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Preface

This book contains a selection of papers that have been presented at the work-
shop ‘Recent Developments and Future Directions in Agent-Based Modelling in
Population Studies’ that we organized at the University of Leuven (KU Leuven),
Belgium, 18-19 September 2014. All papers have been revised after the workshop
and accepted after having been peer-reviewed. The workshop was organized
in the context of the project ‘Implications of the Shifting Gender Balance in
Education for Reproductive Behaviour in Europe’ and received funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement no. 312290 for the GENDER-
BALL project, the Concerted Research Action ‘New Approaches to the Social
Dynamics of Long Term Fertility Change’ (KU Leuven grant), and the Scientific
Research Group Historical Demography (Research Foundation Flanders). We are
grateful for the support from the financing institutions. We would also like to
thank Francesco Billari for his inspiring concluding talk; the other members of
the scientific committee, Koenraad Matthys, Geert Molenberghs, Giovanni Samaey,
and Geert Verbeke, for their contributions to the workshop; and Martine Parton and
Marina Franckx for their help with the organization. Finally, we would like to thank
the reviewers for their help with assessing the contributions to this book.

Leuven, Belgium André Grow
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Part I
Perspectives on Agent-Based Modelling
in Population Studies



Chapter 1
Introduction: Agent-Based Modelling as a Tool
to Advance Evolutionary Population Theory

Jan Van Bavel and André Grow

1.1 Introduction

Demography has for long and repeatedly been described as a field that is rich in
methods but poor in theories (Burch 2003a; De Bruijn 1999; Tabutin 2007; Vance
1952). While there has been a lot of methodological advancement, the field has made
less progress in generating widely accepted theories that explain trends in fertility,
mortality, migration, or other aspects of population. Of course, to the extent that
the dynamics of human populations are governed by the same kind of forces as
other social processes, demographers can and do borrow theories from other social
sciences. However, to the extent that important aspects of population processes
really are a reality sui generis, the field would strongly benefit from more theory
development.

More than 10 years ago, Billari et al. (2003) recommended agent-based mod-
elling (ABM) as a tool to advance population theory. While a number of ABM-
contributions have been published in the mainstream demographic journals since
then, ABM still has not become a standard tool in every demographer’s kit and the
advancement of population theory through ABM still remains limited. Ironically,
Billari et al. (2003, p. 3) already pointed out an important factor hindering the
widespread application of ABM in population studies: the lack of theories. ABM
proceeds by implementing theoretical rules of behaviour, decision-making, and
interaction in a simulation and then investigates the resulting patterns that emerge
from this. So, on the one hand, in order to apply ABM, one needs theory; on the
other hand, we want to apply ABM in order to develop the theories we are lacking.
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4 J. Van Bavel and A. Grow

In this introduction, we want to highlight one reason for this ‘Catch-22’,
namely the rather ‘closed’ concept of population that has been dominating the
field. Most of the effort in demography has been devoted so far to the numerical
monitoring of national population flows and structures. Not only has demography
been preoccupied with empirical data and techniques for analysing these data
(Burch 2003b), the field has also been preoccupied with data representing the
populations of nation states. The requirement to have ‘nationally representative’
data has important advantages, but it has hindered creative theory development. The
field should adopt a more ‘open’ approach to population to allow more flexible
experimentation with theories. We will argue how ABM offers a tool to help
bridging the gap between different approaches to the concept of population. Next,
we illustrate some of the arguments with examples from chapters in this volume.
Subsequently, we argue that evolutionary theory might be a particularly suitable
theoretical framework for developing population theory aided by ABM.

1.2 Two Concepts of Population

In the course of its development over the nineteenth and twentieth century,
an approach to population has come to dominate demography linked with a
‘closed’ concept of population. This approach prioritizes the descriptive coverage
of nationally representative population indicators rather than understanding the
underlying heterogeneity and processes (Kreager 2009, 2015a, b). Central to classic
demography has been the accurate bookkeeping of humans in national populations.
In the national demographic accounts, births and deaths represent the natural sources
of population flow. Migration is considered from a national point of view as well,
namely as outmigration from one country and immigration into another country.
The basic demographic equation describes how both natural and migration flows
affect the size and age structure of the population, and cohort component methods
can be used to project it into the future. Getting the rates right is central to
accurate national bookkeeping, depending on correctly counting the number of
demographic events to put in the numerator and enumerating the relevant population
in the denominator. The seminal work by Lotka and later developments in formal
demography exemplify this ‘closed’ concept of population (Dublin and Lotka 1925;
Schoen 2006).

This approach was closely connected with the rise of the idea of the nation state,
where nations are defined by a delimited population, sharing territory, language,
and historical experience (Kreager 2009, 2015a). It has been a powerful ally for
the establishment (and national funding) of human demography as a field. The
concept of the national population (and their smaller and larger scale derivatives)
has stimulated demographers to develop ingenious methods to measure fertility
and reproduction, mortality, and migration. It has inspired debates over things such
as replacement level fertility, about whether the increase of the TFR from 1.5 to
1.6 in some country represents a quantum or a tempo shift, or about the impact
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of immigration on the structure of the population. Such measures and debates have
enhanced our insight into important issues like population growth and decline,
the relative role played by quantum and tempo shifts in demographic trends, or
population ageing. This is great progress and looked at it in a specific way, it
could be called theoretical progress too (see Burch 2003a). Many key insights from
demography are important for the management of nation states and their institutions,
as the long-standing debate about below-replacement fertility and its relation to
population ageing illustrates (Van Bavel 2010a). Accordingly, demography has
become an important field “in service of the state” (Kreager 2015b, p. S32).

The fact that the national population has become the dominant point of reference
does not imply that demographers have failed to investigate variation within
countries (cf. Billari 2015; Courgeau et al. 2016). Notably towards the end of the
twentieth century, demographers have increasingly adopted regression analysis as a
tool to investigate how fertility, mortality, and migration co-vary with things such
as education, wealth, or religion. Courgeau et al. (2016) discuss more in depth the
advances made in demography, from studying national aggregates over individual
level modelling towards multilevel event history analysis, and they argue that these
advances may even be considered as paradigm shifts. Still, the national population
remained the standard point of reference, with analyses being carried out preferably
based on nationally representative samples, and comparative studies being carried
out between nation states.

While the ‘closed’ concept of the national population has been very instrumental
in the establishment of the discipline, the rather rigid approach may have hindered
the creative development of population theories. Methodologically, the dominance
of this nineteenth century concept of population is reflected in the heavy reliance
of demographic studies on either (single- or multi-country) census or nationally
representative survey data — to such an extent that sound studies of demographic
processes might be rejected due to a lack of ‘representative data’. Similarly,
theoretical work tends to be accepted as a serious scientific contribution only if
its relevance could be shown, empirically, on a census or nationally representative
sample (cf. Billari 2015). This is an extremely costly and inflexible requirement,
discouraging creative experimentation with new ideas. It limits the room for more
particularistic reasoning about how local conditions differentially affect certain
groups and their relations with others (Kreager 2015a, p. 73, 2015b).

Kreager (2009, 2015a, b) has shown how the concept of the enumerated, national
population as the standard point of reference got established at the expense of an
alternative concept of population. In the alternative ‘open’ approach to population,
the emphasis is not so much on enumerating all individuals who belong to the
country, but rather on the processes and structures that emerge out of the interactions
between heterogeneous individuals and their environments, embedded in social
groups and networks. The main concern in the ‘open’ study of populations is
understanding the processes and mechanisms that generate patterns of association
between individuals, such as mating or social networks, and how these processes
affect population change and heterogeneity. This alternative approach largely got
lost in most of the mainstream work in human demography but it remained very
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strong in population biology. The detailed observation of particular species in their
specific habitat by Charles Darwin exemplifies the alternative, more ‘open’ concept
of population, and this has remained the dominant population concept in the Modern
Synthesis in biology (Mayr 1991, 2002). While the emphasis in demography
has been on averaging demographic behaviour in rates (typically for national
populations and subpopulations) and calculating their long-term stable population
implications, the emphasis in population biology has been on heterogeneity and
change. In the words of Ernst Mayr: “The populationist stresses the uniqueness
of everything in the organic world. What is true for the human species — that no
two individuals are alike — is equally true for all other species of animals and
plants. [...] [Flor the populationist the type (average) is an abstraction and only
the variation is real” (Mayr 1959 cited in Mayr 2002, p. 92).

In order to understand the past, present, and future dynamics of populations as
networks of interactions, it is insufficient to survey and analyse statistically cross-
sectional snapshots of samples of individuals and their characteristics. Alternative
and complementary modes of observation are needed, including the kind of local,
small-scale observations to which Darwin devoted much of his life (Kreager
2009), or the kind of in-depth studies of local communities common in historical
demography (e.g., Kertzer and Hogan 1989; Tsuya et al. 2010). A more ‘open’
approach to population may also integrate insights from experimental research,
as a particular form of local, typically small-scale observations but with particular
strengths when it comes to drawing conclusions about causality.

A move towards a concept of population as a fundamentally open and dynamic
network of interacting individuals also calls for methods to study these dynamics
in a flexible way. ABM is a useful tool to help opening up the ‘closed’ approach
to population that has dominated the field. This, in turn, will help us to develop
and refine our theories of population processes. More precisely, ABM may help
us to bridge the ‘open’ and ‘closed’ concepts of population in a way that we
may benefit from the advantages of both approaches while acknowledging their
respective limitations.

1.3 How Agent-Based Modelling May Bridge the Two
Approaches to Population

Demography studies populations of individuals who interact in complex ways in
different layers of cultural and social environments. It often investigates emergent
regularities of such individual-level contextualized behaviour. ABM lends itself
quite naturally to deal with this complexity (Courgeau et al. 2016): ABM is
population oriented and applying ABM starts with imagining a population of
individual agents. Here, we want to highlight how ABM may bridge the two
concepts of population that we have just outlined. It can do this while maintaining
a view on both the micro (individual) and the macro (aggregate) level. In this way,
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it may help to address a major challenge in the development of population theory:
“[H]ow to combine theoretical principles that operate at the local level with concepts
of global population” (Hammel and Howell 1987, p. 142)? In order to see how this
can work, it is useful to draw on the ‘macro-micro-macro model’ that is at the centre
of the social mechanism approach to social theory (Coleman 1986, 1990; Hedstrom
and Swedberg 1998; Hedstrom 2005) and which recently has been introduced to
demography (Billari 2015).

1.3.1 The Macro-Micro-Macro Model and Agent-Based
Modelling

The ‘macro-micro-macro model’ shown in Fig. 1.1 builds on the tradition of
methodological individualism, in which social phenomena are viewed as the results
of the actions of the individuals that make up the social system under consideration.
Accordingly, proponents of the model argue that sound social science explanation
should refer to these individuals and include explicit references to the causes and
consequences of their actions (Hedstrom and Swedberg 1998, p. 12). In the model,
explanations proceed in three steps. In the first step, an explanation indicates how
the characteristics of the macro level affect the conditions and constraints that
individuals face (situational mechanisms); in the second step, it indicates the way
in which individuals assimilate these constraints and conditions in their behaviour
(action-formation mechanisms); in the third step, it indicates how the actions and
interactions of a large number of individuals bring about macro-level outcomes and
social change (transformational mechanisms).

Applying this model to demography, Billari (2015) highlighted that the last step
is the most novel and most important, but also the most challenging. It is most novel,
because the first two steps have featured in existing demographic research. For
example, the notion that the individual is affected by the characteristics of the macro

Macrolevel ~ (7T TTTTTTTTTTTTT T T T IS >
Step 1: Step 3:
Situational Transformational
mechanisms mechanisms
>
Step 2:
Action-formation
Micro level mechanisms

Fig. 1.1 The macro-micro-macro model in the social mechanism approach (adapted from Hed-
strom and Swedberg 1998; Billari 2015)
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level features prominently in the multilevel paradigm in demography; similarly, the
notion that the constraints that individuals face affect their decisions and actions
features in approaches such as life course analysis, in which the antecedents of
people’s behaviour lie in their own past (Courgeau et al. 2016). It is most important,
because it reconnects the individual level with the macro level. It is most difficult,
because the processes and dynamics by which individual interactions combine to
generate macro-level outcomes can be very complex and this can make them very
difficult to address with standard mathematical and statistical tools in demography.

For illustration, consider first the case of regression-based methods. The basic
format for this approach is that an individual- or population-level outcome is
“affected by” (Coleman 1986, p. 1328) a set of individual and contextual variables
that are combined additively and linearly. Non-linearities in the relation between
the different variables and the outcome are easily accommodated. Interaction effects
between variables can be estimated too, in principle, but when several interactions
between more than two variables are involved, then the model quickly becomes
hard to handle. The goal of this approach is to find reliable statistical associations
between the variables and the outcome, but it does not explicate the processes that
underlie these associations. For example, a regression-based model can show that
variation in the level of modernization is associated with variation in fertility rates
across countries, but it does not explain how the two are connected through the
actions of individuals. As noted above, multilevel models make it to some extent
possible to model the way in which macro-level variables affect individuals, but
even with this approach it is not possible to model the processes by which individual
interactions feed back into the macro level. Williams et al. (2016) discuss additional
problems that can arise from regression-based models. Similarly, econometric
approaches, like instrumental variables and selection models, are geared toward
isolating causal factors and assessing the extent to which the effect of variable X on
variable Y testifies of ‘true’ causality. While this may sometimes be an important
goal, also these models do not explicate the precise mechanism by which X and Y
are connected.

Consider next mathematical models. An important question in demography is
the role that social networks play for people’s demographic decisions (Prskawetz
2016). The timing of entry into first marriage, for example, has been assumed to be
affected by the number of peers who are already married. Hernes (1972) proposed
a mathematical model that can show that the share of married individuals might
indeed affect individuals’ age-contingent probability to enter marriage. Yet, similar
to regression models, this model does not explicate the processes and interactions
by which individuals influence each other in their marital decisions (Hernes 1976).
Even more, the model abstracts from social network structures that might exist in
the population and that might affect the timing and spread of the diffusion process
(cf. Cointet and Roth 2007).

For ABM, modelling transformational mechanisms and the interactions and net-
work effects involved in this is at the core of the business. For example, as Kliisener
et al. (2016) show, with ABM it is possible to implement socially and spatially
segregated networks and this increases our ability to explain (spatial) diffusion
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processes. This makes ABM a promising tool to facilitate theory development in
population studies. A second important quality of ABM is its ability to show “the
consequences of a few simple assumptions” (Axelrod 1997, p. 206). Given the
computational power that is currently available on standard personal computers,
and given the increasing access that many researchers have to grid computing, ABM
makes it feasible to conduct simple as well as more complex thought experiments
and to quantify the implications of different assumptions. ABM can therefore be
used as a powerful computational laboratory to conduct simple as well as complex
‘what if* thought experiments in a flexible but precise way. As pointed out by
Prskawetz (2016) as well as Courgeau et al. (2016), with ABM, ‘toy models’
may therefore be employed to (pre-) test theories for which data are not easily
obtained or not (yet) available at all. In this process researchers are not constrained
to theorizing on the interplay between the individual and the population level alone.
As the chapter by Wolfson et al. (2016) illustrates, ABM makes it possible to also
consider all possible levels in between (e.g., schools, neighbourhoods, etc.). This
flexible scalability (see Miller and Page 2007, pp. 85—86) enhances the opportunities
for theory development, since theories can be developed at any level, while the
implications of the theory for phenomena at other observational levels can then be
computed.

This potential to conduct complex thought experiments does not mean that ABM
should replace standard tools in demographic research and empirical data altogether.
Quite to the contrary, we concur with Courgeau et al. (2016) that for making use
of the full potential of ABM in demographic research, the connection with earlier
modelling techniques is important. Such a connection enables to create empirically
calibrated agent-models that have more realism and validity than purely theoretical
simulation models.

1.3.2 Empirical Calibration

Calibrating agent-based models with empirical data is an important step in devel-
oping explanations of demographic change (Bijak et al. 2013; Courgeau et al.
2016; Hedstrom 2005). Such more advanced modes of computational experiments
mixed with observational data can take the following basic form: (1) develop a
theoretical model based on assumptions about individuals’ actions and interactions;
(2) calibrate the model to match empirical data; and then, crucially, (3) conduct
‘what if” experiments: what would happen if we leave out parameter X? How would
things change if the empirical distributions would have been different than they
are under actual conditions? And what if individuals behaved differently? In this
way, after calibration, it is possible to perform counterfactual simulations that help
advocating between possible alternative processes.

Many chapters in this volume provide examples of empirical model calibration.
For example, Deconinck et al. (2016) draw on existing studies and expert knowledge
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to calibrate their model of severe acute malnutrition in terms of important population
parameters, thresholds, and decision processes. Kluge and Vogt (2016) use realistic
demographic rates (e.g., age-specific death rates and transition into public pensions)
to study how intra-familial transfers might help explaining observed patterns of
old-age survival. Similarly, Williams et al. (2016) develop an agent-based model
of the relation between armed conflicts and population change, in which key
individual-level decision processes are implemented as probabilities estimated from
a combination of survey and register data, which can be conceived as “evidence-
based action rules” (Hedstrom 2005, p. 132).

An application where the combination of theory-driven ABM with empirical data
may prove to become particularly useful for demography is in the field of population
projections and forecasts — one of the key areas of applied demography, closely
linked with nation state oriented demography using a ‘closed’ concept of population,
as discussed above. Projections proceed by calculating the implications of a set
of theoretical ‘what if” assumptions about demographic rates; forecasts have the
ambition to yield realistic predictions about actual population trends in the future. So
far, forecasts as well as projections typically extrapolate macro-level trends without
being based on clear theories about the underlying micro-level behaviour. ABM
may help to improve this. While Prskawetz (2016) reminds us that explanation
rather than prediction is the primary purpose of ABM, she still hints at how it
can be used to improve demographic projections when she discusses the model
presented in Aparicio Diaz et al. (2011) about the transition to parenthood. This
highlights the potential of ABM to use theoretically informed simulation models to
generate potential population trends rather than just relying on extrapolations of past
and ongoing aggregate trends (Prskawetz 2016). ABM may also be instrumental
in integrating classic scenario-based projections and more recent probabilistic
approaches (Lutz and Goldstein 2004; Willekens 1990; Wilson and Rees 2005).
Classic scenario-based projections are mechanistic and fail to quantify uncertainty.
ABM offers the opportunity to really simulate scenarios while accounting for
heterogeneity on the individual level, including random components and probability
distributions, and to see what macro-level population patterns emerge. To facilitate
this process, researchers can rely on advanced statistical tools that make it possible
to systematically explore the uncertainty that exists in the outcomes of the agent-
model, as illustrated in the methodological chapters by Hilton and Bijak (2016) and
Grow (2016).

Evidently, increasing the integration of empirical data and existing methods with
ABM will also pose new challenges in terms of the complexity of the modelling
process. Richardi and Richardson (2016) provide an example of how some of
these challenges can be overcome with a new software tool that makes it possible
to combine micro-simulation with agent-based models and that allows easy data
handling.
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1.3.3 Avoiding Potential Pitfalls

In the end, any theory and model, as well as population forecasts, will have to
be tested with empirical data. In the empirical testing of an ABM, it is important
to keep in mind that the ability of the model to simulate (or ‘to grow’) an
observed empirical pattern is far from sufficient proof of its validity (cf. also the
chapter by Courgeau et al. 2016). It is not sufficient to show that an ABM can
produce results that are compatible with some set of observed data because the
model may contain so many parameters that it can be fitted to any set of data
(Grimm et al. 2005). Or, as rightly pointed out by Smaldino and Schank (2011,
p. 13), “if there are no empirical constraints on assumptions, almost any results
can be generated from different decision rules by varying assumptions about the
environmental structure”. The problem is that the model may be too flexible to draw
firm conclusions about its validity; that there are too many degrees of freedom. The
example provided by Smaldino and Schank nicely illustrates the issue: they show
that very different models, involving very different but plausible decision-making
rules involved in human mate choice, may all explain equally well the typical right-
skewed distribution of age at marriage (i.e., the distribution that was also targeted
by Billari et al. 2007 and Todd et al. 2005). The fact that a set of mechanisms
implemented in an ABM is able to explain some patterns of empirical observations,
even if all the available evidence has been used to calibrate the model, is therefore
insufficient proof that these mechanisms actually generated these patterns.

The challenge of having ‘too many degrees of freedom’ may look like a limitation
of ABM at first sight, but equivalent challenges apply to any kind of modelling.
Conventional statistical models face similar challenges: very different models might
fit the data equally well and a statistically significant ‘effect’” may actually be
spurious, even when we have a plausible theory to portray it as a causal effect.
Attacking ABM because it would claim to replace the role of empirical observation
in the scientific endeavour (like Venturini et al. 2015 do) is therefore an attack
on a straw man and misses the point. There is no antagonism between ABM and
empirical observations. The one cannot replace the other; to rule out alternative
scenarios and parameter values, scientists will still have to confront the model with
empirical data that can help making the distinction.

There are two general ways in which a model can be confronted with empirical
data to assess its validity. First, if there is a lack of empirical data, a model developed
during the stage of theory formulation may guide subsequent data collection to
advocate between model alternatives (cf. also Courgeau et al. 2016). In this step,
ABM can also make the data collection effort more efficient, by sorting out potential
candidate mechanisms before any data is collected. The chapter by Gray et al.
(2016) in this volume illustrates this point. Given the lack of empirical data on how
women decide whether or not to disclose their drinking behaviour to midwives,
the authors explore several plausible decision mechanisms derived from existing
decision theories. Their results suggest that there are characteristic differences in
the results that the different decision models generate and this information can guide
future data collection efforts to advocate between them.
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Second, if empirical data does already exist, researchers can assess whether the
model does not only reproduce the target outcome, but also other outcomes that were
not in the focus of model development. This form of ‘pattern-oriented modelling’
(Grimm et al. 2005) aims at assessing the structural realism of models and helps
to find the optimal zone of model complexity: addressing multiple patterns helps
avoiding models that are too simple in structure and mechanism, or too complex and
uncertain due to the high number of parameters. The agent-based model developed
by Grow and Van Bavel (2015a) provides an example of such structural realism.
The model was developed and calibrated with the goal to generate realistic patterns
of educational assortative mating in the light of changing educational attainment
in Western industrialized countries. Although patterns of divorce were not a target
during the development of this model, Grow and Van Bavel (2015b) could show that
it is able to also predict recent trends in divorce.

Summing up, the ability of a theory, implemented in an ABM, ‘to grow’ an
empirically observed pattern or trend from the bottom up is insufficient to consider
it a scientifically sound explanation. Such an ABM may be nothing more than ‘a
good story’, while other stories may explain the empirical observations just as well.
As always, the job on the to-do list then is to come up with clever ideas to set
up a competition between different explanations and to collect new data that may
differentiate between the right and the wrong story.

1.3.4 Bridging the Gap

We have emphasised that ABM allows linking the micro with the macro level
and that its theory-based simulation approach allows computing the implications
of hypothetical and empirically informed rules of action and interaction on the
macro as well as the micro scale, and all scales in between. In practice, then,
bridging ‘open’ and ‘closed’ concepts of population by means of ABM might work
in two major steps. The first step consists of the in-depth study of actions and
interactions in local populations, including rare events and exceptional instances as
well as experiments. In combination with pre-existing theoretical frameworks and
insights from earlier work, rules of behaviour and interaction (between individuals
as well as with the environment) may be implemented in the simulation model.
Already in this first step, ABM may be used for computational experimentation
and to calibrate a model that is able to replicate (“grow”, Epstein 2006) the local
observations. In a second step, ABM is used to simulate the micro- and macro-
implications of hypothetical rules of action and interaction outside the original
context. Part of the work involved in this second step, in order to make the jump
towards quantification in a closed population, is to infuse the models with real-
life observational data, which in demography will notably be information about the
distribution in that closed population by variables such as age, sex, and education
(see Grow and Van Bavel 2015a for an example), i.e. exogenously infusing the
ABM with information from traditional demographic approaches in order to make
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the model demographically realistic. It is only when the model is shown to work
outside the context of where it was originally developed that its external validity
can be demonstrated (cf. Hedstrom and Swedberg 1998).

To illustrate this process, consider psychological research that, more than any
other field within the social sciences, has a long and rich tradition of conducting
experimental studies to test theories. In combining ‘open’ and ‘closed’” population
concepts, such experiments can be a first step to gain insights into individual
behaviour and decision processes under controlled conditions. One shortcoming
of such experiments is that they are often based on convenience samples, with
undergraduate college students heavily over-represented in the data gathered, and
focus on behaviour under sometimes unrealistic conditions. To avoid that the
theoretical claims tested in such experiments hold only true for “the weirdest people
in the world” (cf. Henrich et al. 2010) in the artificial context of the laboratory, a
second step is needed. This second step does not just consist of collecting the same
kind of samples as in the original experiments to check whether the predictions hold
true in other samples as well. The true test of the theory is to study the patterns
that the theory implies at other levels of observation and in the context of different
populations. If the theory can correctly predict patterns at other levels of aggregation
and for contexts in which the theory was not originally developed, this indicates the
validity and structural realism of the model and underlying theory (Grimm et al.
2005; Hedstrom and Swedberg 1998).

To further illustrate this process, consider a specific example from the field
of population studies. In today’s Western societies, in which feelings of mutual
attraction are considered a key determinant of heterosexual marriage, knowledge
about the characteristics that men and women prefer in each other is crucial to
understand how observed marriage patterns come about (cf. Buss et al. 2001).
Over the last years, research in sociology, psychology, and economics has devised
ingenious ways to gain insights into these preferences, for example, by use of
census and survey data (e.g., England and McClintock 2009), vignette studies (e.g.,
Greitemeyer 2007), and speed dating experiments and procedural data generated
by online dating platforms (e.g., Skopek et al. 2011). Apart from census data
and national representative surveys, none of these sources could be considered
congruent with the ‘closed’ concept of population dominating in demography. Yet,
as Grow and Van Bavel (2015a) have shown, the insights gained from such small
scale and highly detailed studies can help formulating theories about mate search
and processes involved in union formation. ABM makes it possible to compute the
implications of these theories, which can then be compared with empirical data
observed in another context than the one that first inspired the theories, namely
national marriage markets.
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1.4 Contributions to Agent-Based Modelling in this Book

The chapters in this book address many of the issues that we have outlined up to
this point. The chapters in the section ‘Perspectives on Agent-Based Modelling in
Population Studies’ discuss in more detail the tasks that lie ahead and the steps that
need to be taken to connect the ‘closed’ and ‘open’ concepts of population. They
also highlight the benefits that agent-based modelling might yield in this process.
The integration of empirical data and ABM will require some methodological
advancements and the chapters in the section ‘Designing, Analysing, and Reporting
Agent-Based Models’ illustrate some of the most recent developments in this
direction. As argued earlier, ABM requires theories about individual behaviour and
the chapters in the section ‘Modelling Decision Processes’ illustrate in detail how
existing theories can be adjusted and implemented in agent-based models. Finally,
the chapters in the sections ‘Family Formation and Fertility’ and ‘Health, Mortality,
and Support in Old Age’ provide applied examples of how ABM can be fruitfully
used to study demographic phenomena. In this section, we briefly review each of
the chapters.

1.4.1 Perspectives on Agent-Based Modelling in Population
Studies

In Chap. 2, Courgeau et al. (2016) trace the methodological developments in
demography over its 350-year history and suggest that the introduction of model-
based approaches to the field, such as ABM, constitutes a paradigmatic shift. This
shift results from an increased interest in individual behaviour and interactions in
population research and the authors highlight that in contrast to ABM, the hitherto
dominant methodological approaches do not make it possible to model the ‘two-
way flow’” between the micro and the macro level. Yet, they also highlight that
ABM should not be seen as an alternative to other, more empirical methods in
demography. Instead, in their outline of a possible research agenda for model-based
demography, they make the strong point that there needs to be a close connection
between empirical research and ABM. This ensures that the insights into population
dynamics that ABM might yield are firmly grounded in empirical evidence and are
not based on arbitrary assumptions that are disconnected from reality.

In line with some of the views outlined by Courgeau et al. (2016), in Chap. 3
Prskawetz (2016) points out that there is increasing consensus in that individuals’
demographic decisions cannot be explained in isolation of the networks they are
embedded in. She argues that ABM is particularly suitable to study such network
effects from the bottom up and subsequently illustrates this capability of ABM with
examples from her own work. Along the way, she discusses some of the central
decisions that need to be taken when developing agent-based models; this will
provide valuable guidance for novices to the field. In the last example, she also
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highlights the capability of ABM to conduct ‘what if’ experiments and illustrates
the usefulness of this possibility by showing how it can be used to assess potential
policy implications.

1.4.2 Designing, Analysing, and Reporting Agent-Based
Models

In Chap. 4, Richiardi and Richardson (2016) provide a step-by-step guide for a
new open-source, Java-based simulation platform, JAS-mine, that makes it possible
to easily combine aspects of micro-simulation models with aspects of agent-based
models. The development of this platform was instigated by the observation that
although micro-simulation and ABM have been developed with different goals
(i.e. data-based forecasting based on probabilistic regression models vs. theory
development and understanding with a focus on interactions between individuals),
they also share important commonalities, such as that they are discrete-event
simulations, are recursive, and that the states of individuals evolve over time. Both
approaches have their unique strengths that JAS-mine aims to combine, while at
the same time providing a convenient structure to separate the modelling process
from the data recording process. Such developments in ABM software will greatly
facilitate the grounding of agent-based models in empirical data.

In Chap. 5, Zinn (2016) illustrates how an integration of micro-simulation models
and ABM, as addressed by Richiardi and Richardson (2016), can be achieved. As
she points out, micro-simulation lends itself to conducting fine-grained population
projections under the assumption that individuals do not interact with each other. If
this is combined with ABM’s capability to model social relations and interactions, it
becomes possible to model life courses of both individuals and couples at the same
time. For this, Zinn relies on the ml-DEVS formalism and implements the model in
the simulation framework JAMES II. Her exemplary analysis attests to the potential
of this approach and her work provides a frame of reference for those interested in
combining micro-simulation with ABM.

Next to having the technical possibility to infuse agent-based models with
empirical data, it is important that the field develops ‘best practices’ as to how
empirical data should be used. In Chap. 6, Williams et al. (2016) provide one of
the first steps in this direction. Drawing on related research in geographic and
land use sciences, the authors illustrate how various sources of information (in
particular survey data) can be used to implement a detailed representation of a
specific population, both in terms of structure and decision processes. They also
illustrate how the resulting model can be used to conduct ‘what if” experiments to
gain deeper insights into the processes that underlie observed population changes.

Even if a model has been calibrated with empirical data, there often is uncertainty
in terms of how different model aspects (i.e. different parameters) relate to model
outcomes and under which conditions the model actually is able to reproduce
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observed population patterns. One way to deal with this uncertainty is by the
systematic design of simulation experiments combined with metamodels. In a
nutshell, metamodels treat a simulation model as a black box and express the
relation between model inputs and outputs by means of a statistical function. In
Chap. 7, Grow (2016) illustrates the use of metamodels based on ordinary least
squares regression analysis, whereas in Chap. 8 Hilton and Bijak (2016) illustrate
the use of Gaussian process emulators. As the authors point out, metamodels based
on regression analysis are an efficient tool to explore and describe input/output
relations that can be described with polynomials. Gaussian process emulators
make it possible to describe even more complex input/output relations and provide
additional information about model uncertainty.

As Courgeau et al. (2016) argue, theory development by means of ABM will
require explicit documentation of the way in which the simulation model was
constructed and what assumptions guided this process. In Chap. 9, Groeneveld
et al. (2016) review existing practices of model description in demographic research
and come to the conclusion that so far no standard has emerged. After making
the case that standardized descriptions can yield many benefits (e.g., enhanced
replicability), they suggest the ODD+-D standard as a possible candidate. Based on
their experiences with an exemplary application to a demographic ABM, they also
make recommendations as to how the standard could be adjusted to accommodate
some aspects specific to demographic simulations.

1.4.3 Modelling Decision Processes

In developing agent-based models, researchers often have to draw on theories that
were not developed with a procedural and dynamic focus. In Chap. 10, Willekens
(2016) shows how existing theories from other fields of social research can be
adjusted to better fit with the process-orientation of ABM. He uses the theory of
planned behaviour to model the decisions that underlie international migration. For
this, he extends the theory, so that it takes into account that the decision to migrate
has a (random) processual character: the decision consists of several stages and
it takes individuals time to transition from one stage to the other, contingent on
systematic and random factors. He parametrizes the resulting simulation model with
data from the Gallup World Poll 2005 and other sources and shows that it reproduces
some stylized facts of international migration.

Agent-based models are often criticised for being based on ad hoc assumptions
about individual behaviours and decision processes. In Chap. 11, Gray et al. (2016)
address this issue by drawing on a long tradition of research in decision theory for
modelling women’s decision to disclose alcohol consumption during pregnancy to
midwives. The authors frame the decision as a game theoretic problem in which both
women and midwives are uncertain about the motivations and behaviours of each
other. In the resulting signalling game, the authors compare four different decision
models that differ in the complexity of the representation of the decision process
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within individuals. The results of the simulation experiments show that the different
rules lead to somewhat different outcomes and therefore also lead to different
recommendations for ways to enhance disclosure by women. This highlights the
need to collect additional detailed data in this area where empirical insights are so
far limited.

1.4.4 Family Formation and Fertility

In Chap. 12, Kashyap and Villavicencio (2016) explore the mechanism that might
explain the rise in the sex ratio at birth (measured as the number of males per
100 females) that has accompanied the fertility decline over the last decades in
Asia and the Caucasus. Congruent with earlier theoretical research, the model
conceptualises sex ratio imbalances as the result of an interplay between son
preferences, technology diffusion, and fertility decline. Using UN data to validate
the model in the contexts of South Korea and India, one of the central insights of
this study is that even if son preferences would have declined, an increase in the sex
ratio at birth can arise from an increase in the accessibility of techniques that make
sex-selective abortion possible combined with a decrease in total fertility levels. An
important strength of this study is its cross-national approach, that attests to the
generality of the processes that are modelled.

In Chap. 13 Kliisener et al. (2016) study the role that socially and spatially struc-
tured communication and influence processes might have played in the historical
fertility decline observed in Sweden between 1880 and 1900. The chapter illustrates
how the creative use of available census and GIS data facilitates conducting
‘what if” experiments that help to uncover some of the processes that might have
contributed to observed changes in (historical) populations whose members (and
their interactions) cannot be studied in depth anymore. The results suggest that
their diffusion model can reproduce many of the spatiotemporal properties of the
observed fertility decline. In Chap. 14, Ciganda and Villavicencio (2016) also
explore the mechanisms that might have generated observed trends in fertility, but in
a more recent time period (1944-2014) in Spain. The authors model these trends as
the outcome of an interplay between educational expansion (increasing the average
opportunity costs for having children), increasing economic uncertainty, and social
influence processes. The model illustrates how effects from factors exogenous to
the social interactions under consideration can be amplified by precisely these
interactions.

1.4.5 Health, Mortality, and Support in Old Age

In Chap. 15, Kluge and Vogt (2016) employ the case of the German reunification in
1990 as a natural experiment to address the question whether the positive association
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between income and old-age survival comes about through the goods and services
that income can buy, or through third factors that affect both. In their modelling
efforts, the authors focus on intra-familial exchange as a potential source of the
observed association and draw on a variety of data sources for calibrating the model.
Interactions occur within families and concern the exchange of income of parents for
care from their children. The model can generate part of the observed changes in old-
age survival in Eastern Germany after reunification and suggests that this increase
might be partially caused by an increase in purchasing power and an increase in
intra-familial exchanges.

