to
SOA. SOA is the newest generation of software architecture. It is promising in saving
software development cost and providing flexibility for composing new services, as
will be introduced in the next section.

2.5.8 Service-Oriented Architecture

Service-oriented architecture (SOA) provides a new perspective for simplifying the
process of building large-scale, increasingly complex, and interwoven application
enterprise software systems. It has been gaining massive momentum as it promises

2.5 ENTERPRISE COMPUTING 61



to solve enterprise application integration challenges more cost effectively than using
the traditional proprietary messaging protocol based approaches.

In achieving the goals of simplifying application integration, SOA emphasizes
the use of loosely coupled software services. In an SOA environment, resources are
distributed over networks and are made available as independent services, which
can be accessed without the knowledge of their underlying platform implementation.

At the highest level, an SOA-based enterprise application consists of service pro-
viders and service consumers. A service consumer sends service requests to its service
provider, which renders the service requests and sends service responses back to the
service consumer. How the service requests and responses are represented or for-
matted and how the service consumer and service provider communicate with each
other constitute the watershed for different styles of SOAs.

XML Web services are the most popular implementation of SOA today. XML
Web services infrastructure enables service publishing, discovery, and message
exchange between a service provider and its consumer. As shown in Figure 2.14,
there are three entities involved in XML Web services infrastructure: service
provider, service registry, and service consumer. The infrastructure follows three
open standards in the format of specifications: UDDI (Universal Description,
Discovery, and Integration) for service publishing, WSDL (Web Services Description
Language) for service discovery, and HTTP (HyperText Transport Protocol) and
SOAP (Simple Object Access Protocol) for message exchange between a service
provider and its consumer.

Figure 2.14 XML Web services architecture.

62 SOFTWARE PLATFORM



The term bind in Figure 2.14 describes the built-in infrastructure function of
enabling a service provider and its service consumer to communicate with each
other through exchanging messages that they both understand. Here is how it works
step by step:

† The request and response messages are encoded in text format by following a
special XML dialect called Simple Object Access Protocol (SOAP).

† The SOAP messages are sent back and forth between a service consumer and its
provider using the HTTP through a URL, although it may use other protocols
such as FTP or SMTP.

† Behind the scenes, the components developed in languages such as Java or C#
fulfill the service requests. The interfaces from those components are coded in
language-specific binary format. Therefore, SOAP serialization and deserializa-
tion must happen when the SOAP messages arrive at and leave the component
interfaces.

You can learn more about the performance and scalability characteristics of the
XMLWeb services based applications presented quantitatively in Chapter 5.

2.6 SUMMARY

In this chapter, we started with understanding the software stack in general by using a
layered approach, which is also the approach that should be taken when investigating
and solving software performance and scalability issues. Although there are many fac-
tors that can affect and determine the performance and scalability of a software system,
it’s really important to make sure that the APIs as basic building blocks are intrinsi-
cally highly performing and scalable by design.

Modern computer architecture is moving toward implementing multithreading at
the chip level. Therefore, implementing multithreading at the software level is a
must for achieving the best possible performance and scalability. We illustrated this
notion with a real-world, multithreaded enterprise application. We also offered a
simple analysis of what was preventing that application from being more scalable.
The underlying bottleneck with that application was from the disk I/Os, which is
typical with many large-scale enterprise applications that require the fastest possible
storage for retrieving data from and writing data to disks.

We then categorized different types of software in order to help define the battle-
fields for software performance and scalability work. We further elaborated various
architectures of enterprise software, which is where performance and scalability
work is needed most.

In the next chapter, I will cover what you need to know about measuring the
performance and scalability of a software system quantitatively. It is interesting that
everybody has opinions, and sometimes even strong opinions, about software perform-
ance and scalability, but only those who are educated and bound by disciplines can
succeed.

2.6 SUMMARY 63



RECOMMENDED READING

The following texts are recommended in general for understanding software,
computers, and software architecture:

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture—A System of Patterns, John Wiley & Sons, 1996.

T. Erl, Service-Oriented Architecture—A Field Guide to Integrating XML and Web Services,
Prentice Hall, 2004.

D. Patterson and J. Hennessy, Computer Organization & Design—The Hardware/Software
Interface, Morgan Kaufmann, 1994.

D. Schmidt, Pattern-Oriented Software Architecture—Patterns for Concurrent and Networked
Objects, Volume 2, John Wiley & Sons, 2000.

W. Stallings, Computer Organization and Architecture—Designing for Performance,
4th edition, Prentice Hall, 1996.

For characterization of XML Web services infrastructure overhead, refer to the
following publication:

H. H. Liu and P. V. Crain, An analytic model for predicting the performance of SOA-based
enterprise software applications, in CMG 2004 Proceedings, Las Vegas.

EXERCISES

2.1. Explain conceptually the differences between Java virtual machine and computer
server virtualization technologies such as VMWareTM.

2.2. Write a simple, multithreaded program in any programming language with which
you are familiar. Measure the performance of your program on a computer that
has at least two CPUs by varying the number of threads. Plot a curve showing
when the performance of your program starts to level off as you increase the
number of threads. Explain and justify the underlying bottleneck by using the
quantitative system resource consumptions collected during the executions of
your program.

2.3. What’s the most reliable way of determining whether your Intel architecture
based system is hyperthreading enabled or not?

2.4. Give your vision of the next generation of software architecture after SOA.

64 SOFTWARE PLATFORM



3
Testing Software
Performance and

Scalability

Don’t guesstimate. Measure it!
—The author

For the software product you develop, it’s necessary to incorporate performance
and scalability testing into your development life cycles. Thorough performance
and scalability tests can provide a quantitative basis for further optimization and
tuning opportunities so that the maximum possible performance and scalability can
be achieved for your product. High performance and scalability could be one of the
advantageous selling points for your product against any competitors. High perform-
ance and scalability will also make your customers happy after the deals are closed
and your customers start to deploy and use your product. Your customers would be
frustrated if they cannot easily get your product up and running after paying a premium
for the product.

Let’s assume you agree that testing the performance and scalability of your
software product must be part of your product development life cycle. Then, how
can you maximize the productivity, efficiency, and effectiveness of your software
performance and scalability testing work? This book helps you achieve such goals.
In order to be successful, you’ll need to have the right mindset, right hardware,
and right skill set.

Your mindset needs to be adapted for designing and executing software perform-
ance and scalability tests. We all know that mindset is the drive behind how we
make decisions, what we do, and what we can accomplish. In this sense, mindset

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

65



transition is the most important thing to accomplish in order to turn your software
performance and scalability testing work into values for your organization. Your
previous background as a software developer, a database administrator, a system
administrator, or a quality test engineer is very helpful for doing software perfor-
mance and scalability testing work. However, your previous experience doesn’t
guarantee you immediate success. You need to try your best to think very carefully
about how you should design and conduct your performance and scalability tests,
how you should evaluate your quantitative test results, and how you can help turn
your performance and scalability test work into values for your organization. With
such a strong performance and scalability oriented mindset, you have advantages
for delivering solid test results even if you may need to sharpen your technical
skills with time.

However, mindset transition doesn’t happen in days, weeks, or even months.
It is generally agreed in the software community that it takes at least five years
for a software engineer to become proficient in testing, optimizing, and tuning the
performance and scalability of a software system. But don’t be discouraged by
that notion. The performance and scalability issues of a software system can be
treated quantitatively and precisely more like a science than a black art. If you are
willing to learn and willing to follow those proven best practices as presented in
this book, you can become effective and successful immediately with your software
performance and scalability work.

With the right mindset, the next important thing is to have the right computer
hardware for testing the performance and scalability of your software product.
Don’t be tempted into using low-end, development, or QA systems for conducting
performance and scalability tests. A general rule of thumb is that the systems
you use for performance and scalability tests should be at least two to four
times more powerful than your development or QA systems in terms of the
total CPU gigahertz power as the product of the number of CPUs and CPU
frequency. Low-end computer hardware tends to mask the real performance and
scalability issues.

With the right mindset and the right hardware, the final thing you need is the
right technical skill set. The right technical skill set includes not only the ability to
design and conduct the tests, but also the ability to determine whether the
test results are valid. Avoid rushing to conclusions prematurely based on invalid
test results. Software performance and scalability testing is not just about taking
measurements. Try to think whether the measured numbers make sense. It’s obvious
that some subsequent action items need to be derived and carried out following your
performance and scalability tests. What action items you come up with should be
driven by your dependable, quantitative measurements about the performance and
scalability of your product. Making conclusions based on invalid test results will
not yield anything that can be materialized into performance and scalability benefits
for your product.

To help you acquire the right technical skill set, this chapter introduces all the basic
concepts, terminologies, and methodologies associated with software performance
and scalability testing.

66 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



I’ll start in Section 3.1 with the scope of software performance and scalability test-
ing. This will help put your software performance and scalability testing into proper
perspective.

In Section 3.2, I’ll introduce the software development process adopted nowadays
in many software development organizations. A software development process
defines the environment into which you must fit yourself so that you will be
recognized as a vital member of the team. It also defines the protocols with which
you and your co-workers can exchange ideas and work collaboratively to build per-
formance and scalability into your product. Feeling comfortable with the environment
and protocols can help you enhance your productivity and efficiency significantly.

In Section 3.3, I’ll concentrate on defining the performance metrics for both OLTP
(online transaction processing) type and batch job type of software systems. I’ll use
concrete case studies to help you understand those metrics.

In Section 3.4, I’ll discuss the stochastic nature of software performance and
scalability test results. It’s very important to understand that software performance
and scalability test results contain errors, just like any other measurements in other
disciplines.

In Section 3.5, I’ll introduce Amdahl’s law. This law essentially is the compass for
determining what you should do to improve the performance and scalability of your
product in a larger scope.

In Section 3.6, I’ll enumerate those common factors that are critical in determining
the performance and scalability of a software system. Your ability to effectively diag-
nose and solve performance and scalability problems strongly depends on your under-
standing of those performance and scalability factors.

In Section 3.7, I’ll show you how to use system performance counters to analyze
various performance and scalability factors so that you can quickly learn how to
focus on the most important factors for a specific performance or scalability issue.

In Section 3.8, some software performance data principles will be introduced and
elaborated.

Finally, in Section 3.9, I’ll summarize all the topics covered in this chapter. A list of
texts will be recommended for further study if you feel that you want to learn more
about some subjects.

This chapter only teaches you the basics about testing software performance and
scalability. To become proficient in coping with software performance and scalability
issues, you need to grasp queuing theory and API profiling, which will be presented in
Parts II and III of this book.

Let’s begin with the scope of software performance and scalability testing in the
next section.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND
SCALABILITY TESTING

We begin with the scope of software performance and scalability testing to help you
put your tests in perspective. Knowing exactly what you are testing for can help ensure
success for your testing.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 67



Common nonfunctional software performance and scalability tests can be classified
into the following four categories:

† Performance regression testing for tracking performance changes due to code
changes from release to release. This will help ensure that no surprises will be
encountered by your customers after they apply upgrades to their production
environment.

† Performance optimization and tuning testing for supporting ongoing optimiz-
ation and tuning efforts for making your software perform better and better.

† Performance benchmarking testing for knowing what performance the custo-
mers should expect with your software if they use similar, realistic workloads
with similar hardware that is a good approximation of what will actually be
used in production.

† Scalability testing for checking out whether your software can meet customers’
growing business needs. This is similar to stress testing in that it puts more
loads on your software to see not only whether it will perform but also whether
it will break.

These four different types of tests are not stand-alone islands. In fact, they comp-
lement each other:

† You can start with performance regression testing for identifying common use
scenarios that are important for your customers. These scenarios can be used
for defining other types of tests later. Performance regression testing can also
serve as a baseline for further performance testing.

† Additionally, without a rigorous performance regression testing process in place,
the performance of your software may degrade significantly without being
noticed and you may end up with no testable versions of your software available
for your larger scale benchmarking and scalability tests, which are intended for
publishing good numbers, not bad numbers.

† The best practices out of your ongoing performance optimization and tuning
tests can be applied to benchmarking testing and scalability testing.

† Benchmarking testing and scalability testing can help expose the performance
problems that you may not have found out using small data volumes with
your performance regression or optimization and tuning testing.

Let’s elaborate more on each type of software performance and scalability testing in
the following sections.

3.1.1 Performance Regression Testing

Software developers and QA engineers are familiar with the concept of regression
testing. It’s a measure to verify whether newly introduced code changes have
broken anything that worked previously.

68 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



However, we should not assume that this concept applies to functional testing only.
Regression testing applies to performance testing as well. The purpose of performance
regression testing is to check whether the performance of the software has been
degraded by the changes introduced to the source code.

It is very necessary to conduct performance regression testing when changes are
made to the software that has already been deployed at the customer’s site. And it
should be conducted before pushing changes to the customer’s production environ-
ment. I had an opportunity to explore a case where the customer’s online shopping
website became too slow for online shoppers to place purchase orders, after a new
change to the software in use was introduced. Intense investigation on the software
vendor’s side found out that it was caused by inadvertently missing caching the
data when new changes were introduced to the software, which used to be cached at
the application level. You can image what turmoil it had brought up when the custo-
mer’s website was no longer capable of taking customer orders and the executives of
the two companies started their dialogs about the issue.

Software performance regression testing is important not only for minimizing the
risks to a customer’s business but also for internally tracking performance degra-
dations and improvements due to changes at the source code level, which are inevita-
ble with ongoing development. Whether intentional or inadvertent, changes to the
source code can cause severe performance degradations to the software under devel-
opment. The adverse effects of changes on the performance of software can only be
caught with standard performance regression testing. For example, developers
might keep changing SQL queries as needed for changed business logic without
actually realizing that it may invalidate existing database table indexes for those
SQL queries. Regular performance regression testing can help prevent things like
this from happening.

Performance regression testing doesn’t have to be conducted as frequently as
for functionality regression testing. Functionality regression testing needs to be
conducted for every nightly build, whereas performance regression testing only
needs to be conducted on a per-iteration basis, which typically is every 2–4 weeks
per iteration.

Performance regression testing doesn’t have to cover as many scenarios as func-
tionality regression testing does. It should concentrate on a few scenarios with
which performance matters most for the customers. Functionality regression testing
tends to be fine-grained down to the API level with variations of API signatures,
whereas performance regression testing is more coarse-grained, focusing on the
solution scenarios, which mimic how the software is actually used by customers.

Performance regression testing should be automated as much as possible.
Managing all regression test data could become a daunting task with time.

B Case Study 3.1: Performance Regression Testing

Before moving on to the next section, I’d like to share with you a performance
regression testing experience for a real product that I worked on as a performance
engineer.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 69



Without the necessity of going into the details of the application, Figure 3.1
shows how the throughput of the two batch jobs of an application had evolved
over time from drop to drop and to the final release to market (RTM). Behind
those up–down–up bars were enormous performance optimization and tuning
efforts engineered into the product through effective collaborations between the
performance team and the development team.

It is clear from this case study that the performance of a software product can
indeed be degraded as new changes are introduced. An effective performance
regression testing process can effectively help prevent performance defects from
slipping into the release without being noticed.

3.1.2 Performance Optimization and Tuning Testing

In this section, I’ll share some of my software performance testing experiences
and observations with you. Specifically, I’ll concentrate on the following aspects of
software performance testing:

† What software performance testing is all about
† Why productivity and efficiency are especially important for software perform-
ance testing

Figure 3.1 Performance regression tests for the two batch jobs of a real software product from
initial drops to the final RTM.

70 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



† A common software performance testing procedure that should be followed for
your software performance testing work

† What deliverables should result from your software performance testing

Throughout this section, I’ll use software performance testing to imply software
performance optimization and tuning testing. Performance testing seems to be a
generic term and a broad concept, but to clarify, by performance testing I mean the
following two different types:

1. Performance testing for optimizing software at the code implementation level.
This requires some level of API profiling and database query analysis, identify-
ing hot APIs and SQL queries, arriving at proper optimization recommen-
dations, and then evaluating the recommendations with your developers for
possible changes at the source code level for performance improvements.

2. Performance testing for tuning the performance of your software by varying the
configuration parameters of the hardware platform, software platform, and the
application without incurring changes at the source code level. Establishing
the out-of-the-box (OOTB) baseline performance for your software is the first
step for this type of performance testing. Then, you can tune the hardware
and software configurations as well as your application configurations for the
maximum possible performance.

It’s very important that you write up your performance tuning guide and com-
municate your sizing guidelines and best performance tuning practices to both your
internal customer support group and external customers. Your guidelines for sizing
the hardware and tuning the performance of your software can help your customers
have a smooth start-up and long-term satisfaction with your software.

Performance testing should be part of the entire life cycle of your software devel-
opment. You should keep refining your test methodologies and testing tools to achieve
the highest possible productivity and efficiency. Productivity and efficiency are
everything for software performance testing. It’s not unusual to find out that people
have been spending months of timewithout actually getting anything down. I typically
attribute this kind of unfortunate phenomenon to the following three factors:

1. Software performance testing has its own unique challenges compared with
functionality testing and writing code. Most often, you may need to spend a
lot of time just to get everything up and running. For functionality testing and
writing code, you find something broken and you fix it—that’s your achieve-
ment. However, that is not the case at all with software performance testing.
With software performance testing, you can’t claim full credit by saying
“I found that it doesn’t work.” Your job as a performance engineer is to help
establish baseline performance for your product and help make it perform
better by applying optimizations and tunings. If you don’t end up with some
reliable baseline numbers and optimization and tuning recommendations that

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 71



can lead to better performance for your product, your time is essentially wasted
or your company is not benefiting from your work.

2. Software performance testing requires you to think carefully about every detail
of your performance testing. You might think that you got some numbers, but it
only turned out that the numbers you got are not reliable or are meaningless in
the worst case. For example, you did not realize that your testing is benefiting
from cached data, which would not be cached in a real production environment.
Another common mistake is to take data in an unstabile environment. For
example, you repeat the same test 10 times and get results that are drastically
different. How can you evaluate such results meaningfully? The errors in test
results must be controlled to less than a few percent for your data to be truly
useful unless the underlying performance factors such as the network traffic
across a WAN are the study objects.

3. In a more general sense, a software performance job requires sharp, indepen-
dent, and creative thinking abilities. Technical skills are easy to obtain, but
thinking abilities are hard to obtain within a short period of time. You need
to think constantly how you can improve your productivity and efficiency by
doing things in more efficient ways. As you keep thinking and practicing,
you’ll gradually become a fully fledged software performance engineer who
can solve software performance problems in a matter of hours while others
might spend weeks or even months without success.

In addition, a rigorous procedure is necessary for your software performance test-
ing. You should always follow the same procedure for your software performance
testing unless you are establishing a new baseline. Software performance testing
typically consists of the following steps:

† Designing your workloads based on customer’s use requirements on perform-
ance. This is especially important when your company has SLAs (service
level agreements) with customers, by which violating performance requirements
may incur monetary penalties. When you do not have SLAs with customers,
you need to extract performance requirements based on common use scenarios
of the customers so that you can know what your goals are.

† Designing and developing test scripts or in-house tools to drive your workloads.
For OLTP (online transaction processing) workloads, most likely you’ll need to
develop your test scripts to be used with one of those commercial performance
load test tools such as LoadRunnerw, SilkPerformerw, Empirixw, or Quantifyw.
For batch jobs typically running in the background, you’ll need to develop your
own specific scripts or tools to drive the test.

† Deciding on appropriate hardware. I have emphasized a few times that software
performance testing is not just about getting performance numbers. Starting
with outdated or very low-end hardware is a major mistake that you cannot
afford to make. For some large-scale applications, you may not be able to get

72 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



the production-level hardware, but the hardware you choose for your perform-
ance testing should be much more powerful than those development and
functionality testing systems. If your application software is database intensive,
use adequate storage for your data or, at least, do not put all your database data
and transaction log files on a single local hard drive. You should not raise false
performance alarms based on significantly undersized hardware.

† Setting up your testing environment. This may include installing your software
with all middleware software installed. Then you need to populate data, which is
one of the foundation pieces of the initial work for your testing. Next, execute
your tests a few times to ensure that your environment is not only working but
also stable. Your test bed is like the soil for your plants and flowers—you
can’t expect good outcomes with an environment that is not well prepared.

† At this point, you need a detailed procedure about how you conduct your
tests. You may not want to raise false performance alarms using the test results
out of different test procedures. For example, when you change the number of
threads or any other configuration parameters for your software, you may need
to restart your server for that change to take effect. Then with every drop you
test, you need to follow the same procedure of restarting the server after
making configuration changes for your software; otherwise, you might be sur-
prised that somehow your software is a lot slower than it used to be and may
even raise a false alarm.

† When everything including a test procedure is in place, you are ready to take your
performance baseline. Baseline is where you get started with a set of configur-
ation parameters that are known to be optimal with the given hardware. As
you learn more about your software, you may establish new baselines by
taking your best known methods into account. For example, initially you
might have taken your baseline with an OOTB number of threads configured
for your software. You might then have learnt that the performance of your soft-
ware could be a factor of 5 better or more if the number of threads was set to a
much higher value. Then the performance data taken with this new number of
threads would be your new baseline. The baseline may change with time. It’s
a series of newly improved performance levels that challenge you to push the
performance of your software to the next level after you implement your
newly established optimizations and tunings.

† After establishing baseline, your next step is to analyze those factors that affect
the performance of your software most—the performance bottlenecks. Later, I’ll
show you in detail how to analyze performance bottlenecks based on queuing
theory and performance counters.

† After identifying affecting performance factors or bottlenecks, you need to think
how those bottlenecks can be removed by implementing optimizations at the
application level or tunings external to your software. You should not immedi-
ately request faster hardware, as faster hardware is only for lean software that has
gone through full cycles of performance optimization and tuning. I’ll elaborate

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 73



more on software performance optimization and tuning throughout the rest of
this book.

† It’s very important that you get reliable, quantitative performance data, use your
data to arrive at your recommendations for further optimization and tuning, and
use your data to drive your recommendations to the successful end of being
accepted, implemented, and verified. Only at this point can you be assured of
your value to your company’s business.

Deliverables out of your software performance testing should include at a minimum
the following:

† Performance numbers such as response times or throughputs that matter most
for your customers. It’s better to put your test results in a more presentable
manner so that it can easily be communicated with others, including your
management.

† An exact list of test conditions used for obtaining your test results. This should
include:

W The hardware specs such as the number of CPUs, CPU clock rate, memory,
disk space, and network as well as operating system and service packs.

W The exact software stack that was tested. Some installation options that
matter to your performance testing should be documented as well.

W Hardware and software configurations changed relative to their default set-
tings. This may include database configurations and any configurations
that are specific to your software, such as the number of threads or the
amount of memory configured.

† Database activity reports such as Oracle statspack or automatic workload reposi-
tory (AWR) reports.

† Performance counter log data such as obtained with Windows perfmon utility or
any UNIX scripts.

† Performance test log files that were created during the test.
† And, most importantly, a bottleneck analysis that gives directions on how you
can further optimize and tune the performance of your software.

Software performance defects typically are managed through a bug tracking system
for your software development. You should submit your defects in time and then
follow through with the developers to make sure that they are resolved and checked
into the next build or release of your software. Until then, your organization has bene-
fited from your software performance testing work.

Performance testing can be done at the level of each software component. A com-
plete application systemmay include many software components that work together to
fulfill their promises to users. Performance testing at the system level belongs to
benchmarking testing, which is one step closer to customer deployment. Let’s discuss
more about benchmarking testing in the next section.

74 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



3.1.3 Performance Benchmarking Testing

Benchmarking testing typically is market driven or has targeted customers in mind.
It’s a way to show how well your software can perform and how well your software
can meet your customers’ needs against your competitors by using more realistic
workloads and closer-to-production hardware. Outcomes from benchmarking tests
would be regarded as milestones for your software that you and your company
would be proud of if the numbers look good.

Benchmarking testing is more of a team effort than an individual’s effort. However,
it can’t be successful without thorough performance work by each performance
engineer on each software component.

For benchmarking testing, planning and execution are more emphasized than seek-
ing new optimization and tuning opportunities. For this reason, we won’t spend more
time on this topic.

3.1.4 Scalability Testing

Scalability testing is similar to stress testing in that it takes your performance testing to
the extreme to find out where the limits are. You may hear people say this software can
support up to that many users or it can process up to that much volume of transactions,
and that’s about scalability testing. This kind of testing is interesting, because every
business is expected to grow with time as is the processing capability of the software
they purchase to support their business operations.

Scalability testing resembles optimization and tuning oriented performance testing
except that it’s measured more by quantitative metrics, such as the maximum
number of users and the volume of transactions the software under test can support.
It typically is an extension to your regular performance testing with more users and
larger data sets.

As you increase the load, whether it’s measured by the number of users or by
the size of the data sets, you may see completely different behaviors with your
software than you have seen with previous tests using lighter workloads. For this
reason, it’s very necessary to conduct some level of scalability testing, especially
when you have gotten all of the low-hanging fruits during the early stages of your
performance testing.

Some specific issues that you may want to focus on with your scalability testing
include the following:

† Making sure that the hardware you use for your scalability testing is adequate.
The performance limit with your software might be lifted by either scaling up
or scaling out the hardware under test. Scaling up means using faster hardware,
and scaling out means using more identical systems. Software scaling and
hardware scaling are typically coupled with each other. Nonscalable software
won’t scale on scalable hardware, and scalable software won’t run on nonscal-
able hardware. The worst combination is a single-threaded application running
on a massive number of low clock rate CPUs, which won’t scale no matter
what you do.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 75



† Memory leak is one of the special issues that should be checked out with your
scalability tests. The 32-bit operating systems have a maximum addressable
memory space of 4 GB, which is split into 2 GB for the kernel and 2 GB for
an application process on the Windows platform. This allocation might be repar-
titioned into 1 GB for the kernel and 3 GB for the application with the help of
some switches at the hardware level, but that may still not be enough for
memory-hog applications.

† If a database is involved, prepare to add new indexes when the load increases, as
database system performance is most sensitive to the size of the data stored in
your database. This is illustrated with the next case study.

B Case Study 3.2: Scalability of a Batch Job Type of Database-Intensive
Application

One cannot assume that if a software system is scalable on one platform that has
been thoroughly tested then it will be scalable on other platforms as well without
being verified. This experience is shown quantitatively in Figure 3.2.

With this case study, even with the same volume of data of 44 k objects created
with an enterprise application, on platform II (a specific flavor of UNIX), I
needed to add a couple of new indexes for some database tables in order to stop
rapid throughput deterioration. Those indexes were not needed on platform I

Figure 3.2 Dependence of software scalability on platforms illustrated using a batch job of
creating 44 k objects from a real product (Note: Curve A shows the baseline established on
Windows platform; curve B shows poor scalability on UNIX when the same test was repeated;
curve C shows improved scalability after adding three new indexes to two heavily accessed data-
base tables; and curve D shows the same test on Windows with those three indexes added.)

76 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



(Windows 2003) on which I used to conduct all my performance testing for that
application.

The performance test setup associated with Figure 3.2 consisted of an appli-
cation server and a database server. That batch job was designed to create objects
through a client program that calls the application server APIs. The evolution of the
throughput of this application with time is a measure of how scalable this appli-
cation is. As shown by curve A, the throughput stays flat on Windows platform.
However, when the same test was run on a UNIX platform, it was found that the
throughput was going down rapidly, which indicated a poor scalability, as shown
by curve B.

The detailed database query analysis revealed that three indexes should be added
to two heavily accessed tables. After adding those three indexes, the same test was
run on both the UNIX platform and Windows platform. As is shown by curve C,
adding those three new indexes had indeed drastically cured the poor scalability
on the UNIX platform, along with a significant performance improvement up to
a factor of 7. However, the overhead of adding those three indexes caused about
10% performance degradation on the Windows platform, as shown by curve D.

This example has demonstrated that software may exhibit different scalability
characteristics on different platforms. So do not take it for granted that if your soft-
ware is scalable on one platform it will be scalable on all other platforms. Different
platforms may have different combinations of CPU and I/O capabilities. The
scalability of software depends on the balance of the resource utilizations among
various system resources, such as CPU, disk I/O, and so on. So the resource
utilization balance established on one platform may become broken on another
platform and a new balance needs to be established therein to achieve the desired
scalability on the new platform.

Next, let’s examine a scalability test study case with an OLTP type application.

B Case Study 3.3: Scalability of an OLTP Type Application

The workload of an OLTP type application is characterized by the following two
input parameters:

† Number of active virtual users for simulating the real users of the application
† Average transaction rate for each user type that simulates the activities from each
type of user

The scalability testing for an OLTP type application can thus be conducted by
varying the number of active virtual users and the average transaction rate with
the scripts defined.Without the necessity of going into the details of this application,
Figures 3.3 and 3.4 show the average response times for the designated actions
versus the increasing number of active virtual users and average transaction rates,
respectively. Note that the response times displayed in these two figures are server
response times, which do not include the browser time. Browser time is the time
spent on the user’s machine for rendering the responses from the server to the user.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 77



With the tests conducted by varying the number of active virtual users, the trans-
action rates were fixed at five times the average transaction rate while increasing
the number of users from 400 to 600 and to 800. Note that the response times
did not increase linearly with the number of users and that scalable performance
has been observed across all user actions.

With the tests conducted by increasing the transaction rate for each user type
proportionally, the number of users was fixed at 800 while increasing the trans-
action rate from average to 2.5 times the average and 5 times the average. Once
again, scalable performance has been observed across all user actions. Note that

Figure 3.3 Scalability of an OLTP application versus the number of users.

Figure 3.4 Scalability of an OLTP application versus the transaction rate.

78 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



the response times did not increase linearly with the increasing transaction rate
either. Both types of scalability tests demonstrated the scalable performance of
this application with increasing load.

The scalable performance demonstrated with the scalability tests associated with
Figures 3.3 and 3.4 resulted from the fact that none of the resources were driven to
the saturated state. This can be verified with the resource consumptions shown in
Figures 3.5 and 3.6 for the two scalability test cases, respectively. In these two

Figure 3.5 Resource utilizations associated with scalability tests with an increasing number of
users.

Figure 3.6 Resource utilizations associated with scalability tests with an increasing transaction
rate.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 79



figures, not only the CPU utilizations but also the database disk utilizations are
shown. It is seen that none of the servers had CPU utilizations exceeding 30%,
which is very desirable for OLTP type applications.

With this case study, the largest CPU utilization was 27% with the application
server, which implied that the system could accommodate more users or higher
transaction rates while maintaining acceptable response times. Next, we’ll see
another case study that will demonstrate that the response times of all user types
begin to increase beyond linear scaling with increasing number of virtual users.

B Case Study 3.4: Scalability of Another OLTP Type Application

It is necessary to point out that we may not always see the ideal scalability as
demonstrated in the previous case study. The response times of an OLTP appli-
cation may increase faster, depending on the power of the hardware system used
for each tier of the application.

Figure 3.7 shows the increasing response times of each user type (UT) with the
number of virtual users increased from 200 to 300, 400, and 500, respectively. Note
that here the response time was defined as the total transaction time for each user
type instead of a specific action, in contrast with the preceding case study. The con-
ventional 2-second requirement is imposed on a user action such as clicking on a
link or button, not on the entire transaction, which consists of a series of actions.

As seen from Figure 3.8, when the number of users was increased by 150% from
200 to 500, the response time had increased 159%, 170%, and 189% for the user
types of 1, 2, and 4, respectively, which is more than 150%, although for user type
3, it’s 125%, which is less than 150%.

Thus we can conclude that this OLTP application could scale up to about 500
users with the hardware chosen for each tier of the application. As shown in
Figure 3.9, both the Web server CPU utilization and the database disk utilization

Figure 3.7 Response time vs. the number of virtual users.

80 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



approached near or above 70% with 500 virtual users, which is an indicator that the
system was running around the saturation point with that many users where the res-
ponse time of the system began to increase nonlinearly upward. This kind of beha-
vior can be well explained in queuing theory, which will be introduced in the next
chapter.

Since scalability testing is a magnified version of performance testing, from testing
procedure to optimization and tuning techniques, whatever applies to performance

Figure 3.8 Scalability of an OLTP application.

Figure 3.9 Average system resource utilizations associated with the scalability tests shown in
Figure 3.7.

3.1 SCOPE OF SOFTWARE PERFORMANCE AND SCALABILITY TESTING 81



testing applies to scalability testing as well. You can certainly leverage your perform-
ance testing skill set for your scalability testing, as performance testing and scalability
testing are next to each other on the same scale, one on the left-hand side with lighter
loads and the other on the right-hand side with heavier loads.

In your organization, you may have both a QA team and a performance team for
the software under development. In the next section, I’ll shed some lights on how
the QA team and performance team can work together to deliver a high-quality soft-
ware product that will not only work but also perform and scale.

3.1.5 QA Testing Versus Performance Testing

QA testing is about making sure that a software product works as has been designed
from the functionality point of view. It’s more about the correctness of a software
program with its coded logic, rather than how fast it can complete a specific task.
Performance testing works on the basic assumption that the software works, but
that it might perform slow, which may make it unusable for its users. These are differ-
ent sides of the same coin and typically inseparable.

In dealing with QA testing versus performance testing, I’d like to share some obser-
vations and experiences I had in my software performance engineer career so that you
will not fall into the same traps:

† QA testing should precede performance testing. Using a non-QAed version of
software for performance testing may only end up with rediscovering the func-
tionality bugs that the developers and QA engineers are already aware of.
Typically, you should use the last known good version of software that has
passed QA testing for your performance testing.

† Performance testing is different from QA testing. QA testing doesn’t care about
what tool to use as long as it can be used to help prove the correctness of the soft-
ware under test. However, performance testing is a lot pickier on what tools to
use. I have seen people trying to adapt QA testing tools for performance testing.
They can surely get some performance numbers this way. However, QA testing
tools typically carry heavy overhead on the client side, which does not necess-
arily represent the true performance of the software under test. Also, QA testing
tools typically do not measure up with the requirement of volume testing that is a
requirement for performance testing. So either use commercial quality perform-
ance testing tools or develop your own performance testing oriented tools for
doing your performance testing.

Sometimes performance testing may help discover functionality bugs that QA
testing did not uncover. These are some additional merits of performance testing
that will be briefly touched upon in the next section.

3.1.6 Additional Merits of Performance Testing

Software performance testing is a kind of performance assurance that the software you
sell to your customers has adequate performance. Software performance testing is
typically conducted prior to deploying your software in your customer’s production
environment.

82 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



It’s necessary to realize that adequate software performance testing prior to pro-
duction deployment has additional merits for other software performance activities,
such as performance modeling, capacity planning, performance monitoring, and
performance management. A well-optimized, well-tuned, and lean software appli-
cation consumes less hardware resources, thus helping to arrive at the proper capacity
planning without purchasing more expensive hardware.

To reinforce the above notion, I’d like to further elaborate that software design,
implementation, SQL queries, and system-level tunings can strongly influence
system resource utilizations. Spending money on optimizing and tuning your software
may help avoid expensive hardware purchases for your customers, which helps reduce
IT costs overall for your customers. This may not happen unless you can integrate soft-
ware performance engineering effectively into your software development process,
which is the topic for the next section.

3.2 SOFTWARE DEVELOPMENT PROCESS

Following an effective software development process can help boost the productivity
and efficiency of a software development team. Productivity and efficiency are two
key factors for the success of a software project. Getting familiar with the software
development process can help assess when performance and scalability concerns
should be injected into the life cycle of a software product.

In this section, I’ll introduce the most popular software development process
that adopts agile software development, which is a conceptual framework for under-
taking software engineering projects, and extreme programming, which is a software
engineering methodology. As stated earlier, a software development process defines
the environment and protocols under which performance engineers must work in
order to be more productive and efficient in solving software performance and
scalability problems. Knowing the environment and the protocols is as important as
the mindset transition we discussed at the beginning of this chapter. Being able
to set oneself into a workplace ecosystem harmoniously is a requirement for all
professions.

3.2.1 Agile Software Development

In this section, we introduce agile software development methods. Agile methods
emerged in the mid-1990s as “lightweight” software development methods as part
of a reaction against traditional “heavyweight” methods such as the heavily regulated,
micromanaged waterfall development model. Agile methods are sometimes character-
ized as being at the opposite end of the spectrum from “plan-driven” or “disciplined”
methodologies.

Agile methods are a family of development processes, not a single approach to soft-
ware development. All agile methods share the following common characteristics:

† Attempting to minimize risk by developing software in short time boxes,
called iterations, which typically last one to four weeks. Each iteration has its

3.2 SOFTWARE DEVELOPMENT PROCESS 83



full life cycle from planning, requirement analysis, design, coding, and testing, to
documentation. After several iterations, a release is accomplished, which
includes all combined, fully tested changes made during previous iterations.

† Emphasizing real-time, face-to-face communication over the written document
among a team of a few or more members. Because of the small amount of written
documentation relative to other methods, agile methods are criticized as being
undisciplined.

† Emphasizing working software as the primary measure of progress. In this
regard, quality assurance tests are conducted for all iterations, while performance
and scalability tests might be conducted only prior to the release.

Although this is a brief introduction to agile software development, it should be
clear what “agile” elements it is advocating. Usually, you don’t want to performance
test every nightly build of the software under development. Testing every build is what
the QA team would do. Performance testing a non-QAed build will only end up with
duplicating the QA engineer’s work. As a performance engineer, you should focus on
performance issues instead of functionality issues.

In the next section, I’ll briefly touch upon extreme programming (XP), which is one
of the most popular agile software development methodologies.

3.2.2 Extreme Programming

Extreme programming (XP) prescribes a set of day-to-day practices for managers and
developers. The exercise of these practices—which are traditional software engineer-
ing practices taken to “extreme” levels—leads to a development process that is more
responsive to customer needs than traditional methods.

Extreme programming was created by Kent Beck, Ward Cunningham, and Ron
Jeffries during their work on the Chrysler Comprehensive Compensation System
(C3) payroll project. The C3 project was started in order to determine the best way
to use object technologies, using the payroll systems at Chrysler as the object of
research, with SmallTalk as the language and Gemstone as the persistence layer.
Kent Beck, a prominent SmallTalk practitioner, was brought in to do performance
tuning on the system, but his role was expanded as he noted issues with the develop-
ment process. He began to refine the development methodology used on the project
by implementing some changes, together with Ward Cunningham and Ron Jeffries.
The C3 project was unsuccessful and was eventually cancelled, but Kent Beck
published his book, Extreme Programming Explained, in 1999, which has since
influenced the software development process heavily.

The main aim of XP is to reduce the cost of change. In traditional system develop-
ment methods, the requirements are determined at the beginning of the development
project and often are fixed from that point on. This means that the cost of changing
the requirements at a later stage will be high. XP sets out to reduce the cost of
change by introducing basic values, principles, and practices to make system develop-
ment more flexible with respect to changes.

84 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



Three major XP values are:

† Communication
† Simplicity
† Feedback

Building software requires communicating requirements to developers. In formal soft-
ware development methodologies, requirements are communicated to developers
through documentation. XP favors frequent verbal communication instead of written
documentation.

XP encourages starting with the simplest possible solution and evolving to better
ones. The difference between this approach and traditional development methods is
the focus on designing and coding for the needs of today instead of those of tomorrow
or the future. Designing and coding for uncertain future requirements implies the risk
of spending resources on something that might not be needed.

Feedback is another essential element of XP. Feedback can be multidimensional,
namely, from unit tests about the correctness of an implementation, from the customer
about the functionality and features, and from the team about implementation planning.

XP does not contradict software performance testing at all. Whenever possible,
apply XP values to your software performance work to maximize the values of
your performance testing work to improve the chances of your product’s success.
For example, you should:

† Count on frequent verbal communications with your developers instead of wait-
ing for formal documents about the design of your software. Don’t be discour-
aged if you find out that there are not many formal documents around. By talking
to your developers frequently, you can always get the most up-to-date education
on how your software is designed and implemented.

† Be aware that simple designs often bode well with high performance. By doing
your performance testing, you might be able to help drive the complexity out of
your product. For example, there could be some business logic computations that
simply burn CPU cycles for operations that don’t need to be performed. In some
cases, some database triggers that are fired under certain conditions may not have
to be fired at all.

† Frequently check with your customers to get feedback on how they use your
software and how your software meets their performance requirements for
their businesses. This can help you to build more realistic workloads even if
you may not be able to get customer data to drive your workloads in your
performance test environment.

In summary, mindset transition and fitting yourself into the working environment
and protocols defined by your software development process are some of the soft
skill sets that you should possess in order to achieve the maximum productivity and
efficiency with your software performance work. Next, we’ll focus on the hard-core,
technical skill sets that you should have for testing the performance and scalability
of your software.

3.2 SOFTWARE DEVELOPMENT PROCESS 85



3.3 DEFINING SOFTWARE PERFORMANCE

Everybody is familiar with the concept of performance regardless of the context. It’s
essentially the speed at which some activity or work is completed from start to finish.
It can be perceived as fast, normal, or slow. However, when it comes to software, we
are most concerned with the performance associated with two types of computing
tasks or workloads:

† OLTP (online transaction processing)
† Batch jobs

OLTP refers to the computing tasks of processing the requests from the interactive
users who use a software system real-time, while batch jobs refer to the regularly
scheduled computer programs that run in the background in order to finish some
amount of work within a specified time window.

An OLTP workload is simply a representation of the interactive user activities. It is
often characterized by the types of user activities and the number of users associated
with each type of user activity. A batch job workload specifies the amount of work
to be processed without the necessity of user intervention.

A workload can be a real workload or a synthetic workload. A real workload is
arrived at by analyzing the real-world production site operations. A synthetic workload
is composed based on the hypothetical use cases constructed from customer require-
ments analysis.

In testing the performance and scalability of a software system, it’s more desirable
to use customer data and real workloads. However, very often, one has to use synthetic
data and synthetic workloads for the following reasons:

† No real-world data or customer data are available because of legal issues and
other sensitivities associated with customer data, or the software is a new product
and there is no customer yet.

† Synthetic workload is more flexible as it can easily be modified to answer
various kinds of what–if questions.

† A synthetic workload is still valuable if it is sufficiently representative.

The performance metrics for OLTP and batch jobs are intuitive and easy to under-
stand quantitatively. However, it can be difficult in reality for people to get used to
using a quantitative metric, such as response time in seconds for OLTP activities or
throughput in objects or transactions/second for batch jobs, to describe a performance
problem. Youmay often hear users complaining that the system is slow, but they won’t
tell you quantitatively how slow it is. You have to characterize the performance of the
system quantitatively in the user’s environment so that you can compare it with the
expected performance based on your own benchmarking tests. Then you can decide
what needs to be done to bring the reportedly poor performance back to the level
you would expect.

Next, I will describe the performance metrics for both OLTP and batch jobs.

86 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



3.3.1 Performance Metrics for OLTP Workloads

Since OLTP workloads tend to simulate real user activities, the performance of an
OLTP type software system is measured by response time experienced by the users.
The response time is the time duration measured from a user’s perspective from initi-
ating an action to receiving the response from the system. For example, the user login
response time is the time duration from a user clicking on the login button to actually
seeing the next screen indicating that the user has successfully logged in.

It’s important not to confuse response timewith think time. Think timemeasures the
time duration spent by a user on preparing input and digesting the content of the
response until initiating the next action to the system, whereas response timemeasures
the time spent by the system actually processing the user request. A system would be
idle when a user is thinking or entering input.

Every load test tool provides the option for specifying think times. It must be
clarified that the differentiation between response time and think time leads to the
differentiation between active users and concurrent users to a system. The following
formula summarizes clearly the subtlety of active users (Nactive) versus concurrent
users (Nconcurrent):

Nconcurrent ¼ Nactive
Response time

Response timeþ Think time

� �
(3:1)

From Equation (3.1) it is clear that there are always more active users than concurrent
users with nonzero think times. Concurrent users are those who are actually stressing
the system. In reality, people may just say “users” without qualifying whether they
mean concurrent or active users. Or when they say concurrent users, they actually
mean active users.

Calling active users concurrent users is a misnomer. To see why this is so, the
following case study is provided to show the enormous difference between the
number of active users and the number of concurrent users when the think time gets
large compared to the response time.

B Case Study 3.5: Active Users Versus Concurrent Users

Let’s say that an OLTP lab test indicates that an average response time of 2 seconds
can be achieved with an average think time of 90 seconds for 460 active users. Then
how many concurrent users can this OLTP system support, and how many active
users can this OLTP system support with different average think times? The
answers are summarized in Figure 3.10. The number of concurrent users this appli-
cation can support is 10. However, the number of active users this application can
support depends on think times. It is seen that the think times have large impacts on
how many active users this OLTP system can actually support.

Unless specifically requested by the customer, an OLTP benchmarking effort
should always use the number of active users to quantify the actual number of users
a system under test can support. Of course, think times specified in the load test scripts
must be as realistic as possible. In addition, think times should be static and as

3.3 DEFINING SOFTWARE PERFORMANCE 87



consistent as possible over time, as dynamic think times can introduce artificial effects
into the tests, which may result in a false statement about how many active users a
system can actually support.

Most of the time, you need a commercial quality load test tool to measure the
performance of an OLTP systemwith simulated OLTPworkloads. You should consult
the original documents about how to use such tools. You may want to take a formal
course to help make sure that the tools will be used properly. Any test can generate
some numbers about the performance of a software system. However, numbers
make sense only when each step of the test is carried out properly.

An OLTP workload simulating a real-world use scenario typically yields the
following artifacts after a load test is complete:

† Evolution of the active number of virtual users simulated
† Evolution of the overall response time for the entire test duration
† Evolution of the response time for each individual user activity
† HTTP throughput in terms of hits per second on the Web server
† Evolution of transaction rate over time
† Distribution of response times in terms of percentiles

To help understand the artifacts of an OLTP test better, Case Study 3.6 is provided.

B Case Study 3.6: Performance Test on an OLTP System

Figure 3.11 shows some artifacts from a typical OLTP performance test using a real
product. The test started at 9:13 PM and lasted about one hour. The entire setup
consisted of a Web server, an application server, and a database server, which is
a typical N-tier architecture. Four different user groups were specified, with
some users creating objects and some users searching and modifying objects.

Figure 3.10 Number of active users that an OLTP system can support with think times varying
from 0 to 90 seconds.

88 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



The charts show the number of active users, overall response time for all user
groups, transaction rate, Web server HTTP data exchange rate, and hits per
second recorded at each sampling interval during the test, respectively.

Note that in Figure 3.11d, which shows data transferred to and from the Web
server, the lower curve shows the request data and the upper curve shows the

Figure 3.11 (a) Number of active users recorded; (b) overall average response time; (c) trans-
action rate; (d) data transfer rate (upper curve: HTTP response data in kB/s; lower curve:
HTTP request data in kB/s); and (e) HTTP hits (request þ response) per second recorded at
each instant during an OLTP performance test run.

3.3 DEFINING SOFTWARE PERFORMANCE 89



response data. The transfer rate of hundreds of kilobytes per second shown on the
chart is far below the typical network bandwidth of gigabits per second. This low
network utilization indicates that the network is not the bottleneck. How to conduct
performance bottleneck analysis will be covered in more detail in later chapters.

Charts like Figure 3.11 are interesting for showing how the test evolved from
start to finish. Eventually, we have to use statistical averaging to help communicate
the performance test results quantitatively, such as Table 3.1 for the OLTP test
illustrated above.

When each test is completed, it’s necessary to check the number of errors that
occurred. If the error percentage is below a few percent, the test is valid and acceptable.
However, if you get a lot of errors, the test is not valid and you need to resolve those
errors. Occurrence of errors is traceable with an OLTP load test tool, as shown in
Figure 3.12, which shows zero errors occurred.

Response times can be further drilled down to per user group activity. For example,
with the OLTP load test example shown earlier, there were four user groups specified
together with their assigned weights or percentages:

† repCreateOrder user group (30%)
† viewModifyOrder user group (15%)

TABLE 3.1 Summaries on the Artifacts of a Typical OLTP
Workload Test

Artifact Measured Data for Each Attribute

Number of active users 182
Overall response time Minimum: 0 s

Average: 0.94 s
Maximum: 28 s
Standard deviation: 2.9 s

Transactions Total: 10,344
Average rate: 2.7/second

Data transfer
(request þ response)

Total: 1,175 MB
Transfer rate: 307 kB/s

Web server hits Total: 600,064
Average rate: 157/second

Figure 3.12 Errors traced during the entire OLTP workload test period.

90 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



† selfCreateOrder user group (15%)
† searchOrder user group (40%)

The above distribution implies that the user scenario assumed that 30% of the users
were customer representatives who were creating orders, 15% of the users were view-
ing and modifying orders, 15% of the self-service users were creating orders, and 40%
of the users were searching orders. The ratios can be adjusted to answer various types
of what–if questions.

Figure 3.13 shows the average response times for each user group from the
OLTP load test example shown earlier, which were 2.5 s, 1.9 s, 2.1 s, and 0.9 s for
those four user groups, respectively. Note that those response time numbers do not
include think times. Think time is the user’s own time and is not controllable by
computer systems.

While average response time is one of the widely used metrics for measuring the
performance of OLTP systems, some people prefer using percentiles to more realisti-
cally quantify actual response times perceived by actual users. Figure 3.14 shows the

Figure 3.13 Average response times for each user group.

Figure 3.14 Percentile response times for repCreateOrder user group (50th percentile—2.5 s;
90th percentile—3.3 s; 95th percentile—3.5 s; 99th percentile—4.8 s).

3.3 DEFINING SOFTWARE PERFORMANCE 91



percentile chart for the first user group of the earlier OLTP example, from which
various percentile response time numbers can be extracted.

The general consensus is that the 90% percentile response time is closer to what
a user would perceive in reality. In Figure 3.14, the 90th percentile response time
for the first group of users associated with the OLTP workload example discussed
earlier is 3.3 s, in comparison with the average response time of 2.5 s. This is
shown in Table 3.2 together with the comparisons between 90th percentile response
time and average response time for all other user groups as well.

Before concluding this section, it’s necessary to clarify that the total elapsed time or
transaction time defined for an interactive user action has three parts:

OLTP Transaction time ¼ User timeþ System timeþ Browser time (3:2)

whereUser time represents the time from the user, for example, think time and the time
for clicking a button or entering a command, System timemeasures the elapsed time or
the round-trip time on a server system from when a user request leaves a user’s
machine to when the response arrives at the user’s machine, and Browser time
measures the time spent locally on a user’s machine for rendering the server response.
The response times obtained with an OLTP load test tool typically represent the system
time only without including User time and Browser time.

In the next section, we’ll discuss the performance metrics for batch jobs.

3.3.2 Performance Metrics for Batch Jobs

The performance of a batch job is measured in throughput, in contrast with response
time for OLTP workloads. Throughput measures the number of tasks completed or
the number of objects created within a given period of time. For example, a billing
application may need to reconcile customer accounts on a regular basis, say, monthly.
The monthly customer account reconciliation job might be scheduled to run within a
2-hour window at night at the beginning of each month. The performance of this batch
job can be measured in terms of the number of accounts reconciled within the 2-hour
window, which can be translated into throughput, the number of accounts reconciled
per hour.

Other examples of batch job throughput may include objects created per second,
documents created per second, purchase orders created per second, tickets created

TABLE 3.2 Comparison Between Average and 90% Percentile Response
Times for Different User Groups Associated with the OLTP Example

User Group Average (s) 90th Percentile (s)

repCreateOrder 2.5 3.3
viewModifyOrder 1.9 2.4
selfCreateOrder 2.1 2.7
searchOrder 0.9 1.1

92 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



per second, and so on. For longer batch jobs, it might make more sense to use per
minute or per hour so that you don’t end up with fractional entities created per second.

Next, let’s examine a specific case study.

B Case Study 3.7: Performance Test with a Batch Job

Figure 3.15 shows an example of batch job throughput using a real-world enterprise
application. The horizontal axis represents the number of objects created in thou-
sands with time, and the vertical axis represents the throughput in terms of objects
created per second at the instant when a specified number of objects were created.
At the end of the run, over one million objects were created. The overall average
throughput was 228 objects/second, with one million objects created over a
period of 1 hour and 13 minutes. This high throughput was obtained with 20
threads running on a high-end application server system and a high-end database
server system. However, the concrete details with this application and the systems
used for the test are less important here.

Figure 3.15 shows a well-balanced, healthy, and steady throughput evolution
as more and more objects were created. This benefited from a combination of
good design, efficient implementation, and heavy performance optimization and
tuning efforts put into the product development. This is the ideal case you want
to have with your batch jobs, or in other words, you don’t want to see throughput
going downwith time as more and more objects are created. I’ll provide an example
of throughput deteriorating with time in a later section and show you how to
analyze the problem and come up with a solution to fix it.

Although, in general, we always look at the statistic averages of software per-
formance metrics such as response time and throughput, you can also have a micro-
scopic view of the performance metrics at each instant of time. Such microscopic
views are especially useful for performance engineers to analyze the performance

Figure 3.15 Throughput evolution with a real-world enterprise application.

3.3 DEFINING SOFTWARE PERFORMANCE 93



test runs to look for ways to understand and improve the performance of the
software under development.

Figure 3.16 shows the microscopic views of the throughput evolution associated
with the one million object creation test shown in Figure 3.15. Figure 3.16a shows
the instantaneous throughput for the creation of the object instances, whereas
Figure 3.16b shows the instantaneous throughput for the creation of the object
relation instances.

Figure 3.16 (a) Throughput of a batch job that created half a million objects. (b) Throughput of
a batch job that created half a million relations.

94 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



Figure 3.16 was generated with the data extracted according to the creation time
stamps of the object instances from the database with a simple SQL script. The
extracted data was then imported into an Excel spreadsheet. Actually, the object
instances and object relation instances were created concurrently. Showing the
instantaneous throughput of both object types may help one understand which
type of object creation is more expensive and how it can be improved.

Apparently, according to Figures 3.11b and 3.15, both response time and through-
put fluctuate within a certain range with time. This kind of microscopic, stochastic
behavior is intrinsic with software performance measurements, as with any measure-
ments in other fields. It underscores the fact that even under exactly the same test con-
ditions, repeating the same tests may not yield exactly the same test results. This leads
to the question of what degree of fluctuation or reproducibility in software perform-
ance test results is acceptable—which is the topic of the next section.

3.4 STOCHASTIC NATURE OF SOFTWARE PERFORMANCE
MEASUREMENTS

For a software system, its performance can be measured more quantitatively than any
other aspect. However, it’s a fact that both response time numbers and throughput
numbers are stochastic in nature, as illustrated in the previous sections. Let’s say
we keep the hardware, software, and system configurations the same, and we repeat
the same test several times; whether it’s an OLTP workload, a batch job, or a
simple API level unit performance test, the measured performance numbers, either
response time or throughput, may differ from run to run under exactly the same test
conditions. In general, one should be cautious in interpreting any performance
number changes of less than 10% as improvements or degradations associated with
any code changes or system configuration changes. Keep in mind that performance
results are statistical numbers and statistics do contain errors.

Fluctuation in software performance test results is an important issue. That’s
because all software performance tests, whether it’s for benchmarking, regression test-
ing, optimization, or tuning, strongly depend on the accuracy and reproducibility of the
test results. To some extent, we can say that software performance is stochastic in
nature. This is a very delicate issue that must be dealt with cautiously. It’s necessary
to have a good estimate of the fluctuation of the test results so that such fluctuations
will not be interpreted as performance gains or losses associated with whatever
changes were made to any test conditions. Whenever I hear people say they made a
5% improvement or they lost 5% performance, I always wonder if that’s actually
real or purely from the test result fluctuation that is something intrinsic with any
software performance tests.

In reality, it might be very difficult to control the test conditions no matter how hard
you try. For example, if all systems under test are part of a LAN that is shared with
other daily business operations in your organization, the performance test numbers
taken with the same workload and test procedure during morning hours might differ

3.4 STOCHASTIC NATURE OF SOFTWARE PERFORMANCE MEASUREMENTS 95



significantly from those taken at midnight—by “significantly” I mean anywhere from
20% to a factor of 2 or more. However, this should not be the case if your test is not
network bottlenecked.

Even if your test is not network bottlenecked, you may still not see the ideal repro-
ducibility or precision that you might expect with all the same test conditions. My
recommendation is that, as long as the fluctuation is less than 5%, you should let it
go. However, if you are seeing that your test results differ from run to run by more
than 10% even with exactly the same test conditions used for repeating the same
test, you need to stop doing further tests and think about what is responsible for
the noticeable fluctuations in your test results. Continuing to generate invalid perform-
ance numbers is no better than generating no numbers.

In general, with a fresh setup in a new environment, I do not recommend taking the
first few tests seriously. The first few tests are just warm-up exercises for you. Take this
opportunity to check out the hardware and the system configurations. Then evaluate
how reproducible your tests are with the same test conditions. This is a prerequisite
for establishing confidence in the tests you will conduct.

If you do observe large fluctuations in your test results, here is a list of things that
you can check out to help narrow down what is causing the problem:

† Design and configure your test so that it will run for at least 10 minutes. A longer
test duration tends to smooth out fluctuations.

† Make sure that data caching at various levels, such as at storage level, file system
level, database level, and application level, is taken into account. This is
especially true for database-intensive applications.

† Make sure that you use exactly the same procedure. This is very important for
regression tests. For example, if you miss updating database statistics, you
might see very different test results at the end of your test. The regression test
typically is used for checking whether changes made to software are causing
performance slow-downs. You certainly don’t want to correlate performance
slow-downs due to stale statistics or any non-software-related changes to the
changes made to your software. This kind of mismatch may cause panic in
your organization and compromise your credibility if it happens too often.

† To some extent, only you know what you are doing. You must minimize the
fluctuations in your test results to a satisfactory level so that you do not raise
false alarms too often.

However, we do want to see positive changes in the performance and scalability
of a software system when intentional changes are made either to the software
itself, to the hardware on which it is run, or to the configurations with which it is
set to run. In this book, all the variables that can affect the performance and scalability
of a software system are classified as software performance and scalability
factors. Prior to presenting many performance and scalability factors, I’d like to
introduce you to Amdahl’s law, which is the law for understanding the impact of
the performance improvement made with a subsystem on the overall performance
of the system.

96 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



3.5 AMDAHL’S LAW

Amdahl’s law originated from explorations four decades ago on how one could
enhance the performance of a computer system by using multiple parallel processors.
Here it is adapted for evaluating the performance of a software system that consists of a
series of subsystems such as a typical three-tier system composed of a Web server, an
application server, and a database server.

Since we prefer to explore multiple factors one at a time, let’s assume that we are
dealing with a software system that consists of two subsystems. We’ll use the elapsed
time as the performance measure of the system so that it would apply to both OLTP
and batch jobs. Amdahl’s law helps estimate how much speedup one can have
for the entire system if a subsystem is made faster. We often come up with such ques-
tions when we try to figure out how we can make a system run faster by improving
some parts of it. So Amdahl’s law is very applicable for us to evaluate the potential
improvement on the performance and scalability of a software system quantitatively
by improving the performance of the subsystems.

Let’s say that we have a system that consists of subsystem 1 and subsystem 2. The
time for the system to process a request is T1 on subsystem 1 and T2 on subsystem 2, so
the total elapsed time on the overall system is T1 þ T2. Let’s further assume that we can
potentially improve the elapsed time on the second subsystem by n times, which is
termed the enhancement for convenience in this book. So the performance gain (G)
by making the second subsystem n times faster can be derived as follows:

G ¼ T1 þ T2
T1 þ T2=n

or G ¼ T1 þ T2

T1 þ T2 � T2 1� 1
n

� �

or G ¼ 1

1� T2
T1 þ T2

1� 1
n

� �

or G ¼ 1

1� f 1� 1
n

� �

or G ¼ 1

1� f þ f

n

(3:3)

where f ¼ T2=(T1 þ T2) is the original fraction of the elapsed time spent on subsystem
2 relative to the original total elapsed time of the entire system. For convenience,
we call f the impact factor in this book. The lower the impact factor associated with
a subsystem, the less the gain would be for the overall system when that subsystem
is made faster.

3.5 AMDAHL’S LAW 97



When applying Amdahl’s law, it’s important to keep in mind that the impact factor
f is calculated based on the original elapsed times on the subsystem and the overall
system, respectively. We’ll present a case study to show how much gain can be
expected for the overall system by making a subsystem 10 times faster (n ¼ 10) by
varying the impact factor f according to Equation (3.3).

B Case Study 3.8: Amdahl’s Law

Instead of showing a single data point with a specific enhancement (n) and a
specific impact factor ( f ), Figure 3.17 shows how much gain (G) can be expected
for the overall system if a subsystem can be made 10 times faster (n ¼ 10) with
different values for the impact factor ( f ).

It is not surprising that the larger the impact factor for the subsystem being
enhanced, the larger the gain for the overall system. It is seen that with the fixed
enhancement of 10 times for the subsystem, on the lower end of f ¼ 10%, the
gain for the overall system is 10% as well, while on the higher end of f ¼ 90%,
the gain for the overall system is about a factor of 5. Of course, for f ¼ 1,
namely, the subsystem is the overall system itself, the gain for the overall system
is equal to the enhancement for the subsystem.

Although the implication from Amdahl’s law is so obvious, in reality, many
people simply make bold statements that if they can make some subsystem twice
as fast, then they can make the overall system twice as fast as well. Some design
decisions are actually based on such obvious fantasies.

In the next section, I’ll show you some real-world performance and scalability
enhancement examples, which might be hard to quantify with Amdahl’s law, but

Figure 3.17 Performance gain (G) for the overall system versus the impact factor ( f) for a
subsystem with a potential enhancement of 10 times (n ¼ 10), calculated with Equation (3.3).

98 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



they are really effective. Hopefully, you can apply some of the examples here to
your product and see immediate improvements on the performance and scalability
of your product.

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS

To some extent, the performance and scalability of a software system might be one
of the most mysterious aspects of software. That’s because there are so many factors
that can affect the performance and scalability of a software system. Some of these
factors include:

† Raw performance and scalability of the underlying hardware platform. Since
software runs on hardware, hardware certainly is one of the most important
factors that determine how fast software can run when some workloads are put
on it. There are four categories of hardware factors: CPU, memory, storage,
and network. Each category is characterized with different specs:

a. For CPU, those specs include the CPU architecture, CPU clock speed,
number of CPUs, amount of cache on the processor, and the memory
bus speed.

b. For memory, it’s not that complicated: most of the time, it’s as simple as
how much memory is installed on the system.

c. For storage, one needs to know whether it’s internal or external. In addition
to the total amount of storage space available, one also needs to know the
number of I/O controllers and the number of ports on each controller as
well as the number of physical disks. If a certain level of RAID is used,
one needs to know how many disks were used to configure that RAID
level. The amount of cache at the storage level is critical for helping
boost I/O performance as well.

d. For networks, one needs to know the number of network cards and ports
installed on the computer systems under test as well as the maximum band-
width such as 100Mbps or 1 Gbps. It’s also necessary to know if all servers
are on the same subnet of a LAN or if they have to communicate with each
other across a firewall or WAN.

† How hardware is configured. All hardware systems are designed for potentially
maximizing the performance and scalability of the software applications that run
on it. Some examples may include:

a. With Intel-based servers, you may want to check whether hyperthreading
is enabled if applicable, because it may help boost the performance of
your application by as much as 30%, as was shown in Case Study 1.1
in Chapter 1.

b. With local disks on your Microsoft Windows OS based servers, you may
want to check whether Enable disk caching on the disk is checked, as it
may speed up your I/O significantly. You can check this out by following
Computer Management j Device Manager j Disk drives j Disk device j

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS 99



Properties j Policy. You can also enable disk caching on UNIX systems
using the disk format command. But be careful not to erase all your data
on the disks.

c. If you are using Microsoft Windows OS based servers and your application
is network intensive, you may want to make sure that the network adapter
media type is set to full duplex. You can check this out by following
Computer Management j Device Manager j Network Adapters j Ethernet
j Properties j Advanced j Speed & Duplex j . . . Full.

