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Preface

This book contains a selection of papers that have been presented at the work-
shop ‘Recent Developments and Future Directions in Agent-Based Modelling in
Population Studies’ that we organized at the University of Leuven (KU Leuven),
Belgium, 18–19 September 2014. All papers have been revised after the workshop
and accepted after having been peer-reviewed. The workshop was organized
in the context of the project ‘Implications of the Shifting Gender Balance in
Education for Reproductive Behaviour in Europe’ and received funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007–2013)/ERC Grant Agreement no. 312290 for the GENDER-
BALL project, the Concerted Research Action ‘New Approaches to the Social
Dynamics of Long Term Fertility Change’ (KU Leuven grant), and the Scientific
Research Group Historical Demography (Research Foundation Flanders). We are
grateful for the support from the financing institutions. We would also like to
thank Francesco Billari for his inspiring concluding talk; the other members of
the scientific committee, Koenraad Matthys, Geert Molenberghs, Giovanni Samaey,
and Geert Verbeke, for their contributions to the workshop; and Martine Parton and
Marina Franckx for their help with the organization. Finally, we would like to thank
the reviewers for their help with assessing the contributions to this book.
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Part I
Perspectives on Agent-Based Modelling

in Population Studies



Chapter 1
Introduction: Agent-Based Modelling as a Tool
to Advance Evolutionary Population Theory

Jan Van Bavel and André Grow

1.1 Introduction

Demography has for long and repeatedly been described as a field that is rich in
methods but poor in theories (Burch 2003a; De Bruijn 1999; Tabutin 2007; Vance
1952). While there has been a lot of methodological advancement, the field has made
less progress in generating widely accepted theories that explain trends in fertility,
mortality, migration, or other aspects of population. Of course, to the extent that
the dynamics of human populations are governed by the same kind of forces as
other social processes, demographers can and do borrow theories from other social
sciences. However, to the extent that important aspects of population processes
really are a reality sui generis, the field would strongly benefit from more theory
development.

More than 10 years ago, Billari et al. (2003) recommended agent-based mod-
elling (ABM) as a tool to advance population theory. While a number of ABM-
contributions have been published in the mainstream demographic journals since
then, ABM still has not become a standard tool in every demographer’s kit and the
advancement of population theory through ABM still remains limited. Ironically,
Billari et al. (2003, p. 3) already pointed out an important factor hindering the
widespread application of ABM in population studies: the lack of theories. ABM
proceeds by implementing theoretical rules of behaviour, decision-making, and
interaction in a simulation and then investigates the resulting patterns that emerge
from this. So, on the one hand, in order to apply ABM, one needs theory; on the
other hand, we want to apply ABM in order to develop the theories we are lacking.
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4 J. Van Bavel and A. Grow

In this introduction, we want to highlight one reason for this ‘Catch-22’,
namely the rather ‘closed’ concept of population that has been dominating the
field. Most of the effort in demography has been devoted so far to the numerical
monitoring of national population flows and structures. Not only has demography
been preoccupied with empirical data and techniques for analysing these data
(Burch 2003b), the field has also been preoccupied with data representing the
populations of nation states. The requirement to have ‘nationally representative’
data has important advantages, but it has hindered creative theory development. The
field should adopt a more ‘open’ approach to population to allow more flexible
experimentation with theories. We will argue how ABM offers a tool to help
bridging the gap between different approaches to the concept of population. Next,
we illustrate some of the arguments with examples from chapters in this volume.
Subsequently, we argue that evolutionary theory might be a particularly suitable
theoretical framework for developing population theory aided by ABM.

1.2 Two Concepts of Population

In the course of its development over the nineteenth and twentieth century,
an approach to population has come to dominate demography linked with a
‘closed’ concept of population. This approach prioritizes the descriptive coverage
of nationally representative population indicators rather than understanding the
underlying heterogeneity and processes (Kreager 2009, 2015a, b). Central to classic
demography has been the accurate bookkeeping of humans in national populations.
In the national demographic accounts, births and deaths represent the natural sources
of population flow. Migration is considered from a national point of view as well,
namely as outmigration from one country and immigration into another country.
The basic demographic equation describes how both natural and migration flows
affect the size and age structure of the population, and cohort component methods
can be used to project it into the future. Getting the rates right is central to
accurate national bookkeeping, depending on correctly counting the number of
demographic events to put in the numerator and enumerating the relevant population
in the denominator. The seminal work by Lotka and later developments in formal
demography exemplify this ‘closed’ concept of population (Dublin and Lotka 1925;
Schoen 2006).

This approach was closely connected with the rise of the idea of the nation state,
where nations are defined by a delimited population, sharing territory, language,
and historical experience (Kreager 2009, 2015a). It has been a powerful ally for
the establishment (and national funding) of human demography as a field. The
concept of the national population (and their smaller and larger scale derivatives)
has stimulated demographers to develop ingenious methods to measure fertility
and reproduction, mortality, and migration. It has inspired debates over things such
as replacement level fertility, about whether the increase of the TFR from 1.5 to
1.6 in some country represents a quantum or a tempo shift, or about the impact
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of immigration on the structure of the population. Such measures and debates have
enhanced our insight into important issues like population growth and decline,
the relative role played by quantum and tempo shifts in demographic trends, or
population ageing. This is great progress and looked at it in a specific way, it
could be called theoretical progress too (see Burch 2003a). Many key insights from
demography are important for the management of nation states and their institutions,
as the long-standing debate about below-replacement fertility and its relation to
population ageing illustrates (Van Bavel 2010a). Accordingly, demography has
become an important field “in service of the state” (Kreager 2015b, p. S32).

The fact that the national population has become the dominant point of reference
does not imply that demographers have failed to investigate variation within
countries (cf. Billari 2015; Courgeau et al. 2016). Notably towards the end of the
twentieth century, demographers have increasingly adopted regression analysis as a
tool to investigate how fertility, mortality, and migration co-vary with things such
as education, wealth, or religion. Courgeau et al. (2016) discuss more in depth the
advances made in demography, from studying national aggregates over individual
level modelling towards multilevel event history analysis, and they argue that these
advances may even be considered as paradigm shifts. Still, the national population
remained the standard point of reference, with analyses being carried out preferably
based on nationally representative samples, and comparative studies being carried
out between nation states.

While the ‘closed’ concept of the national population has been very instrumental
in the establishment of the discipline, the rather rigid approach may have hindered
the creative development of population theories. Methodologically, the dominance
of this nineteenth century concept of population is reflected in the heavy reliance
of demographic studies on either (single- or multi-country) census or nationally
representative survey data – to such an extent that sound studies of demographic
processes might be rejected due to a lack of ‘representative data’. Similarly,
theoretical work tends to be accepted as a serious scientific contribution only if
its relevance could be shown, empirically, on a census or nationally representative
sample (cf. Billari 2015). This is an extremely costly and inflexible requirement,
discouraging creative experimentation with new ideas. It limits the room for more
particularistic reasoning about how local conditions differentially affect certain
groups and their relations with others (Kreager 2015a, p. 73, 2015b).

Kreager (2009, 2015a, b) has shown how the concept of the enumerated, national
population as the standard point of reference got established at the expense of an
alternative concept of population. In the alternative ‘open’ approach to population,
the emphasis is not so much on enumerating all individuals who belong to the
country, but rather on the processes and structures that emerge out of the interactions
between heterogeneous individuals and their environments, embedded in social
groups and networks. The main concern in the ‘open’ study of populations is
understanding the processes and mechanisms that generate patterns of association
between individuals, such as mating or social networks, and how these processes
affect population change and heterogeneity. This alternative approach largely got
lost in most of the mainstream work in human demography but it remained very
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strong in population biology. The detailed observation of particular species in their
specific habitat by Charles Darwin exemplifies the alternative, more ‘open’ concept
of population, and this has remained the dominant population concept in the Modern
Synthesis in biology (Mayr 1991, 2002). While the emphasis in demography
has been on averaging demographic behaviour in rates (typically for national
populations and subpopulations) and calculating their long-term stable population
implications, the emphasis in population biology has been on heterogeneity and
change. In the words of Ernst Mayr: “The populationist stresses the uniqueness
of everything in the organic world. What is true for the human species – that no
two individuals are alike – is equally true for all other species of animals and
plants. [ : : : ] [F]or the populationist the type (average) is an abstraction and only
the variation is real” (Mayr 1959 cited in Mayr 2002, p. 92).

In order to understand the past, present, and future dynamics of populations as
networks of interactions, it is insufficient to survey and analyse statistically cross-
sectional snapshots of samples of individuals and their characteristics. Alternative
and complementary modes of observation are needed, including the kind of local,
small-scale observations to which Darwin devoted much of his life (Kreager
2009), or the kind of in-depth studies of local communities common in historical
demography (e.g., Kertzer and Hogan 1989; Tsuya et al. 2010). A more ‘open’
approach to population may also integrate insights from experimental research,
as a particular form of local, typically small-scale observations but with particular
strengths when it comes to drawing conclusions about causality.

A move towards a concept of population as a fundamentally open and dynamic
network of interacting individuals also calls for methods to study these dynamics
in a flexible way. ABM is a useful tool to help opening up the ‘closed’ approach
to population that has dominated the field. This, in turn, will help us to develop
and refine our theories of population processes. More precisely, ABM may help
us to bridge the ‘open’ and ‘closed’ concepts of population in a way that we
may benefit from the advantages of both approaches while acknowledging their
respective limitations.

1.3 How Agent-Based Modelling May Bridge the Two
Approaches to Population

Demography studies populations of individuals who interact in complex ways in
different layers of cultural and social environments. It often investigates emergent
regularities of such individual-level contextualized behaviour. ABM lends itself
quite naturally to deal with this complexity (Courgeau et al. 2016): ABM is
population oriented and applying ABM starts with imagining a population of
individual agents. Here, we want to highlight how ABM may bridge the two
concepts of population that we have just outlined. It can do this while maintaining
a view on both the micro (individual) and the macro (aggregate) level. In this way,
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it may help to address a major challenge in the development of population theory:
“[H]ow to combine theoretical principles that operate at the local level with concepts
of global population” (Hammel and Howell 1987, p. 142)? In order to see how this
can work, it is useful to draw on the ‘macro-micro-macro model’ that is at the centre
of the social mechanism approach to social theory (Coleman 1986, 1990; Hedström
and Swedberg 1998; Hedström 2005) and which recently has been introduced to
demography (Billari 2015).

1.3.1 The Macro-Micro-Macro Model and Agent-Based
Modelling

The ‘macro-micro-macro model’ shown in Fig. 1.1 builds on the tradition of
methodological individualism, in which social phenomena are viewed as the results
of the actions of the individuals that make up the social system under consideration.
Accordingly, proponents of the model argue that sound social science explanation
should refer to these individuals and include explicit references to the causes and
consequences of their actions (Hedström and Swedberg 1998, p. 12). In the model,
explanations proceed in three steps. In the first step, an explanation indicates how
the characteristics of the macro level affect the conditions and constraints that
individuals face (situational mechanisms); in the second step, it indicates the way
in which individuals assimilate these constraints and conditions in their behaviour
(action-formation mechanisms); in the third step, it indicates how the actions and
interactions of a large number of individuals bring about macro-level outcomes and
social change (transformational mechanisms).

Applying this model to demography, Billari (2015) highlighted that the last step
is the most novel and most important, but also the most challenging. It is most novel,
because the first two steps have featured in existing demographic research. For
example, the notion that the individual is affected by the characteristics of the macro

Macro level

Micro level

Step 1:
Situational

mechanisms

Step 3:
Transformational 

mechanisms

Step 2:
Action-formation

mechanisms

Fig. 1.1 The macro-micro-macro model in the social mechanism approach (adapted from Hed-
ström and Swedberg 1998; Billari 2015)
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level features prominently in the multilevel paradigm in demography; similarly, the
notion that the constraints that individuals face affect their decisions and actions
features in approaches such as life course analysis, in which the antecedents of
people’s behaviour lie in their own past (Courgeau et al. 2016). It is most important,
because it reconnects the individual level with the macro level. It is most difficult,
because the processes and dynamics by which individual interactions combine to
generate macro-level outcomes can be very complex and this can make them very
difficult to address with standard mathematical and statistical tools in demography.

For illustration, consider first the case of regression-based methods. The basic
format for this approach is that an individual- or population-level outcome is
“affected by” (Coleman 1986, p. 1328) a set of individual and contextual variables
that are combined additively and linearly. Non-linearities in the relation between
the different variables and the outcome are easily accommodated. Interaction effects
between variables can be estimated too, in principle, but when several interactions
between more than two variables are involved, then the model quickly becomes
hard to handle. The goal of this approach is to find reliable statistical associations
between the variables and the outcome, but it does not explicate the processes that
underlie these associations. For example, a regression-based model can show that
variation in the level of modernization is associated with variation in fertility rates
across countries, but it does not explain how the two are connected through the
actions of individuals. As noted above, multilevel models make it to some extent
possible to model the way in which macro-level variables affect individuals, but
even with this approach it is not possible to model the processes by which individual
interactions feed back into the macro level. Williams et al. (2016) discuss additional
problems that can arise from regression-based models. Similarly, econometric
approaches, like instrumental variables and selection models, are geared toward
isolating causal factors and assessing the extent to which the effect of variable X on
variable Y testifies of ‘true’ causality. While this may sometimes be an important
goal, also these models do not explicate the precise mechanism by which X and Y
are connected.

Consider next mathematical models. An important question in demography is
the role that social networks play for people’s demographic decisions (Prskawetz
2016). The timing of entry into first marriage, for example, has been assumed to be
affected by the number of peers who are already married. Hernes (1972) proposed
a mathematical model that can show that the share of married individuals might
indeed affect individuals’ age-contingent probability to enter marriage. Yet, similar
to regression models, this model does not explicate the processes and interactions
by which individuals influence each other in their marital decisions (Hernes 1976).
Even more, the model abstracts from social network structures that might exist in
the population and that might affect the timing and spread of the diffusion process
(cf. Cointet and Roth 2007).

For ABM, modelling transformational mechanisms and the interactions and net-
work effects involved in this is at the core of the business. For example, as Klüsener
et al. (2016) show, with ABM it is possible to implement socially and spatially
segregated networks and this increases our ability to explain (spatial) diffusion
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processes. This makes ABM a promising tool to facilitate theory development in
population studies. A second important quality of ABM is its ability to show “the
consequences of a few simple assumptions” (Axelrod 1997, p. 206). Given the
computational power that is currently available on standard personal computers,
and given the increasing access that many researchers have to grid computing, ABM
makes it feasible to conduct simple as well as more complex thought experiments
and to quantify the implications of different assumptions. ABM can therefore be
used as a powerful computational laboratory to conduct simple as well as complex
‘what if’ thought experiments in a flexible but precise way. As pointed out by
Prskawetz (2016) as well as Courgeau et al. (2016), with ABM, ‘toy models’
may therefore be employed to (pre-) test theories for which data are not easily
obtained or not (yet) available at all. In this process researchers are not constrained
to theorizing on the interplay between the individual and the population level alone.
As the chapter by Wolfson et al. (2016) illustrates, ABM makes it possible to also
consider all possible levels in between (e.g., schools, neighbourhoods, etc.). This
flexible scalability (see Miller and Page 2007, pp. 85–86) enhances the opportunities
for theory development, since theories can be developed at any level, while the
implications of the theory for phenomena at other observational levels can then be
computed.

This potential to conduct complex thought experiments does not mean that ABM
should replace standard tools in demographic research and empirical data altogether.
Quite to the contrary, we concur with Courgeau et al. (2016) that for making use
of the full potential of ABM in demographic research, the connection with earlier
modelling techniques is important. Such a connection enables to create empirically
calibrated agent-models that have more realism and validity than purely theoretical
simulation models.

1.3.2 Empirical Calibration

Calibrating agent-based models with empirical data is an important step in devel-
oping explanations of demographic change (Bijak et al. 2013; Courgeau et al.
2016; Hedström 2005). Such more advanced modes of computational experiments
mixed with observational data can take the following basic form: (1) develop a
theoretical model based on assumptions about individuals’ actions and interactions;
(2) calibrate the model to match empirical data; and then, crucially, (3) conduct
‘what if’ experiments: what would happen if we leave out parameter X? How would
things change if the empirical distributions would have been different than they
are under actual conditions? And what if individuals behaved differently? In this
way, after calibration, it is possible to perform counterfactual simulations that help
advocating between possible alternative processes.

Many chapters in this volume provide examples of empirical model calibration.
For example, Deconinck et al. (2016) draw on existing studies and expert knowledge
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to calibrate their model of severe acute malnutrition in terms of important population
parameters, thresholds, and decision processes. Kluge and Vogt (2016) use realistic
demographic rates (e.g., age-specific death rates and transition into public pensions)
to study how intra-familial transfers might help explaining observed patterns of
old-age survival. Similarly, Williams et al. (2016) develop an agent-based model
of the relation between armed conflicts and population change, in which key
individual-level decision processes are implemented as probabilities estimated from
a combination of survey and register data, which can be conceived as “evidence-
based action rules” (Hedström 2005, p. 132).

An application where the combination of theory-driven ABM with empirical data
may prove to become particularly useful for demography is in the field of population
projections and forecasts – one of the key areas of applied demography, closely
linked with nation state oriented demography using a ‘closed’ concept of population,
as discussed above. Projections proceed by calculating the implications of a set
of theoretical ‘what if’ assumptions about demographic rates; forecasts have the
ambition to yield realistic predictions about actual population trends in the future. So
far, forecasts as well as projections typically extrapolate macro-level trends without
being based on clear theories about the underlying micro-level behaviour. ABM
may help to improve this. While Prskawetz (2016) reminds us that explanation
rather than prediction is the primary purpose of ABM, she still hints at how it
can be used to improve demographic projections when she discusses the model
presented in Aparicio Diaz et al. (2011) about the transition to parenthood. This
highlights the potential of ABM to use theoretically informed simulation models to
generate potential population trends rather than just relying on extrapolations of past
and ongoing aggregate trends (Prskawetz 2016). ABM may also be instrumental
in integrating classic scenario-based projections and more recent probabilistic
approaches (Lutz and Goldstein 2004; Willekens 1990; Wilson and Rees 2005).
Classic scenario-based projections are mechanistic and fail to quantify uncertainty.
ABM offers the opportunity to really simulate scenarios while accounting for
heterogeneity on the individual level, including random components and probability
distributions, and to see what macro-level population patterns emerge. To facilitate
this process, researchers can rely on advanced statistical tools that make it possible
to systematically explore the uncertainty that exists in the outcomes of the agent-
model, as illustrated in the methodological chapters by Hilton and Bijak (2016) and
Grow (2016).

Evidently, increasing the integration of empirical data and existing methods with
ABM will also pose new challenges in terms of the complexity of the modelling
process. Richardi and Richardson (2016) provide an example of how some of
these challenges can be overcome with a new software tool that makes it possible
to combine micro-simulation with agent-based models and that allows easy data
handling.
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1.3.3 Avoiding Potential Pitfalls

In the end, any theory and model, as well as population forecasts, will have to
be tested with empirical data. In the empirical testing of an ABM, it is important
to keep in mind that the ability of the model to simulate (or ‘to grow’) an
observed empirical pattern is far from sufficient proof of its validity (cf. also the
chapter by Courgeau et al. 2016). It is not sufficient to show that an ABM can
produce results that are compatible with some set of observed data because the
model may contain so many parameters that it can be fitted to any set of data
(Grimm et al. 2005). Or, as rightly pointed out by Smaldino and Schank (2011,
p. 13), “if there are no empirical constraints on assumptions, almost any results
can be generated from different decision rules by varying assumptions about the
environmental structure”. The problem is that the model may be too flexible to draw
firm conclusions about its validity; that there are too many degrees of freedom. The
example provided by Smaldino and Schank nicely illustrates the issue: they show
that very different models, involving very different but plausible decision-making
rules involved in human mate choice, may all explain equally well the typical right-
skewed distribution of age at marriage (i.e., the distribution that was also targeted
by Billari et al. 2007 and Todd et al. 2005). The fact that a set of mechanisms
implemented in an ABM is able to explain some patterns of empirical observations,
even if all the available evidence has been used to calibrate the model, is therefore
insufficient proof that these mechanisms actually generated these patterns.

The challenge of having ‘too many degrees of freedom’ may look like a limitation
of ABM at first sight, but equivalent challenges apply to any kind of modelling.
Conventional statistical models face similar challenges: very different models might
fit the data equally well and a statistically significant ‘effect’ may actually be
spurious, even when we have a plausible theory to portray it as a causal effect.
Attacking ABM because it would claim to replace the role of empirical observation
in the scientific endeavour (like Venturini et al. 2015 do) is therefore an attack
on a straw man and misses the point. There is no antagonism between ABM and
empirical observations. The one cannot replace the other; to rule out alternative
scenarios and parameter values, scientists will still have to confront the model with
empirical data that can help making the distinction.

There are two general ways in which a model can be confronted with empirical
data to assess its validity. First, if there is a lack of empirical data, a model developed
during the stage of theory formulation may guide subsequent data collection to
advocate between model alternatives (cf. also Courgeau et al. 2016). In this step,
ABM can also make the data collection effort more efficient, by sorting out potential
candidate mechanisms before any data is collected. The chapter by Gray et al.
(2016) in this volume illustrates this point. Given the lack of empirical data on how
women decide whether or not to disclose their drinking behaviour to midwives,
the authors explore several plausible decision mechanisms derived from existing
decision theories. Their results suggest that there are characteristic differences in
the results that the different decision models generate and this information can guide
future data collection efforts to advocate between them.
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Second, if empirical data does already exist, researchers can assess whether the
model does not only reproduce the target outcome, but also other outcomes that were
not in the focus of model development. This form of ‘pattern-oriented modelling’
(Grimm et al. 2005) aims at assessing the structural realism of models and helps
to find the optimal zone of model complexity: addressing multiple patterns helps
avoiding models that are too simple in structure and mechanism, or too complex and
uncertain due to the high number of parameters. The agent-based model developed
by Grow and Van Bavel (2015a) provides an example of such structural realism.
The model was developed and calibrated with the goal to generate realistic patterns
of educational assortative mating in the light of changing educational attainment
in Western industrialized countries. Although patterns of divorce were not a target
during the development of this model, Grow and Van Bavel (2015b) could show that
it is able to also predict recent trends in divorce.

Summing up, the ability of a theory, implemented in an ABM, ‘to grow’ an
empirically observed pattern or trend from the bottom up is insufficient to consider
it a scientifically sound explanation. Such an ABM may be nothing more than ‘a
good story’, while other stories may explain the empirical observations just as well.
As always, the job on the to-do list then is to come up with clever ideas to set
up a competition between different explanations and to collect new data that may
differentiate between the right and the wrong story.

1.3.4 Bridging the Gap

We have emphasised that ABM allows linking the micro with the macro level
and that its theory-based simulation approach allows computing the implications
of hypothetical and empirically informed rules of action and interaction on the
macro as well as the micro scale, and all scales in between. In practice, then,
bridging ‘open’ and ‘closed’ concepts of population by means of ABM might work
in two major steps. The first step consists of the in-depth study of actions and
interactions in local populations, including rare events and exceptional instances as
well as experiments. In combination with pre-existing theoretical frameworks and
insights from earlier work, rules of behaviour and interaction (between individuals
as well as with the environment) may be implemented in the simulation model.
Already in this first step, ABM may be used for computational experimentation
and to calibrate a model that is able to replicate (“grow”, Epstein 2006) the local
observations. In a second step, ABM is used to simulate the micro- and macro-
implications of hypothetical rules of action and interaction outside the original
context. Part of the work involved in this second step, in order to make the jump
towards quantification in a closed population, is to infuse the models with real-
life observational data, which in demography will notably be information about the
distribution in that closed population by variables such as age, sex, and education
(see Grow and Van Bavel 2015a for an example), i.e. exogenously infusing the
ABM with information from traditional demographic approaches in order to make



1 Agent-Based Modelling and Evolutionary Population Theory 13

the model demographically realistic. It is only when the model is shown to work
outside the context of where it was originally developed that its external validity
can be demonstrated (cf. Hedström and Swedberg 1998).

To illustrate this process, consider psychological research that, more than any
other field within the social sciences, has a long and rich tradition of conducting
experimental studies to test theories. In combining ‘open’ and ‘closed’ population
concepts, such experiments can be a first step to gain insights into individual
behaviour and decision processes under controlled conditions. One shortcoming
of such experiments is that they are often based on convenience samples, with
undergraduate college students heavily over-represented in the data gathered, and
focus on behaviour under sometimes unrealistic conditions. To avoid that the
theoretical claims tested in such experiments hold only true for “the weirdest people
in the world” (cf. Henrich et al. 2010) in the artificial context of the laboratory, a
second step is needed. This second step does not just consist of collecting the same
kind of samples as in the original experiments to check whether the predictions hold
true in other samples as well. The true test of the theory is to study the patterns
that the theory implies at other levels of observation and in the context of different
populations. If the theory can correctly predict patterns at other levels of aggregation
and for contexts in which the theory was not originally developed, this indicates the
validity and structural realism of the model and underlying theory (Grimm et al.
2005; Hedström and Swedberg 1998).

To further illustrate this process, consider a specific example from the field
of population studies. In today’s Western societies, in which feelings of mutual
attraction are considered a key determinant of heterosexual marriage, knowledge
about the characteristics that men and women prefer in each other is crucial to
understand how observed marriage patterns come about (cf. Buss et al. 2001).
Over the last years, research in sociology, psychology, and economics has devised
ingenious ways to gain insights into these preferences, for example, by use of
census and survey data (e.g., England and McClintock 2009), vignette studies (e.g.,
Greitemeyer 2007), and speed dating experiments and procedural data generated
by online dating platforms (e.g., Skopek et al. 2011). Apart from census data
and national representative surveys, none of these sources could be considered
congruent with the ‘closed’ concept of population dominating in demography. Yet,
as Grow and Van Bavel (2015a) have shown, the insights gained from such small
scale and highly detailed studies can help formulating theories about mate search
and processes involved in union formation. ABM makes it possible to compute the
implications of these theories, which can then be compared with empirical data
observed in another context than the one that first inspired the theories, namely
national marriage markets.
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1.4 Contributions to Agent-Based Modelling in this Book

The chapters in this book address many of the issues that we have outlined up to
this point. The chapters in the section ‘Perspectives on Agent-Based Modelling in
Population Studies’ discuss in more detail the tasks that lie ahead and the steps that
need to be taken to connect the ‘closed’ and ‘open’ concepts of population. They
also highlight the benefits that agent-based modelling might yield in this process.
The integration of empirical data and ABM will require some methodological
advancements and the chapters in the section ‘Designing, Analysing, and Reporting
Agent-Based Models’ illustrate some of the most recent developments in this
direction. As argued earlier, ABM requires theories about individual behaviour and
the chapters in the section ‘Modelling Decision Processes’ illustrate in detail how
existing theories can be adjusted and implemented in agent-based models. Finally,
the chapters in the sections ‘Family Formation and Fertility’ and ‘Health, Mortality,
and Support in Old Age’ provide applied examples of how ABM can be fruitfully
used to study demographic phenomena. In this section, we briefly review each of
the chapters.

1.4.1 Perspectives on Agent-Based Modelling in Population
Studies

In Chap. 2, Courgeau et al. (2016) trace the methodological developments in
demography over its 350-year history and suggest that the introduction of model-
based approaches to the field, such as ABM, constitutes a paradigmatic shift. This
shift results from an increased interest in individual behaviour and interactions in
population research and the authors highlight that in contrast to ABM, the hitherto
dominant methodological approaches do not make it possible to model the ‘two-
way flow’ between the micro and the macro level. Yet, they also highlight that
ABM should not be seen as an alternative to other, more empirical methods in
demography. Instead, in their outline of a possible research agenda for model-based
demography, they make the strong point that there needs to be a close connection
between empirical research and ABM. This ensures that the insights into population
dynamics that ABM might yield are firmly grounded in empirical evidence and are
not based on arbitrary assumptions that are disconnected from reality.

In line with some of the views outlined by Courgeau et al. (2016), in Chap. 3
Prskawetz (2016) points out that there is increasing consensus in that individuals’
demographic decisions cannot be explained in isolation of the networks they are
embedded in. She argues that ABM is particularly suitable to study such network
effects from the bottom up and subsequently illustrates this capability of ABM with
examples from her own work. Along the way, she discusses some of the central
decisions that need to be taken when developing agent-based models; this will
provide valuable guidance for novices to the field. In the last example, she also

http://dx.doi.org/10.1007/978-3-319-32283-4_2
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highlights the capability of ABM to conduct ‘what if’ experiments and illustrates
the usefulness of this possibility by showing how it can be used to assess potential
policy implications.

1.4.2 Designing, Analysing, and Reporting Agent-Based
Models

In Chap. 4, Richiardi and Richardson (2016) provide a step-by-step guide for a
new open-source, Java-based simulation platform, JAS-mine, that makes it possible
to easily combine aspects of micro-simulation models with aspects of agent-based
models. The development of this platform was instigated by the observation that
although micro-simulation and ABM have been developed with different goals
(i.e. data-based forecasting based on probabilistic regression models vs. theory
development and understanding with a focus on interactions between individuals),
they also share important commonalities, such as that they are discrete-event
simulations, are recursive, and that the states of individuals evolve over time. Both
approaches have their unique strengths that JAS-mine aims to combine, while at
the same time providing a convenient structure to separate the modelling process
from the data recording process. Such developments in ABM software will greatly
facilitate the grounding of agent-based models in empirical data.

In Chap. 5, Zinn (2016) illustrates how an integration of micro-simulation models
and ABM, as addressed by Richiardi and Richardson (2016), can be achieved. As
she points out, micro-simulation lends itself to conducting fine-grained population
projections under the assumption that individuals do not interact with each other. If
this is combined with ABM’s capability to model social relations and interactions, it
becomes possible to model life courses of both individuals and couples at the same
time. For this, Zinn relies on the ml-DEVS formalism and implements the model in
the simulation framework JAMES II. Her exemplary analysis attests to the potential
of this approach and her work provides a frame of reference for those interested in
combining micro-simulation with ABM.

Next to having the technical possibility to infuse agent-based models with
empirical data, it is important that the field develops ‘best practices’ as to how
empirical data should be used. In Chap. 6, Williams et al. (2016) provide one of
the first steps in this direction. Drawing on related research in geographic and
land use sciences, the authors illustrate how various sources of information (in
particular survey data) can be used to implement a detailed representation of a
specific population, both in terms of structure and decision processes. They also
illustrate how the resulting model can be used to conduct ‘what if’ experiments to
gain deeper insights into the processes that underlie observed population changes.

Even if a model has been calibrated with empirical data, there often is uncertainty
in terms of how different model aspects (i.e. different parameters) relate to model
outcomes and under which conditions the model actually is able to reproduce

http://dx.doi.org/10.1007/978-3-319-32283-4_4
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observed population patterns. One way to deal with this uncertainty is by the
systematic design of simulation experiments combined with metamodels. In a
nutshell, metamodels treat a simulation model as a black box and express the
relation between model inputs and outputs by means of a statistical function. In
Chap. 7, Grow (2016) illustrates the use of metamodels based on ordinary least
squares regression analysis, whereas in Chap. 8 Hilton and Bijak (2016) illustrate
the use of Gaussian process emulators. As the authors point out, metamodels based
on regression analysis are an efficient tool to explore and describe input/output
relations that can be described with polynomials. Gaussian process emulators
make it possible to describe even more complex input/output relations and provide
additional information about model uncertainty.

As Courgeau et al. (2016) argue, theory development by means of ABM will
require explicit documentation of the way in which the simulation model was
constructed and what assumptions guided this process. In Chap. 9, Groeneveld
et al. (2016) review existing practices of model description in demographic research
and come to the conclusion that so far no standard has emerged. After making
the case that standardized descriptions can yield many benefits (e.g., enhanced
replicability), they suggest the ODDCD standard as a possible candidate. Based on
their experiences with an exemplary application to a demographic ABM, they also
make recommendations as to how the standard could be adjusted to accommodate
some aspects specific to demographic simulations.

1.4.3 Modelling Decision Processes

In developing agent-based models, researchers often have to draw on theories that
were not developed with a procedural and dynamic focus. In Chap. 10, Willekens
(2016) shows how existing theories from other fields of social research can be
adjusted to better fit with the process-orientation of ABM. He uses the theory of
planned behaviour to model the decisions that underlie international migration. For
this, he extends the theory, so that it takes into account that the decision to migrate
has a (random) processual character: the decision consists of several stages and
it takes individuals time to transition from one stage to the other, contingent on
systematic and random factors. He parametrizes the resulting simulation model with
data from the Gallup World Poll 2005 and other sources and shows that it reproduces
some stylized facts of international migration.

Agent-based models are often criticised for being based on ad hoc assumptions
about individual behaviours and decision processes. In Chap. 11, Gray et al. (2016)
address this issue by drawing on a long tradition of research in decision theory for
modelling women’s decision to disclose alcohol consumption during pregnancy to
midwives. The authors frame the decision as a game theoretic problem in which both
women and midwives are uncertain about the motivations and behaviours of each
other. In the resulting signalling game, the authors compare four different decision
models that differ in the complexity of the representation of the decision process
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within individuals. The results of the simulation experiments show that the different
rules lead to somewhat different outcomes and therefore also lead to different
recommendations for ways to enhance disclosure by women. This highlights the
need to collect additional detailed data in this area where empirical insights are so
far limited.

1.4.4 Family Formation and Fertility

In Chap. 12, Kashyap and Villavicencio (2016) explore the mechanism that might
explain the rise in the sex ratio at birth (measured as the number of males per
100 females) that has accompanied the fertility decline over the last decades in
Asia and the Caucasus. Congruent with earlier theoretical research, the model
conceptualises sex ratio imbalances as the result of an interplay between son
preferences, technology diffusion, and fertility decline. Using UN data to validate
the model in the contexts of South Korea and India, one of the central insights of
this study is that even if son preferences would have declined, an increase in the sex
ratio at birth can arise from an increase in the accessibility of techniques that make
sex-selective abortion possible combined with a decrease in total fertility levels. An
important strength of this study is its cross-national approach, that attests to the
generality of the processes that are modelled.

In Chap. 13 Klüsener et al. (2016) study the role that socially and spatially struc-
tured communication and influence processes might have played in the historical
fertility decline observed in Sweden between 1880 and 1900. The chapter illustrates
how the creative use of available census and GIS data facilitates conducting
‘what if’ experiments that help to uncover some of the processes that might have
contributed to observed changes in (historical) populations whose members (and
their interactions) cannot be studied in depth anymore. The results suggest that
their diffusion model can reproduce many of the spatiotemporal properties of the
observed fertility decline. In Chap. 14, Ciganda and Villavicencio (2016) also
explore the mechanisms that might have generated observed trends in fertility, but in
a more recent time period (1944–2014) in Spain. The authors model these trends as
the outcome of an interplay between educational expansion (increasing the average
opportunity costs for having children), increasing economic uncertainty, and social
influence processes. The model illustrates how effects from factors exogenous to
the social interactions under consideration can be amplified by precisely these
interactions.

1.4.5 Health, Mortality, and Support in Old Age

In Chap. 15, Kluge and Vogt (2016) employ the case of the German reunification in
1990 as a natural experiment to address the question whether the positive association
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between income and old-age survival comes about through the goods and services
that income can buy, or through third factors that affect both. In their modelling
efforts, the authors focus on intra-familial exchange as a potential source of the
observed association and draw on a variety of data sources for calibrating the model.
Interactions occur within families and concern the exchange of income of parents for
care from their children. The model can generate part of the observed changes in old-
age survival in Eastern Germany after reunification and suggests that this increase
might be partially caused by an increase in purchasing power and an increase in
intra-familial exchanges.

In Chap. 16, Deconinck et al. (2016) show how ABM can be used to inform
intervention strategies to reduce the effects of severe acute malnutrition. The authors
highlight that the design and study of such interventions suffers from a lack of data
and understanding of health system dynamics. They suggest that the theoretical,
rule-based nature of ABM makes it possible to study factors that might potentially
affect the effectiveness of interventions despite lack of data. For this, it is central to
involve subject matter experts and practitioners in the model development process,
to create accurate representations of the decision rules and interactions that occur in
the actual system and to raise awareness among potential stakeholders.

In Chap. 17, finally, Wolfson et al. (2016) study the puzzling observation that
in the US there exists an association between city-level income inequality and
mortality, whereas no such association exists in Canada. Their main intuition is that
this difference might be caused by the fact in US cities income segregation tends to
be higher than in Canada. That is, in the US, there is more residential segregation
in terms of income than in Canada and this might indirectly affect mortality rates
through the properties of the communities (e.g., school quality) that feed back into
the individual characteristics relevant for mortality (e.g., educational attainment).
Using a simulation model that incorporates interactions between aspects of different
layers of society (i.e. individuals, families, neighbourhoods, and cities), the authors
find that their model is indeed able to generate patterns of mortality that are similar
to those observed in reality, but for reasons that are different from what they
expected.

1.5 Towards Evolutionary Population Theory

As we have indicated earlier, ABM is a useful method to help developing population
thinking. The method itself is agnostic about the theory that is used to reason
about the mechanisms that link the micro and the macro level. The diversity of the
theoretical approaches used in the chapters of this volume attest to this flexibility
of ABM. Yet, if demographic phenomena are phenomena sui generis, what kind of
theory can we reasonably be looking for to explain them? In this closing section, we
describe why we think that evolutionary theory is a particularly attractive candidate
for this. Note that this represents our view, which does not necessarily represent the
views of the other contributors to this volume.
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1.5.1 The Basic Tenets of Evolutionary Theory

Inspired by thermodynamics, Lotka (1945) still had a concept of theory in mind
consisting of a system of “laws” within which, “by the application of relatively few
fundamental principles, the course of events can be rigorously deduced for innu-
merable specific situations” (Lotka 1945, p. 172, italics as in original). However,
“demography is neither theoretical physics nor is it mineralogical chemistry”: with
this truism, Charbit (2009, p. 48) wants to highlight something he thinks is particular
for the human sciences: because demography is a human science, theories are based
on factors that are peculiar to a given historical context. Indeed, doing social science
is not about finding eternal laws that allow us to predict the future. It might therefore
be tempting to dismiss altogether the idea of a general theory of population and to
stick with idiosyncratic narratives that might explain in a particular context why
things happened the way they did.

Although we agree that historical peculiarities do and should play a role in
social scientific research and theory, one could also argue that this epistemological
point of view reveals a lack of ambition for the social sciences. Why would this
argument hold for the social sciences and not for the biological sciences? Aren’t
plants and animals, in their phenotypic appearance and behaviour, also peculiar to
their historical environment? It is precisely the uniqueness of every plant and animal
that is highlighted in the populationist biology inherited from Charles Darwin (Mayr
2002, pp. 90–93). Darwinian evolutionary theory can be considered superior to the
earlier, essentialist ways of theorizing about biological diversity because it is able
to account for the changing biological diversity and developments that occurred in
time not only before, but also after the formulation of the theory (Boyd and Silk
2009; Mayr 2002); it is able to “describe and explain phenomena with considerable
precision”, even if it cannot make reliable predictions about the future (Mayr 1961,
p. 1504).

While demography and evolutionary biology have followed very different
and increasingly divergent pathways after the Second World War, a Darwinian
renaissance got started in recent decades, with an increasing number of papers
inspired by evolutionary theory being published in mainstream demography journals
(Sear 2015a). It would be good to intensify the conversation between demography
and evolutionary theory. We concur with Sear (2015b) that the endorsement of
evolutionary demography does not at all imply that evolutionary theory would be
the only theoretical framework that has value in explaining demographic behaviour,
but rather that it can inform, enrich, and stimulate theory development in our field.

The key ideas of evolutionary theory in biology are simple, but nevertheless often
poorly understood: in a nutshell, organisms evolve through variation and differential
selection. No two living organisms are exactly the same; for both genetic as well
as environmental reasons, there is always variation. Not all variants survive and
produce offspring in the next generation to the same extent. Those variants that
survive and produce a lot of offspring in a given environment have high fitness,
which by definition implies that such variants will become more common in the
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next generation; variants with fewer offspring will be encountered less frequently
in the next generation. This is what is meant by differential selection: in a given
environment, some variants will become more common over the generations, others
will become less common. Features or variations that lead to high fitness in their
environment are called adaptive (Mayr 2002). Of course, environments can and do
change, implying that well-adapted organisms at one point in time may turn out to
be very badly adapted to the new situation – ‘maladapted’, implying no more nor
less than that they will become rarer over the generations.

This basic mechanism is key to explaining how humans and other living
organisms evolved (Boyd and Silk 2009). The basic principles have also been
applied to the evolution of culture (Richerson and Boyd 2005), although such
application of evolutionary theory is still less widely accepted. The same holds for
more recent models of gene-culture coevolution. Such models are being developed
since it is becoming clear that culture has affected and is affecting the human
genome (Laland et al. 2010) through processes such as niche construction (Kendal
et al. 2011).

One of the reasons why evolutionary theory seems suitable as a general
theoretical framework for human demography (and, more generally, the social
sciences) is that it does justice to the fundamental contingency of human populations
and societies. Evolutionary theory is not deterministic. Rather to the contrary: it is
fundamentally probabilistic and acknowledges the fundamental contingency of life.
Evolutionary theory does not allow to predict the substance of the future because
it does not have information about the substantive direction. Instead, evolutionary
theory contains of “a set of interacting mechanisms resulting in the production of
variation and its selection” (Hammel and Howell 1987, p. 142).

Evolutionary theory is not teleological (Mayr 1961, 2002); there is no need to
assume that evolution has a direction (in contrast to what has often been claimed,
see, e.g., Lotka 1945) It does certainly not claim that evolution leads to perfection
(even if we would know what perfection is), nor does it imply that things evolve
to always get better – in biological evolution, organisms that may have thrived
very well in one environment, may become extinct as the environment changes.
Evolutionary theory is also not essentialist. Darwin had a hard time defending his
populationist approach against the essentialist claims about the ‘true’ nature of
different species (Mayr 1991, 2002).

Demography and populationist thinking is already playing an important role in
evolutionary theory. “Human culture and biology jointly and collaboratively drive
the evolution of human demography” (Levitis 2015, p. 415). Hammel and Howell
(1987) called for an evolutionary theory “in which demographic events are the
central mechanism and leading indicators of the coevolution of bodies, minds, and
societies” (p.142). Recognizing that birth, marriage, migration, and death have both
biological and cultural significance in any human society, and that the subject matter
of demography is cutting across the sub-disciplines of the social and biological
sciences, they argue that a demographically based formulation of evolutionary
theory may integrate important aspects of cultural and biological evolution. More
recently, Metcalf and Pavard (2007a) argued that “evolutionary biologists should
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be demographers” because evolution depends on fertility, migration, and mortality,
as well as on population growth and structure; in other words: “All paths to
fitness lead through demography” (Metcalf and Pavard 2007b). Therefore, evolu-
tionary demography aims to cross barriers between social scientific and biological
approaches to population processes by combining concepts and tools of demography
and evolution, hoping to enhance the scope of both fields (Levitis 2015).

1.5.2 Agent-Based Modelling and the Evolutionary Approach

As indicated earlier, human populations are complex adaptive systems. Miller and
Page (2007, pp. 78–89) discuss a range of characteristics of ABM that makes the
approach particularly well suited to study such systems: the focus on dynamics and
processes, the scalability and flexibility, the feasibility to model adaptive rather
than optimizing agents, and the enhanced ability to address the role played by
heterogeneity and variation. These features also make ABM particularly well suited
as a tool to help developing an evolutionary approach in demography.

Agent-based models are inherently dynamic: even if one can take snapshots of
the system’s situation at discrete points in time, the results of the model change
over time and the focus is drawn to the process at least as much as to the outcome.
Like evolutionary theory, ABMs are inherently process oriented: the focus is
on understanding the mechanisms that produce or reduce diversity and change.
Evolutionary theory is about mechanisms rather than “laws”, and ABM facilitates
the investigation of mechanisms, where mechanisms can be considered halfway
“between laws and descriptions” (Billari et al. 2003, p. 13).

Axelrod and Hamilton (1981) powerfully illustrate how a focus on dynamics
may be crucial for our understanding. They showed how cooperation in populations
may evolve even under conditions that, at any one point in time, imply no
cooperation. A criticism by Venturini et al. (2015) on ABM maintains that it
“cannot but confirm” individualistic behaviour and that it is unable to understand
human cooperation. Indeed, in the first model developed by Axelrod and Hamilton,
individual agents face a prisoner’s dilemma that cannot be overcome in a single
shot. Yet, when iterated over time, in a second model, cooperation emerges as
a viable strategy (Venturini and colleagues seem to have missed this landmark
paper). More generally, when developing a theoretical model, one can aim either
at reproducing important features of the target system at a given point in time,
or at modelling its evolution, i.e., at reproducing the changes that would occur
across generations. Ideally, however, a good model should be able to reproduce both
aspects of the phenomenon, and ABM facilitates such combination (Campennì and
Schino 2014). In line with this, evolutionary demography involves investigating both
how demographic processes evolve over time and the outcomes of such evolution
(including population structure and composition) at given points in time.

Evolutionary demography not only involves integrating the cross-sectional and
the longitudinal, it should also integrate insights gained at different levels of
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magnitude or scale and in diverging scholarly disciplines (from the molecular
micro level of genetics to the macro level of human populations embedded in a
globalizing society) (Kaplan and Gurven 2008). Demographic theory “thus faces
the same issues raised by Darwinian population thinking: both observed population
processes at a local scale and testable models at higher levels of aggregation are
necessary, and theoretical formulations confined to one or the other are incomplete”
(Kreager 2015a, p. 81). The scalability of ABMs and the flexibility of specifying
agent behaviour and interactions are particularly useful here. The scalability refers
to the ability of ABM to explore a system’s behaviour both with a very low and
a very high number of agents, and to switch the focus from micro- to macro-level
system properties. The flexibility refers to the fact that ABMs can capture a very
wide class of behaviours, which is particularly useful for implementing the insights
from different study disciplines. Agents may, for example, respond to the constraints
imposed by the human metabolic system as well as to the cultural rules implied by
human society. Both kinds of rules can be specified in the same ABM, and the
emerging properties can be studied at the level of individual agent behaviour, at the
neighbourhood level, or at the population level. Mechanisms involved in multiple
inheritance models, like the triple inheritance model involving genetic, ecological,
and cultural inheritance (see Kendal et al. 2011) can be implemented explicitly in
ABM. Change across generations can be simulated over thousands of generations,
and snapshots can be taken at each point in time, enabling comparison with real-life
data employing standard statistical tools.

Given the dynamic nature and flexibility of ABMs, agents can be designed to
be adaptive, i.e., as learning from previous experiences within or across gener-
ations, or both. This allows moving away from the unrealistic, rationalistic, and
atomistic models of well-informed agents who rationally processes all the relevant
information to optimize behaviour to maximize utility (Miller and Page 2007, pp.
81–83). With ABM, it is possible to specify agents that learn, build networks, gain
or lose power and influence, and inherit knowledge and resources from previous
generations. The criticism that ABM is inherently atomistic and apolitical (Venturini
et al. 2015) is therefore poorly targeted. For application to human demography,
the model of adaptive rather than optimizing agents is much more consistent with
evolutionary theory as well as with basic insights from psychology and sociology.

Finally, while conventional models often assume that the underlying agents have
a high degree of homogeneity, where differences are typically described in terms
of conditional averages, ABM facilitates to focus more on heterogeneity – even if
it may turn out, empirically, that the aggregate system behaviour does not depend
on the details of each agent (Miller and Page 2007, pp. 84–85). ABM does not
require making any assumption about the homogeneity of agent populations, which
is a key advantage given that heterogeneity is a core aspect of populations and
population models (Billari et al. 2003, p. 12). While the focus of conventional
statistical approaches is on how averages depend on a set of variables – an approach
in the tradition of “the average man” (Quetelet 1835) – this may be insufficient to do
justice to the role played by diversity and variation in explaining population patterns



1 Agent-Based Modelling and Evolutionary Population Theory 23

and change. Ernst Mayr even went so far as to imply that statistical methods do not
really represent population thinking at all (Kreager 2015a, p. 78).

Enhancing the ability to address the role played by heterogeneity seems impor-
tant for improving population theory, for example for improving demographic
transition theory. In applications of ABM, it has become clear that a given outcome
may be produced by different pathways or that a given pathway may lead to
very different outcomes, depending on the size and composition of the population.
Similarly, ABM has proven to be able to yield both results exemplifying convergent
evolution (initially major differences in the population becoming smaller over time)
as well as divergent evolution (minor initial differences that magnify over time
and generations) (see Axelrod 1997). This matches very well with the observation
that, while the transition from (moderately) high to low mortality and fertility in
modern populations is a quite general phenomenon, uniform explanations in terms
of macro-level factors and processes such as industrialisation, urbanisation, and
modernisation have failed the empirical tests to a very large extent (Szreter 1993;
Van Bavel 2010b; Watkins 1986).

For example, the secular decline of fertility got started under widely differ-
ent economic conditions, unexplainable by standard modernisation theories, or
failed to kick off when theory would have predicted this. Theories such as those
developed by Frank Notestein spoke about interactions between the economy and
populations largely at the macro level, without accounting for the heterogeneity
within economies and populations. This approach “pushed key aspects of population
variation and change to the margins” (Kreager 2015a, p. 79). Thanks to more
detailed research in historical demography, often looking at very specific local
communities and populations, it became clear that fertility and mortality decline
can take place under widely differing conditions. This has stimulated the field to
increasingly reconsider the role of local networks of communication in demographic
change. In-depth study of local populations, conceived of in the ‘open’ rather
than the ‘closed’ way, enabled us to understand more about the role played by
distinctive environmental and cultural constraints existing prior to ‘big’ forces such
as industrialization and modernization, implying that there is not one universal
‘transition’ pathway. The continuing diversity observed in demographic phenomena
like ‘the’ demographic transition highlights that it will be key for demographic the-
ory to understand the mechanisms that continue to renew population heterogeneity
(Kreager 2015a, pp. 80–81), and ABM promises to be very helpful in gaining such
understanding.
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Chapter 2
Model-Based Demography: Towards
a Research Agenda

Daniel Courgeau, Jakub Bijak, Robert Franck, and Eric Silverman

2.1 Introduction

Over its 350-year history, demography has progressed through successive
paradigmatic changes, from period analysis (Graunt 1662) to multilevel analysis in
the more recent period (Courgeau 2007). Currently, the prominence of agent-based
models (ABMs) has indicated an increased focus on individual behaviours and
interactions in the study of populations, and also a desire to bolster the theoretical
foundations of demography (Burch 2003a, b; Silverman et al. 2011). Here we posit
that ABMs have a potential to become a manifestation of a broader, model-based
research programme, which would be much more heavily reliant on computer
simulations as a tool of analysis. The key advantage of such methods is that they
allow examining interactions between various elements of complex population
systems. In our view, such model-based approaches, while firmly rooted in the
multilevel paradigm, can form the foundation of the next step in the cumulative
progression of demographic knowledge.

This chapter proceeds first by detailing the successive paradigmatic changes
evident in the history of demography in Sect. 2.2, and then by describing the
challenges of studying uncertainty, complexity and interactions in population
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systems in Sect. 2.3. In Sect. 2.4 we discuss the ways of conforming computational
methods to the classical scientific programme outline, and make the case for model-
based demography as a new research programme for the discipline. Finally, in
Sect. 2.5 we propose a research agenda to address the challenges ahead.

2.2 Cumulativity in Demography

Since the origin of demography in the seventeenth century, the field has progressed
through a series of paradigmatic changes. Here we use the term paradigm in a
somewhat different sense from Kuhn (1962), and from its current usage. We want
to point out the methods by which the phenomena observed within a population
have been related to the set of key parameters (fertility, mortality and migration)
used in demography to explain population growth, decline or stabilization. There
are four main methods, each implementing a limited scope of notions which we call
the paradigm of the selected method (Courgeau and Franck 2007). In this section
we point to the differences between these four paradigms, and to their possible
complementarity.

It is important to recall the path taken by Bacon in 1620 in his elaboration of
an inductive method for scientific thought. He presented it in contrast with the
dominant way of thinking in fashion at this time (Bacon 1620, aphorism 19):

There are and can be only two ways of searching into and discovering truth. The one flies
from the senses and particulars to the most general axioms, and from these principles,
the truth of which it takes for settled and immovable, proceeds to judgement and to the
discovery of middle axioms. And this way is now in fashion. The other derives from the
senses and particulars, rising by a gradual and unbroken ascent, so that it arrives at the most
general axioms at last of all. This is the true way, but as yet untried.

The first way generates what Bacon called the four Idols, where axioms are not
grounded on a meticulous observation of the properties of nature to be studied, but
rather on prejudices – unverified notions of human understanding. As Bacon said1,
such axioms should not “avail for the discovery of new works, since the subtlety of
nature is greater many times over than the subtlety of argument”. As already argued
elsewhere (Courgeau et al. 2014) ‘Idols’ may exist in various areas of contemporary
population sciences, for example in the form of behavioural genetics, postmodern
theory, hereditarism, or modern hermeneutics.

On the other hand, the Baconian “second way” became the modern scientific way
of thinking, rising from a meticulous observation of studied facts to the “formation
of ideas and axioms by true induction”. This method of induction2 consists of
discovering the principles – the ‘first’ axioms, the ‘lesser’, and the ‘middle’ in

1Citations in this and in the next paragraph come from Bacon (1620), aphorisms 24, 39 and 40.
2Induction is not taken in the sense of Mill (1843) and his followers, i.e. generalisation from
particular facts. In Bacon’s sense, induction designates the complete research process (Sect. 2.4).



2 Model-Based Demography: Towards a Research Agenda 31

Bacon’s terms – of natural or social properties by way of experimentation and
observation. The Baconian induction rests on the requirement that without these
principles the properties observed would be different (Franck 2002a).

Graunt (1662) was the first to apply this method for the study of human
populations. He no longer considered that phenomena such as births, illnesses
and deaths were to be seen as God’s secret and therefore out of bounds to
scientific scrutiny. He studied each event not as a unique one but as one occurring
to a statistical individual, with only a few characteristics. These abstract events
became fertility, morbidity and mortality, and lost any direct attachment to a given
individual. This was the only way to begin a scientific study of population, called
by Petty (1690) political aritmetick, which prevailed for around 200 years. Graunt’s
research paved the way for demography, epidemiology, political economics, and for
population sciences more generally.

Graunt’s demonstration of the links between probability and population science
was also vital. Probability was first addressed in 1654 by Pascal and Fermat, but
their results were published later (Pascal 1665), and it was in fact Huyghens (1657)
who first published a treatise on games, with a foundation for objective probability.
Graunt used this concept in order to estimate the population of London from the
number of deaths, using an estimation of the probability of dying (Courgeau 2012).
The probability of an abstract event in a human life was used for the first time,
facilitated by the notion of a statistical individual.

We can conclude that the population sciences were without a doubt born in
England, and subsequently led to a more general school of scientific thought on
population problems. From the end of the seventeenth and throughout the eighteenth
century, this way of thinking developed through the work of many leading European
researchers such as Halley, Süssmilch, Euler, Moheau, and so on (Courgeau 2007).

During the eighteenth century a new concept of epistemic probability was
introduced, first by Bayes (1763), and then refined by Laplace (1774, 1812). In fact,
the objective probabilistic approach was already showing how through successive
trials, the estimated frequency tends towards such a probability, as is the case for
fair games for which we can determine an a priori probability. However, as had been
already recognised in the preceding century, such a hypothesis was difficult to justify
for events in human life. A new approach was necessary for such events, where all
we know is the sample observed. Not only is the population from which it is drawn
unknown, but its very existence is a hypothesis. By using a prior probability in order
to estimate a unique posterior one, the epistemic approach permitted answering
these questions clearly. Laplace applied it to many phenomena, including a number
of population science ones.

In 1809, in Germany, Gauss proposed the method of least squares, which was
mainly used in astronomy at this time. Following the work of mainly British but
also German and French biological and social scientists3, it became widely used:

3These fields were not so clearly defined at this time: scientists were working in different social or
biological sciences and in statistics simultaneously.
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by Galton and Pearson in population genetics; Lexis and Quetelet in demography;
Edgeworth in statistics; Durkheim in social demography; and Yule in economic
demography. Finally, at the beginning of the twentieth century Fisher, a statistician
and population geneticist, developed the maximum likelihood theory and theory of
statistical inference (see Courgeau 2012). Population science was coming back to an
objective approach, as the development of censuses through the nineteenth century
permitted the use of exhaustive samples.

The problem with many statistical tools from the nineteenth century, such as the
least squares method, is often that they assume a particular mathematical structure
among a limited set of macro-variables, irrespective of whether that structure exists
in the real world. This was already the case for Durkheim’s study of suicide in
Prussia (1897). This may lead to what is called an ecological fallacy, meaning that
aggregate data, as a rule, cannot be used to study individual behaviour. The only
instance where this is possible is when the probability of experiencing the event is
independent of the area studied and when the population is large enough to cancel
out any random difference that may appear (Courgeau 2007).

Another issue here is related to the type of observations, which are exclusively
cross-sectional or period-based. After Courgeau (2007), we can conclude that the
paradigm of the cross-sectional approach may be defined as follows: the social facts
of a period exist independently of the individuals who experience them, and can be
explained by various characteristics of the surrounding society, such as economic,
political, religious, or social aspects. This cross-sectional paradigm prevailed in
demography till the end of World War II.

The next change came from the US, where population scientists set up a
new perspective of cohort analysis, following the pioneering sociological work
by Mannheim (1928), which introduced the individual’s lived time; Whelpton
(1949) and Ryder (1951) were the first to promote this approach, and Henry
(1959) formalised its theoretical underpinnings. The resultant paradigm is defined
by the following postulate: “the demographer can study the occurrence of only
a single event, during the life of a generation or a cohort, in a population that
preserves all its characteristics and the same characteristics for as long as the
phenomenon manifests itself” (Courgeau 2007, p. 36). We will not go further
into this approach, as “for the analysis to be feasible, the population must be
regarded as homogeneous and the interfering phenomena must be independent of
the phenomenon studied” (Courgeau, idem, discussing Henry 1959; Blayo 1995).
These conditions are restrictive, and led to a new approach permitting us to set such
hypotheses aside.

To be able to consider heterogeneous cohorts and to introduce dependencies
between phenomena, it became necessary to introduce statistical methods able to
analyse different processes simultaneously and look at numerous characteristics
of the studied individuals. The general theory of stochastic processes was first
developed by the US statistician Doob (1953) and was applied to demographic
processes by Aalen (1975) in Sweden. In demography, it was incorporated through
the introduction of event-history analysis (Courgeau and Lelièvre 1992).
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In the event-history paradigm, “individuals follow complex, life-long trajectories
that depend, at a given instant, on their earlier trajectories and on the information
they had acquired in the past” (Courgeau 2007, p. 58). We can identify the factors
at work – both demographic and non-demographic – and analyse their effect on
individual behaviour in more detail. In order to do that, it is necessary to use surveys
that follow individuals along a large part of their life and to collect data on events,
and on the characteristics, fixed as well as time-dependent, which may affect these
events. However, here we cannot view an individual trajectory as the outcome of a
process specific to each person. As we observe only a single outcome (the individual
trajectory), the process is not identifiable.

In this case, we must adopt a collective point of view: all individuals are assumed
to follow the same random process, the parameters of which we can estimate from
the observation of a sample of individuals with their own characteristics. At first
glance, this assumption seems quite bold. However, it is important to realize that
this is not a hypothesis about observed people, but about the construction of a
process underlying a set of trajectories. In this case, two observed individuals do
not necessarily follow the same process, whereas two statistical individuals with the
same characteristics do so automatically, as random sampling units with identical
characteristics (subject to identical selection conditions). Such an approach again
may require adopting a Bayesian point of view (Ibrahim et al. 2001), as it looks at
many characteristics measured on a sample of restricted size.

However, the use of individual characteristics may lead to an atomistic fallacy,
as opposed to the ecological fallacy of cross-sectional studies. By concentrating
on individual characteristics, we disregard the context in which human behaviours
occur. As noted by Courgeau (2007), context clearly may influence individual
behaviour, and therefore isolating individuals from the constraints imposed by the
social networks of the living environment seems misleading.

We must then introduce the different types of groupings of individuals found in
all human societies: social groupings, such as the family, networks of contacts (or,
more generally, social networks), etc.; economic groupings, such as the firm or the
organisation where a person works; educational groupings, health-care groupings;
political groupings; etc. In order to consider not only the individual but different
groupings we must develop new methods of contextual and multilevel analysis.
These models have been elaborated by American (Mason et al. 1983) and English
(Goldstein 1987) researchers.

Multilevel approaches have permitted us to solve the apparent contradiction
between aggregate models and the individual, event-history perspective. Thanks to
their properties, we can combine the results of the analyses at the aggregate and
individual level by clarifying the apparent paradox between them. As observed by
Courgeau (2007, pp. 79–80):

The new paradigm will therefore continue to regard a person’s behaviour as dependent on
his or her past history, viewed in its full complexity, but : : : this behaviour can also depend
on external constraints on the individual, whether he or she is aware of them or not.
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This paradigm allows for removing the two fallacies mentioned before (idem):

The ecological fallacy is eliminated, since aggregate characteristics are no longer regarded
as substitutes for individual characteristics, but as characteristics of the sub-population in
which individuals live and as external factors that will affect their behaviour. At the same
time, we eliminate the atomistic fallacy provided that we incorporate correctly into the
model the context in which individuals live.

As we have demonstrated previously, demography has advanced effectively
thanks to the introduction and refinement of successive paradigms. Each paradigm
takes the shortcomings of its predecessors as a starting point and offers a method for
surmounting them – without, however, erasing all the knowledge attained through
earlier paradigms. Indeed, for some questions that a population scientist may wish
to ask, cross-sectional analysis can suffice just as any other form of analysis may be
sufficient for other issues. The same is true for some questions asked by the physicist
that may be answered perfectly by Newtonian physics, without taking into account
Einstein’s physics.

However, in demography these developments have not led to a patchwork
landscape of competing approaches, but instead to a cumulativity of knowledge,
despite being far from linear. This is because different paradigms take a different
point of view on the studied phenomena, partly preserving some of the results of the
previous ones, as the multilevel analysis compared with cross-sectional and event
history analysis. As Courgeau (2012, p. 239) has put it:

Cumulativeness of knowledge seems self-evident throughout the history of population
sciences : : : the shift from regularity of rates to their variation; the shift from independent
phenomena and homogeneous populations to interdependent phenomena and heteroge-
neous populations; the shift from dependence on society to dependence on the individual,
ending in a fully multilevel approach. Each new stage incorporates some elements of the
previous one and rejects others. The discipline has thus effectively advanced thanks to the
introduction of successive paradigms.

Each of the four paradigms frames the relationship between observations and
scientific object differently, and in so doing allows for new methodologies that can
alleviate difficulties associated with other methods, as summarised in Table 2.1.
The scientific objects of enquiry in population sciences, such as mortality, fertility,

Table 2.1 The four paradigms of demography – a summary

No. Paradigm Period Key focus

1 Period (cross-sectional) 1662– Population-level (macro) phenomena, observed and
measured according to the historical time

2 Cohort (longitudinal) 1950s– Population-level phenomena, observed and
measured along the lifetime of individual cohorts

3 Event history 1980s– Individual-level (micro) phenomena, observed and
measured according to the individual time

4 Multilevel 1980s– Individual, population, and interim-level
phenomena, observed and measured from multiple
perspectives
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nuptiality, migration and so on, are independent of the theory used to treat them.
By contrast, the relationships assumed to exist between these objects are strongly
dependent on the key theory underpinning each paradigm: independence between
them in cohort analysis, heavy dependence between them in event history analysis.
Yet, as argued before, each paradigm also occupies a different context, and therefore
previous paradigms remain relevant despite the proliferation of new ones.

The evolution of successive paradigms is an ongoing process, and the paradigms
themselves are in a constant need of improvement and refinement, in order to be
able to answer emerging research questions. Even the multilevel approaches do not
address questions related to interactions between various elements of increasingly
complex population systems. In particular, micro-level rules may be hardly linked
with aggregate-level rules, while macro-level rules cannot be modelled exclusively
with an individual approach, since they transcend the behaviour of the component
agents (Holland 1995). As Conte et al. (2012, p. 336) said, in their Manifesto of
Computational Social Science, such a micro-macro link:

: : : is the loop process by which behaviour at the individual level generates higher-level
structures (bottom-up process), which feedback to the lower level (top-down), sometimes
reinforcing the producing behaviour either directly or indirectly.

We will add that in some cases it can go in the opposite direction of the producing
behaviour, leading to “perverse effects” as shown by Boudon (1977).

We must go further, however, as the effects of aggregation levels are always
defined with respect to the individual. For example, a series of individual actions
in a community may foster awareness of a problem that concerns the entire
community. This may lead to political measures, taken at more aggregated levels.
These measures will naturally affect individual behaviours, generating new actions
to offset their perverse effect, and so on. The multilevel approach as described above
does not allow for inclusion of this two-way flow. More generally it is necessary to
identify the different levels as truly different systems of agency, i.e. of collective
action with different goals, specific resource interdependencies between members
and specific social processes that help members to manage dilemmas at each level.
We will see in the following sections how a model-based research programme may
answer these challenges.

2.3 From Empirical to Model-Based Demography,
and Back: Uncertainty, Complexity and Interactions
in Population Systems

The recent evolution of demography and population studies has coincided with
shifting perspectives on the epistemological challenges facing the studies of human
populations. In particular, demographers are now paying ever more attention not
only to different levels of analysis, but also to the uncertainty and complexity of
population phenomena, which are discussed in this section.
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Demographic phenomena – as all other aspects of social reality – are inherently
uncertain, but to a slightly lesser degree than is the case in other areas of social
sciences, such as sociology or economics. This comparative advantage of population
science is largely due to the strength of the underlying relationships, such as
population accounts and persistence of demographic patterns in time, and is helped
by the strong empirical slant of population science (Xie 2000; Morgan and Lynch
2001). Still, particular areas of demographic interest differ with respect to their
uncertainty: out of the three main components of population change, mortality is
usually thought to be the least uncertain, while migration is the most (e.g. NRC
2000). The explicit acknowledgement of the uncertainty challenge has led to a
renaissance of statistical demography since the 1980s, and to the “return of the
variance” to demography – an important methodological perspective for all four
paradigms mentioned above (Alho and Spencer 2005; Courgeau 2012)4.

Uncertainty is vastly augmented by social reality becoming increasingly com-
plex. Hence, appropriate tools are required to analyse the associated complexities
in more depth. In demography, the debate on the complexity versus the parsimony
of demographic models has been present especially in the context of predictions
(Ahlburg 1995; Smith 1997; Lutz 2012; Raftery et al. 2012). However, the evidence
regarding the relative performance of models of varying complexity is inconclusive.
For predictive applications it may be tempting to apply Occam’s razor and opt
for simple models that describe the uncertainty relatively well (Bijak 2010). On
the other hand, despite its importance, prediction is not the only goal of enquiry
in population science (Xie 2000). If the perspective shifts towards explanation,
exploration, or other non-predictive applications, a different approach is required5.

From a statistical point of view, model uncertainty needs to be acknowledged
as well (Raftery 1995). If the models themselves are to be formally recognised
as yet another source of uncertainty in population studies, next to the underlying
processes, parameters, and inherent randomness, the most natural and coherent way
of describing all these sources is via Bayesian statistical inference and epistemic
probability (for details, see Bijak and Bryant 2016). Within the Bayesian paradigm
there exist several approaches to model error: from a formal model selection out
of several competing possibilities, and the related model averaging (Raftery 1995);
to including an additional model discrepancy (inadequacy) term in the modelling
process (Kennedy and O’Hagan 2001). In addition to the appealing prospect of
reconciling quantitative and qualitative information in a formal way, Bayesian
statistics allows for the inclusion of subjective opinion in the process of statistical
inference.

4Similarly, acknowledgement of the role of space in demography has led to the multi-regional
perspective within the cohort paradigm (Rogers 1975), later extended to the multi-state case.
5See Epstein (2008) for “sixteen reasons other than prediction to build a model”. Conte et al. (2012)
highlight the capability of “generative” models to reproduce qualitative regularities observed in the
real world (the stylised facts).
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On a larger scale, Bayesian statistics also provides a possible way of reconciling
the empirical and computational approaches by returning to empiricism, yet at a
different level of analysis. All computational models, no matter how complex, have
inputs (parameters) – and outputs (quantities of interest). Their mutual mapping
enables statistical analysis. There are techniques available for this purpose, chiefly
Bayesian melding (Poole and Raftery 2000), and approaches based on Gaussian
process emulators, also Bayesian (Kennedy and O’Hagan 2001; Oakley and
O’Hagan 2002). Both have already been prototyped in demographic applications –
the former by Alkema et al. (2007) and Clark et al. (2012), and the latter by Bijak
et al. (2013), Silverman et al. (2013), and Hilton and Bijak (Chap. 8, this volume).
The application of such methods allows for analysing the properties of complex
computational models within a formal statistical framework, which would not be
possible with more traditional approaches.

As demography has started incorporating insights regarding its own epistemo-
logical limits, new approaches to modelling have begun to flourish. The perspective
of population science becoming a model-based science (Burch 2003b) has become
appealing6, mirroring similar movements within the study of biological systems
and evolution (Levins 1966; Godfrey-Smith 2006). As argued by Xie (2000), there
are certainly insights to be gained from examining the successes and failures of
modelling efforts in population biology (see also Bullock and Silverman 2008).

Previous efforts have outlined various approaches toward modelling the complex-
ity of population processes, amongst which we can identify two broad trends: social
simulation and systems sociology (Silverman and Bryden 2007). The former is con-
cerned with the application of novel modelling techniques, primarily agent-based
models, to specific populations and situations. The latter is a primarily theory-driven
enterprise, investigating the consequences of various foundational social theoretic
positions – along the lines of the ‘opaque thought experiment’ role for simulations
proposed by Di Paolo et al. (2000). Within demography and population sciences,
the desire to remain empirically relevant – and to strengthen that relevance through
more reliable and nuanced predictions – has led to a focus on social simulation
more than systems sociology approaches. Micro-simulations, based on empirical
transition rates or probabilities for simulated (virtual) individuals (Willekens 2005),
clearly belong to this class.

Within simulation approaches, we also need to distinguish between weak sim-
ulations and strong simulations (Huneman 2014)7. Weak simulations serve to test
some theory or hypothesis, when the system studied cannot be easily modelled by
mathematics or when data are limited or unavailable. They are top-down models,
which start from setting the hypotheses and assumptions. Strong simulations,

6Burch (2003b) points to Nathan Keyfitz (1971) as the pioneer of the model-based demography.
7Following Huneman (2014), we give these terms slightly different meanings than for example
Thagard (1993, p. 6), for whom the weak simulation is “a calculating device drawing out the
consequences of mathematical equations that describe the process simulated,” while a strong
simulation “itself resembles the process simulated” (see also Brenner and Werker 2007).

http://dx.doi.org/10.1007/978-3-319-32283-4_8
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on the other hand, aim to “explore the possible outcomes of a simple model”
without any reference to a pre-existing theory or hypothesis (idem, p. 72). Many
existing agent-based models often proceed in this way, where simulations are used
with no pre-existing theory to explain the modelled phenomena, but only some
intuitive rules. These models are built from the bottom-up: low-level interactions
are supposed to produce high-level complex behaviour. As argued by Conte et al.
(2012), such ‘generative explanations’ are often arbitrary – they also suggest that
simulation models need to become much more empirical, in order to provide solid
micro-foundations for the social mechanisms they attempt to model.

The presence of emerging properties and of ‘downward feedback’ or causation
(from macro to micro) in complex models means that we cannot obtain the macro-
level patterns by simply aggregating the micro-level outcomes. Instead, we need to
model both levels jointly. Therefore, from the point of view of the demographic
paradigms, we remain firmly within the realm of the multilevel analysis, only using
different tools (simulations) to explore multiple layers of population processes at
the same time. Conte et al. (2012, p. 342) suggested that:

: : : simulations must be accompanied by micro-macro-loop theories, i.e., theories of
mechanisms at the individual level that affect the global behavior, and theories of loop-
closing downward effects or second-order emergence.

A part of the strength of simulations lies in a potentially wide variety of
ways to represent the same problems using a relatively simple set of techniques.
However, there is a real danger that the models can be constructed in an arbitrary
way, not linked to the observations of the properties of the population systems of
interest, and thus become manifestations of Baconian ‘Idols’. This problem can be
exacerbated if the models lack an explicit documentation of their construction and
core assumptions when simulation results are presented8. In such situations, even
models with well-grounded and well-justified assumptions may seem arbitrary.

Agent-based models are capable of analysing systems of interacting elements
through computational modelling. A part of the appeal of such models is their
capacity for explanatory power (see Burch 2003a, b; Silverman et al. 2011). As
such, agent-based models by their very nature are intended to represent the import
and impact of individual actions on the macro-level patterns observed in a complex
system, and vice versa, showing a potential promise to transcend different levels
of analysis. Such methods can further theoretical understanding of population
processes (Burch 2003a; Chattoe 2003), and using these methods to break from
the over-reliance of some micro-simulation models on empirical data at the expense
of reasonable theoretical explanations and mechanisms9 (Silverman et al. 2011).
As mentioned earlier, however, to take full advantage of this potential, we need to

8For a discussion of the ABM documentation standards, and the ODD framework (“Overview,
Design concepts and Details”), see Grimm et al. (2006), as well as Chap. 9 in this volume.
9The problem here is not the empirical basis of such models – quite the contrary – but unrealistic
mechanisms. Particularly problematic are Markovian assumptions of the lack of memory, where
simulations are based on homogenous matrices of transition probabilities. Examples of micro-

http://dx.doi.org/10.1007/978-3-319-32283-4_9
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look at how these different levels of aggregation interact, in order to better explain
social facts. Simple aggregation of individual-level rules to generate and validate
macroscopic patterns – as often implicitly done in existing agent-based models – is
not sufficient (Conte et al. 2012).

In population sciences, there are many systems comprised of interacting indi-
viduals, groups, or institutions which are worthy of enquiry. Population sciences
can become model-based by making those interactions between different levels in
population systems an explicit object of interest. In so doing, our models would
become capable of representing complex, interacting behaviours at various levels,
and investigating the roles of different elements of population systems in shaping
the observed demographic outcomes. Such models of multilevel interacting systems
would have clear potential for contributing to theory-building within population
sciences, and perhaps even social science more broadly.

Recent years saw an ever-increasing interest amongst population scientists in
new modelling methodologies for complex social realities, many of these inspired
by agent-based computational approaches (see Billari and Prskawetz 2003; Aparicio
Diaz et al. 2011; Kniveton et al. 2011; Willekens 2012; Bijak et al. 2013; Silverman
et al. 2013). The movements toward computational complexity have been matched
by a shift coming from the other direction, as agent-based modellers have branched
out into areas traditionally covered by statistical approaches in population science
(see e.g. Axtell et al. 2002; Geard et al. 2013).

Of course, model-based approaches come with their own shortcomings – in
particular, models attempting to represent the complexities of particular population
systems are naturally dependent on sensible theories regarding these systems, and on
their representation. However, such theories are not only many and varied, but can
be notoriously difficult to formalise (Klüver et al. 2003), and validate10, especially in
social science realms (see Moss and Edmonds 2005). Without such theories, it may
be difficult to build an adequate model of the systems under study. A possible way
forward from this conundrum is to reconnect to the classical research programme
which promotes some sort of functional-mechanistic analysis (Franck 2002a); this
will be discussed in the next sections of this chapter.

A clear strength of population science, and one of the keys to its success, is its
applied character, responding to the direct needs of policy makers (Xie 2000; Mor-
gan and Lynch 2001; Hirschman 2008). The methodological developments outlined
above can only further this practical, utilitarian aspect of demographic enquiries.
The Bayesian approach naturally allows formal statistical decision analysis, which
can offer practical support to various decisions which require numerical input, for
example for planning purposes (Alho and Spencer 2005; Bijak 2010). On the other
hand, model-based approaches, especially coupled with statistical analysis, allows

simulation models that allow for heterogeneous transition patterns or mechanisms, e.g. of
partnership formation, include SOCSIM (http://lab.demog.berkeley.edu/socsim/).
10After Franck (2002a), we interpret validation as a continuous process, rather than an achievable
state.

http://lab.demog.berkeley.edu/socsim/
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the decision makers to trial a range of policy “levers” in a simulated environment.
Such experimentation in silico would consist of generating coherent scenarios,
where mechanistic rules governing the behaviour of simulated individuals would
be coherent with the empirical patterns for statistical individuals observed through
a scientific lens (Courgeau 2012).

Demography needs more simulations to be able to answer new research ques-
tions, but in order to suit the goals of the discipline, such simulations would
need to be grounded in the observables, and the models would need to be built
inductively (bottom-up), rather than starting from hypotheses and assumptions. To
address this challenge for the future of demography and population sciences we
propose a model-based research programme, firmly rooted in the wider functional-
mechanistic approach. If agent-based models, as introduced above, are to belong to
this programme, they need to be empirically based and scientifically rigorous.

As a part of this research programme, we posit that demography should
investigate the interactions between various population systems and the functional
mechanisms behind them. The interactions and mechanisms are best described by
formal models based on data and theory-based rules, derived from observations of
system properties by following the Baconian inductive method. This approach can
augment the capabilities of the multilevel paradigm, whilst broadening the scope of
scientific exploration in demography. In particular, it can enable population sciences
to enhance the theoretical base of the discipline, whereby theories represent formal
conceptual systems rather than necessarily empirical ones (Franck 2002a; Burch
2003b).

2.4 Conforming Model-Based Approaches to the Classical
Scientific Programme Following the Baconian Inductive
Method

How may the model-based approaches we propose for demography conform to the
classical scientific research programme? This programme is at present generally
ignored by social scientists – as well as overlooked by philosophers of science –
because it has been distorted by the empiricist tradition in philosophy, where the
empiricism promoted by David Hume and John Stuart Mill has substituted for the
classical empiricism. Francis Bacon’s programme was shared by the other pioneers
of modern science, Galileo, Descartes, Newton, Huyghens, Graunt, and others. This
programme tacitly continues to guide research in the natural sciences today just as
in the past, yet in the social sciences it is often abandoned.

To start with an illustrative example, consider the famous model of a neuron
(McCulloch and Pitts 1943), the ancestor of the now-ubiquitous artificial neural
networks, which is shown in Fig. 2.1.

The model in Fig. 2.1 represents one neuron. Yet what is represented? Not the
soma, nor the axon, nor the dendrites, nor the gene nuclei, nor the membrane, nor the
shape of the neuron, nor the way that the various parts of the neuron work together.
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Fig. 2.1 The McCulloch and
Pitts (1943) model of a single
neuron (Source: Adapted
from Franck (2002a, p. 143),
with permission of Springer) sp    σ
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Starting from the observation of some main properties of the neuron, McCulloch
and Pitts tried to represent its functional architecture, without which these properties
could not come about as they do.

Five functions were identified: receiving the stimuli x1, x2, : : : xN ; weighting
them by synaptic coefficients w1, w2, : : : wN ; calculating the sum of weighted
stimuli received (p); fixing a threshold of stimulation (� ) below which transmission
does not occur; and finally computing the exit signal s. These functions are arranged
in a specific order: the weighting of stimuli must precede the calculation of the
weighted sum, and so on. Thus, more precisely, the McCulloch and Pitts model
represents the functional structure of the process generating the observed outcomes
of the neuron. Note that such a model ignores the combination of factors or causes
that fulfil these functions – it is wholly conceptual.

Let us now have a look at reverse engineering11. Reverse engineering follows
a similar path: inducing the design of a device from its end products. Its original
aim is to make a new device that does the same thing as the device studied. At first
glance, modelling the functional structure of a device from its products in order
to make similar products through new procedures is very far from what McCulloch
and Pitts achieved, since they were not driven to manufacture some artificial neuron.
Yet they have followed the same method: they inferred from the neuron’s properties
the structure of functions without which these properties could not be as they are
(Franck 2002b).

This method is the one which has been conceived by the classical programme of
scientific research: from the sustained observation of some property of nature (light,
heat, motion : : : ) we try to infer – to induce12 – the functional structure – in classical
terms the axiom, form, principle, or law – which rules the process generating this
property. We may, at present, qualify this method as functional-mechanistic to

11Reverse engineering denotes today diverse research practices varying with the areas of applica-
tion. We refer to its initial sense.
12Bacon’s induction is regularly confounded with induction by philosophers in its usual sense of
generalisation. Bacon wrote: “In establishing axioms, another form of induction must be devised
than has hitherto been employed, and it must be used for proving and discovering not first principles
(as they are called) only, but also the lesser axioms, and the middle, and indeed all. For the induction
which proceeds by simple enumeration is childish; its conclusions are precarious and exposed to
peril from a contradictory instance; and it generally decides on too small a number of facts, and on
those only which are at hand” (Bacon 1620; aphorism 105).
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underline that it aims to model the structure of functions that rules the mechanism –
the process – generating some property of nature.

For social properties, the method involves modelling the structure of the social
functions (the ‘first’ one, the ‘lesser’ and the ‘middle’ in Bacon’s terms) that rule the
social process generating these properties, and without which these social properties
could not become as they are. For example, regarding variations of population
size and structure, demographers uncovered the ‘first’ principle of the generating
processes, namely some combination – which remains to be discovered – of three
functions: fertility, mortality, and migration.

The ‘law’ of supply and demand, as another example, is the ‘first’ structure of
functions which was inferred (induced) by Adam Smith from the observation of
markets: it rules the process of social exchanges generating the market. Karl Marx
inferred the general structure of functions ruling the process that generates industrial
production from a thorough historical study of the technical and social organisation:
this ‘first’ principle consists of separating labour and capital. Finally, Durkheim
inferred the integration theory from a sustained statistical analysis of the differences
in suicide rates between several social milieus: the social process which generates
suicides, whichever their causes, is ruled by the integration of the individual agents.
The application of the classical programme led to these prominent theoretical results
at the height of social sciences.

Next, the functional structure governing the process generating some social
property, once established as well as possible, may guide us in identifying and
modelling the social factors which – in some singular, historical situation – have
contributed to that process. We may restrict our causal investigation to those
variables which plausibly contributed to the combination of functions required
for generating the property under study. For example, what social factors (events,
agents’ behaviour, etc.) led to a weakening of the integration of people in some
social milieu, and contributed to the increase of suicide? Another example: when we
investigate the ups and downs of the market, we no longer ought to interrogate every
plausible factor influencing these variations; instead, it may suffice to investigate and
model the factors implied by supply and demand. In demography it is the functions
of fertility, mortality and migration which actually delimit its parameter space and
channel the empirical investigation of demographic properties.

Against this background, we propose that the model-based research programme
should proceed in accordance with the classical inductive programme, which we
qualify as functional-mechanistic. Model building should start with a collection
of all relevant empirical information about the social property under study. This
would serve as the basis with which to infer the formal functional structure of the
social property in question. Once the structure is modelled it can serve to guide the
modelling – also simulation modelling – of the interactions between the systems
of individuals, groups and institutions, combining the bottom-up and top-down
relationships, and feedbacks between them (Franck 2002a).

The key stages of the inductive functional-mechanistic approach are shown
in Fig. 2.2. The solid arrows denote the four main stages of the process. Their
implementation leads to the execution and analysis of a computational model
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Fig. 2.2 Key stages of the inductive functional-mechanistic approach to model-based demography

designed on the basis of a functional structure of the population processes under
study, and derived from empirical observations. The dotted lines depict a possible
feedback: the model results can guide the process of further data collection on
particular aspects of the process that have not been included in the model. Obtaining
more information would enable revisiting the inferred functional structure, as well
as the resultant conceptual, mathematical, and computational models. Thus, the
proposed approach could be seen as iterative, with successive modelling iterations
enabling the researchers to identify gaps in existing knowledge and to fill these gaps
by conducting further observations of the processes of interest.

The proposed approach is in line with the suggestion of Conte et al. (2012, p. 342)
that “ : : : data can be used to check and validate the results of simulation models
and socio-economic theories, but a further step in using them is to take them into
account already at the modelling stage.” A careful experimental design becomes
therefore a crucial part of the modelling process, and statistical methods, such as
those discussed earlier in this chapter, need to become embedded in the model
construction process, rather than being used only as a validation tool.

2.5 Towards a Research Agenda for Demography

The resulting research agenda we would like to propose for demography is based
on three key pillars: (1) adherence to the classical programme of scientific enquiry;
(2) enhancement of the ways in which demographic phenomena are measured and
interpreted; and (3) the use of formal models, based on the functional-mechanistic
principles, as fully-fledged tools of population enquiries.

According to several authors demography should become interdisciplinary in
order to compensate its perceived shortcomings (e.g. Petit and Charbit 2012).
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Demography should borrow information, methods, and theories from other social
sciences. Although we approve a cautious recourse, when needed, to other dis-
ciplines, we have to underline that the solution to the weaknesses of current
demographic practices cannot be found in theories and methods borrowed from
other social sciences, since the last share similar weaknesses (e.g. Moss and
Edmonds 2005). All of these are confronted, just as in demography, with the
complexity of society; they suffer from uncertainty in collecting and treating
information often more than in population sciences; and their theories are hard
to settle. The history of social sciences since the mid of the twentieth century
teaches us that many innovative ‘theories’ had a generally short life, or at best
remain heavily controversial. Moreover, the flowering of such ‘theories’ nourishes
the proliferation of heterogeneous explanations and seem to increase the complexity
and the uncertainty which undermines social sciences.

On the contrary, the first of the pillars of the proposed research agenda –
the classical programme of scientific research – helps overcome the complexity
of society, it reduces the uncertainty of the models we are building and of the
explanations we are advancing, it establishes the theoretical component of research,
and it discloses the way to generalize social models, something which is reputed
to be an inaccessible goal in the social area. This is one of the reasons why
we recommend applying this method in particular in demography and population
sciences.

The belief that knowledge is something like a copy or an image is widespread.
The classical programme conveys a different concept of science: scientific research
is not intended to improve or to extend our image of reality. Instead, scientific
research consists of discovering the principles governing the processes that generate
some properties of nature or of society. We need to collect the best information
on some property of nature – not about nature as a whole – in order to discover
the principles governing the process that generates this property. The same applies
for the social sciences: we need to collect the best information about some social
property of human populations, not about human populations as a whole. Moreover,
it is not merely information about this social property that will reinforce our
scientific knowledge. Collecting information must be augmented by research on
the principles – i.e. the combination (or structure) of functions – commanding the
process generating this property. When selected in this way, the required informative
intake varies with the property under study and it is drastically reduced, restricting
at the same time the complexity of the task. The classical research programme also
restricts the theoretical approach to some social property to the modelling of the
structure of functions necessary to generate this property.

This approach provides a major criterion for selecting information, by restricting
our causal investigation to those variables which plausibly contributed to performing
the combination of functions required for generating the property under study.
This is yet another way to overcome complexity that is delivered by the classical
programme of science.
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Assumptions are an important source of uncertainty and nourish the prolifer-
ation of explanations in the social sciences13. The classical research programme
recommends setting aside any assumptions in the guiding of scientific investigation
(Baconian ‘Idols’). Thus it eliminates the root of any uncertainty arising from
assumptions. Managing research without assumptions seems difficult – but can be
done if we resist the urge to make hypotheses. Newton argued that “Hypotheses are
not to be regarded in experimental Philosophy” (after Ducheyne 2005, p. 124). This
way of thinking is not in fashion today in the social sciences, yet it is commonplace
in the natural sciences.

The classical research programme substitutes induction for the hypothetical-
deductive approach. As we have seen, inductive research in its classical sense
consists in inferring, from the sustained observation of and experimentation on some
property of nature or population, the functional structure – in classical terms the
axiom, form, principle, or law – which rules the process generating this property,
and without which this property could not come about as it does. This criterion of
necessity which guides the inductive investigation of the functional structure ruling
the social processes which generate some social property is the best guarantor of the
relevance of some theory, be it in the natural or in the social sciences.

Besides reducing by far the nagging worries of complexity and uncertainty
characterising the social sciences today, the classical programme of science provides
another huge advantage. By focusing on the process – or ‘mechanism’ – generating
some natural or social property, the functional structure is treated independently
of the causal structure. Modelling each of these structures separately allows us
to disclose the way to generalise social models. Causal structures may never be
generalized since populations are diverse and changing; causal structures are at
best relatively constant. But a functional structure may be generalized in the sense
that, whenever the same property occurs, the functional structure of its generative
process ought to operate, insofar it has been established that this structure is really
required for the property to appear14. This is the core sense of the universality and
of the necessity of natural laws, but it has been regrettably distorted by the Humean
empiricist tradition. For the founders of modern science the term law was simply a
metaphorical synonym of principle15. Thus laws are fully attainable by the social
sciences, just as by the natural sciences, insofar we are willing to return to the
classical concept of scientific laws.

The second pillar of the tentative research agenda we wish to advance comprises
a question: how can we make better use of the measures achieved in demography?

13Formulating and testing hypotheses is not wrong, in our opinion, as long as it is based on
empirical observations. However, throughout the present chapter we plead for abandoning the
hypothetical-deductive approach and for substituting it with the classical induction.
14The property itself may not be generalized, of course.
15The principles are traditionally named theories; this tradition goes back to Plato’s theoria, and
reserves to the term theory the restricted sense of a corpus of principles. This is far from its
present use describing as a ‘theory’ every sort of conceptual hypothesis, or model, or explanatory
‘mechanism’.
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One of the main tasks of demography is to measure human populations: their
size, density, rate of change, composition, various distributions, as well as the
possible causes and consequences of changes in these factors16. In order to achieve
this, demography rests largely on statistical analysis. Yet, measuring provokes an
increasing dissatisfaction today. This is due, in our opinion, to a distorted view of
measurement and quantification. Measuring population properties is judging, by
way of comparisons, the amplitude of these properties regarding their potentialities.
Measuring also guides the induction – in the sense of the classical research
programme – of the principles governing these properties.

The term “potentialities” refers to what possible effects something might gen-
erate in certain circumstances. These potentialities are what we have in mind,
explicitly or not, when we are measuring – or judging – some social property17.
Measuring may not be confounded with – nor reduced to – the mathematical,
statistical or other means by which measuring is carried out (for example censuses,
surveys or vital registration systems; see Courgeau 2013).

In essence, we ought to multiply the measures of the social properties under
study – all sorts of measures which are adequate – and to improve the quality
of our measures in order to reinforce the quality of our judgments about their
potentialities. This recommendation is exactly the opposite of what was proposed
for the future of demography in recent years by some demographers (e.g. Tabutin
2007; Charbit and Petit 2011; Petit and Charbit 2012, and others): they wish to
reduce the importance of measuring in demography and to increase our confidence
in judgments – assumptions – conceived without measures in other disciplines, and
somewhat abusively called theories.

Now we reach the third pillar of our tentative research agenda: to promote
the model-based work programme, based on the functional-mechanistic approach
outlined in this chapter. This approach carries with it substantial promise: it
complements the four extant paradigms while incorporating insights gained from
model-based science. Besides, as we see in other areas of model-based science,
the deployment of this kind of approach likely will influence future data collection
in demography and other population sciences, not only from surveys and other
traditional sources, but also controlled experiments (Conte et al. 2012).

Model-based approaches provide us with the means to expand the range of
benefits already provided by multilevel modelling. We gain deeper insights into
the interactions between various population systems, and we also gain the capacity
to explore the parameter space of the simulations by generating “what-if” sce-
narios. Simulation parameters – once they result from the functional-mechanistic
approach – govern the way in which the complex, interacting social processes in

16See for example the following definition of demography (IUSSP 1982): “the scientific study of
human populations primarily with respect to their size, their structure and their development; it
takes into account the quantitative aspects of their general characteristics”.
17Plato, who was familiar with the concept of number developed by the Pythagoreans, developed
at length the idea that measuring is judging, and that we ought to recourse to measures in order to
act wisely in politics as well as in private life (see Bassu 2009, 2011).
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the model work, and therefore exploring the parameter space enables us to inves-
tigate numerous such scenarios, which could represent policy changes, individual
behavioural changes, societal-level changes, and similar (Silverman et al. 2013).
Given the construction of these simulations, running them under varied scenarios
can illustrate the unforeseen, non-linear impact of changes to these complex
processes. This scenario generation capability, when coupled with uncertainty
quantification, allows us to extend the utility and policy relevance of empirically-
grounded population models beyond what is accommodated by the traditional
approaches. In addition to addressing the ecological and atomistic fallacies, which is
already the case in the current multilevel paradigm, we could now analyse different
layers of interactions between population systems.

Such approaches, relying as they do upon inference about systems and inter-
actions between them, are also well-suited to integrating both quantitative and
qualitative data into the same simulations, as mentioned before. For example,
qualitative information can be gathered from individuals within the population
under study, as a means of gaining understanding regarding individual behaviours,
intentions, and goals, and these can inform the behavioural rules in the simulated
population. Further, qualitative data can even be used to guide the construction or
modification of the model itself (e.g., Polhill et al. 2010).

In this chapter, we have discussed what we believe are the key elements of model-
based approaches – such as their inductive character – that would be necessary for
them to become a real addition to the toolbox of population sciences. If the future
demography is to examine complex, multilevel interactions of different elements
of population systems seriously, computational approaches are the methodology of
choice. However, the models constructed would need to conform to the rigours of
scientific enquiry, rather than being based on arbitrary assumptions which often
lack empirical basis. The model-based work programme, rooted in the functional-
mechanistic approach, offers a general analytical framework to guide this process.
Besides, more attention needs to be paid to the role of different levels of analysis,
and interactions between them. If this is done correctly, the multilevel paradigm will
gain very powerful analytical tools to study new research questions, related to the
behaviour of complex population systems.

The next step in developing model-based demographic approaches must consist
of proposing some concrete solutions, analytical formalisms and practical guidelines
for the modellers. Although this topic remains beyond the scope of the current
chapter, in the literature there are already some promising suggestions in that regard.
For example, Casini et al. (2011) have proposed using recursive Bayesian networks
as an analytical formalism for building “models for prediction, explanation, and
control”, which are capable of describing functional mechanisms and causal
relations, and of analysing uncertainty in coherent, probabilistic terms. In practice,
the process of model-building can be iterative, as shown in Fig. 2.2: we could
start with a first approximation of a model that reproduces some well-established
qualitative features of the modelled phenomenon (‘stylised facts’), but should not
stop there: the model could then be refined by including increasingly more data as
they become available. These propositions are clearly worthy of investigating in the
demographic context.



48 D. Courgeau et al.

Of course, it is unrealistic to expect that every piece of model-based demographic
research should contain all the elements discussed above. However, as future studies
progress – and as populations under study continue to shift following ever-changing
and interacting social processes – model-based approaches to demography will
bring about further opportunities for constructing and verifying the models. In this
respect the linkage between empirical data on population structures and modelling
the social mechanisms and interactions at the root of these structures becomes ever
more important – and perhaps more powerful.
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Chapter 3
The Role of Social Interactions in Demography:
An Agent-Based Modelling Approach

Alexia Prskawetz

3.1 Introduction

As we argued 10 years ago (Billari and Prskawetz 2003), we may still conclude
that demographers have not been very active in the field of research that uses the
computational approach to study human behaviour. This is all the more astonishing
since demography offers itself quite naturally for such an approach. Demography
looks at human behaviour at the individual level and how this behaviour evolves
over the individual life cycle and is shaped by the socio-economic environment.

During the last years consensus has been reached, and could be supported by
empirical evidence, that individual behaviour cannot be explained and understood
in isolation from the social network one is linked to (e.g. Åberg 2003; Montgomery
and Casterline 1996). These networks may consist of family members, friends and
other peer groups which will have an impact through social learning and social
influence on each other. However, the formalisation of such network effects to
explain individual demographic behaviour lags behind the empirical evidence or
is often simplified in terms of macro-level diffusion mechanisms that do not allow
understanding the mechanisms of social network effects from the bottom up. Agent-
based models allow to integrate such network effects into models of individual
demographic decision processes and to build up the macro-level demographic
patterns (e.g. aggregate fertility rates, marriage rates, etc.) from the bottom up.
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Before we present, in the next section, three examples of our own work relating
to social interaction and demographic behaviour, we briefly summarise the main
tasks and requisites of an agent-based model (ABM).

We start with a quote from Axelrod (1997, p. 4) “Whereas the purpose of
induction is to find patterns in data and that of deduction is to find consequences
of assumptions, the purpose of agent-based modeling is to aid intuition.” ABMs
constitute computational laboratories that help our understanding of processes
underlying the empirical observation of demographic behaviour. As such models
are based on individual agents, they are called agent-based models. Prediction is not
the purpose of these models, but the emphasis is rather on explanation.

It is important to confine the task of agent-based modelling. The aim is not to
understand why specific rules are applied by individuals but to presuppose specific
behavioural rules and study whether these rules at the micro level can explain the
macro-level pattern we empirically observe. For example, the famous model of
Schelling (1971) (see also Schelling 1978) aims to explain the spatial segregation
pattern of individuals observed at the macro level based on specific decision rules at
the individual level.

As outlined in Axelrod and Tesfatsion (2006), ABM focuses also on how
people interact and not just how they behave. The interaction of agents leads to
emergent properties that could not be deduced from simple aggregation of individual
behaviour. ABMs help in “testing, refinement and extension of existing theories
that have proved to be difficult to formulate and evaluate using standard statistical
and mathematical tools” (Axelrod and Tesfatsion 2006, p.1651). But also the
individual heterogeneity is an important aspect of an agent-based model as well as
the possibility that individuals can adapt and learn through time (Gilbert 2008). This
deviates clearly from the representative-agent model that assumes static or dynamic
predefined rules.

The fact that an ABM needs to be implemented as a computer program requires
precision. On the other hand, the mathematical tractability is less of a limitation
compared to formalised theoretical constructions. Indeed, there is often a wide gap
between theory and techniques in demography and ABMs may help to close this
gap. For example, demographers may present interesting theories of behaviour and
good statistical models but frequently the link is missing. Hence, many statistical
models suffer from an insufficient theoretical basis. Moreover, ABMs may be
regarded as a tool to test theories for which data are not easily obtained or not
available at all. Examples are subjective aspects of demography such as values,
norms, psychological aspects, cognition or emotions where we often lack concrete
data but argue in theories about their importance for explaining human behaviour.

The three examples we present in Sect. 3.2 should convey main properties of
an ABM as outlined above. Based on rules at the individual level we aim to
explain the macro level demographic pattern of marriage (Sect. 3.2.1) and fertility
(Sect. 3.2.2). The case of ABMs as computational laboratories is best presented
by our third example (Sect. 3.2.3) where we study the role of family policies for
fertility. Common to all three examples is the fact that individuals are heterogeneous
and interact within social networks.
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3.2 Three Examples

Based on three of our papers we present how agent-based models can be applied
to investigate the role of social interactions and social learning to explain macro-
demographic phenomena like the age-at-marriage curve (Billari et al. 2007), age-
specific fertility rates (Aparicio Diaz et al. 2011) and the role of family policies for
fertility (Fent et al. 2013). In particular we focus on the various steps that need to
be followed when building up an agent-based model. These include the discussion
of the macro-demographic phenomena to be explained and the underlying micro-
demographic mechanisms, the implementation of behavioural rules of the model in
a mathematical representation, the setup of the simulations and finally a verification
of the simulation results with the macro-demographic phenomena to be explained.

3.2.1 The Wedding Ring: Mate Search and Marriage

3.2.1.1 Theory and Assumptions

The marriage market constitutes an intuitive case study to apply agent-based
modelling as it is based on individual agents that interact and may follow specific
rules how to search for partners. The aim of our model is to explain the typical shape
of the aggregate age pattern of marriage as it emerges from the micro dynamics of
individual agents. The benchmark against which we test our model is the shape
of the age-at-marriage hazard function (cf. Billari et al. 2007, Fig. 1) which has a
skewed unimodal shape where the rise of age-specific probabilities is faster than its
decrease.

While demographers have mainly applied statistical and mathematical models at
the macro level to explain and model the age pattern of marriage, psychologists and
economists have studied and modelled the process of partner search at the micro
level. Applying agent-based models allows us to combine both approaches. Such
models account for the macro-level marriage pattern starting from plausible micro-
level assumptions and allow for the interaction between potential partners.

To model the social diffusion of marriage at the micro level we assume that each
agent is embedded in a social network. Members of the agent’s social network
(relevant others) who are already married may influence the agent’s willingness
to marry, and the chance of actually marrying will depend on the availability of
partners. These mechanisms are also underlying the macro-level diffusion marriage
model by Hernes (1972). Marriage rates are therefore high within social networks
that have a high share of married and unmarried agents. To allow for the fact that the
set of relevant others may change during the life course we assume that individual
characteristics such as the age of the individual agent will determine the size and
characteristics of the set of relevant others. These assumptions are based on stylised
empirical facts that show that the number of relevant others increases during youth
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and adulthood and thereafter is reduced again. Based on empirical facts that show a
strong homogamy of marriage within socioeconomic groups, we assume that the
social network is determined by individual characteristics such as age, kinship,
spatial location, education, etc. To yield a parsimonious representation of the social
network we restrict the set of characteristics to the two-dimensional space only, with
age and spatial location as the two key characteristics. A further assumption is that
we neglect divorce, modelling marriage as an irreversible process.

3.2.1.2 Implementation

One of the most difficult steps is to formalise the various theories and assumptions
in a way that they can be implemented in a computer simulation.

We start by defining the world in which agents move. For this we locate agents
along a torus and establish each agent with two characteristics: a spatial location
� 2 Œ0; 2�� along a circular line on the torus and a second characteristic, the vertical
location on the torus, which may represent the age of the individual (cf. Fig. 3.1).
The geometry of a circular line gave rise to naming it the “wedding ring” and it has
the advantage that the neighbourhood for each agent is contained within the circular
line. We next define the set of relevant others as a two-dimensional neighbourhood
that is symmetric w.r.t. the location and asymmetric w.r.t. the age of the agent. The
time scale of our simulations is therefore a calendar year that corresponds to the age
of the agents. The share of married persons in the network determines the social
pressure to get married. We allow that also in case of zero married couples in the
set of relevant others, social pressure is positive, and we assume that social pressure
is increasing with the number of married individuals in the set of relevant others
and follows an S-shaped function. The social pressure itself together with the age
of the agent determines another set of relevant others within which an agent looks

Fig. 3.1 Implementation of the agent-based model (Billari et al. 2007, p. 65)
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for partners. Based on stylised empirical facts we assume that age influences the
extent of this region in a non-monotonic way, being highest between ages 21 and
38. We only allow marriages between different sexes and assume a mutual search,
i.e. two agents will marry only if both agents are part of the set of relevant others
of the other agent. Once married, agents will have children according to a set of
predetermined age-specific fertility rates where we adjust fertility to keep the total
population constant. Children born to married couples are located near parents and
their characteristics are initialised in a similar way as for the initial population.

Next we need to define the characteristics of each agent, formalise the specific
rules of agents and define the various simulation steps. At this stage a flow diagram
may be helpful to follow the working of the model (Fig. 3.2). Each agent is
characterised by a numerical identifier, year of birth, sex, age, spatial location,
length of symmetric interval in which the agent searches for potential partners,
social pressure, marital status, identifier of partner if married, marriage duration,
set of relevant others and set of potential partners. Note that all characteristics are
time-dependent except the birth year, sex and the numerical identifier.

To run the simulations we initialise the starting population by the age distribution
of the US in 1995 and based on the same population we assign the sex and marital
status randomly. For the initial population we also assign the marriage duration
randomly to each agent. We run the model for 150 years. To define the set of relevant
others we assume five kinds of agents that differ in their preference as to whether
they prefer others in the same, younger or older ages and combinations of these.

Fig. 3.2 Flow diagram (Billari et al. 2007, p. 70)
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Next we randomly assign agents a type, and for each type we randomly choose the
midpoint of each age interval, the width being again a random variable. Among
this set of agents we choose a random number of agents to be their relevant others.
The social pressure is then determined by the number of relevant others that are
already married. To define the space of potential partners we transform the number
of the social pressure into a distance: d D sp.pom/ � m.N/ � ai.x/, where the social
pressure sp increases with the share of relevant others being married as denoted by
pom, m.N/ denotes a factor that depends on the initial size of the population N and
ai.x/ reflects the fact that age x determines the network size with ai.:/ presenting
a non-monotonic function first increasing in age and then decreasing again at older
ages. The functions sp.:/ and ai.:/ are both bounded in the interval Œ0; 1�. Potential
partners are therefore in the spatial range of Œ� � d; � C d� and the age range Œx �

sp.pom/ � ai.x/ � c; x C sp.pom/ � ai.x/ � c� where we assume the positive constant
c to be equal to 25. Hence, the maximum age difference for potential partners will
be 25 years.

In each simulation step, the agent ages by one year and the final age at which
agents die is set to 100. Agents start to search for partners at age 16. In every
simulation step, agents choose the set of relevant others which then determines the
social pressure. The arrow from the aging box to social pressure indicates that the
specific value of the social pressure is age dependent. Next, the agent determines
the set of potential partners which will depend on the social pressure. Within the set
of potential partners the agent looks for a partner. If the agent finds a partner it is
checked whether the agent herself is in the set of potential partners of her partner in
which case the two agents get married. Once married the agent gives birth to new
agents according to an exogenously fixed age-specific fertility rate (we applied the
US age-specific fertility rate of 1995). If the agent is not married in one simulation
step it ages and starts the search for relevant others and potential partners again.
Otherwise, when the agent is married it just follows the ageing process over its
remaining life cycle.

3.2.1.3 Simulation

The software used for the simulations is NetLogo. To obtain smooth simulation
results we set the initial population to 800 and take the average over 75 consecutive
cohorts and 100 simulation runs. To validate our simulations we test whether our
model can replicate the qualitative shape of the age-at-marriage curve observed at
the aggregate level. In a next step we can then investigate which of our assumptions
are most important to capture the qualitative shape of the age-at-marriage hazard
curve. Indeed, agent-based models represent a toolkit to perform such counterfactual
experiments. Our simulation results (cf. Fig. 3.3) demonstrate that our model is able
to reproduce the empirically observed right-skewed bell-shaped distribution of the
age-at-marriage hazard. However, if we ignored the age dependency of the set of
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Fig. 3.3 Hazard of marriage in a population of simulated agents with alternative settings for social
pressure. (a) Women (b) Men (Billari et al. 2007, p. 72)

relevant others or/and used a linear or constant functional form of the social pressure
as it depends on the married couples in the set of relevant others, the shape of the
age-at-marriage hazard rate would be very different. Further sensitivity analyses
w.r.t. the asymmetry of the age interval that determines the set of relevant others
show that either extreme—no asymmetry or a much higher asymmetry—implies
an increase in the proportion of married agents within the set of relevant others
compared to the benchmark simulations. Moreover, the exact form of the S-shaped
social pressure function will also determine the quantitative shape of the age-at-
marriage hazard.
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3.2.1.4 Conclusion

Our model of the marriage market nicely demonstrates how the shape of the age-
at-marriage pattern emerges as the outcome of individual behaviour and social
interactions. Not only can we replicate the qualitative shape of the age-at-marriage
hazard but our model allows us to discern the most important characteristics of the
network structure that may explain the qualitative shape of the marriage process.
For a quantitative analysis, however, we would need an empirical validation of our
parameters for different societies.

The mechanisms we present are in accordance with the work by Dixon (1971),
who argues that three key variables are important in determining the marriage
pattern. These include the availability of mates (represented by the set of potential
partners), the feasibility of marriage (represented indirectly through the initial
distribution of ages at marriage) and the desirability of marriage (represented by
the influence of the social pressure).