In Chap. 16, Deconinck et al. (2016) show how ABM can be used to inform
intervention strategies to reduce the effects of severe acute malnutrition. The authors
highlight that the design and study of such interventions suffers from a lack of data
and understanding of health system dynamics. They suggest that the theoretical,
rule-based nature of ABM makes it possible to study factors that might potentially
affect the effectiveness of interventions despite lack of data. For this, it is central to
involve subject matter experts and practitioners in the model development process,
to create accurate representations of the decision rules and interactions that occur in
the actual system and to raise awareness among potential stakeholders.

In Chap. 17, finally, Wolfson et al. (2016) study the puzzling observation that
in the US there exists an association between city-level income inequality and
mortality, whereas no such association exists in Canada. Their main intuition is that
this difference might be caused by the fact in US cities income segregation tends to
be higher than in Canada. That is, in the US, there is more residential segregation
in terms of income than in Canada and this might indirectly affect mortality rates
through the properties of the communities (e.g., school quality) that feed back into
the individual characteristics relevant for mortality (e.g., educational attainment).
Using a simulation model that incorporates interactions between aspects of different
layers of society (i.e. individuals, families, neighbourhoods, and cities), the authors
find that their model is indeed able to generate patterns of mortality that are similar
to those observed in reality, but for reasons that are different from what they
expected.

1.5 Towards Evolutionary Population Theory

As we have indicated earlier, ABM is a useful method to help developing population
thinking. The method itself is agnostic about the theory that is used to reason
about the mechanisms that link the micro and the macro level. The diversity of the
theoretical approaches used in the chapters of this volume attest to this flexibility
of ABM. Yet, if demographic phenomena are phenomena sui generis, what kind of
theory can we reasonably be looking for to explain them? In this closing section, we
describe why we think that evolutionary theory is a particularly attractive candidate
for this. Note that this represents our view, which does not necessarily represent the
views of the other contributors to this volume.
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1.5.1 The Basic Tenets of Evolutionary Theory

Inspired by thermodynamics, Lotka (1945) still had a concept of theory in mind
consisting of a system of “laws” within which, “by the application of relatively few
fundamental principles, the course of events can be rigorously deduced for innu-
merable specific situations” (Lotka 1945, p. 172, italics as in original). However,
“demography is neither theoretical physics nor is it mineralogical chemistry”: with
this truism, Charbit (2009, p. 48) wants to highlight something he thinks is particular
for the human sciences: because demography is a human science, theories are based
on factors that are peculiar to a given historical context. Indeed, doing social science
is not about finding eternal laws that allow us to predict the future. It might therefore
be tempting to dismiss altogether the idea of a general theory of population and to
stick with idiosyncratic narratives that might explain in a particular context why
things happened the way they did.

Although we agree that historical peculiarities do and should play a role in
social scientific research and theory, one could also argue that this epistemological
point of view reveals a lack of ambition for the social sciences. Why would this
argument hold for the social sciences and not for the biological sciences? Aren’t
plants and animals, in their phenotypic appearance and behaviour, also peculiar to
their historical environment? It is precisely the uniqueness of every plant and animal
that is highlighted in the populationist biology inherited from Charles Darwin (Mayr
2002, pp. 90-93). Darwinian evolutionary theory can be considered superior to the
earlier, essentialist ways of theorizing about biological diversity because it is able
to account for the changing biological diversity and developments that occurred in
time not only before, but also after the formulation of the theory (Boyd and Silk
2009; Mayr 2002); it is able to “describe and explain phenomena with considerable
precision”, even if it cannot make reliable predictions about the future (Mayr 1961,
p. 1504).

While demography and evolutionary biology have followed very different
and increasingly divergent pathways after the Second World War, a Darwinian
renaissance got started in recent decades, with an increasing number of papers
inspired by evolutionary theory being published in mainstream demography journals
(Sear 2015a). It would be good to intensify the conversation between demography
and evolutionary theory. We concur with Sear (2015b) that the endorsement of
evolutionary demography does not at all imply that evolutionary theory would be
the only theoretical framework that has value in explaining demographic behaviour,
but rather that it can inform, enrich, and stimulate theory development in our field.

The key ideas of evolutionary theory in biology are simple, but nevertheless often
poorly understood: in a nutshell, organisms evolve through variation and differential
selection. No two living organisms are exactly the same; for both genetic as well
as environmental reasons, there is always variation. Not all variants survive and
produce offspring in the next generation to the same extent. Those variants that
survive and produce a lot of offspring in a given environment have high fitness,
which by definition implies that such variants will become more common in the
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next generation; variants with fewer offspring will be encountered less frequently
in the next generation. This is what is meant by differential selection: in a given
environment, some variants will become more common over the generations, others
will become less common. Features or variations that lead to high fitness in their
environment are called adaptive (Mayr 2002). Of course, environments can and do
change, implying that well-adapted organisms at one point in time may turn out to
be very badly adapted to the new situation — ‘maladapted’, implying no more nor
less than that they will become rarer over the generations.

This basic mechanism is key to explaining how humans and other living
organisms evolved (Boyd and Silk 2009). The basic principles have also been
applied to the evolution of culture (Richerson and Boyd 2005), although such
application of evolutionary theory is still less widely accepted. The same holds for
more recent models of gene-culture coevolution. Such models are being developed
since it is becoming clear that culture has affected and is affecting the human
genome (Laland et al. 2010) through processes such as niche construction (Kendal
etal. 2011).

One of the reasons why evolutionary theory seems suitable as a general
theoretical framework for human demography (and, more generally, the social
sciences) is that it does justice to the fundamental contingency of human populations
and societies. Evolutionary theory is not deterministic. Rather to the contrary: it is
fundamentally probabilistic and acknowledges the fundamental contingency of life.
Evolutionary theory does not allow to predict the substance of the future because
it does not have information about the substantive direction. Instead, evolutionary
theory contains of “a set of interacting mechanisms resulting in the production of
variation and its selection” (Hammel and Howell 1987, p. 142).

Evolutionary theory is not teleological (Mayr 1961, 2002); there is no need to
assume that evolution has a direction (in contrast to what has often been claimed,
see, e.g., Lotka 1945) It does certainly not claim that evolution leads to perfection
(even if we would know what perfection is), nor does it imply that things evolve
to always get better — in biological evolution, organisms that may have thrived
very well in one environment, may become extinct as the environment changes.
Evolutionary theory is also not essentialist. Darwin had a hard time defending his
populationist approach against the essentialist claims about the ‘true’ nature of
different species (Mayr 1991, 2002).

Demography and populationist thinking is already playing an important role in
evolutionary theory. “Human culture and biology jointly and collaboratively drive
the evolution of human demography” (Levitis 2015, p. 415). Hammel and Howell
(1987) called for an evolutionary theory “in which demographic events are the
central mechanism and leading indicators of the coevolution of bodies, minds, and
societies” (p.142). Recognizing that birth, marriage, migration, and death have both
biological and cultural significance in any human society, and that the subject matter
of demography is cutting across the sub-disciplines of the social and biological
sciences, they argue that a demographically based formulation of evolutionary
theory may integrate important aspects of cultural and biological evolution. More
recently, Metcalf and Pavard (2007a) argued that “evolutionary biologists should
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be demographers” because evolution depends on fertility, migration, and mortality,
as well as on population growth and structure; in other words: “All paths to
fitness lead through demography” (Metcalf and Pavard 2007b). Therefore, evolu-
tionary demography aims to cross barriers between social scientific and biological
approaches to population processes by combining concepts and tools of demography
and evolution, hoping to enhance the scope of both fields (Levitis 2015).

1.5.2 Agent-Based Modelling and the Evolutionary Approach

As indicated earlier, human populations are complex adaptive systems. Miller and
Page (2007, pp. 78-89) discuss a range of characteristics of ABM that makes the
approach particularly well suited to study such systems: the focus on dynamics and
processes, the scalability and flexibility, the feasibility to model adaptive rather
than optimizing agents, and the enhanced ability to address the role played by
heterogeneity and variation. These features also make ABM particularly well suited
as a tool to help developing an evolutionary approach in demography.

Agent-based models are inherently dynamic: even if one can take snapshots of
the system’s situation at discrete points in time, the results of the model change
over time and the focus is drawn to the process at least as much as to the outcome.
Like evolutionary theory, ABMs are inherently process oriented: the focus is
on understanding the mechanisms that produce or reduce diversity and change.
Evolutionary theory is about mechanisms rather than “laws”, and ABM facilitates
the investigation of mechanisms, where mechanisms can be considered halfway
“between laws and descriptions” (Billari et al. 2003, p. 13).

Axelrod and Hamilton (1981) powerfully illustrate how a focus on dynamics
may be crucial for our understanding. They showed how cooperation in populations
may evolve even under conditions that, at any one point in time, imply no
cooperation. A criticism by Venturini et al. (2015) on ABM maintains that it
“cannot but confirm” individualistic behaviour and that it is unable to understand
human cooperation. Indeed, in the first model developed by Axelrod and Hamilton,
individual agents face a prisoner’s dilemma that cannot be overcome in a single
shot. Yet, when iterated over time, in a second model, cooperation emerges as
a viable strategy (Venturini and colleagues seem to have missed this landmark
paper). More generally, when developing a theoretical model, one can aim either
at reproducing important features of the target system at a given point in time,
or at modelling its evolution, i.e., at reproducing the changes that would occur
across generations. Ideally, however, a good model should be able to reproduce both
aspects of the phenomenon, and ABM facilitates such combination (Campenni and
Schino 2014). In line with this, evolutionary demography involves investigating both
how demographic processes evolve over time and the outcomes of such evolution
(including population structure and composition) at given points in time.

Evolutionary demography not only involves integrating the cross-sectional and
the longitudinal, it should also integrate insights gained at different levels of
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magnitude or scale and in diverging scholarly disciplines (from the molecular
micro level of genetics to the macro level of human populations embedded in a
globalizing society) (Kaplan and Gurven 2008). Demographic theory “thus faces
the same issues raised by Darwinian population thinking: both observed population
processes at a local scale and testable models at higher levels of aggregation are
necessary, and theoretical formulations confined to one or the other are incomplete”
(Kreager 2015a, p. 81). The scalability of ABMs and the flexibility of specifying
agent behaviour and interactions are particularly useful here. The scalability refers
to the ability of ABM to explore a system’s behaviour both with a very low and
a very high number of agents, and to switch the focus from micro- to macro-level
system properties. The flexibility refers to the fact that ABMs can capture a very
wide class of behaviours, which is particularly useful for implementing the insights
from different study disciplines. Agents may, for example, respond to the constraints
imposed by the human metabolic system as well as to the cultural rules implied by
human society. Both kinds of rules can be specified in the same ABM, and the
emerging properties can be studied at the level of individual agent behaviour, at the
neighbourhood level, or at the population level. Mechanisms involved in multiple
inheritance models, like the triple inheritance model involving genetic, ecological,
and cultural inheritance (see Kendal et al. 2011) can be implemented explicitly in
ABM. Change across generations can be simulated over thousands of generations,
and snapshots can be taken at each point in time, enabling comparison with real-life
data employing standard statistical tools.

Given the dynamic nature and flexibility of ABMs, agents can be designed to
be adaptive, i.e., as learning from previous experiences within or across gener-
ations, or both. This allows moving away from the unrealistic, rationalistic, and
atomistic models of well-informed agents who rationally processes all the relevant
information to optimize behaviour to maximize utility (Miller and Page 2007, pp.
81-83). With ABM, it is possible to specify agents that learn, build networks, gain
or lose power and influence, and inherit knowledge and resources from previous
generations. The criticism that ABM is inherently atomistic and apolitical (Venturini
et al. 2015) is therefore poorly targeted. For application to human demography,
the model of adaptive rather than optimizing agents is much more consistent with
evolutionary theory as well as with basic insights from psychology and sociology.

Finally, while conventional models often assume that the underlying agents have
a high degree of homogeneity, where differences are typically described in terms
of conditional averages, ABM facilitates to focus more on heterogeneity — even if
it may turn out, empirically, that the aggregate system behaviour does not depend
on the details of each agent (Miller and Page 2007, pp. 84-85). ABM does not
require making any assumption about the homogeneity of agent populations, which
is a key advantage given that heterogeneity is a core aspect of populations and
population models (Billari et al. 2003, p. 12). While the focus of conventional
statistical approaches is on how averages depend on a set of variables — an approach
in the tradition of “the average man” (Quetelet 1835) — this may be insufficient to do
justice to the role played by diversity and variation in explaining population patterns
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and change. Ernst Mayr even went so far as to imply that statistical methods do not
really represent population thinking at all (Kreager 2015a, p. 78).

Enhancing the ability to address the role played by heterogeneity seems impor-
tant for improving population theory, for example for improving demographic
transition theory. In applications of ABM, it has become clear that a given outcome
may be produced by different pathways or that a given pathway may lead to
very different outcomes, depending on the size and composition of the population.
Similarly, ABM has proven to be able to yield both results exemplifying convergent
evolution (initially major differences in the population becoming smaller over time)
as well as divergent evolution (minor initial differences that magnify over time
and generations) (see Axelrod 1997). This matches very well with the observation
that, while the transition from (moderately) high to low mortality and fertility in
modern populations is a quite general phenomenon, uniform explanations in terms
of macro-level factors and processes such as industrialisation, urbanisation, and
modernisation have failed the empirical tests to a very large extent (Szreter 1993;
Van Bavel 2010b; Watkins 1986).

For example, the secular decline of fertility got started under widely differ-
ent economic conditions, unexplainable by standard modernisation theories, or
failed to kick off when theory would have predicted this. Theories such as those
developed by Frank Notestein spoke about interactions between the economy and
populations largely at the macro level, without accounting for the heterogeneity
within economies and populations. This approach “pushed key aspects of population
variation and change to the margins” (Kreager 2015a, p. 79). Thanks to more
detailed research in historical demography, often looking at very specific local
communities and populations, it became clear that fertility and mortality decline
can take place under widely differing conditions. This has stimulated the field to
increasingly reconsider the role of local networks of communication in demographic
change. In-depth study of local populations, conceived of in the ‘open’ rather
than the ‘closed’ way, enabled us to understand more about the role played by
distinctive environmental and cultural constraints existing prior to ‘big’ forces such
as industrialization and modernization, implying that there is not one universal
‘transition” pathway. The continuing diversity observed in demographic phenomena
like ‘the’ demographic transition highlights that it will be key for demographic the-
ory to understand the mechanisms that continue to renew population heterogeneity
(Kreager 2015a, pp. 80-81), and ABM promises to be very helpful in gaining such
understanding.
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Chapter 2
Model-Based Demography: Towards
a Research Agenda

Daniel Courgeau, Jakub Bijak, Robert Franck, and Eric Silverman

2.1 Introduction

Over its 350-year history, demography has progressed through successive
paradigmatic changes, from period analysis (Graunt 1662) to multilevel analysis in
the more recent period (Courgeau 2007). Currently, the prominence of agent-based
models (ABMs) has indicated an increased focus on individual behaviours and
interactions in the study of populations, and also a desire to bolster the theoretical
foundations of demography (Burch 2003a, b; Silverman et al. 2011). Here we posit
that ABMs have a potential to become a manifestation of a broader, model-based
research programme, which would be much more heavily reliant on computer
simulations as a tool of analysis. The key advantage of such methods is that they
allow examining interactions between various elements of complex population
systems. In our view, such model-based approaches, while firmly rooted in the
multilevel paradigm, can form the foundation of the next step in the cumulative
progression of demographic knowledge.

This chapter proceeds first by detailing the successive paradigmatic changes
evident in the history of demography in Sect. 2.2, and then by describing the
challenges of studying uncertainty, complexity and interactions in population
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systems in Sect. 2.3. In Sect. 2.4 we discuss the ways of conforming computational
methods to the classical scientific programme outline, and make the case for model-
based demography as a new research programme for the discipline. Finally, in
Sect. 2.5 we propose a research agenda to address the challenges ahead.

2.2 Cumulativity in Demography

Since the origin of demography in the seventeenth century, the field has progressed
through a series of paradigmatic changes. Here we use the term paradigm in a
somewhat different sense from Kuhn (1962), and from its current usage. We want
to point out the methods by which the phenomena observed within a population
have been related to the set of key parameters (fertility, mortality and migration)
used in demography to explain population growth, decline or stabilization. There
are four main methods, each implementing a limited scope of notions which we call
the paradigm of the selected method (Courgeau and Franck 2007). In this section
we point to the differences between these four paradigms, and to their possible
complementarity.

It is important to recall the path taken by Bacon in 1620 in his elaboration of
an inductive method for scientific thought. He presented it in contrast with the
dominant way of thinking in fashion at this time (Bacon 1620, aphorism 19):

There are and can be only two ways of searching into and discovering truth. The one flies
from the senses and particulars to the most general axioms, and from these principles,
the truth of which it takes for settled and immovable, proceeds to judgement and to the
discovery of middle axioms. And this way is now in fashion. The other derives from the
senses and particulars, rising by a gradual and unbroken ascent, so that it arrives at the most
general axioms at last of all. This is the true way, but as yet untried.

The first way generates what Bacon called the four Idols, where axioms are not
grounded on a meticulous observation of the properties of nature to be studied, but
rather on prejudices — unverified notions of human understanding. As Bacon said!,
such axioms should not “avail for the discovery of new works, since the subtlety of
nature is greater many times over than the subtlety of argument”. As already argued
elsewhere (Courgeau et al. 2014) ‘Idols’ may exist in various areas of contemporary
population sciences, for example in the form of behavioural genetics, postmodern
theory, hereditarism, or modern hermeneutics.

On the other hand, the Baconian “second way” became the modern scientific way
of thinking, rising from a meticulous observation of studied facts to the “formation
of ideas and axioms by true induction”. This method of induction’ consists of
discovering the principles — the ‘first’ axioms, the ‘lesser’, and the ‘middle’ in

I Citations in this and in the next paragraph come from Bacon (1620), aphorisms 24, 39 and 40.

2Induction is not taken in the sense of Mill (1843) and his followers, i.e. generalisation from
particular facts. In Bacon’s sense, induction designates the complete research process (Sect. 2.4).
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Bacon’s terms — of natural or social properties by way of experimentation and
observation. The Baconian induction rests on the requirement that without these
principles the properties observed would be different (Franck 2002a).

Graunt (1662) was the first to apply this method for the study of human
populations. He no longer considered that phenomena such as births, illnesses
and deaths were to be seen as God’s secret and therefore out of bounds to
scientific scrutiny. He studied each event not as a unique one but as one occurring
to a statistical individual, with only a few characteristics. These abstract events
became fertility, morbidity and mortality, and lost any direct attachment to a given
individual. This was the only way to begin a scientific study of population, called
by Petty (1690) political aritmetick, which prevailed for around 200 years. Graunt’s
research paved the way for demography, epidemiology, political economics, and for
population sciences more generally.

Graunt’s demonstration of the links between probability and population science
was also vital. Probability was first addressed in 1654 by Pascal and Fermat, but
their results were published later (Pascal 1665), and it was in fact Huyghens (1657)
who first published a treatise on games, with a foundation for objective probability.
Graunt used this concept in order to estimate the population of London from the
number of deaths, using an estimation of the probability of dying (Courgeau 2012).
The probability of an abstract event in a human life was used for the first time,
facilitated by the notion of a statistical individual.

We can conclude that the population sciences were without a doubt born in
England, and subsequently led to a more general school of scientific thought on
population problems. From the end of the seventeenth and throughout the eighteenth
century, this way of thinking developed through the work of many leading European
researchers such as Halley, Siissmilch, Euler, Moheau, and so on (Courgeau 2007).

During the eighteenth century a new concept of epistemic probability was
introduced, first by Bayes (1763), and then refined by Laplace (1774, 1812). In fact,
the objective probabilistic approach was already showing how through successive
trials, the estimated frequency tends towards such a probability, as is the case for
fair games for which we can determine an a priori probability. However, as had been
already recognised in the preceding century, such a hypothesis was difficult to justify
for events in human life. A new approach was necessary for such events, where all
we know is the sample observed. Not only is the population from which it is drawn
unknown, but its very existence is a hypothesis. By using a prior probability in order
to estimate a unique posterior one, the epistemic approach permitted answering
these questions clearly. Laplace applied it to many phenomena, including a number
of population science ones.

In 1809, in Germany, Gauss proposed the method of least squares, which was
mainly used in astronomy at this time. Following the work of mainly British but
also German and French biological and social scientists®, it became widely used:

3These fields were not so clearly defined at this time: scientists were working in different social or
biological sciences and in statistics simultaneously.
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by Galton and Pearson in population genetics; Lexis and Quetelet in demographys;
Edgeworth in statistics; Durkheim in social demography; and Yule in economic
demography. Finally, at the beginning of the twentieth century Fisher, a statistician
and population geneticist, developed the maximum likelihood theory and theory of
statistical inference (see Courgeau 2012). Population science was coming back to an
objective approach, as the development of censuses through the nineteenth century
permitted the use of exhaustive samples.

The problem with many statistical tools from the nineteenth century, such as the
least squares method, is often that they assume a particular mathematical structure
among a limited set of macro-variables, irrespective of whether that structure exists
in the real world. This was already the case for Durkheim’s study of suicide in
Prussia (1897). This may lead to what is called an ecological fallacy, meaning that
aggregate data, as a rule, cannot be used to study individual behaviour. The only
instance where this is possible is when the probability of experiencing the event is
independent of the area studied and when the population is large enough to cancel
out any random difference that may appear (Courgeau 2007).

Another issue here is related to the type of observations, which are exclusively
cross-sectional or period-based. After Courgeau (2007), we can conclude that the
paradigm of the cross-sectional approach may be defined as follows: the social facts
of a period exist independently of the individuals who experience them, and can be
explained by various characteristics of the surrounding society, such as economic,
political, religious, or social aspects. This cross-sectional paradigm prevailed in
demography till the end of World War II.

The next change came from the US, where population scientists set up a
new perspective of cohort analysis, following the pioneering sociological work
by Mannheim (1928), which introduced the individual’s lived time; Whelpton
(1949) and Ryder (1951) were the first to promote this approach, and Henry
(1959) formalised its theoretical underpinnings. The resultant paradigm is defined
by the following postulate: “the demographer can study the occurrence of only
a single event, during the life of a generation or a cohort, in a population that
preserves all its characteristics and the same characteristics for as long as the
phenomenon manifests itself” (Courgeau 2007, p. 36). We will not go further
into this approach, as “for the analysis to be feasible, the population must be
regarded as homogeneous and the interfering phenomena must be independent of
the phenomenon studied” (Courgeau, idem, discussing Henry 1959; Blayo 1995).
These conditions are restrictive, and led to a new approach permitting us to set such
hypotheses aside.

To be able to consider heterogeneous cohorts and to introduce dependencies
between phenomena, it became necessary to introduce statistical methods able to
analyse different processes simultaneously and look at numerous characteristics
of the studied individuals. The general theory of stochastic processes was first
developed by the US statistician Doob (1953) and was applied to demographic
processes by Aalen (1975) in Sweden. In demography, it was incorporated through
the introduction of event-history analysis (Courgeau and Lelievre 1992).
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In the event-history paradigm, “individuals follow complex, life-long trajectories
that depend, at a given instant, on their earlier trajectories and on the information
they had acquired in the past” (Courgeau 2007, p. 58). We can identify the factors
at work — both demographic and non-demographic — and analyse their effect on
individual behaviour in more detail. In order to do that, it is necessary to use surveys
that follow individuals along a large part of their life and to collect data on events,
and on the characteristics, fixed as well as time-dependent, which may affect these
events. However, here we cannot view an individual trajectory as the outcome of a
process specific to each person. As we observe only a single outcome (the individual
trajectory), the process is not identifiable.

In this case, we must adopt a collective point of view: all individuals are assumed
to follow the same random process, the parameters of which we can estimate from
the observation of a sample of individuals with their own characteristics. At first
glance, this assumption seems quite bold. However, it is important to realize that
this is not a hypothesis about observed people, but about the construction of a
process underlying a set of trajectories. In this case, two observed individuals do
not necessarily follow the same process, whereas two statistical individuals with the
same characteristics do so automatically, as random sampling units with identical
characteristics (subject to identical selection conditions). Such an approach again
may require adopting a Bayesian point of view (Ibrahim et al. 2001), as it looks at
many characteristics measured on a sample of restricted size.

However, the use of individual characteristics may lead to an atomistic fallacy,
as opposed to the ecological fallacy of cross-sectional studies. By concentrating
on individual characteristics, we disregard the context in which human behaviours
occur. As noted by Courgeau (2007), context clearly may influence individual
behaviour, and therefore isolating individuals from the constraints imposed by the
social networks of the living environment seems misleading.

We must then introduce the different types of groupings of individuals found in
all human societies: social groupings, such as the family, networks of contacts (or,
more generally, social networks), etc.; economic groupings, such as the firm or the
organisation where a person works; educational groupings, health-care groupings;
political groupings; etc. In order to consider not only the individual but different
groupings we must develop new methods of contextual and multilevel analysis.
These models have been elaborated by American (Mason et al. 1983) and English
(Goldstein 1987) researchers.

Multilevel approaches have permitted us to solve the apparent contradiction
between aggregate models and the individual, event-history perspective. Thanks to
their properties, we can combine the results of the analyses at the aggregate and
individual level by clarifying the apparent paradox between them. As observed by
Courgeau (2007, pp. 79-80):

The new paradigm will therefore continue to regard a person’s behaviour as dependent on
his or her past history, viewed in its full complexity, but ... this behaviour can also depend
on external constraints on the individual, whether he or she is aware of them or not.
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This paradigm allows for removing the two fallacies mentioned before (idem):

The ecological fallacy is eliminated, since aggregate characteristics are no longer regarded
as substitutes for individual characteristics, but as characteristics of the sub-population in
which individuals live and as external factors that will affect their behaviour. At the same
time, we eliminate the atomistic fallacy provided that we incorporate correctly into the
model the context in which individuals live.

As we have demonstrated previously, demography has advanced effectively
thanks to the introduction and refinement of successive paradigms. Each paradigm
takes the shortcomings of its predecessors as a starting point and offers a method for
surmounting them — without, however, erasing all the knowledge attained through
earlier paradigms. Indeed, for some questions that a population scientist may wish
to ask, cross-sectional analysis can suffice just as any other form of analysis may be
sufficient for other issues. The same is true for some questions asked by the physicist
that may be answered perfectly by Newtonian physics, without taking into account
Einstein’s physics.

However, in demography these developments have not led to a patchwork
landscape of competing approaches, but instead to a cumulativity of knowledge,
despite being far from linear. This is because different paradigms take a different
point of view on the studied phenomena, partly preserving some of the results of the
previous ones, as the multilevel analysis compared with cross-sectional and event
history analysis. As Courgeau (2012, p. 239) has put it:

Cumulativeness of knowledge seems self-evident throughout the history of population
sciences ... the shift from regularity of rates to their variation; the shift from independent
phenomena and homogeneous populations to interdependent phenomena and heteroge-
neous populations; the shift from dependence on society to dependence on the individual,
ending in a fully multilevel approach. Each new stage incorporates some elements of the
previous one and rejects others. The discipline has thus effectively advanced thanks to the
introduction of successive paradigms.

Each of the four paradigms frames the relationship between observations and
scientific object differently, and in so doing allows for new methodologies that can
alleviate difficulties associated with other methods, as summarised in Table 2.1.
The scientific objects of enquiry in population sciences, such as mortality, fertility,

Table 2.1 The four paradigms of demography — a summary

No. |Paradigm Period | Key focus

1 Period (cross-sectional) | 1662— | Population-level (macro) phenomena, observed and
measured according to the historical time

2 Cohort (longitudinal) 1950s— | Population-level phenomena, observed and
measured along the lifetime of individual cohorts

3 Event history 1980s— | Individual-level (micro) phenomena, observed and
measured according to the individual time

4 Multilevel 1980s— | Individual, population, and interim-level

phenomena, observed and measured from multiple
perspectives
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nuptiality, migration and so on, are independent of the theory used to treat them.
By contrast, the relationships assumed to exist between these objects are strongly
dependent on the key theory underpinning each paradigm: independence between
them in cohort analysis, heavy dependence between them in event history analysis.
Yet, as argued before, each paradigm also occupies a different context, and therefore
previous paradigms remain relevant despite the proliferation of new ones.

The evolution of successive paradigms is an ongoing process, and the paradigms
themselves are in a constant need of improvement and refinement, in order to be
able to answer emerging research questions. Even the multilevel approaches do not
address questions related to interactions between various elements of increasingly
complex population systems. In particular, micro-level rules may be hardly linked
with aggregate-level rules, while macro-level rules cannot be modelled exclusively
with an individual approach, since they transcend the behaviour of the component
agents (Holland 1995). As Conte et al. (2012, p. 336) said, in their Manifesto of
Computational Social Science, such a micro-macro link:

. is the loop process by which behaviour at the individual level generates higher-level
structures (bottom-up process), which feedback to the lower level (top-down), sometimes
reinforcing the producing behaviour either directly or indirectly.

We will add that in some cases it can go in the opposite direction of the producing
behaviour, leading to “perverse effects” as shown by Boudon (1977).

We must go further, however, as the effects of aggregation levels are always
defined with respect to the individual. For example, a series of individual actions
in a community may foster awareness of a problem that concerns the entire
community. This may lead to political measures, taken at more aggregated levels.
These measures will naturally affect individual behaviours, generating new actions
to offset their perverse effect, and so on. The multilevel approach as described above
does not allow for inclusion of this two-way flow. More generally it is necessary to
identify the different levels as truly different systems of agency, i.e. of collective
action with different goals, specific resource interdependencies between members
and specific social processes that help members to manage dilemmas at each level.
We will see in the following sections how a model-based research programme may
answer these challenges.

2.3 From Empirical to Model-Based Demography,
and Back: Uncertainty, Complexity and Interactions
in Population Systems

The recent evolution of demography and population studies has coincided with
shifting perspectives on the epistemological challenges facing the studies of human
populations. In particular, demographers are now paying ever more attention not
only to different levels of analysis, but also to the uncertainty and complexity of
population phenomena, which are discussed in this section.
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Demographic phenomena — as all other aspects of social reality — are inherently
uncertain, but to a slightly lesser degree than is the case in other areas of social
sciences, such as sociology or economics. This comparative advantage of population
science is largely due to the strength of the underlying relationships, such as
population accounts and persistence of demographic patterns in time, and is helped
by the strong empirical slant of population science (Xie 2000; Morgan and Lynch
2001). Still, particular areas of demographic interest differ with respect to their
uncertainty: out of the three main components of population change, mortality is
usually thought to be the least uncertain, while migration is the most (e.g. NRC
2000). The explicit acknowledgement of the uncertainty challenge has led to a
renaissance of statistical demography since the 1980s, and to the “return of the
variance” to demography — an important methodological perspective for all four
paradigms mentioned above (Alho and Spencer 2005; Courgeau 2012)*.

Uncertainty is vastly augmented by social reality becoming increasingly com-
plex. Hence, appropriate tools are required to analyse the associated complexities
in more depth. In demography, the debate on the complexity versus the parsimony
of demographic models has been present especially in the context of predictions
(Ahlburg 1995; Smith 1997; Lutz 2012; Raftery et al. 2012). However, the evidence
regarding the relative performance of models of varying complexity is inconclusive.
For predictive applications it may be tempting to apply Occam’s razor and opt
for simple models that describe the uncertainty relatively well (Bijak 2010). On
the other hand, despite its importance, prediction is not the only goal of enquiry
in population science (Xie 2000). If the perspective shifts towards explanation,
exploration, or other non-predictive applications, a different approach is required’.

From a statistical point of view, model uncertainty needs to be acknowledged
as well (Raftery 1995). If the models themselves are to be formally recognised
as yet another source of uncertainty in population studies, next to the underlying
processes, parameters, and inherent randomness, the most natural and coherent way
of describing all these sources is via Bayesian statistical inference and epistemic
probability (for details, see Bijak and Bryant 2016). Within the Bayesian paradigm
there exist several approaches to model error: from a formal model selection out
of several competing possibilities, and the related model averaging (Raftery 1995);
to including an additional model discrepancy (inadequacy) term in the modelling
process (Kennedy and O’Hagan 2001). In addition to the appealing prospect of
reconciling quantitative and qualitative information in a formal way, Bayesian
statistics allows for the inclusion of subjective opinion in the process of statistical
inference.

4Similarly, acknowledgement of the role of space in demography has led to the multi-regional
perspective within the cohort paradigm (Rogers 1975), later extended to the multi-state case.

3See Epstein (2008) for “sixteen reasons other than prediction to build a model”. Conte et al. (2012)
highlight the capability of “generative” models to reproduce qualitative regularities observed in the
real world (the stylised facts).
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On a larger scale, Bayesian statistics also provides a possible way of reconciling
the empirical and computational approaches by returning to empiricism, yet at a
different level of analysis. All computational models, no matter how complex, have
inputs (parameters) — and outputs (quantities of interest). Their mutual mapping
enables statistical analysis. There are techniques available for this purpose, chiefly
Bayesian melding (Poole and Raftery 2000), and approaches based on Gaussian
process emulators, also Bayesian (Kennedy and O’Hagan 2001; Oakley and
O’Hagan 2002). Both have already been prototyped in demographic applications —
the former by Alkema et al. (2007) and Clark et al. (2012), and the latter by Bijak
et al. (2013), Silverman et al. (2013), and Hilton and Bijak (Chap. 8, this volume).
The application of such methods allows for analysing the properties of complex
computational models within a formal statistical framework, which would not be
possible with more traditional approaches.

As demography has started incorporating insights regarding its own epistemo-
logical limits, new approaches to modelling have begun to flourish. The perspective
of population science becoming a model-based science (Burch 2003b) has become
appealing®, mirroring similar movements within the study of biological systems
and evolution (Levins 1966; Godfrey-Smith 2006). As argued by Xie (2000), there
are certainly insights to be gained from examining the successes and failures of
modelling efforts in population biology (see also Bullock and Silverman 2008).

Previous efforts have outlined various approaches toward modelling the complex-
ity of population processes, amongst which we can identify two broad trends: social
simulation and systems sociology (Silverman and Bryden 2007). The former is con-
cerned with the application of novel modelling techniques, primarily agent-based
models, to specific populations and situations. The latter is a primarily theory-driven
enterprise, investigating the consequences of various foundational social theoretic
positions — along the lines of the ‘opaque thought experiment’ role for simulations
proposed by Di Paolo et al. (2000). Within demography and population sciences,
the desire to remain empirically relevant — and to strengthen that relevance through
more reliable and nuanced predictions — has led to a focus on social simulation
more than systems sociology approaches. Micro-simulations, based on empirical
transition rates or probabilities for simulated (virtual) individuals (Willekens 2005),
clearly belong to this class.