† Operating system platform. Given the same hardware, application software
installed on different operating system platforms may exhibit different perform-
ance and scalability characteristics.

† Database system platform. Given the same hardware and operating system,
database-dependent enterprise applications may exhibit different performance
and scalability characteristics with different database systems.

† How your database is configured, which is a whole category on its own and
I will give some specific examples later in detail.

† Configuration settings of your software itself, for example, whether it’s
single-threaded or multithreading capable, the number of threads configured if
multithreading capable, caching implementation and enabling, and database
connection pool settings.

† How your software product is designed and implemented. With given hardware
and the available knobs for configuring and tuning hardware systems, this is the
most critical factor for determining the performance of your software. One of the
objectives of this book is to help you design and implement performance and
scalability into your software product by adopting all well-known performance
practices and following an effective performance and scalability testing
methodology.

This seems to be a long list for software performance and scalability factors,
but we only scratched the surface of it. We are not trying to address all software per-
formance and scalability factors in this section. Instead, we simply attempt to raise the
awareness that software performance and scalability are determined by numerous fac-
tors instead of just one or two. It’s not uncommon to see orders of magnitude better
performance from the start time to when everything gets settled down.

In the following sections, I’ll present a few case studies to help reinforce the notion
of software performance and scalability factors. These case studies came from my
experience with real products and are representative of many software products devel-
oped in many organizations. Let’s begin with the hardware as one of the most import-
ant software performance and scalability factors in the next section.

3.6.1 Hardware

Although it’s so obvious that the raw performance and scalability of hardware is very
critical for the performance and scalability of a software system, it’s not uncommon to
find out that a lot of preproduction testing efforts tend to use undersized hardware.

100 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



To demonstrate how important the hardware is for the performance and scalability
of a software system, I’d like to share with you one of my real experiences with a
customer in resolving critical performance escalations.

To help determine the cause of the customer’s performance problem, I installed the
identical software stack on two different hardware setups, one consisting of two iden-
tical computer servers both using RISC processors, and the other consisting of two
identical computer servers both using Intel Xeon processors. Each RISC box had
two 1.28-GHz processors, and each Xeon box had four 3.67-GHz processors. One
box was used for the application server, and the other was used for the database server.

As shown in Figure 3.18, I had four test configurations based on all possible pair-
ings of the application server to the database server: RISC-to-RISC, Xeon-to-RISC,
RISC-to-Xeon, and Xeon-to-Xeon.

Without going into any more details than necessary, the performance of the same
software application tested with each configuration is shown in Figure 3.19. It is seen
that:

† With both the application server and the database server installed on the two
identical RISC-based systems, the application exhibited an average throughput
of 6.5 objects/second.

† With the application server installed on a Xeon-based system and the database
server on a RISC-based system, the application exhibited an average throughput
of 7 objects/second.

† With the application server installed on a RISC-based system and the database
server on a Xeon-based system, the application exhibited an average throughput
of 12 objects/second.

Figure 3.18 Four different test configurations for showing the dependence of software
performance on hardware.

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS 101



† With both the application server and the database server installed on the two
identical Xeon-based systems, the application exhibited an average throughput
of 35 objects/second.

Apparently, in this test case, the faster CPUs delivered better performance. Let’s
use the total CPU power of a computer system to quantify this interesting performance
enhancement from the slower CPUs to the faster CPUs. The total CPU power of a
computer system is defined as the product of the number of CPUs and the CPU
clock rate. It is interesting to note from Figure 3.20 that the throughput scaled

Figure 3.19 Performance of the same application with different hardware pairings for
application server and database server. RISC/RISC, Xeon/RISC, RISC/Xeon, and Xeon/Xeon
correspond to the four different configurations labeled in Figure 3.18.

Figure 3.20 The performance of an enterprise application scales linearly with the hardware
CPU processing power.

102 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



almost linearly from RISC to Xeon: a CPU power ratio of 5.73 from RISC-to-RISC
configuration to Xeon-to-Xeon configuration yielded a 5.38 times performance
improvement, which could potentially cut a one-day job into a few hours.

Convinced bymy carefully designed tests and quantitative test results, the customer
happily upgraded his hardware and achieved the performance expectation based on his
business requirements.

In the next section, I’ll demonstrate how the operating system can be a potential
performance and scalability factor.

3.6.2 Operating System

Given the same hardware, the performance of the same application may vary, depend-
ing on what operating system is installed to host the application. In this section, an
example on Windows versus Linux in terms of application performance is presented.
Note that the purpose here is not to stir up a war about which platform performs better.
Instead, my purpose is to show how the performance of an enterprise application may
depend on the operating system on which it is installed to run. Also, to make it a fair
comparison, no OS-specific tunings applied to either platform: namely, the perform-
ance numbers were taken out-of-the-box for each OS platform.

Because there were four identical Intel Xeon based servers with database involved,
there were actually four different test configurations, as shown in Figure 3.21. The
Windows 2003 Enterprise Server was installed on two systems and a specific flavor
of Linux Enterprise Server was installed on the other two systems so that we had
two Windows systems and two Linux systems.

Figure 3.21 Windows and Linux test configurations.

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS 103



These four test configurations were:

1. Win/Win configuration with both the application server and the database server
on the two separate Windows systems.

2. Linux/Win configuration with the application server on a Windows system and
the database server on a Linux system.

3. Linux/Linux configuration with both the application server and the database
server on the two separate Linux systems.

4. Win/Linux configuration with the application server on a Windows system and
the database server on a Linux system.

The common factors for this comparison of Windows versus Linux include the
following:

† Hardware. Four identical server systems with the following specs for each
system: 4 Intel Xeon quad-core processors at 2.4 GHz and 16 GB RAM.

† Enterprise Application. Two different versions of the same application—one
compiled for Windows, and the other for Linux.

† Database. Same Oracle 10g except that one was the Windows version and the
other was the Linux version.

† Workload. Same workload driven from a same-batch job diver inserting objects
into the database.

As we stated, the test tool inserts objects into the database through the application
server APIs. The same test procedure was repeated on each test configuration with
12 threads concurrently inserting objects into the database. The results are summarized
and shown in Figure 3.22.

Based on the test results shown in Figure 3.22, it is seen that:

† With both the application server and the database server onWindows, a through-
put of 290 objects/second was achieved, while with both the application server
and the database server on Linux, a throughput of 152 objects/second was
achieved. This seems to indicate that Linux was about 50% slower than
Windows with this specific example.

† With the application server on Linux and the database server on Windows and
Linux, respectively, a same throughput of 152 objects/second was achieved,
which seems to indicate that it’s the application server on Linux that caused
the slow-down.

In order to understand why the application seemed to be slower on Linux than on
Windows with this specific example, the system resource utilizations were examined
for the test configurations of Win/Win and Linux/Linux. As shown in Figure 3.23,
it seems that an unusually high kernel CPU utilization of 31% was observed on the

104 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



application server installed on Linux. This might indicate that multithreading of this
application was implemented more efficiently on Windows than on Linux.

In order to verify whether it’s an issue of multithreading implementation with the
application on Linux, the same test was repeated with only a single thread inserting
objects into the databases on the two configurations of Win/Win and Linux/Linux,
respectively. Interestingly, as shown in Figure 3.24, the same throughput of 97
objects/second was achieved on both the Windows and the Linux setups. Although
it’s not 100% conclusive, it does indicate that multithreading implementation with
this application might be less efficient on Linux with this specific example.

Figure 3.22 Multi-threading performance comparisons between Windows and Linux.

Figure 3.23 High portion of the kernel CPU utilization on the application server installed
on Linux.

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS 105



Using a similar application but with more complex application logic, a series of
tests were run on both Windows and Linux platforms to insert about 190,000 objects
into the database by varying the number of threads, respectively. The test results are
shown in Figure 3.25. This time, comparable performance of the same application
was obtained on Windows and Linux platforms.

As stated earlier in this section, the purpose of this example is not to show which
operating system is more superior to the other. Instead, I’d like to caution that the

Figure 3.24 Same performance between Windows and Linux with the same application
running in single thread mode.

Figure 3.25 Performance comparison of the same application between Windows and Linux
platforms.

106 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



operating system is indeed an important performance and scalability factor even given
the same hardware and the same application.

In the next section, I’ll show you another important performance and scalability
factor for database-intensive enterprise applications.

3.6.3 Database Statistics

It’s well known that database performance strongly depends on the most up-to-date
statistics for the database server query optimizer to decide on the optimal execution
plans. This is especially true with Oraclew 10g, which is extremely flexible for inter-
vening externally on how the optimizer chooses optimal execution plans for frequently
executed SQL queries.

Let’s first explain what optimizer statistics are. Database optimizer statistics
basically are computed profiles for database objects such as tables and indexes. If
such statistics are up-to-date and known to the query optimizer, the query optimizer
is able to compute all possible execution plans for a query and select the least
costly one for the execution of that query.

Very often, when a database-intensive application is found to be significantly slower
than it used to be, simply updating the optimizer statistics for a Schema might
immediately solve all the performance problems. Figure 3.26 shows the magic effect
of database optimizer statistics on the performance of an application. For the same
test, it is seen that the throughput was doubled after the Oracle 10g optimizer
statistics were updated during the time interval between 22:06:17 and 22:14:28.

Figure 3.26 Throughput of the same test doubled after optimizer statistics were updated with
Oracle 10g.

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS 107



The next example is another powerful demonstration about how critical it is to be
able to deal with the peculiarities of the query optimizer of a database product.

3.6.4 SQL Server Parameterization

A database server is essentially an SQL query processing engine. Database servers
from different vendors have different designs and implementations on how SQL
queries are processed, which differentiates one database server product from another.

The performance and scalability of the database-intensive enterprise applications
depend strongly on how the underlying database server is configured and tuned.
The performance and scalability factors associated with specific database servers
are abundant. This section provides one example showing how the performance of
a real-world application can be affected by the database query optimizer of the
Microsoft SQL Server 2005.

This example involves a feature in the Microsoft SQL Server 2005 that can be con-
figured to instruct the database query optimizer about how to process the SQL queries
with literal values in the where clause. The two SQL queries are considered similar if
they differ only in the literal values in the where clause. For example, the following
SQL query contains a literal value for the city column in the where clause:

SELECT customer_account_id, customer_name,
customer_phone_number from customer_table where city=
‘ANY_CITY’;

If the above query is to be executed many times with different literal values for the city
column, the SQL Server 2005 query optimizer can keep reusing the execution plan for
the above query without going through the parsing process every time.

The parameter that controls how the similar SQLs should be processed by the SQL
Server 2005 query optimizer is named PARAMETERIZATION. It has two settings:
SIMPLE and FORCED. Each setting has a different implication for similar SQLs:

† SIMPLE. This setting is the default setting for the PARAMETERIZATION
option. It instructs the SQL Server query optimizer to try to use the same
execution plan for all obviously similar SQL queries, but does not enforce
parameterization.

† FORCED. FORCED is a more aggressive setting than SIMPLE in terms of
parameterization. When the PARAMETERIZATION option is set to
FORCED, any literal value that appears in a SELECT, INSERT, UPDATE, or
DELETE statement is converted to a parameter during query compilation with
certain exceptions.

Figure 3.27 shows how much the performance of a real product had benefited from
using a proper setting for PARAMETERIZATION. The same test of inserting 88 k
objects with four threads was conducted with the two different settings of SIMPLE

108 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



and FORCED for the PARAMETERIZATION parameter. As is seen, the throughput
was 42% better with FORCED than with SIMPLE.

You can set the PARAMETERIZATION parameter for the SQL Server 2005 by
using the following T-SQL statement to enable FORCED parameterization:

ALTER DATABASE YOURDATABASE
SET PARAMETERIZATION FORCED

GO

or using the following T-SQL statement to set it back to SIMPLE:

ALTER DATABASE YOURDATABASE
SET PARAMETERIZATION SIMPLE

GO

You can also change this parameter through the SQL Server 2005Management Studio
by following the steps of Database j Property j Option j Parameterization. With the
Management Studio you can easily verify the current setting of this parameter as well.

Whether your application should use SIMPLE or FORCED should be verified with
your tests. Software performance and scalability testing is always specific to the test
case that is being tested and one should never take anything for granted without actu-
ally testing it. There is no guarantee that whatever applies to one test case would apply
to all other cases regardless. The example provided in the next section shows that
FORCED parameterization sometimes may work against you if you have deadlock
issues and you want to turn on the option of READ_COMMITTED_SNAPSHOT
on SQL Server 2005 to help overcome deadlock issues when running your application
in multithreaded mode.

Figure 3.27 SQL server parameterization SIMPLE versus FORCED with a batch job of a real
enterprise application.

3.6 SOFTWARE PERFORMANCE AND SCALABILITY FACTORS 109



3.6.5 Database Deadlocks

Multithreading is a norm for today’s enterprise applications. However, an application
might work in multithreaded mode on one database platform, but not on another
database platform. If an application couldn’t run in multithreaded mode on a specific
database platform, then the only way to run it on that database platform is to turn to
single-threaded mode, in which case, performance and scalability suffer severely.

This case study provides an example of how one could fight the database deadlock
issue if the application suffers deadlocks on the SQL Server 2005. As one of the
options, one can turn on the READ_COMMITTED_SNAPSHOT on the SQL
Server 2005 to effectively avoid deadlocks. Without having this option turned on,
the application batch job I tested running with eight threads terminated immediately
about 5 minutes after the job was launched. With a single change of turning this
option on, the same test of inserting the entire two million objects into the database
took 9 hours and 34 minutes, which yielded a high throughput of 58 objects/
second. Running this application in a single-threaded mode would have taken about
2 days and 8 hours to complete!

However, somehow this option of READ_COMMITTED_SNAPSHOT conflicts
with the option of FORCED parameterization discussed in the previous section. In
my test case, READ_COMMITTED_SNAPSHOT worked only with the SIMPLE
parameterization. In addition, if it is used with too many threads on lower-end systems
with only one or two CPUs, it may not help prevent deadlock issues. One may see
different behaviors with this option in a high-end performance test environment
than in a low-end QA environment.

In the next section, I’ll share with you another interesting experience with software
licensing.

3.6.6 Licensing

Do not ignore the fact that even licensing is a factor that may affect the performance
and scalability of your software that requires a license to run. Licensing may specify
how many client connections can run concurrently between the client and the
application server, which would certainly limit the performance and scalability of
the licensed software.

One day I found out that suddenly my test was a lot slower than it used to be and
I wasn’t able to reproduce my previous test results. Because usually there are so many
suspicious factors that can affect the outcome of a test, it took me a while to trouble-
shoot what was causing the problem. Eventually, I found that it was because somehow
all licenses for the software I was testing were gone. After adding all required licenses
without changing anything else, the test results got back to normal. This experience is
shown in Figure 3.28, which might be a good reminder that when you find nothing else
is responsible, check out the licenses!

According to my experience, much of the software performance and scalability
work with a software product is to identify and understand all software performance
and scalability factors for that product so that we can come up with better designs,
implementations, and more effective tunings to make it perform and scale better.

110 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



Keep in mind that experience is important, and software performance and scalability
work is not a guessing game. There are effective approaches to nailing down software
performance and scalability issues, and all approaches start with performance coun-
ters, which actually correspond to all performance factors. This is where we transit
from discussion of software performance and scalability factors to performance coun-
ters in the next section.

3.7 SYSTEM PERFORMANCE COUNTERS

The performance and scalability of a software system are determined by the various
performance and scalability factors. Those factors that are affecting the performance
and scalability of a software system most are classified as the bottlenecks. System
performance counters help capture those bottlenecks.

All operating systems, whether it’sWindows, UNIX, or Linux, have built-in system
performance counters that can be used to monitor how a system is utilizing its
resources. Based on the resource utilizations of a system, one can infer immediately
what the system is doing and where the problem areas are. Capturing the system
resource utilizations is one of the most fundamental tasks to be conducted for diagnos-
ing software performance and scalability problems.

A performance counter enabled through a system monitoring tool is simply a logi-
cal entity that represents one of the aspects of a resource quantitatively. For example,
one often needs to know:

† How busy the CPUs of a system are
† How much memory is being used by the application under test

Figure 3.28 Effects of licensing on the performance and scalability of a software application.

3.7 SYSTEM PERFORMANCE COUNTERS 111



† How busy the disks of a data storage system are
† How busy the networks are

System resource utilizations can be monitored in real time or collected into log files
for later analysis. In this section, I describe how this can be done on Windows and
UNIX platforms.

3.7.1 Windows Performance Console

On Windows-based computers, the performance monitoring utility program perfmon
can be used to log performance counters. Since most developers and QA engineers

Figure 3.29 Dialog box for starting up perfmon.

Figure 3.30 Windows performance console.

112 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



might have not gotten a chance to get familiar with using perfmon, we spend a
few minutes to show how to use it here.

To start up perfmon, click on Start j All Programs j Run, and enter perfmon as
shown in Figure 3.29.

Then clickOKandyou should see thePerformanceConsole as shown inFigure 3.30.
The left-hand side of the Console shows two items, System Monitor and

Performance Logs and Alerts. When the System Monitor is selected, the right-hand
side frame displays the current readings of the added counters. At the bottom of
the frame, added counters are shown. For example, Figure 3.30 shows that on the com-
puter \\HENRY-NB, the counter %Processor_Time of the Performance Object
Processor was added to display CPU utilizations. The readings associated with this
counter are: Last CPU utilization reading 53.125%, Average CPU utilization
41.359%, Minimum CPU utilization 3.906%, and Maximum CPU utilization
57.813%. This is how to tell how busy the CPUs of a system are.

It might be helpful at this point to get familiar with the above performance console.
Placing the mouse pointer on an icon at the top of the right-hand side frame shows
what that icon is for. Some of the examples include:

† Clicking on the second icon would clear the display.
† Clicking on the third icon would enable viewing current activities.
† Clicking on the “þ” icon would bring up the Add Counters dialog box for
adding new counters to the monitoring list.

† Clicking on the “x” icon would remove a counter from the current monitoring
list.

† Clicking on the light bulb icon would highlight the display for the counter
selected currently.

† Clicking/unclicking on the red-cross icon would freeze/unfreeze displaying the
current activities.

Next, let’s see how to add various performance counters. Figure 3.31 shows what
Performance object to select, what Counters to select, and whether to select for All
instances or only some specific instances.

After selecting Performance object, instances, and counters based on your
needs, click Add to add the desired counters. Click Close to exit the Add Counters
dialog box. If you want to know what a specific counter is for, select the counter
you are interested in, then click Explain and you will get a fairly detailed description
about that counter.

You can adjust the sampling interval by clicking on the Properties icon and then
specify Sample automatically every n seconds, where n is the number of seconds
you desire as the sampling interval. The default 1 second shown in Figure 3.32 is
too fast and you can increase it based on how long your test would last.

Real-time display is meant for short test duration only, and also, you would lose the
data after closing it. You can log the counters into a perfmon log file and analyze the
logs afterwards.

3.7 SYSTEM PERFORMANCE COUNTERS 113



Figure 3.32 Dialog box for entering perfmon sample interval.

Figure 3.31 Dialog box for adding perfmon counters.

114 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



To set up a perfmon logging task, follow this procedure:

† Select Counter Logs under Performance Logs and Alerts, and right-click on
Counter Logs to select the New Log Settings dialog box as shown in Figure 3.33.

† Enter a name and click on OK, which would bring up the dialog box as shown in
Figure 3.34.

† From here you can add any counters you are interested in and specify a sampling
interval. At the top, it shows the log file name, which will contain the perform-
ance log data for later offline analysis.

† You can specify the log format under the Log Files tab, either Binary File or Text
File (Comma delimited) for working with Excel to plot charts. Even if you select
binary format now, you can re-save logged data in text format later. To change
the log format from binary to text with a log file, first import the logged data
in binary format, and then specify the time range, add the counters you are inter-
ested in, and then display the data. Right click anywhere on the display area and
re-save data in text format.

† You specify the schedules under the Schedule tab. You can select to manually
start and stop or specify a logging duration to avoid logging too much unnecess-
ary data even after a test is complete.

To analyze the perfmon log data, follow this procedure:

† Select the System Monitor entry, and then click on the fourth icon of View Log
Data, which should bring up the dialog box as shown in Figure 3.35.

† Click on Add and then add the perfmon log file you want to analyze, which
should bring up a dialog box similar to Figure 3.36.

† Click on the Time Range button to display the time range for which the counters
were logged. You can move the sliding bars to adjust the exact range you want.
Keep in mind that the average value of a counter is based on the exact range you
select, so you may want to adjust to the exact start and stop times of your test.
You should keep a daily activity log that records the exact details of your test
such as test start/stop time, all test conditions, and test results so that you can
easily look back at exactly what you did with your previous test. This is a
good habit to have as a software performance engineer.

† Then click on the Data tab to get to the Add Counters dialog box. From there, first
delete all counters and then select the counters you are interested in for analyzing
your perfmon log data.

Figure 3.33 Dialog box for naming a new perfmon log setting.

3.7 SYSTEM PERFORMANCE COUNTERS 115



Figure 3.35 Dialog box for selecting the perfmon log file to be analyzed.

Figure 3.34 Dialog box for configuring a new perfmon log setting.

116 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



This seems to be a little bit tedious but it helps you learn perfmon quickly without
experimenting with it yourself. Initially, it might be difficult for you to decide what
counters you should select out of the hundreds of built-in counters. To help you get
started, Table 3.3 shows all common perfmon counters I typically use for diagnosing
my performance issues. You can add more based on your special needs, but this list of
counters should be sufficient in general.

Before moving on to the UNIX system performance counters, I’d like to share with
you some techniques of using perfmon to diagnose common performance and scal-
ability issues such as memory leaks, CPU bottlenecks, and disk I/O bottlenecks.
Using perfmon to diagnose performance and scalability issues is a very important
skill to acquire for testing the performance and scalability of a software system on
the Windows platform. perfmon is intuitive, easy to learn, and very powerful for diag-
nosing performance and scalability issues on Windows. This is true not only for trou-
bleshooting the performance and scalability problems you encounter with a complex,
large-scale software system, but also for figuring out what’s wrong when your desktop
or laptop Windows system is too slow for you to bear with.

Let’s start with using perfmon to diagnose memory leaks.

Figure 3.36 Dialog box with a perfmon log file added.

3.7 SYSTEM PERFORMANCE COUNTERS 117



3.7.2 Using perfmon to Diagnose Memory Leaks

The first chart I’d like to show is the memory growth chart, which might help you
evaluate the memory leak issues associated with your application. Memory leak is a
very common factor affecting the performance and scalability of a software system
on Windows, especially with 32-bit Windows operating systems. It’s one of the
toughest issues in developing software, as most of the time, you know your software
leaks memory, but it’s hard to know where leaks come from. perfmon can only help
diagnose whether you have memory leaks in your software; it doesn’t tell you where
the leaks come from. You have to use some other tools like Purifyw to find and fix the
memory leaks that your product suffers.

In a 32-bit environment, the maximum addressable memory space is 4 GB. On
the Windows platform, this 4 GB is split between the kernel and a process.
Although you can extend that 2-GB limit to 3 GB using a 3-GB switch parameter,
that 3 GB may still not be enough for some applications with severe memory leak
problems. So the best defense is to contain memory growth in your application.
Otherwise, when that 2-GB limit is hit, your application will start to malfunction,
which makes it totally unusable.

TABLE 3.3 A Minimum Set of Perfmon Counters to be Logged for Performance
Tests in Windows Environment a

Performance Object Performance Counters

Processor %Processor Time
System Processor Queue Length
Process %Processor Time

Private Bytes
Thread Count
Virtual Bytes
Working Set

Memory Available MBytes
Page Reads/sec
Page Writes/sec

Physical disk or logical disk %Idle Time (Note: Use 12 %Idle for %Busy Time)
Avg. Disk Read Queue Length
Avg. Disk Write Queue Length
Avg. Disk Bytes/Read
Avg. Disk Bytes/Write
Avg. Disk sec/Read
Avg. Disk sec/Write
Disk Read Bytes/sec
Disk Write Bytes/sec
Disk Bytes/sec
Disk Reads/sec
Disk Writes/sec

Network interface Bytes Received/sec
Bytes Sent/sec
Bytes Total/sec

aSelect instances that are pertinent to your tests.

118 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



As a performance engineer, you are obligated to check memory growth with your
software product by using a large volume of data. When you observe significant
memory growth, you need to communicate it back to your development team so
that they can fix it in time. Keep in mind that you need to make sure whether
memory growth would come down after your test is complete. If it doesn’t, it probably
can be classified as memory leaks, which sounds more horrible than memory growth.
There is also a likelihood that the memory growth you observe is actually memory
fragmentation, which is related to how the operating system manages memory.
Whether it is memory leak or memory fragmentation, they are equally bad as far as
the consequences to the application are concerned.

Figure 3.37 shows memory growth with two processes of an application written in
C/Cþþ. The total test duration was about 24 hours. Note that private bytes curves are
smoother than virtual bytes curves, which appear stair-cased. One should use private
memory to evaluate actual physical memory consumption. It is seen that Process A is
much more benign than Process B in terms of memory growth, as its private bytes
curve is much flatter. Process B reached 320MB at the end of the test, which
means it might reach the 2-GB memory limit if the test lasts 5 days. From this test,
it’s clear that it’s necessary to take some action against the memory growth for
Process B.

In the next section, I’ll discuss how to use perfmon to diagnose CPU bottlenecks.

3.7.3 Using perfmon to Diagnose CPU Bottlenecks

You can monitor the CPU utilizations of a Windows system using the performance
object of Processor with the %Processor Time counter if you know you have only
one major process such as a database server running on your system. If you have mul-
tiple processes running on your system, then use the Process performance object with
the %Processor Time counter for the process instances you are concerned with.

Figure 3.37 Memory growth associated with two processes of an application written in
C/C þþ in a Windows environment.

3.7 SYSTEM PERFORMANCE COUNTERS 119



The%Processor Time counter for the Processor performance object measures the total
average CPU utilization across multiple CPUs, whereas the %Processor Time counter
for the Process performance object measures the accumulative CPU utilizations across
multiple CPUs. So the maximum value is 100% for the former and N � 100% for the
latter, where N is the number of total CPUs of an N-way Windows system. This is a
subtle difference that must be accounted for when interpreting CPU utilizations.

Typically, an application might be deployed on multiple systems, for example, the
application server on one physical box and the database server on another physical
box. When the application is properly sized, and the application is well optimized
and tuned, CPU utilizations across multiple systems should be well balanced to
yield sustainable, maximum possible performance and scalability. Figure 3.38
shows such a balanced flow where the application server and database server were
about equally utilized, yielding a high throughput of creating 127 objects/second.
Over one million objects were created during a period of 2 hours and 11 minutes
with the associated test run.

If you see the CPU utilization of the database server is going up while the CPU util-
ization of the application server is going down, then some tuning is required to bring
both of them to a steady state. This phenomenon was called “bifurcating,” whichmight

Figure 3.38 CPU utilizations of two identical Intel Xeon systems on Windows 2003, one as the
application server and the other as the database server.

120 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



be very common for applications that are not well tuned [Liu, 2006]. This is a good
example that you should not just keep generating performance test numbers. You
should examine utilizations of various resources to see if there are opportunities for
improving the performance and scalability of your application as well.

The general criteria for defining CPU as the bottleneck on a computer system is that
the average CPU utilizations are above 70% or the average processor queue length per
CPU is above two. However, there might be a case where other resources, such as
disks, may become the bottleneck before the CPU does. This is especially true with
database-intensive software applications. Let’s look at such a scenario next.

3.7.4 Using perfmon to Diagnose Disk I/O Bottlenecks

In this section, I’d like to share with you a chart that shows disk activities. It is very
important to make sure that your disk I/O is not the bottleneck if your application
is database intensive.

perfmon provides a sufficient number of counters associated with disk activities.
However, very often, you may find that the %Disk Time counter may give you some
bogus numbers exceeding 100%.As aworkaround, use 100 2 %Idle Time to calculate
the disk %Busy Time, which is equivalent to the average utilization for CPUs.
Figure 3.39 shows the average disk utilizations calculated using 100 2 %Idle Time
for that one million object creation batch job discussed in the preceding section.
The database storage used for this test was an internal RAID 0 configuration stripped
across three physical disks.

Unlike CPUs, a disk utilization level of above 20% starts to indicate that I/O is
the bottleneck, whereas for CPUs the threshold is about 70%. This disparity between

Figure 3.39 Average disk utilizations.

3.7 SYSTEM PERFORMANCE COUNTERS 121



disks and CPUs is due to the fact that CPUs in general can crank much faster than
disks can spin.

Exploring disk activities is a lot more interesting than exploring CPU activities, as
we can dig deeper into more metrics such as average (read j write) queue length, aver-
age (reads jwrites) / sec, average disk sec / (read jwrite), and disk (read jwrite) / sec.
Let’s explore each of these disk activity metrics.

Figure 3.40 shows the average disk read queue length and average disk write queue
length recorded during that one million object creation batch job. It is seen that the
write queue length is much larger than the read queue length, which implies that a
lot more disk write activities occurred than read activities. This is not surprising at
all, as during this batch job test, one million objects were created and persisted to
the disks, which inevitably incurred a lot more disk writes than reads.

Queue length is a measure of the number of items waiting in a queue to be pro-
cessed. According to queuing theory, which will be introduced in a later chapter of
this book, a resource is considered a bottleneck if its queue length is larger than 2.
As we introduced earlier, the database storage used for this test was an internal
RAID 0 configuration stripped across three physical disks, which would push the
queue length threshold to 6. It’s clear from Figure 3.40 that the write queue length
was around 20, which had far exceeded the threshold value of 6. This implies that a
more capable storage system would help improve the performance and scalability of
this batch job further.

Figure 3.41 shows the average number of reads and writes per second that occurred
during this test. There were about 300 writes/second and 50 reads/second, which
once more confirmed that more writes than reads occurred during the test period for
the one million object creation batch job. Remember that the throughput for this

Figure 3.40 Average disk read queue length and write queue length.

122 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



batch job was 127 CIs/s, which implies that about 2 to 3 writes occurred per object
creation on average. This seems to be normal for most database write-intensive
applications.

In addition to knowing the disk queue lengths and I/O rates associated with a test,
it’s also insightful to know how long it takes on average per read and per write.
Normally, disk times should range from 5 milliseconds to 20 milliseconds with
normal I/O loads. You may get submillisecond disk times if the database storage
has a huge cache, for example, from a few gigabytes to tens of gigabytes.

For this test, each disk has only a 256-MB cache, so we would expect disk read
andwrite times to bewell above 1millisecond. Actual disk read andwrite times associ-
ated with this test are shown in Figure 3.42. As is seen, the average disk write time is
much longer than the average disk read time, as we already know from the previous
analysis that there were a lot more requests accumulated up in the write queue than
in the read queue. You have confidencewhen all metrics are consistent with each other.

Charts are very useful for qualitatively characterizing each performance factor.
However, they are less precise for quantifying each performance factor. To get more
quantitative, you can use the View Report functionality of perfmon to obtain the
average value of each performance counter, such as shown in Figure 3.43 with the
following quantitative values for some of the indicative disk performance counters:

† Average disk utilization: 60%
† Average disk time per read: 11 milliseconds
† Average disk time per write: 73 milliseconds
† Average disk write queue length: 22

Figure 3.41 Average number of reads and writes per second that occurred during the one
million object creation batch job.

3.7 SYSTEM PERFORMANCE COUNTERS 123



† Disk reads/sec: 46
† Disk writes/sec: 297

Keep in mind that you need to narrow the time range of your perfmon log data down
to the exact range corresponding to the start and end times of your test; otherwise, the
averaged values won’t be accurate.

Performance Console allows you to monitor system resource utilizations over an
extended period of time when the test is running. It’s convenient for post-testing per-
formance and scalability analysis. However, sometimes, you may want to use another
Windows utility tool—Task Manager—for checking the resource consumption on the
current Windows system. This is the topic for the next section.

Figure 3.42 Average disk read time and average disk write time with the one million object
creation batch job. Note that avg. disk sec / (read j write) are perfmon counter names and the
actual units are in milliseconds.

Figure 3.43 Perfmon report.

124 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



3.7.5 Using Task Manager to Diagnose System Bottlenecks

We’ll see in this section that Task Manager is more convenient than perfmon for some
tasks. For example:

† You may want to have a quick look at how busy the CPUs of a system are overall
right now.

† You may want to check how well balanced the CPU utilizations are across mul-
tiple CPUs of the system. This actually is an easy way to tell whether the software
is running in multithreaded mode by examining whether all CPUs are about
equally busy simultaneously.

† You may want to check which processes are consuming most of the CPU power
on this system right now.

† You may want to check how much memory is used right now. And you can drill
down to which processes are consuming most of the memory.

† You may want to check the network utilization right now.
† You can even see in real time if memory is leaking or not. If you see the memory
consumption of a process is only going up, then there are probably memory leaks
with that process.

First, to start up Task Manager, press CTRL þ ALT þ DELETE and you should
get a dialog box similar to Figure 3.44.

As shown in Figure 3.44 under Performance tab, this system has two CPUs and
both of them were busy, which means that the application is a multithreaded appli-
cation. It also shows that a total memory of 374 MB was used up to that moment.

You can check the network utilizations by clicking on the Network tab, and check
the users currently logged in by clicking the Users tab. But the most important tab for
troubleshooting a performance issue with a system is the Process tab.

Computer programs run on a computer system as processes. Each process has an ID
and a name to identify itself on the system it is running. By clicking on the Process tab
on theWindows TaskManager dialog box, you can bring up a list of processes that are
running currently on the system, as shown in Figure 3.45.

A few notes about this Process tab:

† You may want to check the box of Show processes from all users at the left
bottom corner of the screenshot in Figure 3.45 in order to see the processes
that you are looking for.

† You can’t see your processes unless they are running right now.
† You can sort by CPU Usage or Memory Usage to look for the most CPU-
intensive or memory-intensive processes running on this system right now.

† You can decide on what metrics you want to be displayed by clicking on the
View j Select Columns . . . which would bring up the list of metrics you can
select, such as shown in Figure 3.46.

As you can see from the screenshot in Figure 3.46, you can select the Memory
Usage, Memory Usage Delta, and Peak Memory Usage from the view options

3.7 SYSTEM PERFORMANCE COUNTERS 125



made available. These counters give a complete view of the process memory con-
sumption. When a memory-intensive application is running, you will see the
memory usage for that process keeps growing with more positive memory usage
deltas than negative ones. If the memory usage doesn’t come down after the process
completed its task and is waiting for more new tasks, that’s an indication that there is a
memory leak issue with that process.

This concludes our discussion on performance counters on Windows systems.
Most software development work is done on Windows, which is why we covered
more topics on Windows.

However, for enterprise software applications, UNIX or Linux platforms are the
most likely choice for some customers, so you might need to test out your software
on these platforms as well. Instead of repeating what is already available in many
UNIX/Linux texts, in the next section, I’ll show you a simple script that can be
used to capture the CPU and memory consumptions for the processes that you are

Figure 3.44 Windows Task Manager.

126 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



Figure 3.45 Process view from Windows Task Manager.

Figure 3.46 Select columns for process view.

3.7 SYSTEM PERFORMANCE COUNTERS 127



concerned with. This probably is sufficient for most of your performance test needs. In
a production environment, UNIX/Linux systems are typically managed by pro-
fessional administrators who have developed special ways of capturing various
system performance counters or simply use tools provided by vendors. That is
beyond the scope of this book.

3.7.6 UNIX Platforms

On UNIX and Linux systems, vendors provide their own system performance moni-
toring tools, although some common utilities such as sar might be available on all
specially flavored platforms.

Performance troubleshooting often requires monitoring resource utilizations on a
per-process basis. This might be a little bit more challenging on UNIX systems than
on Windows systems. On Windows, you use perfmon to configure which processes
and what counters you want to monitor. On UNIX systems, you need a script to do
the same job. Here, I’d like to share one script that I often use on a specially flavored,
popular UNIX platform for capturing CPU and memory utilizations when my tests
were running. Since it’s written in bash shell, it could be run on other UNIX and
Linux systems as well.

Here is the script that you can adapt to your needs for monitoring systems resource
usages on a per-process basis in your UNIX or Linux environment:

#!/bin/bash

sleepTime=60

pattern="yourPattern"

x=0

procId=$(ps -eo pid,pcpu,time,args | grep $pattern |\

grep –v grep | awk ‘{print $1}’)

echo "procId="$procId

while [$x -ge 0]

do

date=$(date)

ps0=$(ps -o vsz,rss,pcpu -p $procId)

x=$((x+1))

echo $x $date $ps0 | awk ‘{print $1, $3, $4, $5, $8,\

$11/1000.0, $9, $12/1000.0, $10, $13, $14}’

sleep $sleepTime

done

As you see, this is a bash script. You need to specify how often you want to sample
(sleepTime) and enter a string ( pattern) that represents your process. Then you extract
the process ID of that process. Using that process ID, you keep polling in an infinite
loop for the counters you want to record. In this script, I was most interested in three
counters, vsz, rss, and pcpu, which represents the virtual memory size, resident
memory size, and CPU usage associated with that process. The counters vsz and rss

128 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



are equivalent to the virtual bytes and private bytes counters of perfmon on Windows,
respectively. These counters are very useful for monitoring memory growth associated
with a process.

To execute this script, change to the bash shell environment and issue the following
command:

prompt. ./scriptFileName . filename.txt &

The output is directed to a text file that you can analyze later. The text file is formatted
with comma, so you can import it into an Excel spreadsheet to draw the charts you are
interested in. Remember that this is an infinite loop, so you need to bring it to the fore-
ground using the command fg and stop it after you are done.

If you cannot run this script, you might need to execute the command chmod
700 scriptFileName to set proper permissions.

Also, this simple script can be modified to monitor multiple processes in a single
script.

In the next section, I’ll propose several software performance data principles to
help enforce the notion that software performance and scalability testing is not just
about gathering data. It’s about getting data that has value for your company and
your customers.

3.8 SOFTWARE PERFORMANCE DATA PRINCIPLES

Before concluding this chapter, let’s discuss a few software performance data
principles that can help ensure that decisions made for improving performance and
scalability of a software system are based on properly collected performance
data. Actions based on improperly collected performance data will not yield the
intended results.

When collecting software performance and scalability test data, the following prin-
ciples should be observed:

Principle 1: Hardware Principle. Software performance and scalability tests are
different from QA tests. Development and QA tests are typically conducted on very
low-end systems, while performance and scalability tests should be conducted on
high-end systems. There are two main reasons for the requirement of using high-
end systems for performance and scalability tests:

† Low-end systems exhibit very different performance and scalability behaviors
than high-end systems do. The performance and scalability problems observed
on the low-end systems may simply be caused by undersized hardware, which
might be absent if high-end systems are used.

† Testing the performance and scalability of a software system requires using suf-
ficient load, which may not be doable with low-end systems.

3.8 SOFTWARE PERFORMANCE DATA PRINCIPLES 129



The general principle for choosing proper hardware for software performance and
scalability tests is that it should be close towhat the customer will use in production, or
at least much more powerful than the systems used for development and QA tests.
Remember that the performance and scalability of a software system strongly
depend on the hardware used for testing, and therefore do not pick undersized hard-
ware just because it’s available. If your software is enterprise class software, it
doesn’t make sense to run your performance and scalability tests on a single desktop
with the entire software stack including the database installed on it.

Principle 2: Platform Principle. Here the word platform refers to a collection
of software systems above the hardware layer on which a software application
depends, for example, the operating system, database system, and any other type of
middleware systems. If the software supports both Windows and UNIX, then com-
mensurate tests should be conducted on both operating systems. Likewise, if the soft-
ware supports both Oracle and Microsoft SQL Server, then commensurate tests
should be conducted on both database systems. Too many permutations should not
be used as an excuse for limiting the performance and scalability tests to one combi-
nation of platforms only. You might be surprised that your software performs and
scales well on one platform, but not on others, as some database queries might be
quite okay on one platform, but not on other platforms. In that case, you might
need to add additional indexes. Do not take it for granted that your software performs
and scales well on the platform you tested and therefore it will perform and scale well
on other platforms as well.

Principle 3: Reality Principle. The test scenarios and workloads should closely
mimic how your customers would use your product. Sometimes, it might be difficult
to know exactly how a software system will be used by real users. It’s acceptable to
start with some hypothetical scenarios, but it should be taken as an iterative process;
namely, the scenarios should be refined over time.

Principle 4: Volume Principle. Although it’s acceptable to use lighter workloads
for performance regression tests, one should make sure that tests using large volumes
of users and data are conducted as well to reveal the true performance and scalability
of a software system in real usage scenarios. Such tests are especially interesting to
customers, as they want to know if the software they plan to purchase will meet
their requirements with the number of users and volume of data they run. In addition,
the foundation data that your test depends on should be realistic. Synthetic data might
be too perfect and sometimes may not reveal the functionality and performance pro-
blems that only real users can discover. For example, when you create customer
account data yourself, you may not have the correct relationships among the various
entities created. This is often a difficult issue to deal with: you use your own manufac-
tured data for your functionality and performance testing, but customers may see
different functionality and performance behaviors when they use your software with
their real data in a real-life environment.

Principle 5: Reliability Principle. Your performance and scalability test results
should be reproducible with acceptable fluctuations when exactly the same test

130 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



conditions are followed. This is the reliability principle for evaluating your software
performance and scalability test data. The reproducibility requirement is not absolute
in the sense that it allows a reasonable level of fluctuations, which ideally should be
only a few percent or less. This will help avoid interpreting nondeterministic factors
into performance issues and raising false performance alarms or following to wrong
avenues toward solving a software performance problem.

Principle 6: Quality Principle. This principle measures the overall quality of the
test results. In some cases, test results may satisfy all the preceding principles but may
not be of high quality. For example, if the tests keep using cached data that will not be
cached in the production environment due to too many users or too large a volume of
data, then the test results would be invalid no matter how good they look and how
reproducible they are. It’s hard to define a measure of quality in general for perform-
ance and scalability test data, since it is software dependent. Only you can define the
quality of your test data as you are most familiar with how your softwarewill be used in
production. Do not jump to conclusions immediately with your test results. Think hard
and make sure that your test results are valid and then derive your actions based on
your test data.

This is by no means a complete list of all software performance data principles.
Based on your own situations, you can derive more to make sure that your test results
make sense and deliver values for your organization.

Hopefully, at this point, you have gotten the concept of software performance and
scalability factors. I hope you have also learned how to use Windows perfmon and the
UNIX utilities to log various performance counters to help you identify the various
factors that are critical for the performance and scalability of your software. If you
have achieved these goals, you are now equipped with the necessary technical skill
set to conduct software performance and scalability testing. However, that may not
be enough. In the next few chapters, I’ll help you learn how to analyze, optimize,
and tune the performance and scalability of your software based on queuing theory
and API profiling so that you will become proficient in coping with software perform-
ance and scalability challenges in general.

3.9 SUMMARY

In this chapter, we started with defining the scope of software performance and
scalability testing in general, which includes four different categories: regression
testing, performance testing, benchmarking testing, and scalability testing. We then
elaborated with concrete case studies for the categories of regression testing and
scalability testing.

We then drew a boundary between QA testing and performance testing.We empha-
sized that performance testing should use well-QAed versions of software so that
performance work will not overlap with QA work.

3.9 SUMMARY 131



We briefly introduced agile software development and extreme programming. The
motivation for learning about the software development process is to help understand
how software performance and scalability work can be incorporated into the software
development process most effectively and efficiently.

We defined software performance metrics for both OLTP and batch jobs. OLTP
workloads are measured in response times, whereas batch jobs are measured in
throughput. We used concrete examples to demonstrate what artifacts one should
expect from both OLTP and batch job performance tests.

We emphasized the stochastic nature of software performance measurements so
that one would not interpret intrinsic fluctuations in measurements as performance
gains or degradations when testing the changes introduced either to source code or
to system and application configurations.

We then introduced Amdahl’s law, which is very helpful for evaluating the per-
formance gain to the overall system based on the enhancements on the subsystems.

The central part of this chapter is about understanding software performance and
scalability factors such as hardware, operating system, database configurations, and
application configurations. We presented plenty of real-world case studies showing
various common performance and scalability factors that can be expected with a
software system.

We presented step-by-step procedures about how to use perfmon and TaskManager
to monitor the potential performance and scalability factors and how to further identify
bottlenecks that limit the performance and scalability of a software system.

At this point, you should be very knowledgeable about software performance
and scalability in general. You should have no difficulties in actually designing and
conducting software performance and scalability tests. However, I encourage you to
study through the rest of this book so that you will become much more effective
and efficient in helping solve challenging software performance and scalability
problems.

RECOMMENDED READING

There are quite a few very good classic texts on software performance and scalability
in general that every software stakeholder should have on his/her bookshelves.
I especially recommend the following:

N. Gunther, The Practical Performance Analyst, McGraw-Hill, 1998.

D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy, Scaling for E-Business, Prentice Hall
PTR, 2000.

D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy, Performance by Design, Prentice Hall,
2004.

C. U. Smith and L. G. Williams, Performance Solutions—A Practical Guide to Creating
Responsive, Scalable Software, Addison-Wesley, 2002.

Some older but still very helpful texts include:

132 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



E.D. Lazowska, J. Zahorjan, G. S. Graham, andK. C. Sevcik,Quantitative SystemPerformance:
Computer System Analysis Using Queuing Network Models, Prentice Hall, 1984.

R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991.

The following text is most authoritative on agile and extreme programming:

K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

For Amdahl’s law, consult the following texts:

G. M. Amdahl, Validity of the single-processor approach to achieving large scale computing
capabilities, in AFIPS Conference Proceedings, Volume 30, AFIPS Press, 1967,
pp. 483–485.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 4th edition,
Morgan Kaufmann, 2007, pp. 29–32.

The following publication is quoted in Section 3.7.3 for associating sustainable per-
formance of software with the balance of system resource utilizations in an N-tier
deployment architecture:

H. H. Liu, Applying queuing theory to optimizing enterprise software applications, in CMG
2006 Proceedings, Reno.

EXERCISES

3.1. List the top two reasons why performance regression testing is critical for each
release (major or patch level) of a software product.

3.2. While figuring out how the performance of an large-scale enterprise application
can be improved, a developer decides that he wants to create one object in the
database with API logging turned on and find out where most of the execution
time is spent. What can you make of it?

3.3. With a database-intensive enterprise application, a developer states that she could
reduce the number of executions for an SQL query by half, and therefore she
expects the application will perform twice better. What can you make of it?

3.4. AWeb application is deployed on a setup consisting of a Web server, an appli-
cation server, and a database server. The performance test analysis shows that
70% of the total elapsed time with a specific type of user activity was on the
database server. Let’s say that the amount of elapsed time spent on the database
server for this type of user activity can be reduced by five times by applying some
database configuration tunings. What would be the expected performance gain
for the overall system?

3.5. Design and develop a simple Windows 32-bit program in any high-level pro-
gramming language with which you are familiar. Make sure that your program
will be CPU and memory intensive to some extent. Run your program and log
all the common performance counters with perfmon. Based on the perfmon

EXERCISES 133



data collected when running your program, write a test report showing the CPU
and memory consumptions associated with your program.

3.6. Table 3.4 shows the load test results of an OLTP application with the given user
types and the number of users for each user type. In the table, R represents the

average response time and Z represents the average think time. Calculate the
number of concurrent users for each user type. What’s the percentage of the
users who were stressing the system concurrently?

TABLE 3.4 An OLTP Load Test Profile

User
Type

# of
Users R (s)/(R þ Z) (s)

# of Concurrent
Users

UT01 60 2.53/62.38 ( )
UT02 40 1.87/78.44 ( )
UT03 40 2.08/74.22 ( )
UT04 60 0.89/42.06 ( )

134 TESTING SOFTWARE PERFORMANCE AND SCALABILITY



Part 2

Applying Queuing Theory
Mathematics is the language with which God has written the universe.

—Galileo Galilei, 1564–1642

No human investigation can be called real science if it cannot be demonstrated
mathematically.

—Leonardo da Vinci

Coping with the performance and scalability of a software system effectively depends
not only on the quantitative measurements as described in Part I but also on the quan-
titative analysis based on proven theories such as queuing theory. It’s more reliable to
count on queuing theory than on gut instincts in identifying bottlenecks that limit the
performance and scalability of a software system, since queuing theory can provide
more quantitative and objective guidance. Queuing theory is helpful not only for arriv-
ing at the conclusions about where the bottlenecks are but also for giving the prescrip-
tions about how the bottlenecks can actually be removed.

This part is dedicated to queuing theory augmented with case studies as follows:

† Chapter 4—Introduction to Queuing Theory
† Chapter 5—Case Study I: Queuing Theory Applied to SOA
† Chapter 6—Case Study II: Queuing Theory Applied to Optimizing and Tuning
Software Performance and Scalability

Please note that the material presented in this part is not an introduction to queuing
theory in general and in depth. I’d like to help you learn the part of queuing theory that
is most relevant in the context of the performance and scalability of a software system.
In other words, queuing theory is introduced in this book from a practical point of
view, rather than from an academic point of view.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

135





4
Introduction to
Queuing Theory

Numbers are the highest degree of knowledge. It is knowledge itself.
—Plato

Queuing theory is not developed specifically for improving the performance and
scalability of a software system. It’s generic and applicable in many fields. It’s devel-
oped for computing and optimizing the efficiency of any system that achieves its
objectives by consuming multiple resources optimally. Queuing theory can be applied
to computing and optimizing the efficiency of the following:

† Industrial production processes such as automobile manufacturing process,
semiconductor manufacturing process, or any manufacturing process that
requires optimally utilizing various resources to achieve maximum possible
efficiency

† Customer call centers that handle large volumes of customer service requests
everyday

† Telecommunication systems consisting of networks, switches, and routers that
process large volumes of network packets everyday

† Computer systems that execute large volumes of requests from active users or
transactions regularly scheduled as batch jobs

What are the benefits of learning queuing theory for solving your software perform-
ance and scalability challenges?

Queuing theory can help you understand all software performance and scalability
concepts more formally. You might have heard that software performance is more of
an art than a science. This is a misconception. As you will see, in the framework of
queuing theory, all software performance concepts such as response time, throughput,

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

137



and number of requests can be described with corresponding mathematical symbols;
and the interrelations among those concepts can be described quantitatively with a
number of mathematical equations as performance laws. A good understanding of
all software performance concepts more formally in the framework of queuing
theory is beneficial for being able to cope with software performance and scalability
challenges more effectively.

Queuing theory can help you understand software performance and scalability
more scientifically. The performance and scalability of a software system depend on
the use scenarios and the raw performance and scalability of the underlying hardware
and software platforms. A use scenario can be an online user activity or a batch job.
The underlying hardware platform consists of various components such as the compu-
ter CPUs, memory, networks, and storage. The supporting software platform consists
mainly of the operating system and all middleware systems. The performance metrics
for online user activities and batch jobs are response time and throughput, respectively.
Queuing theory unifies all those aspects and metrics with quantitative performance
laws mathematically. After grasping queuing theory, you will get accustomed to
coping with software performance and scalability challenges with a more scientific
approach, similar to the way adopted by scientists in many traditional disciplines.
This is another requirement for being able to cope with software performance and
scalability challenges more effectively.

Queuing theory can help you identify software performance and scalability bottle-
necks more efficiently from a practical point of view. As we stated earlier, queuing
theory provides the laws that govern the performance and scalability of a software
system that operates using multiple hardware resources. By applying queuing
theory, you can easily identify the bottlenecks that limit the performance and scalabil-
ity of your software system. Based on the bottlenecks identified, you can apply various
optimization and tuning techniques or upgrade your hardware to help push the per-
formance and scalability of your software to the next level.

Queuing theory can help you analyze the root causes of your software performance
and scalability problems more objectively. Software performance and scalability fac-
tors are abundant, and it’s impractical to test out every possible permutation or use
trial-and-error tactics until the real root causes are found. Being guided by queuing
theory can help you narrow down the root causes of your software performance and
scalability issues more efficiently than relying on gut instinct.

Queuing theory can help you come up with more dependable sizing guidelines for
your software products. For many software development organizations, it’s often
necessary to publish dependable sizing guidelines to help customers plan appropriate
hardware capacities ahead of production deployment. Based on your quantitative per-
formance and scalability test results obtained with a certain test architecture, which is a
combination of your use scenarios, test methodologies, hardware platforms, operating
system platforms, database backend platforms, and middleware platforms, you can
apply queuing theory to analyze your test results and come up with meaningful
sizing guidelines for your customers.

Overall, a minimum understanding of queuing theory from the software perform-
ance and scalability perspectives is necessary to cope with software performance and

138 INTRODUCTION TO QUEUING THEORY



scalability challenges effectively. It’s also a necessary training for establishing an
appropriate performance-oriented mindset and mentality. This chapter and the next
two queuing theory case study chapters will help you achieve such objectives.

This chapter is organized as follows. In Section 4.1, I’ll begin with an introduction
to the basic queuing concepts and the mathematical symbols used to formulate queu-
ing theory. Whenever you learn a new theory, you should always start with its basic
concepts and the mathematical symbols used to express the theory. Familiarity with
all basic concepts and consciously memorizing all the mathematical formulas as
well as all the mathematical symbols will help you grasp the theory faster. Of
course, learning any theory is not just about memorizing the symbols and mathemat-
ical equations mechanically. The importance is that you understand all the impli-
cations behind the theory and know how to use the theory to solve real problems.

In Section 4.2, I’ll give a brief introduction to probability theory, which is very
necessary as probability and statistics are the foundations on which queuing theory
was developed. Also, a review of the basic concepts of probability theory such as
random variables and distribution functions is a necessary preparation for understand-
ing how queuing theory is established mathematically.

In Section 4.3, I’ll introduce Markov random processes, Poisson and exponential
distributions, and Kendall notation. Kendall notation is the framework with which a
queuing system is characterized. I’ll briefly touch upon the difference between a queu-
ing node and a queuing system, which is a preparation for understanding more com-
plicated queuing systems.

Section 4.4 presents what I hope you would eventually learn about all important
queuing models for networked queuing systems. I’ll concentrate on Little’s law and
some variations of the open models and closed models that are very useful in solving
real software performance and scalability problems.

I’ll take a practical approach to introducing queuing theory without involving com-
plicated mathematics. I’ll try to be as concise and precise as possible so that after you
read this chapter, you will be able to apply the concepts and useful formulas of queu-
ing theory to your software performance and scalability work.

Appendices A through C introduce more advanced concepts such as stochastic
equilibrium and ergodicity about random processes. This provides the flexibility for
those who wish to learn things in a bottom-up approach (like myself). It is also
strongly recommended for the college and graduate students who wish to get a
more formal training on queuing theory in general.

Let’s begin with the basic concepts and metrics of queuing theory.

4.1 QUEUING CONCEPTS AND METRICS

Basic concepts are the building blocks for any theory. By getting familiar with the
basic concepts of a theory, you know immediately what problems that theory is
trying to solve. This is the first step to begin with when learning any new theory.
Let’s begin with the basic concepts of queuing theory before moving to the abstract
probability theory that describes queuing theory more rigorously.

4.1 QUEUING CONCEPTS AND METRICS 139



4.1.1 Basic Concepts of Queuing Theory

In fact, it’s not that hard to grasp the basic concepts of queuing theory. Everybody
has the experience of visiting a banking center. When we deposit or withdraw at a
banking center, most of the time, we have to wait in line in order to be serviced by
a teller. We don’t want to wait too long in line and we care about how long it takes
for a teller to complete servicing us so that we can leave for the next thing on our
busy daily agenda.

With this simple banking example, we already touched upon most of the concepts
of queuing theory. Using the banking center example, some important basic concepts
that queuing theory is based upon can be illustrated as follows:

† Server. This is banking center fulfilling the customer’s service requests.
† Customer. This is the initiator of service requests.
† Wait Time. This is the time duration a customer has to spend waiting in line.
† Service Time. This is the time duration from when a teller starts to service a cus-
tomer to when the customer is leaving the teller and the next customer is called in
for service.

† Arrival Rate. This is the rate at which customers arrive for service.
† Service Rate. This is the rate at which customers are serviced.
† Utilization. This is the portion of a teller’s time actually servicing customers
rather than idling.

† Queue Length. This is the total number of customers waiting or being serviced
or both.

† Response Time. This is the sum of wait time and service time for one visit to
a teller.

† Residence Time. This is the total response time if the teller is visited multiple
times for one transaction.

† Throughput. This is the rate at which customers are serviced. A banking center
certainly is interested in knowing how fast it can service customers without
losing them because of long wait times.

So from banking efficiency and customer satisfaction perspectives, we already
know that both a banking center and customers are interested in:

† Minimizing wait time so that the banking business would be more efficient and
customers would be happier

† Minimizing service time by training tellers to become more and more proficient
so that the banking center can run its business more efficiently

† Knowing the average customer arrival rate so that the banking center will neither
over- nor understaff.

† Minimizing both response time and residence time by refining the transaction
processes

† Striving for the highest possible throughput to stay profitable while making cus-
tomers happy

140 INTRODUCTION TO QUEUING THEORY



As you may have seen, by thinking in the framework of queuing theory, it’s a lot
easier to brainstorm various ways of improving the productivity and efficiency of
the processes we are concerned with.

Let’s further construct a case to see what typical problems queuing theory can help
resolve in the context of software performance and scalability. The question can be
formulated as follows:

For a given average arrival rate l and a given service rate m, how many parallel
servers (m) are required in order for the system to operate under steady-state
conditions?

This problem can be answered by requiring that the system load intensity (r)
defined as r ¼ l /mm must be smaller than one or l/mm , 1 or m . l/m, where
m is the minimum number of parallel servers required to maintain the steady-state
operating condition for the system. If a system is not designed properly to guarantee
that the steady-state condition of r ¼ l/mm , 1 is satisfied, then it will begin to
mal-function or even crash sooner or later because of the load exceeding the system’s
processing capacity.

Using this banking example as an easy entrance to understanding queuing theory,
we can now formally transit to queuing theory in a more rigorous format in the context
of software performance and scalability.

4.1.2 Queuing Theory: From Textual Description
to Mathematical Symbols

An analytical theory identifies important phenomena in reality and represents them in
mathematical symbols, and further formulates them in succinct equations to become
quantitative. This transition from being qualitative in textual description to being
quantitative in mathematical format is inevitable and we all need to embrace it
when it comes down to grasping a theory.

With the help of a graphic representation of a queue as shown in Figure 4.1, we can
now begin to correlate the basic concepts of queuing theory we introduced earlier with
their correspondingmathematical symbols. In Figure 4.1 we have replaced customer in
the banking example with request, which is more pertinent to the context of software
performance and scalability. However, throughout this chapter, customer, software
service request, and user will be interchangeable whenever it’s more pertinent to
the concrete context.

To elaborate further, each bean in Figure 4.1 represents a request, which could be a
system or user call from a caller to a callee. There is a queue in front of the server,
which stores all arriving requests for the server to process. In the context of software

Figure 4.1 Graphic representation of a queuing system.

4.1 QUEUING CONCEPTS AND METRICS 141



application running on one or more computer systems, the server could be any type of
resource, for example, a software server or any hardware components such as pro-
cessors, disks, and networks. The power of a theory is that it can be developed
based on an abstract model that represents a bunch of entities in reality and can
then be applied to each of the entities from which the generic abstract model was
built. This is one of the most fascinating aspects of theories that have attracted a lot
of bright minds to work on them diligently.

In the preceding section, we introduced all the basic concepts of queuing theory.
Without further delay, let’s see how some of the basic concepts of queuing theory
and their corresponding symbols correlate with each other. This correlation is
shown in Table 4.1.

Each symbol in this table represents one metric of a queuing system. This set of
symbols represents the complete set of metrics for a queuing system. Queuing
theory weaves these concepts and symbols into formulas in a meaningful way so
that the behavior of a queuing system can be studied analytically. Analytical formulas
are powerful because they provide insight into how one metric can affect others if it
changes. In addition, analytical formulas are arrived at based on abstract models,
and therefore they are widely applicable.

Keep in mind that to help facilitate communications with others, it’s necessary to
stick to the same symbols commonly used in the literature; for example, S always rep-
resents service time, V the number of visits to the same server, D service demand,
R response time, R0 residence time, X throughput, l arrival rate, U utilization, W
wait time, and N queue length. As another benefit, sticking to a fixed set of symbols
can help you remember those analytical formulas that we will introduce later. It’s
easier to think in symbols than in text descriptions when learning a theory.

Queuing is a dynamic process. The number of arriving requests to a queue is sto-
chastic or random in nature, and the service time is not a constant either. This puts us in
a position of relying on certain probability distributions to study queuing processes.
Probability distributions are not only a prerequisite for discussing queuing theory,
but also a powerful testimony for the errors that are inherent in software performance
measurements. Certain errors will exist in our measurements no matter how well we

TABLE 4.1 Mathematical Symbols Used in Queuing
Theory

Symbol Semantics

S Service time
V Number of visits to the server
D Service demand
R Response time
R0 Residence time
X Throughput
l Arrival rate
U Utilization
W Wait time
N Total queue length (waiting and/or being serviced)

142 INTRODUCTION TO QUEUING THEORY



control the test environment. I emphasized this in Chapter 3 to avoid interpreting small
errors in measurements as performance gains or losses.

How the entities represented by those symbols in Table 4.1 are correlated with each
other mathematically is the gist of queuing theory. We’ll get there after a brief intro-
duction to probability theory in the next section. Keep in mind that queuing theory is
built on probability theory and statistic laws.

4.2 INTRODUCTION TO PROBABILITY THEORY

Probability theory is the branch of mathematics concerned with analysis of random
phenomena. The central objects of probability theory are events, random variables,
and stochastic processes. These objects are mathematical abstractions of nondetermi-
nistic events or measured quantities that may either be single occurrences or evolve
over time in an apparently random fashion.

Probability theory is the mathematical foundation for statistics. It is essential to
understanding a lot of natural phenomena, human activities, and behaviors of various
complex systems. A great discovery of the 20th century in physics was the probabilistic
nature of physical phenomena at the atomic scale, described in quantum mechanics.
Another amazing example is the pre-presidential election polling in the United
States: it’s said that none of the actual presidential election outcomes have deviated
fromwhat was predicted from the pre-presidential polling that samples only thousands
of potential voters out of millions. Of course, probability theory has contributed a lot to
understanding the performance of both computer hardware and software.

There are two branches of probability theory: discrete probability theory, which
deals with events that occur in countable sample spaces, and continuous probability
theory, which deals with events that occur in a continuous sample space. They both
share the same theoretical framework and complement each other. And they both
begin with random variables and probability distribution functions, as you’ll see
from the following sections.

4.2.1 Random Variables and Distribution Functions

In probability theory, a random variable is a variable whose values are random and to
which a probability distribution is assigned. For example, when tossing a coin, there
can be only two outcomes: heads or tails. When rolling a die, the possible outcome
space is extended to f1, 2, 3, 4, 5, 6g, as a die has six sides. In these cases, the outcome
of tossing a coin or rolling a die is a value assigned to a discrete random variable; the
probability for each occurrence of the outcome of each experiment is either 1/2 or 1/6.