3.2.2 Transition to Parenthood: Social Interactions and
Endogenous Networks

3.2.2.1 Theory and Assumptions

In fertility theories, diffusion processes have long been shown to underlie the
observed fertility decline (e.g. Palloni 1998; Watkins 1987; Kohler 2001). Fertility
behaviour not only depends on family background variables and the life course
path, but also on the behaviour and characteristics of other individuals which are
linked through social networks. Within such networks, beliefs, norms, services etc.
are exchanged, learning from others takes place and agents may feel induced to
conform to prevailing norms. However, the formalisation of social interactions to
explain fertility behaviour is missing in theoretical demographic models. Agent-
based models allow testing the importance of social interaction effects and the
prevailing micro and macro feedback to explain actual fertility patterns. In Aparicio
Diaz et al. (2011) we have set up an agent-based model to study the role of
social interaction for the transition to parenthood and in particular we focused
on endogenous network formation according to Watts and Strogatz (1998) and
Watts et al. (2002). More specifically we assumed that age and intended education
determine the affiliation to a social network. The share of mothers within the social
network positively impacts the desire to have a child for the agent. We then also
applied our model to project age-specific fertility rates for Austria.
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3.2.2.2 Implementation

To formalise our model we need to first define the characteristics of our agents. We
assume a one-sex model with only female agents and distinguish agents by their
age, intended education (which we assume to be already known at childhood) and
parity. We distinguish six stages of parity ranging from 0 to 5C and three groups of
education: primary and lower secondary, upper secondary, and tertiary. Each agent
is furthermore characterised by a numerical identifier and her social network. Age
and intended education determine the affiliation to a social group. Agents choose Ns
members in their social network. Her mother and her siblings are also part of her
social network. These selected members of the social network will then influence
the birth probabilities of the agent. We assume the reproductive period to start at age
15 and end at age 49 years. The maximum age of agents is set to 100 years.

To initialise our model we assume an age distribution that reflects the Austrian
female age distribution and set the intended education similar to the age-specific
educational distribution of Austrian females at age 30. To set the parity level we
refer to the age and educational parity distribution of Austrian females and assign
an age at first birth based on the Austrian female population in case the agent is of
parity greater than one.

Next we need to define the various simulation steps, among them the formation
of the endogenous social network and the feedback rules between the micro and
macro behaviour.

In every simulation step (that equals one calendar year) agents age and are at
risk of dying. At age 15 we assume that a social network is formed. Based on the
social influence of members of the social network sii, where the subscript i denotes
the i-th agent, the empirically observed age and parity-specific birth probabilities
bprt.x; p/ are altered, with x denoting age and p denoting parity. In case of parity
greater than zero we also postulate that birth probabilities are related to the age
of the youngest child xci where the relation is represented by the functional form
g.xci/ that is decreasing in xci. The average of the birth probabilities at step t at the
individual level determines the new updated birth probabilities at the macro level
for step t C 1. To sum up, at stage t individual birth probabilities are determined as
follows: bpri.x; 0/ D bprt.x; 0/sii for parity zero and bpri.x; p/ D bprt.x; p/siig.xci/

for parity greater than zero. In stage t C 1 the new macro-level birth probabilities
are given by bprtC1.x; p/ D bprt.x; p/sit.x; p/.

To endogenously set up the social network we define a distance dij between any
two agents i and j that is determined by their difference in education e and age x:
dij D �jei �ejjCjxi �xjj where � is a constant to adjust for the fact that the maximum
age difference is much higher than the maximum education difference. The agent
then chooses a distance d with probability pr1.d/ D c exp.�˛d/, with the parameter
˛ denoting the degree of homophily and c representing a normalisation parameter.
High values of ˛ imply that agents chosen are more similar. Agents are searched
for until the social network size is equal to a desired number s which itself is drawn
from a log-normal distribution with a given mean of Ns. In addition to friends chosen
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Fig. 3.4 Social influence function (Aparicio Diaz et al. 2011, p. 569)

by this procedure, each social network also contains the mother of the agent and her
siblings. Furthermore we assume a mutual friendship relation in the sense that the
selecting agent is also added to the social network of the selected agents.

We assume that the share of mothers within the social network will induce a
positive influence on the agent’s parity transition and implement the social influence
function as a threshold function similar to Granovetter (1978) and Schelling (1978).
To account for different education-specific network effects we model the social
interaction so as to vary by educational level of the agent assuming different
intensities of social influence by education. Formally we model the social influence
for an agent of parity p as an S-shaped function (cf. Fig. 3.4) which increases in the
difference between the share of mothers at higher parity compared to the agent, in
her social network � and in the entire population ��: si D 1C�Œ exp.ˇ.����//

1Cexp.ˇ.����//
� 1
2
�.

The parameters ˇ and � measure the intensity of the social influence. For � we
use different values for different educational groups and for different parities. We
assume higher values for higher educational groups and lower values for higher
order births representing the fact that higher educated women conform more to
social pressure and social pressure decreases with higher order births. We assume
that agents are only influenced by members in their social network with higher
parity. Only when the share of mothers with higher parity in the social network
differs from the corresponding share in the whole population will there be a positive
social influence.

3.2.2.3 Simulation

Our simulations are based on the Austrian age-, education- and parity-specific
distributions for 1981, 1991 and 2001, and we rely on the Austrian life table for
those years to account for age-specific mortality. Setting our initial population equal
to N D 50;000, we take the average over 25 simulation runs. We start our first set of
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Fig. 3.5 Fit of simulated age-specific fertility rates for combinations of model parameters. In panel
a, the level of homophily ˛ (the higher the value the more similarities among network members)
and the weight of education difference � (the higher the value the more important becomes the
education when choosing network members) are varied; in panel b, the mean social network
size Ns and ˛ are varied; in panels c–e, the education-specific intensities of network influence are
pairwisely compared. Fixed parameters are set at ˛ D 0:35; � D 5; Ns D 10; �1 D 0:14; �2 D 0:85,
and �3 D 1:25 (Aparicio Diaz et al. 2011, p. 572)

simulations with the Austrian population in 1981 and birth probabilities as of 19841

and simulate the model forward in time for 20 years. As a performance measure
for our simulations we take the sum of absolute differences between simulated and
observed age-specific fertility rates in 2004. We choose two-dimensional contour
plots of this difference where we vary two of the model parameters simultaneously
(cf. Fig. 3.5). In this way we can investigate the sensitivity of our model to model
parameters. Or alternatively, the exercise allows us to calibrate the parameters such
that our model can replicate the observed path of fertility trends. Results indicate
that our model performs best for medium ranges of the homophily parameter ˛, a
minimum network size Ns of six and when agents of lowest education are influenced
the least by their peers.

Similar as to the marriage model we perform counterfactual simulations where
we assume no social interaction. In this case our simulation results can neither
replicate the observed increase in the mean age at birth nor the decrease in fertility
rates observed in Austria since 1981 (cf. Fig. 4 in Aparicio Diaz et al. (2011),
p. 573). However, when we include social interaction, our model is capable of
replicating the development of the Austrian fertility pattern between 1984 and 2004
very well (cf. Fig. 3.6). The trend of the simulated TFR in panel (a) fits the trend

1Age-specific birth probabilities are not available for the time before 1984.
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Fig. 3.6 Simulation results for simulating 20 years starting from 1984. “A” stands for empirical
data of Austria, and “S” denotes simulated results. An asterisk denotes that data are from Statistik
Austria (2007), double asterisks indicate computations by T. Sobotka based on data provided by
Statistics Austria (Aparicio Diaz et al. 2011, p. 574)

in empirical TFR quite well. Panels (b), (c), and (d) show that the simulated curve
of age-specific fertility, mean age at first birth and first birth probabilities constitute
a remarkably good fit to the observed ones. Similarly, if we run the model from
1991 onwards for 15 years our results indicate a good fit with the actual Austrian
fertility development. In particular, our model can reproduce the shift in the timing
of fertility that occurred during the last decades.

We have also investigated forecasts of our model and compared these with the
fertility assumptions postulated by the Austrian population projections. Such an
exercise highlights the potential of using agent-based models as a causal model
to explain trends in fertility rather than applying only projections based on trend
extrapolation of past fertility development.

3.2.2.4 Conclusion

In the application summarized in this section we have applied an agent-based model
to suggest a more realistic model of how social interaction (through social learning
and social influence) may help to explain observed family formation patterns in
contemporary Europe. By applying an agent-based modelling framework we can
conduct “thought experiments that explore plausible mechanisms that may underlie
observed patterns” (Macy and Willer 2002, p.147). Such an approach is particularly
helpful when trying to explain the trends in fertility timing and quantum over the
last decades. Our numerical results and further sensitivity analyses have clearly
identified the importance of the characteristics of the social network in explaining
the observed fertility patterns. Most importantly, our model can not only explain
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the decrease in fertility at younger ages but also its increase at higher ages. We
are not arguing that other factors such as socioeconomic conditions (employment,
education, etc.) and shifting values of younger women towards less traditional
female roles in the family and in society do not play a role in explaining family
formation. The aim of our model is to highlight that social interaction may be
an important mechanism as well. As a next step we need to test whether our
model can also explain fertility patterns in other European countries. In particular,
the framework of agent-based modelling allows us to experiment with alternative
mechanisms that may underlie the timing and quantum of fertility in different social
environments. Our model can therefore be regarded as an attempt in the exploration
of identifying mechanisms that may underlie observed family formation patterns.
Such an approach is indispensable in order to understand past trends and to project
future developments of demographic behaviour.

3.2.3 Family Policies and Social Structure

3.2.3.1 Theory and Assumptions

The social structure within a society may not only influence demographic behaviour
at the individual level, but also mediate the role of policies targeted at the individual
level. As we have demonstrated in Fent et al. (2013), the effectiveness of family
policies may be closely correlated with the prevailing social structure. So far,
the empirical evidence on the importance of family policies to explain fertility is
rather mixed. Gauthier (2007) shows in a comprehensive survey of the literature
that family policies at the micro level have an effect on completed fertility while
studies at the macro level indicate an effect of family policies on the timing of
fertility. However, studies on the role of family policies for fertility—whether at
micro or macro level—commonly ignore the prevailing social structure in a society
though the role of social networks is undisputed in models of fertility behaviour.
In Fent et al. (2013) we build on these ideas and assume that fertility preferences
are subject to a diffusion process among individuals. Family policies, by altering
fertility preference in some females, may therefore act as an effective device to
induce a snowball process with the changing preferences spreading from person to
person. We distinguish between a direct effect of family policies as captured by an
alleviation of resource constraints (through e.g. institutional childcare or financial
benefits) at the individual level and an indirect effect of family policies that captures
the diffusion of fertility intentions via social ties as described above. The latter
indirect effect captures the argument that any additional child resulting from family
policies may induce others in the same peer group to increase their own fertility
intentions. Such multiplier effects that operate through peer group effects form the
basis of the work of Feyrer et al. (2008). Within an agent-based model we can
combine these various levels of analysis: family policies at the macro level, their
diffusion within social networks and their ultimate effectiveness at the individual
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level. Our model can be regarded as an attempt to show that family policies can
only be effective if they account for the characteristics of the society in which they
are implemented.

3.2.3.2 Implementation

To build up an agent-based model we start to define the characteristics of the agents.
We assume a one-sex population of females only. Each agent is characterised by
a numerical identifier, age, her household budget, parity, number of dependent
children who do not yet have their own income, intended fertility, her social network
and her assignment to a specific income quantile. The household budget is composed
of income as well as the monetary value of non-working time. Household income
is allocated in order to satisfy the agent’s own and her children’s needs. We assume
that an agent stays in the same income quantile over all her life but may progress
to higher income levels as the agent ages. We then define necessary conditions to
have a child. First, intended fertility has to exceed actual parity and secondly, the
disposable income (i.e. income less the consumption needs of the agent and her
children) has to exceed the costs of a child. If both conditions are fulfilled, an agent
is exposed to the biological probability (fecundity) of having another child. Every
new-born child is then linked to its mother and sisters. Agents age by one year
in every time step and depending on their age and labour force participation they
become adults. Once an agent is an adult, she gets her own income, own social
network and own fertility intention.

Next we have to formalise the working of family policies and how they intervene
in the fertility decision. We distinguish between a fixed family policy bf and a
variable family policy bv , the latter being proportional to the household budget wi;t

where i denotes the i-th agent. Both kinds of family policies reduce the costs of ni;t

dependent children: c
ni;t
i;t D ni;t.�

p
wi;t � bf � bvwi;t/ where the costs of children

�
p

wi;t are measured in terms of their consumption which is a concave function of
the household budget wi;t and � denotes a parameter.

The social network is built up in a similar way as in Aparicio Diaz et al. (2011),
but we are assuming that not only two but three characteristics (age x, income z
and intended fertility f ) determine the closeness between agents i and j as presented
by the distance dij D

ˇ
ˇxi � xj

ˇ
ˇ C �1

ˇ
ˇzi � zj

ˇ
ˇ C �2

ˇ
ˇfi � fj

ˇ
ˇ. Agents choose a distance

d with probability pr1.d/ D c exp.�˛d/ and pick an agent with this distance as
a new friend. We define another probability pr2, which determines whether this
new friend is chosen among those individuals who are not linked to any of the
agent’s peers or only among those individuals who are linked to at least one of
the agent’s friends. We therefore assume a specific level of network transitivity, i.e.
two agents being connected to the same agent can build a mutual relationship. The
constant c is a normalisation parameter to ensure that the probabilities of all of the
feasible distances sum up to one, and the parameter ˛ determines the agents’ level of
homophily. The selecting agent is also added to the network of the selected agent.
Thus, we assume a mutual friendship relation. We repeat this procedure until the
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desired number of peers, s, is found. This desired network size is drawn from a
lognormal distribution with mean Ns D 10 and rounded to the nearest integer.

We next define a diffusion mechanism that is based on local ties and operates
on the intended fertility. The specific social effects are modelled as in Goldenberg
et al. (2007). We assume that intended fertility fi;t of agent i increases (decreases)
by one with probability pr3 (pr4) due to the social effects exerted by a peer with
a parity greater (less) than the agent’s intended fertility. Then, we compute �Ci
(��i ), the number of agents j who are linked to i and have a parity greater (less)
than the intended fertility of agent i, i.e. pj;t > fi;t (pj;t < fi;t). We next compute
the probabilities for an agent to be positively or negatively influenced by at least

one agent from the peer group,2 pCi;t D 1 � .1 � pr3/�
C

i and p�i;t D 1 � .1 � pr4/�
�

i .
Individuals may be exposed to positive influence, negative influence, both positive
and negative influence, or neither. Hence, the probability of being only positively
(negatively) influenced becomes .1�p�i;t/p

C
i;t (respectively .1�pCi;t/p

�
i;t) and the prob-

ability of being positively and negatively influenced is pCi;tp
�
i;t. We use the parameter

	 (or (1 � 	)) to determine the fraction of individuals who increase (decrease)
their intended fertility in the case of mixed influence. Then, the probabilities of
increasing, decreasing or keeping the intended fertility constant are

pi.fi;tC1 D fi;t C 1/ D .1 � p�i;t/p
C
i;t C 	pCi;tp

�
i;t

pi.fi;tC1 D fi;t � 1/ D .1 � pCi;t/p
�
i;t C .1 � 	/pCi;tp

�
i;t

pi.fi;tC1 D fi;t/ D .1 � pCi;t/.1 � p�i;t/ :

3.2.3.3 Simulation

We start with six distinct populations of agents. Each agent is characterised by her
age, parity, number of dependent children, intended fertility and household budget.
The distribution the individual characteristics are drawn out of is the same for all
six populations, i.e. the populations only differ with respect to the realisation of the
specific values. Each population consists of 5,000 agents. Our interest is in the role
of social interaction for the effectiveness of family policies. We therefore vary the
following set of parameters: the level of fixed and proportional family policy, the
homophily parameter that describes the network structure, the degree of transitivity
of the network structure, the importance of the level of intended fertility as a
characteristic that determines the social network, and the strength of positive and

2If pr3 is the probability of increasing intended fertility due to meeting one peer with a higher
parity, then .1 � pr3/ is the probability of not increasing intended fertility despite this one peer,

.1 � pr3/�
C

i is the probability of not increasing intended fertility despite �C

i peers with higher

parities, and 1� .1� pr3/�
C

i is the probability of increasing intended fertility when being exposed
to �C

i peers with higher parities.
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negative social influence. We choose quite an extended set of parameter variations
resulting in 88 different sets of family policies run on 8,424 different societies where
each simulation is run for 100 time steps. The outcome variables against which we
test our model are the aggregate values of cohort fertility, intended fertility and
the fertility gap. While intended fertility allows us to measure the indirect effect of
family policies, the fertility gap, i.e. the difference between intended and realised
fertility, allows to measure the direct effect of fertility policies.

In Fig. 3.7 we present results of our simulations on cohort fertility, intended
fertility and the fertility gap as a function of variable family policies (left column)
and fixed family policies (right column). Within each figure we distinguish between
presenting the results as average for all simulations and alternatively as average over
simulations of a specific variable family policy and alternatively over simulations
of a specific fixed family policy. Since the effect of family policies on cohort
fertility and the fertility gap is stronger as compared to the effect on intended
fertility, the direct effect of family policies seems to be more important according
to our simulations. We also run OLS regressions on our simulation results with
the various fertility measures as dependent variable and the monetary values of
fixed and variable family policies as explanatory variables. Our regressions confirm
the graphical representations and indicate that fixed family policies have a stronger
impact.

Further results of our simulations reveal that the degree of homophily has a
strong impact on the indirect effect of family policies (since intended fertility is
very sensitive to this parameter). Similarly, the difference between being positively
or negatively influenced by peers also has a very pronounced effect on intended
fertility, even exceeding the effect of family policies. To better quantify the role of
family policies within societies being characterised by different social structures
we conducted another extended regression analysis on our simulations where
we included further explanatory variables. In particular we added variables that
characterise the social network and allowed for interactions between them and the
variables of fixed and variable family policies. Results of these regressions indicate
that variable family policies contribute more to the indirect effects while fixed family
policies contribute nearly the same to indirect and direct effects. While the indirect
effect is more sensitive to social effects for variable as compared to fixed family
policies, the reverse holds for the direct effect of family policies. Our simulation
results therefore clearly indicate that neglecting the social structure in which family
policies operate will yield a wrong assessment of family policies.

3.2.3.4 Conclusion

In the application summarized in this section we have applied an agent-based
modelling approach to combine the literature on social interactions and fertility
behaviour with the literature on the role of family policies for fertility intentions
and fertility realisations. Such an approach allows us to experiment with different
family policies and their relation to the prevailing social structure in a society. Most
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interestingly, we can study the social multiplier effect on fertility, i.e. to which
extent are family policies mitigated or reinforced by social effects. Furthermore
we could also show that while a higher level of homophily among network partners
induces a positive impact on fertility intentions and realisations, it may at the same
time reduce the effectiveness of family policies. Our model setup also allowed us
to differentiate between an indirect and direct effect of family policies and will
help to better understand the fertility gap. In summary, our framework highlights
the fact that the success of a family policy will depend on whether it takes into
account the societal structure to which it is applied. Since our framework so far only
constitutes a selection of variables that may influence fertility, further extensions
are obvious. At the micro level partnership formation and employment uncertainties
are important determinants. At the meso level social capital and place of residence
are further important variables. At the macro level economic trends, advancement in
reproductive technologies, and changes in attitudes and norms are important further
determinants.

3.3 Summary

As the previous three examples on demographic behaviour and social interaction
have shown, agent-based modelling can be regarded as a tool of theorising via
simulation, complementary to theorising via statistical modelling. Agent-based
models offer a tool to unify the typical rate-based approach of micro-simulation
with a new rule-based approach. Similar to the life course approach, agents play a
central role, however they may also interact with other agents.

According to the typology presented in Gilbert (2008), the set of agent-based
models reviewed in this paper are rather toy models or mid-range models.3 We have
combined well-known and partly empirically observed micro mechanisms into a
larger but still abstract model to produce familiar macro mechanisms in a new way.

In the Wedding Ring model our framework allows for an endogenous explanation
of the age-at-marriage hazard. By modelling the fact that social networks vary with
age, we could—compared to previous models that relied on exogenous explanations
to prevent the age-at-marriage hazard to increase too fast at younger ages—replicate
the age-at-marriage hazard in younger ages in a more realistic way. In our second
example on the transition to parenthood we could replicate the age-specific changes
in fertility rates as they have been observed in Austria over the last decades. The last
example on family policies goes beyond a mere description of the macro behaviour.4

It aims to test the effectiveness of family policies on fertility decisions at the micro
level in the presence of social interaction and studies how macro outcomes such

3In contrast to the class of toy and mid-range models presented in this paper, there exist highly
data-driven ABMs that model real situations, e.g. the study by Axtell et al. (2002) on a historical
population and studies on household dynamics and land use change by Entwisle et al. (2008).
4See also Baroni et al. (2009) for the integration of policies to explain fertility in an agent-based
modelling framework.
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as cohort fertility and the fertility gap (difference between intended and realised
fertility) may differ depending on the interaction between family policies and the
prevailing social structure.

The challenge in setting up an agent-based model is to select the characteristics
and rules of the agents and to define how agents may interact and how macroe-
conomic behaviour may feed back on the micro-level decisions processes. These
choices together with the specific functional forms and parameters chosen need to be
based on empirical evidence as far as possible. Once an agent-based model has been
implemented an extensive sensitivity analysis is imperative. Obviously this is quite a
computational intense task. In a first step the model should be calibrated to match the
macro behavior to be explained. In a second step the set of specific characteristics,
rules and interactions of agents that have been postulated should be reassessed in
terms of their relevance. E.g. in the Wedding Ring model we could show that the
age dependence of the set of relevant others and the specific nonlinear shape of the
social interaction function are important to explain the qualitative shape of the age-
at-marriage hazard. In our second model on the transition to parenthood we have
tested the specific model parameters to identify which combination of parameters
may best replicate the observed fertility behaviour. In the third example on the role
of social structure for family policies we have investigated the importance of fixed
versus variable family policies by applying regression analysis on our simulation
results.

Agent-based modelling requires a good knowledge of tools in computer simula-
tions, but also in statistics and probability theory. Developing the formal behavioural
rules and interactions of agents also requires some skills in mathematical for-
malization. From our experience so far the acceptance of agent-based models in
demography is closely related to how far one can convincingly demonstrate that the
model is able to explain and yield new insight into quantitative or at least qualitative
shapes of important macro-demographic behaviour. For this, an extensive sensitivity
analysis that highlights the key ingredients of the model is imperative.

We have presented our models following the same sequence of steps to be
conducted. The development of a standard protocol to describe ABMs is definitely
very important and needs to be improved. Our approach in this survey chapter is
only a first attempt in this direction.
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Chapter 4
Agent-Based Computational Demography
and Microsimulation Using JAS-mine

Matteo Richiardi and Ross E. Richardson

4.1 Introduction

In this chapter, we present the implementation of a dynamic microsimulation
with a rich set of demographic processes (birth, death, household formation
and dissolution) and other life course events (educational choices, labour market
participation and employment outcomes), using the recently upgraded JAS-mine
simulation platform (www.jas-mine.net).

The chapter is meant to provide a step-by-step guide to the development of
dynamic microsimulations/agent-based models. From a practical perspective, the
model presented here is highly reusable and can be easily modified in order to
develop other microsimulation/agent-based models.1 This is thanks to the JAS-
mine architecture, which envisages a neat separation between data (parameters

1The model and the supporting documentation can be downloaded from the demo section of the
JAS-mine website (www.jas-mine.net/demo/demo07).
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and coefficients) and code, and a clear distinction between modelling objects,
which specify the structure of a model and should be the primary concern of a
researcher, and auxiliary objects, which perform useful tasks such as input-output
communication, real-time visualization, etc.

The chapter is structured as follows. Section 4.2 motivates the need for a unique
platform for agent-based models and dynamic microsimulations, integrating tools
used by both modelling approaches. The section also lists other requirements that
were specified for the platform. Section 4.3 briefly describes the technical solutions
that were adopted to meet these requirements. Section 4.4 presents the general
structure of a JAS-mine project. Section 4.5 describes the specific simulation model
implemented. Section 4.6 illustrates the JAS-mine implementation and Sect. 4.7
concludes.

4.2 Convergence Between Agent-Based and Microsimulation
Models

Microsimulation is a technique used in a large variety of fields to simulate the
states and behaviours of different units (individuals, households, populations,
etc.) as they evolve in a given environment (a market, a region, an institution).
The word “dynamic” refers to the fact that the population being simulated is
also changing, as opposed to “static” microsimulations (such as tax and benefit
simulators) which examine the impact of a policy change on a given population
(Li and O’Donoghue 2012). The modelling of demographic processes is therefore
the salient characteristic of dynamic microsimulations.

Agent-based models are also computational models with individuals as the
primary object of analysis. They mainly differ from microsimulations for their
emphasis on the role of interaction and for explicit departures from the standard
assumptions of economic models: rational expectations, perfect knowledge about
the environment, infinite computational ability, absence of centralised “top down”
coordination devices (Richiardi 2012).

Agent-based (AB) and microsimulation (MS) models share many features and
can be described as belonging to the same class of discrete-event simulations.
Indeed, from a mathematical and computational perspective the two approaches are
identical. Both AB and MS models are recursive models, where the number and
individual states of the agents in the system are evolved by applying a sequence
of algorithms to an initial population (Gilbert and Troitszsch 2005). As computer-
based simulations, they face the problem of reproducing real-life phenomena, many
of which are temporally continuous processes, using discrete microprocessors.
The abstract representation of a continuous phenomenon in a simulation model
requires that all events be presented in discrete terms, hence the label discrete-event
simulation.

However, in their historical development AB models and microsimulations have
followed different trajectories (Richiardi 2013): AB models have focused more on
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theory, while MS models have evolved as more data oriented, with the processes
generally specified as probabilistic regression models. As a generalisation, AB
models are structural models with a primary concern on understanding, while
microsimulations are reduced-form models (as such, they often focus on one side
of a market only), with a primary concern on forecasting.2 However, a trend
towards a convergence of the two approaches is currently underway, with AB
models becoming increasingly empirically oriented, and MS models including more
feedback effects (see again Richiardi (2013)). An example of this fruitful integrated
approach is the recent field of agent-based computational demography (Billari and
Prskawetz 2003).

The differences in scope and perspective between the two approaches have,
however, impinged on the structure of the computer models used within each
community. AB models lead naturally to an explicit object-oriented representation,
while MS models are generally built around a database which is evolved forward
in time. This has led to the development of simulation toolkits which are specific
to each field, as for instance NetLogo (Wilenski 1999), RePast (North et al. 2013)
and Mason (Luke et al. 2005) for AB modelling, and Modgen (Statistics Canada
2009), LIAM2 (De Menten et al. 2014) and JAMSIM (Mannion et al. 2012) for MS
modelling – to name just a few.

JAS-mine was created to make the development of “hybrid” AB-MS models
easier, and to allow researchers to use the same tools for both approaches, to exploit
economies of scale in learning and coding. Its combination of features distinguish it
from all the above platforms.

4.3 The JAS-mine Architecture

JAS-mine is an object-oriented Java-based platform for discrete-event simulations.
The philosophy of JAS-mine is to foster clarity, transparency and flexibility. The
rationale behind this is the belief that a major bottleneck in agent-based and dynamic
microsimulation modelling comes from humans, rather than machines: minimizing
modelling time then becomes even more important than minimizing computing
time.3 To this aim, a strict adherence to the open source paradigm was enforced

2Structural models often include unobservable parameters that help describe individual behaviour
at a deep level (say, in terms of utility maximisation); reduced-form models aim more simply at
identifying statistical relationships between observable characteristics.
3The performances of JAS-mine with respect to speed of execution, though, are noteworthy.
An exercise aimed at testing the performance of the simulation platform with respect to scaling
involved the implementation in JAS-mine of a complex mixed AB-microsimulation model of the
two-way relationship between health and economic inequality, calibrated on both US and Canadian
cities. The JAS-mine implementation can run five million agents with a time-step equivalent to
1 day for 500 years (182,500 time-steps) in 50 min on a standard laptop (using less than 4GB of
RAM).
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in the design of the platform, which makes it less of a black-box with respect to
proprietary software and encourages cooperative development of the platform by
the community of users: all functions can be inspected and, if necessary, modified
or extended. Also, it was decided not to develop an ad-hoc grammar and syntax –
as in NetLogo and LIAM2 – but to allow the user to choose from a wide range
of classes and interfaces which extend the standard Java language. The JAS-mine
libraries therefore provide open tools to “manufacture” a simulation model, making
use whenever possible of solutions already available in the software development
community. This ensures efficiency and a maximum amount of flexibility in model
building.

In the platform architecture, a clear distinction is made between objects with
a modelling content, which specify the structure of the simulation, and objects
which perform useful but auxiliary tasks, from enumerating categorical variables
to building graphical widgets, from creating filters for the collection of agents to
computing aggregate statistics to be saved in the output database. Moreover, a
separation is made between code and data, with all parameters and input tables
stored either in an input database or in specific MS Excel files. For instance, the
regression package provides tools for simulating outcomes from standard regression
models (OLS, probit/logit, multinomial probit/logit): in particular, there is no need
to specify the variables that enter a regression model, as they are directly read from
the data files. This greatly facilitates exploration of the parameter space, testing
different econometric specifications, and scenario analysis.

From a modelling viewpoint, JAS-mine extends the Model-Observer paradigm
introduced by the Swarm experience (Minar et al. 1996; Luna and Stefansson 2000)
and introduces a new layer in simulation modelling, the Collector. The Model
deals mainly with specification issues, creating objects, relations between objects,
and defining the order of events that take place in the simulation. The Observer
allows the user to inspect the simulation in real time and monitor some pre-defined
outcome variables as the simulation unfolds. The Collector collects the data and
computes the statistics needed both by the simulation objects and for post-mortem
analysis of the model outcome, after the simulation has completed. This three-layer
methodological protocol allows for extensive re-use of code and facilitates model
building, debugging and communication.

As for input/output (I/O) communication, building on the vast number of soft-
ware solutions available, JAS-mine allows the user to separate data representation
and management from the implementation of processes and behavioural algorithms.
The management of input data persistence layers and simulation results is performed
using standard database management tools, and the platform takes care of the
automatic translation of the relational model of the database into the object-oriented
simulation framework, through object-relational mapping (ORM).4 This also allows

4ORM is a programming technique for converting data between incompatible type systems in
object-oriented programming languages. This creates, in effect, a “virtual object database” that
can be used from within the programming language.
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to separate data creation from data analysis. As the statistical analysis of the model
output is possibly intensive in computing time, performing it in real time might
be an issue in large-scale applications. A common solution is to limit it to a
selected subset of output variables. This, however, requires identifying the output
of interest before the simulation is run. If additional computations are required to
better understand how the model behaves, the model has to be run again: the bigger
the model, the more impractical this solution is. On the other hand, the power of
modern relational database management systems (RDBMS) makes it feasible to
keep track of a much larger set of variables, for later analysis. Also, the statistical
techniques envisaged, and the specific modeller’s skills, might suggest the use of
external software solutions, without the need to integrate them in the simulation
machine. Finally, keeping data analysis conceptually distinct from data production
enhances brevity, transparency and clarity of the code.

The architectural characteristics of JAS-mine are discussed in detail on the JAS-
mine website (www.jas-mine.net). To summarise, the main features of the platform
are:

• a discrete-event simulation engine, allowing for both discrete-time and
continuous-time simulation modeling;5

• a Model-Collector-Observer structure (see Sect. 4.4);
• interactive (GUI based), batch and multi-run execution modes, the latter allowing

for detailed design of experiments (DOE);
• a library implementing a number of different matching methods, to match

different lists of agents;
• a library implementing a number of different alignment methods, to force the

microsimulation outcomes to meet some exogenous aggregate targets (Li and
O’Donoghue 2014);

• a library implementing a number of common econometric models, from contin-
uous response linear regression models to binomial and multinomial logit and
probit models;

• a statistical package based on the cern.jet package;
• an embedded H2 database;
• MS Excel I/O communication tools;

5Discrete-event simulations can be organized into two categories, depending on how time is
treated. Discrete-time simulations break up time into regular time slices (4t), while the simulator
calculates the variation of state variables for all the elements of the simulated model between one
point in time and the next. Nothing is known about the order of the events that happen within each
time period: discrete events (marriage, job loss, etc.) could have happened at any moment in 4t
while inherently continuous events (aging, wealth accumulation, etc.) are often thought to progress
smoothly between one point in time and the next. By contrast, continuous-time simulations are
characterized by irregular timeframes that are punctuated by the occurrence of the events. What is
modelled is not whether an event occurs or not in the reference period, but rather the time elapsed
before its occurrence (duration models). Between consecutive events, no change in the system
is assumed to occur; thus the simulation can directly jump in time from one event to the next.
Inherently continuous events must therefore be discretised (Keller et al. 1993).

http://www.jas-mine.net/
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• automatic GUI creation for parameters by using Java annotation;
• automatic output database creation;
• automatic agents’ sampling and recording;
• powerful probes for real-time statistical analysis and data collection;
• a rich graphical library for real-time plotting of simulation outcomes;
• Eclipse plugin, which enables the creation of a JAS-mine project in just a few

clicks, with template classes organised in the JAS-mine standard package and
folder structure;6

• Maven version control.

4.4 The Structure of a JAS-mine Project

In the JAS-mine architecture, agents are organized and managed by components
called managers. As already mentioned, there are three types of managers in this
architecture: Model, Collector and Observer. Models serve to build artificial agents
and objects, and to plan the time structure of events. Collectors are managers that
build data structures and routines to calculate (aggregate) statistics dynamically,
and that build the objects used for data persistence. The definition of a Collector’s
schedule specifies the frequency of statistics updating and agent sampling, and
consequent storage in the output database. Observers are managers that serve to
build graphical widget objects that indicate the state of the simulation in real time,
and define the frequency with which to update these objects.

JAS-mine allows multiple Models (and multiple Collectors and Observers) to run
simultaneously, since they share the same scheduler.7 This allows for the creation
of complex structures where agents of different Models can interact. Each Model
is implemented in a separate Java class that creates the objects and plans the
schedule of events for that Model. Model classes require the implementation of
the SimulationManager interface, which implies the specification of a buildObjects
method to build objects and agents, and a buildSchedule method for planning the
simulation events. Analogously, Collector classes must implement the Collector-
Manager interface, and Observer classes must implement the ObserverManager
interface.

When a new JAS-mine project is created using the JAS-mine Eclipse plugin,
several packages are created:

• data: package containing the classes that describe the structure of coefficients,
parameters and agent population tables contained in the database to be loaded by

6Eclipse Integrated Development Environment is a software application that provides support to
aid software development. A description of how to start using Eclipse and the JAS-mine plugin can
be found at http://www.jas-mine.net/how-to-create-and-run-a-new-jas-project-using-eclipse.
7Technically, the scheduler is a “singleton”. In software engineering, the singleton pattern is a
design pattern that restricts the instantiation of a class to one object.

http://www.jas-mine.net/how-to-create-and-run-a-new-jas-project-using-eclipse
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the ORM. When using Excel files to specify input data, no specific classes need
to be included in this package.

• model: package containing the classes that specify the model structure; in
particular, it contains the Model manager class(es) and the class(es) of agents
that populate the simulation.

• model.enums: subpackage containing the definition of the enumerations used
(if any).8

• experiment: package containing the classes that deal with running the simulation
experiment(s); it contains, in particular, the Start class where the main method
and the type of the experiment (interactive vs. batch mode, single run vs. multiple
runs) are defined. The package might also contain one or more Collectors, who
compute statistics and persist the output in the database, one or more Observers
for online statistics collection and display, and a MultiRun class that manages
repeated runs for parameter exploration.

• algorithms: package containing classes that implement algorithms for determin-
ing events and applying processes to the agents. These implementations, in a
cooperative effort of users, are potential candidates to extend the set of standard
functions included in the JAS-mine libraries.

In addition to sources, the project also contains two folders for data input-output.
The input folder contains input data in excel or H2 embedded formats. The output
folder contains the output of different simulation experiments. At the beginning of
each run, JAS-mine creates a sub-folder that is labelled automatically9 with a copy
of the input files plus an empty output database, with the same structure of the
input database as defined by the annotations added to the model classes. Coherence
between the input database (if any), the output database and the classes representing
the agents in the simulation (known as entity classes) is guaranteed by the ORM.

By default, JAS-mine executes the simulations in embedded mode: the databases
are modified directly by the JDBC driver included in JAS-mine.10 The standard
database uses a H2 database engine. Other databases supporting embedding can be
used, such as Microsoft Access, Hypersonic SQL, Apache Derby, etc.

8Enumerations specify a set of predefined values that a property can assume. These values might
be categorical (strings, e.g. gender), quantitative (discrete numbers, e.g. age) or even objects with
their set of characteristics and properties (e.g. a predefined set of banks to which a firm can be
linked). The ORM detects that a value is an enumeration when the property is declared with
the annotation @Enumerated (see Sect. 4.6.3.1). Through enumerations the ORM automatically
manages reading/writing operations in both text and numerical format.
9The folder name can be modified dynamically through labels set by the user.
10A JDBC driver is a software component enabling a Java application to interact with a database.
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4.5 The Dynamic Microsimulation Model

The model that we implement is inspired by the Demo07 sample model included in
LIAM2.11 It features a population of 20,200 persons grouped in 14,700 households
undergoing a number of demographic and other life course events on an annual basis
between the years 2002–2061:

• Birth: all women aged between 15 and 50 (inclusive) in any simulation year can
give birth to a child, with a probability which is year- and age-specific and is
reported in the file p_birth.xls.

• Education: education (lower secondary, upper secondary or tertiary) is prede-
termined at birth. Individuals exit lower secondary education at age 16, upper
secondary education at age 19, and tertiary education at age 24.

• Exit from parental home: individuals aged 24 or over who are not yet married
leave their parental home to set up a new household.

• Marriage: all individuals aged 18 or over whose civil state is either single,
divorced or widowed, are eligible for getting married in any given simulation
year. The probability of marriage depends on age, gender and civil state, and
is stored in the p_marriage.xls file. Given these probabilities, a subset of the
unmarried population is sampled and those chosen are entered into the matching
algorithm. Actual matching involves ordering all the females first; then starting
with the top ranked female, all males are ordered and the best available male is
matched. Then for the second ranked female, the remaining males are ordered
and the best available male is matched, and so on until no more matches can be
made (because there are either no more males or females to match). Females are
ordered according to their age difference (in absolute value) with respect to the
average age in the pool of females to be matched, jage – mean(age)j: females
with an age closer to average ‘choose’ first, while older or younger females
‘choose’ later. For each female, males are ranked by looking at how their age
and work status compares with the female’s age and work status: regression
coefficients are stored in the reg_marriage.xls file. Matched couples form new
households.

• Divorce: divorce probability depends on age difference between the partners,
elapsed marriage duration, number of children and work status of both partners:
regression coefficients are stored in the reg_divorce.xls file.

11The model differs from the LIAM2 version in that it collapses the work states of unemployment
and inactivity into a single non-employment state. This is done by removing the unemployment
module from the corresponding LIAM2 simulation, with everything else staying the same. The
change is motivated by the fact that the distinction between unemployment and inactivity was
implemented in a very unnatural way in LIAM2, and did not affect any subsequent choice on the
part of the agents.
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• Employment: all individuals who are of working age (males: between 15 and
65; females: between 15 and 61) and whose previous work state was neither
student nor retired are considered to be available to work. Conditional on this,
individuals are employed with a probability which depends on age, lagged
work state (either employed, unemployed or inactive), gender and marital status:
regression coefficients are stored in the reg_inwork.xls file. The model does not
distinguish between unemployment and non-employment.

• Death: death is also a probabilistic event, with year- and age-specific death
probabilities contained in the files p_death_m.xls and p_death_f.xls, for males
and females respectively.

The divorce and employment processes are subject to alignment. This is a
technique widely used in (dynamic) microsimulation modelling to ensure that
the simulated totals conform to some exogenously specified targets, or aggregate
projections (Baekgaard 2002; Klevmarken 2002; Li and O’Donoghue 2014). Align-
ment targets (aggregate frequencies) for divorce and employment are stored in the
p_divorce.xls and p_inwork.xls files respectively.

One important thing to note is that the processes to be aligned are executed at
an individual level, while alignment always takes place at the population level.
That is, individual outcomes or probabilities are determined for each individual
based on the chosen econometric specification and the estimated coefficients. This
in general leads to a mismatch between the simulated (provisional) totals and the
aggregate targets, which can of course be assessed only at the population level. The
alignment algorithm then directly modifies the individual outcomes or probabilities
of occurrence.

The specific algorithm used in the LIAM2 implementation is called “Sorting by
the difference between the predicted probability and a random number” (SBD), see
Li and O’Donoghue (2014), and – though quite common in the microsimulation
literature – can be criticised on many theoretical grounds, see Stephensen (2014).
The JAS-mine alignment library implements it for completeness, though its use is
deprecated. Here we use it to remain as close as possible to the original LIAM2
version (the reader does not need to understand precisely how it works).

Finally, note that, though agents’ interactions are limited to matching in the
marriage market, the model contains all the basic ingredients of a standard agent-
based model. Further “agentisation” could entail introducing more interaction in the
labour market, or introducing competition for instance in residential locations.12

12The interested reader will find a JAS-mine implementation of the Schelling Segregation Model,
with added microsimulation features for illustrative purposes (a dynamic population, with birth,
ageing and death processes) in the demo section of the JAS-mine website (www.jas-mine.net/
demo/extended-schelling).

http://www.jas-mine.net/demo/extended-schelling
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4.6 The JAS-mine Implementation

The JAS-mine class structure of the Demo07 model is organised as in Table 4.1.
The core of the simulation lies in the model package, which contains the

classes PersonsModel, Person and Household. The experiment package contains
the StartPersons class that specifies to run the simulation in interactive mode, the
PersonsCollector class that collects all the statistics needed to monitor the simula-
tion and updates the output database, and the PersonsObserver class that creates and
manages the graphical object for runtime monitoring. Parameters and coefficients
are loaded into the Parameters class in the data package. All filters used to filter col-
lections are grouped in the data.filters subpackage. The categories used for gender,
educational levels, civil state and work state are stored as Enums in the model.enums
subpackage. Finally the algorithms package contains classes that perform technical
tasks (in the example, MapAgeSearch searches age- and gender-specific values in a
map of coefficients, with age and gender as keys). Classes in the algorithms package
are meant to be of general use beyond the specific model being developed, and are
candidates for inclusion in the core libraries in future releases of the platform.

The project is organised in the standard JAS-mine folder structure, as described
in Table 4.2.

The Java classes are contained in the src folder. The input folder contains the MS
Excel parameter files and the initial population, stored as an h2 database (input.h2).
The output folder is initially empty. For each new simulation experiment, a new
subfolder is created with the appropriate time stamp, so as to uniquely identify
the experiment (e.g. 20141218151116, for experiments initiated on the 18th of

Table 4.1 Class structure Package Class

Algorithms MapAgeSearch
Data Parameters
data.filters ActiveMultiFilter

FemaleFilter
FemaleToCoupleFilter
FemaleToDivorce
MaleFilter
MaleToCoupleFilter

Experiment PersonsCollector
PersonsObserver
StartPersons

Model Household
Person
PersonsModel

model.enums CivilState
Education
Gender
WorkState
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Table 4.2 File structure

Folder Files Notes

Input p_birth.xls Birth probabilities, by age and (simulated) year
p_death_f.xls Death probabilities, by age and (simulated) year, for

females
p_death_m.xls Death probabilities, by age and (simulated) year, for males
p_marriage.xls Marriage probability, by age group, gender and civil state
p_divorce.xls Alignment target for the divorce probability, by age group

and (simulated) year
p_inwork.xls Alignment target for the employment probability, by age

group, gender and (simulated) year
reg_marriage.xls Marriage score coefficients: determine how well a specific

male fits a given female
reg_divorce.xls Divorce coefficients: determine the (unaligned)

probability of divorcing
reg_inwork.xls Employment coefficients: determine the (unaligned)

probability of being employed
input.h2 Initial population

Output (Empty)
Src (All java classes) See Table 4.1
Target (Compiled classes)
Libs (External libraries and

JARs, empty)
(Root) pom.xml Maven version control

December 2014, at 16 s after 3.11 pm). The subfolder contains a copy of all the
input files (in the input directory) and an output database (out.h2, in the database
directory).

The target and libs folders contain technical content of no immediate interest
to the modeller. The root folder also contains a pom (project object model) file,
which contains information on the JAS-mine version used for the project. Apache
Maven, an open source software project management and comprehension tool uses
this information to manage all the project’s build, reporting and documentation. In
particular, by specifying in the pom file the desired release for each library used
(including the JAS-mine libraries), Maven automatically downloads the relevant
libraries from the appropriate repositories.13

4.6.1 Parameters

As JAS-mine supports a clear distinction between modelling classes and data
structures, parameters are loaded and stored in a specific class, called Parameters.

13This implies that each JAS-mine project has its own copy of all the libraries used, ensuring that
the project is self-contained and that it keeps working exactly as intended even when new versions
of the libraries are released (and even if backward compatibility is not respected).
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The class makes use of the ExcelAssistant.loadCoefficientMap() method to read the
parameters from MS Excel files: this requires to specify a .xls file, a worksheet
name, the number of key columns and the number of value columns.14 Parameters
are then stored in MultiKeyCoefficientMap objects, which are basically standard
Java maps with multiple keys (Box 4.1).

Box 4.1 The Parameters.loadParameters() Method
public static void loadParameters() f

// probabilities
pBirth D ExcelAssistant.loadCoefficientMap(“input/
p_birth.xls”, “Sheet1”, 1, 59);

pDeathM D ExcelAssistant.loadCoefficientMap(“input/
p_death_m.xls”, “Sheet1”, 1, 59);

pDeathF D ExcelAssistant.loadCoefficientMap(“input/
p_death_f.xls”, “Sheet1”, 1, 59);

pMarriage D ExcelAssistant.loadCoefficientMap
(“input/p_marriage.xls”, “Sheet1”, 3, 4);

pDivorce D ExcelAssistant.loadCoefficientMap
(“input/p_divorce.xls”, “Sheet1”, 2, 59);

pInWork D ExcelAssistant.loadCoefficientMap(“input/
p_inwork.xls”, “Sheet1”, 3, 59);

// regression coefficients
coeffMarriageFit D ExcelAssistant.loadCoefficientMap(

“input/reg_marriage.xls”,“Sheet1”,1, 1);

coeffDivorce D ExcelAssistant.loadCoefficientMap(
“input/reg_divorce.xls”, “Sheet1”, 1, 1);

coeffInWork D ExcelAssistant.loadCoefficientMap(
“input/reg_inwork.xls”, “Sheet1”, 3, 1);

// definition of regression models
regMarriageFit D new LinearRegression(coeffMarriageFit);

regDivorce D new LogitRegression(coeffDivorce);

regInWork D new LogitRegression(coeffInWork);

g

14It is also possible to load the parameters from a table in the input database. See the online
documentation for further details.
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There are two types of parameters in Demo07: probabilities and regression
coefficients.

Birth (pBirth) and death (pDeathM and pDeathF) probabilities have one key
(age), while the value columns refer to different simulation years: birth and death
probabilities are therefore age- and year-specific.

Divorce probabilities (pDivorce) have two keys (the lower and upper bounds
defining age groups), while value columns refer again to different simulation years:
divorce probabilities are therefore age group- and year-specific.

Marriage (pMarriage) and employment (pInWork) probabilities have three keys
(the lower and upper bounds defining age groups and gender). Value columns in
pMarriage refer to different civil states: marriage probabilities are therefore age
group-, gender- and civil state-specific. Value columns in pInWork refer to different
simulation years: employment probabilities are therefore age group-, gender- and
year-specific.

Table 4.3 shows how the p_birth.xls file looks like.
Regression coefficients can have one key (coeffMarriageFit and coeffDivorce)

which is the regressor variable name, and a corresponding value with the estimated
coefficient. They might have additional keys, as in coeffInWork, if the coefficients
are differentiated by some other variables (gender and employment state, in this
example). Table 4.4 shows what the corresponding reg_inwork.xls file looks like.

Table 4.3 Extract from the
p_birth.xls file

Simulation year
Age 2002 : : : 2060

15 0.00068 : : : 0.00075
16 0.00186 : : : 0.00181
: : :

50 0.00010 : : : 0.00021

Table 4.4 Extract from the
reg_inwork.xls file

Regressors Gender workState Coefficients

Age Male Employed �0.19660
isMarried Male Employed 0.18928
workIntercept Male Employed 3.55461
: : :

Age Male NotEmployed 0.97809
workIntercept Male NotEmployed �12.39108
: : :

Age Female Employed �0.27405
isMarried Female Employed �0.09068
workIntercept Female Employed 3.64871
: : :

Age Female NotEmployed 0.82176
isMarried Female NotEmployed �0.55910
workIntercept Female NotEmployed �10.48043
: : :
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Note that the name of the regressor variable must appear in the first column, as
the regression classes expect it to be the first key in the MultiKeyCoefficientMap
instance. The name of the headings for the additional key columns must match the
name of a field in the relevant class, in this case, the Person class.

The appropriate regression models are then defined based on the regression
coefficients.

4.6.2 The PersonsModel Class

4.6.2.1 Objects

The Model extends the AbstractSimulationManager class. This requires implement-
ing the buildObjects() and the buildSchedule() methods. The buildObjects() method
contains the instructions to create all the agents and the objects that represent
the virtual environment for model execution (see Box 4.2).15 In Demo07, this
involves loading the parameters for the simulation and the initial population, made
of persons and households. Three other methods complete the simulation setup:
initializeNonDatabaseAttributes() initializes attributes that do not appear in the
input database, such as the education level; addPersonsToHouseholds() registers
household members, and cleanInitialPopulation() checks the internal consistency of
the initial population and removes errors, making sure that all marriage partnerships
are bilateral, that all partners belong to the same household, and that no empty
households exist.16

Box 4.2 The PersonsModel.buildObjects() Method
@Override
public void buildObjects() f

Parameters.loadParameters();

persons D (List<Person>) DatabaseUtils.loadTable
(Person.class);

households D (List<Household>)
DatabaseUtils.loadTable(Household.class);

initializeNonDatabaseAttributes();

(continued)

15The @Override annotation is used by the Java interpreter to ensure that the programmer is aware
that the method declared is overriding the same method declared in the superclass.
16This method is absent in the LIAM2 implementation, which does not get rid of all the errors in
the initial database.
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addPersonsToHouseholds();

cleanInitialPopulation();

g

As we have seen, the general rule is that parameters should not be hard-coded in
the simulation. The only exception is with control parameters that can be changed
from the GUI before the simulation starts or while the simulation is running in order
to experiment with the model behaviour in interactive mode. Control parameters are
properties of a simulation, they are annotated with GUIparameter, are automatically
loaded into the JAS-mine GUI, and are automatically saved in a separate table of
the output database. In Demo07 there are just three such parameters, as described in
Box 4.3.

Box 4.3 PersonsModel: Control Parameters
GUIparameter(descriptionD“Simulation begins at
year [valid range 2002-2060]”)
private Integer startYear D 2002;

GUIparameter(descriptionD“Simulation ends at year
[valid range 2003-2061]”)
private Integer endYear D 2061;

GUIparameter(descriptionD“Retirement age for women”)
private Integer wemra D 61;

4.6.2.2 Schedule

The buildSchedule() method contains the plan of events for the simulation. Events
are planned based on a discrete event simulation paradigm. This means that events
can be scheduled dynamically at specific points in time. The frequency of repetition
of an event can be specified in the case of periodic events. An event can be
created and managed by the simulation engine (a system event e.g. terminating the
simulation), it can be sent to all the components of a collection or list of agents or
it can be sent to a specific object/instance. Events can be grouped together if they
share the same schedule.

In Demo07, all events are scheduled right from the beginning of the simulation
(there is no dynamic scheduling), and occur on a yearly basis. They are grouped
in an EventGroup called modelSchedule, which is scheduled at every simulation
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period starting at startYear with the scheduleRepeat(Event event, double atTime, int
withOrdering, double timeBetweenEvents) method:

getEngine().getEventList().scheduleRepeat(modelSchedule,
startYear, 0, 1.);

The events of Demo07 are typically directed to a collection of objects – persons
or households – and are inserted into an EventGroup with the instruction

modelSchedule.addCollectionEvent(Object object, [some action the
object must perform]);

The actions to be performed can be specified in two ways. The simplest is to
use Java reflection and simply specify the object’s method name to be invoked.17

For instance, asking all persons to perform the ageing() method would require the
instruction:

modelSchedule.addCollectionEvent(persons, Person.class,
“ageing”);

Java reflection, however, generally has a reputation for being quite slow. A better
approach is to use the EventListener interface. When an object implements this
interface, it must define an onEvent() method that will receive specific enumerations
to be interpreted. We will describe how the Person class implements the onEvent()
method in Sect. 4.6.3.3. For now, we simply note that by using the EventListener
interface, the scheduling of the ageing() method becomes:

modelSchedule.addCollectionEvent(persons, Person.Processes.
Ageing);

By default, the broadcasting of an event to a collection of objects is performed
in safe mode (read only), and does not allow the concurrent modification of the
collection itself. This is not a problem with the ageing() process, as ageing per se
does not entail any modification in the list of persons, that is, it does not add or
remove anyone. This is not true with other processes, like birth() or death(). In
order to allow the collection to be changed while iterated by the simulation engine,
this feature has to be switched off, as in

modelSchedule.addCollectionEvent(persons, Person.Processes.Death,
false);

The last argument specifies that the collection is subject to changes while being
iterated, and the JAS-mine engine treats it accordingly.

The order of the events in the simulation follows the original LIAM2 implemen-
tation and is specified in Box 4.4: there is first a set of demographic events (ageing,
death, birth, marriage, exit from parental home, divorce, household composition)
and then a set of events that define the work status (whether in education, retired,
other non-employed, or employed).

17This requires the method – ageing() in this case – to be declared public.
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Box 4.4 The PersonsModel.buildSchedule() Method
@Override
public void buildSchedule() f

EventGroup modelSchedule D new EventGroup();
// 1: Ageing
modelSchedule.addCollectionEvent(persons, Person.Processes.
Ageing);

// 2: Death
modelSchedule.addCollectionEvent(persons, Person.Processes.
Death, false);

// 3: Birth
modelSchedule.addCollectionEvent(persons, Person.Processes.
Birth, false);

// 4: Marriage
modelSchedule.addCollectionEvent(persons, Person.Processes.
ToCouple);

modelSchedule.addEvent(this, Processes.MarriageMatching);

// 5: Exit from parental home
modelSchedule.addCollectionEvent(persons, Person.Processes.
GetALife);

// 6: Divorce
modelSchedule.addEvent(this, Processes.DivorceAlignment);

modelSchedule.addCollectionEvent(persons, Person.
Processes.Divorce);

// 7: Household composition
// (for reporting only: household composition is
// updated whenever
// needed throughout the simulation)
modelSchedule.addCollectionEvent(households,
Household.Processes.HouseholdComposition);

// 8: Education
modelSchedule.addCollectionEvent(persons, Person.Processes.
InEducation);

// 9: Work
modelSchedule.addEvent(this, Processes.InWorkAlignment);

getEngine().getEventList().schedule(modelSchedule, 0, 1);

getEngine().getEventList().schedule(

(continued)
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new SingleTargetEvent(this, Processes.Stop),
endYear - startYear);

g

Marriage is performed in two steps. First, a subset of suitable males and females
are selected for matching by invoking the method Person.toCouple()18; then,
matching takes place. As we have seen in Sect. 4.5, matching uses a “centralised”
algorithm and is therefore performed by the Model itself. Consequently, this event
is a single target event, rather than a collection event, and is inserted into our
EventGroup modelSchedule with the instruction

modelSchedule.addEvent(this, Processes.MarriageMatching);

Similarly, the divorce and work events are subject to alignment and are
managed directly by the Model, with the methods divorceAlignment() and
inWorkAlignment(), though divorce also requires some actions taken by the
individuals themselves – in the divorce() method in the Person class –
after they have been selected to divorce. householdComposition() is the
only method which is directed to the collection of households. It simply
updates the number of adults and children in each household for reporting
purposes. A final single target event is scheduled for the last year of the
simulation with the method scheduleOnce(Event event, double atTime, int
withOrdering): its target is the Model itself and brings the simulation to a
halt:

getEngine().getEventList().scheduleOnce
(new SingleTargetEvent(this, Processes.Stop), endYear,
Order. AFTER_ALL.getOrdering());

4.6.2.3 The EventListener Interface

Since the Model performs actions during the simulation, as with the Person and
Household classes, it implements the EventListener interface. This requires first to
enumerate all the actions that the Model is supposed to perform (this is done by
defining the specific Enum Processes), and then to specify the method onEvent() –
see Box 4.5.

18See Sect. 4.6.3.3.
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Box 4.5 Implementation of the EventListener Interface in PersonsModel
public enum Processes f

MarriageMatching,
DivorceAlignment,
InWorkAlignment,
Stop;

g

@Override
public void onEvent(Enum<?> type) f

switch ((Processes) type) f
case DivorceAlignment:

divorceAlignment();
break;

case InWorkAlignment:
inWorkAlignment();
break;

case MarriageMatching:
marriageMatching();
break;

case Stop:
log.info(“Model completed”);
getEngine().pause();
break;

g
g

We now dig into the matching and alignment methods performed by the Model.

4.6.2.4 The Matching Algorithm

Prior to matching, a sample of the population to marry at this time is determined
randomly using the Person.toCouple() method. Subsequently, matching involves
first ordering all the females; then, for each female starting from the top of the
ranking, all males are ordered and the most suitable male is matched. This continues
until there are either no more females or males to match. Females are ordered
according to their age difference (in absolute value) with respect to the average
age in the pool of females to be matched, jage – mean(age)j; the female whose age
is closest to the average is ranked first. To compute this ranking, the average age
of the subset of females selected for matching is required. There are a number of
ways to perform this computation, which is preliminary to the application of the
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matching algorithm. The one that is implemented in Demo07 makes use of Java
closures (Box 4.6).19

Box 4.6 Computing the Average Age for the Eligible Females in Persons-
Model.marriageMatching()
final AverageClosure averageAge D
new AverageClosure() f

@Override
public void execute(Object input) f

add(((Person) input).getAge());
g

g;

Aggregate.applyToFilter(getPersons(),
new FemaleToCoupleFilter(), averageAge);

The JAS-mine collection package defines an AverageClosure as a closure that
receives values from objects as an input and returns the mean of these values as an
output. Here, it is used to compute the average age of a given set of persons. The set
is defined by applying the FemaleToCouple filter to the list of all persons, with the
instruction

Aggregate.applyToFilter(getPersons(), new FemaleToCoupleFilter(),
averageAge);

The averageAge closure now contains the average age of all filtered females.
In turn, the FemaleToCouple filter simply selects the female persons who have the
toCouple flag switched on (Box 4.7).

Box 4.7 The FemaleToCouple Filter
public class FemaleToCoupleFilter
implements Predicate f

@Override
public boolean evaluate(Object object) f

Person agent D (Person) object;

(continued)

19Technically, a closure is a function that refers to free variables in their lexical context. A free
variable is an identifier (the identity of the person which is included in the evaluation set, in our
example) that has a definition outside the closure: it is not defined by the closure, but it is used
by the closure. In other words, these free variables inside the closure have the same meaning they
would have had outside the closure.
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return (agent.getGender().equals(Gender.Female)
&& agent.getToCouple());

g
g

Having the filters specified as separate classes, grouped in the separate package
data.filters, might look cumbersome at first (and there are other ways to do this,
see the online documentation) but allows to keep the core code clean while using
the standard Apache Predicate approach to filtering – remember that the JAS-mine
approach supports the use of existing software solutions whenever possible, and
envisages to keep the specificities of the JAS-mine libraries to a minimum in order
to minimise the “black box” feeling of many simulation platforms.

Matching is then performed, following the LIAM2 implementation, by making
use of a simple one-way matching procedure (the agents in one collection – females
in our example – choose, while the agents in the other collection – males – remain
passive) implemented in the SimpleMatching class:

matching(collection1, filter1, comparator1, collection2,
filter2, matchingScoreClosure, matchingClosure);

and it is invoked as

SimpleMatching.getInstance().matching( : : :);

The matching method requires seven arguments:

1. collection1: the first collection (e.g. all individuals in the population);
2. filter1: a filter to be applied to the first collection (e.g. all females with the

toCouple flag on);
3. comparator1: a comparator to sort the filtered collection, which determines the

order that the agents in the filtered collection will be matched.
4. collection2: the second collection, which can be the same as collection1 (e.g. all

individuals in the population) or a different one; the two collections do not need
to have the same size;

5. filter2: a filter to be applied to the second collection (e.g. all males with the
toCouple flag on);

6. matchingScoreClosure: a piece of code that assigns, for every element of the
filtered collection1, a double value to each element of the filtered collection2, as
a measure of the quality of the match between every pair;

7. matchingClosure: a piece of code that determines what to do upon matching.

As in the computation of the average age, the use of closures – which are
relatively new to the Java language – allows a great simplification of the code. While
it is not required that the user knows about closures, it is interesting to understand
why they are so useful. In the example, suppose that the females in the population
are sorted according to some criterion, for example beauty: the prettiest woman is
the first to choose a partner, the second prettiest is the second to choose etc. The
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matchingScoreClosure sorts all possible mates according to some other criterion,
for example wealth. Hence, the prettiest woman gets the richest man, the second
prettiest gets the second richest, etc. In such a case, a comparator would suffice
to order the males in the population, as the ranking is the same irrespective of the
female who is evaluating them. But suppose now that the attractiveness of a man
depends on the age differential between himself and the potential partner: in such a
case, the ranking is specific to each woman in the population. A simple comparator
would still do the job, but the comparator should be able to access the identity of
the woman who is making the evaluation as an argument, which requires a lot of
not-so-straightforward coding. Closures allow to bypass this technical requirement
because they can pass a functionality as an argument to another method; in other
words, they treat functionality as method argument, or code as data.

Closures in the matching() method are easier to understand when illustrated by
an example: the seven arguments are listed in Box 4.8.

Box 4.8 The Matching Algorithm in PersonsModel.marriageMatching()
SimpleMatching.getInstance().matching(

// collection1: the whole population
persons,

// filter1:
new FemaleToCoupleFilter(),

// comparator1: a comparator that assigns priority to the
// individual that has a lower difficulty in matching
// (this is determined by an individual’s age in relation
// to the average)
new Comparator<Person>() f

@Override
public int compare(Person female1, Person female2) f

return (int) Math.signum(
Math.abs(female1.getAge() -
averageAge.getAverage()) -
Math.abs(female2.getAge() -
averageAge.getAverage()));

g
g,

// collection2: same as collection1
persons,

// filter2:
new MaleToCoupleFilter(),

// MatchingScoreClosure: a closure that, given a specific

(continued)
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// female,
// computes for every male in the population a matching score
new MatchingScoreClosure<Person>() f

@Override
public Double getValue(Person female, Person
male) f

return female.getMarriageScore(male);

g
g,
// matchingClosure: a closure that creates a link between a
// specific female and a specific male, and sets up a new
// household.
new MatchingClosure<Person>() f

@Override
public void match(Person female, Person male) f

female.marry(male);
male.marry(female);

g
g

);

4.6.2.5 Alignment

Alignment involves comparing the provisional outcomes of the simulation with
some external aggregate targets, and then modifying the simulation outcomes in
order to match the external totals. We show how this is implemented in Demo07 by
looking at the divorceAlignment() method; the inWork() alignment method works
similarly. When it comes to divorce, as in marriageMatching(), the focus is on
females: males are passive recipients of their partners’ choices. Different targets are
specified for different age groups and simulated years; as we have seen in Sect. 4.6.1,
these are read from the file p_divorce.xls and stored in the MultiKeyCoefficientMap
pDivorce in the Parameters class. The divorceAlignment() method works cell by
cell, that is, it aligns each age group of the population to its year-specific target:
this means that the alignment algorithm is applied once for every age group (as
defined in the p_divorce.xls parameter file). The structure of the method is therefore
as follows:

• For each age group: do alignment:

– Read target from pDivorce.
– Select the relevant subgroup of married females.
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– Compute, for each of the selected females, a probability to divorce that
depends on the age group to which they belong.

– Select the couples that divorce by applying the SBD algorithm: each female
is ranked according to the signed difference between their divorce probability
and a random number uniformly distributed between 0 and 1; then, the number
of couples equal to the target are selected to divorce by starting with the top
ranked female and going down the ranks until the target number is reached.20

The MultiKeyCoefficientMap pDivorce, which contains the targets, has a three
dimensional key: the lower and upper bounds for the age group, and the year of
the simulation. The age group-specific and year-specific targets are read with the
instruction reported in Box 4.9.

Box 4.9 PersonsModel.divorceAlignment(): Reading the Targets
MultiKeyCoefficientMap pDivorceMap D
Parameters.getpDivorce();

for (MapIterator iterator D
pDivorceMap.mapIterator(); iterator.hasNext();) f

iterator.next();
MultiKey mk D (MultiKey) iterator.getKey();
int ageFrom D (Integer) mk.getKey(0);
int ageTo D (Integer) mk.getKey(1);
double divorceTarget D ((Number)
pDivorceMap.getValue(

ageFrom,
ageTo,
getStartYear() C SimulationEngine.

getInstance().getTime())).doubleValue();
[ : : :]

g

The alignment methods require four arguments:

1. collection: a collection of individuals whose outcome or probability of an event
has to be aligned (e.g. all the population);

2. filter: a filter to be applied to the collection (e.g. all females selected to divorce);
3. alignmentProbabilityClosure or alignmentOutcomeClosure: a piece of code

that i) computes for each element of the filtered collection a probability for the

20The ranking involves a stochastic component (the random number that is subtracted from the
divorce probability score) in order to give individuals with a low predicted probability some
chance to experience the event. As we have already noted, the SBD algorithm is quite distortive
and its use is deprecated in JAS-mine; it is employed here only for consistency with the LIAM2
implementation.
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event (in the case that the alignment method is aligning probabilities, as in the
SBD algorithm) or an outcome (in the case that the alignment method is aligning
outcomes), and ii) applies to each element of the filtered collection the specific
instructions coming from the alignment method used;

4. targetShare or targetNumber: the share or number of elements in the filtered
collection that are expected to experience the transition; the SBD algorithm uses
targetShare.

Box 4.10 shows how the alignment method is implemented in Demo07.

Box 4.10 PersonsModel.divorceAlignment(): Applying the SBD Align-
ment Algorithm
new SBDAlignment<Person>().align(

// collection:
persons,

// filter:
new FemaleToDivorce(ageFrom, ageTo),

// alignmentProbabilityClosure:
new AlignmentProbabilityClosure<Person>() f

// i) compute the probability of divorce
@Override
public double getProbability(Person agent) f

return agent.computeDivorceProb();
g

// ii) determine what to do with the aligned
probabilities
@Override
public void align(Person agent,
double alignedProbability)
f

boolean divorce D RegressionUtils.event(
alignedProbability,
SimulationEngine.getRnd()
);

agent.setToDivorce(divorce);

g
g,

// targetShare:
divorceTarget

);
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4.6.3 The Person Class

4.6.3.1 Entities

The Person class is an Entity class, as specified by the @Entity annotation:

@Entity
public class Person implements Comparable<Person>,
EventListener, IDoubleSource f

[ : : :]
g

This implies that the class is linked to a table in the database with the same name,
and that all properties which are not annotated as @Transient are persisted in the
database, when the simulation output is saved.

Entity classes must specify a PanelEntityKey (annotated as @Id), which is a
three-dimensional object which identifies the agent id, the simulation time and the
simulation run. These three keys uniquely identify each record in the database:

@Id
private PanelEntityKey id;

The ORM expects that the field names in the database are the same as the
property names in the Java class, except when a different name is specified as in

@Column(nameD“dur_in_couple”)
private Integer durationInCouple;

Enumerations can be interpreted by the ORM both as a string and as ordinal
values (0 for the first enum, 1 for the second, etc.), depending on how they are
annotated:

@Enumerated(EnumType.STRING)
private WorkState workState;

4.6.3.2 The IDoubleSource Interface

The Person class implements the IDoubleSource interface. This interface provides
a simple way of asking a class to return a specific value.21 Similarly to the
EventListener interface, it requires to declare an Enum which lists all the variables
that can be queried, and the getDoubleValue() method for returning their value
(Box 4.11). It is used by the Regression classes as a way of decoupling the regression
model specification from the code: as long as a variable is enumerated in the specific

21As such, it is also used by JAS-mine distribution plots, see Sect. 4.6.6.
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Enum called Regressors, it can be used (or removed) as a covariate in a regression
model without the need to modify the code.22

Box 4.11 Implementation of the IDoubleSource Interface in Person
public enum Regressors f

// For marriage regression, check with potential
// partner’s properties

potentialPartnerAge,
potentialPartnerAgeSq,
potentialAgeDiff,
inWorkAndPotentialPartnerInWork,
notInWorkAndPotentialPartnerInWork,
: : :

// For in work regression
age,
ageSq,
ageCub,
isMarried,
workIntercept;

g

public double getDoubleValue(Enum<?> variableID) f

switch ((Regressors) variableID) f

//For marriage regression
case potentialPartnerAge:

return getPotentialPartnerAge();
case potentialPartnerAgeSq:

return getPotentialPartnerAge() *
getPotentialPartnerAge();

: : :

//For work regression
case age:

return (double) age;
case ageSq:

return (double) age * age;
case ageCub:

(continued)

22Regression classes also have a method to read directly the values of the variables from the agent
class, without the need of implementing the IDoubleSource interface. However, this requires that
all the variables used by a regression model are defined as (possibly transient) properties in the
class. This is particularly tedious when the covariates refer to another agent (such as a potential
partner, or the spouse), as is common in our case.
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return (double) age * age * age;
case isMarried:

return civilState.equals(CivilState.Married) ?
1.0 : 0.0;

case workIntercept:
return 1.0; //Constant intercept, multiply

// regression coefficient by 1
default:

throw new IllegalArgumentException(
“Unsupported regressor ” C
variableID.name() C “ in
Person#getDoubleValue”);

g
g

4.6.3.3 Methods

The Person class implements the EventListener interface and is therefore able to
be activated by the scheduler with the onEvent() method. The calls that a Person is
able to respond to – enumerated in a specific Enum called Processes (Box 4.12) –
are:

• Ageing: age and marriage duration are increased; work status is set to retired if
retirement age is reached.

• Death: an age-, gender- and year-specific death probability is read from the
MultiKeyCoefficientMaps pDeathM and pDeathF stored in the Parameters class;
this probability is then compared with a uniformly distributed random number
between 0 and 1 to determine the occurrence of the event:

RegressionUtils.event(deathProbability);

If death occurs, the partner’s status is updated to widow and the person is
removed from all the lists (that is, from his/her household and from the model).

• Birth (applied to all females aged between 15 and 50 inclusive): an age- and year-
specific probability of having a baby is read from the MultiKeyCoefficientMap
pBirth stored in the Parameters class; then the occurrence of the event is
determined in a similar fashion to the death() process. No multiple births such
as twins can occur. Newborns are given a potential educational level that will
be reached with certainty. Following the LIAM2 implementation, the person
is assumed to be a student until completion of their studies (at age 16 for
lower secondary education, 19 for upper secondary education, and 24 for tertiary
education).
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• ToCouple (applied to all unmarried individuals aged between 18 and 90
inclusive): this method reads an age-, gender- and civil state-specific probability
of forming a partnership from the MultiKeyCoefficientMap pMarriage and
determines whether the Boolean flag toCouple is set to true, to be used by the
marriageMatching() algorithm in the PersonsModel class.

• GetALife (leave parental home): a new household is created if the individual is
aged 24 or over, unmarried and still living in the parental household.

• Divorce: after divorce is decided by the Model’s alignment method, partner links
are broken, civil states are updated, females retain their household and males
move to a newly created household.

• InEducation: this method examines the person’s age and education level to
determine whether an individual is still in education, or must exit education and
enter the labour market as unemployed.

Box 4.12 The Person.Processes Enum, Defining the Processes a Person
Undertakes When Activated by the Scheduler
public enum Processes f

Ageing,
Death,
Birth,
ToCouple,
Divorce,
GetALife,
InEducation;

g

Other significant methods of the Person class include:

• getMarriageScore(): computes the score of each male in the marriage pool, for a
given female, based on a linear regression model specified by the MultiKeyCoef-
ficientMap regMarriageFit; it is used by the marriageMatching() method in the
PersonsModel class.

• marry(): creates a link between the two partners and sets up a new household
where they move to; it is used by the marriageMatching() method in the
PersonsModel class.

• computeDivorceProb(): computes the divorce probability, based on a logit
regression model specified by the MultiKeyCoefficientMap regDivorce; it is used
by the divorceAlignment() method in the PersonsModel class.

• computeWorkProb(): computes the employment probability, based on a logit
regression model specified by the MultiKeyCoefficientMap regInWork; it is used
by the inWorkAlignment() method in the PersonsModel class.
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Given that the regression coefficients have already been loaded from Excel
files into the Parameters class, and the IDoubleSource interface method get-
DoubleValue() takes care of reading the values of the regressor variables, the
simulation of outcomes or probabilities based on regression models is straightfor-
ward:

marriageScore D Parameters.getRegMarriageFit().
getScore(this, Person.Regressors.class);

divorceProb D Parameters.getRegDivorce().
getProbability(this, Person.Regressors.class);

workProb D Parameters.getRegInWork().
getProbability(this, Person.Regressors.class);

Again, if the specification of the model is changed by adding or remov-
ing covariates, or if new coefficient estimates become available, nothing has
to be changed in the code, except for adding any new covariate to the Per-
son.Regressors Enum and providing a method for the new case in the getDoubl-
eValue() method.23

4.6.4 The Household Class

This class contains a list of all household members and is able to count the number
of adults and children in the household. It is defined as an Entity class and is
therefore linked to a table with the same name in the database. It implements the
EventListener interface because it responds to calls by the scheduler requesting that
the household composition is updated.

4.6.5 The PersonsCollector Class

The Collector collects statistics and manages the persistence of the simulation
outputs on the database. It extends the AbstractSimulationCollectorManager class
and requires, similarly to the Model, the implementation of a buildObjects() method
and a buildSchedule() method.

The buildObjects() method creates several CrossSection objects, which collect
specific values from each individual in the population (Box 4.13).

23The change in specification is instead achieved by updating the regression coefficient input files
(e.g. reg_inwork.xls).
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Box 4.13 The PersonsCollector.buildObjects() Method
@Override
public void buildObjects() f

final PersonsModel model D
(PersonsModel) getManager();

ageCS D new CrossSection.Integer(model.getPersons(),
Person.class, “age”, false);

nonEmploymentCS D new CrossSection.Integer(
model.getPersons(), Person.class, “getNonEmployed”,
true);

employmentCS D new CrossSection.Integer(
model.getPersons(), Person.class, “getEmployed”,true);

retiredCS D new CrossSection.Integer(
model.getPersons(), Person.class, “getRetired”,true);

inEducationCS D new CrossSection.Integer(
model.getPersons(), Person.class, “getStudent”,true);

lowEducationCS D new CrossSection.Integer(model.
getPersons(), Person.class, “getLowEducation”,true);

midEducationCS D new CrossSection.Integer(model.
getPersons(), Person.class, “getMidEducation”,true);

highEducationCS D new CrossSection.Integer(model.
getPersons(), Person.class, “getHighEducation”,true);

g

The Collector’s schedule is made up of two processes only, which take place
at every simulation period: the CrossSections are updated (Processes.Update), and
the persons and households are persisted in the database (Processes.DumpInfo) (see
Box 4.14).

Box 4.14 The PersonsCollector.buildSchedule() Method
@Override
public void buildSchedule() f

EventGroup collectorSchedule D new EventGroup();

(continued)
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collectorSchedule.addEvent(this, Processes.Update);
collectorSchedule.addEvent(this, Processes.DumpInfo);

getEngine().getEventList().schedule(collectorSchedule, 0, 1);

g

The Collector also implements the EventListener interface, featuring the Enum
Processes and onEvent() method (see Box 4.15).

Box 4.15 Implementation of the EventListener Interface in PersonsCol-
lector
public enum Processes f

Update,
DumpInfo;

g

@Override
public void onEvent(Enum<?> type) f

switch ((Processes) type) f
case Update:

ageCS.updateSource();
nonEmploymentCS.updateSource();
employmentCS.updateSource();
retiredCS.updateSource();
inEducationCS.updateSource();
lowEducationCS.updateSource();
midEducationCS.updateSource();
highEducationCS.updateSource();
break;

case DumpInfo:
try f

DatabaseUtils.snap(((PersonsModel) getManager()).
getPersons());

DatabaseUtils.snap(((PersonsModel) getManager()).
getHouseholds());

g catch (Exception e) f
log.error(e.getMessage());

g
break;

g
g
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As we have seen in Sect. 4.6.2, implementing the EventListener interface is
not necessary, as the class can be activated by the scheduler using Java reflection.
However, grouping all the updating in one single Update process improves on
clarity.24

Updating the CrossSection objects only involves simple instructions such as

ageCS.updateSource();

Similarly, dumping the simulation outputs is done by the DumpInfo process and
only requires

DatabaseUtils.snap(((PersonsModel) getManager()).getPersons());
DatabaseUtils.snap(((PersonsModel) getManager()).getHouseholds());

4.6.6 The PersonsObserver Class

The PersonsObserver builds graphical objects that allow monitoring and inspection
of the simulation outcome in real time. It extends the AbstractSimulationObserver-
Manager interface and, similarly to the other simulation managers (the Model
and the Collector), requires the implementation of a buildObjects() method and a
buildSchedule() method.

The buildObjects() method creates three plots. The first one (agePlotter) depicts
the evolution of the average age of the simulated population: it takes the ageCS
CrossSection from the Collector, with information on the age of each individual,
and computes its mean (by creating a MeanArrayFunction object). Similarly,
the workPlotter plots the frequency of students, retired, other non-employed and
employed individuals in the population, and the eduPlotter plots the share of
individuals with each educational level (Box 4.16).

Box 4.16 The PersonsObserver.buildObjects() Method
@Override
public void buildObjects() f

final PersonsCollector collector D (PersonsCollector)
getCollectorManager();

agePlotter D new TimeSeriesSimulationPlotter
(“Age”, “age(years)”);

(continued)

24Because updating is a common activity, it is also defined as a CommonEventType Enum in the
JAS-mine event library (together with saving). Passing the scheduler this Enum does not require
implementing the EventListener interface. An example of this approach is implemented in the
Observer.
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agePlotter.addSeries(“avg”,
new MeanArrayFunction(collector.getAgeCS()));

GuiUtils.addWindow(agePlotter, 250, 50, 500, 500);

workPlotter D new TimeSeriesSimulationPlotter
(“Work status”, “proportion”);
workPlotter.addSeries(“employed”,

new MeanArrayFunction(collector.getEmploymentCS()));
workPlotter.addSeries(“non-employed”,

new MeanArrayFunction(collector.getNonEmploymentCS()));
workPlotter.addSeries(“retired”,

new MeanArrayFunction(collector.getRetiredCS()));
workPlotter.addSeries(“students”,

new MeanArrayFunction(collector.getInEducationCS()));
GuiUtils.addWindow(workPlotter, 750, 50, 500, 500);

eduPlotter D new TimeSeriesSimulationPlotter(“Education
level”, “proportion”);
eduPlotter.addSeries(“low”,

new MeanArrayFunction(collector.getLowEducationCS()));
eduPlotter.addSeries(“mid”,

new MeanArrayFunction(collector.getMidEducationCS()));
eduPlotter.addSeries(“high”,

new MeanArrayFunction(collector.getHighEducationCS()));
GuiUtils.addWindow(eduPlotter, 1250, 50, 500, 500);

g

Other plots can be easily added. In particular, by building on the JFreeChart
library, the CollectionBarSimulationPlotter class in JAS-mine allows to create his-
tograms for representing distributions of given variables in the simulated population,
at any given simulation period.

The schedule of the PersonsObserver class manages the updating of these three
plots (Box 4.17). Here, the built-in JAS-mine Enum CommonEventType.Update is
used, rather than a class-specific implementation of the EventListener interface as
in the Collector. This requires scheduling the update of each graph separately, but
allows for a better control of the display frequency. The latter is obtained by means
of an extra parameter which is loaded into the GUI:

Box 4.17 The PersonsObserver.buildSchedule() Method
@GUIparameter
private Integer displayFrequency D 1;

@Override
public void buildSchedule() f

(continued)



4 Agent-Based Computational Demography and Microsimulation Using JAS-mine 109

getEngine().getEventList().schedule(new
SingleTargetEvent(agePlotter,
CommonEventType.Update), 0,
displayFrequency);

getEngine().getEventList().schedule(new
SingleTargetEvent(workPlotter,
CommonEventType.Update), 0,
displayFrequency);

getEngine().getEventList().schedule(new
SingleTargetEvent(eduPlotter,
CommonEventType.Update), 0,
displayFrequency);

g

4.6.7 The StartPersons Class

The Start class initialises the JAS-mine simulation engine and defines the list of
models to be used. In general, the Start class is designed to handle two types of
experiments:

• performing a single run of the simulation in interactive mode, through the
creation of a Model and related Collectors and Observers, with their GUIs;

• performing a single run of the simulation in batch mode, through the creation
of the Model and possibly the Collectors; this involves managing parameter
setup, model creation and execution directly, and is aimed at capturing only the
simulation’s numerical output;

The Start class is ignored when performing a multi-run session (whose structure
is defined in a class extending the MultiRun interface) where the simulation is run
repeatedly using different parameter values, so as to explore the space of solutions
and produce sensitivity analyses on the specified parameters.

The Start class implements the ExperimentBuilder interface, which defines the
buildExperiment() method. This method creates managers and adds them to the JAS-
mine engine. In Demo07, the simulation is run in interactive mode (Box 4.18).

Box 4.18 The StartPerson Class
public class StartPersons implements
ExperimentBuilder f

public static void main(String[] args) f

(continued)
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boolean showGui D true;

StartPersons experimentBuilder D new StartPersons();

final SimulationEngine engine D
SimulationEngine.getInstance();

MicrosimShell gui D null;
if (showGui) f

gui D new MicrosimShell(engine);
gui.setVisible(true);

g

engine.setExperimentBuilder(experimentBuilder);

engine.setup();

g

@Override
public void buildExperiment(SimulationEngine engine)
f

PersonsModel model D new PersonsModel();
PersonsCollector collector D new PersonsCollector(model);
PersonsObserver observer D new
PersonsObserver(model, collector);

engine.addSimulationManager(model);
engine.addSimulationManager(collector);
engine.addSimulationManager(observer);

g

g

The Start class contains the standard main() method which allows a Java
application to run. By selecting the “Run As Java Application” option from the
Eclipse menu, this procedure launches the JAS-mine GUI, creates a model instance
and gives it to the simulation engine. It then creates a Collector and an Observer and
calls the setup() method of the simulation engine, which has the task of loading the
experiment into memory.

The JAS-mine GUI contains a mask for setting the specific Model parameters,
another mask for defining the specific Observer parameters and the three dynamic
graphs defined in the Observer class. Figure 4.1 depicts the graphical output of one
simulation run.

The Tools > ‘Database explorer’ tab in the JAS-mine GUI allows to browse the
input and output databases. By selecting a specific database and pressing the ‘Show
database’ button, the data can be explored in the default web browser using SQL
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Fig. 4.1 The graphical output of one simulation run

commands. The output tables can also be exported in CSV format for subsequent
analysis using specific statistical tools by typing:

CALL CSVWRITE(’person.csv’, ’SELECT * FROM PERSON ’);

4.7 Conclusions

The JAS-mine simulation platform achieves a convergence between agent-based and
microsimulation tools. Its main goal is to speed up model development, facilitate
model documentation, and foster model testing and sharing. The rationale behind
this choice lies in the observation that computer power is always increasing, while
researchers’ time is not. Also, large-scale simulation projects are generally beyond
the reach of a single scientist. Even when they remain under the control of a
restricted group of people, they generally require a prolonged effort, often on a
stop-and-go basis. The possibility of building on previous work done by the same
authors or by other researchers is crucial. Simulation modelling needs cooperative
development. The choice of an entirely open-source tool should be evaluated in this
light. Moreover, JAS-mine does not force the user to adopt predefined solutions
to the problems faced in simulation modelling. By offering a set of libraries that
extend the capability of the standard Java classes, JAS-mine leaves entirely open the
possibility of using other libraries and tools, either as an alternative or on top of the
JAS-mine toolkit.
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Chapter 5
Simulating Synthetic Life Courses of Individuals
and Couples, and Mate Matching

Sabine Zinn

5.1 Introduction

This paper presents a novel modeling and simulation approach for fine-grained
population projection, which merges demographic microsimulation and agent-based
modeling. The main idea behind this approach is to model and simulate life
course dynamics of individuals and couples by means of traditional demographic
microsimulation and to use agent-based modeling for mate matching.

Demographic microsimulation is well suited to conducting fine-grained popu-
lation projection if only independent entities such as individuals or couples are
concerned (van Imhoff and Post 1998). However, as soon as kinship and/or inter-
individual interactions are to be considered as well, microsimulation is likely to
encounter specification problems (see, e.g., Ruggles 1993; van Imhoff and Post
1998; Murphy 2006). The approach presented here offers an opportunity to tackle
this problem: it facilitates the specification of life courses of individuals and couples,
and also the establishment of a partnership market. In this way, it allows us to
test, for example, how different policies might affect demographic events which
depend on the mutual decision of both spouses–for instance, whether implementing
parental leave benefit for both men and women can significantly affect childbearing
decisions. In detail, population dynamics in our model are driven by synthetic life
courses of individuals and couples, which are defined by the sequences of states
that individuals and couples enter over time, and by the waiting times between
these state transitions, see Fig. 5.1. These states, which individuals and couples enter
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Fig. 5.1 The upper part of the figure shows the life courses of two opposite-sex individuals. Once
they get married, a couple life course is created. Through divorce the couple life course dissolves
and the individual life courses of both (divorced) spouses are renewed

over time, summarize the demographically relevant categories that an individual or
a couple can belong to. Generally, the state space is determined by the problem
to be studied, but commonly it will at least comprise the elementary demographic
characteristics of sex, fertility, and marital status. In demographic microsimulation,
life courses usually evolve along two time scales: individual age and calendar time.
A possible third time scale is the time that an individual or a couple has already
spent in the current demographic state, for example, the time that has elapsed since
getting married. In our setting, life courses are specified in continuous time, that is,
transitions between states (i.e., events) can occur at any instant of time. No changes
take place in between subsequent events and only a finite number (i.e., a discrete
sequence) of events can occur in a finite time span.1 In other words, our model
is a discrete event model (Cellier 1991, Section 1.9). In a microsimulation model
like ours, the underlying stochastic model is parameterized with transition rates that
are assumed to vary with age and also with calendar time. Commonly, for their
estimation statistical methods of event history analysis are applied to retrospective
or prospective life histories that are reconstructed from longitudinal data and/or vital
statistics. Assumptions about future rates then define the projection scenarios.

Unfortunately, as soon as a conventional demographic microsimulation is
confronted with inter-individual interaction and couple behavior, problems of
parametrization arise: on the one hand, inter-individual interaction processes such
as mate choice mechanisms are largely unobservable, and only the outcome of
these processes can be seen (de Vos and Palloni 1989). That is, it is hard–if not
impossible–to estimate accordant transition rates. On the other hand, surveys

1This is opposed to continuous simulation (not to be confused with continuous time microsimula-
tion) where system dynamics are continuously tracked.
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mostly gather only very limited information on partnership relations (Huinink
and Feldhaus 2009). Thus, a realistic microsimulation model of couple behavior is
usually hindered by data limitations. However, researchers are currently noticing
considerable improvements regarding data availability (Mayer 2009).

Concerning the first problem described, agent-based modeling poses a solution:
as soon as we face hidden processes driving certain life course decisions, we use
components of agent-based modeling to generate life-course events. The basic idea
is simple: within the scopes of microsimulation, let individuals interact such that in
sum the microsimulation output resembles observed aggregates. To make it more
concrete: for a certain year and population, we might know in advance how many
couples will have formed. We might also know the within-couple age distribution
and the distribution of the spouse’s educational attainment. This information will
suffice to set up, for example, a partnership market that produces couples whose
attributes closely resemble the observed distributions (Zinn 2012).

In order to accurately specify this novel modeling approach, we suggest using
the ml-DEVS formalism as described by Uhrmacher et al. (2007). This formalism
is a variant of the discrete event specification (DEVS) model language developed
by Zeigler et al. (2000), extended by explicitly supporting multi-level modeling. We
deem this formalism adequate for our purposes as it allows us, on the one hand, to
specify population dynamics in the requested way and, on the other hand, to benefit
from well-proven and efficient up-to-date simulation methodology.

The remainder of this paper is structured as follows: in Sect. 5.2 we detail
the stochastic model applied to describe life course dynamics of individuals and
couples, and we describe the simulation processing used to construct synthetic life
courses. Then, in Sect. 5.3, we present the mate matching procedure applied for
building couples over simulation time. Section 5.4 outlines the implementation of
the simulation model: we describe the ml-DEVS model which we have designed
to specify the population model at hand as well as its execution semantics. In
Sect. 5.5, we illustrate the capability of the novel simulation approach using a
simplified example that aims to forecast the contemporary Dutch population. We
analyze partnership and smoking behavior. We conclude our work in Sect. 5.6 by
summarizing its key lines, and by presenting problems that remain for future work.

5.2 Simulating Individual and Couple Behavior
in Continuous Time

The model of a demographic microsimulation comprises a virtual population and a
stochastic model of individual and couple behavior. The virtual population includes
all individuals and couples for whom life courses are simulated over simulation
time, that is, individuals and couples who are part of the base population (i.e., the
set of individuals and couples with whom we start our simulation), individuals
who enter the population by birth, couples that are built during simulation, and
individuals and couples who immigrate into the population. To describe individual
and couple behavior we use continuous-time multi-state models. Continuous-time



116 S. Zinn

multi-state models are stochastic processes–commonly Markovian processes–that,
at any point in time, occupy one out of a set of discrete states (Hougaard 1999).
The state space summarizes all discrete states considered. Generally, the state
space is determined by the problem under study but, commonly, it will at least
comprise the elementary demographic characteristics of sex, fertility status, and
marital status. In our terminology used here, an individual’s and a couple’s state is a
combined characteristic given by the combination of several attributes. To simplify
the notation, we define state variables. These are the demographic categories
considered, such as sex, fertility status, and marital status. All unique combinations
of these state variables’ values thus form the state space.

We define individuals and couples to be the atomic components of our model.
Hence, the state space of our simulation model can be decomposed into two sub-
state spaces: one for individuals and one for couples. Table 5.1 gives an example of
four state variables: sex, fertility status, marital status, and mortality. In the example,
a potential state of an individual is (female, childless, never married, alive), and a
potential state of a couple is (one child, married, both alive).

Over simulation time, individuals might experience events, that is, transitions
between states. In principle, transitions may occur between all states of the state
space. However, the problem under investigation restrains the set of possible events.
Table 5.2 shows a list of feasible events for the example state space given in
Table 5.1. Two individuals form a couple after a successful mating period. The
corresponding process is described in Sect. 5.3. Once a couple is formed the
individual life courses of both spouses are combined into one couple life course.
If a couple experiences a dissolution event, such as divorce or widowhood, the

Table 5.1 Example of state variables that individuals and couples might occupy, inclusively
possible values, separated by commas

State variable Individual values Couple values

Sex Female, male Opposite-sex couple

Fertility status Childless, child(ren) Childless, child(ren)

Marital status Never married, divorced, Married, divorced, widowed (she is dead),

widowed widowed (he is dead)

Mortality Alive, dead Both dead, she is dead (he is alive),

he is dead (she is alive), both alive

Table 5.2 Example of possible events that individuals and couples might experience

Event type Individual events Couple events

Fertility event Giving birth (for females), Becoming parents

becoming father (for males)

Partnership events Marrying Getting divorced

Mortality events Dying Female dies and male is widowed,

male dies and female is widowed,

both die
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couple life course decomposes again into two individual life courses (in case of a
dissolution event) or into one individual life course (in case of a widowhood event),
cf. Fig. 5.1.

In a continuous-time simulation model–such as the one considered here–the
propensity of an individual or couple to experience a transition is determined by
transition rates. Depending on the process class used to describe individual or couple
behavior these rates might depend on different time scales (e.g., age, calendar
time, time elapsed since a specific event) and sequences of states already passed.
For reasons of convenience, we use transition rates that depend on age, calendar
time, the state of occurrence, and the state of destination. In other words, we
use nonhomogeneous continuous-time Markov chains Z.t/, t 2 RC0 , to describe
individual and couple behavior. The process time t maps the time span over which
we observe the life course of a unit. The time t is set to zero when an individual or
couple is created and evolves throughout their life time.

The process Z.t/ is fully defined by the two-dimensional process .Jn;Tn/n2N0

where .Jn/n2N0 is a Markov Chain mapping all states that an individual or couple
occupies, and .Tn/n2N0 is the sequence of the corresponding transition times along
process time t. Thus, the transition rate of an individual or couple to undergo a
transition from a state sj to a state sk is


sj;sk.t/ D lim
h#0

1

h
P

�

JnC1 D sk;TnC1 2 .t; t C h� j Jn D sj;TnC1 � t
�

:

By way of translation, the process time t can easily be mapped onto age and calendar
time.2 Thus, modeling age and calendar time dependence is straightforward. Once
the transition rates of a Markovian process are known, the distribution functions of
the waiting times in the distinct states of the state space can be derived and synthetic
life courses can be constructed. More precisely, the distribution function of leaving
state sj at time t after waiting time w for moving on to state sk is

F.w; t/ D 1 � exp
˚

�ƒsj;sk.w; t/
�

; (5.1)

where

ƒsj;sk.w; t/ D

Z tCw

t

sj;sk.u/du

is the corresponding integrated hazard rate. By means of the distribution
function (Eq. 5.1), we can derive a random waiting time in state sj until moving

2Specifically, the function C.Tn/maps the calendar time at Tn and the function A.Tn/maps the age
of an individual at Tn. Similarly, Af .Tn/ maps the age of a female spouse at Tn and Am.Tn/ maps
the age of a male spouse at Tn. At individual birth time the functions A.Tn/, Af .Tn/, and Am.Tn/

take the value zero, and C.�/ is zero at, for example, 01-01-1970 00:00:00.
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on to state sk. For this purpose, we use the inversion theorem (Rubinstein and
Kroese 2008, p. 51f.). Hence, we yield a random waiting time w from the correct
distribution by

w D ƒ
�1
sj;sk
.w; t/Œ� ln.1 � u/�;

with u being a standard uniformly distributed random number. By generating
sequences of random waiting times until the next event, synthetic life courses can
be constructed. For example, first a waiting time until school enrolment is derived,
then a waiting time until school graduation, followed by a waiting time until first
birth, and so on. Here, we have to consider that an individual might not only be
exposed to one single event but to a set of possible events (i.e., to competing risks).
For example, a 16-year old female might experience the event school graduation
or teenage pregnancy as a next event. We account for competing risks such as
these by computing for each possible destination state a random waiting time and
by selecting the shortest one as the one to be realized. Over simulation time, this
computation of the shortest waiting times is repeated for each individual of the
virtual population. Once simulation ending time has been reached, the event times
of all surviving individuals are censored.

The computation of random waiting times requires the inversion of the integrated
hazard rate ƒsj;sk . In demography, assuming constant transition rates over yearly
intervals is a suitable and widespread approximation to ƒ�1sj;sk

, which clearly eases
its derivation (Gill and Keilman 1990). Integrated hazards become piecewise linear,
and waiting time distributions piecewise exponential.

Standard approaches to estimate transition rates are occurrence-exposure rates
or the Poisson generalized additive model. Both approaches are discussed in Zinn
(2011). Commonly, longitudinal survey data, vital statistics, or census data are used
to estimate transition rates. For individual-based questions such data are available.
However, the current data situation could hamper the estimation of transition rates
for all types of events to which couples might be exposed–though, momentarily, we
observe the buildup of a number of more complex surveys dealing (among many
other things) with partnership issues.3 An idea to describe couple behavior, even
if couple data are not available is to combine models of individual behavior. For
this purpose we have to make assumptions of how individual behavior must be
interlinked to yield couple behavior. This means, we have to model how (and for
which transitions) the transition rates of the couple need to be modified relative
to the rates of the individual spouses. An example: we may have age-specific
rates of quitting smoking for men and women. If, within one couple, one partner
quits smoking, this rate for the other partner suddenly will be much higher than
before. In principle, interlinking individual behavior this way is a task in statistical

3Examples are the German National Educational Panel Study NEPS (https://www.neps-data.de/
en-us/home.aspx) and the German Family Panel pairfam (http://www.pairfam.de/en/study.html).

https://www.neps-data.de/en-us/home.aspx
https://www.neps-data.de/en-us/home.aspx
http://www.pairfam.de/en/study.html
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modeling, and many general approaches are available. Mostly we will have to base
the analysis on external knowledge about the studied phenomenon and the data
available to model it.

5.3 Matching of Individuals

So far, we have detailed how, in a continuous-time microsimulation, synthetic life
courses of individuals and couples can be constructed. However, we have not made
clear how couples are formed, that is, how mate matching is performed. As mate
choice mechanisms are largely unobservable and the starting time of mate search
activities is usually not known exactly, transition rates for matching individuals
are hard (if not impossible) to estimate. Without such rates, pure microsimulation
is not capable of performing mate matching. This is in contrast to agent-based
modeling, where individuals interact according to rules being usually based on
societal or behavioral theories. Such theories might be substantiated by empirical
and hypothesized data. In other words, agent-based models allow us to replicate
hidden processes by combining behavioral theories and observed data. Thus, even
though some decision processes (such as mate choice decisions) are to a large extent
unobservable, agent-based models facilitate the replication of observed aggregates
(for example, the number of homosexual couples within one year). In a continuous-
time microsimulation model, we compute waiting times until the next event. As a
consequence, we know in advance when couples have to be formed. Subsequently,
we interpret the occurrence of partnership formation as the outcome of a hidden
mating process which we describe by an agent-based model. In other words we
simulate partnership formation events via microsimulation and we decide who
mates whom via agent-based modeling. This way, we are embedding an agent-based
model of mate choice into the framework of a continuous-time microsimulation
model. The subsequent description of this agent-based model relies, to large a
extent, on the work presented in Zinn (2012).

Concerning the timing of partnership onsets, continuous-time microsimulations
pose some problems that discrete-time models can avoid. In discrete-time models,
which update information on demographic events at discrete points in time (usually
each year or each month), it is convenient to construct mating pools at equidistant
time points, for example, for every year. During simulation, individuals enter these
mating pools and undergo mate matching.

In continuous-time models, events occur at exact time points and individuals will
never experience partnership events at the same time. Therefore, a pool of potential
partners cannot as easily be constructed as in discrete-time models. A simple way
to avoid this problem would be to use a so-called open model. In this model class,
spouses are created as new individuals when needed, rather than being selected from
already existing members of the population. Although such “external” partnership
formations do happen in real populations, they constitute the minority of cases.
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Open mating models therefore would artificially increase the number of individ-
uals, and new individuals would still have to be supplied with individual attributes
to allow for a realistic simulation of their remaining life course. Therefore, we focus
on so-called closed models, where appropriate spouses must be identified from the
current members of a population. In this context, we have to solve three problems:
how to construct a feasible partnership market? How to identify a proper spouse?
What to do if no proper spouse can be found? The first problem can be tackled
by constructing a partnership market that individuals can enter and leave over the
complete simulation time range. That is, once a partnership onset event has been
simulated for an individual, he/she enters the partnership market. As soon as the
individual finds a proper spouse, both spouses leave the market. The remaining two
problems (identifying matching spouses and specifying feasible options in case of
unsuccessful partner search) will be the topic of the subsequent sections.

We expressly point out that in the field of microsimulation and agent-based
modeling already several useful and convincing mate-matching algorithms exist.
Comprehensive summaries are given in, for example, Walker (2010, Chapters 2 & 3)
and Zinn (2011, Chapters 9 & 10).

5.3.1 Identifying Matching Spouses

5.3.1.1 Overlapping Mating Periods

In a continuous-time microsimulation, it is impossible that two individuals feature
identical mating times. However, a partnership has to have a clearly defined unique
formation time. Consequently, to determine such a time already computed event
times have to be shifted. In doing so, we have to be very careful to keep the
distortion of the microsimulation output at a minimum. That is, we have to ensure
that the differences between the already scheduled event times and the shifted ones
are small. To conform to this requirement, we introduce individual mating periods
which are defined to start at maximum one year before the scheduled event time of
partnership onset and to stop at maximum one year later. Concretely, let a woman
I1 experience the onset of a partnership at time t1 and a man I2 experience the onset
of a partnership at time t2. Without loss of generality, we assume t2 < t1. Then the
mating period of I1 and I2 is

�i D
�

min.te; ti � B/;max.ti C B; tE/
�

; i D 1; 2;

where te being the time of the last event of Ii, 2B is the maximum length of the
mating period (with B being smaller than one year), and tE is the simulation stopping
time. We determine that the two individuals I1 and I2 can only mate if

�1 \ �2 ¤ ¿;
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that is, if they have overlapping mating periods.4 Then, the partnership formation
time Qt of I1 and I2 is defined to be the mean of the event times t1 and t2:

Qt D t2 C 0:5.t1 � t2/:

This way of determining partnership formation times is very different to the way
of defining them in agent-based models for partner search. There mating times
are the outcomes of the matching algorithm itself; see for example Billari et al.
(2008), Todd et al. (2005), and Todd and Billari (2003). In our simulation model,
mating times are the outcomes of stochastic processes which are parameterized with
empirical or hypothesized rates. Thus, the purpose of our mating model is not to
reproduce observed or assumed mating times, but to create couples with feasible
characteristics while minimizing the distortion of the microsimulation output. This
objective is in clear contrast to agent-based models that describe behavior while
aiming at resembling certain stylized facts, for example, the age distribution at first
marriage.

5.3.1.2 Compatibility of Individual Characteristics

Even if the mating periods of individuals overlap, their characteristics might not
match. Therefore, besides event times, also individual characteristics have to be
checked for conformance. For this purpose, we use a compatibility measure. The
measure transforms female and male attributes into a numeric index that quantifies
how well two potential spouses fit together. Values between zero and one are used
to express the degree of matching, with a large value indicating high compatibility.
Likewise, a small value points to incompatibility. Specifically, we use logit models
to predict how well the characteristics of potential spouses agree with one another.
In order to account for different types of partnerships (cohabitations and marriages),
we apply a separate logit model for each partnership type. The models predict the
probability that two individuals, each with given attributes, form a particular kind
of partnership. Which covariates will enter the logit models depends on the state
space of the actual application. As our microsimulation model is a generic model,
the state space is not fixed. However, naturally, individual age and sex should be
included. Obviously, we can only include covariates that are mapped by the state
space. If, for example, educational attainment, children ever born, or ethnicity are
included in the state space, these attributes are natural candidates for covariates in
the logit models. Data on observed couples are used to estimate the coefficients of
these models. According to the theory of assortative mating, partners tend to have
similar attributes such as similar ages and levels of education (Zietsch et al. 2011;

4Setting the length of the individual mating periods to two years at maximum is a compromise
between minimizing the potential distortion of the microsimulation output and ensuring a feasible
number of potential partners available within a certain time period.
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Blossfeld 2009; Kalmijn 1998). Therefore, the estimated coefficients are likely to be
in accordance with the theory of assortative mating. Nevertheless, depending on the
data used the estimated coefficients might also point to deviations from that theory.
This makes logit models a very flexible tool to measure compatibility because they
are not tailored to one particular theory of mating.

In order to estimate logit models of spousal compatibility, we randomly assign
to each male spouse a female who is not his observed partner.5 We set the response
variable to one if the couple has been observed, and to zero otherwise. This way,
we construct a data set with an identical number of observed synthetic couples,
resembling the retrospective data design of a case-control study. Unfortunately,
when conducting mate matching we are confronted with a prospective problem,
that is, we need the likelihood that two individuals with certain attributes are going
to mate. Hence, for a prospective problem we have constructed a case-control data
set. Prentice and Pyke (1979) show that all nonintercept parameters of a prospective
logit regression model are asymptotically correct when using a case-control data set;
only the estimator of the intercept is biased. In our mate matching procedure (see
subsequent section), we decide on a match between two potential spouses depending
on their attributes, and not on the composition of the pool of available candidates.
That is, we measure compatibility on a relative scale. Therefore, for our purposes,
the estimation of a prospective logit model is suitable.

5.3.1.3 Mate Matching

Once an individual has entered the partnership market, he/she starts to look for
an appropriate partner. For this purpose, the seeking individual inspects other
individuals in the market. As the human network size is limited to approximately
150 members (Hill and Dunbar 2003), the number of potential spouses is restricted
from the outset. We set an upper bound that follows a normal distribution with
expectation � D 120 and standard deviation � D 30. Furthermore, we assign to
each individual a random value that captures his/her aspiration level regarding a
partner. This aspiration level takes values between zero and one. If the compatibility
measure between an individual and a potential spouse exceeds this aspiration level,
he/she will accept an offer. Every time an individual has been inspected and fails
to be chosen, he/she reduces his/her aspiration level by ıA D 0:1. We use the beta
distribution to describe the individual aspiration levels. As is generally known, the
degree of choosiness of females and males varies with age (Trivers 1972; Buss
2006). We assume that women’s requirements decrease with declining fecundity.
This is in accordance with, for example, the findings of Waynforth and Dunbar
(1995) and de Sousa Campos et al. (2002) who figure out that with fertility decline
women tend to become less demanding. In contrast to men: when they are young,

5In order to avoid biased results, we do not assign to a male spouse a female spouse who has
attributes identical to those of his observed spouse.
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Fig. 5.2 Age and gender-specific densities of the beta distributions that are used to determine
aspiration levels regarding partners

they are more involved in short-term relationships and thus less selective concerning
their partner’s traits. When they are older, men start to look for a long-term
relationship and to invest in offspring. Hence, their level of choosiness increases.
To account for the variability in the degree of aspiration, we parameterize the beta
distribution accordingly, see Fig. 5.2. An important aspect when searching for a mate
is the size of the pool of potential spouses. If it is small, it is not reasonable to assume
a very selective seeker. Therefore, we assume that, if a seeker faces less than ten
potential partners, he/she reduces the aspiration level by ıB D 0:3.

To implement our agent-based model of mate choice we use a marriage queue
M. The marriage queue comprises all unpaired individuals looking for a partner.
Moreover, each individual in the queue is equipped with a stamp indicating the time
scheduled for the upcoming partnership event. To create couples, we use a sequential
mate matching algorithm. Concretely, when an individual Ii enters the partnership
market the algorithm performs the following steps.

– The mating period �i of Ii is determined and the aspiration level ai of Ii is
generated.

– If the marriage queue M is empty (i.e., the partnership market is empty), Ii is
inserted into M.
Otherwise:

A. The social network size of Ii is determined by drawing a normally distributed
random number N, with mean � and variance �2. If N is greater than the
current number NM of individuals in the marriage queue, N is set to NM.

B. N individuals, whose mating periods overlap with �i, are randomly taken
from M. They are inserted into the working marriage queue W .

C. Individuals of the same sex such as Ii are removed from W .
D. If W is empty, Ii is directly inserted into M.
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Otherwise:

(i) If W contains less than ten individuals, the aspiration level of Ii is
reduced to ai D max.0; ai � 0:3/.

(ii) For the potential spouses to inspect, a counter j D 1 is initialized.
(iii) From W , the jth individual Ij (with aspiration level aj) is selected and

the compatibility measure cij between Ii and Ij is computed. If ai < cij

and aj < cij, the individuals Ii and Ij are paired, and Ij is removed from
M.

(iv) Otherwise, the aspiration level of Ii is reduced to ai D max.0; ai � 0:1/

and the aspiration level of Ij is reduced to aj D max.0; aj � 0:1/.
(v) The value of the counter variable j is incremented by one.

The steps (iii) and (v) are repeated until either Ii is paired or all individuals
of W have been inspected.

If for Ii no appropriate spouse can be found, Ii is enqueued into M.

5.3.2 Options in Case of an Unsuccessful Search

The presented mate matching algorithm does not guarantee that each searching
individual will be paired. Mate matching fails, if an individual is unable to find
within his/her mating period a spouse with compatible characteristics. Five options
exist to cope with the problem of an unsuccessful search.