Within simulation approaches, we also need to distinguish between weak sim-
ulations and strong simulations (Huneman 2014)7. Weak simulations serve to test
some theory or hypothesis, when the system studied cannot be easily modelled by
mathematics or when data are limited or unavailable. They are top-down models,
which start from setting the hypotheses and assumptions. Strong simulations,

6Burch (2003b) points to Nathan Keyfitz (1971) as the pioneer of the model-based demography.
"Following Huneman (2014), we give these terms slightly different meanings than for example
Thagard (1993, p. 6), for whom the weak simulation is “a calculating device drawing out the
consequences of mathematical equations that describe the process simulated,” while a strong
simulation “itself resembles the process simulated” (see also Brenner and Werker 2007).
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on the other hand, aim to “explore the possible outcomes of a simple model”
without any reference to a pre-existing theory or hypothesis (idem, p. 72). Many
existing agent-based models often proceed in this way, where simulations are used
with no pre-existing theory to explain the modelled phenomena, but only some
intuitive rules. These models are built from the bottom-up: low-level interactions
are supposed to produce high-level complex behaviour. As argued by Conte et al.
(2012), such ‘generative explanations’ are often arbitrary — they also suggest that
simulation models need to become much more empirical, in order to provide solid
micro-foundations for the social mechanisms they attempt to model.

The presence of emerging properties and of ‘downward feedback’ or causation
(from macro to micro) in complex models means that we cannot obtain the macro-
level patterns by simply aggregating the micro-level outcomes. Instead, we need to
model both levels jointly. Therefore, from the point of view of the demographic
paradigms, we remain firmly within the realm of the multilevel analysis, only using
different tools (simulations) to explore multiple layers of population processes at
the same time. Conte et al. (2012, p. 342) suggested that:

...simulations must be accompanied by micro-macro-loop theories, i.e., theories of
mechanisms at the individual level that affect the global behavior, and theories of loop-
closing downward effects or second-order emergence.

A part of the strength of simulations lies in a potentially wide variety of
ways to represent the same problems using a relatively simple set of techniques.
However, there is a real danger that the models can be constructed in an arbitrary
way, not linked to the observations of the properties of the population systems of
interest, and thus become manifestations of Baconian ‘Idols’. This problem can be
exacerbated if the models lack an explicit documentation of their construction and
core assumptions when simulation results are presented®. In such situations, even
models with well-grounded and well-justified assumptions may seem arbitrary.

Agent-based models are capable of analysing systems of interacting elements
through computational modelling. A part of the appeal of such models is their
capacity for explanatory power (see Burch 2003a, b; Silverman et al. 2011). As
such, agent-based models by their very nature are intended to represent the import
and impact of individual actions on the macro-level patterns observed in a complex
system, and vice versa, showing a potential promise to transcend different levels
of analysis. Such methods can further theoretical understanding of population
processes (Burch 2003a; Chattoe 2003), and using these methods to break from
the over-reliance of some micro-simulation models on empirical data at the expense
of reasonable theoretical explanations and mechanisms® (Silverman et al. 2011).
As mentioned earlier, however, to take full advantage of this potential, we need to

8For a discussion of the ABM documentation standards, and the ODD framework (“Overview,
Design concepts and Details”), see Grimm et al. (2006), as well as Chap. 9 in this volume.

9The problem here is not the empirical basis of such models — quite the contrary — but unrealistic
mechanisms. Particularly problematic are Markovian assumptions of the lack of memory, where
simulations are based on homogenous matrices of transition probabilities. Examples of micro-
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look at how these different levels of aggregation interact, in order to better explain
social facts. Simple aggregation of individual-level rules to generate and validate
macroscopic patterns — as often implicitly done in existing agent-based models — is
not sufficient (Conte et al. 2012).

In population sciences, there are many systems comprised of interacting indi-
viduals, groups, or institutions which are worthy of enquiry. Population sciences
can become model-based by making those interactions between different levels in
population systems an explicit object of interest. In so doing, our models would
become capable of representing complex, interacting behaviours at various levels,
and investigating the roles of different elements of population systems in shaping
the observed demographic outcomes. Such models of multilevel interacting systems
would have clear potential for contributing to theory-building within population
sciences, and perhaps even social science more broadly.

Recent years saw an ever-increasing interest amongst population scientists in
new modelling methodologies for complex social realities, many of these inspired
by agent-based computational approaches (see Billari and Prskawetz 2003; Aparicio
Diaz et al. 2011; Kniveton et al. 2011; Willekens 2012; Bijak et al. 2013; Silverman
et al. 2013). The movements toward computational complexity have been matched
by a shift coming from the other direction, as agent-based modellers have branched
out into areas traditionally covered by statistical approaches in population science
(see e.g. Axtell et al. 2002; Geard et al. 2013).

Of course, model-based approaches come with their own shortcomings — in
particular, models attempting to represent the complexities of particular population
systems are naturally dependent on sensible theories regarding these systems, and on
their representation. However, such theories are not only many and varied, but can
be notoriously difficult to formalise (Kliiver et al. 2003), and validate'?, especially in
social science realms (see Moss and Edmonds 2005). Without such theories, it may
be difficult to build an adequate model of the systems under study. A possible way
forward from this conundrum is to reconnect to the classical research programme
which promotes some sort of functional-mechanistic analysis (Franck 2002a); this
will be discussed in the next sections of this chapter.

A clear strength of population science, and one of the keys to its success, is its
applied character, responding to the direct needs of policy makers (Xie 2000; Mor-
gan and Lynch 2001; Hirschman 2008). The methodological developments outlined
above can only further this practical, utilitarian aspect of demographic enquiries.
The Bayesian approach naturally allows formal statistical decision analysis, which
can offer practical support to various decisions which require numerical input, for
example for planning purposes (Alho and Spencer 2005; Bijak 2010). On the other
hand, model-based approaches, especially coupled with statistical analysis, allows

simulation models that allow for heterogeneous transition patterns or mechanisms, e.g. of
partnership formation, include SOCSIM (http://lab.demog.berkeley.edu/socsim/).

10After Franck (2002a), we interpret validation as a continuous process, rather than an achievable
state.
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the decision makers to trial a range of policy “levers” in a simulated environment.
Such experimentation in silico would consist of generating coherent scenarios,
where mechanistic rules governing the behaviour of simulated individuals would
be coherent with the empirical patterns for statistical individuals observed through
a scientific lens (Courgeau 2012).

Demography needs more simulations to be able to answer new research ques-
tions, but in order to suit the goals of the discipline, such simulations would
need to be grounded in the observables, and the models would need to be built
inductively (bottom-up), rather than starting from hypotheses and assumptions. To
address this challenge for the future of demography and population sciences we
propose a model-based research programme, firmly rooted in the wider functional-
mechanistic approach. If agent-based models, as introduced above, are to belong to
this programme, they need to be empirically based and scientifically rigorous.

As a part of this research programme, we posit that demography should
investigate the interactions between various population systems and the functional
mechanisms behind them. The interactions and mechanisms are best described by
formal models based on data and theory-based rules, derived from observations of
system properties by following the Baconian inductive method. This approach can
augment the capabilities of the multilevel paradigm, whilst broadening the scope of
scientific exploration in demography. In particular, it can enable population sciences
to enhance the theoretical base of the discipline, whereby theories represent formal
conceptual systems rather than necessarily empirical ones (Franck 2002a; Burch
2003Db).

2.4 Conforming Model-Based Approaches to the Classical
Scientific Programme Following the Baconian Inductive
Method

How may the model-based approaches we propose for demography conform to the
classical scientific research programme? This programme is at present generally
ignored by social scientists — as well as overlooked by philosophers of science —
because it has been distorted by the empiricist tradition in philosophy, where the
empiricism promoted by David Hume and John Stuart Mill has substituted for the
classical empiricism. Francis Bacon’s programme was shared by the other pioneers
of modern science, Galileo, Descartes, Newton, Huyghens, Graunt, and others. This
programme tacitly continues to guide research in the natural sciences today just as
in the past, yet in the social sciences it is often abandoned.

To start with an illustrative example, consider the famous model of a neuron
(McCulloch and Pitts 1943), the ancestor of the now-ubiquitous artificial neural
networks, which is shown in Fig. 2.1.

The model in Fig. 2.1 represents one neuron. Yet what is represented? Not the
soma, nor the axon, nor the dendrites, nor the gene nuclei, nor the membrane, nor the
shape of the neuron, nor the way that the various parts of the neuron work together.
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Fig. 2.1 The McCulloch and X
Pitts (1943) model of a single Wy
neuron (Source: Adapted X,
from Franck (2002a, p. 143), Wy

with permission of Springer)
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Starting from the observation of some main properties of the neuron, McCulloch
and Pitts tried to represent its functional architecture, without which these properties
could not come about as they do.

Five functions were identified: receiving the stimuli x;, x», ... xy; weighting
them by synaptic coefficients wy, wp, ... wy; calculating the sum of weighted
stimuli received (p); fixing a threshold of stimulation (o) below which transmission
does not occur; and finally computing the exit signal s. These functions are arranged
in a specific order: the weighting of stimuli must precede the calculation of the
weighted sum, and so on. Thus, more precisely, the McCulloch and Pitts model
represents the functional structure of the process generating the observed outcomes
of the neuron. Note that such a model ignores the combination of factors or causes
that fulfil these functions — it is wholly conceptual.

Let us now have a look at reverse engineering'!. Reverse engineering follows
a similar path: inducing the design of a device from its end products. Its original
aim is to make a new device that does the same thing as the device studied. At first
glance, modelling the functional structure of a device from its products in order
to make similar products through new procedures is very far from what McCulloch
and Pitts achieved, since they were not driven to manufacture some artificial neuron.
Yet they have followed the same method: they inferred from the neuron’s properties
the structure of functions without which these properties could not be as they are
(Franck 2002b).

This method is the one which has been conceived by the classical programme of
scientific research: from the sustained observation of some property of nature (light,
heat, motion . . . ) we try to infer — to induce'? — the functional structure — in classical
terms the axiom, form, principle, or law — which rules the process generating this
property. We may, at present, qualify this method as functional-mechanistic to

" Reverse engineering denotes today diverse research practices varying with the areas of applica-
tion. We refer to its initial sense.

12Bacon’s induction is regularly confounded with induction by philosophers in its usual sense of
generalisation. Bacon wrote: “In establishing axioms, another form of induction must be devised
than has hitherto been employed, and it must be used for proving and discovering not first principles
(as they are called) only, but also the lesser axioms, and the middle, and indeed all. For the induction
which proceeds by simple enumeration is childish; its conclusions are precarious and exposed to
peril from a contradictory instance; and it generally decides on too small a number of facts, and on
those only which are at hand” (Bacon 1620; aphorism 105).
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underline that it aims to model the structure of functions that rules the mechanism —
the process — generating some property of nature.

For social properties, the method involves modelling the structure of the social
functions (the ‘first’ one, the ‘lesser’ and the ‘middle’ in Bacon’s terms) that rule the
social process generating these properties, and without which these social properties
could not become as they are. For example, regarding variations of population
size and structure, demographers uncovered the ‘first’ principle of the generating
processes, namely some combination — which remains to be discovered — of three
functions: fertility, mortality, and migration.

The ‘law’ of supply and demand, as another example, is the ‘first’ structure of
functions which was inferred (induced) by Adam Smith from the observation of
markets: it rules the process of social exchanges generating the market. Karl Marx
inferred the general structure of functions ruling the process that generates industrial
production from a thorough historical study of the technical and social organisation:
this ‘first’ principle consists of separating labour and capital. Finally, Durkheim
inferred the integration theory from a sustained statistical analysis of the differences
in suicide rates between several social milieus: the social process which generates
suicides, whichever their causes, is ruled by the integration of the individual agents.
The application of the classical programme led to these prominent theoretical results
at the height of social sciences.

Next, the functional structure governing the process generating some social
property, once established as well as possible, may guide us in identifying and
modelling the social factors which — in some singular, historical situation — have
contributed to that process. We may restrict our causal investigation to those
variables which plausibly contributed to the combination of functions required
for generating the property under study. For example, what social factors (events,
agents’ behaviour, etc.) led to a weakening of the integration of people in some
social milieu, and contributed to the increase of suicide? Another example: when we
investigate the ups and downs of the market, we no longer ought to interrogate every
plausible factor influencing these variations; instead, it may suffice to investigate and
model the factors implied by supply and demand. In demography it is the functions
of fertility, mortality and migration which actually delimit its parameter space and
channel the empirical investigation of demographic properties.

Against this background, we propose that the model-based research programme
should proceed in accordance with the classical inductive programme, which we
qualify as functional-mechanistic. Model building should start with a collection
of all relevant empirical information about the social property under study. This
would serve as the basis with which to infer the formal functional structure of the
social property in question. Once the structure is modelled it can serve to guide the
modelling — also simulation modelling — of the interactions between the systems
of individuals, groups and institutions, combining the bottom-up and top-down
relationships, and feedbacks between them (Franck 2002a).

The key stages of the inductive functional-mechanistic approach are shown
in Fig. 2.2. The solid arrows denote the four main stages of the process. Their
implementation leads to the execution and analysis of a computational model



2 Model-Based Demography: Towards a Research Agenda 43

Observation of Inferring the Identification
properties of _| underlying | of contributing
the demographic - 7| functional "| social factors
processes structure (variables)
A
: v
Guidance for Computational Conceptual &
data collection R model design, | mathematical
and further execution and | modelling of the
observations analysis structure

Fig. 2.2 Key stages of the inductive functional-mechanistic approach to model-based demography

designed on the basis of a functional structure of the population processes under
study, and derived from empirical observations. The dotted lines depict a possible
feedback: the model results can guide the process of further data collection on
particular aspects of the process that have not been included in the model. Obtaining
more information would enable revisiting the inferred functional structure, as well
as the resultant conceptual, mathematical, and computational models. Thus, the
proposed approach could be seen as iterative, with successive modelling iterations
enabling the researchers to identify gaps in existing knowledge and to fill these gaps
by conducting further observations of the processes of interest.

The proposed approach is in line with the suggestion of Conte et al. (2012, p. 342)
that ““... data can be used to check and validate the results of simulation models
and socio-economic theories, but a further step in using them is to take them into
account already at the modelling stage.” A careful experimental design becomes
therefore a crucial part of the modelling process, and statistical methods, such as
those discussed earlier in this chapter, need to become embedded in the model
construction process, rather than being used only as a validation tool.

2.5 Towards a Research Agenda for Demography

The resulting research agenda we would like to propose for demography is based
on three key pillars: (1) adherence to the classical programme of scientific enquiry;
(2) enhancement of the ways in which demographic phenomena are measured and
interpreted; and (3) the use of formal models, based on the functional-mechanistic
principles, as fully-fledged tools of population enquiries.

According to several authors demography should become interdisciplinary in
order to compensate its perceived shortcomings (e.g. Petit and Charbit 2012).
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Demography should borrow information, methods, and theories from other social
sciences. Although we approve a cautious recourse, when needed, to other dis-
ciplines, we have to underline that the solution to the weaknesses of current
demographic practices cannot be found in theories and methods borrowed from
other social sciences, since the last share similar weaknesses (e.g. Moss and
Edmonds 2005). All of these are confronted, just as in demography, with the
complexity of society; they suffer from wuncertainty in collecting and treating
information often more than in population sciences; and their theories are hard
to settle. The history of social sciences since the mid of the twentieth century
teaches us that many innovative ‘theories’ had a generally short life, or at best
remain heavily controversial. Moreover, the flowering of such ‘theories’ nourishes
the proliferation of heterogeneous explanations and seem to increase the complexity
and the uncertainty which undermines social sciences.

On the contrary, the first of the pillars of the proposed research agenda —
the classical programme of scientific research — helps overcome the complexity
of society, it reduces the uncertainty of the models we are building and of the
explanations we are advancing, it establishes the theoretical component of research,
and it discloses the way to generalize social models, something which is reputed
to be an inaccessible goal in the social area. This is one of the reasons why
we recommend applying this method in particular in demography and population
sciences.

The belief that knowledge is something like a copy or an image is widespread.
The classical programme conveys a different concept of science: scientific research
is not intended to improve or to extend our image of reality. Instead, scientific
research consists of discovering the principles governing the processes that generate
some properties of nature or of society. We need to collect the best information
on some property of nature — not about nature as a whole — in order to discover
the principles governing the process that generates this property. The same applies
for the social sciences: we need to collect the best information about some social
property of human populations, not about human populations as a whole. Moreover,
it is not merely information about this social property that will reinforce our
scientific knowledge. Collecting information must be augmented by research on
the principles — i.e. the combination (or structure) of functions — commanding the
process generating this property. When selected in this way, the required informative
intake varies with the property under study and it is drastically reduced, restricting
at the same time the complexity of the task. The classical research programme also
restricts the theoretical approach to some social property to the modelling of the
structure of functions necessary to generate this property.

This approach provides a major criterion for selecting information, by restricting
our causal investigation to those variables which plausibly contributed to performing
the combination of functions required for generating the property under study.
This is yet another way to overcome complexity that is delivered by the classical
programme of science.
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Assumptions are an important source of uncertainty and nourish the prolifer-
ation of explanations in the social sciences'?. The classical research programme
recommends setting aside any assumptions in the guiding of scientific investigation
(Baconian ‘Idols’). Thus it eliminates the root of any uncertainty arising from
assumptions. Managing research without assumptions seems difficult — but can be
done if we resist the urge to make hypotheses. Newton argued that “Hypotheses are
not to be regarded in experimental Philosophy” (after Ducheyne 2005, p. 124). This
way of thinking is not in fashion today in the social sciences, yet it is commonplace
in the natural sciences.

The classical research programme substitutes induction for the hypothetical-
deductive approach. As we have seen, inductive research in its classical sense
consists in inferring, from the sustained observation of and experimentation on some
property of nature or population, the functional structure — in classical terms the
axiom, form, principle, or law — which rules the process generating this property,
and without which this property could not come about as it does. This criterion of
necessity which guides the inductive investigation of the functional structure ruling
the social processes which generate some social property is the best guarantor of the
relevance of some theory, be it in the natural or in the social sciences.

Besides reducing by far the nagging worries of complexity and uncertainty
characterising the social sciences today, the classical programme of science provides
another huge advantage. By focusing on the process — or ‘mechanism’ — generating
some natural or social property, the functional structure is treated independently
of the causal structure. Modelling each of these structures separately allows us
to disclose the way to generalise social models. Causal structures may never be
generalized since populations are diverse and changing; causal structures are at
best relatively constant. But a functional structure may be generalized in the sense
that, whenever the same property occurs, the functional structure of its generative
process ought to operate, insofar it has been established that this structure is really
required for the property to appear'*. This is the core sense of the universality and
of the necessity of natural laws, but it has been regrettably distorted by the Humean
empiricist tradition. For the founders of modern science the term law was simply a
metaphorical synonym of principle'>. Thus laws are fully attainable by the social
sciences, just as by the natural sciences, insofar we are willing to return to the
classical concept of scientific laws.

The second pillar of the tentative research agenda we wish to advance comprises
a question: how can we make better use of the measures achieved in demography?

3Formulating and testing hypotheses is not wrong, in our opinion, as long as it is based on
empirical observations. However, throughout the present chapter we plead for abandoning the
hypothetical-deductive approach and for substituting it with the classical induction.

4The property itself may not be generalized, of course.

5The principles are traditionally named theories; this tradition goes back to Plato’s theoria, and
reserves to the term theory the restricted sense of a corpus of principles. This is far from its

present use describing as a ‘theory’ every sort of conceptual hypothesis, or model, or explanatory
‘mechanism’.
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One of the main tasks of demography is to measure human populations: their
size, density, rate of change, composition, various distributions, as well as the
possible causes and consequences of changes in these factors'®. In order to achieve
this, demography rests largely on statistical analysis. Yet, measuring provokes an
increasing dissatisfaction today. This is due, in our opinion, to a distorted view of
measurement and quantification. Measuring population properties is judging, by
way of comparisons, the amplitude of these properties regarding their potentialities.
Measuring also guides the induction — in the sense of the classical research
programme — of the principles governing these properties.

The term “potentialities” refers to what possible effects something might gen-
erate in certain circumstances. These potentialities are what we have in mind,
explicitly or not, when we are measuring — or judging — some social property!”.
Measuring may not be confounded with — nor reduced to — the mathematical,
statistical or other means by which measuring is carried out (for example censuses,
surveys or vital registration systems; see Courgeau 2013).

In essence, we ought to multiply the measures of the social properties under
study — all sorts of measures which are adequate — and to improve the quality
of our measures in order to reinforce the quality of our judgments about their
potentialities. This recommendation is exactly the opposite of what was proposed
for the future of demography in recent years by some demographers (e.g. Tabutin
2007; Charbit and Petit 2011; Petit and Charbit 2012, and others): they wish to
reduce the importance of measuring in demography and to increase our confidence
in judgments — assumptions — conceived without measures in other disciplines, and
somewhat abusively called theories.

Now we reach the third pillar of our tentative research agenda: to promote
the model-based work programme, based on the functional-mechanistic approach
outlined in this chapter. This approach carries with it substantial promise: it
complements the four extant paradigms while incorporating insights gained from
model-based science. Besides, as we see in other areas of model-based science,
the deployment of this kind of approach likely will influence future data collection
in demography and other population sciences, not only from surveys and other
traditional sources, but also controlled experiments (Conte et al. 2012).

Model-based approaches provide us with the means to expand the range of
benefits already provided by multilevel modelling. We gain deeper insights into
the interactions between various population systems, and we also gain the capacity
to explore the parameter space of the simulations by generating “what-if” sce-
narios. Simulation parameters — once they result from the functional-mechanistic
approach — govern the way in which the complex, interacting social processes in

16See for example the following definition of demography (IUSSP 1982): “the scientific study of
human populations primarily with respect to their size, their structure and their development; it
takes into account the quantitative aspects of their general characteristics”.

17Plato, who was familiar with the concept of number developed by the Pythagoreans, developed
at length the idea that measuring is judging, and that we ought to recourse to measures in order to
act wisely in politics as well as in private life (see Bassu 2009, 2011).
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the model work, and therefore exploring the parameter space enables us to inves-
tigate numerous such scenarios, which could represent policy changes, individual
behavioural changes, societal-level changes, and similar (Silverman et al. 2013).
Given the construction of these simulations, running them under varied scenarios
can illustrate the unforeseen, non-linear impact of changes to these complex
processes. This scenario generation capability, when coupled with uncertainty
quantification, allows us to extend the utility and policy relevance of empirically-
grounded population models beyond what is accommodated by the traditional
approaches. In addition to addressing the ecological and atomistic fallacies, which is
already the case in the current multilevel paradigm, we could now analyse different
layers of interactions between population systems.

Such approaches, relying as they do upon inference about systems and inter-
actions between them, are also well-suited to integrating both quantitative and
qualitative data into the same simulations, as mentioned before. For example,
qualitative information can be gathered from individuals within the population
under study, as a means of gaining understanding regarding individual behaviours,
intentions, and goals, and these can inform the behavioural rules in the simulated
population. Further, qualitative data can even be used to guide the construction or
modification of the model itself (e.g., Polhill et al. 2010).

In this chapter, we have discussed what we believe are the key elements of model-
based approaches — such as their inductive character — that would be necessary for
them to become a real addition to the toolbox of population sciences. If the future
demography is to examine complex, multilevel interactions of different elements
of population systems seriously, computational approaches are the methodology of
choice. However, the models constructed would need to conform to the rigours of
scientific enquiry, rather than being based on arbitrary assumptions which often
lack empirical basis. The model-based work programme, rooted in the functional-
mechanistic approach, offers a general analytical framework to guide this process.
Besides, more attention needs to be paid to the role of different levels of analysis,
and interactions between them. If this is done correctly, the multilevel paradigm will
gain very powerful analytical tools to study new research questions, related to the
behaviour of complex population systems.

The next step in developing model-based demographic approaches must consist
of proposing some concrete solutions, analytical formalisms and practical guidelines
for the modellers. Although this topic remains beyond the scope of the current
chapter, in the literature there are already some promising suggestions in that regard.
For example, Casini et al. (2011) have proposed using recursive Bayesian networks
as an analytical formalism for building “models for prediction, explanation, and
control”, which are capable of describing functional mechanisms and causal
relations, and of analysing uncertainty in coherent, probabilistic terms. In practice,
the process of model-building can be iterative, as shown in Fig. 2.2: we could
start with a first approximation of a model that reproduces some well-established
qualitative features of the modelled phenomenon (‘stylised facts’), but should not
stop there: the model could then be refined by including increasingly more data as
they become available. These propositions are clearly worthy of investigating in the
demographic context.
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Of course, it is unrealistic to expect that every piece of model-based demographic
research should contain all the elements discussed above. However, as future studies
progress — and as populations under study continue to shift following ever-changing
and interacting social processes — model-based approaches to demography will
bring about further opportunities for constructing and verifying the models. In this
respect the linkage between empirical data on population structures and modelling
the social mechanisms and interactions at the root of these structures becomes ever
more important — and perhaps more powerful.
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Chapter 3
The Role of Social Interactions in Demography:
An Agent-Based Modelling Approach

Alexia Prskawetz

3.1 Introduction

As we argued 10 years ago (Billari and Prskawetz 2003), we may still conclude
that demographers have not been very active in the field of research that uses the
computational approach to study human behaviour. This is all the more astonishing
since demography offers itself quite naturally for such an approach. Demography
looks at human behaviour at the individual level and how this behaviour evolves
over the individual life cycle and is shaped by the socio-economic environment.
During the last years consensus has been reached, and could be supported by
empirical evidence, that individual behaviour cannot be explained and understood
in isolation from the social network one is linked to (e.g. Aberg 2003; Montgomery
and Casterline 1996). These networks may consist of family members, friends and
other peer groups which will have an impact through social learning and social
influence on each other. However, the formalisation of such network effects to
explain individual demographic behaviour lags behind the empirical evidence or
is often simplified in terms of macro-level diffusion mechanisms that do not allow
understanding the mechanisms of social network effects from the bottom up. Agent-
based models allow to integrate such network effects into models of individual
demographic decision processes and to build up the macro-level demographic
patterns (e.g. aggregate fertility rates, marriage rates, etc.) from the bottom up.
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Before we present, in the next section, three examples of our own work relating
to social interaction and demographic behaviour, we briefly summarise the main
tasks and requisites of an agent-based model (ABM).

We start with a quote from Axelrod (1997, p. 4) “Whereas the purpose of
induction is to find patterns in data and that of deduction is to find consequences
of assumptions, the purpose of agent-based modeling is to aid intuition.” ABMs
constitute computational laboratories that help our understanding of processes
underlying the empirical observation of demographic behaviour. As such models
are based on individual agents, they are called agent-based models. Prediction is not
the purpose of these models, but the emphasis is rather on explanation.

It is important to confine the task of agent-based modelling. The aim is not to
understand why specific rules are applied by individuals but to presuppose specific
behavioural rules and study whether these rules at the micro level can explain the
macro-level pattern we empirically observe. For example, the famous model of
Schelling (1971) (see also Schelling 1978) aims to explain the spatial segregation
pattern of individuals observed at the macro level based on specific decision rules at
the individual level.

As outlined in Axelrod and Tesfatsion (2006), ABM focuses also on how
people interact and not just how they behave. The interaction of agents leads to
emergent properties that could not be deduced from simple aggregation of individual
behaviour. ABMs help in “testing, refinement and extension of existing theories
that have proved to be difficult to formulate and evaluate using standard statistical
and mathematical tools” (Axelrod and Tesfatsion 2006, p.1651). But also the
individual heterogeneity is an important aspect of an agent-based model as well as
the possibility that individuals can adapt and learn through time (Gilbert 2008). This
deviates clearly from the representative-agent model that assumes static or dynamic
predefined rules.

The fact that an ABM needs to be implemented as a computer program requires
precision. On the other hand, the mathematical tractability is less of a limitation
compared to formalised theoretical constructions. Indeed, there is often a wide gap
between theory and techniques in demography and ABMs may help to close this
gap. For example, demographers may present interesting theories of behaviour and
good statistical models but frequently the link is missing. Hence, many statistical
models suffer from an insufficient theoretical basis. Moreover, ABMs may be
regarded as a tool to test theories for which data are not easily obtained or not
available at all. Examples are subjective aspects of demography such as values,
norms, psychological aspects, cognition or emotions where we often lack concrete
data but argue in theories about their importance for explaining human behaviour.

The three examples we present in Sect.3.2 should convey main properties of
an ABM as outlined above. Based on rules at the individual level we aim to
explain the macro level demographic pattern of marriage (Sect.3.2.1) and fertility
(Sect.3.2.2). The case of ABMs as computational laboratories is best presented
by our third example (Sect.3.2.3) where we study the role of family policies for
fertility. Common to all three examples is the fact that individuals are heterogeneous
and interact within social networks.
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3.2 Three Examples

Based on three of our papers we present how agent-based models can be applied
to investigate the role of social interactions and social learning to explain macro-
demographic phenomena like the age-at-marriage curve (Billari et al. 2007), age-
specific fertility rates (Aparicio Diaz et al. 2011) and the role of family policies for
fertility (Fent et al. 2013). In particular we focus on the various steps that need to
be followed when building up an agent-based model. These include the discussion
of the macro-demographic phenomena to be explained and the underlying micro-
demographic mechanisms, the implementation of behavioural rules of the model in
a mathematical representation, the setup of the simulations and finally a verification
of the simulation results with the macro-demographic phenomena to be explained.

3.2.1 The Wedding Ring: Mate Search and Marriage
3.2.1.1 Theory and Assumptions

The marriage market constitutes an intuitive case study to apply agent-based
modelling as it is based on individual agents that interact and may follow specific
rules how to search for partners. The aim of our model is to explain the typical shape
of the aggregate age pattern of marriage as it emerges from the micro dynamics of
individual agents. The benchmark against which we test our model is the shape
of the age-at-marriage hazard function (cf. Billari et al. 2007, Fig. 1) which has a
skewed unimodal shape where the rise of age-specific probabilities is faster than its
decrease.

While demographers have mainly applied statistical and mathematical models at
the macro level to explain and model the age pattern of marriage, psychologists and
economists have studied and modelled the process of partner search at the micro
level. Applying agent-based models allows us to combine both approaches. Such
models account for the macro-level marriage pattern starting from plausible micro-
level assumptions and allow for the interaction between potential partners.

To model the social diffusion of marriage at the micro level we assume that each
agent is embedded in a social network. Members of the agent’s social network
(relevant others) who are already married may influence the agent’s willingness
to marry, and the chance of actually marrying will depend on the availability of
partners. These mechanisms are also underlying the macro-level diffusion marriage
model by Hernes (1972). Marriage rates are therefore high within social networks
that have a high share of married and unmarried agents. To allow for the fact that the
set of relevant others may change during the life course we assume that individual
characteristics such as the age of the individual agent will determine the size and
characteristics of the set of relevant others. These assumptions are based on stylised
empirical facts that show that the number of relevant others increases during youth
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and adulthood and thereafter is reduced again. Based on empirical facts that show a
strong homogamy of marriage within socioeconomic groups, we assume that the
social network is determined by individual characteristics such as age, kinship,
spatial location, education, etc. To yield a parsimonious representation of the social
network we restrict the set of characteristics to the two-dimensional space only, with
age and spatial location as the two key characteristics. A further assumption is that
we neglect divorce, modelling marriage as an irreversible process.

3.2.1.2 Implementation

One of the most difficult steps is to formalise the various theories and assumptions
in a way that they can be implemented in a computer simulation.

We start by defining the world in which agents move. For this we locate agents
along a torus and establish each agent with two characteristics: a spatial location
¢ € [0, 2] along a circular line on the torus and a second characteristic, the vertical
location on the torus, which may represent the age of the individual (cf. Fig.3.1).
The geometry of a circular line gave rise to naming it the “wedding ring” and it has
the advantage that the neighbourhood for each agent is contained within the circular
line. We next define the set of relevant others as a two-dimensional neighbourhood
that is symmetric w.r.t. the location and asymmetric w.r.t. the age of the agent. The
time scale of our simulations is therefore a calendar year that corresponds to the age
of the agents. The share of married persons in the network determines the social
pressure to get married. We allow that also in case of zero married couples in the
set of relevant others, social pressure is positive, and we assume that social pressure
is increasing with the number of married individuals in the set of relevant others
and follows an S-shaped function. The social pressure itself together with the age
of the agent determines another set of relevant others within which an agent looks
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Fig. 3.1 Implementation of the agent-based model (Billari et al. 2007, p. 65)
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for partners. Based on stylised empirical facts we assume that age influences the
extent of this region in a non-monotonic way, being highest between ages 21 and
38. We only allow marriages between different sexes and assume a mutual search,
i.e. two agents will marry only if both agents are part of the set of relevant others
of the other agent. Once married, agents will have children according to a set of
predetermined age-specific fertility rates where we adjust fertility to keep the total
population constant. Children born to married couples are located near parents and
their characteristics are initialised in a similar way as for the initial population.

Next we need to define the characteristics of each agent, formalise the specific
rules of agents and define the various simulation steps. At this stage a flow diagram
may be helpful to follow the working of the model (Fig.3.2). Each agent is
characterised by a numerical identifier, year of birth, sex, age, spatial location,
length of symmetric interval in which the agent searches for potential partners,
social pressure, marital status, identifier of partner if married, marriage duration,
set of relevant others and set of potential partners. Note that all characteristics are
time-dependent except the birth year, sex and the numerical identifier.

To run the simulations we initialise the starting population by the age distribution
of the US in 1995 and based on the same population we assign the sex and marital
status randomly. For the initial population we also assign the marriage duration
randomly to each agent. We run the model for 150 years. To define the set of relevant
others we assume five kinds of agents that differ in their preference as to whether
they prefer others in the same, younger or older ages and combinations of these.
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Fig. 3.2 Flow diagram (Billari et al. 2007, p. 70)
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Next we randomly assign agents a type, and for each type we randomly choose the
midpoint of each age interval, the width being again a random variable. Among
this set of agents we choose a random number of agents to be their relevant others.
The social pressure is then determined by the number of relevant others that are
already married. To define the space of potential partners we transform the number
of the social pressure into a distance: d = sp(pom) * m(N) * ai(x), where the social
pressure sp increases with the share of relevant others being married as denoted by
pom, m(N) denotes a factor that depends on the initial size of the population N and
ai(x) reflects the fact that age x determines the network size with ai(.) presenting
a non-monotonic function first increasing in age and then decreasing again at older
ages. The functions sp(.) and ai(.) are both bounded in the interval [0, 1]. Potential
partners are therefore in the spatial range of [¢ — d, ¢ + d] and the age range [x —
sp(pom) * ai(x) * ¢, x + sp(pom) * ai(x) * c]| where we assume the positive constant
¢ to be equal to 25. Hence, the maximum age difference for potential partners will
be 25 years.

In each simulation step, the agent ages by one year and the final age at which
agents die is set to 100. Agents start to search for partners at age 16. In every
simulation step, agents choose the set of relevant others which then determines the
social pressure. The arrow from the aging box to social pressure indicates that the
specific value of the social pressure is age dependent. Next, the agent determines
the set of potential partners which will depend on the social pressure. Within the set
of potential partners the agent looks for a partner. If the agent finds a partner it is
checked whether the agent herself is in the set of potential partners of her partner in
which case the two agents get married. Once married the agent gives birth to new
agents according to an exogenously fixed age-specific fertility rate (we applied the
US age-specific fertility rate of 1995). If the agent is not married in one simulation
step it ages and starts the search for relevant others and potential partners again.
Otherwise, when the agent is married it just follows the ageing process over its
remaining life cycle.