Tossing a coin or rolling a die is like doing an experiment. As we have seen from the
above description, the outcome of each experiment can be expressed using the value of
a variable X. If you don’t like gambling, another example might be that every time you
measure the number of customers arriving at a banking center over a period of time,
you would get a number that represents the number of arriving customers you counted
over that period of time. A series of counting over multiple observation intervals would

4.2 INTRODUCTION TO PROBABILITY THEORY 143



constitute an experiment, which would yield a value set assigned to a variable that
represents the number of customers arriving at a banking center.

Although varying with certain random factors, for example, you can never predict
exactly how many customers you are going to see coming to the bank over the next
period of time, the values of this variable X follow a certain probability distribution
law. This kind of variable is called a random variable and can be represented using
uppercase letters such as X or T. Representing a random variable with concrete
values embodies the quantification of a random phenomenon, which is a great step
toward describing random phenomena quantitatively and mathematically.

Given a random variable X, the probability that its values do not exceed a
real number x is a function of x, or in other words, it depends on the concrete
value of x which represents the state of the random process under study. This prob-
ability function is generally designated as P(X � x) in the event of X � x and is
called the probability distribution function (PDF) or simply the distribution function
of the random variable X. It is further expressed as F (x), namely,

F(x) ¼ P(X � x) (�1 , x , 1) (4:1)

Note that uppercase letters are used to express random variables, whereas lowercase
letters are used to express the values of a random variable. Making this distinction
can help you understand the associated abstract mathematical equations better.

Some random variables can only take nonnegative integer numbers as their value
set, for example, counting the number of customers arriving at a banking center. And
some random variables can take any values including fractions such as the interarrival
time between the two customers who come one after another. Thus we have discrete
random variables and continuous random variables.

4.2.2 Discrete Distribution and Probability Distribution Series

Mathematically, if a random variable X can only take a limited or infinite number
of discrete values of x1, x2, . . . , xk, . . . , we then call X a discrete random variable.
If we express P(X ¼ xk) as pk or P(X ¼ xk ) ¼ pk (k ¼ 1, 2, . . .), then the probability
distribution of the values that X can take is completely determined by the series
fpkg. We call fpkg the probability distribution series of X. The distribution function
of X is the sum of all values of fpkg for X � x such that

P(X � x) ¼ F(x) ¼
X
xk�x

pk (4:2)

where pk is the probability corresponding to the kth value xk of the discrete random
variable X. pk is also called the distribution mass function (DMF). Because of the sum-
mation over all discrete probabilities within the range of X � x, F(x) is also called the
cumulative distribution function (CDF).

To help understand Equation (4.2) better, let’s take tossing a coin as an example.
In this case, the outcome can only take one of the two values, x1 ¼ “Heads” and
x2 ¼ “Tails.” The chances for either side are 50/50, so p1 ¼ p2 ¼ 1

2.

144 INTRODUCTION TO QUEUING THEORY



Note that when the values of x are nonnegative integers, one can simply degenerate
xk into k for convenience.

Next, let’s take a look at continuous distributions.

4.2.3 Continuous Distribution and Distribution Density Function

If the probability distribution function F(x) of a random variable X can be mathemat-
ically expressed as

P(X � x) ¼ F(x) ¼
ðx
�1

p(t) dt (4:3)

where p(t) is nonnegative, then we call X a continuous random variable and p(t) the
distribution density function (DDF) (or simply distribution density). Again, F(x) is
called the cumulative distribution function (CDF) for the same reason as for the
discrete distributions we discussed in the preceding section.

Equations (4.2) and (4.3) look simple. However, they represent the transition from a
known and deterministic world to a partially known (probabilistic) and nondetermi-
nistic world through either summation for discrete or integration for continuous prob-
abilities. This demonstrates the power of mathematics for describing and interpreting
natural phenomena.

So far, we have introduced some basic concepts of probability theory such as
random variable (discrete and continuous), probability distribution function, prob-
ability distribution series, distribution mass function, cumulative distribution function,
and distribution density function. You’ll understand better about these abstract
concepts after we correlate them with queuing theory in the next section.

Appendices A through C provide a concise yet comprehensive coverage about
random processes for those who wish to learn more, especially about some advanced
concepts such as stochastic equilibrium and ergodicity, etc. However, this digression
is not required for those who wish to get some immediate exposure to queuing theory
as introduced in the remainder of this chapter.

4.3 APPLYING PROBABILITY THEORY TO QUEUING SYSTEMS

A queuing system has two mutually coupled processes: the arrival process and the
service process: streams of customers or requests arrive, which are then serviced by
the server. These two processes are stochastic or random to some extent. This can
be further elaborated as follows:

† An arrival process is characterized by the number of arrivals during a given
period of time and the interarrival time between two adjacent arrivals. Both
the number of arrivals and the arrival interval are random, which makes an arri-
val process stochastic in nature. For example, a website receives requests from an
ensemble of independent users spread all over the world. When, how often, and

4.3 APPLYING PROBABILITY THEORY TO QUEUING SYSTEMS 145



how many users would visit a website is undeterministic. We have to embrace
this fact no matter how imperfect it is.

† As the arrival process is stochastic, any subsequent process driven by the
arrival process is stochastic as well. This justifies why the service process is sto-
chastic as well. Coupled with a random arrival process, different types of
requests with different characteristics may take different amounts of time for
the server to process. Therefore service times are random and follow certain
probability laws.

† As the service time is random, response time and throughput of a queuing system
that depend on service time are random as well.

So at this point it’s clear that both the number of arrivals and the time intervals such
as the arrival interval and service time cannot be predicted deterministically.
Fortunately, probability theory and the laws of statistics give us the power to predict
probabilistically the future. The gist of it is that when the event observation time is
sufficiently long, random microscopic fluctuations tend to be smoothed out and
small fluctuations in the end results are quite acceptable to us.

When we talk about statistics regardless of the context, certain probabilistic pro-
cesses are implied. Probabilistic processes are described by their corresponding
models. The following are some of the typical process models relevant to queuing
theory:

1. Markov (M ) Process. The Markov process is characterized by its memoryless-
ness: the future states of the process are independent of its past history and
depend solely on the present state. This type of process is named after A. A.
Markov, who defined it a century ago.

2. General (G) Process. The process is not characterized by any single probability
distribution because it’s completely arbitrary.

3. Deterministic (D) Process. The process is predictable and characterized by
various constants, for example, when the interarrival times are constant from
one arrival to the next.

Relative to a general process, a Markov process is much easier to handle mathe-
matically. Markov processes are representative of many random processes in reality,
especially those random processes that can be found in queuing systems. For this
reason, we’ll concentrate on Markov processes in the remainder of this chapter.

4.3.1 Markov Process

When a Markov process is applied to the simplest queuing systems characterized by
certain simple arrival and service time patterns, it implies that:

1. The number of arrivals follows the Poisson distribution.

2. The interarrival times follow the exponential distribution.

3. The service times follow the exponential distribution as well.

146 INTRODUCTION TO QUEUING THEORY



What does a Poisson distribution or exponential distribution mean exactly? Let’s
try to answer that question now.

Random processes are driven by random variables. As we discussed in Section 4.2,
there are two types of random variables: discrete random variables and continuous
random variables. A discrete random variable, such as the number of customers arriv-
ing at a banking center, can only take discrete values, whereas a continuous random
variable, such as interarrival times and service times, can take any real values includ-
ing fractions.

According to probability theory, discrete random events are characterized by
distribution mass functions, whereas continuous random variables are characterized
by distribution density functions. The Poisson distribution function is based on a
distribution mass function that can be expressed mathematically as follows:

P(X ¼ k) ¼ p(k) ¼ (lt)ke�lt

k!
(4:4)

where l is the average arrival rate representing the number of events occurring per unit
time on average, t is the observation period of [0, t], which means from 0 through t, e
represents the exponential function, k is the exact number of events expected to occur
over the observation period, and k! is the factorial of k. P(X ¼ k) should be read as “the
probability that a random variable X takes a value of k.”

Note that lt in Equation (4.4) is also the average number of occurrences ,k.,
where , � � �. represents averaging mathematically. Sometimes the Poisson distri-
bution is expressed as

p(k) ¼ (l)ke�l

k!

in place of Equation (4.4), but using lt instead of l alone is more intuitive, because
you can see both the average arrival rate l and observation period t and know what
they mean exactly. Another benefit of using lt instead of l is that it will preserve
the meaning of l as the average occurrence rate for both the Poisson distribution
and the exponential distribution, which helps minimize confusion.

The exponential distribution function is based on a distribution density function
expressed mathematically as follows:

f (t) ¼ le�lt (4:5)

where l is the average arrival rate representing the number of events that may occur
per unit time on average, t is the observation period, and e represents the exponential
function.

Now let’s explain what Poisson distributions and exponential distributions mean
exactly when they are associated with a Markov process in the context of software
performance:

† The Poisson distribution shown in Equation (4.4) is a discrete probability distri-
bution that represents a random arrival process with the probability of having

4.3 APPLYING PROBABILITY THEORY TO QUEUING SYSTEMS 147



exactly k events occurring in a fixed period of timewith a known average rate of l
for those occurring events. These events are also called arrivals, customers,
requests, users, and so on. In the context of software performance, such
arrival events could be user’s requests to a Web server, or the arrivals of service
requests from one resource to another, from CPU to memory bus or to disk
controllers for fetching or storing data.

† The exponential distribution shown in Equation (4.5) is used to model the time
between independent events such as the interarrival time, service time, and
response time. The reciprocal of l, m ¼ 1/l, is called the scale parameter or
survival parameter, as when lt ¼ 1 or t ¼ m, e21¼ (1/2.71828) ¼ 37%,
which means that the average survival probability for a biological system or a
mechanical system has degraded from the initial 100% to 37%.

We are now clear that the Poisson distribution is about counting random events
and the exponential function is about measuring time intervals such as service time
and response time.

It can be proven mathematically that:

† If the random variable representing the number of event occurrences in some
time interval follows the Poisson distribution, then the random variable repre-
senting the time between successive occurrences follows the exponential
distribution.

† The exponential distribution function is the only continuous function that
possesses the memoryless property. See Appendix B for a rigorous proof.

Next let’s explore the Poisson distribution and exponential distribution numerically
with concrete average arrival rates of l in the context of queuing theory.

4.3.2 Poisson Distribution

Let’s first plot the Poisson distribution and observe the probabilities as a function
of both the mean number of occurrences lt or n and the arbitrary number of occur-
rences k. For convenience, from now on we use n in place of lt. Computation of
the Poisson distribution can easily be done using Excelw. In Excel, this function is
coded as POISSON (k, n, cumulative), where k and n are arbitrary and mean numbers
of occurrences, respectively; cumulative ¼ false implies distribution mass function
and cumulative ¼ true implies cumulative distribution function.

Figure 4.2 shows the Poisson mass function with three different values of n ¼ 1, 5,
and 10 for the mean number of occurrences of any events. Let’s say the average
interarrival time is 2 seconds, and the observation period of time is 10 seconds.
This means that l ¼ 1

2, t ¼ 10, or n ¼ 5, according to their respective definitions. In
other words, it means that there are 5 occurrences every 10 seconds on average.
Since this arrival rate of 5 requests per 10 seconds is an average value out of a
random process, the probability for its exact occurrence is not 100%. Instead, the prob-
ability of seeing exactly 5 arrivals over a 10-second period is 17.5%, as calculated

148 INTRODUCTION TO QUEUING THEORY



according to Equation (4.4) with n ¼ 5. The probability of seeing exactly 4 arrivals
over a 10-second period is 17.5% as well, and seeing exactly 6 arrivals over a
10-second period is 14.6%, and so on.

A cumulative distribution doesn’t count exactly. Instead, it counts up to a certain
point. For the Poisson distribution, its cumulative distribution function is

P(X � k) ¼ F(k) ¼ p(0)þ p(1)þ � � � þ p(k) (4:6)

where p(k) is given by Equation (4.4). Figure 4.3 shows the cumulative distribution
function for the Poisson distribution. For example, for n ¼ 5, the probability of finding
up to 5 arrivals is 62%, which includes the probabilities for finding exactly 0, 1, 2, 3, 4,
and 5 arrivals.

Next, let’s take a look at the exponential distribution function.

Figure 4.3 Poisson cumulative distribution function.

Figure 4.2 Poisson distribution mass function.

4.3 APPLYING PROBABILITY THEORY TO QUEUING SYSTEMS 149



4.3.3 Exponential Distribution Function

In Excel, the exponential function is coded as EXPONDIST (t, lambda, cumulative),
where t represents the time interval of an arrival process or service time of a service
process, lambda is the average arrival rate or service rate, cumulative ¼ false implies
density function, and cumulative ¼ true implies cumulative function. For three differ-
ent values of l, Figure 4.4 shows the exponential density distribution function,
whereas Figure 4.5 shows its cumulative distribution, which can be expressed as

P(T � t) ¼ F(t) ¼ 1� e�lt (4:7)

where l is an arrival rate if it is associated with an arrival process or service rate if it’s
associated with a service process.

Figure 4.5 Exponential cumulative distribution function.

Figure 4.4 Exponential density distribution function.

150 INTRODUCTION TO QUEUING THEORY



It’s interesting to note from Equation (4.7) that when P ¼ 0.90, which corresponds
to the 90th percentile, lt ¼ 2.3 or t ¼ 2.3 / l, which is a characteristic interval for 90%
of the events. This 90% is a more realistic measurement for the interarrival time or ser-
vice time or response time than their corresponding mean values. Keep this in mind
when you assess your response time measurement with your OLTP workload tests.

Note that both the Poisson distribution and exponential distribution have the same
memorylessness property. The difference is that the Poisson distribution describes
discrete events such as the number of occurrences, whereas the exponential distri-
bution describes continuous entities such as interarrival times, service times, and
response times.

A useful queuing model should represent a real-life system with sufficient accuracy
and is analytically tractable. A queuing model based on the Poisson process and
its companion exponential probability distribution meets these two requirements.
A Poisson process models random events emanating from a memoryless process,
such as a customer arrival process, a user request arrival process, or the completion
of a request made to a Web server. That is, the length of the time interval from the cur-
rent time to the occurrence of the next event does not depend on the time of occurrence
of the last event. In the Poisson probability distribution, the observer records the
number of events that occur in a time interval of fixed length. In the exponential prob-
ability distribution, the observer records the length of the time interval between con-
secutive events. In both, the underlying physical process is memoryless.

Queuing systems are frequently modeled as Poisson processes through the use of
the exponential distribution. Together with the Poisson and exponential distributions,
Table 4.2 lists some other distributions that are useful for characterizing queuing
systems as well. Table 4.3 lists the typical usages of the distribution functions

TABLE 4.2 Common Probability Mass and Density Functions

Distribution Expression

Poisson p(k) ¼ ((lt)k/k!)exp(2lt), k ¼ 0, 1, 2, . . . ; l. 0
Exponential f(t, l) ¼ l exp(2lt)
Gamma f(t, a, b) ¼ [b2a/G(a)] ta21 exp(2t/b)
Normal pN(x) ¼ [1/(2p)1/2s ] exp[2(x 2 m)2/2s2]
Uniform f(t) ¼ 1/(b2 a), a, t , b

TABLE 4.3 Mean (m), Standard Deviation (s), and Typical Usages
of Common Probability Mass and Density Functions

Distribution m s Usage

Poisson lt lt Number of arrivals or occurrences
Exponential l21 l21 Time interval
Gamma ab a1/2b Time interval
Normal m s Mean error

Uniform (b� a)
2

(b� a)

2
ffiffiffi
3

p Network latency

4.3 APPLYING PROBABILITY THEORY TO QUEUING SYSTEMS 151



listed in Table 4.2. Note that the exponential function is a particular case of gamma
function with a ¼ 1 and l ¼ 1/b.

With a good basic understanding of what problems queuing theory solves based on
probability theory, it’s time to learn about the Kendall notation, which characterizes
the queuing models based on the various aspects of a queuing system such as the
arrival process, the service process, the capability of the server, and so on. This is
our topic for the next section.

4.3.4 Kendall Notation

Based on the type of arrival process, the service time, and other characteristics of a
queuing system, Kendall devised a set of notations for defining different types of
queues symbolically [Kendall, 1981]. Because of its convenience for describing
and characterizing a queuing system, Kendall notation has become the language of
queuing theory. Fortunately, Kendall notation is very simple and intuitive, as
described in Table 4.4.

In Kendall notation, a generic queue is represented as a/s/m/b/N/Q symboli-
cally with six symbols. Hence the Kendall descriptorM/M/m/1/1/FIFO represents
a queuing center with Markov arrival process, exponential service time distribution,m
servers, infinite queuing capacity, infinite population, and first-in first-out (FIFO)
service policy. Such a queuing center is denoted as M/M/m queue conventionally,
with the rest of it implied implicitly.

Kendall notation is both generic and specific. It can be applied to characterizing
either a single queuing node or a queuing system that consists of multiple queuing
nodes. The behavior of a single queuing node may predominantly determine the beha-
vior of the entire system, or only contribute partially. The same performance metrics
used for quantifying a queuing node are used for quantifying a queuing system as well.
However, there are some notational differences in denoting a queuing node versus a
queuing system, which will be clarified in the next section. This will help avoid con-
fusion when we describe various queuing models in a later section.

4.3.5 Queuing Node versus Queuing System

A single queuing node is simply a single type of resource, such as computer CPUs,
disks, or networks in the context of computer systems. Multiple queuing nodes or

TABLE 4.4 Kendall Notation

Symbol Semantics

a The type of probability distribution for an arrival process
(e.g., Markov, general, etc.)

s The type of probability distribution for service time
m The number of servers at a queuing center
b The buffer size or storage capacity at a queuing center
N The allowed population size, which may be finite or infinite
Q The type of service policy (e.g., FIFO—first-in first-out)

152 INTRODUCTION TO QUEUING THEORY



multiple subsystems may constitute a queuing system. A system is a top-level con-
tainer, whereas nodes or subsystems are components. It’s this container–component
relationship that determines the overall performance of a queuing system.

Throughout this book, we adopt the following conventions in denoting a queuing
node versus a queuing system:

† A queuing node is denoted with a subscript lowercase letter i.
† A queuing system is denoted with a subscript sign of zero.

In order to help reinforce the distinction between a node and a system, Table 4.5
summarizes some of the major metrics that have counterparts with each other. It is
important not to confuse node with system. Of course, if it’s only a single node, it’s
both a node and a system.

With this notational difference between a queuing node and a queuing system
in mind, we can now move on to introducing various queuing models in the next
section.

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS

Queues can be chained to form networked queuing systems where the departures from
one queue enter the next queue. Queuing systems can be classified into two categories:
open queuing systems and closed queuing systems. Open queuing systems have an
external input and an external final destination. Closed queuing systems are comple-
tely contained and the customers circulate continually, never leaving the system. Of
course, there could also be a situation in-between, for example, an open queuing
system that contains internal feedback loops.

A queuing model is a procedure about how to calculate some of the performance
metrics of a queuing system. For software, we are most concerned with response
time and throughput. Response time pertains to user-activity driven OLTP workloads,
whereas throughput pertains to batch jobs. OLTP scenarios resemble open queuing
systems, whereas batch jobs resemble closed queuing systems, although a closed
model applies to OLTP workloads as well.

In this section, I’ll focus on the following three major entry points to queuing
theory:

† Little’s law which shows how the three major queuing metrics—throughput,
response time, and queuing length—correlate with each other. This is a generic
law that has no assumptions attached to it other than the equilibrium condition,

TABLE 4.5 Notational Differences between a Queuing
Node and a Queuing System

Metric Node System

Service time Si S0

Response time Ri R0

Throughput Xi X0

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 153



which means that no customers are created or lost in the system. Little’s law has
been widely applied to solving software performance and scalability problems.

† TheM/M/1 open modelwhich assumes that customers enter and exit the system.
This is an analytically tractable model and thus is very popular. The various
analytical formulas of this model are commonly used to guide software perform-
ance analysis, optimization, and tuning efforts. It’s the minimum that one should
understand about queuing theory.

† The M/M/m/N/N closed model which assumes that there are a limited number
of customers in the system. This model is defined by a set of recursive equations
that can be solved easily to get more accurate results.

Throughput, response time, and queue length are the three metrics that can comple-
tely quantify the performance of a queuing system. That’s how Little’s law comes into
play. Let’s explore it in the next section.

4.4.1 Queuing Theory Triad I: Response Time, Throughput,
and Queue Length (Little’s Law)

An overview of queuing theory is incomplete without mentioning Little’s law [Little,
1961]. Little’s law simply states that the number of customers, both waiting for and
receiving service, is equal to the product of throughput and response time:

Ni ¼ Xi � Ri (4:8)

where Xi is the throughput at queuing node i.
Since response time can be expressed as R ¼ W þ S in general, whereW represents

wait time and S service time, we can further decompose Equation (4.8) into

Ni wait ¼ Xi �Wi (4:9a)

Ni busy ¼ Xi � Si (4:9b)

where Ni wait and Ni busy represent the number of customers waiting and the number of
customers being serviced, respectively.

Little’s law is intuitive. It can be proved as follows:

† Let R represent the average response time for a customer.
† Let T represent the total observation time.
† Let C be the number of customers departing the system over the time period T.
† Let N be the average number of customers in the system.

Then the probability that a customer is in the system is equal to R/T. According to
this probability, on average, the number of customers who are in the system can be
calculated as N ¼ C�(R/T ) ¼ (C/T )�R, where by definition, X ¼ C/T, and thus
N ¼ XR, which is equivalent to Equation (4.8). Note that Little’s Law is valid for
any G/G/m queuing system.

To help understand Little’s law, let’s use an example.

154 INTRODUCTION TO QUEUING THEORY



B Case Study 4.1: Application of Little’s Law

A company is considering purchasing an IT help desk management system to
help improve the productivity and efficiency of its employees. It is estimated that
about 200 employees including IT support staff will use the help desk management
system. It is further estimated that the application will be stressed by about 3% of
the 200 users concurrently, namely, not all 200 employees will use the application
at the same time. There will be four major user types, and the total average trans-
action arrival rate will be 9944 transactions per hour. Typical actions include sign-
ing-in, creating tickets, searching and modifying tickets, and signing-out. Each
type of transaction is a specific combination of those typical actions. What
would be the expected average response time for all user types when the system
is operating under equilibrium conditions?

This question can be answered as follows:

† The transaction arrival rate or throughput would be 9944/3600 ¼ 2.76
transactions/second.

† The average number of concurrent users would be 200 � 3% ¼ 6.
† According to Little’s Law, the average response time would be R ¼ N/X ¼ 2.17
seconds.

This example shows partially what software performance questions that Little’s
law can help answer. Note that when applying Little’s law, the active response time
includes the system busy time and system resource waiting time, but not the system
idle time. The corresponding number of users is the count of the concurrent users
whose requests are being executed concurrently in the system. One would arrive at
wrong conclusions if the true meaning of concurrency pertaining to the state of a
group of users is not understood correctly.

Next, let’s elaborate on the two simplest queuing models, theM/M/1 open model
and the M/M/m/N/N closed model. These two models are the foundation for more
complicated queuing models.

4.4.2 M/M/1 Model (Open)

Let’s start with the simplest queue, theM/M/1 open model. TheM/M/1 open model
is most popular because of the following characteristics:

† It is analytically tractable so that one can use the fairly simple formulas derived
from it to calculate by hand the important performance metrics, such as the
response times and resource utilizations of a queuing system.

† It is fairly accurate for predicting the performance of a system operating under an
equilibrium condition. An equilibrium condition is an ideal state for a system
under which transactions flow smoothly.

† Very often it’s good enough for back-of-the-envelope calculations, which can
help show quickly what works and what doesn’t. Back-of-the-envelope calcu-
lations are far more than a guess, although far less than a proof. The results

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 155



from back-of-the-envelope calculations are helpful in supporting some early
decisions before major investments are made. It could be equally helpful in sig-
naling troubling issues beforehand so that proactive measures can be taken to
prevent disasters from happening.

Specifically to our interests, the M/M/1 open model illustrates all the basic con-
cepts and elements of queuing theory, although it’s simple. It’s always good to start
with something simple when you’re learning something new.

To be generic, let’s consider an M/M/1 queuing node with feedback, as shown in
Figure 4.6. Here feedback means that some customers may come back and visit the
queuing node more than once. In the context of software, feedback means multiple
visits to a resource as required for completing a transaction at the system level.

The feedback in Figure 4.6 is denoted with three parameters: external arrival rate l,
internal arrival rate l1, and the probability p that customers return to the same queue.

Queuing with feedback is associated with a famous theorem, which is often called
Jackson’s theorem [Jackson, 1963]. It is about one of the assumptions made in study-
ing queuing theory, which is the Poisson process as we stated earlier.

When there is no feedback, an arrival process is a Poisson process. When multiple
arrival streams join the queue with feedback, the arrival process is no longer a Poisson
process. However, Jackson’s theorem states that although the arrivals into the queue
are not Poisson, the queuing node’s behavior statistically still follows the laws gov-
erned by a Poisson process.

Although extremely abstract, Jackson’s work helped shed light on the fact that it’s
really the service demand, not the service time, that is most fundamental in determin-
ing the performance of a queuing system. This observation becomes obvious after we
show how the response time of a queuing system can be calculated using the M/M/1
open model.

The M/M/1 open model begins with the following three assumptions:

1. An average arrival rate l is known. This is usually not a problem, as arrivals are
the workload driver to a system anyway.

Figure 4.6 An M/M/1 queuing node with feedback.

156 INTRODUCTION TO QUEUING THEORY



2. The system is running under an equilibrium condition, which means that the
average throughput X0 is equal to the average arrival rate l:

X0 ¼ l (4:10)

This is another way of stating that there are no transactions lost in the system and
they all run to completion in a steady state. We don’t have a problem with this
assumption either, as we can’t afford to have a system that keeps losing trans-
actions anyway.

3. The system’s service demand for the resource in question is known, which is
defined as

Di ¼ Vi � Si (4:11)

where the subscript i represents the ith queuing node, and Vi and Si are the
number of visits to the queuing node and average service time required per
visit, respectively. This assumption is a little bit tougher in software, as it’s
necessary to have reliable tools to monitor the number of times a resource is
accessed and the time duration taken for each visit to complete the task.
However, it’s not surprising at all, as theory is about calculating unknowns
based on what we know partially.

A few comments about service time are in order.

† Measuring Si may not be an easy task. It requires a well-controlled experiment
with well-defined workload and very low system load. Service time is often
approximated with the response time, which is what we can measure from end
to end externally. Response time is defined as follows

Ri ¼ Wi þ Si ¼ Si=(1� Ui) (4:12)

where Wi is wait time, Si is service time, and Ui is resource utilization. So when
the system load is very low with utilization Ui not exceeding a few percent,
we have

Ri ffi Si (4:13)

Equation (4.13) shows how we can measure service time by measuring response
time. In principle, we can never get the real service time, as from Equation (4.12)
it requires measuring response time Ri with the condition of utilization Ui ¼ 0,
which means that the system is idle. But how do we measure it without even
having the system running?

† With a queuing node with no feedback, service demand and service time are the
same, namely:

Di ¼ Si (4:14)

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 157



Now we are ready to proceed with theM/M/1 open model. Using this model, you
can calculate the resource utilization Ui and the system response time R0 of a queuing
system as follows:

† Knowing the system throughput X0 and the ith node’s service demand Di allows
us to calculate the resource utilization Ui immediately according to

Ui ¼ X0 � Di (4:15)

† With the service demand Di and utilization Ui known, we can then calculate the
average residence time R0

i of a request at queue node i as follows:

R0
i ¼ Vi � Ri ¼ Di=(1� Ui) (4:16)

† The total average system response time R0 is the sum of residence times over all
queue nodes from i ¼ 1 through i ¼ K, whereK is the total number of nodes con-
stituting the entire system; namely,

R0 ¼
XK
i¼1

R0
i (4:17)

With Equations (4.8), (4.12), and (4.15), we can further obtain the average number of
customers at queuing node i with given utilization:

Ni ¼ Ui=(1� Ui) (4:18)

or vice versa,

Ui ¼ Ni=(Ni þ 1) (4:19)

Note that the total number of customers in the queuing system is given by
N¼Pi Ni.

In summary, the M/M/1 model allows us to calculate the response time R0 of an
OLTP software system with given transaction arrival rate l and premeasured service
demand Di or service time Si without feedback. Service demand is one of the most
basic elements for applying theM/M/1 queuing model to computing the performance
of software systems.

Keep in mind that system throughput is a performance metric to be calculated for
batch jobs, not for OLTP systems. With OLTP systems, throughput is the same as the
arrival rate under the equilibrium condition. Throughput for batch jobs is computed
using the M/M/m/N/N closed model, which is a topic for a later section.

Feedback is an important factor in determining how to apply the analytical
formulas derived from the M/M/1 model. In order to clarify, in the next section,
we’ll try to sort out all formulas presented so far so that the chances of using the
wrong formulas in the wrong context will be minimized.

158 INTRODUCTION TO QUEUING THEORY



4.4.3 Queuing System: With Feedback versus Without Feedback

Perhaps the most confusing thing with queuing theory is that sometimes people use the
terms of service demand, service time, response time, and residence time freely with-
out regard to whether there is feedback involved or not. If there is feedback involved in
a queuing system, then service demand and residence time are more appropriate to use
than service time and response time, because it’s incomplete to mention service time
and response time without mentioning the number of visits to the queue. Of course, at
the system level, we always use response time other than residence time to represent
the performance of an OLTP software system.

To help avoid confusions, we sorted out all the formulas derived from the
M/M/1 open model in Table 4.6. By setting Vi ¼ 1 in all the formulas derived with
feedback, you immediately get all the formulas for the case without feedback. Note
that the symbols with subscript i denote the corresponding metrics for queue node
i, whereas the symbols with subscript 0 denote the corresponding metrics at the
system level.

Out of the formulas presented in Table 4.6, you may already notice that there is a
prominent scaling factor between the residence time and the service demand or
between the response time and the service time. This is a very important scaling
relationship showing how the response time of a system can go up quickly with
increasing resource utilization for a given service time value. This is one of those
triads in queuing theory that you may find to be very useful very often. Let’s see
how this triad plays out in queuing theory in the next section.

4.4.4 Queuing Theory Triad II: Utilization, Service Time,
and Response Time

The relationship among utilization, service time, and response time is as simple as
Equation (4.12), which is rewritten below without regard to whether it’s for a queuing
node or a queuing system by omitting the subscript i for all symbols:

R ¼ S

(1� U)
(4:20)

Figure 4.7 shows how quickly the response time can grow with increasing utilization.
Assuming that the service time S ¼ 1 second, the response time Rwould grow up to 2,
2.5, 3.3, 5, 10, and 20 seconds if the utilization U increases to 50%, 60%, 70%, 80%,

TABLE 4.6 Formulas Derived from the M/M/1 Model With and Without Feedback

Formula With Feedback Without Feedback

System throughput X0 ¼ l X0 ¼ l
Local throughput Xi ¼ Vi � X0 Xi ¼ X0

Service demand Di ¼ Vi � Si Di ¼ Si

Utilization Ui ¼ X0 � Di Ui ¼ X0 � Si

Residence time Ri
0 ¼ Vi � Ri ¼ Di/(12 Ui) Ri

0 ¼ Ri ¼ Si/(12 Ui)
System response time R0 ¼ SK

i¼1 R0
i R0 ¼ SK

i¼1 Ri

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 159



90%, and 95%, respectively. This is why you may hear the statement that the CPU
utilizations of an OLTP software transaction system should be kept below about
70% so that the response time of the system would not exceed more than three
times the service time.

It is interesting to note that the performance and scalability of a software system can
be enhanced with the following two options:

† Multiple separate parallel queuing lines. In the context of computers, this scen-
ario corresponds to scaling out to multiple computer servers.

† Single-queue multiserver queues. In the context of computers, this scenario cor-
responds to scaling up with multiple processors within a single computer server.

Let’s examine quantitatively the response time scalability associated with these two
types of more complex queuing systems in the next section.

4.4.5 Multiple Parallel Queues versus Single-Queue
Multiple Servers

With m multiple parallel queue lines as shown in Figure 4.8, the treatment is simple:
simply normalize the system utilization from U to r ¼ U/m with 0 � r � 1 and

Figure 4.7 Normalized response time versus system resource utilization.

Figure 4.8 Multiple parallel queuing lines.

160 INTRODUCTION TO QUEUING THEORY



Equation (4.20) still applies. This would lead to

R ¼ S

1� r
(4:21)

Figure 4.9 shows a single-queue multiserver scenario. Normalization of the system
utilization from U to r ¼ U/m with 0 � r � 1 still applies. However, the response
time is now calculated with the so-called Erlang’s C function C(m, r), as shown
below. Erlang was a Danish engineer who worked for the Copenhagen Telephone
Exchange. He published the first paper on queuing theory in 1909.

R ¼ S 1þ C(m, r)
m(1� r)

� �
(4:22a)

C(m, r) ¼ (mr)m

m!

,
(1� r)

Xm�1

k¼0

(mr)k

k!
þ (mr)m

m!

" #
(4:22b)

Equation (4.22b) gives the probability that an arriving customer is delayed in the queue
as a function of the number of servers (m) and load intensity (r). It can be approxi-
mated to give the following formulas for both response time and queue length:

R � S

1� rm
(4:23a)

N � mr

1� rm
(4:23b)

Let’s compare Equation (4.21) with Equation (4.23a). Apparently, rm is a lot smaller
than r for large values ofm, sowe expect that a single-queue multiserver performs a lot
better than multiple parallel queues. This seems to favor mainframe computers over
modern, much less powerful but massively available computer systems. Let’s use a
chart to show this observation quantitatively.

With m ¼ 4 for both scenarios, the normalized response time R/S is shown in
Figure 4.10. Note that for the same utilization of r ¼ 50%, the response time degrades
by 100% with the multiqueue scenario, but only 14% with the multiserver scenario.
For r ¼ 70%, the response time degrades by 233% with the multiqueue scenario,
but only 50% with the multiserver scenario. This analysis supports a well-known

Figure 4.9 Single-queue multiserver queuing system.

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 161



best practice in the community regarding software performance and scalability that
scaling up within the same system either by adding more processors or by using
more powerful processors is more favorable than scaling out by adding more
separate servers.

Next, let’s explore the M/M/m/N/N closed model, which applies to both the
OLTP systems and batch jobs.

4.4.6 M/M/m/N/N Model (Closed)

A closed queuing system, denoted as M/M/m/N/N using Kendall notation, is
described by the following set of recursive equations for each node:

R0
i[n] ¼ Di(1þ Qi[n� 1]) (4:24a)

X[n] ¼ n

Z þPm
i¼1

R0
i[n]

(4:24b)

Qi[n] ¼ X[n]R0
i[n] (4:24c)

where n is the queue length at the system level or the number of customers in the
system, R0

i[n] the residence time at queuing node i, X[n] the system throughput,
Qi[n21] the queue length at queuing node i, and Z the think time. Equation (4.24a)
is also called the arrival theorem in queuing theory.

The iteration starts with the initial conditions of n ¼ 1 and Qi[0] ¼ 0, which
leads to

R0
i[1] ¼ Di (4:25)

Figure 4.10 Comparison of response time between multiple parallel queuing line scenario and
single-queue multiserver scenario.

162 INTRODUCTION TO QUEUING THEORY



Again, the service demand Di is the entry point for solving the above set of recursive
equations. This once more demonstrates the fundamental role of service demand in
queuing theory.

The above set of equations can be solved using a program easily, for example, using
a Java program as listed below:

// a java program for solving M/M/1/N/N
// closed queuing model recursively

public class closedModel {
public static void main (String[] args) {
double[] Qi = new double [100];
double[] Rprime = new double [100];
double[] X = new double [100];

int m = 1; // # of queuing node
int N = 50; // # of customers

double Di = 0.25; // service demand
double Z = 2.0; // think time
if (args.length == 2) {

Di = Double.valueOf(args[0]).doubleValue();
Z = Double.valueOf(args[1]).doubleValue();

}

Qi[0]=0.0;

// iterate over the # of customers
for (int n = 1; n < N; n++) {

Rprime [n] = Di*(1.0 + Qi[n - 1]);
X[n] = n/(Z + Rprime[n]);
Qi[n] = X[n]*Rprime[n];

// open model
double Ui = X[n]* Di *100;
double Ri = Di/(1.0 - Ui*0.01);

System.out.println(‘‘n = ’’ + n + ‘‘Ui=’’
+ Ui+‘‘Rprime[n]=’’+
Rprime[n]+‘‘’’ + Ri+‘‘X[n]=’’
+ X[n]+‘‘Q[n]=’’+Qi[n]);

}
}

}

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 163



To run this program, open up a command prompt and then type

prompt> java closedModel <Di> <Z> >result_Di_Z.txt

where ,Di. and ,Z. represent the values for service demand and think time. The
results will be directed into a text file that can be imported into an Excel spreadsheet for
charting. Note that in the program,m is set to 1 and N is set to 50, so it’s for aM/M/1/
50/50 closed model. In the program, the service demand and think time are initialized
to 250 milliseconds and 2 seconds, respectively, but different values can be input from
the command line to overwrite the default values.

The above code includes the response time data based on the M/M/1 open model
as well. Figure 4.11 shows the response time comparison between the closed and open
models with the different think time values of Z ¼ 2, 5, and 10 seconds, respectively.
The service demand was fixed at 0.25 second for all runs. It is seen that for utilizations
below 70%, the open model approximates the closed model well. This gives us
confidence that the open model is sufficiently accurate with utilizations below 70%
or so. A more detailed comparison between the real measurements and the open
model predictions concluded similarly [Liu and Crain, 2004].

It’s interesting to note that the open model response times for the three different
values of think time Z overlap. This is expected since the open model is independent
of think time, whereas the closed model isn’t.

Figure 4.12 shows how the throughput varies with the number of users in a closed
system, with the three different values of think time Z ¼ 2, 5, and 10 seconds, respect-
ively. It is seen that the knee of the curve moves toward more users with increasing
think time. This is equal to saying that for a fixed number of users, the throughput
of a system would be higher when the average user think time is smaller. In other

Figure 4.11 Comparison of response time between open model and closed model with differ-
ent values of think time Z ¼ 2, 5, and 10 seconds, respectively.

164 INTRODUCTION TO QUEUING THEORY



words, for a fixed throughput, more and more users can be supported by the system
with increasing average user think time. This is because longer think time means
more users can use the system while some users are thinking without actually stressing
the system.

Next, let’s look at the response time versus the number of users. Figure 4.13 shows
that for a given number of users, the response time varies drastically with think time Z.
With a fixed number of users, longer average think time implies that the system would
respond faster. In other words, for a fixed response time, longer user average think time
implies that more users can be supported.

Figure 4.12 Throughput versus think time Z in the M/M/1/50/50 closed model.

Figure 4.13 Response times of a closed queuing system with a service time of 250 millise-
conds and think times of 2, 5, and 10 seconds, respectively.

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 165



Figures 4.14 and 4.15 show the queue length and the number of active users with
the three different values of think time Z ¼ 2, 5, and 10 seconds, respectively.

Note that in Figure 4.14 the queue length represents the average number of users
waiting to be serviced, in contrast with the number of users being serviced shown
in Figure 4.15. Once again, for a fixed number of users, longer average think time
implies that the system would become less jammed, as shown in Figure 4.14. It’s
also interesting to note from Figure 4.15 that with increasing average think time,
more and more users can be serviced until the system becomes saturated and then
only a fixed number of users can be serviced. Specifically, with those three different
values of think time Z ¼ 2, 5, and 10 seconds, the maximum number of users who can
be serviced in this system are 8, 20, and 40, respectively.

Figure 4.13 demonstrates that the response time goes up linearly beyond some
number of users in a closed queuing system. This behavior is very different from
what we see in Figure 4.7, which shows that the response time in an open system
rapidly approaches infinity when the system utilization approaches 100%. This discre-
pancy is purely due to the assumption with the open model that there are an infinite
number of users in an open system, which is unrealistic. Let’s clarify this discrepancy
quantitatively in the next section.

4.4.7 Finite Response Time in Reality

With the open model, the response time goes up to infinity with the utilization
approaching 100% according to R ¼ S/(1 2 U ), as shown in Figure 4.7. This is

Figure 4.14 Average number of users waiting to be serviced in a closed queuing system with
think time Z ¼ 2, 5, and 10 seconds, respectively.

166 INTRODUCTION TO QUEUING THEORY



purely an artificial effect, as can be demonstrated with the closed model in which the
number of customers is finite.

To prove that there is no infinite response time in reality, let’s begin with the
definition of throughput for a closed model, similar to Equation (4.24b):

X[N] ¼ N

Z þ R[N]
(4:26)

where X is the throughput,N the number of users in the closed system, Z the think time,
and R the response time. To facilitate the discussion, we have omitted the subscript in
Equation (4.26) to imply that we are considering a single queuing node.

Since our goal is to work out the maximum response time for a closed system,
Equation (4.26) needs to be rearranged into the following form:

R[N] ¼ N

X[N]
� Z (4:27)

This equation shows the response time as a function of N. To normalize the response
time using the service demand D, divide it by service demand D. Then we have

R[N]
D

¼ N

X[N]D
� Z

D
(4:28)

Figure 4.15 Average number of users being serviced in a closed system with think time Z ¼ 2,
5, and 10 seconds, respectively.

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 167



Using the utilization law of U ¼ X[N]D ¼ mr for a system that has m servers for a
single queue and applying r ¼ 1, we have

R[N]
D

� �
max

¼ N

m
� Z

D
(4:29)

The condition of r ¼ 1 corresponds to the extreme case of 100% resource utilization.
This equation defines the maximum response time that an N-user closed system
can have.

To help confirm that Equation (4.29) indeed represents the maximum response time
for an N-user closed system when N is sufficiently large, three sets of data were
obtained and displayed on the same chart shown in Figure 4.16:

† Response time versus the number of users for a closed system by solving
Equation (4.24a) through (4.24c) with a service demand of 0.25 second and a
think time of 2 seconds

† Response time of the corresponding open model using the intermediate results of
the numerical solutions of the closed model

† Maximum response time calculated using Equation (4.29) with the same
parameters used for solving the closed model

These sets of data describe the same queuing system either approximately or exactly.
The closed model results are exact, whereas the open model results and the maximum
response time calculations are approximate.

Figure 4.16 shows the comparison of response time among the three models,
obtained when the above model was solved numerically. The upper curve corresponds
to the open model, the lower curve corresponds to the maximum response time calcu-
lated according to Equation (4.29), and the curve in-between corresponds to the closed
model. It is interesting that the two approximate approaches agree well with the closed
model under their respective assumptions: namely, open model for light to normal

Figure 4.16 Comparison of response time among the open model, closed model, and maxi-
mum response time limit.

168 INTRODUCTION TO QUEUING THEORY



loads with N , 7 and Equation (4.29) for heavy loads with N . 12. The gap (7,
N, 12) between the two extreme conditions is filled in by the numerical solutions
of the closed model.

Figure 4.17 shows the utilizations corresponding to different numbers of
users, recorded when the above closed model was solved numerically. It confirms
that for N ¼ 7 the utilization is about 70%, and for N ¼ 12, the utilization is about
95%. This once more demonstrates that one can use utilization to determine the
validity of both the open model and the maximum response time for a large number
of users. Again, it’s a lot easier to use the system utilization rather than the number
of users in a system to quantify the validity of the open model and the maximum
response time limit model, because the former can be measured more conveniently
than the latter. This validity issue for open models will be elaborated further in the
next section.

4.4.8 Validity of Open Models

One must keep in mind that whenever an analytical formula is used for predicting or
verifying the behavior of a system, it’s necessary to make sure that the formula is used
both in the right context and within the range of its validity.

The above statement applies to open queuing models as well. As we know, closed
models are solved numerically, and the resultant numerical results can be taken as
accurate solutions to real systems. Open models provide ready-to-use analytical for-
mulas without requiring a program to solve a set of equations. This obvious analytical
scaling relationship is a huge advantage of open models relative to closed models.

The question is: Under what conditions are the analytical formulas derived from
the open models valid? As a matter of fact, this question has been answered with
the concrete comparison data provided in the preceding section; but to underscore
its importance, it’s summarized again in this section.

There are quite a few different definitions of the validity of open models. But I have
found that it’s most convenient and practical to define it using the entities of resource

Figure 4.17 Utilizations from solving the closed model associated with Figure 4.16.

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 169



utilization and queue length for the system in question. Essentially, the analytical for-
mulas derived from open models are valid under either of the following conditions:

† The system is not near saturation or the utilization is below 70%. This statement
is supported by both the quantitative numerical examples presented in the pre-
ceding section and some quantitative research [Liu and Crain, 2004].

† The system queue is empty or low, meaning that the system is not running near
saturation and can take more loads without seeing significant impact on its
performance.

There is a misconception that the analytical formulas derived with open models are
valid if there are an infinite number of customers in the system. The assumption of infi-
nite population size as implied by the Kendall notation M/M/m/1/1/FIFO should
be understood as the total number of customers processed by the system, not the
number of customers in the system at any given instant. It’s impossible to have an infi-
nite number of customers in an open system at any given instant, because one of the
driving input parameters to an open system is the average arrival rate, which is
always finite.

The word infinite associated with the assumption for an open model should be
understood as the ratio of the number of customers being serviced to the number of
customers waiting in the queue. That ratio approaches infinity when the number of cus-
tomers waiting approaches zero. That means that if there are more customers waiting
than being serviced, then such systems cannot be accurately described with open
models. The further away the system is from being defined by the above two state-
ments, the less accurately such a system can be described with open queuing
models. One can study this subject further with the help of the text by Gunther
[1998] listed at the end of this chapter.

Approximate analytical formulas are useful not only for predicting the performance
and scalability of a software system, but also for analyzing the performance and scal-
ability bottlenecks based on real measurements. The concept of bottleneck is actually
rooted in queuing theory, as we’ll see in the next section.

4.4.9 Performance and Scalability Bottlenecks
in a Software System

For batch jobs, the maximum throughput is achieved when the system is fully utilized.
This can be confirmed with the utilization law of U ¼ XD that

Xmax ¼ 1=Dmax (4:30)

when U ¼ 1. Equation (4.30) can be confirmed with Figure 4.12 that all curves with
different think time values eventually got saturated with a maximum throughput of 4,
which is due to the fact that a service demand of 0.25 second was used for all
calculations.

Typically, for a system that uses multiple resources, total service demand is the sum
of all service demands at different queuing nodes. The resource that contributes most

170 INTRODUCTION TO QUEUING THEORY



to the total service demand is defined as the bottleneck. However, it might be difficult
to compare the service demand among all queuing nodes, as service demand is hard to
measure. One equally valid alternative is to use utilization instead of service demand to
define bottlenecks, as is proved next.

For all resources, the following relationship holds true according to Equation
(4.15):

Ui

Di
¼ Uj

Dj
¼ � � � ¼ Uk

Dk
(4:31)

which implies that large service demand corresponds to large utilization as well.
Typically, resource utilizations are monitored with sufficient precision and therefore
are an ideal metric for defining bottlenecks. This is especially true with the resource
type of computer CPUs.

As far as the system bottleneck around the response time is concerned, the same
guideline applies as well, as the response time is proportional to service demand or
inversely proportional to the system idle time. Identifying system bottlenecks is the
first step for optimizing and tuning software performance and scalability, whereas
reducing service demands or system utilizations is the key to actually realizing tangible
improvements on the performance and scalability of your software. We’ll see such
examples with the case studies provided later.

Before concluding queuing theory, I have to mention that I only covered some very
basic aspects of queuing theory that are very likely to be used in your software per-
formance work. This book is not about queuing theory; it’s about practical software
performance testing, analysis, optimization, and tuning, for which a basic knowledge
about queuing theory is very helpful.

Instead of dragging you into more complicated queuing models, I’d like to direct
you to the genealogy of the various major queuing models in the next section to
help explain what we have covered and what we haven’t. You can spend more time
studying those models that have not been covered here with the appropriate texts
that I’ll recommend at the end of this chapter.

4.4.10 Genealogy of Queuing Models

Apparently it’s impossible for this book to cover all queuing models. In order to have a
good understanding of what we have learned about queuing theory after all,
Figure 4.18 shows the genealogy of all queuing models described using the Kendall
descriptors.

You can read this chart by following the leads below:

† The queuing policy of FIFO (first-in first-out) is implied for all models labeled
on the chart.

† The genealogy first branched between Markov and non-Markov processes.
You can ignore non-Markov processes as they are too complicated for real-life
software applications.

4.4 QUEUING MODELS FOR NETWORKED QUEUING SYSTEMS 171



† It then branched between the open and closed models. The closed models
can only be solved numerically, whereas the open models are analytically
tractable.

† For open models, we covered the simplest M/M/1 open model, parallel queues
or multiple queue lines, and single-queue multiserver. There is a more generic
model M/G/1, which takes the general distribution for the service time distri-
bution. In this area, some pioneering work was done by Pollaczek and
Khinchine, and you can delve deeper by reading other texts recommended at
the end of this chapter.

This concludes our introduction to queuing theory. In the next two chapters,
I’ll concentrate on how queuing theory can be applied effectively to solving real
performance problems for your software products.

4.5 SUMMARY

In this chapter, we explored queuing theory in the context of software performance and
scalability. We introduced all basic concepts of queuing theory centered on response
time for OLTPworkloads and throughput for batch jobs.We provided a brief review of
probability theory, which was necessary for understanding the Markov process and
Poisson and exponential distributions upon which the subsequent queuing models
were built. We covered in adequate depth both open models and closed models. We

Figure 4.18 Genealogy of queuing models in Kendall notation.

172 INTRODUCTION TO QUEUING THEORY



clarified infinite response time that is inherent with open models. We also explained
how to identify bottlenecks using service demands and resource utilizations. This
material is essential for applying queuing theory to solving real-world software per-
formance and scalability problems.

Some of the highlights from this chapter include the following:

† Queuing theory is rooted in probability theory and statistics, and the performance
behaviors of a software system can be described using queuing models. Because
of the intrinsic stochastic nature of the performance of software, your measure-
ments of response time and throughput contain inevitable errors. It is rec-
ommended not to interpret fluctuations in your test results of a few percent as
performance gains or losses.

† The Markov random process is the foundation for establishing queuing models
such as theM/M/m open models, which are analytically tractable, as well as the
M/M/m/N/N closed models, which can be solved numerically to provide
insight into queuing systems with a finite number of customers.

† TheMarkov process is characterized by the Poisson distribution and exponential
distribution in the simplest case. The Poisson distribution describes the number
of arrivals, whereas the exponential distribution describes time intervals such as
interarrival time, service time, and response time.

† Open models deal with queuing systems with constant incoming and departing
customers, whereas closed models deal with queuing systems with a fixed
number of customers in the system. Open models are more applicable to OLTP
workloads, whereas closed models are applicable to both batch jobs and OLTP
workloads. Openmodels become less and less accuratewhenmore andmore cus-
tomers are queued up in the system or when the system approaches saturation.

† Keep in mind that service demand is one of the most fundamental elements for
calculating other queuing metrics, such as the utilization and response time.
Service demand is also the indicator of performance bottlenecks. As service
demand generally is hard to measure, one can use utilization instead to identify
system bottlenecks.

† Software performance work is about applying queuing theory to analyzing
performance bottlenecks and then removing bottlenecks to help build high-
performance software products. By practicing, you’ll become proficient in
applying queuing theory to solving software performance problems.

I hope you will now consider applying queuing theory to solving your software
performance and scalability challenges. It will be both fun and rewarding. Based on
my own experience, I am confident that queuing theory can help you become
more productive and efficient with your assignments to test, analyze, optimize, and
tune the performance and scalability of your software. Chapters 5 and 6 will help
you solidify what you have learned in this chapter by showing you how you
can apply queuing theory to solving real-world software performance and
scalability problems.

4.5 SUMMARY 173



RECOMMENDED READING

For a brief review of probability, random variables, and random processes:

H. P. Hsu, “Theory and Problems of Probability, Random Variables, and Random Process,”
McGraw-Hill, 1997.

For a more rigorous mathematical treatment of queuing theory:

D. Gross, J. F. Shortle, J. M. Thompson, C. M. Harris, Fundamentals of Queuing Theory, 4th
edition, Wiley Series in Probability and Statistics, 2008.

C. G. Cassandra and S. Lafortune, Introduction to Discrete Event Systems, 2nd edition, Springer
Science Media, LLC, 2008.

G. Bolch, S. Greiner, H. de Meer, and K. Shridharbai, Queuing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications, 2nd edition,
John Wiley & Sons, 2006.

For some classical texts on queuing theory:

N. Gunther, The Practical Performance Analyst, McGraw-Hill, 1998.

R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991.

E.D. Lazowska, J. Zahorjan, G. S. Graham, andK. C. Sevcik,Quantitative SystemPerformance:
Computer System Analysis Using Queuing Network Models, Prentice Hall, 1984.

D. A. Menasce and V. A. F. Almeida, Scaling for E-Business, Prentice Hall PTR, 2000.

D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy, Performance by Design, Prentice Hall,
2004.

The following three publications are seminal works about queuing theory quoted in
the text of this chapter:

J. R. Jackson, Jobshop-like queuing systems, Management Science, Vol. 10, No. 1, 131–142,
1963.

D. G. Kendall, Some problems in the theory of queues, Journal of the Royal Statistical Society
Series B, Vol. 13, 151–185, 1981.

J. D. C. Little, A proof for the queuing formula: L ¼ lW, Operations Research, Vol. 9, No. 3,
1961.

The following publications might be helpful if you are interested in how queuing
theory can be applied to optimizing and tuning the performance and scalability of
modern enterprise software applications:

H. H. Liu and P. V. Crain, An analytic model for predicting the performance of SOA-based
enterprise software applications, in CMG 2004 Proceedings, Las Vegas.

H. H. Liu, Service demand models for enterprise software applications, in CMG 2005
Proceedings, Orlando, Florida.

H. H. Liu, Applying queuing theory to optimizing enterprise software applications, in CMG
2006 Proceedings, Reno.

174 INTRODUCTION TO QUEUING THEORY



EXERCISES

4.1. Explain conceptually the differences among wait time, service time, response
time, residence time, and think time.

4.2. Explain conceptually the difference between arrival rate and throughput.

4.3. What are the characteristics of a Markov process?

4.4. What are the common usages of the Poisson and exponential distribution
functions?

4.5. What is the Kendall descriptor used for?

4.6. Table 4.7 shows the load test results of an OLTP application with the given user
types, the number of users and arrival rate for each user type. In the table, the
arrival rate is measured in transactions per hour, and R represents the response
time. Calculate the number of concurrent users for each user type. Comparewith
Exercise 3.6.

4.7. Why is Jackson’s theorem an epoch-making advance in queuing theory?

4.8. Describe quantitatively the relationship among the resource utilization, service
time, and response time for a single queuing node.

4.9. An OLTP workload consists of a single type of user activity of a
Web application deployed on a single Web server, which serves static HTML
contents. Statistically, the application requires an average service time of 200
ms on the Web server to process a user transaction. The Web server is shared
with multiple applications. Calculate the average response time for the above
user scenario when the Web server is already driven to 50% busy by some
other applications.

4.10. What’s the difference between computer server scaling up and scaling out?
Which one is more effective and why?

4.11. Let’s say the Web server is close to 100% busy for Exercise 4.9 and you are
given the option of adding one more identical system or doubling the CPU
capacity of the same server either by adding twice the number of identical pro-
cessors or by replacing the existing processors with ones that are 2� faster.
Choose your option and justify it to your manager quantitatively.

TABLE 4.7 An OLTP Load Test Profile

User Type # of Users Arrival Rate R (s) # of Concurrent Users

UT01 60 2749 2.53 ( )
UT02 40 1572 1.87 ( )
UT03 40 1400 2.08 ( )
UT04 60 4223 0.89 ( )

EXERCISES 175



4.12. Solve a closed model with the program provided in Section 4.4.6. Explain your
observations.

4.13. How would you quantify that a resource is a bottleneck for a system?

4.14. Prove mathematically that for a batch job that consists of two consecutive
activities that process the same number of objects, the combined throughput,
X0, can be calculated as follows:

X0 ¼ X1 � X2

X1 þ X2

where X1 and X2 represent the throughput values of the two consecutive activi-
ties, respectively.

4.15. An enterprise batch job is scheduled to run every night to reconcile the objects
collected during the day. The batch job consists of two consecutive activities:
validateObjects and checkInObjects. In order to isolate the performance
issues, these two activities were run separately, and the throughput for each
activity was measured separately as well. The measurements show that for
reconciling 50,000 objects, the validateObjects activity took 9 minutes and
41 seconds, and the checkInObjects activity took 23 minutes and 9 seconds.
Calculate the throughput for each activity first. Then calculate the combined
throughput using the formula described in Exercise 4.14.

4.16. A software development team identified a 5–10% performance degradation
with the product under development. After spending some time finding the
root cause for that 5–10% degradation in vain, it was decided that they
would move on since a 5–10% degradation would not be a show stopper.
What can you make of this?

176 INTRODUCTION TO QUEUING THEORY



5
Case Study I: Queuing
Theory Applied to SOA

“Think simple” as my old master used to say—meaning reduce the whole of its parts into
the simplest terms, getting back to first principles.

—Frank Lloyd Wright

Queuing theory was developed for solving real problems. Specifically, in the field of
software, queuing theory can be used not only for analyzing the performance and
scalability bottlenecks of existing software applications based on traditional software
architectures, but also for predicting the performance of software applications based
on emerging software technologies such as the service-oriented architecture (SOA).

As a case study, this chapter will demonstrate how queuing theory can be applied to
predicting the performance of SOA-based software applications. A well-developed
sample medical record application built on BEA’s XML Web services framework
was used for this exercise.

Along with presenting this example, I’ll show you how to carry out software per-
formance tests with an end-to-end, well-thought-out procedure that consists of setting
up a test bed, deploying the application, designing and implementing test scenarios,
running the tests, collecting performance counters, and analyzing the test results.
This procedure can be used as a reference for you to design and execute your perform-
ance and scalability tests as well.

Another purpose of this chapter is to help reconcile people’s doubts about queuing
theory such as “Is queuing theory accurate?” and “Does it really work?” The answers
to such questions are both yes and no. Basically, a theory is accurate and works if all its
assumptions are satisfied. As such, queuing theory is accurate when all its assumptions
are satisfied, and it is not accurate when any of its assumptions are not satisfied.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

177



To prove the above rationale, a fine experiment using an XMLWeb services appli-
cation was designed and carried out. The measurements were then compared with the
predictions based on queuing theory introduced in the preceding chapter. This chapter
presents a summary of that experiment.

This will be a good opportunity for you to learn how to apply mature queuing
theory to XML Web services as an emerging technology, so that you can design
and develop better XMLWeb services applications. The performance and scalability
characteristics of XML Web services are still an undefined territory. Along with this
experiment, I believe some low-hanging fruits regarding some of the performance
and scalability characteristics of XML Web services have been identified, which
might be interesting to you as well.

Let’s start with a brief introduction to the SOA, which has been the hottest topic in
today’s IT world. It’s important to learn what the SOA is about because sufficient
knowledge about the subject matter can help you design and carry out the performance
and scalability tests more efficiently.

5.1 INTRODUCTION TO SOA

In this section, I’ll introduce the background of the SOA to give you a clear perspective
for the context of our discussions in this chapter.

Researchers and software engineers have been striving to simplify the software
development process since the advent of computers decades ago. This movement
has been driven by demands such as time-to-market and cost control associated
with the development and maintenance of software applications. In this regard,
shifts in the software architectural paradigm have been revolutionizing the way in
which large-scale, mission-critical enterprise applications are built.

Interestingly, software architecture and state-of-the-art hardware technologies
reinforce each other, giving software architects and developers greater flexibility
for building simple yet functionally rich applications to meet the stringent
business requirements of today’s competitive markets. Along this path, the SOA
has stimulated much interest by industry in this latest generation of software architec-
ture for building flexible, low-cost enterprise software in place of tightly coupled
legacy applications.

SOA emphasizes the functionality of software as either a reusable atomic service or
a composite service that is built with a collection of atomic services. Each service is
capable of completing a specific task for the client either independently or by collabor-
ating with other services in a federated fashion to complete more complex tasks.

SOA is not a new thing. The earliest generation of service-oriented architectures
includes DCOM [Eddon and Eddon, 1998], EJB/RMI [Anderson and Anderson,
2002], and CORBA/IIOP [Slama et al., 1999]. These SOA frameworks use different
proprietary object communication protocols from different vendors. As the Internet
becomes ubiquitous, the Hypertext Transfer Protocol (HTTP) has arisen as the dom-
inating carrier communication protocol for delivering eXtensible Markup Language
(XML) messages. This communication protocol innovation has led to XML Web

178 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



services as a new generation of the SOA using open object communication protocols.
The SOA based on XMLWeb services is a promising approach to building enterprise
class software applications [Banerjee et al., 2001; Cauldwell et al., 2001; Glass, 2002;
Microsoft, 2003].

Apparently, it’s necessary to have a good understanding about what XML
Web services are about before presenting the analytical performance model for
XML Web services based enterprise applications. This will be the subject of the
next section.

5.2 XML WEB SERVICES

Built on the introduction to XMLWeb services provided in Chapter 2, we now directly
dive into the messaging mechanism of XML Web services. In order to build the
queuing model for the XML Web services based enterprise applications, we have to
understand how an XML Web service client consumes an XML Web service via
message exchange.

As shown in Figure 5.1, a complete cycle of the XML Web service consuming
process has to undergo the following steps:

1. The client program creates an XML Web service proxy object as a handle.

2. The client calls a method of the XML Web service on the proxy object.

3. The XMLWeb service infrastructure on the consumer side serializes the method
call and arguments into a SOAP message and sends it to the XMLWeb service
provider over the network.

4. The XMLWeb service infrastructure on the provider side deserializes the SOAP
message and creates an instance of the XML Web service. The infrastructure
then calls the method with the arguments on the XML Web service.

5. The XML Web service executes the method and returns the results to the
infrastructure.

6. The infrastructure serializes the results into a SOAP message and sends them to
the client over the network.

7. The infrastructure on the consumer side deserializes the SOAP message con-
taining the method call results and sends them to the proxy object.

8. The proxy object sends the results to the client program.

Understanding how a software product works internally is very necessary for being
able to carry out the performance and scalability tests successfully. Such detailed inner
working information on a software application is also very necessary to determine
what performance model to use to fully characterize its performance and scalability.
Specifically, for XMLWeb services, Figure 5.1 is a good representation of its detailed
inner working information. It shows how the XMLWeb service consumer and provi-
der interact with each other to fulfill a service in the format of request and response.
With the help of this flow chart, we can easily identify the following factors that can

5.2 XML WEB SERVICES 179



affect the performance and scalability of XML Web services based enterprise
applications:

† The client program as the service consumer sending the service request
† The XML Web service infrastructure on each side that supports the messaging
mechanism by serializing objects into SOAP messages and deserializing
SOAP messages back into objects

† XML SOAP message transfer over the network
† The XML Web service object as the service provider that works behind the
scenes to fulfill the service request

Figure 5.1 Cycle of message exchange with XML Web services.

180 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



In the next section, I’ll show you how to construct an analytical model for predict-
ing the performance of the SOA (XMLWeb services) based enterprise software appli-
cations based on the performance and scalability factors identified above.