1. Form a couple with the most compatible opposite-sex seeker who is searching
for the same type of partnership within the same searching period.

2. Extend the mating period.
3. Return the individual to the model population unpaired. That is, the individual is

again at risk of experiencing a partnership event (or, alternatively, any other kind
of event).

4. Let the individual emigrate.
5. Let a proper spouse immigrate.

The last option is inspired by the processing in open models because an appropriate
spouse is taken from “outside”. Each of these options entails a major difficulty.
Forming couples between unsuccessful seekers and their most compatible counter-
parts in the partnership market holds the danger that too many couples with little
compatibility are created. Extending the mating period means shifting the time of
the scheduled partnership event to a later time point and thus notably distorting
the output of the underlying stochastic model of individual behavior. Rejecting
a seeker and sending him back unpaired implies that an already scheduled event
is completely ignored. Allowing (too many) immigrated spouses will eventually
spoil the model population and hence the plausibility of the model outcome.
Consequently, searching periods that expire without success should definitely be an
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exception. This can only be assured if the model population maps a large proportion
of an actual population, so that each seeker can meet at least one potential spouse.6

5.4 Implementation and Software

Throughout this paper, we consider a microsimulation model that describes life
courses as sequences of discrete events that occur along a continuous time line. That
is, our microsimulation model is a discrete event simulation model. For implemen-
tation purposes, we intend to deploy a reliable and efficient up-to-date simulation
methodology. Moreover, developing new software from scratch should be avoided.
Therefore, to ease implementation, we make use of an already established and well-
proven discrete event simulation approach, the discrete event specification language
DEVS (Zeigler et al. 2000; Uhrmacher et al. 2010; Wainer et al. 2002). It originates
in systems theory, defines real systems as composites of submodels (which are
either atomic or coupled), and is based on a state-based concept. DEVS does not
assume a particular stochastic model to specify system behavior. Thus, it allows
us to describe population dynamics by nonhomogeneous continuous-time Markov
chains. In other words, DEVS offers all the functionalities required to describe
the microsimulation at hand. Several DEVS-based tools exist (e.g., DEVSJava,
JDEVS, CD++, DEVS variants in JAMES II) that support implementation. To
facilitate the modeling of different kind of problems, various DEVS variants have
been developed (Uhrmacher et al. 2010; Zeigler et al. 2000). We use ml-DEVS
formalism (Uhrmacher et al. 2007). This formalism is a variant of the classical
DEVS model language, extending it by explicitly supporting multilevel modeling.
Commonly, a ml-DEVS model consists of micro models embedded in a macro
model. The macro level model is described by a coupled DEVS model, equipped
with a state and behavioral rules of their own, and the micro models are described by
ordinary atomic DEVS models. Communication between micro and macro models
is handled by exchanging messages. The propagation of information from the micro
level to the macro level is facilitated by equipping micro models with the ability to
change their ports. In this way, the macro model can access the information given
in the exhibited ports of the micro models, and the micro models can influence
macro-level dynamics. The macro model can concurrently activate (several) micro
models by signalizing messages via value coupling. Value coupling means that, at
the macro level, information is mapped to specific port names, and every micro
model can access this information by forming input ports with corresponding port
names. The ml-DEVS formalism supports variable structure models, that is, models

6By nature, the run times of such simulation settings are considerably longer than the run times
of simulation settings that only implement sparse marriage markets. This is due to the fact that in
sparse marriage markets many seekers might fail to encounter a potential partner. Thus, there is
nobody to be screened and nothing to compute.
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Fig. 5.3 The ml-DEVS
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that change their own composition, interaction, and behavior pattern. Structural
changes are operated top-down directed by the macro model and executed on the
micro level.

We describe our microsimulation model by defining micro models of individuals
and couples embedded in a population macro model. Transition rules determine the
behavior of each model. The transition rules of the micro models control life course
transitions, whereas the transition rules of the population macro model direct mate
matching and structural changes of the population (i.e., adding and removing of
micro models). To efficiently execute our ml-DEVS model of population dynamics
we extend the so-called sequential hierarchical simulator for (parallel) DEVS.
The ml-DEVS population model and its simulator are implemented by means of
the modeling and simulation framework JAMES II.7 The simulation software and
illustrative examples are available in the model library of openABM (Zinn 2015)
and also from the author upon request.

Our ml-DEVS microsimulation model consists of a macro model Pop compris-
ing two types of micro components: individual models I and couple models C, see
Fig. 5.3. These micro components handle the life course dynamics of individuals
and the dynamics of married or cohabiting couples. The macro-DEVS model guides
the onset of partnerships (marriages or cohabitations), that is, it performs mate
matching and instructs the creation of couple models. If a couple model signalizes an
emigration, a dissolution, or a widowhood event, the macro-DEVS model instructs
its extinction or dissolution. Likewise, the macro-DEVS model handles death and
migration events of individual models as well as the creation of micro models in
case of immigration and childbirth events. The full specification of the ml-DEVS
population model is given in very detail in Appendix A.

7JAMES II can be downloaded at http://www.jamesii.org and is distributed under the JAMESLIC
which allows free reuse for commercial and noncommercial projects.

http://www.jamesii.org
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Commonly, the execution of a discrete event simulation model demands an event
queue, which is a list of events sorted by their scheduled event times. In our setting,
the event queue holds the events that are scheduled for the whole population (e.g.,
successful mating events), as well as for the individuals and the couples of the
virtual population. In each simulation step the event with the minimal time stamp is
dequeued and executed. Then, for the related model a next event is computed and–
if that event is neither death nor emigration–enqueued. In other words, an event
queue organizes the scheduling of upcoming events. For the processing of events
executable simulation code has to be derived, that is, simulation semantics have to
be specified. Generally, the execution semantics of a DEVS model are described
by the abstract simulator, which comprises simulators and coordinators (Zeigler
et al. 2000). In a ml-DEVS model, simulators correspond to micro models and
coordinators to macro models (Uhrmacher et al. 2007). Coordinators are respon-
sible for the execution and the correct synchronization of the simulators of the
micro models and for the handling of external events (in our case: the arrival of
immigrants). In line with this, a coordinator implements an event queue algorithm
managing upcoming events of micro models. Synchronization is guaranteed by
communication protocols: if a model consists of only one macro model, as is
the case for our population model, the coordinator waits for protocols sent by
its subordinate simulators and transmits them to the root-coordinator. The root-
coordinator guides the overall simulation processing. It initializes a new simulation
and instructs the model execution until some termination criterion is met (e.g., the
simulation stop time has been reached). To each ml-DEVS model a corresponding
processor tree can be given, which directly maps the hierarchical structure of the
model on the architecture of simulators and coordinators. Figure 5.4 displays the
processor tree corresponding to the ml-DEVS population model designed. To ensure
consistency within each simulation step, messages between the root-coordinator,
the coordinator, and the simulators are processed in a well-defined order: if an

root-
coordinator

couple 1individual 2individual 1

macro model
coordinator

population
model

couple 2
mirco model
simulator 1

mirco model
simulator 2

mirco model
simulator nt

Fig. 5.4 Processor tree corresponding to our ml-DEVS population model
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(internal) event is due,8 the coordinator of the macro model activates the micro
model concerned by sending a ?-message. After having performed the event, the
simulator of the micro model forwards to the coordinator a y-message with output
data. In our case, such output data might comprise the number of newborns in case of
a childbirth event or the states and birth dates of individuals in case of emigration.
Afterwards, the simulator of the micro model waits for an x-message comprising
input information. For example, an individual micro model is informed about the
actual mating time in case of a successful partner search. Finally, a done-message
signalizes the completion of a simulation step. The ?-, y-, and x- comprise, besides
their regular information, also the actual simulation time t, and the done message
comprises the time tonie of the next event and all approachable ports ports.

Uhrmacher et al. (2007), who have developed the ml-DEVS formalism, suggest
an abstract simulator, which is essentially a direct implementation of the ml-DEVS
processing scheme. That is, it executes a ml-DEVS model by passing messages
successively through the model’s processor tree. Such processing means that any
time a superordinate model sends a message to a subordinate model, it has to wait
for the subordinate model to react and to respond. Only then simulation processing
can proceed. Such an approach poses problems (Himmelspach and Uhrmacher
2006). On the one hand, depending on the depth of the processor tree and the
number of models, a remarkable overload might result. On the other hand, the ml-
DEVS simulator of Uhrmacher et al. (ibid.) demands for each micro model one
thread.9 Regular Java virtual machine implementations, however, do not support
more than a few thousand parallel threads. This implies that meaningful population
projections would not be possible. To overcome this limitation, we have designed
a novel simulator for our ml-DEVS population model. We have extended the
sequential abstract simulator for parallel DEVS developed by Himmelspach and
Uhrmacher (2006). The novel abstract simulator executes parts of the processor tree
en bloc which means to exploit computing power in an efficient way. The related
communication protocol is displayed in Appendix B. Likewise, this appendix
comprises the pseudocode of the respective coordinator and simulator functions as
well as a comprehensive description of their functionality.10

8We call the state transition of a model an internal event if it has not been provoked by an input
message. Otherwise, the event is denoted as external event.
9 Within a program, a thread is a sequentially executed stream of instructions.
10Note that the specification of the ml-DEVS population model and the newly designed sequential
hierarchical simulator for ml-DEVS have already been described in a similar but more extended
form in Zinn (2011).
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5.5 A Hypothetical Application on Smoking Behavior
of Couples

We conduct a small case study to illustrate the capabilities of the novel microsim-
ulation model. For this purpose, we look at a synthetic population that (roughly)
resembles the Dutch population. We consider smoking and partnership behavior. In
particular, we study how partners influence each other’s smoking behavior. Note that
the presented application is mainly based on synthetic data, and should not be used
to draw conclusions about actual behavior. It only serves as a means to demonstrate
the potential of a microsimulation that accounts for interdependencies between life
courses of married or cohabiting individuals.

5.5.1 The Synthetic Population and Parametrization

Starting on January 1, 2008, we generate life courses of a synthetic population that
(roughly) resembles one percent of the Dutch population. The simulation horizon
ranges from January 1, 2008 to December 31, 2020. During simulation, we consider
individuals aged between zero and 63 years. The state space that we employ for
individuals and couples is shown in Table 5.3. If the value ‘being single & living
alone’ is assigned to an individual, he/she lives either alone and never lived in a
union before, or he/she lives alone but was cohabiting before, or he/she lives alone
and was married before. The value ‘dissolved’ indicates the separation of a married
or cohabiting couple. Spouses that are dissolved or widowed enter the ‘being single
& living alone’ state of the individual model. The events that individuals and couples
can experience during simulation are listed in Table 5.4. To describe individual and
couple behavior, for simplicity we assume that

Table 5.3 State variables that individuals and couples might occupy, inclusively possible values,
separated by commas

State variable Individual values Couple values

Sex Female, male Opposite-sex couple

Fertility status Childless, at least one child Childless, parents

Marital status & Living at parental home & Married, cohabiting, dissolved,
living arrangement never married/cohabiting widowed (she is dead), widowed

before, being single & (he is dead)
living alone

Smoking status Non-smoker, smoker Non-smoker couple, dual smoker couple,
female smoker & male non-smoker,
male smoker & female non-smoker

Mortality Alive, dead Both dead, she is dead (he is alive),
he is dead (she is alive), both alive
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Table 5.4 Possible events that individuals and couples can experience

Possible events of individuals Possible event of couples

Leaving parental home, dying, Getting divorced or separated, childbirth,
launching a cohabitation, marrying, female starts smoking, male starts smoking,
quitting to smoke, starting to smoke, female quits smoking, male quits smoking,
giving birth (for females) both quit smoking, both start smoking,

female dies and male gets widowed, both die,
male dies and female gets widowed

– the same fertility rates apply to paired and unpaired women,
– the risk to quit and to start smoking depends on the presence of children and the

smoking traits of the partner, but does not depend on the marital status or the
living arrangement,

– the extent of the impact that the smoking behavior of the spouse has on the own
smoking behavior does not vary with age,

– the divorce risk and the risk to break up depend on the presence of children, but
not on the smoking behavior of the spouses,

– to single, married, and cohabiting individuals the same mortality risk applies, and
– the risk that both spouses die at the same time is very low (we set it to 10�5).

The propensity of individuals and couples to experience events is quantified by
either empirical or synthetic transition rates. We have estimated (non-parity specific)
fertility rates of females and transition rates to change the marital status and/or the
living arrangement for single individuals using the Family and Fertility Survey11

for the Netherlands (FFS_NL). For this purpose, we have applied a slightly modified
version of the MAPLES estimation procedure12 (Impicciatore and Billari 2011). The
transition rates of couples to change their marital status or the smoking behavior
are mainly hypothesized, constructed such that they resemble observed transition
patterns. We assume that the mortality rates vary with age, sex and calendar year,
and the other rates are age- and sex-specific, but are held constant over calendar
time. We use hypothetical death rates and transition rates of changing the smoking
behavior. It is well known that smokers have a higher mortality risk than non-
smokers (Doll et al. 2004). We account for this fact by adapting the mortality rates of
the EuroStat2008 projections for the Netherlands (baseline scenario)13 accordingly:
mortality rates for smokers are obtained by increasing these rates by 10 % and
mortality rates for non-smokers are obtained by reducing them by 10 %. We assume
that the mortality rates vary with age, gender and calendar year, and the other rates
are age- and sex-specific, but are held constant over calendar time. All transition
rates used are given in Appendix C.

11http://www.unece.org/pau/ffs/ffs.html
12MAPLES estimates age profiles from longitudinal survey data using a generalized additive model
and piecewise cubic splines.
13Detailed data on EUROPOP 2008 mortality were kindly provided by Eurostat.

http://www.unece.org/pau/ffs/ffs.html
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To run a microsimulation model we need a base population to start with. For
our illustration, we determine the base population to consist of individuals aged
between zero and 63, differentiated according to sex, smoking status, fertility status,
and marital status/living arrangement. We assume them to resemble one percent of
the respective age groups of the Dutch population at January 1, 2008. Hence, the
base population comprises 70,295 males and 68,264 females. Marginal distributions
concerning the considered age classes and state variables–required to estimate the
base population–have been taken from the EuroStat web portal,14 the Health and
Retirement study15 and the FFS_NL survey. To estimate the base population we use
the method of iterative proportional fitting (Deming and Stephan 1940). Figure 5.5
shows the resulting population numbers. Generally, our simulation model allows the
consideration of migration; however, for reasons of simplicity we neglect migration
for this example.

During simulation, we conduct mate matching as describe in Sect. 5.3. We use
two logit models to quantify the compatibility between potential spouses: the first
model describes the probability to enter a cohabitation and the second model
describes the probability to enter a marriage without cohabiting before. Cohabiting
spouses who marry are not considered here because they are already partnered. For
estimating the models, we employ the first wave of the Netherlands Kinship Panel
Study (NKPS)16 (conducted in the period from 2002 to 2004). We only consider
partnerships that started in the years from 1990 to 2002. Our data set contains a
record for each observed couple, which consists of the age of the male spouse,
the age difference between the female and the male spouse (in integer years), a
variable indicating whether the female or the male spouse were married before,
and a variable showing whether the female spouse has children. The NKPS data do
not contain any information about smoking behavior. Thus, on the basis of these
data we cannot study accordant effects on matching probabilities. We come back to
this issue at a later time and suggest a way to account for matching over smoking
traits nevertheless. Following the procedure described in Sect. 5.3.1.2, we construct
a data set of observed and nonobserved potential couples. By means of these data we
estimate the two logit models. The estimated coefficients are given in the Tables 5.5
and 5.6. In both models the direct effect of the age of the male is very small. It is
only slightly significant in the case of cohabitation and even insignificant in the case
of marriage. For cohabitation and marriage we find–as expected–that individuals
with small age differences are more prone to mate. We find no significant effect
of the presence of children on a man’s propensity to marry or cohabit a woman.
For marriage there is a slightly significant negative effect of whether one or both
of the spouses experienced marriage before. The accordant effect is insignificant for
cohabitation. We control for possible effects between marriage history (i.e., first and

14http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes
15http://hrsonline.isr.umich.edu/
16http://www.nkps.nl/

http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes
http://hrsonline.isr.umich.edu/
http://www.nkps.nl/
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Fig. 5.5 The base population of males and females, cross-classified according to age, fertility
status, smoking status, and marital status/living arrangement; PH: living at parental home, MA:
married, CO: cohabiting, SI: being single (never married cohabiting before, dissolved, widowed),
S: smoker, nS: non-smoker, noChild: childless, child: at least one child
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Table 5.5 Results of logit model determining compatibility between potential partners entering
cohabitation

Variable Coefficient p-value

Age of male 0:025 0:012

Age difference (age of male – age of female)

Greater than 7 �2:525 < 0:001

From 4 to 7 �0:867 < 0:001

From 2 to 3 0:155 0:505

From �1 to 1 0

From �3 to �2 �1:138 < 0:001

From �7 to �4 �1:975 < 0:001

Smaller than �7 �3:798 < 0:001

Woman has child(ren) �1:355 0:179

Woman or man or both were married before �0:125 0:423

Indirect effect

Woman has child(ren) & married before 1:905 0:066

Number of pairs: 1472

Table 5.6 Results of logit model determining compatibility between potential partners entering
marriage

Variable Coefficient p-value

Age of male 0:013 0:455

Age difference (age of male – age of female)

Greater than 7 �2:077 < 0:001

From 4 to 7 �0:865 0:066

From 2 to 3 0:194 0:758

From �1 to 1 0

From �3 to �2 �1:643 0:006

From �7 to �4 �2:113 < 0:001

Smaller than �7 �19:220 0:977

Woman has child(ren) 0:352 0:811

Woman or man or both were married before �0:892 0:042

Indirect effect

Woman has child(ren) & married before 0:949 0:537

Number of pairs: 280

higher order marriages) and the presence of children by introducing an accordant
interaction term. The related effect is slightly significant in the case of cohabitation
and insignificant in the case of marriage.

The considered setting surely simplifies actual partner choice patterns, in partic-
ular as it relates to the effect of smoking behavior on matching probabilities. Several
studies exist that analyze and discuss such effects; see for example Clark and Etilé
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(2006) and Chiappori et al. (2010). Here, positive assortative matching over smoking
because of similar lifestyle preferences seems to be the most common finding. In
accordance therewith, we extend the two empirical likelihood equations relating
to marriage and to cohabitation by a term supporting matches of individuals with
similar smoking traits. Concretely, we add the variable ‘smoking status’ featuring
the two categories ‘one partner smokes and the other not’ and ‘non-smoker couple
or dual smoker couple’. We assign an effect size of value zero to the first category
and an effect size of value one to the second category. The dimension of this ex-
post alignment is not based on empirical evidence but chosen to fit to the overall
context. There is no doubt that this is only a minimal solution to account for positive
assortative matching over smoking traits and the accordant values should be updated
if better data are available. Overall, however, we deem our illustration sufficient to
show the capability of our population model.

5.5.2 Results

We use a desktop machine equipped with an Intel(R) Core(TM) i7 Duo CPU,
2.80 GHz and 8 GB memory to run our simulation. Due to the large population
size considered, the outcome of different simulation runs is very similar. Hence,
the standard error due to Monte Carlo variability is negligible, and it is sufficient to
concentrate on the results of one single run. During simulation all demographic
events (births and deaths, and state transitions of individuals and couples) are
tracked. The simulation provides information on the simulated life courses in four
files:

1. an ASCII file containing the birth dates of all simulated individuals,
2. an ASCII file containing the dates of transitions and the corresponding destina-

tion states for all simulated individuals,
3. an ACSII file containing the dates when seeking individuals enter the partnership

market, their current state, their next state, their desired mating time, as well as
4. an ASCII file containing the dates of transitions and the corresponding destina-

tion states for all simulated couples.

These files have a well-defined format, which can be accessed and managed further
by arbitrary tools. We use R to summarize and visualize the simulation output.

In the run considered, the simulation conducts 294;484 events and creates 67;743
newborns. Furthermore, 38;314 individuals are seeking for a partner. 37;046 of them
find a partner, that is, 18;523 couples are built. Approximately three percent of all
seekers cannot find a proper spouse along simulation time. This flaw is caused by
a surplus of ‘mating-minded’ women in our population. (A way to counteract this
unbalance would be to let proper spouses immigrate.) Subsequently, we show a
few descriptive statistics for simulated couple data (based on one single simulation
run). The results shown here are not comprehensive and only aim at indicating the
potential of our microsimulation model. As a first step we convert the simulation
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Fig. 5.6 The simulated life courses of eight couples

Table 5.7 Frequency distributions of age differences between partnered men and women (age of
man minus age of woman), given according to age intervals used in modeling spousal compatibility

Œ�1; 1� .1; 3� .3; 7� Œ�3;�1/ Œ�7;�3/

Cohabitation Simulated 0:29 0:21 0:29 0:12 0:10

Observed 0:32 0:25 0:29 0:08 0:07

Marriage Simulated 0:70 0:08 0:11 0:05 0:05

Observed 0:73 0:08 0:13 0:03 0:03

output into a format resembling event history data. This format eases further
computation. In Fig. 5.6 shows typical life courses of eight simulated couples.
Each record shows an event that a couple has experienced during simulation. It
gives the ID of the couple and the birth times of both spouses (‘BirthDateFem’
and ‘BirthDateMale’). Furthermore, it contains the transition date (‘TrDate’), the
transition age of the female spouse (‘AgeAtTrFem’), the transition age of the male
spouse (‘AgeAtTrMale’), and the state that the couple has entered (‘NewState’). The
first transition of a couple corresponds to the onset of the marriage or cohabitation.
If a couple experiences a dissolution event, the spouses return to the population of
single individuals. Likewise, in case of a widowhood event, the surviving spouse is
handled as a single individual.

It is essential for the usefulness the proposed mate matching strategy that
it resembles actual characteristics of partners in couples. Therefore, in order to
validate our mate matching strategy, we analyze the distribution of age differences
of couples. Table 5.7 and Fig. 5.7 depict the distribution of age differences of
cohabiting and married spouses (age of male minus age of female). We find that the
simulated and observed frequency distributions are very similar. Consequently, we
deem the proposed mate matching algorithm suitable to produce reasonable results.

Having a partner who smokes can influence the spouse’s initiation of smoking.
That is, a smoking spouse might incite his/her non-smoking partner to start smoking,
or prevent his/her smoker partner from quitting smoking. It is also possible that a
nonsmoking partner urges his/her spouse to stop smoking. Likewise, the presence of
children has very likely a strong impact on a person’s smoking behavior. We study
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Fig. 5.7 Histograms of age differences between partnered men and women (age man minus age
woman in years). Black bars mark observed data and grey bars depict simulated results

Table 5.8 Percentage of male and female spouses who quit smoking, conditioned on the partner’s
smoking status and the presence of children

Childless couple Couple with children
Nonsmoking
partner (%) Smoking partner (%)

Nonsmoking
partner (%) Smoking partner (%)

Males 6:42 4:72 5:95 5:30

Females 8:04 5:64 11:71 6:45

whether in our simulation output we can find accordant behavior. For this purpose,
we determine how many partnered smokers quit smoking, conditional on the smok-
ing status of the partner and the presence of children. Table 5.8 shows the results.

That is, during simulation 6:42% of the smoking males who are part of a
childless couple and who are partnered with a nonsmoking woman quit smoking.
This is contrasted by 4:72% of the smoking men without children being partnered
with a smoking woman. A similar pattern is evident for smoking women without
children. In couples with children, the effect of the smoking trait of the partner
is more pronounced for females than for males. Generally, women seem to have
a stronger propensity to stop smoking. Only few spouses start smoking during
simulation, in total 0:88% of the male and 0:86% of the female spouses. Table 5.9
gives the percentages of female and male spouses who start smoking, conditioned
on the partner’s smoking behavior and the presence of children. We find that 1:18%
of the nonsmoking male spouses who are part of a childless couple and who are
partnered with a smoking woman start smoking. In contrast, only 0:57% of the
nonsmoking males who have children and who are partnered with a nonsmoking
woman start smoking. Almost no mothers start smoking. This is opposed by 3:11%
of the female childless spouses who are partnered with a smoking man and who
start smoking. Overall, both the presence of children and the smoking behavior
of the partner have a significant effect on an individual’s propensity to quit or to
start smoking. All these results are in accordance with the input transition rates for
smoking behavior.
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Table 5.9 Percentage of male and female spouses who start smoking, conditioned on the partner’s
smoking status

Childless couple Couple with children
Nonsmoking
partner (%) Smoking partner (%)

Nonsmoking
partner (%) Smoking partner (%)

Male 1:01 1:18 0:57 1:06

Female 1:14 3:11 0:01 0:03

childless
couple

Cohabitation 
onset

dissolution

widowhood

childbirth

Next event

marriage

death of both

nothing

In total: 8701

16.71 %

Fig. 5.8 First event after entering cohabitation

As a further aspect, we study the behavior of childless couples once they have
launched a cohabitation. In sum, during simulation 17;402 individuals undergo a
cohabitation event. We study dissolution and childbirth events, and restrict our
consideration to the first event that happens after partnership onset. Figure 5.8 shows
the respective results. After having entered cohabitation, 22:92% of the childless
couples experience a childbirth event, 16:71% marry, 16:91% undergo a dissolution
event, and 0:45% survive their partner.

As mentioned before, numerous summaries and insights can be derived from the
simulation output of a population model as the one described, but here we restrict
ourselves to the few examples given above. Again, please note that the results shown
are only illustrative and do not reflect observed behavior, because they are based on
input rates and model assumptions that are not solely derived from empirical data
and established social theories.
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5.6 Summary and Conclusion

We describe a microsimulation model that accounts for individual life courses,
as well as for couple life courses, and for mate matching. To define individual
and couple behavior we use a continuous-time multi-state model, that is, we
use a continuous-time microsimulation model. This kind of model specifies life
courses as sequences of discrete events; hence it is a discrete event model. For
sake of simplicity, we assume that the propensity of individuals and couples to
experience certain demographic events depends only on their current state, on
possible next states, on age and calendar time. Our microsimulation model performs
mate matching. For this purpose, we apply a two-sided stochastic mate matching
procedure. In our microsimulation, individual life courses are specified as sequences
of waiting times to a next event. That is, we can determine in advance when
individuals will experience the onset of a marriage or a cohabitation. The waiting
time until such an event is used for scanning potential partners. Concretely, once
an individual is scheduled to experience a partnership onset he or she enters the
marriage market. Each individual remains in the market for a specific period of
mate searching and matching. In order to build up synthetic couples in the market a
two-fold stochastic approach is used. First, we assign to each individual a random
value that captures the aspiration level regarding a partner. An empirical likelihood
equation reveals the probability that a given woman and a given man would mate.
Subsequently, we simulate a decision making process whether two individuals date
each other applying individuals’ aspiration levels and their mating probability. A
couple is formed if a positive decision has been made and the timing of the couple’s
partnership event is consistent regarding their individual mating periods. Individuals
that are inspected, but rejected, lower their level of aspiration.

For implementation purposes, we opt for a model formalism that supports
discrete event simulation. That way we can rely on existing modeling and simulation
tools as well as on up-to-date simulation methodology. Concretely, we use the
ml-DEVS formalism to specify our microsimulation model and the modeling and
simulation framework JAMES II to implement it. The corresponding ml-DEVS
population model is designed so that a macro-DEVS model guides the onset
and the dissolution of partnerships and deals with structural population changes
such as migration and childbirth events. In accordance therewith, ml-DEVS micro
components are used to map life course dynamics of individuals and couples.
Furthermore, we design simulation semantics that facilitates an efficient execution
of the population ml-DEVS model.

In order to illustrate the capability of the presented microsimulation, we run
a simulation projecting a synthetic population based on the population of the
Netherlands. We parameterize the model using micro data from different data
sources, among others, data from Statistics Netherlands and EuroStat. We study
partnership and smoking behavior; particularly, we analyze how partners influence
each other’s smoking behavior. The application indicates that the simulation model
produces feasible results. However, it should be noted that our illustration does not
reflect observed behavior. It only serves to highlight the potential of the developed
approach.
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Although our demographic microsimulation is capable to conduct realistic
population projections at a very detailed level, it shows limitations. First, a
general impediment for the usage of microsimulations is their demand for data.
To run meaningful microsimulation applications a lot of micro data is needed–
which might be hard to access. Second, using the DEVS metaphor to specify the
microsimulation bears some problems. Although the ml-DEVS formalism allows
specifying population dynamics in the intended way, it introduces some modeling
overhead. The formalism is very rigid which results in a bulky and longish definition
of the ml-DEVS population model. Unfortunately, currently no modeling formalism
exists that entirely copes with the requirements of demographic simulation models.
Nonetheless, this is work in progress, see Steiniger et al. (2014). Third, currently
individuals enter the partnership market based on empirical marriage rates or based
on rates indicating cohabitation propensities. To correctly determine partnership
events, however, instead of marriage or cohabitation rates, rates indicating the
willingness to mate would have to be used. We know of no data source that
allows estimating such rates. A way to anyhow obtain those rates would be to
hypothesize them based on external knowledge of the phenomenon. Fourth, so far
we restrict our consideration to binary linkages, that is, our model contains only
individuals and couples. From a pure technical point of view, the construction of
interaction networks comprising more than two individuals such as families and
households is straightforward: we model individuals who are linked as being part
of a “larger simulation unit that contains all individual units that are mutually
dependent” (Galler 1997, p.14). However, parameterizing such models can become
very difficult. This is mainly due to the fact that factors driving interactions and
causal relationships are widely unobservable.

Appendices

A. The ml-DEVS Population Model

The ml-DEVS microsimulation model consists of a macro model Pop comprising
two types of micro components: individual models I and couple models C, see
Fig. 5.3. The special structure of the considered microsimulation model implies
that not the entire functionality of the original ml-DEVS formalism is covered.
For example, we do not employ any couplings between micro models. Therefore,
for reasons of clarity, we adapt the original ml-DEVS approach such that in the
subsequent description we leave out any functionalities that we do not demand.

A.1 The Population Macro Model

We formulate the population macro model Pop? as structure

Pop D hX;Y; S; sinit; I;P; ı; 
down; 
; sci
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where the input port comprises the following information

X D

(

Œ I
1; � � � ;  

I
n1 ;  

C
1 ; � � � ;  

C
n2 � if n1 single immigrants and/or n2 couples enter,

¿ otherwise;

 I
i describes the state of an immigrant (i D 1; � � � ; n1), and
 C

j describes the state of an immigrating couple (j D 1; � � � ; n2),

Y is an output port for emigrants leaving the population,
S is the set of possible states of Pop, a state s D Œs1; � � � ; s5�, s 2 S, indicates

s1: whether the transition of an individual model leads to a structural model
change; indicators of structural model changes invoked by individual models
are actionOfInd D fimmigrating; emigrating; dying; childbirthg,

s2: whether the transition of a couple model leads to a structural model change;
indicators of structural model changes invoked by couple models are
actionOfCouple D fimmigrating; emigrating; dying; childbirth; dissolution;
widowhoodg,

s3: the two individuals last found to form a proper match, and their mating time,
otherwise s3 D ¿,

s4: all searching individuals that were included in the latest mate matching round
and could not properly be matched, otherwise s4 D ¿,

s5: two individual models that are due to form a couple, otherwise s5 D ¿.

sinit D Œ¿; � � � ;¿� is the initial state of Pop,

ı W X � S � J � C ! S is the state transition function of Pop, where J is the
index set of all individual models I and C is the index set of all couple models C; ı
is composed of four component functions:

ı1: if individuals are immigrating, or an individual signalizes emigration, death,
or a childbirth event, ı1 updates the first component s1 of the state of Pop
accordingly, otherwise s1 D ¿,

ı2: if couples are immigrating, or a couple signalizes emigration, death, child-
birth, dissolution, or a widowhood event, ı2 updates the first component s2 of
the state of Pop accordingly, otherwise s2 D ¿,

ı3: if an individual model signalizes the onset of a partner search, then ı3 executes
a mate matching algorithm

– if two individuals can be identified as forming a proper match, then ı3
reports these two individuals and their corresponding mating time in s3,

– if no individuals can be identified as forming a proper match, ı3 sets s3 to
¿;

– besides this, ı3 reports in s4 all searching individuals who were inspected
during the mate matching process and could not properly be matched;

otherwise s3 D s4 D ¿,
ı4: if two individuals signalize that their mating time is due, ı4 reports this in s5,

otherwise s5 D ¿.
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down W S ! 2
S

i2J Xi is the downward output function to inform individual models
(via their input ports Xi)

– about upcoming mating times (reported by s3), and
– searching individuals, who were inspected during the latest mate matching round

and for whom no proper match could be found (reported by s4), about lowering
their aspiration level;


 W S ! Y is the output function; it forwards the states and the birth dates of
emigrating individuals and couples to Y .

sc W S ! I�C is the structural change function working on the set I of individual
models and the set C of couple models; sc is composed of seven component
functions:

sc1: creates individual models:

if s1 indicates immigrating individuals, sc1 creates n1 new individual models
for immigrants,
if s1 or s2 indicate childbirth, sc1 creates for each newborn an individual
model,

sc2: deletes an individual model:

if s1 indicates that an individual is dying or emigrating, sc2 deletes the
corresponding individual model,

sc3: creates couple models:

if s2 indicates immigrating couples, sc3 creates n2 new couple models for
immigrants,

sc4: deletes a couple model:

if s2 indicates that a couple is emigrating or both partners of a couple die, sc4
deletes the corresponding couple model,

sc5: creates a couple model and deletes two individual models:

if s5 indicates a mating event, sc5 creates a new couple model for the mating
individuals and deletes the corresponding individual models,

sc6: deletes a couple model:

if s2 indicates the dissolution of a couple: sc6 deletes the concerned couple
model and creates for the separating partners two individual models,

sc7: creates an individual model and deletes a couple model:

if s2 indicates a widowhood event: sc7 deletes the corresponding couple
model and creates for the surviving partner an individual model; otherwise
sc stays idle.

ta W S ! R
C
0 [ f1g is the time-advanced function: ta.s/ D 0 if at least one

si ¤ ¿ .i D 1; � � � ; 5/, and ta.s/ D 1 otherwise.
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The macro model Pop handles structural changes such as adding and removing
individual and couple models. Via its input X the population model receives infor-
mation about incoming immigrants.17 Several immigrants may enter the population
simultaneously, for example, family members or couples. Once Pop receives the
information about immigration events, it creates as many individual and couple
models as immigrate. In an analogous manner, Pop creates new individual models
if individual or couple models report birth events. If individual or couple models
indicate the occurrence of emigration events, Pop forwards their states and birth
dates via its output port Y and removes the related models.18 Besides migration,
the macro model Pop guides the onset of partnerships, that is, the creation of
couple models. To this end, Pop performs the mate matching algorithm described
in Sect. 5.3. The mate matching procedure involves all individuals who signalize
their disposition to mate, that is, exhibit a related output port. If two individuals
are found to form a proper couple, Pop records this in its state and informs the
individuals concerned immediately (ta.s/ D 0) about the upcoming mating time (by
carrying out 
down). These matched individuals receive the accordant information
on their input port Xi D ffoundMateg. Similarly, Pop instructs individuals who
were unsuccessfully inspected during a mate matching round to lower their level of
aspiration (via their input port Xi D fredAspLevelg). When two individual models
signalize the due date of their partnership onset, Pop replaces them by a couple
model. Accordingly, if a couple model informs Pop about a dissolution event,
Pop replaces this couple model by two individual models describing the separated
partners. Likewise, if a couple model signalizes a widowhood event, Pop replaces
this couple model by one individual model that describes the surviving partner.
Once Pop receives a message about a structural population change, it processes that
information immediately (i.e., ta.s/ D 0) and empties the output ports of the related
micro models. Apart from immigration, Figs. 5.9 and 5.10 illustrate the different
types of structural model changes that Pop carries out.

A.2 The Individual Micro Model

I is the set of all individual models I. We formulate I as structure

hX;Y; I‰; 0; p; ı; 
; tai

where
X is the input port of I; it is X D ffoundMate; redAspLevelg;

17The generation of immigration events might rely on empirical data about immigration dates and
number of immigrants or on hypothetical data.
18Modeling migration in this way allows us to extend the population model to study the migration
behavior between different populations. For this purpose different population models would have
to be coupled.
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Fig. 5.9 Possible output messages of the individual models and reactions of the population macro
model

1. Pop informs I via foundMate about an upcoming partnership onset, and
2. Pop instructs I via redAspLevel to lower the aspiration level.

Y is the set of output ports of I; Y D fsearching; childbirth; emigration; death;
matingg; we differ between two types of output ports:

1. the port searching that is permanently exhibited when I is searching for a mate,
and

2. the output ports that indicate structural model changes:
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Fig. 5.10 Possible output messages of the couple models and reactions of the population macro
model

(i) if a childbirth event is due, I signalizes this on the port childbirth,
(ii) if a death event is due, I signalizes this event on the port death,

(iii) if an emigration event is due, I signalizes this on the port emigration, and
(iv) if a mating event is due, I signalizes this on the port mating.

I‰ is the set of possible states that I can occupy; I‰ comprises

(i) I’s current state sc and I’s upcoming state su (sc; su 2 ‰ where ‰ is the state
space of the stochastic process that maps the individual life course),

(ii) I’s birth date b and I’s age a,
(iii) the complete waiting time � that I has to spend in sc as well as
(iv) I’s aspiration level la concerning a potential spouse (la D ¿ indicates that I is

not searching for a mate).
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 0 D Œs0; s0; b; a0;1;¿�, comprises I’s initial state s0, I’s birth date b, I’s age a0 at
model initialization, the entire waiting time that I has to spent in his/her current state
(in the initialization phase we set this time to 1), and the initial level of aspiration
concerning a potential spouse is ¿.

To facilitate the subsequent description of the ml-DEVS functions ı; p; 
 and ta,
we define the following auxiliary functions:

search W ‰ �‰ ! ftrue; falseg;

death W ‰ ! ftrue; falseg;

emigration W ‰ ! ftrue; falseg;

childbirth W ‰ �‰ ! N0:

The function search shows whether a transition (from state sc to state su) implies the
onset of a partnership, the functions death and emigration indicate a death and an
emigration event (identified by inspecting su), and the function childbirth gives the
number of newborns that an event implicates (identified by inspecting the transition
from sc to su).
ı W X � I‰ ! I‰ is the state transition function of I (x indicates input messages

and  2 I‰):

ı.x;  /D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

Œsu; sn; b; a C �; �;¿� if search.su; sn/ D false

Œsu; sn; b; a;1; la0� if search.su; sn/ D true

Œsc; su; b; a;1;min.0; la � ıA/� if an input message has been received

via the port redAspLevel

Œsc; su; b; ton � b; ton � b � a;¿� if the actual mating time ton has been

received via the port foundMate

not defined otherwise;

where sn is the next state of I and � is the (random) waiting time between sc and
sn, la0 is the aspiration level at the moment when an individual enters the mate-
searching phase, and ıA is the decrement to lower the aspiration level in case of an
unsuccessful search round.

p W I‰ ! PI selects the output port available in a given state (with PI D

fsearching;mating; death; emigration; childbirthg is the set of all possible output
ports of I):
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p. / D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

searching if search.sc; su/ D true and la ¤ ¿;
mating if search.sc; su/ D true and la D ¿;
death if death.su/ D true;

emigration if emigration.su/ D true;

childbirth if childbirth.sc; su/ > 0;

¿ otherwise;


 W I‰ ! Y is the output function; it is composed by five component functions that
fill the output ports searching;mating; childbirth; death, and emigration:


1: If search.sc; su/ D true and la ¤ ¿, 
1 forwards the information .sm
u ; b; t

des D

b C a C �?; la/ necessary for mate searching, where sm
u � su comprises

the individual attributes that are relevant for finding a proper spouse (like
partnership type and age), and tdes is the desired mating time; otherwise

1 D ¿.


2: If I is due to mate (i.e., search.sc; su/ D true and la D ¿), 
2 forwards via
the output port mating the upcoming state and the birth date of I, otherwise

2 D ¿.


3: If I is due to give birth (i.e., childbirth.sc; su/ > 0), 
3 forwards via the output
port childbirth the number of newborns, otherwise 
3 D ¿.


4: If I is due to die (i.e., death.su/ D true), 
4 signalizes this to the output port
death, otherwise 
4 D ¿.


5: If I is due to emigrate (i.e., emigration.su/ D true), 
5 forwards via the output
port emigration the current state and the birth date of I, otherwise 
5 D ¿.

ta W I‰ ! R
C
0 [ f1g is the time-advanced function: ta. / D � .

The state of I captures all the information necessary to describe I’s attributes and
behavior. It comprises I’s current state sc and I’s upcoming state Su as well as I’s
birth date and age when entering state sc. Additionally, it contains the information
about I’s aspiration la concerning a potential spouse if I is in a mate-searching phase.
The occurrence of an event (provoked by a state transition of the corresponding
stochastic process) that does not imply the onset of a partnership results in an
(ordinary) state transition of I. Therefore, I’s current state, upcoming state, and
age at last transition is redefined accordingly. If the event implies the onset of
a partnership, I immediately enters a phase of mate searching. In this phase, I
features a positive aspiration level la concerning the traits of a potential spouse
and permanently exhibits his/her searching output port. This port holds I’s birth
date, the desired mating time, and the attributes of I that are relevant for the mate
matching procedure, for example, whether I wants to marry or enter a cohabitation.
The permanent exhibition of the searching port ensures that every time Pop is
conducting a mate matching round, it can retrieve those data that are relevant for
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mating. Meanwhile, every time Pop considers (the searching) I in a mate matching
round and no proper spouse could be detected for I, Pop instructs I (via its input
port redAspLevel) to lower his/her aspiration level. During each mate matching
round Pop checks whether I‘s desired mating time tdes is expired. If this is the
case, the options listed in Sect. 5.3.2 might be applied. For reasons of convenience,
we opt for matching I with the most compatible opposite-sex candidate who is
seeking for the same partnership type. If no such candidate is available, we shift
the preferred mating time by half a year, and pair off I as soon as possible. If a
proper spouse for I is then found, Pop informs I and the new spouse about the
upcoming mating event. In line with this, I receives an accordant message on its
input port foundMate. Besides the searching port, I possesses the four other output
ports: death; emigration; childbirth, and mating. The port death signalizes that I
makes a transition to ‘death’. Likewise, emigration shows an emigration event,
and childbirth indicates the number of children that a transition implicates. On the
mating port I signalizes that he/she enters a partnership. Figure 5.9 displays the
output ports of I. It further illustrates the operations that Pop conducts in response.

A.3 The Individual Couple Model

C is the set of all couple models C. We formulate C as structure

hY; C‰; 0; ı; 
; tai

where
Y is the output port of C; Y D fdissolution;widowhood; death; emigration;

childbirthg; it forwards structural changes such as dissolution (port: dissolution),
widowhood (port: widowhood), death of both partners (port: death), emigration
(port: emigration), or childbirth (port: childbirth),

C‰ is the set of possible states that C can occupy; C‰ comprises

(i) C’s current state sc and C’s upcoming state su (sc; su 2 ‰ with ‰ being the
state space of the stochastic process that maps the dynamics of the couple),

(ii) the birth date bm of the male spouse and the birth date bf of the female spouse
(iii) the age am of the male spouse and the age af of the female spouse, as well as
(iv) the complete waiting time � that C has to spent in sc.

 0 D Œs0; s0; bm; bf ; am; af ;1�, comprises C’s initial state s0, the birth date bm of the
male spouse, the birth date bf of the female spouse, the age am of the male spouse
at model initialization, and the age af of the female spouse at model initialization,
as well as C’s waiting time in s0 to which we assign 1 in the initialization phase.

To ease the subsequent description of the ml-DEVS functions ı; p; 
 and ta, we
define the following auxiliary functions:
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dissolution W ‰ �‰ ! ftrue; falseg;

widowhood W ‰ �‰ ! ftrue; falseg;

deathOfBoth W ‰ ! ftrue; falseg;

emigration W ‰ ! ftrue; falseg;

childbirth W ‰ �‰ ! N0:

The function dissolution indicates whether a state transition implies the dissolution
of the partnership, the function widowhood indicates the death either of the male or
the female spouse, and deathOfBoth shows the death of both partners; emigration
indicates an emigration event, and the function childbirth gives the number of
newborns that a state transition implicates.
ı W C‰ ! C‰ is the state transition function of C (with  2 C‰):

ı. / D .su; sn; bm; bf ; am C �; af C �; �/;

where sn is the next event of C and � is the (random) waiting time between the states
su and sn.

p W C‰ ! PC selects the port available in a given state of the couple model (with
PC D fdissolution;widowhood; death; emigration; childbirthg being the set of all
possible output ports of C):

p. / D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂

:̂

dissolution if dissolution.sc; su/ D true;

widowhood if widowhood.sc; su/ D true;

childbirth if childbirth.sc; su/ > 0;

death if deathOfBoth.su/ D true;

emigration if emigration.su/ D true;

¿ otherwise;


 W C‰ ! Y is the output function; it is composed of five component functions that
fill the output ports dissolution;widowhood; childbirth; death and emigration:


1: If C is due to dissolve (i.e., dissolution.sc; su/ D true), 
1 forwards via the
output port dissolution the upcoming state of C and the birth dates of both
spouses, otherwise 
1 D ¿.


2: If C is due to experience a widowhood event (i.e., widowhood.sc; su/ D true),

2 forwards via the output port widowhood the state and the birth date of the
surviving partner, otherwise 
2 D ¿.


3: If C is due to experience a childbirth event (i.e., childbirth.sc; su/ > 0), 
3
forwards via the output port childbirth the number of newborns, otherwise

3 D ¿.
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4: If C is due to experience the death of both partners (i.e., deathOfBoth.su/ D

true), 
4 signalizes this to the output port death, otherwise 
4 D ¿.

5: If C is due to emigrate (i.e., emigration.su/ D true), 
5 forwards via the

output port emigration the current state of C and the birth dates of both
spouses, otherwise 
5 D ¿.

ta W C‰ ! R
C
0 [ f1g is the time-advanced function: ta. / D � .

The specification of the couple model C is very similar to the specification of the
individual model I. It records in its state the attributes, the ages, and the birth dates
of the female and the male spouse. Output ports are used to inform the macro model
Pop about structural changes. State transitions are specified in the same way as in
the case of I. To inform Pop about structural changes, the couple model C features
five output ports (dissolution, widowhood, death, emigration, and childbirth). If C
experiences a dissolution event, it forwards via the port dissolution to Pop the birth
dates and the upcoming attributes of both spouses. In response, Pop creates for the
separated partners two individual models, and deletes C. The processing in case
of a widowhood event is similar. The only difference is that the individual model
is created for the surviving partner only. If C experiences an emigration event, it
forwards to Pop the current attributes and the birth dates of the female and the male
spouse. In response Pop forwards C’s data via its output port and deletes C. Equally,
the death of both spouses causes the deletion of C. In case of a childbirth event, C
forwards the number of newborns to Pop. Pop reacts by creating as many individual
models as newborns have been reported. Figure 5.10 shows the output ports of
C. The figure further illustrates the structural model changes that Pop conducts in
response to activated ports.

B. Sequential Abstract Simulator for ml-DEVS

The sequential abstract simulator for ml-DEVS executes parts of the DEVS
processor tree en bloc. Therefore, it implements the two methods getOutputs and
doRemainder. During simulation processing these methods are successively called.
In doing so, it still complies with the original ml-DEVS communication protocol,
compare Figs. 5.11 and 5.12.

The simulator and coordinator of a ml-DEVS model realize the methods getOut-
puts and doRemainder differently, see Algorithms 1 and 2. If its getOutputs method
is called, the macro model coordinator activates the simulator of all imminent micro

Root
Coordinator

Macro Model
Coordinator

Micro Model
Simulator

(*,t)

(done,[tonie,ports])

(x,t)
(y,t)

(*,t)

(done,[tonie,ports])
(x,t)
(y,t)

Fig. 5.11 The communication protocol between micro model simulators and the macro model
coordinator of the original abstract simulator of ml-DEVS
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getOutputs()

doRemainder()

Macro Model Coordinator Micro Model Simulator

(*,t)
(y,t)

(x,t)
(done,[tonie,ports])

getOutputs()

doRemainder()

Fig. 5.12 The communication protocol between micro model simulators and the macro model
coordinator of the sequential abstract simulator of ml-DEVS

Algorithm 1 Pseudocode of the coordinator of the sequential abstract simulator for the ml-DEVS
population model

function Messages getOutputs()
for each microModel in imminents do

micro.msgs = union (micro.msgs, microModel.getOutputs())
if t is getTonie(macroModel)

macro.msgs = macroModel.lambda
macro.downMsgs = macroModel.lambdaDown
msgs = union (micro.msgs,macro.msgs,macro.downMsgs)

end if
return msgs

end function

function
�

double, ports
�

doRemainder(msgs)
if t is getTonie(macroModel)

macro.downMsg = getMsgFromMacroLambda(msgs)
influencees = union (influencees, sendMessagesToMicroModels(macro.downMsgs))

else influencees is empty
end if
for each microModel in union (influencees, imminents) do

(microModel.Tonies, ports)=microModel.doRemainder()
macro.msgs = getMsgFromMacro(msgs)
micro.msgs = getMsgFromMicro(msgs)
msgs = union (micro.msgs,macro.msgs)
if (msgs is not empty) or t is getTonie(macroModel)

execute macroModel.stateTransition(msgs,ports)
execute macroModel.timeAdvance
macroModel.processStructuralChanges
ports = macroModel.availablePorts

end if
tonie = min(microModel.Tonies, getTonie(macroModel))
return union (tonie, ports)

end function

models (i.e., all micro models for whom the next event is due). Subsequently,
it reads their output messages. If the current model time t corresponds to the
next event time of the macro model (i.e., to the coordinator’s actual tonie), the
coordinator executes the output function of the macro model and its downward
output function. Then, getOutputs forwards the output message of the macro model
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Algorithm 2 Pseudocode of the simulator of the sequential abstract simulator for the ml-DEVS
population model

function Messages getOutputs()
execute model.lambda
return getMsgs(model)

end function

function
�

double, ports
�

doRemainder(msgs)
execute model.stateTransition(msgs)
execute model.timeAdvance
ports = model.availablePorts
return union (tonie, ports)

end function

to the root-coordinator. The root-coordinator maintains that information for further
processing.19 Afterwards, the doRemainder method of the macro model coordinator
is called. As a first step, it identifies all micro models who are influenced by an
external event (i.e., by an upcoming partnership event or the instruction to lower
the aspiration level) and feeds that information into their input ports. Then, if
the current model time t equals the coordinator’s tonie, it executes all influenced
micro models (via calling their doRemainder method). Thereafter, the coordinator
executes all imminent models. For this purpose, it calls their doRemainder method.
This method computes for all imminent models new next events–however, only if
the models are not exposed to structural changes implying their extinction such
as death or dissolution events. Then, the doRemainder method of the coordinator
requests all (newly computed) next event times (tonies) as well as the currently
exhibited ports of the micro models, and stores them. Subsequently, it checks
whether it has received a message about an external event (i.e., about immigrants)
or a messages about structural changes from its subordinate micro models. If so, or
if its tonie is due, it executes the transition function and the time-advanced function
of the macro model. Eventual reported structural model changes are subsequently
executed. The doRemainder method exits by updating the available ports ports of
all subordinate micro models, and by determining and forwarding the system’s
next event time. Note that the searching port of all individuals willing to mate is
permanently exhibited by the related micro models. Only if an individual is paired
off is it retracted.

The simulator of a micro model employs the method getOutputs to call the
model’s output function and to forward the respective output information, for
example, death or mating events. By doRemainder the simulator performs the state
transition of the model and computes its next internal event determined by its own
state transition function. Finally, it forwards to the coordinator of the macro model
the ports exhibited in the current state of the model and its next event time. Opposed

19For example, the root-coordinator might send information on emigrants to another coupled
population model; see footnote 7.
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to a direct implementation of the ml-DEVS processing scheme, the sequential
abstract simulator for ml-DEVS requires only two threads to execute a ml-DEVS
model: one for the macro model coordinator and one for the root-coordinator.
Hence, we are not in danger of facing any limitations concerning population size due
to the restricted numbers of parallel threads supported by the Java virtual machine
being used.

C. Transition Rates Used in the Application

In this appendix we present the age-profiles of the transition rates used in the
application shown in Sect. 5.5. The transition rates that describe the propensity of
unlinked females and males to change the marital status are depicted in Figs. 5.13
and 5.14. Transition rates of unlinked individuals to change their smoking behavior
and (non-parity specific) fertility rates of females are also depicted in Fig. 5.14.
Figure 5.15 shows the transition rates of spouses to change their smoking behavior.
Figure 5.16 depicts the log-mortality rates of female and male non-smokers and
smokers. The transition rates of couples to change marital status are given in
Fig. 5.17.
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Fig. 5.13 Transition rates of unlinked females and males to change the marital status; PH: living at
parental home & never married/cohabitating before, SI: being single & living alone, MA: married,
CO: cohabiting
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Fig. 5.15 Transition rates of spouses to change the smoking status; S: smoker, nS: non-smoker
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Fig. 5.16 Log-mortality rates by age, sex, and smoking status for the period 2008–2020 and ages
from 0 to 63
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Fig. 5.17 Transition rates of couples to change the marital status; MA: married, CO: cohabiting,
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Chapter 6
Using Survey Data for Agent-Based Modeling:
Design and Challenges in a Model of Armed
Conflict and Population Change

Nathalie E. Williams, Michelle L. O’Brien, and Xiaozheng Yao

6.1 Introduction

Agent-based modeling is a relatively new methodology that holds immense promise
for demographic and social-behavioral research. Many of the methodological tools
available to quantitative demographers and social scientists consist of statistical
approaches that allow for precise modeling of micro or macro phenomena and
can investigate important but essentially static relationships. In contrast, agent-
based models (ABMs), using a complex systems approach, provide a method for
examining dynamic interactions of social and demographic actors at both micro
and macro levels. As such, ABMs provide a new perspective towards understanding
an immense variety of outstanding questions in demography, such as how macro-
level shocks like armed conflict, natural disaster, climate change, economic crises,
and policy changes affect population growth and change. In other words, they can
help us understand relationships between macro- and micro-level processes that are
intimately and interactively linked. Given the scientific advances that are possible
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with this modeling strategy, it is encouraging to find an increasing number of studies,
including those in this volume, that use ABMs to generate key demographic insights
(Aparacio Diaz and Fent 2006; Aparacio Diaz et al. 2011; Billari et al. 2007; Bruch
and Mare 2006; Ewert et al. 2003; Heiland 2003; Žamac et al. 2009).

A quick review of existing demographic studies that use ABMs reveals that the
vast majority model one or possibly two demographic processes (such as marriage
or fertility) in a largely hypothetical population or scenario. Such models are useful
for providing broad insights into the relationship between particular demographic
processes that might generally relate to any population around the world. However,
they are less useful for understanding population change in any particular population
or region and how multiple demographic, social, economic, and political processes
interact.

Another type of ABM attempts to model specific populations, includes multiple
interactive social and demographic processes, and uses empirical survey data to
populate and operationalize model procedures. This strategy, commonly found in
the geographic and land use sciences (An 2012; An et al. 2001, 2014; Manson
2005; Parker et al. 2008; Zvoleff and An 2014), is almost absent in demography
and sociology. This modeling strategy, which we call survey data based ABM, can
be characterized as a case study approach, providing more accurate insights into
a single population, but possibly less relevance for other areas outside the study
setting. A classic example of this type of model is one by An and Liu (2010) that
analyzed how changes in fertility policies influenced destruction of panda habitat
in China. The authors find that an increase in the number of households was more
destructive to panda habitat than an increase in the population size overall.

Survey data based ABMs are also useful for testing the mechanisms that
influence a particular outcome and the potential effects of policy changes, out-
standing issues in many areas of demography. For example, beyond just looking at
households and population size, the An and Liu (2010) study also models different
hypothetical scenarios restricting the fertility rate, age at marriage, and the upper
childbearing age. Using the simulated model, the authors were able to determine
which changes to fertility would have the largest impact and which would have the
quickest impact in reducing population growth.

Despite the many possible benefits, because these models utilize empirical data
and are increasingly complex, they are immensely time consuming and cumbersome
to design, test, and analyze. This might be one reason that they are seldom used in
the demographic sciences to date. In this context, our purpose in this chapter is to
develop methods and encourage the use of survey data based ABMs in demography.
We present an ABM designed to analyze the impact of armed conflict on population
change in rural Nepal. This model uses empirical survey data from the Chitwan
Valley Family Study throughout the modeling process, for initializing a population
and parameterizing behavioral rules. We discuss design challenges and suggest
methods for addressing each challenge. It is our hope that this methodological
presentation will help to streamline the long process of developing survey data based
ABMs for future studies.
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We write this chapter with the assumption that the reader has a basic understand-
ing of ABMs. Given that ABMs are still poorly understood in the demographic and
social behavioral literature, this assumption is clearly not reasonable. Regardless,
instead of providing a lengthy description of ABMs, we guide the reader to reference
existing literature on ABMs (An et al. 2005; Billari et al. 2007; Mena et al. 2011;
Kniveton et al. 2011; Aparacio Diaz et al. 2011; Jackson et al. 2008; Heiland 2003;
Ewert et al. 2003; Bruch and Mare 2006; Walsh et al. 2013).

6.2 Survey Data Based ABMs as Experimental Models

Before presenting our ABM of armed conflict and in order to understand the design
that we do present, it is important to discuss the foundation of survey data based
ABMs, what researchers should aim for, and what they can and cannot expect such
an ABM to do.

ABMs that are informed by survey data can simulate real populations with
real individual, household, and community characteristics and create behavioral
rules that are modeled from real behaviors. However, they cannot, and should not
be expected to model reality in all aspects. Social reality is much too complex
to be modeled. Furthermore, social reality changes constantly; people’s behav-
iors, beliefs, and relationships change; households change; communities change;
weather, politics, and economies change. The primary problem with this almost
constant, multidimensional, and non-linear change in social reality is that it makes
it difficult to attribute differences over time in any one process to another particular
process. For example, in Nepal, the context upon which our ABM is based, the
conflict changed over time, with increasing and decreasing numbers of gun battles,
states of emergency and ceasefires. At the same time, fertility rates decreased and
household wealth generally increased. Thus, it is difficult to attribute a change in
migration during the time period to the conflict, when fertility, wealth, and other
processes varied significantly at the same time.

Instead of attempting to re-create reality, we argue that survey data based ABMs
should be designed as experimental laboratories. From an analytical point of view,
the ideal experiment is a situation with two or more groups, where everything is the
same for the groups except one experimental factor.1 Translating this concept to the
ABM situation where the impact of a temporally changing factor is being tested,
an ideal ABM would have relatively stable demographic and social processes,
except for the one process of interest. Then, the researchers can simulate the model
population with this process and without this process. By isolating the process,
researchers can rule out spurious effects. Any difference in population growth
between the two simulations would arguably be caused by the process being tested.

1For a useful guide to experimental research design for the social sciences, see Adler and Clark
(2008).
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For example, with our ABM of armed conflict, the most desirable situation is one
where most processes, such as marriage, birth, and migration are relatively stable
over time. In this case, a simulation without the conflict acts as a control, while a
simulation with the armed conflict acts as the experimental treatment. Differences
between the two simulations can reveal the isolated influence of armed conflict on
population change. Thus we designed our model with this ideal in mind, and sought
to create a generally stable population using empirical survey data from a population
that is not inherently stable.

6.3 Agent-Based Model for Armed Conflict and Population
Change

The ABM we describe in this chapter is designed to investigate the effects of
macro-level crises, such as armed conflicts, natural disasters, and economic crises,
on population dynamics. We focus on armed conflict here, but with a variety of
behaviors in the model, predictors of each behavior, and modules that include
livelihoods, other crises can easily be simulated. Previous research has shown
large impacts of armed conflict on individual demographic behaviors, such as
marriage, childbearing, migration, and mortality (Agadjanian and Prata 2002;
Apodaca 1998; Czaika and Kis-Katos 2009; Davenport et al. 2003; Eloundou-
Enyegue et al. 2000; Gibney et al. 1996; Heuveline and Poch 2007; Jayaraman
et al. 2009; Lindstrom and Berhanu 1999; Melander and Oberg 2006; Moore and
Shellman 2004; Schmeidl 1997; Shemyakina 2009; Stanley 1987; Weiner 1996;
Williams et al. 2012; Williams 2013, 2015; Winter 1992; Zolberg et al. 1989).
Although these behaviors together comprise population change, a straightforward
projection would arguably be inappropriate for estimating overall change in the
population, because each of these behaviors affects other behaviors. For example, if
someone migrates then they are less likely to get married or have children. People
also interact. For example, if one person migrates, then they likely influence the
probability of other household and community members migrating as well. Thus,
if armed conflict affects most, if not all, people in a community and it influences
all of these demographic behaviors, a complex interactive model is necessary to
thoroughly examine the impact of armed conflict on population change. We discuss
this further, and demonstrate the differences between single-behavior regression
output and ABM results towards the end of this chapter.

6.3.1 Setting

Our model of armed conflict and population change is based on survey data from the
western Chitwan Valley of south-central Nepal during the armed conflict of 1996–
2006. The administrative district of Chitwan borders India and is about 100 miles
from Kathmandu. As shown in Fig. 6.1, there is one large city, Narayanghat, and the
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Fig. 6.1 Map of Nepal and Chitwan Valley Family Study area

rest of Chitwan’s population, like much of Nepal, lives in small, rural villages. The
valley is dominated by agriculture with about 80 % of households using farming
as their primary livelihood in 1996. Since then, market production of agricultural
goods has increased, with continued production of agricultural goods for household
consumption. From Narayanghat moving south-west, the study area is progressively
more rural, poorer, and less involved in market agriculture.

Prior to the time period of this study, there was a massive proliferation of
public and private services in Chitwan, including paved roads, off-farm employers,
markets, schools, health services, banks, and many other services. This provision
of services has led to increasing rates of education and non-family employment.
Evidence also connects these community changes to drastically decreasing fertility
rates, and changes in marriage and household residence patterns (Axinn and Yabiku
2001). Notably, childbearing still takes place almost exclusively within marriage
(Axinn and Yabiku 2001; Ghimire and Axinn 2010).

Migration has also increased. The selectivity in who migrates has changed, and
the destinations to which people migrate have expanded dramatically during this
time period (Williams 2009; Williams et al. 2012; Massey et al. 2010). Migration
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has long been a common livelihood strategy in Chitwan and continues to be mostly
short-term and used to supplement regular farm incomes (Kollmair et al. 2006;
Thieme and Wyss 2005). Nepal and India share an open border, so international
migration to India, in addition to domestic migration, is common (United Nations
2013). Evidence shows that men have historically been more likely to migrate than
women and that migration rates are lower among the married and people with
children (Massey et al. 2010; Williams 2009). However, with political and economic
changes on local and global scales in recent decades, migration to a variety of
international destinations, most notably the Persian Gulf, has increased immensely
and evidence suggests that gender and ethnic gaps in migration are decreasing at the
same time (Williams 2009, 2015).

The armed conflict began in 1996 when the Communist Party of Nepal (Maoist)
made a declaration of war with the intention to unseat the monarchy and install
a people’s republic. The early stages of the conflict were contained primarily in
several midwestern districts and involved damage to government installations. From
mid-2000, however, the Maoists progressively expanded their campaign across the
country, including to Chitwan, and the Nepalese government responded by creating
a special armed force to fight the Maoists. In 2006, the government and Maoists
signed a comprehensive peace agreement declaring an end to the conflict.

The conflict was staged mainly as a guerrilla war. With no true “frontline,” it was
largely unknown where fighting would break out, and civilians were often caught
up in violence. Reported violent acts by the Maoists and government forces against
civilians include torture, assassinations, bombings, gun fights, abductions, forced
conscription, billeting, taxing, and general strikes (Hutt 2004; Pettigrew 2004; South
Asia Terrorism Portal 2006). A variety of political events also characterized this
conflict, including states of emergency, ceasefires, depositions of the prime minister,
and multiple nationwide strikes and protests that severely affected the day-to-day
life of the general population and spread considerable unrest and fear nationwide.
Evidence suggests that both violent and political events had significant influences on
residents’ marriage, contraception, and migration behaviors (Williams et al. 2012).

Figure 6.2 shows a timeline of the conflict and the violent and political events in
the Chitwan Valley and surrounding districts. As you can see, there were relatively
low levels of violence and political upheaval until 2002. This increased in 2003
through mid-2005, which was the height of the conflict. During this time, there were
some gun battles, with up to 4 in 1 month, and even more bomb blasts reaching a
high of 12 in 1 month.

6.3.2 Data

Data that were used to inform the ABM come from several sources. Survey data,
which were used to create the initial population of the model and to operationalize
the behavioral equations that define the probabilities of marriage, childbearing,
death, migration, and other behaviors, come from the Chitwan Valley Family Study
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Fig. 6.2 Timeline of violent and political events in Chitwan and surrounding districts

(CVFS). The CVFS is a large-scale multidisciplinary study of about 5,000 people
in western Chitwan (Axinn et al. 1997, 1999; Barber et al. 1997). It features a
representative sample of neighborhoods in the western Chitwan Valley and all
individuals between the ages of 15 and 59 living in those neighborhoods in 1996.
The CVFS includes a variety of linked data sets, including an individual interview
and life history calendar that were collected in 1996, a prospective demographic
event registry that has been collected monthly since 1997, household agriculture and
consumption surveys in 1996, 2001, and 2006, and neighborhood history calendars
collected in 1995 and 2006. The CVFS prospective demographic event registry
is integral to this model, through the collection of precise records of migration,
marriage, birth, and death on a monthly basis that allow for precise specification of
the demographic behaviors throughout the conflict period.

Data on the conflict process comes from records of violent events compiled by
the South Asia Terrorism Portal (SATP), an Indian NGO that compiles records of all
violent events in Nepal and other South Asian countries. These data are confirmed
by information from Informal Service Sector (INSEC), a Nepal-based human rights
NGO that also collected records of these same violent events. Further, records of
important conflict-related political events, such as states of emergency, ceasefires,
strikes and protests, and major events of government instability, were compiled from
news sources, United Nations agencies, and non-governmental sources.

Several types of necessary information were not available from existing CVFS,
SATP, INSEC or other data sources. In these cases, we used ethnographic fieldwork
in the study area to explicitly collect the information needed. Our fieldwork
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consisted of multiple focus groups, informal and formal in-depth interviews, and
observation in the study area. We collected this data from a variety of people that
generally represented the gender, caste, and wealth distribution of the study area.
The information we collected with this fieldwork includes household behaviors,
such as splitting, and inheritance. Norms for and patterns of household splitting
are notoriously difficult to measure and examine with existing survey data due to
difficulties in defining and tracking households through time. Inheritance norms
(such as when inheritances are given, to whom, and how much) are rarely collected
by surveys. As such, our ABM rules for household inheritance and splitting are
based on the ethnographic information we collected, instead of survey data. We also
determined purchase prices of durable goods, livestock, and land, and selling prices
of agricultural and livestock goods (such as meat and eggs) by creating price lists
for multiple vendors of these items in the study site, as well as from government and
NGO reports available on the internet.

6.3.3 Overview of the Agent-Based Model

In this section we provide a basic description of the ABM. Because the model is
detailed and employs many different behaviors, full equations, decision-making
processes and a full list of variables are provided online at www.bitly.com/
NepalABM. Also online is a description following the ODD (Overview, Design
concepts, Details) protocol that was designed explicitly to guide description of
ABMs so that clear and comparable information could be provided for different
models (Grimm et al. 2006, 2010). Additionally, we have included online a link to
information about the software used to develop this model, Repast Simphony.

The model is organized through modules at the individual, household, and
neighborhood levels. Each module contains a series of probabilistic decisions
and deterministic processes that each individual, household, and neighborhood go
through. Some modules take place on a monthly basis, and some on an annual basis.
Figure 6.3 shows the overall structure of the ABM and the timing of each module.

We initialize the model based on data from the CVFS described in the previous
section above. The agents in year 0 of the model have the characteristics of
respondents in the data. Some new agents are created at the onset, because the CVFS
did not interview the entire population, leaving out children and migrants who were
away during the baseline survey. We discuss this detail later. The primary agents are
individuals, who live in households, situated in 151 villages in the Chitwan Valley.
Each agent undertakes behaviors based on probabilistic or deterministic equations
that are described in more detail below.

Decision-making occurs on the individual level. Household and village charac-
teristics affect individual decision-making, but are by and large aggregated from the
individual characteristics, with few exceptions discussed below. Decisions occur
at monthly and annual time points. At the beginning of each simulated time
period (month or year), an individual or household module begins, moving agents

http://www.bitly.com/NepalABM
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Fig. 6.3 Overall model flow with monthly and annual modules for individual, household, and
neighborhood behaviors and processes

along a decision pathway. Agents and their collectives can undertake any of sev-
eral demographic, social, and economic behaviors, including marriage, childbirth,
out-migration, return-migration, death, and the accumulation of resources. Some
modules simply add time onto a process, such as receiving one more month of
pregnancy, or receiving one more year of education. Other modules are more
complex and involve probabilistic decision-making, such as migration and marriage.

6.3.4 Decision-Making and Deterministic Processes

Processes in the model can be categorized as either probabilistic decisions or
deterministic processes. Probabilistic decisions are based on regression equations
estimated on the CVFS survey data. Each equation consists of multiple weighted
factors, such as age, sex, and household assets, where the weights are determined by
the coefficients from the regression equation. Figure 6.4 shows an example of such a
probabilistic equation, which calculates the probability of out-migration for eligible
men in the model. This equation results in a calculated probability of undertaking
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Eligibility: At least 16 years old.
Probability of Out-Migration Men  
Log (P/(1-P)) = (-7.9827)

+ (Number of gun battles this month * (0.1225))
+ (Number of bomb blasts this month * (-0.0101))
+ (State of Emergency this month * (-0.1349))
+ (Major government instability this month * (0.668))
+ (Major strikes and protests this month * (-0.2558))
+ (Number of gun battles this month * Had a salaried job * (-0.1904))
+ (Number of gun battles this month * Natural log of amount of land owned by household * (0.0664))
+ (Number of bomb blasts this month * Married and living with spouse * (0.0386))
+ (Number of bomb blasts this month * Married and living apart * (0.00749))
+ (State of Emergency this month * High caste * (-0.109))
+ (State of Emergency this month * Married and living with spouse * (0.0526))
+ (State of Emergency this month * Number of children * (0.0294))
+ (State of Emergency this month * Had a salaried job * (- 0.0169))
+ (Major government instability this month * High caste * (-0.175))
+ (Major government instability this month * Married and living with spouse * (-0.4733))
+ (Major government instability this month * Number of children * (0.0762))
+ (Major government instability this month * Had a salaried job * (-0.0425))
+ (Major government instability this month * Distance to nearest urban area * (-0.0386))
+ (Major strikes and protests this month * Number of organization in neighborhood * (0.1088))
+ (Age * (-0.0359))
+ (High caste * (-0.2088))
+ (Education * (0.0253))
+ (Married and living with spouse * (0.0655))
+ (Married and living apart * (-1.3785))
+ (Widowed * (0.257))
+ (Number of children * (-0.0125))
+ (Had a salaried job * (0.3053))
+ (Natural log of amount of land owned by household * (0.0252))
+ (If household in bottom third of assets distribution * (-0.1133))
+ (If household in bottom third of income distribution * (0.2791))
+ (If household in middle third of income distribution * (0.2006))
+ (Distance to nearest urban area* (0.0257))
+ (Number of organizations in neighborhood * (-0.0566))
+ (Natural log of percent migrants in neighborhood * (1.1578))
+ (Ever migrated before start of model * (0.2093))
+ (Number of migrations since start of model * (0.3514))
+ (Number of months back from most recent migration trip * (0.00206))
+ (Number of months away on most recent migration trip * (0.0299))
+ (July * (-0.028))
+ (August * (0.2451))
+ (September * (0.0615))
+ (October * (-0.4897))

Fig. 6.4 Migration equation in the ABM

migration during that month. The probability is compared to a random number
between 0 and 1. If the probability is greater than the random number, the agent
takes the action.

Deterministic processes do not involve a probability schema, but are calculated
monthly or annually in the model. For example, at birth individuals are assigned
an educational attainment level of 2 years greater than their parents. When the
individual reaches the attainment level, he or she cannot accrue any more education.
Income is also deterministic, where a household accrues a specified amount of
income, depending on household members’ migration, salaried employment, and
land and livestock holdings.
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6.3.5 Individual Module

At the beginning of each simulated month, the individual module, shown in Fig. 6.5,
begins. Each individual experiences the possibility of death, based on his or her age.
If the individual dies, they are removed from population and model. If the agent
lives, then the model checks if he or she is married. If the agent is not married, then
he or she experiences the possibility of marriage. All marriage is exogamous to the

Fig. 6.5 Individual monthly module (Part I) in the ABM, for death, marriage, and birth behaviors
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model.2 If a woman marries, she “moves out” of the model, to a hypothetical spouse
who is not amongst the agents in the model. In being removed from the model, she
no longer contributes to the population. If a man marries, a spouse is created and
enters the model, from a hypothetical natal family that is not amongst the agents in
the model. This new spouse is assigned characteristics based on her new husband:
she is 2 years younger, has the same migration experience and caste, and comes
from the same economic background.

If an agent is married and female, she may get pregnant, and if pregnant, she will
give birth in the ninth month of the pregnancy. Children born this month are added
to the household roster and will run through the individual module during the next
month.

If an individual does not get married or give birth, he or she can migrate. If
the agent migrates, the model chooses a destination region from Nepal/India, other
Asian countries, the Middle East, or Europe/North America, Australia, or New
Zealand.

If an agent is a migrant this month, they cannot marry, and female agents cannot
get pregnant. Migrants can experience the possibility of remitting money to their
origin households and return migrating. A migrant who returns moves back into the
origin household.

Other behaviors occur on an annual basis. At the beginning of each year, agents’
ages are updated. Each individual in the household who was enrolled in school
last year either reaches their educational attainment (which is assigned at birth) or
receives an additional year of education. If the agent reaches attainment, he or she
experiences the possibility of working a salaried job for the year.

6.3.6 Household Module

At the end of each year, each household goes through the household module.
Households can split into separate households, die (when all household members
move out or die), and accrue assets. Sub-families, which are comprised of married
sons and their spouses and children, can split from the primary household and create
their own separate household within the same neighborhood. When they initially

2Exogamous marriage allows for a less computationally burdensome model and in this case,
reflects the common marital patterns of the context. Here we consider marriage patterns for Nepal,
wherein women most often leave their childhood homes to reside with their new husband’s natal
family. In this context where women leave their villages at marriage, it is reasonable to program
our model for exogamous marriage, where our female agents leave their model villages (and thus
entirely leave the model). At the same time, new wives (female agents) enter the model for every
male agent who gets married. It would be possible to program the model to allow endogamous
marriage (where a female agent from one model village marries a male agent from another model
village), but this would create an unwieldy model and increase computational time immensely.
Further, endogamous and exogamous marriage patterns create almost exactly the same gender
ratios in the model. When utilizing the simpler process of exogamous marriage, modelers should
populate the life history of the new agent with characteristics as appropriate to the social context
of the study area and requirements of the particular model.
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split from a parent household, new households can purchase land and livestock. The
amount of these items that they purchase is randomly selected from a distribution
of the ownership of these items, with separate distributions for high- and low-caste
groups. The cost of these items is subtracted from the new household’s assets.

If the last remaining parent dies, the household is considered dead and household
inheritance rules are applied. Land and assets are split among the sons. If there are
no sons, the assets are split among the daughters.

Finally, household income from all sources is calculated for the year and added
to the accrued assets. Sources of income include salaried work, remittances from
migrants, and agricultural and livestock products. Costs of household sustenance,
migration, and purchasing land and livestock are subtracted from income. We use
a basic (additive) accounting system that is based on actual prices of goods in
Chitwan, priced on site in 2013. This is more manageable than a regression based
income system that allows assets to grow geometrically and in turn inordinately
influence many other behavioral processes in the model. We then calculate the
distribution of assets each year, and use a household’s position in one of the three
terciles of the distribution as the key household economic indicator in probabilistic
decision-making equations. We do this to adjust for the fact that tracking assets over
a long period of time is implausible, and to stress the importance of relative income
to other households, instead of real asset accumulation, which may be inflated over
long periods of time. We discuss the use of assets in more detail in the Challenges
and Solutions section below.

6.3.7 Neighborhood Module

Neighborhoods are not static, although their data are aggregated from households
and individuals. At the end of each year, neighborhoods are updated with the number
and percent of migrants. The log of the number of migrants in a neighborhood is one
factor in the outmigration decision.

6.3.8 Interactions and Interdependence

Interactions between agents are a key defining feature of ABMs. The ability for
agents to interact differentiates ABMs from other types of micro-simulation models
and is responsible for many of the unique results that ABMs are capable of finding.
In fact, intra- and inter-agent interactions are likely the reason that we find very
different results from our ABM compared to the regression-based predictions that
we present in Figs. 6.7 and 6.8 and discuss further below.

There are multiple inter-agent interactions in our model, between individuals
within the same households, as well as individuals within the same neighborhoods.
Many of these interactions can be identified through the characteristics (or variables)
in the equations that govern each behavior. For example, in the equation that
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calculates the probability of men’s migration, shown in Fig. 6.4, the variables for
married and living with spouse and married and living apart from spouse create
an interaction between the agent and his spouse: the residential location of a man’s
spouse affects his likelihood of migration. In addition, the number of children ever
born to the man (which is entirely dependent on his wife’s characteristics) affects
his likelihood of migration. Another example of an influential characteristic that
generates interactions between individuals is the indicator for household assets. The
level of household assets affects a number of processes, including the probability
of men’s migration, as well as the destination of migrants, and the likelihood of
giving birth and return migration. Because household assets are influenced by the
work history (of both salaried jobs and migration) of every household member, this
is one major way in which individuals influence the behaviors of others in the same
household. In a similar way, the variable for the natural log of the percentage of
migrants in the neighborhood tracks all people who are or were living in a particular
neighborhood and records the percentage of them who are currently migrants
living elsewhere. This creates interdependence between individuals from the same
neighborhood. An individual who migrates out of a neighborhood contributes to the
percent of migrants in that neighborhood, which in turn affects the probability of
migration for other individuals in that neighborhood. The eligibility rules for some
behaviors also create inter-agent interactions. For example, in order to be eligible
for a salaried job, an individuals’ spouse cannot already be working a salaried job.

Another form of interaction in our ABM is intra-individual. In this case – what an
individual does in one time period influences their likelihood of undertaking many
other behaviors in subsequent time periods. As an example, look again at the men’s
migration equation, shown in Fig. 6.4. A man’s marital status, number of children,
work status, migration history, and household assets together have large influences
on his likelihood of migration. In other words, his previous marriage, childbearing,
work, and migration behaviors influence his future migration behavior. Intra-agent
interactions are also present in the eligibility rules that govern many behaviors. For
example, in order to get pregnant, a woman must be married, currently living with
her spouse, not already be pregnant, and not have given birth in the last 4 months.
The interactions and interdependencies in our ABM between individuals and their
past behavioral history, their households, and their neighborhoods are numerous.
We can mention only some of them here, but also refer the reader to the detailed
model diagrams and behavioral rules online at www.bitly.com/NepalABM.

6.3.9 Armed Conflict in the ABM

One of the benefits of an ABM based on survey data is our ability to include
exogenous shocks in the model, while continuing to use regression-based methods
for decision making. Because the CVFS data were collected throughout the conflict
between the Government of Nepal and the Maoists, we can include conflict events
in regression analysis of demographic processes. Likewise, we simulate armed

http://www.bitly.com/NepalABM
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conflict through event-based effects on the probability of marriage, pregnancy, out-
migration, and return-migration. We employ an event-centered approach (Williams
et al. 2012), using specific events—gun battles, bomb blasts, states of emergency,
government instability, ceasefires, and strikes and protests, which influence the
likelihood of the demographic behaviors each month. In this way, different conflict
scenarios can be simulated by changing the number of each of these events each
month.

6.4 Challenges and Solutions to ABM Design
with Survey Data

As described above, we use empirical survey data to inform all aspects of our ABM,
including initialization of the population of agents, parameterization of behavioral
rules, and verification and validation. At each of these stages, there are multiple
challenges in using survey data. In the remainder of this chapter, we describe some
of these challenges and how we addressed them, with the aim to streamline the
design and modeling processes for other demographic researchers.

6.4.1 Initializing the Model

The primary challenge of initializing an ABM with survey data is that there are
almost no surveys that include every person in a population. In the CVFS case,
the survey included only people between 15 and 59 years old who were resident
in sampled neighborhoods. It thus excluded younger people, older people, and
migrants who were temporarily away when the baseline survey was taken. These
groups are commonly excluded from most surveys. A full population for ABM
simulation requires that all these types of people be included in the initialization.

We used the CVFS survey data to create these missing agents. The CVFS, as with
many other surveys, included a complete household roster, providing information on
all people living in the household, regardless of age or current residence. In addition,
surveyed adults were asked how many children they had and their sex and age. Using
the parent report, we created agents for all children ever born up to the age of 15 and
placed them in the parents’ household and assumed that older children would have
moved away by that age.3 The CVFS household roster information also allowed

3Household rosters also allow for the creation of older agents. However, for some models of
demographic processes it will not be necessary to create older people if they cannot undertake birth,
marriage, or migration. The necessity of creating older people entirely depends on the behaviors
they can undertake and to what extent their presence influences the behaviors of other agents.
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us to create migrants who were living away at the beginning of the model. They
were accorded age and sex based on the household roster and other characteristics
to match those of household members.

6.4.2 Parameterizing the Model

Probabilistic decisions in the model, such as the outmigration example we provided,
can be based on analyses of survey data. The process is fairly simple, where
regression equations on survey data are used to predict a certain behavior in
the ABM. However, regression techniques are designed to examine the influence
of factors on a behavior and are not meant to predict that behavior. As such,
there are certain limitations and challenges to using them in generating ABM
rules.

One challenge is in determining which variables to use in a regression equation.
First, we identified parameters that would allow an individual to interact with her
changing status (such as being married or having ever migrated) as well as her
household and neighborhood environment. Second, we used variables that were
statistically significant to at least the p < 0.10 level. Third, we used variables that
produced theoretically sound results. For example, we would expect increased assets
to decrease the likelihood of migration.

A second challenge is to determine when regression equations are appropriate.
Ordinary least squares equations can result in geometric growth or decrease in
an outcome overtime. When simulated over long periods, this type of growth can
create unrealistic and drastic outcomes on an entire model and simulated results.
For example, after many trials with a regression based equation to determine income
in our model, we found that this resulted in almost exponentially increasing assets,
which unduly influenced almost all other parts of the model. An additive model,
where income was added and a series of expenses were subtracted annually, created
a much more realistic, and stable, change in household assets over time. However,
even the additive model of assets created dramatic increases in wealth, beyond
what we believe is reasonable. Because we are not concerned with the amount of
assets, but rather the effect of assets on decision-making, such as migration, we
changed our regression equations for behaviors to rely on the relative distribution
of assets per year to inform decisions. This is accomplished by using terms for
the top, middle, and lowest third of the asset distribution, instead of absolute
assets, to predict migration, return migration, and pregnancy. With this focus on
the relative household income versus other households in Chitwan, we were able to
model the relationship between assets and demographic processes consistently over
time.
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6.4.3 Adjusting the Model to Create an Experimental Situation

As discussed above, the ideal ABM for studying the influence of macro-level
change over time would create an experiment-like situation where key processes
are generally stable. Because demographic processes, such as population growth,
number of households, and age and sex structure, likely affect almost any behavior
under study, it is necessary to create generally stable population processes. Unstable
population processes (such as extremely rapid population growth or decline in
household size) could create large changes in any behavior under study. If this
is not recognized, then the change in one behavior could be attributed to the
macro process of interest, instead of the unstable process that actually created it.
In short, the necessity of creating generally stable population processes cannot be
understated.

Population stabilization can be easily assessed with population pyramids, house-
hold size, number of households, and birth, death, and migration rates. The
processes we examined, and found to be useful, are listed in Fig. 6.6. Based on
Stable Population Theory (Preston et al. 2001), we can expect population pyramids
to stabilize in shape after about 80–100 years if a population is generally stable. If
population pyramids do not stabilize after this time, then the population processes
are likely not stable and must be adjusted to create an analytically useful ABM. For
other processes, such as household size and birth, death, and migration rates, we also
recommend examining at least 100 years of simulated data. Although analysis of
the final model might not extend past one generation (about 30 years), irregularities
in population processes can geometrically increase or decrease starting small but
becoming much bigger after several decades. Thus much longer simulations are
required to make some problems visible.

In the case of our model, preliminary simulation results without conflict or
other disturbances showed that the population grew rapidly and household sizes
grew from an average of five to an average of 11 individuals per household. This
could have been overlooked as an interesting (if possibly theoretically significant)
finding. However, our verification process allowed us to pinpoint irregularities such
as: significantly decreasing marriage and fertility rates and increasing death rates,
many fewer boys were born than girls, households were not splitting properly when
a married couple moved out to form their own household, and assets were increasing
exponentially with a consequent exponential decrease in migration.

Some of these problems were mistakes in the model programming and were thus
easily fixed. Other problems, such as decreasing marriage rates, were based in the
regression equations derived from empirical survey data. The root of the problem
appears not to be biased survey data, but the fact that the data were collected during a
period when marriage and fertility rates were changing dramatically. Such changes
in demographic behaviors are common, but are most often period effects and are
seldom sustained for long periods of time. To address these problems, we adjusted
the constants in the marriage and fertility equations and the age coefficient in the
death equation. All adjustments were within the 95 % confidence intervals for the
constants and coefficients and are thus statistically appropriate.
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Cumulative composition and rates
Population composition

Population size
Population age-sex structure (population pyramids)
Number of households
Mean household size
Median household size
Deaths per capita

Fertility and marriage
Proportion of women/men ages 25-40 who are married
Proportion of married women over 40 who have ever had a birth
Mean number of children ever born per married woman over 40 
Mean age at first birth for women over 40 

Migration
Proportion of women/men over age 16 who have ever migrated
Mean number of times migrated for female/male migrants over age 16
Number of months away during last migration spell for female/male migrants 

Education and salaried work
Mean years of education 

Income and assets
Mean and median assets per household 
Median assets per household in the bottom, middle, and top terciles of asset distribution
Mean poultry, livestock, and land owned per household 

Annual Rates
Fertility and marriage

Proportion of unmarried men over age 14 who got married this year 
Proportion of unmarried women over age 14 who got married this year 
Proportion of married women ages 14-45 who had a birth this year 
Proportion of women over age 14 with first child born this year 
Proportion of women over age 14 with second child born this year 

Migration
Proportion of households with at least one migrant out this year
Mean number of migrants out this year per household with 1+ migrants out
Proportion of eligible men who migrated this year 
Proportion of eligible women who migrated this year 

Education and salaried work
Proportion of population over age 16 with salaried job this year

Income and assets
Mean and median income per household

Fig. 6.6 Demographic processes that can be used for assessment and analysis of ABMs
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6.4.4 Burning-in the Model to Allow for New Selection
Processes

In seeking to create stable population processes, burning-in the model for an
appropriate amount of time is also necessary. This is particularly the case when
survey data are used to initially populate the model, but simulated agents replace
them over time. The issue here is that no matter how well the data based behavioral
rules (such as our regression equations for marriage, pregnancy, and migration)
are specified, they are each models. And models are always simplified versions of
reality and subject to unobserved heterogeneity in numerous ways. For example,
it is likely that beauty is a key factor in the likelihood of marriage in Nepal,
but our marriage regression equations do not and cannot take this into account.
Consequently, the selection processes programmed in the model are different from
the selection processes that affected the behaviors of the surveyed population. The
result of these different selection processes is initial instability in model results. This
happens when the model selection processes replace the real population selection
processes and simulated agents (those born during the model) replace agents who
are based on real survey data.

Fortunately, there is a simple process to address this concern: model burn-in.
Burning-in is defined as allowing the ABM to run for several time steps, to allow
the simulated processes and simulated agents to populate the model as the survey-
based agents who were subject to real behavioral processes and selection age out
of the model population or age out of a behavioral process. A model should be
entirely burned-in before experimental scenarios are enacted. In some cases, the
length of burn-in is evident, when initially wildly unstable results stabilize within
a few years. In other cases, as with the marriage rates calculated by our ABM (as
shown in Fig. 6.7 and discussed more below), results are not wildly unstable in the
first years of the simulation. Instead, rates for men and women increase steadily for
about 14 years, after which they level off, until our conflict scenarios begin in year
17. Notably, 14 years is the age at which simulated agents in our model are eligible
for marriage. In other words, marriage rates stabilize after 14 years because this is
when the entirely simulated population (those “born” during the model) and their
simulated marriage processes overwhelm the survey-based population and their
differently selective marriage processes from before the model simulation began.
Thus, we defined our burn-in period as the length of time after which entirely
simulated agents are eligible to undertake all key behaviors. This happens at year 16
of the simulation, as it is age 16 at which all agents are eligible to marry, migrate,
and give birth. We begin the simulation of conflict scenarios just after, at year 17 of
the simulation.
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Fig. 6.7 ABM-based results showing male and female marriage rates (proportion of unmarried
who married this year) in three different conflict scenarios for 30 years of simulation (Note: The
conflict simulation is years 17–20 of the simulation)

6.5 Implications of ABM Compared to Regression Based
Analysis

As discussed earlier in this chapter, ABMs are relatively new to the social sciences,
particularly when compared to the more common and widely understood tool of
regression analysis. Although we have identified several applications for which
ABMs are more useful or appropriate than regression based analysis, it is often
difficult to fully understand these differences without an explicit example. This
is the purpose of this section. We show results from our ABM, of men’s and
women’s marriage rates, in the scenarios of no conflict, the conflict as it actually
happened in Nepal, and a hypothetical conflict scenario. These scenarios are the
virtual experiments which we mention above. In the scenario with no conflict, we
did not simulate any conflict events. In the scenario with the conflict as it actually
happened, we simulate the actual number of each type of conflict related event
that happened each month. The events include gun battles, bomb blasts, strikes
and protests, government instability and states of emergency. In the scenario with a
hypothetical conflict, we simulate a conflict in which there was one bomb blast per
month for the duration of the conflict period. For each of these scenarios we allow a
17-year period before the conflict (in order for the model to stabilize, or “burn-in” as
described above in 6.4.4), followed by a 48-month conflict. After the conflict ends,
we continue to run the model simulation for a total of 30 years.

We also show results from a calculation of predicted men’s and women’s
probability of marriage for each of these scenarios, based only on the regression
equations for men’s and women’s marriage. These calculations were undertaken
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by using the characteristics (values for each variable in the regression equation)
of an “average” 25 year old male and female in the population—in other words,
the mean population value for each variable. These values were input into the
regression equation, along with the monthly number of conflict-related events
in each scenario, to calculate a monthly predicted probability of marriage. The
monthly probabilities were then converted into annual probabilities, which we
present here. The comparison of these results provides a more clear understanding
of the differences between these two analytical tools (ABM and regression) for
prediction of population processes.

Figure 6.7 shows the results from our ABM simulated annual marriage rates for
men and women. Specifically, the graphs show the proportion of unmarried men and
women over the age of 14 who got married during each year of the simulations. As
you can see, marriage rates start very low, then progressively increase throughout
all scenarios, for both men and women. Further, marriage rates change each year
throughout the 30 years. Amongst the most notable pattern in these graphs is that
marriage rates for men in the actual conflict scenario are much higher than in the no
conflict and bomb blast scenarios. Alternately, bomb blasts produce a similar men’s
marriage rates to the no conflict scenario. A second particularly notable result is that
men’s marriage rates after the conflict period remain quite different in the actual
conflict scenario until about 10 years after the conflict. In other words, we find long-
term effects of the conflict on men’s marriage rates, well after the conflict ends. We
do not find long-term effects for women’s marriage rates.

Figure 6.8 shows the results from our regression based annual predicted probabil-
ities of marriage. Note that these are probabilities instead of rates. This is of course
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Fig. 6.8 Annual predicted probabilities of marriage for men and women, based on regression
equation alone
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the first major difference between regression and ABMs. ABMs are designed to
simulate population processes and results can easily be calculated as rates (such as
the number of people who got married in a year divided by the number of people
who were eligible to get married at the beginning of that year). Regression on the
other hand is designed to calculate the effect of any particular characteristic (or
variable) on an outcome and is not suited to calculating rates within a population.
Indeed, predicted probabilities, which are shown here, are the closest possible
calculation to a rate that can be achieved with a regression equation. The only way
that regression equations can reasonably yield a rate calculation at population level
is through including the equations in an ABM.

A second notable outcome of this comparison is the stability of the regression-
based probabilities. As Fig. 6.8 shows, the probability of marriage is exactly
the same in every year of the no conflict scenario, and is stable throughout the
conflict (as well as before and after the conflict) in the bomb blast scenario.
This is because the “average” hypothetical person who is used to calculate these
probabilities is the same each year of the calculation. The actual conflict scenario
yields varying probabilities during the conflict, entirely due to the changing number
of conflict-related events each month of the actual conflict. Note however that
the probability of marriage in the actual conflict scenario returns to the exact
same level as that of the no conflict scenario after the conflict ceases. In contrast,
remember that the marriage rates in the ABM-based results (in Fig. 6.7) constantly
changed, before, during, and after the conflict simulations. This is because the
ABM simulates a population that constantly changes and interacts. In fact, the
ABM platform allowed us to find long-term effects of the conflict on men’s
marriage rates, while such a result is clearly not possible with the regression-based
calculations.

A third notable result of our comparison here is that the regression based
probability of marriage for women is lower in the bomb blast scenario and higher
in the actual conflict scenario, compared to the no conflict scenario. Alternately,
with the ABM we find generally similar rates of women’s marriage in all three
scenarios, with slightly higher rates in the bomb blast scenario compared to the no
conflict scenario. In the case of men’s marriage, the ABM and regression predict
similar comparative differences between the actual and no conflict and bomb blasts
scenarios, with actual conflict producing much higher rates of marriage in the ABM,
just as it does in the regression.

6.6 Conclusion

This chapter focuses on a particular type of agent-based model, one that leverages
survey data to initialize a population and operationalize behavioral rules. Although
this type of model is reasonably common in the geographic and land use sciences
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(An et al. 2001, 2014; Manson 2005; Parker et al. 2008; An 2012; Zvoleff and An
2014), it is rarely used in demography. This situation is unfortunate, given the many
possibilities for this methodology to contribute to demography and particularly
to our understanding of how macro-level events, such as armed conflict, natural
disaster, climate change, economic crises, and policy changes, influence population
growth and change.

While the ability to address outstanding questions in these areas is an immense
benefit to survey data based ABMs, there is one key limitation. As they use a case
study approach, this type of ABM is comparatively weaker in providing broad
insights that are relevant regardless of geographic setting. Broader conclusions
can only be developed when multiple studies in different areas reach similar
conclusions. For example, if a case study of armed conflict and population change
in Nepal finds similar outcomes to studies of the same subject in Colombia, Sudan,
and Afghanistan, then we can begin to develop broader conclusions about the nature
of armed conflict and population change. As demography and other social science
disciplines are moving more towards the case study approach, as compared to cross-
country models, regardless of the methodological tools used, this situation with
ABMs is not unusual.

In this context, our broad aim is to encourage the use of survey data based ABMs
in the demographic sciences. In addition to not being widely known in demography,
this type of model is extremely time consuming to design, test, and analyze. In this
chapter, we presented the design of our ABM, which uses detailed survey data to
simulate population dynamics during armed conflict in the Chitwan Valley of Nepal.
The combination of this chapter and more detailed description of our model online
at www.bitly.com/NepalABM should provide key guidance for the development of
future survey data based ABMs. To further streamline the long and difficult design
and testing process, we also discuss several challenges we faced and how they can be
addressed. The primary method we used to find and address problems in our model
is careful examination of simulated outcomes of several demographic processes, as
listed in Fig. 6.6. In this way, not only can ABMs contribute to demography, but
demography can also contribute to ABM methodology.

One of the key points we hope to instill here is that survey data based ABMs
should not be thought of as attempts to model reality. They are simply models, just as
other ABMs and statistical procedures are models that are not replications of reality
but can nonetheless be useful. We argue that the most useful way to design survey
data based ABMs is as experimental laboratories and we describe methods for doing
so. Because we can almost never ethically experiment on real human populations
(and certainly not with armed conflicts!) experimental designs using survey data
based ABMs have immense promise for contributing to the demographic sciences.
We hope to find more of this type of model in the literature in coming years.
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Chapter 7
Regression Metamodels for Sensitivity Analysis
in Agent-Based Computational Demography

André Grow

7.1 Introduction

Over the last years, an increasing number of scholars advocate the use of
agent-based computational (ABC) modelling for the study of demographic
phenomena (e.g. Billari et al. 2003, 2007; Silverman et al. 2013; Todd et al. 2013).
One reason for this is the recognition that population-level outcomes can often
not be reduced to a simple aggregate of individual decisions. Instead, human
populations are complex systems in which individuals’ demographic choices
are constrained by the social environment and feed back into this environment
(Smaldino and Schank 2011). ABC modelling makes it possible to explicate such
feedback mechanisms and enables us to study their implications by means of
computational simulation (Bonabeau 2002; Epstein 1999; Macy and Flache 2009;
Macy and Willer 2002).

While it is true that agent-based models can greatly facilitate the study of social
complexity, it is also true that simulation models themselves can be complex and this
can make it “[difficult] to know which relationships and processes are driving model
behavior” (Coutts and Yokomizo 2014, p. 7). Sensitivity analysis is an important
tool for dealing with this problem. In sensitivity analysis, we seek to understand how
one or more model parameters affect model outputs through simulation experiments
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(Kleijnen 2008; Law and Kelton 2000). A simple approach to sensitivity analysis is
to study model outputs over an exhaustive set of parameter combinations. This is
feasible for small simulation models with few parameters, but the larger the number
of parameters, the less feasible it becomes. To illustrate this, consider a simulation
model with three parameters that each has five different levels. In this case, there are
53 D 125 possible parameter combinations. However, if there are ten parameters, the
number of possible combinations increases to 510 D 9,765,625. Thus, depending on
the computational expensiveness of the model (i.e. the time it takes to conduct one
simulation run), an increase in the number of parameters can quickly make this
approach infeasible. Furthermore, the large amount of data it tends to create can be
very difficult to interpret (Coutts and Yokomizo 2014; McCarthy et al. 1995).

A more efficient approach to sensitivity analysis of complex simulation models
is the use of metamodels. Metamodels, also called emulators or surrogate models
(Kleijnen 2005, 2008), are simplified statistical representations of simulation
models that aim at quantifying the relation between model parameters and model
outputs. One major advantage of metamodels is that they can drastically reduce
the computational effort that is needed to gain comprehensive insights into the
behaviour of a simulation model. Despite this advantage, metamodels have so far
largely been neglected in agent-based computational demography. An exception
from this is a recent series of papers by Bijak and colleagues (e.g. Bijak et al.
2013; Silverman et al. 2013; see also the chapter by Hilton and Bijak in this
volume), who illustrated the use of metamodels by applying Gaussian process
emulators to their re-implementation of Billari et al.’s (2007) model of entry into
first marriage. Similarly, De Mulder et al. (2015) recently illustrated how Gaussian
process emulators can be used for calibrating demographic agent-based models.

Gaussian process emulators are just one of a number of statistical approaches
to metamodelling that all have their specific advantages and disadvantages (for an
overview of different approaches see Simpson et al. 2001). The purpose of this
chapter is to introduce the reader to regression metamodels and to illustrate how
they can be used for sensitivity analysis of complex simulation models. Regression
metamodels have a long and successful track record in simulation research (Kleijnen
2005) and I argue that this type of metamodel is particularly attractive for sensitivity
analysis of agent-based models in demographic research. The reason is that most
demographers have at least a basic understanding of regression analysis and this
makes regression metamodels highly accessible and easy to communicate.

In what follows, I first present regression metamodels and discuss experimental
designs that can be used to collect the data that is necessary for estimating such
models. Subsequently, I illustrate the use of regression metamodels by applying this
method to Grow and Van Bavel’s (2015) model of educational assortative mating in
the context of Belgian marriage markets. I close the chapter with a discussion of the
benefits and limitations of regression metamodels and point the reader to additional
topics in the literature on metamodelling. Throughout the chapter, I assume that
the reader has a basic understanding of agent-based computational modelling and
ordinary least squares regression analysis. I therefore restrict my mathematical
expositions to those aspects of regression metamodels that deviate from standard
multiple regression.
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7.2 Regression Metamodels

A metamodel treats a simulation model as a black box and only describes the
observed relations between simulation parameters and outputs, without any refer-
ence to the inner workings of the simulation model (Kleijnen and Sargent 2000;
Kleijnen et al. 2005). A black box representation of a simulation model can be
given by

z D f .xi; : : : ; xk; r/ ; (7.1)

where z are the observed simulation outputs, xi with i D 1, : : : ,k refers to a set of k
parameters of the simulation model, r are the pseudo random number seeds used in
the different simulation runs, and f (.) represents the mathematical function that is
implicitly defined in the simulation model and connects model parameters to model
outputs (Kleijnen 2008). The goal is to find a statistical function that approximates
f (.) well and therefore can be used as a surrogate of f (.). Once we have found such a
function, we can use it to answer questions such as: which parameters affect model
outcome z? Does a change in x1 lead to an increase or a decrease in z? Does the
effect of x1 depend on the value of x2? We can also use it to predict z for hitherto
unobserved parameter combinations without needing to actually run the simulation
model for these combinations.

Finding a statistical function that approximates f (.) well always requires experi-
mentation with the simulation model (Kleijnen 2005, 2008). That is, we always need
to run the simulation model several times, while systematically varying the values of
its parameters between the different runs. Yet, different types of metamodels have
different data requirements and the selection of the type of metamodel therefore
guides the data collection effort (Kleijnen 2005). Hence, in this section, I first
discuss the statistical approach that is used to estimate regression metamodels and
discuss how we can assess whether a given regression model approximates f (.)
sufficiently well. Subsequently, I discuss experimental designs that are suitable for
estimating regression metamodels.

7.2.1 Statistical Approach

In regression metamodels, the function that is used to approximate f (.) is a
polynomial, typically of the first or second order (Kleijnen 2008). A standard first-
order polynomial (i.e. a simple additive model with linear effects) is given by

z D ˇ0 C
Xk

iD1
ˇixi C "; (7.2)

where ˇ0 is the intercept, ˇi is the effect of model parameter xi, and " is the
approximation error (i.e. residual). Equation 7.2 focuses only on the main effect
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of each parameter and assumes that the k parameters do not interact with each other
in affecting z. Furthermore, it assumes that the effects of all parameters are linear.
If we expect that some of the k model parameters interact with each other, we can
augment Eq. 7.2 with multiplicative terms, so that the polynomial takes the form

z D ˇ0 C
Xk

iD1
ˇixi C

Xk�1

iD1

Xk

jDiC1
ˇijxixj C "; (7.3)

where ˇij is the estimated effect of the interaction between xi and xj. If we
additionally expect that the relation between some parameters and z is subject to
curvature, we can estimate a full second-order model of the form

z D ˇ0 C
Xk

iD1
ˇixi C

Xk�1

iD1

Xk

jDiC1
ˇijxixj C

Xk

iD1
ˇiix

2
i C "; (7.4)

where ˇii is the estimated effect of the quadratic term of parameter xi.
The functions defined in Eqs. 7.2, 7.3, and 7.4 are identical to multiple regression

models and can therefore be estimated with the ordinary least squares method
(Kleijnen 2008). Polynomials of an even higher order have been used in some
applications, but interpreting the estimated regression coefficients can be difficult
and the estimated effects of higher-order terms are often small (Kleijnen 2005). I
therefore limit my discussion to first- and second-order polynomials as defined in
Eqs. 7.2, 7.3, and 7.4.

Once the regression metamodel has been estimated, its coefficients can be used
to assess the significance and relative importance of the different parameters in
affecting the output. To assess the significance of the effect of a given parameter
xi, we can use a standard t-test for the magnitude of ˇi (Myers and Montgomery
1995). To assess the relative importance of the different parameters, we can compare
the magnitudes of their respective coefficients. However, such a comparison is
complicated by the fact that different parameters might have different scales. It
is therefore common practice to standardize each model parameter relatively to
its minimal and maximal value in the experiment for estimating the metamodel.
In this case, the values of the different ˇi indicate the relative importance of the
different xi, given their ranges in the experiment (Kleijnen 1992). The minimal and
maximal values of a parameter are typically represented by �1 and C1, respectively.
Given these boundaries, the standardized value (also called coded unit) of xi can be
calculated by

xi D
i � i

.i;max � i;min/ =2
; (7.5)

where i refers to the value of the parameter xi on its original scale, i,max and i,min

refer to the maximal and minimal values of xi used in the experiment, and i is
defined as .i;max C i;min/ =2 (Kleijnen 2005, p. 290).
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Fig. 7.1 Example of
predicted output of simulation
model with two parameters in
coded units. The surface
shows predicted values based
on the metamodel (Oz), and the
points show the outcomes of
the simulation model (z);
grey/black colouring of the
points indicates that the
observed outcome is
lower/higher than the
predicted outcome

We can also use the coefficients to predict the output of the simulation model.
Figure 7.1 illustrates this for the following second-order polynomial, which was
estimated from the output of a fictive simulation model with two parameters:

bz D 1:09 � :18x1 C :10x2 C :05x1x2 C :16x21 � :01x22: (7.6)

The figure shows as points the observed output (z) that was used to estimate the
metamodel and as a surface the predicted output (Oz) over the ranges of x1 and x2 used
in the experiment (in coded units). Figure 7.1 suggests that the metamodel given
in Eq. 7.6 is a valid approximation of the behaviour of the underlying simulation
model, given that the predictions are close to the observed values. In the next section,
I describe how we can assess the validity of metamodels more formally.

7.2.2 Validation

The discussion up to this point suggests that there is some degree of freedom
in selecting the precise form of the polynomial and different forms will perform
differently in approximating f (.). Finding the appropriate form is crucial for drawing
valid conclusions about the simulation model. For example, if we estimate f (.)
with a first-order polynomial under the assumption that there are no interactions
between model parameters, we might draw invalid conclusions from the resulting
function if the parameters actually interact with each other in affecting the output.
Given this freedom, Kleijnen and Sargent (2000) and Kleijnen (1992) highlighted
that specifying a regression metamodel is often an iterative process. Before we
run experiments with the simulation model, we typically have acquired some prior
knowledge (e.g. based on knowledge about the real social system, experiences
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during debugging the model, etc.) that enables us to specify a “tentative regression
model” (Kleijnen 1992, p. 299). If it turns out that this model describes the observed
relations poorly, we can augment the metamodel (e.g. by adding or removing
quadratic effects) and assess the fit of the new model. This procedure stops when
we have found a function that accurately describes the observed relations.

There are three criteria that are commonly used for assessing the validity of a
regression metamodel. First, the estimated model should not violate the assumptions
of ordinary least squares regression (Myers and Montgomery 1995, p. 41ff). That is,
(1) the distribution of the approximation errors should be normal, (2) the variance of
the approximation errors should be constant for all parameter combinations, (3) the
average of the approximation errors should be zero for all parameter combinations,
and (4) the expected correlation between the approximation errors of any two
observations should be zero. The first three assumptions can be assessed with
standard methods for assessing the distribution of residuals described in text books
on multiple regression; the third assumption can additionally be assessed with a
formal lack of fit test (Rao 1959, see details below). The fourth assumption is
typically satisfied when each simulation run is initialized with a different random
number seed (Kleijnen 2008). A metamodel that violates one or more of these
assumptions might lead to incorrect conclusions and therefore needs to be modified.
For example, if there is evidence that the assumption of constant error variance is
violated, this might be due to an interaction between some model parameters that
has not been included in the metamodel yet. Alternatively, the simulation model
might generate outcomes that are inherently heteroscedastic (i.e. the variance in the
outcomes systematically in-/decreases as certain parameters increase). In this case,
we might consider transforming the output (e.g. by a logarithmic transformation)
or using the method of weighted least squares instead of ordinary least squares
(Kleijnen 2008; Tunali and Batzman 2000).