3.2.1.3 Simulation

The software used for the simulations is NetLogo. To obtain smooth simulation
results we set the initial population to 800 and take the average over 75 consecutive
cohorts and 100 simulation runs. To validate our simulations we test whether our
model can replicate the qualitative shape of the age-at-marriage curve observed at
the aggregate level. In a next step we can then investigate which of our assumptions
are most important to capture the qualitative shape of the age-at-marriage hazard
curve. Indeed, agent-based models represent a toolkit to perform such counterfactual
experiments. Our simulation results (cf. Fig. 3.3) demonstrate that our model is able
to reproduce the empirically observed right-skewed bell-shaped distribution of the
age-at-marriage hazard. However, if we ignored the age dependency of the set of
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Fig. 3.3 Hazard of marriage in a population of simulated agents with alternative settings for social
pressure. (a) Women (b) Men (Billari et al. 2007, p. 72)

relevant others or/and used a linear or constant functional form of the social pressure
as it depends on the married couples in the set of relevant others, the shape of the
age-at-marriage hazard rate would be very different. Further sensitivity analyses
w.r.t. the asymmetry of the age interval that determines the set of relevant others
show that either extreme—no asymmetry or a much higher asymmetry—implies
an increase in the proportion of married agents within the set of relevant others
compared to the benchmark simulations. Moreover, the exact form of the S-shaped
social pressure function will also determine the quantitative shape of the age-at-
marriage hazard.



60 A. Prskawetz

3.2.1.4 Conclusion

Our model of the marriage market nicely demonstrates how the shape of the age-
at-marriage pattern emerges as the outcome of individual behaviour and social
interactions. Not only can we replicate the qualitative shape of the age-at-marriage
hazard but our model allows us to discern the most important characteristics of the
network structure that may explain the qualitative shape of the marriage process.
For a quantitative analysis, however, we would need an empirical validation of our
parameters for different societies.

The mechanisms we present are in accordance with the work by Dixon (1971),
who argues that three key variables are important in determining the marriage
pattern. These include the availability of mates (represented by the set of potential
partners), the feasibility of marriage (represented indirectly through the initial
distribution of ages at marriage) and the desirability of marriage (represented by
the influence of the social pressure).

3.2.2 Transition to Parenthood: Social Interactions and
Endogenous Networks

3.2.2.1 Theory and Assumptions

In fertility theories, diffusion processes have long been shown to underlie the
observed fertility decline (e.g. Palloni 1998; Watkins 1987; Kohler 2001). Fertility
behaviour not only depends on family background variables and the life course
path, but also on the behaviour and characteristics of other individuals which are
linked through social networks. Within such networks, beliefs, norms, services etc.
are exchanged, learning from others takes place and agents may feel induced to
conform to prevailing norms. However, the formalisation of social interactions to
explain fertility behaviour is missing in theoretical demographic models. Agent-
based models allow testing the importance of social interaction effects and the
prevailing micro and macro feedback to explain actual fertility patterns. In Aparicio
Diaz et al. (2011) we have set up an agent-based model to study the role of
social interaction for the transition to parenthood and in particular we focused
on endogenous network formation according to Watts and Strogatz (1998) and
Watts et al. (2002). More specifically we assumed that age and intended education
determine the affiliation to a social network. The share of mothers within the social
network positively impacts the desire to have a child for the agent. We then also
applied our model to project age-specific fertility rates for Austria.
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3.2.2.2 Implementation

To formalise our model we need to first define the characteristics of our agents. We
assume a one-sex model with only female agents and distinguish agents by their
age, intended education (which we assume to be already known at childhood) and
parity. We distinguish six stages of parity ranging from 0 to 5+ and three groups of
education: primary and lower secondary, upper secondary, and tertiary. Each agent
is furthermore characterised by a numerical identifier and her social network. Age
and intended education determine the affiliation to a social group. Agents choose s
members in their social network. Her mother and her siblings are also part of her
social network. These selected members of the social network will then influence
the birth probabilities of the agent. We assume the reproductive period to start at age
15 and end at age 49 years. The maximum age of agents is set to 100 years.

To initialise our model we assume an age distribution that reflects the Austrian
female age distribution and set the intended education similar to the age-specific
educational distribution of Austrian females at age 30. To set the parity level we
refer to the age and educational parity distribution of Austrian females and assign
an age at first birth based on the Austrian female population in case the agent is of
parity greater than one.

Next we need to define the various simulation steps, among them the formation
of the endogenous social network and the feedback rules between the micro and
macro behaviour.

In every simulation step (that equals one calendar year) agents age and are at
risk of dying. At age 15 we assume that a social network is formed. Based on the
social influence of members of the social network si;, where the subscript i denotes
the i-th agent, the empirically observed age and parity-specific birth probabilities
bpr,(x, p) are altered, with x denoting age and p denoting parity. In case of parity
greater than zero we also postulate that birth probabilities are related to the age
of the youngest child xc; where the relation is represented by the functional form
g(xc;) that is decreasing in xc;. The average of the birth probabilities at step ¢ at the
individual level determines the new updated birth probabilities at the macro level
for step # 4+ 1. To sum up, at stage ¢ individual birth probabilities are determined as
follows: bpri(x, 0) = bpr,(x, 0)si; for parity zero and bpr;(x, p) = bpr,(x, p)si;g(xc;)
for parity greater than zero. In stage ¢ 4+ 1 the new macro-level birth probabilities
are given by bpr, | (x,p) = bpr,(x, p)si,(x, p).

To endogenously set up the social network we define a distance d;; between any
two agents i and j that is determined by their difference in education e and age x:
d; = €|e;—e;j| +|x;—x;j| where € is a constant to adjust for the fact that the maximum
age difference is much higher than the maximum education difference. The agent
then chooses a distance d with probability pri(d) = c exp(—ad), with the parameter
o denoting the degree of homophily and ¢ representing a normalisation parameter.
High values of « imply that agents chosen are more similar. Agents are searched
for until the social network size is equal to a desired number s which itself is drawn
from a log-normal distribution with a given mean of s. In addition to friends chosen
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Fig. 3.4 Social influence function (Aparicio Diaz et al. 2011, p. 569)

by this procedure, each social network also contains the mother of the agent and her
siblings. Furthermore we assume a mutual friendship relation in the sense that the
selecting agent is also added to the social network of the selected agents.

We assume that the share of mothers within the social network will induce a
positive influence on the agent’s parity transition and implement the social influence
function as a threshold function similar to Granovetter (1978) and Schelling (1978).
To account for different education-specific network effects we model the social
interaction so as to vary by educational level of the agent assuming different
intensities of social influence by education. Formally we model the social influence
for an agent of parity p as an S-shaped function (cf. Fig. 3.4) which increases in the
difference between the share of mothers at higher parity compared to the agent, in
her social network 7 and in the entire population w*: si = 1+§ [%&f;)ﬁ)) -1
The parameters 8 and & measure the intensity of the social influence. For & we
use different values for different educational groups and for different parities. We
assume higher values for higher educational groups and lower values for higher
order births representing the fact that higher educated women conform more to
social pressure and social pressure decreases with higher order births. We assume
that agents are only influenced by members in their social network with higher
parity. Only when the share of mothers with higher parity in the social network
differs from the corresponding share in the whole population will there be a positive
social influence.

3.2.2.3 Simulation

Our simulations are based on the Austrian age-, education- and parity-specific
distributions for 1981, 1991 and 2001, and we rely on the Austrian life table for
those years to account for age-specific mortality. Setting our initial population equal
to N = 50,000, we take the average over 25 simulation runs. We start our first set of
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simulations with the Austrian population in 1981 and birth probabilities as of 1984!
and simulate the model forward in time for 20 years. As a performance measure
for our simulations we take the sum of absolute differences between simulated and
observed age-specific fertility rates in 2004. We choose two-dimensional contour
plots of this difference where we vary two of the model parameters simultaneously
(cf. Fig.3.5). In this way we can investigate the sensitivity of our model to model
parameters. Or alternatively, the exercise allows us to calibrate the parameters such
that our model can replicate the observed path of fertility trends. Results indicate
that our model performs best for medium ranges of the homophily parameter «, a
minimum network size s of six and when agents of lowest education are influenced
the least by their peers.

Similar as to the marriage model we perform counterfactual simulations where
we assume no social interaction. In this case our simulation results can neither
replicate the observed increase in the mean age at birth nor the decrease in fertility
rates observed in Austria since 1981 (cf. Fig. 4 in Aparicio Diaz et al. (2011),
p. 573). However, when we include social interaction, our model is capable of
replicating the development of the Austrian fertility pattern between 1984 and 2004
very well (cf. Fig. 3.6). The trend of the simulated TFR in panel (a) fits the trend

! Age-specific birth probabilities are not available for the time before 1984.
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in empirical TFR quite well. Panels (b), (c), and (d) show that the simulated curve
of age-specific fertility, mean age at first birth and first birth probabilities constitute
a remarkably good fit to the observed ones. Similarly, if we run the model from
1991 onwards for 15 years our results indicate a good fit with the actual Austrian
fertility development. In particular, our model can reproduce the shift in the timing
of fertility that occurred during the last decades.

We have also investigated forecasts of our model and compared these with the
fertility assumptions postulated by the Austrian population projections. Such an
exercise highlights the potential of using agent-based models as a causal model
to explain trends in fertility rather than applying only projections based on trend
extrapolation of past fertility development.

3.2.2.4 Conclusion

In the application summarized in this section we have applied an agent-based model
to suggest a more realistic model of how social interaction (through social learning
and social influence) may help to explain observed family formation patterns in
contemporary Europe. By applying an agent-based modelling framework we can
conduct “thought experiments that explore plausible mechanisms that may underlie
observed patterns” (Macy and Willer 2002, p.147). Such an approach is particularly
helpful when trying to explain the trends in fertility timing and quantum over the
last decades. Our numerical results and further sensitivity analyses have clearly
identified the importance of the characteristics of the social network in explaining
the observed fertility patterns. Most importantly, our model can not only explain
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the decrease in fertility at younger ages but also its increase at higher ages. We
are not arguing that other factors such as socioeconomic conditions (employment,
education, etc.) and shifting values of younger women towards less traditional
female roles in the family and in society do not play a role in explaining family
formation. The aim of our model is to highlight that social interaction may be
an important mechanism as well. As a next step we need to test whether our
model can also explain fertility patterns in other European countries. In particular,
the framework of agent-based modelling allows us to experiment with alternative
mechanisms that may underlie the timing and quantum of fertility in different social
environments. Our model can therefore be regarded as an attempt in the exploration
of identifying mechanisms that may underlie observed family formation patterns.
Such an approach is indispensable in order to understand past trends and to project
future developments of demographic behaviour.

3.2.3 Family Policies and Social Structure
3.2.3.1 Theory and Assumptions

The social structure within a society may not only influence demographic behaviour
at the individual level, but also mediate the role of policies targeted at the individual
level. As we have demonstrated in Fent et al. (2013), the effectiveness of family
policies may be closely correlated with the prevailing social structure. So far,
the empirical evidence on the importance of family policies to explain fertility is
rather mixed. Gauthier (2007) shows in a comprehensive survey of the literature
that family policies at the micro level have an effect on completed fertility while
studies at the macro level indicate an effect of family policies on the timing of
fertility. However, studies on the role of family policies for fertility—whether at
micro or macro level—commonly ignore the prevailing social structure in a society
though the role of social networks is undisputed in models of fertility behaviour.
In Fent et al. (2013) we build on these ideas and assume that fertility preferences
are subject to a diffusion process among individuals. Family policies, by altering
fertility preference in some females, may therefore act as an effective device to
induce a snowball process with the changing preferences spreading from person to
person. We distinguish between a direct effect of family policies as captured by an
alleviation of resource constraints (through e.g. institutional childcare or financial
benefits) at the individual level and an indirect effect of family policies that captures
the diffusion of fertility intentions via social ties as described above. The latter
indirect effect captures the argument that any additional child resulting from family
policies may induce others in the same peer group to increase their own fertility
intentions. Such multiplier effects that operate through peer group effects form the
basis of the work of Feyrer et al. (2008). Within an agent-based model we can
combine these various levels of analysis: family policies at the macro level, their
diffusion within social networks and their ultimate effectiveness at the individual
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level. Our model can be regarded as an attempt to show that family policies can
only be effective if they account for the characteristics of the society in which they
are implemented.

3.2.3.2 Implementation

To build up an agent-based model we start to define the characteristics of the agents.
We assume a one-sex population of females only. Each agent is characterised by
a numerical identifier, age, her household budget, parity, number of dependent
children who do not yet have their own income, intended fertility, her social network
and her assignment to a specific income quantile. The household budget is composed
of income as well as the monetary value of non-working time. Household income
is allocated in order to satisfy the agent’s own and her children’s needs. We assume
that an agent stays in the same income quantile over all her life but may progress
to higher income levels as the agent ages. We then define necessary conditions to
have a child. First, intended fertility has to exceed actual parity and secondly, the
disposable income (i.e. income less the consumption needs of the agent and her
children) has to exceed the costs of a child. If both conditions are fulfilled, an agent
is exposed to the biological probability (fecundity) of having another child. Every
new-born child is then linked to its mother and sisters. Agents age by one year
in every time step and depending on their age and labour force participation they
become adults. Once an agent is an adult, she gets her own income, own social
network and own fertility intention.

Next we have to formalise the working of family policies and how they intervene
in the fertility decision. We distinguish between a fixed family policy »" and a
variable family policy b?, the latter being proportional to the household budget w;,
where i denotes the i-th agent. Both kinds of family policies reduce the costs of n;,
dependent children: C:l,if’ = ni.t(t\/w_,;, -V - b"w;,) where the costs of children
7./Wi, are measured in terms of their consumption which is a concave function of
the household budget w;, and 7 denotes a parameter.

The social network is built up in a similar way as in Aparicio Diaz et al. (2011),
but we are assuming that not only two but three characteristics (age x, income z
and intended fertility f) determine the closeness between agents i and j as presented
by the distance d;; = |xi — xj| + € |zi — zj| + e [fi —in Agents choose a distance
d with probability pri(d) = cexp(—ad) and pick an agent with this distance as
a new friend. We define another probability pr,, which determines whether this
new friend is chosen among those individuals who are not linked to any of the
agent’s peers or only among those individuals who are linked to at least one of
the agent’s friends. We therefore assume a specific level of network transitivity, i.e.
two agents being connected to the same agent can build a mutual relationship. The
constant ¢ is a normalisation parameter to ensure that the probabilities of all of the
feasible distances sum up to one, and the parameter o determines the agents’ level of
homophily. The selecting agent is also added to the network of the selected agent.
Thus, we assume a mutual friendship relation. We repeat this procedure until the
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desired number of peers, s, is found. This desired network size is drawn from a
lognormal distribution with mean 5 = 10 and rounded to the nearest integer.

We next define a diffusion mechanism that is based on local ties and operates
on the intended fertility. The specific social effects are modelled as in Goldenberg
et al. (2007). We assume that intended fertility f;, of agent i increases (decreases)
by one with probability prs; (prs) due to the social effects exerted by a peer with
a parity greater (less) than the agent’s intended fertility. Then, we compute th
(7r;7), the number of agents j who are linked to i and have a parity greater (less)
than the intended fertility of agent i, i.e. p;; > fi; (pj < fi:). We next compute
the probabilities for an agent to be positively or negatively influenced by at least

+ _ —

one agent from the peer group,’ pft =1—-(—pr3)" andp;, =1— (1 —pryT .
Individuals may be exposed to positive influence, negative influence, both positive
and negative influence, or neither. Hence, the probability of being only positively
(negatively) influenced becomes (1— p;t)pit (respectively (1— pit)pif,) and the prob-
ability of being positively and negatively influenced is pl‘tpft We use the parameter
Kk (or (1 — k)) to determine the fraction of individuals who increase (decrease)
their intended fertility in the case of mixed influence. Then, the probabilities of
increasing, decreasing or keeping the intended fertility constant are

pilfir1 = fir + 1) = (1= pr)pi, + kpipy,
pilfiurr =fir— 1) = (L= phyp;, + 1 —)pitpr,
pilfur1 =fi) = A —pf)(1—p;,).

3.2.3.3 Simulation

We start with six distinct populations of agents. Each agent is characterised by her
age, parity, number of dependent children, intended fertility and household budget.
The distribution the individual characteristics are drawn out of is the same for all
six populations, i.e. the populations only differ with respect to the realisation of the
specific values. Each population consists of 5,000 agents. Our interest is in the role
of social interaction for the effectiveness of family policies. We therefore vary the
following set of parameters: the level of fixed and proportional family policy, the
homophily parameter that describes the network structure, the degree of transitivity
of the network structure, the importance of the level of intended fertility as a
characteristic that determines the social network, and the strength of positive and

2If pry is the probability of increasing intended fertility due to meeting one peer with a higher
parity, then (1 — pr3) is the probability of not increasing intended fertility despite this one peer,

(1 - pr3)”[Jr is the probability of not increasing intended fertility despite nl-+ peers with higher
parities, and 1 — (1 — pr_;)”ler is the probability of increasing intended fertility when being exposed
to ﬂiJr peers with higher parities.
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negative social influence. We choose quite an extended set of parameter variations
resulting in 88 different sets of family policies run on 8,424 different societies where
each simulation is run for 100 time steps. The outcome variables against which we
test our model are the aggregate values of cohort fertility, intended fertility and
the fertility gap. While intended fertility allows us to measure the indirect effect of
family policies, the fertility gap, i.e. the difference between intended and realised
fertility, allows to measure the direct effect of fertility policies.

In Fig.3.7 we present results of our simulations on cohort fertility, intended
fertility and the fertility gap as a function of variable family policies (left column)
and fixed family policies (right column). Within each figure we distinguish between
presenting the results as average for all simulations and alternatively as average over
simulations of a specific variable family policy and alternatively over simulations
of a specific fixed family policy. Since the effect of family policies on cohort
fertility and the fertility gap is stronger as compared to the effect on intended
fertility, the direct effect of family policies seems to be more important according
to our simulations. We also run OLS regressions on our simulation results with
the various fertility measures as dependent variable and the monetary values of
fixed and variable family policies as explanatory variables. Our regressions confirm
the graphical representations and indicate that fixed family policies have a stronger
impact.

Further results of our simulations reveal that the degree of homophily has a
strong impact on the indirect effect of family policies (since intended fertility is
very sensitive to this parameter). Similarly, the difference between being positively
or negatively influenced by peers also has a very pronounced effect on intended
fertility, even exceeding the effect of family policies. To better quantify the role of
family policies within societies being characterised by different social structures
we conducted another extended regression analysis on our simulations where
we included further explanatory variables. In particular we added variables that
characterise the social network and allowed for interactions between them and the
variables of fixed and variable family policies. Results of these regressions indicate
that variable family policies contribute more to the indirect effects while fixed family
policies contribute nearly the same to indirect and direct effects. While the indirect
effect is more sensitive to social effects for variable as compared to fixed family
policies, the reverse holds for the direct effect of family policies. Our simulation
results therefore clearly indicate that neglecting the social structure in which family
policies operate will yield a wrong assessment of family policies.

3.2.3.4 Conclusion

In the application summarized in this section we have applied an agent-based
modelling approach to combine the literature on social interactions and fertility
behaviour with the literature on the role of family policies for fertility intentions
and fertility realisations. Such an approach allows us to experiment with different
family policies and their relation to the prevailing social structure in a society. Most
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interestingly, we can study the social multiplier effect on fertility, i.e. to which
extent are family policies mitigated or reinforced by social effects. Furthermore
we could also show that while a higher level of homophily among network partners
induces a positive impact on fertility intentions and realisations, it may at the same
time reduce the effectiveness of family policies. Our model setup also allowed us
to differentiate between an indirect and direct effect of family policies and will
help to better understand the fertility gap. In summary, our framework highlights
the fact that the success of a family policy will depend on whether it takes into
account the societal structure to which it is applied. Since our framework so far only
constitutes a selection of variables that may influence fertility, further extensions
are obvious. At the micro level partnership formation and employment uncertainties
are important determinants. At the meso level social capital and place of residence
are further important variables. At the macro level economic trends, advancement in
reproductive technologies, and changes in attitudes and norms are important further
determinants.

3.3 Summary

As the previous three examples on demographic behaviour and social interaction
have shown, agent-based modelling can be regarded as a tool of theorising via
simulation, complementary to theorising via statistical modelling. Agent-based
models offer a tool to unify the typical rate-based approach of micro-simulation
with a new rule-based approach. Similar to the life course approach, agents play a
central role, however they may also interact with other agents.

According to the typology presented in Gilbert (2008), the set of agent-based
models reviewed in this paper are rather toy models or mid-range models.> We have
combined well-known and partly empirically observed micro mechanisms into a
larger but still abstract model to produce familiar macro mechanisms in a new way.

In the Wedding Ring model our framework allows for an endogenous explanation
of the age-at-marriage hazard. By modelling the fact that social networks vary with
age, we could—compared to previous models that relied on exogenous explanations
to prevent the age-at-marriage hazard to increase too fast at younger ages—replicate
the age-at-marriage hazard in younger ages in a more realistic way. In our second
example on the transition to parenthood we could replicate the age-specific changes
in fertility rates as they have been observed in Austria over the last decades. The last
example on family policies goes beyond a mere description of the macro behaviour.*
It aims to test the effectiveness of family policies on fertility decisions at the micro
level in the presence of social interaction and studies how macro outcomes such

3In contrast to the class of toy and mid-range models presented in this paper, there exist highly
data-driven ABMs that model real situations, e.g. the study by Axtell et al. (2002) on a historical
population and studies on household dynamics and land use change by Entwisle et al. (2008).
4See also Baroni et al. (2009) for the integration of policies to explain fertility in an agent-based
modelling framework.
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as cohort fertility and the fertility gap (difference between intended and realised
fertility) may differ depending on the interaction between family policies and the
prevailing social structure.

The challenge in setting up an agent-based model is to select the characteristics
and rules of the agents and to define how agents may interact and how macroe-
conomic behaviour may feed back on the micro-level decisions processes. These
choices together with the specific functional forms and parameters chosen need to be
based on empirical evidence as far as possible. Once an agent-based model has been
implemented an extensive sensitivity analysis is imperative. Obviously this is quite a
computational intense task. In a first step the model should be calibrated to match the
macro behavior to be explained. In a second step the set of specific characteristics,
rules and interactions of agents that have been postulated should be reassessed in
terms of their relevance. E.g. in the Wedding Ring model we could show that the
age dependence of the set of relevant others and the specific nonlinear shape of the
social interaction function are important to explain the qualitative shape of the age-
at-marriage hazard. In our second model on the transition to parenthood we have
tested the specific model parameters to identify which combination of parameters
may best replicate the observed fertility behaviour. In the third example on the role
of social structure for family policies we have investigated the importance of fixed
versus variable family policies by applying regression analysis on our simulation
results.

Agent-based modelling requires a good knowledge of tools in computer simula-
tions, but also in statistics and probability theory. Developing the formal behavioural
rules and interactions of agents also requires some skills in mathematical for-
malization. From our experience so far the acceptance of agent-based models in
demography is closely related to how far one can convincingly demonstrate that the
model is able to explain and yield new insight into quantitative or at least qualitative
shapes of important macro-demographic behaviour. For this, an extensive sensitivity
analysis that highlights the key ingredients of the model is imperative.

We have presented our models following the same sequence of steps to be
conducted. The development of a standard protocol to describe ABMs is definitely
very important and needs to be improved. Our approach in this survey chapter is
only a first attempt in this direction.
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Chapter 4
Agent-Based Computational Demography
and Microsimulation Using JAS-mine

Matteo Richiardi and Ross E. Richardson

4.1 Introduction

In this chapter, we present the implementation of a dynamic microsimulation
with a rich set of demographic processes (birth, death, household formation
and dissolution) and other life course events (educational choices, labour market
participation and employment outcomes), using the recently upgraded JAS-mine
simulation platform (www.jas-mine.net).

The chapter is meant to provide a step-by-step guide to the development of
dynamic microsimulations/agent-based models. From a practical perspective, the
model presented here is highly reusable and can be easily modified in order to
develop other microsimulation/agent-based models.! This is thanks to the JAS-
mine architecture, which envisages a neat separation between data (parameters

"The model and the supporting documentation can be downloaded from the demo section of the
JAS-mine website (www.jas-mine.net/demo/demo07).
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and coefficients) and code, and a clear distinction between modelling objects,
which specify the structure of a model and should be the primary concern of a
researcher, and auxiliary objects, which perform useful tasks such as input-output
communication, real-time visualization, etc.

The chapter is structured as follows. Section 4.2 motivates the need for a unique
platform for agent-based models and dynamic microsimulations, integrating tools
used by both modelling approaches. The section also lists other requirements that
were specified for the platform. Section 4.3 briefly describes the technical solutions
that were adopted to meet these requirements. Section 4.4 presents the general
structure of a JAS-mine project. Section 4.5 describes the specific simulation model
implemented. Section 4.6 illustrates the JAS-mine implementation and Sect. 4.7
concludes.

4.2 Convergence Between Agent-Based and Microsimulation
Models

Microsimulation is a technique used in a large variety of fields to simulate the
states and behaviours of different units (individuals, households, populations,
etc.) as they evolve in a given environment (a market, a region, an institution).
The word “dynamic” refers to the fact that the population being simulated is
also changing, as opposed to “static” microsimulations (such as tax and benefit
simulators) which examine the impact of a policy change on a given population
(Li and O’Donoghue 2012). The modelling of demographic processes is therefore
the salient characteristic of dynamic microsimulations.

Agent-based models are also computational models with individuals as the
primary object of analysis. They mainly differ from microsimulations for their
emphasis on the role of interaction and for explicit departures from the standard
assumptions of economic models: rational expectations, perfect knowledge about
the environment, infinite computational ability, absence of centralised “top down”
coordination devices (Richiardi 2012).

Agent-based (AB) and microsimulation (MS) models share many features and
can be described as belonging to the same class of discrete-event simulations.
Indeed, from a mathematical and computational perspective the two approaches are
identical. Both AB and MS models are recursive models, where the number and
individual states of the agents in the system are evolved by applying a sequence
of algorithms to an initial population (Gilbert and Troitszsch 2005). As computer-
based simulations, they face the problem of reproducing real-life phenomena, many
of which are temporally continuous processes, using discrete microprocessors.
The abstract representation of a continuous phenomenon in a simulation model
requires that all events be presented in discrete terms, hence the label discrete-event
simulation.

However, in their historical development AB models and microsimulations have
followed different trajectories (Richiardi 2013): AB models have focused more on
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theory, while MS models have evolved as more data oriented, with the processes
generally specified as probabilistic regression models. As a generalisation, AB
models are structural models with a primary concern on understanding, while
microsimulations are reduced-form models (as such, they often focus on one side
of a market only), with a primary concern on forecasting.” However, a trend
towards a convergence of the two approaches is currently underway, with AB
models becoming increasingly empirically oriented, and MS models including more
feedback effects (see again Richiardi (2013)). An example of this fruitful integrated
approach is the recent field of agent-based computational demography (Billari and
Prskawetz 2003).

The differences in scope and perspective between the two approaches have,
however, impinged on the structure of the computer models used within each
community. AB models lead naturally to an explicit object-oriented representation,
while MS models are generally built around a database which is evolved forward
in time. This has led to the development of simulation toolkits which are specific
to each field, as for instance NetLogo (Wilenski 1999), RePast (North et al. 2013)
and Mason (Luke et al. 2005) for AB modelling, and Modgen (Statistics Canada
2009), LIAM2 (De Menten et al. 2014) and JAMSIM (Mannion et al. 2012) for MS
modelling — to name just a few.

JAS-mine was created to make the development of “hybrid” AB-MS models
easier, and to allow researchers to use the same tools for both approaches, to exploit
economies of scale in learning and coding. Its combination of features distinguish it
from all the above platforms.

4.3 The JAS-mine Architecture

JAS-mine is an object-oriented Java-based platform for discrete-event simulations.
The philosophy of JAS-mine is to foster clarity, transparency and flexibility. The
rationale behind this is the belief that a major bottleneck in agent-based and dynamic
microsimulation modelling comes from humans, rather than machines: minimizing
modelling time then becomes even more important than minimizing computing
time.? To this aim, a strict adherence to the open source paradigm was enforced

2Structural models often include unobservable parameters that help describe individual behaviour
at a deep level (say, in terms of utility maximisation); reduced-form models aim more simply at
identifying statistical relationships between observable characteristics.

3The performances of JAS-mine with respect to speed of execution, though, are noteworthy.
An exercise aimed at testing the performance of the simulation platform with respect to scaling
involved the implementation in JAS-mine of a complex mixed AB-microsimulation model of the
two-way relationship between health and economic inequality, calibrated on both US and Canadian
cities. The JAS-mine implementation can run five million agents with a time-step equivalent to
1 day for 500 years (182,500 time-steps) in 50 min on a standard laptop (using less than 4GB of
RAM).



78 M. Richiardi and R.E. Richardson

in the design of the platform, which makes it less of a black-box with respect to
proprietary software and encourages cooperative development of the platform by
the community of users: all functions can be inspected and, if necessary, modified
or extended. Also, it was decided not to develop an ad-hoc grammar and syntax —
as in NetLogo and LIAM2 — but to allow the user to choose from a wide range
of classes and interfaces which extend the standard Java language. The JAS-mine
libraries therefore provide open tools to “manufacture” a simulation model, making
use whenever possible of solutions already available in the software development
community. This ensures efficiency and a maximum amount of flexibility in model
building.

In the platform architecture, a clear distinction is made between objects with
a modelling content, which specify the structure of the simulation, and objects
which perform useful but auxiliary tasks, from enumerating categorical variables
to building graphical widgets, from creating filters for the collection of agents to
computing aggregate statistics to be saved in the output database. Moreover, a
separation is made between code and data, with all parameters and input tables
stored either in an input database or in specific MS Excel files. For instance, the
regression package provides tools for simulating outcomes from standard regression
models (OLS, probit/logit, multinomial probit/logit): in particular, there is no need
to specify the variables that enter a regression model, as they are directly read from
the data files. This greatly facilitates exploration of the parameter space, testing
different econometric specifications, and scenario analysis.

From a modelling viewpoint, JAS-mine extends the Model-Observer paradigm
introduced by the Swarm experience (Minar et al. 1996; Luna and Stefansson 2000)
and introduces a new layer in simulation modelling, the Collector. The Model
deals mainly with specification issues, creating objects, relations between objects,
and defining the order of events that take place in the simulation. The Observer
allows the user to inspect the simulation in real time and monitor some pre-defined
outcome variables as the simulation unfolds. The Collector collects the data and
computes the statistics needed both by the simulation objects and for post-mortem
analysis of the model outcome, after the simulation has completed. This three-layer
methodological protocol allows for extensive re-use of code and facilitates model
building, debugging and communication.

As for input/output (I/O) communication, building on the vast number of soft-
ware solutions available, JAS-mine allows the user to separate data representation
and management from the implementation of processes and behavioural algorithms.
The management of input data persistence layers and simulation results is performed
using standard database management tools, and the platform takes care of the
automatic translation of the relational model of the database into the object-oriented
simulation framework, through object-relational mapping (ORM).* This also allows

“ORM is a programming technique for converting data between incompatible type systems in
object-oriented programming languages. This creates, in effect, a “virtual object database” that
can be used from within the programming language.
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to separate data creation from data analysis. As the statistical analysis of the model
output is possibly intensive in computing time, performing it in real time might
be an issue in large-scale applications. A common solution is to limit it to a
selected subset of output variables. This, however, requires identifying the output
of interest before the simulation is run. If additional computations are required to
better understand how the model behaves, the model has to be run again: the bigger
the model, the more impractical this solution is. On the other hand, the power of
modern relational database management systems (RDBMS) makes it feasible to
keep track of a much larger set of variables, for later analysis. Also, the statistical
techniques envisaged, and the specific modeller’s skills, might suggest the use of
external software solutions, without the need to integrate them in the simulation
machine. Finally, keeping data analysis conceptually distinct from data production
enhances brevity, transparency and clarity of the code.

The architectural characteristics of JAS-mine are discussed in detail on the JAS-
mine website (www.jas-mine.net). To summarise, the main features of the platform
are:

e a discrete-event simulation engine, allowing for both discrete-time and
continuous-time simulation modeling;’

e a Model-Collector-Observer structure (see Sect. 4.4);

* interactive (GUI based), batch and multi-run execution modes, the latter allowing
for detailed design of experiments (DOE);

e a library implementing a number of different matching methods, to match
different lists of agents;

* a library implementing a number of different alignment methods, to force the
microsimulation outcomes to meet some exogenous aggregate targets (Li and
O’Donoghue 2014);

e alibrary implementing a number of common econometric models, from contin-
uous response linear regression models to binomial and multinomial logit and
probit models;

» a statistical package based on the cern.jet package;

¢ an embedded H2 database;

e MS Excel I/O communication tools;

SDiscrete-event simulations can be organized into two categories, depending on how time is
treated. Discrete-time simulations break up time into regular time slices (At), while the simulator
calculates the variation of state variables for all the elements of the simulated model between one
point in time and the next. Nothing is known about the order of the events that happen within each
time period: discrete events (marriage, job loss, etc.) could have happened at any moment in At
while inherently continuous events (aging, wealth accumulation, etc.) are often thought to progress
smoothly between one point in time and the next. By contrast, continuous-time simulations are
characterized by irregular timeframes that are punctuated by the occurrence of the events. What is
modelled is not whether an event occurs or not in the reference period, but rather the time elapsed
before its occurrence (duration models). Between consecutive events, no change in the system
is assumed to occur; thus the simulation can directly jump in time from one event to the next.
Inherently continuous events must therefore be discretised (Keller et al. 1993).
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» automatic GUI creation for parameters by using Java annotation;

e automatic output database creation;

* automatic agents’ sampling and recording;

» powerful probes for real-time statistical analysis and data collection;

 arich graphical library for real-time plotting of simulation outcomes;

* Eclipse plugin, which enables the creation of a JAS-mine project in just a few
clicks, with template classes organised in the JAS-mine standard package and
folder structure:®

* Maven version control.

4.4 The Structure of a JAS-mine Project

In the JAS-mine architecture, agents are organized and managed by components
called managers. As already mentioned, there are three types of managers in this
architecture: Model, Collector and Observer. Models serve to build artificial agents
and objects, and to plan the time structure of events. Collectors are managers that
build data structures and routines to calculate (aggregate) statistics dynamically,
and that build the objects used for data persistence. The definition of a Collector’s
schedule specifies the frequency of statistics updating and agent sampling, and
consequent storage in the output database. Observers are managers that serve to
build graphical widget objects that indicate the state of the simulation in real time,
and define the frequency with which to update these objects.

JAS-mine allows multiple Models (and multiple Collectors and Observers) to run
simultaneously, since they share the same scheduler.” This allows for the creation
of complex structures where agents of different Models can interact. Each Model
is implemented in a separate Java class that creates the objects and plans the
schedule of events for that Model. Model classes require the implementation of
the SimulationManager interface, which implies the specification of a buildObjects
method to build objects and agents, and a buildSchedule method for planning the
simulation events. Analogously, Collector classes must implement the Collector-
Manager interface, and Observer classes must implement the ObserverManager
interface.