5.3 THE ANALYTICAL MODEL

XMLWeb service is an exciting new software architecture that has emerged in recent
years. However, the analytical models for software performance are quite mature
relative to the evolution of new hardware and software technologies that have thrilled
software practitioners during the past several decades. A few very excellent texts about
how to establish queuing models for solving software performance problems are
readily available [Gunther, 1998; Jain, 1991; Lazowska et al., 1984; Menasce and
Almeida, 2000]. According to these texts, the acceptance criteria regarding the
errors of those analytical models are: predicting system resource utilization—within
10%; system throughput—within 10%; and response time—within 30%; Of course,
these numbers are approximate guidelines.

The software performance models can be further categorized into system-level
models and component-level models [Menasce and Almeida, 2000]. The system-
level models treat the actual system as a black box, in which only the external entities
such as arrival rate and throughput are considered. The component-level models
examine the system performance by decomposing the system into finer granularities
of multiple hardware and software components, where each component is treated as
a queue. This is the concept of queuing network models (QNMs), which can be further
divided into open models and closed models, as we discussed in Chapter 4.

Depending on the number of classes of requests, models can be single-class or
multiclass. Closed models have a fixed number of requests per class, whereas open
models allow the number of requests per class to be variable in the system.

Based on how queuing theory works and how an XMLWeb services based appli-
cation works, we can construct a QNM as shown in Figure 5.2 to represent all major
performance factors in an XML Web services application system. This QNM is a
collection of single queues, each of which mimics a single node or link in a real
system. The model reflects the application system architecture composed of the
flows of requests and responses from layer to layer.

An analytical model is attractive because of its simplicity and the power to predict
the performance of a system that has not yet been built. Amodel is less useful if it’s too
complicated and provides no simple-to-use formulas. In this sense, the M/M/1 open
model introduced in Chapter 4 is the most appropriate one to serve as the basis of the
analytical model for predicting the performance of an SOA-based application.
Without repeating the detailed description about how the model works, all of the per-
formance metrics and laws for this model are recaptured in Table 5.1. For convenience,
the formulas are renumbered.

As a brief review, let’s explain what each symbol represents.

† l—arrival rate
† X0—system throughput

5.3 THE ANALYTICAL MODEL 181



† Vi—number of visits to queuing node i
† Si—average service time at queuing node i
† Di—service demand at queuing node i
† Ui—resource utilization at queuing node i
† R0

i—residence time at queuing node i
† R0—System response time

If you need a more detailed review about these formulas, revisit Chapter 4.
Remember that the software performance models are based on the two input

parameters: The arrival rate l and service demand Di. Arrival rates are typically

Figure 5.2 QNM for SOA-based applications.

182 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



given, whereas service demands must be measured. Once again, the service demand
associated with each component is the core of a queuing model, as we’ll see in the
next section.

5.4 SERVICE DEMAND

The performance goal of a software system simply is to minimize the overall response
time while maximizing the system throughput. According to Equation (5.4), the resi-
dence time at a queue can be minimized by reducing the service demand at the
resource as well as the resource utilization. From a system’s perspective, the slowest
resource or most highly utilized resource should be optimized or tuned first in order
to see the largest effect on the performance of the overall system. This simple principle
is the entrie foundation for all software performance optimization and tuning activities.

Equation (5.2) further illustrates that reducing service demand Di requires:

† Reducing the number of times a resource is accessed (Vi). This is a very appli-
cable best practice in optimizing database-intensive software applications, as
Vi corresponds to the number of round trips between a database server and its
client. It is equally effective in optimizing network-intensive applications and
can be implemented by minimizing the number of network round trips between
two subsystems or processes. This is a well-known performance pattern and
should be applied whenever possible.

† Reducing the absolute service time (Si). This typically has a lot to do with adop-
ting the most efficient algorithms for carrying out various performance-critical
computing tasks. You can also minimize the service time by eliminating those
computations that are actually not needed. Such extraneous computations that
don’t have to be performed in an application are termed “wastes” [Millsap,
2003]. Don’t includewastes in your application and burn your valuable hardware
resources for nothing. This sounds like a no-brainer, but it occurs quite often:
for various reasons, such wastes have been built into or even shipped to custo-
mers together with the other useful functionalities of a product without realizing
their unnecessary, negative impacts on the performance and scalability of
the product.

TABLE 5.1 Performance Laws and Metrics for the M/M/1
Open Model

Law and Metric Formula

Equilibrium condition X0 ¼ l (5.1)
Service demand law Di ¼ Vi � Si (5.2)
Utilization law Ui ¼ X0 � Di (5.3)
Residence time R0

i ¼ Vi � Ri ¼ Di=(1� Ui) (5.4)
System response time R0 ¼PK

i¼1 R
0
i

(5.5)

5.4 SERVICE DEMAND 183



The service demand at each queue depends largely on how a software system is
designed. More efficient algorithms, better data access methods, and simplified
business logic at the application implementation level are very effective common prac-
tices for improving the service time of a software system, as elaborated earlier.

On the other hand, the underlying hardware that provides the platform for the
system software and application software to run on is also critical in determining
the service time. Very often, faster hardware is the easiest solution if the problem is
well understood and adding new hardware is affordable.

Besides, various tunings at the system level such as virtual machine heap allocation,
garbage collection, processor affinity, and system and application configurations can
often drastically improve the residence time at a specific resource by reducing the ser-
vice demand and hence the system resource utilization.

In the next few sections, we’ll explore the various components of this sample XML
Web services application from the service time perspective.

5.4.1 Web Services Handle Creation

Object creation is an expensive operation. It may take hundreds of milliseconds to
create an object. When an object is being created, its own constructor method and
the constructors of all its parent classes have to be called. Those constructor calls
not only consume local resources but also require the participation of distributed
resources under certain circumstances.

With XML Web services, services are defined in text files according to the Web
Services Description Language (WSDL) standards. Services are published dynami-
cally by the service provider. The cost for creating a client proxy object orWeb services
handle is high, since the corresponding service definition file has to be fetched over
the network. Additionally, theWSDLfile has to be parsed as part of the object creation,
which incurs additional cost relative to conventional object creation. Therefore, from
the performance perspective, the client proxy object has to be cached.

5.4.2 XML SOAP Serialization/Deserialization

XML SOAP serialization and deserialization operations are responsible for converting
back and forth between SOAP request/response messages and Java objects. Such
operations need to be carried out on both the client and server sides. It might be
time consuming to perform such operations, which is a concern from the performance
and scalability perspectives.

XML SOAP serialization and deserialization operations are sometimes hidden
from the user program, since they are performed by the supporting XMLWeb services
infrastructure development kits and run-time libraries. In this case, the user does
not have much flexibility to optimize serialization and deserialization processes.
However, for large-scale enterprise applications, a specialized serializer has to be
developed, which provides developers with another opportunity for optimizing the
performance and scalability of the XML Web services based applications.

184 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



5.4.3 Network Latency

Since XMLWeb services are designed to integrate multiple services using SOAP over
HTTP, network latency is one of the biggest concerns from the performance and scal-
ability perspectives. Nowadays it’s possible to have almost zero latency networks with
the state-of-the-art network and cabling equipment in a typical LAN environment.
However, network communications across WAN or even across continents are
much slower. Networks such as home networks and 10-Mbps corporate networks
are common as well. Network latency is one of the largest performance factors for
XMLWeb services.

XML Web services SOAP messages can range from a few kilobytes to tens of
kilobytes or even megabytes in large-scale enterprise applications. Depending on
the bandwidth of the network and the size of SOAP messages, network latencies
can be very significant. Table 5.2 shows typical network latencies with various com-
monly used networks.

Table 5.3 shows the network configurations labeled A through F in Table 5.2. As
expected, network latencies are low when both the client and server sit on the same

TABLE 5.2 Network Latencies (Milliseconds) with
Various Networks

Bytes A B C D E F

32 4 2 ,1 ,1 43 ,3
64 4 2 ,1 ,1 44 ,3
128 5 3 ,1 ,1 45 ,3
256 6 3 ,1 ,1 44 ,3
512 7 4 ,1 1 45 ,3
1024 10 7 ,1 2 48 ,3
2048 17 10 ,1 3 51 ,3
4096 33 – 1 7 55 ,3
8192 50 30 2 14 64 ,3
16384 96 32 3 27 80 3
32768 218 104 6 55 110 3
65400 372 204 12 110 172 3

TABLE 5.3 Networks Associated with Table 5.2

Network Configuration

A Wireless at home with DSL, 11 Mbps, Windows XP (Pentium IV, 2.66 GHz)
to Windows XP (AMD Athlon XP, 2 GHz)

B Direct hub connection with DSL, 100 Mbps, Windows XP (Pentium IV, 2.66 GHz)
to Windows 2000 (Pentium III, 700MHz)

C Direct hub connection with DSL, 100 Mbps, Windows XP (Pentium IV, 2.66 GHz)
to Windows XP (AMD Athlon XP, 2 GHz)

D 100-Mbps LAN, Windows XP to Windows XP
E Corporate network from California to Kansas City, Windows XP to HP-UX 11
F Same 100-Mbps LAN, Windows XP to HP-UX 11

5.4 SERVICE DEMAND 185



high-speed LAN or when the message size is below 1 kilo-byte on a typical home
network. Column E indicates that communication over long-distance networks is
slow. Interestingly, this has in fact helped create a whole new segment of business
in the software industry for those companies that provide content caching services
distributed globally.

5.4.4 XML Web Service Provider

The XMLWeb service provider is the component that actually provides the client with
the services the client requests. XMLWeb services are typically implemented as a sta-
teless session façade object that delegates much of its work to other traditional session
and entity objects that implement the business logic. However, this extra layer of over-
head associated with the XMLWeb services façade could be high relative to the raw
performance that the underlying business components have to offer. Wewill see some
typical performance data in this regard in the section on test results later.

5.4.5 Database Server

The database is an important part of every enterprise application. Although it is not
unique to XML Web services, its importance in the performance spectrum of XML
Web services cannot be underestimated.

Although techniques for database optimization and tuning are often vendor
specific, there are some aspects that are common for all types of database systems.
To achieve the best possible database service times, one needs to make sure of the
following:

† Adequate hardware capacity is assigned to the database server. This typically
means using the latest computer servers with multicore processors and the fastest
CPU clock rate.

† For a given type of database system, whether it’s IBM DB2, Microsoft SQL
Server, Oracle, or any other type of database systems, set all performance-
sensitive parameters to their proper values. These parameters are typically related
to memory, optimal query execution plans, and fast data retrieve and store from/
to the underlying physical disks.

† Adequate indexes are in place for all time-consuming SQL queries.
† Optimizer statistics are up to date. Without proper statistics gathered on the
relevant tables and indexes, the SQL query optimizer is essentially blind in
choosing most optimal execution plans, which often leads to slow queries and
poor database performance.

† SQL queries are designed to be high performance. This is a whole separate area
of database performance optimization and tuning on its own.

† Excessive logical reads are contained with a proper indexing scheme such as
covering indexing scheme. Excessive logical reads are both a performance
killer and a scalability killer. It is often masked with excessive database server

186 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



CPU utilizations. The larger the data volume for your test, the worse it is for your
application. We’ll see a concrete example about this issue in the next chapter.

To learn more about database optimization and tuning, one can consult the relevant
texts that are readily available. For example, one can refer to Millsap [2003] for
common performance tuning strategies on Oracle, which is one of the most widely
used enterprise database products.

5.4.6 Data Storage

For database-intensive applications, adequate storage is very crucial for the overall
performance and scalability of an application [Simitci, 2003]. Ideally, one should
use enterprise class external storage for internal performance and scalability tests,
but it might be difficult to have access to such high-end storage due to the budget con-
straint on the development systems in an organization. If you have to use local internal
disks for your performance and scalability tests, here are some recommendations to
keep in mind:

† Use the latest SCSI drives, which can provide much higher data transfer through-
put than the outdated ones. Avoid putting all data for your database onto one
single local disk: it is just as important to avoid putting the entire software
stack onto one single low-end computer. Don’t make the mistake of conducting
the performance and scalability tests for your enterprise software applications
using a low-end development computer system for all your software components
and a low-end single disk for your database.

† Use multiple drives with data spread across at least three physical disks. With the
latest computer systems, this can easily be achieved with an internal RAID con-
figuration, such as RAID 0.

† Use one dedicated drive for transactional log files. Transactional logs are used to
recover transactions in case of failures such as power outages. In Oracle, these
logs are referred to as redo logs. Transactional logs are accessed sequentially,
so it won’t help to spread transactional logs across multiple disks.

† Take advantage of caching at the various levels such as at the disk level and disk
controller level. However, be aware of the huge performance impact of caching at
the file system level. All database systems cache data at the database system level.
Caching data at the file system level causes data to be cached twice, which is
known as double buffering. I’ll give you a specific example of Oracle on the
Veritas file system in the next chapter: once the double buffering was suppressed
with the proper settings at both the database system level and file system level,
the average read time was reduced from hundreds of milliseconds to submilli-
seconds, and the throughput was improved by as much as 13 times.

More details about storage are beyond the scope of this book. Let’s move on to the
inner workings of the sample application that will be tested against the performance
model we established in Section 5.3.

5.4 SERVICE DEMAND 187



5.5 MedRec APPLICATION

In order to make it possible to compare the analytical model and the actual measure-
ments, we need to come up with a realistic application so that the model can be fed
with the arrival rates and the measured service demands. A sample application from
one of the leading application server vendors, BEA Systems, is well suited for this
need [BEA, 2003]. This application is called Avitek Medical Records (MedRec). It
is well documented and publicly available. The application allows patients, doctors,
and administrators to manage patient data using a variety of clients. It was built
with the best J2EE and XML Web services practices known today.

In order to help understand the performance model presented in Section 5.3, we
explain in the next two sections how an XML Web service can be built by exposing
a stateless session EJB as an XMLWeb service and how this XMLWeb service is con-
sumed using SOAP in the MedRec application.

5.5.1 Exposing a Stateless Session EJB as an XML
Web Service

BEA provides tools based on the open source Java compiling and packaging tool Ant
for developing and deploying J2EE and XMLWeb services applications. These tools
can be used for exposing stateless session Enterprise Java Beans (EJBs) as XMLWeb
services. One of the tools, autotype, generates the following artifacts:

† Serialization and deserialization classes
† XML schema representation and type mapping information for the non-built-in
Java data types that are used as parameters and return values of the EJB methods

The other tool, source2wsdd, generates the web-services.xml deployment descriptor
file that describes the XML Web service.

In summary, the XMLWeb service architecture has introduced two extra layers to
the application:

† The exposed XMLWeb service session EJB façade that takes incoming requests
to the application and dispatches them to the underlying session and entity EJBs
that implement the actual business logic.

† Object serialization. For the sake of interoperability with different types of
clients, the methods of the Web service EJB use complex non-built-in data
types as parameters and return values. The serialization classes convert those
data types to their equivalent XML schema types, whereas the Web service
EJB converts the data between the Web service data type and its equivalent
value object used by other session and entity EJBs.

The next section examines how the client application uses a port object to invoke an
XML Web service operation.

188 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



5.5.2 Consuming an XML Web Service Using SOAP

BEA provides a tool named clientgen for generating the Java API for XML-based
RPC (JAX-RPC) stubs for the Web services deployed on both WebLogic Server
and other application servers. JAX-RPC is a standard programming model for devel-
oping Web service clients and endpoints based on SOAP and WSDL. Clients can
make calls to Web services through JAX-RPC. The call detail is transparent to the
client with the underlying JAX-RPC run-time mechanisms, for example, SOAP pro-
tocol level mechanisms, marshalling, and unmarshalling. An overview of a JAX-RPC
programming model can be found at http://java.sun.com/xml/xml_jaxrpc.xml.

In the MedRec application, the PhysicianSessionEJB is a Web service consumer
that uses JAX-RPC to invoke the Web services object MedRecWebServices. The
calls to each Web service method consist of the following two steps:

Step 1. Creating a port object with the JAX-RPC stub of the Web service. The follow-
ing segment of the code shows how a port object is created:

wsdl_url = System.getProperty (‘‘phys.app.wsdl.url’’);
MedRecWebServices service=new MedRecWebServices_Impl

(wsdl_url);
port = service.getMedRecWebServicesPort ();

where phys.app.wsdl.url is the URL of the WSDL of the deployed
MedRecWebServices, passed in as a System Property.

Step 2. Invoking the Web service operation using the JAX-RPC stub:

RecordWS recordWS = PhysicianClientUtils.toRecordWS
(pRecord);

port.addRecord (recordWS);

where the PhysicianClientUtils.toRecordWS( ) method is a utility that converts the
standard Record Value Object to a Web service-specific data type.

As is seen, SOAP serialization/deserialization and HTTP send/receive are all
encapsulated in the JAX-RPC stub implementation. The costs associated with those
operations cannot be measured separately. They can only be inferred indirectly from
the timing probes streamed to an output text file.

5.6 MedRec DEPLOYMENT AND TEST SCENARIO

We have secured enough knowledge about how this sample XMLWeb services appli-
cation works. This is necessary for us to understand not only the performance model
established for the SOA-based applications but also how to design and actually carry
out the tests. Next, we need to deploy this application, develop and implement test
scenarios, and actually execute the tests.

5.6 MedRec DEPLOYMENT AND TEST SCENARIO 189



Figure 5.3 shows the UML (Universal Mark-up Language) deployment diagram
for the MedRec application from BEA Systems. The MedRec database was deployed
on a stand-alone system. The components physicianApp and medrecApp can be
deployed on one system or two separate systems.

The MedRec test scenario is depicted in the sequence diagram shown in Figure 5.4.
The intention of the tests was to obtain measured data to help validate the performance
model for SOA-based software applications. The tests were not designed for showing
any software or hardware vendor-specific performance advantages over other similar
products.

The performance test scenario shown in Figure 5.4 consists of a single query,
findPatientByLastNameWild. This conforms to our single-class model. During each
test run, streams of findPatientByLastNameWild queries were issued through
the UI layer, which was built with the BEA version of Struts [Husted, 2003]. The
PhysicianSessionEJB is the XML Web services client, which calls the XML
Web services provider implemented as MedRecWebServicesEJB using SOAP over
HTTP. MedRecWebServicesEJB was implemented as a session façade, which in
turn calls PatientSessionEJB for carrying out the queries. PatientSessionEJB calls
PatientEJB through the Value Object Patient. PatientEJB is the entity EJB that is
an in-memory representation of the patient entity persisting in the database. For
simplicity, the business session beans and entity beans are not shown in Figure 5.4.

A performance test script corresponding to the test scenario shown in Figure 5.4
was recorded and modified using the load test tool Microsoft Application Center
Test (ACT), which is one of the most popular load test tools for testing Web appli-
cations on Windows/Intel platforms.

Figure 5.5 shows the test environment. The database was deployed on a stand-alone
system. The application was installed on another separate system, which hosted both

Figure 5.3 MedRec XML Web services application deployment.

190 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



the XMLWeb services provider and the client. The load test tool ACTwas installed on
a stand-alone system.

Let’s examine the test results in the next section.

5.7 TEST RESULTS

Before presenting the test results, I need to make it clear that caching at the database
level and application server level has huge effects on the performance numbers

Figure 5.4 MedRec test scenario.

Figure 5.5 XML Web services performance and scalability test environment.

5.7 TEST RESULTS 191



obtained with each run. After starting up the database server and application server,
which were deployed on two separate Windows XP PCs, the first run was made
with a single user, a single iteration, and zero think time, based on the test scenario
shown in Figure 5.4. This run is shown in Figure 5.6 as Run 1. During this run, 15
requests were completed within 3 seconds.

Then the application server was restarted without restarting the database server,
which effectively emptied the cached session objects on the application server. The
same test as the first run was then repeated nine times, through Runs 2 to 10. A con-
sistent throughput of 7.5 requests/second was achieved with each run. With these test
runs, the database buffer cache helped reduce the total completion time from 3 seconds
to 2 seconds for the same number of 15 requests total.

In order to see the effects of application server level caching on throughput, the
same test was repeated five times more without restarting the application server
prior to each run. Those five runs correspond to Runs 11–15 in Figure 5.6. The com-
pletion time further decreased from 2 seconds to 1 second. This has effectively tripled
the throughput compared with Run 1. As is seen, caching is a very delicate issue to
deal with in the actual performance and scalability tests.

In the following sections, we will look into the overhead of the XMLWeb services
handle and the effects of caching the XMLWeb services handle on response times. I
will show the throughput dynamics accompanied with bottleneck analysis.

5.7.1 Overhead of the XML Web Services Handle

The total time spent on the workload described in the previous section can be decom-
posed based on the QNM shown in Figure 5.2. The timing probes added to the XML
Web services client and provider of this application allowed us to conduct this type of
decomposition. The resultant resource profile including the overhead of the XMLWeb
services handle is shown in Figure 5.7.

The pie chart shown in Figure 5.7 was based on the nine runs that had only a single
user, single iteration, and zero think time with both the database server and application
server restarted prior to each run. For this XMLWeb services query, the request and

Figure 5.6 Effects of caching on throughput.

192 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



response SOAP messages were 1 kB and 2 kB only, respectively. The application
server and database server were connected to a 100-Mbps LAN corresponding to
the Column C network configuration shown in Table 5.2. The network latency is neg-
ligible in this case.

It’s interesting to see that XML Web services handle creation in this application
took as much as 204 milliseconds out of a total response time of 583 milliseconds.
In the next section, I will show how the handle can be cached in order to improve
the overall response time.

5.7.2 Effects of Caching Web Services Handle

Figure 5.8 shows the test results obtained using the same test conditions as for
Figure 5.7 except that the Web service handle was cached. Caching implementation
for the Web service handle was easy as J2EE provides a simple solution to caching
the properties of an EJB object through the SessionContext interface. The
SessionContext interface provides access to the run-time session context that is main-
tained by the container. The container calls the setSessionContext method to pass
the SessionContext object to an instance after the instance has been created. The ses-
sion context remains associated with the instance for the lifetime of the instance
[Shannon et al., 2000]. With the MedRec application, the handle was created as a
port object, as shown in the code snippet in Section 5.5.2. The handle was then
stored in the PhysicianSessionEJB’s SessionContext object.

Figure 5.7 Response time apportionment based on the QNM shown in Figure 5.2.

5.7 TEST RESULTS 193



It is seen that after theWeb services handlewas cached in the SessionContext object
when the instance of PhysicianSessionEJB was created, the overhead associated with
XMLWeb services has been reduced from 76% to about 50%, although it is still high
and further optimizations in SOAP serialization are still needed.

In the next section, I will show the throughput dynamics for each performance test
run. We will see that the request flow equilibrium was reached within the warm-up
period and held steady afterwards.

5.7.3 Throughput Dynamics

In order to do a comparison with the analytical performance model described in
Section 5.3, we conducted six findPatientByLastNameWild runs with 1, 3, 5, 7, 10,
and 15 virtual users respectively, using ACT. A 20-second warm-up, 10-minute dur-
ation, and 250-ms total think timewere specified for each run. There were five requests
in the scenario:

† loginPage
† loginAction
† searchPage
† searchAction
† logout

A 50-ms think time was added after each request in order to have better control on the
arrival rate. A text file that contains 10,006 patient last names was used in the test script
to feed the patient search query.

Figure 5.9 shows the throughput dynamics in terms of requests/second versus time
for the first five runs. As was described in Section 5.3, the analytical model was built
on the assumption of operational equilibrium. Therefore, for each test run, we need to

Figure 5.8 Response time apportionment with cached XML Web services handle.

194 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



make sure that this assumption is met and the comparison between the model and the
measurement is performed on a valid assumption.

As is shown, the throughput was saturated around 7 virtual users with a transac-
tion rate of about 73 requests/second. A more detailed bottleneck analysis will be
given next.

5.7.4 Bottleneck Analysis

We have collected detailed ACT test results and Windowsw perfmon performance
counter logs for diagnosing the bottlenecks attributable to the saturated throughput.
Figure 5.10 shows the throughput in terms of requests per second (RPS) versus the

Figure 5.9 Throughput dynamics with (a) 1 virtual user, (b) 3 virtual users, (c) 5 virtual users, (d)
7 virtual users, and (e) 10 virtual users.

5.7 TEST RESULTS 195



number of virtual users. It is seen that the knee of the curve occurred around 7 virtual
users. The knee of the curve is an indicator that the application has reached its capacity
with the load around it.

Figure 5.11 shows the corresponding average response time of the
findPatientByLastNameWild query. It is seen that beyond 7 virtual users, response
time went up faster than a linear scaling trend, which also confirmed that the system
had reached its scalability limit around 7 users.

Next, let’s find out which resource was the bottleneck. The charts showing the var-
ious resource consumptions such as CPU, disk, network, and memory can reveal the
resource that is the bottleneck preventing the application from being scalable beyond
the knee of the curve.

Figure 5.10 Throughput versus the number of virtual users.

Figure 5.11 Response time versus the number of virtual users.

196 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



Based on the perfmon performance counters, we can eliminate memory as a bottle-
neck, as the largest working set from the WebLogic Server (WLS) process out of
those six runs was about 110 MB, which means that less than half of the 256 MB
heap memory was touched. Additionally, the throughput dynamics shown in
Figure 5.9 indicate that no “thrashing” in throughput occurred due to insufficient
JVM heap capacity.

We can also eliminate network as a bottleneck, since the maximum Bytes Total/
second was only 0.328Mbps both on the database server and on the application
server. That’s a small fraction of the 100 Mbps total bandwidth. The disk did not
seem to be the bottleneck either, as the disk busy time was less than 1%.

Figure 5.12 CPU utilizations on the WLS and database server.

Figure 5.13 Processor queue length on the WLS.

5.7 TEST RESULTS 197



Now let’s concentrate on analyzing the CPU utilizations. Figure 5.12 shows the
CPU utilizations on the WLS and database server. It is clear that the CPU utilization
on the application server maxed out around 7 virtual users and beyond.

Figure 5.13 shows the processor queue lengths on the application server for
those six runs. The processor queue length reached as high as 10 for the test case
with 7 virtual users, which is far above the bottleneck threshold of 2 queued items
per processor on the Windows/Intel platforms.

Based on the bottleneck analysis above, it is clear that using a more powerful server
for the WebLogic application server would improve the scalability of this application
beyond 7 users.

5.8 COMPARING THE MODEL WITH THE MEASUREMENTS

The analytical model described in Section 5.3 depends on the two input workload
parameters: arrival rate and service demand. Here we assume a service demand of
50 ms for the application server, derived from the test results shown in Figure 5.7.
From those six test runs discussed in the previous section, we obtained the arrival
rate for each run by dividing the number of queries completed within the test duration
of 10 minutes. Table 5.4 shows the derived arrival rates.

We then calculated the CPU utilizations using Equation (5.3). The results are
shown in Table 5.5 along with the measured utilizations. The overall agreement
between the model and measurement seems to be within the acceptance criteria we
mentioned in Section 5.3.

Table 5.6 shows the response times calculated using Equation (5.4) along with the
measured response times. As is often the case, measured response times have large

TABLE 5.4 Arrival Rate for Each Test Run

Number of Virtual Users Number of Queries Arrival Rate

1 1995 3.3
3 5438 9.0
5 7652 12.8
7 8744 14.6
10 9369 15.6
15 9211 15.4

TABLE 5.5 Calculated and Measured Utilizations (%)

Utilization (%)

Number of Virtual Users Model Measurement

1 17 16
3 46 40
5 64 73
7 72 95.6
10 88 99.9
15 86 99.9

198 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



variations around the average; therefore the standard deviation for each run is shown as
well. Once again, the agreement between the model and measurement conforms to the
acceptance criteria.

Figure 5.14 shows graphically the comparison between the measured and calcu-
lated application server CPU utilizations for different numbers of virtual users. The
left bars show the CPU utilizations predicted using the analytical performance
model, whereas the right bars show the measured CPU utilizations. The model predic-
tion errors are 3.8%, 15%, 212%, 225%, 212% and 214% for those six test runs
with 1, 3, 5, 7, 10, and 15 virtual users, respectively. The agreement between the
model and the measurement is quite good given the fact that both theoretical
models and experimental measurements contain certain levels of errors.

Figure 5.15 shows the comparison of the response times between the measurement
and the model. With the measured data, both the average and error bars are shown. We
used+1 standard deviation to plot the error bars. It is seen that the calculated data are
quite close to the measured average þ standard deviation for the region prior to the
knee of the curve, which is 7 virtual users.

TABLE 5.6 Calculated and Measured Response Times

Response Times (ms)

Measurement

Number of Virtual Users Model Average Standard Deviation

1 50 46 9
3 70 60 17
5 117 92 24
7 150 124 42
10 350 190 67
15 300 348 126

Figure 5.14 CPU utilization comparison between model and measurement.

5.8 COMPARING THE MODEL WITH THE MEASUREMENTS 199



It is seen from Figure 5.15 that the model over-estimated the response time some-
what compared with the measurements. This might have something to do with the fact
that the queuing models described in Chapter 4 are based on the exponential distri-
bution that has least information or highest entropy [Gross, 2008], which is equivalent
to saying that the models estimate the response times conservatively.

In the next section I’ll discuss the validity of the SOA performance model.

5.9 VALIDITY OF THE SOA PERFORMANCE MODEL

The validity of the SOA performance model studied in this chapter can best be con-
firmed with the same preconditions described in Chapter 4 about the validity of the
open models in general. Essentially, one can confirm with the comparison data pre-
sented in the preceding section that the SOA performance model was more accurate
with the smaller utilizations or lighter loads prior to the knee of the curve.

This concludes our first case study on applying queuing theory to predicting the
performance and scalability of the SOA-based enterprise software applications.

5.10 SUMMARY

In this chapter, we presented an analytical model for predicting the performance of the
SOA-based applications. Using the BEA MedRec application as an example, we
demonstrated the applicability of thewell-known queuingmodels to emerging technol-
ogies such as XMLWeb services. Based on this exercise, we observed the following:

† The generic open QNM seems to apply well to the SOA-based applications in
predicting both the system CPU utilizations and response times.

Figure 5.15 Response time comparison between model and measurement.

200 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



† Creating service handles is an expensive operation. Service handles must be
cached at the component or application level to minimize their impact on the per-
formance and scalability of the application.

† SOAP serialization and deserialization can be costly as well. An efficiently
implemented serializer is necessary to minimize its impact on the performance
and scalability of the XML Web services based applications.

† An interesting observation out of this exercise is that almost half of the
total service response times are attributable to the XML Web services
SOAP serialization and services façade, and the other half to the underlying
business objects that fulfill the services. This 1 : 1 ratio between the
XML Web services infrastructure overhead and the underlying business
objects that carry out the core business logic may vary from application to
application.

Since the service handle can be cached at the component or application level, the
model can be applied to XML API driven, component-based enterprise applications
as well. The observations out of this exercise are helpful for designing the per-
formance-oriented, XML Web services based applications. They may have merits
for exploring the Open Grid Services Architecture (OGSA) [Foster and Kesselman,
2004] as well in which XML Web services are potential basic building blocks
and mechanisms.

RECOMMENDED READING

Some general texts on the SOA and XMLWeb services:

G. Anderson and P. Anderson, Enterprise JavaBeans Component Architecture, Prentice Hall,
2002.

A. Krowczyk, Z. Greenvos, C. Nagel, and A. Banerjee, C# Web Services, Wrox Press Ltd.,
2001.

P. Cauldwell, R. Chawla, V. Chopra, G. Damschen, C. Dix, T. Hong, F. Norton, U. Ogbuji, G.
Olander, M. A. Richman, K. Saunders, and Z. Zaev, Professional XML Web Services,
WroxPress Ltd., 2001.

G. Eddon and H. Eddon, Inside Distributed COM, Microsoft Press, 1998.

G. Glass, Web Services—Building Blocks for Distributed Systems, Prentice Hall PTR,
2002.

Microsoft,Developing XMLWeb Services and Server Components withMicrosoft Visual Basic .
Net and Visual C# .Net, Microsoft Press, 2003.

D. Slama, J. Garbis, and P. Russell, Enterprise CORBA, Prentice Hall PTR, 1999.

Some texts on queuing theory and software performance tuning:

N. Gunther, The Practical Performance Analyst, McGraw-Hill, 1998.

M. Gurry and P. Corrigan, Oracle Performance Tuning, O’Reily & Associates, 1996.

R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, 1991.

RECOMMENDED READING 201



D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals of Queuing Theory,
4th edition, Wiley Series in Probability and Statistics, 2008.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System
Performance: Computer System Analysis Using Queuing Network Models, Prentice Hall,
1984.

D. A. Menasce and V. A. F. Almeida, Scaling for E-Business, Prentice Hall PTR, 2000.

C. Millsap, Optimizing Oracle Performance, O’Reilly & Associates, 2003.

H. Simitci, Storage Network Performance Analysis, John Wiley & Sons, 2003.

Some texts on developing SOA-based software applications:

BEA Systems, BEAWebLogic Server MedRec Development Tutorial, available at http://www.
bea.com, 2003.

I. Foster and C. Kesselman, The Grid 2: Blueprints for a New Computing Infrastructure,
Morgan Kaufmann, 2004.

T. Husted, Struts in Action, Manning, 2003.

B. Shannon,M. Hapner, V.Matena, and J. Davidson, Java 2 Platform Enterprise Edition—Plat-
form and Component Specifications, Addison-Wesley, 2000.

Some publications on applying queuing theory to solving software performance
problems:

H. H. Liu and P. V. Crain, An analytic model for predicting the performance of SOA-based
enterprise software applications, in CMG 2004 Proceedings, Las Vegas.

H. H. Liu, Service demand models for enterprise software applications, in CMG 2005
Proceedings, Orlando Florida.

H. H. Liu, Applying queuing theory to optimizing enterprise software applications, in CMG
2006 Proceedings, Reno.

EXERCISES

5.1. Find a sample SOA application from one of the major SOA development
infrastructure vendors such as BEA System, IBM, and Microsoft. Deploy the
application on one or multiple physical systems by following the setup
procedure downloaded with the application. Check out all the major functions
of the application and make sure everything works as described in the
document provided by the vendor. [Note: This is a good exercise for acquiring
the skill set of performing routine tasks such as preparing a performance and
scalability test environment and deploying a relatively complex application.
This will also give you an opportunity to familiarize yourself with one of the
leading SOA development platforms, which may help you land your first job in
software if you are a college student or your next job for advancing your career
either internally or externally.]

202 CASE STUDY I: QUEUING THEORY APPLIED TO SOA



5.2. Find a free load test tool such as ACT from Microsoft or a commercial one if you
have access to it. Design your use scenarios and develop the corresponding load
test scripts. Include think times in your scripts. Test out your scripts thoroughly to
make sure your scripts work properly. [Note: Developing load test scripts is
another important skill set to have for coping with software performance and
scalability challenges either with your current job or future job.]

5.3. Collect the throughput dynamics by varying the number of virtual users. Find the
knee of the curve with your specific deployment. Analyze the system resource
utilizations quantitatively and arrive at your conclusion about which resource
is the bottleneck. [Note: This exercise will help you acquire the skill set for ana-
lyzing software performance and scalability bottlenecks.]

5.4. Develop a queuing model for the application under test. Compare your measure-
ments with the predictions according to the queuing model. [Note: This is a very
advanced exercise.]

5.5. Discover the ways in which you can optimize and tune the performance and scal-
ability of your application even further. [Note: This is a good exercise whether
you are a software developer or performance engineer.]

EXERCISES 203





6
Case Study II: Queuing

Theory Applied to
Optimizing and Tuning
Software Performance

and Scalability

Mathematical reasoning may be regarded rather schematically as the exercise of a
combination of two facilities, which we may call intuition and ingenuity.

—Alan Turing

A software system is unlikely to perform and scale without going through a rigorous
performance and scalability engineering process. Such an engineering process
typically includes two major activities: optimization and tuning. In the context of
the software performance and scalability, optimization refers to the efforts of identi-
fying and eliminating internal inefficient designs and implementations, whereas
tuning refers to the efforts of establishing the optimal setting for every possible
external configuration parameter. Both optimization and tuning must be incorporated
into the development cycles of a software product to help achieve the best possible and
predictable performance and scalability.

Software performance and scalability issues must be dealt with both rationally
and quantitatively. One must understand that it’s not a guessing game. All judgments
and decisions must be based on quantitative performance and scalability test data.
That’s because system bottlenecks and implementation inefficiencies can only be

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

205



revealed through analyzing quantitative performance and scalability test data, while
prescriptions for removing bottlenecks and improving inefficient designs and
implementations can only be carried out by following the performance and scalability
laws defined in the framework of queuing theory.

Software performance and scalability test data in general refers to the data in the
following three categories:

† Performance metrics data such as response time and throughput that quantify the
performance of the software under test.

† System resource utilization data collected during a test with the various system
resources such as CPU, disk, network, and memory.

† Profile data such as API profiling data and database statistical reports. API profil-
ing data reveals the execution paths of the various software components, while a
database statistical report summarizes by category the various activities that
occurred inside a database execution engine for the duration of a test.

It’s critical that test data meets the software performance data principles depicted in
Chapter 3. After making sure that you have obtained reliable and quality performance
and scalability test data, you should follow a rigorous methodology to analyze your
data. Some people, especially those who tend to think more rationally and quantitat-
ively, can drill down to the root cause of a software performance issue much faster than
others. Trying to help you cultivate the habit of thinking more rationally and quanti-
tatively on software performance and scalability issues is one of the main objectives of
this book, in addition to helping you acquire the necessary technical skills.

Note that software performance and scalability analysis is only the first step toward
solving a software performance or scalability issue. After identifying a bottleneck, you
need to come up with some solutions for removing the bottleneck. If it requires recod-
ing and recompiling some part of your software program, it’s an optimization issue. If
it requires you to adjust some of the settings external to your program without having
to touch and recompile the source code, then it’s a tuning issue. Tuning doesn’t require
recompiling your software, whereas optimization does.

You can tune your software all by yourself, by adjusting some of the external con-
figuration parameters, and reconduct the same test to see how much improvement you
can achieve. However, optimization may require you to work with your developers for
a new version of your software that has the intended changes incorporated. Of course,
if you are doing both coding and performance testing, everything is in your hands and
it could be much faster for you to try out various implementations to see which
changes are effective. Once again, you need very solid test cases as the basis for
your optimization and tuning tests. The outcome of your optimization and tuning
efforts strongly depends on what you are testing and how it is tested.

In this chapter, I’ll first show you in Section 6.1 how to analyze software
performance and scalability in general. In Section 6.2, I’ll showyou how to apply queu-
ing theory to optimizing and tuning software performance and scalability. Plenty of
case studies are presented—the result of measurements with real products—so you
can be assured that the presented case studies are beyond academic exercises and can
be applied to your product with the possibility that you will see similar positive results.

206 CASE STUDY II: QUEUING THEORY



A software system can achieve its maximum sustainable performance and
scalability only if a balance is reached among all mutually coupled resources. That’s
the subject of Section 6.3.

Let’s start with analyzing software performance and scalability.

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY

Software performance and scalability analysis is basically a mission of finding the
bottlenecks that are responsible for the poor performance and scalability of a software
system deployed on a specific setup. Although there are many factors that may cause
poor performance and scalability for a software system, typically there are only a
few factors that are more responsible than others. This is especially true when the
performance or scalability of the software in question is far below expectations.

Software performance and scalability analysis should start with an accurate charac-
terization of the issue in question. As a software performance analyst, your character-
ization needs to be as quantitative as possible. If it’s an OLTP system, you need to
quantify what response times you are getting that are deemed as slow. If it’s a batch
job, you need to quantify what throughput numbers you are getting. So quantitatively
characterizing a software performance or scalability issue is always the first step
to take.

6.1.1 Characterizing Performance and Scalability Problems

The first step of software performance and scalability analysis is always to try to
characterize the problem quantitatively. Remember that if the problem cannot be
clearly characterized, then it’s hard to solve it.

Let’s use a real-life software scalability issue I experienced to illustrate how a full
cycle of software performance and scalability analysis should be conducted. I’ll start
with the problem characterization first.

With this specific example, the application was deployed on two separate physical
computer systems—one for the application server and the other for the database server.
The application data were stored on an external SAN with a RAID 0 configuration.
All systems were high end, running on a specific flavor of UNIX. A Java-based
program was run to simulate creating objects by calling application server APIs
with 15 threads. The performance of this object-creation test was measured in terms
of objects created per second.

As you can see from Figure 6.1, the throughput of this creating object batch job
deteriorated rapidly from 45 objects/second to 9 objects/second within about 50 min-
utes, with only 45 k objects created at the end of the test. The two charts represent the
same test using time stamp and number of objects created as the x-axis, respectively.

As is seen, throughput was deteriorating rapidly with time or with more and more
objects created. This is apparently a scalability alarm. What would happen if millions
of objects are to be created in a real production environment with this issue not
resolved prior to releasing to customers? The throughput may go down to zero with
time, which is apparently unacceptable. The question now is what is causing this
rapid throughput deterioration or poor scalability? To answer this question, we need

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 207



to look at the system performance counters collected during the test. That’s the topic of
the next section.

6.1.2 Isolating Performance and Scalability Factors

Software performance and scalability analysis to some extent is similar to forensic
medicine. You start with collecting the evidence before reaching conclusions. For
diagnosing software performance and scalability problems, the evidence lies in the
system performance counters collected during a test. Each system performance coun-
ter corresponds to a performance and/or scalability factor. By looking at the values of
those performance counters, you determine whether the corresponding factors are
important or not to your performance or scalability issue.

Performance counters are abundant, probably hundreds of them. Typically there is
no need to record all performance counters. Refer to Chapter 3 for a review of what
typical performance counters should be collected.

Table 6.1 is a summary of the recorded values of the relevant counters during the
test associated with the poor scalability shown in Figure 6.1. It covers the four standard
categories of resources: CPU, disk, network, and memory. One should take a layered
approach by starting with one of the top categories and then diving in as needed.

A quick glance indicates that CPU utilizations on both the application server and
database server were quite normal and the disk access time was normal as well.

Figure 6.1 Poor scalability of a real-world enterprise application batch job.

TABLE 6.1 Summary of the Performance Counters Associated
with the Scalability Problem Shown in Figure 6.1

Counter Value

Average CPU utilization on the
application server

10%

Average CPU utilization on the
database server

36%

Average disk access time 7 milliseconds
Network Not an issue
Memory Not an issue

208 CASE STUDY II: QUEUING THEORY



Network and memory weren’t the problem either, as both the application server and
the database server were located on a gigabits/second LAN and each server had
12-GB RAM, which was more than enough. If we saw hundreds of millisecond
disk access times, we would have suspected that disk I/O was the problem, but
that’s not the case.

Since this was a database-intensive application, we actually should look at the
database first before we suspect anything on the application server. For this specific
test case, the database was running on Oracle 10g. Oracle 10g provides an excellent
performance gathering and reporting tool for troubleshooting database performance
issues. This tool was named AWR (Automatic Workload Repository), which evolved
from statspack of the previous versions of Oracle.

This AWR tool is so useful that I rely on it to troubleshoot Oracle 10g performance
issues both with my own performance and scalability tests and with customer’s per-
formance and scalability escalations. In fact, I have been using this tool exclusively
for all my Oracle 10g related database performance analysis since it was released sev-
eral years ago. I’ll share with you here how I use this tool for my work as a software
performance professional.

With an Oracle 10g AWR report, I always jump to the Top 5 Timed Events
immediately after I open it in HTML format. From the top 5 timed events, you can
get a good estimate of which resource is the potential bottleneck. If you don’t see
anything abnormal from the top 5 timed events, usually, that’s an indication that
database is not the problem.

Figure 6.2 shows the top 5 timed events associated with the poor scalability as
characterized quantitatively in Figure 6.1. You can see immediately that 96.4% of
the total database call time was attributed to the database CPU time. The percentages
for all other wait events were insignificant.

After examining the top 5 timed events, I then always jump to the I/O stats section
by following the link shown under Main Report in an AWR report. Since an AWR
report is created in HTML, it’s very easy to navigate around. Figure 6.3 shows what
sections you can jump to by category from the Main Report.

Figure 6.2 Top 5 timed events from the Oracle 10g AWR report.

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 209



An AWR report is very lengthy. You may not need to go through the entire
report every time you examine an AWR report. However, at a minimum you should
check the following:

† I/O Stats section, which would take you to the I/O performance section. It’s
always helpful to verify whether I/O is a problem for your tests by looking at
the average read time and average write buffer wait time from the I/O Stats
section.

† SQL Statistics section that tells you whether there are hot SQLs or not.
† init.ora Parameters section, which is very useful for checking various Oracle
configuration parameters, especially when the AWR report is from others instead
of from your own test.

The I/O performance associated with this test is shown in Figure 6.4. The first row
was for the user data table space, the second row for the Oracle UNDO table space, and

Figure 6.3 Main report of an AWR report.

Figure 6.4 I/O performance associated with the poor scalability shown in Figure 6.1.

210 CASE STUDY II: QUEUING THEORY



the remaining two for the SYSTEM table space. It’s the user data table space that we
are most concerned with.

From Figure 6.4, we see the following:

† During thistest, a totalnumberof205physicaldiskreadswereperformed.The read
rate was less than 1 per second, which was rounded to zero. The average time per
read operation was 7.07 milliseconds, which was at the low end of the normal
range of 5–20 milliseconds. It is also seen that on average 1 data block was read.

† The second part of the I/O stats shows disk write performance. It indicates that a
total number of 44,056 writes were performed during the test, with an average
rate of 12 writes per second. This is not surprising at all, as this batch job was
about creating objects after all, which incurs a lot more writes than reads.

† Oracle typically does not write data directly into physical disks. Instead, it writes
data to the data buffer cache in memory first, and then flushes data from the data
buffer cache to physical disks in bulk. This is why it lists the number of buffer
waits and average buffer wait time for write activities. As is seen, the average
buffer wait time was 1.16 milliseconds only, which was quite good.

So the question is: Where does Oracle spend so much CPU time as reported from
the top 5 timed events? You can check out the Time Model Statistics section of the
AWR report associated with the test. Figure 6.5 shows the time apportionment by
Oracle on various database SQL execution activities. As is seen, the time spent on
parsing and other activities is insignificant. However, the DB CPU time and SQL
execution elapsed time were high. This indicates that we should look at the SQL
Statistics section of the AWR report to find clues on why the DB CPU time and
SQL execution elapsed time were so high for this test.

Again, you should get familiar with each statistic category of the Time Model
Statistics report, because that’s where you can get some hints about which parts of
your Oracle database you should tune.

Oracle lists the top SQLs based on the following categories, as shown in Figure 6.6:

† Elapsed Time, which is the sum of wait time and service time in the context of
queuing theory.

† CPU Time, which is the service demand in the context of queuing theory.
† Buffer Gets, which represents the number of logical reads. Logical reads read
data from the data buffer cache in memory, whereas physical reads read data
directly from the physical disks.

† Reads, which represents the number of reads by an SQL statement performed
during the test.

† Executions, which represents the number of times an SQL statement was exe-
cuted during the test.

† Parse Calls, which represents the number of times an SQL statement was parsed
during the test.

Figure 6.6 shows all top SQLs ordered by Elapsed Time, CPU Time, and Buffer
Gets, respectively. Note that the Elapsed Time and CPU Time show the fact that a

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 211



lot of time was taken for executing the first five SQLs, but these two metrics do not
show the cause, namely, why so much time was spent on these hot SQLs. The
Buffer Gets metric shows why, as I’ll explain later.

Note from Figure 6.6c that the first five SQLs were responsible for the poor scal-
ability shown in Figure 6.1, as they were accountable for 92% of the total elapsed
time. Before explaining why these SQLs were costly, let’s reveal the SQL text for
each of the top 5 SQLs.

Query 1: SELECT documentId, classId, dataGroupId, consistencyId

FROM objectTable WHERE objectId = <value>;

Query 2: SELECT documentId

FROM objectTable WHERE objectId = <value>:

Query 3: SELECT documented, objectId

FROM objectAssociationTable WHERE objectId = <value>;

Query 4: SELECT documentId, objectId

FROM objectTable WHERE objectId = <value>;

Query 5: SELECT documentId, sourceObjectId, destObjectId, objectId,

consistencyId FROM objectAssociationTable WHERE

destObjectId = <value> and classId = <value>;

Figure 6.5 Time model statistics associated with the poor scalability shown in Figure 6.1.

212 CASE STUDY II: QUEUING THEORY



Figure 6.6 Top SQLs ordered by (a) Elapsed Time and (b) CPU Time.

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 213



Note that the entity,value. in each WHERE clause represents the actual value for a
specific column. The actual values taken are not important for our analysis here and are
therefore masked out with the entity ,value..

To help understand better about the scalability issue caused by these five SQLs in
question, Table 6.2 summarizes the percentage of elapsed time, number of executions,
and number of logical reads (or Buffer Gets in Oracle’s term) for each top query. In this
context, logical reads and Buffer Gets are interchangeable.

Excessive number of logical reads is one of the most common factors affecting
database performance and scalability. It gets worse and worse with increasing
volume of data stored in a database. It’s a very prominent show-stopper for the
scalability of database-intensive software. To put it in perspective, this test incurred
205 physical reads and 44,056 physical writes, respectively, as shown in Figure 6.4,
which pale in comparison with the hundreds of millions of Buffer Gets, as shown
in Table 6.2.

Figure 6.6 (Continued) Top SQLs ordered by (c) Buffer Gets.

TABLE 6.2 Statistic Data on the Top 5 SQLs in Question

Query Number
(SQL Id)

Elapsed
Time (%)

Number of
Executions

Number of Logical Reads/
Buffer Gets (millions)

1 (gsmv6cvsysnys) 32.04 40,514 488
2 (624kyhpq82nvm) 15.97 20,265 244
3 (1wfvddxcf841m) 15.64 20,266 222
4 (gfjauwnsqxzfx) 14.60 19,680 220
5 (6h79rp4gyts91) 13.33 19,988 210

214 CASE STUDY II: QUEUING THEORY



One physical read certainly is a lot more expensive than one logical read. However,
hundreds of millions of logical reads are a lot more expensive than hundreds of
physical reads. Quantity does change the scale.

Previous research shows that a logical read in general takes about one-tenth
of a physical read [Liu, 2005]. For example, a logical read typically is in the range
of a fraction of a millisecond, whereas a physical read may take anywhere from a
few milliseconds to tens or even hundreds of milliseconds.

What was causing so many logical reads then? Well, all explanations are
arguable and subject to proof. For a software performance issue, if you ask ten differ-
ent people, you will get ten different answers and every one has a different view from
his/her perspective. But I know how it can be cured based on my experience.

The issue of excessive logical reads is not incurable. As a matter of fact, covering
indexes are a very effective approach to coping with excessive logical reads [Liu,
2006]. I’ll explain what a covering index is in the next section.

Prior to explaining the covering index, I’d like to mention that you are done as soon
as you identify the bottleneck as a software performance analyst. You are now transi-
tioning from the role of a performance analyst to that of a performance consultant. A
performance analyst analyzes the problem, whereas a performance consultant gives
prescriptions for fixing the problem, and immediate performance improvements
should ensue.

6.1.3 Applying Optimization and Tuning

A covering index includes not only the columns from the where clause part but also
the columns on the select list part of a SELECT SQL statement. The idea behind cover-
ing index is that the columns on the select list can be fetched together with columns
from the where clause, thus saving additional I/Os.

Without further hesitation, I created the following three covering indexes:

† Index 1 on the columns of objectId, documentId, classId, dataGroupId, and
consistencyId of the objectTable.

† Index 2 on the columns of objectId and documentId of the
objectAssociationTable.

† Index 3 on the columns of destObjectId, classId, documentId, sourceObjectId,
objectId, and consistencyId of the objectAssociationTable.

The test was repeated after adding these three covering indexes. See Figure 6.7 for the
results. The lower curve represents the poor scalability before adding the covering
indexes, whereas the upper curve represents the throughput after adding the covering
indexes. The throughput is essentially flat now, which indicates good scalability.

It is seen that the covering indexes made a huge difference in improving the per-
formance and scalability of this specific application. The efficacy of those covering
indexes is shown clearly in Figure 6.7. The average throughput was improved from
15 objects/second to 71 objects/second. This is about 4.7 times better than before
the covering indexes were added. More importantly, the high throughput after
adding the covering indexes became sustainable.

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 215



Table 6.3 shows quantitatively what a huge difference those covering indexes had
made in effectively combating excessive logical reads for those top 5 SQL queries in
question. The number of logical reads for those top SQLs were three orders of mag-
nitude lower after adding the covering indexes.

TABLE 6.3 Number of Logical Reads Before and After Adding
the Covering Indexes

Query
Number

Before Adding Covering
Indexes (millions)

After Adding Covering
Indexes (thousands)

1 488 142
2 244 ,102a

3 222 ,102a

4 220 ,102a

5 210 ,102a

aThe last four queries disappeared as hot SQLs in the AWR report after adding the
covering indexes, and the 102,000 logical reads was from the 20th hottest SQL
actually.

Figure 6.7 Covering index as a prescription for curing excessive logical reads.

Figure 6.8 Disk read and write statistics after adding the covering indexes.

216 CASE STUDY II: QUEUING THEORY



After adding the covering indexes, the number of physical reads and writes for the
user table space were 204 and 46,323, respectively, which were essentially the same as
205 and 44,046 before adding the covering indexes. And the average disk access time
was reduced from 7 milliseconds to 5 milliseconds, which is inconsequential. See
Figure 6.8 for the details about I/O statistics after adding the covering indexes.

It’s necessary to mention that before creating these three covering indexes, those
tables already had indexes on the objectId, documentId, and other Id’s, but not as
covering indexes. I point this out in case you are wondering about it at this point.
There was a theory that if there were indexes on those columns in the where clause

Figure 6.9 Top 5 timed events after adding the covering indexes.

Figure 6.10 Time model statistics after adding the covering indexes.

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 217



of an SQL query, then Oracle would retrieve less data into the buffer cache and thus
reduce excessive logical reads. I tried it and unfortunately that theory didn’t work.

You might wonder what the Top 5 Timed Events look like after adding those
covering indexes. Figure 6.9 shows the top 5 timed events after adding the covering
indexes. In comparison with the top 5 timed events before adding the covering indexes
as shown in Figure 6.2, we see that CPU time was reduced from 96.4% to 50.8%. Log
file parallel write time has been reduced from 1004 seconds to 566 seconds, although
percentage-wise it has gone up from 2.7% to 16.8%. The wait time with the Streams
AQ: Enqueue blocked on low memory wait event has gone up. However, this didn’t
seem to be a problem for the system throughput as shown in Figure 6.7.

Figure 6.10 shows the time model statistics after adding the covering indexes. You
can compare the time model statistics after adding the covering indexes with those
before adding the covering indexes shown in Figure 6.5. It is seen that DB CPU
and sql execute elapsed time were reduced significantly both percentage-wise and
in terms of the total absolute time.

Figure 6.11 Buffer Gets statistics after adding the covering indexes.

218 CASE STUDY II: QUEUING THEORY



Figure 6.11 shows the Buffer Gets statistics after adding those covering indexes:

† None of the SQLs had more than 1 million Buffer Gets.
† None of the SQLs had more than 10% of the total number of Buffer Gets. This
means that the Buffer Gets issue has been conquered.

† Out of those top 5 SQLs that had hundreds of millions of Buffer Gets before
adding the covering indexes, only one of them was captured after adding the
covering indexes. This SQL had the SQL Id of gsmv6cvsysnys as you can see
from Figure 6.11. Once again, this verifies the effectiveness of using the covering
index to combat excessive Buffer Gets.

Figures 6.12 and 6.13 show the SQLs ordered by elapsed time and CPU time after
adding the covering indexes, respectively. Both confirm that after adding the covering
indexes, there were no more SQLs that were obviously a lot more expensive than
others. In comparison with Figures 6.6a and 6.6b, none of the SQLs have % Total
DB Time exceeding 2%. This indicates that SQL optimization and tuning are done
with this specific test scenario and the database is no longer a bottleneck. It also
indicates that an operational equilibrium has been reached, which is a prerequisite
for sustainable performance and scalability.

I hope you have been convinced that software performance and scalability work
isn’t guess work. It requires a disciplined approach based on quantitative test data
to resolve a software performance or scalability problem effectively.

Figure 6.12 SQLs ordered by elapsed time after adding the covering indexes.

6.1 ANALYZING SOFTWARE PERFORMANCE AND SCALABILITY 219



In the next section, I’ll show you some very effective software performance
optimization and tuning techniques based on queuing theory.

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES

Optimization and tuning of the performance and scalability of a software system
should focus on reducing the wait times and service demands, as we have learned
from the queuing theory introduced in Chapter 4. Information about the wait times
and service demands with a specific software product should come from rigorous
performance and scalability testing and quantitative analysis of the test results.

There are some well-known performance and scalability patterns that are widely
applicable, some of which are no-brainers. All software practitioners should become
proficient in applying these performance and scalability patterns to designing, imple-
menting, and deploying their products to achieve the best possible performance and
scalability for their customers.

As a matter of fact, these performance and scalability patterns are deeply rooted in
queuing theory. This explains why they are always effective. In this section, I’ll intro-
duce these performance and scalability patterns by associating them with the two key
concepts of queuing theory—wait time and service demand. To reinforce the idea of
associating the well-known performance and scalability patterns with queuing theory,
I’ll reformulate wait events and service demands in the next section in the context of
enterprise software applications for which the most efficient computing resource util-
izations are always aggressively sought.

Figure 6.13 SQLs ordered by CPU time after adding the covering indexes.

220 CASE STUDY II: QUEUING THEORY



6.2.1 Wait Events and Service Demands

Enterprise software applications typically adopt a multitier architecture consisting of a
backend tier, a middle tier, and a front tier. The backend tier hosts data, the middle tier
provides enterprise services that retrieve data from or add/update data at the backend,
and the front tier sends user requests to the middle tier and renders results to the user.

Typically, the application server and database server constitute the major part of an
enterprise software application deployment, as shown in Figure 6.14. For this reason,
we omit the front tier for now.

In general, a database server and an application server communicate with each
other using TCP/IP or some proprietary protocols. Enterprise data is stored on external
storage configured at a proper RAID level. A database server accesses enterprise
application data through gigabit storage area network (SAN) fabrics in order to
minimize the data access latency.

A complete transaction in an enterprise software application consists of a “wait
chain” as is shown in Figure 6.15. In this wait chain, a database server waits for the
application data to come back from the disk arrays, and an application server waits
for the application data to come back from the database server. Therefore the execution
of a service call in an enterprise application can be considered as a series of cycles of
service–wait–service–wait, as was illustrated in a research paper by Liu [2005].

If we treat each layer of an enterprise software application system as a queuing
node, we can then immediately apply queuing theory introduced in Chapter 4 and
shed some light on how the performance and scalability of an enterprise application
can be optimized and tuned.

Figure 6.14 A deployment topology for enterprise software applications.

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 221



Assuming that the service demands and wait times are represented as Dapp, Ddb,
Ddisk, Wapp, Wdb, and Wdisk for the application server, database server, and disks in
Figure 6.15, respectively, then, according to Equation (4.17), the total response
time R0 for an OLTP system at the system level can be decomposed into two parts
as follows:

R0 ¼
X
i

Vi �Wi þ
X
i

Di (6:1)

where i iterates over the set of {app, db, disk}. Note that in this equation, the first term
represents the wait times associated with the various resource wait events and the
second term represents the service demands of the queuing nodes in a system. In an
uncontended environment, all wait times are essentially negligible.

Similarly, applying Equations (4.8) and (6.1) at the system level, we can calculate
the system throughput X0 for the batch jobs as follows:

X0 ¼ NP
i
Vi �Wi þ

P
i
Di

(6:2)

where N is the total number of objects processed in a batch job.
It’s clear from both Equations (6.1) and (6.2) that the efforts of optimizing and

tuning the performance and scalability of an enterprise software application essentially
fall into two categories:

† Minimizing the wait times at each layer as much as possible
† Reducing the service demands at each layer as much as possible

Note that from Equations (6.1) and (6.2), in an uncontended environment, both
response time and throughput are determined by the sum of the service demands
from all queuing nodes.

Figure 6.15 Wait chain in an enterprise software application.

222 CASE STUDY II: QUEUING THEORY



As was stated in previous chapters, actual performance and scalability optimization
and tuning efforts start with identifying bottlenecks. A resource is a bottleneck if it has
the largest sum of wait time and service demand, as implied in Equations (6.1) and
(6.2). When the bottleneck with a resource is removed, then the next bottleneck is
identified and removed until a balance is reached among all resources. Removing bot-
tlenecks one after another will lead to a balanced queuing system that will yield the
best possible performance and scalability.

Characteristically, bottlenecks are implied when the type of application is
known. As shown in Table 6.4, graphics and encryption applications consume more
CPU power and memory. Web applications are dominated by network traffic, so the
network is the most likely bottleneck. As enterprise applications incur intensive I/O
activities and heavy validation logic, either I/O or CPU could be the bottleneck.

It’s necessary to point out that the performance and scalability of an enterprise
software application can be improved from multiple perspectives:

† Using faster hardware from the hardware perspective
† Adopting more efficient designs and implementations from the software
perspective

† Using the optimal setting for every external configuration parameter from the
system perspective

During the design and development stages, optimizations are applied from the soft-
ware perspective, whereas after the product is released, the performance and scalabil-
ity of an enterprise software application can be further improved by using the fastest
possible hardware and applying system level tunings. Let’s look at some examples.

6.2.2 Array Processing—Reducing Vi

Large-scale enterprise software applications require careful use of various perform-
ance and scalability patterns for the highest possible performance and scalability.
One of the performance and scalability patterns is that round-trip communications
between various tiers, especially between the application tier and database tier,
should be minimized as much as possible. This way, the service demand, defined as
the product of the number of round trips (Vi) and service time (Si),

Di ¼ Vi � Si

can be decreased accordingly, resulting in better response time and throughput.

TABLE 6.4 Application Resource Bottlenecks

Application Type Potential Bottleneck

Graphics, encryption CPU, memory
Web application Network
Enterprise application I/O or CPU

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 223



Array processing helps improve the performance and scalability of an enterprise
software application by reducing the number of round trips Vi between an application
server and a database server with batch operations on common data operations such as
insert and update. Instead of issuing insert and update SQLs one by one, a bunch of
inserts and updates, say, with a batch size of 10 or 100, can be issued to the database
server as one call from the application server. This seems like common sense but is
often ignored by developers until being caught during the performance assurance
and acceptance test cycle.

Array processing is not a new performance optimization technique. It has been
documented as a generic, programming language agnostic performance pattern
[Smith and Williams, 2002]. It is supported explicitly in JDBC 2/Oracle JDBC
driver [Bonazzi and Stokol, 2001; Harrison, 2001] with an executeBatch API from
the Statement object.

Now let’s see some real examples of array processing. Figure 6.16 is the first
example of array processing. It shows the improvement in performance of the two
APIs of a batch job from a real-world enterprise application, before and after
implementing array processing with JDBC 2 and Oracle JDBC driver for the two
APIs: saveRequest and saveRequestItems.

Without going into the details about how array processing was actually
implemented in the application tested, it is seen that the first API (saveRequest) was
made eight times faster and the second API (saveRequestItems) four times faster
after the original implementation was replaced with array processing. A batch size
of 10 was used for both API tests to achieve such a large amount of improvement.
The optimal batch size may depend on the application design, implementation, and
hardware. For your specific application and test environment, you should vary the
batch size and find out the optimal batch size suitable for your application.

Figure 6.16 Efficacy of array processing on the two APIs of a batch job.