Second, the metamodel should fit the observed data and should explain a large
and significant part of the variance in the observed output. That is, the value of
the coefficient of determination (R2 and R2

adjusted) should be high and the associated
F-test should be significant (Kleijnen 2008). Furthermore, the fit of a regression
metamodel can be assessed with a formal lack of fit test. Such tests assess whether
predictions of the metamodel systematically deviate from the observed simulation
outcomes. To illustrate this, consider Fig. 7.2. The points in the figure show the
outcome of a fictive simulation model that was observed at five levels of the
parameter x1. The black line shows the predictions of a first-order polynomial,
which was estimated from this data. Intuitively speaking, the metamodel lacks fit
given that it neglects the nonlinearity in the relation between x1 and z and therefore
systematically under-estimates z at high and low levels of x1, but over-estimates it
at intermediate levels of x1. More formally (cf. Myers and Montgomery 1995), we
can assess whether there is evidence for such lack of fit by partitioning the total
approximation error (SSE) in the regression model into pure error (SSPE) that can be
attributed to variation in the simulation outcomes (e.g. due to stochastic processes
in the simulation model) and into error that can be attributed to a lack of fit of the
regression model (SSLOF), so that
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Fig. 7.2 Example of lack of
fit of regression metamodel.
The line shows predicted
values based on a first-order
polynomial (Oz), and the black
points show the outcomes of
the simulation model (z) that
underlie this metamodel

SSE D SSPE C SSLOF: (7.7)

For calculating SSPE, the outcome of the simulation model needs to be observed
several times for at least some parameter values (see Sect. 7.2.3 for details on
how/where to collect multiple observations). This is illustrated in Fig. 7.2, given that
the model outcome was observed three times for each of the five parameter levels.
Intuitively speaking, the variation in the outcome at each parameter level provides
information for calculating the approximation error that can be attributed to random
variation in model outcomes. More formally, SSPE and SSLOF are calculated as
follows. Assume that there is a simulation model with k parameters. Let l D 1, : : : ,v
be the unique parameter combinations that have been observed. Furthermore, let n
be the total number of simulation runs that we have conducted and let q D 1, : : : ,nl

be the number of simulation runs that have been conducted at each of the different
parameter combinations, so that n D

Xv

lD1
nl. Based on this, the value of SSPE is

calculated by

SSPE D
Xv

lD1

Xnl

qD1

�

zlq � zl
�2
; (7.8)

where zl is the average of the observed output over all observations for the lth

parameter combination. Thus, Eq. 7.8 holds that SSPE is based on the squared
deviations of the individual outputs for a given parameter combination from the
average output for this combination, summed over all unique combinations. The
value of SSLOF is calculated by

SSLOF D
Xv

lD1
nl.zl �bzl/

2
: (7.9)
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This means that SSLOF is based on the squared deviations of the predicted output
from the observed average output for a given parameter combination, weighted
by the number of observations for the combination, summed over all unique
combinations. Based on this, the test statistic for the formal lack of fit test is
calculated by

FLOF D
SSLOF= .v � p/

SSPE= .n � v/
; (7.10)

in which p is the number of regression coefficients in the metamodel (including
the intercept) and which follows an F-distribution with v�p degrees of freedom for
SSLOF and n�v degrees of freedom for SSPE. When FLOF is significant, we cannot
reject the null hypothesis that there is lack of fit.

Third, and finally, the regression metamodel should be able to accurately predict
the outcome of the simulation model for parameter combinations that fall within the
boundaries of the parameter space that was used in the experiment for estimating
the metamodel. That is, the model should have a high level of predictive adequacy
(Kleijnen 2008). This adequacy can be assessed by collecting data for additional
parameter combinations that were not included in the original experiment and
comparing the observed outputs with the predictions from the metamodel that
was estimated from the original data. If the observed outcomes are close to the
predictions, the metamodel has high predictive adequacy.

7.2.3 Experimental Designs

The choice of the type and form of the metamodel determines the design of
experiments (DOE) for collecting output data. DOE is the process of planning
experiments so that the metamodel can be estimated effectively and efficiently
(Antony 2003, p. 7). Effectively means that we collect the data necessary to draw
valid conclusions about the behaviour of the simulation model from the selected
metamodel; efficiently means that we collect this data with as little computational
effort as possible (Kleijnen et al. 1992; Lorscheid et al. 2012). In the literature on
DOE, the output of the simulation model is commonly referred to as response and
the parameters of the simulation model are referred to as factors; the levels of a
given parameter are referred to as factor levels. In the remainder of this chapter, I
use these terms (i.e. output/response, parameter/factor, and parameter level/factor
level) interchangeably. Furthermore, the schedule of the combinations of different
factor levels that are included in a simulation experiment is called experimental
design; the different factor combinations at which the simulation model needs to be
run are called design points. Finally, the highest and lowest values chosen for each
factor determine the experimental region that the design covers.

Any regression metamodel can only be valid for the experimental region for
which it has been estimated, and smaller the experimental region, the more accurate
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the model is likely to be (Myers and Montgomery 1995). The goals of the analysis
should therefore guide the selection of the experimental region. To illustrate this,
consider a simulation model with the two parameters x1 and x2 that both can vary
from 0 to 100. If we choose 0 and 100 as the lower and upper boundaries for
both x1 and x2 in our simulation experiment, the experimental region coincides
with the operational boundaries of the simulation model. The resulting least
squares estimators will therefore provide insights into the general behaviour of the
simulation output over the entire parameter space, while smoothing out deviations
from this general behaviour that might exist in some parts of the parameter space.
If we want to learn in more detail about the behaviour of the simulation model in a
smaller portion of the parameter space (say between x1 2 Œ20I 40� and x2 2 Œ70I 90�),
we might benefit from reducing the experimental region to this area. The resulting
metamodel is potentially more precise, at the cost of being valid only for a smaller
region of the parameter space.

Once the experimental region has been defined, it needs to be determined what
data need to be collected within this region. In general, the more complex the
polynomial, the more points we need to include in the experimental design (Kleijnen
2005; Kleijnen et al. 2005; Simpson et al. 2001). One of the most commonly used
designs for estimating first-order polynomials is the full two-level factorial design
(Kleijnen et al. 2005). In this design, each factor has two levels and there is one
design point for each possible combination of these levels across the factors so that
there are 2k design points. This design makes it possible to estimate the main effect
of each parameter and of all possible two-way interactions. To be able to conduct a
formal lack of fit test, it is common practice to augment this design with a number of
nc centre runs (nc > 1), which are located at the 0-coordinates of each factor in terms
of coded units. For illustration, Table 7.1 shows the design points of a full two-level
factorial design based on two factors, which has been augmented with two centre
runs; panel (a) of Fig. 7.3 shows the experimental region that this design covers.

One of the most commonly used designs for estimating second-order polynomi-
als is the central composite design. A standard central composite design consists
of a full two-level factorial design which is augmented with 2 k axial points and
nc centre runs. The axial points are located at distance ˛ from the centre of the
design, which is typically determined by 4

p
2k, locating the axial points outside

the �1 and 1 borders of the original experimental region (see Table 7.1 and panel
(b) of Fig. 7.3 for an illustration). This makes the estimation of quadratic effects
within the experimental region maximally efficient, but can be problematic when the
boundaries of the experimental region correspond with the operational boundaries
of the simulation parameters. We can solve this problem by using a standard
central composite design and scaling it down, so that the original boundaries
of the design move closer to the centre and the axial points are located at the
original �1/1 boundaries. Alternatively, we can set ˛ D 1, so that the original
factorial design remains unchanged and the axial points are located at the �1/1
boundaries of the original experimental region. In the first case, the design becomes
an inscribed central composite; in the second case it becomes a face centred central
composite (see Table 7.1 and panels (c) and (d) of Fig. 7.3 for illustrations). In direct
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Table 7.1 Examples of different types of experimental design in coded units

Full two-level
factorial

Standard central
composite (˛D 1.414)

Inscribed central
composite
(˛D 1.414)

Face centred central
composite (˛D 1)

Design point x1 x2 x1 x2 x1 x2 x1 x2

1 �1 �1 �1 �1 �0.707 �0.707 �1 �1
2 �1 1 �1 1 �0.707 0.707 �1 1
3 1 �1 1 �1 0.707 �0.707 1 �1
4 1 1 1 1 0.707 0.707 1 1
5a 0 0 0 0 0 0 0 0
6a 0 0 0 0 0 0 0 0
7b – – �1.414 0 �1 0 �1 0
8b – – 1.414 0 1 0 1 0
9b – – 0 �1.414 0 �1 0 �1
10b – – 0 1.414 0 1 0 1

aCentre run
bAxial point

Fig. 7.3 Examples of (a) full
two-level factorial design,
(b) standard central
composite design, (c)
inscribed central composite
design, and (d) face centred
central composite design in
coded units. The grey area
illustrates the experimental
region that the original full
two-level factorial design
covers, which underlies the
designs shown in panels (a),
(b), and (d).

• factorial point, � centre
run, ı axial point

a b

c d

comparison, an inscribed central composite design is more effective for estimating
quadratic effects, but a face centred design is more accurate in describing the
observed relations at the corners of the experimental region (for details see Myers
and Montgomery 1995).1

1For a discussion of additional popular designs see the chapter by Hilton and Bijak in this volume.
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Finally, agent-based computational models are typically stochastic, so that the
observed response for a given parameter combination tends to vary over repeated
simulation runs. To deal with this variation, it is common practice to repeat the
simulation multiple times at a given design point and to use the average of the
simulation outputs for estimating the metamodel (Lorscheid et al. 2012; Thiele et al.
2014), so that the metamodel is fitted to the mean simulation outcome. In this case
each average represents one observation. To illustrate this, consider the full two-
level factorial design shown in Table 7.1. If we conduct ten simulation runs for
each of the six design points and use the average of these runs for estimating the
metamodel, we still have only six observations of the output.

7.3 Applied Example

In this section, I illustrate how metamodels can be used to learn about the behaviour
of a simulation model and what decisions need to be taken in this process. I first
outline the simulation model and subsequently present the details of the analysis. I
have conducted all analyses in the statistical programming environment R (R Core
Team 2014) and have estimated the regression metamodels with the package rsm
(Lenth 2009). In the supplementary material that accompanies this chapter, I provide
all files necessary to reproduce the results that I present below, including the code
of the simulation model.

7.3.1 Simulation Model

Grow and Van Bavel (2015) present an agent-based computational model that
explicates some of the social mechanisms that might have linked the recent reversal
of gender inequality in education with changes in educational assortative mating
(EAM) across Europe. The notion of assortative mating refers to any pattern of
relationship formation based on personal attributes that deviates from the pattern
that we might expect if relations were formed purely at random (Schwartz 2013).
Across twentieth century Europe, EAM has been mostly homogamic (i.e. partners
were similarly educated) but if there was a difference in educational attainment
within couples, the man tended to be more educated than the woman. Until the
1970s, this pattern was compatible with the surplus of highly educated men on the
marriage market. However, since then the relative educational attainment of men
and women has changed drastically: over the years, the number of highly educated
women has increased relatively to that of men and this has made the traditional
pattern of EAM infeasible (Van Bavel 2012). As a consequence, the number of
couples in which the man is more educated than the woman (hypergamic couples)
has decreased and the number of couples in which the woman is more educated
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than the man (hypogamic couples) has increased, whereas the share of homogamic
couples remained largely unchanged (De Hauw et al. 2015; Esteve et al. 2012).

To better understand the mechanisms that have linked changes in educational
attainment among men and women with changes in patterns of EAM across Europe,
Grow and Van Bavel (2015) developed a model that builds on earlier research on the
interplay between the composition of marriage markets and patterns of assortative
mating (e.g. Oppenheimer 1988) and on earlier simulation work that has centred
on human mate search (e.g. Simão and Todd 2002). At the core of the model are
the preferences that underlie individual mating decisions. More specifically, the
model focuses on individuals’ preferences for the educational attainment, earnings
prospects, and age of prospective partners. It assumes that both men and women
look for spouses who are similar to them in educational attainment and who have
high earnings prospects (e.g. Kalmijn 1994). Additionally, it assumes that women
tend to look for spouses who are somewhat older than themselves, whereas men
tend to look for spouses who are in their mid-twenties (e.g. England and McClintock
2009).

A detailed description of the model is provided in Grow and Van Bavel (2015).
Here, I provide a brief outline of the model and highlight the elements that are
relevant for illustrating the use of regression metamodels. The model consists of
male (m) and female (f ) agents who try to find a heterosexual partner for a long-
term relation in the form of marriage. The search for a spouse takes place on a
marriage market in which meeting opportunities are structured by the educational
system. That is, a given male agent and female agent are more likely to meet each
other when they are in the same stage of their educational career (e.g. both are
attending high school, both have left school already, etc.) than when they are in
different stages.

Whenever two agents meet, they need to decide whether they want to start
dating. Once they are dating, they can decide whether they would like to marry.
The importance that agents attach to the education, earnings prospects, and age of
prospective partners when making dating and marriage decision is governed by six
parameters. The parameters ws

m and ws
f govern the importance that male and female

agents attach to similarity in education (s) with prospective partners; wy
m and wy

f

govern the importance that they attach to earnings prospects (y); wa
m and wa

f govern
the importance that they attach to age (a). For each parameter, a larger value implies
higher importance of the respective characteristic, but this increase in importance
has a decreasing marginal effect. For example, increases in ws

m initially lead to
strong decreases in the willingness of male agents to date/marry female agents who
do not have the same educational attainment as themselves. This decrease continues
as ws

m increases, but the marginal effect becomes lower at higher levels of ws
m.

At some point, male agents become so unwilling to date/marry female agents who
are not a perfect educational match that increasing ws

m any further has virtually no
additional effect on their mating decisions.

The model simulates individual mate search over individuals’ entire life course
and includes simple assumptions about mortality and reproduction. This makes
it possible to model mate search over successive cohorts. To generate plausible
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agent cohorts in terms of educational attainment and earnings prospects, Grow and
Van Bavel (2015) used data provided by the International Institute for Applied
Systems Analysis/Vienna Institute for Demography (KC et al. 2010; Lutz et al.
2007) and data from the European Community Household Panel.2 For validating
model outputs, they used data from rounds 5 and 6 of the European Social Survey,
collected in 2010 and 2012. The combination of these data sources enabled them to
simulate mate search behaviour under realistic marriage market conditions among
individuals born between 1921 and 2012, and to study patterns of EAM in 12
Western European countries.

In this chapter, I use the same input data and simulation settings as Grow and
Van Bavel (2015) and focus on the pattern of EAM based on the input data for
Belgium. My goal is to show how regression metamodels can be used to study the
effects that the six focal model parameters w

m

s ;w
f
s;w

m
y ;w

f
y;w

m
a ; and wf

a have on the
percentages of hypergamic, homogamic, and hypogamic couples (dating or married)
among agents who are old enough to have attained their highest educational degree
(i.e. in the ages between 24 and 79 years) at the end of a simulation run (i.e. in
simulation years 2010 and 2012). I estimated one metamodel for each of the three
outcomes. Note that all other parameters are based on the calibrated model described
by Grow and Van Bavel (2015).

7.3.2 Sensitivity Analysis

7.3.2.1 Experimental Region

In the model of Grow and Van Bavel (2015), selecting the experimental region is
complicated by the fact that each of the six parameters has a lower operational
boundary at 0, but none of the parameters has an upper operational boundary. In
their search for a parameter combination that could recreate observed patterns of
EAM across Europe, Grow and Van Bavel (2015) considered values between 0
and 2 for wm

s , wf
s , wm

y , and wf
y, and between 0 and 20 for wm

a and wf
a. The reason

was that based on their experience with the simulation model, they expected that
within this region there might be a parameter combination that generates outputs
that fit well with the observed patterns of EAM. In this chapter, I focus on a larger
experimental region. More specifically, I focus on the region between the values 0
and 4 for wm

s , wf
s, wm

y , and wf
y, and between 0 and 40 for wm

a and wf
a, to be able to

study the model’s behaviour between parameter boundaries that could be considered
‘extreme’ from a substantive point of view. These boundaries can be considered
extreme for the following reasons:

2Eurostat, European Commission and the national statistical offices collecting the data have no
responsibility for the results and conclusions which were drawn in this paper on the basis of the
European Community Household Panel data.
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• When wm
s D wf

s D 0, agents do not care about the educational attainment
of prospective partners. By contrast, when wm

s D wf
s D 4, the attraction that

agents who belong to the lowest and the highest possible educational attainment
category feel for each other approximates zero, regardless of all of other mating
relevant characteristics.

• When wm
y D wf

y D 0, agents do not care about the earnings prospects of
prospective partners. By contrast, when wm

y D wf
y D 4, the attraction that agents

feel for somebody who has the lowest possible earnings prospects approximates
zero, regardless of all of other mating relevant characteristics.

• When wm
a D wf

a D 0, agents do not care about the age of prospective partners.
By contrast, when wm

a D wf
a D 40, the attraction that agents feel for somebody

who is 10 or more years older or younger than the ideal age that they prefer
approximates zero, regardless of all other mating relevant characteristics.

7.3.2.2 Tentative Regression Model

I expected that at least some of the parameters would interact in affecting the
simulation output. Consider, for example, the possible interplay between female
agents’ preferences for education (wf

s) and age (wf
a). When female agents attach

high importance to similarity in education (i.e. the value of wf
s is high) but do not

care much about the age of prospective partners (i.e. the value wf
a is low), it might be

relatively easy for them to find similarly educated mates, given that they can draw on
all male members of the marriage market regardless of their age. Thus, an increase
in wf

s might lead to a strong increase in homogamy when the value of wf
a is low.

Yet, if female agents also have strong preference for partners who are slightly older
than themselves (i.e. the value of wf

a is high), the pool of potential partners shrinks
drastically and might offer them fewer opportunities to find similarly educated men.
Thus, an increase in wf

s might lead to a weaker increase in homogamy when the
value of wf

a is high.
Second, as discussed Sect. 7.3.1, each of the six model parameters has a

decreasing marginal effect on agents’ willingness to date/marry somebody who is
less than an ideal match in terms of their own preferences. I thus expected that these
parameters might also have decreasing marginal effects on model outputs. If this is
the case, we might expect some curvature in the observed relations.

Based on the foregoing considerations, I decided to use full second-order
polynomials that included all possible two-factor interactions.

7.3.2.3 Experimental Design

Because of my choice of full second-order polynomials, I decided to use a central
composite design in the simulation experiments. Yet, given that the lower boundary
of the experimental region was constrained by the lower operational boundaries
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Table 7.2 Parameter values in original and coded units for central composite design used in
simulation experiment (˛D 2.828)

Parameter Original units Coded units

wm
s 0 1.293 2 2.707 4 �1 �0.354 0 0.354 1

w
f
s

0 1.293 2 2.707 4 �1 �0.354 0 0.354 1

wm
y 0 1.293 2 2.707 4 �1 �0.354 0 0.354 1

w
f
y

0 1.293 2 2.707 4 �1 �0.354 0 0.354 1

wm
a 0 12.93 20 27.07 40 �1 �0.354 0 0.354 1

w
f
a

0 12.93 20 27.07 40 �1 �0.354 0 0.354 1

of the simulation parameters, I opted for an inscribed central composite design,
to avoid that the axial points would be located outside these boundaries. Thus, I
chose ˛ as 4

p
26 D 2:828 and scaled the resulting design down to stay within the

experimental region. Table 7.2 shows the different parameter values in both original
and coded units. The complete design consisted of 84 design points and contained
nc D 8 centre runs for conducting a formal lack of fit test (i.e. only the runs at
the centre of the design were repeated; see the supplementary material for the full
experimental schedule). Given the stochastic nature of the simulation model, I used
the average of 50 simulation runs per design point for the analyses, leading to a total
of 4,200 simulation runs.

Conducting one simulation run took on average 36 s on an Intel Core i7-3770
processor with 3.40 GHz and eight cores, leading to a total computation time of
about 42 h (i.e. about 5.25 h per core). To illustrate the efficiency of the approach
selected here, it is helpful to note that a sensitivity analysis with the simple approach
discussed in the introduction would have consisted of 56 � 50 D 781,250 runs, if
there had been five levels per parameter as in the inscribed central composite design.
Given an average computation time of 36 s, it would have taken more than 7,800 h of
computation time to conduct these runs. Even if we had focused on only three levels
per parameter, the experiment would have consisted of 36 � 50 D 36,450 runs which
would have taken about 364 h of computation time. Furthermore, it is helpful to note
that the parameter estimates that I present below can be used to instantaneously gain
information about the model outcome for new parameter combinations within the
experimental region, without having to invest the 30 min of computation time that
it would take to run the model 50 times for the new parameter combination.

7.3.2.4 Model Validation

Table 7.3 shows the coefficients of the three regression metamodels. Before I
could interpret these results, I needed to check whether the metamodels are valid
representations of the observed relations between the parameters and outputs.
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Table 7.3 Results of
sensitivity analyses

Hypergamic Homogamic Hypogamic
Parameters ˇ p ˇ p ˇ p

Intercept 5.83 ** 84.91 ** 9.25 **

Main effects
wm

s �3.27 ** 7.50 ** �4.24 **

w
f
s

�2.82 ** 8.04 ** �5.22 **

wm
y �1.55 ** 0.87 ** 0.68 **

w
f
y

0.14 0.49 * �0.64 **

wm
a �0.98 ** 2.53 ** �1.55 **

w
f
a

�0.53 ** 0.66 ** �0.12

Interaction effects
wm

s � wf
s 0.91 �2.29 ** 1.38 *

wm
s � wm

y 1.32 * �1.07 �0.25

wm
s � wf

y �0.45 1.14 �0.69

wm
s � wm

a �0.37 �0.12 0.49
wm

s � wf
a �0.08 0.29 �0.21

wf
s � wm

y 1.59 ** �0.58 �1.02

wf
s � wf

y �0.05 �0.92 0.97

wf
s � wm

a 0.53 �1.73 * 1.20 *

wf
s � wf

a 0.10 0.03 �0.13
wm

y � wf
y �0.11 0.35 �0.23

wm
y � wm

a �0.80 1.77 * �0.97

wm
y � wf

a �0.42 �0.04 0.46

wf
y � wm

a �0.42 0.69 �0.28

wf
y � wf

a �0.26 2.19 ** �1.93 **

wm
a � wf

a �0.82 0.90 �0.08
Quadratic effects
wm

s � wm
s 1.19 ** �1.70 ** 0.52

wf
s � wf

s �0.05 �1.86 ** 1.91 **

wm
y � wm

y 0.14 0.65 �0.79

wf
y � wf

y 0.02 �0.14 0.12

wm
a � wm

a 1.30 ** �2.15 ** 0.85
wf

a � wf
a �0.70 0.61 0.08

Estimates are based on coded parameter units, *p < 0.05,
**p < 0.01

To assess whether the models fitted the data well and to assess whether the
average of the approximation errors was zero for all parameter combinations, I
conducted three formal lack of fit tests, one for each metamodel. Table 7.4 shows the
results of these tests and indicates that none of them was significant. Additionally, I
assessed whether each model explained a large and significant share of the variance
in the respective output. Table 7.5 shows that the three coefficients of determination
(R2) and their adjusted versions (R2

adjusted) were high and significant in all three cases.
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Table 7.4 Lack of fit tests
for main analyses

Source of error DF Value F p

Hypergamic
SSE 56 13.85
SSLOF 49 12.40 1.22
SSPE 7 1.45
Homogamic
SSE 56 30.62
SSLOF 49 27.89 1.46
SSPE 7 2.73
Hypogamic
SSE 56 18.96
SSLOF 49 15.60 0.66
SSPE 7 3.36

DF degrees of freedom
*p < 0.05, **p < 0.01

Table 7.5 Coefficients of
determination for main
analyses

Model DF1, DF2 R2(R2
adjusted) F p

Hypergamic 27, 56 0.94 (0.92) 35.50 **

Homogamic 27, 56 0.98 (0.97) 90.06 **

Hypogamic 27, 56 0.96 (0.95) 55.29 **

DF degrees of freedom
*p < 0.05, **p < 0.01

To assess whether the distribution of the approximation errors was normal
and whether their variance was constant for all parameter combinations, Fig. 7.4
shows quantile-quantile plots of the approximation errors and shows the relation
between the model predictions and approximation errors. The figure suggests that
the distribution of the residuals followed a normal distribution and that the spread
was similar across all parameter combinations in all three regression metamodels.

I assessed the predictive adequacy of the three metamodels by randomly selecting
20 new parameter combinations from the experimental region and comparing the
observed outcomes for each combination with the predictions of the metamodels.
Table 7.6 shows the selected parameter combinations and shows the results for
the case of hypergamic couples. Figure 7.5 plots the predicted values against the
observed values for all three outcomes and the results suggest that the predictive
adequacy of the three metamodels was high.

Finally, each simulation run used a different seed for initializing random
numbers. This implies that the assumption of non-correlated residuals was also
satisfied.

Taken together, the results suggest that each of the three metamodels was a valid
representation of the observed associations.
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a b c

Fig. 7.4 Inspection of distribution of approximation errors and variance of approximation errors
for main analyses, (a) hypergamic, (b) homogamic, and (c) hypogamic couples. The first row shows
quantile-quantile plots and dashed lines show a 95 % confidence envelope (Fox 2008). The second
row plots predicted values against the residuals

7.3.2.5 Simulation Results

The results shown in Table 7.3 suggest that many of the simulation parameters had
significant main effects and that some of them affected simulation outputs in a
nonlinear manner. Additionally, there were some significant two-way interactions
between parameters. To aid the interpretation of the main effects and nonlinear
effects, I plotted for each preference dimension (i.e. education, earnings prospects,
and age) the male and female versions of the respective parameters against each
other and inspected the predicted outputs for each of the three models (Figs. 7.6, 7.7,
and 7.8); the contours at the bottom of each figure aim to facilitate the interpretation
of the results. Subsequently, for illustrative purposes, I inspected some of the
interaction effects that were not covered by these illustrations (Fig. 7.9). In all
figures, all of the model parameters that are not shown are fixed at 0 in terms of
coded units. Note that the three outcome measures are correlated with each other.
For example, if the metamodels suggest that a given preference leads to an increase
in hypergamy, this increase necessarily leads to a decrease in at least one of the two
other outcomes.
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Table 7.6 Excerpt of results of validation experiment

Parameter values in coded units Hypergamic
Design
point wm

s w
f
s w m

y w
f
y wm

a w
f
a z bz z�bz

1 �0.412 �0.344 0.896 0.428 �0.807 �0.526 8.88 8.71 0.17
2 �0.042 0.192 0.327 �0.266 �0.714 0.989 6.12 5.69 0.43
3 �0.084 0.343 �0.382 �0.574 �0.644 �0.184 6.16 6.05 0.11
4 0.164 0.319 �0.512 �0.224 �0.555 0.616 5.15 5.38 �0.22
5 �0.702 �0.170 �0.149 0.680 �0.228 0.313 9.23 10.14 �0.91
6 0.175 �0.172 0.494 0.964 �0.056 0.307 4.86 4.78 0.08
7 0.538 0.893 0.855 �0.486 �0.022 0.018 2.27 3.04 �0.77
8 �0.732 �0.586 0.308 0.529 0.051 �0.969 10.83 10.19 0.65
9 0.983 �0.888 �0.231 0.813 0.168 0.026 5.35 5.35 0.00
10 0.325 0.680 �0.156 �0.775 0.441 0.157 3.56 3.22 0.34
11 �0.137 �0.235 0.154 �0.239 0.456 0.026 6.41 6.38 0.03
12 0.523 �0.553 0.118 �0.345 0.664 �0.504 5.28 5.59 �0.31
13 0.813 �0.106 �0.774 0.225 0.683 0.078 5.27 4.72 0.55
14 �0.062 �0.357 �0.740 �0.114 0.724 �0.838 9.46 9.25 0.21
15 0.100 0.024 �0.467 0.151 0.726 0.451 5.45 5.75 �0.30
16 0.967 0.243 0.358 �0.276 0.733 0.344 2.38 2.64 �0.26
17 �0.235 0.113 �0.733 0.090 0.768 �0.286 8.50 8.39 0.11
18 0.036 0.302 0.811 0.130 0.896 �0.491 4.06 4.44 �0.38
19 0.035 �0.617 0.564 0.473 0.955 �0.150 5.70 5.67 0.03
20 0.118 �0.008 �0.035 �0.403 0.982 0.006 5.03 5.93 �0.90

Fig. 7.5 Predicted and observed outputs based on validation simulation experiment

Consider first the effects of agents’ preferences for similarly educated partners
(Fig. 7.6). The results suggest that increasing both male and female agents’ prefer-
ences for similarly educated partners (i.e. wm

s and wf
s respectively) led to a decrease

in the shares of hypergamic and hypogamic couples, and to an increase in the
share of homogamic couples. Yet, these effects were subject to two-way interactions
and nonlinearity. Figure 7.6 facilitates the understanding of these complex effects.
Consider, for example, the case of homogamic couples. Increasing wm

s or wf
s each

led to an increase in homogamy, but this increase became weaker if the respective
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Fig. 7.6 Predicted outputs based on the interplay between preferences for similarly educated

partners among male and female agents (wm
s and w

f
s). All parameters that are not shown are fixed

at the value 0 in terms of coded units

Fig. 7.7 Predicted outputs based on the interplay between preferences for high earnings prospects

among male and female agents (wm
y and w

f
y). All parameters that are not shown are fixed at the

value 0 in terms of coded units

Fig. 7.8 Predicted outputs based on the interplay between preferences for age among male and

female agents (wm
a and w

f
a). All parameters that are not shown are fixed at the value 0 in terms of

coded units

other parameter was at a high level. Substantively this means, for example, that
even when female (male) agents are willing to date/marry someone who differs
from them in educational attainment, heterogamy will still be low if male (female)
agents are not also willing to do so. Furthermore, the decreasing marginal effect of
each parameter can be attributed to the facts (1) that the parameters have decreasing
marginal effects on agents’ willingness to date/marry somebody who deviates from
their ideals and (2) that there is a limit to the level of homogamy/heterogamy that
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Fig. 7.9 Predicted outputs based on the interplay between preferences for age among male agents

(wm
a ) and preferences for education among female agents (w

f
s). All parameters that are not shown

are fixed at the value 0 in terms of coded units

can exist in an agent population (e.g. once all similarly educated individuals are
partnered with each other, homogamy cannot increase anymore). The closer the
agent population is already to these limits, the less a change in a given parameter
might contribute to homogamy/heterogamy.

Consider next the effects of preferences for high earnings prospects (Fig. 7.7).
The results suggest that an increase in the preferences for high earnings prospects
among male agents (i.e. an increase in wm

y ) led to an increase in homogamic
and hypogamic couples, and to a decrease in hypergamic couples. An increase in
preferences for earnings prospects among female agents (i.e. an increase in wf

y)
also tended to increase homogamy, but tended to decrease hypogamy. Substantively
this means that the correlation between education and earnings prospects leads
preferences for earnings prospects to have an indirect effect on EAM. That is, the
more importance male and female agents attach to the earnings prospects of their
partners, the more likely they are to date/marry somebody who is equally or more
educated, given that such agents tend to be more attractive in terms of earnings
prospects than lower educated agents.

Consider now the effects of preferences for age (Fig. 7.8). The results suggest
that the stronger male agents preferred partners who are in their mid-twenties (i.e.
if wm

a is high), the more likely they were to date/marry somebody who had a similar
educational background, and the less likely they were to date/marry somebody with
different (particularly with a higher) educational background. The preference of
female agents for slightly older partners (i.e. the value of wf

a) mattered much less
for these outcomes, but also led to an increase in homogamy and a decrease in
hypergamy. For interpreting these results it is important to remember that in older
cohorts men tend to be more educated than women, whereas in younger cohorts
women tend to be more educated than men. Thus, when male agents prefer partners
who are in their mid-twenties, this implies that especially older and highly educated
males look for partners in cohorts in which they are more likely to find somebody
who is similarly educated. At the same time, young and highly educated female
agents have better chances to find a similarly educated partner in older cohorts.
These processes together lead to an increase in the share of homogamic couples and
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lead to a decrease in the shares of heterogamic couples, in particular hypogamic
couples.

Consider finally the interaction effects that existed between the importance that
male agents attach to the age of prospective partners (wm

a ) and the importance
that female agents attach to similarity in education (wf

s) (Fig. 7.9). The results
suggest that when male agents did not care much about the age of their partners
(i.e. when wm

a was low), an increase in female preferences for similarly educated
partners (i.e. an increase in wf

s) had a stronger positive effect on homogamy than
when male agents cared strongly about age (i.e. when wm

a was high). The opposite
was the case for hypogamy. That is, the less male agents cared about the age of
prospective partners, the more strongly an increase in female agents’ preferences
for similarly educated partners led to a decrease in hypogamy. From a substantive
point of view, this underlines the role that age preferences play in combination with
the composition of the marriage market in terms of educational attainment. When
male agents prefer women who are in their mid-twenties, especially older, highly
educated males are looking for partners in a segment of the mating market that is
conducive to homogamy. This leads to a higher level of homogamy that decreases
the effect of female agent’s preferences for similarly educated partners. The reason
for this latter effect is that there is a limit to the level of hypergamy, homogamy, and
hypogamy that can exist in a given population, as explained earlier.

7.4 Discussion and Conclusion

In this chapter, I have demonstrated the use of regression metamodels for sensitivity
analysis of computational simulation models. I hope that the applied example has
illustrated the potential benefits for understanding the behaviour of complex agent-
based models in computational demography. As indicated above, I believe that
regression metamodels are an attractive tool for sensitivity analysis in the field
of demography, because they are powerful and easily accessible for both model
developers and audiences with a background in demography.

These advantages notwithstanding, regression metamodels also have their lim-
itations. First, regression metamodels that are estimated with the ordinary least
squares method are best suited for response surfaces that are smooth and ‘well
behaved’, as was the case in the example shown here. For surfaces that cannot easily
be represented by low-order polynomials, regression metamodels might be able to
accurately describe the behaviour of the output over a small, local experimental
region, but they might not be able to describe the behaviour of the output over the
full ranges of all simulation parameters. For an example of such a situation see the
chapter by Hilton and Bijak in this volume. In this case, we might benefit from
choosing more complex metamodels, which make fewer assumptions about the
data than regression metamodels (Kleijnen 2005). For example, Gaussian process
emulators (Oakley and O’Hagan 2002) can deal with less regular surfaces, but
require more statistical background knowledge to implement, which makes them
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less accessible to wider audiences. Another approach to sensitivity analysis that
has gained momentum in recent years is model output variance decomposition (e.g.
Ligmann-Zielinska et al. 2014), in which the importance of the parameters of a
simulation model is expressed in the amount of variation in the outcome that it
accounts for. Compared to regression metamodels, this approach can more easily
deal with nonlinearity in model behaviour, but it does not provide information about
the direction of influence, given that variance indices range from 0 to 1.3

Furthermore, some of the social systems that have been studied with agent-
based models are subject to discontinuous behaviour, in which changes in a given
parameter up to a certain level might not have any noticeable effect on model
outcomes, but increases beyond this level lead to drastic changes in the outcome.
The seminal work of Schelling (1971) provides an example of such ‘tipping’ points
in the case of residential segregation. Regression metamodels will have problems
with describing such discontinuities, yet, the fact that a regression metamodel fits
the data poorly might at least point to the existence of such discontinuity and might
aid in finding the location of the discontinuity in the parameter space.4

Finally, when interpreting the coefficients of a regression metamodel based on
coded data, it is important to keep the original scaling of the variables in mind, in
particular when we investigate an experimental region that is smaller than the full
parameter space. For example, the same linear effect for a given parameter might
appear smaller if the coded values �1 and 1 represent the values 250 and 350 in
original scaling, than when they represent 100 and 500 (Kleijnen 2008).

I aimed to acquaint the reader with some of the basic concepts of regression
metamodels. There are a number of additional topics that I could not address here.
For example, I have illustrated how regression metamodels can be used to predict
the output for parameter combinations that are located within the experimental
region. These predictions, in turn, can be used for optimization. In optimization, we
search for a parameter combination that generates output values that are particularly
high, low, or close to some predefined target. Grow and Van Bavel (2015) used this
possibility for calibrating their simulation model with empirical data. That is, they
determined a parameter combination that was most likely to generate outputs that
were close to real-life patterns of EAM across Europe. The issue of optimization
with regression metamodels is closely related to the response surface methodology,
which is a set of tools that can be used to iteratively find optimal parameter
combinations and is extensively described in Myers and Montgomery (1995).

Furthermore, I have shown how the predictive adequacy of a metamodel can
be assessed by collecting simulation outputs for parameter combinations that
were not included in the experimental design used for estimating the metamodel.
This approach might not be feasible if the simulation model is computationally
expensive; Kleijnen (2008) therefore describes a cross-validation approach that does
not require additional simulation runs. With this approach, some of observations that

3I thank an anonymous reviewer for pointing this out.
4I thank an anonymous reviewer for pointing this out.
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were used to estimate the metamodel are dropped and the model is re-estimated. The
metamodel is valid if the parameter estimates are not sensitive to such omissions.

To conclude, I believe that regression metamodels have merit for use in agent-
based computational demography. Given their simplicity, they are potentially a
good first choice for learning about the behaviour of complex simulation models.
If the simulation model turns out to produce irregular outcome behaviour, analysts
might consider employing more complex metamodels. However, given the long and
successful track record that regression metamodels have in the area of computational
simulation at large, I expect that in many cases they will provide detailed and
accurate insights into the behaviour of complex agent-based models in demographic
research.

Acknowledgments The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP/2007–
2013)/ERC Grant Agreement no. 312290 for the GENDERBALL project. I thank Jan Van Bavel,
Hideko Matsuo, and two anonymous reviewers for helpful comments on earlier versions of this
chapter.

References

Antony, J. (2003). Design of experiments for engineers and scientists. Oxford: Butterworth-
Heinmann.

Bijak, J., Hilton, J., Silverman, E., & Cao, V. D. (2013). Reforging the wedding ring: Exploring a
semi-artificial model of population for the United Kingdom with Gaussian process emulators.
Demographic Research, 29, 729–766.

Billari, F. C., Ongaro, F., & Prskawetz, A. (2003). Introduction: Agent-based computational
demography. In F. C. Billari & A. Prskawetz (Eds.), Agent-based computational demography:
Using simulation to improve our understanding of demographic behaviour (pp. 1–17).
Heidelberg: Physica Verlag.

Billari, F. C., Prskawetz, A., Aparicio Diaz, B., & Fent, T. (2007). The “Wedding-Ring”: An agent-
based marriage model based on social interaction. Demographic Research, 17, 59–82.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human
systems. Proceedings of the National Academy of Sciences of the United States of America,
99(Suppl. 3), 7280–7287.

Coutts, S. R., & Yokomizo, H. (2014). Meta-models as a straightforward approach to the sensitivity
analysis of complex models. Population Ecology, 56(1), 7–19.

De Hauw, Y., Grow, A., Van Bavel, J. (2015). The shifting gender balance in higher education and
assortative mating in Europe. Paper presented at the 2015 Annual Meeting of the Population
Association of America, San Diego, USA.

De Mulder, W., Grow, A., Molenberghs, G., & Verbeke, G. (2015). Application of statistical
emulation to an agent-based model: Assortative mating and the reversal of gender inequality in
education in Belgium. In H. Friedl & H. Wagner (Eds.), Proceedings of the 30th international
workshop on statistical modelling, vol. 1 (pp. 139–144). Linz.

England, P., & McClintock, E. A. (2009). The gendered double standard of aging in US marriage
markets. Population and Development Review, 35(4), 797–816.

Epstein, J. M. (1999). Agent-based computational models and generative social science. Complex-
ity, 4(5), 41–60.



7 Regression Metamodels for Sensitivity Analysis 209

Esteve, A., García-Román, J., & Permanyer, I. (2012). The gender-gap reversal in education and its
effect on union formation: The end of hypergamy? Population and Development Review, 38(3),
535–546.

Fox, J. (2008). Applied regression analysis and generalized linear models (2nd ed.). Thousand
Oaks: Sage.

Grow, A., & Van Bavel, J. (2015). Assortative mating and the reversal of gender inequality in
education in Europe: An agent-based model. PLoS ONE, 10(6), e0127806.

Kalmijn, M. (1994). Assortative mating by cultural and economic occupational status. American
Journal of Sociology, 100(2), 422–452.

KC, S., Barakat, B., Goujon, A., Skirbekk, V., Sanderson, W. C., & Lutz, W. (2010). Projection of
populations by level of educational attainment, age, and sex for 120 countries for 2005–2050.
Demographic Research, 22, 383–472.

Kleijnen, J. P. C. (1992). Sensitivity analysis of simulation experiments: Regression analysis and
statistical design. Mathematics and Computers in Simulation, 34(3–4), 297–315.

Kleijnen, J. P. C. (2005). An overview of the design and analysis of simulation experiments for
sensitivity analysis. European Journal of Operational Research, 164(2), 287–300.

Kleijnen, J. P. C. (2008). Design and analysis of simulation experiments. Tilburg: Springer.
Kleijnen, J. P. C., & Sargent, R. G. (2000). A methodology for fitting and validating metamodels

in simulation. European Journal of Operational Research, 120(1), 14–29.
Kleijnen, J. P. C., van Ham, G., & Rotmans, J. (1992). Techniques for sensitivity analysis of

simulation models: A case study of the CO2 greenhouse effect. Simulation, 58(6), 410–417.
Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). A user’s guide to the brave

new world of designing simulation experiments. INFORMS Journal on Computing, 17(3), 263–
289.

Law, A. M., & Kelton, D. W. (2000). Simulation modeling and analysis (3rd ed.). Boston: McGraw-
Hill.

Lenth, R. V. (2009). Response-surface methods in R, using rsm. Journal of Statistical Software,
32(7), 1–17.

Ligmann-Zielinska, A., Kramer, D. B., Cheruvelil, K. S., & Soranno, P. A. (2014). Using
uncertainty and sensitivity analysis in sociological agent-based models to improve their
analytical performance and policy relevance. PLoS ONE, 9(10), e109779.

Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the “Black Box” of simulations:
Increased transparency and effective communication through the systematic design of experi-
ments. Computational and Mathematical Organization Theory, 18(1), 22–62.

Lutz, W., Goujon, A., KC, S., & Sanderson, W. C. (2007). Reconstruction of populations by age,
sex and level of educational attainment for 120 countries for 1970–2000. Vienna Yearbook of
Population Research, 5, 193–235.

Macy, M. W., & Flache, A. (2009). Social dynamics from the bottom up: Agent-based models
of social interaction. In P. Hedström & P. Bearman (Eds.), The oxford handbook of analytical
sociology (pp. 245–268). Oxford: Oxford University Press.

Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent-
based modeling. Annual Review of Sociology, 28, 143–166.

McCarthy, M. A., Burgman, M. A., & Ferson, S. (1995). Sensitivity analysis for models of
population viability. Biological Conservation, 73(2), 93–100.

Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: Process and product
optimization using designed experiments. New York: Wiley.

Oakley, J., & O’Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer
model outputs. Biometrika, 89(4), 769–784.

Oppenheimer, V. K. (1988). A theory of marriage timing. American Journal of Sociology, 94(3),
563–591.

R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing.

Rao, C. R. (1959). Some problems involving linear hypothesis in multivariate analysis. Biometrika,
46(1/2), 49–58.



210 A. Grow

Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2),
143–186.

Schwartz, C. R. (2013). Trends and variation in assortative mating: Causes and consequences.
Annual Review of Sociology, 39, 451–470.

Silverman, E., Bijak, J., Hilton, J., Cao, V. D., & Noble, J. (2013). When demography met social
simulation: A tale of two modelling approaches. Journal of Artificial Societies and Social
Simulation, 16(4), 9.

Simão, J., & Todd, P. M. (2002). Modeling mate choice in monogamous mating systems with
courtship. Adaptive Behavior, 10(2), 113–136.

Simpson, T. W., Peplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-
based engineering design: Survey and recommendations. Engineering with Computers, 17(2),
129–150.

Smaldino, P. E., & Schank, J. C. (2011). Human mate choice is a complex system. Complexity,
17(5), 11–22.

Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating parameter estimation and sensitivity
analysis of agent-based models: A cookbook using NetLogo and R. Journal of Artificial
Societies and Social Simulation, 17(3), 11.

Todd, P. M., Hills, T., & Hendrickson, A. (2013). Modeling reproductive decisions with simple
heuristics. Demographic Research, 29, 641–662.

Tunali, S., & Batzman, I. (2000). Dealing with the least squares regression assumptions in
simulation metamodeling. Computers and Industrial Engineering, 38(2), 307–320.

Van Bavel, J. (2012). The reversal of gender inequality in education, union formation and fertility
in Europe. Vienna Yearbook of Population Research, 10, 127–154.



Chapter 8
Design and Analysis of Demographic
Simulations

Jason Hilton and Jakub Bijak

8.1 Introduction

As the many novel contributions to this volume show, Agent-Based Models
(ABMs) offer exciting possibilities for including explanatory mechanisms, such as
behavioural rules governing individual behaviour, in the analysis of demographic
phenomena. Knowledge about the abstract statistical individual (Courgeau 2012)
derived from empirical data can in this way be augmented by rule-based explana-
tions, giving demography much-needed theoretical foundations (Billari et al. 2003).

As ABMs gain more traction in demography, they will inevitably become more
sophisticated, and, as a consequence, more complicated (Grazzini and Richiardi
2013). As demographers explore the possibilities of the methodology, they may
attempt to make their agent-based simulations match reality more closely; to model
more fields of social life; to pay attention to the effect of institutions and policy; and
to enrich their models with more data to attempt to bring them in line with what is
observed (Silverman et al. 2011; Squazzoni 2012).

This progress towards greater sophistication in agent-based approaches intro-
duces additional sources of uncertainty to the modelling process, which need
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to be acknowledged (Kennedy and O’Hagan 2001). Furthermore, it creates a
need for a more considered approach to the design and analysis of agent-based
computer experiments. This chapter discusses how existing techniques from the
computational experiment literature might be fruitfully applied to overcome some of
these difficulties, and specifically focuses on the work of the Managing Uncertainty
in Complex Models community (MUCM 2011) and how it might be applied to
demographic models. In particular, three specific questions are addressed:

1. At what input values should the simulation be run?
2. How does the simulation respond to variations in inputs?
3. How can the simulation be calibrated so that it matches observed quantities?

This chapter will discuss each of these points in turn. It is argued that the first
question can be considered one of experimental design, and the use of space-filling
Latin hyper-cube sampling provides an efficient default response to this problem.
Next, the use of Gaussian Process Emulators is proposed as a way of analysing
the behaviour of ABMs. The emulation approach also provides a framework for
the calibration of such simulations. Finally some of the limitations of the approach
proposed are discussed, and a brief pointer is given to some potential extensions
to the basic approach described here that may benefit the analysis of demographic
ABMs. This chapter tackles similar issues to those discussed by Grow elsewhere in
this volume, although the presented methods are different. Our approach is rooted in
the Bayesian statistical tradition, and thus combines the analysis of different sources
of uncertainty in a joint probabilistic model, making inferences about the underlying
complex population dynamics on that basis.

8.2 Design of Computer Experiments

Epstein and Axtell’s seminal book on ‘Growing Artificial Societies’ (1996)
famously considered ABMs as an analogue of physical experiments for social
scientists. Modellers, they state, could grow experimental scenarios in silico,
enabling them to examine the effects of manipulating various inputs. To take
this claim seriously, and to maximise what we learn from our quasi-experiments,
borrowing from the literature on the design of experiments can be instructive.

Computational experiments differ from physical experiments in several impor-
tant respects (Santner et al. 2003). Firstly, computational experiments tend to be
cheaper, and so can be run more times and at more points. Secondly, the modeller
has complete control of the experimental conditions, and results are therefore not
subject to unobserved nuisance factors that may cloud inference. Thirdly, greater
freedom is possible in the specification of the experiments to be run. For instance,
in a simulated environment, one could re-run Galileo’s famous experiment regarding
the speed of falling objects under different gravitational conditions, which would be
extremely difficult to do in earth-bound physical experiments (Epstein and Axtell
1996).

One consequence of this freedom, however, is that simulations tend to
have a greater number of free parameters than their physical equivalents
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(Santner et al. 2003). For a given simulation run, values of each of these parameters
(inputs) must be set in order to get an output value from the simulation, and each
parameter can thus be considered as a dimension across which individual simulation
runs differ (Montgomery 2013). For two parameters, we have a two-dimensional
input space, and a single simulation run is a point in this space, with a location
defined by the values of its two parameters. Our problem is to place points (that is,
select combinations of parameters) in this space at which to run our simulation in
order to get as much information as possible about the output variable of interest,
acknowledging that for continuous inputs we can never run the simulation at all
points.

The choice of input points, or more correctly, our experimental design, depends
very much on both the number of experiments we are able to conduct, and our
assumptions about how the simulation is expected to behave (Kleijnen 2008).
Consider a one-dimensional simulation where the response of the output to changes
in the input is consistently linear. For deterministic simulations, only two points
are required to work out the slope of this linear response, and thus to have a good
estimate of the simulation for any value of the input (ibid).

ABMs, however, cannot be assumed to have simple relationships between inputs
and outputs. Because such simulations are by definition caused by the interaction
of many autonomous units, the system as a whole can be defined as complex. In
this context the word has a technical meaning, and complex systems tend to be
characterised by tipping points, non-linearities, and other such features (Mitchell
2009). This suggests we must be agnostic about the behaviour of the simulation in
question when choosing our design (see Santner et al. 2003, section 5), and often
means that a large number of runs are required to get a handle on the behaviour of
the simulation over the entire parameter space (Grimm and Railsback 2005).

An important consideration is that ABMs are almost always stochastic, in the
sense that repetitions of a simulation run at the same parameter values will give
a different outcome due to the use of pseudo-random numbers in driving various
elements of the model (Grimm and Railsback 2005). This may mean that multiple
simulation runs will need to be conducted at a single parameter combination in order
to understand the distribution of outcomes at that point (Law 2007).1

8.2.1 Factorial Designs

Let us consider an experiment, whether simulated or physical, as a mapping of some
input x to output y. We denote this mapping as a function f .:/. Generally x will be
multidimensional, in that there are k parameters to the model x D fx1; x2; : : : ; xkg

1In some cases, for instance, when the frequency of rare events are of interest, very large numbers
of repetitions may be required to infer about the quantities of interest. Different approaches from
those advocated here would likely be required for such problems, one of which might be to apply
the analysis and calibration methods discussed in later sections to understand the behaviour of a
different, more frequently observed output measure first, simplifying the problem of analysing the
rare event.
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and we restrict attention here to real inputs, so that X 2 R
k. The design problem is

to choose a vector of input points D so that we can learn as much as possible about
how f .:/ responds to x.

The larger the number of dimensions, the harder this problem becomes. The
instinctive response is simply to pick a set of values (levels) for each parameter,
and run the model at all combinations of these parameters. This sort of grid-based
approach is commonly used in agent-based modelling (e.g. Aparicio Diaz et al.
2011; Fent et al. 2013; Klabunde 2014), and it is a sensible default response for
simple models. However, even for relatively small numbers of levels and parameters,
this can quickly become prohibitively time consuming, unless the simulation in
question is extremely fast. For a simulation with 6 input parameters, k D 6, each
of which we want to run at 5 levels, we need a total of 56, or 15,625 runs. If our
simulation takes only 1 min to run, this would require a total of 260 h of runtime,
or some multiple of this number if we wish to repeat observations at each point.
Of course, computing power is relatively cheap at present, and multi-processor
clusters or cloud computing resources can easily reduce this time to a few hours,
or even less. However, as ABMs begin to simulate more agents and involve more
complicated decision making, run-times are likely to increase. As a result, it is
prudent to consider more efficient experimental designs.

A grid is a particular case of a more general set of designs known as factorial
designs, which are commonly used for physical experiments (Montgomery 2013),
and have also been heavily used in conducting experiments with Operational
Research simulations such as queueing models (amongst many other types) (Klei-
jnen 2008). The nature of the factorial design chosen generally depends upon
the expected nature of the response of the simulation outputs to inputs; the most
common factorial designs assume that the relationship can be approximated by low
order polynomials and possibly two-way interactions. A full factorial design is an
analogue of the grid design discussed above; for a two-level full factorial design,
each factor (input) is considered to have two levels (values), and design points are
obtained for every possible combination of levels of the distinct factors, giving
2k points (Montgomery 2013). A two-level full factorial design assumes linear
relationship between variables, and allows for two-way interactions to be identified.
If quadratic effects are suspected, central composite designs add additional points
in the centre and at the extremities of the design space, while fractional factorial
designs can be used to reduce the number of runs required, effectively by assuming
some two-way interactions are equal to zero (ibid). The chapter by Grow elsewhere
in this volume describes the use of such designs in the context of demographic
ABMs.

8.2.2 Latin Hyper-Cube Sample Designs

The key limitation with grid designs is that when projected or ‘collapsed’ onto one
dimension, many design points are replicated, and thus wasted (Urban and Fricker
2010). To put it another way, factorial designs enforce a strong relationship between
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the number of dimensions k and the number of runs required n, for a fixed number of
levels (Kleijnen 2008). Latin hyper-cube samples avoid these problems by ensuring
no two design points share values of any parameter, thus reducing the dependence of
n on k (Urban and Fricker 2010). The principle is simple – to create a Latin hyper-
cube sample, divide the input space equally into g sections along each axis, so that
there are gk cells in total. Then, choose g of these cells such that there is only one
cell in each section (or column) for every axis. To complete the process pick a point
randomly within each chosen cell, resulting in a sample of size n D g (Santner et al.
2003).

Latin hyper-cube samples are not guaranteed to fill the entire parameter space,
so some further criteria are needed to ensure that all parameter combinations are
explored adequately (Santner et al. 2003). Generating several candidate samples,
and picking the one with the highest minimum distance between points will in
general suffice (O’Hagan 2006). The R package lhs has a number of functions
for producing such samples for arbitrary dimensions very easily.2 These will then
need to be scaled up from the existing Œ0; 1� range to reflect the input ranges required
by any particular simulation.

The key advantage of Latin hyper-cube sample designs is the scaling in high
dimensions. For the example above, rather than requiring thousands of simulations
to explore a six-dimensional space, samples of around 60 points may be sufficient.
Loeppky et al. (2009), for example, investigate the relationship between sample size
and meta-model predictive adequacy, and find that the established rule of thumb
of n D 10k is generally reasonable, but that this number will vary dependent on
whether all or only some of the inputs strongly affect the output. Repetition of
simulations at individual design points may also be desirable in order to account for
stochasticity in simulation outputs. These issues are discussed in Kleijnen (2008),
Ankenman et al. (2010), and Boukouvalas (2010). Other advantages of the Latin
hyper-cube sample are discussed in Santner et al. (2003).

8.3 Analysis of Computer Experiments

Once a design has been settled on, and the simulation has been run at the design
points, the next step is the analysis of the simulation results. In high dimensions,
understanding the relationships between inputs and outputs simply from the raw
results is often difficult. The method of analysis chosen to analyse the simulation
should reflect prior expectations about its behaviour, and is closely related to the
choice of design; some methods require particular designs, and work better for
simulators with certain properties.

2Other methods of obtaining Latin hyper-cube samples are available. For instance, @Risk (www.
palisade.com/risk) is an add-on for Excel which provides this functionality, as does the statistics
and machine learning tool-kit (uk.mathworks.com/help/stats/lhsdesign.html) of the Matlab math-
ematical programming software. However, both of these are proprietary packages and not freely
available.

www.palisade.com/risk
www.palisade.com/risk
uk.mathworks.com/help/stats/lhsdesign.html
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ABMs, as suggested above, are generally complex, and thus may be highly non-
linear. Furthermore, given that ABMs are often built in order to explain or explore
some particular poorly-understood phenomena, we may not have any clear idea
about how we expect the simulation to behave. This suggests that analysis methods
(and designs) that make fewer assumptions and are able to capture many different
types of relationships between inputs and outputs are preferable (Santner et al.
2003).

From a statistical point of view, modellers must also ensure that they account for
the various sources of uncertainty inherent in the analysis of simulations (Kennedy
and O’Hagan 2001). Sources of such uncertainty include:

• Uncertainty due to simulation stochasticity. This occurs when running the
code twice at the same parameters gives different results, because of the use of
random number generation in the simulator itself. This means even if we have the
result of one trial at a point, we cannot predict with certainty the value of another
such trial. Random number generators are used to represent aleatory uncertainty
in the real world phenomena; that is, uncertainty due to inherent randomness
(O’Hagan 2006).

• Uncertainty about the output at new points. In a continuous parameter space,
we can never run the simulation at every conceivable point. Instead, we must
estimate at points we have yet to run, which we do with some error.

• Input uncertainty. In many cases, we do not know what the ‘correct’ value of
any given parameter is. We may, however, have a reasonable range or probability
distribution that characterises our beliefs as to where the ‘true’ value lies. This
uncertainty about inputs clouds our knowledge about outputs.

• Model discrepancy. The model is unlikely to be a perfect representation of
reality. The mechanisms simulated will differ from what takes place in the world
in appreciable but uncertain ways. Thus, our lack of knowledge about the ways
and extent to which our model is wrong is another source of uncertainty.

• Measurement error. Comparing simulated results to real results may add an
additional source of uncertainty, as real world quantities are subject to errors in
measurements (Kennedy and O’Hagan 2001).

The last four sources of uncertainty are largely epistemic, in that the uncertainty
is the result of our lack of knowledge about the quantities of interest (although the
last one is also partly aleatory) (O’Hagan and Oakley 2004). Failing to take these
sources of uncertainty, whether aleatory or epistemic, into account can lead to faulty
inferences (O’Hagan 2006). This can be particularly problematic if policy advice is
the goal of the simulation; representing uncertainty about the phenomena in question
is vital if potential risks are to be mitigated (Bijak 2011).

There are a number of ways in which the analysis of simulation outputs can
be approached. Firstly, a ‘brute-force’ Monte-Carlo approach can be considered.
Sampling from distributions representing the above sources of uncertainty many
times and obtaining simulation results for each sample would allow for a coherent
accounting. However, this requires a large number of replications (O’Hagan 2006),
and so has computation time implications, and thus other approaches are preferred.
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Several other approaches to the problem have been proposed. Bayesian melding
(Poole and Raftery 2000) involves reconciling prior knowledge about outputs and
inputs with observations and simulation outputs. This technique is robust in its
accounting for most sources of uncertainty, and incorporating prior knowledge, but
also requires many replications to build up posterior distributions. Ševčíková et al.
(2007) used this approach in a stochastic urban simulation that modelled household
behaviour with interesting results.

Finally, our preferred approach is the use statistical emulators to approximate
the simulation, so called because they emulate the behaviour of the simulation:
they are meta-models of the underlying models. Meta-models can take a variety of
forms, from regression models involving low-order polynomials, to more complex
regression tree approaches, to neural networks (Santner et al. 2003; Kleijnen 2008).
The chapter by Grow elsewhere in this volume adopts a second-order polynomial
meta-model in order to examine the sensitivity of an ABM of marriage markets to
changes in parameters. However, given our desire to make few assumptions about
the functional form of the relationship between simulator inputs and outputs, Gaus-
sian Process Emulators (often called kriging models) are our preferred approach
(Kennedy and O’Hagan 2001). The need to incorporate the many different sources
of uncertainty discussed above suggests a Bayesian framework, in which both
epistemic and aleatory uncertainties can naturally be represented as distributions,
and included in output predictions through Bayes’ rule (O’Hagan and Oakley 2004;
Oakley and O’Hagan 2004). Equivalent frequentist approaches do exist; see, for
example Kleijnen (2008), Forrester et al. (2008), and Ankenman et al. (2010).

Gaussian Process Emulators (and meta-models in general) introduce another
layer of uncertainty as they only provide an approximation of the simulator output,
but are flexible and less computationally expensive than obtaining results at all
points of interest, and also provide other benefits in terms of ease of analysis, as dis-
cussed below. However, they do require the modeller to make two main assumptions
about the simulator. Firstly, it is assumed that the relationship between inputs and
output is smooth to some degree, although the extent of this smoothness is estimated
from the data (O’Hagan 2006). Secondly, the process is assumed to be second-
order stationary over the parameter space, effectively meaning that the degree of
smoothness remains constant across the parameter space (Santner et al. 2003). These
assumptions may not always hold for ABMs, but it is argued that they are less
restrictive assumptions than are required for many other meta-models, and further,
when they fail, Gaussian Process Emulators can still give useful information about
the general behaviour of the simulation. An introduction to Gaussian Process Emu-
lators is provided below, and detailed information can be found on the website of the
research community Managing Uncertainty in Complex Models (MUCM 2011).

8.4 Gaussian Process Emulators: A Primer

Gaussian processes are extremely flexible statistical tools as they make few
assumptions about the form of the function they are used to represent. Given what
we have said about the complex and non-linear nature of agent-based simulations,
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this makes them well suited to our purpose. The underlying premise is that outputs
near to each other in the parameter space are also nearby in the output space. A
Gaussian process represents this idea by insisting that outputs at any collection of
input points are joint multivariate normal (Kennedy and O’Hagan 2001). A more
formal treatment follows.

8.4.1 General Premises

Let f .:/ be the base computational model of interest. We focus on a vector of k
inputs to this simulation, x 2 X � R

k, and a single output, y 2 Y � R, such
that y D f .x/. X does not have to exhaust the whole parameter space, but rather
relate to those inputs which are considered important from the point of view of the
output studied. Following Oakley and O’Hagan (2002, p. 771) and Kennedy (2004,
p. 2), we define a Gaussian Process Emulator, conditionally on its parameters, as
a multivariate Normal distribution for N realisations of f , y1 D f .x1/; : : : ; yN D

f .xN/, denoted jointly as f (ibid):

f .:/ j ˇ; �; ! 	 NŒm.:/; �2c. : ; :/ � (8.1)

A number of options are possible for the mean of the process. Often, it is chosen
to be a constant so that m.:/ D ˇ0. In other contexts, it is modelled through a vector
linear regression function of x, h.x/, with coefficients ˇ, such that for every output
f .x/, m.:/ D h.:/Tˇ. Throughout this chapter, we use the latter, and choose h.x/ to
be a simple function of the inputs, so that m.x/ D ˇ0 C ˇ1x1 C � � � C ˇkxk, with k
the number of input dimensions.3 The number of basis functions (in this context, the
number of additive terms) in the mean function is denoted by q, equalling one in the
case of a constant mean function and k C 1 in the simple linear regression case. The
covariance matrix is determined by correlation function c.:; :/, which determines
how quickly nearby points become uncorrelated, and the variance parameter � ,
which determines the extent of deviation from the mean function. Several forms
are possible for the function c.:; :/, the most common of which is the squared
exponential or Gaussian function (Rasmussen and Williams 2006):

c.xi; xj/ D exp

(

�

kX

lD1

!l.xil � xjl/
2

)

(8.2)

The ˝ parameter vector ˝ D f!1; : : : ; !kg is composed of roughness
parameters (or ‘correlation lengths’), which indicate how strongly the emulator

3Setting the mean function to a constant is often called ‘Ordinary Kriging’, while using a regression
model is referred to as ‘Universal Kriging’ (Kleijnen 2008).
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responds to particular inputs (Kennedy and O’Hagan 2001, pp. 432–433; O’Hagan
2006). In order to incorporate any inherent simulator stochasticity into the emulator,
an additional variance term �2 (referred to as a nugget) can be added to the
covariance function v.xi ; xj/ D �2 c.xi; xj/ when i D j, so that (MUCM 2011):

v.xi; xj/ D �2exp

(

�

kX

lD1

!l.xil � xjl/
2

)

C IiDj�
2 (8.3)

where IiDj is an indicator variable that equals 1 if i D j and 0 otherwise.

8.4.2 Estimation

In order to estimate the parameters of the emulator, a set of simulation data
f .D/ D Œf .x1/; : : : ; f .xn/� (the training set) is required for n experimental points
D D x1; : : : ; xn, where x 2 D � X (Kennedy 2004, p. 2). Conditional on this
training data and the values of the Gaussian process parameters ˇ; �2, and ˝,
the distribution of simulator outputs at new points x0 is joint multivariate normal.
Taking non-informative priors on ˇ and �2 such that p.ˇ; �2/ / ��2, it is possible
to marginalise ˇ and �2, obtaining a multivariate t-distribution for outputs at new
points, and the following likelihood for the roughness parameters (Andrianakis and
Challenor 2011):

p.f .D/j˝/ / jAj�1=2jHTA�1Hj�1. O�2/
n�q
2 (8.4)

where H is the matrix of basis function generated by h.D/ and A is the correlation
matrix for the training set, defined by c.D;D/. The values that maximise this
likelihood can then be found and can be used as ‘plug-in’ posterior mode estimates
of the values for ˝ (Kennedy and O’Hagan 2001; Oakley 1999).

Given ˝, conditional expressions follow for estimates of ˇ and �2 (Andrianakis
and Challenor 2011):

Ǒ D .HTA�1H/�1HTA�1f .D/ (8.5)

O�2 D
1

n � q � 2
.f .D/ � H Ǒ/TA�1.f .D/ � H Ǒ/ (8.6)

Although this approach neglects the uncertainty around values of ˝, it is sug-
gested that this uncertainty is not significant compared to that for other quantities.
Full details and examples can be found in Andrianakis and Challenor (2011) and on
the MUCM website (MUCM 2011).

Alternatively, full MCMC sampling approaches can be used to estimate the
posterior distributions of the unknown hyper-parameters (Gramacy 2005). Direct
maximisation of the multivariate normal likelihood for all parameters is also often
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used, particularly in machine learning contexts (Rasmussen and Williams 2006;
Boukouvalas 2010). To estimate the nugget parameter �2, following Roustant et al.
(2012, Appendix A2) we introduce an additional parameter ˛ which determines the
proportion of the total variance �2 D �2 C �2 that is explained by the inputs. The
covariance function thus becomes (ibid):

v.xi; xj/ D O�2

(

˛ exp

(

�

kX

lD1

!l.xil � xjl/
2

)

C .1 � ˛/IiDj

)

(8.7)

where, as before, IiDj is an indicator variable that equals 1 if i D j and 0 otherwise.
Note that now ˛�2 D �2, while .1� ˛/�2 D �2. The proportion ˛ can be estimated
by including it in the set of parameters estimated by maximising the distribution in
Eq. 8.4.

Repeated runs at each design point can help gain better estimates of ˛, although
the potential for doing so is limited by a desire to minimise the size of the correlation
matrix A, and thus computation time. Repeated points are treated in exactly the
same way as any others in the design; correlations between repeats will take the
maximum possible value of 1� ˛ (with a solitary run’s correlation with itself being
1 by definition). Using only single points can lead to difficulty in disentangling
the stochastic variance and input-related variance, and multi-modal likelihoods
can ensue (Andrianakis and Challenor 2012). However, the validation procedures
described below can help choose between competing modes. Alternatively, the
approaches of Ankenman et al. (2010) and Boukouvalas (2010) provide a more
robust method for including stochastic variance in emulators by fitting Gaussian
processes to the mean and variance separately, estimating these moments at each
point from a repeated sample.

8.4.3 Predicting New Quantities

One immediate advantage of the Gaussian process approach is that once the
parameters are estimated and the posterior distribution of the function f is obtained,
new estimates of simulator outputs are very easy to obtain, a particular advantage
if the simulation is slow to run. As discussed, the marginalisation of the �2 and
ˇ parameters mean that the predictive distribution at any collection of points is a
multivariate T distribution with n�q degrees of freedom. Conditional on the training
sample and the hyper-parameter estimates, the posterior mean of this distribution
for simulator outputs at the new point x is just the result of matrix multiplication
(Oakley 1999):

m?.x/ D h.x/ˇ C t.x/TA�1e (8.8)

where m?.x/ denotes the posterior mean function; t.x/ the correlation between the
new point x and the elements of the training set D; and e is the difference between
simulator outputs f .D/ and the mean prediction h.x/Tˇ. This allows the analyst or
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modeller to get a complete picture of the parameter space very easily. Furthermore,
the uncertainty induced by using the emulator as an estimate of the simulator is
readily evaluated as well, so this source of uncertainty is not lost (Oakley 1999):

v?.xi; xj/ D O�2fc.xi; xj/ � t.xi/
TA�1t.xj/ (8.9)

C.h.xi/
T � t.xi/

TA�1H/.HTA�1H/�1.h.xj/
T � t.xj/

TA�1H/Tg

where v?.xi; xj/ is the posterior covariance between points xi and xj and H is the
matrix of basis function generated by h.D/. Whilst the variance function above is a
complicated-looking function, it is simple to evaluate as again it only requires linear
algebra.

8.4.4 Uncertainty Analysis

The emulator, once built, can also be used for an uncertainty analysis, which looks at
how much uncertainty in the output is being induced by the set of inputs X (Oakley
1999). This is particularly important in predictive, real world applications of ABMs
where we might wish our simulation to inform decision making. Some model inputs
might be based on noisy estimates from real world data, others may be given priors
that reflect our subjective assessment of their probable values (Werker and Brenner
2004). In either case, we would like to quantify this lack of knowledge by treating
these inputs as random variables with some assumed probability distributions. The
uncertainty analysis propagates this uncertainty through the emulator, and takes it
into account in providing estimates of the simulator’s mean and variance (Oakley
1999).

An orthodox Monte Carlo approach to this problem would be to repeatedly
sample from the input distributions, run the simulator at each point, and examine
the resulting distribution on the output (Saltelli et al. 2004). However, this is
computationally expensive, as many simulation runs are required to get a good
approximation of the output distribution (O’Hagan 2006). An alternative approach is
to use the fitted emulator to conduct the Monte Carlo analysis instead, as it is many
orders of magnitude faster in generating predictions (MUCM 2011). Even better,
however, is that for inputs with normally distributed priors and squared exponential
covariance functions, the work of Haylock (1997) and Oakley and O’Hagan (2004)
provides analytical expressions for the relevant integrals of the emulator output over
the input uncertainty, allowing easy computation of the posterior expectation of the
simulation output, the variance of this estimate, and the expectation of the simulator
variance.4

4Barton et al. (2014) and Xie et al. (2014) also suggest approaches whereby input uncertainty can
be propagated using meta-models in order to obtain output distributions.
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To summarise, assuming that G.:/ is the distribution function of the random input
variables X, then the mean EŒf .X/� and variance V D VarŒf .X/� of the distribution
of output f .x/ taking into account the input uncertainty are (MUCM 2011):

EŒf .X/� D

Z

X
f .x/dG.x/

VarŒf .X/� D EŒf .X/2� � fEŒf .X/�g2

EŒf .X/2� D

Z

X
f .x/2dG.x/ (8.10)

The analytical expressions for these integrals are given in MUCM (2011).

8.4.5 Sensitivity Analysis

The purpose of a sensitivity analysis is to understand how the model output responds
to changes in inputs. Historically, these have been conducted by assessing the
change in output for small changes in input at some specified point of interest (a
local sensitivity analysis) (Saltelli et al. 2004). The partial derivatives of the function
in question approximated at this point are often used for this purpose (ibid). This
is problematic in the case where the whole input space is potentially of interest,
particularly if the model is non-linear, in which case the derivatives at one point are
not representative of the rest of the input space (Saltelli et al. 2008). Thus global
measures of model sensitivity that summarise the behaviour of the outputs across
the input space are to be preferred (ibid).

Although there are various methods for conducting a sensitivity analysis (Saltelli
et al. 2004, 2008), variance-based methods provide a way to utilise emulators to
maximise efficiency (Oakley and O’Hagan 2004). Sensitivity analysis is defined by
Saltelli et al. (2004, p. 45) as “the study of how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty
within the model input”. This definition provides a link to the uncertainty analysis
described in the previous section: a method for finding the expectation of the total
uncertainty due to inputs in our model – the variance Varff .x/g. The sensitivity
analysis methods described below aim to partition this uncertainty between inputs
(Oakley and O’Hagan 2004).

The principal variance-based measure used in this chapter is the sensitivity
variance Vw, where w here identifies the input or collection of inputs which we are
interested in apportioning variance to MUCM (2011). This measures the reduction
in overall variance that would result from knowing the value(s) of xw (ibid):

Vw D Varff .x/g � EfVar.f .x/jxw/g

D VarfE.f .x/jxw/g

D EfE.f .x/jxw/
2g � Eff .x/g2 (8.11)
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Dividing by the total variance induced by the inputs V D Varff .x/g, obtained
from the uncertainty analysis, we get a scale-invariant sensitivity index Sw D Vw=V
(Oakley and O’Hagan 2004). When the set of inputs w contains only one input,
we obtain the main effect for that input. Reductions obtained for combinations
of inputs reflect the joint (interaction) effects (Oakley and O’Hagan 2004). All of
these sensitivity measures can be estimated through Monte-Carlo or Quasi-Monte-
Carlo sampling of the output (Sobol 2001), but the job is made considerably easier
by the use of emulators. The expectations of the conditional variances for input
subsets are given in closed form given the emulator parameters in MUCM (2011),
again assuming normal priors on the inputs and squared exponential correlation
functions.

Sensitivity analysis can be an extremely useful tool in analysing ABMs and
assessing their robustness. Firstly, just knowing which inputs are important in a
simulation and which are not is helpful in understanding the processes involved –
if a simulation is not sensitive to a given parameter, then that parameter can safely
be ignored (Grimm and Railsback 2005). Secondly, given that ABMs may require
assumptions regarding the values of some parameters due to lack of data, finding
that outputs are not that sensitive to changes in such parameters helps justify these
modelling choices (ibid). Thirdly, understanding which inputs are contributing most
to uncertainty helps target where to gather more information in order to increase
the precision with which we can estimate outputs of interest (Oakley and O’Hagan
2004).

8.5 Worked Example

Building on the work conducted in Bijak et al. (2013), we now present a brief
example of the use of emulators to examine the behaviour of a simple ABM of
partnership formation. The model in question is a re-implementation of the Wedding
Ring model of Billari et al. (2007), with the addition of demographic data for
the UK. In particular, we introduce fertility and mortality data from 1950–2011,
together with a starting population taken from UK census data (see Bijak et al. 2013,
for data sources). The model itself aims to show how aggregate age-at-marriage
patterns can be built up from the effect of social pressure on individual partner
search intensities (Billari et al. 2007).

8.5.1 Model Description

The focus of this section is on explaining the use of the emulator, but a brief
description of the model follows in order to aid understanding. A fuller exposition
can be found in Bijak et al. (2013), as well as in the original paper by Billari
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et al. (2007), and the model code is available at https://www.openabm.org/model/
3549/version/2/view. Individuals within the simulation reside on a ring and have a
number of ‘relevant others’ who form their social network. The proportion of these
others who are married enters a function that determines the radius within which an
individual searches for partners. The sigmoid shape of this function is controlled by
two parameters a and b.5 An additional parameter ‘spatial distance’, or sd controls
the distance from within which individuals can draw social network members.

We analyse here a single output quantity, the average proportion of agents
married over the course of the simulation. The results presented here differ slightly
from those presented in previous work, as a larger starting population is used,
and a Latin hyper-cube sample rather than a grid sampling design defined the set
of input points. As the output data is a proportion, transformations might have
been considered to ensure the predicted values remain bounded between Œ0; 1�.
However, given that the output data does not approach either bound, the data was
left untransformed (Gelman et al. 2014).

8.5.2 Input Design

Firstly, a training set was obtained by generating a Latin hyper-cube sample of 200
design points, each consisting of three values, one for each simulation input. Design
points were not repeated in this case, although doing so may improve the estimation
of the ˛ parameter. An additional 50 points were obtained for the purposes of
validating the emulator. Following the recommendations in MUCM (2011) and the
discussion in Challenor (2013), these consisted of 25 additional space filling points,
chosen to maximise distance from the existing points, and 25 points relatively
close to the original sample. Such choices increase the information gained from the
validation sample, as they better test the estimated values of both the correlation and
variance parameters (Challenor 2013). The simulation was then run at all of these
points, obtaining 200 training set input and output pairs, and a further 50 validation
pairs. Note that the Latin hyper-cube sample is generated to lie between Œ0; 1�, and
so must be scaled for purposes of input to the simulation. First, a range of possible
input values must be specified for each parameter, representing our best guess (prior
knowledge) of what the most extreme reasonable values for these parameter might
be. Then the following transformation is applied to each Latin hyper-cube sample
point to get to the required scale:

bi D xi.highi � lowi/C lowi (8.12)

5In Bijak et al. (2013) and Billari et al. (2007), the respective parameters were ˛ and ˇ, however, to
avoid confusion with the emulator mean coefficients and correlation parameters, a and b are used
here.

https://www.openabm.org/model/3549/version/2/view
https://www.openabm.org/model/3549/version/2/view
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Table 8.1 Parameter estimates

Parameter Estimates

ˇ D .ˇ0; ˇa; ˇb; ˇsd/ .0:707 �0:322 �0:231 0:005/

˝ D .!a; !b; !sd/ .31:090 46:153 0:368/

�2 0:00436

�2 0:00018

where bi is the ith simulation input; xi the corresponding Latin hyper-cube sample
input in the range Œ0; 1�; and highi and lowi represent the relevant range endpoints
for that input.

8.5.3 Emulator Fit

A Gaussian Process Emulator was subsequently fitted to the training data. Note
that the original Œ0; 1� scale input design was used in fitting the emulator, in order
to ensure the roughness parameters could be estimated accurately and compared
easily. The difference in scale must be taken into account later when interpreting
the parameters. The R Statistical Computing Language was used for all estimation
(R Development Core Team 2015), and the code used is also provided on the
website of this book.6 To estimate the emulator hyper-parameters, the mode of the
joint marginal likelihood of the roughness parameters and the hyper-parameter ˛
(Eq. 8.4) was first found numerically using the built-in R function optim. Several
starting points were trialled to avoid a local maximum being chosen. Values of ˇ, �2

and �2 follow given these hyper-parameters, and the full emulator is obtained. The
values of the fitted parameters are given in Table 8.1. The four ˇ parameters refer
respectively to the intercept and the coefficients of the mean function for each of
the input dimensions. The three ! parameters refer to the roughness of the Gaussian
process across each dimension; the high values for the a and b parameters indicate
that the output becomes uncorrelated (changes) quickly for small changes in the
inputs for those parameters.

8.5.4 Validation

Before we can be confident that our emulator accurately represents our simulator,
we should attempt to check its predictions against the validation dataset. Bastos
and O’Hagan (2009) propose several metrics to assess emulator validity, two of

6Hankin (2005) and Roustant et al. (2012) have produced R-based toolkits to fit Gaussian processes
that have influenced the code produced for this chapter. The former only deals with deterministic
simulations, however.
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Fig. 8.1 Plot of standardised residuals at validation points

which are reported below. Emulator predictions and variances are obtained for
the validation input points, and standardised residuals calculated by dividing the
difference between the mean emulator prediction and the observed simulation value
by the standard deviation predicted by the emulator: these are displayed in Fig. 8.1.

The standardised residuals appear to be relatively reasonable; most lie within the
range Œ�2; 2�. The two that perform less well lie on the ‘phase transition’, which
is often difficult to accurately represent. Metrics such as standardised residuals that
consider each error independently do not take into account the correlation between
residuals implied by the Gaussian covariance structure. This can be problematic if
two output points which the emulator considers to be highly correlated have errors
in opposite directions; individually the errors may appear OK, but when considered
together they represent a mismatch between the emulator and the simulator. The
Mahalanobis distance can better represent emulator validity taking this into account,
and is calculated through the formula (Bastos and O’Hagan 2009):

MD D .ycv � E.f .Xcv///
T.V.f .Xcv///

�1.ycv � E.f .Xcv/// (8.13)

where ycv indicates the outputs for the m validation points, and E.f .Xcv// and
V.f .Xcv// represent the emulator mean and variance estimates at these points,
calculated from Eqs. 8.8 and 8.9 respectively. This value, multiplied by .n �

q/=.m.n � q � 2//, can be compared to the quantiles of an F-distribution with
m D 50 and n�q D 200�4 D 196 degrees of freedom (Bastos and O’Hagan 2009).
Small values indicate under-confident predictions, in that the predictive distributions
are too wide given the actual differences between simulator and emulator, while
high values indicate the opposite. For this emulator, the 95 % interval for the
relevant scaled F-distribution are Œ30.9, 74.9�, and the calculated Mahalanobis
distance is 38.6, suggesting the emulator is reasonably accurate in quantifying its
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Fig. 8.2 Plot of output by a with 90 % predictive interval. Parameters b and sd held constant at
the centre of their ranges

uncertainty about unknown points. In practice, high values for Mahalanobis distance
are sometimes seen, suggesting a poorly fitting emulator that is overconfident about
its ability to represent the simulator. In such cases, outputs at more design points
could be collected in order to attempt to obtain a better fit (Bastos and O’Hagan
2009).

8.5.5 Predictions, Uncertainty, and Sensitivity Analyses

Using the fitted emulator, predictions are obtained for a range of values for the
first two parameters, using the formulas in Eqs. 8.8 and 8.9. These predictions
are displayed in Figs. 8.2 and 8.3 with the corresponding 90 % predictive intervals
resulting from uncertainty due to simulation stochasticity and emulator uncertainty.
The bivariate predictions are displayed in Fig. 8.4 – the fitted emulator allows
many predictions to be generated easily for such plots. Looking at the shape of
the function, it is suspected that quite high-order polynomials would be needed to
approximate it to a reasonable degree of accuracy, in part justifying the decision to
use Gaussian Process Emulators rather than simpler meta-models.

To conduct uncertainty and sensitivity analyses, assumptions about the distribu-
tion of the inputs must be made. For convenience, we assume normal distributions
around the midpoint of the input ranges, with variances chosen to assign positive
probability over the input range but only small probabilities beyond this, so that
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Table 8.2 Sensitivity analysis

a b sd

Main effect 0.357 0.461 0.001

Interaction with a 0.176 0.001

Interaction with b 0.176 0.002

Interaction with sd 0.001 0.002

xi 	 N.0:5; 0:02/. In other applications, these distributions could reflect substantive
prior knowledge. In such a case, the uncertainty analysis allows us to infer how
input uncertainty feeds through to uncertainty about outputs. Given the chosen
distributions, then, the predicted mean simulator output was 0.33508, and the
variance of this estimator was close to 0. The expectation of the overall simulator
variance was 0.00874. Similarly, a sensitivity analysis is conducted using the
methods discussed in Sect. 8.4.5, to examine how sensitive the simulator is to
changes in the various inputs, given the probability distributions of these inputs.
The findings are summarised in Table 8.2.

As previously reported in Bijak et al. (2013), the parameters a and b controlling
the way marriage search intensity responds to social pressure are most significant
in causing changes in outputs. The numbers in the table can be interpreted as
proportions of total output variance (excluding the stochastic variance associated
with the nugget) explained by each input or combination of inputs. The first row
refers to variance associated with each input in isolation, while the subsequent rows
refer to interactions. The figures above the diagonal may not sum to one, as a small
amount of residual variance is found in the three way interaction, and not reported.

8.6 Extensions

Emulators are most useful in more complicated situations than the simple example
described above. Most notably, emulators can assist with problems with higher-
dimensional input spaces, and when simulations take a long time to run. Further-
more, the basic framework sketched above can be extended in a number of ways.

8.6.1 Multidimensional Output

Only single-output emulators have been discussed above, but it is possible to extend
emulation output into multiple dimensions as well (Kleijnen and Mehdad 2014).
One option is simply to assume independence between simulator outputs, and
construct separate emulators for different outputs (Vernon et al. 2010), but it is
also possible to include correlation structures between different outputs (MUCM
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2011). However, an experiment by Kleijnen and Mehdad (2014) suggests that the
extra difficulty of constructing multivariate emulators does not have a pay-off in
terms of better output predictions. On the contrary, in fact, they find that multivariate
emulators tend to perform less well than multiple univariate equivalents.

Alternatively, it is possible to collapse a series of output values of the same type
into one single output with an additional input dimension. For instance, multiple
population size outputs over time can be reduced to one output by considering time
as an additional input dimension. However, this can be problematic, as by doing
so assumptions are made about the correlation structure across time that may be
inappropriate (MUCM 2011, page labelled AltMultipleOutputsApproach).

8.6.2 Probabilistic Calibration

Another promising application of emulators for demographic ABM is in the area of
calibration of simulation parameters. Two techniques for doing this are described
below, although it should be noted that calibrating a model does not guarantee that
it is correct or accurate (Oreskes et al. 1994). Rather, it merely makes statements
about likely values of inputs given the structure of the simulation. The structure of
the simulation itself still needs to be justified, either by recourse to theory or by
micro-level validation (or, if possible, both) (Rossiter et al. 2010). Full details on
the estimation are rather involved, and are not described here. Instead, the aim of
the following is to make the reader aware of what can be achieved and the possible
utility of such methods for demographic ABMs.

The idea behind calibration is that we can learn about ‘true’ values of unobserved
inputs by examining what values of these inputs result in simulation outputs that
match observations (Kennedy and O’Hagan 2001). This requires several additional
steps. Firstly, input parameters must be divided into two groups. The first are termed
‘control’ or ‘location’ parameters, and these are known for every empirical data
point we collect. Examples of such parameters are physical coordinates, which are
generally known for every empirical measurement taken. In a demographic context,
age and time might be considered location parameters, but care must be taken
when modelling time in this way, as the Gaussian correlation structure may not
be appropriate in this context (MUCM 2011; Rasmussen and Williams 2006).

The other set of parameters are those to be calibrated. These are not observed
in reality, but are assumed to have true values for which we would like obtain a
probability distribution. For ABMs in demography, such parameters might govern
agents’ decision-making processes: for example, one parameter might control
aversion to risk.

Calibration proceeds by relating simulation outputs, as approximated by the
emulator, to empirical values by means of a calibration equation (Kennedy and
O’Hagan 2001):

z.xloc/ D f .xloc; �/C d.xloc/C ".xloc/ (8.14)
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where xloc represents a point in the location parameter space, z.x/ denotes the
observation of the process being simulated at x, f .x/ indicates the simulator output,
" the observation error, and � the ‘true values’ of the calibration parameters. The
other element of the calibration equation is the model discrepancy term d.xloc/. This
represents the mismatch between the simulator and reality given that the simulator is
run at the ‘true’ values of the calibration parameters. This captures the idea that the
simulator is a simplification of reality and may not match observed values exactly
even if it were fully calibrated. This discrepancy function over the location inputs
is often modelled as another Gaussian process, priors for the parameters of which
must be elicited from the relevant modellers and domain specialists (Oakley 2002).

Given the above framework, the vector of simulation outputs and observations
can be modelled as a function of the emulator and discrepancy function, and MCMC
methods can be employed to obtain a probability distribution for the ‘true values’
of the calibration parameters (Kennedy and O’Hagan 2001; Qian and Wu 2008;
MUCM 2011). This further allows calibrated prediction of reality at new points,
taking into account the estimated distribution for the calibration inputs (Kennedy
and O’Hagan 2001).

8.6.3 History Matching

A related and slightly simpler approach to restricting the range of input param-
eters is history matching (Vernon et al. 2010). This technique makes use of an
‘implausibility’ metric that gives values to input points that reflects how likely these
points are to have generated the observed empirical output, given our uncertainty
about simulation outputs, model discrepancy, and measurement error (ibid). A fitted
emulator is used to calculate this quantity for a large range of possible calibration
parameter values. Formally, the implausibility is defined (ibid) as

I.x/ D
.z.x/ � E.f .x///2

Var.f .x//C Var.d.x//C Var.".x//
(8.15)

Next, any values that fall beyond a reasonable cut-off point (Vernon et al. (2010)
suggest values of I.x/ > 3), are rejected as implausible. This generally greatly
reduces the ‘non-implausible’ area of the input space. An additional ‘wave’ of
simulation runs from the reduced space can then be taken, and a new emulator
built. These steps can be repeated until a plausible subset of the input space is
identified. This process of iterative refocusing can act to calibrate the simulation,
although unlike in the previous step, a distribution over the calibration parameters is
not obtained. This approach seems well suited to demographic ABM applications,
as it is relatively intuitive, and it has been used to good effect in stochastic traffic
simulations (Boukouvalas et al. 2014).
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8.7 Discussion

This chapter has discussed both the design and analysis of agent-based demographic
models. By treating ABMs as computational experiments and therefore choosing
efficient designs appropriate to the complex nature of ABMs, an understanding
of the simulator’s behaviour can be obtained with relatively few runs (Urban
and Fricker 2010). The adoption of relatively simple and easily generated Latin
hyper-cube samples is recommended as a default, as is standard in much of the
numerical computation literature (Santner et al. 2003). Gaussian Process Emulators
may assist with the process of examining an agent-based demographic model,
and with assessing sensitivity to various parameters as a check of robustness,
as well as an aid to understanding. Input uncertainty can be propagated through
the emulator to understand its effect on outputs through uncertainty analysis.
Various calibration techniques enabling the provision of probability distributions
for unknown parameters may be used to perform calibrated prediction, taking into
account all possible sources of model uncertainty.

Gaussian Process Emulators have some restrictions that must be borne in mind.
Firstly, they assume that both stochastic simulation uncertainty and uncertainty
about untried inputs can be represented by Gaussian distributions, conditional on
the data and hyper-parameters (MUCM 2011). Transformations may help to address
these problems, but these make interpreting the output distribution more problematic
(ibid). Secondly, a related implication of this assumption is that the output is
smooth and not discontinuous. If a model features a very sharp discontinuity
in the parameter space, it may struggle to be fully captured by the Gaussian
Process Emulator (Gramacy 2005). As touched upon, the complex nature of ABMs
means that discontinuities may occur. However, because Gaussian processes are
constrained to lie close to the observations, they will at least show the location
of sharp changes in outputs, as can be observed from the predictive plots in
Figs. 8.2 and 8.3, even if these may be over-smoothed. Analytical expressions
for the derivatives of Gaussian processes, given in Oakley (1999), may help to
quickly identify the location of discontinuities and phase transitions, as these
will be characterised by high gradients (cf. Luke 2007). Sequential Experimental
Designs may also help understand behaviour around discontinuities. Improvement
in predictive performance in these areas may be sought by rebuilding an emulator
using an additional round of runs at locations chosen by some criteria that favour
areas with high gradients.

Another limitation is that the emulators described above assume that stochastic
variance inherent to the model is homoskedastic. This may not be a suitable
assumption for some ABMs. By following the framework set out by Kersting et al.
(2007), Boukouvalas (2010), and Ankenman et al. (2010) it is possible to relax this
assumption by using paired emulators, one representing the simulator mean and
the second the simulator variance. Additionally, Rasmussen and Williams (2006)
describe the use of different link functions that generalise the Gaussian Process
Emulator approach used in this paper in the spirit of the Generalised Linear Models
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framework (Nelder and McCullagh 1972). Use of these extensions to the base model
can further advance the utility of the emulation approach described above.

Despite the limitations discussed above, Gaussian Process Emulators allow
modellers to understand the behaviour of their simulator and the uncertainties
relating to it in an efficient and coherent manner, and provide tools for sensitivity
analysis and calibration. The balance of flexibility, uncertainty quantification and
interpretability give Gaussian processes advantages over both more flexible but
opaque models such as neural networks, as well simpler but more rigid polynomial
based meta-models – although much depends on the nature of the simulation under
study.
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Chapter 9
How to Describe Agent-Based Models
in Population Studies?

Jürgen Groeneveld, Anna Klabunde, Michelle L. O’Brien, and André Grow

9.1 Introduction

Agent-based modelling is a powerful method to investigate fundamental research
questions that would be very hard to address by more established frameworks
such as statistical models, equation-based models or reduced-form microsimulations
(Epstein 2006). Whenever local interactions, adaptation or individual variability are
considered to be important, agent-based simulation models seem to be a very useful
addition to the methodological toolbox (Grimm 1999). Over the last years, such
factors have increasingly moved into focus of population and migration research (cf.
Courgeau et al., Chap. 2, in this volume). As a consequence, agent-based models are
increasingly employed in these areas (Aparicio Diaz et al. 2011; Billari et al. 2007;
Biondo et al. 2013; Espindola et al. 2006; Fent et al. 2013; Filho et al. 2011; García-
Díaz and Moreno-Monroy 2012; Grow and Van Bavel 2015; Hassani-Mahmooei
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and Parris 2012; Hills and Todd 2008; Klabunde 2016; Kniveton et al. 2011, 2012;
Rehm 2012; Reichlová 2005; Silveira et al. 2006; Smith 2014; Todd et al. 2005;
Walsh et al. 2013).

Despite the advantages of the method, it has been discussed in the literature that
progress and theory building in agent-based modelling has been hampered by the
ad hoc nature of many agent-based simulations and incomplete and intransparent
model descriptions (Müller et al. 2014; Richiardi et al. 2006; Waldherr and
Wijermans 2013). Reproducibility is frequently not granted based on the published
model description, which precludes the efficient build-up of a pool of baseline
models about topics such as migration, fertility, or marriage.

To address these issues, guidelines, techniques and protocols have been
suggested to describe agent-based and individual-based models (Grimm et al.
2006, 2010; Müller et al. 2013; Richiardi et al. 2006). The ODD (Overview,
Design, and Details) protocol is an example for such a prescriptive verbal model
description which originated in ecology (Grimm et al. 2006, 2010). Prescriptive
verbal model descriptions fulfil a range of purposes such as understanding,
communication and model comparison. The choice of the kind of model description
is purpose dependent (Müller et al. 2014), that is, the purposes of communication
to stakeholders on the one hand and to researchers aiming at quantitative model
replication on the other hand require different kinds of model descriptions. For
policy makers, agent-based models are a promising addition to their toolkit because
of the possibility to perform policy experiments within the model. However, for the
model results to seem trustworthy to a non-modeller, it is not as much provision of
the code that matters, but a comprehensible and clear verbal model description.

It is important to understand what the current standard in model description is
and which means of communicating the model structure and processes are currently
being used in demography. This can yield best practice for future model description,
which will eventually improve acceptance and usage of agent-based models, and
possibly even the models themselves. In this chapter, we contribute to this aim
by summarizing how agent-based models for human migration and population
studies are currently described. Subsequently, we introduce the reader to the ODD
C D protocol as suggested by Müller et al. (2013) and illustrate its usefulness
for addressing some of the shortcomings of existing model descriptions by using
an example of one agent-based model on circular migration (Klabunde 2016). We
highlight that the use of such standardized descriptions can aid the understanding
and increase reproducibility of agent-based models by readers. We have chosen the
ODD C D (Overview, Design, Details C Decisions) protocol because the original
ODD protocol became a standard in the description of agent-based ecological
models and the ODD C D seemed to be a suitable extension for agent-based
models where human decisions are explicitly modelled. Both the model developer
and the first author of this paper prepared an ODD C D description based solely
on the published natural language description of the model. This exercise helped
us identify common pitfalls in model description and revealed how the published
model description could have been improved upon had the ODD C D been used in
the first place.
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The remainder of this chapter is structured as follows: in Sect. 9.2 we reflect on
the particularities of ABMs in population studies as compared to other disciplines
and the requirements concerning the model description which arise from these. In
Sect. 9.3 we review the descriptions of all agent-based models on human migration
which have been published until 2014, as well as other prominent examples of
agent-based demography models in order to identify whether a common standard
has emerged. Section 9.4 contains a description of the main features of the ODD
C D protocol and our experiment using this protocol. We discuss our findings in
Sect. 9.5.

9.2 Requirements Concerning the Model Description for
Demographic ABMs

To make models most useful for the target audience, it is important that model
developers are specific and transparent about their modelling aims, the modelling
approach, and the efforts taken to verify and validate the simulation model
(Waldherr and Wijermans 2013). While this is true in general, we want to discuss
the requirements for the model description in population studies in more detail.
Population studies take a special place within the social sciences. Much more than
other fields of social inquiry (e.g., sociology or social psychology), population
research is data-driven and inherently empirical (Bijak et al. 2014; Morgan and
Lynch 2001; Courgeau et al., Chap. 2, in this volume). This is also reflected in the
use of agent-based modelling in this area. That is, in many areas of social research
agent-based models are mostly used for conducting abstract thought experiments
and researchers often rely on ‘stylized facts’, given a paucity of relevant data for
initializing and validating simulation models (Boreo and Squazzoni 2005). Models
in population studies, by contrast, increasingly draw on existing, large scale datasets
(e.g., census data and social surveys) to create semi-artificial populations and use
this data also for validating outcomes (e.g., Bijak et al. 2013; Grow and Van
Bavel 2015; Williams et al., Chap. 6, in this volume). The question of how much
data should be used in calibrating and validating a simulation model is therefore
often of greater importance in population studies than it is in other areas of social
inquiry (Klabunde and Willekens 2016; Silverman et al. 2011). A model description
should thus make it transparent where and which data have been used in model
development, calibration and validation.

The three main subject matters of demography are fertility, mortality and
migration because they together determine the size and composition of a population
(Courgeau and Franck 2007). However, fertility at the population level as well as
migration flows and stocks of migrants are the result of decisions at the individual
level, namely the decisions to migrate and to have a child. Mortality is indirectly
influenced by individual behaviour through decisions that have an impact on health.
Examples are the decisions to smoke or to exercise. These individual decisions are
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http://dx.doi.org/10.1007/978-3-319-32283-4_6


240 J. Groeneveld et al.

often difficult to model with more traditional methods than agent-based modelling,
in particular when decisions involve thresholds, if-then rules, and path-dependence
(Bonabeau 2002). The flexibility of agent-based models allows implementing
different types of decision making which have been shown to be empirically good
predictors of behaviour. Here an important distinction between demographic ABMs
and those in economics becomes evident: whereas the behavioural assumption in
economic ABMs is usually utility maximization, in line with the current paradigm
of the discipline, the variety of different decision rules in demographic ABMs is
far greater (for a recent review, see Klabunde and Willekens 2016). Because of
this variety in options to choose for modelling decision-making it is important to
dedicate sufficient attention to describing the decision-making rules and to provide
reasons why a particular rule was chosen.

Another important property of modern population studies is the recognition that
demographic phenomena are highly interdependent (Courgeau and Franck 2007;
Courgeau et al., Chap. 2, in this volume). One reason for this interdependence is
that an individual takes demographically relevant decisions not independently from
other decisions taken previously or from those planned for the future. Moreover,
individuals are influenced by other individuals, such as the members of their
own cohort or the members of the social networks they are part of. Migration
and childbearing are very prominent examples of decisions which are regularly
influenced strongly by the behaviour of others in the social network. Information
as well as social and financial capital is transmitted through migrant networks.
Migrants help new migrants and potential migrants during job search and provide
assistance when first settling in. The prospect of this financial and emotional
support decreases the perceived cost of migration and can thus convince a person
that migration is a feasible option (see e.g., Haug 2008; Munshi 2003). Many
demographic ABMs are built with the explicit aim of understanding the nature of
such social influence processes (e.g., Aparicio Diaz et al. 2011; Billari et al. 2007;
González-Bailón and Murphy 2013). Thus, demographic ABMs must be described
in such a way that the kind of social influence modelled, e.g. whether and what kind
of social network was used, becomes clear.

9.3 Model Descriptions in Agent-Based Simulation Models
of Population Studies

As indicated above, modelling decision-making in demographic contexts with
agent-based models is a relatively new emerging field. To assess the current practice
in describing agent-based models in this context, we selected models which (i)
have been published, (ii) are located in the field of population studies and/or
migration and (iii) are clearly agent-based. We employ the concept of “agent” as
defined by Macal and North (2010): agents are discrete entities which are capable
of making autonomous decisions. They have goals, at least implicitly, and their

http://dx.doi.org/10.1007/978-3-319-32283-4_2
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behaviour is rule-based. There is some kind of explicit interaction. There are
no equations which govern the overall social structure on the macro level. This
definition is in line with many other definitions in the literature (e.g., Epstein 2006;
Tesfatsion 2006). Our focus on population studies encompasses models that centre
on demographic outcomes such as births, deaths, marriages, and migration (cf.
Demopædia 2015). Furthermore, we define migration as relocations which involve a
change of residence beyond an administrative boundary. Thus, models of residential
mobility are excluded, i.e. mobility initiated by a desire for better housing.

For a large subset of models fulfilling all three inclusion criteria in the area
of migration research (Filho et al. 2011; Biondo et al. 2013; Espindola et al.
2006; García-Díaz and Moreno-Monroy 2012; Hassani-Mahmooei and Parris 2012;
Ichinose et al. 2013; Klabunde 2016; Kniveton et al. 2011, 2012; Rehm 2012;
Reichlová 2005; Silveira et al. 2006; Smith 2014; Walsh et al. 2013; Williams
et al., Chap. 6, in this volume) we review the model description (Table 9.1). To
our knowledge this selection comprises all agent-based migration models published
until 2014 and two more recent papers by two authors of this chapter. In addition,
we have included some prominent examples of agent-based population models
(Aparicio Diaz et al. 2011; Bijak et al. 2013; Billari et al. 2007; Fent et al. 2013;
González-Bailón and Murphy 2013; Hills and Todd 2008; Noble et al. 2012; Todd
et al. 2005) that are widely cited (Table 9.2). Especially, we checked whether the
authors have provided a graphical overview of their model, whether they have
followed a specific protocol for model description, whether they have provided a
table of the used reference parameter values and/or equations to describe decision
rules, whether they have provided pseudo code or even published the complete
source code and/or additional information in (online) appendices. Graphical model
overviews, for example Unified Modelling Language (UML) charts (Rumbaugh
et al. 1999), are often helpful for illustrating the scheduling of simulation runs
and thereby can facilitate the re-implementation of a simulation model. However,
especially when the scheduling deviates from a linear flow, providing pseudo
code that details the exact order in which different procedures are executed can
facilitate understanding of the exact modelling processes. Furthermore, providing
a list with parameter values and/or equations facilitates understanding the models’
basic processes (Grimm et al. 2006).

Our survey revealed that some authors use graphical model representations
which differ strongly in style, ranging from technical UML class diagrams to
illustrative simulation snapshots. Simple diagrams are used to illustrate behavioural
assumptions, as in Kniveton et al. (2011) or Filho et al. (2011). More complicated
UML diagrams are mostly used to illustrate processes as in Hassani-Mahmooei and
Parris (2012) and Walsh et al. (2013), or as class diagrams for an overview of the
model structure as in Kniveton et al. (2011). Examples for illustrative snapshots are
found frequently, such as in Reichlova (2005), Noble et al. (2012) or Rehm (2012).
They are usually used in spatially explicit models. Snapshots can be supplemented
by illustrative components to show, for example, possible agent movements on a
grid, as illustrated in Ichinose et al. (2013). An example of an animated simulation
run can be found in Fent et al. (2013).
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In only one paper authors followed a particular protocol, namely Hassani-
Mahmoeei and Parris (2012) following the ODD protocol. Some authors provide
additional information on the web, especially the ODD (C D) protocol, including
Klabunde (2016)1 and Williams et al. (Chap. 6, in this volume).2 In all other studies
authors came up with a case specific tailored model description structure. In one
paper algorithms were introduced by pseudo code (Filho et al. 2011), and four
papers (Bijak et al. 2013; Biondo et al. 2013; Klabunde 20161; Noble et al. 2012)
provided the model code online.3 One study provided an overview of decision rules
in a table together with the main reference, which worked very well in aiding the
understanding of the model (Hassani-Mahmooei and Parris 2012). Some authors
(e.g., Biondo et al. 2013; García-Díaz and Moreno-Monroy 2012) provided tables
with the parameter values or ranges used as baseline for the model. Ideally, this
should be supplemented by the data sources used (if any) for determining those
parameter values or ranges. Smith (2014) does this.

However, apart from very simple models usually not all parameter values are
provided but only those considered important or meaningful by the author(s). This
becomes evident when reading the verbal description carefully, and at the latest
when trying to replicate a model. This can be problematic because the workings of
the model can depend crucially on parameters which do not carry a lot of meaning
in terms of model content, but which can alter the results dramatically. A sensitivity
analysis (for examples see Aparicio Diaz et al. 2011; Billari et al. 2007 and also
the chapters by Grow (Chap. 7) and by Hilton and Bijak (Chap. 8) in this volume)
should be performed to determine the parameters that do have a large impact on
model results (Thiele et al. 2014). If such an analysis was performed and the
reported parameters chosen based on such an analysis, the author should say so.
There may be cases where the large number of parameters does not allow for a
systematic representation and sensitivity analyses. This problem can be mitigated
if the code and all necessary files to run the model are provided in e.g. an online
appendix or on a website or repository such as OpenABM.4

We found it very helpful when equations were used to describe the decision rules,
as in Rehm (2012) or Bijak et al. (2013). Developers may find this superfluous, but in
fact they are the only unambiguous way to communicate what the agents actually do.
This can be supplemented by graphs of important functions. Smith (2014) illustrates
the nonlinear way that the migration probability is assumed to depend on rainfalls
by plotting the function.

Sometimes narratives might be helpful additions to better understand the model,
for example to narrate the actions of a specific agent in the model similar to
commenting actions of a specific actor in a sport event (Millington et al. 2012).

1At https://www.openabm.org/model/3893/version/3/view
2At www.bit.ly/NepalABM
3We have not approached any of the authors for provision of the source code, which they might
provide upon request.
4www.openabm.org

http://dx.doi.org/10.1007/978-3-319-32283-4_6
http://dx.doi.org/10.1007/978-3-319-32283-4_7
http://dx.doi.org/10.1007/978-3-319-32283-4_8
https://www.openabm.org/model/3893/version/3/view
http://www.bit.ly/NepalABM
http://www.openabm.org/
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This allows authors to switch between the micro and the macro level of the model
and helps to better understand the origins of the model dynamics. Biondo et al.
(2013), Fent et al. (2013), Noble et al. (2012) and partly also Ichinose et al. (2013)
are examples of such a narrative approach.

From this collection of ABM models it becomes clear that inclusion of graphical
summaries of the model increases readability (see also Schwabish 2014). Further-
more comparability of models would be significantly increased if authors applied
the same or at least a similar structure of model description, which would enable the
reader to find relevant information in an efficient manner and to allow for replication.
In the next section, we discuss the ODD C D protocol as one way of describing
agent-based models in a standardized manner.

9.4 Example Application of the ODD C D Protocol

9.4.1 The ODD C D Protocol

The ODD C D is a protocol for prescriptive verbal model descriptions (full details
can be found in Müller et al. 2013). ODD C D starts with the overview section,
which should inform the reader about the purpose (e.g., what is the main research
question that the modellers want to address with their model?), the entities (e.g.,
what types of agents are in the model?), the temporal and spatial scales (e.g., how do
simulation steps map onto real-life time?), the process overview and the scheduling
of the model (e.g., in the form of pseudo code or UML charts) in a concise manner.
The overview section is followed by the design concepts sections where the author
should report on the following ten design concepts that are ordered from general to
more detailed information:

1. ‘Theoretical and empirical background’: The aim here is to put the work into
context with existing theories, concepts and data.

2. ‘Individual decision making’: Here the author should provide details on the
decision making submodel such as the object of decision making, whether
agents are able to adapt their behaviour, or whether social norms or cultural
values play a role in the decision making process.

3. ‘Learning’: Here it should be reported whether learning is considered in the
model and briefly described.

4. ‘Sensing’: Includes the information that the agents can sense and therefore
have available for their decision making. Also information whether the sensing
process is erroneous and what costs are associated with sensing should be
provided here.

5. ‘Prediction’: In the prediction design concept the authors should briefly
describe if and what an agent can predict and in addition whether these
predictions are systematically biased.
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6. ‘Interactions’: This concept reports on the kind of interactions between agents.
7. ‘Collectives’: The collectives concept reports on the potential formation of

collectives in the model.
8. ‘Heterogeneity’: Heterogeneity reports on the variability of agents, e.g. if there

are several types of agents that behave in different ways.
9. ‘Stochasticity’: Mechanistic simulation models often contain stochastic pro-

cesses. In this concept it should be reported which processes are affected by
stochastic processes.

10. ‘Observation’: Finally the author should summarize what kind of information
is collected and stored during the simulations that are used for the analysis.