When a new JAS-mine project is created using the JAS-mine Eclipse plugin,
several packages are created:

» data: package containing the classes that describe the structure of coefficients,
parameters and agent population tables contained in the database to be loaded by

Eclipse Integrated Development Environment is a software application that provides support to
aid software development. A description of how to start using Eclipse and the JAS-mine plugin can
be found at http://www.jas-mine.net/how-to-create-and-run-a-new-jas-project-using-eclipse.
"Technically, the scheduler is a “singleton”. In software engineering, the singleton pattern is a
design pattern that restricts the instantiation of a class to one object.
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the ORM. When using Excel files to specify input data, no specific classes need
to be included in this package.

* model: package containing the classes that specify the model structure; in
particular, it contains the Model manager class(es) and the class(es) of agents
that populate the simulation.

* model.enums: subpackage containing the definition of the enumerations used
(if any).}

* experiment: package containing the classes that deal with running the simulation
experiment(s); it contains, in particular, the Start class where the main method
and the type of the experiment (interactive vs. batch mode, single run vs. multiple
runs) are defined. The package might also contain one or more Collectors, who
compute statistics and persist the output in the database, one or more Observers
for online statistics collection and display, and a MultiRun class that manages
repeated runs for parameter exploration.

 algorithms: package containing classes that implement algorithms for determin-
ing events and applying processes to the agents. These implementations, in a
cooperative effort of users, are potential candidates to extend the set of standard
functions included in the JAS-mine libraries.

In addition to sources, the project also contains two folders for data input-output.
The input folder contains input data in excel or H2 embedded formats. The output
folder contains the output of different simulation experiments. At the beginning of
each run, JAS-mine creates a sub-folder that is labelled automatically® with a copy
of the input files plus an empty output database, with the same structure of the
input database as defined by the annotations added to the model classes. Coherence
between the input database (if any), the output database and the classes representing
the agents in the simulation (known as entity classes) is guaranteed by the ORM.

By default, JAS-mine executes the simulations in embedded mode: the databases
are modified directly by the JDBC driver included in JAS-mine.!® The standard
database uses a H2 database engine. Other databases supporting embedding can be
used, such as Microsoft Access, Hypersonic SQL, Apache Derby, etc.

8Enumerations specify a set of predefined values that a property can assume. These values might
be categorical (strings, e.g. gender), quantitative (discrete numbers, e.g. age) or even objects with
their set of characteristics and properties (e.g. a predefined set of banks to which a firm can be
linked). The ORM detects that a value is an enumeration when the property is declared with
the annotation @ Enumerated (see Sect. 4.6.3.1). Through enumerations the ORM automatically
manages reading/writing operations in both text and numerical format.

The folder name can be modified dynamically through labels set by the user.
10A JDBC driver is a software component enabling a Java application to interact with a database.



82 M. Richiardi and R.E. Richardson
4.5 The Dynamic Microsimulation Model

The model that we implement is inspired by the Demo07 sample model included in
LIAM2."! It features a population of 20,200 persons grouped in 14,700 households
undergoing a number of demographic and other life course events on an annual basis
between the years 2002-2061:

e Birth: all women aged between 15 and 50 (inclusive) in any simulation year can
give birth to a child, with a probability which is year- and age-specific and is
reported in the file p_birth.xIs.

¢ Education: education (lower secondary, upper secondary or tertiary) is prede-
termined at birth. Individuals exit lower secondary education at age 16, upper
secondary education at age 19, and tertiary education at age 24.

« Exit from parental home: individuals aged 24 or over who are not yet married
leave their parental home to set up a new household.

* Marriage: all individuals aged 18 or over whose civil state is either single,
divorced or widowed, are eligible for getting married in any given simulation
year. The probability of marriage depends on age, gender and civil state, and
is stored in the p_marriage.xls file. Given these probabilities, a subset of the
unmarried population is sampled and those chosen are entered into the matching
algorithm. Actual matching involves ordering all the females first; then starting
with the top ranked female, all males are ordered and the best available male is
matched. Then for the second ranked female, the remaining males are ordered
and the best available male is matched, and so on until no more matches can be
made (because there are either no more males or females to match). Females are
ordered according to their age difference (in absolute value) with respect to the
average age in the pool of females to be matched, |age — mean(age)|: females
with an age closer to average ‘choose’ first, while older or younger females
‘choose’ later. For each female, males are ranked by looking at how their age
and work status compares with the female’s age and work status: regression
coefficients are stored in the reg_marriage.xls file. Matched couples form new
households.

* Divorce: divorce probability depends on age difference between the partners,
elapsed marriage duration, number of children and work status of both partners:
regression coefficients are stored in the reg_divorce.xls file.

"'The model differs from the LIAM2 version in that it collapses the work states of unemployment
and inactivity into a single non-employment state. This is done by removing the unemployment
module from the corresponding LIAM2 simulation, with everything else staying the same. The
change is motivated by the fact that the distinction between unemployment and inactivity was
implemented in a very unnatural way in LIAM2, and did not affect any subsequent choice on the
part of the agents.
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* Employment: all individuals who are of working age (males: between 15 and
65; females: between 15 and 61) and whose previous work state was neither
student nor retired are considered to be available to work. Conditional on this,
individuals are employed with a probability which depends on age, lagged
work state (either employed, unemployed or inactive), gender and marital status:
regression coefficients are stored in the reg_inwork.xls file. The model does not
distinguish between unemployment and non-employment.

e Death: death is also a probabilistic event, with year- and age-specific death
probabilities contained in the files p_death_m.xls and p_death_f.xls, for males
and females respectively.

The divorce and employment processes are subject to alignment. This is a
technique widely used in (dynamic) microsimulation modelling to ensure that
the simulated totals conform to some exogenously specified targets, or aggregate
projections (Baekgaard 2002; Klevmarken 2002; Li and O’Donoghue 2014). Align-
ment targets (aggregate frequencies) for divorce and employment are stored in the
p_divorce.xls and p_inwork.xls files respectively.

One important thing to note is that the processes to be aligned are executed at
an individual level, while alignment always takes place at the population level.
That is, individual outcomes or probabilities are determined for each individual
based on the chosen econometric specification and the estimated coefficients. This
in general leads to a mismatch between the simulated (provisional) totals and the
aggregate targets, which can of course be assessed only at the population level. The
alignment algorithm then directly modifies the individual outcomes or probabilities
of occurrence.

The specific algorithm used in the LIAM2 implementation is called “Sorting by
the difference between the predicted probability and a random number” (SBD), see
Li and O’Donoghue (2014), and — though quite common in the microsimulation
literature — can be criticised on many theoretical grounds, see Stephensen (2014).
The JAS-mine alignment library implements it for completeness, though its use is
deprecated. Here we use it to remain as close as possible to the original LIAM2
version (the reader does not need to understand precisely how it works).

Finally, note that, though agents’ interactions are limited to matching in the
marriage market, the model contains all the basic ingredients of a standard agent-
based model. Further “agentisation” could entail introducing more interaction in the
labour market, or introducing competition for instance in residential locations.!?

2The interested reader will find a JAS-mine implementation of the Schelling Segregation Model,
with added microsimulation features for illustrative purposes (a dynamic population, with birth,
ageing and death processes) in the demo section of the JAS-mine website (www.jas-mine.net/
demo/extended-schelling).
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4.6 The JAS-mine Implementation

The JAS-mine class structure of the Demo07 model is organised as in Table 4.1.

The core of the simulation lies in the model package, which contains the
classes PersonsModel, Person and Household. The experiment package contains
the StartPersons class that specifies to run the simulation in interactive mode, the
PersonsCollector class that collects all the statistics needed to monitor the simula-
tion and updates the output database, and the PersonsObserver class that creates and
manages the graphical object for runtime monitoring. Parameters and coefficients
are loaded into the Parameters class in the data package. All filters used to filter col-
lections are grouped in the data.filters subpackage. The categories used for gender,
educational levels, civil state and work state are stored as Enums in the model.enums
subpackage. Finally the algorithms package contains classes that perform technical
tasks (in the example, MapAgeSearch searches age- and gender-specific values in a
map of coefficients, with age and gender as keys). Classes in the algorithms package
are meant to be of general use beyond the specific model being developed, and are
candidates for inclusion in the core libraries in future releases of the platform.

The project is organised in the standard JAS-mine folder structure, as described
in Table 4.2.

The Java classes are contained in the src folder. The input folder contains the MS
Excel parameter files and the initial population, stored as an h2 database (input.h2).
The output folder is initially empty. For each new simulation experiment, a new
subfolder is created with the appropriate time stamp, so as to uniquely identify
the experiment (e.g. 20141218151116, for experiments initiated on the 18th of

Table 4.1 Class structure Package Class

Algorithms MapAgeSearch
Data Parameters
data.filters ActiveMultiFilter
FemaleFilter
FemaleToCoupleFilter
FemaleToDivorce
MaleFilter
MaleToCoupleFilter
Experiment | PersonsCollector
PersonsObserver
StartPersons
Model Household
Person
PersonsModel
model.enums | CivilState
Education
Gender
WorkState
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Table 4.2 File structure

Folder | Files Notes
Input | p_birth.xls Birth probabilities, by age and (simulated) year
p_death_f.xls Death probabilities, by age and (simulated) year, for
females
p_death_m.xls Death probabilities, by age and (simulated) year, for males
p_marriage.xls Marriage probability, by age group, gender and civil state
p_divorce.xls Alignment target for the divorce probability, by age group
and (simulated) year
p_inwork.xls Alignment target for the employment probability, by age
group, gender and (simulated) year
reg_marriage.xls Marriage score coefficients: determine how well a specific
male fits a given female
reg_divorce.xls Divorce coefficients: determine the (unaligned)
probability of divorcing
reg_inwork.xls Employment coefficients: determine the (unaligned)
probability of being employed
input.h2 Initial population
Output | (Empty)
Src (All java classes) See Table 4.1

Target | (Compiled classes)

Libs (External libraries and
JARs, empty)

(Root) | pom.xml Maven version control

December 2014, at 16 s after 3.11 pm). The subfolder contains a copy of all the
input files (in the input directory) and an output database (out.h2, in the database
directory).

The target and libs folders contain technical content of no immediate interest
to the modeller. The root folder also contains a pom (project object model) file,
which contains information on the JAS-mine version used for the project. Apache
Maven, an open source software project management and comprehension tool uses
this information to manage all the project’s build, reporting and documentation. In
particular, by specifying in the pom file the desired release for each library used
(including the JAS-mine libraries), Maven automatically downloads the relevant
libraries from the appropriate repositories. '

4.6.1 Parameters

As JAS-mine supports a clear distinction between modelling classes and data
structures, parameters are loaded and stored in a specific class, called Parameters.

13This implies that each JAS-mine project has its own copy of all the libraries used, ensuring that
the project is self-contained and that it keeps working exactly as intended even when new versions
of the libraries are released (and even if backward compatibility is not respected).
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The class makes use of the ExcelAssistant.loadCoefficientMap() method to read the
parameters from MS Excel files: this requires to specify a .xIs file, a worksheet
name, the number of key columns and the number of value columns. 14 Parameters
are then stored in MultiKeyCoefficientMap objects, which are basically standard
Java maps with multiple keys (Box 4.1).

Box 4.1 The Parameters.loadParameters() Method
public static void loadParameters () {

// probabilities
pBirth = ExcelAssistant.loadCoefficientMap (“input/
p_birth.xls”, “Sheetl”, 1, 59);

pDeathM = ExcelAssistant.loadCoefficientMap (“input/
p_death m.xls”, “Sheetl”, 1, 59);

pDeathF = ExcelAssistant.loadCoefficientMap (“input/
p_death f.xls”, “Sheetl”, 1, 59);

pMarriage = ExcelAssistant.loadCoefficientMap
(“input/p marriage.xls”, “Sheetl”, 3, 4);

pDivorce = ExcelAssistant.loadCoefficientMap
(“input/p_divorce.xls”, “Sheetl”, 2, 59);

pInWork = ExcelAssistant.loadCoefficientMap (“input/
p_inwork.xls”, “Sheetl”, 3, 59);

// regression coefficients
coeffMarriageFit = ExcelAssistant.loadCoefficientMap (
“input/reg marriage.xls”, “Sheetl”,1, 1);

coeffDivorce = ExcelAssistant.loadCoefficientMap (
“input/reg divorce.xls”, “Sheetl”, 1, 1);

coeffInWork = ExcelAssistant.loadCoefficientMap (
“input/reg inwork.xls”, “Sheetl”, 3, 1);

// definition of regression models

regMarriageFit = new LinearRegression (coeffMarriageFit) ;
regDivorce = new LogitRegression (coeffDivorce) ;
regInWork = new LogitRegression (coeffInWork) ;

}

141t is also possible to load the parameters from a table in the input database. See the online
documentation for further details.
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There are two types of parameters in Demo07: probabilities and regression
coefficients.

Birth (pBirth) and death (pDeathM and pDeathF) probabilities have one key
(age), while the value columns refer to different simulation years: birth and death
probabilities are therefore age- and year-specific.

Divorce probabilities (pDivorce) have two keys (the lower and upper bounds
defining age groups), while value columns refer again to different simulation years:
divorce probabilities are therefore age group- and year-specific.

Marriage (pMarriage) and employment (pInWork) probabilities have three keys
(the lower and upper bounds defining age groups and gender). Value columns in
pMarriage refer to different civil states: marriage probabilities are therefore age
group-, gender- and civil state-specific. Value columns in pInWork refer to different
simulation years: employment probabilities are therefore age group-, gender- and
year-specific.

Table 4.3 shows how the p_birth.xls file looks like.

Regression coefficients can have one key (coeffMarriageFit and coeffDivorce)
which is the regressor variable name, and a corresponding value with the estimated
coefficient. They might have additional keys, as in coeffInWork, if the coefficients
are differentiated by some other variables (gender and employment state, in this
example). Table 4.4 shows what the corresponding reg_inwork.xls file looks like.

Table 4.3 Extract from the

birthnis fil Simulation year
p_birth.xls file

Age | 2002 ... 2060
15 0.00068 | ... |0.00075
16 0.00186 | ... |0.00181
50 0.00010 | ... |0.00021
Tabl? 44 kE;‘trf‘?lCt from the Regressors Gender | workState Coefficients
reg_mwork.xis e Age Male | Employed —0.19660
isMarried Male Employed 0.18928
workIntercept | Male Employed 3.55461
Age Male NotEmployed 0.97809

workIntercept | Male NotEmployed | —12.39108

Age Female | Employed —0.27405

isMarried Female | Employed —0.09068
workIntercept | Female | Employed 3.64871
Age Female | NotEmployed 0.82176
isMarried Female | NotEmployed | —0.55910

workIntercept | Female | NotEmployed | —10.48043
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Note that the name of the regressor variable must appear in the first column, as
the regression classes expect it to be the first key in the MultiKeyCoefficientMap
instance. The name of the headings for the additional key columns must match the
name of a field in the relevant class, in this case, the Person class.

The appropriate regression models are then defined based on the regression
coefficients.

4.6.2 The PersonsModel Class
4.6.2.1 Objects

The Model extends the AbstractSimulationManager class. This requires implement-
ing the buildObjects() and the buildSchedule() methods. The buildObjects() method
contains the instructions to create all the agents and the objects that represent
the virtual environment for model execution (see Box 4.2)."° In Demo07, this
involves loading the parameters for the simulation and the initial population, made
of persons and households. Three other methods complete the simulation setup:
initializeNonDatabaseAttributes() initializes attributes that do not appear in the
input database, such as the education level; addPersonsToHouseholds() registers
household members, and cleanlnitial Population() checks the internal consistency of
the initial population and removes errors, making sure that all marriage partnerships
are bilateral, that all partners belong to the same household, and that no empty
households exist.'®

Box 4.2 The PersonsModel.buildObjects() Method

@Override
public void buildObjects () {

Parameters.loadParameters () ;

persons = (List<Person>) DatabaseUtils.loadTable
(Person.class) ;

households = (List<Households>)
DatabaseUtils.loadTable (Household.class) ;

initializeNonDatabaseAttributes() ;

(continued)

15The @ Override annotation is used by the Java interpreter to ensure that the programmer is aware
that the method declared is overriding the same method declared in the superclass.

16This method is absent in the LIAM2 implementation, which does not get rid of all the errors in
the initial database.
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addPersonsToHouseholds () ;

cleanInitialPopulation() ;

}

As we have seen, the general rule is that parameters should not be hard-coded in
the simulation. The only exception is with control parameters that can be changed
from the GUI before the simulation starts or while the simulation is running in order
to experiment with the model behaviour in interactive mode. Control parameters are
properties of a simulation, they are annotated with GUIparameter, are automatically
loaded into the JAS-mine GUI, and are automatically saved in a separate table of
the output database. In Demo07 there are just three such parameters, as described in
Box 4.3.

Box 4.3 PersonsModel: Control Parameters

GUIparameter (description="Simulation begins at
year [valid range 2002-2060]")
private Integer startYear = 2002;

GUIparameter (description="“Simulation ends at year
[valid range 2003-20611")
private Integer endYear = 2061;

GUIparameter (description="“Retirement age for women”)
private Integer wemra = 61;

4.6.2.2 Schedule

The buildSchedule() method contains the plan of events for the simulation. Events
are planned based on a discrete event simulation paradigm. This means that events
can be scheduled dynamically at specific points in time. The frequency of repetition
of an event can be specified in the case of periodic events. An event can be
created and managed by the simulation engine (a system event e.g. terminating the
simulation), it can be sent to all the components of a collection or list of agents or
it can be sent to a specific object/instance. Events can be grouped together if they
share the same schedule.

In Demo07, all events are scheduled right from the beginning of the simulation
(there is no dynamic scheduling), and occur on a yearly basis. They are grouped
in an EventGroup called modelSchedule, which is scheduled at every simulation
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period starting at startYear with the scheduleRepeat(Event event, double atTime, int
withOrdering, double timeBetweenEvents) method:

getEngine () .getEventList () . scheduleRepeat (modelSchedule,
startYear, 0, 1.);

The events of Demo07 are typically directed to a collection of objects — persons
or households — and are inserted into an EventGroup with the instruction

modelSchedule.addCollectionEvent (Object object, [some action the
object must perform]) ;

The actions to be performed can be specified in two ways. The simplest is to
use Java reflection and simply specify the object’s method name to be invoked.'’
For instance, asking all persons to perform the ageing() method would require the
instruction:

modelSchedule.addCollectionEvent (persons, Person.class,
“ageing” ) ;

Java reflection, however, generally has a reputation for being quite slow. A better
approach is to use the EventListener interface. When an object implements this
interface, it must define an onEvent() method that will receive specific enumerations
to be interpreted. We will describe how the Person class implements the onEvent()
method in Sect. 4.6.3.3. For now, we simply note that by using the EventListener
interface, the scheduling of the ageing() method becomes:

modelSchedule.addCollectionEvent (persons, Person.Processes.
Ageing) ;

By default, the broadcasting of an event to a collection of objects is performed
in safe mode (read only), and does not allow the concurrent modification of the
collection itself. This is not a problem with the ageing() process, as ageing per se
does not entail any modification in the list of persons, that is, it does not add or
remove anyone. This is not true with other processes, like birth() or death(). In
order to allow the collection to be changed while iterated by the simulation engine,
this feature has to be switched off, as in

modelSchedule.addCollectionEvent (persons, Person.Processes.Death,
false) ;

The last argument specifies that the collection is subject to changes while being
iterated, and the JAS-mine engine treats it accordingly.

The order of the events in the simulation follows the original LIAM?2 implemen-
tation and is specified in Box 4.4: there is first a set of demographic events (ageing,
death, birth, marriage, exit from parental home, divorce, household composition)
and then a set of events that define the work status (whether in education, retired,
other non-employed, or employed).

17This requires the method — ageing() in this case — to be declared public.
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Box 4.4 The PersonsModel.buildSchedule() Method

@Override
public void buildSchedule () {

EventGroup modelSchedule = new EventGroup () ;

// 1: Ageing

modelSchedule.addCollectionEvent (persons, Person.Processes.
Ageing) ;

// 2: Death
modelSchedule.addCollectionEvent (persons, Person.Processes.
Death, false) ;

// 3: Birth
modelSchedule.addCollectionEvent (persons, Person.Processes.
Birth, false);

// 4: Marriage
modelSchedule.addCollectionEvent (persons, Person.Processes.
ToCouple) ;

modelSchedule.addEvent (this, Processes.MarriageMatching) ;

// 5: Exit from parental home
modelSchedule.addCollectionEvent (persons, Person.Processes.
GetALife) ;

// 6: Divorce
modelSchedule.addEvent (this, Processes.DivorceAlignment) ;

modelSchedule.addCollectionEvent (persons, Person.
Processes.Divorce) ;

// 7: Household composition

// (for reporting only: household composition is
// updated whenever

// needed throughout the simulation)
modelSchedule.addCollectionEvent (households,
Household.Processes . HouseholdComposition) ;

// 8: Education
modelSchedule.addCollectionEvent (persons, Person.Processes.

InEducation) ;

// 9: Work
modelSchedule.addEvent (this, Processes.InWorkAlignment) ;

getEngine () .getEventList () . schedule (modelSchedule, 0, 1);
getEngine () .getEventList () . schedule (

(continued)
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new SingleTargetEvent (this, Processes.Stop),
endYear - startYear) ;

}

Marriage is performed in two steps. First, a subset of suitable males and females
are selected for matching by invoking the method Person.toCouple()'®; then,
matching takes place. As we have seen in Sect. 4.5, matching uses a “centralised”
algorithm and is therefore performed by the Model itself. Consequently, this event
is a single target event, rather than a collection event, and is inserted into our
EventGroup modelSchedule with the instruction

modelSchedule.addEvent (this, Processes.MarriageMatching) ;

Similarly, the divorce and work events are subject to alignment and are
managed directly by the Model, with the methods divorceAlignment() and
inWorkAlignment(), though divorce also requires some actions taken by the
individuals themselves — in the divorce() method in the Person class —
after they have been selected to divorce. householdComposition() is the
only method which is directed to the collection of households. It simply
updates the number of adults and children in each household for reporting
purposes. A final single target event is scheduled for the last year of the
simulation with the method scheduleOnce(Event event, double atTime, int
withOrdering): its target is the Model itself and brings the simulation to a
halt:

getEngine () .getEventList () . scheduleOnce
(new SingleTargetEvent (this, Processes.Stop), endYear,
Order. AFTER ALL.getOrdering());

4.6.2.3 The EventListener Interface

Since the Model performs actions during the simulation, as with the Person and
Household classes, it implements the EventListener interface. This requires first to
enumerate all the actions that the Model is supposed to perform (this is done by
defining the specific Enum Processes), and then to specify the method onEvent() —
see Box 4.5.

18See Sect. 4.6.3.3.
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Box 4.5 Implementation of the EventListener Interface in PersonsModel
public enum Processes {

MarriageMatching,
DivorceAlignment,
InWorkAlignment,
Stop;

}

@Override

public void onEvent (Enum<?> type) {

switch ((Processes) type) {

case DivorceAlignment:
divorceAlignment () ;
break;

case InWorkAlignment:
inWorkAlignment () ;
break;

case MarriageMatching:
marriageMatching () ;
break;

case Stop:
log.info (“"Model completed”) ;
getEngine () .pause () ;
break;

We now dig into the matching and alignment methods performed by the Model.

4.6.2.4 The Matching Algorithm

Prior to matching, a sample of the population to marry at this time is determined
randomly using the Person.toCouple() method. Subsequently, matching involves
first ordering all the females; then, for each female starting from the top of the
ranking, all males are ordered and the most suitable male is matched. This continues
until there are either no more females or males to match. Females are ordered
according to their age difference (in absolute value) with respect to the average
age in the pool of females to be matched, |age — mean(age)|; the female whose age
is closest to the average is ranked first. To compute this ranking, the average age
of the subset of females selected for matching is required. There are a number of
ways to perform this computation, which is preliminary to the application of the
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matching algorithm. The one that is implemented in Demo07 makes use of Java
closures (Box 4.6)."°

Box 4.6 Computing the Average Age for the Eligible Females in Persons-
Model.marriageMatching()

final AverageClosure averageAge =
new AverageClosure () {

@Override

public void execute (Object input) {
add ( ( (Person) input) .getAge()) ;

}

}i

Aggregate.applyToFilter (getPersons (),
new FemaleToCoupleFilter (), averageAge) ;

The JAS-mine collection package defines an AverageClosure as a closure that
receives values from objects as an input and returns the mean of these values as an
output. Here, it is used to compute the average age of a given set of persons. The set
is defined by applying the FemaleToCouple filter to the list of all persons, with the
instruction

Aggregate.applyToFilter (getPersons (), new FemaleToCoupleFilter (),
averageAge) ;

The averageAge closure now contains the average age of all filtered females.
In turn, the FemaleToCouple filter simply selects the female persons who have the
toCouple flag switched on (Box 4.7).

Box 4.7 The FemaleToCouple Filter

public class FemaleToCoupleFilter
implements Predicate {

@Override
public boolean evaluate (Object object) {
Person agent = (Person) object;

(continued)

YTechnically, a closure is a function that refers to free variables in their lexical context. A free
variable is an identifier (the identity of the person which is included in the evaluation set, in our
example) that has a definition outside the closure: it is not defined by the closure, but it is used
by the closure. In other words, these free variables inside the closure have the same meaning they
would have had outside the closure.
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return (agent.getGender () .equals (Gender.Female)
&& agent.getToCouple ()) ;

}
}

Having the filters specified as separate classes, grouped in the separate package
data.filters, might look cumbersome at first (and there are other ways to do this,
see the online documentation) but allows to keep the core code clean while using
the standard Apache Predicate approach to filtering — remember that the JAS-mine
approach supports the use of existing software solutions whenever possible, and
envisages to keep the specificities of the JAS-mine libraries to a minimum in order
to minimise the “black box” feeling of many simulation platforms.

Matching is then performed, following the LIAM2 implementation, by making
use of a simple one-way matching procedure (the agents in one collection — females
in our example — choose, while the agents in the other collection — males — remain
passive) implemented in the SimpleMatching class:

matching(collectionl, filterl, comparatorl, collection2,
filter2, matchingScoreClosure, matchingClosure) ;

and it is invoked as

SimpleMatching.getInstance () .matching(...) ;
The matching method requires seven arguments:

1. collectionl: the first collection (e.g. all individuals in the population);

2. filterl: a filter to be applied to the first collection (e.g. all females with the
toCouple flag on);

3. comparatorl: a comparator to sort the filtered collection, which determines the
order that the agents in the filtered collection will be matched.

4. collection2: the second collection, which can be the same as collectionl (e.g. all
individuals in the population) or a different one; the two collections do not need
to have the same size;

5. filter2: a filter to be applied to the second collection (e.g. all males with the
toCouple flag on);

6. matchingScoreClosure: a piece of code that assigns, for every element of the
filtered collectionl, a double value to each element of the filtered collection2, as
a measure of the quality of the match between every pair;

7. matchingClosure: a piece of code that determines what to do upon matching.

As in the computation of the average age, the use of closures — which are
relatively new to the Java language — allows a great simplification of the code. While
it is not required that the user knows about closures, it is interesting to understand
why they are so useful. In the example, suppose that the females in the population
are sorted according to some criterion, for example beauty: the prettiest woman is
the first to choose a partner, the second prettiest is the second to choose etc. The
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matchingScoreClosure sorts all possible mates according to some other criterion,
for example wealth. Hence, the prettiest woman gets the richest man, the second
prettiest gets the second richest, etc. In such a case, a comparator would suffice
to order the males in the population, as the ranking is the same irrespective of the
female who is evaluating them. But suppose now that the attractiveness of a man
depends on the age differential between himself and the potential partner: in such a
case, the ranking is specific to each woman in the population. A simple comparator
would still do the job, but the comparator should be able to access the identity of
the woman who is making the evaluation as an argument, which requires a lot of
not-so-straightforward coding. Closures allow to bypass this technical requirement
because they can pass a functionality as an argument to another method; in other
words, they treat functionality as method argument, or code as data.

Closures in the matching() method are easier to understand when illustrated by
an example: the seven arguments are listed in Box 4.8.

Box 4.8 The Matching Algorithm in PersonsModel.marriageMatching()
SimpleMatching.getInstance () .matching (

// collectionl: the whole population
persons,

// filterl:
new FemaleToCoupleFilter (),

// comparatorl: a comparator that assigns priority to the
// individual that has a lower difficulty in matching

// (this is determined by an individual’s age in relation
// to the average)

new Comparator<Person>() {

@Override
public int compare (Person femalel, Person female2) {
return (int) Math.signum(
Math.abs (femalel.getAge () -
averageAge.getAverage ()) -
Math.abs (female2.getAge () -

averageAge.getAverage ())) ;
}
}I
// collection2: same as collectionl
persons,
// filter2:

new MaleToCoupleFilter (),

// MatchingScoreClosure: a closure that, given a specific

(continued)
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// female,
// computes for every male in the population a matching score
new MatchingScoreClosure<Person> () {

@Override
public Double getValue (Person female, Person
male) {
return female.getMarriageScore (male) ;
}

b

// matchingClosure: a closure that creates a link between a
// specific female and a specific male, and sets up a new
// household.

new MatchingClosure<Person> () {

@Override
public void match (Person female, Person male) {

female.marry (male) ;
male.marry (female) ;

}

4.6.2.5 Alignment

Alignment involves comparing the provisional outcomes of the simulation with
some external aggregate targets, and then modifying the simulation outcomes in
order to match the external totals. We show how this is implemented in Demo07 by
looking at the divorceAlignment() method; the inWork() alignment method works
similarly. When it comes to divorce, as in marriageMatching(), the focus is on
females: males are passive recipients of their partners’ choices. Different targets are
specified for different age groups and simulated years; as we have seen in Sect. 4.6.1,
these are read from the file p_divorce.xls and stored in the MultiKeyCoefficientMap
pDivorce in the Parameters class. The divorceAlignment() method works cell by
cell, that is, it aligns each age group of the population to its year-specific target:
this means that the alignment algorithm is applied once for every age group (as
defined in the p_divorce.xls parameter file). The structure of the method is therefore
as follows:

* For each age group: do alignment:

— Read target from pDivorce.
— Select the relevant subgroup of married females.
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— Compute, for each of the selected females, a probability to divorce that
depends on the age group to which they belong.

— Select the couples that divorce by applying the SBD algorithm: each female
is ranked according to the signed difference between their divorce probability
and a random number uniformly distributed between 0 and 1; then, the number
of couples equal to the target are selected to divorce by starting with the top
ranked female and going down the ranks until the target number is reached.?”

The MultiKeyCoefficientMap pDivorce, which contains the targets, has a three
dimensional key: the lower and upper bounds for the age group, and the year of
the simulation. The age group-specific and year-specific targets are read with the
instruction reported in Box 4.9.

Box 4.9 PersonsModel.divorceAlignment(): Reading the Targets

MultiKeyCoefficientMap pDivorceMap =
Parameters.getpDivorce() ;

for (MapIterator iterator =
pDivorceMap.mapIterator () ; iterator.hasNext();) {

iterator.next () ;

MultiKey mk = (MultiKey) iterator.getKey () ;
int ageFrom = (Integer) mk.getKey(0) ;
int ageTo = (Integer) mk.getKey (1) ;
double divorceTarget = ((Number)
pDivorceMap.getValue (

ageFrom,

ageTo,

getStartYear () + SimulationEngine.

getInstance() .getTime ())) .doubleValue () ;

[...]
}

The alignment methods require four arguments:

1. collection: a collection of individuals whose outcome or probability of an event
has to be aligned (e.g. all the population);

2. filter: a filter to be applied to the collection (e.g. all females selected to divorce);

3. alignmentProbabilityClosure or alignmentOutcomeClosure: a piece of code
that 1) computes for each element of the filtered collection a probability for the

20The ranking involves a stochastic component (the random number that is subtracted from the
divorce probability score) in order to give individuals with a low predicted probability some
chance to experience the event. As we have already noted, the SBD algorithm is quite distortive
and its use is deprecated in JAS-mine; it is employed here only for consistency with the LIAM?2
implementation.
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event (in the case that the alignment method is aligning probabilities, as in the
SBD algorithm) or an outcome (in the case that the alignment method is aligning
outcomes), and ii) applies to each element of the filtered collection the specific
instructions coming from the alignment method used;

4. targetShare or targetNumber: the share or number of elements in the filtered
collection that are expected to experience the transition; the SBD algorithm uses
targetShare.

Box 4.10 shows how the alignment method is implemented in Demo07.

Box 4.10 PersonsModel.divorceAlignment(): Applying the SBD Align-
ment Algorithm
new SBDAlignment<Persons> () .align (

// collection:
persons,

// filter:
new FemaleToDivorce (ageFrom, ageTo),

// alignmentProbabilityClosure:
new AlignmentProbabilityClosure<Person>() {

// 1) compute the probability of divorce

@Override

public double getProbability (Person agent) {
return agent.computeDivorceProb () ;

}

// 1ii) determine what to do with the aligned
probabilities

@Override

public void align(Person agent,

double alignedProbability)

{
boolean divorce = RegressionUtils.event (
alignedProbability,
SimulationEngine.getRnd ()
)i
agent .setToDivorce (divorce) ;
}
b

// targetShare:
divorceTarget
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4.6.3 The Person Class
4.6.3.1 Entities

The Person class is an Entity class, as specified by the @ Entity annotation:

@Entity
public class Person implements Comparable<Persons,
EventListener, IDoubleSource {

[...]
}

This implies that the class is linked to a table in the database with the same name,
and that all properties which are not annotated as @ Transient are persisted in the
database, when the simulation output is saved.

Entity classes must specify a PanelEntityKey (annotated as @Id), which is a
three-dimensional object which identifies the agent id, the simulation time and the
simulation run. These three keys uniquely identify each record in the database:

@Id
private PanelEntityKey id;

The ORM expects that the field names in the database are the same as the
property names in the Java class, except when a different name is specified as in

@Column (name="dur_in couple”)
private Integer durationInCouple;

Enumerations can be interpreted by the ORM both as a string and as ordinal
values (0 for the first enum, 1 for the second, etc.), depending on how they are
annotated:

@Enumerated (EnumType . STRING)
private WorkState workState;

4.6.3.2 The IDoubleSource Interface

The Person class implements the IDoubleSource interface. This interface provides
a simple way of asking a class to return a specific value.?! Similarly to the
EventListener interface, it requires to declare an Enum which lists all the variables
that can be queried, and the getDoubleValue() method for returning their value
(Box 4.11). Itis used by the Regression classes as a way of decoupling the regression
model specification from the code: as long as a variable is enumerated in the specific

21 As such, it is also used by JAS-mine distribution plots, see Sect. 4.6.6.
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Enum called Regressors, it can be used (or removed) as a covariate in a regression
model without the need to modify the code.?

Box 4.11 Implementation of the IDoubleSource Interface in Person
public enum Regressors {

// For marriage regression, check with potential
// partner’s properties
potentialPartnerAge,
potentialPartnerAgeSq,
potentialAgeDiff,
inWorkAndPotentialPartnerInWork,
notInWorkAndPotentialPartnerInWork,

// For in work regression
age,
agesq,
ageCub,
isMarried,
workIntercept;

}
public double getDoubleValue (Enum<?> variableID) {
switch ((Regressors) variableID) {

//For marriage regression
case potentialPartnerAge:

return getPotentialPartnerAge () ;
case potentialPartnerAgeSq:

return getPotentialPartnerAge () =*
getPotentialPartnerAge () ;

//For work regression
case age:
return (double) age;
case ageSqg:
return (double) age * age;
case ageCub:

(continued)

22Regression classes also have a method to read directly the values of the variables from the agent
class, without the need of implementing the IDoubleSource interface. However, this requires that
all the variables used by a regression model are defined as (possibly transient) properties in the
class. This is particularly tedious when the covariates refer to another agent (such as a potential
partner, or the spouse), as is common in our case.
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return (double) age * age * age;
case isMarried:
return civilState.equals (CivilState.Married) ?