224 CASE STUDY II: QUEUING THEORY



Figure 6.17 is the second example of array processing. It shows the improvement in
performance of the two APIs of another batch job of the same enterprise application
before and after implementing array processing. It is seen that the first API (saveOrder)
was about three times faster and the second API (saveOrderItems) was about seven
times faster after the original implementation was replaced with array processing.
Again, for both APIs, a batch size of 10 was used.

Figure 6.17 Efficacy of array processing on the two APIs of another batch job.

Figure 6.18 Effects of batch size on the processing time of two batch jobs.

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 225



Figure 6.18 is the third example of array processing. It shows the effects of varying
the array size in array processing implementation on the throughput of the two batch
jobs of an enterprise application, processRequests and processOrders. The first batch
job processed 497 requests, while the second batch job processed 571 orders. As is
seen, a batch size of 10 gives a sharp improvement by as much as 100% on the
throughput of the two batch jobs compared with the case of no array processing or
a batch size of 1. Because of its significant effects on performance, array processing
should be adopted and implemented with every enterprise software application
during the early stages of the product development life cycle before performance
assurance and acceptance tests begin.

As the last example of array processing, Figure 6.19 shows the performance
improvements of an enterprise application built in Java/C/Cþþ, after implementing
array processing. In this case, the batch job ValidateObject was run first and then
the batch job CheckInObject was run. The throughput of each batch job improved sig-
nificantly: 65% for the first batch job and 20% for the second batch job. After it was
verified to be optimal, a batch size of 100 was hard-coded into the application. Such
improvements are significant as these batch jobs may run for days, depending on the
volume of data to be processed.

6.2.3 Caching—Reducing Wait Time (Wi)

Caching helps reduce the wait time or data latency for objects that are fairly static and
reused frequently. It is the most common performance optimization technique and cer-
tainly is implemented with every enterprise software application. It’s safe to say that
without caching, none of the enterprise applications would perform.

Caching can be implemented at various levels, for example, at the application
server level, at the database level, and at the storage level. Developers are usually

Figure 6.19 Effects of array processing on an application built in Java/C/Cþþ.

226 CASE STUDY II: QUEUING THEORY



very good at implementing caching at the application level. However, human beings
make mistakes, especially under tight schedules. Here are two examples of sudden
performance degradation:

† In order to add a functionality requested by the customer, a small change was
made to a production enterprise application that had been in use by millions
of users for online shopping for years. Suddenly, the system was so slow that
the users were not able to place purchase orders online anymore. The customer
was losing revenue as every minute went by. What’s the performance defect that
had caused this incident?

† A large-scale enterprise application had undergone a thorough overhaul by retro-
fitting and combining all major parts to make it perform better. Then, the routine
performance regression test showed that it was 10–30 times slower than before.
What could cause such enormous performance degradation?

In both cases, the performance degradations were caused by some objects that
slipped away from caching in coding when changes were made. And in both cases,
the defects were fixed in time. The moral of the story is that caching objects that are
static at the application level plays a vital role in delivering decent performance for
every large-scale enterprise software application. It’s a smart guess that, in a situation
where the performance of an application suddenly dropped drastically due to some
changes in the code of an application, it might be because accidentally some objects
slipped away from caching in coding.

Another interesting example of caching is at the storage level. I had been working
on optimizing and tuning a real-life, large-scale enterprise application for more than a
year using in-house hardwarewith local disks for the database server. Eventually, I got
a chance to run the same tests on the production class hardware with advanced SAN
storage for the database server. What kind of data latency disparity would you antici-
pate between local disks and SAN? Table 6.5 shows the difference between local disks
(320 MB/s SCSI) and SAN for about 200,000 physical reads and writes.

It is seen that read/buffer wait latency was in the range of 10 ms with local disks,
versus the submillisecond rangewith SAN. The difference comes from the fact that the
SAN under test had a huge cache of 2 GB with cache-write enabled. With such a huge
disparity in I/O latency between local disks and SAN, the throughput differed by as
much as 2–3 times with the same workload.

TABLE 6.5 Comparison of Data Latency between Local Disks and SAN

I/O Local Disk SAN

Reads 201,400 201,800
Average reads/second 160 400
Average read time (ms) 9 0.21
Writes 238,300 124,700
Average writes/second 190 250
Buffer waits 5,300 12,000
Average buffer wait (ms) 11 0.12

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 227



6.2.4 Covering Index—Reducing Service Demand (Di)

Database SQL tuning is a much broader category than can be covered in this book.
Many excellent texts on SQL tuning are readily available [Harrison, 2001; Tow, 2004].

Most developers know how to index simple queries. In this section, we present an
example beyond simple SQL indexing that can help combat excessive logical I/Os or
Buffer Gets in Oracle terms. Excessive logical I/Os consume significant amounts of
database CPUs and affect the throughput of batch jobs severely, as elaborated in
Section 6.1.

This is another real-world example of software performance tuning out of my
experience as a performance engineer. The performance issue centered on the
following two SQLs, which are similar to each other:

Select C3 from T1 where C1=<value> and C2=<value> order by 1 ASC;

Select C3 from T2 where C1=<value> and C2=<value> order by 1 ASC;

The T1 and T2 tables from the above two SQLs store objects and relations, respect-
ively. They are large tables that can contain millions of rows for objects and relations.
The performance tests showed that the throughput was low even with both queries
indexed on the C1 and C2 columns. The AWR report generated with the Oracle
10g performance diagnostics tool indicated that excessive Buffer Gets associated
with these two SQLs were attributable to the large amounts of CPU time consumed
on the database server.

Since the two SQLs were returning one column only from the data tables, it is a
perfect situation where covering index (or data in index) can help. By appending

Figure 6.20 Combating excessive Buffer Gets with covering index or data-in-index (DII)
optimization technique.

228 CASE STUDY II: QUEUING THEORY



the C3 column to the indexes on the C1 and C2 columns of both tables, there would be
no need for the two queries to touch the data tables, which not only helps save physical
I/Os to the data tables but also helps avoid bringing too much data into the database
buffer cache.

Figure 6.20 shows the significant reduction of Buffer Gets on both queries after
this data-in-index optimization was applied. As is seen, the number of Buffer Gets
had been reduced from 164 million to 42 million for the first query and from 101
million to 24 million for the second query. This optimization has not only improved
the throughput of the batch job by as much as 55% but also helped improve the
scalability of the batch job. Without this fix, more and more data would be brought
into the database buffer cache when the volume of data to be processed becomes
larger and larger, as was the case with the example elaborated in Section 6.1.

Indexing is not the only approach that can help enhance the performance and
scalability of database-intensive enterprise applications. Properly configuring some
of the database parameters can be equally effective, as is demonstrated next.

6.2.5 Cursor-Sharing—Reducing Service Demand (Di)

This section presents another example about how the performance and scalability
of an enterprise application can be improved by tuning the external configuration
parameters, which helps reduce service demands. This example is Oracle 10g specific
but might be applicable to other database products as well.

When a query is received by a database server, it must be parsed first. Parsing
could be either a hard parse or a soft parse. A hard parse is very expensive since the
database server treats each query as a new SQL and all data structure setup as well
as all validation logic has to be repeated. Soft parse is less expensive as the database
server may reuse the data structures already set up when the SQL was executed the
first time.

With Oracle 10g, an initialization parameter named CURSOR_SHARING deter-
mines how an SQL is parsed. This parameter has three settings, EXACT (default),
SIMILAR, and FORCE. Setting CURSOR_SHARING to EXACT incurs excessive
hard parses and may hurt the performance and scalability of an application severely.

SQL statements that are identical, except for the values of some literals in thewhere
clause, are called similar statements. Setting CURSOR_SHARING to either
SIMILAR or FORCE allows similar statements to share SQL. The difference between
SIMILAR and FORCE is that SIMILAR forces similar statements to share the SQL
area without deteriorating execution plans, whereas setting CURSOR_SHARING to
FORCE forces similar statements to share the executable SQL area, potentially dete-
riorating execution plans. Hence FORCE should be used as a last resort, when the
risk of suboptimal plans is outweighed by the improvements in cursor sharing.

Setting CURSOR_SHARING to SIMILAR or FORCE can significantly improve
the performance and scalability of the applications that have many similar statements
but do not use bind variables. Figure 6.21 is an example showing the benefit (in terms
of performance) of setting CURSOR_SHARING to SIMILAR or FORCE relative
to the default setting of EXACT. Using the normalized throughput against the
default setting of EXACT, it is demonstrated that the setting SIMILAR resulted in

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 229



a 100% improvement over the setting of EXACT, and the setting FORCE resulted in a
15% improvement over the setting of SIMILAR.

Table 6.6 shows how the resource consumptions on the database server varied
among the different CURSOR_SHARING settings, measured with the following
counters:

(A) latch: library cache %Total Call Time

(B) % of DB Time of Parse Time Elapsed

(C) % of DB Time of Hard Parse Elapsed Time

Note that using the CURSOR_SHARING settings of SIMILAR and FORCE resulted
in reduced memory usage, faster parses, and reduced latch contention. The end result
was the improved performance and scalability for the application due to significant
reduction in service demand on the database server.

In general, using SIMILAR or FORCE is faster than using EXACT. This is true
even with the applications using bind variables. However, there is no guarantee that

Figure 6.21 Effects of the CURSOR_SHARING settings on the throughput of an enterprise
application batch job.

TABLE 6.6 Resource Consumptions with Various
CURSOR_SHARING Settings

Resource EXACT SIMILAR FORCE

A 55 3.6 0.5
B 61 25.6 9.8
C 35 12.9 0.3

230 CASE STUDY II: QUEUING THEORY



FORCE will always be faster than SIMILAR or vice versa. The performance and
scalability test with a realistic workload is the only way to find out which setting is
more suitable for your application.

6.2.6 Eliminating Extraneous Logic—Reducing Service Demand (Di)

Enterprise applications are heavy on validating the business rules that must be
enforced. Business rule validation may consume a significant amount of CPU
resources both on the application server and database server. Without being assured
by performance and scalability tests, it’s easy for developers to code more validation
logic than actually necessary.

For example, when new objects are inserted into a database, the application may fire
database triggers to validate various attributes of each object before the object is
allowed to be inserted into the database. To make it worse, triggers may trigger
subtriggers. In one real-world experience, before tuning, as many as 130 triggers
were fired every time a new object was inserted into the database. After examining
the validation logic carefully, it was found that as many as half of the triggers actually
never needed to be fired. By removing those extraneous triggers, the throughput of the
application was increased by 35%. Eliminating extraneous triggers effectively reduced
the service demands on the database server, which resulted in better throughput.

Here is another real-world example about how extraneous logic can impact the
performance and scalability of a software product.

Prior to the scheduled RTM (release to market) for the new version of an enterprise
application, the performance and scalability tests I conducted showed that the appli-
cation throughput was degraded almost 6 times from 90 objects/second to 16
objects/second after another application component was installed on top of the exist-
ing application stack. The author identified the expensive SQLs caused by the new
application component, using the performance troubleshooting methodologies intro-
duced in this book. After working with the developer, who was familiar with the vali-
dation logic of the new application component, it was found that the expensive SQLs
were issued from a legacy trigger that didn’t have to be fired at all!

Since this issue was disrupting the RTM schedule for the product, the same
performance and scalability test was conducted immediately with that legacy trigger
disabled. Surprisingly, the throughput increased from 16 objects/second to 85
objects/second, which was only 6% below what was achieved without the new
application component installed. This test cleared the hurdle for the successful
RTM of the product within about 48 hours.

To reenforce the importance of having extraneous logic eliminated asmuch as poss-
ible, Figure 6.22 shows the throughput numbers associated with this real-world per-
formance optimization experience. In Figure 6.22, the letter A represents the test case
without new application component installed, the letter B the case with the new appli-
cation component installed and the legacy trigger enabled, and the letter C the casewith
the new application component installed and the unnecessary legacy trigger disabled.

Without assurance and acceptance testing on the performance and scalability of a
software system, it’s hard to identify the unnecessary code logic that would waste CPU

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 231



resources and degrade the performance and scalability of an application. For large-
scale enterprise software applications, rigorous performance and scalability testing
will always be helpful in preventing your software with severe unnoticed performance
and scalability defects from being shipped to customers.

6.2.7 Faster Storage—Reducing Data Latency (Wi)

I/O is an essential part of every enterprise application. It should be treated as the first
potential bottleneck if it’s known that the application incurs heavy I/O activities. In
the context of queuing theory, faster I/O reduces data latency and therefore delivers
higher throughput for the application that is I/O intensive.

Table 6.7 shows the vastly different I/O capabilities of the disk devices with differ-
ent file systems and disk configurations. Both local disk configurations (I and II) were
SCSI 320 but on different platforms. The tests for all configurations used the same
workload of the same application, and the throughput was measured in terms of the
objects that were inserted into a database over a period of time.

Figure 6.22 A 6� performance degradation was effectively reduced to 6% after identifying and
disabling an extraneous legacy trigger.

TABLE 6.7 Application Throughput (Objects/Second) versus I/O Rates from
Different Disk Devices with Different File Systems and Disk Configurations

Configuration Reads/Second Writes/Second Throughput

Local disk (I) (NTFS) 160 190 42
Local disk (II) (UFS) 54 52 27
SAN (RAID 0) (UFS) 400 250 90

232 CASE STUDY II: QUEUING THEORY



In the next section, an example of using MPLS (Multi-Protocol Label Switching)
to reduce the network latency will be presented to demonstrate how the response
time of an enterprise application accessed by employees globally can be improved
drastically.

6.2.8 MPLS—Reducing Network Latency (Wi)

MPLS stands forMulti-Protocol Label Switching. It is a concept and technology about
network packet routing relative to the vanilla connectivity of VPNs (Virtual Private
Networks). Its original goal was to bring the speed of Layer 2 switching to Layer 3.
It allows routers to make forwarding decisions based on the contents of a simple
label, rather than by performing a complex route lookup based on destination IP
addresses. To make it simpler to understand, delivering a network packet using the
vanilla connectivity of VPNs without MPLS is like sending a letter using regular
mail, while delivering a network packet using MPLS is like sending a letter using
express mail that allows a designated priority with guaranteed service, with the
urgency of the content explicitly labelled on the envelope.

As enterprises have become more and more globally-based, MPLS has been mas-
sively adopted since 2001 as a more efficient approach to managing enterprise appli-
cations and moving information between different geographical locations. MPLS
provides a high-degree of optimization and utilization of the available network band-
width, and therefore, it’s important to the organizations that need to ensure the low net-
work latency for their business-critical applications.

In this section, we provide an example showing howMPLS had helped reduce net-
work latency drastically for an enterprise application that manages help desk tickets
for all the employees of a company located globally. The application was deployed
in the United States, while users were spread across multiple countries in Asia. The
application was accessed by employees using Web-based browsers. A typical use
scenario for this application consisted of four actions: login, open console, search
user and save ticket. Figure 6.23 shows three sets of response time data, demonstrating
the obvious effects of MPLS on an application deployed globally:

† Users located in China accessing the application deployed in the United States
using the direct IP-based routing without MPLS.

† Same users as the above case except that the network was MPLS enabled.
† Users located in India accessing the application deployed in the United States
using a corporate MPLS network.

It is necessary to point out that the access path from Beijing, China, to Virginia,
U.S. was with the application deployed in U.S. and users located in China, respect-
ively, whereas the access path from India to U.S. was with the application deployed
in California, U.S. and users located in India, respectively. The two different access
paths were tested by two different (external and internal) teams independently. In
each case, the response time of each action was measured manually, which represented
the total end-to-end user time.

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 233



It is seen that MPLS had resulted in drastic improvements on the response times of
the login and save-ticket actions, as a result of network latency reduction expected
from MPLS networks.

As a convenient tip, one can use the command traceroute destination to find out
quickly if MPLS is enabled with the network connecting two different end points
across the WAN. If the word mpls is explicitly embedded in the network router
names out of some of the network hops from the output of the above command,
then it’s an MPLS enabled network. This was the case with the access path from
U.S. to India shown in Figure 6.23, as is seen from the output of the traceroute com-
mand executed on a system in California against a server in India:

# traceroute serverInIndia
traceroute to serverInIndia (IP), 40 byte packets
1 local-gw (IP) 0.693 ms
2 sw-lan-core-usa-california (IP) 0.401 ms
3 rtr-wan-core-usa-california (IP) 0.551 ms
4 rtr-. . .-mpls-usa-california (IP) 0.951 ms
5 IP (IP) 9.880 ms 73.410 ms 141.749 ms
6 rtr-wan-. . .-mpls-india (IP) 298.106 ms

Figure 6.23 Effects of MPLS on the performance of an enterprise application with two different
access paths (China to U.S. and India to U.S.).

234 CASE STUDY II: QUEUING THEORY



7 rtr-wan-. . .-mpls-india (IP) 298.440 ms
8 IP (IP) 298.362 ms
9 IP (IP) 298.401 ms

10 serverInIndiaIP (IP) 299.171 ms
#

Note that the actual hostnames and IP addresses have been masked out, with some of
the indicative words such as gw (gateway), lan, wan, mpls, usa, india, etc., preserved
for identifying each hop.

There are not only performance and scalability patterns but also corresponding
antipatterns. The next section shows an anti performance and scalability pattern that
is commonly encountered with the database-centric enterprise applications.

6.2.9 Database Double Buffering—An Anti Performance
and Scalability Pattern

Caching and faster storage are effective measures for boosting the performance and
scalability of database-intensive enterprise applications. However, caching at multiple
levels can hinder application performance sometimes. A well-known example is
double buffering with some database systems, for example, with Oracle 10g on
UNIX platforms.

Database systems store data on storage devices. In general, there is a file system
between a database system and the data storage. Whenever a database system retrieves
data from or stores data to the physical disks, the application data could be cached at
both the file system level and the database system level. It is well known that, with
newer versions of Oracle databases, bypassing caching at the file system level may
improve application throughput tremendously. In this section, I’ll share with you
two examples out of my own experience.

The first example was with a real external customer. The customer had the
following setup for a two-tier enterprise application:

† Application server: Intel dual dual-core at 3.0 GHz (4 CPUs), Windows 2003
† Database server: AMD quad dual-core at 2.8 GHz (8 CPUs), Oracle 10g on
Solaris 10

† File system: Veritas
† Data storage: RAID 5 (7 disks) on EMC CLARiiON Cx700

The customer was experiencing very poor performance of 2.8 objects/second with the
above setup and an enterprise application whose major functionality was to validate
and insert objects into a database.

I repeated the same test as the customer did with a different set of hardware intern-
ally as follows:

† Application server: Windows 2003, 4 Intel Xeonw processors at 3.67 GHz
† Database server: identical system with Oracle 10g on Windows 2003 EE

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 235



† File system: NTFS
† Data storage: internal RAID 0 (3 disks)

Using the customer’s data to drive my test, I got a good throughput of 25 objects/
second. This is a factor of 9 difference in throughput between the two environments
with the same workload. I needed to help the customer find out what was causing
this huge difference.

After working closely with the customer, I found from the Oracle AWR reports
from both environments that the average read time from my test was about 8 ms,
versus as high as 145 ms from the customer’s test. This discrepancy was quickly
resolved with the help of a Veritas consultant on the customer’s side. It turned out
that the issue was related to one Oracle database parameter filesystemio_options.
Because this parameter was set to asynch by default, Oracle wasn’t bypassing caching
at the Veritas file system level. The parameter filesystemio_options has four settings:
{none j setall j directIO j asynch}. The implication of each setting is too complicated to
be elaborated here. It depends both on the versions of Oracle and the OS. Check with
your OS-specific Oracle documentation to be sure or test it yourself to find out which
setting is more suitable for your application.

Since the Veritas consultant was very familiar with this issue, it was quickly
resolved with the following two recommendations:

1. Set filesystemio_options to directio on Oracle’s side.

2. Mount the file system with the following command:

mount -F vxfs -o
remount,cluster,mincache=direct,convosync=direct,
rw,nosuid,log,largefiles,noatime,ioerror=disable,
crw,dev=34432c9/dev/vx/dsk/oradirb_dg/data003_vol/
oradir/data003,.

where/data003 was the partition where the database data files were placed.

After the database server was rebooted with the above two changes in placewith the
customer’s setup, the customer repeated the same test. The results were remarkable:
average disk read time decreased from 145 milliseconds to 0.98 milliseconds and
the throughput was improved from 2.8 objects/second to 23 objects/second.

It’s necessary to point out that this filesystemio_options/directio setting of
the Oracle database is not an issue on the Windows platform, as NTFS does not
cache data. That’s why with the default setting of filesystemio_options set to asynch
on the Windows/NTFS configuration, a good throughput of 25 objects/second was
achieved in my test environment. See Figure 6.24 for a summary of this interesting
experience.

Another experience in double buffering was with Solaris, but it was an internal
performance and scalability test experience I had, with the following setup:

† Application server: 8 CPUs at 1 GHz SPARC, Solaris 10
† Database server: 8 CPUs at 1 GHz SPARC, Solaris 10

236 CASE STUDY II: QUEUING THEORY



† File system: UFS
† Data storage: internal RAID 0 (3 disks)

With the default setting of filesystemio_options¼asynch, the AWR report showed
that the average disk read time was 446 milliseconds. This is too far off the normal
range of 5–20 milliseconds. My experience with that customer reminded me of
the issue with caching at the file system level. I was motivated to disable caching at
the file system level with Oracle 10g on Solaris.

After remounting the file system with the directio option and rebooting the
database server, I repeated the same test. Once again, this tuning was very effective.
This single change immediately brought the average disk read time from 447 millise-
conds down to 10 milliseconds. And the throughput was improved from 49 objects/
second to 145 objects/second. This is a factor of 3 improvement on throughput.
See Figure 6.25 for a summary of this experience.

It’s necessary to point out that with this experience:

† The parameter filesystemio_options was still set to the default value of asynch.
† The file systemwas UFS on Solaris, so a different command was used to remount
the file system that hosted Oracle data files. To verify whether you have forcedir-
ectio enabled on the partition that hosts your database data files, log into your

Figure 6.24 Effects of double buffering on the performance of an enterprise application with
Oracle 10g running on Solaris.

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 237



Solaris system and issue the command ofmount. Then you should see something
similar to the following if you have forcedirectio enabled:

/data3 on/dev/dsk/c4t7d0s6
read/write/setuid/devices/intr/forcedirectio/
largefiles/logging/xattr/onerror=panic/dev=1d8000e
on Mon Jul 30 16:30:49 2007

However, check with your system administrator before applying this change.
To help summarize the above two examples of database double buffering that can

significantly impact the performance and scalability of the enterprise software
applications with lots of data inserts and updates, the test configurations and resultant
average read times are recaptured and listed in Tables 6.8 and 6.9. For comparison
purposes, the database write statistics corresponding to each test configuration are
listed in Table 6.10 as well.

Note that from Table 6.10, the buffer wait time increased from 22 ms to 131 ms
from the configuration of Solaris/Veritas I (with database buffering) to Solaris/
Veritas II (without database buffering), whereas from the configuration of Solaris/
UFS I (with database buffering) to Solaris/UFS II (without database buffering), the
buffer wait time decreased from 187 ms to 1 ms. This discrepancy might have some-
thing to do with the two different settings of directio and asynch for the Oracle 10g
parameter filesystemio_options.

Figure 6.25 Effects of double buffering on the performance of an enterprise application
running on Solaris/UFS.

238 CASE STUDY II: QUEUING THEORY



Based on these two examples with a real product and real customer, we see that the
UNIX file system can significantly impact the performance and scalability of the enter-
prise applications, which incur a lot of insert and update disk activities. With UNIX
file systems, data must be brought into the file system page cache from disks before
being transferred to a database management system. When high volumes of data are
being constantly modified, the file system page cache might be filled with data that
becomes stale immediately. When all clean pages in file system page caches are
used out, dirty pages have to be flushed out to disks. The operating system on the data-
base server might then end up by repeatedly dirtying pages itself. By disabling caching
at the file system level, caching can be managed more effectively by the database
management system.

TABLE 6.8 Configurations for Testing Double Buffering with Oracle 10g

Configuration Server Hardware/OS/File System/Data Storage

Windows/NTFS Application server: Windows 2003, 4 Xeon processors at 3.67 GHz, and
12 GB RAM.

Database server: identical system, Oracle 10g
Data storage: internal RAID 0 (3 disks)

Solaris/Veritas Application server: Intel dual dual-core at 3.0 GHz (4 CPUs), Windows 2003
Database server: AMD quad dual-core at 2.8 GHz (8 CPUs), Oracle 10g on

Solaris 10
File system: Veritas
Data storage: RAID 5 (7 disks) on EMC CLARiiON Cx700

Solaris/UFS Application server: 8 � 1 GHz SPARC, Solaris 10
Database server: 8 � 1 GHz SPARC, Solaris 10
File system: UFS
Data storage: internal RAID 0 (3 disks)

TABLE 6.9 Average Read Time With and Without Double Buffering with Oracle 10g

Configuration Reads
Average Reads/

Second
Average

Reads (ms)
With Double
Buffering

Windows/NTFS 266,611 44 7.86 No
Solaris/Veritas I 422,733 13 145 Yes
Solaris/Veritas II 184,211 17 0.98 No
Solaris/UFS I 30,784 2 446.81 Yes
Solaris/UFS II 763,910 105 10.22 No

TABLE 6.10 Database Write Statistics Associated with Each Test Configuration

Configuration Writes Average Writes/Second Buffer Waits Buffer Waits (ms)

Windows/NTFS 775,054 127 25,713 4.10
Solaris/Veritas I 1,784,965 55 91,058 21.55
Solaris/Veritas II 964,148 89 45,338 130.72
Solaris/UFS I 368,246 21 290,224 186.95
Solaris/UFS II 580,105 80 429,432 1.04

6.2 EFFECTIVE OPTIMIZATION AND TUNING TECHNIQUES 239



Under certain circumstances, data access through a UNIX file system might incur
double reading for a single write operation. Application data has to be read into the file
system page caches first and then into database buffer caches. If the data in a database
buffer cache is modified, it might need to be flushed out to the disks. Flushing data
to disks takes time. It is possible that the file system may have reassigned the
memory for the data flushed out to disks. In that case, the original data must be
reread from the disk into the file system page cache. The end result is that one write
has incurred two reads.

In this section, a number of examples out of my real-world software performance
optimization and tuning practices have been presented to show how one can improve
the response time and throughput by reducing thewait times and improving the service
demands. Apparently, reducing the wait time and service demand can’t be an endless
loop. When should one stop? The answer lies in a very important empirical law, which
implies that one should stop tuning further when a system is driven into a balanced
queuing system. This is our subject for the next section.

6.3 BALANCED QUEUING SYSTEM

An important question in optimizing and tuning software performance and scalability
is the following: How do we know that we have done enough and cannot do any-
thing more to improve performance without going through some major changes
either in software architecture or hardware architecture? The answer is that the
system should be operating in an equilibrium state in terms of the resource utilizations
of the various processes or subsystems. This leads to the concept of a balanced
queuing system.

Traditionally, in a balanced queuing system, all queuing nodes have the same equal
service demand. This poses a great challenge for evaluating whether a queuing system
is balanced or not, as it’s not easy to quantify service demands exactly [Liu, 2005].

Fortunately, there are always alternative approaches to achieving the same goal.
A closer look at Equation (4.15),

Ui ¼ X0 � Di

reveals that for a stable system with constant throughput (X0), the service demand (Di)
and utilization (Ui) are proportional to each other. This leads to a new definition for a
balanced queuing system using the resource consumption metric of utilization:

A queuing system is balanced if all nodes have the same equal utilization.

A guideline for optimizing and tuning the performance and scalability of a software
application can be derived based on the utilization-based definition of a balanced
system:

A software system can achieve its best possible, scalable performance if it’s a
balanced system.

240 CASE STUDY II: QUEUING THEORY



To demonstrate the utility of this empirical law, let’s look at the experimental results
from a setup that had both application server and database server (Oracle 10g) installed
on a single four-CPU computer system. The system was driven with a batch workload
that ran continuously to populate objects into the database. The system CPU utiliz-
ations were logged with Windows perfmon utility.

With this specific experiment, Figure 6.26 shows that although the total system
CPU utilization was fairly constant, the CPU utilization ratio between the application
server and the database server was not constant. Initially the application server CPU
utilization and database server CPU utilization were about the same, and then with
time, they bifurcated: the database server CPU utilization kept growing and the appli-
cation server CPU utilization kept decreasing.

You may have noticed that the total CPU utilization of the system was pretty flat.
That’s because there were only two major processes running on the system: the appli-
cation server process and database server process. Although the CPU utilizations with
the two server processes were developing toward two different directions, the sum of
the application serverCPUutilization and database server CPUutilizationwas approxi-
mately equal to the total system CPU utilization, which was fairly constant.

Such abnormal database server and application server CPU utilization patterns
indicate that the system was not balanced. It was quickly found out that the database
server was executing an SQL query with a nonoptimal execution plan because of the
lack of optimizer statistics or because the last gathered statistics became stale.

After updating the Oracle Schema statistics, the system was driven into a
completely different state, as shown in Figure 6.27. As is seen, the CPU utilization
ratio between the application server and the database server was fairly constant
now, with exactly the same workload as for the system state shown in Figure 6.26.
According to our definition of a balanced queuing system, Figure 6.27 corresponds
to a balanced system, whereas Figure 6.26 doesn’t. The throughput for the same
batch job was improved by as much as 73% from a nonbalanced queuing system to

Figure 6.26 An unbalanced system with bifurcating application server and database server
CPU utilizations.

6.3 BALANCED QUEUING SYSTEM 241



a balanced queuing system. It’s interesting that one can flip the state of the system by
enabling/disabling the optimal execution plan for that SQL query with this specific
example, as shown in Figure 6.28.

This guideline, based on the concept of balanced queuing systems, can be used as
a generic guide to optimizing and tuning the performance and scalability of an enter-
prise software application. For example, let’s say we have an enterprise application
installed on one single system: namely, both the application server and database
server are installed on the same single physical system. Then, we can monitor the

Figure 6.27 A balanced system with constant CPU utilization ratio between the application
server and the database server.

Figure 6.28 CPU utilization patterns of the application server and database server with the
tuning turned on and off.

242 CASE STUDY II: QUEUING THEORY



CPU utilizations of both the application server process and the database server pro-
cess simultaneously when the performance and scalability tests are running. If the
CPU utilizations of the application server and the database server are significantly
disparate, then the optimization and tuning efforts should be focused on reducing
the CPU utilizations of the server with the higher CPU utilization. Iteratively, we
can help squeeze out every bit of performance and scalability for the application
under development by driving it into a balanced state.

To help drive a system to a balanced state faster, it’s desirable to use an
application API profiler that generates API execution profiles such as shown in
Figure 6.29.

The profile shown in Figure 6.29 would reveal immediately the following useful
information on the execution of each API of the application:

† The percentage of the elapsed time or CPU time
† The absolute elapsed or CPU time
† The number of times an API was called

A profile can help nail down hot APIs immediately and drive the system to reach a
balanced state quickly. Without such information, one has to infer based on the hot
SQLs captured on the database side.

Figure 6.29 An example profile for a J2EE enterprise application (note that each node is a J2EE
method).

6.3 BALANCED QUEUING SYSTEM 243



Because of the prominent importance of API profiling to help optimize and tune the
performance and scalability of a software system, the third part of this book is dedi-
cated to API profiling. Hopefully, you’ll enjoy reading that part as well.

6.4 SUMMARY

In this chapter, we started with showing how to conduct software performance and
scalability analysis. A real example was used, detailing what steps to follow and
what data to use for analyzing the performance and scalability of a software system.
We illustrated how important rigorous, quantitative performance and scalability analy-
sis is to optimizing and tuning the performance and scalability of a software system
with a step-by-step procedure. We used results from a real product to convince you
what a huge difference effective optimization and tuning practices can make to the
performance and scalability of a software product.

We then demonstrated the applicability of queuing theory to optimizing and tuning
the performance and scalability of a software system. We presented a number of
optimization and tuning techniques that can result in immediate performance and scal-
ability improvements when applied. These optimization and tuning techniques were
presented in the framework of queuing theory by centering on the two key metrics
of wait time and service demand, which essentially determine the response time
and throughput of a software system.

We also proposed a new definition for balanced systems using utilizations instead
of service demands. The two definitions using service demand and resource utilization
are equivalent to each other, but the new definition using resource utilization makes
more sense, as utilizations of a resource can be measured and monitored a lot more
easily than service demands.

Based on the new definition for balanced systems, we derived a guideline for opti-
mizing and tuning the performance and scalability of a software system, which states
that a software system can achieve its best possible, scalable performance if it’s a
balanced system. This has turned out to be a very useful guide for optimizing and
tuning the performance and scalability of the enterprise software applications both
under development and after deployment.

Some of the major takeaways from this chapter include:

† Software performance and scalability analysis should consist of:
W Accurate performance problem characterization. Try to be as quantitative as
possible. Use response time for OLTP workloads and throughput for batch
jobs to quantify the performance or scalability problem.

W An accurate accounting of what hardware is used in terms of the number of
CPUs, CPU clock rate, memory, data storage, and RAID configurations.

W An accurate accounting of what software components are installed.
W Detailed logging of the performance counters such as CPU utilization, disk
utilization, memory utilization, and network bandwidth utilization.

244 CASE STUDY II: QUEUING THEORY



W Performance and scalability factor analysis to isolate the dominating factors
that are potential bottlenecks.

W Performance and scalability optimization and tuning prescriptions based on
accurate performance and scalability factor analysis. Try to avoid guessing as
much as you can, especially when you work with a customer.

† Think about optimizing and tuning the performance and scalability of a software
system in the framework of queuing theory. Understand that the rationales for all
software performance and scalability optimizations and tunings are rooted in
queuing theory. You will be dealing with either excessive wait time or excessive
service demand whenever you have a performance problem. Apply appropriate
prescriptions accordingly.

† Understand all basic performance patterns and tuning techniques introduced in
this chapter. It’s very likely that by applying one or a few of them to your
products, you’ll see immediate impressive results.

† Whenever possible, check out whether your software is operating in a balanced
condition. This is the only way to sustain the performance and scalability of your
software.

† Appropriate database performance analysis skills are necessary to effectively
troubleshoot database performance issues, which are always an important part
of any enterprise software applications.

† The last point I’d like to make is that you really need a very effective API profil-
ing tool to help you optimize and tune your software. Because having a profiler
for optimizing and tuning your software is so important, I’ll dedicate the remain-
der of this book to this subject. Hopefully, you’ll continue reading through this
book and become fully competent in conducting software performance and
scalability work at a professional level.

Once again, I hope you will start applying what you have learned from reading
this book.

RECOMMENDED READING

For software performance patterns, consult the following text:

C. Smith and L. Williams, Performance Solutions—A Practical Guide to Creating Responsive,
Scalable Software, Addison-Wesley, 2002.

For applying queuing theory to optimizing and tuning the performance of software
applications in general, see the following texts:

N. Gunther, The Practical Performance Analyst, McGraw-Hill, 1998.

D. A. Menasce and V. A. F. Almeida, Scaling for E-Business, Prentice Hall PTR, 2000.

D. A. Menasce, V. A. F. Almeida, and L. W. Dowdy, Performance by Design, Prentice Hall,
2004.

RECOMMENDED READING 245



For SQL tunings, consult the following texts:

E. Bonazzi and G. Stokol,Oracle 8i & Java, From Client/Server to E-Commerce, Prentice Hall
PTR, 2001.

Guy Harrison, Oracle SQL High-Performance Tuning, Prentice Hall PTR, 2001.

D. Tow, SQL Tuning, O’Reily & Associates, 2003.

For specific examples of applying queuing theory to optimizing and tuning the
performance of enterprise software applications, see the following publications:

H. H. Liu and P. V. Crain, An analytic model for predicting the performance of SOA-based
enterprise software applications, in CMG 2004 Proceedings, Las Vegas.

H. H. Liu, Service demand models for enterprise software applications, in CMG 2005
Proceedings, Orlando Florida.

H. H. Liu, Applying queuing theory to optimizing enterprise software applications, in CMG
2006 Proceedings, Reno.

EXERCISES

6.1. If you have access to an application that was built onOracle 10g, create a relatively
heavy workload, run the workload (which should last at least 20 minutes), and
then generate an AWR report. Become familiar with how to read an AWR
report by following the guidelines provided in this chapter.

6.2. What is a covering index? When would you consider using covering indexes?
Analyze the expensive queries from your application and see if there is an oppor-
tunity for applying covering indexes to some of your database queries. If you do
have a situation where covering indexes are applicable, you should expect huge
performance and scalability improvements after you add proper covering indexes.

6.3. What is array processing? Analyze your application logic and find opportunities
for applying array processing to your software product. Measure quantitatively
how much improvement you can get if it’s applicable and implemented properly.
You should expect significant performance and scalability improvements after
you implement array processing.

6.4. What is the Oracle CURSOR_SHARING parameter about? If you have access to
an Oracle 10g based enterprise application, design a workload and measure
quantitatively the impacts of the CURSOR_SHARING parameter with the three
settings of EXACT, SIMILAR, and FORCE.

6.5. What is database double buffering? Is it potentially more of a problem on
Windows or UNIX? How do you diagnose whether your application is being
impacted by the anti performance and scalability pattern of database double
buffering?

246 CASE STUDY II: QUEUING THEORY



6.6. What is a balanced queuing system?Why is it useful for guiding the optimization
and tuning efforts on the performance and scalability of a software system?

6.7. What does CPU utilization bifurcation refer to with a typical enterprise appli-
cation deployment configuration consisting of one application server and one
database server? How can you cure it and bring the performance and scalability
of your software back to normal? If you have access to an application based on an
application server and a database server, design a workload, run your test, and
measure the CPU utilizations on both the application server and database
server. Evaluate the CPU utilization trend for both the application server and
the database server. Do you see bifurcating CPU utilizations between the appli-
cation server and the database server? If you do, find the root cause and fix it.

EXERCISES 247





Part 3

Applying API Profiling
Man is a tool-using animal. Without tools, he is nothing, with tools he is all.

—Thomas Carlyle, 1795–1881

One of the most effective approaches to identifying quantitatively the most expensive
software program execution paths is through API profiling. API profiling generates
detailed and quantitative execution profiles for a software program under test.

With the API profiling framework introduced in this part, one can easily turn the
API profiling data into performance maps with which one can easily spot the most
expensive execution paths. Developers can then figure out how to reduce the costs
of the identified expensive execution paths by adopting more efficient designs and
implementations, and thus improve the performance and scalability of the software
system under development.

This last part of the book consists of the following four chapters:

† Chapter 7—Defining API Profiling Framework
† Chapter 8—Enabling API Profiling Framework
† Chapter 9—Implementing API Profiling Framework
† Chapter 10—Case Study: Applying API Profiling to Solving Software Perfor-
mance and Scalability Challenges

The material selected for this part is self-complete from defining through enabling
and implementing a simple API profiling framework, the perfBasic API profiling
framework. The last chapter illustrates how you can apply API profiling to solving
real-world software performance and scalability problems more efficiently, which is
the ultimate goal of introducing API profiling framework in this book.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

249





7
Defining API Profiling

Framework

Basic research is what I’m doing when I don’t know what I’m doing.
—Jon von Neumann about Computer, Technology, and Science

As stated earlier in Chapter 3, the performance and scalability of a software system
are determined by many factors. For complicated software systems, diagnosing the
dominating performance and scalability factors is not an easy task. It requires software
developers and performance professionals to possess both deep and broad knowledge
and experience in all areas from hardware, to software, to performance and scalability
problem diagnosis using adequate tools.

Diagnosing software performance and scalability defects with a software product
could be a lot easier if an API profiling tool is available. API profiling can tell
which APIs are slow, and based on that, one can drill down to the root causes. With
an API profiling tool, one can save a lot of guess work in figuring out where things
are slow.

From this chapter on, I’ll focus on API profiling, as I have found out with my
own software performance experience that an API profiling tool is necessary for
carrying out software performance and scalability analysis at the source code level
both effectively and efficiently.

API profiling is about getting a profile of how a software program spends its
execution time with each of its APIs during a particular execution path. Based on
the profile obtained, one can then track down the APIs that are implemented less effi-
ciently. An API profiling tool is as important to a software developer or performance
engineer as a stethoscope to a medical doctor. Medical doctors don’t make stetho-
scopes themselves. However, we software engineers may have to make API profiling
tools ourselves. Actually, it’s not that hard to implement an API profiling framework.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

251



I’ll show you in the remainder of this book how you can make your own profiling
tool if a commercial one is not readily available to you.

Let’s begin with defining an API profiling framework in this chapter. In order to
place it into appropriate context, it’s interesting to see how software performance
and scalability defects can propagate through various internal defense lines and be
eventually caught by customers. This will be the topic for the next section.

7.1 DEFENSE LINES AGAINST SOFTWARE PERFORMANCE
AND SCALABILITY DEFECTS

Two internal defense lines exist against software performance and scalability defects.
As shown in Figure 7.1, the first defense line is before the performance and scalability
defects slip out of the hands of the developers into the builds that are handed over to
QA and performance test teams; the second defense line is a performance test team
that captures the performance and scalability defects before they slip into
production at a customer’s site.

When severe performance and scalability defects slip into production at a custo-
mer’s site, they will be caught eventually and the customer will have to file escalations
back to the software provider. It would be ideal if all performance and scalability
defects can be captured before a product gets out of the door, but in reality, that’s
hard to achieve, because it’s almost impossible to test all use cases without knowing
exactly how customers are going to use the product.

How effectively could each defense line work to capture most of the performance
and scalability defects before a product is released? We don’t have general statis-
tics about this interesting subject. However, from a practical point of view, it would
be desirable if the first defense line can capture 80% of all defects and the second
defense line 15%, with only 5% of defects discovered in production at customers’
sites. This ideal allocation on capturing performance defects is reenforced in
Figure 7.2. Unfortunately, with those organizations who don’t take software perform-
ance and scalability issues seriously, the reality might be just the opposite.

Figure 7.1 Defense lines against software performance and scalability defects.

252 DEFINING API PROFILING FRAMEWORK



If we could achieve the goals of the performance and scalability capture ratios
shown in Figure 7.2, obviously, software development costs would be significantly
lower and customers would be a lot happier. How can we achieve these goals?
That’s the subject of this chapter. We need to provide an effective API profiling
framework that all defense lines can rely on for capturing software performance and
scalability defects. This framework has to be simple so that it can easily be
implemented and used for solving real software performance and scalability problems.

Before outlining a generic API profiling framework step by step in this chapter,
let’s take some time to understand what constitutes a software program execution
stack. Any API profiling framework has to fit into a generic software program
execution stack in order to be useful.

7.2 SOFTWARE PROGRAM EXECUTION STACK

Software applications are written in popular high-level programming languages
such as C/Cþþ and Java. Software programs are then compiled into machine
language programs in native code format for the host platform before they can be
run on a computer. As shown in Figure 7.3, the programs written in C/Cþþ are com-
piled first and then assembled to target a specific platform such as the various flavors
of UNIX and Microsoft Windows, whereas the programs written in Java are first
compiled into byte-code, which is platform independent. Java byte-code is then run
in a Java Virtual Machine (JVM), which is a run-time environment for an underlying
host platform.

Compilers and JVMs govern how a software program will eventually be executed
on a host computer at the machine language level. All industry-strength compilers and
JVMs have been carefully crafted, offering various compile and run-time optimization
options for the user to try out for potential performance improvement. Details of the
optimizations that can be achieved by choosing the proper compiler compile options
and JVM run-time options are beyond the scope of this book. The reader should refer

Figure 7.2 Goals for software performance and scalability defect capture ratios.

7.2 SOFTWARE PROGRAM EXECUTION STACK 253



to the platform-specific users’ manuals for how to use these options for potential
performance enhancements.

This book is focused on how an application can be profiled at the high-level
language API level using a simple API profiling framework. This framework can be
used by both performance engineers and developers. It should be used by developers
to fence off the majority of the performance and scalability defects prior to a formal
build release to the QA test team.

In the next section, I’ll introduce the API profiling framework, which is the
foundation for the remaining chapters in this book.

7.3 THE PerfBasic API PROFILING FRAMEWORK

It is necessary to point out that there are many commercially available API profiling
tools on the market. These tools are very powerful and effective, yet hard to use
and very costly. Even worse, some organizations paid a high price, but the profiler
purchased was not used very often by their developers. Having observed such
inefficiencies, the author is inspired with an idea of an open API profiling framework
such as the perfBasic API profiling framework introduced in this book. Anybody
can easily adapt and implement this API profiling framework. I am confident that

Figure 7.3 Software program execution stack.

254 DEFINING API PROFILING FRAMEWORK



once you try it out, you will discover that it’s so useful that you will keep using it
throughout your career.

The perfBasicAPI profiling framework is simple. It consists of the following steps:

† Insert statements into the source code of your application to generate perform-
ance log data using a specific format. Typically, this would generate one or
more text files that contain all information about how each API was executed
within a specific time period driven by a specific workload.

† Parse the performance log data through a parser on a thread-by-thread basis.
The parsed performance log data is written into one or more text files that can
be understood by some graphics tools, which can be used to generate the so-
called performance maps.

Performance maps are essentially the call-tree graphs that show all call stack
hierarchies with all API profile information clearly labeled along each edge from a
caller to a callee. The profile data includes the total elapsed time in both absolute
units and percentages as well as the number of times each API was called. These
types of intuitive performance maps are the key for developers to identify and fix
performance and scalability defects quickly.

Since a chart can contain only a very limited amount of information, there are
additional text files generated by the parser that summarize all performance pertinent
details, especially the details about all SQL statements including their long texts for
database-intensive applications.

Let’s first begin with the performance logging format on which the perfBasic API
profiling framework is based.

7.3.1 API Profile Logging Format

The granularity of application profiling is a very important issue. If it’s too fine-
grained, such as down to the assembly language level, then it would be beyond the
comprehension of most developers and performance engineers and therefore would
be unlikely to be utilized. If it’s too coarse-grained, such as up to class and package
level, it would not provide much useful information, and therefore it would be equally
useless. The right granularity of application profiling is just down to the API level,
which is at the class method level in Java and other object-oriented languages or
procedure level in procedural languages. Developers just need to know which APIs
are slow and then they can figure out why they are slow and how to fix them.

Let’s begin with getting familiar with the logging format of the perfBasic API
profiling framework.

The profile logging format for this API profiling framework is really simple.
It follows a specific sequence as follows:

† ,firstEntry.. This entry indicates the type of row, such as ,API j SQL..
† ,ThreadID.. This entry is the ID number of an execution thread.
† ,TimeStamp.. This entry indicates when an API call was logged.

7.3 THE PerfBasic API PROFILING FRAMEWORK 255



† ,APISignature.. This entry identifies the beginning or ending of an API call,
signature of the API, and optionally API caller info such as caller’s IP address.
API signature should be preceded by a plus sign (þ) to indicate the beginning or
a minus sign (2) to indicate the ending of an API call. This will help the parser to
determine when an API call began or ended.

† ,ThreadGroupID.. This entry identifies the thread group to which the current
thread belongs.

† ,ServerID.. This entry identifies where this API was being executed.
† ,ClientID.. This entry identifies where this API originated.
† ,User.. This entry identifies who was making the API call.

The first four entries in the above list are mandatory; all others are optional. This list
of entries provides just enough information for fully profiling an application at the
right granularity.

If your application has already been implemented with similar logging capabilities,
then just write an adapter to convert your original logging format into the format
described above, and the rest of the framework will be the same. Or, you can define
your own logging format and write your own parser as long as your implementation
conforms to this framework, which was outlined prior to this section.

Next, we describe a log parser that takes the textual log files in the above format
as input and generates output data files that are suitable for generating performance
maps along with performance summarization files.

7.3.2 Performance Log Parser

The parser only understands what it is designed to understand. That is why it’s import-
ant to stick to an all-agreed-upon logging format. Using the logging format introduced
in the previous section for the perfBasic API profiling framework, the performance
log parser works based on the following concepts:

† Namespace. The purpose of introducing the concept of namespace is simply to
help identify and trace each unique execution path. For example, if API
createAccount calls another API getCustomerInfo which in turn calls another
API getCustomerAddress, then the namespace for this execution path simply
is createAcount.getCustomerInfo.getCustomerAddress.

† Node. An API call is identified as a node on a performance map, which rep-
resents the various execution paths in a call-tree format. Nodes are classified
into root node, intermediate nodes, and leaf nodes. A root node is the top
node from which all thread executions originate; leaf nodes are those at the
bottom of the application level; and intermediate nodes are those between a
root node and leaf nodes.

† Link. Each execution path displayed on a performance map consists of nodes
and links or edges in a top–down fashion, with each link representing an
immediate caller-to-callee execution path. Each link has a label beside it to

256 DEFINING API PROFILING FRAMEWORK



indicate performance information such as the number of invocations and elapsed
times in both absolute units and percentages. This information is key for devel-
opers to identify the performance and scalability defects and optimization oppor-
tunities at the application level.

These concepts will become clearer later in the context of performance maps
with graphic illustrations. Let’s concentrate on what a performance log parser does
in this section.

A performance log parser in the context of the perfBasicAPI profiling framework is
responsible for the following:

† Sorting log data by thread. After this step, the original log data will be split into
multiple text files with one separate data file per thread. The performance log data
will be analyzed on a thread-by-thread basis, because all threads were executed
in parallel originally when the program was run, and all API calls must be
re-played on a thread-by-thread basis in order for the call beginning and
ending times to make sense.

† Processing log data by thread. After all performance log data has been sorted out
onto the separate files identified by thread IDs, one can decide to process the
performance log data of all threads or just certain threads. The parsing logic
doesn’t change from thread to thread.

† Looping through each thread file. Each line in a thread data file represents
either the beginning or ending of an API call with the corresponding time
stamp. Processing each line corresponds to associating it with a node if it’s the
beginning of an API call or with a link if it’s the ending of an API call. If the
current data line represents a self-node that has no ending call, then a method
or procedure like processCallEnd must be called before moving to the next
data line.

† Correlating call end time to its corresponding call start time. An execution
path is essentially a call-chain with each intermediate node being both a callee
and a caller. Besides, an API might be called multiple times. For each API
call, its call end time must be correctly correlated to its call start time, with the
number of invocations updated correctly as well. In order to handle correlation,
one can use two dictionary data structures to store node information and link
information, respectively, while using a stack data structure to facilitate walk-
ing-through the entire thread data file. All in all, it’s very necessary to make
sure that the parser generates accurate API call information for generating
accurate performance maps.

† Emitting log data in proper format for generating graphic performance
maps. The main goal of this API profiling framework is to convert hundreds
of megabytes of textual performance log files into a single map so that hot
APIs can be identified instantly by visual inspection. Therefore, at proper parsing
stages and points, relevant data must be output to text files in graphics tool
specific format. This typically happens immediately after processing a call

7.3 THE PerfBasic API PROFILING FRAMEWORK 257



start line or call end line. Then, a chosen graphics tool can be used to generate
performance maps.

In the next section, we will introduce the concept of performance maps, which
illustrate graphically hot APIs and hot execution paths in terms of response times.
An API profiling tool and the performance maps it generates are very useful for devel-
opers to identify and fix performance and scalability defects before releasing to QA
and performance test teams. I’d like to emphasize that an API profiling tool is as
necessary to software developers as X-rays to medical doctors and dentists.

7.3.3 Performance Maps

The old saying of “a picture is worth a thousand words” is still true today. Instead of
facing the challenge of reading and stepping through a 800-MB text log file for iden-
tifying performance and scalability problems, you can now achieve the same objective
within minutes by reading a performance map that clearly shows hot APIs and hot
execution paths.

Let’s concentrate on how to decipher a performance map. A performance map is a
graphic representation of all execution paths of all threads logged within a time dur-
ation using a specific workload driver. Each node on a performance map represents
an API in the program as either a caller or a callee or both if it’s an intermediate
node. The connection between the two nodes from the source node to the target
node constitutes a link, which represents a caller–callee relationship. The important
execution history from API to API is represented by the label beside each link between
each pair of caller–callee nodes. These labels indicate explicitly:

† The percentage of an API call relative to the total elapsed time
† The accumulated elapsed time of an API call in absolute time units, for example,
in milliseconds

† The number of invocations of an API call

This doesn’t seem to be a lot of information. However, this information is sufficient
for identifying hot APIs and execution paths. The execution paths with the largest
percentages of accumulated elapsed times are the hot execution paths, and the APIs
along those hot execution paths are hot APIs. One should also watch out for the
number of invocations of those APIs, which could indicate inefficient designs or
implementations.

Figure 7.4 is an example performance map from a commercial application. This
performance map contains the execution paths out of three threads, with each
thread representing an independent call-tree trunk. Each trunk contains branches of
its own, representing different execution paths of that thread. The thread ID, relative
elapsed time percentage, the accumulated elapsed time in milliseconds, and the
number of invocations are labeled beside each link. The hot execution paths are dis-
played in red to help enhance the readability for visual inspection.

258 DEFINING API PROFILING FRAMEWORK



Fi
g
u
re

7.
4

A
n
ex
am

p
le

p
er
fo
rm

an
ce

m
ap

fr
om

a
co

m
m
er
ci
al

ap
p
lic
at
io
n.

259



In generating performance maps, one can use filters to filter out the low-impact
execution paths. In general, one may need to try a few times in order to determine
the most appropriate filtering threshold values.

Figure 7.4 was generated with a freely available graphics tool, Graphviz
dot program. We will introduce this freely available graphics tool in detail in
Chapter 9.

Although a performance map is a powerful vehicle for identifying performance
and scalability defects, it’s unrealistic to put all details such as the long SQL texts
on a performance map. Performance maps can be augmented by additional summar-
ization files that contain further details about each API call and execution path.
The next section describes the contents of such additional summarization files.

7.3.4 Performance Summarization File

A performance map conveys information about the hierarchy of executions and hot
execution paths in an easy-to-visualize format. A performance summarization file
contains the whole history of all API executions in a more readable format than the
original performance log data files. It should contain the following list of information
for each API call:

† Elapsed time
† Thread ID
† Call count
† Full API signature

Filtering, sorting, and classifying can be applied to a summarization file to make more
detailed, drill-down performance data analysis easier. For example, you may not want
to include those API calls whose elapsed times are below a certain threshold to help
reduce the volume of the data to be viewed; you may want to sort all API calls
based on the API type and elapsed time; you may want to view the accumulated
elapsed time for an API rather than each individual call elapsed time; or you may
want to separate APIs from SQL statements.

In the next chapter, I’ll introduce how one can easily enable the perfBasic API
profiling framework by inserting profiling enabling statements in the source code of
a software product.

7.4 SUMMARY

In this chapter, we defined three software performance and scalability defect defense
lines and proposed a practical defect capturing ratio for each defense line. The majority
of software performance and scalability defects should be contained at the develop-
ment stage. In order for this to happen, developers need an effective API profiling
tool, which can help them identify software performance and scalability defects
within minutes.

260 DEFINING API PROFILING FRAMEWORK



We then justified that software performance profiling at the API level is the
right granularity. Profiling at lower levels would mostly be interesting to vendors
who manufacture hardware or system software such as virtual machines, compilers,
and operating systems.

We then defined an API profiling framework ( perfBasic) that is simple to
implement and easy to use for developers and performance engineers to identify
application, system, and database bottlenecks. The framework consists of a standard
logging format, the basic functions of a commensurate parser, and the notions of
performance maps and summarization files. We expect that performance maps
will be the most frequently used vehicle for solving most of the performance and
scalability defects before a drop of a software product under development is made
available for quality and performance assurance tests.

We will devote the next three chapters to enabling, implementing, and applying
the perfBasic API profiling framework to solving real-world performance and
scalability problems.

EXERCISES

7.1. Describe the three defense lines against software performance and scalability
defects for a software product. What will be the consequences if a software
product is released to customers with significant performance and scalability
problems?

7.2. Describe the concept of a software execution stack using a layered approach.
Why is it important to understand the software execution stack associated with
a specific software product for helping solve performance and scalability
problems?

7.3. What is a framework in general? What’s the difference between a framework and
an implementation? Give some examples of frameworks and implementations in
the software industry.

7.4. What is the perfBasicAPI profiling framework?What logging format does it use?
Devise a software program and describe how the perfBasic API profiling frame-
work can help you diagnose performance and scalability problems.

7.5. What are software performance maps? What information does a software per-
formance map convey in general? Why is it useful for helping identify the
most expensive calling paths with a software program?

7.6. If you have experience in using a commercial API profiling tool or an internal
one, how convenient is it? Can it actually generate performance maps?

EXERCISES 261





8
Enabling API Profiling

Framework

Genius is 1 percent inspiration and 99 percent perspiration.
—Thomas Alva Edison

Enabling the perfBasic API profiling framework is easy if your existing applications
already have the capability of writing API calls to external log files in the text
format. If such log files already contain the API profiling data specified by the
perfBasic API profiling framework, then you only need to rewrite your logged data
according to the logging format required by the perfBasic API profiling framework.
This can easily be done using an adapter program, as will be elaborated in the
next chapter.

For an application that has no built-in capability of logging API calls, API profiling
statements can be inserted into its source code using an external program such as
perfLog.java written by the author for illustration purposes. In this chapter, I will
briefly walk through the source code of this program with you. This will expose
some issues with enabling API profiling to profile existing software. The task is as
easy as inserting profiling statements into the source code of a program as the begin-
ning or ending statement in a method or procedure. However, there are many delicate
issues to deal with.

Although perfLog.java is implemented in Java for enabling Java applications, it can
be used as a useful reference for implementing an enabling program for applications
written in any other high-level programming languages.

Let’s first begin with the overall structure of perfLog.java.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

263



8.1 OVERALL STRUCTURE

The program perfLog.java is implemented in Java using eclipse, which is one
of the most popular open source IDEs (integrated development environments) in the
software development community. Figure 8.1 shows the structure of this program

Figure 8.1 perfLog.java in eclipse.

264 ENABLING API PROFILING FRAMEWORK



in eclipsewith all global parameters andmethods included. Those items preceded with
OS symbols are variables, while those preceded with†S symbols are methods. In the
subsequent sections, I will give a brief overview of how this program works, followed
by a code listing showing some implementation details.

8.2 GLOBAL PARAMETERS

This program has the following five global parameters:

† createApfWriterMethodName, which represents the method to be added to the
original source code for creating a file writer object that will be used to write
actual API profiling log data.

† debug, which specifies whether debugging information will be written when
perfLog program is being executed.

† fileWriter of type PrintWriter, which is used for rewriting the original source
code and inserting profiling statements immediately following themethod signa-
ture and immediately prior to the return statement or ending of a method.

† logPerfDataMethodName, which represents the name of the method that must be
added to the original source code for writing the API calls to the external text
files. This parameter is used to avoid adding profiling statements to the logging
method, which may otherwise cause endless recursive calls to the logging
method itself.

† mainAddProfilingBeginAfter, which specifies the first executable statement in
the main program after which the profiling begin statement will be inserted.

† mainAddProfilingEndAfter, which specifies the statement in the main program
before which the profiling end statement will be inserted.

These parameters are initialized with the help of an external properties file named
apf.properties. Figure 8.2 shows a sample apf.properties file.

In the next section, we’ll introduce the main processing logic coded in the main
method of perfLog.java. From the code listing for the main method, you will also
see how the above global parameters are initialized.

Figure 8.2 A sample apf.properties file.

8.2 GLOBAL PARAMETERS 265



8.3 MAIN LOGIC

As shown in Code Listing 8.1, themainmethod calls the method getPropertiesHandle
( ), which returns a Properties object pointing to apf.properties file. This object is then
used to initialize all the global parameters prior to main logic execution.

The main method then calls the method getFiles ( ) with a given soureDirectory
to get a list of Java source files contained in this file directory. The next method call
to processFiles (files, targetDir) processes each source file by parsing it and adding
profiling statements within its methods, which is the main purpose of this program.

Code Listing 8.1: main Method of perfLog.java

public static void main(String[] args) {
Properties apfProps=getPropertiesHandle();
mainAddProfilingBeginAfter=apfProps

.getProperty(‘‘mainAddProfilingBeginAfter’’);
mainAddProfilingEndAfter=apfProps

.getProperty(‘‘mainAddProfilingEndAfter’’);
System.out.println(mainAddProfilingBeginAfter);
System.out.println(mainAddProfilingEndAfter);
String sourceDir=apfProps.getProperty(‘‘sourceDir’’);

String targetDir=apfProps.getProperty(‘‘targetDir’’);

debug=apfProps.getProperty(‘‘debug’’, ‘‘off’’);
System.out.println(‘‘debug’’ + debug);
logPerfDataMethodName=apfProps

.getProperty(‘‘logPerfDataMethodName’’);
createApfWriterMethodName=apfProps

.getProperty(‘‘createApfWriterMethodName’’);
ArrayList files=getFiles(new File(sourceDir));
processFiles(files, targetDir);

}

In the next section, we’ll introduce the processFiles ( ) method, which initiates
enabling API profiling on each method of each source file in the specified source
directory.

8.4 PROCESSING FILES

The logic of the processFiles ( ) method is simple. It loops through each file with the
same logic of creating a file writer object using the target file name, adding profiling
statements within each method of that class, and then closing the file writer. Code
Listing 8.2 shows how this method is implemented.

Code Listing 8.2: processFiles Method of perfLog.java

public static void processFiles(ArrayList fileNames,

String targetDir) {

266 ENABLING API PROFILING FRAMEWORK



for (int i = 0; i<fileNames.size(); i++) {

String fileName = fileNames.get(i).toString();

String targetFile = targetDir

+ fileName.substring(fileName.lastIndexOf(‘‘\\’’)+1);

fileWriter = createWriter(targetFile);

addProfiling(fileName);

fileWriter.close();

}

}

In the next section, we’ll present the core logic of this program, the addProfiling ( )
method, which implements how enabling statements are inserted into each method of
the class to be profiled.

8.5 ENABLING PROFILING

Enabling profiling is as simple as adding profiling statements at the beginning and
ending places within each method of the class to be profiled. This is achieved through
the addProfiling ( ) method of the perfLog.java program.

As shown in Code Listing 8.3, this method loops through each line in the source
code with the following core logic:

† It first checks and processes comment blocks. How comment blocks are
processed is deferred to the next section.

† It then updates the scopeLevel variable and classLevel variable. The scopeLevel
variable is used to help identify whether the current line is a method
signature line, a normal code line within the method, or the end of a method
definition, whereas the classLevel variable is used to track inner classes. The
scopeLevel variable is updated with the utility method countLeftBrackets ( ),
while the classLevel variable is updated with the utility method
isClassBeginLine ( ).

† It then checks whether the current line is a method begin line. If it is, it calls
processMethodBeginLine ( ) to process the method begin line, in which an
API profiling statement indicating beginning of an API call is added to the
original source code; it also updates three variables: numOfStart, scopeLevel,
and methodName. The variable numOfStart is used to check the balance of
method begin and end lines, as each method has only one begin line and one
end line. The other two variables of scopeLevel and methodName are used
later to identify whether a method end line has been reached.

† For those typed methods that return values, for example, a string, a number, or an
object instance, their return statements must be properly identified and dealt
with, as one cannot add a profiling statement after a return statement and prior
to the enclosing bracket of the method. Whether it’s a typed method that
contains return statement(s) is indicated by the value of the Boolean variable
isTypedMethod.

8.5 ENABLING PROFILING 267



† The return statements are checked with the method of isReturnStatement ( ), and
processed with the method of processReturnLine ( ).