Not all ten design concepts will be applicable for all models and therefore non-
applicable concepts do not have to be addressed in the individual ODD C Ds.
The main contribution of the more recent ODD C D protocol, above and beyond
the older and perhaps better-known ODD (Grimm et al. 2006), is the addition of
the ‘individual decision making’ design concept and the corresponding specific
guiding questions that help describe the assumptions underlying decisions that the
agents make. These questions are: On what assumptions is/are the agents’ decision
model(s) based? Why is/are certain decision model(s) chosen? If the decision
model is based on empirical data, where do the data come from? At which level
of aggregation were the data available? What are the subjects and objects of the
decision-making? Are multiple levels of decision making included? Do agents
pursue an explicit objective or have other success criteria? How do agents make
their decisions? Do the agents adapt their behaviour to changing endogenous and
exogenous state variables? Do social norms or cultural values play a role in the
decision-making process? Do spatial aspects play a role in the decision process? Do
temporal aspects play a role in the decision process? To which extent and how is
uncertainty included in the agents’ decision rules? As outlined above, one of the
major aspects that distinguishes demographic agent-based models from models in,
e.g., ecology or even economics is that researchers have a large pool of decision-
making theories to choose from (see Klabunde and Willekens 2016 for a discussion).
Moreover, temporal aspects are likely to play a part, since demography is often
concerned with the timing of events, such as birth or marriage. Spatial aspects may
also be important, especially in models of social influence. The results of models
often crucially depend on the assumptions made with respect to decision-making.
Therefore, in our applied example in the next section we use the ODD C D instead
of the ODD.

The ODD C D finishes with the “Details” section where information on the
initialisation of the model, the input data and submodels should be provided. The
submodels should be described in such detail that allows replication. Since the
details sections can be very long it is often feasible to include only the overview and
design concepts part in the main text and provide the details in an online appendix.
Guiding questions are provided for each entry in the ODD C D to support the user
to compile the model description (see Table 1 in Müller et al. 2013).
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9.4.2 Applied Example

To illustrate the usefulness of protocols of prescribed verbal language descriptions
of agent-based simulation models, we have described a simulation model of circular
human migration (Klabunde 2016) following the ODD C D protocol. In particular,
we have described the model from two perspectives: from the modeller perspective
who, of course, knows her intentions, and the reader’s perspective who only had the
published material at hand (without consulting the source code). The modeller’s
version of the ODD C D can be found on the platform OpenABM at https://
www.openabm.org/model/3893/version/3/view, along with the model code and all
files necessary to run the model.5 Klabunde (2016) is a model of circular labour
migration of Mexican migrants to the US. Migration flows are largely determined
by the structure of a network evolving over time. The model can replicate the
distribution of migrants across cities in the US and the distribution of numbers of
trips of migrants and thus offers an explanation for the observed patterns.

We compared the two ODD C Ds to investigate how the non-modeller com-
prehended the model based solely on the narrative (non-ODD C D) description
provided in Klabunde (2016). We aimed to explain why the differences in com-
prehension between the modeller and reader arose. The experiment also served to
identify some pitfalls in model description in general, and with the ODD C D in
particular.

The experiment suggested that letting someone who has not originally imple-
mented the model write the model description in a formal way helps to identify
redundancies, or details that the programmer forgot to report since she may have the
perception that these details are obvious and self-explanatory. For an independent
reviewer it is sometimes easier to write a clear model description since she is not
burdened with the history of the project and the technical difficulties. Thus, in joint
projects, it might be sensible to have a person different from the programmer write
the model description. In this particular case, the modeller sometimes did not stick
to a consistent terminology in her non-ODD C D description (e.g. salary and wage).
In verbal descriptions in scientific papers it is tempting to vary the wording in order
to not have a lot of repetitions and make the text sound better. This should be
avoided, because it comes at the cost of comprehensibility of the model description
and confused the first author of this paper. Furthermore, some of the essential
procedures were not explicitly mentioned in the ODD C D of the programmer,
because technically they were subroutines of other procedures.

While using the ODD C D instead of a non-formal verbal description did
improve completeness and clarity of model description considerably, it is important
to mentally separate the meaning of different procedures and their implementation
in the code. Seemingly simple processes may require many lines of code, whereas
on the other hand there are smart algorithms and existing libraries which can render

5A working paper version of the verbal description is available at http://www.rwi-essen.de/
publikationen/ruhr-economic-papers/603/

https://www.openabm.org/model/3893/version/3/view
https://www.openabm.org/model/3893/version/3/view
http://www.rwi-essen.de/publikationen/ruhr-economic-papers/603/
http://www.rwi-essen.de/publikationen/ruhr-economic-papers/603/
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seemingly complicated processes lean and short. This should not influence model
description, which should be guided by logically separable processes only. In a
similar vein, in the ODD C D attributes should be assigned to the entities that they
logically belong to, which is not necessarily implemented in exactly the same way
in the code. In our example, “wage” was an attribute of firms in the code, not of
workers. However, the ODD C D description became clearer when “wage” became
an attribute of workers as well to better explain what happens in the model. This
problem can be avoided if the ODD C D is not written after the model has been
implemented, but before, as a starting point after conceptual model development and
just before implementation. Protocols such as the ODD C D serve as a check list
and the structured documentation of the model may help to organize the architecture
of the entities and the whole implementation. This is still helpful when the model
has to be adjusted after the first implementation. Updating the ODD C D will be
simple and this process will not outweigh the benefits from having the ODD C D
prior to the first implementation as a checklist and blueprint.

9.5 Discussion

We think that the ODD and the ODD C D are good starting points, however the
structure of these protocols will be part of the scientific discourse and additions
will be suggested. The current form of the ODD C D protocol will likely benefit
from some rearrangements regarding the order in which things are reported. For
example, sensing should be reported before decision making to be in line with the
order how these processes are usually implemented. Furthermore, there should be
more room given to networks; so far there is only one minor point on collective
networks. Instead, there could be more specific guiding questions about the role and
structure of the network, which would greatly improve the usability of the ODD
C D for demographic applications. Finally, resources of the empirical information
used in the model should not exclusively be asked for in respect to decision making,
but for all empirical information used. Also, the filling in of the different sections
should not be mechanical, but should always occur with the reader in mind. The
reader cannot be expected to read the description several times, so one should make
sure that every section is entirely clear given only the previous sections. Therefore,
specific information might go into the overview section to enable the reader to fully
understand the subsequent paragraphs.

In Sect. 9.2 we identified requirements that a model description should fulfil
in particular for demographic ABMs: the description should be clear with respect
to the usage of data, the implementation of decision-making, social influence and
networks, and it should be written keeping in mind that non-modellers are not
readily able to read source code. The ODD C D is helpful in addressing most of
these special needs.

The subsection “Input Data” in the “Details” section provides room for empirical
underpinnings of the model. Additionally, we find it very helpful when authors
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provide data sources for parameters and time series in the form of overview tables.
Regarding the description of decision-making, the ODD C D protocol provides
clear and extensive guiding questions about the way decision-making was modelled
and thus fulfils this requirement. As we already pointed out above, the ODD C D
could be improved if more specific guiding questions regarding the type of network
used were included. As long as this is not the case the modeller has to remember
to do so, since “linked lives” and social influence are a feature of almost all ABMs
in population studies and their exact implementation is a crucial prerequisite for
model replication (see also Bijak et al. 2013). If a network is used, graphical
representations of the network or of stylized parts of it can aid understanding
considerably.

Finally, the ODD C D is a verbal description which nevertheless follows a
rigorous structure and is thus a good middle path for researchers who need more
information than just a quick verbal overview, but who do not want to or are not
able to read source code.

The ODD and ODD C D protocols have been criticized as being ‘overdone’
for simple ABMs (Grimm et al. 2010) and our own experience from discussions
at workshops and presentations is that researchers are often concerned that such
descriptions are too long for standard publication in journals. However, we agree
with Grimm et al. (2010) that the benefits of standardized descriptions also hold
for simple models and there is always the possibility to publish the ODD C D as
an online supplement, either on a personal webpage, or, preferably, on a platform
such as OpenABM. This way of using the ODD C D is particularly useful in the
case when several publications make use of the same model. The researcher can
then refer to the same online location of the code description, and can keep the
description in the actual paper concise. Changes to previous model versions can be
pointed out in the paper and in updated versions of the ODD C D. We suggest this
will facilitate to realize that the same model was used in several publications, which
is much more efficient than having to go through a lengthy model description in
each paper, only to realize that the model is already known. Many journals offer the
possibility to provide an online appendix as well, which allows including the ODD
C D as an appendix to each publication associated with one particular model. Of
course the researcher should also be explicit about whether or not she is using the
same model in different publications. Additionally, authors of increasingly complex
models can use these online repositories, such as OpenABM or Github6, in order to
streamline manuscripts for publication. Online repositories may hold all equations,
graphical representations, code, and protocol for a model, while the manuscript
may discuss a few examples and highlight general processes. This allows for a
more flexible and legible text, while also providing all the information necessary
for replication.

However, detailed prescriptive verbal model description results in additional
workload. Whether this additional workload will be beneficial in contrast to well-

6https://github.com

https://github.com/
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documented source code will strongly depend on the audience and their willingness
to consult source code. For example, the ODD C D protocol, especially the
overview part together with a graphical representation such as activity diagrams,
may offer an attractive tool for regulatory purposes which are not in place yet. For
formal regulation processes, such as the authorisation process of new plant protec-
tion products, the responsible panel at the European Food Safety Authority (EFSA)
published an opinion paper were they demand sufficient model documentation for
mechanistic effect models and suggest but do not prescribe the use of standard
protocols (EFSA PPR Panel 2014). For researchers, an online appendix with the
ODD C D, UML diagrams and pseudo code greatly facilitates reproducibility.
Furthermore, all parameter values used and their sources should be provided. In
essence, if models should be used by other researchers or stakeholders they have to
be trusted and made easily available. In general, the details provided in the “Details”
section of the ODD C D protocol cannot be too detailed. Whatever can be expressed
in a formal way should be, to ease reimplementation and to avoid confusion. Of
course the source code should be published whenever this is possible as part of
good modelling practice. We recommend writing the ODD C D description before
starting to program because it helps separate the logical model structure from the
structure of the code.

A further criticism that might be raised is that standardized descriptions are not
flexible enough and might require the addition of new sections specific to the model
at hand.7 The necessity of adding such sections reduces the level of standardization
of the description but we do not think that this negates the benefits from the
standardized description of the remaining model parts. In fact, the occurrence of
such modifications in the context of demographic research might help to further
improve the standard and to tailor it to the requirements of demographic simulation
models. The explicit inclusion of decision processes in the original ODD protocol
(leading to the ODD C D standard) is an example of such an extension based on
existing research experience. Above, we have indicted similar extensions that might
be necessary to further enhance the usefulness of the ODD C D protocol in the
context of agent-based computational demography.

In this chapter, we have discussed the current practice in describing demographic
agent-based models and have argued that standardized descriptions – in particular
the ODD C D protocol – have the potential to help making model descriptions
more transparent and to facilitate their reimplementation. Yet, model description is
just one part of the modelling process or cycle (Schmolke et al. 2010). There are
also promising initiatives (Grimm et al. 2014; Richiardi et al. 2006) to account for
that and to provide frameworks to guide modellers beyond pure model description
through the whole modelling process including model building, implementation,
testing, simulation experiments, analysis, and validation. Discussing such compre-
hensive guidelines is out of the scope of this chapter, but we hope that our work

7We thank an anonymous reviewer for pointing this out.
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contributes to furthering the development of common standards in the description
of demographic agent-based models.
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Chapter 10
The Decision to Emigrate: A Simulation Model
Based on the Theory of Planned Behaviour

Frans Willekens

10.1 Introduction

Many people desire to emigrate but few do leave their country, resulting in relatively
low levels of international migration (e.g. Esipova et al. 2011; Bilsborrow 2012; van
Dalen and Henkens 2012; Abel and Sander 2014; Moses 2015). That observation
motivated this paper. I present a decision model that reproduces the observation. A
combination of the theory of planned behaviour (Ajzen 1985; Fishbein and Ajzen
2010) and the process character of the emigration decision offers an explanation
for the discrepancy between the desire to emigrate and emigration. To show that,
the theory of planned behaviour (TPB) is extended to a process theory of planned
behaviour and the process theory is applied to model the emigration decision. The
model is validated by assessing its ability to predict stylized facts of international
migration.

The theory of planned behaviour states that intentions predict behaviour. Inten-
tions are shaped by the subjective evaluation of the outcomes of the behaviour
(behavioural belief), the individual’s perception of normative pressures (normative
beliefs), and the individual’s perception of facilitators and obstacles that influence
the performance of the behaviour (control beliefs). Actual access to resources
moderates the effect of intention on behaviour. Fishbein developed the theory in
the 1970s as the theory of reasoned action and Ajzen extended the theory and called
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it the theory of planned behaviour.1 The theory has inspired migration researchers
for decades (e.g. de Jong and Fawcett 1981). Today one observes a growing interest
in computational models of decision making that implement the theory of planned
behaviour (see e.g. Kniveton et al. 2011, 2012; Orr et al. 2013; Willekens 2013;
Klabunde 2014; Klabunde and Willekens 2016).

The focus of the paper is on the decision to emigrate. Emigration is a relocation
of the usual residence to another country. Two features of the decision-making are
highlighted: the sequential nature of decision-making and the uncertainties involved.
The sequential nature of the decision process has two implications. First, the
decision should be modelled as a process consisting of several stages. Second, the
theory of planned behaviour should incorporate time in order to account for the
time it takes to form behavioural, normative and control beliefs. That calls for an
extension to a process theory of planned behaviour. Uncertainty is an important
factor in the decision to emigrate because many events and conditions that affect
the decision process and its outcome cannot be predicted with certainty. To properly
account for the uncertainties, the decision process should be modelled as a stochastic
process.

The model proposed in this paper is a multistage stochastic process model. In
each stage, an individual has two options. He or she may continue to the next stage
or may decide to drop out of the decision process, which implies a decision to stay
in the country. Dropout is an important part of the model and a necessary condition
to reproduce empirical regularities in emigration. Both systematic factors (e.g.
personal attributes and context) and random factors affect the decision process and
its outcome. Discrete (binary) choice models are used to account for the uncertainty.
The duration in a stage at time of continuation or dropout is random too. Possible
values of the duration are given by a probability distribution, known as waiting time
distribution. A common waiting time distribution is the exponential distribution,
which follows from the assumption that the rate of leaving a stage is constant. The
exponential distribution is used in this paper, but the normal distribution and the beta
distribution are used too. The parameters of the waiting time distribution depend on
systematic factors that may vary. In the model presented in this paper, parameters do
not vary with age as in most models of migration. The age profile of emigration is
an outcome of the model instead. The age at which an individual emigrates depends
on how long an individual stays in each of the stages of the decision process.

The proposed model is referred to as a simulation model and not an agent-based
model. The strength of the model is the operationalization of the theory of planned
behaviour into a stochastic process model of action. The emphasis is on the stages
of the process, the time in each stage, and the random factors involved. Individuals
have the capacity to act independently and make their own choices. The influence of
others on the action is through social norms and support. The social interactions that
generate norms and support are not considered explicitly. Hence, the model is not

1See Fishbein and Ajzen (2010, p. 18 ff) for a historical perspective on the theory of reasoned
action and theory of planned behaviour.
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an agent-based model. An extension of the model to an agent-based model requires
that social norms and support emerge as outcomes of interactions between agents.
Viewing the model as a simulation model is also pragmatic. A discussion of whether
the model meets the criteria of an agent-based model would shift the attention
away from the strength of the model. The contribution of this paper to agent-based
modelling is the operationalization of an established theory of action into a model
of action that goes beyond earlier models that have used the same theory of action.
The model proposed in this paper extends earlier work by recognizing that actions
are outcomes of random (decision) processes.

In this paper, a single systematic factor is considered for illustrative purposes:
skill level. An individual has one of two skill levels: low/medium or high. The
precise definition of each skill level is not important to illustrate the model. The
cut-off point could be at completed secondary education. Individuals with not more
than completed secondary education have a low/medium skill level. A high skill
level requires a completed tertiary education. The simulation starts with a cohort of
15-year olds. The skill level at age 15 is the skill level an individual ever develops.

Some parameters of the model are derived directly from data on international
migration, more particularly from the Gallup World Poll 2005 on the desire
to emigrate. Most parameters are however plausible guesstimates; they are not
estimated from data because data do not exist. The validity of the model is
determined by its ability to reproduce stylized facts on international migration.
Three facts are singled out, two relate to the level of emigration and one to the age
pattern. The first stylized fact is the annual emigration rate, recently estimated by
Abel and Sander (2014). The second is the proportion of the world population that is
living in a country different from the country of birth. That figure is published in the
World Migration Report issued by the International Organization for Migration. The
third is the typical age profile of migration. That profile was documented extensively
in the literature (see e.g. Rogers and Castro 1981; Raymer and Rogers 2008). If the
model is a plausible description of the emigration decision process and reproduces
these facts, the model passes the test of validation.

The structure of the paper is as follows. The TPB is reviewed in Sect. 10.2.
The theory is extended into a process theory of decision-making in Sect. 10.3.
The process theory of planned behaviour has much in common with other theories
that view decision making as a process with stages. To place the process TPB in
context, Sect. 10.3 includes brief descriptions of other process theories of decision-
making. The main part of Sect. 10.3 is the multistage process model that implements
the TPB. The model is a multistate event history model. States are stages and
events are transitions between stages. In each stage of the decision process, an
individual may decide to continue to the next stage or decide to stay in the
country and hence abandon the decision process. Continuation and drop-out are
competing transitions to which the theory of competing risks apply (Marley and
Colonius 1992). The parameters of the model are based on the few observations on
international migration available, augmented by guesstimates. The data used in the
paper are presented in Sect. 10.4. The parameters of the process model are presented
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in Sect. 10.5. Section 10.6 presents the outcomes of the model and compares the
outcomes with observations on emigration. A discussion of model development and
findings is presented in Sect. 10.7.

10.2 The Theory of Planned Behaviour

The TPB was developed by Ajzen as an extension of Fishbein’s theory of reasoned
action (Fishbein and Ajzen 2010). The theory of reasoned action states that the best
predictor of behaviour is the individual’s attitude toward the behaviour along with
the social norms that influence the likelihood of performing the behaviour. The key
determinants of attitudes are the individual’s subjective expectations about salient
consequences of the behaviour. In this section, the theory is reviewed, with a focus
on emigration as the relevant behaviour.

Ajzen (1985) added perceived and actual control to the theory of reasoned action,
in order to capture the influence of perceived obstacles and constraints that might
prevent behaviour from occurring. The theory of planned behaviour is summarized
in Fig. 10.1. Three beliefs determine an intention to act, i.e. emigrate. The first is
the subjective belief that emigration is beneficial to one’s future well-being. It is the
basis for a positive attitude (ATT) towards emigration. The subjective belief may be
an outcome of a conscious calculus, but may also be a result of limited and biased
information received from others (emigrants and non-migrants). The second is the
subjective belief that significant others approve of the emigration. That normative
belief determines the subjective norm (SN). The third is the subjective belief that
one has the capabilities to remove obstacles and to make emigration a success. That
control belief determines the perceived behavioural control (PBC). ATT, SN and
PBC are predictors of the intention to perform a behaviour. The stronger ATT, SN
and PBC, the stronger the intention.

Many individuals who intend to emigrate do not leave their country because they
lack the actual capability to remove barriers and take advantage of opportunities. In
the remainder of this section, the beliefs are discussed in more detail. The discussion
is more in-depth than is required for the modelling in the next section of the paper. In
the last section of the paper, I will draw on the discussion to recommend directions
of research aimed at a theory-driven simulation model of emigration. In the theory
of planned behaviour, attitudes, subjective norms and perceived behavioural control
act independently on intentions. They do not interact.

Background factors influence the formation of beliefs, and, indirectly, intentions
and behaviour. They include personal characteristics and societal factors (Fig. 10.1).
They determine differences in behavioural, normative and control beliefs.

For illustrative purposes, one background factor is included in the model
presented in this paper: skill level. The skill level is an outcome of education and
training.

Attitudes towards emigration, subjective norms and perceived and actual
behavioural control are now discussed in more detail.
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Fig. 10.1 Schematic presentation of the theory of planned behaviour (Source: Adapted from
Fishbein and Ajzen (2010, p. 22))

(a) Attitude towards emigration

Emigration may produce several outcomes. Let i denote an outcome of emigra-
tion. Individuals associate various qualities or characteristics with an outcome, some
are good and some are bad. By associating qualities with outcomes, individuals form
a belief about the likely consequences of emigration and these beliefs determine the
attitude towards emigration. The belief that emigration results in outcome i is the
subjective probability that emigration produces outcome i. It is denoted by pi. The
strength of a belief in outcome i is expressed as a likelihood: the probability that,
according to the individual, emigration produces outcome i. The subjective value of
outcome i to an individual is denoted by ei. Beliefs and subjective values determine
the attitude towards emigration. The behavioural attitude (BA) is the sum of beliefs
that emigration produces specific benefits and costs, weighted by the subjective
values the individual attaches to these benefits and costs. It is the expected value
of emigration:

BA D
X

i
piei

The belief that emigration produces outcome i may depend on the time frame an
individual considers. In the short term, costs are likely to exceed benefits, but in
the long run, perceived benefits may outweigh costs. Townsend and Oomen (2015)
found that emigrants take short-term risks to secure long-term benefits.
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The evaluation of an outcome i depends on inborn needs and on values persons
hold, i.e. what they consider important in life. De Jong and Fawcett (1981)
distinguish eight values that influence the decision to migrate.

Behavioural beliefs are related to reasons or motives for or against emigration.
Reasons against emigration received considerably less attention than reasons in
favour of emigration (push and pull factors). Beliefs are formed as a result of
direct observation, education, word of mouth, media attention, and other factors.
Personality and emotions are background factors that influence how people go
about to form beliefs in the likelihood of particular outcomes and the valuation of
outcomes. Van Dalen et al. (2005) found that the intentions to emigrate out of Africa
are largely driven by optimism surrounding the net benefits of emigration.

In the process model presented in this paper, the effects of the factors that
determine BA are summarized in a binary score. The score summarizes effects
of many factors that influence the benefits and costs of emigration. If the value
is one, the individual develops a positive attitude towards emigration. If the value is
zero, the individual does not consider emigration to be beneficial. The model can be
extended easily if data on these factors are available. The factors may be included
in a binary logit model or a binomial logistic regression model, which produces a
BA score between 0 and 1. The rationale for using a binary score in this paper is to
specify a model that is as simple as possible and as complicated as necessary.

(b) Subjective norm with respect to emigration

A positive attitude towards emigration, i.e. a belief that emigration is beneficial,
is a necessary condition for developing an intention to emigrate. It is not a sufficient
condition, however. Many people expect to benefit from emigration but few intend
to emigrate. Individuals who consider emigration may be sensitive to group norms,
social pressure and social approval. Let i denote an important referent (individual or
institution). Important normative referent individuals for the decision to emigrate are
one’s partner, family members, and friends. A partner who supports the emigration
decision can act as an important stimulus (Van Dalen and Henkens 2012). Opinion
leaders may be important too. Ajzen (2006) provides guidelines for eliciting salient
normative referent individuals.

The influence of referent i on the individual depends on the individual’s
perception of what i wants, e.g. the normative belief, and on the individual’s
motivation to comply. The subjective norm (SN) with respect to emigration is the
sum of the subjective evaluations of different social norms regarding how to behave,
weighted by the individual’s motivation to comply:

SN D
X

i
cini

where ni is the belief of what referent i wants and ci is the motivation to comply.
Subjective norms change over time. As people grow older, referents change and
individuals are more likely to comply with some social norms and reject other
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norms. Subjective norms also change because of the diffusion of values, ideas and
norms in society.

The formation of normative beliefs is a learning process and different forms of
learning contribute to it. Following Montgomery and Casterline (1996) normative
beliefs are acquired by learning from others and the influence through which some
individuals exert control over others, by virtue of their power or authority. Ajzen
and Klobas (2013) distinguish between normative beliefs based on what others say
and those based on what others do. Some societies develop a culture of emigration
(see e.g. Cohen and Sirkeci 2011; Kõu and Bailey 2014). In these societies,
individual normative beliefs evolve to shared (collective) normative beliefs and
become institutionalized. The Philippines, Mongolia and Ireland developed a culture
of emigration. Some agricultural societies developed a culture of migration to
maintain farm size. Stark et al. (2009) propose the idea that a culture of migration
(programmed migration) has an evolutionary edge, i.e. that some populations might
develop a genetic disposition to migrate.

In this paper, the effects of the factors that determine SN are summarized in an SN
score between 0 and 1. If data on the determinants of SN are available, a binary logit
model or logistic regression can be used to produce an SN score between 0 and 1.

(c) Perceived control over emigration

Individuals who consider emigration beneficial and who experience the social
pressure to emigrate will not develop an intention to emigrate unless they believe
that they have the resources to remove the obstacles to emigration and to make
emigration a success. The perceived behavioural control (PBC) is the extent to
which people believe that they are capable of performing a given action. It takes into
account the availability of skills, opportunities, constraints and resources required
to perform the action. The concept is closely related to Bandura’s (1977) concept
of self-efficacy and the sociological concept of agency. Ajzen (2002) indicates
that PBC can be viewed as the combined influence of two components: self-
efficacy (a person’s judgment about being able to perform a particular action) and
controllability (the extent to which the performance of the action is up to the
actor) (see also Fishbein and Ajzen 2010, pp. 165 ff). Self-efficacy depends on
available resources and the belief that barriers can be removed, while controllability
depends on the presence of obstacles. Resources include financial means, but
also human capital, social capital and cultural capital. Obstacles include distance
(physical and cultural distance), institutional barriers (visa requirements, lack of
portability of pensions and health insurance, lack of recognition of professional
qualifications, etc.) and cultural barriers (differences in language, religion, etc.).
Belot and Ederveen (2012) consider cultural barriers and their effect on migration
between OECD countries. They find that cultural barriers do a much better job
in explaining the pattern of migration flows between developed countries than
traditional economic variables such as income and unemployment differentials.
Adsera and Pytlikoa (2012) study the role of language differences and language
diversity in shaping international migration. They develop an indicator of language
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distance and find that migration rates increase with linguistic proximity. People who
lack the necessary language skills are less likely to emigrate. Isphording and Otten
(2014) develop measures of linguistic distance to study the impact of linguistic
distance on language acquisition of immigrants. The lower the distance, the easier
it is for immigrants to acquire the language of the destination country.

Let i represent a control factor that facilitates or inhibits emigration and let oi

denote the power of control factor i to facilitate or inhibit emigration. The control
belief qi is the subjective probability or belief that control factor i is present. The
perceived behavioural control (PBC) is the sum of control beliefs, weighted by their
perceived power:

PBC D
X

i
qioi

Consider an example. To an individual who considers emigration beneficial, visa
and residence permit are control factors. If an individual does not want to emigrate
unless he or she has a valid visa and does not want to emigrate to a country unless he
or she has a valid residence permit, then oi is large. If an individual intends to enter
a country illegally (without a visa) or intends to overstay a tourist visa (without a
residence permit), the factor is not important, i.e. oi is low. The perceived control
over visa requirement and residence permit depends on the individual’s subjective
belief that he/she will get it, which is denoted by qi.

In this paper, the perceived behavioural control is summarized in a PBC score
that can be negative or positive. A logit model is used to convert the score to a value
between 0 and 1.

(d) Actual control over emigration

Emigration intentions are good predictors of emigration if perceived behavioural
control is matched by actual behavioural control (ABC). Whether intentions predict
behaviour depends in part on factors beyond the individual’s control (Ajzen 2011).
People who overstate their capabilities to overcome barriers and to take advantage
of opportunities and facilitators of migration are likely to remain in the intention
stage. A necessary condition for intentions to predict actions is that individuals have
actual control over their behaviour, i.e. they are able to behave as intended. Using
longitudinal data on individuals in the Netherlands who expressed an intention
to emigrate, Van Dalen and Henkens (2013) found that emigration intention is a
good predictor of emigration. About one third (34 %) of respondents who stated
an intention to emigrate actually emigrated within a 5-year follow-up period. De
Groot et al. (2011) found, in a study of residential mobility, that people with a
strong intention to move are almost four times as likely to move than people with a
less strong intention to move. De Jong (1994) reviewed several studies on internal
migration in different countries and found that people who intend to migrate are
three to four times as likely to migrate in a specified time frame than people
who intend to stay. If intentions predict behaviour, we have an effective prediction
method. Intentions are often not good predictors, however. De Jong (1994) gives
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several reasons for the inconsistencies between intentions and behaviour. The
difference between perceived and actual control is one factor. Another is the
insufficient detail in measuring intentions in a survey, a reason for inconsistency
also stressed by Ajzen (2011). A third reason is changing intentions. If the interval
between measurement of intentions and recording of behaviour is large, intentions
may have changed. Intentions and behaviour should therefore be measured in a
relatively narrow period of time (see also Ajzen 2011).

The theory of planned behaviour indicates that the reason for a weak performance
of intentions as predictors of behaviour is the discrepancy between perceived
behavioural control and actual behavioural control. The difference is expected to be
smaller when PBC is measured closer to emigration. The closer to the emigration,
the more accurate an individual’s perception of self-efficacy, barriers, resources and
support is likely to be (Sheeran et al. 2003). Ajzen uses PBC as a proxy measure
for actual behavioural control, and notes that it can substitute for control when an
individual’s perceptions are realistic (for a discussion, see Darnton 2008).

In this paper, the ABC score is the PBC score plus a random factor. The random
factor measures the uncertainty individuals with a given PBC score have about the
actual resources they need to be able to emigrate.

10.3 The Process Theory of Planned Behaviour

In this section the theory of planned behaviour is extended to a process theory of
decision making. A process theory of decision making emphasizes the temporal
dimension and stresses that decision making involves a progression through a
number of stages. A number of process theories of human decision making exist.
Two theories are briefly reviewed. The process theory of planned behaviour is
presented next. In the process theory of planned behaviour, attitudes, intentions and
behaviour are treated as stages of a decision process. The theory is operationalized
in a stochastic process model with several stages and transitions between the stages.
Stages do not need to follow a fixed sequence. For instance, if an individual
considers emigration because significant others expect him or her to emigrate (e.g.
to follow an education, to get a job, or to join a partner for marriage), then SN
triggers the interest in emigration. In this paper, I consider a fixed sequence.

10.3.1 Process Theories of Decision Making: A Brief Review

The two process theories reviewed are the Rubicon model and the ‘horse race’
model. Process theories not covered include Janis and Mann (1977), the transtheo-
retical model of action (Prochaska et al. 1992) and the dynamic model of job search
(McCall 1970).
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Heckhausen (1991) presents a phase model of action, known as the Rubicon
model. It originated in developmental psychology. The model postulates that
individuals pursue development goals to produce the life course they want and
mobilize cognitive and other resources to achieve the goals. Developmental goals
are anticipated end states. They motivate an individual to act in a particular way. The
process of action consists of several stages. It begins with the awakening of a wish to
achieve a goal and ends after the goal has been accomplished. The initial Rubicon
model (Heckhausen 1991) distinguishes four phases: the predecisional phase, the
postdecisional but pro-actional phase, the actional phase and the postactional phase.
Transitions between the phases are discrete shifts rather than gradual changes (hence
the reference to Rubicon). Later the Rubicon model was extended to a theory of
motivation that covers the entire life span (Heckhausen et al. 2010; Heckhausen
and Heckhausen 2010). Kley (2011) adopted the Rubicon model to study the
migration decision process. Coulter (2013) used Kley’s process model to study the
abandonment of desires to relocate in the context of residential mobility. He is one
of the few authors who stress the need to study the decision to stay, which is the
abandonment of the desire to relocate. Abandonment is as much an expression of
agency as the decision to move. Kõu and Bailey (2014), in a study of the emigration
of highly skilled Indians to the Netherlands and the UK, embed the phase model of
action in the life course and show how individuals and families mobilize different
types of resources and access different networks to assure that emigration produces
the desired outcome.

The ‘horse race’ model is an offspring of random utility theory. Random utility
models account for the stochastic variability underlying choices due to differences
between individuals, between the object of choice, and changes in choice situation.
The random utility discrete choice model predicts the probability of a choice
between a limited number of alternatives. It does not consider the time it takes to
reach a decision and it gives no insight into the cognitive process that underlies
decision making. Marley and Colonius (1992) extended the random utility model
by including the time individuals take to accumulate and process evidence in favour
of an alternative. The time, known as response time, deliberation time and decision
time, is random and follows a response time distribution, which is a waiting time
distribution. The factors that influence the choice affect the choice probability as
well as the time it takes to make a decision. The evidence accumulation model
is a simple description of the cognitive process that underlies decision-making. In
psychology, there is considerable support for the thesis that evidence accumulation
drives decision making (see e.g. Rodriguez et al. 2014; Usher et al. 2013). A
particularly useful observation, made by Marley and Colonius (1992) is the relation
between the evidence accumulation model and the theory of competing risks. The
challenge is to determine the joint likelihood of a decision (deliberation choice)
and the time it takes to make a decision (deliberation time) (see also Colonius
2001; Hawkins et al. 2014). Some decisions are taken quickly, while other decisions
take a lot of deliberation, which requires time (Kahneman 2011). For a brief and
general overview of models that account for effects of deliberation times on choice
probabilities, see Busemeyer and Rieskamp (2014). Early attempts to extend the
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discrete choice model to integrate choice probabilities and waiting times to the
decision/action include Pudney (1989) in economics. The model Pudney proposed is
a competing risk model too. The competing risk model and the theory of competing
risks have untapped potential in choice modelling.

Hybrid choice models (Ben-Akiva et al. 2002, 2012) are extensions of discrete
choice models. They introduce elements of social psychology in economic choice
models.

The above process theories distinguish several stages or phases in the process
of decision making. They originated in different disciplines and therefore seem to
differ considerably. They have important elements in common, however. First, time
is explicit and time matters. Second, stages are similar. Successive stages imply an
increased commitment to the intended action. Third, the benefit or utility of the
action is uncertain. Hence decisions are made under uncertainty. Fourth, valuations
of alternatives are subjective. They depend on inborn characteristics and one’s
values, preferences and goals. They also depend on the incomplete information
available to the individual at a point in time. Fifth, process theories seem to be
converging to a transdisciplinary theory of action; they increasingly incorporate
elements of other theories and disciplines. Several of the elements are also included
in the process model of planned behaviour, presented in the next section.

10.3.2 Process Model of Planned Behaviour

The process model originates from the theory of planned behaviour and has features
in common with process models reviewed in Sect. 10.3.1, in particular the ‘horse
race’ random utility model, the rubicon model and the transtheoretical model
of action. To be consistent with the theory of planned behaviour, the process
model should distinguish at least four stages. A person in the first stage never
considered emigration. The person leaves the state when he/she develops an interest
in emigration as a viable option or decides that emigration is not a viable option.
In the second stage, the person develops behavioural beliefs, normative beliefs
and control beliefs. These beliefs determine ATT, SN and PBC. ATT, SN and
PBC determine the intention to emigrate. Attitude (ATT) is a latent disposition
or tendency to favour or disfavour an action (Fishbein and Ajzen 2010, p. 76).
Fishbein and Ajzen use the term attitude to refer to the evaluation of a behaviour
along a dimension of favour or disfavour, good or bad, like or dislike, approval
or disapproval, advantageous or disadvantageous. A person who has developed an
intention to emigrate moves to the next stage and starts planning and preparation.
During this stage, the person needs to mobilize resources, to overcome barriers and
to take advantage of opportunities that may arise. Planning and preparation will be
successful if the person is capable of dealing adequately with control factors. In case
the actual behavioural control is deficient, the person is likely to stay. Persons who
leave the country enter the fourth and final stage of the decision process. The first
stage is denoted by ‘n’; the second stage by ‘a’, the third stage by ‘i’ and the fourth



268 F. Willekens

Fig. 10.2 Stages of the emigration decision: the process theory of planned behaviour

stage by ‘e’. The model is shown in Fig. 10.2. The model is programmed in R. The
source code is available from the author.

In the second stage, ATT, SN and PBC may act independently on intention
or they may interact. In the theory of planned behaviour, ATT, SN and PBC are
independent. Ajzen recognizes the possibility that PBC moderates the effect of ATT
and SN on intention, but that interaction effect is not a formal part of the TPB
(Ajzen 2002; Fishbein and Ajzen 2010, p. 181). The reason Ajzen has given is that
being capable of performing an action does not imply an intention to perform that
action. In the literature, PBC interactions did not receive much attention because,
in statistical models, the interaction is often not significant. Yser (2012) argues that
the limited attention to PBC interactions is a missed opportunity for advancing our
understanding of intention formation (for a discussion, see Boudewyns 2013). Fife-
Schaw et al. (2007) study the moderating effect of SN on the effect of ATT on
intention. In the process model proposed in this paper, SN and PBC are intervening
factors in the transition from attitude to intention. They moderate the effects of
attitude on intention, i.e. a positive attitude leads to an intention only if the SN
and the PBC are supportive (positive). An individual who considers emigration
beneficial may or may not develop an intention to emigrate depending on (1)
the perceptions of what significant others want and (2) the perceived available
resources.

Individuals in a given stage may be thought of as collecting information and
accumulating evidence to make a decision whether to continue the emigration
decision process or to drop out and to stay in the country (at least for the foreseeable
future). The time it takes to reach a decision depends on (a) the stage in the
decision process, and (b) individual attributes including personality traits, and
contextual (societal) factors. Continuation and discontinuation (dropout, attrition)
are competing risks. They compete to be the reason for exit from the current stage.
Simple rules govern the choice. Exceeding a threshold, as in the ‘horse race’ model
is one such rule. A similar rule is used in the process model of the TPB (see below).

The decision process depends on personal attributes. In this paper, I consider a
single attribute: skill level. As stated in the introduction, the precise definition of
each skill level is not important to illustrate the model. Skill levels are assigned to
individuals. Since we have no data on skill levels, a random draw from a theoretical
probability distribution determines the skill level of an individual.
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Skill level is a binary variable, because it has two possible values: low/medium
and high. A low or medium skill level is coded 0 and a high skill level is 1.
The theoretical probability distribution with two possible values is the Bernoulli
distribution. For each individual in the virtual population, a random number is drawn
from a Bernoulli distribution. The distribution has a single parameter p (usually
denoted as probability of success). Random draws from a Bernoulli distribution
produce 0’s and 1’s. If the number is 0, the individual is allocated a low/medium
skill level. If it is 1, the skill level is high. When the virtual population is sufficiently
large, the proportion of highly skilled is equal to the theoretical value p.

In the process model of the TPB presented in this paper, the probability that
an individual develops an interest in emigration, i.e. considers emigration, is a
parameter of the model. The age at which an individual considers emigration as
a viable option and effectively starts the emigration decision process is the age at
which he or she starts assessing the benefits and costs of emigration. The age at
which an individual enters the assessment stage is a random variable denoted by
Xa, the age at transition from stage n to stage a. The possible values of Xa and the
likelihood of each of the possible values are described by a probability distribution.
If data are available on ages at which individuals start reflecting on the advantages
and disadvantages of emigration, the distribution can be determined empirically
and the data should be used. In the absence of empirical evidence, the ages
may be inferred from a theoretical distribution. The distribution of ages at which
individuals consider emigration is essentially a waiting time distribution. Waiting
time distributions are common in survival analysis and event history analysis (see
e.g. Steele 2005; Aalen et al. 2008). They play a central role in the process model
of planned behaviour.

The waiting time distribution is a probability distribution and, as any other
probability distribution, it has three related specifications. The probability density
function gives the probability that a transition occurs at a given exact age. The
distribution function gives the probability that a transition occurs before a given
age. The survival function gives the probability that a transition does not occur
before a given age. Several waiting time distributions are documented in the
literature. The normal distribution and the logistic distribution are among them. The
probability densities of these distributions are symmetric. The normal distribution
is often justified as a limit of sums, including sums of waiting times (Central Limit
Theorem). For instance, if an individual accumulates several pieces of evidence
to determine the costs and benefits of emigration, and the accumulation of each
piece of evidence takes time, then the sum of the distributions of the durations
approximates a normal distribution. In the stochastic process model presented in
this paper, it is assumed that the age (Xa) at which individuals consider emigration,
i.e. develop an interest in emigration, and effectively start the emigration decision
process follows a truncated normal distribution (Burkardt 2014; Pudney 1989,
pp. 302 ff). A truncated distribution is used to prevent that individuals at very young
age or even negative age are selected. The age distribution implies that the rate of
exit from the first stage (never considered emigration – n) and entry into the second
stage (assessment – a) increases with age.
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Individuals in the second stage develop beliefs leading to ATT, SN and PBC.
First, consider the development of behavioural beliefs and an attitude towards
emigration. It takes time to accumulate evidence to determine whether emigration
is beneficial. That time, which will be denoted by TaC, is a random variable
with possible values described by a waiting time distribution. I assume a simple
exponential waiting time distribution, which implies a constant exit rate (by skill
level). A constant rate for individuals with similar skill levels does not mean that
the rate at which individuals complete the assessment of the benefits and costs of
emigration is constant. The rate may decline because of selection. If individuals with
skill level A accumulate evidence faster or need less evidence than individuals with
skill level B, then the share of people with skill level B increases in the population
at risk and the average rate of completing the assessment declines with time. In
the process model presented in this paper, the time a given individual k takes to
determine whether emigration has a net benefit is obtained by a random draw from
an exponential waiting time distribution with constant rate.

The direction of exit (continuation or abandonment of decision process) depends
on the probability that the benefits of emigration exceeds the costs. In the model
presented in this paper, the probability is fixed exogenously. The benefit of
emigration does not depend on cost-benefit calculations. Klabunde (2014) presents
a model in which the benefit of emigration depends on the expected future income
and the benefit derived from family reunification.

If emigration is perceived as beneficial, beliefs are developed about social
pressure to emigrate or stay and about the availability of resources. The age at which
the formation of these beliefs starts is the sum of the age at which the individual
first considers emigration and the time it takes to determine whether emigration is
beneficial. The likelihood that an individual continues to the intention stage depends
on the outcome of that belief formation and the strength of the perceived behavioural
control (PBC) and the subjective norm (SN).2 The time it takes to proceed to the
intention stage depends on PBC and SN too. Individuals with a strong belief in
their resources, strong normative belief and a strong motivation to comply, and
individuals with a strong belief in the absence of resources and with a strong
normative belief that he/she should not emigrate need less time to determine whether
they intend to emigrate or stay than individuals with moderate levels of resources
and normative beliefs. An individual with a high degree of self-efficacy, i.e. who
believes that he or she is able to mobilize resources and remove barriers, is more
likely to develop an intention sooner than individuals who doubt about their ability
to mobilize resources and support. Individuals with a strong SN to stay or a weak
SN to emigrate, and individuals with low PBC are not likely to develop an intention
to emigrate. They are more likely to abandon the decision process, and to abandon
it sooner the weaker the SN and the lower the PBC. Similarly to the ‘horse race’

2Recall that this perspective differs from that in the theory of planned behaviour. In the TPB,
attitude (considering emigration beneficial), SN and PBC act independently on intentions; the
effect of attitude on intention is not moderated by SN and PBC.
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model, the process model of planned behaviour distinguishes between likelihood of
ever developing an intention to emigrate and the timing of that intention.

Suppose we record, for each individual considering emigration beneficial, the
skill level and whether and when that individual develops an intention or decides
to discontinue the decision process. Suppose we also have SN and PBC scores. In
empirical studies, SN is usually measured on a 7-point scale from I should not to I
should. PBC is usually measured on a 7-point scale from no control and full control.
For this paper on international migration, I have no data on skill level and SN and
PBC values. The distribution of skill level in the population and the distribution of
SN and PBC scores by skill level are generated by random draws from theoretical
distributions. In other words, each individual is given a skill level and a SN and
PBC value by drawing a random number from probability distributions. I assume
that SN is a continuous random variable with few people having a very low SN,
the majority having a relatively low to medium SN and a sizable minority having
a high SN. The beta distribution is used because it is a flexible distribution, which
can produce different shapes. The distribution is defined on the interval from 0 to 1,
with 0 representing the complete absence of a subjective norm and 1 a very strong
subjective norm and a high willingness to comply. The beta distribution has two
positive shape parameters and is able to describe different shapes. The distribution of
PBC scores in the population follows a normal distribution, with mean and variance
that vary by skill level. PBC scores can be large positive and negative values. These
values are transformed to values between 0 and 1 using the cumulative distribution
of PBC values.

In principle, the distributions of SN and PBC in the population depend on several
factors. The SN score may depend on the presence of emigrants in one’s social
network and on the level of remittances received from these emigrants. The PBC
score may depend on the presence of opportunities (e.g. job offer; admission to
college) and barriers (e.g. border enforcement, cost of emigration), and on one’s
assessment of his or her access to resources to take advantage of opportunities
and remove barriers. These factors are not explicit in this paper. For a model that
incorporates these factors explicitly, see Klabunde (2014).

Individuals with very high SN and PBC are likely to develop an intention to
emigrate soon after they consider emigration beneficial. Individuals with a desire to
emigrate but with very low SN and PBC scores are likely to drop out of the decision
process and to drop out soon after developing a desire to emigrate. Individuals with
low (high) SN and low (high) PBC or with average values of SN and PBC take
more (less) time to decide whether to intend to emigrate or to abandon the decision
process. These are the persons who doubt about social support and financial and
other resources. SN and PBC scores determine the probability of choice and the
time it takes to make a choice, as in the accumulation model.

The effects of SN and PBC are combined into a single score to determine their
effect on the intention to emigrate. The effects are assumed to be multiplicative,
not additive as in the original theory of planned behaviour. A very low level of
either SN or PBC results in a low score. To obtain a high score, both SN and PBC
should be high. The score is a value between 0 and 1. SN and PBC may be weighted
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differently in computing the score. In a society where self-reliance is valued highly,
PBC receives a high weight. In societies where conformity is valued highly, SN
receives a high weight. A Cobb-Douglas utility function incorporates these desired
features (Pindyck and Rubinfeld 2013). The function is

V .SN;PBC/ D �SN˛PBCˇ (10.1)

where V is the score and ˛, ˇ and � are parameters to be fixed in simulation. V is
a random variable because SN and PBC are random variables. The parameter � is a
scaling factor. The score an individual receives depends on his or her SN and PBC
levels. The parameters ˛ and ˇ are elasticities, with ˛ the percentage increase in
score V resulting from a 1 % increase in SN and ˇ is the percentage increase in V
resulting from a 1 % increase in PBC. The model Kniveton et al. (2012) developed is
a special case of the Cobb-Douglas score model. If ˛DˇD1 and � is the proportion
of individuals that believe they can mobilize resources and remove barriers, then the
model is that of Kniveton et al. (2012).

The effect of skill level (and other covariates) on V is indirect. The skill level of
an individual influences the SN and PBC scores. Some latent characteristics may
influence the score directly. To accommodate that effect, a random effect is added
to V. Addition of a random factor results in a model similar to the random utility
model, used in discrete choice models (see e.g. Hess and Daly 2014). I do not
use discrete choice theory in the model, although one could approach the choice
between developing an intention to emigrate and discontinuation of the decision
process as a binary choice with a random utility affecting V. In the current version of
the model, an individual develops an intention to emigrate if his/her score V is equal
to or exceeds a threshold value to be estimated from data or fixed in the simulation.
Let VH denote the threshold value and Vk the score of individual k. If Vk is less
than the threshold value, individual k drops out of the decision process. Hence,
individual k’s intention to emigrate is 1 if Vk � VH and 0 if Vk < VH . The threshold
value determines the proportion of people with a desire to emigrate that develops
an intention to emigrate. Because the distribution of V in the sample population is
known, the proportion developing an intention changes when VH changes. If the
threshold value is not known, but the proportion of people with a desire to emigrate
that develops an intention (PH) is observed empirically or fixed in simulation, then
VH is the value of V for which P .V � VH/ D PH . It is a quantile of the distribution
of V.

In the model, an individual develops an intention to emigrate if his/her V score is
equal to or exceeds a threshold value VH . The threshold value is determined by the
exogenously given proportion developing an intention. Klabunde (2014) follows a
different approach. Instead of V, she uses an intention score that varies from minus
infinity to infinity. A linear model relates a person’s migration intention score to
SN and PBC scores. The intention score is transformed to a probability, using the
logistic distribution (logit model). A random draw from U[0,1] determines whether
an individual moves to the next decision stage.
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The time it takes to develop normative and control beliefs and SN and PBC is a
random variable, which will be denoted by TvC. The possible values are given by a
waiting time distribution. The value of TvC depends on V and, indirectly on SN and
PBC. Small and large values of V result in small waiting times and values of V close
to the median value produce large waiting times. The following function is used to
derive the waiting time from the value of V:

TvC D �� ln Œabs .V � median.V//� (10.2)

where median(V) is the median of all values of V in the population, abs() denotes
the absolute value and � is a scaling factor to be estimated from data or fixed
in simulation. The factor determines the location of the waiting time distribution
on the time axis. The time an individual needs to develop normative and control
beliefs and SN and PBC is a realization of TvC. In the model presented in this
paper, the distribution of TvC does not follow a theoretical distribution. Hence,
the ‘empirical’ distribution, which is the distribution in the virtual population,
is used. The waiting time is equal to � if 1 D � ln Œabs .V � median.V//� or
exp .�1/ D abs ŒV � median.V/�. In Klabunde (2014), the distribution of TvC is
an exponential distribution, with the rate of transition from the attitude stage to the
intention stage depending on the intention score.

The waiting time between developing an interest in emigration and developing
an intention or drop-out is the time it takes to develop normative and control beliefs
(Tav) plus the time it takes to develop an intention (Tvi).

Tai D Tav C Tvi

The probability that an individual develops an intention to emigrate is determined
by the probability of considering emigration, the probability that an individual who
considers emigration considers emigration beneficial, and the probability that an
individual who considers emigration beneficial has sufficiently high levels of SN and
PBC. The age at which an individual develops an intention to emigrate is determined
by the age at considering emigration and the time it takes to assess the benefits and
costs of emigration and to develop normative and control beliefs and SN and PBC.
It is equal to: Xi D Xa C Tav C Tvi, with Xi the age at developing an intention
to emigrate (transition from v to i). The age Xi in the (virtual) population is the
sum of three random variables, Xa, Tav and Tvi. The distribution of that sum is a
convolution of three distributions. The distribution of Xa is a normal distribution and
the distribution of Tav is an exponential distribution. The distribution of Tvi does not
follow a theoretical distribution. The probability that an individual of a given age did
not yet develop an intention to emigrate is the empirical survival function of Xi. The
non-parametric method (Kaplan-Meier estimator) is used to estimate the empirical
survival function. The probability density of Xi gives the distribution of ages at
which individuals develop an intention to emigrate. The (cumulative) distribution
function of Xi gives the probability of having developed an intention at a given age,
i.e. the probability of being in the intention stage.
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The rate of transition from the assessment stage to the intention stage is derived
from the empirical survival function and its Kaplan-Meier estimator. The rate may
also be estimated using the Cox model. In this paper, the Cox model with skill level
as stratification variable is used to estimate the cumulative hazard rate of transition
into the intention stage, by age. Using skill level as a stratification variable results in
two baseline hazard curves, one for the low/medium-skilled and one for the highly
skilled. Note that the transition rates vary with age as a consequence of the effects
of SN and PBC.

An individual with an interest in emigration but who drops out of an emigration
decision process may develop an interest later again. That implies a transition from
a later stage in the decision process to an earlier stage. In this paper, I disregard
such transitions. Those who abandon the process are removed from the population
at risk of emigration. A transition to an earlier stage may be incorporated easily in a
multistate model of the decision process, of which the Markov decision process is a
well known example (e.g. Guo and Hernández-Lerma 2009).3

Individuals who develop an intention to emigrate move to the next stage of the
decision process: planning and preparation. During the planning and preparation
stage, some individuals abandon the decision process and stay. Others complete the
planning and preparation, and emigrate. Emigration and drop-out of the decision
process (stay) are competing risks. The outcome of the decision depends on the
actual behavioural control (ABC). Individuals with adequate ABC are likely to
leave. Those without adequate financial, human, social and cultural resources and
those who do not get the necessary permits are likely to stay. In the model, ABC is
PBC plus a random factor. If the random factor is negative, the actual behavioural
control is less than the perceived behavioural control. Some individuals may also
have an ABC score that exceeds the PBC score. The random factor is drawn
from a uniform distribution. The minimum and maximum values of the uniform
distribution determine the largest differences between ABC and PBC. The ABC
score is expressed as a figure between 0 and 1, with 0 a complete absence of any
actual control over resources and support and 1 unlimited supply of resources.
Individuals with high ABC will almost certainly emigrate and individuals with
low ABC are highly unlikely to perform the intended behaviour. They end the
decision process. The duration in the intention stage at time of exit (emigration
or dropout) is a random variable. The possible values follow an exponential waiting
time distribution with a single parameter; namely, the exit rate from the intention

3The Markov decision process is an analytical tool for sequential decision making under
uncertainty. A Markov decision process generalizes a continuous-time Markov process in that a
decision process is embedded in a Markov model and the process involves a sequence of actions
(Alagoz et al. 2010). A model of the Markov decision process distinguishes states and actions.
The probability that an individual continues to the next stage depends on the current state and the
action. An action results in a reward. The value of the reward is unknown in advance. An individual
knows the expected value, however. Markov decision processes are used to determine the times of
transitions to the next stage that maximize lifetime rewards. In the model presented in this paper,
an individual gets a reward if he/she emigrates. The reward is the net benefit of emigration.
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stage. Exit rates vary between individuals because of differences in ABC scores.
ABC scores are assumed to remain constant in time. An individual gets a score
when he/she enters the intention stage and keeps that score until he/she leaves. For
the cohort that enters the intention stage, exit rates will decrease in time because
individuals with high emigration rates or dropout rates leave soon and the ‘survivors’
have lower rates. In the process model, emigration rates increase exponentially with
ABC level. The emigration rate at a given value of ABC is

�ie.ABC/ D ae exp Œbe � ABC� (10.3)

where ae and be are nonnegative parameters to be estimated from data or to be fixed
in simulation.

Dropout rates decrease exponentially with ABC:

�ic.ABC/ D ac exp Œbc � .1 � ABC/� (10.4)

where c represents drop-out (censoring) and ac and bc are nonnegative parameters
to be estimated or fixed. The rate of leaving the intention stage is the sum of the two
transition rates:

�iC.ABC/ D �ie.ABC/C �ic.ABC/ (10.5)

The exit rate �iC(ABC) is a bathtub shaped hazard function. It is high at low values
of ABC, because of dropout; it decreases when ABC increases but is still too low
to affect emigration significantly; it increases when higher ABC levels push the
emigration rate up; and it is high when ABC levels near their maximum value
of one. Xie and Lai (1995) used a similar bathtub hazard rate function. Instead
of using two Gompertz-like distributions, they used two Weibull distributions.
The model was used later by Bebbington et al. (2006), among others. Bathtub
distributions receive considerable interest in reliability engineering (see e.g. Almalki
2013).

Emigration and drop-out, i.e. stay, are competing risks. The probability that an
individual who leaves the intention stage emigrates is �ie.ABC/

�iC.ABC/ and the probability

that the individual stays is �ic.ABC/
�iC.ABC/ .

The length of time an individual stays in the intention stage is a random variable.
It depends on the rate of leaving the intention stage (exit rate), which depends
on the ABC score. The probability that individual k exits the intention stage t
years after entering the intention stage is the survival function Si .t;ABCk/ D

exp Œ��iC .ABCk/ t�, where ABCk is k’s level of actual behavioural control. The
probability that individual k in the intention stage exits precisely after t years
is the density function fiC .t;ABCk/ D �iC .ABCk/ Si .t;ABCk/. The probability
that an individual, who intends to emigrate, emigrates at time t is fie .t;ABCk/ D
�ie.ABCk/

�iC.ABCk/
fiC .t;ABCk/ and the probability that he or she drops out of the decision
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process at t is fic .t;ABCk/ D �ic.ABCk/

�iC.ABCk/
fiC .t;ABCk/. The probability that individual

k who intends to emigrate, emigrates within t years, is the cumulative incidence

function Iie .t;ABCk/ D

Z t

0

fie .�;ABCk/ d� D

Z t

0

�ie .ABCk/ Si .�;ABCk/ d� .

The probability that individual k, who intends to emigrate, drops out of the
decision process within t years is the cumulative incidence Cic .t;ABCk/ D
Z t

0

fic .�;ABCk/ d� DD

Z t

0

�ic .ABCk/ Si .�;ABCk/ d� .

The transition rates �ie(ABCk) and �ic(ABCk) determine the timing of exit from
the intention stage and the reason for exit (emigration or dropout). Individuals with
the same ABC score exit at different times because of random factors (chance).
The time at which individual k exits from the intention stage is obtained by a
random draw from the exponential waiting time distribution with constant exit rate
�iC(ABCk). Let u denote a random draw from a standard uniform distribution
U(0,1). Individual k with ABC score ABCk exits the intention stage at time
kTiC .ABCk/ D � ln.u/

�iC.ABCk/
. Note that large exit rates lead to small exit times.

The exit time depends on the random value u. When u is close to zero, the exit
time is large; when u is close to one, the exit time is small. The reason for exit
is determined by a random draw from a Bernoulli distribution with parameter
pie .ABCk/ D �ie.ABCk/

�iC.ABCk/
. Individual k emigrates if the value of the random number

drawn is less than pie(ABCk), otherwise k stays.
The age at emigration is the sum of four random variables: the age at considering

emigration, the time it takes for an individual who considers emigration to determine
whether emigration is beneficial or not, the time it takes for an individual who
considers emigration beneficial to develop an intention to emigrate, and the time
an individual with an intention to emigrate needs to plan and prepare the departure.
The age at emigration is:

Xe D Xa C Tai C Tie (10.6)

The distribution of Xe depends on the distributions of Xa, Tai and Tie. It is not a
theoretical probability distribution unless Xa, Tai and Tie follow theoretical distri-
butions. For instance, if Xa is normally distributed and Tai and Tie are exponential
waiting time distributions, then Xe follows a double exponential distribution (Coale
and McNeil 1972).

10.4 Data

Although the model is not designed for a particular data set, it should reproduce at
least stylised facts about emigration. The facts are: (1) observations on proportions
of the world population that desire to emigrate, that intend to emigrate and that
actually emigrate, (2) observations on levels of international migration, expressed
as the emigration rate, (3) observations on lifetime international migrations in the
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world, and (4) the typical age profile of migration, known in the literature as the
Rogers-Castro migration age profile because the pattern was first documented exten-
sively by Rogers and Castro (1981). The typical pattern is used widely in migration
studies, in particular projections. The United Nations use a simplified version of the
Rogers-Castro migration age profile in the World Population Projections 2010 (for a
discussion, see Abel et al. 2014). Since the age at emigration is not an input variable
in the process model of the TPB, but an output, the validity of the model is larger
if it reproduces the typical migration age profile. The model should also allow for
migrant selection. To that end, two skill levels are distinguished: low/medium and
high.

A worldwide Gallup survey in 2005 among 750 thousand adults found that
14 % of the world’s adults (15C) population (630 million) say they would like to
emigrate if they could. Only 8 % of them are planning to do so within 12 months
and less than half (39 %) of those planning to move say they have already started
making preparations (Esipova et al. 2011). That is less than 1 % of the world
population. Most individuals stay in what Esipova et al. call the dream stage and
do not continue to the planning stage and preparation stage. The Gallup World
Poll also found that emigration is selective. Adults with at least some secondary
education tend to be more likely to want to go than those with less education.
Employment status and job prospects also matter. Personal circumstances (finance,
family situation) are important too. Most adults are discouraged because of policies
that create roadblocks to leaving or entering a country. While age and education
strongly relate to people’s desire to migrate, they do not matter as much in whether
potential migrants are planning to move in the next 12 months. However, education
and employment status are important factors in the transition from planning to
preparation. The most educated are twice as likely to start preparation than those
in other education groups. Employed persons planning to migrate are much more
likely to start preparation than those not employed. The Gallup study reveals that the
majority (54 %) of people with professional skills planning to migrate also prepare
to leave. This may be a consequence of employer-generated international migration.

The Gallup study is the first major study that provides empirical support for the
process character of the migration decision. The study distinguishes stages that are
close to the stages distinguished in the process model of the TPB. Therefore the
Gallup survey is used to generate parameters of the process model.

A major finding of the Gallup study is the low level of emigration. Other studies
found similar low values of emigration. Abel and Sander (2014) estimated that the
volume of global international migration flows declined from 7.5 per thousand of the
world population in the 5-year period 1990–1995 to 5.7 per thousand of the world
population during 1995–2000. Since the year 2000, the global 5-year emigration rate
remained stable around 6 per thousand. The estimates are based on data on lifetime
migrants, which are persons living in a county different from their country of birth
(foreign-born population). That means that annually a little over 1 per thousand
of the population emigrates (between 1.1 and 1.5 per thousand). That figure is an
average. The emigration rate is larger in some countries. For instance, in Europe
in 2012, 5 per thousand of the population emigrated (Eurostat 2014). Most went
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to another country of Europe. Using data from the Migration between Africa and
Europe (MAFE) project, Lessault and Flahaux (2013) found that the emigration
rate of Senegal is 0.7 % (see also Beauchemin et al. 2014, p. 6). To be valid, the
process model of the TPB should be able to produce an overall (global) emigration
rate that is below 0.15 % per year.

A comparison of the emigration produced by the process model and the rate
obtained by Abel and Sander (2014) is not straightforward because the definitions
of the emigration rate differ. In the process model, the average emigration rate is
the ratio of the total number of emigrations and the total person-years of exposure
to the risk of emigration for all cohort members combined. It is an occurrence-
exposure rate. Exposure starts at age 15 and ends when an individual emigrates,
drops out of the decision process or reaches age 50. Abel and Sander (2014) define
the emigration rate as the number of emigrants during a period of 5 years divided
by the total population in the country of origin, irrespective of the risk status. In
the process model, their definition is approximated by the ratio of the number of
emigrants between ages 15 and 50 and the person-years lived in the country of
origin between 15 and 50, irrespective of the risk status (at risk, i.e. involved in
the decision process, or not at risk, i.e. having dropped out). If the population is a
stationary population, then the person-years lived between ages 15 and 50 is equal
to the population aged 15–50 (Preston 1982). The comparison of the emigration rate
produced by the simulation model and the emigration rate Abel and Sander estimate
holds if the emigration rate of those 15–50 does not differ much from the emigration
rate of the entire population.

The United Nations published data on population by country of residence and
country of birth. The data show that 3 % of the world population is foreign-born
(IOM 2010). That percentage remains remarkably stable in time. In the model, the
foreign-born population is approximated by the proportion of 50-year olds in the
world that is born in a country other than their country of residence. The model
starts with a cohort of 15-year olds. To pass the test of validity, the model should be
able to produce the outcome that about 3 % of the cohort of 15-year olds emigrates
before age 50.

The typical age profile of migration is a skewed distribution with migration
rates increasing rapidly at young ages, a peak at an age between 25 and 30,
and declining more slowly than they increased. The shape has been described by
a double exponential distribution (Rogers and Castro 1981; Raymer and Rogers
2008). The process model should produce an age profile of emigration that is close
to the shape of a double exponential distribution. If a process model of the theory of
planned behaviour results naturally in a shape that resembles a double exponential
distribution, then the Rogers-Castro model age profile of migration can be given a
behavioural interpretation. That would be an important bonus of the process model
of emigration. It would replicate for migration what Coale and McNeil (1972)
found for first marriage: a process model of first marriage gives a behavioural
interpretation to the age profile of first marriage (see also Billari et al. 2007).

The distribution of ages at emigration is compared to the mathematical represen-
tation of the migration age profile, developed by Rogers and Castro (1981). In this



10 The Decision to Emigrate 279

paper, the model schedule is limited to ages from 15 to 50. In this age category, the
age profile of migration may be described by a double exponential distribution:

m.x/ D c exp Œ�˛ .x � �/ � exp .�
 .x � �/�

where x denotes age, m(x) is the proportion of emigrants that is aged x, and c, ˛,

 and � are parameters to be estimated from data. The parameter c is a scaling
factor, � controls the location of the peak of the migration age profile, 
 reflects
the steepness of the ascending side and ˛ represents the steepness of the descending
side. If 
 > ˛, the location of the peak (mode) is larger than �; it is smaller if 
 < ˛.

The parameters c, ˛, 
 and � are estimated from the realizations of Xe, i.e. from
the ages at emigration in the virtual population. The parameters then enter the above
equation to determine the model age profile. To be valid, the process model of the
TPB should produce an age profile of emigration that is close to the model age
profile and exhibits the typical pattern observed in migration age profiles around the
world.

10.5 Parameters of the Process Model of Planned Behaviour

The aim of the process model of the theory of planned behaviour is to describe
an emigration decision process that produces a realistic macroscopic (population-
level) pattern of emigration. In this section, the parameters of the process model
are presented. The parameters are guesstimates. No statistical technique is used
to estimate the parameters from data because the necessary data are missing. The
validity of the model and the guesstimates are determined by how well the model
reproduces the stylised facts presented in Sect. 10.4. In order to produce the stylized
facts, the range of most parameter values is limited.

Consider a virtual cohort of 100,000 15-year olds. The cohort is followed until
its members reach age 50. The focus is on the emigration decision. Emigration is
the endpoint. Individuals differ in skill level: 80 % have a low/medium skill level
and 20 % are highly skilled. Skill level has an important effect on the susceptibility
to considering emigration and the outcome of the assessment of benefits and costs
of emigration (deliberation). In order to reproduce the proportion of persons aged
15C that desires to emigrate, observed in the Gallup study (14 %) and the selection
effect of education, we must determine what a desire to emigrate means in the
process model of the TPB. I assume that an individual has a desire to emigrate if
emigration is considered beneficial, which means that the individual has completed
the formation of behavioural beliefs and developed a positive attitude towards
emigration.

Assume that 25 % of all individuals with low/medium skills develop an interest
in emigration, i.e. consider emigration. Of these, 48 % believe that the benefits of
emigration exceed the costs. Hence 12 % of the individuals with low/medium skills
consider emigration beneficial; they develop a positive attitude towards emigration.
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Among highly skilled individuals, 48 % develop an interest in emigration and,
of those, 50 % believe that benefits exceed costs. Hence, 24 % of the highly
skilled develop a positive attitude towards emigration. The difference reflects the
observation in the Gallup study. The proportion of cohort members that develop
an interest in emigration is 14.4 %. It results from 12 % for individuals with
low/medium skills and 24 % for highly skilled individuals (80*0.12 C 20*0.24).

The age at which an individual develops an interest in emigration is the de facto
onset of the emigration decision. The minimum age is fixed at 15. I assume that
the range of ages at which individuals with low/medium skill level develop an
interest in emigration is larger than that of the highly skilled. The ages at onset
of the emigration decision follow a one-sided truncated normal distribution (see
Sect. 10.3). For individuals with low/medium skill level, the mean of the original,
untruncated normal distribution is 19 years and the standard deviation is 4 years.
I assume that it takes on average 2 years to determine a belief in the benefits and
costs of emigration and to develop a positive attitude (desire) or negative attitude
towards emigration, irrespective of the skill level. The formation of that belief shifts
the distribution 2 years to the right. The mean age of the truncated distribution that
results is 21.6 years. The age at which highly skilled individuals consider emigration
is 20 years, on average, with a standard deviation of 2 years. The mean age at which
individuals develop an attitude towards emigration is 22 years. The mean of the
truncated distribution is also 22 years. The difference in standard deviation of the
normal distributions implies that highly skilled individuals develop an interest in
emigration in a narrower age range than individuals with low/medium skill level.

The distributions of age at developing an attitude towards emigration (desire or
no desire) are shown in Fig. 10.3. Individuals who do not consider emigration stay
in the country of birth. We need to consider the age at which the decision not to
consider emigration is made because, at the time individuals decide to stay, they are
no longer at risk of considering emigration.

Many individuals who consider emigration beneficial do not intent to emigrate.
They drop out of the decision process because of low levels of SN and PBC. SN and
PBC determine the probability of continuation or dropout, and the timing of these
transitions. A beta distribution describes the distribution of SN in the population.
The distribution is defined on the interval [0,1]. It has two positive shape parameters,
˛ and ˇ. The distribution is symmetric if ˛Dˇ>1, has a positive skewness if ˛>ˇ>1
and a negative skewness if 1<˛<ˇ. In this paper, it is assumed that individuals with
low/medium skill level are more likely to have a lower SN score than individuals
with high skills, which means that the skilled individuals have a stronger social
pressure to emigrate and are more willing to comply. Among the people with
low/medium skill level, few individuals have very low SN scores, most have a low
to moderate SN score and the prevalence of SN scores in the population declines
with increasing SN score. That shape is described by a beta distribution with shape
parameters ˛D3 and ˇD5. Highly skilled have a higher SN score but not much
higher. The shape is described by a beta distribution with ˛D4 and ˇD5. The mean
SN score is 0.37 for individuals with low/medium skill level and 0.44 for individuals
with high skill. Figure 10.4 shows the distribution of SN scores, by skill level.
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Fig. 10.3 Age at developing a desire to emigrate, by skill level

The PBC score differs by skill level, with highly skilled individuals having a
higher score. Instead of using a unipolar 7-points scale, I use a bipolar scoring
from �50 to C50 such that large negative values represent low scores of PBC and
large positive values high scores of PBC. Using bipolar scoring has implications
for the value-expectancy model (Ajzen 2006), but they are beyond the scope of this
paper. Bipolar scores are converted to values between zero and one using a logistic
distribution (logit model). Individuals with low/medium skill level are assumed to
have a PBC score that is normally distributed around �10, with a standard deviation
of 8, which implies a considerable spread in the population with low/medium skill
level. Van Dalen et al. (2005) provide evidence for the effect of education on PBC
score. No literature could be found that addresses differences in spread. The PBC
score of highly skilled is normally distributed with mean 10, and standard deviation
5. Figure 10.5 shows the cumulative distribution of the PBC scores for each of
the skill levels and for the total population (tick line). With each PBC score is
associated a probability, which transforms the original score to a value between
0 and 1. That value is used in further calculations. The figure may also be used
to derive the original score from the score on the 0–1 scale. For each skill level,
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Fig. 10.4 Distribution of subjective norm (SN) in population, by skill level

the original score associated with a score on the 0–1 scale (empirical distribution)
can be retrieved using the quantile function. Figure 10.6 shows the distribution of
the PBC score in the population, by skill level. The two shades of grey show the
number of individuals with a given PBC score, by skill level. The dark shade is a
result of combining two shades of grey. The solid line shows the total number or
individuals in the population with a given PBC score. It represents the sum of the
number with low/medium skill and the number with high skill. The distribution of
PBC scores in the population is a mixture of two normal distributions.

The effects of SN and PBC are combined into a single score, using a Cobb-
Douglas utility function. The parameters are: �D1, ˛D0.6 and ˇD1�˛D0.4. The
composite score is denoted by V. The distribution of SN and PBC scores in the
population and the parameters ˛, ˇ and � produce an average composite score of
0.33 for the individuals with low/medium skill level (median 0.32), 0.56 for the
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Fig. 10.5 Cumulative distribution of PBC scores, by skill level

highly skilled (median 0.56), and 0.40 for the two skill levels combined (median
0.40). Twenty five percent of the virtual population has a score less than 0.27 and
25 % has a score of 0.53 or larger. The highly skilled are much more likely to have
a high composite score than those with low/medium skill level. The distribution of
the composite score by skill level and for the total population is shown in Fig. 10.7.

The composite score V determines whether an individual who considers emigra-
tion beneficial develops an intention to emigrate or drops out of the decision process.
An intention is developed if the composite score V exceeds a threshold value. We
have no data on the threshold value of V, but we have information on the proportion
of individuals with a desire to emigrate that plan to emigrate. The Gallup survey
of 2005 revealed that 8 % of those who desire to emigrate also plan to emigrate.
That figure may be used as a proxy of the proportion developing an intention to
emigrate. When that figure is used, the overall emigration rate and the proportion of
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Fig. 10.6 Distribution of PBC scores in the population, by skill level

lifetime migrants (proportion of foreign-born population in the world) are greatly
underestimated, however. The estimates improve substantially if 30–40 % of those
who desire to emigrate develop an intention to emigrate. Therefore, 40 % is used.
The Gallup study reports the proportion planning to emigrate. That is likely to
be a fraction of those intending to emigrate. The threshold value is derived from
that proxy of the proportion of individuals with a desire to emigrate that intends to
emigrate. Note that the proportion is the share of the total population. The proportion
is not distinguished by skill level. For the proportion developing an intention to be
40 %, the threshold value of V needs to be 0.45, given the distribution of V in the
population.4 Forty percent of the population has a threshold value of V that is 0.45 or
higher. The threshold is 0.67 if only 8 % develop an intention. In the simulation, it is

4The median value of V is 0.40.
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Fig. 10.7 Distribution of composite score V in the population, by skill level

assumed that individuals who consider emigration beneficial and have a composite
score V of at least 0.45 develop an intention to emigrate. Individuals with a lower
score drop out. The threshold value is the same for everyone. Figure 10.7, which
shows the distribution of V scores in the population, also shows the threshold value
of V.

The time people need to determine SN and PBC scores is given by Eq. 10.2,
with � equal to 1. The waiting time is equal to � if the scores are V D 0.03 or
V D 0.77. If all individuals would have a score of 0.77, then they would need not
more than 1 year to determine that SN and PBC scores are sufficiently high to
produce an intention to emigrate. If all have a score of 0.03, they need an average
of 1 year to determine that the SN and PBC scores are low and that the only
reasonable option is to abandon the decision process and stay in the country of
birth. Individuals who need 1 year or less to determine the SN and PBC scores
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have either a very low or a very high V score. They have very limited support
and lack self-efficacy or they combine strong self-efficacy with full support. The
ultimate emigration rate is sensitive to the � value. A higher value of � suppresses
the emigration rate without affecting the number of individuals emigrating in a
lifetime (before age 50). The reason is the increase in the person-years at risk of
emigration with an increase in the waiting time in the assessment stage (a). Some
individuals move on to develop an intention to emigrate, but most drop out of the
decision process. Given the distribution of V in the virtual population, the average
time people need to determine SN and PBC scores can be obtained directly from
the distribution without first running the simulation (using Eq. 10.2). The average
duration is 2.32 years (2.45 years for individuals with low/medium skill level and
2.07 years for highly skilled). Forty percent develop and intention to emigrate and
60 % drop out. Recall that this proportion is not an outcome of the model, but
an input parameter. The average durations and the exit rate reported in the results
section are slightly different because of random factors.

Individuals intending to emigrate, i.e. who are in the planning and preparation
stage, emigrate or decide to stay. Actual behavioural control moderates the effect
of intention on behaviour. Sheeran et al. (2003) assert that the performance
of intentions as predictors of behaviour depends on the difference between the
perceived (PBC) and the actual behavioural control (ABC). In the model, the ABC is
the PBC plus a random factor. If we assume that most people overestimate their self-
efficacy and the support they will get, and underestimate the barriers to emigration,
then the random factor is negative for most individuals. Some individuals have an
ABC score that exceeds their PBC score. The ABC score is a value between 0
and 1. In order to assure that the addition of a random factor does not violate that
condition, a random factor is added to the logit of PBC, resulting in the logit of
ABC. The random factor is a draw from the uniform distribution U[-7.0,1.0]. A
decrease in the value of the logit of ABC reduces the value of ABC. The rate
of leaving the planning and preparation stage, �iC(ABC) depends on the level of
actual behavioural control (ABC). People complete the planning and preparation,
and emigrate, or they abandon the process and stay. The proportion that emigrates
depends on the emigration rate �ie(ABC) and the drop-out rate �ic(ABC), which
depends on ABC too. The rates of emigration increase exponentially with ABC
level (Eq. 10.3). The parameter ae is 0.1 and be is 2. The following parameter
values are used in the equation that determines the rate of dropout (Eq. 10.4):
ac D 0.01 and bc D 2. These values are selected because they give a plausible
bathtub shaped hazard function relating the hazard rate (emigration or drop-out)
to ABC levels. The time at exit from the intention stage and the direction of exit
(emigration or stay) depend on these parameter values. The time at exit from the
intention stage is a random duration drawn from an exponential distribution with
parameter �iC(ABC). The probability that an exit from the intention stage results in
emigration is piD�ie(ABC)/�iC(ABC). The probability that an exit results in a drop-
out is 1�pi. An individual emigrates if a random draw from a Bernoulli distribution
with parameter pi gives a 1. If the draw results in a 0, the individual drops out.
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10.6 Results

The population consists of a virtual cohort of 100,000 individuals aged 15, 80,204
with a low/medium skill level and 19,796 highly skilled. Highly skilled means
having a potential to develop high skills.

(a) Considering emigration

Among the 100,000 individuals, 14,396 consider emigration beneficial, which
is 14.4 %. It is the percentage that develop an interest in emigration AND develop
positive attitude towards emigration.

Figure 10.3 shows the ages at which individuals end the assessment and develop
a desire to emigrate or drop out of the decision process. The age distribution is fixed
by the assumption of normal distributions with given parameter values.

On average an individual considers emigration at age 21.5 if he/she has a
low/medium skill level and at age 22.0 if he/she is highly skilled. One of eight cohort
members, who ever consider emigration, consider emigration before age 18. It is
higher among those with low/medium skill level: 1 in 6 versus 1 in 44 among highly
skilled. Of the 18-year olds, who consider emigration, 94 % has a low/medium skill
level and 6 % belongs to the category of highly skilled, i.e. follows a trajectory that
results in high skills.

(b) Assessment of pros and cons of emigration

The proportion of individuals with an interest in emigration that considers
emigration beneficial is fixed at 50 %. Hence, half continue to the assessment stage
and half abandon the decision process. Among the 100,000 individuals, 14,396
desire to emigrate. It is the percentage reported in the Gallup study. The small
difference between the sample value and the theoretical value (14.4; see Sect. 10.5)
is an outcome of the random mechanism. Among individuals with low/medium skill
level, 9595 consider emigration beneficial. Among the highly skilled, it is 4801.

The time individuals take to assess the pros and cons of emigration follows an
exponential waiting time distribution with rate 0.5. On average an individual takes
2 years to determine whether emigration is beneficial.

(c) Intention to emigrate

The 14,396 individuals who consider emigration beneficial develop an intention
to emigrate if their subjective norm (SN) and perceived behavioural control (PBC)
are sufficiently high. If the scores are insufficient, they decide to stay and drop
out of the emigration decision process. Individuals with low/medium skill have an
SN score of 0.37, on average, and highly skilled 0.44. The average bipolar PBC
score is �3.34. It is �10.04 for those with a low/medium skill level and 10.07 for
highly skilled. The PBC scores on the (0,1)-scale are 0.34 and 0.82, respectively.
The population average is 0.50. The SN score and the PBC score are combined
in the composite V score. The average V score is 0.40. It is 0.33 for individuals
with low/medium skill level and 0.56 for highly skilled individuals. An individual
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develops an intention to emigrate if the V score is at least equal to 0.45, which is the
threshold value. The threshold value is the value of V at which 40 % of the people
with a positive attitude towards emigration develop an intention to emigrate. The
number of individuals with a V score of at least the threshold value is 5759, 1952
with a low/medium skill level and 3807 highly skilled. The majority of the 14,396
individuals with a desire to emigrate drop out of the decision process (8637), 7643
with low/medium skill level and 994 highly skilled.

Of the 14,396 individuals who consider emigration beneficial, 5759 individuals
develop an intention to emigrate and 8637 drop out during the assessment stage.
Hence, 5.8 % of the initial cohort develops an intention to emigrate. The majority
of those who believe that they will benefit from emigration abandon the emigration
decision because of inadequate SN and PBC scores. The duration in the Assessment
stage at exit is 2.31 years. It is slightly larger for individuals with low/medium skill
level (2.4 years) than for highly skilled (2.1 years). In other words, an individual
with low/medium skill level and with a desire to emigrate takes a little longer, on
average, to decide between emigration (intention) and stay than an individual with
high skill level. The effect of skill level on the time it takes to reach a decision is due
to its effect on SN and PBC scores. The difference has an effect on the age at which
an individual develops an intention to emigrate or decides to stay. The mean age is
24.0 and is the same for individuals with low/medium skill level and highly skilled
individuals. The average duration of stay in the attitude stage determines the rate of
exit from that stage. The average exit rate is 0.432. It is equal to 1/2.31. The rate
of developing an intention to emigrate is much lower. It is 0.173. In its estimation,
dropout is treated as censored observations. The distribution of ages at developing
intentions to emigrate or to drop out is shown in Fig. 10.8.

(d) Emigration

Of the 5759 individuals who develop an intention to emigrate, 4338 do emigrate,
1336 with low/medium skill level and 3002 highly skilled. That is 75 % of those
who intend to emigrate and 4.4 % of the initial cohort. The remaining individuals
(1421) drop out during the intention stage, 616 with low/medium skill level and
805 highly skilled. Individuals who do emigrate have a high self-efficacy and have
the resources to remove barriers and take advantage of opportunities. Their ABC
score does not differ much from their PBC score. The model therefore accurately
captures the theory, which states that a weak performance of intentions as predictors
of behaviour is the discrepancy between perceived behavioural control and actual
behavioural control. Table 10.1 shows the average PBC and ABC scores, by skill
level, for emigrants and individuals who drop out during the intention stage. The
ABC score of emigrants is close to the PBC score, which means that they were able
to accurately predict the actual behavioural control. This applies to all emigrants
irrespective of their skill level. Individuals intending to migrate but deciding to stay
have a ABC score that is much lower than their PBC score. They have lower self-
efficacy than they expected initially, they cannot mobilize the resources and support
needed for emigration, or the barriers are much larger than expected.
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Fig. 10.8 Age distribution of developing intention to emigrate or to drop out of the assessment
stage, by skill level

Table 10.1 PBC and ABC
scores, by skill level and
migrant status

Skill level Migrant status PBC ABC

Low/medium Emigrant 0.531 0.222
Stayer 0.307 0.086

High Emigrant 0.837 0.448
Stayer 0.799 0.137

Overall 0.500 0.313

What is the probability that an individual who intends to emigrate and who has
an ABC score of 0.313 (average ABC score) emigrates? Emigration and dropout are
competing risks. If the individual leaves the intentions stage before age 50, then the
probability that the exit is because of emigration rather than dropout is computed
using Eqs. 10.3 to 10.5. It is 100 � mie .ABC/ = .mie .ABC/C mic .ABC// D
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100 � 0:187= .0:187C 0:040/ D 82:4 percent. The probability that the individual
drops out of the decision process is 17.6 %. We may also obtain the probability of
emigration for an individual with a desire to emigrate and a given SN score and
bipolar PBC score. Suppose the individual has SN score of 0.5 and PBC score
of �5. The PBC score on the probability (0,1) scale is 0.491. The composite
score V is 0.496, which is larger than the threshold value of 0.446. Hence the
individual intends to emigrate. The ABC score is the PBC score with a random
factor. The ABC score is 0.116. The emigration rate is given by Eq. 10.3 and
the probability of emigration is 100 � mie .ABC/ = .mie .ABC/C mic .ABC// D

0:126= .0:126C 0:059/ D 68:3 percent. The probability of dropout is 31.7 %.
The proportion of the initial cohort that emigrates between ages 15 and 50 is

4.4 %. That figure is higher than the 3 % of the world population that is living in a
country other than the county of birth.

The average emigration rate is 3.6 per thousand if the emigration rate is defined
as the ratio of the number of emigrations during a period and the person-years
exposed during that period to the risk of emigration. The average number of years
a cohort member is at risk of emigration between ages 15 and 50 is 12.0 years. It is
the number of years between age 15 and emigration or dropout of the emigration
decision. Individuals who leave the country or drop out are no longer at risk
of emigration. The emigration rate is therefore 0.044/12.0 D 0.0036 or 3.6 per
thousand. It is higher for the highly skilled population (11.7 per thousand) than
for those with low/medium skill level (1.4 per thousand). This rate is an occurrence-
exposure rate; it relates the number of occurrences to the duration of exposure. The
occurrence-exposure emigration rate is larger than the emigration rate estimated by
Abel and Sander (2014) (1.2 per thousand). Abel and Sander use a different type
of rate and a different unit interval. They define the emigration rate as the ratio
of the volume of migrations during a period of 5 years and the size of the world
population. Their estimate of a 5-year emigration rate is 6 per thousand, which is
1.2 per thousand per year. The population they consider is the total population in
the country of origin, irrespective of the risk status. To obtain the equivalent of the
emigration rate defined by Abel and Sander, the probability of emigration should be
divided by the average number of years an individual spends in the country of origin
between ages 15 and 50 (before emigration or reaching age 50). The average number
of years spent in the country between 15 and 50 is 34.0 years. The emigration rate is
0.044/34.0 D 0.00127 or 1.27 per thousand. Using the definition of emigration rate
adopted by Abel and Sander, the emigration rate produced by the process model is
very close to Abel and Sander’s estimate. The comparison is not without problem.
Abel and Sander considered the total population of the world, including children
and persons over 50. The comparison holds if the rate at which individuals aged
15–50 emigrate is close to the average emigration rate of the entire population, an
assumption that is not implausible.
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Fig. 10.9 Age distribution of emigration and drop out of intention stage, by skill level

(e) Age profile of emigration

The age profile of emigration and dropout of the intention stage, by skill level, is
shown in Fig. 10.9. In the intention stage, more individuals emigrate than drop out.
The difference between the two exits is higher for the highly skilled than for those
with low/medium skill level.

Figure 10.10 shows the distribution of ages at emigration by skill level, produced
by the simulation model and the model emigration schedules estimated from these
ages at emigration. The dark line presents the outcome of the process model.
The light line shows the model migration schedule estimated using the double
exponential distribution, estimated from the simulated ages at emigration. The
process model yields a description of the emigration age profile that is very similar
to that described by the double exponential distribution. The emigration profile
peaks between ages 25 and 30, which is realistic, and the shape resembles the
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Fig. 10.10 Emigration age profile: simulated data and model migration schedule

shape of migration age profiles reported in empirical studies. Note that the age
pattern is not determined by age-specific migration rates but is determined entirely
by the parameters that govern the waiting time distributions of the transitions
between the stages of the emigration decision process. The double exponential
distribution is known to emerge as a convolution of a normal distribution and a set
of exponential distributions (Coale-McNeil 1972). In the process model, the waiting
time distributions are more complex than the exponential distribution, although the
exponential distribution serves as a basis. The fact that the model produces the
typical age profile of migration is important for the validity of the model.

The mean age at emigration is 27.7 years, 27.3 years for individuals with
low/medium skill level and 28.4 years for highly skilled. The mean age of
individuals who drop out during the intention stage is higher: 29.3 for those with
low/medium skill level. 29.4 years for highly skilled and 29.3 for the two skill levels
combined.

Figure 10.11 shows the ages at transition between stages of the process model of
the TPB, by skill level. Many people develop an interest in emigration and a desire
to emigrate. Many individuals with low/medium skill level drop out in the first stage
of the decision process. Many highly skilled individuals with a desire to emigrate
develop an intention to emigrate and start planning and preparation. Many of them
drop out while planning and preparing, however, because the actual behavioural
control (ABC) is lower than the perceived behavioural control (PBC).
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Fig. 10.11 Ages at transition between stages of the process model of the TPB, by skill level

10.7 Conclusion

The theory of planned behaviour states that intention is the best predictor of
behaviour. The theory is widely used to explain and predict behaviour. Many people
who consider emigration beneficial never intend to emigrate because they believe
that others do not want them to leave the country or they believe that they do not
have sufficient resources and cannot generate the necessary social support. The
simulation model presented in this paper describes the stages of the emigration
decision process an individual goes through when considering emigration. The
model operationalizes the process theory of planned behaviour. The process model
of the TPB is consistent with the ‘horse race’ random utility model. The two models
are competing risks models. The information processing and evidence accumulation
mechanism is implicit in the process model. Some individuals need more time to



294 F. Willekens

make a decision than other individuals. Individuals who have access to information
because of the composition of their social network or because they learned how
to access and process useful information efficiently and effectively (and have high
levels of self-efficacy) have more extreme PBC or ABC scores than individuals
without these networks or capabilities. In the process model, these individuals need
less time to choose whether to continue the decision process or to abandon it. The
outcome is also easy to predict. The action of individuals with scores close to
average values (most individuals) is difficult to predict because small changes in
scores may have significant effects.

The model, although simple, reproduces stylized facts remarkably well. It
reproduces the typical age profile of emigration. It also reproduces the global
international migration rate recently estimated by Abel and Sander (2014). The
model slightly overpredicts the proportion of the world population not living in their
country of birth, estimated by the United Nations. The reason is return migration,
which is not considered in the model. It is remarkable that a simple simulation
model of the emigration decision process is able to reproduce these facts of
international migration. It makes the model a potentially powerful instrument to help
explain and predict international migration. The models in use today for forecasting
international migration derive future levels of migration from past levels, statistical
associations between levels of migration and characteristics of the population, and
expert judgments about changes in reasons for migration and effects of opportunities
and restrictions (see e.g. de Beer 2008; Bijak 2011; Raymer et al. 2013; Azose and
Raftery 2015). The predictive performance of these models is acceptable most of the
time, when conditions do not change abruptly. In the presence of shocks, predictions
are poor, probably because more people develop an interest in emigration and
fewer people drop out of the emigration decision process. To determine under
what conditions people leave their country, predictive models should incorporate
individual decision processes.

The model has several limitations that may be removed in future research. It is
limited to ages 15 to 50 and excludes child migration and retirement migration. The
model considers a single endpoint (emigration) and does not produce a migration
history. As a consequence, the emigration intensity cannot depend on migration
experience. Return migration and onward migration are not considered either. The
main subject of the model is the emigration decision process, not the migration
history. The subjective norm (SN) is a characteristic of the individual and is
not an outcome of interactions between the individual and significant others and
institutions. For instance, the SN score does not depend on the migration experience
in one’s social network, which is important in most agent-based models of migration
(see e.g. Klabunde 2014). SN, PBC and ABC scores are not updated after the
occurrence of life events, such as marriage, divorce, job loss, and major health
conditions have no direct effects on the emigration decision. Contextual (exogenous)
factors, such as political conflict and environmental degradation, are not included in
the model. Opportunities and barriers are not modelled explicitly and individuals
do not respond to opportunities (e.g. job offers). Individuals do not anticipate
events and conditions; they do not predict. They do not learn from experience
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either. The model does not consider reasons for emigration and does not distinguish
between employment migration, marriage migration, family reunion, and other
forms of migration. Including these factors would change the way interests and
attitudes develop and SN, PBC and ABC scores are generated, but they would not
significantly change the process model. For these reasons, the model is referred to
as a simulation model and not an agent-based model. The strength of the model
presented in this paper is the operationalization of the theory of planned behaviour
in a stochastic decision process model. A process model of the theory of planned
behaviour can accommodate all factors and actors that have a significant effect on
the emigration decision, but a comprehensive model that includes all these factors
is beyond the scope of this paper.

Acknowledgment Icek Ajzen, Anna Klabunde, Matthias Leuchter, the students of the European
Doctoral School of Demography 2014–2015, and two anonymous referees read the paper and
provided extensive and very helpful comments. I am grateful for their help.

Annex A. Parameters of the Microsimulation Model

Parameters
Sample size 100000
Proportion highly skilled 0.20
Probability of developing an interest in emigration,
by skill level 0.25 0.48
Age at developing an interest in emigration: truncated
normal distribution

Mean of untruncated normal distribution, by skill
level 19 20

Standard deviation of untruncated normal
distribution, by skill level 4 2

Average years it takes to develop an attitude towards
emigration, by skill level 2.00 2.00
Age at decision not to develop a desire but to stay,

by skill level
Mean of untruncated normal distribution, by skill
level 27 28

Standard deviation of untruncated normal
distribution, by skill level 5 3

Truncated normal: lower bound 15.00 15.00
Truncated normal: upper bound 1000.00 1000.00

Subjective norm (SN): beta distribution
Shape parameter 1 (alpha) 3.00 4.00
Shape parameter 2 (beta) 5.00 5.00

Perceived behavioural control (PBC): normal
distribution

Mean -10.00 10.00
Standard deviation 8.00 5.00

Composite score V based on SN and PBC
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gamma 1.000
alpha 0.600
beta 0.400

Waiting time in attitude stage: scaling factor theta 1
Proportion of persons in attitude stage that develop

intention to emigrate 0.4
Actual behavioural control (ABC):

Uniformly distributed random factor
Lower bound -7.00
Upper bound 1.00

Transition rate as function of ABC
Emigration rate:

a 0.10
b 2.00

Dropout rate:
a 0.01
b 2.00
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Chapter 11
Deciding to Disclose: A Decision Theoretic
Agent Model of Pregnancy and Alcohol Misuse

Jonathan Gray, Jakub Bijak, and Seth Bullock

11.1 Introduction

The case in favour of Agent Based Modelling (ABM) as a general analytical
approach has been made numerously and elegantly (e.g. Epstein and Axtell 1994;
Resnick 1994; Axelrod 1997; Gilbert 1999; Macy and Willer 2002; Epstein 2014;
Silverman et al. 2011, 2013, amongst others). As such we will not belabour
the point, and instead turn to addressing some of the concerns expressed about
the approach. In this instance we focus on the perception of ABM as ad hoc in
nature, reflecting the assumptions of the modeller rather than being empirically or
theoretically grounded (Waldherr and Wijermans 2013). To ameliorate this concern,
we draw on decision theory to produce simple rule based and learning decision
making agents and show that they are able to play a form of signalling game1

(Kreps and Cho 1987) with a basic form of intragroup social learning. Four decision
models of varying complexity and behavioural plausibility are contrasted, by way of
demonstrating the significance of the operationalisation of decision making in ABM.

1In a signalling game, one player (the signaller), has some piece of information that is known only
to them which affects the outcome of the game for both players. The signaller has a choice as to
what they tell the other player about this hidden information, and the responding player as to what
they believe the information to be.
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This exercise is framed in the context of disclosure decisions, taking drinking
patterns in pregnant women as a motivating example. Alcohol consumption in the
antenatal period is a significant issue in itself, although there is not a clear consensus
on the associated risk. In terms of official guidance in the UK, the National Institute
for Health and Care Excellence (NICE) acknowledge that evidence of harm to the
fetus is less than conclusive, but advise not drinking at all, or significant moderation
(National Institute for Health and Care Excellence 2010a), with similar advice from
the UK Department of Health (2008).

Turning more specifically to disclosure of alcohol use by women to healthcare
professionals during their pregnancy, research is relatively sparse, although qualita-
tive trends are reported by Phillips et al. (2007) and Alvik et al. (2006). The former
explored factors impacting disclosure through a small case study, highlighting the
need to build up rapport between woman and midwife over several appointments;
the latter compared post partum reports of consumption with contemporaneous
accounts, finding apparent under reporting during pregnancy which was amplified
by increased drinking. The simulation model described in this chapter is able to
replicate both qualitative trends, i.e. an increase in disclosure over appointments,
and more honest behaviour by moderate as compared to heavier drinkers.

The resulting scenario is of substantial independent interest, and shows the
potential utility of a simulation approach in domains where the process is obscured,
here both because of the interest in concealment and obvious ethical concerns.
With this said, the lack of a strong quantitative evidence base against which to
validate the behaviour of the model augurs for caution in interpreting the results,
and is a necessary reminder that in this instance the model is primarily a tool
for formalisation of the thought process (Epstein 2008), rather than a machine for
predicting.

A game theoretic approach to generating an abstract form of the problem gives
a convenient and well known framework to reason about the processes involved
in the scenario. While scenarios may map to a number of games, exploring one
candidate game still allows for a principled comparison between interpretations,
and enforces explicit assumptions. But equilibrium is the sine qua non of game
theory, which is concerned with the stable outcome of an infinite contest of second
guesses. We wish to see the system in motion rather than just at rest, even if it does
eventually settle to some stable point. Instead, we choose to focus on the behavioural
processes driving a system in motion, a system out of equilibrium, to understand
how these processes interact with the movement. Introducing decision theory takes
a step down the ladder of abstraction from the mental chess of game theory. Dealing
instead in the mechanics of decision making, and the calculus of choice, allows us
to explore not only paths that arrive at the destinations we might consider in game
theory, but also avenues not accessible where we constrain ourselves to a sometimes
implausible degree of rationality.

This does not preclude a strategic dimension, since decision rules are to a great
extent modular, and as demonstrated in this chapter can be exchanged without
altering the decision problem. In addition, rules are agnostic as to the source of
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information, suggesting room for multi-stage processes – for example, a game
theoretic, “model of the opponent’s mind”, approach could act as an information
source for a decision rule. As a corollary, the decision problem agents attempt to
answer can change, allowing behaviour in novel problems to be informed by beliefs
derived under other conditions. This is also indicative of the broader benefits to
ABM as an approach. Embedding these abstract rules in a simulated environment
allows for mechanics which cannot be readily explored using purely analytic or
predictive approaches, for example, the social learning dynamic of the disclosure
game model.

While there is no universal theory of human behaviour to sit at the centre of ABM

as a method, a key motivation for decision rules is their claim to provide an account
of decision making that is behaviourally and cognitively plausible. Their mooted
capability in this regard is to some extent supported by work from neuroeconomics,
which aims to empirically test theories of decision making (Rustichini 2009).
Many key aspects common to decision rules, for example the idea that a common
currency is used by the brain to compare outcomes (Padoa-Schioppa and Assad
2006, 2008), are supported by neurological findings. In addition, a single decision
rule represents a parsimonious alternative to numerous case specific production
rules.

Given these features, the application of decision and game theory to ABM is
an attractive approach to computational social science, where the locus of interest
is process and decision making. Taking a balance between models focused on
replication of low level neurological mechanics, and those with a higher level
emphasis where individual behaviours are abstracted away, yields a computationally
tractable approach. Despite the relative simplicity, it nonetheless captures some of
the nuance and sophistication of human decisions.

The remainder of this chapter proceeds to outline the proposed approach to
model development (Sect. 11.2), and experiments (Sect. 11.3), with selected results
(Sect. 11.4), followed by a discussion contrasting the decision models (Sect. 11.5),
and conclusions (Sect. 11.6).

11.2 Disclosure Game Model

In this section we sketch2 the process of moving from a real world scenario to a
minimal game which sufficiently captures reality, expressing the result as a decision
problem representation, and translating this to a simulation model. We then outline
four possible decision rules and, as an example of additional flexibility of process
models and simulation in contrast to purely predictive or analytical approaches,
extend the model to allow a simple form of social learning.

2A complete example of this for the alcohol misuse in pregnancy model is given in Sect. A.1, with
a schedule of simulation provided in Sect. A.2.
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11.2.1 Modelling Approach

To model a scenario, we take the approach of first creating a formal game to
represent it, capturing the key features as far as possible in the structure of that
game. This game is in essence a conjecture about the real data generating process,
which can be played out in simulation.

The appropriate game representative of the scenario of interest, which captures
the desired strategic dynamics, may not be immediately obvious. We suggest that
an iterative process is beneficial, beginning from the simplest possible game, and
progressively augmenting it.

Transitioning from the resulting game, to a set of decision problems is a relatively
simple task. We treat the n player game as n one-player games (Insua et al. 2009),
where the moves of other players are drawn from a probability distribution – nature,
in game theoretic parlance. As with the game, the decision problem representation
admits a degree of variation, and may need to be adjusted to reflect the decision
rules that will be used.

These decision problems may then form the basis of an agent model, where
agents use learning and decision rules to play out the game. Simulation can then
support features which are not readily representable within an analytic framework,
for example, populations of heterogeneous players, individual and social learning,
or network effects. In addition, the ability to observe the system in a state of flux
rather than at equilibrium is desirable, since even where a social system reaches a
stable state, the process by which we arrive at it is significant.

11.2.2 Scenario

Typically in the UK, women have 12 appointments with a midwife during the
antenatal period, and in the majority of cases will encounter several different
midwives (Redshaw and Henderson 2014) in the course of their care. In the UK,
and unlike most healthcare contexts, maternity notes are held by the patient, so
midwives do not have extensive information prior to an appointment unless they
have encountered the woman previously. Maternity notes are not generally linked to
extra-departmental records, meaning that a history of alcohol related admissions to
another service may remain unknown unless revealed by the woman.

According to NICE guidance (National Institute for Health and Care Excellence
2010a, 2010b) the issue of substance misuse should be raised at the initial booking
appointment, followed by subsequent action if a concern is raised at the discretion
of the midwife. This may take the form of specific guidance to reduce intake, or if
deemed necessary a referral to a specialist midwife and relevant interdisciplinary
team. On alcohol consumption, policy regarding how to determine the level of
consumption is at the time of writing generally at the level of the local health
authority, hospital trust, or according to the best judgement of the individual
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midwife, with no guidance provided by NICE. This commonly takes the form of
average units per week, but may include Tolerance, Annoyance, Cut down, Eye-
opener (T-ACE)3 (Sokol et al. 1989) and similar measures.

Beyond the “booking” appointment, the onus is on women to raise concerns
about their drinking behaviour, or the midwife to probe further if they feel it is
warranted. In either case, once a concern has been raised the midwife must respond
clinically, and inevitably personally, to the information.

In an ideal world, all interactions with healthcare providers would be immedi-
ately and fully disclosive, with no repercussions for the patient. However, alcohol
misuse by women is known to attract stigma (Gomberg 1988), and is a recognised
barrier to appropriate treatment in the maternity context (National Institute for
Health and Care Excellence 2010b; Radcliffe 2011).

11.2.3 Disclosure Game

In order to translate the scenario sketched above into a more abstract, tractable form,
we cast it as a signalling game, and assume that women’s disclosures (or not), are
signals. We also impose a discretisation on the continuum of alcohol use, and use
three types of behaviour – light,4 moderate, or heavy. Correspondingly, they are
limited in what signals they may send when claiming to be one of these three types.

Midwives are treated in a similar fashion, where their type corresponds to
how negatively they regard a drinking pattern – non-judgemental, moderately
judgemental, and harshly judgemental. The expression of this judgement is not a
matter of choice on their part, and is assumed to have no impact on their clinical
response, which is to either refer the woman for specialist treatment, or do nothing.

At the end of a game, each player receives a payoff dependent on the actions
and types of both players. Because both women and midwives have an interest in
the outcome of the pregnancy, and would prefer a healthy baby, the payoff has a
common interest component. Hence, both players receive a payoff based on the
outcome of pregnancy, but women bear a social cost dependent on the signal they
sent and the midwife’s reaction to it. Similarly, midwives pay a cost if they refer to
a specialist, mirroring the organisational cost of non-routine care. Table 11.1 shows
the three payoff matrices which together describe the game.

As an example, consider the challenge faced by an agent of the heavy drinking
type. In order to get the best health outcome, they must be referred and would ideally
achieve this without paying any social cost at all. The best move depends on the type
and beliefs of the midwife. For example, a particularly unlucky scenario might be

3The T-ACE is a four question screening test for alcohol misuse intended specifically for use with
pregnant women.
4Or abstinent, the extent of alcohol consumption being such that it would generally be felt to pose
essentially no risk.
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Table 11.1 Payoff matrices

Woman

Midwife Heavy Moderate Light

Harsh �2 �1 0

Moderate �1 0 0

Non 0 0 0

a Social cost, Xs, for women, given
their signal, and the midwife’s type

Woman

Midwife Heavy Moderate Light

Refer 10 10 10

Don’t refer �2 �1 10

b Health outcome, Xh, for women
and midwives, given the midwife’s
action, and woman’s type

Woman

Midwife Heavy Moderate Light

Refer �9 �9 �9

Don’t refer 0 0 0

c Referral cost, Xc, for midwives,
given their action and the woman’s
type

for the midwife to not only be of a harshly judgemental disposition, but to believe
that no women really need to be referred (i.e. that all women are light drinkers).
Even a relatively weak belief in this possibility can make the honest signal look like
an unwarranted risk.

To formally define the game, let N D fm;wg be the set of players each with a
private type �i 2 ‚, and a set of types ‚ D fl;m; hg, with pure strategies Am D

fr; ng and Aw D fl;m; hg. Here, fl;m; hg correspond to light, moderate, and heavy
alcohol consumption for women, and non-judgemental, moderately judgemental,
and harshly judgemental for midwives. Midwives’ pure strategies fr; ng are to refer,
or do nothing, and those for women are to signal that they have one of the possible
drinking patterns. Additionally, we define two utility functions:

uw.sw; sm; �w; �m/ D Xs;sw;�m C Xh;�w;sm (11.1)

um.sw; sm; �w/ D Xh;�w;sm C Xc;�w;sm ; (11.2)

with Xc, Xh, and Xs being the payoff matrices as in Table 11.1, sw and sm denoting a
specific signal by a woman and referral response by a midwife. Lastly let pw.l;m; h/,
pm.l;m; h/ be distributions over types of women, and midwives respectively.

As noted, rather than solve the game, we allow populations of agents to play
it, and hence stipulate further that women are drawn in order from a queue of nw

women (where nw D 1000 in all simulations), and play against a midwife chosen
at random from a population of nm (nm D 100). They play for a maximum of rw

rounds (rw D 12 following the routine number of ante-natal appointments in the
UK (National Institute for Health and Care Excellence 2010a)) or until they are
referred, and a new player is drawn from the same distribution that produced the
original players to replace them. If they are not referred, they rejoin the back of the
queue after their appointment. In either case, they are informed of their payoff after
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each round and update their beliefs accordingly using one of the rules described in
Sect. 11.2.5.

Midwives play for rm rounds (rm D 1000 in all experiments), and conduct
appointments in parallel, i.e. if there are five midwives, then five women are drawn
from the queue and assigned at random to the midwives. Unlike women, midwives
are only informed of their payoff if they choose to make a referral. Both groups of
agents have perfect recall, and midwives are assumed to retrospectively update their
observations if they make a referral after a number of appointments.

11.2.4 Social Learning

In reality, learning is not exclusively from personal experience, and social learning
plays an important role. This social dynamic fits naturally into an agent framework,
but is difficult to address without using an approach concerned with process, so we
take advantage of this to show a naïve take on it here.

In the disclosure game model, this takes the form of having each midwife
recount their play history to their colleagues with some probability q. Individuals
then incorporate shared information into their beliefs using weighted updates,
e.g. for a midwife a shared observation of a low type signal contributes to their
beliefs by w, and 0 
 w 
 1 (i.e. nj D nj C w). Women share only when they
have finished play, and provide their complete history of games, because they
have accurate information about the outcomes. By the same rationale, midwives
share only their history with the most recent woman they referred. Sharing occurs
simultaneously for all players at the end of each round, and all memories are either
shared immediately or discarded.5 Accounts are shared with some probability to all
fellow players. For example, a heavy drinker finishes play having claimed to be a
light drinker, without ever being referred, and their account is selected to be shared
with some probability qw with all other women.

Because of their differing problem representations, the simple payoff reasoners
and their more complex counterparts incorporate this exogenous information dif-
ferently. The simple payoff based rule relies on a belief structure relating actions
directly to rewards which is essentially model free. Because payoffs differ by the
agent’s private type, the information shared may not correspond to the experience
of the listening agent in the same scenario. As a result, payoff reasoners have a belief
bias towards the most common player type, and can believe in outcomes that are,
for them, impossible.

A payoff based agent, who is a light drinker, hears the account of the heavy
drinker. They take the account as literally happening to them, and update their
beliefs to include the possibility that there is a negative outcome attached to claiming
to be a light drinker.

5More precisely, memories of games remain, but it is assumed that only the most current
information is relevant enough to be shared.
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By contrast, representing the problem in terms of the probabilities of the individ-
ual lotteries imposes a model that abstracts the new information from payoffs, and
allows the agent to discard implausible outcomes. This stronger assumption as to
the static and known qualities of payoffs does however reduce the flexibility of the
decision rule.

Returning to our example, a light drinker using this decision rule would follow
the account through from their position in the game tree, correctly inferring that the
outcome in their case would be positive.