1.0 : 0.0;
case workIntercept:

return 1.0; //Constant intercept, multiply
// regression coefficient by 1
default:

throw new IllegalArgumentException (
“Unsupported regressor ” -+
variableID.name () + “ in
Persont#tigetDoubleValue”) ;

4.6.3.3 Methods

The Person class implements the EventListener interface and is therefore able to
be activated by the scheduler with the onEvent() method. The calls that a Person is
able to respond to — enumerated in a specific Enum called Processes (Box 4.12) —
are:

Ageing: age and marriage duration are increased; work status is set to retired if
retirement age is reached.

Death: an age-, gender- and year-specific death probability is read from the
MultiKeyCoefficientMaps pDeathM and pDeathF stored in the Parameters class;
this probability is then compared with a uniformly distributed random number
between 0 and 1 to determine the occurrence of the event:

RegressionUtils.event (deathProbability) ;

If death occurs, the partner’s status is updated to widow and the person is
removed from all the lists (that is, from his/her household and from the model).
Birth (applied to all females aged between 15 and 50 inclusive): an age- and year-
specific probability of having a baby is read from the MultiKeyCoefficientMap
pBirth stored in the Parameters class; then the occurrence of the event is
determined in a similar fashion to the death() process. No multiple births such
as twins can occur. Newborns are given a potential educational level that will
be reached with certainty. Following the LIAM2 implementation, the person
is assumed to be a student until completion of their studies (at age 16 for
lower secondary education, 19 for upper secondary education, and 24 for tertiary
education).
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ToCouple (applied to all unmarried individuals aged between 18 and 90
inclusive): this method reads an age-, gender- and civil state-specific probability
of forming a partnership from the MultiKeyCoefficientMap pMarriage and
determines whether the Boolean flag toCouple is set to true, to be used by the
marriageMatching() algorithm in the PersonsModel class.

GetALife (leave parental home): a new household is created if the individual is
aged 24 or over, unmarried and still living in the parental household.

Divorece: after divorce is decided by the Model’s alignment method, partner links
are broken, civil states are updated, females retain their household and males
move to a newly created household.

InEducation: this method examines the person’s age and education level to
determine whether an individual is still in education, or must exit education and
enter the labour market as unemployed.

Box 4.12 The Person.Processes Enum, Defining the Processes a Person
Undertakes When Activated by the Scheduler

public enum Processes {

Ageing,

Death,

Birth,

ToCouple,
Divorce,
GetALife,
InEducation;

Other significant methods of the Person class include:

getMarriageScore(): computes the score of each male in the marriage pool, for a
given female, based on a linear regression model specified by the MultiKeyCoef-
ficientMap regMarriageFit; it is used by the marriageMatching() method in the
PersonsModel class.

marry(): creates a link between the two partners and sets up a new household
where they move to; it is used by the marriageMatching() method in the
PersonsModel class.

computeDivorceProb(): computes the divorce probability, based on a logit
regression model specified by the MultiKeyCoefficientMap regDivorce; it is used
by the divorceAlignment() method in the PersonsModel class.
computeWorkProb(): computes the employment probability, based on a logit
regression model specified by the MultiKeyCoefficientMap reginWork; it is used
by the inWorkAlignment() method in the PersonsModel class.
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Given that the regression coefficients have already been loaded from Excel
files into the Parameters class, and the IDoubleSource interface method get-
DoubleValue() takes care of reading the values of the regressor variables, the
simulation of outcomes or probabilities based on regression models is straightfor-
ward:

marriageScore = Parameters.getRegMarriageFit ().
getScore (this, Person.Regressors.class);

divorceProb = Parameters.getRegDivorce() .
getProbability (this, Person.Regressors.class);

workProb = Parameters.getRegInWork() .
getProbability (this, Person.Regressors.class);

Again, if the specification of the model is changed by adding or remov-
ing covariates, or if new coefficient estimates become available, nothing has
to be changed in the code, except for adding any new covariate to the Per-
son.Regressors Enum and providing a method for the new case in the getDoubl-
eValue() method.”

4.6.4 The Household Class

This class contains a list of all household members and is able to count the number
of adults and children in the household. It is defined as an Entity class and is
therefore linked to a table with the same name in the database. It implements the
EventListener interface because it responds to calls by the scheduler requesting that
the household composition is updated.

4.6.5 The PersonsCollector Class

The Collector collects statistics and manages the persistence of the simulation
outputs on the database. It extends the AbstractSimulationCollectorManager class
and requires, similarly to the Model, the implementation of a buildObjects() method
and a buildSchedule() method.

The buildObjects() method creates several CrossSection objects, which collect
specific values from each individual in the population (Box 4.13).

2The change in specification is instead achieved by updating the regression coefficient input files
(e.g. reg_inwork.xls).
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Box 4.13 The PersonsCollector.buildObjects() Method

@Override
public void buildObjects () {

final PersonsModel model =
(PersonsModel) getManager () ;

ageCS = new CrossSection.Integer (model.getPersons (),
Person.class, “age”, false);

nonEmploymentCS = new CrossSection.Integer (
model.getPersons (), Person.class, “getNonEmployed”,
true) ;

employmentCS = new CrossSection.Integer (
model.getPersons (), Person.class, “getEmployed”, true) ;
retiredCS = new CrossSection.Integer (

model .getPersons (), Person.class, “getRetired”, true) ;
inEducationCS = new CrossSection.Integer (

model .getPersons (), Person.class, “getStudent”, true) ;

lowEducationCS = new CrossSection.Integer (model.
getPersons (), Person.class, “getLowEducation”, true) ;

midEducationCS = new CrossSection.Integer (model.
getPersons (), Person.class, “getMidEducation”, true) ;

highEducationCS = new CrossSection.Integer (model.
getPersons (), Person.class, “getHighEducation”, true) ;

}

The Collector’s schedule is made up of two processes only, which take place
at every simulation period: the CrossSections are updated (Processes.Update), and
the persons and households are persisted in the database (Processes.Dumplinfo) (see
Box 4.14).

Box 4.14 The PersonsCollector.buildSchedule() Method
@Override
public void buildSchedule () {

EventGroup collectorSchedule = new EventGroup () ;

(continued)
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The Collector also implements the EventListener interface, featuring the Enum
Processes and onEvent() method (see Box 4.15).
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As we have seen in Sect. 4.6.2, implementing the EventListener interface is
not necessary, as the class can be activated by the scheduler using Java reflection.
However, grouping all the updating in one single Update process improves on
clarity.?*

Updating the CrossSection objects only involves simple instructions such as

ageCS.updateSource () ;

Similarly, dumping the simulation outputs is done by the Dumplnfo process and
only requires

DatabaseUtils.snap (( (PersonsModel) getManager()) .getPersons()) ;
DatabaseUtils.snap ( ( (PersonsModel) getManager ()) .getHouseholds()) ;

4.6.6 The PersonsObserver Class

The PersonsObserver builds graphical objects that allow monitoring and inspection
of the simulation outcome in real time. It extends the AbstractSimulationObserver-
Manager interface and, similarly to the other simulation managers (the Model
and the Collector), requires the implementation of a buildObjects() method and a
buildSchedule() method.

The buildObjects() method creates three plots. The first one (agePlotter) depicts
the evolution of the average age of the simulated population: it takes the ageCS
CrossSection from the Collector, with information on the age of each individual,
and computes its mean (by creating a MeanArrayFunction object). Similarly,
the workPlotter plots the frequency of students, retired, other non-employed and
employed individuals in the population, and the eduPlotter plots the share of
individuals with each educational level (Box 4.16).

Box 4.16 The PersonsObserver.buildObjects() Method

@Override
public void buildObjects () {

final PersonsCollector collector = (PersonsCollector)
getCollectorManager () ;

agePlotter = new TimeSeriesSimulationPlotter
(“Age”, \\age (years)") ;

(continued)

2*Because updating is a common activity, it is also defined as a CommonEventType Enum in the
JAS-mine event library (together with saving). Passing the scheduler this Enum does not require
implementing the EventListener interface. An example of this approach is implemented in the
Observer.
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agePlotter.addSeries (“avg”,
new MeanArrayFunction (collector.getAgeCS())) ;
GuiUtils.addWindow (agePlotter, 250, 50, 500, 500);

workPlotter = new TimeSeriesSimulationPlotter
(“Work status”, “proportion”) ;
workPlotter.addSeries (“employed”,

new MeanArrayFunction (collector.getEmploymentCS())) ;
workPlotter.addSeries (“non-employed”,

new MeanArrayFunction (collector.getNonEmploymentCS())) ;
workPlotter.addSeries (“retired”,

new MeanArrayFunction (collector.getRetiredCS())) ;
workPlotter.addSeries (“students”,

new MeanArrayFunction (collector.getInEducationCS())) ;
GuiUtils.addWindow (workPlotter, 750, 50, 500, 500) ;

eduPlotter = new TimeSeriesSimulationPlotter (“Education
level”, “proportion”) ;
eduPlotter.addSeries (“low”,

new MeanArrayFunction (collector.getLowEducationCS())) ;
eduPlotter.addSeries (“mid”,

new MeanArrayFunction (collector.getMidEducationCS())) ;
eduPlotter.addSeries (“*high”,

new MeanArrayFunction (collector.getHighEducationCS())) ;
GuiUtils.addWindow (eduPlotter, 1250, 50, 500, 500) ;

}

Other plots can be easily added. In particular, by building on the JFreeChart
library, the CollectionBarSimulationPlotter class in JAS-mine allows to create his-
tograms for representing distributions of given variables in the simulated population,
at any given simulation period.

The schedule of the PersonsObserver class manages the updating of these three
plots (Box 4.17). Here, the built-in JAS-mine Enum CommonEventType.Update is
used, rather than a class-specific implementation of the EventListener interface as
in the Collector. This requires scheduling the update of each graph separately, but
allows for a better control of the display frequency. The latter is obtained by means
of an extra parameter which is loaded into the GUI:

Box 4.17 The PersonsObserver.buildSchedule() Method

@GUIparameter
private Integer displayFrequency = 1;

@Override
public void buildSchedule () {

(continued)
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getEngine () .getEventList () . schedule (new
SingleTargetEvent (agePlotter,
CommonEventType.Update), O,
displayFrequency) ;

getEngine () .getEventList () . schedule (new
SingleTargetEvent (workPlotter,
CommonEventType.Update), O,
displayFrequency) ;

getEngine () .getEventList () . schedule (new
SingleTargetEvent (eduPlotter,
CommonEventType.Update), O,
displayFrequency) ;

4.6.7 The StartPersons Class

The Start class initialises the JAS-mine simulation engine and defines the list of
models to be used. In general, the Start class is designed to handle two types of
experiments:

performing a single run of the simulation in interactive mode, through the
creation of a Model and related Collectors and Observers, with their GUIs;
performing a single run of the simulation in batch mode, through the creation
of the Model and possibly the Collectors; this involves managing parameter
setup, model creation and execution directly, and is aimed at capturing only the
simulation’s numerical output;

The Start class is ignored when performing a multi-run session (whose structure

is defined in a class extending the MultiRun interface) where the simulation is run
repeatedly using different parameter values, so as to explore the space of solutions
and produce sensitivity analyses on the specified parameters.

The Start class implements the ExperimentBuilder interface, which defines the

buildExperiment() method. This method creates managers and adds them to the JAS-
mine engine. In Demo07, the simulation is run in interactive mode (Box 4.18).

Box 4.18 The StartPerson Class

public class StartPersons implements
ExperimentBuilder {

public static void main(Stringl] args) {

(continued)
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boolean showGui = true;
StartPersons experimentBuilder = new StartPersons() ;

final SimulationEngine engine =
SimulationEngine.getInstance () ;
MicrosimShell gui = null;
if (showGui) {
gul = new MicrosimShell (engine) ;
gui.setVisible (true) ;

engine.setExperimentBuilder (experimentBuilder) ;
engine.setup() ;

}

@Override
public void buildExperiment (SimulationEngine engine)

{

PersonsModel model = new PersonsModel () ;

PersonsCollector collector = new PersonsCollector (model) ;
PersonsObserver observer = new

PersonsObserver (model, collector) ;

engine.addSimulationManager (model) ;
engine.addSimulationManager (collector) ;
engine.addSimulationManager (observer) ;

)
¥

The Start class contains the standard main() method which allows a Java
application to run. By selecting the “Run As Java Application” option from the
Eclipse menu, this procedure launches the JAS-mine GUI, creates a model instance
and gives it to the simulation engine. It then creates a Collector and an Observer and
calls the setup() method of the simulation engine, which has the task of loading the
experiment into memory.

The JAS-mine GUI contains a mask for setting the specific Model parameters,
another mask for defining the specific Observer parameters and the three dynamic
graphs defined in the Observer class. Figure 4.1 depicts the graphical output of one
simulation run.

The Tools > ‘Database explorer’ tab in the JAS-mine GUI allows to browse the
input and output databases. By selecting a specific database and pressing the ‘Show
database’ button, the data can be explored in the default web browser using SQL
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Fig. 4.1 The graphical output of one simulation run

commands. The output tables can also be exported in CSV format for subsequent
analysis using specific statistical tools by typing:

CALL CSVWRITE ('person.csv’, ’'SELECT % FROM PERSON ') ;

4.7 Conclusions

The JAS-mine simulation platform achieves a convergence between agent-based and
microsimulation tools. Its main goal is to speed up model development, facilitate
model documentation, and foster model testing and sharing. The rationale behind
this choice lies in the observation that computer power is always increasing, while
researchers’ time is not. Also, large-scale simulation projects are generally beyond
the reach of a single scientist. Even when they remain under the control of a
restricted group of people, they generally require a prolonged effort, often on a
stop-and-go basis. The possibility of building on previous work done by the same
authors or by other researchers is crucial. Simulation modelling needs cooperative
development. The choice of an entirely open-source tool should be evaluated in this
light. Moreover, JAS-mine does not force the user to adopt predefined solutions
to the problems faced in simulation modelling. By offering a set of libraries that
extend the capability of the standard Java classes, JAS-mine leaves entirely open the
possibility of using other libraries and tools, either as an alternative or on top of the
JAS-mine toolkit.
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Chapter 5
Simulating Synthetic Life Courses of Individuals
and Couples, and Mate Matching

Sabine Zinn

5.1 Introduction

This paper presents a novel modeling and simulation approach for fine-grained
population projection, which merges demographic microsimulation and agent-based
modeling. The main idea behind this approach is to model and simulate life
course dynamics of individuals and couples by means of traditional demographic
microsimulation and to use agent-based modeling for mate matching.
Demographic microsimulation is well suited to conducting fine-grained popu-
lation projection if only independent entities such as individuals or couples are
concerned (van Imhoff and Post 1998). However, as soon as kinship and/or inter-
individual interactions are to be considered as well, microsimulation is likely to
encounter specification problems (see, e.g., Ruggles 1993; van Imhoff and Post
1998; Murphy 2006). The approach presented here offers an opportunity to tackle
this problem: it facilitates the specification of life courses of individuals and couples,
and also the establishment of a partnership market. In this way, it allows us to
test, for example, how different policies might affect demographic events which
depend on the mutual decision of both spouses—for instance, whether implementing
parental leave benefit for both men and women can significantly affect childbearing
decisions. In detail, population dynamics in our model are driven by synthetic life
courses of individuals and couples, which are defined by the sequences of states
that individuals and couples enter over time, and by the waiting times between
these state transitions, see Fig. 5.1. These states, which individuals and couples enter
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Fig. 5.1 The upper part of the figure shows the life courses of two opposite-sex individuals. Once
they get married, a couple life course is created. Through divorce the couple life course dissolves
and the individual life courses of both (divorced) spouses are renewed

over time, summarize the demographically relevant categories that an individual or
a couple can belong to. Generally, the state space is determined by the problem
to be studied, but commonly it will at least comprise the elementary demographic
characteristics of sex, fertility, and marital status. In demographic microsimulation,
life courses usually evolve along two time scales: individual age and calendar time.
A possible third time scale is the time that an individual or a couple has already
spent in the current demographic state, for example, the time that has elapsed since
getting married. In our setting, life courses are specified in continuous time, that is,
transitions between states (i.e., events) can occur at any instant of time. No changes
take place in between subsequent events and only a finite number (i.e., a discrete
sequence) of events can occur in a finite time span.' In other words, our model
is a discrete event model (Cellier 1991, Section 1.9). In a microsimulation model
like ours, the underlying stochastic model is parameterized with transition rates that
are assumed to vary with age and also with calendar time. Commonly, for their
estimation statistical methods of event history analysis are applied to retrospective
or prospective life histories that are reconstructed from longitudinal data and/or vital
statistics. Assumptions about future rates then define the projection scenarios.
Unfortunately, as soon as a conventional demographic microsimulation is
confronted with inter-individual interaction and couple behavior, problems of
parametrization arise: on the one hand, inter-individual interaction processes such
as mate choice mechanisms are largely unobservable, and only the outcome of
these processes can be seen (de Vos and Palloni 1989). That is, it is hard—if not
impossible—to estimate accordant transition rates. On the other hand, surveys

IThis is opposed to continuous simulation (not to be confused with continuous time microsimula-
tion) where system dynamics are continuously tracked.
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mostly gather only very limited information on partnership relations (Huinink
and Feldhaus 2009). Thus, a realistic microsimulation model of couple behavior is
usually hindered by data limitations. However, researchers are currently noticing
considerable improvements regarding data availability (Mayer 2009).

Concerning the first problem described, agent-based modeling poses a solution:
as soon as we face hidden processes driving certain life course decisions, we use
components of agent-based modeling to generate life-course events. The basic idea
is simple: within the scopes of microsimulation, let individuals interact such that in
sum the microsimulation output resembles observed aggregates. To make it more
concrete: for a certain year and population, we might know in advance how many
couples will have formed. We might also know the within-couple age distribution
and the distribution of the spouse’s educational attainment. This information will
suffice to set up, for example, a partnership market that produces couples whose
attributes closely resemble the observed distributions (Zinn 2012).

In order to accurately specify this novel modeling approach, we suggest using
the mI-DEVS formalism as described by Uhrmacher et al. (2007). This formalism
is a variant of the discrete event specification (DEVS) model language developed
by Zeigler et al. (2000), extended by explicitly supporting multi-level modeling. We
deem this formalism adequate for our purposes as it allows us, on the one hand, to
specify population dynamics in the requested way and, on the other hand, to benefit
from well-proven and efficient up-to-date simulation methodology.

The remainder of this paper is structured as follows: in Sect.5.2 we detail
the stochastic model applied to describe life course dynamics of individuals and
couples, and we describe the simulation processing used to construct synthetic life
courses. Then, in Sect.5.3, we present the mate matching procedure applied for
building couples over simulation time. Section 5.4 outlines the implementation of
the simulation model: we describe the mI-DEVS model which we have designed
to specify the population model at hand as well as its execution semantics. In
Sect. 5.5, we illustrate the capability of the novel simulation approach using a
simplified example that aims to forecast the contemporary Dutch population. We
analyze partnership and smoking behavior. We conclude our work in Sect. 5.6 by
summarizing its key lines, and by presenting problems that remain for future work.

5.2 Simulating Individual and Couple Behavior
in Continuous Time

The model of a demographic microsimulation comprises a virtual population and a
stochastic model of individual and couple behavior. The virtual population includes
all individuals and couples for whom life courses are simulated over simulation
time, that is, individuals and couples who are part of the base population (i.e., the
set of individuals and couples with whom we start our simulation), individuals
who enter the population by birth, couples that are built during simulation, and
individuals and couples who immigrate into the population. To describe individual
and couple behavior we use continuous-time multi-state models. Continuous-time
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multi-state models are stochastic processes—commonly Markovian processes—that,
at any point in time, occupy one out of a set of discrete states (Hougaard 1999).
The state space summarizes all discrete states considered. Generally, the state
space is determined by the problem under study but, commonly, it will at least
comprise the elementary demographic characteristics of sex, fertility status, and
marital status. In our terminology used here, an individual’s and a couple’s state is a
combined characteristic given by the combination of several attributes. To simplify
the notation, we define state variables. These are the demographic categories
considered, such as sex, fertility status, and marital status. All unique combinations
of these state variables’ values thus form the state space.

We define individuals and couples to be the atomic components of our model.
Hence, the state space of our simulation model can be decomposed into two sub-
state spaces: one for individuals and one for couples. Table 5.1 gives an example of
four state variables: sex, fertility status, marital status, and mortality. In the example,
a potential state of an individual is (female, childless, never married, alive), and a
potential state of a couple is (one child, married, both alive).

Over simulation time, individuals might experience events, that is, transitions
between states. In principle, transitions may occur between all states of the state
space. However, the problem under investigation restrains the set of possible events.
Table 5.2 shows a list of feasible events for the example state space given in
Table 5.1. Two individuals form a couple after a successful mating period. The
corresponding process is described in Sect.5.3. Once a couple is formed the
individual life courses of both spouses are combined into one couple life course.
If a couple experiences a dissolution event, such as divorce or widowhood, the

Table 5.1 Example of state variables that individuals and couples might occupy, inclusively
possible values, separated by commas

State variable Individual values Couple values

Sex Female, male Opposite-sex couple

Fertility status Childless, child(ren) Childless, child(ren)

Marital status Never married, divorced, Married, divorced, widowed (she is dead),
widowed widowed (he is dead)

Mortality Alive, dead Both dead, she is dead (he is alive),

he is dead (she is alive), both alive

Table 5.2 Example of possible events that individuals and couples might experience

Event type Individual events Couple events
Fertility event Giving birth (for females), Becoming parents
becoming father (for males)
Partnership events Marrying Getting divorced
Mortality events Dying Female dies and male is widowed,

male dies and female is widowed,
both die
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couple life course decomposes again into two individual life courses (in case of a
dissolution event) or into one individual life course (in case of a widowhood event),
cf. Fig.5.1.

In a continuous-time simulation model-such as the one considered here—the
propensity of an individual or couple to experience a transition is determined by
transition rates. Depending on the process class used to describe individual or couple
behavior these rates might depend on different time scales (e.g., age, calendar
time, time elapsed since a specific event) and sequences of states already passed.
For reasons of convenience, we use transition rates that depend on age, calendar
time, the state of occurrence, and the state of destination. In other words, we
use nonhomogeneous continuous-time Markov chains Z(z), t € IRS' , to describe
individual and couple behavior. The process time ¢ maps the time span over which
we observe the life course of a unit. The time ¢ is set to zero when an individual or
couple is created and evolves throughout their life time.

The process Z(¢) is fully defined by the two-dimensional process (J,;, Ty)nen,
where (J,)nen, i @ Markov Chain mapping all states that an individual or couple
occupies, and (T}),en, is the sequence of the corresponding transition times along
process time t. Thus, the transition rate of an individual or couple to undergo a
transition from a state s; to a state sy is

1
ASj,Sk(t) = llin f_lP[Jn—H =Sg, Tut1 € 41+ H] | T, = S, Typp1 = [].
hl0

By way of translation, the process time 7 can easily be mapped onto age and calendar
time.? Thus, modeling age and calendar time dependence is straightforward. Once
the transition rates of a Markovian process are known, the distribution functions of
the waiting times in the distinct states of the state space can be derived and synthetic
life courses can be constructed. More precisely, the distribution function of leaving
state s; at time ¢ after waiting time w for moving on to state sy is

Fw,t) =1 —exp{—A%.,sk(w,t)}, (5.1)
where

t+w
Ag 5 (w,1) = / As; s (w)du
t

is the corresponding integrated hazard rate. By means of the distribution
function (Eq. 5.1), we can derive a random waiting time in state s; until moving

2Specifically, the function C(T},) maps the calendar time at T, and the function A(7,) maps the age
of an individual at 7,,. Similarly, A’ (T,) maps the age of a female spouse at T, and A" (T,,) maps
the age of a male spouse at T},. At individual birth time the functions A(T,), A’ (T}), and A™(T,)
take the value zero, and C(-) is zero at, for example, 01-01-1970 00:00:00.
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on to state s;. For this purpose, we use the inversion theorem (Rubinstein and
Kroese 2008, p. 51f.). Hence, we yield a random waiting time w from the correct
distribution by
w= Ay, wn[=In(l —u)],

with u being a standard uniformly distributed random number. By generating
sequences of random waiting times until the next event, synthetic life courses can
be constructed. For example, first a waiting time until school enrolment is derived,
then a waiting time until school graduation, followed by a waiting time until first
birth, and so on. Here, we have to consider that an individual might not only be
exposed to one single event but to a set of possible events (i.e., to competing risks).
For example, a 16-year old female might experience the event school graduation
or teenage pregnancy as a next event. We account for competing risks such as
these by computing for each possible destination state a random waiting time and
by selecting the shortest one as the one to be realized. Over simulation time, this
computation of the shortest waiting times is repeated for each individual of the
virtual population. Once simulation ending time has been reached, the event times
of all surviving individuals are censored.

The computation of random waiting times requires the inversion of the integrated
hazard rate Ay, . In demography, assuming constant transition rates over yearly
intervals is a suitable and widespread approximation to A;}Yk, which clearly eases
its derivation (Gill and Keilman 1990). Integrated hazards become piecewise linear,
and waiting time distributions piecewise exponential.

Standard approaches to estimate transition rates are occurrence-exposure rates
or the Poisson generalized additive model. Both approaches are discussed in Zinn
(2011). Commonly, longitudinal survey data, vital statistics, or census data are used
to estimate transition rates. For individual-based questions such data are available.
However, the current data situation could hamper the estimation of transition rates
for all types of events to which couples might be exposed—though, momentarily, we
observe the buildup of a number of more complex surveys dealing (among many
other things) with partnership issues.> An idea to describe couple behavior, even
if couple data are not available is to combine models of individual behavior. For
this purpose we have to make assumptions of how individual behavior must be
interlinked to yield couple behavior. This means, we have to model how (and for
which transitions) the transition rates of the couple need to be modified relative
to the rates of the individual spouses. An example: we may have age-specific
rates of quitting smoking for men and women. If, within one couple, one partner
quits smoking, this rate for the other partner suddenly will be much higher than
before. In principle, interlinking individual behavior this way is a task in statistical

3Examples are the German National Educational Panel Study NEPS (https://www.neps-data.de/
en-us/home.aspx) and the German Family Panel pairfam (http://www.pairfam.de/en/study.html).
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modeling, and many general approaches are available. Mostly we will have to base
the analysis on external knowledge about the studied phenomenon and the data
available to model it.

5.3 Matching of Individuals

So far, we have detailed how, in a continuous-time microsimulation, synthetic life
courses of individuals and couples can be constructed. However, we have not made
clear how couples are formed, that is, how mate matching is performed. As mate
choice mechanisms are largely unobservable and the starting time of mate search
activities is usually not known exactly, transition rates for matching individuals
are hard (if not impossible) to estimate. Without such rates, pure microsimulation
is not capable of performing mate matching. This is in contrast to agent-based
modeling, where individuals interact according to rules being usually based on
societal or behavioral theories. Such theories might be substantiated by empirical
and hypothesized data. In other words, agent-based models allow us to replicate
hidden processes by combining behavioral theories and observed data. Thus, even
though some decision processes (such as mate choice decisions) are to a large extent
unobservable, agent-based models facilitate the replication of observed aggregates
(for example, the number of homosexual couples within one year). In a continuous-
time microsimulation model, we compute waiting times until the next event. As a
consequence, we know in advance when couples have to be formed. Subsequently,
we interpret the occurrence of partnership formation as the outcome of a hidden
mating process which we describe by an agent-based model. In other words we
simulate partnership formation events via microsimulation and we decide who
mates whom via agent-based modeling. This way, we are embedding an agent-based
model of mate choice into the framework of a continuous-time microsimulation
model. The subsequent description of this agent-based model relies, to large a
extent, on the work presented in Zinn (2012).

Concerning the timing of partnership onsets, continuous-time microsimulations
pose some problems that discrete-time models can avoid. In discrete-time models,
which update information on demographic events at discrete points in time (usually
each year or each month), it is convenient to construct mating pools at equidistant
time points, for example, for every year. During simulation, individuals enter these
mating pools and undergo mate matching.

In continuous-time models, events occur at exact time points and individuals will
never experience partnership events at the same time. Therefore, a pool of potential
partners cannot as easily be constructed as in discrete-time models. A simple way
to avoid this problem would be to use a so-called open model. In this model class,
spouses are created as new individuals when needed, rather than being selected from
already existing members of the population. Although such “external” partnership
formations do happen in real populations, they constitute the minority of cases.
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Open mating models therefore would artificially increase the number of individ-
uals, and new individuals would still have to be supplied with individual attributes
to allow for a realistic simulation of their remaining life course. Therefore, we focus
on so-called closed models, where appropriate spouses must be identified from the
current members of a population. In this context, we have to solve three problems:
how to construct a feasible partnership market? How to identify a proper spouse?
What to do if no proper spouse can be found? The first problem can be tackled
by constructing a partnership market that individuals can enter and leave over the
complete simulation time range. That is, once a partnership onset event has been
simulated for an individual, he/she enters the partnership market. As soon as the
individual finds a proper spouse, both spouses leave the market. The remaining two
problems (identifying matching spouses and specifying feasible options in case of
unsuccessful partner search) will be the topic of the subsequent sections.

We expressly point out that in the field of microsimulation and agent-based
modeling already several useful and convincing mate-matching algorithms exist.
Comprehensive summaries are given in, for example, Walker (2010, Chapters 2 & 3)
and Zinn (2011, Chapters 9 & 10).

5.3.1 Identifying Matching Spouses
5.3.1.1 Overlapping Mating Periods

In a continuous-time microsimulation, it is impossible that two individuals feature
identical mating times. However, a partnership has to have a clearly defined unique
formation time. Consequently, to determine such a time already computed event
times have to be shifted. In doing so, we have to be very careful to keep the
distortion of the microsimulation output at a minimum. That is, we have to ensure
that the differences between the already scheduled event times and the shifted ones
are small. To conform to this requirement, we introduce individual mating periods
which are defined to start at maximum one year before the scheduled event time of
partnership onset and to stop at maximum one year later. Concretely, let a woman
I, experience the onset of a partnership at time #; and a man /I, experience the onset
of a partnership at time #,. Without loss of generality, we assume #, < f;. Then the
mating period of /; and I, is

Fi = [min(te,ti—B),max(t,- +B,IE)], = ],2,
where ¢, being the time of the last event of [;, 2B is the maximum length of the
mating period (with B being smaller than one year), and 7 is the simulation stopping

time. We determine that the two individuals /; and I, can only mate if

I Nr, # o,
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that is, if they have overlapping mating periods.* Then, the partnership formation
time 7 of I; and I, is defined to be the mean of the event times #; and f,:

=1t +0.5 —1n).

This way of determining partnership formation times is very different to the way
of defining them in agent-based models for partner search. There mating times
are the outcomes of the matching algorithm itself; see for example Billari et al.
(2008), Todd et al. (2005), and Todd and Billari (2003). In our simulation model,
mating times are the outcomes of stochastic processes which are parameterized with
empirical or hypothesized rates. Thus, the purpose of our mating model is not to
reproduce observed or assumed mating times, but to create couples with feasible
characteristics while minimizing the distortion of the microsimulation output. This
objective is in clear contrast to agent-based models that describe behavior while
aiming at resembling certain stylized facts, for example, the age distribution at first
marriage.

5.3.1.2 Compatibility of Individual Characteristics

Even if the mating periods of individuals overlap, their characteristics might not
match. Therefore, besides event times, also individual characteristics have to be
checked for conformance. For this purpose, we use a compatibility measure. The
measure transforms female and male attributes into a numeric index that quantifies
how well two potential spouses fit together. Values between zero and one are used
to express the degree of matching, with a large value indicating high compatibility.
Likewise, a small value points to incompatibility. Specifically, we use logit models
to predict how well the characteristics of potential spouses agree with one another.
In order to account for different types of partnerships (cohabitations and marriages),
we apply a separate logit model for each partnership type. The models predict the
probability that two individuals, each with given attributes, form a particular kind
of partnership. Which covariates will enter the logit models depends on the state
space of the actual application. As our microsimulation model is a generic model,
the state space is not fixed. However, naturally, individual age and sex should be
included. Obviously, we can only include covariates that are mapped by the state
space. If, for example, educational attainment, children ever born, or ethnicity are
included in the state space, these attributes are natural candidates for covariates in
the logit models. Data on observed couples are used to estimate the coefficients of
these models. According to the theory of assortative mating, partners tend to have
similar attributes such as similar ages and levels of education (Zietsch et al. 2011;

4Setting the length of the individual mating periods to two years at maximum is a compromise
between minimizing the potential distortion of the microsimulation output and ensuring a feasible
number of potential partners available within a certain time period.
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Blossfeld 2009; Kalmijn 1998). Therefore, the estimated coefficients are likely to be
in accordance with the theory of assortative mating. Nevertheless, depending on the
data used the estimated coefficients might also point to deviations from that theory.
This makes logit models a very flexible tool to measure compatibility because they
are not tailored to one particular theory of mating.

In order to estimate logit models of spousal compatibility, we randomly assign
to each male spouse a female who is not his observed partner.” We set the response
variable to one if the couple has been observed, and to zero otherwise. This way,
we construct a data set with an identical number of observed synthetic couples,
resembling the retrospective data design of a case-control study. Unfortunately,
when conducting mate matching we are confronted with a prospective problem,
that is, we need the likelihood that two individuals with certain attributes are going
to mate. Hence, for a prospective problem we have constructed a case-control data
set. Prentice and Pyke (1979) show that all nonintercept parameters of a prospective
logit regression model are asymptotically correct when using a case-control data set;
only the estimator of the intercept is biased. In our mate matching procedure (see
subsequent section), we decide on a match between two potential spouses depending
on their attributes, and not on the composition of the pool of available candidates.
That is, we measure compatibility on a relative scale. Therefore, for our purposes,
the estimation of a prospective logit model is suitable.

5.3.1.3 Mate Matching

Once an individual has entered the partnership market, he/she starts to look for
an appropriate partner. For this purpose, the seeking individual inspects other
individuals in the market. As the human network size is limited to approximately
150 members (Hill and Dunbar 2003), the number of potential spouses is restricted
from the outset. We set an upper bound that follows a normal distribution with
expectation = 120 and standard deviation 0 = 30. Furthermore, we assign to
each individual a random value that captures his/her aspiration level regarding a
partner. This aspiration level takes values between zero and one. If the compatibility
measure between an individual and a potential spouse exceeds this aspiration level,
he/she will accept an offer. Every time an individual has been inspected and fails
to be chosen, he/she reduces his/her aspiration level by §4 = 0.1. We use the beta
distribution to describe the individual aspiration levels. As is generally known, the
degree of choosiness of females and males varies with age (Trivers 1972; Buss
2006). We assume that women’s requirements decrease with declining fecundity.
This is in accordance with, for example, the findings of Waynforth and Dunbar
(1995) and de Sousa Campos et al. (2002) who figure out that with fertility decline
women tend to become less demanding. In contrast to men: when they are young,

3In order to avoid biased results, we do not assign to a male spouse a female spouse who has
attributes identical to those of his observed spouse.
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Fig. 5.2 Age and gender-specific densities of the beta distributions that are used to determine
aspiration levels regarding partners

they are more involved in short-term relationships and thus less selective concerning
their partner’s traits. When they are older, men start to look for a long-term
relationship and to invest in offspring. Hence, their level of choosiness increases.
To account for the variability in the degree of aspiration, we parameterize the beta
distribution accordingly, see Fig. 5.2. An important aspect when searching for a mate
is the size of the pool of potential spouses. If it is small, it is not reasonable to assume
a very selective seeker. Therefore, we assume that, if a seeker faces less than ten
potential partners, he/she reduces the aspiration level by 6z = 0.3.