† It then checks whether the current line represents the end of the method being
processed by calling isMethodEndLine ( ) with the parameters passed in. If it
does, the method of processMethodEndLine ( ) is called to process the end
line of a method, in which an API profiling statement indicating the end of an
API call is added prior to the method ending bracket. This is where the variable
isTypedMethod is useful, as there is no need to add a profiling statement at this
point if the method is a typed one with a return statement, since an API profiling
statement has already been added prior to a return statement. The two variables of
numOfEnd and methodName are updated then.

† Beyond the cases described above, the current line is just a normal source state-
ment within a method, and it is just rewritten to the target source file. However, it
doesn’t just end here. It calls the processMainMethodProfiling ( ) method as
shown in Code Listing 8.4 to check whether the current line needs to be followed
by a profiling statement indicating the start of the call to the main method. This
mechanism is implemented with the parameter mainAddProfilingBeginAfter,
which is set in the apf.properties file and initialized as one of the global para-
meters for the program.

Code Listing 8.3: addProfiling ( ) Method of perfLog.java

public static void addProfiling(String fileName) {

BufferedReader reader = createReader(fileName);

String line = ‘‘’’;

int numOfStart = 0;

int numOfEnd = 0;

int numOfReturn = 0;

int classLevel = 0;

int scopeLevel = 0;

String methodName = ‘‘’’;

String debugInfo = ‘‘’’;

boolean isTypedMethod = false;

boolean isReturnProcessed = false;

String className = getClassName(fileName);

Stack scopeStack = new Stack();

scopeStack.push(‘‘root’’);

String scope = ‘‘root’’;

while ((line = readNextLine(reader)) != null) {

line = processComment(reader, line);

int scopeLevelChange = countLeftBrackets(line);

scopeLevel = scopeLevel + scopeLevelChange;

scope = ‘‘’’;

if (scopeLevelChange > 0) {

scope = getScope(reader, line);

268 ENABLING API PROFILING FRAMEWORK



if (scope ! = ‘‘’’) {

scopeStack.push(scope);

}

} else if (scopeLevelChange < 0) {

scopeStack.pop();

}

if (scope.equals(‘‘array initializer’’)) {

scopeStack.pop();

scopeLevel--;

} else if (isClassBeginLine(line)) {

scopeStack.push(‘‘class’’);

classLevel++;

debugInfo = getDebugInfo(scopeStack, classLevel,

scopeLevel);

printSourceLine(line, debugInfo);

} else if (isStartsWithIf(line)) {

if (processStartsWithIf(reader, line, methodName) > 0) {

scopeStack.push(‘‘if’’);

scopeLevel++;

}

} else if (isMethodBeginLine(line)) {

scopeStack.push(‘‘method’’);

isReturnProcessed = false;

numOfReturn = 0;

String methodLine = processMethodBeginLine(reader,

className, line);

isTypedMethod = getMethodType(methodLine);

numOfStart++;

if (!line.trim().equalsIgnoreCase(methodLine.trim())) {

scopeLevel++;

}

methodName = className+‘‘_’’

+ getMethodName(methodLine);

} else if (isReturnStatement(line, methodName)) {

isReturnProcessed = processReturnLine(reader, line,

methodName);

numOfReturn++;

} else if (isMethodEndLine(line, methodName, scopeLevel,

classLevel)) {

processMethodEndLine(line, isReturnProcessed,

methodName);

numOfEnd++;

checkWellFormed(isTypedMethod, methodName,

numOfReturn);

methodName = ‘‘’’;

} else {

8.5 ENABLING PROFILING 269



debugInfo = getDebugInfo(scopeStack, classLevel,

scopeLevel);

printSourceLine(line, debugInfo);

processMainMethodProfiling(line, methodName);

}

}

try {

reader.close();

} catch (IOException ioe) {

}

System.out.println(fileName +‘‘: numOfStart = ‘‘+numOfStart

+ ‘‘numOfEnd = ‘‘+numOfEnd + ‘‘\n’’);

}

Code Listing 8.4: processMainMethodProfiling ( ) of perfLog.java

public static void processMainMethodProfiling(String line,

String methodName) {

if (line.contains(perfLog.mainAddProfilingBeginAfter)) {

fileWriter.println(line);

fileWriter.println(‘‘\t\t’’ + logPerfDataMethodName

+ ‘‘(\’’‘‘+getLogFormat(methodName, true)+‘‘\ ’’);’’);

}

}

The implementation for enabling the perfBasic API profiling framework should be
as generic as possible. One example out of many potential coding practices is inner
classes. In the next section, we describe how inner classes are dealt with in this
enabling program of perfLog.java.

8.6 PROCESSING INNER CLASSES

Inner classes are tracked using the variable classLevel in the addProfiling ( ) method
with the statement

classLevel=classLevel+isClassBeginLine(line);

in conjunction with the method isClassBeginLine ( ) as shown in Code Listing 8.5.

Code Listing 8.5: isClassBeginMethod ( ) of perfLog.java

public static boolean isClassBeginLine(String line) {

boolean IsClassBeginLine = false;

270 ENABLING API PROFILING FRAMEWORK



if (hasAccessSpecifier(line) && line.contains(‘‘class’’)) {

IsClassBeginLine = true;

}

return IsClassBeginLine;

}

As is seen, this method depends on the access specifiers and the keyword class to
determine whether the current line is a class begin line. The specifiers are Java specific
and defined in the hasAccessSpecifier ( ) method, as shown in Code Listing 8.6.

Code Listing 8.6: hasAccessSpecifier ( ) of perfLog.java

public static boolean hasAccessSpecifier(String line) {

String[] tokens = { ‘‘public’’, ‘‘private’’, ‘‘protected’’,

‘‘final’’, ‘‘native’’, ‘‘synchronized’’};

boolean hasIt = false;

for (int i = 0; i < tokens.length; i++) {

if (line.contains(tokens[i])) {

hasIt = true;

}

}

return hasIt;

}

In the next section, we’ll discuss how comments are dealt with in this API profiling
enabling implementation.

8.7 PROCESSING COMMENTS

Java uses either “//” or “/� comments �/” to indicate comment lines or comment
blocks in the source code of a Java program. The following code listing shows how
the comment statements are processed in the processComment ( ) method of
perfLog.java. As is seen, both types of comments are processed in the same while
loop. The comments are written back to the target source file.

Code Listing 8.7: processComment ( ) of perfLog.java

public static String processComment(BufferedReader reader,

String line) {

while (line.trim().startsWith(‘‘//’’)

|| line.trim().startsWith(‘‘/*’’)) {

if (line.trim().startsWith(‘‘//’’)

|| (line.trim().startsWith(‘‘/*’’) && line.trim()

.endsWith(‘‘*/’’))) {

8.7 PROCESSING COMMENTS 271



printSourceLine(line);

line = readNextLine(reader);

} else if (line.trim().startsWith(‘‘/*’’)) {

while (!line.trim().endsWith(‘‘*/’’)) {

printSourceLine(line);

line = readNextLine(reader);

}

if (line.trim().endsWith(‘‘*/’’)) {

printSourceLine(line);

line = readNextLine(reader);

}

}

}

return line;

}

In the next section, we’ll discuss how the method begin lines are processed.

8.8 PROCESSING METHOD BEGIN

Enabling API profiling consists of adding profiling statements following the begin
line and prior to the end line of a method of the class to be profiled.Whether the current
line is a method begin line is determined by calling the method isMethodBeginLine ( ),
as shown in Code Listing 8.8.

Code Listing 8.8: isMethodBeginLine ( ) of perfLog.java

public static boolean isMethodBeginLine(String line) {

boolean isMethodBeginLine = true;

if (!hasAccessSpecifier(line) || !line.contains(‘‘(’’)

|| line.endsWith(‘‘;’’) || line.startsWith(‘‘//’’)

|| line.contains(‘‘class’’) || line.length() < 3) {

isMethodBeginLine = false;

}

return isMethodBeginLine;

}

As seen from the above code listing, a line is a method begin line if all of the fol-
lowing conditions are satisfied:

† It has an access specifier similar to those defined in Code Listing 8.6 for defining
a class begin line.

† It contains the left round bracket “(” indicating the beginning of the argument list.

272 ENABLING API PROFILING FRAMEWORK



† It does not end with “;”.
† It does not start with “//”.
† It does not contain the key word class.
† And its length is longer than 3.

This lengthy list of conditions helps guarantee in most cases that a method begin line
can be identified correctly.

Code Listing 8.9 shows how a profiling statement is added after the begin line of a
method to indicate the start of an API call:

† It first keeps reading until reaching the left curly bracket of “{” just in case the
method signature expands into multiple lines.

† Then the name of the method is extracted using the entire line that defines the
method.

† Then it checks whether this method is excluded from being profiled. For various
reasons, some methods may not be profiled. Also, the main method requires a
different treatment, which is excluded from being processed at this point as well.

† If the method is to be profiled, a profiling enabling statement is written after the
method signature line with the help of one parameter and one method. The par-
ameter logPerfDataMethodName specifies which profiling statement to use,
which must be preexisting in the original source code. The method
getLogFormat ( ) determines what logging format to use to indicate whether
the API profiling log data represents the begin or end of an API call. As
shown in Code Listing 8.10, the begin of an API call is indicated by the
method name preceded by “ þ ”, whereas the end of an API call is indicated
by the method name surrounded by the signs of “2” and “OK”.

Code Listing 8.9: processMethodBeginLine ( ) of perfLog.java

public static String processMethodBeginLine(

BufferedReader reader, String className,

String line) {

String methodLine = ‘‘’’;

String methodName=‘‘’’;

while (!line.contains(‘‘{‘‘)) {

printSourceLine(line);

methodLine = methodLine + line.trim();

line = readNextLine(reader);

}

printSourceLine(line);

methodLine = methodLine + line.trim();

methodName = className +‘‘_’’ + getMethodName(methodLine);

if (isProfiledMethod(methodName)

&& !methodName.endsWith(‘‘main’’)) {

8.8 PROCESSING METHOD BEGIN 273



fileWriter.println(‘‘\t\t’’ + logPerfDataMethodName

+ ‘‘(\‘‘’’ + getLogFormat(methodName, true) + ‘‘\’’);’’);

}

return methodLine;

}

Code Listing 8.10: getLogFormat ( ) of perfLog.java

public static String getLogFormat(String methodName,
boolean isStart) {

String format=‘‘’’;
if (isStart) {

format = ‘‘+’’ + methodName;
} else {

format = ‘‘-’’+methodName+‘‘OK’’;
}
return format;

}

In the next section, we’ll discuss how the return statements are dealt with.

8.9 PROCESSING RETURN STATEMENTS

For the typed methods that return values, the profiling statement indicating the end of
an API call must be added immediately prior to the return statement. This doesn’t
sound too complicated, but actually it has a lot of variations in Java on how the key-
word return could appear on a source line.

Processing return statements is preceded by determining whether a line containing
the keyword return is a return statement by calling the isReturnStatement ( ) method, as
shown in Code Listing 8.11. When receiving a line, this method cuts off the comment
part on the line and checks whether the return keyword is still on the line. If yes, it
returns true; otherwise it returns false.

Code Listing 8.11: isReturnStatement ( ) of perfLog.java

public static boolean isReturnStatement(String line,
String methodName) {

boolean isReturnLine=false;
String testLine=removeAppendedComment(line);
if (testLine.trim().startsWith(‘‘return’’)

&& !isLiteral(testLine, ‘‘return’’)) {
isReturnLine=true;

}
return isReturnLine;

}

274 ENABLING API PROFILING FRAMEWORK



When it is determined that the current line is a return statement, the method
processReturnLine ( ) is called to process the return statement. As shown in Code
Listing 8.12, the processReturnLine ( ) method first checks whether this method is
to be profiled. If it is, the processReturnLine ( ) method simply calls the
printReturnLine ( ) method to print the return line with the proper ending API call
statement inserted. Otherwise, the line is printed as a normal source line.

Code Listing 8.12: processReturnLine ( ) of perfLog.java

public static boolean processReturnLine(BufferedReader reader,

String line, String methodName) {

boolean isReturnProcessed=false;

if (isProfiledMethod(methodName)) {

printReturnLine(reader, line, methodName);

isReturnProcessed=true;

} else {

printSourceLine(line);

}

return isReturnProcessed;

}

In the next section, we’ll discuss the processMethodEndLine ( ) method.

8.10 PROCESSING METHOD END

The method processMethodEndLine ( ) is simple, as shown in Code Listing 8.13. It
first makes sure that the method is to be profiled and that the method is not a typed
method. If these conditions are satisfied, the profiling enabling statement is written
to the target source file similar to how the profiling statement is written in the
method of processMethodBeginLine ( ) described previously. The only difference is
that false is passed to the getLogFormat ( ) method as the second argument to indicate
that this is the end of a method call.

Code Line 8.13: processMethodEndLine ( ) of perfLog.java

public static void processMethodEndLine(String line,

boolean isReturnProcessed, String methodName) {

if (isProfiledMethod(methodName) && !isReturnProcessed) {

printSourceLine(‘‘\t\t’’ + logPerfDataMethodName + ‘‘(\‘‘’’

+ getLogFormat(methodName, false)+‘‘\’’);’’);

if (methodName.endsWith(‘‘main’’)) {

fileWriter.println(‘‘\t\t’’

+ perfLog.mainAddProfilingEndAfter);

}

8.10 PROCESSING METHOD END 275



}

printSourceLine(line);

}

In the next section, we’ll discuss how the main method is treated differently from
the other methods.

8.11 PROCESSING MAIN METHOD

The main method should be treated differently when adding profiling enabling state-
ments in it, because it provides the entry point to the entire program, and some oper-
ations must be conducted first before profiling can start. For example, the file writer
object must be created at the beginning of the main method before the profiling log
data indicating the start of the main method execution can be written using a file
writer. For the same reason, this file writer object cannot be closed until the profiling
statement indicating the end of the main program execution has been executed. This is
why the main method has to be treated differently from the other methods.

Adding profiling statements in the main method depends on the following two
parameters that need to be set up in the apf.properties file:

† The first parameter mainAddProfilingBeginAfter represents the statement in
the main method of the source program to be profiled after which the profiling
statement indicating the begin of the call to the main method should be added.
Usually, the parameter mainAddProfilingBeginAfter is set to something simi-
lar to apfWriter ¼ createWriter (“logPerfTest.apf”); which should be the first
executable statement in the main method of the source program to be profiled.
This statement creates a file writer object that will be used later by the profil-
ing statements inserted into each method to write the profiling log data or the
API calls into the file specified as the argument of the createWriter ( )
method.

† The second parameter mainAddProfilingEndAfter takes care of adding the
profiling statement to indicate the end of the main method execution in the
main method of the source program to be profiled before the file writer object
is closed. Similar to the first parameter described above, this parameter is set
in the apf.properties file, similar to something like apfWriter.close ( ); prior to
the enclosing curly bracket of “}” for indicating the end of the main method
in the source program to be profiled.

Adding profiling statements in the main method of a source program to be profiled
is spread over several other methods as well, which has already been discussed in the
previous sections. Here is a recap of how it is handled in several other methods:

† In Section 8.5 about the addProfiling ( ) method, Code Listing 8.3 contains a
statement that calls the method processMainMethodProfiling ( ) to check

276 ENABLING API PROFILING FRAMEWORK



whether it’s time towrite the profiling statement indicating the begin of the call to
the main method. Code Listing 8.4 shows how the profiling statement would be
written if the condition is satisfied.

† In Section 8.8 about the processMethodBeginLine ( ) method, Code Listing 8.9
has a statement toward the end showing that writing profiling statement for the
main method is excluded. This exclusion is necessary because of the call to
the method processMainMethodProfiling ( ) in the addProfiling ( ) method as
described above.

† In Section 8.10 about the processMethodEndLine ( ) method, Code Listing 8.13
indicates that a line containing the value of the parameter mainAddProfiling
EndAfter is written when it encounters the end of the main method of the
source program to be profiled.

This profiling enabling program, perfLog.java, has been tested with the
perfLog.java program itself as well as the framework implementation program to be
described in the next chapter. In addition, a specifically designed program,
perfLogTest.java in the same package, has been used for testing the correctness of
the perfLog.java program. Let’s discuss this test program in the next section.

8.12 TEST PROGRAM

The test program, perfLogTest.java, is designed to test the correctness of the profiling
enabling program, perfLog.java. The test scenarios include multiple return statements
in various situations as well as an inner class and its methods.

If you are interested in the details of each test scenario, consult Code Listing 8.14.

Code Listing 8.14: perfLogTest.java

package logParser20;

/*

* Test program designed to test the correctness of the profiling

* enabling program perfTest.java @author henry h liu 2007

*/

public class perfLogTest {

String desc = ‘‘Java program for testing perfLog.java’’;

// This is a commment line

/*

* This is a comment block

*/

// Constructor

public perfLogTest(String desc) {

this.desc = desc;

}

8.12 TEST PROGRAM 277



// getter - typed method

public String getDesc() {

return desc;

}

// setter - non-typed method

public void setDesc(String s) {

desc = s;

}

/*

* keyword return contained in a String; muliple instances of the

* keyword return in an if-return statement; last return statement

* containing return keyword in a String

*/

public String returnTest0() {

String x = ‘‘split return’’

if (x.equals(‘‘\\ \ ‘‘return’’ + ‘‘\\ return’’))

return ‘‘return’’; // return return

return x + ‘‘return split in two lines’’;

}

// return in two split lines

public String returnTest1() {

String xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx = ‘‘split return’’;

return xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

+ ‘‘return split in two lines’’;

}

// return in string, followed by a real return statement

public String returnTest2() {

String x = ‘‘return in if line’’;

if (x.length() > 1)

x = ‘‘return test 2’’; // return in string

return x + ‘‘return in if line’’;

}

// return in a string in a separate line of an if statement; two

// return statements, one in an if statement and the other in a

// block

public String returnTest3() {

String x = ‘‘return in comment line’’;

if (x.length() > 1)

x = ‘‘return test 3’’; // return in string

if (x.equals(‘‘y’’))

278 ENABLING API PROFILING FRAMEWORK



return (x + ‘‘return and if on the same line’’);

{

return x + ‘‘return in two lines’’;

}

}

// inner class test

public class inner {

int x = 0;

public inner(int x0) {

x = x0;

}

public int getX() {

return x;

}

public void setX(int i) {

x = i;

}

}

}

8.13 SUMMARY

In this chapter, we demonstrated how the perfBasic API profiling framework can
easily be enabled. A reference implementation of enabling this API profiling frame-
work in Java has been discussed in detail by walking through all its major methods.
Various design and implementation issues encountered in developing this program
have been addressed. For the complete source code listing, download perfLog.java
and all the relevant files from this book’s website.

In the next chapter, we will concentrate on how a parser can be implemented to
facilitate parsing the API profiling data logged using this API profiling framework.
In the last chapter of this book, we’ll demonstrate how to apply this API profiling fra-
mework to solving real-world software performance and scalability problems using a
few concrete case studies.

RECOMMENDED READING

The following book is an excellent text about how to program in Java:

C. S. Horstmann and G. Cornell, Core Java 2, Volume I—Fundamentals and Volume 2—
Advanced Features, Prentice Hall, 2003.

RECOMMENDED READING 279



EXERCISES

8.1. List the basic steps for enabling the perfBasic API profiling framework.

8.2. If you are a software developer, consider enabling the perfBasic API profiling
framework for probing performance and scalability problems with your product.
The code snippets provided in this chapter may help you get started.

280 ENABLING API PROFILING FRAMEWORK



9
Implementing API

Profiling Framework

If I had stayed for other people to make my tools and things for me, I had never made anything.
—Sir Isaac Newton

A framework is not an implementation. It simply is a specification on paper. A
framework can be implemented in any high-level programming language, on any
hardware platform, and by any organization or individual who has an interest in it.
In this chapter, we describe in detail an example implementation of the perfBasic
API profiling framework in Java. This is the implementation that has been used to
generate all performance maps presented throughout this book.

One of the key points that this book intends to convey to software developers and
performance engineers is that performance maps are the most efficient approach to
identifying performance and scalability defects at the development stage of a software
product. In order to generate performance maps using the API profiling data logged
during a performance test run, we must use some sort of graphics tools.

In the next two sections, I will introduce two graphics tools for generating perform-
ance maps, one is the free dot.exe program from Graphviz (http://www.graphviz.org),
and the other is a commercial tool from ILOGw (http://www.ilog.com). Let’s first
begin with the dot.exe program, which is a very powerful and easy to use graphics
tool available for free.

9.1 GRAPHICS TOOL—dot

dot is one of the graphics programs made available by Graphviz (Graph Visualization
Software). The best way to learn about dot is to download a copy of it and start to

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

281



experiment with it yourself. Here is a list of the Web links that are helpful for you to
get started:

† Download the software: http://www.graphviz.org/Download.php.
† Documentations: http://www.graphviz.org/Documentation.php. You can
download the user’s guide to dot and neato in PDF format from here.

† Frequently asked questions: http://www.graphviz.org/doc/FAQ.html.

The following graphics tools are available from Graphviz:

† dot making “hierarchical” or layered drawings of directed graphs
† neato and fdp making “spring model” layouts
† twopi making radial layout
† circo making circular layout

Most of the time, we use dot and neato. Both dot and neato share the same DOT
language, which defines the format of the text input file for the dot and neato programs.

In order to understand how dot works, let’s begin with an example. Assuming that
you have installed the Graphviz package on your computer, now create a text file
named dotDemo.dot that has the following lines:

digraph G {
driver -> parser;
driver -> params;
driver -> utility;
parser -> processLogByThread;
processLogByThread -> processThreads;
processLogByThread -> xmlProcessing;

}

Then, issue the following command at a DOS command line:

dot.exe –Tgif dotDemo.dot –o dotDemo.gif

In addition to the gif graphics file output format, you can also specify ps, svg, jpg, and
so on. It seems that files generated with the gif format have better display quality than
jpg, although both gif and jpg are bitmap type of graphics format. Files created with ps
and svg format are better suited for embedding in a document to be published or
importing into other graphics software such as Adobew Illustratorw, which is a
vector-based drawing program. Unlike bitmap graphics, vector graphics can scale
without losing the details of a graphic when being enlarged. A vector graphic can
be converted into a bitmap graphic through a process called rasterizing.

282 IMPLEMENTING API PROFILING FRAMEWORK



Now you have a file named dotDemo.gif created. Open this file and you should see
a drawing similar to Figure 9.1.

This example shows how easy it is to use dot. Of course, you can make it a lot
fancier by exploring many features of dot yourself, for example, adding colors. The
user’s guide to dot contains all the details about how you can specify the layout,
node and edge attributes, and so on.

Sometimes, you may want to use a different Graphviz tool if you don’t get what
you want, especially the layout. For example, the diagram in Figure 9.2 was created
with dot, with everything clotted into a line, which is hard to view.

Now, with the same dot file, using the program neato, it can be turned into a differ-
ent layout, as shown in Figure 9.3, that can be zoomed and easily viewed.

This example shows that choosing an appropriate layout is an important issue, as
the whole point of a performance map is about easier visual inspection.

In the next section, we’ll discuss how performance maps can be generated with a
commercial graphics tool such as ILOG.

Figure 9.1 An example dot demo.

Figure 9.2 A hard-to-view flat tree structure created with dot.

9.1 GRAPHICS TOOL—dot 283



9.2 GRAPHICS TOOL—ILOG

ILOG Visualization software is an advanced technology that translates raw data into
useful information. It’s another very powerful graphics tool for drawing performance
maps with the XML data generated using the API profiling framework presented
in this book.

In this section, we describe how one can use the ILOG JViews Diagrammer to draw
structured data such as performance maps. To get a basic understanding of how the
ILOG JViews Diagrammer works, let’s begin with a simple example.

It’s important to choose an appropriate layout when drawing performance maps in
order to achieve the desired visual comfort level. In most cases, the tree layout results

Figure 9.3 Tree structure created with neato.

284 IMPLEMENTING API PROFILING FRAMEWORK



in the most balanced and aesthetic graphs. The graphs shown in Figure 9.4 illustrate
three tree structures in small, medium, and large configurations that can be generated
with the ILOG JViews Diagrammer.

Although these three tree structures differ in complexity, they were created with the
same steps:

1. Structural data was written in an XML data file that conforms to a specific
schema.

2. A cascading style sheet (CSS) file was used to specify layout, node, and link
styles.

3. A Java applet was run to draw the graph based on the data input file and the
CSS file described in Steps 1 and 2. The only difference among those three
graphs is that a different XML data file was used for each of them.

Next, let’s learn a little bit about graphics resolution, which should help you
decide how you can generate crisp, clear performance maps.

Figure 9.4 Three tree structures generated using ILOG JViews Diagrammer.

9.2 GRAPHICS TOOL—ILOG 285



9.3 GRAPHICS RESOLUTION

Sometimes you may want to generate a high-resolution performance map or a graphic
in general to make it look crisp and clear. Instead of talking about color theories, I’ll
give you some tips about how you can manage the quality of your graphics.

Computer graphics fall into two main categories: bitmap images and vector
graphics. Bitmap images are created using a square or rectangular grid of colored
squares called pixels. Bitmaps are most suited for continuous tone images such as
photographs. In order to create the illusion of continuous tone, pixels must be small
enough. The resolution of a bitmap image is measured by the number of pixels in
an inch. Thus bitmap images are termed resolution dependent.

Vector graphics are created with lines and curves, which are defined by mathemat-
ical objects called vectors. Vectors use geometric characteristics to define the object.
Vector graphics consist of anchor points and line segments, which together are
referred to as paths. Computer graphics rely on vectors to render bold graphics that
must retain clean, crisp lines when scaled to various sizes.

Now from a practical point of view, the graphics created in the format of gif or jpg
are bitmap images, while the graphics created in the format of ps, eps, or svg are vector
graphics. To create the most desirable effects when a graphic is displayed or printed,
fluency with resolution terminology is helpful, as summarized below:

† Pixels per inch (PPI) for bitmap images. The recommended PPI for a bitmap
graphic is 72 to be used on a Web page, or 250–300 to be printed in a formal
document.

† Dots per inch (DPI) for an output device such as a printer. The resolution
of a desktop printer is between 600 and 1200 DPI, which is good enough for
printing texts. For printing bitmap images, a minimum resolution of 2400 DPI
is required to create the desired effects.

† Lines per inch (LPI) for a printed page. LPI or “line screen” measures the number
of lines per inch printed for an image on a page. It is also called screen frequency.
A standard LPI is around 150 LPI for color printing.

So, in summary, the visual quality of a displayed or printed graphic depends on the
raw resolution of the displaying or printing device as well as the resolution of the
graphic defined in PPI. The quality of printed output depends on the resolution of
both the output device (dpi) and the screen frequency (lpi). For example, a production
class image-setter with a resolution of 2400 dpi and a screen frequency of 177 lpi
produces a higher quality image than a desktop printer with a resolution in the
range of 300 to 600 dpi and a screen frequency of 85 lpi. However, a high screen fre-
quency alone does not guarantee high-quality output. The screen frequency must be
configured properly according to the class of the paper, the inks, and the printer to
print high-quality, professional-looking graphic.

Next, let’s move on to the implementation of the perfBasic API profiling frame-
work in Java and see how performance maps can be generated with Graphviz graphics
software and ILOG Visualization software.

286 IMPLEMENTING API PROFILING FRAMEWORK



9.4 IMPLEMENTATION

An implementation of the perfBasic API profiling framework can help turn the
humongous performance log data text files into the succinct performance maps that
software developers and performance engineers can use to identify application,
database, and system bottlenecks quickly with minimum learning efforts.

In this section, we present a reference implementation of the perfBasic API profil-
ing framework in Java. Java has evolved into a robust, mature, and easy to program
language during the past ten years and has been embraced by a large community
of programmers. So it’s one of the ideal high-level programming languages for
implementing this API profiling framework.

The implementation of the perfBasic API profiling framework consists of the
following Java classes:

† driver.java. This class provides the main method as an entry point to the
program.

† params.java. This class initializes all global parameters.
† logReader.java. This class reads an API profiling log data file and writes to mul-
tiple files sorted by threads.

† logWriter.java. This class writes API call data into text files in a specific format
for the graphics tools to generate performance maps.

† Node.java. This class represents an API call in a call tree structure.
† Link.java. This class represents an immediate caller–callee relation in a call tree
structure.

† CallRecord.java. This class represents each API call with detailed call infor-
mation such as call start time and call end time.

† utility.java. This class provides various methods for manipulating date and time
stamps and for creating Java I/O readers and writers.

† parser.java. This class parses an API profiling log data file.
† xmlProcessor.java. This class generates an XML file with complete information
such as call count and aggregated elapsed time for XML-based graphics tools to
generate performance maps.

† analyzer.java. This class generates detailed summarization text files for all API
calls to help facilitate the drill-down type of performance and scalability
analysis.

† adapter.java. This class converts custom API profiling log data files from non-
standard format into standard format for the parser to process.

Let’s discuss each Java class in detail in the following sections.

9.4.1 driver

The driver program is implemented in driver.java, as shown in Code Listing 9.1. It is
coded following the logic as shown in the main ( ) method of Code Listing 8.1.

9.4 IMPLEMENTATION 287



† It first calls System.currentTimeMillis ( ) to record the program start time.
† It then calls the static method init ( ) of params.java, which initializes all global
parameters for all the remaining classes of this implementation. The parameter
class is a convenient way for centralizing all parameters used by various classes
in one place.

† The next call to utility.display ( ) outputs the string passed in as an argument to
standard output. This method simply is a wrapper of the Java system method
System.out.println (String s).

† Note that the program assumes that the API profiling log data conforms to the
standard log format. If not, then one should use an adapter program to convert
the log data from nonconforming to conforming format. An adapter is another
Java class that converts log data from its native to the standard format.

† Then it tests to see if the log file is already sorted by thread. If it is, then the thread
information file is read through the static method of getThreadInfo ( ) of the
logReader class. Otherwise, the static method sortLogByThread ( ) of the
logReader class is called to read the original raw API profiling log data, which
is sorted and then output to the multiple text files with each file containing the
log data from one specific thread only.

† Then a parser object is created to start parsing the API profiling log data. The
entry method of the parser object is processLogByThread ( ), which initiates
processing each thread in a thread loop.

† The total processing time is reported after parsing is complete.

Code Listing 9.1: driver.java

package logParser20;

import java.io.FileWriter;

import java.io.PrintWriter;

import java.io.IOException;

import logParser20.logReader;

import logParser20.params;

import logParser20.parser;

import logParser20.utility;

public class driver {

public static PrintWriter apfWriter;

public static void main(String[] args) {

String apfLogFile = System.getProperty(‘‘apfLogFileName’’);

if (apfLogFile != null) {

createApfWriter(apfLogFile);

}

288 IMPLEMENTING API PROFILING FRAMEWORK



long startTime = System.currentTimeMillis();

params.init();

utility.display(‘‘parsing log file: ’’ + params.logFileName);

if (params.logFileIsSortedByThread) {

utility.display(‘‘skip reading mixed data files . . .’’);

logReader.getThreadInfo(params.threadInfoFileName);

} else {

utility.display(‘‘reading raw data files . . .’’);

logReader.sortLogByThread();

}

parser Parser = new parser();

Parser.processLogByThread();

utility.display(‘‘Total processing time =’’

+ (System.currentTimeMillis() - startTime)+‘‘ms’’);

params.sumWriter.close();

if (apfWriter != null) {

apfWriter.close();

}

}

public static void createApfWriter(String apfFileName) {

try {

apfWriter = new PrintWriter(new FileWriter(apfFileName),

true);

} catch (IOException ioe) {

utility.display(‘‘Error in creating writer with’’

+ apfFileName);

}

}

}

From Code Listing 9.1, note that this driver program is API profiling enabled as
well with an apfWriter object created at the beginning of the program.

Following the sequence of the program execution logic, let’s discuss the next
Java class, params.java, in the next section.

9.4.2 Global Parameters

The params.java class is a container for all global parameters as listed below:

† description, which provides a textual description about the subject.
† maxThreads, which represents the maximum number of threads that will be
processed.

† threadSample, which specifies the thread sampling interval to limit the number
of program execution threads to be processed.

9.4 IMPLEMENTATION 289



† inputFileDir, which specifies the directory containing the input files.
† outputFileDir, which specifies the directory that will hold the output files.
† threadFileDir, which specifies the directory that will hold all data files for all
threads.

† logFileName, which specifies the name of the API profiling log data file.
† logFileIsSortedByThread. If this parameter is set to false, the original API
profiling log data is read and then written to the multiple text files thread-by-
thread. If set to true, then data will be read directly from the thread files.

† threadInfoFileName, which represents the name of the file containing the thread
information for the parser to read all thread files.

† callTreeDotFile, which is related to dot-generated performance maps only. It
represents the name of the dot file for the graphics tool dot to use to generate per-
formance maps.

† callTreeXMLFile0, which is related to XML file based performance maps
only. It represents the name of the initial XML file that serves as a holder of
the data structure for all nodes and links with details left open to be filled in
after the entire parsing is complete.

† callTreeXMLFileFinal, which is related to XML file based performance maps
only. This is the final XML file with all missing information from
callTreeXMLFile0 filled in eventually. This is the file that XML-based graphics
tools will use to generate performance maps.

† graphByThread, which is related to dot-generated performance maps only. It
controls whether each thread will be shown as a separate branch of the call tree.

† subGraph, which is related to dot-generated performance maps only. It controls
whether the call tree will be drawn using the functionality of subGraph of dot.

† traceTreeWalkThrough, which controls whether debugging information will be
displayed along with parsing.

† dotLinkLabelHorizontal, which controls whether the items in a label beside an
edge of a dot-generated performance map will be written all horizontally.

† threadPercentTimeFilter, which represents an elapsed time threshold value
below which a thread will be excluded from processing.

† elapsedTimeThresholdInMS, which represents an elapsed time threshold value
in milliseconds, below which an execution path (edge or link) will be excluded
in the generated performance maps.

† elapsedTimePercentRed, which represents an elapsed time threshold value in
percentage, above which an execution path (edge or link) will be colored in
red to indicate that it’s a hot path.

† deleteThreadFiles, which controls whether the thread files will be deleted at the
exit of the program execution.

† relativeToLogOnTime, which controls whether all time stamps will be absolute
or relative to the time when logging started.

† ignoreLinesIdentifiers, which provides an option for ignoring the lines that
match the identifiers defined in the log.properties file.

290 IMPLEMENTING API PROFILING FRAMEWORK



† callEndIdentifiers, which specifies the identifiers defined in the log.properties
file to indicate what lines are call end lines.

† selfNodeIdentifiers, which specifies the identifiers defined in the log.properties
file to indicate what lines are API calls that have no call end time.

† sumWriter, which is a Java writer object used for writing parsing summary files.
† xmlProcessing, which controls whether XML processing will be initiated after
parsing is complete. Specify false if XML based graphics tool is not going to
be used for generating performance maps.

† profilingOn, which is a parameter for controlling profiling this reference
implementation itself.

The class params.java works as follows:

† It uses a Java properties object in its init ( ) method to initialize all parameters
using a property file named parser.properties.

† Then all initial parameters are written into a summary file using thewriteParams
( ) method.

† There is a method named getIdentifiers ( ) that is used to extract the identifiers
specified in another properties file log.properties.

The parser.properties file and log.properties file need to be set up correctly before
running this API profiling log data parser. We will leave the details about how to
set up these files to the next chapter.

In the next section, I’ll describe how the logReader class is implemented. This is the
class that implements the logic for reading in API profiling log data.

9.4.3 logReader

The class logReader has the following two major functions:

† sortLogByThread ( ), which sorts an original API profiling log data file into mul-
tiple files with each file containing the data for a thread only. This is a pre-
paration for the parser to parse the log data on a thread-by-thread basis in a
thread loop.

† getThreadInfo ( ), which is used to skip re-sorting an original API profiling log
data file. The parser will start parsing directly with the thread files created when
the original log data were sorted by the sortLogByThread ( ) method. This is
designed to avoid repeatedly calling the sortLogByThread ( ) method, which
might be very time consuming for large log data files.

After the sortLogByThread ( ) method is executed, the following information about
the execution of each thread will be available for the parser to use:

† threadTimeMin, which is the earliest start call time for a thread.
† threadTimeMax, which is the time stamp of the last call end time for the same
thread.

† threadTimeDelta, which is the difference between threadTimeMax and
threadTimeMin and represents the total elapsed time for a thread.

9.4 IMPLEMENTATION 291



† allThreadTimeMin, which is the earliest call start time of all threads.
† allThreadTimeMax, which is the latest call end time of all threads.
† allThreadTimeTotal, which is the difference between allThreadTimeMax and
allThreadTimeMin and represents the total logging period for the entire
execution.

† threadIndexMax, which represents the actual number of threads read in the orig-
inal log data files.

See the source code that can be downloaded from this book’s website about how
this logReader class is implemented, if you are interested in the details.

In the next section, I will introduce the counterpart of the logReader class—the
logWriter class.

9.4.4 logWriter

The logWriter class is used by the parser class to write API call data in dot format or
XML format when it needs to. The functions of each method are described below to
show exactly what each method is designed for:

† writeDotRelation (PrintWriter logWriter, String fromId, String fromName,
String relationId, String toId, String toName, int threadId, int count, int
elapsedTime). This method writes a dot edge with the parameters given in the
argument list.

† logWriteNode (PrintWriter logWriter, Node node). This method writes an API
call as an XML node.

† logWriteNodeProperty (PrintWriter logWriter, String userObject). This method
writes a property XML element with the parameters given in the argument list.

† writeLink (PrintWriter logWriter, Link link). This method writes an XML link
element with the parameters given in the argument list.

† writeEndNode (PrintWriter logWriter). This method writes an end XML node
with the parameter given in the argument list.

† writeLinkProperty (PrintWriter logWriter, long callCount, long elapsedTime).
This method writes a link property XML element with the parameters given.

The data written by a logWriter object is used by the graphics tools to generate
performance maps. So the output format must conform to the specifications associated
with each graphics tool.

See the source code downloadable from this book’s website about how this
logWriter class is implemented.

In the next section, I will describe the Node class. This class describes the XML
node that the parser composes as it parses along. The purpose of the Node class is
for writing data in XML format so that XML-based graphics tools can use it to
generate performance maps.

292 IMPLEMENTING API PROFILING FRAMEWORK



9.4.5 Node

Each API call is represented as a node on performance maps. The Node class has all
the attributes that are required for completely characterizing an API call. A Node has
the following attributes:

† Id, which uniquely identifies an XML node. It consists of two parts: Namespace
and Name. Namespace is simply a concatenation of its ancestor callers, and
Name is the current method name.

† Namespace, which is simply a concatenation of the ancestor callers of the
current API.

† Name, which is the name of the current API.
† callStartTime, which is the call start time of the current API.
† callEndTime, which is the call end time of the current API.
† elapsedTimeSum, which is the aggregated elapsed call time of the current API.
† callCountSum, which is the aggregated call count of the current API.
† type, which is the type of the current API.
† text, which is the entire text of the current API call.

The values of some of the attributes may need to be aggregated progressively
with parsing, for example, elapsedTimeSum and callCountSum. Also, not all the
attributes have their values available when the call was encountered the first
time. For example, callEndTime is not available until all of its callees have been
processed. This is a delicate issue and has been carefully considered in the
parser class.

The methods of the Node class are all getter and setter classes that are self-explicit.
See the source code downloadable from this book’s website about how this Node class
is implemented.

In the next section, I will introduce the Link class, which describes the call path
from Node A to Node B.

9.4.6 Link

The Link class describes a link between the two nodes that has a caller–callee relation-
ship. It has the following attributes:

† sourceNode, which is the caller node of an immediate caller–callee relationship.
† destNode, which is the callee node of an immediate caller–callee relationship.
† name, which is the name of an immediate caller–callee relationship.
† callCount, which is the total number of executions for an immediate pair of caller
and callee.

† elapsedTime, which is the elapsed time of the executions for an immediate pair of
caller and callee.

9.4 IMPLEMENTATION 293



† isLink, which is an attribute of the XML format defined for a Link element.
† color, which indicates what color to use for drawing an immediate caller–callee
relationship.

† namespace, which is simply a concatenation of the names of all ancestor callers
of the current caller in an immediate caller–callee relationship.

† id, which uniquely identifies an immediate caller–callee relationship.

The attributes callCount and elapsedTime are the two most important attributes
for performance maps. Based on these two metrics explicitly displayed on perform-
ance maps, software developers and performance engineers can quickly identify the
application, database, and system bottlenecks.

The methods of the Link class are all getter and setter classes that are self-explicit.
See the source code downloadable from this book’s website about how this Link class
is implemented.

In the next section, I will introduce the CallRecord class. This class is used
for writing performance summarization files that contain the details of each API
call that are hard to include and display on performance maps. Performance summar-
ization files are used for deeper, drill-down type of analysis of performance and
scalability issues.

9.4.7 CallRecord

The CallRecord class has the following attributes:

† threadId, which indicates from which thread this call came.
† hashCode, which is the hash code for the API text of the call.
† elapsedTime, which is the elapsed time of the call.
† callCount, which is the number of times the call was made.
† text, which is the entire text of an API.

The methods of the CallRecord class are all getter and setter classes that are
self-explicit. See the source code downloadable from this book’s website about
how this CallRecord class is implemented.

In the next section, I will introduce the utility class that is used by other classes
for the utility type of operations.

9.4.8 utility

The utility class is designed for providing convenience in manipulating date and time
stamps and in creating Java I/O reader and writer objects. Each method of the utility
class is simple enough that the reader should be able to understand it just by reading
the comments and its implementation. See the source code downloadable from this
book’s website if you are interested in knowing what utility functions are provided
and how they are implemented.

294 IMPLEMENTING API PROFILING FRAMEWORK



In the next section, I will introduce the parser class. This is the most sophisticated
class of the API profiling framework implementation. It’s the class that parses the
API profiling log data and generates the output data that can be used by the graphics
tools to generate performance maps.

9.4.9 parser

Parsing API profiling log data starts with the processLogByThread ( ) method, as is
shown in the driver class described in Section 9.3.1. It is important to note that the
API calls out of all program execution threads are intermingled. After they are segre-
gated into multiple thread files, they must be processed on a thread-by-thread basis,
because threads run in parallel with overlapping timings.

There are two delicate issues that must be dealt with carefully when designing the
parsing algorithm for implementing this API profiling framework:

† Whether the API profiling log data conforms to the standard format is unknown
until exceptions are thrown during parsing. Whenever this happens, the parsing
logic needs to be examined and the bugs identified must be fixed before it can
move along. This may happen very often, as the API profiling log data files
are usually humongous and may contain many unexpected variations.

† Even if the log data conforms to the standard log format, there are still chances
that generated performance maps may not be displayed properly, for example,
with orphan nodes. Also, all quantitative metrics such as the elapsed time
and call count must be accurate. This calls for a robust implementation of the
parsing logic.

After lengthy debugging and experimentation, I eventually came up with the
implementation of a parser as shown in the source code downloadable from this
book’s website. In case you are motivated to look at the code of parser.java, here is
a sample. The core logic is implemented in the threadLoop ( ) method. It will
become clear what it does after going over the following pseudocode.

Pseudocode for the Parsing Logic of the threadLoop Method in parser.java

process the root node first;

for (each thread) {

exclude this thread if it’s insignificant;

clear the callPath HashSet; \\ keeps track of where an API call

\\ is in a call path that are multiple

\\ levels deep

process the thread node; \\ the level immediately below root node

read each line from the data file for this thread {

if ( isCallEnd ) {

processCallEnd;

} else { // nonCallEnd

9.4 IMPLEMENTATION 295



processCallStart;

if ( isSelfNode ) {

processCallEnd;

} // end selfNodeCheck

} // end if ( isCallEnd )

} // end read each line from the thread file

} // end for each thread

post check call stack;

In this implementation, two data structures have been used, one of which is
named callPath of the type HashSet, and the other named callStack of the type
Stack. The data structure callPath keeps track of whether the current call has been
encountered so far, and the HashSet data structure is an ideal choice relative to
other data structures such as HashMap, List, and Stack. That’s because we are not
interested in the order in which the items are stored. Instead, we are interested only
in quickly finding out whether an item already exists in that data structure.

The data structure callStack keeps a stack of API call nodes that are on the stack so
far. Let’s say we have a segment of API call log data that represents the call sequence
as shown in Figure 9.5. Let’s see how parsing should proceed.

In Figure 9.5, each letter represents the name of an API method call, with “þ” sign
denoting the call start and “2” sign the call end. Then, two issues must be taken into
account:

† First, the call path of A ! B ! C must be remembered so that when the same
call path is encountered again later, it will not be written to the external
XML file again, which would be against the XML format rules adopted by
XML-based graphics tools. Instead, only its call count and elapsed time will
be updated.

† Second, when a new API call is encountered, it must be pushed into the stack, so
prior to “C–” that represents the end of the C API call, the stack must already
have “Aþ Bþ Cþ” so that when “C–” is encountered, “Cþ” would be
popped off the stack to indicate that the C API call is complete in a full call
start and end cycle. Similarly, by the time the B API call end “B–” is encoun-
tered, the parser would know that this end of call should be correlated to its

Figure 9.5 An illustrative API call stack.

296 IMPLEMENTING API PROFILING FRAMEWORK



start of call, which is “Bþ ”. The correlation of the start and end of a call is
maintained by the push and pop operations of this stack data structure. Stack
is an ideal data structure for this purpose, as it is most suitable for indicating
the start and end of an API call.

The last statement of postCheckCallStack ( ) will make sure that those calls that
remain on the stack with no call ends encountered at the completion of parsing will
be processed as well so that the XML and dot files written for drawing performance
maps will be well formatted.

In addition to the core parsing logic described above, the threadLoop ( ) method
also takes care of initiating writing XML and dot data files that will be used by the
graphics tools to generate performance maps. The XML file needs to have its begin-
ning linewritten before the body lines can bewritten. The dot file can wait until the end
of parsing in the threadLoop ( ) method.

Some other major parsing methods include the following:

† isCallEnd ( ). This method uses callEndIdentifiers to help determine whether the
current data line represents the end of an API call. You may want to add
additional identifiers if you are using an adapter to convert your native API
profiling log data from nonconforming format into conforming format.

† processCallEnd ( ). This method depends on namespace to uniquely identify
an immediate caller–callee relationship. It first pops the callee off the call
stack and updates the attributes for the callee. It then peeks at the caller from
the call stack and constructs a Link object. If the caller–callee relation instance
associated with this Link object has not been encountered so far, the data struc-
ture callPath is updated with this Link instance, and a Link element is written to
the XML file that keeps track of all API calls. The aggregated attribute values of
this caller–callee relationship such as the call count and elapsed time are updated
in the HashMap data structure relations. This data structure is used later during
the XML processing stage to complete the call tree XML file with all missing
information at this parsing stage.

† processCallStart ( ). This method processes a data line that represents a call start.
It first gets the namespace from the content of the current call stack. It then con-
structs a Node object by calling the makeNode ( ) method. The makeNode ( )
method makes a node by extracting the node attribute values such as name,
call start time, type, and text out of the current thread data line. This node is
pushed onto the call stack as one more API call on top of the current call path
maintained in the callStack data structure. If it represents a new call path, then
it is entered into the callPath HashSet and an XML node representing this
new API call is written to the XML file that keeps all unique API call paths.
This is necessary so that when the same path is encountered again it will not
be written to the XML file again.

† isSelfNode ( ). This method is designed to deal with special situations such as
calls that have call start and call end time stamps all on one data line. Such
lines typically represent status reports indicating that some events have occurred.

9.4 IMPLEMENTATION 297



† processRootNode ( ). The root node is the node that spawns all threads. On
performance maps, the root node is the origin of all execution threads, which
in turn spawn more execution paths on its own. It follows a simple logic of
making a new node, pushing it to the call stack, writing it to the XML file,
and registering it in the callPath data structure.

† processThreadNode ( ). Thread nodes are those nodes that fall immediately
below the root node. The logic of processThreadNode ( ) is similar to
processRootNode ( ) except that a link needs to be constructed from the root
node to the thread node and this link needs to be processed by calling the
processRelation ( ) method.

Whether you want to use this implementation for your API profiling or you want
to implement your own parser, it’s worthwhile to study the source code parser.java
downloadable from this book’s website to get familiar with the details of the parsing
logic adopted in this reference implementation. It’s fun to implement a parser. If
you make a mistake in your parser implementation, you will not see the desired
output and the call tree graphs will end up with intermingled orphan nodes and
links. The order and beauty of those call tree graphs only come with a correctly
implemented parser.

In the next section, I’ll describe the xmlProcessor class, which is meant for
finalizing the XML data file used by XML-based graphics tools.

9.4.10 xmlProcessor

During the parsing stage, the raw API profiling log data is transformed into two data
files, one of which is a dot file for the dot graphics tool, and the other is an XML file
that can be used by the XML file based graphics tools such as ILOG to generate
performance maps. The dot file is self-complete and ready for use. However, the
XML file generated during the parsing stage is more or less a holder for the call
tree structure only and more detailed information such as the call count and total
elapsed time for each specific call path is unavailable until parsing is complete.

Taking the initial XML file generated during the parsing stage as input, the
xmlProcessor class completes filling in each node and link in the call tree structure
with correctly aggregated information such as the call count and elapsed time for
each API call.

In addition to this initial XML file, xmlProcessor depends on another data structure
of type HashMap to update all nodes and links. An instance of this HashMap object
would contain the following information for each immediate caller–callee
relationship:

† Call count, which is the total number of times that an API call was made
† Elapsed time, which is the total elapsed time aggregated over all the calls with
an API

† Last call end time, which is the call end time of the last call made with an API

298 IMPLEMENTING API PROFILING FRAMEWORK



Based on the initial XML file and the relation data structure, the xmlProcessor class
uses the following methods to generate the final XML file that can be used by
XML-based graphics tools to generate performance maps:

† updateAllLinks (HashMap relations). This method updates each treelink
element with the aggregated call count, elapsed time, and call end time for the
caller. It also updates the text content of the property element that is used as a
label for that link.

† updateAllDestNodes (HashMap relations). This method updates each treenode
element with the aggregated call count, elapsed time, and call end time.

† treeFilter (Document doc). This method walks through the entire call tree and
removes those nodes whose elapsed times are smaller than a certain specified
threshold value, for example, 10 milliseconds. It might be necessary to apply fil-
tering when a call tree structure becomes too crowded to be displayed. Filtering
also helps identify hot program execution paths more quickly.

† writeDocumentToFile (Document doc). Using an XML serializer object, this
method writes the modified, final XML document from memory to an external
file, which is the XML file that XML-based graphics tools can use to generate
performance maps.

XML processing is simple in logic. However, depending on the size of the XML
document to be processed, it might be time consuming relative to the parsing time.
It may also take a lot of memory. It can be skipped by specifying xmlProcessing ¼
false in the parser.properties file if you do not plan to use XML-based graphics
tools and the dot format output file is the only one desirable.

See the source code for xmlProcessor.java downloadable from this book’s website
for the implementation details about this class. In order to be able to understand the
code, it might be necessary to acquire some knowledge about XML processing in
Java in general.

In the next section, I will introduce the last Java class of this implementation,
analyzer. This class writes detailed summarization files about every API call so that
the details for each API call will be available for drill-down type of performance
and scalability analysis.

9.4.11 analyzer

A performance map is a convenient means for facilitating communications on
software performance and scalability issues. However, it’s impractical to put every-
thing on a performance map. The details about every API call have to go to the
external text files.

During the parsing stage, every API call is written to an external data file that
acts like a warehouse for all call records. This data can be processed only after
parsing is complete. The analyzer class is designed just for this purpose.

9.4 IMPLEMENTATION 299



The analyzer class works as follows:

† The entry method processData ( ) is called to initiate processing. It creates an
ArrayList object to contain all call records.

† Then the method sortDataByThread ( ) is called to sort out all the call records on
a thread-by-thread basis.

† Then the method outputCallRecord ( ) is called to write the information such as
the call count, elapsed time, and thread about each call to an external text data file.

See the source code for analyzer.java downloadable from this book’s website for
the implementation details about this class.

In the next section, I’ll discuss the adapter class that is used to convert custom log
files from nonstandard to standard format to suit the parser designed to conform to the
perfBasic API profiling framework.

9.4.12 adapter

The adapter class is a separate program that is run first if the API profiling log data files
were generated from custom logs. In order to run this program, the information as
specified in the adapter.properties file as shown in Figure 9.6 needs to be provided.
This file provides the information on which custom adapter class to use, which
customer log file to work on, and where that file is located.

When a custom log file is to be converted, an option is provided through the use
of a log.properties file for ignoring some of the lines in the log file that are used as
annotations other than API call records. We’ll see such an example later when we
present a case study of generating performance maps based on custom logs.

The further details of the adapter.java class and bstAdapter.java class are omitted
here, since they are application specific.

This class concludes our introduction on the reference implementation of this API
profiling framework.

9.5 SUMMARY

In this chapter, we introduced a reference implementation of the perfBasic API profil-
ing framework. It helped expose various issues in implementing such an API profiling

Figure 9.6 An example adapter.properties file.

300 IMPLEMENTING API PROFILING FRAMEWORK



framework to turn humongous API profiling log data files into convenient perform-
ance maps. The implementation can be used for identifying various performance
and scalability defects with any software applications programmed in high-level
programming languages.

I would like to emphasize that this tool should be used in conjunction with other
performance and scalability analysis tools such as the system performance analysis
tools and database performance analysis tools if the database is part of the application
as well.

I will show in the next chapter how the perfBasic API profiling framework can be
used to help solve performance and scalability problems in the real-world situations.

EXERCISES

9.1. Download the free graphics tool dot and experiment on the examples provided
with it.

9.2. Study the reference implementation of the perfBasic API profiling framework
and explain how it is designed and implemented. Explain the concepts of
nodes and links.

9.3. Explain how the parser works. Experiment with it and you may find out that it’s
simple conceptually but complex to implement.

9.4. What is an adapter from the software design pattern perspective?Write an adapter
to convert your custom API profiling log data in compliance with the perfBasic
API profiling framework if you already have an API profiling framework
implemented for your product.

EXERCISES 301





10
Case Study: Applying API

Profiling to Solving
Software Performance and

Scalability Challenges

Plato is my friend—Aristotle is my friend—but my greatest friend is truth.
—Sir Isaac Newton

API profiling is the most efficient approach to optimizing and tuning the performance
and scalability of a software system. It provides such vital information for an API as
how many times it was called, how long on average the calls took, and whether it’s a
hot API or not in terms of its elapsed time percentage relative to the total execution
time of the program.

Without API profiling, it’s hard for the software developers to gain inside
knowledge about the performance of each individual API of a software program.
Without being equipped with an API profiling tool, software developers would
have to speculate, which can rarely lead to fruitful outcomes toward solving software
performance and scalability issues. API profiling is as important for software
developers to identify and fix software performance and scalability defects as the
blood tests and X-ray examinations for medical doctors to diagnose and cure diseases
of their patients.

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

303



In order to efficiently optimize and tune the performance and scalability of a
software system, every software development team should have an API profiling
tool in place. In general, there are three sources of API profiling tools:

† Commercial tools such as VTuneTM from IntelTM, QuantifyTM from IBM, and
Vantage Analyzer for J2EETM from CompuwareTM, and so on.

† Most large-scale software applications have their own built-in implementations
of logging for debugging functionality and performance problems. However, in
most cases, such log files are written in text format and can be as large as
hundreds of megabytes or even up to gigabytes. It’s very hard to navigate
such text files using a text editor such as NotepadTM or WordTM and try to
find clues visually.

† If you have neither a commercial API profiling tool nor a built-in API logging
mechanism with your product, you might choose to implement the perfBasic
API profiling framework introduced in this book to help support the performance
optimization and tuning work for your product.

Built on the previous few chapters, in this chapter, I will help you understand how
API profiling can be applied to solving your performance and scalability problems. I’ll
show you:

† How to use the reference implementation of the perfBasic API profiling frame-
work to enable API profiling.

† How to parse the API profiling log data using the log parser introduced in
Chapter 9.

† How to generate and read performance maps to solve real-world software
performance and scalability problems. When API profiling data is transformed
into performance maps, software developers can easily identify the performance
and scalability bottlenecks based on the elapsed time percentages. After the
expensive execution paths are identified, various well-known or creative optimi-
zation and tuning techniques can be applied to fix the performance and scal-
ability problems.

This chapter essentially completes what we started with defining, enabling, and
implementing the perfBasic API profiling framework described in detail in
Chapters 7 through 9.

Let’s first start with how API profiling can be enabled with a software product
based on the material we presented in the previous few chapters.

10.1 ENABLING API PROFILING

It’s beyond the scope of this book to describe how API profiling can be enabled with a
commercial profiling tool or an existing custom logging framework. Instead, I will
describe how you can use a program similar to the perfLog.java program introduced
in Chapter 8 of this book to enable logging, if you don’t have a commercial tool or

304 CASE STUDY: APPLYING API PROFILING



your own tool. For a small software development project, this program of perfLog.java
can be easily rounded out by an experienced developer to suit your special needs and it
might be just sufficient with some further enhancement if necessary.

In order to understand how API profiling can be enabled using the perfLog.java
program, it is beneficial to review briefly the material presented in Chapters 7
through 9. Here is a recap:

† In Chapter 7, I defined an API profiling framework named perfBasic.
I introduced a standard logging format, emphasized the need for a log parser,
and emphasized the goal of transforming humongous text log files into
convenient performance maps.

† In Chapter 8, I introduced an API profiling enabling program named
perfLog.java. This program simply adds profiling statements to existing software
source code to write API call data into external log files. I described how this
program can be used to generate API call log files.

† In Chapter 9, I introduced the implementation of the perfBasic API profiling
framework with a Java-based parser. This parser parses the original API profiling
log data and generates the data suitable for generating performance maps.

Let’s take a step-by-step approach and see how the program perfLog.java can be
used to enable API profiling.

10.1.1 Mechanism of Populating Log Entry

First of all, a mechanism of populating each log entry must be implemented for each
method to be profiled. This mechanism will be product specific, as there is no generic
framework that will work for all products. However, it should not be that hard, as
developers know how to retrieve the following log entries with the software product
they are familiar with:

† API type, which could be API, SQL, or application specific types such as
FILTER.

† ThreadID, which is available only with multithreaded programs. For single-
threaded programs, use a dummy integer number for the threadID.

† Call time stamp, which can be implemented using language-specific utility APIs.
In Java, System.currentTimeMillis ( ) can be used.

† ServerID, which is product specific.
† ThreadGroupID, which is product specific.
† ClientID, which is product specific.
† UserID, which is product specific.
† API signature, which along with its call time stamp information indicates the
start and end times of the API call.

Consult Chapter 7 for the concrete format of each log entry. Assuming that this
mechanism has already been implemented, let’s see what step-by-step procedure we
should follow to enable API profiling using perfLog.java.

10.1 ENABLING API PROFILING 305



10.1.2 Source and Target Projects

It’s obvious that the first step for enabling an API profiling framework is to identify
the source code that will be API profiling-enabled. Also, it’s better to put the API
profiling-enabled code in a staging area that is separate from the original source
code. This is because you may need several iterations to make sure that the original
source code is transformed correctly into target API profiling-enabled code.

It’s very important that you use a good IDE (integrated development environment)
such as eclipse ( http://www.eclipse.org ). eclipse is the IDE that I have been using for
all my development work, including all the API profiling related programs introduced
throughout this book. With an IDE, you can catch displaced profiling statements
visually immediately. And an IDE is convenient for debugging as well.

Here is a procedure for setting up the source and target projects:

† Create a project for the source code to be transformed with correct project, source
directory, and package structure. Copy or check all source code into appropriate
packages. Add appropriate jar files and verify that the source code has no
compiling errors.

† Create a target project that will contain the modified code with profiling
statements inserted. You can follow the same procedure as for the source code
except that you don’t copy all the code into the target package directories.

† Identify the packages and class files that will not be profiled. Copy these files into
the appropriate package directories of the target project.

† Add proper jar and library files to the target project as you did with the original
source project.

The eclipse screenshot shown in Figure 10.1 is an example illustrating both the
source project of bstPerfTest and the target project of bstPerfTestStaging, where bst
is an alias for a fictitious company named “Best Software Technologies.”

In the source and target projects, the first package under the src directory,
com.bst.cdmi.cdm, contains those Java classes that will not be profiled; the second
package under the src directory, com.bst.cdmi.perf, contains those Java classes that
will be profiled. The Java package com.bst.cdmi.perf contains the source files into
which profiling statements will be inserted.

After setting up the source and target projects, the next step is to set up the
apf.properties file, which is a configuration file for the enabling program
perfLog.java. This file contains the information that is needed by the enabling program
to insert enabling statements into the source files to be profiled.

10.1.3 Setting apf.properties File

An apf.properties file provides the perfLog.java program with some of the initial
parameters. Figure 10.2 shows what entries are specified in an apf.properties file
as input.

The sourceDir and targetDir entries describe where to pick up the source files to
be transformed and where to put the target files that will have profiling

306 CASE STUDY: APPLYING API PROFILING



Figure 10.1 An example showing the source and target projects (bstPerfTest and
bstPerfTestStaging) in eclipse.

Figure 10.2 Enabling program input parameters set in apf.properties.

10.1 ENABLING API PROFILING 307



statements inserted, as was discussed in the previous section. The three entries
following the sourceDir and targetDir entries, createApfWriterMethodName,
mainAddProfilingBeginAfter, andmainAddProfilingEndAfter, need some explanation.

The entry createApfWriterMethodName represents a new method that must be
added in the main method of the driver program. This method creates a Java writer
object prior to program execution start. This writer object is used for writing API
profiling log data into the external text log file.

The next entry, mainAddProfilingBeginAfter, instructs the perfLog program where
to insert the profiling begin statement in the main method of the program to be profiled.
Apparently, we can’t write profiling log data before the I/Owriter object is created and
becomes available. The statement specified as the value of this entry, createApfWriter
(“perfLogData.apf”);, must be the first executable statement in the main method of
the driver program. The file perfLogData.apf eventually will contain the profiling
log data that conforms to the standard log format.

Similar to mainAddProfilingBeginAfter, the entry mainAddProfilingEndAfter
instructs the perfLog program to insert API call end profiling data after the statement
specified by this parameter. In this case, it’s the apfWriter.close(); statement as speci-
fied in the above file for this parameter. The writer object should not be closed before
the last API call profiling data is written to the external log file.

The next entry, logPerfDataMethodName, defines the name of the method that is
used to write the API call profiling data into the external log file. In Figure 10.2,
this method is implemented in the Java class cdmiPerfUtil with the name of
printLogData. This method must be excluded from being profiled; otherwise, it will
initiate an endless chain of self-recursive calls.

The last entry of debug is used for tracking parsing workflow as well as for
debugging the perfLog program. Parsing workflow is the subject for the next section.

10.1.4 Parsing Workflow

To profile the APIs of a program, that program must be API profiling-enabled first.
Enabling API profiling for a program is the process of adding profiling statements
in the proper locations of that program. This process is similar to how a program is
parsed during the compile stage with a high-level programming language compiler.

Figure 10.3 is a sample excerpt of a program that has been API profiling-enabled
using the perfLog.java program. Let’s use this sample to show the parsing workflow
for adding profiling statements into the source code of a program.

The sample output shown in Figure 10.3 was generated with debug turned on. The
comment appended to the end of each statement in the target source file is the debug-
ging information generated when the source code of the program was parsed for
adding API enabling statements. The debugging information helps track the scope
changes of a statement as the original source code is read and parsed for adding profil-
ing statements in proper places of each method of the program to be profiled. It shows
how the perfLog.java program determines the locations for inserting API call begin
and end profiling statements by tracking the scope changes marked by the left and
right curly brackets.