11.2.5 Agent Models

While in principle a wide variety of agent models are possible, given that decision
rules operate on essentially the same information, and produce the same output
(a decision), we limit ourselves here to four. The simplest is a lexicographic rule
(1), in the spirit of a Fast and Frugal Heuristic (Gigerenzer 2004) which uses
only information about payoffs given actions; this is followed by a Bayesian risk
minimisation rule (2) using the same information; a second Bayesian risk rule (3)
which uses information about the underlying lottery; and a two-stage Cumulative
Prospect Theory (CPT) (Hau et al. 2008) agent (4) which is identical to 3, but uses the
CPT decision rule (Tversky and Kahneman 1992). Hence, each successive decision
model adds a layer of sophistication to the problem representation while retaining
the same input-output characteristics.

Agents have perfect recall and midwives recognise women if they repeatedly
encounter them, making use of new information for retrospective updates. However,
all four agent models make decisions ‘as-if’ they were always facing a new
“opponent”.

A simplifying assumption is made that all midwives have just qualified after
receiving identical training. As a result, they have homogeneous beliefs about
women and assume to some extent that they are honest. Women have heterogeneous
beliefs, which correspond to experiencing k randomly chosen paths through the
game, and following each path at least once.

11.2.5.1 Lexicographic Heuristic

The lexicographic heuristic (Algorithm 1) follows the form of that used in Hau
et al. (2008), and assumes a simplified problem representation, where an action is
a choice between combined lotteries. Functionally, the heuristic maintains a count
of the number of times that each action was followed by a payoff, and chooses the
action which most commonly has the best payoff, i.e. one reason decision making.
Where there is no clear best action, but one or more is evidently worse, a choice must
be made as to whether to discard the poorer action; in this case we have elected to
retain it. This approach requires minimal computation, and does not assume that ui

is static, or known.
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Women resolve this by approximating the utility function, as a function f .sw; �/

on their choice of signal and an unknown distribution � , which maps to uw – i.e.
sw is a choice between simple lotteries. The algorithm maintains a count, n, of the
number of occurrences of each outcome given the choice from sw.

Midwives solve a slightly different problem with more information, where sw is
known, and sm is the lottery choice – f .sw; sm; �/. This is resolved by maintaining
a separate count for each signal (i.e. nsw;sm ), and otherwise following the same
Algorithm 1.

Algorithm 1 Lexicographic heuristic

n 1; action none
while action D none do

Calculate the nth most common outcome following each action.
Sort actions by the value of the nth most common outcome.
if clear winner then

action best
end if
n nC 1

end while
return action

11.2.5.2 Bayesian Payoff

The Bayesian payoff agent uses the same subset of information as the lexicographic
method, but updates beliefs on the link between actions and payoffs using the Bayes
rule, and attempts to choose the action which minimises risk.

Given the discrete nature of actions and payoffs, coupled with a desire for
tractability of the simulation, the Dirichlet distribution is employed as a prior to
represent these beliefs. The distribution is particularly convenient, in that to infer
the probability of a signal implying a payoff is simply:

p.x D jjD; ˛/ D
˛j C nj

P

j.˛j C nj/
; (11.3)

where nj is simply the count of occurrences of signal-payoff pair j, and ˛j is the
pseudo-count of prior observations6 for a pair j. Hence, the belief that a signal will
lead to a payoff is the number of times that pairing has been observed (including
the pseudo-count), over the total number of observations thus far. This makes
computation of beliefs fast and simple, since all that must be maintained is a count

6Pseudo-counts are related to, but distinct from prior beliefs. Here, the pseudo-count is a parameter
to the prior belief distribution and is nothing more than a hypothetical count of prior observations.
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of observations. As before, midwives follow a similar pattern but maintain nsw

independent counts of pairings between referral choice and payoff, updating their
beliefs about the relationship between the choice to refer and payoff given the signal
they have received.

Agents then choose the strategy si to minimise risk Ri, which is simply defined
as:

Rw.sw/ D
X

x2X

�xp.xjsw/ (11.4)

Rm.sw; sm/ D
X

x2X

�xp.xjsw ^ sm/; (11.5)

where X is the set of payoffs the agent has observed to follow si.

11.2.5.3 Bayesian Risk Minimisation

The second Bayesian agent augments the reasoning of the simple payoff model,
making the stronger assumption that the utility function is static and known. Women
maintain two sets of beliefs, corresponding respectively to pm and the probability of
referral given signal choice. This leads to the risk function, minimised with respect
to sw:

Rw.sw; �w/ D
X

i2Am

X

j2‚

�uw.sw; i; �w; j/p.j/p.ijsw/; (11.6)

so that the risk of a signal is the sum of the products of all payoffs with the
probabilities of their entailed midwife types and responses.

“Midwives” reasoning centres on determining the meaning of signals, since given
the knowledge of what some signal sw conveys about the true type of the sender, the
payoff for an action is known. As such, their inference process is the same as for the
simple Bayesian agent but over signal-type pairs, and they attempt to minimise the
following risk function, minimised with respect to sm:

Rm.sw; sm/ D
X

i2‚

�um.sw; sm; i/p.ijsw/: (11.7)

11.2.5.4 Descriptive Decision Theory

The most complex decision rule used is CPT, which attempts to reproduce a number
of systematic deviations from rationality observed in humans. Rather than risk,
‘prospects’ (i.e. the sequence of payoff-probability pairings in ascending order of
payoff associated with an action) are used as decision criteria. While CPT has
primarily been applied in the context of decisions from description, it has been



11 Deciding to Disclose: A Decision Theoretic Agent Model of Pregnancy. . . 311

modified to deal with decisions from experience by incorporating a first stage
where probabilities are estimates from observations (Fox and Tversky 1998). In
this instance the Bayesian inference process fills the first stage role.

CPT uses transformed probabilities underweighting small probabilities and over-
weighting large ones. This is intended to reflect the observed behaviour of humans,
where sufficiently high likelihoods are treated as certain, and contrastingly low
probabilities as impossible. The correct weighting function is subject to some
debate, but here we have used that of Tversky and Kahneman (1992), which treats
probabilities differently for gains (Eq. 11.8) and losses (Eq. 11.9):

wC.p/ D
p�

.p� C .1 � p/� /
1
�

(11.8)

w�.p/ D
pı

.pı C .1 � p/ı/
1
ı

; (11.9)

where p is the unweighted probability, and � and ı are the weights for gain and loss
probabilities respectively. Along similar lines, the values of losses and gains are
transformed to reflect a tendency to regard a loss as more significant than a gain –

v.ui/ D

8

ˆ̂
<

ˆ̂
:

f .ui/; if ui > 0

0; if ui D 0


g.ui/; if ui < 0

; (11.10)

where

f .ui/ D

8

ˆ̂
<

ˆ̂
:

u˛i ; if˛ > 0

ln.ui/; if˛ D 0

1 � .1C ui/
˛; if˛ < 0

(11.11)

g.ui/ D

8

ˆ̂
<

ˆ̂
:

�.�ui/
ˇ; ifˇ > 0

� ln.�ui/; ifˇ D 0

.1 � ui/
ˇ � 1; ifˇ < 0

; (11.12)

and ˛, and ˇ are respectively the power of a gain, and a loss, and 
 is a multiplier
giving the aversion to loss.

Finally, the transformed probabilities are used to construct decision weights,
�C; �� for gains and losses, where,

�Cn D wC.pn/ (11.13)

���m D w�.p�m/ (11.14)
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�Ci D wC.pi C : : :C pn/ � wC.piC1 C : : :C pn/; 0 
 i 
 n � 1 (11.15)

��i D w�.p�m C : : :C pi/ � w�.p�m C : : :C pi�1/; 1 � m 
 i 
 0: (11.16)

The CPT value of a single outcome prospect f D .uiI pi/, is v.ui/�
C.pi/ if ui � 0,

and v.ui/�
�.pi/ otherwise. For any given action the CPT value V is the sum of the

value of the prospects of that action, as in the Bayesian risk model, and the agent
chooses the option which maximises this quantity.

11.3 Method

This section provides details of experiments conducted to examine the ability of the
model to reproduce qualitative trends reported in the midwifery literature by Alvik
et al. (2006) and Phillips et al. (2007); as well as a global sensitivity analysis and
construction of statistical emulators to explore and contrast the response surfaces of
the four decision rules.

11.3.1 Qualitative Trends

Throughout this chapter, parameters for the CPT model were the same as those used
in Tversky and Kahneman (1992) (Table 11.2). While there has been significant
work on determining appropriate parametrisation for the model (e.g. Neilson and
Stowe 2002; Nilsson et al. 2011; Glöckner and Pachur 2012; and particularly
Byrnes et al. (1999) and Booij et al. (2009) addressing risk aversion and gender), a
full exploration of the impact of these parameters, or heterogeneous values within
populations is beyond the scope of this work. For simplicity, it was assumed that
all three drinking types are equally prevalent within the population, although results
derived from the Avon Longitudinal Study of Parents and Children suggest that
the reality is far more positive7 (Humphriss et al. 2013). The scenario was biased
towards disclosure as the better option by presuming a distribution of midwives
strongly skewed towards non-judgemental types, with beliefs initially favouring
honesty. Payoffs were as in Table 11.1, which ensure that it is always strictly
preferable to refer drinkers and, together with the initial belief that signals will be
honest, not to refer those claiming otherwise.

Two key measures were used: the fraction of the subpopulation who had ever
signalled honestly and the proportion of the population who were referred. Both
measures were taken after every round of play, and were taken relative to the agent’s

795.5 % of women in the sample reported consumption at, or below, NICE recommended safe
levels.
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Table 11.2 Model parameters

Name Description Value

nw Number of women 1000

nm Number of midwives 100

rm Number of appointments per midwife 1000

rw Maximum number of appointments per woman 12

Runs Simulation runs 1000

pw.h/ Proportion of heavy drinkers 1=3

pw.m/ Proportion of moderate drinkers 1=3

pw.l/ Proportion of light drinkers 1=3

pm.h/ Proportion of harsh midwives 5=100

pm.m/ Proportion of moderate midwives 10=100

pm.l/ Proportion of non-judgemental midwives 85=100

qw Probability of women sharing 0

ww Weight of shared information for women 0

qm Probability of midwives sharing 0

wm Weight of shared information for midwives 0

siŒai� W siŒa:i� Pseudo-count favouring honesty 10:1

� Probability weighting for gains 0.61

ı Probability weighting for losses 0.69

˛ Power for gains 0.88

ˇ Power for losses 0.88


 Loss aversion 2.25

position in their sequence of appointments giving the probability of signalling
honestly, or being referred having had a given number of appointments.

In addition to assessing the adequacy of the rules in capturing qualitative trends,
we also examined the impact of simple social learning within the population of
women (Sect. 11.2.4) on the robustness of these trends. The original experiment
was repeated at qw;ww 2 f0:25; 0:5; 0:75; 1jqw D wwg, with 100 runs under each
condition.

11.3.2 Global Sensitivity Analysis

In general, we have followed the example of Bijak et al. (2013) for global sensitivity
analysis of stochastic agent based models, although see Thiele et al. (2014) for a
review of alternative techniques. For this purpose the Gaussian Emulation Machine
for Sensitivity Analysis (GEM-SA) software (Kennedy 2004) was used, which
implements the Bayesian Analysis of Computer Code Outputs (BACCO) method
developed by Oakley and O’Hagan (2002, 2004), Oakley et al. (2006). This is a
form of variance-based sensitivity analysis, which assumes that the model output
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Table 11.3 Parameter ranges

Name Description Min Max

pw.m/ Proportion of moderate drinkers 0 1

pw.l/ Proportion of light drinkers 0 1

pm.m/ Proportion of moderate midwives 0 1

pm.l/ Proportion of non-judgemental midwives 0 1

qw Probability of women sharing 0 1

ww Weight of shared information for women 0 1

qm Probability of midwives sharing 0 1

wm Weight of shared information for midwives 0 1

xh Health payoff for healthy delivery 1 100

xr Cost for referral �.xh � 1/

siŒai� W siŒa:i� Pseudo-count favouring honesty 1:1 100:1

is an unknown, smooth function of the inputs. The unknown function can then be
approximated as a Gaussian Process, which is fitted to the training data using Bayes’
Theorem and then serves as an emulator for the simulator. The emulator is then
able to provide an indication about the extent to which uncertainty in a parameter
propagates to uncertainty in the output, and how sharply the output responds to
change in each parameter.

Parameters for training were generated in R (R Core Team 2014) using an
appropriately transformed Latin Hypercube Sample (Carnell 2012) over the space
of parameters given in Table 11.3, giving eleven free parameters which were treated
as uniformly distributed in the range given. Given the limitation of 400 design points
for the GEM-SA software, we produced exactly that many parameter combinations
and collected results for 100 runs of each, with emulator quality assessed by leave-
one-out cross validation. A fixed set of 100 random seeds was used,8 such that each
parameter set was run once with each seed, for every decision rule.

To capture the response characteristics for the model, we measured four outcome
variables: (1) the interquartile range (IQR) of the average signal sent by each type
of agent in a run, (2) the average signal of moderate drinking agents in a run, and
(3, 4) the IQR of 1 & 2 between simulation runs. Together these four metrics give
an indication of how far women are separable by their signalling behaviour (1), the
behaviour of the at risk drinking groups9 (2), and finally the variability of the system
in response to changes to the parameters (3 & 4).

Measurements were taken at the end of 1000 rounds of play, and emulators were
built against 400 sample points from the full set of simulation results (1 & 2), and

8Fixed random seeds were used to allow simulation results to be reproducible, since the
combination of a parameter set and a random seed yields a deterministic process.
9Under most conditions, the behaviour of heavy drinkers tracks closely with their moderate
counterparts.
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the IQR at each point (3 & 4) to assess both the overall trend, and the extent to which
the parameters contribute to variance between runs.

Sixteen emulators were built, covering each of the four outputs on all decision
models and used to conduct a probabilistic sensitivity analysis to assess the impact
of parameters and interactions.

In addition to the sensitivity analysis, we also employed the resulting emulators
to rapidly10 explore the parameter space. While emulated results are subject to
inaccuracy, they do provide an indication which regions of the parameter space are
plausible, and yield interesting results. Results for the outcomes of the interactions
of siŒai� W siŒa:i� with xh, and qw with ww are given in Sect. 11.4.3.

11.4 Results

11.4.1 Qualitative Trends

As shown in Fig. 11.1, all four decision rules were able to reproduce both qualitative
trends towards more disclosure as women experience more appointments (Phillips
et al. 2007), and a greater tendency towards underreporting of consumption by
heavier drinkers (Alvik et al. 2006). Trends for all four rules are broadly similar,
exhibiting a gradual increase across appointments which subsequently levels off.
This levelling can in part be explained by the referral results (see Fig. 11.9
in Sect. A.4), which show that the majority of drinkers are referred, even with
substantial concealment. Referrals continue to occur, in the absence of honest
signals, because drinkers are able to achieve a referral by masquerading as higher
or lower types, dependent on how their initial beliefs are biased. Despite this the
results suggest that a minority of risky drinkers will evade detection altogether, with
no notable distinction between heavy and moderate types. Under these parameters,
light drinkers always signal honestly and are never referred since there is no
perceived advantage in doing so, and the evidence of deceptive signalling is
insufficient to outweigh the biased priors of the midwives.

11.4.2 Social Learning

Introducing social learning amongst women leads the behaviour of the decision rules
to diverge markedly, which we explore possible reasons for in Sect. 11.5. Figure 11.2
shows the proportion of women who have signalled honestly at least once by their
final appointment, under four sharing conditions.

10Once constructed, the emulator has an analytical solution conditional on the roughness parame-
ters, which obviates the need to use MCMC.
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Fig. 11.1 Average fraction of population ever signalled honestly by each appointment, after 1000
rounds, mean with 95 % confidence limit over 1000 runs. Note that the large number of runs leads
to very tight confidence intervals

Aside from the lexicographic decision rule, the general tendency is towards less
honest signalling by heavy drinkers, which is accompanied by a slight increase in
referrals for the Bayesian, and CPT rules. For these decision models, this is because
social learning exacerbates the existing tendency of heavy drinkers to impersonate
moderate drinkers, who behave more honestly as heavy drinkers become less so.
This arises because both classes of agent learn that the moderate signal is the lower
risk option as it is both a reliable indicator of need, and does not attract strongly
negative judgement. The reliability of the signal is self reinforcing, since the more
the agents use it and get referred, the more confident midwives become that it
indicates need.

Particularly notable, is the decline in honest signalling by light drinkers visible
in both heuristic type rules at the 0.25 level of qw & ww, which is associated with
an increase in false positives. This arises because of the lack of homophily in social
learning, as light drinkers become informed about negative outcomes associated
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Fig. 11.2 Impact of social learning on trends in the average fraction of population ever signalled
honestly by their final appointment, after 1000 rounds, mean with 95 % confidence interval over
100 runs

with concealment, despite having nothing to conceal. The relatively high referral
rates of drinkers heighten the effect further, because shared information becomes
dominated by their experiences.

The relationship is not, however, entirely straightforward, in that increasing
social learning leads to greater variance between runs. A linear model was used
to predict the between-runs interquartile range of the average signal sent by
moderate drinkers. The predictors used were decision rule and level of social
learning, together with the interaction between the two. The regression results
were significant (F7;12 D 25; p < 2:9 � 10�6) with R2 D 94%, and intercept
0.07. The only significant coefficients were for the interaction terms, which were
0.44 (p < 0:05) for the Bayesian payoff rule and 0.69 (p < 0:005) for the
lexicographic rule. This suggests that social learning for the heuristic style decision
rules introduces considerable uncertainty to the model, which is explored further in
the sensitivity analysis below.
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11.4.3 Sensitivity Analysis

In this section we present a brief overview of the sensitivity analysis, followed by
selected results highlighting the global effect of changes to perceived payoffs and
degree of bias towards honesty, as well as social learning within women. The full
results for the sensitivity analysis covering all sixteen emulators are available in
Sect. A.5.

For the median signal choice of moderate drinkers, the results of the sensitivity
analysis suggest that the proportion of light drinkers has a significant effect for all
decision rules, accounting for 10, 38, 24, and 5 % of the variance in output for
the Lexicographic, Bayesian Payoff, Bayesian, and CPT rules respectively. For the
Lexicographic rule, the overwhelming majority of variance in signalling behaviour
is reflective of the prevalence of stigmatisation by midwives (44 % pm.m/, 7 %
pl.m/, and a further 15 % for their interaction). The proportions of midwives are
also key drivers in group separation and the between run IQR of both measures for
this rule.

Perhaps surprisingly, variance attributable to social learning between midwives
is relatively low, with neither the weight nor probability accounting for more than
5 % of variance in any measure. While there are small contributions to variance in
interaction with other parameters (e.g. 4 % to between groups IQR for the interaction
with the proportion of light drinkers under the Bayesian rule), this may suggest that
the model is lacking in this area, which we touch on in Sect. 11.6.

Figure 11.3 gives a qualitative picture of both emulator quality, and the divergent
response surfaces of the decision rules in response to variations in social learning
parameters. Emulator fit is clearly imperfect, but overall behaviour is qualitatively
similar, with both emulated and simulated plots demonstrating separation in out-
come space for the decision rules.

Following from the suggestive results for social learning introducing uncertainty
(Sect. 11.4.2), Fig. 11.4 shows emulated points covering the parameter space in high
resolution. These plots reflect the increase in uncertainty of outcome shown for the
heuristic type rules, which is especially severe for the Bayesian payoff rule. They
also suggest that the Bayesian decision rule is less stable under conditions where the
weight of shared information is substantially higher than the probability of sharing.
This indicates that placing a high weight on information from limited sources leads
to greater variability, i.e. what information is shared matters.

For the CPT and Bayesian decision models, the interaction of bias towards
honesty and distinction between payoffs has a significant and non-linear effect
on instability and separability of groups. Figure 11.5 shows the effects, and also
highlights the tendency towards poor separability of groups for both the heuristic
type decision rules. The response surface of the Bayesian payoff rule is slightly more
nuanced than the simple Lexicographic rule. Figure 11.5 shows better separation,
close to partial pooling11 at high payoff distinction, with relatively modest honesty

11Pooling occurs when signallers of different types ‘pool’ their signals, and one adopts the signals
of another.
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Fig. 11.3 Median moderate drinker signal vs median between drinking type IQR for all decision
rules, with signals coded as 0 = light, 1 = moderate, and 2 = heavy

bias, which is reflected by the variance contributions of 11 and 8 % respectively.
For the more complex rules, the general tendency is towards less pooling for higher
values of both, but with pockets where full pooling12 occurs. The plots also suggest
that the sensitivity of the CPT rule is marginally greater, which is supported by the
significant contribution to variance of close to 15 % for all measures of xh.

11.5 Discussion

From a pragmatic perspective, the differing response characteristics of the classes
decision rules are substantial and significant, particularly when social learning is
considered. There is a high level of uncertainty in the overall dynamics with the
model free rules. This does not arise with the more complex rules, because they

12Indicating that all signaller types are using a the same signal.
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Fig. 11.4 Emulated moderate drinker signal IQR in response to varying qw and ww

reframe information from others in the context of their own experiences, as what
would happen to them in that situation. By contrast, the simpler rules treat the
experiences as having literally happened to them, and since there is no mechanism
of homophily, no way to listen only to accounts of agents similar to themselves, they
can come to believe unreasonable things. Naturally, incorporating homophily, by, for
example weighting shared information by the type of the sharer, would represent a
trivial modification to the heuristic models. While to some extent this highlights the
flexibility of the decision rule approach, it would of course sacrifice the parsimony
of the model. This is an important consideration, given that part of the argument in
favour of a decision theoretic approach lies in the minimal nature of the behavioural
rules.

One of the notable features of the results is that the behaviour of rules within
a class is very similar. To some extent this reflects poorly on the most complex
rule, CPT, which diverges only minimally in behaviour from the Bayesian model.
This might be to a degree anticipated since we have not elicited payoffs for obvious
practical and ethical reasons, and they may be unrealistic, which limits the utility
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Fig. 11.5 Emulated between groups IQR in response to varying siŒai� W siŒa:i�, and xh

of the CPT approach. Additionally, work by Glöckner and Pachur (2012) has shown
that there is considerable variation in individual parameters for the decision model,
whereas we have let them remain homogeneous here. In the same vein, utility
functions should arguably vary between individual agents, which could potentially
be addressed by replacing the fixed payoffs used here with a distribution. With
this said, the significant increase in complexity, which entails both additional
parameters and increases to simulation time may necessitate a middle ground,
particularly where elicitation of payoffs is impractical. This, together with the
variability associated with the heuristic type decision rules speaks to a trade off
between capturing reality and replicating it.

Continuing the discussion of the issues raised by the representation of payoffs,
the temporal aspect is significant, in that there is a timing difference in payoffs,
since while the potential social pain of disclosure is immediate, the health outcome
comes only later. In light of this, that there is a known impact of time on perceived
utility Thaler (1981) suggests that incorporating some form of temporal discounting
(e.g. exponential (Samuelson 1937), or hyperbolic (Ainslie 1991)), or a decision
model which explicitly treats intertemporal choice, such as the CPT-like model of
Loewenstein and Prelec (1992), is warranted.
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As noted in Sect. 11.3.2, the impact of social learning in midwives is surprisingly
minimal, where it might be expected to play a more significant role in reality.
A possible explanation for this lies in the implementation, which may place an
excessive constraint on how much information midwives can share. The restriction
to sharing only after a referral, together with the disparity in population sizes and
random allocation of appointments, leads to midwives rarely having more than a
single interaction with woman to pass on to their colleagues. Furthermore, because
midwives are only informed of the true type if a referral occurs, they have an
inherent myopia since until they have evidence of deception they will not refer,
with said evidence difficult to obtain without a referral.

In reality it might be anticipated that midwives would not withhold judge-
ment, and would pass on concerns about specific women to their colleagues,
or that particularly dramatic stories would persist and be passed. This might
be addressed by incorporating noisy type information (Feltovich et al. 2002),
capturing the unintentional information transmitted during appointments, together
with a relaxation of the assumptions about when information may be shared and
a more sophisticated model of information flow in general. This also highlights an
advantage of the BACCO approach (which we describe in Sect. 11.3.2), in diagnosing
issues with model design by giving insight into parameters which are contributing
inappropriately to variance in output. Coupled with the ability of emulators to
rapidly explore parameter space, this clearly suggests that statistical emulation is
a powerful tool to support simulation based approaches. As noted in Sect. 11.4.3 the
emulators here are indicative, but not definitive. Amongst the reasons discrepancy
arises here are heteroskedasticity associated with social learning, the stochastic
nature of the simulation, and a lack of precision given the large parameter range. The
former issues could be addressed by a more comprehensive approach to setting the
nugget, which explicitly incorporates point variance. The latter could be improved
through iterative fitting procedures, where the simulation is sampled more heavily in
plausible regions of parameter space, a procedure not possible here given the dearth
of data to evaluate plausibility. That the discrepancy exists is not prohibitive in this
instance, since we are not using the emulator for prediction, only to achieve a broad
strokes picture of the behaviour of the simulator.

11.6 Conclusion

The conclusions that can be drawn about the behaviours of real life women, and their
midwives, are necessarily limited by the paucity of data available to validate the
model. While qualitative trends offer some indication, they are limited in scope, and
do not permit strong claims about the drivers of disclosure. As such, further work
will focus on applying the model to domains where validation data is more available,
which will support a more comprehensive evaluation of the model discrepancy. With
this said, the trends reported by Alvik et al. (2006), and Phillips et al. (2007) are
borne out by the model, and predictions from the two more complex rules suggest
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that encouraging information sharing between women may encourage disclosure,
but at the expense of reducing accuracy. By contrast, if one takes the view that a
Lexicographic model is a better approximation of real behaviour, then outcomes can
best be influenced by controlling how far midwives punish their women socially. We
would however suggest that there are better reasons than the outputs of a simulation
for doing so.

More broadly, the results demonstrate the logistical feasibility, and its utility as
a ‘tool for thinking’, of an agent model grounded in decision theory. The results
also make clear that deciding the operationalisation of the decision making is of key
significance.
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Appendix

A.1 Disclosure Game Model Development

This appendix provides a more in depth exploration of the model development
process, beginning by deriving a game to serve as the basis for the model and
decision problems.

A game, in the game theoretic sense, can be any interaction where the result for
one person is dependent on the actions of another. In this scenario, the result for
the woman would seem dependent on whether the midwife chooses to refer her for
specialist support (although naturally the reality can only be thought of in terms
of risk mitigation), and conversely, the right choice for the midwife is somewhat
contingent on what the woman is willing to tell them.

A very simple way to represent this would be a game with two players, who both
have two possible moves – ask for help, or not; and refer, or not (Fig. 11.6). Since
both parties are invested in the outcome of the pregnancy, we might allow them to
share the same payoff if everything ends well.

The first complication, is that there should be differentiation between referring,
and doing nothing because specialist treatment incurs a cost. We can modify the
payoffs to reflect this, by reducing the midwife’s payoffs when they refer. If the cost
of referring is less than the value of a good outcome, then the effect of this is to
make the only rational choice when not asked for help is to do nothing.

This simple game is however not very informative, and clearly neglects much
of the nuance of the scenario. The wider difficulty here is that the real outcome
depends on an attribute of one of the players, rather than their moves. In this case,
we would expect the right choices to depend on the alcohol consumption of the
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Fig. 11.6 A very simple two player game. The only time things in this very restricted world
obviously end poorly is if the woman asks for help but does not get any. This implies that a rational
player would always refer if asked for help, and is indifferent otherwise – in other words, there are
three possible Nash equilibriums (a Nash equilibrium is a solution to a game between two or more
players, where no player can gain from changing their move)

woman, rather than entirely on what she has claimed about it. To reflect this, we
would need different variations on the same game to reflect this attribute.

To resolve this, we can do exactly that and cast it as a signalling game (Fig. 11.7),
with three types of player corresponding to categories of drinking behaviour (light,
moderate, and heavy). Each of these types of player, will play a different game. This
also introduces a third player, who we will call nature. Nature takes the first move,
and decides the type of the woman according to some probability distribution; in this
case we will allow the probability of types to be uniform. This changes the dynamics
of play substantially, since the midwife can no longer be certain of which game they
are playing, and hence which move yields the best outcome. We must also amend
the moves, and payoffs slightly. The woman now claims to be one of the types, and
may send a signal to say, for example, that she a heavy drinker. We will also modify
the common payoffs to allow light drinkers to get the best outcome no matter what,
and moderate and heavy types to get the best outcome only if referred. We can also
differentiate between the consequences of not getting help for these types by letting
heavy drinkers have a very negative outcome, and moderate drinkers a slight one.

At this point, the game becomes challenging to analyse from a Nash equilibrium
perspective (there are several hundred). But, having raised to issue of stigma, we
would also like to incorporate this in the game. A possible approach to this is
similar to the drinking behaviour of the women, and lets midwives have a type
as well, corresponding to how judgemental they are when receiving signals: non-
judgemental, moderately judgemental, and harshly judgemental. The expression of
this judgement is not a matter of choice on their part, and is assumed to have no
impact on their clinical response. Nature now has an additional move, to choose the
type of the midwife, and we add costs for sending moderate and heavy signals. A
heavy signal to a harshly judgemental midwife adds a heavy cost, and a moderate
cost from a moderate midwife. The resulting game might reasonably be said to be
intractable.
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Fig. 11.7 A less simple two player signalling game
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a

b

Fig. 11.8 Influence diagrams, showing the game broken into two decision problems. Squares
indicate a decision node, while circles are (from the perspective of the agent) chance nodes (a)
Women (heavy drinkers). (b) Midwives

At this juncture, we do not gain much further from the game representation, and
instead separate it into multiple decision problems.

Breaking the game down into separate decision problems can be achieved by
treating the moves of the other players as a chance node, and omitting moves by
nature that are known to them. For women, there are two such nodes, corresponding
to the move by nature determining the type of midwife they play against, and the
midwife’s action. Midwives have a simpler problem with only a single chance node,
because the woman’s move is known to them. Figure 11.8 shows the structure of
the resulting decision problems. Note that there are in fact three distinct decision
problems for the three types of woman, since the move by nature determining their
type is known to them.

The precise structure of the decision problem is to some extent dependent on
the decision rule in use, for example the Lexicographic heuristic rule is concerned
only with a direct relationship between action and consequence. However, the literal
translation from game to decision problem for women yields two chance nodes.
As a result, solving this using the heuristic approach requires that the nodes be
combined. By the same token, an arbitrarily complex problem could be resolved by
rules without this limitation. This is significant, in that the decision problem is an
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individual agent’s model of the situation, which might not be expected to correspond
perfectly with the true sequence of events.

From this position, simulating play and augmenting the basic conjecture is easily
achievable, since together the game and the decision rules specify the basis for a
simulation model. In the disclosure game case, we make additional stipulations on
how many games agents play, order of play, the circumstances under which agents
observe true types, and the structure of agent populations amongst others.

A.2 Simulation Schedule

In this section we give the step by step process for a single run of the disclosure
game simulation.

1. Generate 1000 women, and place them in a queue
2. Generate 100 midwives.
3. For each round of the game

a. Take 100 women from the queue
b. Pair each one with a random midwife
c. For each pair

i. The woman sends a signal
ii. The midwife refers or not based on the signal

iii. The woman is informed of her payoff, the midwife’s type, and whether she
is referred

iv. The woman updates her beliefs
v. The midwife stores the game in their memory

vi. If the woman is referred

A. The midwife is informed of the woman’s true type
B. The midwife retrospectively updates their beliefs using the true

type, and memories of any games with this woman
C. The midwife is now eligible to share their memories of the games

played with this woman

d. Women who have not been referred or had their baby, join the back of the
queue

e. New women are generated to replace those referred or delivered
f. The new women are added to the back of the queue
g. For each referred or birthed woman

i. With probability p, her memory of games is shared with the active women
ii. She is removed from simulation

h. The active women update their beliefs
i. For each midwife with information to share
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i. With probability p, their memory of games with the referred woman is
shared

ii. The memory is no longer eligible to be shared

j. The midwives update their beliefs

A.3 Agent Examples

This section provides a worked example for the learning and decision process of
each agent model, focusing on the behaviour of the signalling agent.

A.3.1 Lexicographic Heuristic

As an example, take a light drinker who has played three rounds with a succession
of particularly judgemental midwives, signalling honestly in two and claiming to be
a moderate drinker in one. The most common outcome of the honest signal was a
payoff of 10, which is clearly preferable to the 9 gained by claiming to be moderate.
On that basis, they choose to signal honestly.

A.3.2 Bayesian Payoff

We take our light drinker from the lexicographic case and assume that they
began with an uninformative prior. The 6 possible signal-payoffs pairings are then
Œ.l; 10/; .m; 10/; .h; 10/; .m; 9/; .h; 9/; .h; 8/�, with ˛i D 1 for all i. After playing the
three rounds, nl;10 D 2, and nm;9 D 1.

The agent then evaluates Rw for each signal, e.g. for the light signal:

X D f10g

Rw.l/ D
X

x2X

�xp.xjl/ D �10p.10jl/

Rw.l/ D �10.
˛l;10 C nl;10
P

j.˛j C nj/
/ D �10.

1C 2

1C 2
/

Rw.l/ D �10.
3

3
/ D �10

and by the same method, Rw.m/ D �91
3
, and Rw.h/ D �9, concluding that

signalling honestly is the best move.
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A.3.3 Bayesian Risk Minimisation

Returning to our example agent, under this model the type of the midwife becomes
salient, hence nh D 3, and nl;n D 2, nm;n D 1. Their prior beliefs remain
uninformative, i.e. ˛j D 1; j 2 fl;m; hg, ˛i;j D 1; i 2 fr; ng; j 2 fl;m; hg. As before,
the agent evaluates Rw for the three signals, and the process for the light signal is
given below:

Rw.l; l/ D
X

i2Am

X

j2‚

�uw.l; i; l; j/p.j/p.ijl/

Rw.l; l/ D �uw.l; r; l; l/p.l/p.rjl/ � uw.l; n; l; l/p.l/p.njl/

� uw.l; r; l;m/p.m/p.rjl/ � uw.l; n; l;m/p.m/p.njl/

� uw.l; r; l; h/p.h/p.rjl/ � uw.l; n; l; h/p.h/p.njl/

uw.l; i; l; j/ D 10

Rw.l; l/ D �10p.l/p.rjl/ � 10p.l/p.njl/ � 10p.m/p.rjl/ � 10p.m/p.njl/

� 10p.h/p.rjl/ � 10p.h/p.njl/

p.l/ D
1C 0

1C 1C 1C 3
D
1

6

p.m/ D
1C 0

1C 1C 1C 3
D
1

6

p.h/ D
1C 3

1C 1C 1C 3
D
2

3

p.rjl/ D
1C 0

1C 1C 2
D
1

4

p.njl/ D
1C 2

1C 1C 2
D
3

4

Rw.l; l/ D �10 �
1

6
�
1

4
� 10 �

1

6
�
3

4
� 10 �

1

6
�
1

4
� 10 �

1

6
�
3

4
� 10 �

2

3
�
1

4

� 10 �
2

3
�
3

4

D �10

and similarly for moderate (Rw.m; l/ D �91
3
), and heavy (Rw.h; l/ D �81

2
) signals,

once again concluding that honesty is the better option.
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Table 11.4 CPT parameters Name Description Value

� Probability weighting for gains 0:61

ı Probability weighting for losses 0:69

˛ Power for gains 0:88

ˇ Power for losses 0:88


 Loss aversion 2:25

A.3.4 Descriptive Decision Theory

Once again, we return to the light drinker example. The inferential aspects are
identical with the more complex Bayesian risk minimisation algorithm, hence
p.j/p.ijl/, and uw.l; i; l; j/ remain the same, but the agent additionally calculates
v.uw.l; i; l; j//wC.p.j//wC.p.ijl//. For the CPT parameters, the values are those orig-
inally given by Tversky and Kahneman (1992) and used in the actual simulations
which are given in Table 11.4.

˛ D 0:88

� D 0:61
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1

6

p.m/ D
1
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3
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v.uw/ D f .uw/ D u˛w

v.uw/ D 100:88 D 7:59
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And as before, following the same process for moderate and heavy signals, which
yields respectively 7.14, and 6.22, the agent chooses the higher valued action and
sends an honest signal.
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A.4 Supplementary Figures

Fig. 11.9 Average fraction of population referred by each appointment, after 1000 rounds, mean
with 95 % confidence limit over 1000 runs. Note that the large number of runs leads to very tight
confidence intervals

A.5 Sensitivity Analysis

This section provides complete variance based sensitivity analysis results for the
disclosure game model. Each subsection gives results for one simulation output
under all four decision rules, with tables providing the percentage of overall variance
attributable to the individual parameters, emulator quality statistics, and the five
most significant interaction contributions to variance in the output.
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A.5.1 Median Moderate Drinker Signalling

Table 11.5 Median moderate drinker signalling parameter sensitivity

Parameter Description Lexicographic Bayesian payoff Bayesian CPT

pw.m/ Proportion of moderate
drinkers

0.367 1.145 0.801 0.614

pw.l/ Proportion of light
drinkers

10.080 37.750 23.968 5.137

pm.m/ Proportion of moderate
midwives

6.715 13.017 0.894 1.485

pm.l/ Proportion of non-
judgemental midwives

43.942 1.655 1.602 2.618

qw Probability of women
sharing

0.198 5.527 4.460 1.159

ww Weight of shared infor-
mation for women

0.355 13.025 2.716 0.888

qm Probability of
midwives sharing

0.145 0.667 0.368 0.157

wm Weight of shared infor-
mation for midwives

0.118 0.376 0.176 0.200

xh Health payoff for
healthy delivery

0.457 9.618 1.912 15.355

siŒai� W siŒa:i� Pseudo-count
favouring honesty

0.140 7.537 10.427 7.795

Total All parameters and two
way interactions

86.777 96.527 85.529 74.123

Table 11.6 Median moderate drinker signalling emulator statistics

Rule �2 Nugget �2 Mean output
Total output
variance Code uncertainty RMSSE

Lexicographic 0.834 0.131 0.817 0.012 0.252 1.746

Bayesian payoff 1.667 0.475 0.662 0.003 0.181 3.12

Bayesian 3.352 0.534 1.160 0.001 0.068 2.423

CPT 1.503 0.331 1.241 0.002 0.101 1.842

Table 11.7 Top 5 interaction
terms for CPT decision rule

Parameter Variance

xh*siŒai� W siŒa:i� 20:814

pw.l/*siŒai� W siŒa:i� 5:698

pw.l/*xh 2:895

siŒai� W siŒa:i�*ww 2:799

siŒai� W siŒa:i�*qm 1:686
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Table 11.8 Top 5 interaction
terms for Bayesian decision
rule

Parameter Variance

pw.l/*siŒai� W siŒa:i� 17:270

pw.l/*qm 6:054

qm*ww 3:814

siŒai� W siŒa:i�*qm 3:538

siŒai� W siŒa:i�*ww 3:084

Table 11.9 Top 5 interaction
terms for lexicographic
decision rule

Parameter Variance

pm.l/*pm.m/ 15:331

pm.m/*pw.l/ 3:682

pm.l/*pw.l/ 3:581

pm.m/*qm 0:349

pm.l/*qm 0:279

Table 11.10 Top 5
interaction terms for Bayesian
payoff decision rule

Parameter Variance

pw.l/*ww 4:045

xh*siŒai� W siŒa:i� 1:856

pw.l/*qm 1:231

siŒai� W siŒa:i�*qm 0:997

qm*ww 0:929

A.5.2 Median Between Groups IQR

Table 11.11 Median between groups IQR parameter sensitivity

Parameter Description Lexicographic
Bayesian
payoff Bayesian CPT

pw.m/ Proportion of moderate drinkers 0.327 0.688 0.457 0.586

pw.l/ Proportion of light drinkers 11.223 20.123 11.046 4.081

pm.m/ Proportion of moderate midwives 36.630 1.160 0.364 1.945

pm.l/ Proportion of non-judgemental
midwives

6.228 4.487 0.0964 2.627

qw Probability of women sharing 0.498 0.235 2.537 1.812

ww Weight of shared information for
women

1.018 2.307 1.889 0.740

qm Probability of midwives sharing 0.158 0.343 0.387 0.156

wm Weight of shared information for
midwives

0.076 0.973 0.125 0.213

xh Health payoff for healthy delivery 0.317 10.960 3.305 16.493

siŒai� W siŒa:i� Pseudo-count favouring honesty 1.107 8.411 2.890 6.729

Total All parameters and two way inter-
actions

81.702 83.693 47.449 71.032
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Table 11.12 Median between groups IQR emulator statistics

Rule �2 Nugget �2 Mean output
Total output
variance Code uncertainty RMSSE

Lexicographic 0.930 0.240 0.249 0.002 0.040 1.832

Bayesian payoff 1.242 0.417 0.232 0.001 0.0034 2.308

Bayesian 1.254 0.131 0.644 0.000 0.019 1.167

CPT 1.190 0.313 0.659 0.000 0.024 1.701

Table 11.13 Top 5
interaction terms for CPT
decision rule

Parameter Variance

xh*siŒai� W siŒa:i� 19:551

pw.l/*siŒai� W siŒa:i� 3:838

siŒai� W siŒa:i�*ww 2:450

pw.l/*xh 2:337

siŒai� W siŒa:i�*qm 2:046

Table 11.14 Top 5
interaction terms for Bayesian
decision rule

Parameter Variance

siŒai� W siŒa:i�*qm 4:284

pw.l/*qm 3:866

pw.l/*siŒai� W siŒa:i� 2:943

xh*siŒai� W siŒa:i� 2:680

qm*ww 2:282

Table 11.15 Top 5
interaction terms for
lexicographic decision rule

Parameter Variance

pm.l/*pm.m/ 12:046

pm.m/*pw.l/ 5:054

pm.l/*pw.l/ 3:005

pm.l/*ww 0:819

pm.m/*ww 0:757

Table 11.16 Top 5
interaction terms for Bayesian
payoff decision rule

Parameter Variance

pw.l/*siŒai� W siŒa:i� 12:883

pw.l/*ww 5:667

pw.l/*xh 2:447

xh*siŒai� W siŒa:i� 2:360

pm.m/*pw.l/ 1:919
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A.5.3 Median Moderate Drinker Signalling IQR

Table 11.17 IQR of median moderate drinker signalling parameter sensitivity

Parameter Description Lexicographic
Bayesian
payoff Bayesian CPT

pw.m/ Proportion of moderate drinkers 0.428 9.828 3.816 2.068

pw.l/ Proportion of light drinkers 8.369 13.791 4.045 2.400

pm.m/ Proportion of moderate midwives 13.416 0.712 0.676 0.583

pm.l/ Proportion of non-judgemental
midwives

21.079 0.648 0.659 0.373

qw Probability of women sharing 2.307 3.481 0.891 0.600

ww Weight of shared information for
women

6.021 6.009 0.562 0.937

qm Probability of midwives sharing 0.315 1.829 0.114 0.117

wm Weight of shared information for
midwives

1.652 1.354 0.260 0.0.139

xh Health payoff for healthy delivery 0.253 0.612 4.889 15.146

siŒai� W siŒa:i� Pseudo-count favouring honesty 0.504 3.096 19.863 25.999

Total All parameters and two way inter-
actions

84.9968 77.413 57.125 83.322

Table 11.18 IQR of median between groups IQR emulator statistics

Rule �2 Nugget �2 Mean output
Total output
variance Code uncertainty RMSSE

Lexicographic 1.425 0.436 0.549 0.008 0.114 2.719

Bayesian payoff 1.223 0.496 0.747 0.012 0.207 2.034

Bayesian 1.065 0.000 0.230 0.002 0.088 1.015

CPT 0.874 0.213 0.233 0.001 0.066 1.806

Table 11.19 Top 5
interaction terms for CPT
decision rule

Parameter Variance

xh*siŒai� W siŒa:i� 17:377

pw.m/*siŒai� W siŒa:i� 3:356

siŒai� W siŒa:i�*ww 3:036

siŒai� W siŒa:i�*qm 2:067

pw.l/*siŒai� W siŒa:i� 1:721

Table 11.20 Top 5
interaction terms for Bayesian
decision rule

Parameter Variance

pw.m/*siŒai� W siŒa:i� 4:188

xh*siŒai� W siŒa:i� 3:120

siŒai� W siŒa:i�*qm 2:423

pw.l/*siŒai� W siŒa:i� 2:279

pw.l/*qm 1:489
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Table 11.21 Top 5
interaction terms for
lexicographic decision rule

Parameter Variance

pm.m/*pw.l/ 12:068

pm.l/*pw.l/ 6:794

pm.l/*pm.m/ 5:567

pm.m/*qm 0:886

pm.l/*qm 0:692

Table 11.22 Top 5
interaction terms for Bayesian
payoff decision rule

Parameter Variance

pw.l/*pw.m/ 8:357

pw.l/*ww 7:431

pw.l/*siŒai� W siŒa:i� 4:882

pw.l/*qm 2:346

pw.l/*wm 2:025

A.5.4 IQR of Between Groups IQR

Table 11.23 IQR of median between groups IQR parameter sensitivity

Parameter Description Lexicographic
Bayesian
payoff Bayesian CPT

pw.m/ Proportion of moderate drinkers 0.691 5.926 1.053 1.265

pw.l/ Proportion of light drinkers 3.664 17.047 4.877 3.656

pm.m/ Proportion of moderate midwives 41.369 1.124 0.814 0.591

pm.l/ Proportion of non-judgemental
midwives

7.109 0.739 0.496 0.378

qw Probability of women sharing 1.963 2.038 0.733 0.589

ww Weight of shared information for
women

7.932 11.193 2.289 1.960

qm Probability of midwives sharing 0.413 1.972 0.267 0.069

wm Weight of shared information for
midwives

0.120 2.902 0.150 0.123

xh Health payoff for healthy delivery 0.228 3.190 6.308 14.777

siŒai� W siŒa:i� Pseudo-count favouring honesty 0.673 10.411 22.901 26.340

Total All parameters and two way inter-
actions

85.740 88.611 68.640 84.210

Table 11.24 IQR of median between groups IQR emulator statistics

Rule �2 Nugget �2 Mean output
Total output
variance Code uncertainty RMSSE

Lexicographic 0.826 0.409 0.259 0.002 0.034 2.364

Bayesian payoff 3.202 0.520 0.328 0.002 0.032 2.452

Bayesian 1.177 0.041 0.133 0.000 0.018 1.152

CPT 0.874 0.118 0.126 0.000 0.017 1.570
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Table 11.25 Top 5
interaction terms for CPT
decision rule

Parameter Variance

xh*siŒai� W siŒa:i� 18:626

pw.l/*siŒai� W siŒa:i� 3:312

siŒai� W siŒa:i�*ww 2:823

siŒai� W siŒa:i�*qm 2:694

xh*qm 1:022

Table 11.26 Top 5
interaction terms for Bayesian
decision rule

Parameter Variance

pw.l/*siŒai� W siŒa:i� 7:947

xh*siŒai� W siŒa:i� 4:048

siŒai� W siŒa:i�*qm 3:134

pw.l/*qm 2:307

pm.m/*siŒai� W siŒa:i� 2:232

Table 11.27 Top 5
interaction terms for
lexicographic decision rule

Parameter Variance

pm.l/*pm.m/ 8:659

pm.m/*pw.l/ 3:726

pm.l/*pw.l/ 3:237

pm.l/*ww 1:564

pm.m/*ww 1:558

Table 11.28 Top 5
interaction terms for Bayesian
payoff decision rule

Parameter Variance

qm*ww 3:830

pw.l/*pw.m/ 3:808

pw.l/*siŒai� W siŒa:i� 3:401

pw.l/*qm 2:385

xh*siŒai� W siŒa:i� 2:294
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Part IV
Family Formation and Fertility



Chapter 12
An Agent-Based Model of Sex Ratio at Birth
Distortions

Ridhi Kashyap and Francisco Villavicencio

12.1 Introduction

Since the 1980s and 1990s, a decline in total fertility levels across a number of
countries in Asia and the Caucasus has been accompanied by an unprecedented rise
in the proportion of male births compared to female births, usually expressed in
terms of the sex ratio at birth (SRB) (Bongaarts 2013; Guilmoto 2009). According
to available demographic estimates since the 1950s SRBs in most countries lie
between 104–106 male births for every 100 female births and over the past two
centuries SRB levels have remained unchanged across different settings where
fertility has declined.1 Although this unprecedented trend is not universal across the
diverse demographic contexts in Asia, the sizeable populations where it has been

1The United Nations (UN) Population Division publishes a comparative global SRB time
series from 1950 onward and produces SRB forecasts until 2100 (United Nations 2013). SRB
forecasts, unlike more recent probabilistic approaches adopted in the UN’s fertility forecasts, are
deterministic. These estimates as well as other demographic studies documenting SRB trends make
use of different types of data sources with varying levels of reliability: birth registration data, which
are the most reliable when available; birth-history estimates from large surveys; and census data on
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noted—China, India, South Korea, Vietnam, Georgia, Azerbaijan, Albania, among
others—make it one of the “most notable anomalies” of contemporary demography
(Guilmoto 2009, p. 519). While earlier literature presumed that the presence of
widespread son preferences would delay the fertility transition and keep fertility
rates higher than they would be in their absence (Amin and Mariam 1987; Nath
and Land 1994), the rise of SRBs despite steep fertility declines, as first clearly
evidenced in the case of South Korea, suggested that sex-selective abortion (SSA)
provided a strategy for reconciling both.2

This has led demographers to speculate that SRBs may rise in other contexts
where son preference persists but safe, effective and cheap sex determination
technology has yet to become available (Bongaarts 2013). Figure 12.1 shows United
Nations estimates for total fertility rates (TFR) and SRB trends from 1970 to 2010
for South Korea, China and India. Also reported are data of an example (Turkey)
where a similar rise in SRB has not accompanied the fertility decline.

The causes, patterns and demographic implications of distorted SRBs remain
the subject of much research. Extensive demographic research has paid attention
to highlighting SRB levels and trends in country-specific as well as comparative
perspective across Asia (Attané and Guilmoto 2007; Duthé et al. 2012; Guilmoto
2009, 2012). In contrast, comparatively less attention has been paid to understanding
the levels and trends of the micro-level factors underpinning SRB trajectories. The
dynamics of son preference, its interactions with total family size aspirations and the
availability of sex-selective abortion are important to model especially as Bongaarts
notes “policymakers are hampered by an absence of methods for projecting trends
in sex ratios at birth” (Bongaarts 2013, p. 185).

Recognizing this lacuna in the literature, the focus of emerging scholarship on
SRBs has been more theoretical. Guilmoto (2009) theorizes the micro-level fertility
calculus that couples engage in that leads to SRB distortions at the macro-level. In
the same paper, he likens the shape of SRB trajectories to an “archetypal transition
cycle” involving three stages: first a rise, followed by a levelling-off and an eventual
decline towards normal levels that he terms the “sex ratio transition” (Guilmoto
2009, p. 519). Bongaarts (2013) develops a similar macro-level framework that
relates different stages in SRB trajectories—a gradual, then steep rise, followed
by levelling off and eventual decline—to different stages of the fertility transition.

recent births or age structure (Guilmoto 2009). Data quality problems for estimating SRB trends
in Asia are detailed extensively elsewhere (Attané and Guilmoto 2007).
2Sex-selective abortion requires pre-natal sex-determination technologies as well as methods for
abortion. Different technologies for pre-natal sex-determination technologies presently exist—
amniocentesis, an invasive procedure that is conducted between 15 and 20 weeks of pregnancy,
ultrasonography, which can determine the sex of the foetus as early as 11 weeks, and blood tests
involving the analysis of the foetal DNA floating in the mother’s bloodstream, which are minimally
invasive procedures and can be done at home as early as 7 weeks into the pregnancy (Bongaarts
2013).
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Fig. 12.1 Total fertility rates (TFR) and sex ratio at birth (SRB) trends 1970–2010 (Source: United
Nations (2013))

In Bongaarts’s schema, SRB levels hover at normal or near-normal levels at the
early-mid stages of the fertility transition when fertility levels are high, and become
distorted, at first gradually then steadily in the mid-stage of the fertility transition as
fertility begins to fall. He hypothesizes an eventual turnaround emerging when low
fertility levels are established at the late stage. How micro-level factors plausibly
change and interact to generate macro-level SRB trajectories at each of the stages—
the rise from normal levels, the levelling off phase and an eventual decline and return
to normal levels—in the sex ratio transition is not explicitly explored by the authors.

Guilmoto attributes this to the limitations of existing data that preclude a
“more detailed decomposition” of the three micro-level factors he identifies—son
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preference, technological access and fertility decline—in explaining observed SRB
levels and trends (Guilmoto 2009, p. 535). Existing data and approaches make it
difficult to quantify, for example, what levels and rates of change in son preference
over time as well as probabilities of sex-selective abortion underlie observed SRB
and fertility trajectories. Furthermore, limited research has sought to disentangle
the impact of SSA practice on reducing fertility as distinct from a population that
exclusively practices differential stopping behaviour (DSB).3

This chapter dynamically models individual-level fertility preferences and repro-
ductive behaviours bottom-up to examine emergent population-level SRB and total
fertility patterns through the use of an agent-based model (ABM). Agent-based com-
putational modelling methods have been proposed as a valuable set of techniques to
model emergent demographic phenomena through the simulation of heterogeneous
individuals who follow behavioural rules and adapt their behaviours in response
to stimuli (Billari and Prskawetz 2003; Bonabeau 2002). The ability to simulate
dynamic and endogenous processes such as changing rates of son preference or the
impact of the fertility decline on increasing readiness to abort, model individual
adaptation to exogenous stimuli such as the availability of sex selection technology,
explore counterfactual scenarios and overcome data limitations make ABM a
promising technique by which to examine micro-level reproductive behaviours that
generate SRB distortions.

A detailed description of the model, study of model behaviour and
experiments and model calibration for South Korea is presented elsewhere
(Kashyap and Villavicencio forthcoming). This chapter extends the model to Indian
SRB trajectories and contrasts the SRB trajectories of both India and South Korea to
highlight how different micro-level patterns can be used to describe their distinctive
trajectories. South Korea witnessed the emergence of skewed SRBs alongside a
rapid fertility decline in the 1980s. By the 1990s SRBs started to level off and very
soon afterwards by the mid-1990s SRBs showed a remarkable turnaround towards
normalization (see Fig. 12.1). By the mid-2000s SRBs had already returned to near
normal levels. As an exemplar of a country that has been through all three stages of
the sex ratio transition, calibrating the ABM to the South Korean case can shed light
on the levels and rates of change in son preference, rate of diffusion of technology
and probabilities of sex-selective abortion that plausibly underpinned different
stages of the SRB trajectory. The Indian case in contrast witnessed a later rise in
SRBs in the 1990s, followed by a levelling off that began in the mid-to late-2000s.
The future course of SRB trajectories in India remains open to question. Will the
turnaround to normal or near-normal levels in India be as rapid as that witnessed
in South Korea? By calibrating the ABM so that we are able to recreate the Indian

3Differential stopping behaviour (DSB) refers to fertility behaviour in which couples continue
childbearing until they reach a desired number of sons by regulating their contraceptive use and
childbearing behaviour based on the sex composition of existing children. Several papers report the
presence of DSB—manifested in higher levels of contraceptive use after bearing sons, higher levels
of parity progression in daughter-only families, or high sex ratios at last birth—across different son-
preferring populations (Amin and Mariam 1987; Arnold et al. 1998; Bongaarts 2013; Clark 2000;
Retherford and Roy 2003).
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SRB trajectory bottom-up, we can also explore the future implications of changing
fertility preferences and reproductive behaviours.

Our model calibration for both countries shows how even as son preference levels
were likely declining in both contexts SRB distortions might have plausibly emerged
due to the combined effects of technology diffusion and increasing probabilities to
sex-selectively abort at lower birth parities resulting from declining total fertility
levels. Indeed, an interesting insight from the South Korean calibration is that
even relatively low levels of son preference, for example 	30 % of the population
desiring one son, can result in significant SRB distortions if access to technology
diffuses steadily and fertility falls rapidly to encourage individuals to abort at the
lowest parity—parity 0 or the transition to first birth. Model calibration highlights
how the extent of SRB distortion is strongly linked to the parity at which individuals
choose to sex-selectively abort. SRB distortion is greater when individuals are ready
to abort at low parities such as parity 0 or 1 and less inclined to progress to higher
births instead, a situation that becomes increasingly likely as fertility falls.

12.2 Modelling Reproductive Behaviours

12.2.1 Sex Selection

The model operationalizes the “ready, willing and able” (RWA) framework to
conceptualize the micro-level causal processes leading to the practice of sex
selection. We borrow these insights from Guilmoto (2009) who adapts Ansley
Coale’s RWA framework (Coale 1973), originally used by Coale to account for the
European fertility decline in the nineteenth century, to the practice of sex selection.
To explain the fertility decline in Europe, Coale posited that three conditions had
to be met: (1) Were individuals willing to limit fertility? This condition required
that limiting fertility had to be acceptable and not proscribed by existing normative
considerations (e.g. religious or ethical) that individuals adhered to. (2) Did parents
have access to technology (e.g. contraception) to be able to limit family size? This
condition described the ability of parents to limit fertility. (3) Were parents ready to
limit their family size? The readiness condition brought in considerations of utility,
that is, limiting fertility had to be economically advantageous to the actor within
their decision-making calculus.

In their more general reformulation of Coale’s classic framework, Lesthaeghe
and Vanderhoeft (2001) highlight its usefulness as a conceptual apparatus in social
demography to explain adaptation to new modes of behaviour involving processes
of innovation and diffusion. In the same paper, the authors also apply the framework
to the study of fertility transitions in the developing world, underscoring its wider
applicability beyond the setting for which it had originally been developed. The
strength of the RWA conceptual framework, they argue, is in its ability to integrate
economic and noneconomic paradigms that include normative legitimacy, economic
utility, as well as functional considerations of technological access in explaining
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adaptations to new behaviours. Moreover, by explicitly identifying distinctive causal
processes underlying the uptake of new behaviour, the framework highlights how
transitions to new forms of behaviour can take different forms depending on
differing rates and patterns of change in each of the R, W and A components.

Guilmoto (2009) adapts the RWA conceptual framework to the proximate causal
processes underlying the practice of sex selection. By adopting the RWA approach
from the “actor’s point of view”, sex selection can be seen as “a rational strategy in
response to changing constraints and opportunities within existing gender regimes”
(Guilmoto 2009, p. 526). The practice of sex selection from the actor or individual’s
perspective can be seen as the outcome of three conditions being met: (1) The
actor must be willing to consider sex selection because of the persistence of
cultural norms that reinforce the value of male offspring. Sex preferences must be
entrenched within a social and cultural context that allows agents to consider acting
on them. Across the diverse contexts of South and East Asia, where strong SRB
distortions have been observed, Das Gupta et al. (2003) argue that son preference
is underpinned by commonalities in patrilineal and patrilocal kinship systems that
reinforce the material and ideological value of male offspring. (2) Actors must be
able to access sex-selective abortion due to the availability of relatively affordable
and accurate pre-natal sex determination technology to detect the sex of the foetus,
as well as have access to abortion that enables them to abort it when unwanted.
(3) Even in the presence of son preference (willingness) and access to technology
(ability), actors will not perform sex selection unless they are ready to do so.
The idea of readiness usually gains importance in low fertility situations with
the diffusion of norms towards smaller families wherein deliberate sex selection
becomes a preferable goal instead of additional births as the means to realize son
preference. Guilmoto describes the costlier trade-off between higher parity births
and the realization of son preference with declining fertility in terms of a “fertility
squeeze” that determines the readiness to practice sex selection. In what follows
we elaborate on how each of these three components of the RWA framework are
incorporated in the ABM.

12.2.2 Son Preference (Willingness)

Son preference sp is assigned as follows in the model: agents have either no
preference for male offspring (sp D 0) or a desire for one male offspring (sp D 1).
Those who have a son preference (sp D 1) practice differential stopping behaviour,
that is, they have higher fertility rates than those who do not or have met their
son preference (see Sect. 12.2.3). The model design allows for an individual’s
probability to be son preferring (sp D 1) to be determined by the period as well
as cohort she belongs to.

We choose to assign son preference dichotomously because we believe this
effectively captures the way the social norm influences reproductive behaviour and
allows for easy interpretation for the levels of son preference in the population. Son
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preference assigned this way can be interpreted as the desire for a surviving son.
While some individuals, particularly among older cohorts, may desire more than
one son, the desire for several sons likely reflects the indirect influence of higher
mortality conditions where bearing at least two sons might be considered a strategy
to ensure at least one survived into adulthood. By simulating mortality dynamics
for males until age 50 (described in greater detail in the Sect. 12.3.2) the feedback
effect of high mortality levels on fertility behaviour is accounted for in the model.
For example, if a woman were to lose her son before she completes her reproductive
life, her son preference might get recoded as 1 and she would again be subject to
the higher age-specific fertility rate that individuals with unmet son preference are
subject to.4

To calibrate the model for India, we pool data from the fertility preferences
questions across three waves of the National Family Health Survey (NFHS) (1992–
93, 1998–99, 2005–06) to approximate a measure of son preference.5 The data
reveal that mean son preference, as measured by the average of the ideal number
of desired sons, fell at a rate of 3.7 % across successive 5-year cohorts from those
born 1940–44 to 1970–74. This decline in mean son preference across cohorts was
largely due to a decline in the proportion of women reporting a desire for more
than one son (specifically declines in an ideal number of two or three sons). When
we dichotomize this variable to see how proportions desiring at least one son vary
by cohort the change is less salient at just under 0.2 % decline across successive
younger birth cohorts. We interpret this as an indication that while the decline of
higher order son preference (an ideal preference for two or three sons) may be
related to a wider decline in the preference for large families, fertility decline does
not equally rapidly erode norms surrounding a desire for one son.

Logistic regression analysis of the pooled NFHS data with the dichotomized
son preference variable as the outcome revealed that both time of the survey and
the cohort that the female respondent belonged to were statistically significant
predictors (p < 0:001) of son preference. The impact of societal transformation and
macro-level structural modernization factors, such as urbanization and educational
expansion on demographic behaviour, are captured well by using the concept
of cohort (Ryder 1965). Moreover, cohort changes in fertility preferences and
behaviour (e.g. desired family size, contraceptive use) are well-documented across
the developing world (Pasupuleti and Pathak 2011; Cleland et al. 1994). While
cohort effects are statistically significant for son preference decline in India, period
effect size is larger. This is in line with previous research in South Korea that also
found period effects to be larger than cohort effects in the decline of son preference
(Chung and Das Gupta 2007). We use the coefficients from the logistic regression to

4Whether her son preference gets recoded or not will depend on prevailing period- and cohort-
levels of son preference for that time-step in the simulation. This takes into account the fact that a
woman who might have had a son preference at one time-step and have acted on it then might not
have the preference in a later period.
5The National Family Health Survey (NFHS) is the name by which the Demographic and Health
Survey (DHS) is called in India.



350 R. Kashyap and F. Villavicencio

1980 1990 2000 2010 2020 2030 2040 2050

India

observed

fitted
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

Year

P
ro

po
rt

io
n 

w
ith

 s
on

 p
re

fe
re

nc
e

Fig. 12.2 Proportion with son preference, India 1980–2050. Observed valued from fertility
preference data from National Family Health Survey (1992–1993, 1998–1999, 2005–2006)

project both backward and forward for time-steps and for cohorts for which we do
not have observed data. The predicted proportions of individuals with son preference
in the population at time t and from cohort c can be expressed as:

spc.t/ D
eˇ0CˇcC t

1C eˇ0CˇcC t
(12.1)

In Eq. (12.1), ˇc refers to the coefficient of son preference change by cohorts, 
refers to the coefficient of son preference change over time and ˇ0 to the intercept.
The three parameters ˇ0, ˇc and  are estimated from a logistic regression fitted to
the NFHS data with the two covariates. Figure 12.2 plots mean son preference over
time extrapolated backward to 1980 (the first year of the simulation) and forward
until 2050 from the coefficients of the logistic regression. Since the proportion of
son preferring individuals at any given time t is different for different cohorts, mean
son preference here indicates the simple mean of son preference individuals aged
15–50 in that particular year (all fertile cohorts).

For South Korea, we obtain a measure of son preference that is slightly different
than the “ideal number of sons desired” measure we use for India. For Korea, we
use a measure which asks women if they feel they “must have a son”. This question
has been asked in Korean fertility surveys carried out by the Korean Institute for
Health and Social Affairs. Unfortunately, as we were unable to obtain the micro-
data for these surveys we cannot explore the cohort and period effects separately
in the decline of son preference as we do for India. Instead we rely on period
(time) trends in proportions stating they must have a son reported in Chung and
Das Gupta (2007). We fit a logistic regression with one covariate (time) to backward
and forward project these son preference trends (see Fig. 12.3).
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Fig. 12.3 Proportion with son preference, South Korea 1980–2050. Observed values from Chung
and Das Gupta (2007) (Source: Kashyap and Villavicencio (forthcoming))

12.2.3 Differential Stopping Behaviour (DSB)

Differential stopping behaviour (DSB) is a common manifestation of son preference
that is well documented in the literature (Amin and Mariam 1987; Arnold et al.
1998; Bongaarts 2013; Clark 2000; Retherford and Roy 2003). It is reflected in
higher risk of parity progression and lower probability of using contraception for
those who are sonless compared with those who already have sons. In the model,
female agents with unmet son preference have a higher fertility risk, expressed as a
deviation from the standard fertility schedule h�.xi; t/ by a proportional expansion
factor 1 C � . When son-preferring female agents bear a son, their birth risk is
adjusted down by a factor of 1 � ˛, indicating a reduced risk. For female agents
with no son preference (sp D 0) the standard period age-specific rates h�.xi; t/
apply to them.

hi.xi; t/ D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂

:̂

h�.xi; t/ if spi.t/ D 0

h�.xi; t/ � .1C �/ if soi.t/ < spi.t/

h�.xi; t/ � .1 � ˛/ if soi.t/ � spi.t/ and spi.t/ ¤ 0

(12.2)

As Eq. (12.2) shows, if the current number of sons soi.t/ of female agent i is
less than her son preference spi.t/, her period age-specific fertility rates hi.xi; t/
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results from multiplying the standard schedule by a factor of 1 C � , where � may
be conceptualized as a son preference intensity parameter. For example, � D 0:3

implies that a woman with unmet son preference experiences a fertility risk that is
30 % higher than the period age-specific schedule h�.xi; t/ that normally determines
her risk for childbearing. A higher value of � indicates a higher intensity of
son preference through its impact on fertility behaviour. When an agent with son
preference (sp D 1) has a son, her birth risk is adjusted downward by parameter
˛. For example, ˛ D 0:15 implies that a woman who meets her son preference
experiences a fertility risk that is 15 % lower than the period age-specific schedule
h�.xi; t/. In low fertility contexts, we would expect the birth risk adjustment factor
˛ to take on a higher value compared with contexts where fertility levels are
higher.

12.2.4 Access to Technology (Ability)

We use the logistic diffusion model, widely used to describe the diffusion of new
technologies, to model the individual’s ability or probability of gaining access to
technology (Geroski 2000).

Ability.t/ D
e� .t��/

1C e� .t��/
(12.3)

In Eq. (12.3) Ability.t/ simulates an individual’s probability of getting access to
technology, which increases as a function of time t, where t corresponds to the
time-step in the simulation (e.g. t D 0; 1; : : : ; 30 for a 30-year simulation covering
a period of 1980–2010), � determines the slope or rate of increase, and � the
inflection point of the logistic diffusion curve. At the population level, Ability.t/
can be interpreted as the proportion of individuals at a particular time-step gaining
access to pre-natal sex-determination technology. At the initialization of the model
no agent has access to technology (techi.t/ D False for all individuals at t D 0), but
as Ability.t/ gets recalculated at each time-step, a random number from a uniform
distribution with a minimum value of 0 and maximum value of 1 is redrawn for each
individual, which when less than Ability.t/ sets the variable techi.t/ D True for that
individual.

12.2.5 Fertility Decline (Readiness)

As fertility falls, norms surrounding smaller families become more entrenched.
Individuals are likely to desire smaller families and if means are available to allow
them to realize their son preference with a small family size, they are likely to do
so. This is the motivating idea to generate an individual’s propensity or readiness
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to abort. Guilmoto (2009) describes the readiness to abort as strongly related to the
fertility squeeze felt by couples planning the size and composition of their families.
From a modelling perspective, this fertility squeeze can be viewed as a form of social
pressure that is closely related to prevailing total fertility levels and determines
an individual’s readiness to abort. This readiness to abort is likely higher when
fertility levels are lower and couples feel a greater “squeeze” or pressure to reconcile
their son preference at lower parities than when average family size is higher and
proceeding to higher parities is not out of step with prevailing total fertility norms.

If spi.t/ > soi.t/ and techi.t/ D True, then

Readinessi.t/ D

8

ˆ̂
<

ˆ̂
:

min
˚

1;
ˇ

TFR.t�1/

�

if parityi.t/ D 0

min
˚

1;
parityi.t/��
TFR.t�1/

�

if parityi.t/ > 0

(12.4)

Equation (12.4) shows how we model readiness to sex selectively abort. Readi-
ness is the probability of an agent i to abort at time t and consequently lies between
0 and 1. An individual is only ready if she has unmet son preference (willing) and
she has access to technology (able). When these two conditions are met, for an agent
with parityi.t/ > 0, her readiness (probability) to abort depends on her current parity
at the beginning of the period, parityi.t/, and the most recent, prevailing, model-
generated fertility levels, TFR.t � 1/.6 This ratio of an agent’s current parity to
prevailing fertility levels is conceptualized as determining the extent of her fertility
squeeze. When fertility levels are higher, for example at 3, a woman with unmet
son preference and access to technology has a 0:33 � � probability to abort as she
transitions from first to second parity compared with a woman who transitions from
first to second parity when total fertility levels have fallen to 2:5 and the probability
is 0:4 � � .7 The parameter � allows us to assess the impact of the fertility squeeze
by scaling it up or down on SRB trajectories when calibrating the model. It allows
us to account for the possibility that even if the fertility squeeze may be present in
a population, there might be other counteracting forces, such as religious or cultural
taboos against the practice of abortion or punitive measures against sex-selective
abortion, that may not allow for the full extent of the fertility squeeze to be felt.
Conversely, higher � values indicate a greater intensity of the fertility squeeze.

Indeed, in some situations, particularly as fertility becomes very low, we may
expect some individuals to abort at the lowest possible parity—parity 0 or before
the transition to first birth. Although abortions before the first birth may become

6Since an agent’s current parity is determined at the beginning of the period t and TFR is calculated
at the end of the period t, the most recently observed TFR with respect to an agent’s parity when
she is at risk of childbearing in that period is TFR.t � 1/.
7At parityi.t/ D 1, the probability to abort will be 1=3 � � D 0:33 � � when TFR.t � 1/ D 3,
and 1=2:5� � D 0:4� � when TFR.t � 1/ D 2:5.
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more frequent as fertility falls, the literature suggests that these tend to be rarer
events than higher parity abortions (Guilmoto 2009, p. 533). We therefore model
parity 0 abortions as a function of prevailing fertility levels but subject to their own
fertility squeeze parameter ˇ than higher parity abortions, which are controlled by
the parameter � . The parameter ˇ models to what extent individuals are ready to
abort at parity 0. This allows us to generate scenarios where parity 0 abortions might
be relatively low whilst higher parity abortions very high, which is in line with
empirical evidence. Parity 0 abortion, while rare, is likely to be higher in contexts
such as China or South Korea, in contrast with a context such as India. Even across
the very low fertility settings, China, with a one-child policy where progression to
the second parity for a large number of couples is restricted by law, a higher value of
ˇ to generate higher probabilities of parity 0 abortion would be likely, compared to
South Korea where first births only displayed marginally skewed SRBs (Croll 2000,
p. 43). The parameter ˇ allows us to control this context-specific variation in parity
0 abortion and moderate the extent of the fertility squeeze at parity 0.

Figure 12.4 provides a diagram of the simulation process indicating which
decisions are taken at each simulation step. Table 12.1 lists the relevant parameters
that control the three RWA components—son preference, fertility decline and
technology availability—in the model.

Does agent want
a son?

[Eq. 12.1]

Does agent have
access to 

technology?
[Eq. 12.3]

Agent continues childbearing 
according to to standard period-

age-specific fertility risk.
[Eq. 12.2]

Agent continues childbearing at higher period-age-specific 
fertility risk.

When she bears a son, her period age-specific fertility risk is
adjusted down.

[Eq. 12.2]

Does agent want
to keep her 
family size 

small? 
[Eq. 12.4]

Ready
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o

Fig. 12.4 Diagram of the simulation process at each time–step (Source: Kashyap and
Villavicencio (forthcoming))
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Table 12.1 Agent-based model parameters

Category Parameters Description

Son preference � Son preference intensity

Willingness ˛ Birth risk adjustment (when son preference realized)

Fertility decline � Fertility squeeze scaling factor for parity 1 and higher

Readiness ˇ Fertility squeeze at parity 0

Access to technology � Rate of technology diffusion

Ability � Inflection point for technology availability

12.3 Model Description

12.3.1 State Variables

The model comprises individual agents who each have an identity number (id),
age (x), sex (s), cohort (c), son preference (sp), parity (p), sons (so), technology
access (tech) and abortions (ab). The model is programmed in R (R Core Team
2015) and the code is optimized to take advantage of parallel computing using the
snowfall R package (Knaus 2013). Table 12.2 lists agent’s state variables and their
values. The model is initialized as a one-sex model with 100,000 initial female
agents, but then as we model male as well as female births, from the first time-
step onward the model becomes two-sex. We do not model partnership formation
and focus only on reproductive behaviour. While partnership formation is no doubt
important for reproductive behaviour, modelling partnerships and households would
add complexity to the model that is not necessary for its immediate purpose.

An agent’s identity number, sex, and cohort are assigned to the agent at birth
and remain the same throughout her life course. Cohorts are categorized by 5-years
(1930–34, 1935–39, . . . ). The variable parity (p) corresponds to the current number
of children of the female agent. Sons (so) refers to the number of sons she
has. Technology access (tech) is a Boolean variable that takes a True or False
value depending on whether an agent has access to pre-natal sex-determination
technology. Abortions (ab) indicates how many sex-selective abortions a female
agent has over the course of her life. An agent’s age, parity, son preference, sons,
access to technology, and abortions values are time-varying and are updated at each
time-step in the model.

When calibrating the model for South Korea and India, we are interested in
approximating the shape and levels of observed SRB trajectories from 1980 onward
when trajectories began to rise from normal to higher levels. As the abortion
procedure depends on an individual’s parity it was important to approximate
an initial parity distribution that closely approximates the observed population
structures for both countries in 1980. To do this, we initialized the model 35 years
earlier in 1945 to allow all women in reproductive ages (15+) to complete their
fertility careers by 1980 and have their children belong to the starting population
of 1980. Using UN data, we approximate the population structure of 1945 and
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Table 12.2 Agent’s state variables

Agent’s state variables Variable name Values

Identity number id 1, 2, 3, . . .

Age x 0–50

Sex s 1: female 2: male

Cohort c 5-year cohort (1930–34, . . . , 2005–09)

Son preference sp 0, 1

Parity p 0, 1, 2, . . .

Sons so 0, 1, 2, . . .

Access to technology tech 1: True 0: False

Abortions ab 0, 1, 2, . . .

Source: Kashyap and Villavicencio (forthcoming)

start a simulation process in which individuals die and reproduce according to
their age-specific death and fertility rates for each year.8 The abortion procedure
is not modelled prior to 1980 as due to limited technology availability there is little
evidence to suggest SRBs were distorted before. The resulting population structure
obtained in 1980 is very close to the population structure for both countries reported
in UN data, and the minor differences that persist are likely attributable to migration
dynamics that are not modelled.

12.3.2 Procedures

The model contains two procedures for agents: ageing and reproduction that are
carried out at each time-step or tick in the model. Each tick corresponds to one
year. At each tick an agent ages by one year. Since we focus on reproductive
behaviour, all female agents die off in our model after reaching the maximum age of
reproduction set at age 50. Male agents die at age 50 as well. The model is adapted
to use death and fertility rates, from the United Nations World Population Prospects
database, which are issued for 5-year age groups for 5-year periods (United Nations
2013). By simulating male agents until age 50, we can account for child and young
adult mortality for males, which may have an impact on a woman’s reproductive
behaviour, as has already been mentioned.

The reproduction procedure models conception and birth. As defined in
Eq. (12.2), the risk of childbirth hi.xi; t/ for each individual i is determined by
age-specific fertility rates for that period t, and the current parity and son preference
of the individual. The sex of the birth is determined at the point of conception

8The UN World Population Prospects data only offer data from 1950 onwards. Consequently, we
approximated the population structure of 1945 with the one from 1950, and for the period 1945–
1950 we used the same age-specific fertility rates and death rates as for the period 1950–1955.
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by a probability of 0.5122 for male births and 0.4878 for female births, which
corresponds to an SRB of 105. As we model sex-differential birth stopping
behaviour and as our model moves in time and technology becomes available,
we model the opportunity for female agents to have sex-selective abortions.

12.4 Results

We present results from simulations calibrated with mortality, fertility and son
preference data for South Korea and India. For each country, we seek to approximate
the son preference intensity, the extent of the fertility squeeze and associated
abortion probabilities, and rates of technological diffusion that plausibly generated
their specific SRB trajectories. We validate both calibration attempts against UN
data on SRBs and fertility levels for the time period from 1980 to 2013 for each
country provided in the UN World Population Prospects database (United Nations
2013). We also project our model forward after 2013 until 2050, continuing with
the parameters and assumptions that help us approximate trends between 1980
and 2013. As described in the introduction, both India and South Korea have
had distinctive SRB transitions. While South Korea’s SRBs rose earlier and more
rapidly, they also showed a remarkable turnaround in a very short period of time
(see Fig. 12.1). In contrast, India has yet to undergo all three stages; although SRB
trajectories first became skewed, and have leveled off since the mid-to late-2000s,
they have yet to show the rapid turnaround they did in South Korea. Further, the
rise in Indian SRBs was not as steep as the one in South Korea with peak SRBs
remaining well below those observed in South Korea. We now explore what micro-
level dynamics caused each of these distinctive trajectories.

12.4.1 The South Korean Sex Ratio Transition

Son preference data from South Korea indicate that the proportion of married
women stating they “must have a son” declined from 48 % in 1985 to 26 % in 1994;
over the same time however South Korean SRBs rose from about 108 to 114 and
fertility declined from 2.1 to 1.6. It is interesting to note that son preference levels
appear to be quite low (	30 % of the population stating “must have a son”) as SRBs
reached their peak in 1990.

Figure 12.5 shows SRB and fertility trajectories from the model calibrated with
UN mortality and fertility rates for South Korea, and son preference time series from
Korean fertility surveys, across two sets of parameter values, one with ˇ D 0 and
the other set with ˇ D 0:2. We validate9 our model by trying to match as much
as possible the smoothed UN estimates shown in Fig. 12.5, which are indicated by

9Details on model calibration are available in Kashyap and Villavicencio (forthcoming).
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Fig. 12.5 Simulated fertility (solid line) and sex ratio at birth (dotted-dashed line) trajectories,
5-year moving averages, South Korea 1980–2050

the lightest lines in grey in the figure.10 The simulated ˇ D 0 curve in Fig. 12.5
shows 5-year moving averages of SRBs averaged across 25 simulation runs, with
the following parameter values: � D 0:20, ˛ D 0:075, � D 0:5, � D 7, � D 1:7 and
ˇ D 0. These parameters allow for a rapid diffusion of technology with saturation
of technology by the early 1990s and a very intense fertility squeeze at parity 1 and
higher but with no parity 0 abortion (ˇ D 0). A value of � D 1:7 implies that given
the levels of fertility decline between 2.4 to 1.6 between 1980–1990 when SRBs
steadily rose, probabilities to abort for those with access to technology and unmet
son preference who had a daughter as their first child rose from 	71 % to 100 %.11

At parity 2 and higher and � D 1:7, all individuals with an unmet son preference
and access to technology transitioning to third birth would practice sex-selective
abortion over the whole period. With abortion delayed to parity 1 and higher with

10UN SRB and fertility trends are issued for 5-year periods (e.g. 1970–75, 1980–85) where the
5-year period is assumed to run from July to July (e.g. July 1 1970–July 1 1975) and the estimates
are assumed to refer to the mid-point of the period concerned (1 January 1973). Our model
runs produce yearly estimates. To enable a better comparison between the UN estimates and our
simulated results, we present smoothed UN estimates, in which we linearly interpolate the 5-year
values for each year. For this, as advised in UN metadata we assume the value for each of the 5-year
intervals corresponds to mid-point within the interval (e.g. 1970–75 rate corresponds to mid-point
1973).
11If TFR D 2:4, minf1; .parity � �=TFR/g D minf1; .1 � 1:7=2:4/g D 0:708. If TFR D 1:6,
minf1; .parity� �=TFR/g D minf1; .1� 1:7=1:6/g D minf1; 1:0625g D 1.
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ˇ D 0, even as son preference was declining, the steady diffusion of technology in
the 1980s combined with the increase in the probabilities to abort at parity 1 over
the period lead to increasing SRB distortions in the model between 1980 and 1990
as technological diffusion progresses to saturation by the early 1990s.

The most salient observation to be made from this simulated SRB curve with
ˇ D 0 is that while it matches a part of the rise in SRBs between the early to
the mid-1980s due to technological diffusion and increasing readiness to abort at
parity 1 due to declining fertility levels, it does not match the peak SRB levels
observed in South Korea in 1990s. We fall about 2–3 points short of the peak,
reaching 111–112 instead of the observed 114. We cannot match these peak SRB
levels of 114–115 by adjusting technological diffusion parameters or increasing � .
By adjusting these parameters we worsen the fit over the 1980s with a curve that
rises too early.

Instead, gradual adjustments in ˇ that allow for small increasing probabilities
of sex-selective abortion at parity 0 keeping all other parameters the same as
before enable us to replicate the peak and turnaround in SRBs observed in South
Korea. The simulated ˇ D 0:2 SRB and TFR levels reported in Fig. 12.5 share all
parameters in common with ˇ D 0 simulated curve, except for their difference
in allowing sex-selective abortion at parity 0 (these parameters are: � D 0:20,
˛ D 0:075, � D 0:5, � D 7 and � D 1:7). While our simulated trajectories do not
match perfectly with the observed ones reported in UN data, they follow the general
shape that was observed in South Korea between 1980 and 2000 relatively well.
After the mid-2000s our simulated estimates fall slower than was observed in South
Korea. The logistic fit for the son preference data for South Korea shown in the
topmost panel of Fig. 12.6 shows that for 1991 our fit under-predicts son preference
compared with the observed value, which may be partly why our turnaround starts
slower.

A son preference intensity parameter of � D 0:20 and birth risk adjustment of
˛ D 0:075 allow us to match Korean fertility trajectories over the period, with
the prevailing levels of son preference very well. This implies that for those with
unmet son preference fertility risk was higher by about 20 %. The UN projections
of the SRB for South Korea hold it constant at 107—slightly higher than what
is considered biological normal levels of 104–106—starting 2010 until 2050.
Allowing the underlying behaviours to change according to the trends reported in
Fig. 12.6, our model suggests that SRBs will fall even lower towards levels of 105–
106 after the mid-2020s.

12.4.2 The Indian Sex Ratio Transition

In contrast to the South Korean sex ratio transition, SRBs measured at the national-
level in India peaked later and stayed lower at levels of 111. Moreover, unlike the
South Korean case, SRBs appear to have leveled off in recent years but have not
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Fig. 12.6 Son preference (willingness), access to technology (ability) and parity-specific abortion
probabilities (readiness) over time, 1980–2050, for South Korea used in simulations. Modified
from Kashyap and Villavicencio (forthcoming)

shown the dramatic turnaround they did in South Korea. Son preference levels, using
the measure we calibrate for the model from the NFHS, indicate that son preference
was higher than levels in South Korea and declined slower in India.12 What does

12Although here we treat them as roughly approximating proportions desiring one son at different
time points in the model, we acknowledge these data come from different surveys and from
questions regarding sex preference that were worded very differently in each of the surveys.



12 An Agent-Based Model of Sex Ratio at Birth Distortions 361

the model suggest were the reasons that SRBs did not reach levels comparable to
those in South Korea? The fact that SRBs reached 111 when fertility levels were
over 2.5 children per woman in India compared with the South Korean case where
SRBs peaked when TFR was well below 2 suggest that the fertility squeeze was
lower in India than in Korea. Individuals were much less likely to abort at lower
parities, with evidence suggesting the greatest distortion was observed at parity 3
and higher (Arnold et al. 2002). Secondly, technological diffusion happened much
quicker and more rapidly in Korea than India due to South Korea’s comparative
wealth and development. The literature widely acknowledges that technology was
not widespread in the 1980s and diffused steadily in the 1990s in India (Arnold et al.
2002; Patel 2007). To approximate a general shape for the technological diffusion
curve over the time from 1980 onward for India we rely on data points on proportion
of women reporting ultrasound use during most recent pregnancy from the DLHS-
I-III data reported in Akbulut-Yuksel and Rosenblum (2012).13 The best fit to these
data points for a logistic diffusion curve from Eq. (12.3) used to model access to
technology is of � D 0:13 and � D 33.

Figure 12.7 reports the dynamic trajectories and associated parameters of
willingness (son preference), ability (access to technology) and readiness (parity-
specific abortion probabilities) that we use to simulate SRB and fertility trajectories
for India. The results from these simulations, 5-year moving averages across 25
simulations, are reported in Fig. 12.8. We use two sets of parameters for India:
in simulations with the first set of parameters we use the technological diffusion
parameters of � D 0:13 and � D 33 estimated from the technological diffusion
data points from the DLHS-I and II, and test the model with different values of
the readiness parameters � and ˇ to find the abortion probabilities that provide the
best possible match to the UN estimates of the Indian SRB curve from 1980–2013,
which are depicted by the lightest curve in grey in the Fig. 12.8. The best possible
fit obtained with � D 0:13 and � D 33 is reported in the simulated curve with
� D 0:13, � D 33 and � D 0:7 in Fig. 12.8 . To improve upon the fit provided
by these parameters, we adjust technological diffusion by allowing for an earlier
inflection point with � D 27, and a slightly slower rate of increase with � D 0:12,
and a slightly lower fertility squeeze parameter of � D 0:65. In both simulated
SRB curves depicted in Fig. 12.8 we keep ˇ D 0:05 to allow for negligible parity 0
abortion, and hold son preference intensity parameter � D 0:125 and the birth risk
adjustment parameter ˛ D 0:075.

13The authors of that paper report this proportion by regions for India and estimate this proportion
for births during each year between 1999 and 2008. We average across all regions to approximate
national-level technological diffusion. We recognize this erases the heterogeneity across different
regions and in future amendments to the model we hope to incorporate issues surrounding regional
heterogeneity in the model. We discuss these issues further at the end of the chapter. We should also
note that we could not find similar data for South Korea so we estimated technological diffusion
for South Korea by conducting sensitivity analyses for the model across a range of technology
diffusion (� and �) parameters.
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Fig. 12.7 Son preference (willingness), access to technology (ability) and parity-specific abortion
probabilities (readiness) over time, 1980–2050, for India used in simulations

The simulated SRB curve with earlier technology diffusion � D 0:12, � D 27

and lower � D 0:65 provides a better fit to Indian SRB trajectories between 1980
and 2013 than the curve generated by � D 0:13, � D 33 and � D 0:7. The model fit
demonstrates how the intensity of the fertility squeeze was much lower in India than
in South Korea, with values for � as well as ˇ significantly lower than those used
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Fig. 12.8 Simulated fertility (solid line) and sex ratio at birth (dotted-dashed line) trajectories,
5-year moving averages, India 1980–2050

for model fitting in South Korea. Our model suggests that few individuals likely
aborted at low (parity 1 or parity 2) or very low parities (negligible at parity 0) in
India (see probabilities to abort in Fig. 12.7). The rise in SRBs observed between
the mid-1980s and 2010 was caused by the diffusion of technology starting in the
1990s and small increases in the probability to abort that accompanied the fertility
decline, with the greatest probabilities to abort in the transition from second to third
birth, and higher. The slower decline in son preference in India accompanied by
a slower, flatter diffusion of technology generates a flatter SRB trajectory with
a less sharp peak compared with South Korea. It is interesting to note that the
SRB peak in South Korea roughly coincided with the saturation of technology.
Peak SRBs are generated by the model in the mid-2000s when technological
access is 	40 % for the simulated � D 0:12, � D 27 and � D 0:65 curve,
and in 2010 for the simulated � D 0:13, � D 33 and � D 0:7 SRB curve,
when technological access is also 	40 %. Thereafter, even as technological access
and abortion probabilities increase, SRBs begin to level off due to declining son
preference.

The fertility trajectories generated by the best fit parameters (� D 0:12, � D 27

and � D 0:65) are plotted in Fig. 12.8. These match UN TFR trajectories shown
in the lightest grey curve particularly well indicating that a good balance between
son preference intensity that amplifies fertility and the fertility squeeze generated
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abortion probabilities that exert a downward influence on them. For the model
calibrated for India, if an individual is son preferring their fertility rates are higher
by 12.5 % (� D 0:125) and upon meeting their son preference, their rates fall by
7.5 % (˛ D 0:075). Following the best fit simulated SRB curve (� D 0:12, � D 27

and � D 0:65) for the period after 2010 indicates that SRB trajectories are likely in
the midst of a turnaround presently in India, and will gradually fall towards levels
of 107 by 2050.

12.5 Methodological Challenges, Discussion and Future
Work

The agent-based model presented in this chapter applies the insights of the ready,
willing and able framework to the practice of sex selection to generate sex ratio
at birth distortions at the macro-level from bottom-up. The model enables us
to quantify the dynamic trajectories of son preference, technology diffusion and
abortion probabilities as a function of the fertility decline that undergird the sex ratio
transition. We are able to generate the shape and match levels of SRB trajectories at
their different stages—the rise from normal levels, levelling off and their decline and
return towards near-normal or normal levels—for the distinctive transitions of South
Korea and India. The model illustrates a number of interesting insights. We show
how son preference can be declining in a population but SRBs can nevertheless rise.
We find that SRB levels are highly sensitive to sex-selective abortion practiced at
low parities, and especially to abortions before the first birth at parity 0 as in the
case of South Korea. Even relatively low levels of son preference of 	30 %, as we
show in the case of South Korea, can result in significant SRB distortions when
sex-selective abortion is practiced at low parities.

It is nevertheless important to be mindful of some of the challenges faced in
developing the model. In seeking to develop the model, we generally relied on
the approach to keep the model as simple as possible and minimize the number of
parameters. The optimal number of parameters, however, was not clear at the outset
and involved extensive sensitivity analysis across several parameter values to assess
model behaviour and model fit. As we worked towards a more streamlined model,
we carried out a number of robustness checks over different parameter values to
ensure the model was behaving according to theoretical expectations. Approaches
to model calibration and sensitivity analysis with the model are detailed elsewhere
(Kashyap and Villavicencio forthcoming).

When designing and implementing an ABM, one significant recurring issue
for model designers is the trade-off between model parsimony and complexity.
By trying to adopt a parsimonious modelling approach, we may have simplified
some processes in a manner that is either not easily approximated with existing
data or perhaps a bit unrealistic. For example, we chose to model son preference
dichotomously and its effect on fertility in time-constant � (son preference intensity)
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and ˛ (birth risk adjustment after meeting son preference) parameters. From a
modeling and a theoretical perspective there is a strong case to be made, as we
have tried to do, about incorporating son preference dichotomously and allowing
its effects on fertility to be constant across time. As the effect of son preference
on fertility at any time point is decided dynamically as a balance between the
proportion son-preferring at that time and their upward effect on total fertility
levels, as well as those meeting their son preference who exert a downward
effect, we sought to measure and calibrate model-generated TFR trajectories with
observed TFR levels as a validity check in the model. These model-generated TFR
values also informed the abortion probabilities that affected the SRB levels, which
further endogenized model processes. Our reasoning was that if the survey data
approximations of son preference were reasonable, then plausible, but not very
small, values of time-constant � and ˛ parameters would allow us to generate
simulated fertility trajectories that matched observed TFR and SRB trajectories from
UN data.

A significant issue when designing and implementing the ABM, related to the
parsimony and complexity trade-off, is the extent of heterogeneity that is necessary
and useful for the model. For instance, we do not explicitly account for regional
heterogeneity in the model in its current stage. Our primary reason for doing this
was because we were keen to use standardized UN data to enable the model to be
applied in different contexts, as well as validate against SRB trajectories over time
that are readily available at the national level. On the one hand, we account for
heterogeneity in the micro-level processes driving the macro-outcome in the model
over time and regional heterogeneity may be seen as one implicit component of
this overall heterogeneity. Nevertheless, an aggregate picture at the national level
may be composed of extremely disparate trends at the regional level, whose impact
cannot be assessed in the current version of our model. In India, for example, the
regional nature of son preference has been widely noted in the literature, with son
preference being concentrated in the north and northwest of the country (Das Gupta
et al. 2003). Although national-level SRBs never reached levels comparable to those
in South Korea and China, those in northwest India did (Guilmoto 2009). Thus,
one possible reason why national-level technological diffusion parameters fitted
to survey data do not fit the SRB curve observed quite as well may be due to
regional differences in technological diffusion that are not explicitly accounted for
the model.

A word about model outcome uncertainty: although the ABM gives a good
understanding of the plausible values of different micro-levels factors that generate
SRB distortions, the model does not provide, at least in its current stage, any
estimate of the uncertainty surrounding model outcomes. We can nevertheless use
the ABM and its flexibility to experiment with values of different levels of son
preference, fertility decline and technological diffusion and explore the impact of
these on SRB levels and trends.

Despite these limitations, we believe the ABM presented here provides a
contribution to the literature that is powerful in the insights it provides and flexible
enough to be adapted to different contexts. While each geographical context has
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its own set of underlying factors that will determine the course of future SRB
trajectories, the ABM presented here provides a valuable computational tool that
will enable researchers to test the implications of unique sets of micro-level forces—
individual fertility preferences, behaviours, and technology use—to explain both
current macro-level trends as well as project future ones.

We hope to develop the model further and explicitly engage with some of the
limitations we have identified here in future work. We encourage other researchers
working in the field to make use of and extend our model and develop ways to
address its methodological issues and uncertainties.
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Chapter 13
Exploring the Role of Communication
in Shaping Fertility Transition Patterns
in Space and Time

Sebastian Klüsener, Francesco Scalone, and Martin Dribe

13.1 Social Status, Communication Links, and the Fertility
Transition in Space and Time

Research on historical demographic phenomena is currently benefitting from a num-
ber of developments that provide new perspectives on well-documented processes,
such as the historical fertility decline during the demographic transition. In recent
decades, there have been substantial advancements in the digitisation of historical
census and vital registration data, particularly for north-western Europe and North
America. Projects such as NAPP1 or IPUMS2 have helped to make historical census
data accessible for researchers (see, e.g., Ruggles et al. 2011). In addition, because
of the substantial advancements in historical Geographic Information Systems (GIS)
and the automatised geocoding of address data, we are better able to control for
spatial aspects of historical demographic processes. Parallel to the advancements
in data availability, there have been significant improvements in computational

1North Atlantic Population Project.
2Integrated Public Use Microdata Series.
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power and modelling software. These developments allow today’s researchers to
analyse and simulate complex processes, such as the fertility transition, using large
numbers of individual-level observations and a variety of modelling approaches.
Among these approaches are (multilevel) event history, spatial econometric, and
agent-based simulation techniques. All of these trends have contributed to a renewed
interest among researchers in studying historical fertility decline patterns (e.g., Van
Bavel 2004; van Poppel et al. 2012; González-Bailón and Murphy 2013; Dribe et al.
2014a, b; Goldstein and Klüsener 2014).

The main aim of this contribution is to demonstrate how the advancements in
data availability and agent-based models can enable us to provide new insights
into longstanding demographic debates about the factors that shape the decline
in fertility during the demographic transition. Here we focus on the discussion
of to what degree fertility decline patterns in space and time can be understood
as being shaped by innovation or adjustment processes (Carlsson 1966). From an
innovationist perspective, the decline in fertility in space and time is predominantly
shaped by the diffusion of information and ideas that influence women in their deci-
sions about whether to adopt deliberate, parity-specific fertility control strategies.
The adaptationist perspective, by contrast, sees the adoption of fertility control
strategies as a reaction to changing structural conditions, such as rising returns
from focusing on the quality instead of the quantity of children, and changes in the
costs associated with raising children. These two views are certainly not mutually
exclusive, as in order to adapt to changing circumstances women need to learn
about these changes. In most cases, women acquire knowledge not only through
their own observations, but also through communication with others. At the same
time, people who face strong adaptation pressures might be particularly likely to
use communication strategies in their search for approaches to coping with these
challenges. In addition, because people lack full access to information, there might
be a temporal gap between the emergence of changes in structural conditions and
the subsequent adaptation to these new conditions.

Based on Carlsson (1966), it could be expected that if information diffusion is
the main force shaping the spatiotemporal decline patterns, these patterns should be
structured by variation in communication pathways. If, on the other hand, adaptation
pressure is the primary factor shaping the patterns, they should be characterised
by spatiotemporal variation in changes in structural conditions. Proponents of the
innovationist perspective have observed that once it has gained momentum, the
fertility decline process tends to occur very rapidly within societies. Thus, it is very
unlikely that the process can be directly linked to a single economic force to which
people have adapted (Cleland and Wilson 1987). Meanwhile, proponents of the
adaptationist perspective have stressed that, according to the outcomes of numerous
econometric studies, economic factors are important predictors of fertility decline
(e.g., Galloway et al. 1994).

It is relevant to point out that we believe the decline in fertility to be shaped
by both innovation diffusion and adaptation to changing circumstances (see also
Klüsener et al. 2013; Dribe and Scalone 2014). Thus, it is not our aim in this study
to prove that fertility decline is driven by communication processes alone. Instead,
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we intend to investigate which of the major spatiotemporal characteristics of the
fertility decline in Sweden during the period 1880–1900, and across three different
social classes (elite, farmers, workers and others), could have emerged as a result
of communication processes that were structured by social and spatial variation
in communication links.3 Related to this variation, our analysis will, for instance,
provide support for the view that the elite had a higher density of communication
links through space than the other social classes, and that the communication links
to the cities were especially dense.

To achieve our objective, we run simulation models on a full individual-level
sample of married women aged 20–49 who were living in Sweden in 1880. These
models are based on a ceteris paribus approach in which we model fertility decline
as a communication process within a static society that is not subject to adaptation
pressure or other social change processes, apart from the simulated diffusion of
the adoption of fertility control strategies. As proxies for communication links,
we use information on migration links between regions (see Hägerstrand 1965;
Rosero-Bixby and Casterline 1994). The results presented in this contribution are
the initial outcomes of a larger research project in which we consider a range
of scenarios that vary according to their starting conditions and assumptions on
diffusion mechanisms.

Another motivation for our study is related to a recurring observation in
spatial analyses of the fertility transition in various countries. Several studies have
identified clusters of high fertility decline around early centres of the decline
(e.g., big cities) that cannot be explained by the socio-economic characteristics
of these areas (Schmertmann et al. 2010; Goldstein and Klüsener 2014; Costa
2014). These clusters might be caused by the diffusion of the adoption of fertility
control behaviour as a result of social interaction (see also Hägerstrand 1965), or
by unobserved variables representing changes in structural conditions that start to
spread out from early centres of the decline as soon as the fertility transition gains
momentum in this area. Because there is a lack of information on these processes,
conventional regression methods offer few options for exploring the question of
whether these clusters of the decline are indeed related to social interaction. Our
simulation models, by contrast, allow us to investigate this question.

We believe that our study makes important contributions to the debate on the
factors that shape the fertility decline patterns during the demographic transition.
First, while we are certainly not the first to study the fertility transition with
simulation techniques (González-Bailón and Murphy 2013; see also Casterline
2001), we are probably the first to model the fertility transition in space and time
simultaneously for different social classes, while taking social and spatial variation
in communication links into account. Second, our novel approach enables us to
demonstrate that a substantial number of the major social class and spatiotemporal

3While our simulation models are driven by simulated communication processes only, in choosing
our vanguard adopters for the starting conditions we do, however, consider in one scenario variation
in adaptation pressure (see below).
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characteristics of the fertility transition patterns that have been observed in Sweden
(and in other countries around the globe) may have solely been shaped by
communication processes that were structured by social and spatial variation in
communication links. These findings are also relevant for research on other social
change processes in which communication plays a role.

13.2 Theoretical Considerations

As our agent-based simulations focus on exploring the potential role of com-
munication in shaping fertility transition patterns, we will restrict ourselves in
the theoretical section to considerations on the interplay of social status and
space in communication processes. For a more detailed account of how space
and place might affect both spatial variation in communication diffusion and
adaptation incentives, see, e.g., Klüsener et al. (2013). In our study we investigate a
historical population among whom most of the social interactions were still local in
character. Therefore, we assume that spatial distance substantially moderated both
the frequency of social interactions and the quality of the information exchanged.
Thus, especially in the early phase of the decline in Sweden, we would expect to find
that the diffusion of ideas was particularly strong in areas where a group of pioneers
had already adopted the behaviour, as we assume that these pioneers interacted more
frequently with people in their own region of residence than with people in other
regions (see also Hägerstrand 1965).

Our empirical analysis supports the general observation that big cities serve as
important communication and transport hubs, both within a country and interna-
tionally. This is particularly the case for capital cities, which have links to other
countries not only through trade networks, but also through diplomatic relations.
Consequently, big cities might emerge as early centres of the fertility transition
not only because urban populations generally are subject to greater adaptation
incentives and pressures to reduce their fertility than rural populations, but also
because information that might prompt people to adopt fertility control behaviours
is likely to reach inhabitants of bigger cities much earlier than residents of rural
areas.

In terms of social class differences, existing research has shown that elite groups
tend to be early adopters in the fertility transition (Livi-Bacci 1986; Haines 1992;
Bengtsson and Dribe 2014; Dribe and Scalone 2014). Farmers, on the other hand,
tend to lag behind in the process (van Poppel 1985; Dribe et al. 2014a, b). Based on
his research on social status differences in the fertility transition in Britain, Szreter
(1996, p. 546 ff.) developed the concept of “communication communities”. He
argued that the shifts in fertility behaviour in Britain were mediated by the member-
ship of individuals in social groups who shared similar social norms and identities
(e.g., occupational classes). For the working classes and farmers, these social groups
were rather local in character; whereas for members of the middle class and the elite,
these social communities often spanned across localities, and in some cases even
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formed nation-wide networks. Based on these considerations, we would expect to
find that information relevant to adopting a fertility control behaviour spread more
quickly through space among elite groups than among farmers and workers. In
addition, we would assume to find that social class boundaries limit the spread of
information across social classes; an assumption for which we also find support in
our analysis of the observed decline patterns (see below). These considerations on
communication communities were highly relevant for the specification of our agent-
based simulations. We should, however, acknowledge that Szreter (1996, p. 546)
has expressed opposition to the idea that social classes are the right dimension for
studying communication communities, arguing that these categories are too broad.
But as it is not the aim of this contribution to grasp fertility decline in all of its
details, we believe that the differentiation into broad social classes is justified when
investigating the general spatiotemporal aspects of fertility decline by social status.

13.3 Data and Analytical Strategy

For our analysis we can draw upon complete individual-level datasets of the three
Swedish censuses of 1880, 1890, and 1900. These datasets, which were prepared by
the Swedish National Archives, are available through the web portal of the North
Atlantic Population Project (Ruggles et al. 2011). For the purposes of mapping the
observed and the simulated fertility decline patterns, we use a GIS file that provides
the administrative boundaries of the 25 Swedish counties (län) during the period
1880–1900. This file has been derived from a GIS dataset of historical administrative
boundaries in Sweden created by the Swedish National Archives.

Our simulations are based on the 1880 dataset, as 1880 is about the time when
the fertility transition started in Sweden (Hofsten and Lundström 1976; Coale and
Watkins 1986, Map 2.1). In addition, we use information from all three censuses
to derive data on observed fertility changes between 1880 and 1900. We have data
for 4.6 million individuals in the 1880 census, while the 1890 census covers 4.8
million and the 1900 census 5.2 million individuals. These individuals are grouped
in households. Family members who were residing in the same household are linked
by pointer variables. This allows us to connect a mother to her children and to her
husband, if they are living in the same household.

As the majority of women in Sweden at that time did not provide occupational
information, we decided to use the occupation of the husband to determine each
woman’s social status. Thus, in the analyses we consider only married women who
were sharing a household with their husband at the time of the census. Social class
is defined based on the husband’s occupation, which is coded in HISCO (Historical
International Standard Classification of Occupations; van Leeuwen et al. 2002) and
is classified according to HISCLASS (Historical International Social Class Scheme;
van Leeuwen and Maas 2011). We differentiate three social classes. The first
class, elite, is comprised of individuals in elite and upper middle class occupations
(HISCLASS 1–6). The second class, farmers, corresponds to HISCLASS 8. The
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third class, workers and others, includes skilled, lower skilled, and unskilled
workers; as well as all other groups (HISCLASS 7, 9–12). This third class is
probably the most heterogeneous one. For the agent-based simulations, we consider
just two other attributes in addition to social status: namely, the current region of
residence of each woman and her region of birth. Information on fertility trends
in the region of birth will be of relevance for our models, and we will not be able
to model these trends for regions of birth outside of Sweden. We thus decided to
exclude those women for whom the birth region is unknown or who were born
outside of Sweden (around 2.1 % of all of the women who were chosen based on
the described characteristics). The resulting total number of women (agents) in our
simulation models is 488,438.

In obtaining information on observed fertility trends in the period 1880–1900, we
were faced with the problem that the census data do not allow to calculate standard
fertility rate measures. We therefore decided to use the child-woman ratio (CWR)
as an indirect fertility indicator based on data on the number of linked children in
the household. The CWR is commonly defined as the number of children aged 0–4
per woman aged 15–49 (Shyrock and Siegel 1980). For the 1900 census in Sweden,
Scalone and Dribe (2012) compared fertility levels derived by applying the CWR
with fertility levels obtained through other standard fertility measures (e.g., the total
marital fertility rate), and using the own-children method as an alternative indirect
method (see also Dribe and Scalone 2014). They demonstrated that the unadjusted
CWR is a reasonably reliable indicator of socio-economic differentials in gross or
total fertility. We decided to exclude married women under age 20, as we assume
that these women had not been married for very long, and therefore likely had lower
CWRs than other women.

While most of our diagnostics of observed and modelled characteristics are
standard statistical measures, we also employ the Moran’s I test of spatial auto-
correlation to detect evidence of spatial clustering (i.e., spatial autocorrelation) of
the fertility decline in specific regions of Sweden. The Moran’s I is very similar
to the Pearson’s product moment correlation coefficient, except that we are not
obtaining the correlation between two variables v and w for all regions i, but rather
the correlation between the observed values of v in each region i and the mean
value of v in regions j that are adjacent to region i (see also Bivand et al. 2013).
Adjacency is defined as being one of the four nearest neighbouring regions.4 The
Moran’s I can take values from �1 (strong negative spatial autocorrelation) over
0 (no spatial autocorrelation) to 1 (strong positive spatial autocorrelation). If a
pattern is characterised by a spatial clustering of regions with high or low levels,
the Moran’s I test would return elevated positive values.

4Measured by calculating the spherical distances between the regional geographical centroids.
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13.4 Observed Spatiotemporal Fertility Decline by Social
Class 1880–1900

Before we turn to the conceptual considerations for the agent-based simulation
models, we will first present descriptive findings on the spatiotemporal aspects
of the fertility decline in the three social classes in Sweden between 1880 and
1900. This information is instrumental for identifying the major characteristics
of the observed fertility decline patterns that we attempt to reproduce with our
simulations. In addition, the analysis of the observed patterns helps us to assess the
validity of the assumptions that guide the specification of our simulation models.