To implement our agent-based model of mate choice we use a marriage queue
M. The marriage queue comprises all unpaired individuals looking for a partner.
Moreover, each individual in the queue is equipped with a stamp indicating the time
scheduled for the upcoming partnership event. To create couples, we use a sequential
mate matching algorithm. Concretely, when an individual /; enters the partnership
market the algorithm performs the following steps.

— The mating period I'; of I; is determined and the aspiration level a; of I; is
generated.

— If the marriage queue M is empty (i.e., the partnership market is empty), /; is
inserted into M.
Otherwise:

A. The social network size of I; is determined by drawing a normally distributed
random number N, with mean y and variance o2. If N is greater than the
current number N of individuals in the marriage queue, N is set to N 4.

B. N individuals, whose mating periods overlap with I';, are randomly taken
from M. They are inserted into the working marriage queue W.

C. Individuals of the same sex such as I; are removed from W.

D. If W is empty, I; is directly inserted into M.
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Otherwise:

(i) If W contains less than ten individuals, the aspiration level of I; is
reduced to a; = max(0, a; — 0.3).

(i1) For the potential spouses to inspect, a counter j = 1 is initialized.

(iii) From W, the jth individual /; (with aspiration level a;) is selected and
the compatibility measure c; between I; and /; is computed. If a; < ¢;
and a; < ¢y, the individuals /; and /; are paired, and /; is removed from
M.

(iv) Otherwise, the aspiration level of [; is reduced to a; = max(0,a; — 0.1)
and the aspiration level of J; is reduced to a; = max(0, a; — 0.1).

(v) The value of the counter variable j is incremented by one.

The steps (iii) and (v) are repeated until either /; is paired or all individuals
of WV have been inspected.

If for [; no appropriate spouse can be found, /; is enqueued into M.

5.3.2 Options in Case of an Unsuccessful Search

The presented mate matching algorithm does not guarantee that each searching
individual will be paired. Mate matching fails, if an individual is unable to find
within his/her mating period a spouse with compatible characteristics. Five options
exist to cope with the problem of an unsuccessful search.

1. Form a couple with the most compatible opposite-sex seeker who is searching
for the same type of partnership within the same searching period.

2. Extend the mating period.

3. Return the individual to the model population unpaired. That is, the individual is
again at risk of experiencing a partnership event (or, alternatively, any other kind
of event).

4. Let the individual emigrate.

5. Let a proper spouse immigrate.

The last option is inspired by the processing in open models because an appropriate
spouse is taken from “outside”. Each of these options entails a major difficulty.
Forming couples between unsuccessful seekers and their most compatible counter-
parts in the partnership market holds the danger that too many couples with little
compatibility are created. Extending the mating period means shifting the time of
the scheduled partnership event to a later time point and thus notably distorting
the output of the underlying stochastic model of individual behavior. Rejecting
a seeker and sending him back unpaired implies that an already scheduled event
is completely ignored. Allowing (too many) immigrated spouses will eventually
spoil the model population and hence the plausibility of the model outcome.
Consequently, searching periods that expire without success should definitely be an
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exception. This can only be assured if the model population maps a large proportion
of an actual population, so that each seeker can meet at least one potential spouse.’

5.4 Implementation and Software

Throughout this paper, we consider a microsimulation model that describes life
courses as sequences of discrete events that occur along a continuous time line. That
is, our microsimulation model is a discrete event simulation model. For implemen-
tation purposes, we intend to deploy a reliable and efficient up-to-date simulation
methodology. Moreover, developing new software from scratch should be avoided.
Therefore, to ease implementation, we make use of an already established and well-
proven discrete event simulation approach, the discrete event specification language
DEVS (Zeigler et al. 2000; Uhrmacher et al. 2010; Wainer et al. 2002). It originates
in systems theory, defines real systems as composites of submodels (which are
either atomic or coupled), and is based on a state-based concept. DEVS does not
assume a particular stochastic model to specify system behavior. Thus, it allows
us to describe population dynamics by nonhomogeneous continuous-time Markov
chains. In other words, DEVS offers all the functionalities required to describe
the microsimulation at hand. Several DEVS-based tools exist (e.g., DEVSJava,
JDEVS, CD++, DEVS variants in JAMES 1II) that support implementation. To
facilitate the modeling of different kind of problems, various DEVS variants have
been developed (Uhrmacher et al. 2010; Zeigler et al. 2000). We use ml-DEVS
formalism (Uhrmacher et al. 2007). This formalism is a variant of the classical
DEVS model language, extending it by explicitly supporting multilevel modeling.
Commonly, a ml-DEVS model consists of micro models embedded in a macro
model. The macro level model is described by a coupled DEVS model, equipped
with a state and behavioral rules of their own, and the micro models are described by
ordinary atomic DEVS models. Communication between micro and macro models
is handled by exchanging messages. The propagation of information from the micro
level to the macro level is facilitated by equipping micro models with the ability to
change their ports. In this way, the macro model can access the information given
in the exhibited ports of the micro models, and the micro models can influence
macro-level dynamics. The macro model can concurrently activate (several) micro
models by signalizing messages via value coupling. Value coupling means that, at
the macro level, information is mapped to specific port names, and every micro
model can access this information by forming input ports with corresponding port
names. The ml-DEVS formalism supports variable structure models, that is, models

5By nature, the run times of such simulation settings are considerably longer than the run times
of simulation settings that only implement sparse marriage markets. This is due to the fact that in
sparse marriage markets many seekers might fail to encounter a potential partner. Thus, there is
nobody to be screened and nothing to compute.
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that change their own composition, interaction, and behavior pattern. Structural
changes are operated top-down directed by the macro model and executed on the
micro level.

We describe our microsimulation model by defining micro models of individuals
and couples embedded in a population macro model. Transition rules determine the
behavior of each model. The transition rules of the micro models control life course
transitions, whereas the transition rules of the population macro model direct mate
matching and structural changes of the population (i.e., adding and removing of
micro models). To efficiently execute our ml-DEVS model of population dynamics
we extend the so-called sequential hierarchical simulator for (parallel) DEVS.
The ml-DEVS population model and its simulator are implemented by means of
the modeling and simulation framework JAMES II.” The simulation software and
illustrative examples are available in the model library of openABM (Zinn 2015)
and also from the author upon request.

Our ml-DEVS microsimulation model consists of a macro model Pop compris-
ing two types of micro components: individual models I and couple models C, see
Fig.5.3. These micro components handle the life course dynamics of individuals
and the dynamics of married or cohabiting couples. The macro-DEVS model guides
the onset of partnerships (marriages or cohabitations), that is, it performs mate
matching and instructs the creation of couple models. If a couple model signalizes an
emigration, a dissolution, or a widowhood event, the macro-DEVS model instructs
its extinction or dissolution. Likewise, the macro-DEVS model handles death and
migration events of individual models as well as the creation of micro models in
case of immigration and childbirth events. The full specification of the ml-DEVS
population model is given in very detail in Appendix A.

7JAMES 1I can be downloaded at http://www.jamesii.org and is distributed under the JAMESLIC
which allows free reuse for commercial and noncommercial projects.
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Commonly, the execution of a discrete event simulation model demands an event
queue, which is a list of events sorted by their scheduled event times. In our setting,
the event queue holds the events that are scheduled for the whole population (e.g.,
successful mating events), as well as for the individuals and the couples of the
virtual population. In each simulation step the event with the minimal time stamp is
dequeued and executed. Then, for the related model a next event is computed and—
if that event is neither death nor emigration—enqueued. In other words, an event
queue organizes the scheduling of upcoming events. For the processing of events
executable simulation code has to be derived, that is, simulation semantics have to
be specified. Generally, the execution semantics of a DEVS model are described
by the abstract simulator, which comprises simulators and coordinators (Zeigler
et al. 2000). In a ml-DEVS model, simulators correspond to micro models and
coordinators to macro models (Uhrmacher et al. 2007). Coordinators are respon-
sible for the execution and the correct synchronization of the simulators of the
micro models and for the handling of external events (in our case: the arrival of
immigrants). In line with this, a coordinator implements an event queue algorithm
managing upcoming events of micro models. Synchronization is guaranteed by
communication protocols: if a model consists of only one macro model, as is
the case for our population model, the coordinator waits for protocols sent by
its subordinate simulators and transmits them to the root-coordinator. The root-
coordinator guides the overall simulation processing. It initializes a new simulation
and instructs the model execution until some termination criterion is met (e.g., the
simulation stop time has been reached). To each mI-DEVS model a corresponding
processor tree can be given, which directly maps the hierarchical structure of the
model on the architecture of simulators and coordinators. Figure 5.4 displays the
processor tree corresponding to the ml-DEVS population model designed. To ensure
consistency within each simulation step, messages between the root-coordinator,
the coordinator, and the simulators are processed in a well-defined order: if an

root-
coordinator

macro model
coordinator

mirco model mirco model \ ...
simulator 1 simulator 2

Fig. 5.4 Processor tree corresponding to our ml-DEVS population model

population
model
individual 1) (individual 2 ) --- @ @
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(internal) event is due,® the coordinator of the macro model activates the micro
model concerned by sending a x-message. After having performed the event, the
simulator of the micro model forwards to the coordinator a y-message with output
data. In our case, such output data might comprise the number of newborns in case of
a childbirth event or the states and birth dates of individuals in case of emigration.
Afterwards, the simulator of the micro model waits for an x-message comprising
input information. For example, an individual micro model is informed about the
actual mating time in case of a successful partner search. Finally, a done-message
signalizes the completion of a simulation step. The -, y-, and x- comprise, besides
their regular information, also the actual simulation time ¢, and the done message
comprises the time fonie of the next event and all approachable ports ports.

Uhrmacher et al. (2007), who have developed the ml-DEVS formalism, suggest
an abstract simulator, which is essentially a direct implementation of the ml-DEVS
processing scheme. That is, it executes a ml-DEVS model by passing messages
successively through the model’s processor tree. Such processing means that any
time a superordinate model sends a message to a subordinate model, it has to wait
for the subordinate model to react and to respond. Only then simulation processing
can proceed. Such an approach poses problems (Himmelspach and Uhrmacher
2006). On the one hand, depending on the depth of the processor tree and the
number of models, a remarkable overload might result. On the other hand, the ml-
DEVS simulator of Uhrmacher et al. (ibid.) demands for each micro model one
thread.” Regular Java virtual machine implementations, however, do not support
more than a few thousand parallel threads. This implies that meaningful population
projections would not be possible. To overcome this limitation, we have designed
a novel simulator for our mI-DEVS population model. We have extended the
sequential abstract simulator for parallel DEVS developed by Himmelspach and
Uhrmacher (2006). The novel abstract simulator executes parts of the processor tree
en bloc which means to exploit computing power in an efficient way. The related
communication protocol is displayed in Appendix B. Likewise, this appendix
comprises the pseudocode of the respective coordinator and simulator functions as
well as a comprehensive description of their functionality.'?

8We call the state transition of a model an internal event if it has not been provoked by an input
message. Otherwise, the event is denoted as external event.

° Within a program, a thread is a sequentially executed stream of instructions.

19Note that the specification of the mI-DEVS population model and the newly designed sequential
hierarchical simulator for ml-DEVS have already been described in a similar but more extended
form in Zinn (2011).
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5.5 A Hypothetical Application on Smoking Behavior
of Couples

We conduct a small case study to illustrate the capabilities of the novel microsim-
ulation model. For this purpose, we look at a synthetic population that (roughly)
resembles the Dutch population. We consider smoking and partnership behavior. In
particular, we study how partners influence each other’s smoking behavior. Note that
the presented application is mainly based on synthetic data, and should not be used
to draw conclusions about actual behavior. It only serves as a means to demonstrate
the potential of a microsimulation that accounts for interdependencies between life
courses of married or cohabiting individuals.

5.5.1 The Synthetic Population and Parametrization

Starting on January 1, 2008, we generate life courses of a synthetic population that
(roughly) resembles one percent of the Dutch population. The simulation horizon
ranges from January 1, 2008 to December 31, 2020. During simulation, we consider
individuals aged between zero and 63 years. The state space that we employ for
individuals and couples is shown in Table 5.3. If the value ‘being single & living
alone’ is assigned to an individual, he/she lives either alone and never lived in a
union before, or he/she lives alone but was cohabiting before, or he/she lives alone
and was married before. The value ‘dissolved’ indicates the separation of a married
or cohabiting couple. Spouses that are dissolved or widowed enter the ‘being single
& living alone’ state of the individual model. The events that individuals and couples
can experience during simulation are listed in Table 5.4. To describe individual and
couple behavior, for simplicity we assume that

Table 5.3 State variables that individuals and couples might occupy, inclusively possible values,
separated by commas

State variable Individual values Couple values

Sex Female, male Opposite-sex couple

Fertility status Childless, at least one child | Childless, parents

Marital status & Living at parental home & | Married, cohabiting, dissolved,

living arrangement | never married/cohabiting widowed (she is dead), widowed
before, being single & (he is dead)

living alone

Smoking status Non-smoker, smoker Non-smoker couple, dual smoker couple,
female smoker & male non-smoker,
male smoker & female non-smoker

Mortality Alive, dead Both dead, she is dead (he is alive),
he is dead (she is alive), both alive
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Table 5.4 Possible events that individuals and couples can experience

Possible events of individuals Possible event of couples

Leaving parental home, dying, Getting divorced or separated, childbirth,
launching a cohabitation, marrying, female starts smoking, male starts smoking,
quitting to smoke, starting to smoke, female quits smoking, male quits smoking,
giving birth (for females) both quit smoking, both start smoking,

female dies and male gets widowed, both die,
male dies and female gets widowed

— the same fertility rates apply to paired and unpaired women,

— the risk to quit and to start smoking depends on the presence of children and the
smoking traits of the partner, but does not depend on the marital status or the
living arrangement,

— the extent of the impact that the smoking behavior of the spouse has on the own
smoking behavior does not vary with age,

— the divorce risk and the risk to break up depend on the presence of children, but
not on the smoking behavior of the spouses,

— to single, married, and cohabiting individuals the same mortality risk applies, and

— the risk that both spouses die at the same time is very low (we set it to 107°).

The propensity of individuals and couples to experience events is quantified by
either empirical or synthetic transition rates. We have estimated (non-parity specific)
fertility rates of females and transition rates to change the marital status and/or the
living arrangement for single individuals using the Family and Fertility Survey''
for the Netherlands (FFS_NL). For this purpose, we have applied a slightly modified
version of the MAPLES estimation procedure'? (Impicciatore and Billari 2011). The
transition rates of couples to change their marital status or the smoking behavior
are mainly hypothesized, constructed such that they resemble observed transition
patterns. We assume that the mortality rates vary with age, sex and calendar year,
and the other rates are age- and sex-specific, but are held constant over calendar
time. We use hypothetical death rates and transition rates of changing the smoking
behavior. It is well known that smokers have a higher mortality risk than non-
smokers (Doll et al. 2004). We account for this fact by adapting the mortality rates of
the EuroStat2008 projections for the Netherlands (baseline scenario)'? accordingly:
mortality rates for smokers are obtained by increasing these rates by 10 % and
mortality rates for non-smokers are obtained by reducing them by 10 %. We assume
that the mortality rates vary with age, gender and calendar year, and the other rates
are age- and sex-specific, but are held constant over calendar time. All transition
rates used are given in Appendix C.

"htp://www.unece.org/pau/ffs/ffs.html

2MAPLES estimates age profiles from longitudinal survey data using a generalized additive model
and piecewise cubic splines.

3Detailed data on EUROPOP 2008 mortality were kindly provided by Eurostat.
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To run a microsimulation model we need a base population to start with. For
our illustration, we determine the base population to consist of individuals aged
between zero and 63, differentiated according to sex, smoking status, fertility status,
and marital status/living arrangement. We assume them to resemble one percent of
the respective age groups of the Dutch population at January 1, 2008. Hence, the
base population comprises 70,295 males and 68,264 females. Marginal distributions
concerning the considered age classes and state variables—required to estimate the
base population-have been taken from the EuroStat web portal,'* the Health and
Retirement study'® and the FFS_NL survey. To estimate the base population we use
the method of iterative proportional fitting (Deming and Stephan 1940). Figure 5.5
shows the resulting population numbers. Generally, our simulation model allows the
consideration of migration; however, for reasons of simplicity we neglect migration
for this example.

During simulation, we conduct mate matching as describe in Sect.5.3. We use
two logit models to quantify the compatibility between potential spouses: the first
model describes the probability to enter a cohabitation and the second model
describes the probability to enter a marriage without cohabiting before. Cohabiting
spouses who marry are not considered here because they are already partnered. For
estimating the models, we employ the first wave of the Netherlands Kinship Panel
Study (NKPS)'® (conducted in the period from 2002 to 2004). We only consider
partnerships that started in the years from 1990 to 2002. Our data set contains a
record for each observed couple, which consists of the age of the male spouse,
the age difference between the female and the male spouse (in integer years), a
variable indicating whether the female or the male spouse were married before,
and a variable showing whether the female spouse has children. The NKPS data do
not contain any information about smoking behavior. Thus, on the basis of these
data we cannot study accordant effects on matching probabilities. We come back to
this issue at a later time and suggest a way to account for matching over smoking
traits nevertheless. Following the procedure described in Sect. 5.3.1.2, we construct
a data set of observed and nonobserved potential couples. By means of these data we
estimate the two logit models. The estimated coefficients are given in the Tables 5.5
and 5.6. In both models the direct effect of the age of the male is very small. It is
only slightly significant in the case of cohabitation and even insignificant in the case
of marriage. For cohabitation and marriage we find—as expected—that individuals
with small age differences are more prone to mate. We find no significant effect
of the presence of children on a man’s propensity to marry or cohabit a woman.
For marriage there is a slightly significant negative effect of whether one or both
of the spouses experienced marriage before. The accordant effect is insignificant for
cohabitation. We control for possible effects between marriage history (i.e., first and

http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/themes
Shttp://hrsonline.isr.umich.edu/
"http://www.nkps.nl/
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Fig. 5.5 The base population of males and females, cross-classified according to age, fertility
status, smoking status, and marital status/living arrangement; PH: living at parental home, MA:
married, CO: cohabiting, SI: being single (never married cohabiting before, dissolved, widowed),
S: smoker, nS: non-smoker, noChild: childless, child: at least one child
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Table 5.5 Results of logit model determining compatibility between potential partners entering
cohabitation

Variable Coefficient | p-value
Age of male 0.025 0.012
Age difference (age of male — age of female)
Greater than 7 —2.525 < 0.001
From41to7 —0.867 < 0.001
From?21to3 0.155 0.505
From —1to 1 0
From =3 to —2 —1.138 < 0.001
From —7 to —4 —1.975 < 0.001
Smaller than —7 —3.798 < 0.001
‘Woman has child(ren) —1.355 0.179
‘Woman or man or both were married before | —0.125 0.423

Indirect effect
Woman has child(ren) & married before ‘ 1.905 0.066
Number of pairs: 1472

Table 5.6 Results of logit model determining compatibility between potential partners entering
marriage

Variable Coefficient | p-value
Age of male 0.013 0.455
Age difference (age of male — age of female)
Greater than 7 —2.077 < 0.001
From4to7 —0.865 0.066
From?21to3 0.194 0.758
From —1 to 1 0
From =3 to =2 —1.643 0.006
From —7 to —4 —2.113 < 0.001
Smaller than —7 —19.220 0.977
‘Woman has child(ren) 0.352 0.811
‘Woman or man or both were married before —0.892 0.042

Indirect effect
Woman has child(ren) & married before ‘ 0.949 0.537
Number of pairs: 280

higher order marriages) and the presence of children by introducing an accordant
interaction term. The related effect is slightly significant in the case of cohabitation
and insignificant in the case of marriage.

The considered setting surely simplifies actual partner choice patterns, in partic-
ular as it relates to the effect of smoking behavior on matching probabilities. Several
studies exist that analyze and discuss such effects; see for example Clark and Etilé
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(2006) and Chiappori et al. (2010). Here, positive assortative matching over smoking
because of similar lifestyle preferences seems to be the most common finding. In
accordance therewith, we extend the two empirical likelihood equations relating
to marriage and to cohabitation by a term supporting matches of individuals with
similar smoking traits. Concretely, we add the variable ‘smoking status’ featuring
the two categories ‘one partner smokes and the other not” and ‘non-smoker couple
or dual smoker couple’. We assign an effect size of value zero to the first category
and an effect size of value one to the second category. The dimension of this ex-
post alignment is not based on empirical evidence but chosen to fit to the overall
context. There is no doubt that this is only a minimal solution to account for positive
assortative matching over smoking traits and the accordant values should be updated
if better data are available. Overall, however, we deem our illustration sufficient to
show the capability of our population model.

5.5.2 Results

We use a desktop machine equipped with an Intel(R) Core(TM) i7 Duo CPU,
2.80GHz and 8 GB memory to run our simulation. Due to the large population
size considered, the outcome of different simulation runs is very similar. Hence,
the standard error due to Monte Carlo variability is negligible, and it is sufficient to
concentrate on the results of one single run. During simulation all demographic
events (births and deaths, and state transitions of individuals and couples) are
tracked. The simulation provides information on the simulated life courses in four
files:

1. an ASCII file containing the birth dates of all simulated individuals,

2. an ASCII file containing the dates of transitions and the corresponding destina-
tion states for all simulated individuals,

3. an ACSII file containing the dates when seeking individuals enter the partnership
market, their current state, their next state, their desired mating time, as well as

4. an ASCII file containing the dates of transitions and the corresponding destina-
tion states for all simulated couples.

These files have a well-defined format, which can be accessed and managed further
by arbitrary tools. We use R to summarize and visualize the simulation output.

In the run considered, the simulation conducts 294,484 events and creates 67,743
newborns. Furthermore, 38,314 individuals are seeking for a partner. 37,046 of them
find a partner, that is, 18,523 couples are built. Approximately three percent of all
seekers cannot find a proper spouse along simulation time. This flaw is caused by
a surplus of ‘mating-minded’” women in our population. (A way to counteract this
unbalance would be to let proper spouses immigrate.) Subsequently, we show a
few descriptive statistics for simulated couple data (based on one single simulation
run). The results shown here are not comprehensive and only aim at indicating the
potential of our microsimulation model. As a first step we convert the simulation
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) IDFem _IDMale BirthDateFem BirthDateMale TrDate AgeAtTrFem _ AgeAtTrMale NewsState
3296228 1481858 14860  (Aug/29/1986 13:56:19) (Oct/01/1986 14:56:19) (Sep/21/2008 02:04:52)  22.06 21.97 (fem. CO. nS. noChild. male. CO. 5)
3296228 1481858 14860  (Aug/29/1986 13:56: (0ct/01/1986 14:56:19)  (Nov/07/2009 10:55:34)  23.19 23.10 (fem. SI. nS. noChild. male. SI. 5)
3296264 1909901 1923943 (Apr/29/1956 14: (May/15/1957 14:56:19)  (Dec/25/2008 07:36:53)  52.66 5161 (fem. CO. . child. male. CO. ns)
3297833 944182 918172 (ul/17/1979 14:56:19)  (Aug/28/2008 02:23:23) 2135 29.11 (fem. CO. S. noChild. male. CO. S)
3297833 944182 918172 (Jul/17/1979 14:56:19)  (Mar/20/201901:36:36)  31.91 39.67 (fem. MA. S. noChild. male. MA. S)
3297833 944182 918172 (Jul/17/1979 14:56:19) (Jul/28/2019 09:53:58) 32.26 40.03 (fem. MA. S.child. male. MA. S)

3381993 1505012 1503091 (Mar/14/1974 14:56:19)  (Sep/04/2009 11:54:08)  28.41 35.47 (fem. CO. nS. child. male. CO. nS)
3381993 1505012 1503091 ; (Mar/14/1974 14:56:19) 3341 40.47 (fem. SI. nS. child. male. SI. nS)

3499462 1129652 1129210 (May/11/199213:56:19) (Nov/09/1987 14:56:19) 18.22 2.72 (fem. CO. nS. noChild. male. CO. ns)
3499462 1129652 1129210 (May/11/199213:56:19) (Nov/09/1987 14:56:19) (Apr/27/201217:36:33)  19.96 24.47 (fem. CO. S. noChild. male. CO. ns)
3499462 1129652 1129210 (May/11/199213:56:19) (Nov/09/1987 14:56:19) (Oct/04/2015 18:09:34)  23.40 27.90 (fem. CO. nS. noChild. male. CO. ns)
3499462 1129652 1129210 (May/11/199213:56:19) (Nov/09/1987 14:56:19) (Apr/13/2017 03:03:41)  24.92 29.42 (fem. CO. nS. child. male. CO. nS)
3499462 1129652 1129210 (May/11/199213:56:19) (Nov/09/1987 14:56:19) (May/04/2018 04:18:51)  25.98 30.48 (fem. MA. ns. child. male. MA. ns)
3499515 1196394 1174260 (Jan/26/1987 14:56:19)  (Mar/12/1986 14:56:19) (Aug/28/2010 19:27:48) 23.59 24.46 (fem. CO. nS. noChild. male. CO. )
3499515 1196394 1174260 (Jan/26/1987 14:56:19)  (Mar/12/1986 14:56:19) (May/19/201220:27:29) 2531 26.19 (fem. SI. nS. noChild. male. SI. S)

3425577 1152670 1146210 (Mar/06/199014:56:19)  (Feb/25/1978 14:56:19)  (Oct/18/200908:49:48)  19.62 3164 (fem. CO. nS. noChild. male. CO. nS)
3425577 1152670 1146210 (Mar/06/1990 14:56:19)  (Feb/25/197814:56:19)  (Jun/27/2012 00:51:59)  22.31 34.33 (fem. CO. nS. child. male. CO. nS)
3425577 1152670 1146210 (Mar/06/199014:56:19)  (Feb/25/197814:56:19)  (Aug/25/201213:57:23)  22.47 34.50 (fem. SL. nS. child. male. SI. nS)

3425666 27661 258963  (Feb/19/1980 14:56:19) _ (Feb/10/1975 14:56:19) _ (Nov/22/2009 03:40:35) 2976 34.78 (fem. CO. nS. child. male. CO. nS)

Fig. 5.6 The simulated life courses of eight couples

Table 5.7 Frequency distributions of age differences between partnered men and women (age of
man minus age of woman), given according to age intervals used in modeling spousal compatibility

[—1.1] (1. 3] 3.7 [—3,—-1) [-7,-3)

Cohabitation Simulated 0.29 0.21 0.29 0.12 0.10
Observed 0.32 0.25 0.29 0.08 0.07
Marriage Simulated 0.70 0.08 0.11 0.05 0.05
Observed 0.73 0.08 0.13 0.03 0.03

output into a format resembling event history data. This format eases further
computation. In Fig.5.6 shows typical life courses of eight simulated couples.
Each record shows an event that a couple has experienced during simulation. It
gives the ID of the couple and the birth times of both spouses (‘BirthDateFem’
and ‘BirthDateMale’). Furthermore, it contains the transition date (‘TrDate’), the
transition age of the female spouse (‘AgeAtTrFem’), the transition age of the male
spouse (‘AgeAtTrMale’), and the state that the couple has entered (‘NewState’). The
first transition of a couple corresponds to the onset of the marriage or cohabitation.
If a couple experiences a dissolution event, the spouses return to the population of
single individuals. Likewise, in case of a widowhood event, the surviving spouse is
handled as a single individual.

It is essential for the usefulness the proposed mate matching strategy that
it resembles actual characteristics of partners in couples. Therefore, in order to
validate our mate matching strategy, we analyze the distribution of age differences
of couples. Table 5.7 and Fig.5.7 depict the distribution of age differences of
cohabiting and married spouses (age of male minus age of female). We find that the
simulated and observed frequency distributions are very similar. Consequently, we
deem the proposed mate matching algorithm suitable to produce reasonable results.

Having a partner who smokes can influence the spouse’s initiation of smoking.
That is, a smoking spouse might incite his/her non-smoking partner to start smoking,
or prevent his/her smoker partner from quitting smoking. It is also possible that a
nonsmoking partner urges his/her spouse to stop smoking. Likewise, the presence of
children has very likely a strong impact on a person’s smoking behavior. We study
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Fig. 5.7 Histograms of age differences between partnered men and women (age man minus age
woman in years). Black bars mark observed data and grey bars depict simulated results

Table 5.8 Percentage of male and female spouses who quit smoking, conditioned on the partner’s
smoking status and the presence of children

Childless couple Couple with children

Nonsmoking Nonsmoking

partner (%) Smoking partner (%) | partner (%) Smoking partner (%)
Males 6.42 4.72 5.95 5.30
Females |8.04 5.64 11.71 6.45

whether in our simulation output we can find accordant behavior. For this purpose,
we determine how many partnered smokers quit smoking, conditional on the smok-
ing status of the partner and the presence of children. Table 5.8 shows the results.

That is, during simulation 6.42 % of the smoking males who are part of a
childless couple and who are partnered with a nonsmoking woman quit smoking.
This is contrasted by 4.72 % of the smoking men without children being partnered
with a smoking woman. A similar pattern is evident for smoking women without
children. In couples with children, the effect of the smoking trait of the partner
is more pronounced for females than for males. Generally, women seem to have
a stronger propensity to stop smoking. Only few spouses start smoking during
simulation, in total 0.88 % of the male and 0.86 % of the female spouses. Table 5.9
gives the percentages of female and male spouses who start smoking, conditioned
on the partner’s smoking behavior and the presence of children. We find that 1.18 %
of the nonsmoking male spouses who are part of a childless couple and who are
partnered with a smoking woman start smoking. In contrast, only 0.57 % of the
nonsmoking males who have children and who are partnered with a nonsmoking
woman start smoking. Almost no mothers start smoking. This is opposed by 3.11 %
of the female childless spouses who are partnered with a smoking man and who
start smoking. Overall, both the presence of children and the smoking behavior
of the partner have a significant effect on an individual’s propensity to quit or to
start smoking. All these results are in accordance with the input transition rates for
smoking behavior.
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Table 5.9 Percentage of male and female spouses who start smoking, conditioned on the partner’s
smoking status

Childless couple Couple with children
Nonsmoking Nonsmoking
partner (%) Smoking partner (%) | partner (%) Smoking partner (%)
Male 1.01 1.18 0.57 1.06
Female |1.14 3.11 0.01 0.03
dissolution
N
) .
widowhood
olo
%)
o
childbirth
2™
childless 16.71 %
couple marriage
.00
In total: 8701
3
0> death of both
%
nothing

Fig. 5.8 First event after entering cohabitation

As a further aspect, we study the behavior of childless couples once they have
launched a cohabitation. In sum, during simulation 17,402 individuals undergo a
cohabitation event. We study dissolution and childbirth events, and restrict our
consideration to the first event that happens after partnership onset. Figure 5.8 shows
the respective results. After having entered cohabitation, 22.92 % of the childless
couples experience a childbirth event, 16.71 % marry, 16.91 % undergo a dissolution
event, and 0.45 % survive their partner.

As mentioned before, numerous summaries and insights can be derived from the
simulation output of a population model as the one described, but here we restrict
ourselves to the few examples given above. Again, please note that the results shown
are only illustrative and do not reflect observed behavior, because they are based on
input rates and model assumptions that are not solely derived from empirical data
and established social theories.
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5.6 Summary and Conclusion

We describe a microsimulation model that accounts for individual life courses,
as well as for couple life courses, and for mate matching. To define individual
and couple behavior we use a continuous-time multi-state model, that is, we
use a continuous-time microsimulation model. This kind of model specifies life
courses as sequences of discrete events; hence it is a discrete event model. For
sake of simplicity, we assume that the propensity of individuals and couples to
experience certain demographic events depends only on their current state, on
possible next states, on age and calendar time. Our microsimulation model performs
mate matching. For this purpose, we apply a two-sided stochastic mate matching
procedure. In our microsimulation, individual life courses are specified as sequences
of waiting times to a next event. That is, we can determine in advance when
individuals will experience the onset of a marriage or a cohabitation. The waiting
time until such an event is used for scanning potential partners. Concretely, once
an individual is scheduled to experience a partnership onset he or she enters the
marriage market. Each individual remains in the market for a specific period of
mate searching and matching. In order to build up synthetic couples in the market a
two-fold stochastic approach is used. First, we assign to each individual a random
value that captures the aspiration level regarding a partner. An empirical likelihood
equation reveals the probability that a given woman and a given man would mate.
Subsequently, we simulate a decision making process whether two individuals date
each other applying individuals’ aspiration levels and their mating probability. A
couple is formed if a positive decision has been made and the timing of the couple’s
partnership event is consistent regarding their individual mating periods. Individuals
that are inspected, but rejected, lower their level of aspiration.

For implementation purposes, we opt for a model formalism that supports
discrete event simulation. That way we can rely on existing modeling and simulation
tools as well as on up-to-date simulation methodology. Concretely, we use the
ml-DEVS formalism to specify our microsimulation model and the modeling and
simulation framework JAMES II to implement it. The corresponding ml-DEVS
population model is designed so that a macro-DEVS model guides the onset
and the dissolution of partnerships and deals with structural population changes
such as migration and childbirth events. In accordance therewith, ml-DEVS micro
components are used to map life course dynamics of individuals and couples.
Furthermore, we design simulation semantics that facilitates an efficient execution
of the population ml-DEVS model.

In order to illustrate the capability of the presented microsimulation, we run
a simulation projecting a synthetic population based on the population of the
Netherlands. We parameterize the model using micro data from different data
sources, among others, data from Statistics Netherlands and EuroStat. We study
partnership and smoking behavior; particularly, we analyze how partners influence
each other’s smoking behavior. The application indicates that the simulation model
produces feasible results. However, it should be noted that our illustration does not
reflect observed behavior. It only serves to highlight the potential of the developed
approach.
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Although our demographic microsimulation is capable to conduct realistic
population projections at a very detailed level, it shows limitations. First, a
general impediment for the usage of microsimulations is their demand for data.
To run meaningful microsimulation applications a lot of micro data is needed—
which might be hard to access. Second, using the DEVS metaphor to specify the
microsimulation bears some problems. Although the ml-DEVS formalism allows
specifying population dynamics in the intended way, it introduces some modeling
overhead. The formalism is very rigid which results in a bulky and longish definition
of the mI-DEVS population model. Unfortunately, currently no modeling formalism
exists that entirely copes with the requirements of demographic simulation models.
Nonetheless, this is work in progress, see Steiniger et al. (2014). Third, currently
individuals enter the partnership market based on empirical marriage rates or based
on rates indicating cohabitation propensities. To correctly determine partnership
events, however, instead of marriage or cohabitation rates, rates indicating the
willingness to mate would have to be used. We know of no data source that
allows estimating such rates. A way to anyhow obtain those rates would be to
hypothesize them based on external knowledge of the phenomenon. Fourth, so far
we restrict our consideration to binary linkages, that is, our model contains only
individuals and couples. From a pure technical point of view, the construction of
interaction networks comprising more than two individuals such as families and
households is straightforward: we model individuals who are linked as being part
of a “larger simulation unit that contains all individual units that are mutually
dependent” (Galler 1997, p.14). However, parameterizing such models can become
very difficult. This is mainly due to the fact that factors driving interactions and
causal relationships are widely unobservable.