308 CASE STUDY: APPLYING API PROFILING



To be more specific, the debug information appended to each statement represents
the name of the scope, for example, class, method, for, if, while, and try, the number of
the scope names currently on the scopeStack data structure, the class level, and the
scope level. Let’s walk through the sample output shown in Figure 10.3 to understand
what the debugging information means exactly:

† Initially, rootwas assigned to the scope name. Since there is only one item on the
scope stack data structure, the size of the scope stack data structure was 1. Both
class level and scope level were 0. This is why we see //root:1:0:0 appended to
the first import statement.

† After the class begin statement is read, the scope name is class, and the stack size,
class level, and scope level were all increased by 1, which led to //class:2:1:1
appended to the class definition line of public class cdmiAPITestThread extends
Thread {.

† After the string array definition line of String[] instanceIds ¼ new String
[maxInstances];, method became the scope name, stack size changed to
3, class level remained at 1, and the scope level changed to 2, which led to
//method:3:1:2 appended to this method definition line.

† When the for loop was encountered, the scope name changed to for, stack size
increased to 4, class level remained at 1, and the scope level increased to 3.

† After the for loop, the scope name changed back to method, and the stack size
and scope level all decreased by 1 while the class level still stayed at 1.

† At the end of the method definition for the getInstanceIds ( ) method, the scope
name, stack size, class level, and scope level all came back to what they were
before the method definition line.

Figure 10.3 Sample output of a target file with profiling enabled.

10.1 ENABLING API PROFILING 309



Figure 10.3 also shows how the beginning profiling statement and the ending
profiling statement look in a profiled method. For the method shown there, the
API call begin profiling statement is represented by cdmiPerfUtil.printLogData
(“þcdmiAPITestThread_getInstanceIds”);, whereas the API call end profiling
statement is represented by cdmiPerfUtil.printLogData (“2cdmiAPITestThread_
getInstanceIds OK”);. Note the use of the plus sign for signaling the API call
begin, and the minus sign and the keyword OK for signaling the API call end. This
is required according to the standard logging format we defined in Chapter 7 about
the perfBasic API profiling framework.

After the original source code is rewritten with the API profiling statements
inserted, it’s necessary to verify that the profiling statements have been inserted at
the correct locations in each method to be profiled. This is the topic of the next section.

10.1.5 Verifying the Profiling-Enabled Source Code

Verification of the profiling-enabled source code is very necessary to guarantee that
the modified program will stay the same as it was except that it will emit API call
data when the program is executed. The functions of the program should not
change at all. Depending on the coding habits of the programmers and the complexity
of the program, you may encounter some of the following problems:

† It’s very possible that API profiling statements were displaced in some methods.
For example, Java requires that some statements must be the first executable
statements in a method, such as the super method call shown in Figure 10.4.
Whenever something like this happens, the error must be corrected manually.

† Java has variations of complicated control statements such as if, if – then, if { }
else if, try { } catch ( ) { }, do { } while;,while ( ) { }, switch, and so on.When these
structures contain return statements, make sure that an API call end statement is
eventually executed in this method regardless of which if-condition is met.
Missing a matching API call begin or end statement may result in log parsing
failing later when the log data is parsed for generating performance maps.

This perfLog.java program is meant to help developers catch performance defects
during the early stage of a software development project. It’s not meant for production
use, and therefore the inserted profiling statements should not be compiled into the
release version of the software. Of course, if it has been used extensively and has

Figure 10.4 A Java method that contains super method.

310 CASE STUDY: APPLYING API PROFILING



proved to be robust enough, it can be used in production as well, which may help
debug production execution errors and performance issues as well. All in all, use it
with caution when deploying it in a production environment.

In order to help hedge against parsing errors and failures, it’s necessary that
programmers adhere to certain best programming practices, as recommended in the
next section.

10.1.6 Recommended Best Coding Practices

A well-structured software program is always more desirable than a convoluted,
spaghetti-like program. Well-formed coding styles will not only enhance the read-
ability of a software program, but also make it easier for a compiler to come up
with the most efficient and optimized execution paths, although it doesn’t make a soft-
ware program more correct.

In order to make it easier to write an API profiling-enabling program, the following
best coding practices are recommended:

† Single entry–single exit. For typed and nontyped methods, it’s acceptable to
have multiple exits with various if–like statements from the language grammar
point of view. However, multiple exits require inserting multiple API call end
statements within a method, which adds complexity for an API profiling-
enabling program to work correctly. Keep in mind that every API call begin
log entry must have a corresponding API call end log entry; otherwise, the log
data cannot be parsed correctly later for generating performance maps. Single
entry–single exit will guarantee that every API call begin log entry will have
a matching API call end log entry.

† Don’t add ad hoc comments everywhere in a software program. Always put
comments prior to a class definition, a method definition, a block definition,
or a statement. Figure 10.5 shows the comments spread between the condition
and the action statement of an if statement. The program perfLog.java can
handle situations like this, but it has made its parsing logic a lot more
complicated than it should be.

† A cleaner implementation is always better. Avoid deeply embedded if blocks as
it will increase the complexity of the parsing logic. Also, as a side effect, deep
and interwoven control structures make it difficult for the compiler to optimize
the execution of a program as well.

Figure 10.5 Poorly placed comment statements.

10.1 ENABLING API PROFILING 311



At the end of execution, perfLog outputs information about thewell-formed-ness of
each method to be profiled. Figure 10.6 shows an example output, which contains two
pieces of information for each method:

† A typed method is not well formed if it has more than one exit (return) statement.
A nontyped method is not well formed if it has exit (return) statements.

† The total number of entries and exits for each class is reported. Even if the
number of exits matches the number of entries for a class, it doesn’t guarantee
the correctness of profiling statement insertion, but a nonmatching report defi-
nitely signals the errors of profiling statement insertion for that class.

Most professional programmers make a conscious effort to code in standard styles,
which is the best assurance for a software program to be coded in a standard,
professional-looking way. One can also use the built-in source code formatter of an
IDE such as eclipse to help enforce adopting standard coding styles.

10.1.7 Enabling Non-Java Programs

The program perfLog.java works only with the software programs coded in Java.
Different high-level programming languages have different grammar rules, and the
profiling-enabling program such as perfLog.java can’t be language agnostic.
However, the parsing logic and the techniques we illustrated in perfLog.java are
still applicable to the software programs written in non-Java programming languages.
Using perfLog.java as a reference, an experienced programmer should have no
difficulties writing a profiling-enabling program for targeting the non-Java-based
software products within a matter of weeks.

In the remaining sections of this chapter, I will focus on how to apply API profiling
to help solve performance and scalability problems during the early stage of a software
development life cycle. Software developers should use API profiling techniques with
the goal of releasing a product with no major performance and scalability defects.

Figure 10.6 An example report from perfLog.java showing the well-formed-ness and matching
number of entries and exits for each class that was profiling enabled.

312 CASE STUDY: APPLYING API PROFILING



10.2 API PROFILING WITH STANDARD LOGS

In this section, I use a real example and demonstrate how to run an API profiling-
enabled program to generate API call log data that conforms to the standard logging
format as specified in Chapter 7. I will also show how to use the reference implemen-
tation of the perfBasic API profiling framework introduced in Chapter 9 to parse the
API call log data generated from running an API profiling-enabled program. I then
complete this section by showing how to generate performance maps using the
output of the parsing program.

Let’s first begin with how to generate the API profiling log data with an API
profiling-enabled software program.

10.2.1 Generating API Profiling Log Data

The example application chosen for demonstrating how to generate API profiling log
data is a real application capable of populating enterprise asset data into a database for
enterprise service management. The functions and other details of this application are
not important here. We are not interested in showing what this program could do
exactly from the application perspective.We are interested only in how this application
can be profiled using the perfBasic API profiling framework introduced in this book.

The application to be profiled is a multithreaded program, which is more interesting
than a single-threaded program, as it’s more challenging in general to profile a
multithreaded program than a single-threaded program. In reality, most enterprise
software programs are multithreaded for better performance and scalability.

This program consists of two packages, one of which is named com.bst.cdmi.cdm
and the other is named com.bst.cdmi.perf. The cdm package contains about 40 Java
classes that represent various IT asset data models, whereas the perf package contains
the following six Java classes:

† cmdiPerfTest.java. This class is the driver for launching the program.
† cmdiAPITestThread.java. This class implements the multithreading mechanism
for using multiple threads to populate IT asset data.

† cmdiAPITest.java. This class provides the core function of inserting IT asset data
objects into the database. It is executed by each thread.

† cmdiPerfUtil.java. This class is a utility class.
† cdmiTestData.java. This class is an abstraction of API performance test data.
† cdmiQuickTest.java. This class functions as a test harness for performing quick
performance regression tests on certain core APIs.

In order to avoid generating too much log data, none of the classes in the cdm
package were profiled. The methods of these classes are essentially getters and setters.
Such classes are ideal candidates for being excluded from profiling as they perform
neither complicated logic nor database calls. The classes contained in the second
package of com.bst.cdmi.perf were profiling-enabled using the program perfLog.java.

After running this API profiling-enabled application using a typical workload with
ten threads, the API call log data was dumped to an external text file named

10.2 API PROFILING WITH STANDARD LOGS 313



perfLogData.apf. In the next section, I will show how to parse this log file using the
reference implementation of the perfBasic API profiling framework to generate the
output that can be used for generating performance maps.

10.2.2 Parsing API Profiling Log Data

In order to parse the API profiling log data using the reference implementation of
the parser for the perfBasic API profiling framework, we need to compose a parser.
properties file to instruct the parser how to parse the log data file. Figure 10.7
shows the content of the parser.properties file constructed in the eclipse IDE.

Each entry in the file is explained as follows:

† description indicates what this test is about.
† logFileName indicates the name of the API profiling log data file to be parsed.
† maxThreads indicates how many threads will be processed at most.
† threadSample specifies sampling intervals for limiting the number of threads to
be processed.

† logFileIsSortedByThread controls whether to read data from the original raw
data file or from the sorted thread data files.

Figure 10.7 parser.properties file for the parser to parse the log data.

314 CASE STUDY: APPLYING API PROFILING



† threadInfoFileName represents the name of the thread information file generated
when the raw log file was processed the first time.

† outputFileDir indicates where the output files should go.
† inputFileDir indicates where to pick up the input log file.
† threadFileDir indicates where the sorted thread files should go.
† callTreeDotFile indicates the name of the output file that will be used by the dot
program to generate performance maps.

† callTreeXMLFile0 indicates the initial, incomplete XML file for using XML-
based graphics tools to generate performance maps.

† callTreeXMLFileFinal indicates the final, complete XML file for using XML-
based graphics tools to generate performance maps.

† graphByThread indicates whether the performance maps will be drawn with
each graph as a separate call tree branch.

† subGraph indicates whether all APIs having the same node name will be
clustered together.

† traceTreeWalkThrough indicates whether call tree walk-through will be
traced to help debug in case the parser is unable to parse successfully to
the end.

† dotLinkLabelHorizontal indicates whether the entries of each dot link label such
as elapsed time percentage, absolute elapsed time, and call count will be placed
horizontally.

† threadPercentTimeFilter sets a filter for excluding those threads whose elapsed
times in percentage are insignificant.

† elapsedTimeThreasholdInMS sets a threshold in milliseconds for excluding
those APIs whose elapsed times are insignificant.

† elapsedTimePercentRed sets a threshold above which a call path will be labeled
in red and bold font to help draw attention to it.

† deleteThreadFiles indicates whether the thread files will be deleted at the end of
parsing.

† relativeToLogOnTime indicates whether the call time stamp is absolute or
relative to the time when logging was turned on.

† xmlProcessing indicates whether XML output files will be generated for using
XML-based graphics tools to generate performance maps.

† profilingOn indicates whether the parser program will be profiled as well if it’s
profiling-enabled.

This seems to be a long list of entries, but every one of them is necessary for the
desired flexibility in parsing. Usually, most of the entries will stay fixed and only a
few of them need be changed when parsing different log files.

At the end of parsing, the parser will generate the following output:

† A file named callTree.dot for using the dot program to generate performance
maps

10.2 API PROFILING WITH STANDARD LOGS 315



† Afile named callTreeXMLFinal.xml for using XML-based graphics tools to gen-
erate performance maps

† A text file with the postfix of _summary in the file name that summarizes parsing
† A text file with the postfix of _data in the file name that contains all API call data
† A text file with the postfix of _callCost in the file name that contains all API calls
in each thread sorted by call cost in terms of the total elapsed time

† A thread information file in the threads directory that contains enough infor-
mation for the parser to read log data without going through the initial step of
sorting data by thread again

† All thread files that contain log data sorted by thread

Next, let’s see how performance maps can be generated based on the output
from the parser. This would be the fun part of API profiling and parsing, as it’s so
easy to identify software performance and scalability problems with the help of
performance maps.

10.2.3 Generating Performance Maps

Generating performance maps is easy, as long as the map input data files generated by
the parser conform to the format required by each specific graphics tool.

In this section, we’ll concentrate on how to generate performance maps using
the graphics tool dot introduced in Chapter 9. dot is a powerful, yet easy to learn
and easy to use graphics tool for displaying structural data such as software API
call trees in the form of performance maps.

If you are new to dot, you are strongly encouraged to experiment with it, as it’s not
only very useful, but also a lot of fun.

The dot grammar is really simple. Figure 10.8 shows the dot file generated by the
parser logParser.java with the API profiling log data collected with the application
described in the preceding section.

This dot input file starts with

digraph G {

and ends with

}.

Then, at the beginning of the data section inside it, you can define how a node will
be displayed with attributes such as shape, style, color, and so on, as shown in the
following data line:

node[shape=‘‘box’’,style=‘‘filled’’,color=‘‘lightgoldenrod’’];

The rest of it is simple; it either defines a concrete node or a concrete edge or link that
connects a node with its immediate descendant. A concrete node is defined with an ID
followed by [ . . .] with the node attributes such as label in it. A label represents the text

316 CASE STUDY: APPLYING API PROFILING



that will be displayed on the map for that node. The third line in Figure 10.8 is an
example of how a concrete node is defined.

A concrete edge is defined with the following format:

nodeA_id -> nodeB-id [attrib1=value1, attrib2=value2, . . .];

where nodeA_id is the node id of the source node, and nodeB_id is the node id of
the destination node. You can easily identify the edges in Figure 10.8 by following
the above format.

This dot file shown in Figure 10.8 might look visually noisy, but it doesn’t matter
much, because most of the time we will not look at this file. We will look at the
performance maps instead.

Assuming that the callTree.dot input file is well formed, namely, it conforms to the
dot format specification, generating a performance map is as easy as executing a
command on a WindowsTM DOSTM command line similar to the following:

dot.exe –Tgif callTree.dot -o callTree.gif

Figure 10.8 A dot input file for generating a performance map.

10.2 API PROFILING WITH STANDARD LOGS 317



In the above command, the first entry of dot.exe simply invokes the dot program, the
second entry of –Tgif specifies the output graphics format, the third entry of
callTree.dot specifies the dot input file, and the last entry of –o callTree.gif specifies
the output graphics file, which is the actual performance map.

In general, it’s more convenient to put the dot command in a .bat file so that you can
just double click on that .bat file to generate the performance map when parsing is
complete and the proper .dot file has been generated. You can also modify the gener-
ated .dot file and rerun the dot command without going through the parsing process
again. To prevent the generated callTree.dot file from being overwritten, rename
both the .dot file and the .bat file and move them to a different directory. You can
also share the performancemaps with other teammembers through an internal website.

Executing the above command with the dot file generated for this example resulted
in the performance map shown in Figure 10.9. In the next section, I’ll describe how to

Figure 10.9 A performance map generated with the dot program.

318 CASE STUDY: APPLYING API PROFILING



make sense out of a performance map such as this one for solving real performance
and scalability problems.

10.2.4 Making Sense Out of Performance Maps

In order to make sense out of the performance maps, we need to get familiar with
the structure and labels shown on a performance map. Using Figure 10.9 as an
example, let’s walk through that map and illustrate all the useful information
contained there as follows:

† The top edge from ROOT to T0 implies the main thread spawned when the
program was invoked. The label near the edge shows that this path represents
100% of the total elapsed execution time, which was 189717 ms, and that it
was invoked only once.

† Then the execution started to branch. The left branch represents themainmethod
call of the cdmiPerfTest.java program. This branch rounded down to 0% of the
total elapsed execution time, which was 1407 ms only, and of course, it was
invoked only once. The parser doesn’t show fractions of percentages, as we
probably don’t care about any execution paths that are at least 10% or below,
in order to pinpoint the most expensive APIs.

† If you are familiar with Java, you would recognize that the API call of
cdmiAPITestThread run on the left branch of this call tree represents the work
that each thread would do to actually carry out the task of the API performance
test, which is what that API performance test driver was designed for. Since this
branch represents 99% of the total elapsed time of 188310 ms, let’s concentrate
on this branch only.

† We can immediately recognize that this thread spent its entire time
executing a cdmiAPITestThread.createObjectTest call. Immediately beneath it,
there are two expensive calls: cdmiAPITest.createRelation, which took 28%
of the total elapsed time or 53188 ms out of 990 invocations, and
cdmiAPITest.createObject, which took 70% of the total elapsed time or
134654 ms out of 1000 invocations. This clearly indicates the focus for the per-
formance optimization, since the other API calls were just noise compared
with the above two API calls in terms of the total elapsed time. In general,
elapsed time is what we care about most with the performance of the APIs of
a program.

† We can further identify that the cdmiAPITest.createObject API call is 2.5 times
more expensive than the cdmiAPITest.createRalation API call. This indicates
further which one should be the primary focus. This kind of information out
of a performance map tells developers immediately where the performance
optimization and tuning efforts should be focused.

It is necessary to point out that you can drill down further into the APIs of the
underlying packages called by the above two methods if those packages were profiled
as well. Typically, we don’t want to drill down all the way into the JVM, the operating

10.2 API PROFILING WITH STANDARD LOGS 319



system level APIs, or even the assembly language levels, as there is not very much we
can do at these levels.

Note that we have applied filtering to filter away those nodes whose elapsed times
are less than 1000 milliseconds. If we did not apply this filter, the resultant perform-
ance map would be hard to read with a page size like this book.

In this section, I demonstrated how to apply API profiling and generate perform-
ance maps using the API profiling log data that conforms to the standard logging
format. In the next section, I’ll show how to adapt custom API call log data to generate
performance maps.

10.3 API PROFILING WITH CUSTOM LOGS

Some software programs may already have their internal logging APIs in place for
generating API profiling log data in a specific text format. Such logs can be used
for troubleshooting functional and performance bugs. However, it might be hard to
make sense out of a gigabyte text log file, for example, even for developers who are
most familiar with the log content.

It’s actually very easy to turn a large text file into a performance map in graphics
format as shown in the previous sections. A gigabyte text log file is huge in size.
However, it represents well-structured data that are repeated API calls. This well-
structured data can be turned into graphic maps for easier visual inspection. A software
program such as the log parser introduced in Chapter 9 can do this kind of work very
easily. In the context of the perfBasic API profiling framework proposed in this book,
all we need is an adapter software program that can transform the log data in its original
log format into standard format, and then the rest of it is easy—essentially it’s the same
to parse transformed log data as if it were written in standard format in the first place.

In this section, I demonstrate how performance maps can be generated with custom
logs from an existing software program. I’ll start by using an adapter to transform
custom API profiling log data into the standard format that conforms to the specific-
ation of the perfBasic API profiling framework.

10.3.1 Using Adapter to Transform Custom Logs

As one of the many software design patterns that are widely used in designing software
programs, an adapter is responsible for transforming data from one format into
another. This is exactly what we need for turning API profiling log data from its
custom format into standard format.

Although developing an adapter software program should not be too difficult, the
concrete implementation of an adapter may differ from one custom logging format
to another. However, all implementations may have to deal with the following
common issues:

† Custom logs may contain ad hoc data lines for debugging functionality bugs.
These lines should be ignored during data format transformation for the purpose
of generating performance maps. The pattern for ignoring such lines can be

320 CASE STUDY: APPLYING API PROFILING



specified in an external file, and then applied as custom log data is read and
rewritten into another text file in the standard format.

† Custom logs may contain API calls that have no time stamps. Such lines must be
ignored as well.

† With custom logs, the first API call may only signify the start of logging when
logging was enabled initially. There might be a delay from turning logging on to
actually recording real API calls under a concrete test workload. When a test run
is complete, logging should be turned off immediately to avoid capturing irrele-
vant log data. There are two gaps here, one from turning logging on to test start,
and the other from test end to turning logging off. These factors should be taken
into account when generating and interpreting performancemaps. However, they
can be ignored if the gaps are insignificant relative to the test duration.

† Another trivial issue is that one can choose to rewrite log data using timings rela-
tive to the time when logging was turned on. This provides convenience for
measuring the time durations for API calls in a more sensible way, as the absolute
time stamps in milliseconds might be astronomically large.

Other than these issues, developing an adapter to transform log data from its
original format into standard format should be easy. As long as an adapter does its
work correctly, we shouldn’t see a huge difference in generating performance maps
between using standard and custom logs. In the next section, I’ll provide an example
showing how custom API profiling logs can easily be turned into performance maps.

10.3.2 Generating Performance Maps with Custom Logs

Generating performance maps with custom logs starts with converting logs from
custom format to standard format. After custom API profiling logs are transformed
and rewritten into the log files that conform to the standard logging format of the
perfBasic API profiling framework, the procedure for generating the performance
maps with custom logs is the same as with standard logs. For this reason, we will
not repeat the procedure for generating performance maps here.

Now let’s use one of the custom logs to illustrate how to generate performance
maps with custom logs. First, let’s list some of the issues that need to be taken care
of with custom logs:

† Custom logs are typically large in size, ranging from a fewmegabytes up to giga-
bytes. It saves time if the custom logs are converted into standard logs first, and
then subsequent parsing always uses the same converted standard logs. This is
feasible, as the adapter and parser are separate programs that can be run separately.

† If custom logs contain too many threads, you may want to limit the number of
threads to be processed and displayed in the format of graphic performance
maps. For well-written, multithreaded programs, executions within the same
group of threads are well balanced among all the threads. Thus the call tree struc-
ture and the performance metrics such as the elapsed time and call count will be
similar from one thread to another among the same group of threads. Including

10.3 API PROFILING WITH CUSTOM LOGS 321



too many threads may divert one’s attention and adversely affect separating the
wheat from the chaff. For this purpose, a parameter named threadSample can be
used to help control the number of threads to be displayed on a performance map
when dealing with multithreaded log data. For example, if you set threadSample
to n, which is an integer number, that means only every nth thread will be pro-
cessed and displayed on the performance map.

† When log files are too large, XML processing can be very time consuming. In
this case, you can either turn off XML processing or apply filtering to limit
the number of XML nodes in a call tree structure to be processed.

† You may need to experiment with the parameters of threadSample and
elapsedTimeThresholdInMS in the parser.properties file a few times in order
to arrive at satisfactory performance maps.

Figure 10.10 shows the performance map generated from a real custom log. This
log contains a total number of 30 execution threads from an application programmed
in C/Cþþ. The application validated 25k objects against a database that was to con-
tain all the objects accumulated over time.

When this performance map was generated, the following settings were adopted for
some of the parameters specified in the parser.properties file:

† The elapsed time threshold was set to 70 seconds in order to limit the number of
API nodes appearing on the map.

† dotLinkLabelHorizontal was set to true in order to have a more balanced aspect
ratio.

Also, the following log.properties were used with this example:

includeLines={‘‘[‘’’}
ignoreLines={‘‘Trace Log’’, ‘‘+SSI’’, ‘‘End of filter
processing’’, ‘‘Restart of filter processing’’, ‘‘Call
Guide’’, ‘‘Checking‘‘}
callEnd={‘‘OK’’}
selfNode={‘‘COMMIT WORK’’, ‘‘Set LOB’’, ‘‘Trace Log’’
temp={‘‘Start filter processing’’, ‘‘Stop filter
processing’’}

Besides, a rankdir ¼ LR statement was added at the beginning of the callTree.dot file
for the desired orientation.

It is interesting to mention that after being converted to standard format, the original
log file was reduced from 500MB to a standard log file of 102MB. It’s apparently
much easier to view a map than viewing a text file of hundreds of megabytes.
However, due to the limited page size of the book, it’s challenging to show clearly
the entire structure of this performance map with so many threads, but this should
not be a problem for two reasons. First, we are only interested in showing its overall
structure here. Second, this will not be a problem in its real use, as you can either view
it on a larger screen or print it out on poster-size paper.

322 CASE STUDY: APPLYING API PROFILING



Figure 10.10 A performance map generated with a custom log file.

10.3 API PROFILING WITH CUSTOM LOGS 323



Printing a performance map out on poster-size paper is handy for communication
among the team members who have common interests in it. Using a colored format
will further enhance its appeal and visibility. From physiological point of view, a
better structured performance map with some sort of aesthetics in it can draw more
attention and get all stakeholders more focused on it. Keep in mind that software pro-
grams are a product of the mind, and the mind can be affected in many ways.

Based on the structure of this performance map, we can immediately recognize that
there are two groups of threads here, one of which makes more and deeper API calls
than the other. The actual content of this performance map is not important here, but it
illustrates how much easier it is to get to the execution details of a large software
program with a performance map than with a 500-MB text log file.

Since all threads within the same thread group bear similar API call tree structure
and similar performance metrics, we applied a thread sampling filtering to choose one
out of every five threads. The resultant performance map is shown in Figure 10.11.
Also, only its core part is shown in order to make it more readable.

Figure 10.11 Core part of the same performance map as shown in Figure 10.10 with thread
sampling set to choose one of every five threads out of a total of 30 threads.

324 CASE STUDY: APPLYING API PROFILING



As seen from Figure 10.11, a performance map is helpful not only for diagnosing
software performance and scalability defects, but also for debugging multithreaded
programming. Balance in terms of the execution time among all threads is a good
measure of the effectiveness of the multithread implementation for a software
program. Multithreading is one of the most effective programming techniques for
enhancing software performance and scalability, especially with the latest computer
processors that have been designed to support parallelism to the largest extent.
Readers are strongly encouraged to implement multithreading for a software program
whenever possible.

To increase the complexity, I’ll demonstrate in the next section how to generate
performance maps with combo logs, some of which are custom logs and some are
standard logs. This is especially applicable when an application server has its APIs
exposed to client programs, which deliver services to their users by calling the appli-
cation server APIs. The application server generates its custom logs, whereas the ad
hoc lightweight client programs generate standard logs.

10.4 API PROFILING WITH COMBO LOGS

In this section, let’s use a real application to demonstrate how API profiling can be
applied when we have a situation of a multithreaded client calling multithreaded
server APIs. This is a very common scenario of a client/server programming model
in practice. The client side typically is thin and simple, which is an ideal case for apply-
ing the simpler, easy-to-implement perfBasic API profiling framework.

This application was written in Java. Its major functionality was for populating IT
asset data into a database by calling the server APIs directly. The server APIs were Java
wrapper APIs of the corresponding underlying APIs implemented in C/Cþþ. The
number of threads on the client side can be configured based on the thread pools on
the server side. In order to make it more manageable, we limited the number of threads
to three on the client side and the number of threads to seven on the server side. A
typical workload was executed and the API profiling logs were collected on both the
server side and client side. The performance maps were generated for both the client
and server. Let’s first look at the client side performance map in the next section.

10.4.1 Client Side Performance Map

Without going into the subtleties of howAPI profiling was enabled, how log files were
parsed, and how performance maps were generated, the client side performance map
is shown directly in Figure 10.12. This performance map was obtained with an elapsed
time filter of 1000 milliseconds. Again, the following abbreviations were used in order
to make all information visible:

† A—cdmiPerfTest
† B—cdmiAPITestThread
† C—cdmiAPITest

10.4 API PROFILING WITH COMBO LOGS 325



† D—cdmiPerfUtil
† CO—createObject
† CR—createRelation

In Figure 10.12, we see four threads from T0 through T3. The first thread, T0, was
the main thread launched when the client program cdmiPerfTest started execution. Its
method cdmiPerfTest.APITest ( ) spawned three worker threads of T1 through T3,
which all populate IT asset data concurrently.

Those three threads of T1, T2, and T3 were very well balanced, as the portion of
elapsed time was quite uniform among them. All these threads called the method of
cdmiAPITestThread.createObjectTest ( ), which in turn called the other two methods
of cdmiAPITest.createObject ( ) and cdmiAPITest.createRelation ( ). The elapsed
times in percentage for the two methods of createObject ( ) and createRelation ( )
were 77% and 21% for the T1 thread, 77% and 20% for the T2 thread, and 78%
and 21% for the T3 thread, respectively. These percentage numbers differ by less
than 1% from thread to thread. This implies that a remarkable multithreading model
was working behind the scenes, which resulted from the robust implementations of
not only the application server and client but also the underlying hardware, operation
system, middleware, Java, and Cþþ execution environments.

Figure 10.12 Client side performance map.

326 CASE STUDY: APPLYING API PROFILING



After reducing the elapsed time filtering value from 1000 milliseconds to
10 milliseconds, further API call details were revealed. As shown in Figure 10.13,
the two most expensive methods, cdmiAPITestThread.createObject ( ) and
cdmiAPITestThread.createRelation ( ), spent 99% of the time on the remote server
side, which means that the time spent locally was negligible. This confirms the lean
logic on the client side. Here only a portion of the performance map for the T3
thread is shown. The other two threads, T1 and T2, had exactly the same structure
as T1, with the elapsed time differing by less than 1% from T3. Also, a uniform
data population model was used and all three threads had the same amount of
work to do.

In the next section, we will look at the corresponding server side performance map.
The performance maps on both sides will be correlated to help get a consistent view
about the overall performance of the application.

10.4.2 Server Side Performance Map

Figure 10.14 shows the server side performance map generated with the server side
custom logs, collected under the same workload as for the client side performance
map. It is seen that the server side performance map contains deeper API calls than
the client side. This design principle of thin client favors better overall system
performance.

When Figure 10.14 was generated, an elapsed time threshold value of 10 millise-
conds was applied to filter out those API calls whose contributions to the total elapsed
time were insignificant from the performance point of view. It is meant to show the
overall structure of the server side performance map, not the details of every API
call. Although the visual clarity is limited by the page size of the book, we can still
see that:

† There are seven threads under the root node, one of which (T0) was the admin
thread, three (T1, T2, T3) from the lightweight thread group, and three
(T4, T5, T6) from the heavyweight thread group.

† The execution paths with more levels were from the lightweight threads, and the
execution paths with fewer levels were from the heavyweight threads. The light-
weight threads fetch less data from the database for minimizing the response
time, whereas the heavyweight threads return more data from the database for
maximizing the throughput.

† Once again, all threads within a particular thread group bear similar structures
with comparable elapsed times, which imply a well-balanced multithreading
execution model.

† Each lightweight thread started to fan out beneath the API node CE. This fan-out
call tree structure originated from the filter operations with the mixed SQL oper-
ations. This design choice is beyond the scope of this book. We’d like to remind
the reader that we are only interested in how to profile APIs. The design logic
behind the software program being profiled is less interesting.

10.4 API PROFILING WITH COMBO LOGS 327



Fi
g
u
re

10
.1
3

P
or
tio

n
of

a
p
er
fo
rm

an
ce

m
ap

sh
ow

in
g
ne

gl
ig
ib
le

lo
ca

le
xe

cu
tio

n
tim

e
on

th
e
cl
ie
nt

si
d
e.

328



Fi
g
u
re

10
.1
4

Ill
us

tr
at
iv
e
ov

er
al
ls

tr
uc

tu
re

of
th
e
se

rv
er

si
d
e
p
er
fo
rm

an
ce

m
ap

.

329



Viewing the overall structure of the server side performance map shown in
Figure 10.14 is like viewing a forest from a height of 1000 feet, in the sense that we
don’t see details immediately from it. It gives us an immediate feel about how the
software program is designed overall.

Now let’s zoom in and see the trees, namely, examining the execution details of
each expensive execution path. For this purpose, Figure 10.15 shows the top portion
of the server side performance map shown in Figure 10.14. It clearly shows that for this
workload, the lightweight threads were heavily utilized relative to the heavyweight
threads, based on the relative elapsed time percentage of each thread. Although the
elapsed time percentages of the heavyweight threads ranged from 31% to 62%,
they were idle most of the time, which was why no API calls lasted longer than 10
milliseconds beneath them. Whether lightweight threads or heavyweight threads
were used depends on the workload of the execution tasks, but we are less concerned
with that here.

It is seen from Figure 10.15 that the percentage of the elapsed time for each light-
weight thread from T1 to T3 under the root node was 97% uniformly across the board,
which corresponds to 375 seconds in absolute time units. Once again, this indicates a
good balance among all the threads.

All lightweight threads called the API CI as shown under each thread from T1 to
T3. Since this is a server side API written in Cþþ, its elapsed time of 341 seconds
can be used to measure the overhead of its corresponding Java API wrapper. This is
easy math, given its parent elapsed time shown above it, which is 375 seconds.

Figure 10.15 Top portion of the server side performance map.

330 CASE STUDY: APPLYING API PROFILING



Based on these two numbers of 341 and 375 seconds, it can easily be calculated that
the Java wrapper overhead was only 9%. This clearly shows that this wrapper layer for
the product was sufficiently lean and should not be the performance optimization
focus.

Next, let’s drill down to the bottom of the call tree. Figure 10.16 shows the sub call
tree beneath the API CE shown in Figure 10.15. It was taken from the T1 thread but

Figure 10.16 Bottom portion of the server side performance map.

10.4 API PROFILING WITH COMBO LOGS 331



applies to the T2 and T3 threads as well, due to the structural similarity that we
mentioned previously. This sub call tree shows that each lightweight thread spent
about half of its time executing two SQL statements, one of which was executed
6099 times, and the other was executed 5629 times. These are the potential areas
where significant performance improvements could be realized.

This might be a good opportunity for discussing about how we drill down to the
expensive API calls following the execution paths shown on a performance map in
general. Let’s use Figure 10.16 as an example with the following top–down procedure
to show how to look for the expensive execution paths:

† First, we see from the top that this execution path represents 88% of the total
execution time or 340301 milliseconds in absolute time units. This amount of
execution time was accumulated over 2018 calls.

† Next, we see two branches: onewas accountable for 80%, and the other for 5% of
the total execution time. Note that these two execution paths don’t add up to 88%
of the total execution time of their parent API call. That’s because that 88%
includes local time spent within that method and time spent calling other APIs
whose time portions were too small to be included with the filter specified
when the original log data file was parsed. Remember that we are not interested
in doing exact math here. Instead, we are trying to identify which execution paths
are the most expensive ones that constitute the system bottlenecks and perform-
ance optimization opportunities.

† Following that 80% total execution time branch, we came down to the next API
call that was accountable for 70% of the total execution time. With the same
approach, we came down to the API call that was accountable for 60% of the
total execution time.

† Next, we see another two branches: one was an SQL query that was accountable
for 21%, and the other was a filter start operation that was accountable for 30% of
the total execution time.

† That filter start operation initiated another two filter start operations in a
self-recursive fashion. Eventually, it ended with an SQL query that was accoun-
table for 21% of the total execution time. SQL queries are leaf nodes, which
indicate performance optimization opportunities if their time apportionments
are large.

† Since these two SQL queries constitute 42% of the total execution time, it’s
worthwhile to investigate how these two SQL queries could be executed more
efficiently either by adding proper indexes or by rewriting them. SQL tuning
itself is another interesting territory and the reader can find plenty of good text-
books about it.

† Apparently, SQL queries were accountable for only half of the total execution
time. The other half was spent on the application logic. One common perform-
ance defect is that some waste logic is executed repeatedly which might not have
to be executed at all. Domain expert developers can apply their product-specific

332 CASE STUDY: APPLYING API PROFILING



knowledge and help shed the extraneous application logic that affects the
performance and scalability of the software product under development.

In the next section, I’ll use a real-world example to demonstrate how API profiling
can be applied to solve real software performance and scalability problems.

10.5 APPLYING API PROFILING TO SOLVING PERFORMANCE
AND SCALABILITY PROBLEMS

In this last section, a real software performance optimization experience is presented
to show how performance maps can be used to guide performance optimization
efforts. This optimization effort was initiated to improve the performance of an appli-
cation server API named GR (Get Records). The GRAPI is used heavily by all custom
applications and its performance is very critical.

The GR API is called by custom applications to retrieve a series of objects from
the database based on certain selection criteria. It also calls other application server
APIs to complete the query. In order to get focused on the main subject of applying
API profiling and optimizing the performance of a software program guided by
performance maps, I’d like to remind the reader that the domain context associated
with this API is not very important here. The important thing here is to demonstrate
how API profiling and performance maps can be utilized to guide performance efforts
in a real software development process.

Let’s start with the baseline performance of this API in the next subsection.

10.5.1 Baseline

Baseline performance refers to whatever performance you have observed which
you would like to take as an initial start point. It’s extremely important that the baseline
performance is carefully established first. It must be established carefully because
that’s the yardstick you will use to measure and assess your ongoing performance
optimization efforts. If the baseline is shaky, for example, the baseline numbers are
not repeatable from run to run, then howwould you accurately calculate howmuch per-
formance improvement you have achieved with whatever optimizations you applied?

In addition to adhering to the performance data principles introduced in Chapter 3,
here is a list of things that you need to pay attention to when establishing baseline
performance:

† The test scenarios must be representative. Different scenarios may result in
different performance numbers. For example, retrieving all objects with all attri-
butes of each object retrieved will certainly run slower than retrieving all objects
with one or a few attributes retrieved for each object. Typically, at least three
scenarios should be considered: worst, normal, and best.

† The test environment must be stable. Ideally, a completely isolated test environ-
ment should be used. It’s not unusual that the test environment may actually

10.5 APPLYING API PROFILING TO SOLVING PERFORMANCE 333



consist of servers that reside on a corporate network. If this is the case, you might
see that the performance numbers you obtain depend on when you run the test;
you may get better performance numbers at night when the network is nearly
idle, and you may get worse performance numbers in the morning when the net-
work is busy with everybody using it.

† The test duration must be sufficiently long. The longer the test duration, the more
repeatable the test results will be. Empirically, the test duration should be at least
5 minutes.

† Keep all test conditions and settings that affect the performance test results
the same from conducting baseline tests to optimization tests except those you
intentionally take as variables. This usually is called apple-to-apple comparison
except for the factors that are being tested. For example, when testing a different
algorithm or a different system level setting or database level setting, make it the
only variable for interpreting the test results. Another recommendation is that
you may want to restart your application server and/or database server to
make sure that you are not observing performance improvement that actually
results from picking up data from caching that occurred when the baseline
test was run.

The list of things that you need to pay attention to when establishing a good
baseline performance can grow longer, but let’s stop here and get back to the main
objective of this section, namely, showing how API profiling and performance
maps can help solve real performance problems.

Figure 10.17 shows the baseline performance map of the GR API we mentioned in
the beginning of this section. We have applied a filter of 10 milliseconds, so those API
calls with less than 10 ms elapsed times have been eliminated from showing up on this
performance map.

First of all, note that this was a multithreaded scenario, as there are three threads,
T0, T3, and T8. T0 is the admin thread, which doesn’t do actual user work other
than administration work. T8 had a small elapsed time of only 31 milliseconds,
which is negligible. The T3 thread did most of the work based on its large total elapsed
time of 53625 milliseconds, as shown on the map.

It’s easy to recognize that the GND API underneath the GR API had made
a total number of 4005 SQL SELECT calls. The avoidance of excessive SQL
calls from an application server is one of the most effective software performance opti-
mization techniques. SQL calls will incur not only large elapsed times on the database
server, but also network latencies between the application server and the database
server. This is why excessive SQL calls are expensive from the performance
perspective.

One of the performance patterns associated with database-intensive applications is
to minimize the number of SQL calls from an application server to the database server.
This will reduce not only the number of network round trips but also various SQL
execution overhead incurred on the database side.

With the above performance pattern in mind, we naturally infer that if we could
reduce the number of SQL calls from the GND API, it might help improve the

334 CASE STUDY: APPLYING API PROFILING



performance of its parent API GR. This inference resulted in an optimized implemen-
tation of this GR API, which will be discussed in the next subsection.

10.5.2 Optimization

Based on the above idea of reducing the SQL call count from the GND API, the query
logic of GR API was redesigned and implemented. The resultant performance map of
the optimized implementation is shown in Figure 10.18.

As we can see, the total elapsed time of the GR API has been improved from
54 seconds (baseline) to 44 seconds, which represents a 19% improvement. I’d like
to mention that in order to make sure that we were measuring real performance
improvement, we restarted both the database server and application server prior to
starting the tests when taking both the baseline and optimized performance measure-
ments. This way, we guaranteed that the optimization test was not taking advantage of
the data cached from the baseline test.

In the next section, I’ll offer a quick analysis of how this performance improvement
was achieved in this specific performance optimization effort.

Figure 10.17 Performance map of the baseline test.

10.5 APPLYING API PROFILING TO SOLVING PERFORMANCE 335



10.5.3 Analysis

Performance optimization analysis aidedwith performancemaps is easy. You just need
to compare the two performance maps from the baseline test and the optimization test.

Table 10.1 shows the comparison between the baseline and optimization tests from
the elapsed-time-to-elapsed-time and call-count-to-call-count perspectives. Based on

Figure 10.18 Performance map of the optimized implementation.

TABLE 10.1 Comparison of Elapsed Time (Milliseconds)/
Call Count of the API GND and Associated SQLs Based
on the Baseline and Optimization Performance Maps

Test GND SQL SELECT

Baseline 29360/42 8417/4005
Optimization 21876/42 4867/2025

336 CASE STUDY: APPLYING API PROFILING



this table, it’s obvious that the realized performance gain for the GR API is due to the
reduction in the number of SQL calls from the GND API. Nothing is ambiguous here
when the analysis is based on the quantitative information shown explicitly on
performance maps.

10.6 SUMMARY

In this chapter, we focused on how to apply API profiling to develop high-
performance, scalable software programs. A detailed procedure was developed on
how to enable API profiling, how to parse API profiling log data, and how to generate
performance maps. API profiling was demonstrated using the perfBasic API profiling
framework with standard logs, custom logs, and combo logs. This chapter concluded
with a real example showing the usefulness of API profiling and performance maps in
guiding practical performance optimization efforts.

For your convenience, Table 10.2 shows what programs and property files are
needed in order to fully utilize the perfBasic API profiling framework for solving
your performance and scalability problems.

I hope you will apply what you have learned from this book to your software
product and see immediate performance and scalability improvements. Specifically,
I envision that you will:

† Design and conduct your performance and scalability tests carefully so that your
test results will be reliable and valid.

† Interpret your test results based on queuing theory so that you can identify the
performance and scalability bottlenecks faster.

† Use API profiling to aid your optimization and tuning efforts for improving the
performance and scalability of your software product. This approach can help
you gain a deeper understanding of which APIs are preventing your software
from performing better and why.

I hope you have enjoyed reading this book. More importantly, you should keep
practicing the knowledge and skills you have acquired from this book so that you
can optimize and tune the performance and scalability of your software programs
more effectively and efficiently.

Good luck!

TABLE 10.2 Programs for the perfBasic API Profiling Framework

Program Required File Purpose

perfLog.java apf.properties Enabling API profiling
adapter.java adapter.properties Converting custom log files into standard

format
paser.java parser.properties log.properties Parsing log file for generating

performance maps

10.6 SUMMARY 337



EXERCISES

10.1. Apply the perfBasic API profiling framework to a sample application or a
real application. Follow the steps listed below:

† Apply a workload to the application and collect the API profiling log data.
† Generate the performance maps based on the API profiling log data from the
preceding step.

† Identify the most expensive calling paths.
† Improve the performance of the application by modifying the design and
implementation to reduce the execution times of the most expensive calling
paths identified from the preceding step.

† Compare the performance maps before and after the improvements.
† Quantify the improvements in a brief summary report.

10.2. Revisit the performance map shown in Figure 10.9. Identify the two most
expensive APIs. Then apply Amdahl’s law:

† Assuming that you could improve the performance of the most expensive API
by 50%, how much overall improvement could you expect?

† Assuming that you could improve the performance of the second most
expensive API by 50%, how much overall improvement could you expect?

† Assuming that you could improve the performance of both APIs by 50%
each, how much overall improvement could you expect?

10.3. Based on the quantitative case study described in Section 10.4, how would you
quantify the performance overhead of the wrapper APIs in general? Devise a
program that uses wrapper APIs and prove your approach.

338 CASE STUDY: APPLYING API PROFILING



Appendix A

Stochastic Equilibrium and
Ergodicity

So much of life, it seems to me, is determined by pure randomness.
—Sidney Poitier

In this appendix, a more thorough covering of random processes is provided to accom-
modate the needs of those who wish to dive deeper on the theories about random pro-
cesses and those who wish to know more about how some of the important concepts
derived thereof can be borrowed to help understand software performance and
scalability challenges better. It is particularly important to understand the concepts
of stochastic equilibrium and ergodicity, not only because they are the foundations
on which most of the useful queuing models are built, but also because they represent
the desirable conditions that many systems are designed to develop into.

A.1 BASIC CONCEPTS

We continuewith wherewe left off in Section 4.2 by further elaborating on the concept
of random variables.

A.1.1 Random Variables

In probability theory, a random variable is a variable whose values are random and to
which a probability distribution is assigned. For example, when you access a Web

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 John Wiley & Sons, Inc.

339



application, there can only be one of the two outcomes: Available (A) or Unavailable
(U ). If you access the same Web application twice over a time period, based on the
status of the Web application at the time it was accessed, then there could be two out
of the four possible outcomes to describe your experience: (UU, UA, AU, AA). If we
assign a random variable (X ) to denote the number of times the Web application is
available, corresponding to the above experience, there could be three possible
cases: none of the two accesses available (0), one time out of the two accesses available
(1), and both accesses available (2). Now we have a new space of {0, 1, 2} to describe
the availability of the Web application, and we can assign x0 ¼ 0, x1 ¼ 1, x2 ¼ 1,
x3 ¼ 2 as the values that the random variable X can take for those four possible
accesses.

As we see from the above example, a random variable is really not a variable at all
in the traditional sense as in the deterministic world. Instead, it is a mapping or func-
tion. If we use z to denote a single sample point, then the random variable X(z) is a
single-valued real function that assigns a real number as the value of X(z) correspond-
ing to each sample point. We call this value set the state space (or range) of the random
variable X(z) in contrast with the sample space of z. Note that two or more different
sample points might take the same value of X(z), for example, both X(z1 ¼ UA) and
X(z2 ¼ AU) can take the same value of 1 with the above example, but two different
numbers, for example, any of the two values in the state space f0, 1, 2g, cannot be
assigned to the same sample point.

With the above example, the sample variable z belongs to the sample spaces of
S0 ¼ fFg (empty space), S1 ¼ fU, Ag, S2 ¼ fUU, UA, AU, AAg, . . ., and Si ¼
fUU. . .U, . . ., AA. . .Ag, . . ., etc. Apparently, for any dynamic processes, the
random variable X is a function of time t as well, namely, X ¼ X(z, t). If t is fixed,
X can possibly take any values corresponding to various sample points of z in the
sample spaces described above. If z is fixed, the values the random variable can
take vary as well. Unless explicitly noted, X(z, t) is simply denoted as X(t), in
which case X(t) is considered a generic random variable. The specific values the
random variable X(t) takes over time are called a sample path or a realization of the
random process represented by the random variable X(t).

Let’s next introduce the concept of random variable vector.

A.1.2 Random Variable Vector

The values that a random variable X takes vary with time t. Therefore, we can view
the random variable X at various time instants as representing the states of a random
process. Thus, at various time points of t0 , t1 , t2 , . . ., tn, the vector

X ¼ [X(t0), X(t1), . . . ,X(tn)] (A:1)

constitutes a random variable vector which can take values represented by the follow-
ing state vector

x ¼ [x0, x1, . . . , xn] (A:2)

340 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



In this case, we say the random variables fX (tk)g are indexed by parameter t. Based on
t being discrete or continuous, we can have discrete-time processes and continuous-
time processes. In combination with the possibility of the random variable X (or
state of the process) being discrete or continuous, we can have discrete-time and dis-
crete-state processes (DTDS), discrete-time and continuous-state processes (DTCS),
continuous-time and discrete-state processes (CTDS), and continuous-time and con-
tinuous-state (CTCS) processes. Discrete-state processes are also known as chains,
in which case, X(tk) is simplified to Xk.

Then, a random process is fully characterized by a joint CDF as follows:

FX(x0, . . . , xn; t0, . . . , tn) ¼ P[X(t0) � x0, . . . ,X(tn) � xn] (A:3)

In summary, the mathematical symbols and expressions introduced above represent
the following entities:

† ftkg (discrete) or ft, t [ Rg (continuous), where R is a set of all real numbers,
represents the index set or parameter space of the random process.

† fXkg (discrete) or fX(t)g (continuous) represents the state space of the random
process.

† fxkg (discrete) or fx(t)g (continuous) represents the sample paths or realizations
of the random process.

† {Xk � xk} (discrete) or {X(tk) � xk} (continuous) represents the event space of
the random process.

† P[Ek] represents the probability measure of the random process for a given
event Ek.

It’s helpful to be able to fully understand these concepts when studying random
processes.

A.1.3 Independent and Identical Distributions (IID)

To simplify the mathematical treatment, one can assume that all the random variables
in a random variable vector are mutually-independent and have the identical distri-
bution (IID). Then, we can simplify (A.3) and immediately arrive at:

FX(x0, . . . , xn; t0, . . . , tn) ¼ FX(x0, t0) . . .FX(xn, tn) (A:4)

It is seen that under the premise of IID, the entire random behavior of a random process
can be described by a single CDF, FX(xk, tk), for any k ¼ 0, 1, . . . , n. Fortunately, for
many random processes in reality, the IID assumption is well-satisfied, which makes
all the analyses based on the IID assumption valid and useful.

A.1 BASIC CONCEPTS 341



A.1.4 Stationary Processes

A stationary random process is defined by the following stationary property of its
CDF:

FX(x0, . . . , xn; t0 þ Dt, . . . , tn þ Dt) ¼ FX(x0, . . . , xn; t0, . . . , tn) (A:5)

The above equation implies that the probability distribution of a stationary
random process is time-invariant. The stationarity guarantees that the measurement
taken at time t is statistically distinguishable from the same measurement taken Dt
time units earlier or later, whereDt is arbitrary. Any processes under regular conditions
can be considered as stationary processes, for example, the traffic flow on a highway
on regular workdays. Another example is a Web application accessed by the users
during non-peak hours during which the access patterns are more likely to be
evenly distributed.

In some cases, (A.5) might hold only for some number n � k. Then we say that the
random process is stationary up to order k only. When k ¼ 2, the process is said to be
wide-sense stationary (WSS) or weak stationary in contrast to strict-sense stationary
defined by (A.5).

A.1.5 Processes with Stationary Independent Increments

Random processes are often studied over a series of time intervals defined by

0 , t1 , t2 , � � � , tn

in order to observe the incremental changes in the states of the processes:

X(0), X(t1)� X(t0), X(t2)� X(t1), . . . , X(tn)� X(tn�1)

If such incremental state changes are independent and satisfy the stationary con-
dition that X(t) – X(s) has the same distribution as X(t þ h) – X(s þ h) for all s, t,
h 	 0, s , t, then the process X(t) is said to have stationary independent increments
(SII). Note that processes with stationary independent increments are not the same
as stationary processes. As a matter of fact, processes with stationary independent
increments are non-stationary. For example, Poisson processes possess the SSI prop-
erty, but their mean and variance are time-dependent and proportional to time t.
In addition, SSI is not the same as IID, either. The concept of SII measures the statio-
narity of incremental changes in the states of the underlying random processes, while
the concept of IID is used to characterize the probability distributions of the random
variables associated with the underlying random processes.

The concepts of stationarity and IID help simplify the analysis of many random
processes significantly. They are indispensable for arriving at the analytical solutions
of the state probability equations describing the evolution of some particularized
random processes. Apparently, designing systems that can reach stationary states is
of great practical interest.

342 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



A.2 CLASSIFICATION OF RANDOM PROCESSES

It’s helpful to put all typical random processes into perspective based on the defining
characteristics assigned to them. In this section, we briefly review a few random pro-
cesses that are representative and closely correlated with each other. These processes
include:

† General Renewal Processes
† Markov Renewal Processes
† Markov Processes

A.2.1 General Renewal Processes

A general renewal process is a continuous-time and discrete-state chain that describes
an inter-arrival process. It is characterized by the following parameter and state
spaces:

† Parameter space: 0 � t1 � t2 � . . . tk . . . � tn, where tk represents the kth time
point at which an event reoccurs or renews. The inter-arrival time Sk ¼ Tk 2
Tk21 is a random variable which is also referred to as the kth state holding
time. The random variable Tk is called the k

th jump time. An inter-arrival process
is called a renewal process if the random variables fSk, k ¼ 1, 2, . . .g constitute a
sequence of IID variables; otherwise, it is just a generic inter-arrival process.

† State space:N(0) � N(t1) � N(t2) � . . . �N(tn), whereN(tk) is a random variable
counting the number of occurrences up to the kth time point. Note that a renewal
process has no particular constraint on the random variables fN(tk)g at all.
Therefore, it’s more appropriate to classify a renewal process as an arrival pro-
cess than a counting process, because its constraint is on the inter-arrival
times, not on the number of events counted.

Conceptually, general renewal processes are important, as many random processes
are particularized based on them, as is shown in the next section.

A.2.2 Markov Renewal Processes

A general renewal process becomes a Markov renewal process if the probability of a
state transition depends on the current state only. A Markov renewal process is also
known as a Semi-Markov process, as that constraint on state transitions is the first
Markovian property for a Markov process, as is discussed next.

A.2.3 Markov Processes

Markov processes are particularized and from Markov renewal processes with an
additional constraint imposed that the random time intervals between successive

A.2 CLASSIFICATION OF RANDOM PROCESSES 343



state transitions follow the exponential distribution that possesses the memoryless
property. The two constraints on the two aspects of a Markov process (states and
inter-event times) can be summarized as follows:

† Markovian Property 1 (MP1). The first Markovian property about state tran-
sitions is referred to as the memoryless property of state transitions: the next
future state of the process depends conditionally and only on its current state.
For continuous-state Markov processes, this implies that

P[X(tkþ1) � xkþ1jX(tk) ¼ xk, X(tk�1) ¼ xk�1, X(t0) ¼ x0]

¼ P[X(tkþ1) � xkþ1jX(tk) ¼ xk] (A:6a)

And similarly, for discrete-state Markov chains, MP1 implies that

P[X(tkþ1) ¼ xkþ1jX(tk) ¼ xk , X(tk�1) ¼ xk�1, X(t0) ¼ x0]

¼ P[X(tkþ1) ¼ xkþ1jX(tk) ¼ xk] (A:6b)

And for discrete-time Markov chains, MP1 implies that

P[Xkþ1 ¼ xkþ1jXk ¼ xk, Xk�1 ¼ xk�1, X0 ¼ x0]

¼ P[Xkþ1 ¼ xkþ1jXk ¼ xk] (A:6c)

† Markovian Property 2 (MP2). The second Markovian property is about the
memoryless property of the time intervals between adjacent state transitions:
how long the process will remain in the current state is irrelevant of how long
the process has been in the current state. This is equivalent to saying that the
time intervals between the adjacent state transitions follow the exponential dis-
tribution for continuous-time Markov chains or geometric distribution for dis-
crete-time Markov chains, since the exponential distribution and the geometric
distribution are the only distributions that possess the memoryless property in
the continuous and discrete parameter spaces, respectively. To help understand
the memoryless property better, Appendix B is provided to show a rigorous
mathematical proof of the memoryless property for the exponential distribution.

The analysis of Markov and Semi-Markov chains has provided a rich framework for
studying many real life random processes, particularly in the areas of applying queu-
ing theory to solving software performance and scalability problems.

So far, we have introduced many basic concepts of probability theory and random
processes. Next, we’ll concentrate on finding the state probabilities of a given random
process at any time instant, which is the central objective of applying probability
theory to studying random processes. Since the analysis of most queuing systems is
based on Markov chains, we’ll limit ourselves to Markov chains from this point on.

Let’s start with the discrete-time Markov chains first. Although we are eventually
more interested in continuous-time Markov chains which are more relevant to the
queuing theory in the context of software performance and scalability, discrete-time

344 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



Markov chains provide an easier entry and are more straightforward to allow us to cap-
ture all the essence more conveniently. The analysis of continuous-time Markov
chains parallels that of discrete-time Markov chains.

A.3 DISCRETE-TIME MARKOV CHAINS

The subject of finding the state probabilities of discrete-time Markov chains at any
time instant can be formulated as follows:

For a given initial state distribution and given state-to-state transition probabilities, how
can we find out the state probabilities of a system at any time instant?

Since the transition probabilities fill the bridge between the initial states to any sub-
sequent states for a random process, let’s start with understanding the transition prob-
ability matrix for a discrete-time Markov chains first.

A.3.1 Transition Probability Matrix and C-K Equations

For discrete-timeMarkov chains, we use symbols i and j to denote the current and next
states respectively. Thus, the transition probability describing a system to transit from
state i to state j at time instant k can be expressed as follows:

pij(k) ¼ P[Xkþ1 ¼ jjXk ¼ i] (A:7)

This equation is equivalent to Equation (A.6c) by setting xk ¼ i and xkþ1 ¼ j in
(A.6c). Note that the state transition probabilities described above must satisfy the
normalization condition of X

all j

pij(k) ¼ 1 (A:8)

Equation (A.7) represents the single-step state transition probability of a system
from state i to state j at the kth time point. It can be extended to study the n-step
state transition probabilities with a single mathematical symbol p(n)ij (k) as follows:

p(n)ij (k) ¼ P[Xkþn ¼ jjXk ¼ i] (A:9)

Note the change from Xkþ1 in (A.7) to Xkþn in (A.9). Very often, we are interested in
the transition process internal to the n-step transition expressed by (A.9). This can be
easily achieved by assuming an intermediate state r with i , r , j at time point m
with 1, m , n. Then, by the rule of total probability, (A.9) can be rewritten as

p(n)ij (k) ¼
X
all r

P[Xkþn ¼ jjXkþm ¼ r, Xk ¼ i] � P[Xkþm ¼ rjXk ¼ i] (A:10)

A.3 DISCRETE-TIME MARKOV CHAINS 345



By applying the memoryless property of Markov chains to the first term of the
right-hand-side of (A.10), we have

P[Xkþn ¼ jjXkþm ¼ r, Xk ¼ i] ¼ P[Xkþn ¼ jjXkþm ¼ r] ¼ p(n�m)
rj (k) (A:11)

Since the second term on the right-hand-side of (A.10) is p(m)ir (k), (A.9) now
becomes

p(n)ij (k) ¼
X
all r

p(n�m)
ir (k)p(m)rj (k) (A:12)

The above equation is the Chapman–Kolmogorov (C-K) equation expressed with
higher-order transition probabilities.

Apparently, a simpler case is that pij(k) is independent of k, namely, the transition
probability from state i to state j is a constant regardless of the time instant at which the
transition occurs. This is the assumption of homogeneity. Homogeneity is a standard
term in statistics, which implies that the statistical properties of any one part of an over-
all dataset are the same as any other part. Note that under the assumption of homogen-
eity, the states of a random system are still random.

Under the above premise that pij(k) is independent of k, we obtain a homogeneous
Markov chain, and Equation (A.7) can be simplified at follows with pij in place of
pij(k):

pij ¼ P[Xkþ1 ¼ jjXk ¼ i] (A:13)

By placing pij in the location of the ith row and jth column of a matrix, we can
obtain the state transition probability matrix P:

P ¼ [ pij] (A:14)

The above equation represents the single-step state transition probabilities in matrix
format. Similar to (A.9), we can further define the homogeneous n-step state transition
probability p(n)ij as:

p(n)ij ¼ P[Xkþn ¼ jjXk ¼ i] (A:15)

In matrix format, Equation (A.15) is equivalent to:

P(n) ¼ P � P � � �P ¼ Pn (A:16)

An element of the transition probability matrix P can be expressed as:

p(n)ij ¼
X
all r

p(m)ir p(n�m)
rj (0 , m , n) (A:17)

346 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



which again implies that one can divide the total number of state transitions into a two-
stage jump, first m steps and then (n–m) steps, respectively. Equation (A.17) is the
homogeneous Chapman–Kolmogorov equation. By setting m ¼ n21 and m ¼ 1,
respectively, we can obtain the forward and backward C-K equations as follows:

P(n) ¼ P(n�1) � P ( forward) (A:18a)

P(n) ¼ P � P(n�1) (backward) (A:18b)

In the next section, we define the state probabilities and correlate themwith the tran-
sition probabilities.

A.3.2 State Probability Matrix

The state probability defines the unconditional probability of a system at state j at some
time instant regardless of its initial state. For discrete-time Markov chains, the prob-
ability of a system at state j at time instant k can be expressed as follows:

p(k)
j ¼ P[Xk ¼ j] (A:19)

We can then define the state probability vector for discrete-time Markov chains as
follows:

p(k) ¼ [p(k)
0 , p(k)

1 , . . .] (A:20)

Then, the initial state probability vector of a Markov chain can be expressed as:

p(0) ¼ [p(0)
0 , p(0)

1 , . . .] (A:21)

Now, given the initial state probability vector of Equation (A.21) and the transition
probability matrix of Equation (A.14) for discrete-time Markov chains, how can we
find the state probabilities of the system at state j at time instant k as expressed in
Equation (A.20)? The answer is the following:

p(k) ¼ p(0)Pk, k ¼ 1, 2, . . . (A:22)

Note that in some other texts, the state probability vector p (k) might be denoted as
p(k) in place of p (k).

Thus, given initial state probabilities and transition probabilities for a homogenous
discrete-time Markov chain, one can solve Equation (A.22) to obtain the state prob-
abilities of the system at various states at time instant k. This type of analysis of finding
the state probabilities of a random process within a limited number of time units is
known as transient analysis. It might be more interesting to find out the limiting

A.3 DISCRETE-TIME MARKOV CHAINS 347



state probabilities of a system when it operates for a long period of time and settles
down to the stationary state (or steady state). This is equivalent to solving Equation
(A.22) with sufficiently large values of k. However, this is not always an easy task.
Under such circumstances, we compromise for knowing under what conditions
such limiting state probabilities exist. In order to answer such questions, we need to
characterize the states of the discrete-time Markov chains first.

A.3.3 Classification of States and Chains

In this section, we present a series of definitions to characterize miscellenaeous types
of states of discrete-time Markov chains. These definitions include:

† Absorbing states. State j is said to be an absorbing state if pjj ¼ 1; that is, once
trapped in an absorbing state, it can never leave.

† Irreducible Chains. A chain is said to be irreducible if there exists an n such that
p(n)ij . 0 for all state pairs (i, j). Thus, the idea of irreducibilitymeans that within
a finite number of time steps, any state of the system can reach any of all other
states, or in other words, all states are mutually reachable.

† Aperiodic Chains. A chain is said to be aperiodic if all of its states are aperiodic.
A state is said to be aperiodic if it can not be revisited periodically with a fixed
number of time units that is large than 1. Mathematically, the aperiodicity is
defined by the greatest common divisor (GCD) of the set of integers fng for
which p(n)ij . 0. The GCD nmust be equal to 1 in order for a state to be qualified
as being aperiodic. Those with GCD . 1 are periodic states.