We begin by looking at Table 13.1, which shows national-level means and
regional variation in CWRs that were derived from the censuses of 1880, 1890, and
1900 for our three social classes and for all of the classes combined. Data are pre-
sented for both the obtained CWRs in the three census years (columns 1–3) and the
changes between the censuses (columns 4–5). If we look at the trends for all women,
it is visible that net fertility actually increased between 1880 and 1890. Given that
fertility was actually decreasing in this period (Dribe 2009), we believe that this
outcome is attributable to the decline in mortality among infants and children, which
completely compensated for the fertility decline. Between 1890 and 1900, net fertil-
ity decreased by about 4 %. However, fertility trends differed considerably between
the social classes. In 1880, the CWR of the elite was still close to that of all women.
But in the two decades that followed, the CWR declined by about 15 % among the
elite. Thus, in 1900 the elite group had the lowest CWR by far. While the CWR of
working-class women increased between 1880 and 1890, it decreased thereafter. In
1900, working-class women had a CWR that was slightly lower than it was in 1880.
Women in farming families experienced very modest declines in both decades.

To examine the regional variation in CWRs in the three social classes across the
25 Swedish counties, we present data for two measures of dispersion: the standard
deviation and the Moran’s I index described above. Based on our theoretical
considerations, we would expect to find that the elite had the densest communication
links through space; an assumption which is also supported by our analysis of
migration links (see below). If ideational diffusion processes indeed played a role in
the fertility decline, then these denser communication links among the elite should
have contributed to a more homogenous spatial pattern in terms of both the CWR
levels and the decline over time. The results for the standard deviation indicate that
in all three censuses, the elites had the lowest standard deviation of CWR levels
across regions, while the farmers had much higher levels. When we look at changes
over time, we see that in the first decade the elite had a standard deviation that was
above the average; a finding that is not in line with our expectations. This might be
related to the fact that during this period the elite were the only social class who
had already entered the transition, as regional variance tends to increase after the
onset of the decline (Coale and Watkins 1986). In the second decade, when all of
the social classes experienced a decline, the elite had indeed the lowest standard
deviation across regions, even though they constituted the class who registered the
sharpest decline in this period.
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Table 13.1 Trends and regional variation in the child-woman ratio (CWR) by socio-economic
status (1880–1900)

CWR 1880 CWR 1890 CWR 1900
CWR change
1880–1890

CWR change
1890–1900

Mean (national level)
Elite 0.98 0.93 0.83 �0.05 �0.10
Farmers 1.01 1.00 0.99 0.00 �0.01
Workers and others 1.02 1.05 1.01 0.03 �0.04
Total 1.01 1.02 0.98 0.01 �0.04

Standard deviation (25 regions)
Elite 0.10 0.09 0.10 0.04 0.03
Farmers 0.16 0.17 0.16 0.04 0.04
Workers and others 0.10 0.09 0.11 0.03 0.05
Total 0.11 0.11 0.12 0.03 0.04

Moran’s I index of spatial autocorrelation (25 regions)
Elite 0.53 0.47 0.46 �0.05 �0.12
Farmers 0.41 0.43 0.42 0.05 �0.08
Workers and others 0.42 0.44 0.57 0.15 0.26
Total 0.42 0.41 0.49 0.22 0.16

Note: We only consider married women aged 20–49 born in Sweden with a spouse present in
the household in the respective census (1880, 1890, 1900), and for whom the social status could
be detected. In deriving the Moran’s I we define the four nearest regions as neighbours. These
were determined by calculating the spherical distance between the geographical centroids of the
25 Swedish regions
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations

When we look at the spatial clustering of regions with high and low values
measured by the Moran’s I, we see that in 1880 the elite actually exhibited higher
values than the farmers and the workers and others. This finding might again
be related to the fact that the elite had already entered the fertility transition by
1880, as this process tends to create clustered areas with low fertility around early
centres of the decline (Coale and Watkins 1986). The elite did, however, experience
the strongest decreases in the spatial autocorrelation of the regional CWRs over
time, while the workers and others registered the strongest increases. Particularly
interesting are the outcomes for the changes over time, as the elite exhibited very low
levels of spatial clustering. This finding is in line with our assumption that the dense
communication links through space contributed to a more spatially homogenous
decline pattern among this group.

To investigate in greater detail the spatial decline patterns by social class, we
included Figs. 13.1 and 13.2. Figure 13.1 contains maps that present the spatial
variation in the development of the CWRs between 1890 and 1900.5 Figure 13.2

5We decided to focus the map on the second decade, as in this decade all three social classes
experienced at least some decline. We thus consider this second decade to be more informative in
terms of the spatial decline patterns.
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shows the development of the CWR levels in the 25 regions which we obtained
from the censuses of 1880, 1890, and 1900.6 When we look at the map that
displays the trends for all women (Fig. 13.1a), it is visible that the decline was
particularly pronounced in the capital city of Stockholm and in the areas located
to the southwest of Stockholm. In addition, an area in the northern part of Sweden
(around Västernorrland) experienced a substantial decline. This observation does
not fit with our assumption that the decline initially occurred mainly in large cities
and the surrounding areas. However, the two regions in which Gothenburg and
Malmö (the second and third biggest Swedish cities after Stockholm) are located
also had relatively high levels of decline. Rather low levels of decline or even
slight increases were recorded in central southern Sweden and in the peripheral
north. Parts of central southern Sweden were characterised by elevated levels of
religiosity (Lindström 2001), and have been referred to as the Swedish “Bible Belt”.
As our models do not account for variation in religiosity, we might face problems in
capturing how these aspects contributed to shape the decline patterns.

The spatial fertility change pattern of the elite (Fig. 13.1b) differed substantially
from that of the total population. During this period, fertility declined in this social
class to some extent in all of the regions except the very north of Sweden, and in
many regions the CWRs decreased more than 10 %. Overall, the pattern for the elite
suggests that by the late nineteenth century information about the advantages of
adopting fertility control strategies, and the techniques used to prevent conception,
had already spread to virtually all parts of Sweden. The farmers (Fig. 13.1c) and
the workers and others (Fig. 13.1d) experienced much smaller CWR decreases, and
most of the regions with relatively large declines were in an area that comprised
Stockholm area and counties southwest of the capital. The observation that fertility
increased among the farmers in Stockholm city should not be given too much
weight, as this group was very small (93 women in 1880). The regions in which
Gothenburg and Malmö were situated registered overall declines, but in these
regions the declines among the farmers and the workers and others were not
particularly large. Overall, the findings displayed in the maps in Fig. 13.1 support
the view that the spatial patterns varied substantially by social class.

These differences may become even clearer if we look at the trend patterns in
the 25 regions in Fig. 13.2. In many regions, the CWRs among the farmers and
the workers and others were actually increasing between 1880 and 1890, while the
CWRs among the elite were already on a downward trajectory. This suggests that
social class boundaries played an important role in shaping the fertility transition
patterns, either because different classes were subject to varying levels of adjustment
incentives and pressures, or because relatively little information with relevance to
the decision to adopt fertility control strategies was diffusing across social class
boundaries. It is important to note that Swedish society of the late nineteenth century
was highly stratified: i.e., the nobility and high-level managers and professionals

6The location of the regions displayed in Fig. 13.2 can be obtained from an overview map in
Appendix 1.
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formed a distinctive elite, and opportunities to enter this elite group were limited
(see, e.g., Dribe et al. 2015). Overall, the outcomes of the analysis of the observed
patterns indicate that the adoption of deliberate fertility control strategies occurred
among the elite earlier and more homogenously across regions than it did in the
other two social classes. Some of the more conservative regions in central southern
Sweden and the peripheral north were lagging behind.

13.5 Conceptual Considerations for the Agent-Based
Simulations

The main aim of our agent-based simulations is to explore which major social
class and spatiotemporal characteristics of the fertility decline in Sweden may have
resulted from communication processes structured by social and spatial variation
in communication links. A limitation we face in analysing the observed patterns
is that the available data do not cover the whole transition period, but only the
decades during which the process gained momentum. Based on our observations
of this period, and on the existing literature on the social and spatiotemporal
characteristics of the decline (e.g., Livi-Bacci 1986; Szreter 1996; Schmertmann
et al. 2010; González-Bailón and Murphy 2013; Goldstein and Klüsener 2014), we
have identified the following patterns as characteristic of the fertility transition:

– Members of the elite are forerunners in the process, particularly at the beginning
of the transition (Dribe and Scalone 2014; see also Livi-Bacci 1986; Szreter
1996), while the farmers are laggards (Dribe and Scalone 2014; see also van
Poppel 1985).

– The elite experiences the decline more homogenously across space than farmers
and workers and others. A potential mechanism for this might be that the elite
maintains long-distance communication links to a greater extent than other social
classes (Szreter 1996; Klüsener et al. 2013). Particularly in more peripheral
regions, the elite may also benefit from their smaller group size and their
concentration in local urban centres.

– Big cities are early centres of the fertility transition. In addition, there may
emerge diffusion clusters around early centres of the decline (see also Schmert-
mann et al. 2010; Goldstein and Klüsener 2014), while peripheral areas lag
behind (Klüsener et al. 2013).

For our models, we assume that both social class boundaries and distances
between regions act as moderators in shaping the fertility transition in space and
time. Support for this assumption is provided by the findings presented in Fig. 13.2,
which show that different classes in different regions experienced the onset of
the decline at varying points in time, with the elite being a forerunner in the
process. We certainly cannot rule out the possibility that the patterns we see in
Fig. 13.2 could have been caused by social and spatial variation in adjustment
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incentives and pressures. But if we assume that these observed patterns were indeed
caused by diffusion processes, then these diffusion processes would need to have
spread faster within social classes in particular regions than across social class and
regional boundaries to have produced such patterns. The assumption that social
class boundaries and distances influenced the decline also fits with Szreter’s (1996)
theoretical considerations on communication communities.

The simulations presented in this contribution have been programmed in R 3.2.1
solely based on the functions available in the pre-installed packages. The data and
the code are available for download on the following website: www.openabm.org/
model/5028. The full individual-level sample of women of childbearing age in
Sweden obtained from the census of 1880 that we use for our models has been
described in the data section. For our models, we consider our three social classes
and the 25 Swedish regions as the region of residence or of birth. In order to
isolate the potential role of communication processes in shaping the social and the
spatiotemporal variation in the decline, our models are based on a ceteris paribus
approach: we model the fertility decline as a communication process within a static
society that is not subject to adjustment pressures7 or any other social change
processes apart from the fertility transition itself. The individuals in our models
also do not age or migrate.

In deriving information on existing communication links, we follow Hägerstrand
(1965) and Rosero-Bixby and Casterline (1994) in using migration links between
regions as proxies. To do this, we take data on the so-called “life-time net migration
links”, measured by the region of birth and the region of residence of the women in
our sample. In our models, a specific woman can be influenced by agents residing
and/or by processes occurring in her region of residence, her region of birth, or
in regions to which agents who were born in her current region of residence
migrated. Our decision to also assign relevance to the region of birth is based on the
assumption that many women who left their birth region still had communication
links to friends and family members living in that birth region.

In Fig. 13.3 we present the life-time net migration links for the three social
classes in 1880. The displayed matrixes show the share of specific combinations
of regions of birth and regions of residence in the different social classes (e.g., the
share of elite women in Sweden who were born in Stockholm region and were living
in Uppsala region in 1880). Figure 13.3 demonstrates that a large share of the elite

7The unaccounted adjustment incentives and pressures are likely to vary across space and time.
They include not only variation in infant mortality and socio-economic factors that directly affect
the costs of having children, but also variation in social norms that, for example, condemn the
use of contraceptive techniques. The latter might create indirect costs, as in areas in which such
social norms are widespread individuals who adopt a fertility control behaviour might face a
loss of social capital, which Bourdieu and Wacquant (1992, p. 119) define as the resources that
“accrue to an individual or a group by virtue of possessing a durable network of more or less
institutionalized relationships of mutual acquaintance and recognition.” Social capital losses might
also have repercussions in terms of access to income opportunities.

http://www.openabm.org/model/5028
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Fig. 13.3 Life-time net migration links of married women aged 20–49 by socioeconomic status
(1880) (a) Elite (b) Farmers (c) Workers & others
Note: The graphs show for each social status group the percentage of women with a specific region-
of-birth and region-of-residence combination in the total number of women of that group in Swe-
den. The city of Stockholm is region 1, the second biggest city, Gothenburg, is part of region 14,
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Fig. 13.3 (continued) and the third-biggest city, Malmö, is part of region 12. The complete list of
regions is given below. We only consider married women aged 20–49 who were born in Sweden
with a spouse present in the household in the census of 1880, and for whom the social status could
be detected
1. Stockholm city; 2. Stockholm county; 3. Uppsala county; 4. Södermanland county; 5. Östergöt-
land county; 6. Jönköping county; 7. Kronoberg county; 8. Kalmar county; 9. Gotland county;
10. Blekinge county; 11. Kristianstad county; 12. Malmöhus county; 13. Halland county; 14.
Gothenburg and Bohus county; 15. Älvsborg county; 16. Skaraborg county; 17. Värmland county;
18. Örebro county; 19. Västmanland county; 20. Kopparberg county; 21. Gävleborg county; 22.
Västernorrland county; 23. Jämtland county; 24. Västerbotten county; 25. Norrbotten county
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations

women aged 20–49 were no longer living in their region of birth in 1880, while
most of the farmers were living in or close to their region of birth. As we take this
information as a proxy for communication links, this implies that in our models elite
women are more likely to spread information across regional boundaries.

The plots for the elite and the workers and others are more similar than the plots
for the elite and the farmers. However, the differences in the ways in which the
elite and the workers and others were connected to the capital city of Stockholm are
particularly striking. In both groups, a considerable share of the women who were
born outside of Stockholm city had moved to the capital. Among the elite, however,
we also find a substantial share of women who had been born in Stockholm city, but
who were living in one of the other regions of Sweden in 1880 (first vertical line
on the left of the elite graph in Fig. 13.3). This pattern appears to be attributable
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to national development processes. For example, a Stockholm-born woman may
have moved to a more remote area of Sweden because her husband was serving
in the local elite as a civil administrator, a military officer, a doctor, a teacher, or a
priest. It is likely that these women were still attempting to follow new developments
in their hometown of Stockholm, and thus acted as a vanguard group who spread
information about new lifestyles from the capital to other parts of Sweden. The
farmers, on the other hand, were the least connected to the city of Stockholm. Along
with differences in group sizes, these differences in migration/communication links
by social class and region are the main mechanisms that are expected to cause social
and spatial variation in our simulations of the fertility decline.

In the simulations, we do not attempt to model the full fertility histories of
the observed women, as the censuses provide us with information only about the
number of surviving children. Therefore, estimates of the “observed” fertility rates
of women of different social classes across regions would need to be based on very
bold assumptions. We decided instead to focus on the process of the adoption of
a parity-specific fertility control strategy. Related to this we assume that prior to
the fertility transition women generally believed that they had little influence over
their total number of surviving children. The adoption of the parity-specific fertility
control strategy therefore implies that women are starting to plan to have a target
number of surviving children. This target number may be subject to change over
the woman’s life course, but it is usually much lower than the number of children
she would have if she has not adopted a fertility control strategy. We believe that a
prerequisite for this shift in strategies is a substantial reduction in infant mortality,
as having a small number of children would be a risky strategy if infant mortality
levels were still high due to a high disease burden. Since this structural condition
had been met in Sweden by 1880, it was no longer a potential obstacle to the fertility
transition (see Dyson 2011). We believe that once a woman starts to consider having
a target number of children, she is unlikely to abandon this way of thinking. We
therefore follow González-Bailón and Murphy (2013) in their conceptualisation of
an agent-based model of the fertility transition in France by modelling the adoption
of a parity-specific fertility control strategy as an irreversible process.

In order to start our simulations, we need to have at least one agent in
the population who has already adopted the new behaviour. We consider three
different starting scenarios that comply with this starting condition: the random start
scenario, the diffusion from early decline countries scenario, and the diffusion from
big cities scenario. In addition, we define communication algorithms that are used to
let the adoption of the new fertility behaviour diffuse across Swedish society. Here,
we again consider three mechanisms: social adaptation, social influence, and social
learning (see also Kohler 2001).8

8These mechanisms may have been operating simultaneously, but we will keep them separate in
our model specifications.
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13.5.1 Three Different Starting Scenarios

In the random start scenario, we randomly choose one woman somewhere in
Sweden as the first adopter, and let the process diffuse from this woman. We repeat
this simulation several times with a different randomly chosen “patient number
one”. In choosing these first adopters, we use a stratified sampling that ensures
that the social classes of the 100 different first adopters used in 100 iterations are
representative of the respective sizes of these social classes in Swedish society in
1880. This type of scenario allows us to explore the question of whether the existing
social and spatial variation in communication links is sufficiently deterministic
that we would be able to reproduce major characteristics of the fertility transition
patterns using our simple communication rules, even if the process started out of
complete randomness.

In the second, diffusion from early decline countries, scenario we assume that
information relevant to the adoption of a parity-specific fertility control strategy
arrived in Sweden through communication links with other countries where this
behaviour was already widespread. Around 1880 only two European countries
had experienced substantial fertility declines as part of the demographic transition:
namely, France and the French-speaking part of Belgium. As a proxy for regional
and social variation in communication links with these countries, we add to our
sample of 488,438 women born in Sweden all 32 women born in France and
Belgium. These are mostly elite individuals who were living in one of the bigger
Swedish cities (see Klüsener et al. 2016). We then assume that these 32 individuals
were the first adopters, and let the fertility decline diffuse from them into Swedish
society.

In the third, diffusion from big cities, scenario we believe that big urban centres
are the early centres of the decline, as the populations are, relative to rural
populations, either subject to greater economic incentives and pressures, or more
open to new ideas. In simulations based on this scenario, the share of adopters in
the big urban centres is set to a certain threshold at the beginning of the process (see
details below). This scenario is the only one that refers to variation in adaptation
incentives and pressures in the definition of the starting condition.9

9Initially, we also considered obtaining as additional starting scenario estimates of the share of
individuals who had already adopted fertility control strategies from the CWR levels by social
class and region of residence in 1880. However, Fig. 13.2 shows that there is substantial variation
in the levels at which specific social classes in specific areas experienced the onset of the decline.
We therefore believe that it would be a very strong assumption to claim that variation in CWR
levels by social class and region at a single point in time would provide information about the
share of individuals who had already adopted the new behaviour.
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13.5.2 Three Different Communication Algorithms

The first diffusion algorithm we refer to as social adaptation. In this variant of
the simulation model, in each time period all individual women (agents) who have
not yet switched to a deliberate parity-specific fertility control strategy are at risk
of adopting this new behaviour. The adoption risk varies across women, and is
determined by the share of adopters in the “social surrounding”. The individual
risk depends in part on the share of women of the same social class in the woman’s
region of residence. This is based on the assumption that the risk that a woman will
adopt the behaviour in a specific time period increases as the share of women of
the same social class around her who have already adopted the behaviour increases.
Thus, the risk of adopting the behaviour will be very low at the beginning, when
there are hardly any women around who have already adopted it, but will rise as
the behaviour is adopted by an increasing share of women. In addition to the share
of adopters in the woman’s region of residence, we also believe that the share of
adopters of the same social class in a woman’s region of birth has an effect on her
risk of adoption. This is based on the assumption that women are likely to retain
communication links to their region of birth through friends and family members.
The inclusion of trends in the region of birth that can affect the risk of adoption
allows us to let the behavioural change spread across regional boundaries.10

In addition, we also allow the behaviour to spread across social boundaries. To
do this, we let the risk of adoption in the region of residence depend not only on
the share of adopters in the same social group, but also to some degree on the share
of adopters in the vanguard social group in this region with the highest share of
adopters at a specific time.11 In notation form, the individual risk of adoption RA
by a woman of a specific social class s in a specific time period t is determined as
follows:

RAs;t D
.SARvs;t � ws C SARs;t � .1 � ws// � wr C SABs;t � .1 � wr/

100
� x (13.1)

in which SAR and SAB denote the share of women who adopted a fertility control
behaviour (in percent) in the region of residence or, respectively, the region of birth
at the beginning of that time period t, and vs the vanguard social class with the
highest share of adopters at that time. Next, we have two weighting parameters,
wr and ws, that allow us to specify to what degree diffusion is occurring across
regional and social boundaries. For each of them we can chose values between 0
and 1. The parameter wr determines the weight that is given to the share of adopters

10For the women who were in 1880 still living in their region of birth, the share of adopters in the
region of birth and the region of residence are identical.
11We allow trickle-down effects from the vanguard group only in the region of residence, as we
consider it rather unlikely that women would copy behaviour from the vanguard group in their
region of birth if they were no longer living in that region.
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in the region of residence in contrast to the region of birth. The higher wr, the more
weight is given to the share of adopters in the region of residence than to the share
of adopters in the region of birth. The parameter ws regulates the weight given in the
region of residence to the share of adopters in the vanguard group in contrast to the
share of adopters in the woman’s own social class. The higher ws, the more weight
is given to the vanguard group. The last parameter x determines the maximum risk
of adoption that will be approached when almost all of the women have adopted the
behaviour. In order to introduce stochasticity in the model, we draw in each period
for each woman who has not yet adopted parity-specific fertility control strategies
a random number between 0 and 100 (all of the random numbers in our models
are drawn from a uniform distribution). If this randomly drawn number is below the
determined risk of adoption, the woman adopts the behaviour in this time period and
will from then on be considered to be among the share of women who have adopted
the new strategy.

The second algorithm we refer to as social influence. In this model variant,
women who have already adopted a fertility control behaviour act as agents of
change. For each time period for each woman y who has already adopted a fertility
control behaviour, three random numbers between 0 and 100 are drawn. The first
determines, based on a threshold h.i1 (e.g., if a number below five is drawn) a social
interaction (e.g., through conversation) with a randomly chosen other woman z of
the same social class in the region of residence. In this social interaction, woman z
is persuaded to adopt fertility control strategies, if she has not done so already. The
second random number drawn for woman y regulates, based on a threshold h.i2, a
similar interaction with a randomly chosen woman z of the same social class in the
region of birth. The third random number is considered only if woman y belongs to
the vanguard group with the largest share of adopters. In that case, this third random
number determines, based on a threshold h.i3, the risk of a similar interaction with
a woman z of any other social class in the region of residence. The advantage of
this model variant is that it allows for interactions in which, for example, a woman
who has moved from a village to a big urban centre communicates new ideas
to social contacts who have remained in her home region (e.g., sisters, friends).
These interactions could not be captured by our social adaptation specification, in
which a woman who has remained in her birth region can only be influenced by
developments in her home region.12

In the third algorithm, which we refer to as social learning, women who have not
adopted fertility control strategies are copying behaviour from forerunners. For each
time period for each woman y who has not yet adopted a fertility control behaviour,
three random numbers between 0 and 100 are drawn. The first determines, based
on a threshold h.l1, a social interaction with a randomly chosen other woman z

12A reviewer has pointed out that we could implement backward influences in the social adaptation
algorithm as well. We agree, but doing so would greatly increase the complexity of that model, as
we would need to account for the share of women of a specific social class who had moved to other
regions. We thus decided to stick with this simpler specification of our social adaptation algorithm,
which requires just one equation.
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of the same social class in the region of residence. If this other woman z has
already adopted fertility control strategies, the interacting woman y adopts these
strategies. The second regulates, based on a threshold h.l2, a similar interaction
with a randomly chosen woman z of the same social class in the region of birth,
while the third determines, based on a threshold h.l3, a similar interaction with a
woman y of the vanguard group living in the region of residence. This copying
of behaviour might have occurred more frequently than incidences of one woman
persuading another woman to adopt the behaviour, as we assumed in the social
influence algorithm. However, a disadvantage of this social learning algorithm
is that a woman who has remained in her region of birth can—as in the social
adaptation algorithm—only be influenced by processes that are occurring in her
home region.

13.6 Results

In presenting the results of our simulation models, we will focus on the outcomes
of our diffusion from big cities scenario and the social adaptation algorithm. The
starting condition for this scenario requires us to refer to variation in adjustment
pressures, as we assume that the first adopters were living in the cities where the
adaptation incentives and pressures were probably the highest, and the inhabitants
were the most open to new ideas. The outcomes for the diffusion from early
decline countries and random start scenarios are presented in a second publication
(Klüsener et al. 2016). We let each simulation run over 200 time periods.13

The assumption that the fertility decline started in big cities is realistic, as the
city of Stockholm in particular was a forerunner in the decline (see Fig. 13.2).
For this simulation model, we set as a starting condition the share of adopters in
t0 in Stockholm city in all three social classes to 2 %. These first adopters were
randomly sampled without taking other attributes into account.14 To assume that
the elite, the farmers, and the workers and others had the same share of adopters
in t0 is rather unrealistic, as we know that the elite group experienced the onset of
the decline in Stockholm city much earlier than the other two social groups (see
Fig. 13.2).15 However, the same share of adopters was chosen for all of the social
classes, as otherwise a faster adoption rate among the elite might have resulted from

13The time periods in the model outcomes presented in this contribution relate roughly to years, as
most of the decline occurred within 50 time periods, which correspond with the 50 years between
1880 and 1930 in which Sweden experienced most of the fertility transition (Dyson 2011).
14As an alternative, we could have attempted to determine the likelihood that a woman adopted
fertility control strategies based on her recent fertility history; i.e., by the number of children linked
to that woman by the mother locator.
15The farmers in Stockholm city had the lowest levels throughout the period. This might be related
to their small numbers, and the possibility that farmers who were living in the capital formed a
very selective group.
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the choice of a higher share of adopters in this group in the big cities in t0. Next
to Stockholm city, the share of adopters in the counties of Gothenburg, Malmö,
and Stockholm was set in all social classes to 1 %. Stockholm county was also
considered, as only a small group of farmers were living in Stockholm city. Thus, to
ensure that for the farmers the process was spreading out of the Stockholm area with
sufficient speed, we decided to include Stockholm county as an origin region of the
decline as well. In total, we ran for each combination of parameter specifications
(wr, ws, x) considered 100 iterations of our model. In order to minimise the impact
of the sampling procedure with which we define the adopters in t0, we derived 100
different samples for these 100 iterations. These 100 different samples were kept the
same for each combination of parameters considered.

The outcomes of the models are presented in Figs. 13.4, 13.5, 13.6, 13.7, 13.8,
and 13.9. Figures 13.4, 13.5, 13.6, and 13.8 show the results of the model for
different specifications of wr and ws and a maximum adoption risk x of 10.16 We
believe that the share of women who have already adopted the behaviour in the
region of residence has a greater influence on the adoption risk than the share of
adopters in the region of birth. Thus, we considered wr specifications of 0.5, 0.7,
and 0.9. For ws the decline patterns presented in Fig. 13.2 suggest that trickle-down
effects were not very dominant, at least at the beginning of the process. We therefore
chose ws settings of 0.05, 0.1, 0.15, and 0.2.

Figure 13.4 displays the development of the national mean values by social class
over time, Fig. 13.5 shows the trends in the standard deviation of the share of
adopters in the 25 regions, and Fig. 13.6 provides the development of the Moran’s
I that measures the spatial clustering in the observed spatial decline patterns. In
Fig. 13.7 we present maps of the simulated patterns, while Fig. 13.8 displays trends
in Pearson’s product moment correlation coefficients that compare the simulated
and the observed regional patterns (by social class and for all regional values
of the three social classes together). Figure 13.9 presents sensitivity checks for
one specification of wr and ws that we consider to be quite plausible based on
the observed patterns (wr D 0.9; ws D 0.05). The development of the mean values
indicates that independent of the considered wr and ws specifications, the order in
which the social classes experience the decline is always the same: i.e., the elite
experiences the decline first, followed by the workers and others, while the farmers
lag behind. When we increase our parameter ws, which allows for trickle-down
effects from the vanguard group, the temporal advantage of the elite decreases,
particularly in the second half of the transition. If we reduce wr and thus give a
greater weight to developments in the birth region affecting the risk of adoption, the
overall transition tends to occur in a shorter period of time, especially in the second
half of the transition, when the process is spreading rapidly to the other regions of
Sweden.

16We also ran all of the combinations of wr and ws presented here with xD 15 and xD 20, but the
outcomes suggest that an increase of x predominantly just affects the speed of the process. Thus,
we focus in the presentation of the results on the outcomes obtained with xD 10.
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Fig. 13.4 Simulation outcomes – share of women who adopted a fertility control behaviour by
socio-economic status
Scenario: Diffusion from big cities
Communication algorithm: Social adaptation
Note: Average of 100 simulations. The parameter wr denotes the weight that is given to trends in
the region of residence (wr) or the region of birth (1�wr). The parameter ws indicates the weight
within the region of residence that is given to the trends in the vanguard social class (ws) relative
to the woman’s own social class (1�ws). The parameter x denotes the maximum adaptation risk in
a specific time period, which is approached when almost all of the women have adopted the new
behaviour
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations
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Fig. 13.5 Simulation outcomes – standard deviation in share of women who adopted a fertility
control behaviour across the 25 Swedish regions by socio-economic status
Scenario: Diffusion from big cities
Communication algorithm: Social adaptation
Note: Average of 100 simulations. The parameter wr denotes the weight that is given to trends in
the region of residence (wr) or the region of birth (1�wr). The parameter ws indicates the weight
within the region of residence that is given to the trends in the vanguard social class (ws) relative
to the woman’s own social class (1�ws). The parameter x denotes the maximum adaptation risk in
a specific time period, which is approached when almost all of the women have adopted the new
behaviour
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations
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Fig. 13.6 Simulation outcomes – Moran’s I test of spatial autocorrelation (i.e., spatial clustering)
in share of women who adopted a fertility control behaviour across 25 Swedish regions by socio-
economic status
Scenario: Diffusion from big cities
Communication algorithm: Social adaptation
Note: Average of 100 simulations. The parameter wr denotes the weight that is given to trends in
the region of residence (wr) or the region of birth (1�wr). The parameter ws indicates the weight
within the region of residence that is given to the trends in the vanguard social class (ws) relative
to the woman’s own social class (1�ws). The parameter x denotes the maximum adaptation risk
in a specific time period, which is approached when almost all of the women have adopted the
new behaviour. In deriving the Moran’s I we define the four nearest regions as neighbours. These
neighbouring regions are identified by calculating the spherical distance between the geographical
centroids of the 25 Swedish regions. Please note that the Moran’s I becomes very sensitive to small
differences when all of the regional values converge to a value other than zero. This can cause some
fluctuations when the regional values converge at 100 %
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations



Stockholm
city

Stockholm
city

Stockholm
city

a b

c d

Stockholm
city

100.0
.60 0
.30 0
.25 0
.20 0
.16 0
.12 5
.8 0
.4 0

.60 0

.30 0

.25 0

.20 0

.16 0

.12 0

.8 0

.4 0

.0 0

−

−
−
−
−

−
−
−
−

Share adopted
after 75

time periods

Fig. 13.7 Simulation outcomes – spatial patterns in share of women who adopted a fertility control
behaviour after 75 time periods (wr: 0.9 ws: 0.05 x: 10) (a) Total (b) Elite (c) Farmers (d) Workers
& others
Note: The maps represent averages of 100 simulations. The parameter wr denotes the weight that
is given to trends in the region of residence (wr) or the region of birth (1�wr). The parameter
ws indicates the weight within the region of residence given to the trends in the vanguard social
class (ws) relative to the woman’s own social class (1�ws). The parameter x denotes the maximum
adaptation risk in a specific time period, which is approached when almost all of the women have
adopted the new behaviour
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Fig. 13.8 Simulation outcomes – correlation between the simulated share adopted and observed
fertility changes in the period 1890–1900 (in percent) across 25 Swedish regions by socio-
economic status
Scenario: Diffusion from big cities
Communication algorithm: Social adaptation
Note: Average of 100 simulations. The parameter wr denotes the weight that is given to trends in
the region of residence (wr) or the region of birth (1�wr). The parameter ws indicates the weight
within the region of residence that is given to the trends in the vanguard social class (ws) relative
to the woman’s own social class (1�ws). The parameter x denotes the maximum adaptation risk in
a specific time period, which is approached when almost all of the women have adopted the new
behaviour. All SES refers to the correlation between the values for all groups (three social groups
in 25 regions). In calculating the correlation statistics, we omitted farmers in Stockholm city due
to their small group size and their highly specific fertility development (for that reason we mark
“25* Swedish regions” in the y-axis title with an asterisk)
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations
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Fig. 13.9 Simulation outcomes – behaviour of the model under extreme conditions
Scenario: Diffusion from big cities
Communication algorithm: Social adaptation
Note: Average of 100 simulations. The parameter wr denotes the weight that is given to trends in
the region of residence (wr) or the region of birth (1�wr). The parameter ws indicates the weight
within the region of residence that is given to the trends in the vanguard social class (ws) relative
to the woman’s own social class (1�ws). The parameter x denotes the maximum adaptation risk
in a specific time period, which is approached when almost all of the women have adopted the
new behaviour. In deriving the Moran’s I we define the four nearest regions as neighbours. These
neighbouring regions are identified by calculating the spherical distance between the geographical
centroids of the 25 Swedish regions
Source: Micro-level census data, SweCens, The Swedish National Archives; own calculations
Base Map: The Swedish National Archives, MPIDR Population History GIS Collection
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In terms of the variation across regions, the development of the standard deviation
of the regional share of individuals who already adopted the new behaviour
displayed in Fig. 13.5 shows that in the initial phase of the decline, all three
groups experience a very similar increase. But in all of the wr and ws specifications
considered, the elite experiences at an earlier point in time a turn-around in this trend
at a lower level of regional variance, while the regional variance among the other two
groups continues to increase. The workers and others are the second group to register
the turn-around, while the farmers are again the laggards. Thus, in our models the
elite have the spatially most homogenous pattern of decline during the transition,
while the farmers have the most heterogeneous pattern. When we decrease ws and
wr, the social class differences become more pronounced. In addition, the outcomes
for the Moran’s I (Fig. 13.6) provide support for the view that the simulated decline
pattern for the elite is more spatially homogenous than the simulated patterns for
the other two groups in terms of the maximum Moran’s I. Nevertheless, in many of
the wr and ws parameter combinations considered, in the initial phase the elite has
a higher Moran’s I than the other two groups. However, this finding fits with the
observed patterns in which the elite had the highest Moran’s I in 1880. In addition,
the differences between the Moran’s I trends of the workers and others and the
farmers are less pronounced compared to the development of the means and the
standard deviations.

When we look at the spatial patterns we obtain with the diffusion from big
cities scenario for the parameter combination wr D 0.9, ws D 0.05 and x D 10 at
t75 (Fig. 13.7), we see that compared to the observed patterns shown in Fig. 13.1,
they are a bit more focused on the big cities. Thus, to get a more realistic outcome
using our social adaptation algorithm, we would either need to set the share of
first adopters in big cities lower or reduce wr in order to have the diffusion become
less focused on the big cities. Overall, however there are many similarities between
the simulated and the observed patterns. In the simulated map for all social classes
(Fig. 13.7a), the decline is similar to the observed pattern focused on Stockholm.
In addition, elevated levels of decline can be found in Gothenburg and the lake
corridor linking Stockholm and Gothenburg, as well as in two regions in the
southwest, where Malmö is located. Furthermore, in both the observed and the
simulated patterns there is a corridor with elevated levels of decline moving upward
from Stockholm to the northwest. In terms of social class differences, the models
show that among the elite the decline has already spread to almost all parts of
Sweden, except perhaps to the peripheral north; while the workers and others and
the farmers are lagging behind. Among these two groups, the simulated decline is
also more clustered on the areas around the early centres of the decline. Particularly
remarkable is the fact that our models are replicating the elevated fertility decline in
Södermanland county southeast of Stockholm among the farmers, the workers and
others, and the total population.

The quite good fit of our simulations is also confirmed by the correlation graphs
in Fig. 13.8, in which we contrast the simulated patterns with the observed patterns
in the period between 1890 and 1900, when all social classes experienced at least
some decline. For the elite and the workers and others we obtain for preferred
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parameter combinations (e.g., wr D 0.9, ws D 0.05 and x D 10) at the beginning
of our simulated transition correlations of around 0.6. For the farmers, however, the
correlations are substantially lower, at around 0.25. This finding might be related to
the fact that the farmers had not experienced significant fertility declines by 1900,
which could affect the extent to which the regional fertility change pattern observed
among this group between 1890 and 1900 is reflective of the pattern observed during
the fertility transition.

In order to gain a better understanding of which factors play a dominant role in
shaping specific aspects of the fertility decline patterns we observed in our model
outcomes, we decided to run a number of additional consistency checks in which
we moved the model in extreme conditions. In total, we developed three model
variants in addition to our standard specification, which are called equal n, no social
boundaries, and no geography. In the equal n variant we explore the effects that
differences in group sizes have on our model outcomes, as our social adaptation
algorithm lets the behaviour spread faster in smaller groups.17 To do this, we
modified the group sizes in our 75 groups (three social groups in 25 regions) so
that each group had the same number of women, and the total number of women
in the simulation remained approximately the same.18 In the no social boundaries
specification social class boundaries no longer act as moderators of the decline.
The risk of adoption of a woman of a specific class s is simply dependent on the
total share of adopters in her region of residence and her region of birth. For the no
geography specification the regional boundaries are no longer a moderator of the
decline, and we simply model the diffusion by social class for Sweden as a whole,
but still take the trickle-down effect from the vanguard group into account.

The outcomes for the standard specification and the three variants for one
parameter specification (wr D 0.9, ws D 0.05, x D 10) are presented in Fig. 13.9.
The results for the equal n simulation differ particularly in the very early phase of the
transition. In the first 50 time periods there are now hardly any differences between
the three social classes. But in the middle and the last phase of the transition, the
pattern for the equal n specification differs little from the pattern obtained based
on our standard specification. This suggests that particularly in the early phase
of the simulated decline, the elite group benefits from being smaller, while in
the second and the last phases of the process the social class differences in the
connectedness through space seem to dominate our model outcomes. This view is

17If, for instance, one individual out of 100 individuals in a social group adopts the new behaviour,
this implies that one percent of all of the women has adopted the behaviour. By contrast, the
adoption of the behaviour by one out of 10,000 women increases the adoption risks in this social
group to a much lower degree. It is relevant to note that we believe that this is an inherent property
of the diffusion process, and not just an unintended property of the social adaptation algorithm
that we specified. Our social influence and social learning algorithms also have the same property.
18In order to generate a dataset with a total n that was similar to our standard dataset, we derived
the target group n by dividing the total number of women in the simulation by the 75 groups (three
social groups in 25 regions). We then sampled or duplicated observations to obtain the targeted
group n in each group.
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also supported by the outcomes for the no geography specification, in which the
results are simply driven by variation in group sizes, while the social differences
in connectedness through space are not taken into account. In the no geography
specification, differences between the three groups emerge in the early phase of the
transition, but no longer increase in the second and the final phases.

Another interesting aspect is the outcome for the no social boundaries specifica-
tion. Even though social boundaries no longer act as moderators of the decline, for
the first half of the transition we observe social class differences that are similar to
those in our standard specification. This effect is, however, purely compositional,
and is driven by the fact that the elite (and the workers and others) are more
concentrated in the big cities than the farmers. Thus, in our standard variant, social
class differences in the second phase of the lift-off phase (around time period 50)
seem to be largely dominated by these compositional effects.

13.7 Discussion and Conclusion

The outcomes of our analysis provide support for the view that a substantial share
of the major characteristics of the spatiotemporal fertility decline patterns by social
status in Sweden can be reproduced with our simulations, in which the decline is
modelled as diffusion process with simple communication rules, with migration
links serving as proxies for social and spatial variation in communication links.
These reproduced characteristics include that the elite were forerunners and the
farmers were laggards, and that the elite had a more spatially homogenous pattern
of decline. In the scenario we presented, we assumed that the process started in the
big cities, and that the role of big cities as early centres of decline might be related
to greater adaptation incentives and pressures. Inherent in this starting condition
is the assumption that the decline would initially be concentrated mainly on big
cities, and to a lesser extent on peripheral regions. However, as we will demonstrate
in a second publication (Klüsener et al. 2016), we are also able to reproduce in
our diffusion from early decline countries and random start scenarios virtually all
of the major spatiotemporal characteristics of the fertility decline. Among these
characteristics are that the big cities were early centres of decline, that there were
diffusion clusters around these centres, and that peripheral regions were laggards.
However, for the random start scenario, the outcomes are more volatile, and most
of the characteristic patterns are only obtained all of the time if we average the
outcomes of several simulations.

As a starting condition for our diffusion from big cities scenario we set the share
of adopters in the three social classes to the same level. Based on the observed
patterns, it would probably be more realistic to start the process with a higher share
of adopters among the elite, and a lower share of adopters among the farmers. This
would further widen the differences between the three social classes with regard
to the time period in which the process gains momentum. It is also questionable
whether it is realistic to use the same parameters for all three social classes in terms
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of the weight wr that is given to the share of adopters in the region of residence
relative to the share of adopters in the region of birth, and of the weight ws that is
given in the region of residence to the share of adopters in the vanguard social class
relative to the share of adopters in the woman’s own social class. Based on Szreter’s
considerations regarding communication communities (Szreter 1996), we would
assume that during the Swedish fertility transition the elite were more likely to
have communicated across long distances, while the farmers mainly communicated
locally. Hence, it might be warranted to give the elite a lower wr than the farmers.
This would allow the elite to communicate more across regional boundaries and
to be less dependent on the share of adopters in the own region of residence. In
addition, based on theoretical considerations, it is reasonable to assume that the
workers and others would be more affected by trickle-down effects from the elite
vanguard group than the farmers, given that the workers and others were more likely
to reside in urban centres in which the elite were concentrated, and that some of the
workers were employed as household servants for the elite. Thus, the model might
be more realistic if the farmers were assigned a lower ws than the workers. Based
on our model outcomes, we assume that introducing social class variation in the
wr and ws specifications would have further increased the differences between the
three social classes in the temporal pace of the transition, and that the farmers in
particular would have lagged further behind. We are also able to run the models
with much more complex geographies, as we can disaggregate our data down to
the level of the more than 2400 parishes of Sweden at that time. For reasons of
simplicity we focused here on a relatively simple geography, but it would certainly
be interesting to explore how using a more complex geography would affect our
model results.

In interpreting the outcomes of our simulations it is important to point out that
communication links created by migration decisions are also shaped by processes
of socio-economic change and national development. Due to this, the existing
communication links might serve to some degree as a proxy for these processes. It
is also likely that migration patterns are related to spatial variation in social norms,
as regional and local populations with a low share of migrants might be less open
to social change than populations with a high share of migrants. But independent
of these considerations, our outcomes demonstrate that even in a static society with
no spatiotemporal and social variation in adaptation pressure, frequently observed
fertility decline patterns can be reproduced with simulations that model the decline
as an information diffusion process structured by social and spatial variation in
communication links.

Our findings might be relevant for less developed countries that are still at the
beginning of the fertility transition. If communication processes indeed play an
important role in the process, then we might even see a decline under conditions
of slow socio-economic development, once a certain number of people have
adopted the new behaviour. However, we have to be very careful in making such
assumptions, as unlike Sweden of the late nineteenth century, contemporary African
societies might lack clearly structured social groups who share common values
and ideas, and who could serve as communication communities (see Caldwell and
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Caldwell 1987). Yet it should be noted that this view is not undisputed (Makinwa-
Adebusoye 2007). We also cannot rule out the possibility that the Swedish case is
rather a peculiar one. The fact that infant mortality in Sweden had declined to low
levels several decades before the onset of the fertility decline might have helped
to create the structural conditions for change across the country before the decline
started. Given this temporal lag between the emergence of conditions for change and
the change itself, it is possible that spatial and temporal variation in communication
links shaped the pattern to a large extent. This process might unfold differently in
societies in which the emergence of conditions for change and the fertility transition
are occurring in parallel. For example, the continuation of high infant mortality
rates among specific regions or groups might represent a bottleneck condition for
the transition process (see also Coale 1973). However, since infant mortality in
Africa has declined considerably in recent years (Storeygard et al. 2008), it is
not unwarranted to assume that in Africa we might also be witnessing a time lag
between changes in structural conditions and the adaptation of fertility behaviour to
these new conditions.

Our outcomes are also of general relevance to researchers interested in identi-
fying causal relationships between structural factors and present-day demographic
change processes that are likely to be shaped by a mixture of communication
processes and adaptation to changing circumstances. In recent times, such processes
might include the spread of cohabitation and the diffusion of gender-egalitarian
norms in terms of the division of household and childrearing tasks. If these processes
are predominantly driven by communication processes, they are still likely to be
structured by social and spatial variation in communication links, with the latter
also being shaped by structural factors. In interpreting the statistical associations
between structural factors and demographic outcomes, researchers should be aware
that these associations do not have to evolve as a result of a direct causal relationship
between structural factors and demographic outcomes. They can also emerge if
a communication process is not directly causally linked to these conditions, but
just moderated by social and spatial variation in communication links that are
themselves shaped by these structural factors. Our ceteris paribus simulations
demonstrate that the shaping of the communication links and the diffusion through
communication do not necessarily have to occur simultaneously. Agent-based
models seem to offer great potential for investigating these questions.
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Appendix 1: Map of Swedish Counties in 1880
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Chapter 14
Feedback Mechanisms in the Postponement
of Fertility in Spain

Daniel Ciganda and Francisco Villavicencio

14.1 Introduction

The idea that reproductive preferences (intentions) represent a key element of fertil-
ity change was already present in classic demographic transition theory. Notestein
(1953) recognized that the set of social norms, values, and beliefs sustaining a
particular economic and demographic regime are “deeply woven into the social
fabric and are slow to change.” For decades, demographers have attributed the lag
in the decline in fertility during the demographic transition to people’s resistance to
adapting to a new survival scenario.

Some of the most prominent contemporary fertility theories argue that normative
shifts, either in the form of secularization (Lesthaeghe and Van de Kaa 1986) or
changing gender values (McDonald 2000; Esping-Andersen and Billari 2015), are
the main engine of change in fertility levels. However, most of the time norms seem
to be resisting, rather than promoting, demographic change.

Norms have prevented not only more rapid fertility declines during the demo-
graphic transition, but also expected increases in the mean age at childbirth in
Eastern European countries (Perelli-Harris 2005; Mynarska 2010), the adoption
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of modern contraceptive methods (Munshi and Myaux 2006), and the spread of
alternative family formation behaviors among Japanese men and women (Rindfuss
et al. 2004).

But norms are too complex for most conventional modeling techniques and
most of the time they remain at the theoretical level. In this chapter we explicitly
model the dynamic relationship between norms and behavior and we argue that the
evolution of (age) norms can also explain a substantial part of the postponement of
fertility in Spain.

The explanation we propose has four central elements: the expansion of tertiary
education, the increase in economic uncertainty, the role of social interaction as
a multiplier of these structural changes, and the dynamic relationship between
intentions and behavior. Our objective is to go beyond the assessment of the relative
contributions of each of these elements, and to analyze the mechanisms at the
individual level that explain the emergence of an aggregate trend.

We structure the chapter as follows. First, we discuss some of the approaches
used to analyze the dynamics that have pushed fertility to later ages, and their
limitations. Next, we describe the model target and the model itself, and present the
empirical data used to calibrate it to the Spanish case. Finally, we present several
simulated scenarios designed to help us gain insight into the mechanisms at play in
the rise in the mean age at first birth (MAFB).

14.2 The Dynamics of Fertility Postponement

14.2.1 Social Interaction

Social interaction became a mainstream concept in demography after the results
of the Princeton Project highlighted the geographic and linguistic boundaries
surrounding the onset and the pace of fertility decline. Thereafter, the spread of
information and attitudes through social networks was a key element of most models
of fertility change during the demographic transition.

According to Casterline (2001), the initial attempts to incorporate into fertility
theories the notion of diffusion were based on an eminently practical goal: namely,
the acceleration of the spread of contraceptive techniques in developing countries.
This might explain why birth control has been the main focus of most of the
empirical applications of diffusion models (Entwisle et al. 1996; Kohler 1997;
Kohler et al. 2001; Montgomery and Casterline 1993; Munshi and Myaux 2006;
Rosero-Bixby and Casterline 1993).

The most recent wave of studies on social interaction and fertility have relied on
the availability of detailed datasets and new methods to empirically analyze the role
of social networks in family formation decisions (Aparicio Diaz et al. 2011; Balbo
and Mills 2011; Balbo and Barban 2014; Lyngstad and Prskawetz 2010; Mathews
and Sear 2013). These studies focused less on fertility change and more on the
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question of how family and friends influence fertility attitudes and behaviors in the
transition to parenthood. They defined the mechanisms through which interaction
affects behavior: i.e. social learning, a self-initiated process through which agents
obtain information and knowledge from others; or social influence, a process
through which other people and their behaviors exert pressure and control over the
individual.

From a dynamic perspective, social interaction also operates through different
mechanisms. Of those proposed by Kohler et al. (2002), two are particularly relevant
in our analysis: social feedback mechanisms and status quo enforcement.

Social feedback is the process through which social interaction increases the pace
or the extent of the original change in fertility behavior triggered by socioeconomic
changes. In this case, imitation or the intensification/relaxation of social pressure
generates an effect that can become independent of the initial change in material
conditions.

Status quo enforcement refers to the mechanism, described above, through which
social norms generate resistance to innovative behavior. So far, there have been few
empirical analyses of this process (for an example, see Munshi and Myaux 2006).
But as we will try to show in the remainder of this chapter, status quo enforcement
might be one of the fundamental dimensions of fertility change.

14.2.2 Feedback Loops Between Preferences and Behavior

The decision to have a child has been analyzed using multiple behavioral
frameworks, like the “ready, willing, and able” approach developed by Coale (1973),
or the rational action theory embedded in most economic models. Recently, attempts
have been made to promote and incorporate the theory of planned behavior (TPB)
(Ajzen 1985) into the analysis of reproductive decision-making (Testa et al. 2011).

Demographers became interested in the TPB primarily because of the role
intentions play as close predictors of observed behavior within the TPB framework.
In fact, the main focus of empirical studies on intentions has been to test their
capacity to predict future fertility trends (for a review, see Morgan 2001).

However, the TPB framework has been criticized for its static nature, as the
theory does not adequately take into account the recursive loop between intentions
and behavior (Sniehotta et al. 2014; Morgan and Bachrach 2011). The focus of
the TPB on the synchronic perspective blurs the process through which intentions
themselves change as a result of previous behaviors.

The discussion surrounding the TPB evokes the longstanding sociological
debate between those who see agency (behavior) as the key mechanism in the
explanation of social processes, and those who highlight the role of structures
(norms, institutions). Other disciplines have also referred to this debate as “volun-
tarism vs determinism”. Scholars who have attempted to overcome this dichotomy
have generally focused on the recursive dynamics between agency and structure
(Giddens 1984; Bourdieu and Wacquant 1992).
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This perspective implies the existence of a mechanism through which new
behaviors contribute to a change in the prevailing norms, which in turn feed back to
the individual level, thereby shaping the intentions of subsequent generations in a
micro-macro loop.

While they are harder to model, these mechanisms can illuminate more complex,
and potentially more interesting dynamics like the “downward spiral of fertility”
described by Goldstein et al. (2003) (who argued that the apparent decline in the
ideal family size in Germany and Austria was a product of the experiences of cohorts
living in low-fertility regimes), or the emergence of multiple equilibria regarding the
timing of fertility described by Kohler et al. (2002). In the latter, feedback generated
through social interaction explains rapid and substantial changes in the MAFB.

14.2.3 Equilibrium Between Intentions and Behavior?

Even if we imagine that intentions and behavior are mutually dependent, the
question of what this relationship looks like remains. Previous postponement models
have assumed that intentions and behavior converge, at least in the long run.

In the model by Aparicio Diaz et al. (2011), the decision to have a child at time t
results in a new aggregated probability (intention) at tC1. Here the effect of previous
behavior in the updating of people’s preferences is linear and cumulative. Intentions
and behavior remain perfectly aligned. The model by Kohler et al. (2002) allows for
a temporary mismatch of intentions (the desired MAFB) and behavior (the observed
MAFB), although in the long run they also converge to an equilibrium. However,
the available empirical evidence on intentions suggests that this assumption might
be misleading.

Regarding the quantum of fertility, Bongaarts (2001, p. 261) argued that in pre-
transitional societies the ideal family size tends to be below the observed total
fertility rate (TFR), but that this relationship shifts in post-transitional settings. He
concluded that “a declining desired family size is indeed one of the principal forces
driving fertility transitions, but in reality levels of fertility often deviate substantially
from stated preferences.”

Unfortunately, the amount of available data on preferences regarding the timing
of the transition to parenthood is very limited, and comparisons of the evolution of
the ideal relative to the observed mean ages are difficult to make. However, data
from 2006 showed that, in European countries, people’s preferences and behavior
were far from being in equilibrium (Testa 2006). For example, women surveyed in
Spain stated that the ideal age for becoming a mother was around 25.5, while the
observed mean age at first birth for that year was 29.3.

The scarce evidence available suggests then that the evolution of the ideal mean
age at first birth relative to the observed mean age will follow a similar pattern to
the one observed for the ideal family size relative to the TFR: i.e. above the ideal
before a certain amount of control over fertility has been achieved, and below the
ideal after the mean age at motherhood has been pushed beyond a certain threshold;
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as appears to have been the case in most European countries in the mid-2000s
(Testa 2006).

14.2.4 Educational Change

The positive association between education and the age of the transition to
parenthood has long been recognized in demography (Marini 1984; Rindfuss et al.
1980). Research on the topic has identified two distinct dimensions of the effect of
education on fertility: enrollment and post-enrollment. The first effect refers to the
difficulties which can arise in balancing the roles of student and mother, while the
second is related to the higher opportunity costs of childbearing for highly educated
women.

According to recent estimates of the contribution of increasing education to
the postponement of fertility in three European countries (Britain, France, and
Belgium), the joint effects of enrollment and post-enrollment are responsible for
most of the rise in the mean age at first birth (Neels et al. 2014; Ní Bhrolcháin
and Beaujouan 2012). However, the findings of another set of studies suggest that
education might not be the main driver of fertility postponement (Rendall et al.
2010; Rindfuss et al. 1996). The results presented later in this chapter lend support
to the second perspective, as they indicate that educational expansion explains only
a modest fraction of the total delay in marriage/parenthood.

14.2.5 Unemployment

The relationship between economic constraints and fertility decisions has received
substantial attention in recent years after a series of studies suggested that the long-
standing negative correlation between prosperity and fertility levels had changed
its sign (Adsera 2004; Ahn and Mira 2001; Kohler et al. 2002; Myrskylä et al.
2009). Although a vast body of literature on this topic has been generated, it is
still difficult to obtain some stylized facts regarding the size and direction of the
effect of unemployment on fertility decisions.

A series of studies have reported no significant effects (Kravdal 2002; Kreyenfeld
2010; Ozcan et al. 2010), while other studies have found strong negative effects that
range from a 25 % reduction in the risk of having a first birth in France (Pailhé
and Solaz 2012), to a 60 % reduction in Germany (Kreyenfeld 2005), and a 40 %
reduction in Spain (Baizán 2006).

The considerable diversity of the institutional settings studied and the difficulties
researchers face in distinguishing between income and substitution effects partially
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explain the ambiguity of some of the results found in the literature.1 A potentially
fruitful strategy for disentangling income from substitution effects is to distinguish
women in traditional male-breadwinner arrangements from women in dual-earner
households. Unfortunately, the information needed to make this distinction is often
missing from surveys, and only a few studies have provided results accounting
for the employment status of both members of the couple. Most of these studies
have confirmed the assumption that substitution effects prevail when women are
(exclusively) caregivers, while unemployment tends to depress or delay fertility
when both members of the household work (Baizán 2006; Vignoli et al. 2012).

To account for the effect of unemployment in our model, we had to reconstruct
the historical series of unemployment rates in Spain from the earliest available fig-
ures in the 1930s (Fig. 14.1). The shortest series corresponds to the unemployment
rates computed from the information provided by the Spanish Labor Force Survey
(EPA, Estadística de Población Activa), which is considered the most reliable
source in Spain for labor market indicators, including unemployment rates. The
second series shows the figures obtained from the official employment offices.
Although it covers a longer period of time, this indicator only consider workers in
the formal economy, which could lead to an underestimation of the unemployment

0
5

10
15

20
25

Time

U
ne

m
pl

oy
m

en
t r

at
es

1935 1945 1955 1965 1975 1985 1995 2005 2015

Spanish Labor Force
Survey (EPA)

Unemployment registered

Fig. 14.1 Unemployment rates, Spain 1933–2012: (1) Unemployment measured by the Spanish
Labor Force Survey (EPA), and (2) Unemployment registered (Statistical Yearbooks of Spain)
(Source: Spanish Statistical Office (INE 2015))

1According to Becker (1981) an income rise will not only increase the demand for children, but
also the indirect costs of forming a family; i.e. the potential income and career opportunities that
parents have to give up in order to spend time with their children. An income effect is observed
when the demand for children is positively affected by an increase in resources, and a substitution
effect is observed when the effect is negative.
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Fig. 14.2 Mean age at first birth (MAFB), Spain 1975–2103 (Source: Spanish Statistical Office
(INE 2015))

rates. The other crucial difference between the two indicators is that the registered
unemployment rate is computed over the working-age population (16–64), whereas
the EPA rate considers only the economically active population, and thus provides
higher estimates. However, our goal in presenting both series is not to highlight
their differences, but to show that Spain seems to have enjoyed a period of very low
unemployment until the 1970s, when the rate increased dramatically, coinciding
with the increase in the MAFB, presented in Fig. 14.2.

14.3 Model Target

The main targets of our model are the evolution of the mean age at first birth
(MAFB) and the evolution of the schedule of age-specific fertility rates (ASFR),
which for Spain are available only from 1975 onward.

Although most European countries registered significant postponements in the
MAFB in the last decades of the twentieth century, in Spain the increase was
particularly intense. As we can see in Fig. 14.2, the mean age increased by about
5 years over the observed period.

An initial exploration of the curve suggests an effect of unemployment in shaping
the trend: a similarly steep increase until the mid-1990s, a deceleration up to the end
of the first decade of the twenty-first century, and another peak coinciding with the
most recent economic crisis.

Figure 14.3 provides more information about the nature of this change. The
evolution of the age-specific fertility rates shows that the increase in the mean age
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shown in Fig. 14.2 has been the result of a reduction in fertility rates at younger
ages, but also of the increase in births at older ages. From 1975 to 2012 the peak of
the distribution shifted from around age 23 to age 30. It is also interesting to note
the small bump in the distribution from age 17 to age 24, which likely represents
the contribution of migrant women, and which prevented an even greater increase
in the mean age at the transition to motherhood by the end of the period.

14.4 Model Layout

In our model, each woman older than age 15 has the intention to form a union or
to have a child. These intentions are represented by transition probabilities which
depend on individual characteristics (age and education) and on whether the agent
has already found a partner or not.

The final probability with which an agent makes a decision to get into a union
is the result of the agent’s original intention (u), her employment status, and the
influence coming from her network of friends (social influence). Analogously, the
final probability of having a child inside the union is the result of the couple’s
original intention (f ), their employment status, and the social influence of their
network of friends. We assume, however, that having a child outside the union is
not influenced by the same intervening factors, as most of these births will not be
the result of a well thought-out decision; so even though we consider these events,
they are not affected by unemployment or social influence. Each of these elements
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will be described in greater detail in Sect. 14.5; here we provide a brief description
of the central mechanisms.

The initial intentions u and f are obtained from empirical data, as described in
Sect. 14.5.1. They capture both information on the behavior of previous cohorts and
the agent’s ideas regarding the maximum ideal age to marry/become a parent. The
behavior of previous cohorts gives the agent (couple) an idea of what others can
expect regarding her (their) family formation decisions given the age and education
level. In this regard, u and f also capture one of the levels of social influence;
the second one, a more local level, is captured through the agent’s network. These
expectations, however, are bounded by social (and biological) limits, which means
norms determine to a certain extent how much and how fast intentions change.

Each year, before making a decision, agents consider not only their intentions but
also their employment status and the behavior of their friends. An unemployment
multiplier is introduced to capture the reduction in the probability of experiencing
the transition to marriage (parenthood) when agents experience involuntary spells
out of the labor market (Sect. 14.5.5).

Analogously, a social influence multiplier captures the influence from the closest
network of friends and at the same time provides agents with information about
how conservative/innovative the behavior of their friends is in comparison with
the behaviors of previous generations. Social interaction positively reinforces those
behaviors that are becoming increasingly acceptable/common in the population
(Sect. 14.5.6).

The effect of educational expansion is introduced at the level of the education-
specific intentions by changing the composition of the population by educational
level as described in Sect. 14.5.4.

Figure 14.4 presents an example of a 25-year-old woman with tertiary education.
Let’s denote by u.t; 25; 3/—25 referring to the age and 3 to the educational level—
her intention to get into a union in a given year t, which depends originally on how
common or acceptable it is for a university-educated woman to marry (or cohabit)

Fig. 14.4 A model of fertility postponement: Union formation. The example of a 25-year-old and
university-educated woman
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Fig. 14.5 A model of fertility postponement: First birth. The example of a couple formed by a
26-year-old and university-educated woman and her partner

at age 25. The desirability/acceptability is given by the proportion of university-
educated women of that age who got married in the previous year.

After considering her own employment situation and the behavior of her peers
(social influence), our woman updates her original intention to marry and makes a
decision based on her individual updated intention u�i .t/. The individual decisions
of each of the 25-year-old and university-educated women in the population modify
the norm regarding marriage at that age and educational level. The new information
on how common or acceptable it is to enter a union for that population group is used
in the next time step t C 1 to form the baseline intentions at age 25 of the following
cohort of university-educated women—u.t C 1; 25; 3/—in a micro-macro loop.

When a woman decides to marry based on the prevailing norms, her background
characteristics, her employment situation, and the influence from her network, the
agent in the model that represented that woman now represents a couple, as depicted
in Fig. 14.5. In the following year t C 1, the new couple—formed by a 26-year-old
and university-educated woman and her partner—start with the intention to have
a child f .t C 1; 26; 3/, which is shaped by the behavior of other couples the year
before. In this case, the relevant background characteristics (age and education) are
those of the woman, which are not necessarily the same as those of her partner.

As in the decision to marry, the couple update their original intention based on
the influence of their network of friends, and after taking into consideration their
joint situation in the labor market. The final updated intention to have a child will
be f �i .t C 1/. This process resembles that of the Bongaarts (2001) model, in which a
series of intervening factors prevent couples from realizing their fertility intentions.

The decisions of all couples in the population affect people’s perceptions regard-
ing the desirability/acceptability of such behavior. These perceptions in turn modify
the fertility intentions of subsequent generations of couples, and, consequently, the
desired mean age at first birth.

However, the interesting question here is how exactly people come to update their
expectations and form their preferences by taking into account the experiences of
previous cohorts. In other words, how norms adapt to people’s behavior and how in
turn they shape their future actions.
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The existence of ideal ages as well as age deadlines for the transition to parent-
hood has been well documented (Settersten and Hägestad 1996; Billari et al. 2011;
Van Bavel and Nitsche 2013). It is likely that these markers, especially those related
to the proper age for having a child, change during the postponement transition as
a result of the mechanism described above. It is also likely, however, that the ideal
age for having a child does not increase indefinitely. A certain threshold must exist
after which people start resisting the push toward later childbearing ages.

Our assumption is that people will follow the behavior of previous cohorts and
update their expectations as long as the threshold that marks the upper limit of the
ideal age for having a first child had not been crossed. The threshold marks the point
at which individuals will start resisting further increases of the MAFB even if the
material incentives push in the opposite direction. We believe that this resistance
is triggered by the proximity of the biological limit but also by a series of social
norms, for which we model different thresholds according to the education level of
agents.

In addition, we believe that the postponement of motherhood encounters some
resistance at the beginning of the process due to a similar path dependence process
generated by prevailing norms. It takes time for individuals to realize that conditions
are changing and to start adapting their preferences accordingly. In Sect. 14.5.8 we
provide details on how these dynamics are introduced in the model.

To summarize, we understand the process of postponement as the result of the
interaction of the four main factors introduced above. It is in response to rising
economic uncertainty and increased opportunity costs associated with the expansion
of higher education that couples in Spain start postponing marriage and having
children. The expansion of education and the increasing uncertainty in the labor
market provide the original push to the MAFB. However, this original change is
amplified and sustained via social interaction as young men and women start
imitating the behavior of their peers and friends. People’s beliefs about the ideal
age for marriage and for becoming a mother social norms play a crucial role
both at the beginning and at the end of this process. Initially, norms generate
resistance associated with the time it takes for individuals to realize that conditions
and expectations are changing. Towards the end of the process, the resistance is
generated by the proximity to the social and biological limits of reproduction.

14.5 Technical Description

Our simulation runs for 70 years, from 1944 until 2014, and we base our simulations
on Spanish data (more details about the data are provided in Sect. 14.6). The ages
of the initial population are randomly assigned according to the female population
structure of Spain from the 1940 census (INE 2015). Starting the simulation in 1944
ensures that all of the initial women of reproductive ages (15+) will be out of their
reproductive period when our analysis of the MAFB begins in 1975.
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The model contains five procedures for agents which are carried out at each
time step: aging, partnership formation, reproduction, entry into/exit from the labor
market, and the building of a network. Each time step (or iteration) corresponds to
1 year. At each new iteration the agents age, and they may die off according to the
corresponding age- and year-specific mortality rates of Spain (HMD 2015).

As they enter the simulation, the agents are assigned the final educational level
they will achieve: primary, secondary, or tertiary. At age 15, an individual becomes
an adult who can find a partner (marriage or cohabitation), who might reproduce,
and who builds her own social network by choosing a maximum of � contacts from
a larger pool of potential friends based on their social distance with respect to edu-
cation. From age 16 agents can become unemployed according to observed age- and
sex-specific probabilities. The agents do not remain in the simulation beyond age 45.

The population is composed of female and couple agents. In addition to the
information of the female partner, couple agents have information on the male
member, as shown in Table 14.1. Table 14.2 summarizes the global parameters used
in the simulation.

Table 14.1 Agents’ characteristics

Agent variables Variable name Values

Identity number id 1, 2, 3, . . .

Age x 0–45

Age partner xp 15–53

Age at first birth xb 15–45

Education level edu 1: “primary”

2: “secondary”

3: “tertiary”

Marital status ms 0: “single”

1: “married/cohabitation”

Employment status es 0: “agent employed”

1: “agent unemployed”

Employment status partner esp 0: “partner employed”

1: “partner unemployed”

Network net # individuals in the network

Table 14.2 Global
parameters

Global parameters Parameter name Value

Starting year iniYear 1944

Final year finYear 2014

Sex ratio at birth SRB 0.515

Minimum age at birth minAge 15

Maximum age at birth maxAge 45

Recurrence in unemployment � 0–0.99

Maximum network size � 1, 2, 3, . . .

Fertility rate for parity 1+ f2 0–0.99
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Fig. 14.6 Multistate model:
(1) Single, (2) Marriage/
Cohabitation, and (3)
First Child

14.5.1 Transition Probabilities

As was mentioned above, the intentions on which our agents’ behaviors are based
are represented by empirical transition probabilities. To obtain these probabilities,
we first estimate the original union and fertility rates using the multistate model
presented in Fig. 14.6. The model resembles the classic illness-death model without
recovery used in medical research (Beyersmann et al. 2011). All of the individuals
start at stage 1-Single (without children), and have the potential to stay in this state
or to move to either state 2-Marriage/Cohabitation, or to the absorbing state 3-First
Child. After reaching state 2, individuals can either stay or leave the state to enter
state 3. Each of these transitions is governed by a cause-specific hazard from which
we obtain the Nelson-Aalen estimators of the cumulative hazard for each event.

From the estimators of the cumulative hazard, we derive the sets of age- and
education-specific fertility probabilities for a first birth inside of a union f o.x; edu/,
fertility probabilities for a first birth outside of a union fso.x; edu/, and union
probabilities uo.x; edu/. These sets of probabilities represent both the observed and
the intended fertility behaviors at the beginning of our period of interest, as, for the
sake of simplicity, we assume that behaviors and intentions are in equilibrium at that
time. For parity one or higher, the fertility rate is f2 for all individuals.2

2As we model the effect of labor market exits exogenously, we need a set of initial probabilities
that is net of the effect of unemployment to avoid an overestimation of this effect. Unfortunately, as
the dataset we use for the estimation of the original probabilities does not contain information on
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Fig. 14.7 Age- and education-specific probabilities from multistate model. Cohorts 1940–1960,
Spain. From left to right: (1) Fertility probabilities inside union, (2) Fertility probabilities outside
union, and (3) Union probabilities. Note: A different vertical scale is used for fertility probabilities
outside the union

14.5.2 Initialization of the Model

The observed fertility and union rates correspond to the cohorts of females born
between 1940 and 1960. We restrict our sample to this period for two reasons. First,
we want to avoid mixing a large number of cohorts with different labor market and
educational experiences. Second, the fertility schedules of these cohorts shaped the
period mean ages at first birth in the mid-1970s, before the beginning of the increase
we are trying to model (see shadowed area in Fig. 14.8).

For the computation of the MAFB, we need all of the agents to be exposed to
the entire set of intensities presented in Fig. 14.7. Hence, starting the simulation

the employment histories of the interviewees, we have to provide a rough estimate of the effect of
unemployment. As we noted in Sect. 14.2.5, Spain did not have high levels of unemployment until
the mid-1980s, which means that the effect of unemployment on our cohorts born in 1940–1960
would have been relatively mild. We assume a decreasing effect by age: compared with the original
probabilities, the final probabilities are about 15 % higher at age 15, only around 5 % higher at age
30, and about the same by the end of the reproductive period at age 45, as shown in Fig. 14.7.
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Fig. 14.8 Lexis diagram of the female cohorts used in the initialization of the model

in 1944 ensures that all of the women who entered the initial population being
older than 15 (solid black line in Fig. 14.8) and were not exposed to the entire
set of probabilities from age 15 to 45 are not considered in the computation of
the simulated MAFB in 1975. Moreover, this initialization procedure (1944–1974)
prevents us from assigning an initial parity to the agents and an age at first birth to
those with parity one or higher, for which we have no empirical reference.

14.5.3 Age of Partners

When an agent enters a union, a random age and the corresponding age-specific
unemployment rate are assigned to her partner. The age is obtained from a truncated
normal distribution, using the age of the agent plus two years (xi C 2) as the mean
value, and a D xi � 4 and b D xi C 8 as the lower and upper limits of the age of the
partner:

xpi 	 NŒa;b�.xi C 2; 1/: (14.1)

14.5.4 Evolution of Educational Attainment

Tertiary education has expanded rapidly among women in Spain: the share of
women who completed tertiary education rose from 5 % of those born in the late
1930s, to one-third of those born in the 1970s, to around 45 % of the more recent
cohorts (Castro-Martín and Martín-García 2013).
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Fig. 14.9 Observed and predicted proportion of newborns by achieved education level. Female
cohorts, Spain 1934–1998 (Source: 2011 Spanish Census, Spanish Statistical Office (INE 2015))

As we can see in Fig. 14.9, since the late 1930s the proportion of female
newborns who complete tertiary education has been increasing almost linearly. The
2011 census provides reliable figures for the generations born up to 1980; after that
point, and based on the figures presented above, we assume a continuation of the
linear increase in the proportion of women who access a tertiary level education, a
linear declining trend in the share of women who only have secondary education,
and a stagnation in the share of women who never progress beyond the primary level
of education (at under 10 %).

In our model, education is defined according to the three levels mentioned above,
which correspond to the number of years of formal schooling: fewer than six
(primary), from six to 13 (secondary), and more than 13 (tertiary). Each year we
assign the newborns in our model a level of education matching the proportions that
each of these levels represent in the total female population, as shown in Fig. 14.9.

14.5.5 Unemployment Effects

Starting from the observed unemployment rates, we obtain the proportion of the
population who were unemployed in each year of our simulation, by age group
and sex. From these series we then model the exits from the labor market, while
assuming that a proportion � of those who were unemployed in the previous year
will stay in that state.

We assume that unemployment affects an individual’s decisions about whether
and when to enter a union and to have a first child within a union. The strength of this
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Fig. 14.10 Effects of unemployment by age on the original fertility and union rates

effect depends on the employment status of the agent or the employment status of the
couple after union formation, with three different scenarios: (1) the agent is unem-
ployed (esi D 1I espi D 0); (2) her partner is unemployed (esi D 0I espi D 1); and
(3) both members of the couple are outside of the labor market (esi D espi D 1). For
single agents espi D 0. In practice, that means that the original fertility and union
rates of each agent i are modified by an unemployment multiplier umi defined as

umi.xiI˛/ D
1

1C exp.�0:1.xi � ˛//
; (14.2)

where xi is the age of the agent, and ˛ a parameter that depends on the employment
status of the couple and determines the strength of the effect. Figure 14.10 shows
the unemployment multiplier over the union rates u.t; x; edu/ for the different
combinations of the employment status of both members of the couple. These sets
of ˛ values are the ones we used in our final model in Sect. 14.7.1, which provides
a good fit for our target.

In all three cases the effect is more pronounced at younger ages. For instance,
for those couples in which only the female partner is unemployed the probability of
entering a cohabiting union or having a first child (after being in a union) is about
80 % of the original probability if the female partner is 25 years old, about 65 % if
the male partner is unemployed, and about 30 % if both partners are out of the labor
market.

The function of the multiplier for the fertility probabilities is the same, although
the effects are slightly smaller than the multiplier for the union probabilities. We
assume that the margin to postpone the formation of a new household in response
to economic uncertainty is larger than the margin to postpone the decision to have
children given biological constraints.
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14.5.6 Social Influence Effects

As mentioned before, agents do not base their decisions about the timing of mar-
riage/cohabitation and the transition to parenthood exclusively on their immediate
material conditions (unemployment) and their perceived opportunities (education);
their choices are also influenced by their network of friends. As the decisions of
the members of a given agent’s network are themselves determined by the labor
market conditions and their education, the strength and the direction of the influence
the network exerts will be shaped by its members’ material conditions and their
perceived opportunities. In other words, a social feedback mechanism is triggered
by a change in these conditions, which in turn reinforces and amplifies the original
effect.

At age 15, each agent forms a network composed of a maximum of � members
of the same age. The agents randomly choose these contacts from a pool of potential
friends based on a social distance function that depends on their educational level.
The social distance between two agents i and k is defined as

sdik D exp
�

�ˇ.jedui � edukj C 1/2
�

; (14.3)

where edui and eduk are the respective educational levels, and ˇ is a parameter that
controls the level of educational homophily in the agent’s network.

Equation 14.4 shows that the social influence sii that an agent i of age xi receives
from her network is based on the distance between the proportion of members in
her network who are already mothers i, and the average proportion of mothers of
age x D xi in all networks in the previous generation (10 years before) �x . This
means that the degree of influence on the agent to have a child at any given age is
based on how common/acceptable it is to have a child at that age relative to how
common/acceptable it was to have a child at that age 10 years ago. The reference
to the past allows agents to know not only which behavior is accepted/expected but
also how behavior is changing, and to follow innovative behavior as long as her
(their) friends are adopting it:

sii.xiI �; 	/ D

8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

1C exp
�

�	1.xi � �1
1Ci��

x
/
� C 1; if i � �x > 0:05

1; if ji � �x j 
 0:05

1

1C exp.�	2.xi � �2
1Ci��

x
//
; if i � �x < �0:05;

(14.4)

where � D .�1; �2/ and 	 D .	1; 	2/.
For the transition to marriage/cohabitation, the social influence function works

in a similar way, although instead of considering the proportion of mothers in
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Fig. 14.11 Social influence by age

the network we use the proportion of members of the network who were already
married/cohabiting �i, and the average proportion of agents of age x D xi who were
already married/cohabiting in all networks in the previous generation ��x . In both
cases the strength of the effect is given by parameters � D .�1; �2/ and 	 D .	1; 	2/.

When the difference between �x and i or ��x and �i exceeds the 5 % threshold,
the social influence multiplier sii either augments (�x < i, ��x < �i) or reduces
(�x > i, ��x > �i) the original rates u.t; x; edu/ and f .t; x; edu/. If the absolute
difference is less than 5 %, the social influence has no effect. Figure 14.11 illustrates
the effect for a set of � and 	 values that offer a good model fit (see Sect. 14.7.1).

We assume that agents’ decisions become progressively independent of the
behavior of their friends as they approach the upper limit of the family formation
period, and that other influences become stronger. Hence, we model a decreasing
negative effect of social interaction as age increases. Conversely, we assume that the
positive effect will increase with age as it joins other influences (proximity to the
biological limit, family influences) in pushing forward the transition to parenthood.

The parametrization of these effects is not an easy task given the lack of previous
empirical references. The values we present here were obtained after several
exercises with the calibration of the model. For example, given these parameters the
probability of marriage/childbearing for an agent who is 30 years old is about 90 %
of the original probabilities if there is one fewer marriage/mother in her network
(assuming the networks have an average size of 20) than in the average of all
networks of agents of that age 10 years before (sii D 0:9) . By contrast, if there is one
additional marriage/mother in her network, her probability of marriage/childbearing
increases by about 40 % (sii D 1:4).
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14.5.7 Model Equations

Following the explanations introduced in Sect. 14.4, the unemployment and the
social influence effects are captured by the individual multipliers umi and sii to
obtain for each agent i the individual updated probabilities (intentions) of union
formation u�i .t/ and of having the first child within marriage f �i .t/:

u�i .t/ D u.t; xi; edui/ � umi.xiI˛/ � sii.xiI �; 	/; (14.5)

and

f �i .t/ D f .t; xi; edui/ � umi.xiI˛/ � sii.xiI �; 	/: (14.6)

As was mentioned above, the fertility probabilities of women who have children
outside of marriage or cohabitation are not affected by unemployment and the local
social influence, as given the cultural framework in Spain we assume that this type
of event is frequently unplanned, and is therefore less conditioned by labor market
or peer behavior considerations.

14.5.8 Micro-Macro Loop

The effects of unemployment and social influence at the micro level result in a series
of decisions about marriage and childbearing which modify the ideal ages at these
events at the macro level, and hence the intentions at the micro level of subsequent
cohorts. This process starts in 1975, once the initialization process (1944–1974)
is complete. At t D 1975, u.t; x; edu/ D uo.x; edu/, f .t; x; edu/ D f o.x; edu/,
and fs.t; x; edu/ D fso.x; edu/, where uo, f o, and fso are the probability transitions
obtained from the multistate model discussed in Sect. 14.5.1 and Fig. 14.7.

Equation 14.7 describes how this process of reciprocal dependence works:

u.t C 1; x; edu/ D

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

u�.t; x; edu/

max
� u�.t;x;edu/

u.t;x;edu/ ; �
� ; if u�.t;x;edu/

u.t;x;edu/ < 1

u�.t; x; edu/; otherwise;

(14.7)

where u.t C 1; x; edu/ represents the baseline intentions at time t C 1 by age and
educational level, u�.t; x; edu/ is an average by age and educational level of the
updated probabilities defined in Eq. 14.5, and u.t; x; edu/ is an average by age and
educational level of the original probabilities (without effects) at time t. u�.t; x; edu/
recovers the effects of unemployment and social influence on the original intentions
of the previous year. An analogous mechanism applies for the computation of the
transition probabilities to parenthood inside unions f .t C 1; x; edu/.
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Fig. 14.12 Desired mean age thresholds by education level

The parameter that governs the loop between intentions and behavior is � , which
depends on the observed MAFB and the educational level, as shown in Fig. 14.12.
It controls the position of the threshold after which agents are no longer willing
to postpone family formation. When � is closer to one then all of the effects of
unemployment and social influence are recovered in the new baseline, and the
desired and the observed mean ages grow at a similar speed. As intentions near
the ceiling imposed by people’s preferences, then � approaches zero, and the new
baseline does not consider a portion or all of last year’s effects; people thus resist
further increases in the ages at marriage and childbirth. A similar resistance is
observed at the beginning of the postponement process as information about the
transformation of the age at family formation reaches everybody in the population.

In Sect. 14.7.2 we show different scenarios resulting from a series of assumptions
about the dynamics between the observed and the desired timing of family
transitions.

14.6 Data and Tools

Our model could be described as a semi-artificial population model, a particular
type of agent-based model (ABM) which, according to Bijak et al. (2013), results
from the introduction of ABM techniques into a predominantly empirical discipline
like demography. Semi-artificial population models are characterized by the combi-
nation of empirical and simulated data.
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For the computation of the original union and fertility rates, we use the 1991
Sociodemographic Survey (INE 2015). It provides a large representative sample of
the Spanish population (age>10), with 159,154 observations.

To obtain the initial age structure of the population we use the 1940 census. For
the initial distribution of the population by education, we use information from the
1970 census, which is the first to present disaggregated population figures. Both
censuses are from the Spanish Statistical Office (INE 2015).

The age- and sex-specific mortality rates from 1944 to 2014 were obtained from
the Human Mortality Database (HMD 2015).

For the reconstruction of the long unemployment series, we made use of various
sources. The numbers of people who were registered as unemployed came from
the Statistical Yearbooks of Spain published by the Spanish Statistical Office (INE
2015). We also used an interpolation of the censuses from 1930 to 2011 to obtain
the number of working-age individuals. The Spanish Labor Force Survey (EPA)
series 1960–1978 came from Carreras and Tafunell (2006). Finally, the series for
the period 1979–2014 came from the Spanish Statistical Office (INE 2015).

Simulations were run in R (R Core Team 2015) and NetLogo (Wilensky 1999),
using the RNetLogo extension (Thiele et al. 2012). To obtain the estimates from the
multistate model we used the survival (Therneau 2015) and the mvna (Allignol
et al. 2008) R packages. The code is optimized to take advantage of parallel
computing using the snowfall R package (Knaus 2013).

Running four parallel simulations with an initial population of 3,000 agents each
already produces useful results. The results reported here, however, were obtained
with initial populations of around 30,000 agents for smoother trends.

14.7 Results

We begin this section by presenting the fit to our target of the model, as described
above. In a second step, we present scenarios for different assumptions of some
of the key mechanisms. Finally, we try to assess the individual role of each of the
components of the model by presenting simulation results in which we alternately
omit each of these effects.3

14.7.1 Original Model

Figure 14.13 shows the observed and the simulated MAFB. This fit corresponds
to the non-linear specification of the model presented in Eqs. 14.5 and 14.6. Non-

3All these simulations were carried out with the following values of the global parameters
described in Table 14.2: recurrence in unemployment � D 70%, maximum network size � D 20,
and fertility rate for parity 1+ f2 D 0:15.
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Fig. 14.13 Observed vs simulated MAFB Spain, 1975–2013
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Fig. 14.14 Observed (left) vs simulated (right) ASFR over time. Spain 1975–2012

linearity here refers to the fact that the results the model provide cannot be predicted
by adding up each of its individual components.

The parameters for the unemployment and social influence multiplier correspond
to the values shown in Figs. 14.10 and 14.11. This specification closely reproduces
the observed trend.

Although the previous figure gives us an idea of how well the model approxi-
mates the data, the real challenge lies in matching the evolution of the distribution
of ASFRs. As shown in Fig. 14.14, the model also reproduces this trend relatively
well, especially the resulting distribution and the shift in the peak from around age
23 to around age 30.



428 D. Ciganda and F. Villavicencio

24
25

26
27

28
29

30
31

Time

M
A

F
B

24
25

26
27

28
29

30
31

M
A

F
B

1975 1980 1985 1990 1995 2000 2005 2010 2015

Time
1975 1980 1985 1990 1995 2000 2005 2010 2015

Obs MAFB

Sim MAFB

Obs MAFB

Sim MAFB

Fig. 14.15 Observed vs simulated MAFB. Results from linear models. Spain, 1975–2012. Norms
= Behavior (left) and Norms < Behavior (right)

14.7.2 Alternative Models

As described in Sect. 14.5.8, the bridge between the individual and the aggregate
level in our model is provided by the influence that age norms regarding marriage
and childbearing exert on the agents. Hence, the pace and the shape of fertility
change will depend greatly on how these social norms shift in response to changes
in behavior.

In our original model, we assume that people’s preferences are initially resistant
to change. As mentioned before, this resistance is attributable to both the inertia
of cultural norms and the time it takes for information regarding new material
incentives to reach and be processed by individual agents. After the change in
socioeconomic incentives picks up speed and individuals adapt their expectations,
the age norms start to catch up with behaviors, but only until they reach the threshold
created by people’s beliefs about the upper limit of the ideal age range for marrying
or having children.

In this section we compare our original model with two other linear specifications
in which we remove the thresholds and the effect of norms is constant over time.

Figure 14.15 shows two different scenarios. In the left graph, age norms evolve
at the same speed as behaviors. Each year individuals adjust their expectations by
taking into account all of the information generated in the previous year regarding
the material incentives and obstacles to marrying and reproducing, as well as the
behavior of their peers (� D 1). In this case norms offer no resistance. On the
other hand, the right graph presents a scenario in which norms are highly resistant
to change, and individual preferences defy the most immediate changes in the
socioeconomic incentives for marriage and childbearing (� D 0).

These scenarios result in significant overestimation and underestimation, respec-
tively, of the postponement process. It seems reasonable to assume that during the
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Spain, 1975–2012. Model with education only

postponement process age norms adapt in relation to changes in material conditions;
but it also seems clear that this adaptation does not simply mirror the changes at the
structural level.

14.7.3 Net Effects

In this section we present the results of a series of exercises in which we try to
isolate the different effects considered in our model. Figure 14.16 shows the results
of a specification of the model in which we only consider the effect of educational
expansion, as expressed in Eq. 14.8. The only driver in this case is the compositional
change of the population by education level:

u�i .t/ D u.t; xi; edui/ and f �i .t/ D f .t; xi; edui/: (14.8)

Figure 14.17 presents a scenario in which the effect of unemployment is omitted
(see Eq. 14.9), and one in which the effects of social influence are omitted (see
Eq. 14.10):

u�i .t/ D u.t; xi; edui/ � sii.xiI �; 	/ and f �i .t/ D f .t; xi; edui/ � sii.xiI �; 	/; (14.9)

and

u�i .t/ D u.t; xi; edui/ � umi.xiI˛/ and f �i .t/ D f .t; xi; edui/ � umi.xiI˛/: (14.10)
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The effect of education (the one that results exclusively from the compositional
change in the population by education level) is substantially lower than we
had originally expected, accounting for less than a fifth of the total increase in
the MAFB by the end of the period. Although this modest effect of education
questions the consensus regarding the causes of postponement, the result is not
unexpected if we look at the relatively narrow gap between educational levels in
the original distributions of age-specific fertility probabilities we use in the model
(see Sect. 14.5.1). However, it is important to keep in mind that the result does not
refer to the total effect that education exerts on the MAFB but to its most direct
mechanism.

Regarding the multiplier effect of social influence (left panel of Fig. 14.17), the
first element worth noting is its large contribution to the process, even though in this
case its amplifying effect refers only to the delays caused by educational expansion.
It’s also interesting to note that in a world without unemployment the trend does
not show the more recent increase which is likely associated with the latest Spanish
economic crisis which resulted in a steep increase of unemployment rates.

The second model, which only accounts for the compositional change with
respect to education plus the effect of unemployment (right panel of Fig. 14.17),
results in a relatively small increase in the MAFB. This difference is attributable in
part to the fact that while unemployment exclusively affects the proportion of people
unemployed in that year (20–25 % in years of high unemployment), the effect of
social influence spreads through the networks, reaching most, if not all agents in the
population.

The other interesting element is that the difference between the two is amplified
by the fact that the model with social influence pushes the MAFB enough to
overcome the initial resistance provided by social norms, as defined in Eq. 14.7,
while the model without social influence doesn’t. This helps to illustrate the relative
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futility of trying to isolate effects, and supports our assumption that the pace of the
process cannot be explained solely by the measure of the strength of each of its
individual components.

14.8 Conclusions

Using an agent-based model we showed how the postponement of fertility in Spain
can be explained by a set of relatively simple mechanisms at the individual level:
rising opportunity costs of childbearing associated with higher education, growing
economic uncertainty from an increasingly unstable labor market, and the multiplier
effect of social interaction.

While the direct effect associated with educational expansion was substantially
lower than we expected, our results showed that the feedback effects from social
interaction were far more relevant than we had originally imagined. The extent to
which networks amplify and spread an original force was particularly apparent when
we compared the influence of social interaction with other factors that affect only a
subset of the population, like unemployment. The evidence we present here provides
support for the claim that the echo generated by social interaction can exceed the
impact of the original effects that triggered it. Nevertheless, the existence of non-
linear dynamics makes it impossible to describe the postponement process as a
simple aggregation of each of its individual components, or to assess precisely the
contributions of each of these components. But by using an ABM we were able to go
beyond the assessment of the presence/absence of effects and explore the question of
exactly how some of these mechanisms push forward the decision to form a family.

We found, for example, that for the shift of the peak of the distribution of age-
specific fertility rates the increase in the positive influence on marrying/having
children at later ages is as important as the increase in the negative influence at
younger ages.

The other key element in the explanation of the postponement process is
the micro-macro feedback loop through which past behaviors trigger normative
changes, and which in turn translate into updated expectations for succeeding
cohorts of men and women.

We tested different hypotheses and confirmed that the assumption of an equilib-
rium between preferences and behaviors leads to simulation results which deviate
substantially from the observed trends. The key dynamic here seems to be the
existence of a threshold after which people are reluctant to accept further delays
in the age at which they start having children. Thus, it appears that norms are not so
much converging or lagging behind as they are encouraging resistance to structural
changes.

Understanding how age norms change is therefore essential to understanding the
pace and the extent of fertility change. The formation of people’s expectations and
preferences is shaped by a larger set of elements than those we explored here. But
while we did not directly address all of these factors, we do not intend to treat
norms as black boxes. The strength with which people resist further increases in the
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timing of family formation depends on their expectations regarding the conditions
for childbearing. In addition to their perceptions of the present and future dynamics
of the labor market or the educational system, these conditions include elements
such as the availability of affordable childcare or the existence of support systems
that facilitate work-family balance.

On the methodological side, we tried to provide another illustration of how
computational models present a great opportunity to add complexity and dynamism
to our representations of human behavior.

In this chapter we have provided only a very general description of the postpone-
ment process, leaving many potentially interesting dynamics to be explored in future
work. For example, researchers may want to investigate the influence of the size, the
composition, and the level of homophily of the social networks; or the changes in the
effects of economic uncertainty as the number of dual-earner households increases.
Moreover, modeling the changing role of women with regard to paid and unpaid
work would undoubtedly shed more light on our conclusions. The classic schema
of the innovators versus the followers of demographic change could also be tested
by modeling different thresholds and ceilings (resistance and limits of normative
change) for different subgroups of the population.

Finally, as we consider future scenarios, we believe that some of the forces that
have been pushing the timing of family formation will continue moving in the
same direction, at least in the medium term. There is room for further educational
expansion in Spain, and a high degree of economic uncertainty is likely to be a
feature of people’s lives in the near future. These trends may be met with some
resistance, but, as we noted above, there is no guarantee that behaviors will naturally
converge with preferences. Thus, a large gap between behaviors and preferences
could become a permanent feature in the coming years. The action taken to
reduce this gap—or the failure to take action—will certainly shape the ongoing
development of the timing of family formation in Spain.
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Part V
Health, Mortality, and Support in Old Age



Chapter 15
Linking Income, Transfers, and Social Support
in an Agent-Based Family Exchange Model

Fanny A. Kluge and Tobias C. Vogt

15.1 Background

While there is clear evidence that wealthier individuals tend to live longer, there is
no consensus among scholars about why this is the case. Health economists have
argued that wealth is a proxy for health itself, as healthier individuals have the
capacity to earn higher incomes over their life course (Grossman 1972). Meanwhile,
sociologists have found that income is strongly associated with education, and have
argued that better educated individuals live longer and generate more income (Kroh
et al. 2012; Deaton and Paxson 2001; Deaton 2003). Income may also promote
survival because of the amenities money can buy. Wealth has been shown to be an
important determinant of mortality (Preston 1975). Wealthier individuals can afford
health-relevant goods and services, like better housing and nutrition, and out-of-
pocket payments for certain health services.

In our analysis, we test the assumption that income affects survival both directly
through the level of pension benefits, and indirectly through intergenerational
transfers. The use of increased pension income to make intra-familial transfers
represents an indirect and mediating link between income and improved old-age
survival. Transfers play a major role in explanations for the rise in the average life
span of humans and other species (Carey and Judge 2001; Lee and Chu 2012). It
appears that transfers have contributed not only to the survival chances of offspring,
but also to improved longevity (Gurven et al. 2012). Thus, raising the income
of the elderly could lead to increases in the amounts transferred. These transfers
may contribute to old-age survival by encouraging adult children to provide their
parents with social support. Studies have shown that social isolation is a reliable
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predictor of old-age health and mortality (Steptoe et al. 2013; Berkman 1995).
Berkman (1995) emphasised that emotional support and social connectivity are
more important determinants of old-age survival than practical help. For example,
Ellwardt et al. (2013) showed that emotional support can have a protective effect
on cognitive decline, whereas instrumental support can have none or even negative
effects.

Negative associations have been found not only for all-cause mortality, but also
for several health impairments and different causes of death (Stringhini et al. 2012;
Eng et al. 2002). Holt-Lunstad et al. (2010) showed in a meta-analysis that the
effects on the risk of death among older people of a lack of social relationships are
comparable to the effects of smoking and excess alcohol consumption. Emotional
and instrumental support from family members has been found to be protective
against depressive symptoms and an increased risk of dying (Zunzunegui et al.
2001). However, it appears that not all forms of intergenerational support are
beneficial for the mental and physical health of older people (Seeman 1996). It is far
more important that the intergenerational relationships are motivated by the notion
of exchange. The absence of reciprocity in the relationship between older parents
and their adult offspring seems to change the character of the exchange from being
helpful to being strenuous (Moorman and Stokes 2014).

The ability to comply with the societal norm of reciprocity depends on each
generation’s capacity to provide resources. Older parents provide their children with
financial support, and children provide their parents with emotional or functional
support. This pattern is typical of Western welfare states with a system of generous
public pensions, whereas in East Asian countries intergenerational family transfers
are primary sources of income at younger and at older ages (Lee and Mason 2011).
In this context, an increase in income might enable an older family member to start
making transfers, or to increase their transfer amounts. An increase in the transfer
amounts may intensify the expectation that the adult children will reciprocate by
providing support. The return transfers are not necessarily equivalent, and they may
not occur at the same point in time. Children may also give different levels of
material, functional, or emotional support over their life course depending on their
ability to provide transfers. Likewise, children may decide to increase their support
of their older parents because they expect to receive larger transfers in return. In
either case, both generations can benefit from the exchange of resources: the older
generation benefit from feeling integrated into the family and important to their
offspring, and adult children benefit from receiving subsidies in times of need and
from contributing to family solidarity.

The discussion of the literature on social support presented here is not a complete
review of the literature on social support. There are many different aspects to social
support, and the mechanisms through which social support affects survival are not
exclusive, and are sometimes ambiguous. Nevertheless, most studies have found that
social connectivity is an important determinant of well-being, subjective health, and
survival. In our analysis, we measure the level of support by the number of contact
hours per week between adult children and their parents, as reported in the Time Use
Surveys for Germany. This is a very broad concept, as it includes personal visits,
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telephone calls, and instrumental support, such as help with bureaucratic issues or
household tasks. While we cannot determine the quality of the contact, we assume
that any time spent together is beneficial for survival.

In our model, income increases enable older individuals to buy health-relevant
amenities and services, or to make transfers to their children. Children may respond
to these transfers by providing more support, as measured in hours of contact per
week. This support may be expected to help older individuals maintain their health
status and survival chances. In the model, we assume that wealth can affect old-age
survival also via factors like health behaviours, medical care, and environmental
pollution. We apply our model to the natural experiment setting of post-reunification
Germany, and use the structural break to investigate whether changes in income and
transfer patterns among older eastern Germans are associated with improvements in
health. The results of this investigation allow us to answer the question of whether
increases in income improve health and survival through changes in the exchange
relationship in the family. The chapter is structured as follows. First, we provide
a short overview of the natural experiment character of the German reunification.
Subsequently, the model is outlined in detail, followed by a description of the data
used. Finally, we present our results and discuss their implications.

15.1.1 The German Reunification: A Natural Experiment

When the Berlin Wall fell in 1989, Germans in the east and west had lived for
four decades under very different social, economic, and political conditions. The
reunification of the country one year later introduced the western German political
system to the east, and eastern Germans gained access to the generous social security
system of the west. Living conditions in the east improved quickly, and soon
approached western German standards. Life expectancy responded to this trans-
formation, and quickly converged with the western German level. Improvements
in mortality among the elderly accounted for nearly 90 % of this life expectancy
convergence while younger age groups contributed “only” 10 % (Vogt 2013).

In discussions of the potential triggers of this rapid catch-up, a number of factors
have been mentioned, such as changing health behaviours, improving medical
infrastructure, and reduced environmental pollution. However, rising income levels
have been shown to be the most important factor (Diehl 2008). Vogt and Vaupel
(2013) found that mortality among pensioners whose incomes rose converged
very quickly with mortality among their western German counterparts, and that
pensioners with children benefited from these income increases even more than
childless pensioners. Meanwhile, intergenerational monetary transfers increased
(Kohli et al. 2002), and the amount of time children spent with their elderly parents
increased (Time Use Surveys 1991 and 2001). Based on these findings, we will
investigate the question of whether increased pensions had an impact on eastern
German old-age mortality via intra-familial transfers.



442 F.A. Kluge and T.C. Vogt

15.1.2 An Individual’s Behaviour in an Agent-Based Model

In order to investigate the association between increasing pension income and
improved old-age survival on the individual level, we need to understand the
decision-making process of an individual. In our analysis, the main question is
whether the exchange relations in families (i.e., transfers of money and of care)
contribute substantially to macro-level health and mortality outcomes. From an
economic perspective, there are several motives for private transfers, ranging from
pure altruism (Becker 1974), to accidental bequests (Yaari 1965), to the desire
for an exchange (Cox 1987; Henretta et al. 1997; Norton and Van Houtven 2006;
Koh and MacDonald 2006). Yet these motives fail to take into account the social
embeddedness of an individual, and of his or her need to comply with certain
norms and social expectations of behaviour. The theory of planned behaviour can
account for these economic, rational choice motivations, but it adds a social aspect
to explanations of an individual’s decision-making process (Ajzen 1991).

Ajzen’s theory of planned behaviour focuses on three aspects: an individual’s
views on a given behaviour, the social and subjective norms regarding the behaviour,
and the level of perceived control. All three aspects are incorporated into our model.

An intention to act in a certain way is formed by an individual’s attitude or
expectation regarding the outcome of this behaviour. The individual may expect to
derive certain benefits from his or her prospective behaviour. Children may expect to
receive larger intergenerational transfers if they spend more time with their parents.
In return for transfers, parents may expect to have more visits from or to spend more
time with their children.

At the same time, individuals cannot be totally selfish in their actions. There
are normative constraints that prevent parents from using all of the resources
for themselves, and from failing to support their offspring. Likewise, social and
individual normative beliefs about how children should behave in a family context
make it difficult for the adult children to receive transfers without returning
resources. This underlines the importance of family solidarity and reciprocity as
drivers in an exchange relationship.

Finally, Ajzen’s theory includes another important aspect of the intention-
forming process: namely, the perception of having control over a certain behaviour.
In this process, an individual must feel that he or she has the necessary means to
perform an action. Despite having a general desire to make transfers and a belief
that such transfers are socially acceptable, older parents may not be able to give
money to their children if they lack the necessary resources. This aspect is key for
our model. Pension income increases do not necessarily change the willingness of
older people to make transfers, but the increases may alter their ability to provide
support. We observe empirically that increases in pension income are accompanied
by increases in private downward transfers. Thus, it appears that parents voluntarily
increase the amounts they transfer to their children if they can afford to do so. That
is why we assume that this link holds, and that having the necessary resources will
lead to higher transfers.
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15.2 Model Implementation

We develop an agent-based model that we initialize with realistic demographic
and economic rates for eastern Germany. Although the potential time horizon
for computation is much longer, we focus on the transition period between the
years 1980 and 2000 to test our hypotheses. We use NetLogo (Wilensky 1999)
to model the family relationships. RNetLogo is used to estimate the demographic
rates for each individual depending on his or her age. The RNetLogo package
offers an interface to embed the agent-based modelling platform NetLogo into the
R environment (Thiele 2014).

The initial population size is set at 5,000 individuals. Each agent is assigned a
numerical identifier, an age, a sex, a marital status, a number of children, and a
partner identifier if he or she is married (the identifier is set to false if the agent is
not married). The list of characteristics for each agent is given in Table 15.1. The
model simulates eastern Germany’s relevant population characteristics from 1952 to
2051. The initial population age distribution approximates that of eastern Germany
in 1952. The individuals’ sex is randomly chosen, with the sex ratio being 0.5. Each
woman has an initial number of children based on her age. If a woman is under age
15, the number of children is zero. If she is between ages 15 and 25, the number
of children is Poisson distributed with a mean of one; and if she is over age 25, the
initial number of children is Poisson distributed with a mean of two. When a woman
gets married, her partner takes over her family characteristics.

Figure 15.1 summarises the six subroutines of the NetLogo model in a detailed
graphical way. The first part of the model refers to the pure demographic events. In
each period individuals age by one year, and can die, form a union, have a child, or
migrate. A woman can form her own household with a unique family identifier at
age 15. Individuals age until they reach their age at death. This age is determined
by the death rates from the Human Mortality Database (HMD) (2013, see details in
Sect. 15.3) for men and women for the respective year and age. For people aged 60
and above, an additional adjustment factor is estimated from the model. This factor
is based on their pension level, whether they have children, and a care indicator (the
adjustment factor is explained later in this section where the respective subroutine is
described in detail). If a child dies, the number of children is corrected downwards.
If an individual receives the information that he or she has reached the age at death,
the about-to-die indicator is set to one, and the agent dies at the beginning of the
following period. Individuals are able to form a union when they reach age 15. They
determine whether an appropriate mate exists: i.e., they seek out a partner who is
not married, is of the opposite sex, is within 10 years of their age, and is not related.
The mate receives the same family information, such as the number of children and
the family identifier as the female. If one partner dies, the status of the remaining
partner is set to widowed.

Children can only be born within marriage. Females between ages 15 and 49
receive their age-specific fertility rates for the respective year from the German
Federal Statistical Office data for the past. After 2010, age-specific fertility rates
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Table 15.1 List of agent’s characteristics (Note: random numbers are drawn from a uniform
distribution unless otherwise indicated)

Variable Description

id Numerical identifier for each individual

age Age of individual

sex Sex of individual, femaleD 1, maleD 0

fr Age-specific fertility rate depending on individual’s age

dr f adj Age-specific death rate, females, depending on values from the Human
Mortality Database (HMD) (2013, see details in Sect. 15.3) and individual
adjustment factors

dr m adj Age-specific death rate, males, depending on values from the Human
Mortality Database (HMD) (2013, See details in Sect. 15.3) and individual
adjustment factors

married True or false value depending on marital status

mate Contains id number of mate

mother Contains id number of mother to identify siblings

children Reports actual number of children

birth New birth in model, estimated with asfr between 1952 and 2050

birthinmodel 0D no child in model, 1D child born within model

famid Family identifier (id of mother/wife)

hhinc Reports pension income of household combined

transfers Amount of pension income transferred to children

transfer increase Transfers relative to pre-1990 levels

pension age Pension entry age, random between 60 and 65

pension Amount of monthly pension income

pension increase Percentage increase in pensions relative to pre-1990 level

years contributed Number of years contributed for pension estimation

childlost Number of years deducted for women, 3 years for each child

occupation Adjustment factor for different occupations, random number between 0.7
and 2

unemp Years of unemployment, random number between 0 and 3

widowed True or false variable depending on partner’s death

support Hours of support provided by children

availability AvailabilityD 1 if at least one child is available for care

support received Support received by elderly, mean of all children

care Hours of contact per week, depending on transfers

le adj Life expectancy adjustment factor for the elderly, depending on pension
level and support

about to die Indicator set to 1 if age at death is reached

Source: own considerations
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Fig. 15.1 The familial exchange model in a flow diagram (Note: White boxes refer to the mating
and marriage market routine, dotted boxes to fertility and the existence of children, grey refers to
all other demographic subroutines and bold frames to the pension and transfer routine)

are held constant for the remaining years until 2051. This should not be a problem,
as our model focuses on the changes between 1980 and 2000 in eastern Germany,
and we do not seek to predict future developments. If a woman gives birth, her
number of children increases and the information is also sent to her mate.

Younger agents can move away from their family after age 18. We assume that
moving stops after age 50. The moving procedure is simple and random, and the
idea is to control for the availability of children who are able to provide care and
who live in the neighbourhood. We estimate the distance between a parent and his
or her child. If the parent and child live close together (within a radius of 0.75 times
the maximum link length), we assume that the child is available to care for his or
her elderly parent.

The remaining subroutines describe the economic parameters used in the model.
We refrain from modelling a labour market for the young, as this would add a
dimension to our model that is irrelevant for our purposes. Individuals have a
randomised pension age between 60 and 65. Before 1990, retirees receive a pension
of around 200 euros. This value corresponds to the per capita pension values for
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the GDR, estimated within the National Transfer Accounts (NTA) (see details in
Sect. 15.3) project for 1988. After 1990, the pension values increase significantly,
which is in line with real data. The pension is estimated for the year in which each
individual decides to retire. This estimate is made by multiplying the actual pension
value of the corresponding year by the number of years each individual contributed,
as this is the simplest way to calculate German pension benefits. To increase the
variance in pension benefits, and thus to account for different income levels, we
added an occupation adjustment that varies between 0.7 and 2. The number of
years each individual contributes depends on his or her unemployment history (each
individual can have up to 3 years of unemployment that are deducted). Because in
the GDR periods of unemployment tended to be short, we have chosen the relatively
low deduction level of up to 3 years. In addition, women lose 3 years of contributions
for each child.

The elderly transfer a fraction of their pension to their descendants. The fraction
is estimated as a yearly percentage of mean transfers to the next generation from
the NTA project. Before 1990, the elderly were giving around 1 % of their pension
income to their children or grandchildren, according to the micro-survey from 1988.
Shortly after reunification, the share increased to around 3 %, and peaked in 2003
at a value of almost 6 %. The elderly shared their newly acquired wealth within the
family. For the years in between, when no micro-survey and no NTA were available,
the data are interpolated. We estimate the household income of each elderly couple
and determine the amounts of the transfers they made to their children in the
respective year. The children base the level of support they provide to their elderly
parents on the size of the transfers they receive. The individual amount received is
compared to the mean of transfers of the young. If the child receives more than the
average amount, he or she intensifies his or her care efforts from 1 to 2 h per week. In
a second step, we compare the transfers to the pre-1990 values. If transfers hardly
increased, no additional hours are spent with the parents. If the transfer amounts
are more than three times larger than the amounts transferred before 1990, children
spend in total 3 h per week with their parents; similarly, if the transfer amounts are
more than five times larger than the amounts transferred before 1990, children spend
5 h per week with their parents (the hours correspond to the values of the Time Use
Survey, in which we find that on average children and parents spend about 3 h per
week together). The amount of support as a mean of their own children in return
determines the adjustment for care for the corresponding death rates of the elderly
individuals.

The last adjustment to the death rates is estimated based on the income group
of the individual. The pension level is determined relative to pre-1990 levels. If
the pension increase is more than threefold, the survival of the elderly individual is
enhanced.

Thus, based on his or her income group and family constellation, each individual
receives an adjustment factor for his or her own death rates. Table 15.2 shows some
examples for adjustment factors used in the model. These adjustment factors are
estimated relative risks from the public pension insurance data.
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Table 15.2 Adjustment
factors depending on income
level and parental status

Income level Children Adjustment factor

Above average Yes 0.68

Above average No 1.58

Average and below Yes 0.79

Average and below No 1.85

Source: own calculations based on public pension
insurance data

We provide a brief example of a female agent born in 1955 in eastern Germany.
She ages one year for each tick, and at every time step she receives the age-specific
death rate for the respective year and age as baseline information. If the agent
receives the information that she is about to die, she will leave the model. If she is
alive, she can form her own household from age 15 onwards. If she is not married,
the agent is searching for a potential partner. If she is married or has found a partner,
she can give birth to a child with the probability of her age-specific fertility rate.
Between the ages of 18 and 50, the individual can migrate, although this only affects
her ability to care for her parents, and not her other family characteristics. When the
agent reaches retirement age, her pension amount and her number of children are
determined. Depending on her own pension wealth, her parental status, and the care
efforts of her children, she receives an adjustment factor to her own death rates
before she enters the next period.

We store the data for all of the individuals for each period between 1952 and
2051, and the most important variables – such as age, sex, family identifier, number
of children, fertility, adjusted mortality, availability, and support – are used in the
RNetLogo environment for further analysis.

15.3 Data

As our analysis focuses on the natural experiment setting of post-reunification
Germany, we use in our model realistic economic and demographic rates from
eastern Germany during the transition period. Information on survival is obtained
from the Human Mortality Database (2013). We use age- and sex-specific death
rates for the years 1952–2010 as a baseline for the respective male and female age
groups.

For a more refined analysis of survival among individuals of pension age, we use
the transition rates of individuals in the public pension insurance dataset, who differ
in terms of their socio-economic status and their number of children. We explicitly
use the scientific use file “Demografiedatensatz Rentenwegfall/-bestand 1993–
2007” from the Forschungsdatenzentrum der Rentenversicherung (public pension
insurance). This dataset covers more than 90 % of all eastern German pensioners,
and is used to estimate the adjustment factors that reflect the individual’s income
and number of children.
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The age-specific fertility rates for eastern Germany between 1952 and 2010 are
obtained from the Federal Statistical Office. The data up to 1989 are available
from the special issue on population statistics 1946–1989 (Statistisches Bundesamt
1999). From 1990 onwards, age-specific fertility rates are covered in the publication
on population and employment (Statistisches Bundesamt 2000).

The economic variables are provided by the National Transfer Accounts (NTA)
database for eastern and western Germany (Kluge 2010).1 Most importantly, we
used pension and transfer data estimated for the years 1988, 1993, 2003, and
2008; separately for eastern and western Germany. The values for 1988 are based
on data from one of the rare representative individual-level data sources that
exist for the GDR era: namely, the income survey of blue-collar and white-collar
worker households conducted in 1988. The survey, which covers 30,000 households
with around 80,000 individuals, contains information on income levels, income
composition, and changes in income. Important socio-economic variables, such
as household size, gender, age, and highest level of education, are also included.
The survey is representative for around 92 % of all individuals in the GDR in 1988
(Staatliche Zentralverwaltung fuer Statistik 1988).

The German Income and Expenditure Survey in 1993, 2003, and 2008
(Einkommens- und Verbrauchsstichprobe, or EVS) serves as the micro-foundation
of the relative age shares for the later years. The EVS is based on a representative
quota sample of Germany’s private households, and provides information on
income, consumption, transfers, savings, and assets. For example, the EVS for
2003 includes around 50,000 households, and is representative of households
with a monthly net income of less than 18,000 euros. In addition to income and
consumption, the EVS includes all of the relevant public transfers to households,
and allows for estimations of private familial flows. To estimate inter-household
transfers, we use the amounts given and received from other households in the
respective year reported in the survey. Using this method, we are able to estimate
the overall shares of transfers from the elderly to the successive generations for the
respective year. For the years in between, no survey was available and the shares
were imputed using linear interpolation.

In addition to demographic and economic variables, we used the Time Use
Surveys 1991/1992 and 2001/2002 (latest available data in May 2015) to estimate
the share of individuals who had frequent or occasional contact with family
members. The scientific use files for Germany include around 5,000 households
with approximately 12,000 individuals and 37,000 diary entries. Respondents fill in
a calendar for three representative days. In the calendar they list all of their activities
that take at least 10 min, and report with whom they are spending their time.

Depending on the individual characteristics of the model agent, the agent receives
a set of demographic and economic parameters within each time step of the
computation.

1The theoretical framework of NTA builds upon Samuelson (1958), Diamond (1965), and Lee
(1994). A detailed overview of the construction of NTAs is available at www.ntaccounts.org.

www.ntaccounts.org
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15.4 Results

In the baseline scenario, the model captures key variables of interest, such as
the main demographic patterns and the pension amounts. Using relatively few
parameters, we are able to replicate major macro developments for the eastern
German case study. We show a representative simulation result of the overall model
that includes the main economic and demographic parameters. The results, which
are estimated using an initial population size of 5,000 individuals, follow the eastern
German rates of interest. To assess the relative importance of different factors, we
estimate reduced versions of the model in alternative scenarios shown in the next
section. We separately show the impact of varying pension and transfer levels on
the mean ages at death.

15.4.1 Adequacy of the Model

First, we display a visualisation of the results for some key demographic parameters.
We illustrate the model fit for a representative year of interest to show the detailed
age patterns. As an example, Fig. 15.2 shows the real and estimated age profiles
for eastern Germany in 1995. The average age of the population was lower before
reunification than it was in subsequent years: the mean age increased from 38.1 in
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Fig. 15.3 Age-specific fertility rates, eastern Germany 1995, real data and simulation results
(Source: Federal Statistical Office, simulation results)

1985 to 43.5 in 2005. Two major developments led to the ageing of the population.
First, fertility declined sharply after 1989, with the total fertility rate reaching a low
of 0.7. Thus, a generation of children was missing. Second, the number of older
individuals who were reaching high and very high ages increased significantly.
In particular, the age group 60–80 expanded. The initial age distribution used
to forecast the longevity of individuals was based on the life expectancy in
eastern Germany in 1952. The dips apparent in the graph reflect the real-world
developments of two world wars and the Spanish Flu.

The use of age-specific fertility rates allows us to estimate the corresponding
total fertility rate at the macro level. Our findings indicate that in 1985 there were
around 38 women in each fertile age group (ages 15–49), and the average number
of births was 1.77. In 1995, there were around 35 women in each fertile age group,
and the average number of births fell to 0.9. The parameters subsequently recovered
and reached the observed value of 1.3 in 2005. The real and estimated age-specific
fertility rates for 1995 are shown in Fig. 15.3. The real-world pattern of postponing
childbearing to higher ages is reflected in the estimates, which also show any
fluctuations.

The remaining results deal with the relevant economic parameters; in our case,
pensions and transfers. Figure 15.4 shows the time series of mean pension income
for eastern Germany 1975–2008, and compares the model estimates with the
observed data. Before reunification, most pensioners received slightly less than
200 euros a month. Thus, compared to the working-age population, pensioners
were worse off. Within just 5 years after reunification the picture had changed
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Fig. 15.4 Pension estimates (average), eastern Germany 1975–2008, real estimated data and
simulation results (Source: Statistical Yearbooks GDR 1975–1990, FRG 1990–2008, simulation
results)

dramatically, as the average pension income had more than quadrupled. Eastern
German pensioners were integrated into the western German social security system,
which rewarded them for their long work histories and high labour force partic-
ipation rates. This holds also true for women as the east German female labour
market participation was very high. The mean public pension benefit payment values
were therefore even higher in the east than they were in the west. The simulated
pension benefits are in line with real observations, including the significant increase
observed after 1989. In its current form, however, the model is not suitable for
analysing future developments. The eastern Germans who reached retirement age
immediately after reunification were much better off than they would have been in
the GDR, as their relatively long and consistent work histories were favourable for
the calculation of benefits. However, younger eastern German cohorts have been
experiencing longer periods of unemployment and frequent job shifts, and will thus
receive lower pension benefits than the current generation of retirees (Simonson
et al. 2012). It would therefore be necessary to include more realistic labour market
parameters in the model.

Private transfers from the elderly to successive generations are depicted in
Fig. 15.5. The results are reliable for the transition period of 1988–2008; before
and after this period we simply keep the results constant. From the beginning
of the 2000s–2008, the average share of pension income transferred to younger
generations increased from around 1 % to nearly 6 %. This corresponds to around
50 euros of additional monthly income for young people. The years in which the
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Fig. 15.5 Private transfers, as a percentage of pension income and total amount per month, eastern
Germany 1952–2051, simulation results (Source: simulation results)

transfers were highest were also the years in which the pension values were highest.
Thus, we can see that the elderly were sharing their newly acquired wealth with
other family members.

15.4.2 Different Scenarios on Changes in Income, Care, and
Transfers

In the remainder of this section, we show the simulation results for the mean age at
death if key parameters of the model are changed. We estimate a disadvantageous
baseline scenario and a scenario with realistic rates to show the bandwidth of life
expectancy. We then separately show the impact of different pension and transfer
levels on mean ages at death. Figure 15.6 displays the results of our first scenario.
In the baseline estimates, including pensions and transfers, the real observed death
rates for eastern Germany are used for computation. These results are based on
the assumption that all of the covariates that were responsible for the significant
decrease in death rates after 1990 are covered in the model. The simulation
fluctuates around the real observed values: e.g., in 2010 these values were 73.5 for
German men and 81.0 for German women. While it is clear that this model will
not produce exactly the same results, the results are very similar. It therefore seems
appropriate to use the model for further simulations.
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Fig. 15.6 Mean age at death, baseline scenario, eastern Germany 1970–2020 (Source: simulation
results with different adjustment factors)

The scenario without increasing pensions and transfers estimates the mean ages
at death with the lowest possible survival benefit. This is done by adjusting the
death rates to a level that is twice as high as the level in the baseline scenario, which
corresponds to the results of the German pension data on the relative disadvantage
of poor individuals without children. In this simulation, the mean age at death also
increases, but at a slower pace. This accounts for the fact that the life expectancy
convergence was triggered not only by income, but by other factors that we cannot
quantify in our model, such as health care provision, environmental effects, or
individual life-style factors.

Until 1990 the two scenarios are comparable, and hover around the same values.
After reunification the adjustment factors are taken into account, and an advantage
for the baseline scenario quickly emerges. Compared with the baseline scenario,
we find that the mean age at death is around 3 years lower in 1990–2010. This
could be the additional combined effect of higher pension income and transfers for
the elderly. The results for the mean ages at death also include the ages at death
of individuals under age 60. Although it is rarely the case in our simulation, the
results are still affected by developments in the early 1990s, when mortality was
exceptionally high among young men.

In scenario two (depicted in Fig. 15.7), the pension levels and mortality adjust-
ment factors are varied after 1989. The scenario that is closest to reality is the
one with the real observed pensions and the high mortality effects (dotted line).
In this scenario we assume that individuals receive the full eastern German pension
amounts in the 1990s and 2000s. Their pension levels over this period are compared
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Fig. 15.7 Mean age at death,
pension scenario, eastern
Germany 1970–2020
(Source: simulation results
with different adjustment
factors and varying pension
levels)
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to their pension levels before 1990. If the post-1990 pension is less than three times
the size of the pre-1990 pension, the mortality rate is adjusted by a factor of 1.3. If
the post-1990 pension is between three and five times larger than the earlier pension
(as was generally the case), the mortality rate is adjusted by a factor of 0.8. This
ratio corresponds to the advantage wealthier pensioners have relative to pensioners
who are less well off (based on estimates from official German pension data). If the
pension increase is even larger, the adjustment factor is set to 0.4. The dashed line
shows the results for the same pension levels, but unfavourable adjustment factors
(2, 1, and 0.6). In the last scenario, the pension levels are cut to half of the real
amount, and the unfavourable adjustment factors are used. This is the least beneficial
scenario in terms of old-age survival. Between the highest and the lowest scenarios
the average difference in the mean ages at death is 3 years. A comparison of the high
and the low pension scenarios shows that the higher pension scenario has an average
advantage of around one year. We find that the model is more responsive to changes
in the adjustment factors than to variations in pension levels. The extent to which
this is the case also depends on the pension brackets used to calculate the different
adjustment factors, which could be changed in future analyses. The results confirm
the findings of earlier studies of eastern Germany, which showed the importance of
income and income differentials for survival (Gaudecker and Scholz 2007; Kibele
et al. 2013).

The pension scenario was driven by the individual pension wealth of an agent.
This direct link is important, because the literature cites income as a driver of
survival. In the last scenario, we add the effect of intra-familial transfers to our
analysis. The joint income of the elderly couple now determines the income level
of the household and, in a second step, their transfers to their children. The children
then base their care efforts on the transfer amounts they receive. This is a twofold
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mechanism. First, the children compare the transfer amounts they are receiving to
the amounts they received before 1990. Depending on the size of the increase, they
provide 0, 3, or 5 h of support per week. Second, the children compare the transfer
amounts they are receiving to the amounts other young individuals are receiving in
the same time period. Based on the literature prior to reunification, we assume that
the children have always provided some basic level of care. This basic level is set
at 1 h per week, even if the children receive less than the average transfer amount.
If they receive more than the average transfer amount, we assume that they double
their care efforts. If the parents receive less than 1 h of care per week, the death rate
adjustment factor is the same as that of a wealthier individual without children, or
1.5. If they receive between one and 3 h of care per week, the adjustment factor is
0.7. This ratio represents the advantage parents have relative to childless individuals.
If they receive more than 3 h of additional care per week, their adjustment factor is
a highly favourable 0.4.

The increase in intervivo transfers and expected bequests leads to an increase in
some form of emotional or functional support. This reciprocity can be reproduced
in our agent-based model setting. Figure 15.8 summarises the results for different
transfer levels. The dotted line refers to the scenario without transfers. Here, all
individuals (regardless of whether they have a family) have an adjustment factor of
1.5. During the transition years of 1990–2010, this converts to a disadvantage in the
mean age at death of around 2 years. Between the two scenarios with high (solid
line) and low (dashed line) transfers, we find differences in the short run only. In
the scenario in which the transfers quadruple, the mean age at death increases much
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Fig. 15.8 Mean age at death, transfer scenario, eastern Germany 1970–2020 (Source: simulation
results with different transfer levels)
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more quickly, but in the long run the mean age at death is not affected by the size
of the observed transfers. The transfers simply accelerate the increase. According to
the Time Use Survey 2001/02 for eastern Germany, adult children spend an average
of 3.5 h per week in contact with their elderly parents. When the transfer amounts
are higher, the average level of support provided per week is, at 4 h, slightly higher
than the norm. When the transfer amounts are lower, the average level of support
provided per week is, at 3 h, slightly lower than the norm.

15.5 Discussion

In this chapter, we tested a theoretical approach for examining the links between
income, familial networks, and survival. After reviewing the literature, we identified
three parameters relevant for our study: namely, pension income and familial recip-
rocal exchanges in the form of private transfers and care. The interdependencies
of these parameters were tested using an agent-based model, which proved to be
highly suitable for estimating the relationships. A major advantage of our study is
that we were able to model familial relationships and the importance of networks
on the micro level. This approach helped us discern realistic macro patterns. The
observed relationships are especially relevant for elderly individuals. While the
survival of younger individuals depends on different factors, the survival of the
elderly is particularly dependent on giving and receiving transfers.

We first created a baseline scenario, which used the real observed death rates that
lead to an average survival advantage of 3 years, and compared it to a scenario in
which pensions and transfers are excluded. In our model, we find that higher pension
levels are associated with an average survival advantage of one year. Transfers to
children are an important driver of care, as they accelerate the increase in the mean
age at death. In the pension scenario, the improvements in survival are mainly driven
by the shares of richer and poorer individuals. The network scenario also depends
on income levels, but the dynamic comes from the relative survival advantage of
parents relative to childless individuals.

The illustrated mechanisms cannot fully account for the rapid convergence of
eastern and western German death rates after reunification. It is important to keep
in mind that health care quality, environmental, and life-style factors also played
important roles. Still, this is an inductive example of how much survival can be
affected through indirect pathways, such as social interactions. This approach is well
suited for inductive studies. Case (2004) and colleagues found a similar mechanism
in a case study in South Africa. This study indicated that the increased pension
wealth of elderly coloured South Africans was shared across generations, and led to
improvements in survival.

We theoretically showed the mechanism through which increases in public
pensions could be converted into improved longevity. The data we used, which came
from a wide range of sources, support this link. But because the data included in
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our agent-based model did not come from a single source, the adjustment was not
directly observable. This is both a strength and a weakness of our approach. In the
future, the predictive power of the model could be improved through the inclusion
of a realistic labour market parameter and more economic parameters for younger
individuals.
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Chapter 16
Agent-Based Modelling to Inform Health
Intervention Strategies: The Case of Severe
Acute Malnutrition in Children in High-Burden
Low-Income Countries

Hedwig Deconinck, Carine Van Malderen, Niko Speybroeck, Jean Macq, and
Jean-Christophe Chiem

16.1 Introduction

Severe acute malnutrition (SAM) affects 17 million children worldwide (World
Health Organization et al. 2012) and kills over half a million children annually
(Black et al. 2013). Children with SAM have a high risk of death, exceeding
nine times higher than that of children without the condition, and require intensive
medical support (World Health Organization and United Nations Children’s Fund
2009). The health and socio-economic implications of SAM are of great concern for
countries committed to reaching the World Health Assembly Global Target 6 (World
Health Organization et al. 2014) of reducing and maintaining childhood wasting to
less than 5 % by 2025.

Until 2000, children with SAM were managed as inpatients with low coverage
and high case-fatality. The innovation of ready-to-use therapeutic food allowed
children with uncomplicated SAM to be treated at home and made decentralised out-
patient care possible. The outpatient approach was piloted in nutrition emergencies
in Sudan, Malawi and Ethiopia where evidence showed its potential to reach many
malnourished children and improve their recovery and survival (Zinszer et al. 2014;
Collins et al. 2006). The package of health interventions to improve the outpatient
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management of SAM aims to identify children under 5 years of age with SAM
early in the community, and refer and treat them in primary health care before
complications develop and hospitalisation is needed. SAM interventions include
facility-based interventions for improving operational efficiency and quality of care,
as well as community-based interventions to activate and inform the population. The
endorsement of this approach by United Nations agencies in 2007 facilitated the
introduction and scale-up of SAM in primary health care as a routine child health
intervention (World Health Organization et al. 2007). The cost-effectiveness of the
management of SAM in primary health care (Black et al. 2013; Scaling Up Nutrition
Movement 2010) has facilitated the introduction of SAM services in over 60 high-
burden low- and middle-income countries to date (United Nations Children’s Fund
2013). To foster scale-up, a robust intervention strategy is needed to enhance both
the coverage and quality of decentralised SAM services to improve child survival.

16.1.1 Challenges of Designing SAM Intervention Strategies

The effectiveness of SAM interventions encounters a number of methodological
and practical challenges related to contextual and human factors. SAM intervention
strategy designs may overcome these challenges by accessing relevant information
and applying a systems lens. To date, effectiveness studies of SAM management
analysed performance of service delivery and health outcomes but not health system
functioning (Deconinck et al. 2015). Moreover, health system functioning data for
the management of SAM are difficult to measure and interpret, and study methods
have not yet been adapted. There are several reasons for this. The management of
SAM has only recently been introduced in the basic package of national health
services as SAM’s recognition as a disease and primary cause of death was delayed
(World Health Organization et al. 2014). Second, the management of SAM is a com-
plex intervention including several components with many actors at various delivery
platforms (Deconinck et al. 2015) and comorbidities (World Health Organization
2013; Jones and Berkley 2013). Third, contextual and human factors, such as SAM
affecting the poorest populations living in rural and remote areas and motivation
of health workers (Joint Learning Initiative 2004), played a critical role in the
effectiveness of SAM interventions. Such effects may be hard to assess because
either health system performance data and analytical tools are not available, or the
dynamics of health system functions are not understood. While information specific
to other health interventions may be utilized as a proxy indicator for SAM interven-
tions, its use may lead to weak strategy formulations, and its insights may not be
generalizable for strengthening the overall health system. For example, studies that
identified factors boosting or impairing SAM efficiency did not examine the effects
of interventions on reducing barriers. Instead, the studies identified demand- and
supply-side barriers to SAM management access, use and quality that constrained
effective coverage and proposed intuitive one-to-one solutions (Rogers et al. 2015).
Common demand-side barriers to SAM service access and use – distance to the site



16 Agent-Based Modelling to Inform Health Intervention Strategies 463

Supply-side barriersDemand-side barriers

• Distance to site of care
• Lack of awareness

• Poor quality of care
• Low staff motivation

=> Community-based interventions => Facility-based interventions

Fig. 16.1 Demand- and supply- side barriers to health interventions

of care and lack of awareness of the disease and its care path – may be addressed
by community-based interventions (Fig. 16.1). Common supply-side barriers that
affect SAM service performance – poor quality of care and low motivation of health
workers – may be addressed by health facility-based interventions.

A system perspective lens examines SAM interventions within the overall health
system performance rather than as disease-specific isolated events. To date, study
analyses (Deconinck et al. 2015) ignored the effect of synergies, interactions or
feedback loops among barriers, interventions and health systems as illustrated
in a simplified way in Fig. 16.2. Intervention strategies derived from this linear
thinking may therefore underperform. In addition, the complexity of the SAM
health condition and interventions require addressing causal factors across multiple
delivery platforms, sectors and actors. At the individual level, interactions between
service providers and users shape their behaviour and the behaviour of the system.
Longitudinal data would not be able to assess these system effects. For example,
individual human factors such as awareness, motivation, preferences and percep-
tions drive health seeking behaviour, and are difficult to study and quantify. There
is consensus on the critical role of intricate interactions between system functions
(Luke and Stamatakis 2012) that drive the health system dynamics, leading to effects
such as feedback loops and delays. However, health actors (e.g. policy makers,
planners, managers, service providers and users) may not always understand what
works for whom and why, and what system effects positively or negatively influence
and interact. Therefore, methodological approaches that capture systems effects
and model the critical role of contextual and human factors impacting the health
system may be lacking (Macq and Chiem 2011; Witter et al. 2013). An unstructured
methodological approach often leads to the unproductive conclusion that all factors
influence each other. In this context, health interventions that fail to encompass
a system perspective do not detect unintended results and may have inefficient
or counterintuitive results (Forrester 1971). For example, increasing access to a
health service (a demand-side factor) while maintaining a low quality (a supply-
side factor) may increase mistrust in the health services and lead to disintegration of
its overall performance. The latter adverse effect was unintended and resulted from
both service users’, and providers’ behaviours (Fig. 16.2).

Strategies for improving the management of SAM include interventions that act
on both demand- and supply-side levels. On the one hand, health workers need the
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Demand Supply 

Fig. 16.2 System perspective on demand- and supply-side factors of health interventions

competence and ability to provide quality health care, motivation and accountability,
all variables that are intrinsically linked. Interventions that improve supply-side
factors include involvement in design and management, career development oppor-
tunities, continual education, on-the-job mentoring, supportive supervision and
access to essential supplies. On the other hand, service users need to be informed
and activated to stimulate demand and trust. Interventions that improve demand-
side factors include raising awareness, involving communities in service delivery,
and bringing services closer to the users. The multitude of contextual and human
factors influencing and interacting suggests that intervention strategies successful in
one context cannot be easily transferred and scaled up in another context without
sound understanding.

16.1.2 Markov Versus Agent-Based Modelling

To enhance the understanding of SAM interventions and complexity, this study
explored the role of modelling encouraged by the following example and tool.
The management of SAM is comparable to the management of serious mental
illness with comorbidities, which Silverman et al. (2015) described as a complex
system problem. The study found that the many layers of the health system
were themselves networked systems (human physiology, family, community) with
different parts having their own motivations that behaved probabilistically, leading
to unexpected patterns (e.g. lowering the number of patients followed by a nurse
lowered patient readmission and reduced costs) (Silverman et al. 2015). When
applying the SIMULATE (System, Interactions, Multi-level, Understanding, Loops,
Agents, Time, Emergence) checklist (Marshall et al. 2015) to the management
of SAM, it was determined that dynamic simulation modelling was appropriate.
Indeed, management of SAM involves processes made up of multiple events
(detection, health seeking, diagnosis, treatment initiation and progression, and
recovery, defaulting or death) and relationships between demand- and supply-side
variables (System). These relationships are non-linear, making outcomes difficult
to anticipate (Interactions). Moreover, the management of SAM can be modelled
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from different strategic or operational perspectives; it may be demand- or supply-
side oriented (Multilevel). The complex features already mentioned (e.g. individual
factors, such as changing motivation) make it impossible to solve the problem ana-
lytically (Understanding). Moreover, the management of SAM involves feedback
loops, for example, admission ! good outcomes ! positive opinion ! admission
(Rogers et al. 2015) (Loops), interaction of the behavioural properties of multiple
agents (children, health workers) (Agents), and time-dependant transitions from
different health states (SAM, recovered, died) (Time). Finally, the problem requires
considering the intended and unintended consequences of SAM interventions to
address policy resistance and achieve target outcomes (Emergence).

In a first simulation, we applied Markov modelling to illustrate how this approach
may contribute to a better understanding of the evolution of the SAM process
in children. Markov models are widely used to evaluate health care interventions
(Marshall et al. 2015). They assume that individuals are in one of a finite number
of discrete health states, and transition from one state to another by an event
(Sonnenberg and Beck 1993). These models address some points of the SIMULATE
list, in particular those of repeated events and time-dependent transitions across
different health states. As the analysis of a complex health care delivery system such
as the management of SAM requires a more flexible method (Marshall et al. 2015),
in a second simulation, we applied agent-based modelling (ABM). This approach
makes modelling of the remaining elements of the SIMULATE list (non-linear and
feedback relationships, demand and supply motivations, behaviours and strategic
perspectives) and the emergence of intended and unintended consequences possible.
ABM defines an agent as a set of variables; several types of agents can be created
and their rules of interactions can be defined (Fig. 16.3). These rules of interaction
can be expressed using a logical language such as ‘if-then’ statements (Collopy and
Armstrong 1992; Gilbert and Terna 2000). This model definition can then be applied
in a computational model, simulating the dynamic actions and interactions of agents
as individuals or collective entities. The power and flexibility of simulation can help
model multiple scenarios, which can possibly integrate diverse data such as volatile
contextual and human factors, but also detailed geographical maps mimicking real
environments, for example, of people seeking health care. The introduction of this
level of detail helps to create more realistic diffusion patterns of disease.

These features make ABM an appealing methodological tool to inform health
intervention strategies to improve the management of SAM. First, data that are

Fig. 16.3 Agent-based
model with agents, their
characteristics (variables 1
and 2) and interactions
defined as if-then rules
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simulated could compensate to some extend for the paucity of information regarding
SAM health system functions. Indeed, the role of contextual and human factors such
as awareness of service users and motivation of service providers that influence
health outcomes could be modelled. In addition, the simulation can generate
longitudinal data under various scenarios adding a time dimension by modelling for
example the short- and long-term impact of different types of interventions. Second,
ABM can represent a complex system of agents that interact through feedback loops
and with delay effects. In fact, the complexity of the SAM interventions and the
interaction of health system functions call for applying such a systems lens. By
creating a dynamic representation of a complex system and comparing scenarios,
an agent-based model can test how community- and facility-based interventions
improve the effectiveness of SAM services by acting on health-seeking behaviour
and quality of care (Gilbert and Terna 2000; Swanson et al. 2012). Finally, the
structure underlying ABM is particularly well suited to capturing expert knowledge.
Tacit and empirical knowledge have given experts a good understanding of elements
and actors that play a role in a health system. They are therefore well placed to
provide relevant and evidence-based information to define agents and their variables
and interactions. Moreover, the ‘if-then’ rules that define the interactions do not need
mathematical formulas.

ABM has already supported successful participatory research (Bousquet et al.
2007; Edmonds 2010; Salerno et al. 2010). In these exercises, participating health
actors formulated rules and subsequently compared and interpreted results from
simulated scenarios. ABM scenarios may thus enhance group learning for under-
standing problems and formulating solutions for improved health interventions
(Atun 2012) that are context adapted and apply a systems lens.

16.1.3 Aim of the Case Study

Features of ABM that could improve the design of health intervention strategies
such as those targeting SAM have been listed in the previous section. However,
to date, the number of applications of ABM to inform such intervention strategies
has been limited (Lempert 2002; Brailsford 2005). The purpose of this paper
is to illustrate the actual benefits and limitations of ABM to inform complex
health intervention strategy designs. We therefore developed a simulation model
to improve understanding of how a package of health interventions that address
demand- and supply-side barriers may improve the effectiveness of SAM service
delivery and ultimately survival of children with SAM.

16.2 Methods and Results

Based on both expert knowledge and scientific evidence, we designed a conceptual
framework of a model defining agents and their rules of interactions. In a first
exploration, interactions were based only on transition probabilities, leading to a
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simple Markov model. We then introduced elaborate rules taking advantage of the
specific features of ABM. Finally, we defined and analysed several intervention
scenarios, and analysed benefits and limitations of ABM.

16.2.1 Material

The successive models developed in this study resulted from structured discussions
on barriers to the implementation of SAM interventions. These discussions involved
two researchers in simulation utilisation who designed an agent-based model and a
SAM expert with extensive knowledge of the evidence base and experience in SAM
intervention strategy implementation.

Scientific evidence supported the selection and formulation of the variables, rules
and parameter values in the final model. Simulation models were implemented
using NetLogo 5.0.4. Source codes of subsequent models are in Appendix 1 in
the electronic supplementary material. Appendix 2 describes the simulation as
formatted within the standardized overview, design concepts, and details (ODD)
protocol (Railsback and Grimm 2011). Appendix 3 includes pseudo-codes and a
flow chart, and Appendix 4 includes sensitivity analysis results. Appendices 5 and
6 provide the NetLogo programs of the Markov and ABM models.

16.2.2 Conceptual Framework

This section first defines SAM in children under 5 and the package of health
interventions for improving the management of SAM before selecting and defining
agents and their variables. The interactions between the intervention components are
then specified. Finally, outcomes of interest are defined, together with assumptions
inherent to the modelling exercise.

16.2.2.1 SAM and Health Interventions

The definition of SAM in children under 5 details the clinical symptoms and
diagnostic measures that establish the condition, as supported by the literature
(World Health Organization et al. 2014) (Table 16.1). The package of health
interventions for improving the management of SAM consists of intervention
components to improve service uptake (demand-side) and service performance
(supply-side) (Table 16.1).
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Table 16.1 Definition of severe acute malnutrition (SAM) in children under 5 and health
interventions

Severe acute malnutrition (SAM)
in children under 5 years of age

SAM is a result of recurrent infections, poor dietary intake
or poor nutrient absorption. SAM is defined by
weight-for-height below –3 or more standard deviations of
the median value of the WHO 2006 Child Growth
Standard, mid-upper arm circumference less than 115 mm,
or presence of nutritional oedema (World Health
Organization 2013)
This study focused on uncomplicated SAM, i.e. with
appetite, no other severe illness and no need for
hospitalisation

Health interventions for
improved management of
uncomplicated SAM

Community-based interventions to improve community
involvement and demand creation for SAM may include
sensitizing community members and groups; selecting,
training and supervising community workers; screening in
communities for early detection and referral; establishing
referral systems and transportation; visiting homes for
follow-up of SAM problem cases and counselling
Health centre-based interventions to improve the outpatient
management of SAM without medical complications may
include diagnosing, referring and treating cases;
counselling carers; training and supervising health
workers; managing medical equipment and supplies; and
providing technical support and tools for knowledge and
skills development of clinical care and organisational
management (Deconinck et al. 2015)

Child with
SAM

Health
centre

Awareness
Knowledge of the SAM disease, need for
treatment, and where to seek care

Distance
Physical and financial access to  the health
centre 

Quality of
care

Adherence to treatment guidelines, skills 

Staff
motivation

Supportive supervision, workload, benefits

Fig. 16.4 Selected agents with variables related to severe acute malnutrition (SAM) interventions

16.2.2.2 Agents

The model of SAM interventions that address specific questions of supply- and
demand-side barriers involves two types of ‘agents’ with a corresponding set of
attributes, or ‘variables’: a child with SAM and a carer (e.g. mother), and a health
centre (Fig. 16.4).

Definitions of the agents’ variables are provided in Table 16.2, and for simplicity
the variable labels are used in the text.
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Table 16.2 Definition of agents’ variables of severe acute malnutrition (SAM) interventions and
possible corresponding interventions

Variable Definition, threshold and example of interventions

Quality of care Definition:

(0–100) Quality of care is defined by the degree to which health services for
individuals and populations increase the likelihood of desired health
outcomes that are consistent with current professional knowledge (Mainz
2003). Quality of care also includes perceptions of service users and
providers, as well as other qualitative elements (World Health Organization
2006a). This study evaluated quality of care as adherence to the national
treatment protocol on a continuous scale from low to high
Examples of interventions to improve the quality of care are providing
training; disseminating guidelines and other job aids; and providing timely
essentials supplies (preventing stockouts of antibiotics and therapeutic
food)

Staff motivation Definition:

(0–100) Staff motivation (or satisfaction) is defined as the level of effort and desire
to perform well (World Health Organization 2006b). It may be influenced
by financial and non-financial incentives, and indirectly evaluated by, e.g.
unjustified absenteeism, and low staff performance (ONeil and Reimann
2013). This study evaluated staff motivation on a continuous scale from low
to high
Examples of interventions to improve staff motivation are providing
supportive supervision that includes appraisal and mentoring; improving
knowledge and skills through training; creating a positive working
environment; providing career development opportunities; and providing an
additional pay, such as transport, hardship or education allowances

Awareness Definition:

(0/1) Awareness is defined by the carer’s (e.g. mother’s) knowledge of why SAM
is a problem, how it can be solved, and where to seek care. This study
evaluated awareness as a binary variable; awareness is acceptable when the
carer knows the problem and solution for the child’s illness and where to
seek care
Examples of interventions to improve awareness are providing health and
nutrition counselling for social and behaviour change and self-referral; and
involving communities in designing, planning and implementing service
delivery for improved accountability and trust

Distance Definition:

(0/1) Distance is defined by average hours (or km) to walk to the site of care (in
our case the health centre) (World Health Organization 2008). This study
evaluated distance as a binary variable; distance is acceptable when the site
is less than a 1 h walk or 4 km from where the carer and child live
Examples of interventions to improve distance are providing means of
transport; and decentralising care through increased functional health
facilities, mobile teams or community case management
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Untreated  Admitted  

Died  

Recovered 

Rinc 

Rrec 

R2

R3

R1
R4 

R5

Fig. 16.5 Treatment pathways of severe acute malnutrition (SAM) in children under 5 transition-
ing from untreated to admitted, died or recovered states

16.2.2.3 Interactions

As shown in Fig. 16.5, children and health centres interact and define a typical
treatment pathway with four health states: untreated, admitted (for treatment),
recovered and died. The rules indicating the transition between each health state are
referred to as case fatality when untreated (R1), coverage (R2), defaulting (R3), case
fatality in treatment (R4) and recovery (R5). In addition, Rinc indicates incidence and
Rrec indicates spontaneous recovery of children with SAM living in the catchment
area of a health centre. The catchment area of a health centre has been defined as
the area of residence of its users. Agents are linked to one health centre. Definitions
of transition rules are provided in Table 16.3 with thresholds of acceptability based
on international standards.

16.2.2.4 Outcomes

Three outcomes of interest were monitored to assess the simulation evolution,
together with the possible impact of health interventions: overall case fatality,
coverage, and recovery (Table 16.4).

The simulation of SAM interventions also required the choice of a relevant time
scale to evaluate the transition between health states. Based on the SAM expert’s
opinion and supported by the definitions, 1 week appeared a suitable time unit
to re-evaluate the state transition, corresponding to children’s weekly follow-up
visits to the health centre for monitoring treatment progress. In the same way, each
simulation ran for 100 weeks to represent approximately a 2-year time frame, which
was deemed a reasonable period in which to achieve a stable level of health system
performance and assess the effect of a possible health intervention strategy. For each
scenario presented further, 50 simulations were run using the same set of parameters.
These simulations were averaged to reveal the main trend.
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Table 16.3 Definition and probability estimates of transition states of severe acute malnutrition
(SAM) in children under 5 in high-burden low-income countries

Code
Transition
rules (rate) Definition

Value
(range) Justification

R1 Case
fatality
untreated

Proportion of
children with
untreated severe
acute
malnutrition
(SAM) who died
of SAM disease

15 % The under 5 mortality in Niger in 2013
was 0.66 deaths per 10,000 children per
day, or 2.4 % per year assuming that
mortality was stable year around, which
in reality is not the case (République du
Niger Institut National de la Statistique
2013). Children with SAM have a nine
times higher risk of mortality than other
children (World Health Organization
and United Nations Children’s Fund
2009), thus on average 21.6 % (or
9� 2.4 %)

R2 Coverage Proportion of
children with
SAM who are in
treatment
(admitted)

30 % The acceptable coverage ratea in rural
areas is �50 % (The Sphere Project
2011). Coverage of <30 % is most
common, unless good community-based
support is in place, but rarely surpasses
50 % (Becart 2014)(20–50 %)

R3 Defaulting Proportion of
children with
SAM who ended
treatment against
medical advice

20 % The acceptable defaulting rate is <15 %
(The Sphere Project 2011). The
defaulting rate is high (�50 %) in areas
with low support. The national average
defaulting rate in outpatient care in
Niger in 2013 was very low, at 7.1 %

R4 Case
fatality in
treatment

Proportion of
children with
SAM in
treatment who
died of SAM
disease

5 % The acceptable case fatality rate in
treatment is <10 % (The Sphere Project
2011)

R5 Recovery Proportion of
children with
SAM who
restored their
health after
having received
treatment

40 % The acceptable and targeted recovery
rate is �75 %b (The Sphere Project
2011). Recovery rate may be low
because of either high case fatality or
high defaulting

(30–75 %)
Rrec Spontaneous

recovery
Proportion of
children with
SAM who
spontaneously
recovered
without
treatment

30 % The spontaneous recovery rate based on
low mid-upper arm circumference is
75–90 % in historical cohort studies in
Senegal and the Democratic Republic of
Congo (Garenne et al. 2009). When the
simulation process required adjustment
of parameters in the model, empirical
and tacit knowledge proposed 30 %
spontaneous recovery of SAM to be a
reliable figure

(continued)
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Table 16.3 (continued)

Code
Transition
rules (rate) Definition

Value
(range) Justification

Rinc Incidence Proportion of
new SAM cases
in a given time
period

30
children

For a child population of 1,000
individuals, we expect 30 children with
SAM at t0, based on a 3 % SAM
prevalence rate that is common for
high-burden low-income countries

aCoverage, in this study ‘contact coverage’, is an indicator of effectiveness of community-based
interventions that measures service access and use
bRecovery of SAM is an indicator of effectiveness of facility-based interventions. A child who has
recovered, is clinically well, has no oedema and/or has improved mid-upper arm circumference
(�125 mm) or weight-for-height (�–2 z-score of the WHO Child Growth Standard population
median)

Table 16.4 Definition of outcomes of severe acute malnutrition (SAM) in children under 5

Outcome (rate) Definition

Overall case fatality Proportion of children with severe acute malnutrition (SAM) who died
of SAM disease

Coverage Proportion of children with SAM who are in treatment (admitted)
Recovery Proportion of children with SAM who restored their health after having

completed treatment

16.2.2.5 Assumptions

The design of the model described above led to inherent assumptions that should be
kept in mind when interpreting the results:

• Children do not grow old;
• Children enter the study population with a stable incidence of SAM;
• Children are admitted for treatment, and recover, default and die weekly;
• Children are treated at a unique health centre;
• Children exit the study if they die or recover; and
• Interventions target all community members regardless of their socio-economic

status.

16.2.3 Markov Model: Probability Rules

In a first approach, transition rules R1 to R5 were described using simple probabili-
ties. In technical terms, this reflects a simple Markov model in which children may
transit through four different states: untreated, admitted (for treatment), recovered
and died. Each week, new children are affected with SAM with an incidence
Rinc and children with SAM may transit from one state to another. Untreated
children have an Rrec probability of recovering spontaneously, an R1 probability
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of dying without treatment (case fatality untreated) and an R2 probability of starting
treatment services (admission, a proxy for coverage). Treated children have an
R3 probability of defaulting (ending treatment against medical advice), an R4

probability of dying during treatment (case fatality during treatment), and an R5

probability of recovering (restoring their health). During the simulation, changes in
R2 and R5 modified the overall case fatality patterns. Search of the literature together
with expert opinion referenced realistic or acceptable baseline values in high-
burden low-income countries for the respective parameters used in the simulation
(Table 16.3).

While realistic probabilities set up an initial baseline (if available, logistic
regression could also generate probabilities based on empirical data), the simulation
tools investigated several sets of probabilities leading to different scenarios. On the
one hand, a demand-side intervention could impact coverage (R2), increasing the
probability of being admitted for treatment from 30 % (low) to 40 % (middle) and
50 % (high). On the other hand, a supply-side intervention could impact recovery
(R5), raising the chances of being successfully treated from 40 % (low) to 60 %
(middle) and 75 % (high). Both interventions could be mixed to different extents.

Overall case fatality curves corresponding to these scenarios (Fig. 16.6) showed
general convergence towards asymptotic probabilities as expected in Markov
models. The upper line (thick dark grey) represents the initial set of parameters.
The thin grey lines were obtained by progressively increasing the coverage (R2,
continuous lines) and recovery parameters (R5, dotted lines) from low to middle and
high ranges. In this simulation, the lowest line shows that increasing both coverage
and recovery parameters from a low to middle range simultaneously had a greater
impact on overall case fatality than increasing each parameter separately.

16.2.4 Agent-Based Model: Conditional Rules

An agent-based model was defined to integrate the role of history and conditional
if-then rules that represent the impact of contextual and human factors Fig. 16.7.

16.2.4.1 The Role of History

In this model, a child needed 8 weeks of treatment to recover from SAM. Note
that this procedure distorts the meaning of the probabilities accounted for in the
previous Markov model. For example, the probability of defaulting now spanned
8 weeks for each child. This appears closer to the reality of the treatment process,
which requires on average 6 weeks (World Health Organization 2013). In addition,
defaulting within this time interval may have an effect on other factors such as
recovery and awareness of care within the population, as will be discussed further.
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Varying
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Fig. 16.6 Outcomes of Markov model simulation of severe acute malnutrition (SAM) interven-
tions: overall case fatality at different levels of coverage and recovery modified separately and
simultaneously. The upper line (thick dark grey) represents a simulation that was obtained with
initial values of parameters (R2D 30 %, R5D 40 %). Thin light grey full lines were obtained by
increasing coverage (R2) parameter values to 40 % (middle) and 50 % (high), and dotted lines were
obtained by increasing recovery (R5) parameter values to 60 % (middle) and 75 % (high). The
lowest line was obtained by increasing both R2 and R5 parameter values from a low to middle
range

16.2.4.2 If-Then Rules

Taking advantage of ABM capacities, transition rules can be described involv-
ing both demand- and supply-side factors, which impact individual factors. For
example:

• R2 (coverage): If an untreated child (his or her carer) has a certain awareness
(i.e. knows what the problem and solution are and where to access care) and has
acceptable distance (i.e. lives less than 1 h walk from a health centre), then the
child has a chance of being admitted for treatment;
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Distance
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Supervision?
Benefits? 

Staff motivation 

Quality of care 
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  Rup6 

Fig. 16.7 Treatment pathways with interactions of individual factors and intervention levers (in
italic). Rup1 stands for recovery influencing staff motivation, Rup2 for staff motivation influencing
quality of care, Rup3 for quality of care influencing recovery, Rup4 for recovery influencing
awareness, Rup5 for awareness and distance influencing admission, and Rup6 for individual
awareness influencing community awareness

• R3 (defaulting): If a child defaults, then his or her (carer’s) awareness is reset to
zero; and

• R5 (recovery): If the quality of care is sufficient, then the admitted child has a
chance of recovering.

Further rules can be added to reflect the role of contextual and human factors.
The model introduced three feedback loops. First, the observed recovery influ-

enced staff motivation (Rup1), which has an impact on the quality of care (Rup2),
which is itself a determinant of the chance of recovery (Rup3). These rules influenced
the supply-side factors. Second, the observed recovery influenced the carer’s
awareness (Rup4), which is a precondition for accessing and using the services
(Rup5). These rules made the links between supply- and demand-side attributes.
They created feedback loops that led to both vicious (if one of the three elements
worsens) and virtuous (if one element improves) cycles. Third, awareness generated
a feedback loop on itself (Rup6) as individual awareness increases community
awareness. This rule induced interactions among individuals that may play a critical
role in diffusing behaviours in the whole population. This type of emerging pattern
is referred to as a network effect (Luke and Stamatakis 2012). Figure 16.7 shows the
interactions among the rules, and Fig 16.8 shows the influence of individual factors
on rates used in the model. Details on the rules and interventions are provided in the
pseudo code (Appendix 3).
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Supply-
side

Demand-
side

Parameter Rule

Rup1 If recovery in(de)creases, then staff motivation in(de)creases.

Rup2 If staff motivation in(de)creases, then quality of care in(de)creases.

Rup3 If quality of care in(de)creases, then recovery in(de)creases.

Rup4 If recovery in(de)creases, then awareness in(de)creases.

Rup5
If a child has awareness and an acceptable distance, then (s)he has a chance to 
be admitted.

Rup6 If individual awareness in(de)creases, then community awareness in(de)creases. 

Fig. 16.8 Influence of individual factors on rates (R) used in the agent-based models of severe
acute malnutrition (SAM) interventions. Rup1 stands for recovery influencing staff motivation,
Rup2 for staff motivation influencing quality of care, Rup3 for quality of care influencing recovery,
Rup4 for recovery influencing awareness, Rup5 for awareness and distance influencing admission,
and Rup6 for individual awareness influencing community awareness. Because of the lack of data
and formal equations to model changes, the specification of thresholds for Rup1–3 relied on expert
opinion. Several thresholds were tested and those giving the most realistic evolution were retained

Table 16.5 Plausible values for community awareness and distance and health centre quality of
care, and staff motivation of severe acute malnutrition (SAM) interventions

Factor (range) Value

Community awareness (0–100): 20
The proportion of children whose carers are aware of the severe acute malnutrition
(SAM) problem and solution and treatment site
Community distance (access) (0–100): 50
The proportion of children living at an acceptable ‘distance’
Quality of care (0–100): 50
Adherence to the national treatment protocol
Staff motivation (0–100): 50
Level of effort and desire to perform well

16.2.4.3 Initial Scenario

Initial plausible values for community awareness and distance, and health centre
quality of care and staff motivation were set to 20 %, 50 %, 50 % and 50 %,
respectively, using realistic probabilities (Table 16.5).

The resulting simulation is presented as Scenario I in Fig. 16.9. The correspond-
ing graph plots curves of the three outcomes: coverage, recovery and overall case
fatality. As the simulation evolved, coverage and recovery outcomes remained low,
and overall case fatality remained high.
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Fig. 16.9 Results of simulation model based on ABM for the four intervention scenarios showing
coverage, recovery and overall case fatality rates of severe acute malnutrition (SAM) interventions.
In this model, four scenarios are tested: I without intervention, II to IV with interventions applied
at the sixth and ninth months. For each scenario, 50 simulations were run; the curves represent
the mean values of the 50 simulations of the three outcomes, coverage, recovery and overall case
fatality, for each week
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16.2.4.4 Intervention Scenarios

Based on the initial Scenario I (Fig. 16.9) that used realistic probabilities, new
intervention scenarios can be investigated and triggered over time. On the demand-
side, interventions can address:

• Awareness through sensitisation and counselling; and/or
• Distance through decentralisation of care and availability of transport.

On the supply-side, interventions can address:

• Quality of care through staff training; and/or
• Staff motivation through supportive supervision and benefits, such as career

development opportunity.

Because the Markov model showed that combining interventions decreased case
fatality, we investigated a combination of demand- and supply-side interventions
targeting contextual and human factors. Two subsequent interventions were intro-
duced at the 6th month (estimated time to analyse the initial situation and prepare
an intervention) and the 9th month (estimated time to verify progress and prepare
a second intervention). The delay in introducing interventions allowed a first batch
of children with SAM to end treatment and thus stabilised the virtual population.
In scenario II (Fig. 16.9), demand-side interventions (for example, sensitisation
and counselling to target awareness) were applied at the 6th month. Supply-side
interventions (for example, training to target quality of care) were applied at the
9th month. Outcomes for this scenario did not improve by the end of the study
period. In scenario III (Fig. 16.9), the same interventions were applied, but in reverse
order. Here, outcomes slightly improved but were still not satisfactory by the end of
the study period. In scenario IV (Fig. 16.9), supervision and benefits were applied
together with training at the 6th month, and decentralisation and improved means of
transport were applied together with sensitisation and counselling at the 9th month.
Outcomes improved by the end of the study period: recovery and coverage rates
increased and remained high and the overall case fatality rate decreased with time.
Details on the rules and interventions are provided in the pseudo code (Appendix 3).

16.3 Discussion

In this paper, we designed a Markov model and an agent-based model to improve
understanding of how health interventions address demand- and supply-side barriers
and influence the effectiveness of the management of SAM. The simplicity of
Markov modelling explains why it is widely used in diverse areas of public health
(Sonnenberg and Beck 1993; Claxton et al. 2002) and was useful for investigating
different scenarios of SAM interventions. The result of the simulation indicated
possible synergy when improving both coverage and recovery. However, important
limitations were inherent in this modelling approach. First, transition probabilities
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were fixed in time, leaving no role for history in the dynamic process. In the
same way, the impact of contextual effects may not be represented. Second, critical
heterogeneous factors of human behaviour, such as awareness and staff motivation,
could not be modelled in the Markov framework. The ABM approach on the other
hand successfully addressed these shortcomings. While the Markov model showed
that a combination of both demand- and supply-side interventions was needed,
results from ABM discovered the best order and magnitude of these interventions.
The benefits and limitations, and perspectives of working with a higher degree of
complexity are further discussed.

16.3.1 Benefits

The specific abilities of ABM to compensate for paucity of data, provide a
systems perspective, and model expert knowledge to inform health intervention
strategy designs are assessed in this section. This section discusses the benefits and
operational insights resulting from this.

The first benefit is that ABM allowed working in a context where critical
data may not be available, solving the paucity of data in different ways. First,
ABM required an ontological step of defining agents, variables and interactions,
which allowed a clear articulation of a complex topic. While a traditional approach
may concentrate on an exhaustive inventory of influencing factors, ABM enforced
selecting a set of key variables. This selection process allowed focussing on key
variables and their precise definition. Second, ABM made it possible to handle
factors that were not necessarily quantifiable, such as determinants of human
behaviour (awareness, motivation) and contextual factors (distance, history of
treatment). While such elements may be mentioned but not included in conventional
models, their role and interactions may have an important impact. Defining these
factors and depicting their functioning can bring critical insight into efficient
intervention strategies that would otherwise remain covered. Third, if field experts
and researchers were unaware of existing data or theory, ABM allowed systematic
searches for realistic values and justified validating rules of functioning within the
published literature. Finally, if data were not available or precise, the use of expert
opinion provided knowledgeable estimates or purposeful interpretations.

The second benefit is that ABM showed its value for studying the management
of SAM from a systems perspective by examining the dynamic interactions among
influencing factors. This approach may encourage researchers to develop and fine-
tune a conceptual frame and avoid the trap of exhaustively listing factors without
defining and understanding their interactions. A clearly defined and limited number
of variables allowed concentrating on their mutual interactions. The variable labels
could articulate the interactions well (Fig. 16.7). ABM also allowed simulating an
agent’s adaptation to the environment (i.e. diffusion or network effect). For example,
in this study, the higher the proportion of children’s carers that were aware of the
SAM disease and its treatment, the higher the individual child carer’s chance of
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awareness and uptake of treatment. ABM is increasingly used for studying health
interventions. In addition to our study, a variety of other studies showed its ability
to study the interaction among human factors and the intervention (Brookmeyer
et al. 2014), such as the level of acceptance of a antiretroviral prophylaxis, the
likelihood of contact with a partner, selection of water source (Demarest et al. 2013),
or perceived benefits of and barriers to influenza vaccination (Karimi et al. 2015).

The third benefit is that ABM involved expert knowledge in developing a
conceptual framework to interpret health systems functioning and related inter-
vention strategies, which is supposedly intuitive for health actors. Hence, ABM
can be used as a communication tool to explain the characteristics and effects of
interventions in a complex reality (Chiêm et al. 2012). This added value of ABM
was clear throughout this study. For example, the specific frame of the agent-based
model allowed retrieval and formulation of possible mechanisms behind observed
probabilities (e.g. transition rates) in the Markov model. While these frames were
critical to anchor the model in an empirical reality, they did not reproduce the entire
causal context that drove this transition. Nonetheless, this reality could be obtained
by using a logistic regression if data were available. While expert input helped to
open the ‘black box’ to explain transitions (Figs. 16.7 and 16.8), ABM forced the
modellers and expert to reconsider each parameter based on its effects. For example,
in the first steps of the simulation exercise, no impact of the intervention on child
mortality was detectable. This observation raised questions and led to readjustments
(e.g. a decrease of the spontaneous recovery rate). Another example was that ABM
allowed modelling the effect of spontaneous recovery. While experts know about
spontaneous recovery, they ignore its effect in intervention studies because ethical
standards require treatment of every sick child detected. Yet, this phenomenon is
important to consider when studying the impact of health interventions and defining
health intervention strategies with a universal health coverage perspective. Ignoring
spontaneous recovery may lead to misinterpreting global indicators of declining
mortality, and cost-effectiveness and equity of interventions.

Finally, ABM in this study allowed formulating insights that were not only
observational but also operational. The Markov model showed that an intervention
on different levers had a synergistic effect when a system was complex. ABM,
however, allowed checking the stability of the specified probabilities of transition
and showed how modifying one probability of transition affected the flow of
children in different health states. Moreover, ABM showed that interventions should
target individual factors of service demand- and supply-side barriers simultaneously
to improve overall case fatality. Improving community factors alone was inadequate
when a health centre did not perform well because trust in the health system may
have been lost. It was therefore important to first ensure that the health centre
had adequate quality of care and motivated staff before implementing community
actions to improve service access and use. On the other hand, the agent-based model
was not designed to predict outcome, but rather to support strategic planning of
interventions to improve health outcome. Health interventions to improve quality
and scale-up of the management of SAM are implemented in various contexts. By
testing ‘what-if’ scenarios, the model may help identify intervention levers needed
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to address barriers in implementation or prepare for contingencies. It can also ask
questions and solve problems before they arise in real-time. In fact, the cognitive
process experienced by the modellers may enhance their skills in representing
mechanisms of underlying interventions and ultimately may prepare them to find
creative solutions for unpredictable situations (Buzan and Buzan 1993).

16.3.2 Limitations

The study faced limitations that were related to the validation of the model, inherent
shortcomings of the model itself, and low level of complexity.

First, the validation process of ABM is subject to much debate (Moss 2008;
Moss and Edmonds 2005), but many reasons underpin a need to deviate from
typical quantitative statistical validation processes. For example, not all data may
be available to assess replication. In this case study, data on the long-term effects
of health interventions and individual factors of behaviour were not available.
Therefore, it was not possible to test whether the model replicated actual observed
trends. Instead, the validation of the model relied on expert knowledge and
reproduction of known data, such as case fatality and recovery rates.

These data should be handled with caution as their exact interpretation may
conceal critical effects such as the role of spontaneous recovery and defaulting
discussed earlier. Moreover, scales with thresholds were preferred to continuous
variables, and the interpretation of results was purposively qualitative (trends). In
addition, each element of the model (variables, rules) was supported by scientific
evidence and expert opinion. Such steps reportedly ensure the validity of the
methodology (Lee and Lee 2003). Further validation steps could be envisaged to
enhance the scope of the model. For example, the pseudo code in Appendix 3 could
be used as a template or tool to adapt the model to a changed context. On the one
hand, results from new data may be compared with results from the present model.
On the other hand, the model may help target future data collection by providing
a predefined conceptual framework that has already yielded dynamic insights into
sensitive factors. Another validation step could be to discuss the resulting model
with other experts, possibly with other experiences and evaluate the consensus on
the model. This process could lead to what is referred to as stakeholder validation
(Purnomo et al. 2004).

Second, choices and assumptions used in the modelling process may have limited
the scope of model interpretations in terms of SAM interventions. Three important
elements of the health interventions were ignored. First, the acute child condition
studied used two service delivery platforms, community-based and facility-based
primary health care for uncomplicated SAM, and ignored secondary health care
for complicated SAM. Second, feedback loops took into consideration interaction
among health system functions for the management of SAM but not interactions
in the broader health system. Third, children who defaulted and spontaneously
recovered or died thereafter were not included in the calculation of overall recovery
or case fatality.
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The simulation showed that it was only possible to obtain satisfactory results by
setting low rates of defaulting (R3) and case fatality during treatment (R4). While it
was not discussed in the study, this meant that activities to improve compliance
with treatment and case fatality during treatment should have been included in
the package of interventions (e.g. interventions that improve clinical care, referral,
recognition of danger signs and treatment of underlying infections). For example,
the simulation did not model active tracing of defaulters, referral to a hospital or
management of case overload, which could limit the effect of defaulting and dying
in reality. As another example, a strong increase in coverage (as shown in scenario
IV, Fig. 16.9) could negatively affect staff motivation (e.g. increasing the risk of
work overload) and quality of care (e.g. increasing the risk of treatment interruption
because of supply stock outs). The averaging process (of 50 simulations) did
not show the multiple possible instances, which may have varied significantly. In
most cases the overall situation improved following an intervention, but in a few
cases the situation worsened. This may be explained by the use of probabilities
and feedback loops. For example, if recovery was especially low (e.g. because of
turnover of untrained staff or stockouts of supplies), staff motivation and thus quality
of care decreased, and so did community awareness and coverage. As such, the
situation could not be remedied by an intervention. These interesting cases could be
investigated in future research.

Finally, the present model may appear too simple, relying on two agents defined
by three and two variables respectively. However, the corresponding number of
interactions generated much speculation. The model showed how complexity grows
exponentially with the number of variables. Moreover, ABM relies on variables and
interactions that may appear abstract. Therefore, insights resulting from the analyses
of simulation models require caution in their interpretation. More abstract variables
and interactions at this stage could bring even further confusion.

16.3.3 Perspectives

In its present form, ABM would benefit from the involvement of more experts to
include other contexts and perceptions. Comparison of parameters elicited from
various experts could reveal differences in the conception of transition mechanisms
and magnitude of transition rates. Moreover, scenarios of intervention strategies can
be imagined and modelled in a virtual environment within seconds. They can be
tested extensively, allowing the immediate design of creative and refined solutions.
Subsequent analyses and documentation of models could thus lead to intervention
guidelines that are anchored in a consensual field reality of these combined expert
opinions. The inventory of tacit knowledge complemented by knowledge obtained
from this simulation exercises could then be used to inform decision-making for
improved intervention strategy designs. Showing possible scenarios using ABM
also has the potential to strengthen advocacy with policy makers, planners, and
service providers and users.
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The model was intended to increase understanding of the successes and failures
of interventions to scale up the management of SAM. Adding more health centres
with different attributes in an enhanced model would serve this purpose. It would
also lead to other questions, e.g., about the effect of competition between health
centres or the effect of development partner support on sustainable quality of care
and overall health outcomes. As a first step, the model was informed by one
health centre with real-time factors with high-burden low-income country values
of parameters and scenarios. As a next step, this model could be replicated to
simulate scale-up to cover an entire health district, province, or national health
system, in which multiple health facilities, health services and health actors interact.
In enhanced models, random effects could be introduced and parametric analyses
performed with a view to testing the validity and robustness of the model. Moreover,
multiplying simulations might allow identification of emergence (the process by
which behaviour at a larger scale arises from the detailed structure) and self-
organisation, which may be desirable behaviours for improving performance of a
health system (Epstein 2008). The scale-up model should be developed through
an iterative process eliciting local expert advice. This participatory process could
simultaneously help health actors learn to use simulation modelling for decision-
making.

16.4 Conclusion

ABM usefully complements the methodological toolkit of health intervention
decision makers and planners. In contexts where data are scarce, an agent-based
conceptual frame may help list existing scientific evidence, encompass realistic
estimates and account for the definition of possible transition mechanisms to
simulate data. These simulations may also help target data collection and use new
empirical data when available.

Agent-based models representing the health systems may inform intervention
strategies by accounting for system effects that could lead to unintended conse-
quences. They may also help design multiple scenarios and test their relevance.
Ultimately, they may be used to prevent health systems from collapsing and favour
emergent systems behaviour (Begun et al. 2003).

While the health sector is reportedly slow in uptake of complexity (Martin and
Sturmberg 2009), involving health actors could help overcome this reluctance. The
participatory approach should render the insights of ABM more useful and mean-
ingful (Kamiński and Koloch 2014). Not least, it should trigger better adherence
to recommendations resulting from ABM and enhance the skills of health actors to
adapt SAM interventions to field realities.

While policy design and strategic intervention planning should be grounded in
empirical data, these data do not always provide an interpretation of contextual
factors leading to the success of an intervention. Simulation modelling allows
consideration of factors that influence the effectiveness of health interventions
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for improved SAM service delivery. It also allows identification of barriers and
fine-tuning of interventions to overcome them before implementation, which may
prevent failure and maximise the chance of success.
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Chapter 17
Exploring Contingent Inequalities: Building
the Theoretical Health Inequality Model

Michael Wolfson, Steve Gribble, and Reed Beall

“an aggregate relation between income inequality and health is
not necessary — associations are contingent”

(Lynch et al. 2000)

17.1 Introduction

Income inequality is pervasive and generally increasing over recent decades in most
countries of the world. At the same time, and clearly in modern developed societies,
there is a pervasive individual-level gradient in health that is characterized by large
variations in health status and longevity across members of a population which are
strongly (negatively) correlated with individuals’ incomes and other measures of
their socio-economic status.

Figure 17.1 juxtaposes two sets of data from the US in 1991. The downward
sloping curve shows the estimated individual-level relative mortality risk on longi-
tudinal follow-up as a function of income. (The closely adjacent dashed lines show
95 % confidence intervals.) The humped curve is the distribution of individuals by
income. The reasons for this downward sloping income-mortality association are
contested, with some suggesting “reverse causality”, where the main causal pathway
runs from poor health to lower income. However, Wolfson et al. (1993) provide
strong evidence that (at least for Canadian males) the majority of this association in
Canada is causal, from income to health rather than the reverse.

This research was developed as part of the NIH-funded Network on Inequality, Complexity and
Health (NICH) led by George Kaplan (NIH 2010). We are deeply indebted to NICH colleagues for
many valuable discussions, and to Nate Osgood and Chris Dutchyn for invaluable collaboration in
refining the algorithm specifications throughout THIM. Much of the NICH work is published in
Kaplan et al. (2016).
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Fig. 17.1 Income distribution and mortality risk, US 1991 (This and all other figures except 17.2
from Wolfson 2016, used with permission)

At the same time, Fig. 17.1 provides one basis for observing not only an
individual-level association between income and health (whether indicated by
mortality rates or some other measure of individuals’ health), but also at a group
level between income inequality and health. The idea is that because the individual-
level income gradient is non-linear, as individuals become more spread out along
the horizontal axis – i.e. as income inequality increases – average health (however
measured) necessarily must decline. Based on this well-known mathematical prop-
erty, Gravelle (1998) argued that the fact that higher income inequality is observed
to be associated with higher mortality is nothing more than a statistical artefact.

While Gravelle’s argument is logically correct, Wolfson et al. (1999) showed
that something further must be at work; the observed patterns in the curvilinear
relationship shown in Fig. 17.1 by itself was nowhere near sufficient to account
for the observed correlation between income inequality and mortality among the
50 US states. Further, in a multi-level analysis, Backlund et al. (2007) showed that
inequality itself was significantly correlated with mortality among the 50 US states,
even after controlling for individual-level income as well as a range of covariates,
including race at both the individual and state level. Thus, statistical artefact alone
is not enough to explain the relationship; something further must be at work.

Provocatively, Fig. 17.2 (Ross et al. 2000) with data for the US and Canada,
suggests that the inequality – average health correlation is contingent. There is a
strong correlation between a measure of city-level1 income inequality (measured by

1To be precise, the US data are referring to Standardized Metropolitan Statistical Areas (SMSAs),
with the data for the other countries specifically constructed by the authors to be as close as possible
in concept and definition.
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Fig. 17.2 Working age mortality and median shares of income for US and Canadian metro areas
(Used with permission, Ross et al. 2000)

the “median share” D share of income accruing to the bottom half) and working age
mortality rates in the US and the UK. However, in Canada, Australia and Sweden,
there was no observed correlation.

These clear differences in the strength of association suggest that there are other
major factors influencing the relationship – in other words, this evidence suggests
that the income inequality-health correlation is contingent on a range of country-
specific factors.2

There are a number of candidate factors which might account for the different
patterns of association across the five countries. In the absence of much of the
relevant data, THIM (Theoretical Health Inequality Model) was constructed to
explore this contingent correlation, with a focus on Canada and the US. THIM
can be considered a quasi-theoretical model – it is highly abstract and simplified,
hence theoretical. But it is also constructed both to build on observed empirical

2No analysis has been done to compare the strength of the Gravelle artefact hypothesis across
countries. However, given its rather small effect among US states as estimated by Wolfson et al.
(1999), any such differences are unlikely to be material.
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patterns and relationships, and to generate quantitative results whose patterns, while
not exact, could be empirically verified were the requisite data available.

One hypothesis regarding the observations in Fig. 17.2 is that the main factor
accounting for the existence of a correlation between income inequality and
mortality at the city level in the US but not in Canada is the nature of economic
segregation within metropolitan areas. For example, the impression is that US cities
more often have gated communities where the very rich live, and poor ghettos,
such that disparities in average income between these different neighbourhoods
are greater than in Canada, while income heterogeneity within US neighbourhoods
is less than in Canada. In the US this segregation is most visibly associated with
race. However, it is also strongly associated with income. Further, when data
disaggregated by race in the US are further broken down by income or other
measures of socio-economic status (SES), much of the observed racial disparity
is seen to be associated with SES disparities (Braveman et al. 2010). In Canada,
income is often a factor in neighbourhood segregation, for example related to
housing prices, while race is not. Thus, in the design of THIM, we felt it sufficient
to leave out race and focus on income segregation.

Of course, there are many other candidate factors that could account for the
differences in the observed health-inequality correlation for Canadian and US cities
shown in Fig. 17.2. These include differences in the roles played by education
and parental position in transmitting social advantage and disadvantage from one
generation to the next. The development of THIM therefore reflects a process of
constructing a formal theory to inform our intuition and to determine whether a set
of plausible factors could possibly account for the observations in Fig. 17.2, where
this formal theory takes the form of algorithms in a computer simulation model,
plus a suite of parameters which appeal to the “stylized facts”.

A fundamental challenge at the outset of constructing such a model is the
degree of abstraction. Generally, simpler models are easier to build, understand,
and analyse. But simplicity comes at a price – too much and the theory fails
to capture obviously important realities, and risks becoming little more than an
entertaining story. A founder of cybernetics, Ross Ashby (1958) coined the term
“requisite variety”, and in the context of ABM development, we like to adapt this
to “requisite complexity”: we want sufficient complexity, richness, and detail in our
theory to encompass the key attributes and processes that judgement, experience,
and evidence suggest are central to the topic of interest, but no more. As in the
quote attributed to Einstein, “keep it simple, but not too simple.”

To this end, THIM uses agent-based modeling (ABM). With ABM it is possible
to include agent heterogeneity, multiple levels of aggregation, dynamics without
any a priori assumptions of equilibrium or stability, lagged endogenous effects,
agent interactions, all kinds of feedbacks and reciprocal causation, non-parametric
specifications for the functional forms of various distributions, and richly textured
stochasticity to reflect uncertainty inclusive of flexible notions of the “shapes” of the
distributions of the random variables. Other methodologies, including compartment
or differential equation models, spreadsheets, life tables, Markov models and
System Dynamics models are unable to include all of these features.
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THIM incorporates simplified and stylized, yet plausible empirically-based
individual-level relationships, among health status, education, income, mortality
rates, and neighbourhood mobility. Mobility then in turn affects the extent of
neighbourhood income segregation. THIM further has multiple levels – individuals,
parent-child dyads, neighbourhoods, and cities – since these are essential to
theorizing about the roles of parental transmission of SES and health advantage
to their children, the impacts of average neighbourhood incomes on schooling, and
overall city-wide patterns of inequality and mortality – among others.

17.2 THIM Overall Structure

We begin describing this network of hierarchical relationships in THIM with its
population, consisting of individual unisex agents (called “sims”). They are born to
parent sims, live in neighbourhoods, receive an education, and then start earning
income. They start life in perfect health, but their health gradually declines as
they age, with the pace of these declines affected by their income. They then face
mortality rates (death) that depend on their age, health, and income.

Each sim has a number of characteristics, attributes, or “state variables”. The
relationships among these variables is multi-level, as indicated in the following three
figures and Table 17.1 following. At the first individual level, these relationships are
shown in Fig. 17.3.

The arrows indicate that each sim starts life with a level of education (E).
“Education” is actually a marker or proxy for a confluence of factors including for-
mal schooling, the informal “home curriculum”, innate ability, and neighbourhood
barriers (e.g. presence of youth gangs) and facilitators (e.g. easily accessible public
libraries). As shown by the arrow in Fig. 17.3 from E to Y, education is assumed
to influence an individual sim’s income (Y) directly, but then to influence health
status (H) and mortality (D D death) indirectly via income. Income also influences
residential location (L) amongst neighbourhoods (see below).

Beyond these individual-level relationships, individual sims in THIM have
relationships both with their parents, and with other sims in their neighbourhoods
(abbreviated “nbhd” in the diagram) and cities. These multi-level relationships give
rise to additional causal influences as shown in Figs. 17.4 and 17.5. In particular,
there are parent-to-child effects via Y (income) of the parent affecting their child’s
education (E) and income (Y), both directly and indirectly as the child sim’s
education affects its income.

THIM also posits neighbourhood level effects where average neighbourhood
income affects sims’ education, and income, and then indirectly health, and
mortality. These posited neighbourhood effects reflect, for example, the influences
of a neighbourhood’s affluence or poverty on the quality of the school system, and
the peers and social milieux to which the children are exposed. Further, while not
easily shown in Fig. 17.4, all of these state variables and their interacting effects
co-evolve through time, indicated by the arrow in the upper-right.
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Fig. 17.3 A sim’s attributes
and their relationships

E Y L

H DE = education
Y = income
H = health
D = death
L = location

time

average
nbhd

income

E Y L

H D

E Y L

H D

E Y L

H D

E Y L

H D

E Y L

H D

child
parent

Neighbourhood
(nbhd)

overall
average
income /
health

Fig. 17.4 Sims in a neighbourhood

Fig. 17.5 A THIM City with multiple neighbourhoods, and multiple sims within each neighbour-
hood
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Finally, there is a third level, the society or city, comprised of multiple neigh-
bourhoods (Fig. 17.5). One key factor at this broader level is geographic mobility.
Analogous to observed behaviour in the US and Canada, adult sims are posited
to have a general propensity (of strength which can be varied with parameters)
to move to a neighbourhood where their own income is closer to that neighbour-
hood’s average (in a phrase, income homophily). Depending on this propensity,
neighbourhoods can either be quite heterogeneous in terms of residents’ incomes
and levels of education (weak homophily), or more segregated with neighbourhoods
more internally homogenous, but more polarized comparing one to another (strong
homophily, e.g. more “gates (for gated communities) and ghettos” as in the US
compared to Canada).

Table 17.1 provides another perspective on the relationships shown in Figs. 17.3,
17.4, and 17.5 above. The first column lists the five main variables that are attributes
of each and every sim, as shown in Fig. 17.3 above (E, Y, H, D, and L), plus one
intermediate variable (YBase), as well as the process of giving birth. The next two
columns indicate the units of measurement for the variable or event, and its timing.
As will be discussed in the following section, timing is different for the different
variables and events.

In a simulation model like THIM, everything must be self-contained, so every
variable and event must be endogenous. The four columns under “explanatory
variables by level of aggregation” recapitulate the arrows shown in Figs. 17.3, 17.4,
and 17.5 by showing the variables posited in THIM to explain or determine the given
variable or event. Since a core objective of THIM is to theorize about the inter-
relationships of real world processes occurring at different levels of aggregation,
these explanatory variables are in turn defined at different levels of aggregation,
from the sim’s own attributes to those of its city.

As widely observed in the real world, and found ubiquitously in statistical
analysis of real world phenomena, especially in social science and epidemiology,
statistical relationships always include substantial “unexplained” variance. THIM
reflects this reality by incorporating a substantial variety of randomness, indicated
in the penultimate column of the table. While this randomness is realistic and
unavoidable, it is possible to know something about its form or “shape”, and this
is indicated by the entries in this column.

Finally, in some cases it is useful to appeal to some broadly observed relationship
in the form of a “stylized fact”, such as the typical age profile of income (“humped”)
or the age profile of mortality rates (“accelerating”). These are indicated in the last
column.

Given this multi-level structure of posited causal relationships, the dynamics
of each of a given sim’s attributes, and those of the population sub-groups and
groups of which it is a member, co-evolve endogenously. This theoretical structure
is designed to strike a balance: to be as simple as possible so that THIM’s dynamics
will be reasonably understandable, but at the same time to be rich enough that the
phenomena of interest can be represented at least somewhat realistically, albeit in
simplified and stylized form – i.e. to have requisite complexity, but no more.

The following sections provide more detail and intuition regarding each of these
processes.
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17.3 Timing

THIM has been designed as a discrete event model, with continuous time. Continu-
ous time formulations of agent-based models are fundamentally more realistic than
discrete time for relevant processes.

For THIM, we have used a mixture of discrete and continuous time formulations
for the various dynamic processes. The two major (discrete) demographic events –
birth and death – are characterized by hazard rates and can occur at any moment
in (continuous) time. For simplicity, however, other events are posited to occur at
fixed times. In general, the unit of time is the “year”, and THIM defines two discrete
events that occur at regular annual intervals: (1) the start of a new calendar year, and
(2) for any given sim, its birthday, though birthdays themselves occur at real valued
times throughout each year in model time, since birth itself is a continuous time
process.

The remaining events that characterize sims’ dynamics and the dynamics of their
neighbourhoods and city are then “hooked” to these two discrete “trigger” events –
a new year and a birthday. Specifically, a sim’s annual flow rate of income (Y),
its level of health (H), and its neighbourhood location (L) are fixed for 1 year at
a time, and can only change at the sim’s birthday. As is characteristic of discrete
time models, the ordering of these events is arbitrary, but it must be clearly specified
because changing the ordering will change the simulation results. THIM posits that
this order is income, health, and then location.3

At the neighbourhood and city level, various forms of average income and
average health enter into the equations for each sim’s attributes (E, Y, H, L, and D
per Figs. 17.3, 17.4, and 17.5 above). While these averages are changing continually
over time (whenever any sim in the relevant population has a birthday), THIM posits
a “statistical office” that takes a snapshot of the relevant income flow rates fYig and
levels of health fHig (where i indexes sims) an instant before the new year begins.
These snapshot values are then the basis for computing the required averages which
in turn are used as inputs to various algorithms for individual sims’ dynamics over
the ensuing calendar year.

3If A affects B, and B affects A, then a different value for A will result in a different effect on
B, and a different value for B will result in a different effect on A. Thus, if transitions in A are
simulated in discrete time before the probabilities of transitions in B are computed, the possible
outcomes for A and B can be different than if B’s transitions are simulated first. For example, in
THIM, if a change in location were simulated before changes in income, there could be a different
move than if income change were simulated first.
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17.4 Demography and Birth

THIM demography involves birth of a sim at age a D 0 (in continuous time), a
period of “schooling”, followed by a period during which the sim can give birth to
another sim, and ultimately death. There is also an initial population, and a fertility
rate.

The demographic parameters for the THIM population are

• Starting number of individuals (e.g. 50,000)
• Minimum age to reproduce (e.g. 20)
• Maximum age to reproduce (e.g. 40)

While reference is made to “adults” and “children” in THIM, these categories
are not defined explicitly in the model; rather an adult is implicitly any sim with
age a � minimum age to reproduce; correspondingly, a “child” is any sim with a <
minimum age to reproduce.

The maximum (continuous) age of a sim is assumed to be <100; i.e. sims die
with 100 % probability by the instant of their 100th birthday. The algorithm for time
of death is described in the Mortality section below.

New “baby” sims are born at a constant fertility rate to “eligible” (unisex) parent
sims in their “fertile” age range (e.g. exact ages 20–40). (A sim can have multiple
children during this reproductive period.) A constant fertility rate is determined
endogenously just before the simulation begins, and is defined as the one that will
result in a constant population for the given mortality rate schedule and fertile age
range.

This fertility rate calculation assumes there are no other influences on mortality
rates. However, THIM is constructed such that other factors may indeed be at play,
specifically the impacts of H and Y on chances of dying (see Mortality below).
As a result, the population in THIM may increase or decrease over the course of
a simulation, depending on the parameters used to set the strengths of the H and
Y effects on mortality. Hence, there is no a priori assumption in THIM of a steady-
state or even asymptotic population size and distribution by age. These demographic
characteristics emerge from any given simulation.

17.5 Education

Education is measured by the last year of age when the sim is still “in school”
(an integer). This “amount” of education, E, is in a specified range, such as 1–20
(both parameters). Note that “education” E can start as early as at birth (age D 0)
because it is intended as a marker for an entire suite of early developmental influ-
ences, including parenting, formal schooling, home curriculum, and neighbourhood
socialization.
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Even though this abstraction for the number of years of “education” is concep-
tualized as being broader than the more conventional measure, years of schooling,
THIM posits determinants of educational attainment that are similar to those in the
empirical literature. Specifically, the amount of education E attained by a child sim
is assumed to depend log-linearly on the relative income of the parent and log-
linearly on its average neighbourhood income relative to that of the city overall.
Thus, sims born in neighbourhoods with higher (lower) relative average income will
tend to have higher (lower) ages of school completion. And children of parents with
higher (lower) incomes relative to the average of their neighbourhood have higher
(lower) ages of school completion.

Further, education is assumed to be “pre-ordained” at birth, and is not acting
on/affecting/affected by anything during the educational period. This is clearly
a simplification, but is designed to allow a focus on the impacts of early and
adolescent life events on the rest of the life course. In other words, we judged that
the critical feature was how education was affected by the parent and neighbourhood
socio-economic context at birth only; i.e. there would be no important loss in the
theory if we ignored how education evolved between the times of birth and school-
leaving.

Given this assumption that education is “pre-ordained”, E to be attained is set for
each newborn sim at age a D 0, and then fixed for the rest of life. The inputs used
to determine E are thus computed just once at the time of birth. These inputs are as
follows:

• The parent’s income in dollars at the moment of the sim’s birth
• Average income for all “adult” sims in the given sim’s parent’s neighbourhood

for the most recent complete calendar year (recall the section on Timing above)
• Average income for all “adult” sims across all neighbourhoods, also for the most

recent calendar year

17.6 Income

Given demography and education, the next main process in THIM (conceptually
speaking) is modeling income. In principle, income dynamics can be partitioned into
several components, specifically (a) some notion of unobserved but highly important
innate ability, (b) “permanent income” (i.e. longer term average income,), (c) a
characteristic age-income profile, and (d) transitory income. THIM’s formulation,
while simplified and abstract, builds on these ideas.

While being educated, sims have no income; they are assumed to start receiving
income at the birthday when they complete school at age a D E. Once they do begin
receiving income at age E and then throughout life, THIM posits that their incomes
are positively correlated with their relative educational attainment, relative parental
income, and relative neighbourhood income. Further, incomes follow a stereotypical
age profile, and are distributed in a characteristically positively skewed manner.
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More specifically, THIM generates income levels during a given year of age, and
their dynamics from one birthday to the next, according to the following steps.

First, as soon as a sim’s educational attainment, E, is determined (i.e. at birth),
the sim is assigned (also at birth) a relative potential lifetime income index YBase –
for example a value of 1.57 or 0.83 indicating incomes over the life course that
will be 57 % higher or 17 % lower than the city- (or society-) wide (age-specific)
average, respectively. This value is determined, as a first step, by a random number
drawn from a user-specified positively skewed probability distribution (hence area
under the curve D 1.0) with mean D 1.0 and taking only positive values.

This resulting YBase thus corresponds to an index representing a mix of innate
ability and permanent income, where permanent income is here defined in terms
of percentile rank in the distribution rather than in dollar terms. YBase embodies
both an a priori quantification of the degree of inequality in this distribution as well
as the influences of a set of factors generally accepted as empirically important –
parental income, own education, and neighbourhood average income – all relative
to a broader average.

To the extent that YBase is interpreted as innate ability, it may appear strange
that its degree of inequality may be varied. However, the stochastic process
generating YBase in THIM is intended to reflect both dispersion in innate ability
and other unobserved “environmental” influences on future income potential. THIM
is effectively positing that these influences can vary across societies in general, and
cities specifically in THIM, and that the foundational dispersion reflected in the
distribution of YBase is in substantial part a social construction.

The second main step in THIM is using YBase, as endowed at birth and
fixed throughout life, in order to generate a dollar income Y, as an annual flow
rate, constant between each birthday at or after exact age a D E. For this step,
THIM embodies two further stylized facts. One is that incomes tend to follow a
characteristic life course pattern, often summarized in an age-income profile. The
other is that incomes are observed to vary from one year to the next in a way similar
to the outcome of memoryless random shocks, where these shocks are positively
skewed (Luong and Hébert 2013; Johnson and Neumark 1996; Murphy and Welch
1990).

As a result, THIM updates Y at each successive birthday event by following a
stereotypical age-income profile, which is modified by random lognormal propor-
tional shocks. Before age a D E, dollar income Y is kept at zero.

This stereotypical average age-income profile (ignoring the fact that income is
always zero for age a < E) is assumed to take the general form of a piecewise
linear function, as shown in Fig. 17.6. Plausible hypothetical values would be $0
at age zero, $35,000 at age 30, $55,000 at age 55, $25,000 at age 65, and $20,000 at
age 100 (Luong and Hébert 2013; Johnson and Neumark 1996; Murphy and Welch
1990). This function is fully determined by a pair of vector parameters – the points
along the horizontal age axis, and the dollar levels of these incomes at each of these
ages.
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Fig. 17.6 Simplified
stereotypical age income
profile

We then derive the sim’s dollar income level Ya for each age a � E at each
birthday using YBase combined with the posited average age-income profile, and a
lognormal random term.

With this formulation, which combines a constant lifetime YBase endowed at
birth with a stereotypical age-income profile and yearly random shocks, THIM (with
appropriate parameter settings) should be able to reproduce the strong autocorrela-
tions typically observed over time in actual individual-level income trajectories. It
should also be able to reproduce observed patterns of income inequality (e.g. Gini
coefficients), and of course patterns of income over the lifecycle, since an average
age-income profile is an explicit input parameter.

17.7 Health

In popular media, health is most often discussed in terms of diseases. However, in
the health economics literature, especially discussions of cost-effectiveness, health
is often discussed in terms of QALYs D quality-adjusted life years. A QALY is an
index number, usually in the [0,1] interval, where zero is equivalent to being dead,
and 1 is considered full health. For THIM, we have built on this health economics
literature and posited that health can be described like a QALY as a real number H
in the [0,1] interval. THIM further assumes that all sims start life at age a D 0 in
full health, with H D 1, but their health starts changing at their first birthday (i.e. a
D 1), and changes thereafter at each birthday.

There is a considerable literature where specific QALY indices have been
examined empirically, including in longitudinal surveys like the National Population
Health Survey (Statistics Canada, NPHS) using the McMaster Health Utility Index
(Feeney et al. 2001). Based on these kinds of analyses, health does not decline
inexorably with age at an accelerating pace. Rather there are ups and downs, though
generally superimposed on an increasingly downward trend (Kaplan et al. 2007).
THIM therefore posits that H follows a biased random walk, more down than up.
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Fig. 17.7 Hypothetical distribution of health changes

In turn, changes in H are influenced by two factors – age and income: higher age
predisposes to larger steps in the random walk, and higher income predisposes to
less down and more up in these steps. The character of these influences can be
controlled by a THIM user via several parameters.

More specifically, this process of determining a sim’s change in health occurs on
each birthday. It starts with a draw from a negatively skewed probability distribution,
such that there is a chance that health can go up (e.g. as a result of cataract surgery
or a joint replacement) as well as down (e.g. as a result of continuing cognitive
decline associated with dementia, or from a heart attack) from age a–1 to a, but it
is more likely to decrease. To provide flexibility in the specification of this random
walk, THIM assumes the simple yet flexible (non-parametric) piecewise constant
probability density histogram shown in Fig. 17.7. With this basic probability density
for defining the change in health at each age, the actual change is based on two
further steps.

First, a further change in health is added depending on the sim’s income. This
dependence on income is based on the ubiquitous finding, illustrated in Fig. 17.1
above, that health (as well as mortality) is positively (negatively for mortality) and
significantly correlated with income, and this relationship is substantially causal
(Wolfson et al. 1993). While there is some debate, there is also strong evidence that
the relationship is with relative rather than absolute income. In other words, what
matters is not the dollar level of an individual’s income, but rather the ratio of the
individual’s income to the average of his or her peers.

The social epidemiology literature also shows important correlations, likely
causal, of health with other key variables like educational attainment (Braveman
et al. 2010). It would of course be possible to posit that in THIM, the random walk
for H would also be influenced by E. However, E can already affect changes in H
indirectly via Y, so it was judged that this kind of added complexity in the model
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was not warranted; it would not add appreciably to the insights likely to be gained
by experimenting with THIM.4

As a result, THIM uses the sim’s income relative to the average income of all
sims in the city “near” in age as the relevant variable to affect the steps in the random
walk of H. The restriction to nearby ages is included in THIM due to the character of
the typical age-income profile, where sims at higher ages have much lower incomes
than those of middle age. If an elderly sim’s income were compared to the average
income of all “adult” sims, it would almost always be significantly below average.
It is better therefore to use an income relative to those of similar age.

17.8 Mortality

The THIM mortality algorithm starts with a standard age-specific mortality sched-
ule. This schedule is shown in Fig. 17.8.

Specifically, the mortality schedule is represented for the THIM user by a simple
piecewise-linear function like that on the left of Fig. 17.8 with six cut points (e.g.
at ages f0, 20, 40, 60, 85, 99, 100g) and corresponding mortality rates (e.g. f0,
.001, .005, .025, .13, 1g). These specific mortality rate parameters correspond to a
life expectancy of 77 years. From this simplified mortality schedule, THIM then
creates a vector of 100 constant annual mortality rates for intervening ages by linear
interpolation. In other words, internally THIM is using piecewise constant hazards
by single year of age. The simplified schedule with six intervals is a convenience for
users to make plausible patterns of age-specific mortality rates easier to input.

Given these mortality rates, a new tentative D D age at death � a for the given
sim is generated randomly at each birthday, based on the constant hazard ha for

Fig. 17.8 Baseline piecewise linear age-specific mortality rates and corresponding survival curve
(a) Mortality rates by age (b) Survival by age

4Of course, other THIM users might judge differently in this case and many others. If so, the source
code is available and these kinds of modification to THIM can be made given some programming
knowledge and experience.
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each integer age. If D > a C 1, no death occurs during that year of age, and a new
tentative D is drawn at the next birthday. Otherwise the sim dies at the randomly
drawn (continuous) time in the [a, a C 1] age interval.

17.9 Neighbourhood Mobility

Central to THIM is that sims live in neighbourhoods, and the characteristics of
these neighbourhoods which together comprise a city can have an influence on
them through several pathways, as illustrated in Figs. 17.3, 17.4, and 17.5 above –
specifically influencing education E and “permanent income” Ybase. Moreover,
sims can move from one neighbourhood to another, though only at the moment
of a birthday. This capacity to simulate mobility between neighbourhoods in THIM
is designed to enable varying degrees of neighbourhood sorting and neighbourhood
segregation to be modeled explicitly, along with their effects on income inequality
and population health.

In a seminal paper by Schelling (1971), using an extremely simplified ABM,
it was shown that even very slight neighbourhood mobility homophily preferences
can evolve toward quite dramatic differences in neighbourhood composition. THIM
builds on these insights and widely held views on neighbourhood segregation to
include an abstract but substantive role for neighbourhoods, and sims’ mobility
between neighbourhoods.

To start, THIM has a parameter for the number of neighbourhoods in the
city (e.g. 5 or 50). THIM then posits that neighbourhood mobility is based on
a simple propensity such that sims (beyond school age, i.e. age a � E) “want”
to live in a neighbourhood with other sims who have similar incomes. Thus, the
more discrepant an individual sim’s income is with the average income of the
neighbourhood where it is currently residing, the more likely it is to want to move. If
the sim is going to move, it seeks the neighbourhood where its own income is least
discrepant. If all neighbourhoods with less discrepant incomes are fully occupied
(see below), or there are no other neighbourhoods with less discrepant incomes, the
attempted move fails. A “year” must pass before another attempt at moving can be
made at the sim’s next birthday.

If it is determined that the sim does want to move, THIM then checks whether
there are any neighbourhoods that have “available space”. (Note that child sims do
not count in determining a neighbourhood’s available space.) The maximum size of
neighbourhoods is endogenous; it evolves over simulated time with the size of the
population that has completed school.

The underlying intuition here is that neighbourhoods have limited housing
stock, so that there are in reality practical constraints on how many people can
live in a given neighbourhood. If a sim is already in a neighbourhood, and that
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neighbourhood has exceeded its occupancy potential, the sim is able to stay; sims
can age into a neighbourhood as it becomes overcrowded without having to move.5

Note also that it is possible to have orphan sims if a parent dies before its
child sim reaches age a D E. In these cases, the young sim stays in the same
neighbourhood until it reaches age a D E, whereupon it starts receiving income
and can then check whether it “wants” to move to a less discrepant neighbourhood
in terms of income.

If a sim does want to move, and there is at least one neighbourhood with
“available space”, this subset of neighbourhoods is rank ordered by how close
each neighbourhood’s average income is to the sim’s own. As long as there is a
neighbourhood with space, the sim moves to the least discrepant in terms of income.

A sim’s “desire to move” is parameterized in terms of income thresholds. Setting
these thresholds low results in more mobility, hence a higher degree of income
sorting/segregation. On the other hand, setting them high will mean that even if
incomes diverge substantially within a neighbourhood, there will still not be a lot of
mobility. In turn, this means that the within-neighbourhood income inequality will
be higher and will approach the overall city-wide level of income inequality, while
between-neighbourhood income inequality will be low – and vice versa for a high
degree of mobility, hence sorting and segregation.6

17.10 Parameters for THIM Simulation Results

In order to illustrate how THIM works, we present in a later section results focusing
on one of the key challenges: whether THIM can “account for”, “explain”, or more
concretely, generate results that look like those in Fig. 17.2 above. As in other areas
of science, we judge THIM as a theory according to whether, given plausible inputs,
it can generate realistic outputs.

But before examining any simulation results, it is first necessary to develop a set
of input parameter values. This process was in fact quite lengthy. The basic idea was
to find a set of plausible input parameters to define a “base case” scenario in line
with the stylized facts. THIM – even with its apparently simple structure – is actually
quite complex; the behaviour of the agents with the multi-level influences across
their hierarchy of aggregated entities, even though described by only a handful
of equations, can be highly non-linear. Thus, even though our intuition about the

5Indeed, even if a sim has aged into an “overcrowded” neighbourhood, and there are other
candidate neighbourhoods, but none of these is less discrepant in terms of income, the sim remains
in its current neighbourhood.
6Note that this formulation embodies a symmetry assumption – that sims with both high and
low income relative to their neighbourhood average income are equally likely to want to move
to another neighbourhood. This assumption may not be that realistic, but it was judged adequate
for the experiments planned for THIM.
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directions of effects of various changes in parameters might be correct, feelings for
the magnitudes involved were not obvious – so that many sets of parameters had to
be tried out.

One pair of criteria for this process of searching the input parameter space was
that, on the one hand, the input parameters should reflect at least stylized versions
of observed relationships, and on the other, so should the key outputs. The results
of this search of the parameters space is described in Wolfson and Beall (2016). For
example, a number of large empirical studies have been referenced to inform the
comparative Canada-US parameters on education in relation to parental SES and
to average school SES (OECD 2012, 2013) and for differences in parent to child
income correlations (Corak 2013).

In this section we simply indicate the main parameters used in that analysis, and
then in a later section illustrate their impacts with a few simulation results which
seek to replicate the patterns observed in Fig. 17.2 above. These are described in
greater detail, along with the algorithms, in Wolfson (2016).

One group of parameters characterizes the neighbourhood structures for the C
and U cities, i.e., stylized Canadian and US cities respectively. In line with the
greater fragmentation of governance structures in US cities – which often reflects the
ability of wealthier neighbourhoods to “opt out” of collective local goods, including
education, that would otherwise flow to poorer neighbourhoods, we posit a larger
number of neighbourhoods for the U cities than the C cities. We further posit
different “mobility” patterns between neighbourhoods.

Recall that THIM embodies a general desire to live in a neighbourhood whose
average income is as close as possible to the sim’s own income. However, such
mobility only occurs if the proportional difference between the sim’s income
and that of the neighbourhood where it resides is above some threshold. If this
threshold is high, there is less movement between neighbourhoods. In turn, such
a high parameter setting reflects a willingness of higher income sims to live in a
neighbourhood with more variation in incomes within the neighbourhood, a greater
tolerance for income diversity. For lower income sims, it means they do not have as
strong a need to move to a neighbourhood with lower average income when their
own income is well below the neighbourhood average. For example, a high mobility
threshold embodies the premise that the gentrification of a neighbourhood exerts less
pressure on lower income sims to move to another neighbourhood.

Thus, intuitively, lower mobility thresholds plus more neighbourhoods will lead
to more income homogeneity within neighbourhoods, and larger income differences
between neighbourhoods. In turn, to the extent that neighbourhood average income
affects sims’ educational and income prospects, there will be greater inequality in
these outcomes between neighbourhoods.

Another set of parameters is for education. They essentially posit that sims living
in U cities have parental and neighbourhood income influences on educational
attainment that are twice those in the C cities. Further, there is twice the variability
in attained years of “education” in U versus C cities. These parameter settings are
generally in line with the empirical evidence (OECD 2012).
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A third group of parameters characterizes incomes relative to a common age-
income profile. These parameters reflect the impacts of own education, parental
income and neighbourhood average income respectively on the sim’s lifetime
potential income, YBase (see below). There is also a parameter for the magnitude
of transitory skewed lognormal variability from 1 year to the next in actual income,
given age (hence the average level from the common age-income profile), and
potential income (YBase). The U values are all posited to be significantly higher
than the C values.

There is one more set of parameters differentiating C and U cities – for health
transitions and mortality rates. The U cities’ parameters embody a larger impact of
income and health on mortality than those for the C cities, and income also has a
larger impact on health transitions. This latter difference can be seen in part as an
implicit reflection of the differences in access to health care between Canada and
the US, where in particular there are significant segments of the US lower income
population who do not have effective access to care – far more so than in Canada
with its universal publicly funded health care.

In addition to these parameters, there is one further major factor – the degree of
income inequality. Figure 17.2 (horizontal axis) shows a wide variation in median
shares across cities, with US cities spanning a wider range. In THIM, the distribution
of income is an output, not an input. A sim’s actual income at any given age
is the product of a series of factors including those just outlined. But there is
an important further influence on this key output – each sim’s endowment of a
heterogeneous “potential income”, reflecting in part innate ability, personality, and
other unobserved characteristics that remain fixed throughout life, YBase. Recall
that this variable is defined before applying the influences of education, and parental
and neighbourhood relative income.

We have posited eight such distributions of for YBase. In general, these eight
distributions have been designed to span a range of income inequality that is very
wide – wider than is observed in Canada and the US, both overall and in the cities
shown in Fig. 17.2 above.

The most widely used measure of income inequality is the Gini coefficient.
However, the construction of comparable income inequality data at the city level
shown in Fig. 17.2 above was based on a conceptually simpler measure, the share
of income accruing to the bottom half of the population ranked by income, the
median share.7 Still, income distribution density functions embody an infinity of
points, so the “shapes” of these densities can be summarized in an “inequality”
index any number of ways. Indeed, there are features of income distributions which
are broadly associated in the public’s mind with inequality, but are mathematically
inconsistent with the usual axiomatization of income inequality measures like the

7Strictly speaking, the median share should not be called an inequality measure because it need not
be consistent with the partial ordering of income distributions induced by the criterion of Lorenz
domination, i.e. that one Lorenz curve is everywhere closer to (or everywhere further from) the
45* line (Atkinson 1970).
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Table 17.2 Three inequality measures for eight Ybase input distributions

Input Ybase inequality
scenario 1 2 3 4 5 6 7 8

YBase Gini 0.093 0.269 0.358 0.408 0.425 0.471 0.556 0.571
YBase median share 0.450 0.314 0.238 0.223 0.123 0.177 0.127 0.098
YBase polarization 0.015 0.206 0.330 0.291 0.657 0.350 0.380 0.467

Source: Wolfson (2016), with permission

Fig. 17.9 Density functions and Lorenz curves for input Ybase distribution scenarios 1 and 8 (per
Table 2) (a) density function for scenario 1 (b) Lorenz curve for scenario 1 (c) density function for
scenario 8 (d) Lorenz curve for scenario 8

Gini, specifically polarization (Foster and Wolfson 2010). To assess the robustness
of our results, we focus on three summary measures – the Gini, the median share,
and the polarization index. Table 17.2 shows these three measures for each of
the eight YBase distributions used as inputs.8 Figure 17.9 then shows the density
functions and Lorenz curves for the YBase distributions in scenarios 1 and 8. (Note
that the horizontal axes in Figs. 17.9a and c are different.)

8Note that these measures need not be rank order correlated, and in fact are not for the YBase
distributions used as inputs. Such situations are typically associated with crossing Lorenz curves
(Atkinson 1970).



17 Exploring Contingent Inequalities 507

17.11 Software Environment

THIM was originally developed using NetLogo. However, it quickly became
apparent that NetLogo could not handle a model of this complexity. As a result,
it was re-implemented and completed using Statistics Canada’s ModGen software
(Statistics Canada, ModGen). ModGen is a dialect of CCC (actually a CCC

pre-compiler) designed originally for large scale policy oriented microsimulation
modeling. Its main use is still for that purpose. But ModGen is also sufficiently
flexible and convenient that it provides an excellent development environment for
agent-based models like THIM.

17.12 Simulation Outputs

A critical part of any ABM like THIM is the kinds of outputs it can produce. As
noted by Hegselmann (2012) in his discussion of the Schelling model, being able to
visualize the dynamics of the simulation as it unfolds is often very informative.
However, such real time data visualization exacts a heavy price in execution
time – one of the reasons NetLogo had to be abandoned. ModGen, the software
environment now used for implementing THIM, has been designed (among other
things) to optimise execution time. This is accomplished by having everything
execute in RAM, with essentially no disk reads or writes. As a result, it is critical to
plan the outputs carefully.

Based on many years of experience, we have found it best to design outputs to
cover a wide variety of attributes and processes being simulated. In the first instance,
these outputs support debugging and exploration of the model. Then, depending on
the questions of interest, the focus can be on a subset of these outputs.

ModGen natively produces two main kinds of outputs – multi-dimensional
tables, and samples of trajectories of the various actors. In the case of THIM, these
actors are sims, neighbourhoods, and the city. For the tables, the most flexible way
to view them is via export to Excel in pivot table format (using a specially designed
Excel macro). For agent trajectories, ModGen has a companion piece of software
called Biobrowser (Statistics Canada, ModGen). It is most useful in debugging, and
for explaining how the simulation model works.

17.13 THIM Simulation Results

By construction, THIM embodies among other things a theory of the potential
determinants of the patterns in Fig. 17.2.9 We now describe a few key results of
a series of simulations to determine whether the factors included in THIM are
sufficient to generate both the US and the Canadian patterns.

9Further details on the model, including parameters, source code, and an executable version are
available from the authors (mwolfson@uottawa.ca).

http://mwolfson@uottawa.ca/
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Of course, it may well be possible to devise other theories that can account for
the patterns observed in Fig. 17.2. All we are exploring with THIM is whether there
is at least one satisfactory theory.

It is possible that THIM as constructed is unable to do reproduce the patterns in
Fig. 17.2. If so, it is lacking key factors and/or causal pathways, and is therefore an
inadequate theory.

To start, though, we examine several simulation results from the perspective
of face validity. While THIM is theoretical, it is based to a substantial degree on
empirical evidence, albeit summarized in the form of stylized facts. As a result,
THIM should be able to generate plausible outputs – results that appear reasonable
qualitatively when compared to actual observations. Further, these outputs should
be “emergent”; they should not be simple transforms of inputs, but rather the results
of the full interacting richness of the sims’ posited and then simulated behaviours.
This is the case.

But first some background. THIM simulations start with a population with some
very strong simplifying assumptions, including that everyone is perfectly healthy
(H D 1) at birth, and they are randomly scattered across neighbourhoods. As a result,
THIM simulations need to run at least 100 “years” until the population “settles
down” to something like an asymptote – though there is no a priori assumption
of equilibrium in THIM. Further, since THIM includes a number of stochastic
processes (e.g. individual sim’s health as a form of random walk), even asymptotes
may only be approached approximately and “fuzzily”; population aggregates can be
expected to continue at least to “wiggle” around asymptotes indefinitely.10 In order
to assess whether any given set of results is reasonably stable, the THIM simulations
have all been run for 500 “years” and the results for various decades over this time
span checked for stability.

One example for the purpose of establishing face validity of the THIM simula-
tions is the univariate distributions of health status for each of several age groups.
In THIM, this is not an input, but rather the outcome of many interacting factors in
a simulation. Figure 17.10 shows count frequencies for levels of H (the summary
index of health in the [0,1] interval used in THIM) by age group as generated by
a typical THIM simulation. The horizontal axis is first broken down by selected 5-
year age groups, and then within age groups by levels of H. Curves for each of five
different decades are shown. Since these curves lie very close to one another, in this
simulation the results are quite stable over time.11 Since these curves lie very close
to one another, in this simulation the results are quite stable over time.

Qualitatively, the distributions become less tall and more negatively skewed (i.e.
less concentrated at high levels of H) as we move from left to right up the age
spectrum, indicating both a general decline in health and a decline in the total

10These stochastic elements also give rise to Monte Carlo error. The THIM results presented have
been assessed to ensure that this source of error is not material.
11Not all age groups are shown; of those shown, for example, “40–45” indicates all sims at least
exact age 40 and less than exact age 45.
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Fig. 17.10 Cumulative H distributions for selected age groups, THIM simulation

population as a result of higher (cumulative) mortality with higher age. These
distributions are very similar to those observed in Statistics Canada’s National
Population Health Survey (Statistics Canada) for the McMaster Health Utility Index
(HUI; Feeney et al. 2001), the real world counterpart of the H variable included in
THIM.

THIM also produces “reasonable” looking individual-level health-income gradi-
ents. This is evident by comparing Fig. 17.11 to Fig. 17.1 above (though Fig. 17.1
shows mortality rather than H, so slopes downward rather than upward, and all age
groups are combined) and to McIntosh et al. (2009). Again, the horizontal axis is
first broken down by selected 5-year age groups, but this time within age groups by
intervals of income of increasing width. The vertical axis is the average level of H
within each age/income interval. Curves for each of five different decades are again
shown, for years 90–100, 190–200, : : : 490–500.12

In this case, moving from left to right to higher age groups, the gradients become
steeper and more variable/noisy. The noisiness is due to the decreasing numbers of
sims at higher ages. (The absence of sims with very low health status H in the 90–95
age interval is due to mortality selection, as posited, with mortality rates depending
on H.)

Table 17.3 presents our first set of main results. The top three rows are identical
to Table 17.2, showing measures of inequality for the input Ybase distributions.
However, the resultant income (Y) inequality values in the following six rows are
considerably different – since actual incomes depend not only on potential income
YBase, but also on the influences of parental and neighbourhood factors working

12As in Fig. 17.10, the simulation spans 500 years, and only selected decades over this 500-year
span that have been graphed.
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Fig. 17.11 Health status (H) by income for selected age groups – THIM simulation

Table 17.3 Income inequality’s path from Ybase to final population income inequality for three
inequality measures, eight Ybase scenarios, and U versus C parameters

Input Ybase inequality
scenarios 1 2 3 4 5 6 7 8

YBase Gini 0.093 0.269 0.358 0.408 0.425 0.471 0.556 0.571
YBase median share 0.450 0.314 0.238 0.223 0.123 0.177 0.127 0.098
YBase polarization 0.015 0.206 0.330 0.291 0.657 0.350 0.380 0.467
Output income inequalities
C Gini 0.281 0.383 0.441 0.477 0.403 0.496 0.511 0.530
C median share 0.298 0.233 0.187 0.174 0.202 0.165 0.160 0.152
C polarization 0.140 0.190 0.266 0.270 0.247 0.280 0.276 0.287
U Gini 0.393 0.409 0.416 0.420 0.420 0.467 0.514 0.474
U median share 0.225 0.213 0.208 0.206 0.206 0.178 0.155 0.179
U polarization 0.192 0.213 0.219 0.221 0.221 0.259 0.291 0.249

Source: Wolfson (2016), with permission

through education, and directly on income, plus variation over the life cycle based
on a typical average age-income profile, plus an annual stochastic disturbance
reflecting short run income volatility, plus (especially at higher ages) the possibility
of mortality selection by income.

For example, the most equal potential income YBase distribution (scenario 1)
has a Gini of 0.093. But when this potential income scenario is played out in a
THIM simulation, the income distribution Gini’s for the C and U cities end up
much more unequal, at 0.281 and 0.393 respectively. At the other end of the YBase
inequality scenarios, the highly unequal input Gini of 0.571 (scenario 8) for the
YBase distribution ends up generating somewhat less unequal Gini’s of 0.530 and
0.474 for C and U cities respectively.

Our key health outcome measures in THIM are life expectancy (LE) and
health-adjusted life expectancy (HALE). These are both broader population health
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Fig. 17.12 LE and HALE for U and C Cities, by (a) Gini, (b) median share, and (c) polarization
index

measures than the working age mortality used in Fig. 17.2 above, especially HALE
(Sullivan 1971; McIntosh et al. 2009; Wolfson 2014).

These outcomes are plotted in Fig. 17.12a–c with the (output) income inequality
measures in Table 17.3 plotted along the horizontal axis.13

Recall that the input baseline age-specific mortality schedule is associated with
a conventional period life expectancy (LE) of 77 years. The graphs, however, show
that there is a range of LEs resulting from the THIM simulations – some a bit higher
and most somewhat lower.14

The first observation is that in all cases, the LEs and HALEs (years, on the
vertical axes) of the C cities are everywhere higher than those for the U cities. This
result corresponds to the observation in Fig. 17.2 that Canadian cities generally have
lower working age mortality rates at similar levels of the median share.

Most importantly from the viewpoint of our main hypothesis, the slopes of
the relationships are systematically different. In all cases, there is an almost flat
relationship for both LE and HALE with all three of the inequality measures for the
C cities. But for the U cities, there is in all cases an evident slope.

We have therefore established that the theory and stylized factual inputs embod-
ied in THIM can indeed generally reproduce the observations shown in Fig. 17.2
above.

17.14 Discussion and Conclusions

We have constructed a theory to account for the observation that correlations
between income inequality and health appear contingent on country-specific factors.

13While the vertical axes in the three graphs are identical, the horizontal axis scales are specific to
each measure.
14LE and HALE are computed in THIM as in usual real world practice using cross-sectional data
from overlapping birth cohorts and the Sullivan (1971) method.
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This theory is embodied in an agent-based Theoretical Health Inequality Model
(THIM). As with virtually all theories, major simplifications have been made.
At the same time, we have appealed to real world observations to infer a set of
“stylized facts” which have been incorporated into THIM – both as algorithms
reflecting causal pathways, and as quantified parameters reflecting specific strengths
of relationships.

As a first test, THIM has demonstrated face validity in Figs. 17.10 and 17.11,
where it has generated realistic patterns of outputs.

And most importantly, THIM can account for the patterns observed in Fig. 17.2.
THIM, given a plausible set of input parameters, is able to generate contingent
patterns of correlation between income inequality and health similar to those
observed, specifically between Canada and the US.

Further experiments with THIM (Wolfson and Beall 2016) explore these results
in more detail, by assessing the relative contributions of various sub-groups of
parameters to the overall result. The surprising result is that neighbourhood income
segregation does not look to be the main factor accounting for the different patterns
for US and Canadian cities in Fig. 17.2. Rather, the factors more likely accounting
for the Canada-US differences include stronger parent to child transmission of
advantage and disadvantage, less fragmentation of municipal governance structures
resulting in more even distributions of local public goods, and stronger effects of
individual income on health in the US compared to Canada.
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