† Positive Recurrent Chain. A chain is said to be positive recurrent if all its states
are positive recurrent. A state is said to be positive recurrent if it can definitely
come back to the same state within a finite number of time units. Mathematically,
it is defined by the total recurrence probability fjj which is defined as

f jj ¼
X1
n¼1

f (n)jj (A:23)

where f (n)jj ¼Pk=j pjk f
(n�1)
kj (n ¼ 2, 3, . . . ) is the probability of a system at

state j returning to the same state j for the first time in n time units. If fjj ¼ 1,
then state j is said to be a recurrent state; if fjj , 1, then state j is said to be a tran-
sient state. A state j with fjj¼1 is a positive recurrent state if its mean recurrence
time

mjj ¼
X1
n¼1

nf (n)jj (A:24)

is finite, namely, if mjj ,1; otherwise, if mjj ¼ 1, state j is said to be a null
recurrent state.

348 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



The above definitions provide foundation for discussing the limiting state probabilities
of Markov chains. We defer the discussion about the limiting state probabilities of
Markov chains in the context of statistical equilibrium and ergodicity until after we
discuss the state probabilities of continuous-time Markov chains.

A.4 CONTINUOUS-TIME MARKOV CHAINS

The analysis of the state probabilities of continuous-time Markov chains parallels that
of discrete-time Markov chains. However, since we are dealing with continuous time,
the concept of transition rate matrix is introduced to describe the dynamic change of
the state probabilities with time. This is reflected in the C–K equations for continuous-
time Markov chains described below.

A.4.1 C–K Equations

Assuming that the system is in state i at time t and in state j at time t þ t, then the tran-
sition probability of a system from state i at time t to state j at time t þ t can be
described with the following transition function:

pij(t, t þ t) ¼ P[X(t þ t) ¼ jjX(t) ¼ i] (A:25)

Again, we assume that we are dealing with homogenousMarkov chains. Then for any
time instant t, pij depends on t only, namely:

pij(t) ¼ pij(t, t þ t) ¼ P[X(t þ t) ¼ jjX(t) ¼ i] (A:26)

Without going through the lengthy process of mathematical derivation, the forward
C–K equation for the state probability vector p (t) of homogeneous continuous-
time Markov chains is given as follows:

dp (t)
dt

¼ p (t)Q (A:27)

where Q is the so-called transition rate matrix which is also known as the intensity
matrix (or infinitesimal generator) of the continuous-time Markov chains. With
(A.27), all state probabilities as the elements of the state probability vector p(t)
must satisfy the normalization condition

P
jpj ¼ 1.

In the next section, we explore the implications of the transition rate matrix for con-
tinuous-time Markov chains.

A.4.2 Transition Rate Matrix

Each element of the transition rate matrix, qij, is time-independent for homogenous
continuous-time Markov chains. To gain insight into the implications behind those

A.4 CONTINUOUS-TIME MARKOV CHAINS 349



transition rate matrix elements, Equation (A.27) can be expanded with each transition
rate element exposed explicitly in a set of scalar differential equations:

dpj(t)
dt

¼ q jjpj(t)þ
X
i=j

qijpi(t) ( j ¼ 1, 2, . . .) (A:28a)

dp0(t)
dt

¼ q00p0(t) ( j ¼ 0) (A:28b)

Note that in (A.28a) the state probability for state j, pj(t), has been separated out
from the sum over all i. Note also that the above equations resemble a generic form
of equations that can be expressed as df(t)/dt ¼ b . f (t) with b being the decaying
rate (if b , 0) or growth rate (if b . 0) of the entity that f (t) represents. The com-
ponents of the transition rate matrix Q can thus be interpreted as follows:

† j ¼ i. This case corresponds to the transition rate matrix element qjj. Since qjj is
time-invariant under homogeneity assumption, we can apply the limiting con-
dition of t ! 0, under which qjj ¼ (dpj(t)/dt)jt ¼ 0 or 2qjj ¼ [d(12pj(t))/
dt]jt ¼ 0. As 1 2 pj(t) is the departure probability of the system at state j, 2qjj
is the departure rate of the system at state j.

† i= j. In this case, qijpi can be taken as the amount of state probability carried by
the process from state i to state j, or in other words, qij can be considered as the
instantaneous event arrival rate of the system from state i to state j.

It can be proven that every row of the transition rate matrix satisfies the conditionP
all j qij ¼ 0, or,

qii ¼ �
X
all j=i

qij (A:29)

which is equivalent to saying that the departure rate at state i is equal to the sum of all
arrival rates from all other states.

The above interpretations about the elements of the transition rate matrix will
become clearer after we introduce the birth–death chains later.

Since the performance measures of continuous-time Markov chains can be
observed at various time points, to some extent, equivalent discrete-time Markov
models should exist to bridge the gap between continuous-time and discrete-time
Markov chains. That’s the concept of imbedded Markov chains as introduced in the
next section.

A.4.3 Imbedded Markov Chains

We started discussing continuous-time Markov chains with the concept of transition
rate matrix instead of transition probability matrix as in the case of discrete-time
Markov chains. That’s because as a matter of fact, the transition probabilities for

350 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



continuous-time Markov chains are defined with the concept of transition rate matrix
which applies to continuous-time Markov chains only. This is made possible with the
concept of imbedded Markov chains for which the random state variables
{X1, X2, . . . , Xk, . . .} are defined at random time instants {T1 , T2 , � � � ,
Tk , � � �} to model the continuous-time Markov chains. Then, the state transition
probabilities for discretized continuous-time Markov chains can be expressed as

Pij ¼ P[Xkþ1¼ jjXk ¼ i] (A:30)

which is similar to (A.13) defined for discrete-time Markov chains.
It can be proved that the transition probabilities defined in (A.30) are correlated to

the transition rate matrix for continuous-time Markov chains as follows:

Pij ¼ qij
�qii

, ( j = i) (A:31)

By use of (A.29), one can further prove that
P

j=i Pij ¼ 1, which implies that all
diagonal elements Pii ¼ 0. This remarkable result is consistent with the nature of con-
tinuous-time Markov chains that the state of the systems modeled with continuous-
time Markov chains changes continuously with time, unlike the real discrete-time
Markov chains that changes of states are always triggered passively.

Next, we discuss the concepts of stochastic equilibrium and ergodicity which are
directly related to the queuing models presented in this book.

A.5 STOCHASTIC EQUILIBRIUM AND ERGODICITY

The concepts of stochastic equilibrium and ergodicity are essentially two different
terms with the same meaning: a system that evolves for a long time tends to
“forget” its initial states when it has run for sufficiently long. For random processes,
they mean that the state probabilities will become time-independent eventually,
although the states of the processes will still be random. It is emphasized again that
stochastic equilibrium and ergodicity do not mean that a system driven by random pro-
cesses will evolve into a deterministic system when the associated state probabilities
reach their limiting distributions.

Let’s first define what the concept of ergodicity means to stochastically dynamic
systems in the next section.

A.5.1 Definition

The mathematical definition of ergodicity for random variables is that their time
averages equal their corresponding ensemble averages for certain or all moments.
First, let’s define what it means by “ensemble.”

A.5 STOCHASTIC EQUILIBRIUM AND ERGODICITY 351



An ensemble is essentially a collection of identical copies of a real system, with
each of which representing a possible state that the real system might be in. In the con-
text of random processes, an ensemble is the collection of all sample paths of the
random variables representing the underlying random process. Although these
random variables might be mutually independent and follow the same probability dis-
tribution, they in general start with different initial states and therefore exhibit different
sample paths over time. See Figure A.1 for the illustration of a single sample path
(upper graphic) versus multiple paths initiated from different initial states (lower
graphic).

The kth-moment time average of a random variable vector along a particular sample
path fx0(t)g from t ¼ 0 to t ¼ T is calculated as follows:

, xk0 . ¼ 1
n

Xn
i¼1

xk
0
(i) x : discrete

¼ 1
T

ð T

0
[x0(t)]

kdt x : continuous

(A:32)

where n represents the number of time points in the case of discrete distribution.

Figure A.1 Ergodicity: time averaging vs. ensemble averaging.

352 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



The kth-moment ensemble average (or statistical average) of a random variable
vector at time t ¼ T can be expressed as:

mk(T) ¼ E[Xk
T ]

¼ lim
N!1

XN
i¼1

xki (T)pi(T) X : discrete

¼
ð1
�1

xkfX(x) dx X : condinuous

(A:33)

where E represents Expected value or ensemble average. For discrete-time chains, N is
the dimension of the random variable vector or the dimension of the ensemble, xi(T) is
the state of the i-th random variable over the i-th sample path at time T, pi(T ) is the state
probability of the i-th random variable taking the value of xi(T ) at time instant T. For
continuous-time chains, fX is the distribution density function of the generic random
variable X. A system is said to be ergodic if the condition, xk0 .¼ mk(T) is satisfied.

Note that a random process might be ergodic with respect to certain moments only.
A random process is fully ergodic if it is ergodic with respect to all its moments.

The significance of the ergodic property for a random process is that one can deter-
mine the measures of a stochastic system by starting from a particular initial state and
then follow alongwith time taking the average from a single sample path or realization,
rather than from all possible paths originated from all possible initial states.

The ergodicity for a dynamic system implies that limiting state probabilities exist so
that the systemwill eventually develop into a steady state. In the next section, we define
the limiting state probabilities for discrete-time and continuous-time Markov chains.

A.5.2 Limiting State Probabilities

Determining the stochastic equilibrium or ergodicity of a stochastic system is not
always an easy task. It turns out that it has a lot to do with the limiting state probabil-
ities of a random system. Let’s concentrate on the subject of the limiting state probabil-
ities of a Markov chain next.

Depending on whether it’s a discrete-time Markov chain or a continuous-time
Markov chain, the long-run behavior of a Markov chain is defined by its limiting
state probabilities as follows:

pj ¼
lim
n!1p(n)

j ( for discrete�timeMarkov chains) (A.34a)

lim
t!1pj(t) ( for continuous�timeMarkov chains) (A.34b)

(

As stated in the next section, limiting state probabilities may be obtained from
solving stationary equations for stochastically dynamic systems.

A.5 STOCHASTIC EQUILIBRIUM AND ERGODICITY 353



A.5.3 Stationary Equations

The limiting state probabilities defined in (A.34a) and (A.34b),

p ¼ [p0, p1, . . .]

should be a solution to the following stationary (or steady-state) equations for the dis-
crete-time and continuous-time Markov chains, respectively, along with their respect-
ive normalization condition:

p ¼ pP, pe ¼ 1 ( for discrete�time Markov chains) (A:35a)

pQ ¼ 0, pe ¼ 1 ( for continuous�time Markov chains) (A:35b)

The state probability vector must satisfy the normalization condition
P

jpj ¼ 1 in
order for fpjg to qualify as legitimate state probabilities.

It must be pointed out that the limiting state probabilities must satisfy (A.35a) or
(A.35b), but the solutions from (A.35a) or (A.35b) may not be limiting state probabil-
ities. So (A.35a) is the necessary but not sufficient condition for (A.34a), and the same
deduction logic applies to (A.35b) and (A.34b) as well.

Note that there are several alternative terms interchangeable with the word “limit-
ing,” such as steady-state, stationary, and equilibrium, etc. They all mean being time-
invariant or time-independent in the long run.

Now we are in a position to discuss the ergodic theorems for discrete-time and con-
tinuous-time Markov chains. Note that ergodicity is conceptually simple but very
complex to quantify. Many theorems exist about ergodicity and covering all of
them is far beyond the scope of this text. We’ll introduce only a few of them here,
and the reader is referred to the texts dedicated to the whole topic of ergodicity.

A.5.4 Ergodic Theorems for Discrete-Time Markov Chains

Theorem A.1. For a discrete-time Markov chain, irreducibility and positive recur-
rence are the two minimum requirements for the existence of a non-degenerate sol-
ution to the stationary equations

p ¼ pP, pe ¼ 1

such that the solution vector p ¼ [p0,p1, . . .] where pj ¼ 1/mjj with mjj given by
(A.24). Note that the solution exists doesn’t guarantee the stationarity of the solution
and hence the ergodicity to the system.

Theorem A.2. If an irreducible and positive recurrent discrete-time Markov chain
starts with its initial state probability vector equal to that obtained as the non-degen-
erate solution to the stationary equations shown in Theorem A.1, then the system
will stay stationary and hence ergodic.

Theorem A.3. If a discrete-time Markov chain is not only irreducible and positive
recurrent but also aperiodic, the process is ergodic with its limiting state probability

354 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



vector equal to the non-degenerate solution obtained from the stationary equations
shown in Theorem A.1, regardless of its initial state probabilities.

Theorem A.4. A discrete-time Markov chain is positive recurrent if it has a finite
irreducible set of states.

Theorem A.5. If a discrete-time Markov chain is irreducible and aperiodic but
consists of transient states or null current states, then the following result

pj ¼ lim
n!1pj(n) ¼ 0

holds true for all states j, and no limiting or stationary probability distribution exists.
This theorem is complementary to the first theorem described above, stating under
what conditions a non-degenerate solution to the stationary equations shown in
Theorem A.1 does not exist. Of course, when a solution to the stationary equations
shown in Theorem A.1 does not exist, the system is not ergodic.

EXAMPLE A.1

As an example, consider the following transition probability matrix for a two-state
homogeneous Markov chain:

P ¼ 1� a a
b 1� b

� �
0 , a , 1, 0 , b , 1

By use of the characteristic equation of P, it can be shown that the n-step transition
probability of P is

Pn ¼ 1
aþ b

b a
b a

� ��
þ (1� a� b)n

a �a
�b b

� ��
0 , a , 1, 0 , b , 1

Apparently, with 0, aþ b ,2, the limiting n-step transition probability matrix is
reduced to

lim
n!1Pn ¼ 1

aþ b

b a
b a

� �

Note that the above limiting transition probability matrix has the same rows.
Now, let us examine the states of this two-state homogenous Markov chain:

† First of all, it is irreducible, as all the off-diagonal elements are larger than zero,
therefore, the two states can reach each other mutually.

† Secondly, it is aperiodic, since all the diagonal elements are larger than zero.
† Thirdly, none of the states is absorbing, as neither of the diagonal elements
equals one.

† Finally, it is positive recurrent. This seems to be less obvious, since it’s not an
easy task to show that fjj ¼ 1 and mjj ,1 as defined by (A.23) and (A.24) for

A.5 STOCHASTIC EQUILIBRIUM AND ERGODICITY 355



arbitrary values of a and b. However, according to Theorem A.4, it is positive
recurrent.

† Because of the above properties, it has a steady state. It can be easily verified that
the stationary state probability distribution p ¼ 1

aþb [b, a] regardless of the
initial states. Therefore, it is ergodic. Note that the stationary state probability dis-
tribution is the same as the row of the limiting transition probability matrix.

The reader is encouraged to continue exercising with the above example in two
specific cases: a ¼ b ¼ 1 and a ¼ b ¼ 1

2, respectively. Describe the states of the
chains and determine whether they are ergodic in these two cases by use of the
theorems given.

It is clear that when designing a discrete-timeMarkov chain system, it’s desirable to
make it eventually irreducible, aperiodic and positive recurrent, in order for it to be
ergodic and reach steady state (or equilibrium) in the long run.

A.5.5 Ergodic Theorems for Continuous-Time Markov Chains

Ergodicity gets slightly simpler with continuous-time Markov chains, as is indicated
by the theorem below:

Theorem A.6. For a continuous-timeMarkov chain, irreducibility and positive recur-
rence are the two sufficient conditions for the existence of the stationary state probabil-
ities as a non-degenerate solution to the stationary equations

pQ ¼ 0, pe ¼ 1

such that the solution vector p ¼ [p0,p1, . . . ] where pj ¼ 1=mjj with mjj given by
(A.24). Note that in this case the solution is the limiting state probability vector regard-
less of the initial state probabilities and regardless of the aperiodicity.

Ergodicity is a classical and broad topic. It has many applications in many fields.
Before concluding this section, we present another theorem published in 1969 by
A. G. Pakes (A. G. Pakes, “Some Conditions for Ergodicity and Recurrence of
Markov Chains,” Operations Research, 17:1048–1061, 1969).

Theorem A.7. A irreducible, aperiodic discrete-time Markov chain is positive recur-
rent and hence ergodic if there exists a nonnegative solution of the inequalities

Xj¼1

j¼0

pijxj � xi � 1 (i ¼ N, N þ 1, . . .) (A:36a)

such that

Xj¼1

j¼0

pijxj , 1 (i ¼ 0, 1, . . . ,N � 1) (A:36b)

356 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



where N is any fixed positive integer. This theorem was proved by showing that there
exists a nonnegative integer j such that all state probabilities pj . 0 for all j.

In the next section, we consider the birth–death chains, which will not only help us
solidify what we have learnt so far about the concepts of stochastic equilibrium and
ergodicity but also provide a foundation as the basis of all the queuing models covered
in this book.

A.6 BIRTH–DEATH CHAINS

The concept of birth–death chains is illustrated in Figure A.2. Birth–death chains pro-
vide good examples of continuous-time Markov chains. Therefore, we can apply the
procedure we presented in the previous section about continuous-time Markov chains
to carry out the steady-state analysis of birth–death chains. We begin with the tran-
sition rate matrix for birth–death chains first in the next section.

A.6.1 Transition Rate Matrix

The transition rate matrix of a birth–death chain is expressed as follows:

qij ¼ 0 for all j . iþ 1 and j , i� 1
q j, jþ1 ¼ lj . 0 j ¼ 0, 1, . . .
q j, j�1 ¼ mj . 0 j ¼ 1, 2, . . .

(A:37)

With the diagonal elements calculated using (A.29), the transition rate matrix of
birth–death chains can be fully expressed in matrix format as follows

Q ¼

�l0 l0 0 0 � � �
m1 �(l1 þ m1) l1 0 � � �
0 m2 �(l2 þ m2) l2 � � �
0 0 m3 �(l3 þ m3) � � �
..
. ..

. ..
. ..

. ..
.

2
666664

3
777775 (A:38)

Figure A.2 Birth–death chains.

A.6 BIRTH–DEATH CHAINS 357



The reader is recommended to verify the elements of the above matrix against
Figure showing the state transitions from state to state for birth–death chains. As
is seen:

† Each state of a birth–death chain can be considered as a counter representing the
population size at that state. In the context of computers and software, typical
examples of “population” include the number of messages with a messaging
server, the number of HTTP requests with a Web server, or service requests
with any software or system resources of a computing device in a broader
sense, etc.

† The concept of birth–death corresponds to the arrival and departure occurrences
in a queuing system. A transition from state j to state j þ 1 is a birth (or arrival),
and a transition from j to j 21 is a death (or departure). The state transition prob-
abilities beyond its neighboring states of a system are zero except at the initial
state j ¼ 0 at which only a birth is possible.

Given the transition rate matrix (A.38) for birth–death chains, the next step is to
solve the C–K equations for birth–death chains, which is the topic of the next section.

A.6.2 C–K Equations

Substituting the transition rate elements of Equation (A.28) with those of (A.38), we
have the equations for describing the evolution of states for a birth–death chain:

dpj(t)
dt

¼ �(lj þ mj)pj(t)þ l j�1p j�1(t)þ m jþ1(t)p jþ1(t) j ¼ 1, 2, . . . (A:39a)

dp0(t)
dt

¼ �l0p0(t)þ m1p1(t) (A:39b)

Next, we explore the solutions of (A.39a) and (A.39b) in two special cases:

† The pure birth chain (all mj ¼ 0 for j ¼1, 2, . . .) with constant birth rates of lj ¼
l for all j ¼ 0, 1, 2, . . . . This assumption results in the well-known Poisson
processes with the state probabilities of

pj(t) ¼ (lt) j

j!
e�lt (t 	 0, j ¼ 0, 1, 2, . . . )

The Poisson processes are discussed in more detail in Section 4.3.
† Limiting state probabilities of the birth–death chains under stochastic equili-
brium (or steady-state) conditions.

Next, let’s discuss the equilibrium states of birth-death chains.

358 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



By setting dpj (t)/dt ¼ 0 and dp0 (t)/dt ¼ 0 in (A.39a) and (A.39b), we can obtain
the equilibrium equations of the birth–death chains as follows:

�(lj þ mj)pj(t)þ l j�1p j�1(t)þ m jþ1(t)p jþ1(t) ¼ 0 ( j ¼ 1, 2, . . . ) (A:40a)

�l0p0(t)þ m1p1(t) ¼ 0 (A:40b)

In the next section, we discuss how one can solve the above equations to obtain the
limiting state probabilities for birth–death chains.

A.6.3 Limiting State Probabilities

Using a recursive approach starting withp0 andp1, we can obtain the equilibrium state
probabilities of birth–death chains as follows:

pj ¼ l0 � � � l j�1

m1 � � �mj

 !
p0 (A:41)

The above equilibrium state probabilities are incomplete without knowing the
initial state probability p0. By applying the normalization condition of

P
j pj ¼ 1,

we can find the initial state probability p0 as follows:

p0 ¼ 1

1þP1
j¼1

pj=p0
	 
 ¼ 1

1þ
X1
j¼1

l0 � � � l j�1

m1 � � �mj

 ! (A:42)

The equilibrium state probabilities of the birth–death chains are fully described by
Equations (A.41) and (A.42). They are the basis for exploring the ergodicity of birth–
death chains, as will be demonstrated in the next section.

A.6.4 Ergodicity

Now let’s see under what conditions a birth–death chain is ergodic. For this purpose,
the big sum term in (A.42) gets our attention immediately. If that term does not con-
verge, or if the birth rates are larger than the death rates, then the chain cannot be posi-
tive recurrent with p0 ¼ 0, and therefore, an equilibrium or ergodic state cannot be
reached, which means that the system associated with this process will never
become stable. On the other hand, if the death rates are larger than the birth rates,
then eventually the initial state of the system will be re-visited with p0 ! 1, and
the system will reach the equilibrium or ergodic state.

A.6 BIRTH–DEATH CHAINS 359



In general, it’s desirable to maintain the following condition

lj
mj

, 1 (A:43)

so that the system can operate under equilibrium conditions. In the context of compu-
ters and software, this implies that the service completion rates should be faster than
arrival rates, which calls for proper sizing of the hardware capacities required to sup-
port the projected workloads. This belongs to the category of capacity planningwhich
has been a standard practice of the IT department of every organization.

To see how the analysis of birth–death chains is applied to queuing systems whose
inter-arrival times and service times follow the exponential distribution which
possesses the memoryless property as proven in Appendix B, refer to Appendix C:
the M/M/1 queues derived from birth–death chains.

360 APPENDIX A: STOCHASTIC EQUILIBRIUM AND ERGODICITY



Appendix B

Memoryless Property of the
Exponential Distribution

I have memories—but only a fool stores his past in the future.
—David Gerrold

We mentioned in Chapter 4 that a Markov process is characterized by its unique
property of memoryless-ness: the future states of the process are independent of its
past history and depends solely on its present state. We further learnt that Poisson pro-
cesses constitute a special class of Markov processes for which the event occurring
patterns follow the Poisson distribution while the inter-arrival times and service
times follow the exponential distribution. We have also learnt that if the event occur-
ring patterns follow the Poisson distribution, then the inter-arrival times and service
times follow the exponential distribution, or vice versa. It is important to understand
that all these statements are supported by the fact that the exponential distribution is the
only continuous distribution that possesses the unique property of memoryless-ness.

Now let’s mathematically prove the memoryless property of the exponential
distribution. Surprisingly, the proof is very simple.

First, let’s state the following conditional probability law that

P(A jB) ¼ P(A> B)=P(B) (B:1)

which can be read as “given the event B, the probability of the event A is equal to the
joint probability of A and B divided by the probability of the event B.”

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 IEEE Computer Society

361



Let T be the variable representing the random inter-arrival time between two
successive arrivals at two time points, then according to Equation (4.7), we have
the following probabilities for the two mutually-exclusive events:

† Having an arrival within a period of t seconds:

P(T � t) ¼ 1� e�lt (B:2)

† No arrival yet for a period of t seconds:

P(T 	 t) ¼ e�lt (B:3)

Then we wish to prove that

P(T � t þ Dt j T 	 t) ¼ P(0 � T � Dt) (B:4)

The left-hand-side of the above equation represents the probability of having an
arrival by waiting Dt seconds longer under the condition that no arrival has occurred
during the past waiting period of t seconds with t 	 0; the right-hand-side represents
the probability of having an arrival if waiting for another Dt seconds. The equation
states that the probability of having an arrival during the next Dt seconds is indepen-
dent of when the last arrival occurred.

With the help of Equations (B.1)–(B.3), we can prove that

P(T � t þ Dt j T 	 t) ¼ P[(T � t þ Dt)> (T 	 t)]
P(T 	 t)

¼ e�lt � e�l(tþDt)

e�lt
¼ 1� e�l(Dt)

¼ P(0 � T � Dt)

As an example, let’s say that there has been no arrival during the last 10 seconds.
Then the probability of having an arrival within the next 2 seconds is independent
of how long there has been no arrival so far, namely, P(T �10 þ 2 j T 	 10) ¼
P(T � 2). Do not mistakenly think that P(T �10 þ 2 j T 	 10) ¼ P(T � 12).

This completes the proof of the memoryless property of the exponential
distribution.

362 APPENDIX B: MEMORYLESS PROPERTY OF THE EXPONENTIAL DISTRIBUTION



Appendix C

M/M/1 Queues at
Steady State

The theory of probabilities is at bottom nothing but common sense reduced to calculus; it
enables us to appreciate with exactness that which accurate minds feel with a sort of instinct

for which often times they are unable to account.
—Pierre-Simon Laplace

In this appendix, we demonstrate how to analyze the behavior of a queuing model
using the theoretical framework about random processes we formulated in
Appendices A and B. The simplest queuing model, the M/M/1 queues, is chosen
for this purpose. Although extremely simple, the M/M/1 model is sufficient for
demonstrating the standard procedure of deriving various performance metrics of a
queuing system based on the theoretical framework established for describing stochas-
tic processes. In addition, theM/M/1 model reveals many basic facets of a wide range
of more complex queuing models.

The analysis of M/M/1 queuing model can be carried out by applying the limiting
state probability results of birth–death chains obtained previously. Let’s start with
reviewing the major results of birth–death chains presented in Appendix A. We
assume that the reader is already familiar with some of the basic concepts and metrics
about queuing systems introduced in Chapter 4 of this book.

C.1 REVIEW OF BIRTH–DEATH CHAINS

The key results of birth–death chains are the limiting state probabilities as repeated
below for the initial state probability p0 and limiting state probability pn, together

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 John Wiley & Sons, Inc.

363



with the normalization condition for the state probabilities:

p0 ¼ 1

1þ P1
n¼1

l0 � � � ln�1

m1 � � �mn

� � (C:1a)

pn ¼ l0 � � � ln�1

m1 � � �mn

� �
p0 n ¼ 1, 2, . . . (C:1b)

X
n
pn ¼ 1 (C:1c)

Another statement we need to make is that we’ll use a generic random variable (X )
instead of a random variable vector to represent the random states of the system.
Similarly, a generic random variable (T ) is used to denote the random inter-
arrival times between successive arrivals. These choices are well justified under the
assumption of IID we discussed previously.

The M/M/1 model represents a queuing system that is characterized as follows:

† Markov arrival process which implies the Poisson distribution for the number of
customers in the system and exponential distribution for the inter-arrival times

† Markov service pattern which implies that service times obey the exponential
distribution

† Single server for all customers
† Infinite system storage capacity
† First-come first-served policy

Then the generic birth–death model can be simplified for the M/M/1 model with
the following arrival and departure rates:

ln ¼ l for all n ¼ 0, 1, . . .

mn ¼ m for all n ¼ 1, 2, . . .

Then (C.1a) and (C.1b) can be simplified as follows:

p0 ¼ 1� r (C:2a)

pn ¼ rn(1� r) (C:2b)

where r ¼ l/m, 1 represents the load intensity.
Now we can proceed to derive all major performance metrics of M/M/1 queues

based on Equations (C.2a) and (C.2b).

C.2 UTILIZATION AND THROUGHPUT

The utilization (U ) of an M/M/1 queuing system can be obtained with the initial
state probability p0 which defines the relative portion of the time when the system

364 APPENDIX C: M/M/1 QUEUES AT STEADY STATE



is empty and the server is idle. It is simply

U ¼ 1� p0 ¼ r (C:3)

The system throughput (X0) is defined by the portion of the total service rate
when the system is busy, which is

X0 ¼ mr ¼ l (C:4)

This conclusion can also be obtained by the implicit premise that we are examining
the behavior of a stable M/M/1 system under steady-state or equilibrium condition so
that the system throughput equals the arrival rate.

Note that we use the symbol X0 to denote the system throughput here in order to
be consistent with what is used to denote the system throughput in Chapter 4 of the
main text. Although it might be confused with the random variable X0 in the context
of discussing random processes, its meaning should be clear in its local context here.

Next, let’s calculate the average queue length for an M/M/1 system.

C.3 AVERAGE QUEUE LENGTH IN THE SYSTEM

The average queue length is the average number of customers in the system, which can
be calculated according to the state probabilities (C.2b) as follows:

E(N) ¼
X1
n¼0

npn ¼ (1� r)
X1
n¼0

nrn ¼ r

1� r
(C:5)

To keep it simple, we have omitted the lengthy mathematical derivations for
arriving at (C.5).

Next, let’s calculate the average system time for an M/M/1 system.

C.4 AVERAGE SYSTEM TIME

The average system time E(S ) is the average residing time for customers in the system,
which can be calculated according to Little’s Law as follows:

E(S) ¼ E(N)
X0

¼ 1=m
1� r

(C:6)

This result is straightforward with no complicated mathematical derivations
involved. Note that 1/m is simply the average service timewhich measures the average
time for customers from entering to departing the system when the system load is low.
The average system time includes the system wait time when the system needs to wait
for the availability of some system resources but excludes the user wait time before
entering the system.

Next, let’s calculate the average wait time for an M/M/1 system.

C.4 AVERAGE SYSTEM TIME 365



C.5 AVERAGE WAIT TIME

The average wait time E(W ) is the average time that customers wait for being serviced
by the system. It is equal to the average system time subtracting the average service
time which is 1/m. It thus follows that:

E(W) ¼ E(S)� 1
m
¼ (1=m)r

1� r
(C:7)

From (C.7), one can also get the average queue length in the queue alone Eq (N),
which by Little’s Law, is equal to the throughput (mr) multiplied by the average
wait time in the queue expressed by (C.7), or:

Eq(N) ¼ (mr)E(W) ¼ r2

1� r
(C:8)

Since the purpose of this appendix is to demonstrate how queuing systems are
analytically treated with a generic theoretical framework describing random processes,
more complex queuing systems are covered in Chapter 4 of the text. Also the reader
is suggested to reconcile the inconsistencies of the terminologies and symbols used
here and in the main text by following Table C.1. The two sets of terminologies
for describing the same set of queuing system performance metrics stem from
two different perspectives: one from the statistical perspective and the other from
the application perspective.

One can follow a similar procedure to analyzing the behavior of an M/M/1 queue
to carry out the analysis of more complicated queues. To explore further, refer to the
more in-depth texts on queuing theory recommended at the end of Chapter 4.

TABLE C.1 Queuing System Performance Metrics

Statistical Perspective Application Perspective

Average queue length: E(N ) Ni in (4.18) (System size)
Average system time: E(S ) Ri in (4.12) (Response time)
Average wait time: E(W ) Wi in (4.12) (Wait time in the queue)
Service time: 1/m Si in (4.12) (Service time)

366 APPENDIX C: M/M/1 QUEUES AT STEADY STATE



Index

Agile software, software development
process, 83–84

Amdahl’s law, performance, and scalability
testing, 97–99

Application binary interface (ABI),
application programming interfaces
(APIs) contrasted, 45

Application programming interface (API),
44–47

generally, 44–45
Google, 46–47
Java, 45–46
scalable performance, 2
Windows, 45

Application programming interface (API)
profiling, 249–338. See also
Java application programming
interfaces (APIs); Performance
and scalability testing

defense lines, 252–253
defined, 251–252
execution stack, 253–254
overview, 249
perfBasic, 254–260

generally, 254–255

logging format, 255–256
log parser, 256–258
performance maps, 258–260
summarization file, 260

Application programming interface (API)
profiling case study, 303–338

combo logs, 325–333
client side performance map, 325–327
server side performance map,

327–334
custom logs, 320–325

adapter, 320–321
performance map generation,

321–325
enabling, 304–312

apf.properties file settings, 306–308
best coding practices, 311–312
generally, 304–305
mechanism of populating log

entry, 305
non-Java programs, 312
parsing workflow, 308–310
source and target projects, 306
verification of profiling-enabled

source code, 310–311

Software Performance and Scalability. By Henry H. Liu
Copyright # 2009 John Wiley & Sons, Inc.

367



Application programming interface (API)
profiling case study (Continued )

overview, 303–304
performance and scalability problems,

333–337
analysis, 336–337
baseline, 333–335
optimization, 335–336

standard logs, 313–320
data generation, 313–314
parsing, 314–316
performance map analysis, 319–320
performance map generation, 316–319

Application programming interface (API)
profiling enablement, 263–280. See
also PerfBasic (API profiling)

begin line, 272–274
comments processing, 271–272
enabling profiling, 267–270
end line, 275–276
files processing, 266–267
global parameters, 265
inner classes processing, 270–271
main logic, 266
main method processing, 276–277
overview, 263
return statements processing, 274–275
structure, 264–265
test program, 277–279

Application programming interface (API)
profiling implementation, 281–301

adapter class, 300
analyzer class, 299–300
CallRecord class, 294
driver program, 286–289
global parameters, 289–291
graphics tool:

dot and neato, 281–284
ILOG, 284–285
resolution, 286

Link class, 293–294
logReader, 291–292
logWriter, 292
Node class, 292–293
overview, 286–287
parser class, 294–298
utility class, 294
xmlProcessor class, 298–299

Application software, categorization, 54–55

Aristotle, 503
Array processing, optimization, and tuning

software application (queuing
theory), 223–226

Babbage, Charles, 3, 6
Backus, John, 8
Balanced queuing system, optimization, and

tuning software application (queuing
theory), 240–244

Batch jobs:
networked queuing systems, 170–171
scalability testing, 75–82
software performance testing, 86–95

BEA Systems, 188–191
Begin line, application programming

interface (API) profiling
enablement, 272–274

Benchmarking, performance benchmarking
testing, 74

Bifurcating, 241
BIOS (Basic Input/Output System),

systems software categorization, 53
Bottlenecks:
central processing unit (CPU), perfmon,

119–121
disk I/O bottlenecks diagnosis, perfmon,

121–124
networked queuing systems, 170–171
Perfmon, multithreading, 51–52
service-oriented architecture (SOA)

application (queuing theory), test
results, 197–200

Task Manager, 125–128
Von Neuman, John, 8

Business software, application software
categorization, 54

Cache memory:
optimization and tuning software

application (queuing theory),
226–227

storage and hierarchy, 22–23
Carlyle, Thomas, 249
Central processing unit (CPU):
bottlenecks diagnosis, perfmon, system

performance counters, 119–121
hyperthreading, 11–13
Perfmon, multithreading, 48–52

368 INDEX



performance and scalability testing
factors, 100–103

von Neumann machine, 7–8, 18
Chip, defined, 20
Chipset, defined, 20
Chipsets, Intel Core microarchitecture,

20–21
C language, 42
Cþþ language, 42, 253–254
Client/server architecture, enterprise

software, 57–59
Closed model (M/M/m/N/N), networked

queuing systems, 162–166
COBOL, 42
Componentry, enterprise software, 61
Computer technology. See also Intel Core

microarchitecture; Intel machine
advances in, 5–6, 18
Intel Core microarchitecture, 13–17
Intel machine, 9–17
sizing hardware, 35–37
Sun machine, 17–18
Turing machine, 6–7
von Neumann machine, 7–8, 18
Zuse machine, 8

Continuous distribution and distribution
density function, 145

Continuous random variable, 145
Covering index, optimization, and tuning

software application (queuing
theory), 228–229

Cursor-sharing, service demand reduction,
optimization and tuning software
application (queuing theory),
229–231

Database-centric application software
categorization, 55

Database deadlocks, performance, and
scalability testing factors, 110

Database double buffering, optimization,
and tuning software application
(queuing theory), 235–240

Database statistics, performance, and
scalability testing factors, 107–108

Data latency reduction, optimization, and
tuning software application (queuing
theory), 232–233

Da Vinci, Leonardo, 135

Defense lines, application programming
interface (API) profiling, 252–253

Deterministic process, probability
theory, 146

Device drivers, systems software
categorization, 53–54

Discrete distribution and probability
distribution series, 144

Discrete random variable, probability
theory, 144

Disk I/O bottlenecks diagnosis, perfmon,
system performance counters,
121–124

Distributed mass function, probability
theory, 144–145

Distribution density function:
continuous distribution, 145
probability theory, 144–145

Distribution functions, probability theory,
143–145

Edison, Thomas Alva, 263
Electronic Discrete Variable Automatic

Computer (EDVAC, Von Neumann
machine), 7–8

End line, application programming interface
(API) profiling enablement,
275–276

Enterprise software, 55–63
client/server architecture, 58
componentry, 61
defined, 55–57
monolithic architecture, 57
multithreading, 47
N-tier architecture, 60
service-oriented architecture, 61
three-tier architecture, 59

Entertainment software, application
software categorization, 53

Exponential distribution function:
memoryless property of, 361–363
probability theory applications,

146–151
Extraneous logic elimination, service

demand reduction, optimization, and
tuning software application (queuing
theory), 231–232

Extreme programming, software
development process, 84–86

INDEX 369



Feedback, networked queuing systems, 159
Finite response time, networked queuing

systems, 166–168
FORTRAN, 42

Galileo Galilei, 135
Gates, Bill, 42
Genealogy, networked queuing systems,

171–172
General process, probability theory, 146
Gerrold. David, 361
Google application programming interfaces

(APIs), 46–47

Hard disks, memory and storage
hierarchy, 23

Hardware, performance and scalability
testing factors, 100–103

Hardware platform, 5–37. See also Intel
Core microarchitecture; Intel
machine

Intel Core microarchitecture, 13–17
Intel machine, 9–17
scalable performance, 3
sizing hardware, 35–36
Sun machine, 17–18
Turing machine, 6–7
von Neumann machine, 7–8, 18
Zuse machine, 8

Hardware principle, software performance
data principles, 129–130

Hierarchy, memory, and storage, 22–23
Hyperthreading, Intel machine, 9–13

Institute for Advanced Studies (IAS,
Princeton University), 18

Intel Core microarchitecture, 13–17
chipsets, 20–21
motherboards, 19–20
networking, 27–28
processors, 18–19
RAIDs, 23–27
storage, 21–23
Turing model, 30–35

Intel machine, 9–17
historical perspective, 9
hyperthreading, 9–13
multicore architecture, 13–16
system monitoring tools, 17

Internal application software
categorization, 55

Java application programming interfaces
(APIs), 45–46, 253–254. See also
Application programming interface
(API) profiling

Java virtual machine (JVM), 43–44
Jackson’s Theorem, 156

Kendall notation:
networked queuing systems, 152

Languages, software stack, 42–44, 253
Leonardo da Vinci, 135
Licensing, performance, and scalability

testing factors, 110
Linux platforms, system performance

counters, 128–129
Little’s law, networked queuing systems,

154–155
Logging format, perfBasic, API profiling,

255–256
Log parser, API profiling, 256–258

Main memory, memory, and storage
hierarchy, 23

Markov process:
memoryless property, 344
probability theory applications, 144–146

Mathematical symbols, queuing theory, 142
Media software, application software

categorization, 54
Medical records (MedRec) application:
queuing theory, 188–191
test results, 191–198

Memory, storage, and hierarchy, 22–23
Memory leaks:
Turing model, 30–35
perfmon, system performance counters,

118–119
Memoryless property, of exponential

distribution, 361
Method begin line, application

programming interface (API)
profiling enablement, 272–274

Method end line, application programming
interface (API) profiling
enablement, 275–276

370 INDEX



Microsoft Windows. See Windows
Middleware software, categorization, 55
M/M/m/N/N model (closed), networked

queuing systems, 162–166
Monolithic architecture, enterprise

software, 57
Moore, Gordon E., 5–6
Moore’s law, 5–6
Motherboards, Intel Core microarchitecture,

19–20
MPLS, 233
Multicore architecture, Intel machine,

13–16
Multiple parallel queues, single-queue

multiple servers versus, 160–162
Multithreading, software platform, 47–53

Networked queuing systems, 153–172
feedback, 156
finite response time, 166–169
genealogy, 171–172
generally, 153
Little’s law, 154
M/M/m/N/N model (closed), 162–166
multiple parallel queues versus single-

queue multiple servers, 160–162
open model (M/M/1), 155–159
open model validity, 169
system bottlenecks, 170
utilization, service time, and response

time (Triad II), 159
Networking, Intel Core microarchitecture,

27–28
Newton, Isaac, 303
Noninteractive batch jobs, performance

metrics, 1
N-tier architecture, enterprise software,

60–61

Online transaction processing (OLTP):
hyperthreading, 9
performance metrics, 87
queuing systems, 153, 158–159

(See also Queuing theory)
scalability testing, 75–82
software performance testing, 86–95

Open model (M/M/1):
networked queuing systems, 155–159
validity of, 169–170

Operating system (OS):
performance and scalability testing

factors, 103–107
systems software categorization, 55

Optimization and tuning software appli-
cation (queuing theory), 205–245

balanced queuing system, 240–244
overview, 205–207
performance and scalability, 208–220

application, 215–220
factor isolation, 208–215
problem characterization, 207–208

techniques, 220–240
array processing, 223–226
caching, 226–228
database double buffering, 235–240
data latency reduction, 232–233
generally, 220
service demand reduction, 228–231

covering index, 228
cursor-sharing, 229–231
extraneous logic elimination,

231–232
wait events and service demands,

221–223
Optimization testing, performance

optimization and tuning testing,
70–74

PerfBasic (API profiling), 254–260.
See also Application programming
interface (API) profiling case study;
Application programming interface
(API) profiling enablement;
Application programming interface
(API) profiling implementation

generally, 254–255
logging format, 255
log parser, 256–258
performance maps, 258–260
summarization file, 260

Perfmon:
CPU bottlenecks diagnosis, system

performance counters, 111–128
disk I/O bottlenecks diagnosis, system

performance counters, 121–125
memory leak diagnosis, system

performance counters, 118–119
multithreading, 47–53

INDEX 371



Performance:
scalability contrasted, 1–2 (See also

Scalable performance)
software platform, 42

Performance and scalability testing,
67–135. See also Application
programming interface (API)
profiling

Amdahl’s law, 97–99
application programming interface (API)

profiling case study, 333–337
factors in, 99–111

database deadlocks, 110
database statistics, 107
generally, 99
hardware, 100
licensing, 110
operating system, 103
SQL server parameterization, 108

optimization and tuning software
application (queuing theory),
205–240

factor isolation, 208
problem characterization, 207

overview, 65–68
performance benchmarking testing, 75
performance optimization and tuning

testing, 70–75
performance regression testing, 68
performance testing merits, 82
QA testing, performance testing

compared, 82
scalability testing, 75
software development process, 83–86

agile software, 83
extreme programming, 84

software performance, 86–95
batch jobs, 92
generally, 86–95
online transaction processing (OLTP),

87
software performance data principles,

129–131
software performance measurements,

stochastic nature of, 95
system performance counters, 111–129

generally, 111–112
perfmon:

CPU bottlenecks diagnosis, 119

disk I/O bottlenecks diagnosis, 121
memory leak diagnosis, 118

Task Manager, system bottlenecks
diagnosis, 125

UNIX/Linux platforms, 128
Windows performance console, 112

test types, 68
Performance benchmarking testing, 75
Performance maps (API profiling), 258,

316–327
client side, 325
server side, 327

Performance optimization and tuning
testing, 70

Performance regression testing, 68
Performance testing:
merits of, 82
QA testing compared, 82

Platform principle, software performance
data principles, 129

Plato, 137, 303
Poisson distribution:
memoryless property, 361–363
probability theory applications, 148

Probability distribution series and discrete
distribution, 144

Probability theory, 142–145
continuous distribution and

distribution density
function, 144–145

discrete distribution and probability
distribution series, 144

generally, 142–143
random variables and distribution

functions, 143–144
Probability theory applications, 145–152
exponential distribution function, 150
generally, 145–146
Kendall notation, 152
Markov process, 146
nodes versus systems, 152
Poisson distribution, 148

Process, thread contrasted, 47
Processors, Intel Core microarchitecture,

13–16
Product engineering software, application

software categorization, 54
Programming languages, software stack,

42, 253

372 INDEX



QA testing, performance testing
compared, 82

Quality principle, software performance
data principles, 131

Quantitativeness, scalable performance, 6
Queue length, queuing systems, 154
Queuing nodes, queuing systems contrasted,

probability theory applications, 152
Queuing systems, queuing nodes contrasted,

probability theory applications, 152
Queuing theory, 135–177
concepts in, 139–141
mathematical symbols in, 142
medical records (MedRec) application,

188
networked queuing systems, 153

feedback, 159
finite response time, 166
genealogy, 171
generally, 145
Little’s law, 154
M/M/m/N/N model (closed), 162
multiple parallel queues versus single-

queue multiple servers, 160
open model (M/M/1), 155
open model validity, 169
system bottlenecks, 170
utilization, service time, and response

time (Triad II), 159
optimization and tuning software

application, 205–249
overview, 205–207
performance and scalability, 207–220

application, 215–220
factor isolation, 208–215
problem characterization, 207–208

optimization and tuning software
application techniques, 220–235

array processing, 223
balanced queuing system, 240
caching, 226
database double buffering, 235
data latency reduction, 232
generally, 220
service demand reduction, 228–232

covering index, 228
cursor-sharing, 229
extraneous logic elimination, 231

wait events and service demands, 221

overview, 139
performance and scalability testing,

137–138
perspective on, 135
probability theory, 143

continuous distribution and
distribution density function,
145

discrete distribution and probability
distribution series, 144

generally, 143
random variables and distribution

functions, 144
probability theory applications,

145–153
exponential distribution function, 150
generally, 145
Kendall notation, 152
Markov process, 146
nodes versus systems, 152
Poisson distribution, 148

service-oriented architecture (SOA)
application, 177–201

analytical model, 181
demand, 183

database server, 186
data storage, 187
generally, 183
network latency, 185
object creation, 184
XML SOAP serialization/

deserialization, 184
XMLWeb service provider, 186

model/measurement comparisons,
198

overview, 177
test results, 191
validity, 200
XMLWeb services, 179

RAIDS. See Redundant arrays of
inexpensive disks (RAIDs)

Random variables, probability theory, 143
Reality principle, software performance

data principles, 130
Redundant arrays of inexpensive disks

(RAIDs):
Intel Core microarchitecture, 13–17
Perfmon, multithreading, 47

INDEX 373



Registers, memory and storage
hierarchy, 22

Regression tests, performance regression
testing, 68

Reliability principle, software performance
data principles, 130

Response time:
online transaction processing (OLTP), 1
queuing systems, 154
utilization, service time, and networked

queuing systems, 155

Scalability. See also Scalable performance
performance contrasted, 1–2
software platform, 41

Scalability testing, 75
batch jobs, 76
generally, 75
online transaction processing (OLTP),

77–82
Scalable performance, 1
factors in, 3–4
Intel Core microarchitecture, 13–17

chipset, 20–21
motherboard, 19–20
networking, 27–28
processors, 18–19
RAIDs, 24
storage, 22
Turing model, 6, 30

sizing hardware, 35
software platform, 41

Service demand(s):
covering index, 228
cursor-sharing, 229
wait events, 221

Service level agreement (SLA), Intel Core
microarchitecture and Turing
model, 35

Service-oriented architecture (SOA),
177–201. See also XMLWeb
services

analytical model, 181
demand, 183

database server, 186
data storage, 186
generally, 183–184
network latency, 185
object creation, 184

XML SOAP serialization/
deserialization, 184

XMLWeb service provider, 186
enterprise software, 55–61
model/measurement comparisons, 198
overview, 177–179
test results, 191
validity, 200
XMLWeb services, 179

Service time, utilization, response time, and
networked queuing systems, 159

Single-queue multiple servers, multiple
parallel queues versus, 160

Single-user application software
categorization, 54

Sizing hardware, 35
SOA. See Service-oriented architecture

(SOA)
Software development kit (SDK),

application programming interfaces
(APIs), 44

Software development process, 83
agile software, 83
extreme programming, 84

Software performance data principles, 129
Software performance measurements,

stochastic nature of, 95
Software performance testing, 86
batch jobs, 86–95
generally, 86
online transaction processing (OLTP),

87–95
Software platform, 42–63
application programming interfaces

(APIs), 44–47
generally, 44
Google, 46
Java, 45
Windows, 46

categorization, 53
enterprise software, 55

client/server architecture, 58
componentry, 61
defined, 55
monolithic architecture, 57
N-tier architecture, 60
service-oriented architecture, 61
three-tier architecture, 59

multithreading, 47

374 INDEX



overview, 42
scalable performance, 3
software stack, 42, 253

Software stack:
application programming interface (API)

profiling, 254
languages, 42

SQL server parameterization, performance,
and scalability testing factors, 108

SQL tuning, optimization, and tuning
software application, 228

Storage:
data latency reduction, optimization, and

tuning software, 232
Intel Core microarchitecture, 13–17

Summarization file, API profiling, 260
Sun machine, 17–18
System bottlenecks. See also Bottlenecks
networked queuing systems, 170
Task Manager, 125

System monitoring tools, Intel machine, 17
System performance counters, 111
generally, 111
perfmon:

CPU bottlenecks diagnosis, 119
disk I/O bottlenecks diagnosis, 121
memory leak diagnosis, 118

Task Manager, system bottlenecks
diagnosis, 125

UNIX/Linux platforms, 128
Windows performance console, 112

Systems software, categorization, 53

Task Manager, system bottlenecks
diagnosis, 125

Testing software, scalable performance, 3
Thread, process contrasted, 47
Three-tier architecture, enterprise

software, 59
Throughput:
noninteractive batch jobs, 1
queuing systems, 152

Tuning testing and performance
optimization testing, 70

Turing, Alan, 6–7, 205
Turing machine:
computer technology, 6–7
Intel Core microarchitecture, 13–17

UNIX/Linux platforms, system
performance counters, 128

Utilization, service time, response
time, and networked queuing
systems, 159

VMWareTM, 43
Volume principle, software performance

data principles, 130
Von Neumann, John, 7–8
Von Neumann bottleneck, 8
Von Neumann machine, computer

technology, 7–8, 18

Wait events:
optimization and tuning software

application, 205–244
service demands, optimization, and

tuning software, 221
Web application software categorization, 55
Windows, application programming

interfaces (APIs), 45
Windows performance console, system

performance counters, 111
Wright, Frank Lloyd, 177

XMLWeb services. See also Service-
oriented architecture (SOA)

API profiling implementation,
287–300

medical records (MedRec)
application, 188

service-oriented architecture (SOA)
application (queuing theory),
177–179

test results, 191

Zuse, Konrad, 5, 8
Zuse machine, computer technology, 8

INDEX 375





Quantitative Software Engineering Series

The Quantitative Software Engineering Series focuses on the convergence of systems engineering and
software engineering with emphasis on quantitative engineering trade-off analysis. Each title brings the
principles and theory of programming in-the-large and industrial strength software into focus.

This practical series helps software developers, software engineers, systems engineers, and graduate students
understand and benefit from this convergence through the unique weaving of software engineering case
histories, quantitative analysis, and technology into the project effort. You will find each publication
reinforces the series goal of assisting the reader with producing useful, well-engineered software systems.

Lawrence Bernstein, Series Editor
Professor Bernstein is currently Industry Research Professor at the Stevens Institute of Technology. He
previously pursued a distinguished executive career at Bell Laboratories. He is a Fellow of IEEE and ACM.
lbernstein@worldnet.att.net

Published Titles:

Trustworthy Systems Through Quantitative Software Engineering
Lawrence Bernstein and C.M. Yuhas 978-0-471-69691-9

Software Measurement and Estimation: A Practical Approach
Linda M. Laird and M. Carol Brennan 978-0-471-67622-5

Software Performance and Scalability: A Quantitative Approach
Henry H. Liu 978-0-470-46253-9


	Software Performance and Scalability
	Contents
	PREFACE
	ACKNOWLEDGMENTS
	Introduction
	Performance versus Scalability

	PART 1 THE BASICS
	1. Hardware Platform
	1.1 Turing Machine
	1.2 von Neumann Machine
	1.3 Zuse Machine
	1.4 Intel Machine
	1.4.1 History of Intel’s Chips
	1.4.2 Hyperthreading
	1.4.3 Intel’s Multicore Microarchitecture
	1.4.4 Challenges for System Monitoring Tools

	1.5 Sun Machine
	1.6 System Under Test
	1.6.1 Processors
	1.6.2 Motherboard
	1.6.3 Chipset
	1.6.4 Storage
	1.6.5 RAID
	1.6.6 Networking
	1.6.7 Operating System

	1.7 Odds Against Turing
	1.7.1 Memory Leaks
	1.7.2 SLAs

	1.8 Sizing Hardware
	1.9 Summary
	Recommended Reading
	Exercises

	2. Software Platform
	2.1 Software Stack
	2.2 APIs
	2.2.1 Windows APIs
	2.2.2 Java APIs
	2.2.3 Google APIs

	2.3 Multithreading
	2.4 Categorizing Software
	2.4.1 Systems Software
	2.4.2 Application Software
	2.4.3 Middleware Software

	2.5 Enterprise Computing
	2.5.1 What Is Enterprise Software?
	2.5.2 Enterprise Software Architecture
	2.5.3 Monolithic Architecture
	2.5.4 Client/Server Architecture
	2.5.5 Three-Tier Architecture
	2.5.6 N-Tier Architecture
	2.5.7 Software Componentry
	2.5.8 Service-Oriented Architecture

	2.6 Summary
	Recommended Reading
	Exercises

	3. Testing Software Performance and Scalability
	3.1 Scope of Software Performance and Scalability Testing
	3.1.1 Performance Regression Testing
	3.1.2 Performance Optimization and Tuning Testing
	3.1.3 Performance Benchmarking Testing
	3.1.4 Scalability Testing
	3.1.5 QA Testing Versus Performance Testing
	3.1.6 Additional Merits of Performance Testing

	3.2 Software Development Process
	3.2.1 Agile Software Development
	3.2.2 Extreme Programming

	3.3 Defining Software Performance
	3.3.1 Performance Metrics for OLTP Workloads
	3.3.2 Performance Metrics for Batch Jobs

	3.4 Stochastic Nature of Software Performance Measurements
	3.5 Amdahl’s Law
	3.6 Software Performance and Scalability Factors
	3.6.1 Hardware
	3.6.2 Operating System
	3.6.3 Database Statistics
	3.6.4 SQL Server Parameterization
	3.6.5 Database Deadlocks
	3.6.6 Licensing

	3.7 System Performance Counters
	3.7.1 Windows Performance Console
	3.7.2 Using perfmon to Diagnose Memory Leaks
	3.7.3 Using perfmon to Diagnose CPU Bottlenecks
	3.7.4 Using perfmon to Diagnose Disk I/O Bottlenecks
	3.7.5 Using Task Manager to Diagnose System Bottlenecks
	3.7.6 UNIX Platforms

	3.8 Software Performance Data Principles
	3.9 Summary
	Recommended Reading
	Exercises


	PART 2 APPLYING QUEUING THEORY
	4. Introduction to Queuing Theory
	4.1 Queuing Concepts and Metrics
	4.1.1 Basic Concepts of Queuing Theory
	4.1.2 Queuing Theory: From Textual Description to Mathematical Symbols

	4.2 Introduction to Probability Theory
	4.2.1 Random Variables and Distribution Functions
	4.2.2 Discrete Distribution and Probability Distribution Series
	4.2.3 Continuous Distribution and Distribution Density Function

	4.3 Applying Probability Theory to Queuing Systems
	4.3.1 Markov Process
	4.3.2 Poisson Distribution
	4.3.3 Exponential Distribution Function
	4.3.4 Kendall Notation
	4.3.5 Queuing Node versus Queuing System

	4.4 Queuing Models for Networked Queuing Systems
	4.4.1 Queuing Theory Triad I: Response Time, Throughput, and Queue Length (Little’s Law)
	4.4.2 M/M/1 Model (Open)
	4.4.3 Queuing System: With Feedback versus Without Feedback
	4.4.4 Queuing Theory Triad II: Utilization, Service Time, and Response Time
	4.4.5 Multiple Parallel Queues versus Single-Queue Multiple Servers
	4.4.6 M/M/m/N/N Model (Closed)
	4.4.7 Finite Response Time in Reality
	4.4.8 Validity of Open Models
	4.4.9 Performance and Scalability Bottlenecks in a Software System
	4.4.10 Genealogy of Queuing Models

	4.5 Summary
	Recommended Reading
	Exercises

	5. Case Study I: Queuing Theory Applied to SOA
	5.1 Introduction to SOA
	5.2 XML Web Services
	5.3 The Analytical Model
	5.4 Service Demand
	5.4.1 Web Services Handle Creation
	5.4.2 XML SOAP Serialization/Deserialization
	5.4.3 Network Latency
	5.4.4 XML Web Service Provider
	5.4.5 Database Server
	5.4.6 Data Storage

	5.5 MedRec Application
	5.5.1 Exposing a Stateless Session EJB as an XML Web Service
	5.5.2 Consuming an XML Web Service Using SOAP

	5.6 MedRec Deployment and Test Scenario
	5.7 Test Results
	5.7.1 Overhead of the XML Web Services Handle
	5.7.2 Effects of Caching Web Services Handle
	5.7.3 Throughput Dynamics
	5.7.4 Bottleneck Analysis

	5.8 Comparing the Model with the Measurements
	5.9 Validity of the SOA Performance Model
	5.10 Summary
	Recommended Reading
	Exercises

	6. Case Study II: Queuing Theory Applied to Optimizing and Tuning Software Performance and Scalability
	6.1 Analyzing Software Performance and Scalability
	6.1.1 Characterizing Performance and Scalability Problems
	6.1.2 Isolating Performance and Scalability Factors
	6.1.3 Applying Optimization and Tuning

	6.2 Effective Optimization and Tuning Techniques
	6.2.1 Wait Events and Service Demands
	6.2.2 Array Processing&#8212;Reducing V(i)
	6.2.3 Caching&#8212;Reducing Wait Time (W(i))
	6.2.4 Covering Index&#8212;Reducing Service Demand (D(i))
	6.2.5 Cursor-Sharing&#8212;Reducing Service Demand (D(i))
	6.2.6 Eliminating Extraneous Logic&#8212;Reducing Service Demand (D(i))
	6.2.7 Faster Storage&#8212;Reducing Data Latency (W(i))
	6.2.8 MPLS&#8212;Reducing Network Latency (W(i))
	6.2.9 Database Double Buffering&#8212;An Anti Performance and Scalability Pattern

	6.3 Balanced Queuing System
	6.4 Summary
	Recommended Reading
	Exercises


	PART 3 APPLYING API PROFILING
	7. Defining API Profiling Framework
	7.1 Defense Lines Against Software Performance and Scalability Defects
	7.2 Software Program Execution Stack
	7.3 The PerfBasic API Profiling Framework
	7.3.1 API Profile Logging Format
	7.3.2 Performance Log Parser
	7.3.3 Performance Maps
	7.3.4 Performance Summarization File

	7.4 Summary
	Exercises

	8. Enabling API Profiling Framework
	8.1 Overall Structure
	8.2 Global Parameters
	8.3 Main Logic
	8.4 Processing Files
	8.5 Enabling Profiling
	8.6 Processing Inner Classes
	8.7 Processing Comments
	8.8 Processing Method Begin
	8.9 Processing Return Statements
	8.10 Processing Method End
	8.11 Processing Main Method
	8.12 Test Program
	8.13 Summary
	Recommended Reading
	Exercises

	9. Implementing API Profiling Framework
	9.1 Graphics Tool&#8212;dot
	9.2 Graphics Tool&#8212;ILOG
	9.3 Graphics Resolution
	9.4 Implementation
	9.4.1 driver
	9.4.2 Global Parameters
	9.4.3 logReader
	9.4.4 logWriter
	9.4.5 Node
	9.4.6 Link
	9.4.7 CallRecord
	9.4.8 utility
	9.4.9 parser
	9.4.10 xmlProcessor
	9.4.11 analyzer
	9.4.12 adapter

	9.5 Summary
	Exercises

	10. Case Study: Applying API Profiling to Solving Software Performance and Scalability Challenges
	10.1 Enabling API Profiling
	10.1.1 Mechanism of Populating Log Entry
	10.1.2 Source and Target Projects
	10.1.3 Setting apf.properties File
	10.1.4 Parsing Workflow
	10.1.5 Verifying the Profiling-Enabled Source Code
	10.1.6 Recommended Best Coding Practices
	10.1.7 Enabling Non-Java Programs

	10.2 API Profiling with Standard Logs
	10.2.1 Generating API Profiling Log Data
	10.2.2 Parsing API Profiling Log Data
	10.2.3 Generating Performance Maps
	10.2.4 Making Sense Out of Performance Maps

	10.3 API Profiling with Custom Logs
	10.3.1 Using Adapter to Transform Custom Logs
	10.3.2 Generating Performance Maps with Custom Logs

	10.4 API Profiling with Combo Logs
	10.4.1 Client Side Performance Map
	10.4.2 Server Side Performance Map

	10.5 Applying API Profiling to Solving Performance and Scalability Problems
	10.5.1 Baseline
	10.5.2 Optimization
	10.5.3 Analysis

	10.6 Summary
	Exercises


	APPENDIX A STOCHASTIC EQUILIBRIUM AND ERGODICITY
	A.1 Basic Concepts
	A.1.1 Random Variables
	A.1.2 Random Variable Vector
	A.1.3 Independent and Identical Distributions (IID)
	A.1.4 Stationary Processes
	A.1.5 Processes with Stationary Independent Increments

	A.2 Classification of Random Processes
	A.2.1 General Renewal Processes
	A.2.2 Markov Renewal Processes
	A.2.3 Markov Processes

	A.3 Discrete-Time Markov Chains
	A.3.1 Transition Probability Matrix and C-K Equations
	A.3.2 State Probability Matrix
	A.3.3 Classification of States and Chains

	A.4 Continuous-Time Markov Chains
	A.4.1 C&#8211;K Equations
	A.4.2 Transition Rate Matrix
	A.4.3 Imbedded Markov Chains

	A.5 Stochastic Equilibrium and Ergodicity
	A.5.1 Definition
	A.5.2 Limiting State Probabilities
	A.5.3 Stationary Equations
	A.5.4 Ergodic Theorems for Discrete-Time Markov Chains
	A.5.5 Ergodic Theorems for Continuous-Time Markov Chains

	A.6 Birth&#8211;Death Chains
	A.6.1 Transition Rate Matrix
	A.6.2 C&#8211;K Equations
	A.6.3 Limiting State Probabilities
	A.6.4 Ergodicity


	APPENDIX B MEMORYLESS PROPERTY OF THE EXPONENTIAL DISTRIBUTION
	APPENDIX C M/M/1 QUEUES AT STEADY STATE
	C.1 Review of Birth&#8211;Death Chains
	C.2 Utilization and Throughput
	C.3 Average Queue Length in the System
	C.4 Average System Time
	C.5 Average Wait Time

	INDEX