Appendices

A. The ml-DEVS Population Model

The ml-DEVS microsimulation model consists of a macro model Pop comprising
two types of micro components: individual models I and couple models C, see
Fig.5.3. The special structure of the considered microsimulation model implies
that not the entire functionality of the original ml-DEVS formalism is covered.
For example, we do not employ any couplings between micro models. Therefore,
for reasons of clarity, we adapt the original ml-DEVS approach such that in the
subsequent description we leave out any functionalities that we do not demand.

A.1 The Population Macro Model
We formulate the population macro model Pop™ as structure

Pop = (X,Y, S, sinit, L P, 8, Agown, 4, sC)



140 S. Zinn

where the input port comprises the following information

s ¥y ny

¥ = Wi, -yl wf, - ywC] if ny single immigrants and/or n, couples enter,
%) otherwise,

wi’ describes the state of an immigrant (i = 1,--- ,n), and
ch describes the state of an immigrating couple j = 1, -+ , ny),

Y is an output port for emigrants leaving the population,
S is the set of possible states of Pop, a state s = [s,--- , 55|, s € S, indicates

s1:  whether the transition of an individual model leads to a structural model
change; indicators of structural model changes invoked by individual models
are actionOfInd = {immigrating, emigrating, dying, childbirth},

s»:  whether the transition of a couple model leads to a structural model change;
indicators of structural model changes invoked by couple models are
actionOfCouple = {immigrating, emigrating, dying, childbirth, dissolution,
widowhood},

s3:  the two individuals last found to form a proper match, and their mating time,
otherwise s3 = J,

s4:  all searching individuals that were included in the latest mate matching round
and could not properly be matched, otherwise s, = &,

s5:  two individual models that are due to form a couple, otherwise s5 = &.

Sinit = [, -+ , D] is the initial state of Pop,

8 :XxS8SxJxC — §is the state transition function of Pop, where 7 is the
index set of all individual models I and C is the index set of all couple models C; §
is composed of four component functions:

8y: if individuals are immigrating, or an individual signalizes emigration, death,
or a childbirth event, §; updates the first component s, of the state of Pop
accordingly, otherwise s; = &,

8,:  if couples are immigrating, or a couple signalizes emigration, death, child-
birth, dissolution, or a widowhood event, 8, updates the first component s, of
the state of Pop accordingly, otherwise s, = &,

83:  if an individual model signalizes the onset of a partner search, then &3 executes
a mate matching algorithm

— if two individuals can be identified as forming a proper match, then &3
reports these two individuals and their corresponding mating time in s3,

— if no individuals can be identified as forming a proper match, &3 sets s3 to
z;

— Dbesides this, 83 reports in s4 all searching individuals who were inspected
during the mate matching process and could not properly be matched;

otherwise s3 = s4 = @,
84: if two individuals signalize that their mating time is due, &4 reports this in s3,
otherwise s5 = .
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Adown - S — 2Uies Xi is the downward output function to inform individual models
(via their input ports X;)

about upcoming mating times (reported by s3), and
searching individuals, who were inspected during the latest mate matching round

and for whom no proper match could be found (reported by s4), about lowering
their aspiration level;

A : § — Y is the output function; it forwards the states and the birth dates of
emigrating individuals and couples to Y.

sc : § — Ix Cis the structural change function working on the set I of individual
models and the set C of couple models; sc is composed of seven component
functions:

N&H

SCy:

SC3.

SCq.

SCs.

SCeq-

scy:

creates individual models:

if s; indicates immigrating individuals, sc| creates n; new individual models
for immigrants,

if 51 or s, indicate childbirth, sc; creates for each newborn an individual
model,

deletes an individual model:

if s; indicates that an individual is dying or emigrating, sc, deletes the
corresponding individual model,

creates couple models:

if 5, indicates immigrating couples, sc3 creates n, new couple models for
immigrants,

deletes a couple model:

if s, indicates that a couple is emigrating or both partners of a couple die, sc4
deletes the corresponding couple model,

creates a couple model and deletes two individual models:

if s5 indicates a mating event, scs creates a new couple model for the mating
individuals and deletes the corresponding individual models,

deletes a couple model:

if s, indicates the dissolution of a couple: scg deletes the concerned couple
model and creates for the separating partners two individual models,

creates an individual model and deletes a couple model:

if s, indicates a widowhood event: sc; deletes the corresponding couple
model and creates for the surviving partner an individual model; otherwise
sc stays idle.

ta:S — R:{ U {oo} is the time-advanced function: ta(s) = O if at least one
si #@ ({=1,---,5), and ta(s) = oo otherwise.
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The macro model Pop handles structural changes such as adding and removing
individual and couple models. Via its input X the population model receives infor-
mation about incoming immigrants.'” Several immigrants may enter the population
simultaneously, for example, family members or couples. Once Pop receives the
information about immigration events, it creates as many individual and couple
models as immigrate. In an analogous manner, Pop creates new individual models
if individual or couple models report birth events. If individual or couple models
indicate the occurrence of emigration events, Pop forwards their states and birth
dates via its output port ¥ and removes the related models.'® Besides migration,
the macro model Pop guides the onset of partnerships, that is, the creation of
couple models. To this end, Pop performs the mate matching algorithm described
in Sect.5.3. The mate matching procedure involves all individuals who signalize
their disposition to mate, that is, exhibit a related output port. If two individuals
are found to form a proper couple, Pop records this in its state and informs the
individuals concerned immediately (fa(s) = 0) about the upcoming mating time (by
carrying out Agown). These matched individuals receive the accordant information
on their input port X; = {foundMate}. Similarly, Pop instructs individuals who
were unsuccessfully inspected during a mate matching round to lower their level of
aspiration (via their input port X; = {redAspLevel}). When two individual models
signalize the due date of their partnership onset, Pop replaces them by a couple
model. Accordingly, if a couple model informs Pop about a dissolution event,
Pop replaces this couple model by two individual models describing the separated
partners. Likewise, if a couple model signalizes a widowhood event, Pop replaces
this couple model by one individual model that describes the surviving partner.
Once Pop receives a message about a structural population change, it processes that
information immediately (i.e., fa(s) = 0) and empties the output ports of the related
micro models. Apart from immigration, Figs.5.9 and 5.10 illustrate the different
types of structural model changes that Pop carries out.

A.2 The Individual Micro Model
1 is the set of all individual models /. We formulate / as structure
(X, Y,"W,v0,p, 8, A, ta)

where
X is the input port of I; it is X = {foundMate, redAspLevel},

"The generation of immigration events might rely on empirical data about immigration dates and
number of immigrants or on hypothetical data.

"8 Modeling migration in this way allows us to extend the population model to study the migration
behavior between different populations. For this purpose different population models would have
to be coupled.
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Fig. 5.9 Possible output messages of the individual models and reactions of the population macro
model

1. Pop informs 7 via foundMate about an upcoming partnership onset, and
2. Pop instructs I via redAspLevel to lower the aspiration level.

Y is the set of output ports of I; Y = {searching, childbirth, emigration, death,
mating}; we differ between two types of output ports:

1. the port searching that is permanently exhibited when [ is searching for a mate,
and
2. the output ports that indicate structural model changes:
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Fig. 5.10 Possible output messages of the couple models and reactions of the population macro
model

(1) if a childbirth event is due, I signalizes this on the port childbirth,

(i1) if a death event is due, I signalizes this event on the port death,
(iii) if an emigration event is due, I signalizes this on the port emigration, and
(iv) if a mating event is due, [ signalizes this on the port mating.

' is the set of possible states that I can occupy; /¥ comprises

(i) I’s current state s, and I’s upcoming state s, (s.,s, € W where W is the state
space of the stochastic process that maps the individual life course),
(ii) I’s birth date b and I’s age q,
(iii) the complete waiting time 7 that / has to spend in s, as well as
(iv) I’s aspiration level la concerning a potential spouse (la = & indicates that / is
not searching for a mate).
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Yo = [s0, S0, b, ag, 00, D], comprises I’s initial state sg, I’s birth date b, I’s age ay at
model initialization, the entire waiting time that I has to spent in his/her current state
(in the initialization phase we set this time to co), and the initial level of aspiration
concerning a potential spouse is &.

To facilitate the subsequent description of the ml-DEVS functions §, p, A and ta,
we define the following auxiliary functions:

search : W x U — {true, false},
death : V — {true, false},
emigration : \V — {true, false},

childbirth : ¥ x W — Nj.

The function search shows whether a transition (from state s, to state s,) implies the
onset of a partnership, the functions death and emigration indicate a death and an
emigration event (identified by inspecting s,), and the function childbirth gives the
number of newborns that an event implicates (identified by inspecting the transition
from s to s,,).

8 : X x "W — W is the state transition function of I (x indicates input messages
and ¥ € 'W):

[Sy, Sn, b,a+ 1,7, D] if search(s,, s,) = false

[S» S, b, a, 00, lag] if search(s,, s,) = true

[S¢s Sus b, a, 00, min(0, la — §4)]  if an input message has been received
3(x, )= via the port redAspLevel

[Scs Sus b, 1" — b, 1°" —b —a, D] if the actual mating time 7°* has been

received via the port foundMate

not defined otherwise,

where s, is the next state of [ and 7 is the (random) waiting time between s, and
sy, lag is the aspiration level at the moment when an individual enters the mate-
searching phase, and &4 is the decrement to lower the aspiration level in case of an
unsuccessful search round.

p : '@ — Py selects the output port available in a given state (with P; =
{searching, mating, death, emigration, childbirth} is the set of all possible output
ports of I):
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searching  if search(s.,s,) = true and la # O,
mating if search(s., s,) = true and la = @,
death if death(s,) = true,

p(¥) = o
emigration  if emigration(s,) = true,
childbirth  if childbirth(s,, s,) > 0,

%) otherwise,

A :1W — Y is the output function; it is composed by five component functions that
fill the output ports searching, mating, childbirth, death, and emigration:

Ar: Ifsearch(s., sy) = true and la # @, A forwards the information (s, b, pdes —
b + a + t*,la) necessary for mate searching, where s C s, comprises
the individual attributes that are relevant for finding a proper spouse (like
partnership type and age), and 19 is the desired mating time; otherwise
A= Q.

Ay: If Iis due to mate (i.e., search(s.,s,) = true and la = @), A, forwards via
the output port mating the upcoming state and the birth date of 7, otherwise
Ay = @.

As:  If Iis due to give birth (i.e., childbirth(s., s,) > 0), A3 forwards via the output
port childbirth the number of newborns, otherwise A3 = .

Ayq: If Iis due to die (i.e., death(s,) = true), A4 signalizes this to the output port
death, otherwise A4, = @.

As: If Iis due to emigrate (i.e., emigration(s,) = true), A5 forwards via the output
port emigration the current state and the birth date of 1, otherwise A5 = &.

ta: 'V — R(‘)" U {oo} is the time-advanced function: ta(y) = .

The state of I captures all the information necessary to describe I’s attributes and
behavior. It comprises I’s current state s. and I’s upcoming state S, as well as I’s
birth date and age when entering state s.. Additionally, it contains the information
about I’s aspiration /a concerning a potential spouse if / is in a mate-searching phase.
The occurrence of an event (provoked by a state transition of the corresponding
stochastic process) that does not imply the onset of a partnership results in an
(ordinary) state transition of /. Therefore, I’s current state, upcoming state, and
age at last transition is redefined accordingly. If the event implies the onset of
a partnership, / immediately enters a phase of mate searching. In this phase, I
features a positive aspiration level la concerning the traits of a potential spouse
and permanently exhibits his/her searching output port. This port holds I’s birth
date, the desired mating time, and the attributes of / that are relevant for the mate
matching procedure, for example, whether / wants to marry or enter a cohabitation.
The permanent exhibition of the searching port ensures that every time Pop is
conducting a mate matching round, it can retrieve those data that are relevant for
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mating. Meanwhile, every time Pop considers (the searching) / in a mate matching
round and no proper spouse could be detected for I, Pop instructs / (via its input
port redAspLevel) to lower his/her aspiration level. During each mate matching
round Pop checks whether I‘s desired mating time 1 is expired. If this is the
case, the options listed in Sect. 5.3.2 might be applied. For reasons of convenience,
we opt for matching / with the most compatible opposite-sex candidate who is
seeking for the same partnership type. If no such candidate is available, we shift
the preferred mating time by half a year, and pair off I as soon as possible. If a
proper spouse for [ is then found, Pop informs / and the new spouse about the
upcoming mating event. In line with this, I receives an accordant message on its
input port foundMate. Besides the searching port, I possesses the four other output
ports: death, emigration, childbirth, and mating. The port death signalizes that [
makes a transition to ‘death’. Likewise, emigration shows an emigration event,
and childbirth indicates the number of children that a transition implicates. On the
mating port I signalizes that he/she enters a partnership. Figure 5.9 displays the
output ports of /. It further illustrates the operations that Pop conducts in response.

A.3 The Individual Couple Model
C is the set of all couple models C. We formulate C as structure
(Y., 90,8, A, ta)

where

Y is the output port of C; Y = {dissolution, widowhood, death, emigration,
childbirth}; it forwards structural changes such as dissolution (port: dissolution),
widowhood (port: widowhood), death of both partners (port: death), emigration
(port: emigration), or childbirth (port: childbirth),

CW is the set of possible states that C can occupy; W comprises

(i) C’s current state s, and C’s upcoming state s, (s¢,s, € W with W being the
state space of the stochastic process that maps the dynamics of the couple),
(ii) the birth date b,, of the male spouse and the birth date by of the female spouse
(iii) the age a,, of the male spouse and the age ay of the female spouse, as well as
(iv) the complete waiting time 7 that C has to spent in s,.

Yo = [0, S0, by, by, am, ag, 00], comprises C’s initial state so, the birth date b, of the
male spouse, the birth date by of the female spouse, the age a,, of the male spouse
at model initialization, and the age ay of the female spouse at model initialization,
as well as C’s waiting time in s¢ to which we assign oo in the initialization phase.

To ease the subsequent description of the mI-DEVS functions §, p, A and ta, we
define the following auxiliary functions:
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dissolution : W x VW — {true, false},

widowhood : ¥ x W — {true, false},
deathOfBoth : ¥ — {true, false},

emigration : ¥V — {true, false},

childbirth : ¥ x ¥ — Nj.

The function dissolution indicates whether a state transition implies the dissolution
of the partnership, the function widowhood indicates the death either of the male or
the female spouse, and deathOfBoth shows the death of both partners; emigration
indicates an emigration event, and the function childbirth gives the number of
newborns that a state transition implicates.

8 : W — € is the state transition function of C (with ¥ € CW):

S(w) = (Suvsnvbm, bf7 am + T, af + T, 'C),

where s, is the next event of C and 7 is the (random) waiting time between the states
s, and s,,.

p : ©W — P selects the port available in a given state of the couple model (with
Pc = {dissolution, widowhood, death, emigration, childbirth} being the set of all
possible output ports of C):

dissolution  if dissolution(s., s,) = true,
widowhood  if widowhood(s., s,) = true,
childbirth if childbirth(s., s,) > 0,
death if deathOfBoth(s,) = true,

emigration  if emigration(s,) = true,

p(y) =

%) otherwise,

A : W — Y is the output function; it is composed of five component functions that
fill the output ports dissolution, widowhood, childbirth, death and emigration:

A1: If C is due to dissolve (i.e., dissolution(s., s,) = true), A forwards via the
output port dissolution the upcoming state of C and the birth dates of both
spouses, otherwise A| = &.

Ay: If Cis due to experience a widowhood event (i.e., widowhood(s., s,) = true),
A, forwards via the output port widowhood the state and the birth date of the
surviving partner, otherwise A, = &.

A3 If C is due to experience a childbirth event (i.e., childbirth(s.,s,) > 0), A3
forwards via the output port childbirth the number of newborns, otherwise
Ay = 2.
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Aq: If Cis due to experience the death of both partners (i.e., deathOfBoth(s,) =
true), A4 signalizes this to the output port death, otherwise A4 = &.

As: If C is due to emigrate (i.e., emigration(s,) = true), A5 forwards via the
output port emigration the current state of C and the birth dates of both
spouses, otherwise A; = &.

ta: ¥ — R;r U {oo} is the time-advanced function: ta(y) = t.

The specification of the couple model C is very similar to the specification of the
individual model /. It records in its state the attributes, the ages, and the birth dates
of the female and the male spouse. Output ports are used to inform the macro model
Pop about structural changes. State transitions are specified in the same way as in
the case of /. To inform Pop about structural changes, the couple model C features
five output ports (dissolution, widowhood, death, emigration, and childbirth). If C
experiences a dissolution event, it forwards via the port dissolution to Pop the birth
dates and the upcoming attributes of both spouses. In response, Pop creates for the
separated partners two individual models, and deletes C. The processing in case
of a widowhood event is similar. The only difference is that the individual model
is created for the surviving partner only. If C experiences an emigration event, it
forwards to Pop the current attributes and the birth dates of the female and the male
spouse. In response Pop forwards C’s data via its output port and deletes C. Equally,
the death of both spouses causes the deletion of C. In case of a childbirth event, C
forwards the number of newborns to Pop. Pop reacts by creating as many individual
models as newborns have been reported. Figure 5.10 shows the output ports of
C. The figure further illustrates the structural model changes that Pop conducts in
response to activated ports.

B. Sequential Abstract Simulator for ml-DEVS

The sequential abstract simulator for ml-DEVS executes parts of the DEVS
processor tree en bloc. Therefore, it implements the two methods getOutputs and
doRemainder. During simulation processing these methods are successively called.
In doing so, it still complies with the original ml-DEVS communication protocol,
compare Figs.5.11 and 5.12.

The simulator and coordinator of a ml-DEVS model realize the methods gerOut-
puts and doRemainder differently, see Algorithms 1 and 2. If its getOutputs method
is called, the macro model coordinator activates the simulator of all imminent micro

(x1) (1)
Root (y,t) Macro Model (y,t) Micro Model
Coordinator (x,1) Coordinator (x,t) Simulator
«— (done, [tonie,ports]) —
l«— (done,[tonie,ports]) —

Fig. 5.11 The communication protocol between micro model simulators and the macro model
coordinator of the original abstract simulator of ml-DEVS
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Macro Model Coordinator Micro Model Simulator
*’t)
getOutputs() (y,b) getOutputs()
doRemainder() (x,t) > doRemainder()
[«— (done,[tonie,ports])—

Fig. 5.12 The communication protocol between micro model simulators and the macro model
coordinator of the sequential abstract simulator of mI-DEVS

Algorithm 1 Pseudocode of the coordinator of the sequential abstract simulator for the mlI-DEVS
population model

function Messages getOutputs()
for each microModel in imminents do
micro.msgs = union (micro.msgs, microModel.getOutputs())
if ¢ is getTonie(macroModel)
macro.msgs = macroModel.lambda
macro.downMsgs = macroModel.lambdaDown
msgs = union (micro.msgs,macro.msgs,macro.downMsgs)
end if
return msgs
end function

function (double, ports) doRemainder(msgs)

if 7 is getTonie(macroModel)
macro.downMsg = getMsgFromMacroLambda(msgs)
influencees = union (influencees, sendMessagesToMicroModels(macro.downMsgs))

else influencees is empty

end if

for each microModel in union (influencees, imminents) do
(microModel.Tonies, ports)=microModel.doRemainder()

macro.msgs = getMsgFromMacro(msgs)

micro.msgs = getMsgFromMicro(msgs)

msgs = union (micro.msgs,macro.msgs)

if (msgs is not empty) or ¢ is getTonie(macroModel)
execute macroModel.stateTransition(msgs,ports)
execute macroModel.timeAdvance
macroModel.processStructuralChanges
ports = macroModel.availablePorts

end if

tonie = min(microModel. Tonies, getTonie(macroModel))

return union (tonie, ports)

end function

models (i.e., all micro models for whom the next event is due). Subsequently,
it reads their output messages. If the current model time ¢ corresponds to the
next event time of the macro model (i.e., to the coordinator’s actual fonie), the
coordinator executes the output function of the macro model and its downward
output function. Then, getOutputs forwards the output message of the macro model
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Algorithm 2 Pseudocode of the simulator of the sequential abstract simulator for the ml-DEVS
population model

function Messages getOutputs()
execute model.lambda
return getMsgs(model)

end function

function (double, ports) doRemainder(msgs)
execute model.stateTransition(msgs)
execute model.timeAdvance
ports = model.availablePorts
return union (tonie, ports)

end function

to the root-coordinator. The root-coordinator maintains that information for further
processing.!® Afterwards, the doRemainder method of the macro model coordinator
is called. As a first step, it identifies all micro models who are influenced by an
external event (i.e., by an upcoming partnership event or the instruction to lower
the aspiration level) and feeds that information into their input ports. Then, if
the current model time ¢ equals the coordinator’s tonie, it executes all influenced
micro models (via calling their doRemainder method). Thereafter, the coordinator
executes all imminent models. For this purpose, it calls their doRemainder method.
This method computes for all imminent models new next events—however, only if
the models are not exposed to structural changes implying their extinction such
as death or dissolution events. Then, the doRemainder method of the coordinator
requests all (newly computed) next event times (fonies) as well as the currently
exhibited ports of the micro models, and stores them. Subsequently, it checks
whether it has received a message about an external event (i.e., about immigrants)
or a messages about structural changes from its subordinate micro models. If so, or
if its fonie is due, it executes the transition function and the time-advanced function
of the macro model. Eventual reported structural model changes are subsequently
executed. The doRemainder method exits by updating the available ports ports of
all subordinate micro models, and by determining and forwarding the system’s
next event time. Note that the searching port of all individuals willing to mate is
permanently exhibited by the related micro models. Only if an individual is paired
off is it retracted.

The simulator of a micro model employs the method getOutputs to call the
model’s output function and to forward the respective output information, for
example, death or mating events. By doRemainder the simulator performs the state
transition of the model and computes its next internal event determined by its own
state transition function. Finally, it forwards to the coordinator of the macro model
the ports exhibited in the current state of the model and its next event time. Opposed

YFor example, the root-coordinator might send information on emigrants to another coupled
population model; see footnote 7.



152 S. Zinn

to a direct implementation of the ml-DEVS processing scheme, the sequential
abstract simulator for ml-DEVS requires only two threads to execute a ml-DEVS
model: one for the macro model coordinator and one for the root-coordinator.
Hence, we are not in danger of facing any limitations concerning population size due
to the restricted numbers of parallel threads supported by the Java virtual machine
being used.

C. Transition Rates Used in the Application

In this appendix we present the age-profiles of the transition rates used in the
application shown in Sect.5.5. The transition rates that describe the propensity of
unlinked females and males to change the marital status are depicted in Figs.5.13
and 5.14. Transition rates of unlinked individuals to change their smoking behavior
and (non-parity specific) fertility rates of females are also depicted in Fig.5.14.
Figure 5.15 shows the transition rates of spouses to change their smoking behavior.
Figure 5.16 depicts the log-mortality rates of female and male non-smokers and
smokers. The transition rates of couples to change marital status are given in
Fig.5.17.

Transition PH to SI

Transition PH to MA
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Fig. 5.13 Transition rates of unlinked females and males to change the marital status; PH: living at
parental home & never married/cohabitating before, SI: being single & living alone, MA: married,
CO: cohabiting
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Fig. 5.14 Transition rates of unlinked females and males to change the marital status and smoking
behavior, and fertility rates of females; SI: being single & living alone, MA: married, CO:
cohabiting, S: smoker, nS: non-smoker

rate
0.03

rate
0.03

0.06

0.00

0.06

0.00

Transition S to nS, male

—— female is nonsmoker, childless couple
-_— female is nonsmoker, couple with children
female is smoker, childless couple

- — female is smoker, couple with children

age male

Transition nS to S, male

— female is nonsmoker, childless couple
-_— female is nonsmoker, couple with children
female is smoker, childless couple

- =— female is smoker, couple with children

age male

rate
0.03

rate
0.015

0.06

0.00

0.030

0.000

Transition S to nS, female

- male is nonsmoker, childless couple
-_— male is nonsmoker, couple with children
male is smoker, childless couple

male is smoker, couple with children

age female

Transition nS to S, female

—— male is nonsmoker, childless couple
-_— male is nonsmoker, couple with children
male is smoker, childless couple

male is smoker, couple with children

age female

Fig. 5.15 Transition rates of spouses to change the smoking status; S: smoker, nS: non-smoker
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Fig. 5.17 Transition rates of couples to change the marital status; MA: married, CO: cohabiting,
SI: dissolved
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Chapter 6

Using Survey Data for Agent-Based Modeling:
Design and Challenges in a Model of Armed
Conflict and Population Change

Nathalie E. Williams, Michelle L. O’Brien, and Xiaozheng Yao

6.1 Introduction

Agent-based modeling is a relatively new methodology that holds immense promise
for demographic and social-behavioral research. Many of the methodological tools
available to quantitative demographers and social scientists consist of statistical
approaches that allow for precise modeling of micro or macro phenomena and
can investigate important but essentially static relationships. In contrast, agent-
based models (ABMs), using a complex systems approach, provide a method for
examining dynamic interactions of social and demographic actors at both micro
and macro levels. As such, ABMs provide a new perspective towards understanding
an immense variety of outstanding questions in demography, such as how macro-
level shocks like armed conflict, natural disaster, climate change, economic crises,
and policy changes affect population growth and change. In other words, they can
help us understand relationships between macro- and micro-level processes that are
intimately and interactively linked. Given the scientific advances that are possible
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with this modeling strategy, it is encouraging to find an increasing number of studies,
including those in this volume, that use ABMs to generate key demographic insights
(Aparacio Diaz and Fent 2006; Aparacio Diaz et al. 2011; Billari et al. 2007; Bruch
and Mare 2006; Ewert et al. 2003; Heiland 2003; Zamac et al. 2009).

A quick review of existing demographic studies that use ABMs reveals that the
vast majority model one or possibly two demographic processes (such as marriage
or fertility) in a largely hypothetical population or scenario. Such models are useful
for providing broad insights into the relationship between particular demographic
processes that might generally relate to any population around the world. However,
they are less useful for understanding population change in any particular population
or region and how multiple demographic, social, economic, and political processes
interact.

Another type of ABM attempts to model specific populations, includes multiple
interactive social and demographic processes, and uses empirical survey data to
populate and operationalize model procedures. This strategy, commonly found in
the geographic and land use sciences (An 2012; An et al. 2001, 2014; Manson
2005; Parker et al. 2008; Zvoleff and An 2014), is almost absent in demography
and sociology. This modeling strategy, which we call survey data based ABM, can
be characterized as a case study approach, providing more accurate insights into
a single population, but possibly less relevance for other areas outside the study
setting. A classic example of this type of model is one by An and Liu (2010) that
analyzed how changes in fertility policies influenced destruction of panda habitat
in China. The authors find that an increase in the number of households was more
destructive to panda habitat than an increase in the population size overall.

Survey data based ABMs are also useful for testing the mechanisms that
influence a particular outcome and the potential effects of policy changes, out-
standing issues in many areas of demography. For example, beyond just looking at
households and population size, the An and Liu (2010) study also models different
hypothetical scenarios restricting the fertility rate, age at marriage, and the upper
childbearing age. Using the simulated model, the authors were able to determine
which changes to fertility would have the largest impact and which would have the
quickest impact in reducing population growth.

Despite the many possible benefits, because these models utilize empirical data
and are increasingly complex, they are immensely time consuming and cumbersome
to design, test, and analyze. This might be one reason that they are seldom used in
the demographic sciences to date. In this context, our purpose in this chapter is to
develop methods and encourage the use of survey data based ABMs in demography.
We present an ABM designed to analyze the impact of armed conflict on population
change in rural Nepal. This model uses empirical survey data from the Chitwan
Valley Family Study throughout the modeling process, for initializing a population
and parameterizing behavioral rules. We discuss design challenges and suggest
methods for addressing each challenge. It is our hope that this methodological
presentation will help to streamline the long process of developing survey data based
ABMs for future studies.
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We write this chapter with the assumption that the reader has a basic understand-
ing of ABMs. Given that ABMs are still poorly understood in the demographic and
social behavioral literature, this assumption is clearly not reasonable. Regardless,
instead of providing a lengthy description of ABMs, we guide the reader to reference
existing literature on ABMs (An et al. 2005; Billari et al. 2007; Mena et al. 2011;
Kniveton et al. 2011; Aparacio Diaz et al. 2011; Jackson et al. 2008; Heiland 2003;
Ewert et al. 2003; Bruch and Mare 2006; Walsh et al. 2013).

6.2 Survey Data Based ABMs as Experimental Models

Before presenting our ABM of armed conflict and in order to understand the design
that we do present, it is important to discuss the foundation of survey data based
ABMs, what researchers should aim for, and what they can and cannot expect such
an ABM to do.

ABMs that are informed by survey data can simulate real populations with
real individual, household, and community characteristics and create behavioral
rules that are modeled from real behaviors. However, they cannot, and should not
be expected to model reality in all aspects. Social reality is much too complex
to be modeled. Furthermore, social reality changes constantly; people’s behav-
iors, beliefs, and relationships change; households change; communities change;
weather, politics, and economies change. The primary problem with this almost
constant, multidimensional, and non-linear change in social reality is that it makes
it difficult to attribute differences over time in any one process to another particular
process. For example, in Nepal, the context upon which our ABM is based, the
conflict changed over time, with increasing and decreasing numbers of gun battles,
states of emergency and ceasefires. At the same time, fertility rates decreased and
household wealth generally increased. Thus, it is difficult to attribute a change in
migration during the time period to the conflict, when fertility, wealth, and other
processes varied significantly at the same time.

Instead of attempting to re-create reality, we argue that survey data based ABMs
should be designed as experimental laboratories. From an analytical point of view,
the ideal experiment is a situation with two or more groups, where everything is the
same for the groups except one experimental factor." Translating this concept to the
ABM situation where the impact of a temporally changing factor is being tested,
an ideal ABM would have relatively stable demographic and social processes,
except for the one process of interest. Then, the researchers can simulate the model
population with this process and without this process. By isolating the process,
researchers can rule out spurious effects. Any difference in population growth
between the two simulations would arguably be caused by the process being tested.

IFor a useful guide to experimental research design for the social sciences, see Adler and Clark
(2008).
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For example, with our ABM of armed conflict, the most desirable situation is one
where most processes, such as marriage, birth, and migration are relatively stable
over time. In this case, a simulation without the conflict acts as a control, while a
simulation with the armed conflict acts as the experimental treatment. Differences
between the two simulations can reveal the isolated influence of armed conflict on
population change. Thus we designed our model with this ideal in mind, and sought
to create a generally stable population using empirical survey data from a population
that is not inherently stable.

6.3 Agent-Based Model for Armed Conflict and Population
Change

The ABM we describe in this chapter is designed to investigate the effects of
macro-level crises, such as armed conflicts, natural disasters, and economic crises,
on population dynamics. We focus on armed conflict here, but with a variety of
behaviors in the model, predictors of each behavior, and modules that include
livelihoods, other crises can easily be simulated. Previous research has shown
large impacts of armed conflict on individual demographic behaviors, such as
marriage, childbearing, migration, and mortality (Agadjanian and Prata 2002;
Apodaca 1998; Czaika and Kis-Katos 2009; Davenport et al. 2003; Eloundou-
Enyegue et al. 2000; Gibney et al. 1996; Heuveline and Poch 2007; Jayaraman
et al. 2009; Lindstrom and Berhanu 1999; Melander and Oberg 2006; Moore and
Shellman 2004; Schmeidl 1997; Shemyakina 2009; Stanley 1987; Weiner 1996;
Williams et al. 2012; Williams 2013, 2015; Winter 1992; Zolberg et al. 1989).
Although these behaviors together comprise population change, a straightforward
projection would arguably be inappropriate for estimating overall change in the
population, because each of these behaviors affects other behaviors. For example, if
someone migrates then they are less likely to get married or have children. People
also interact. For example, if one person migrates, then they likely influence the
probability of other household and community members migrating as well. Thus,
if armed conflict affects most, if not all, people in a community and it influences
all of these demographic behaviors, a complex interactive model is necessary to
thoroughly examine the impact of armed conflict on population change. We discuss
this further, and demonstrate the differences between single-behavior regression
output and ABM results towards the end of this chapter.

6.3.1 Setting

Our model of armed conflict and population change is based on survey data from the
western Chitwan Valley of south-central Nepal during the armed conflict of 1996—
2006. The administrative district of Chitwan borders India and is about 100 miles
from Kathmandu. As shown in Fig. 6.1, there is one large city, Narayanghat, and the
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Fig. 6.1 Map of Nepal and Chitwan Valley Family Study area

rest of Chitwan’s population, like much of Nepal, lives in small, rural villages. The
valley is dominated by agriculture with about 80 % of households using farming
as their primary livelihood in 1996. Since then, market production of agricultural
goods has increased, with continued production of agricultural goods for household
consumption. From Narayanghat moving south-west, the study area is progressively
more rural, poorer, and less involved in market agriculture.

Prior to the time period of this study, there was a massive proliferation of
public and private services in Chitwan, including paved roads, off-farm employers,
markets, schools, health services, banks, and many other services. This provision
of services has led to increasing rates of education and non-family employment.
Evidence also connects these community changes to drastically decreasing fertility

rates, and changes in marriage and household residence patterns (Axinn and Yabiku

2001). Notably, childbearing still takes place almost exclusively within marriage
(Axinn and Yabiku 2001; Ghimire and Axinn 2010).

Migration has also increased. The selectivity in who migrates has changed, and
the destinations to which people migrate have expanded dramatically during this
time period (Williams 2009; Williams et al. 2012; Massey et al. 2010). Migration
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has long been a common livelihood strategy in Chitwan and continues to be mostly
short-term and used to supplement regular farm incomes (Kollmair et al. 2006;
Thieme and Wyss 2005). Nepal and India share an open border, so international
migration to India, in addition to domestic migration, is common (United Nations
2013). Evidence shows that men have historically been more likely to migrate than
women and that migration rates are lower among the married and people with
children (Massey et al. 2010; Williams 2009). However, with political and economic
changes on local and global scales in recent decades, migration to a variety of
international destinations, most notably the Persian Gulf, has increased immensely
and evidence suggests that gender and ethnic gaps in migration are decreasing at the
same time (Williams 2009, 2015).

The armed conflict began in 1996 when the Communist Party of Nepal (Maoist)
made a declaration of war with the intention to unseat the monarchy and install
a people’s republic. The early stages of the conflict were contained primarily in
several midwestern districts and involved damage to government installations. From
mid-2000, however, the Maoists progressively expanded their campaign across the
country, including to Chitwan, and the Nepalese government responded by creating
a special armed force to fight the Maoists. In 2006, the government and Maoists
signed a comprehensive peace agreement declaring an end to the conflict.

The conflict was staged mainly as a guerrilla war. With no true “frontline,” it was
largely unknown where fighting would break out, and civilians were often caught
up in violence. Reported violent acts by the Maoists and government forces against
civilians include torture, assassinations, bombings, gun fights, abductions, forced
conscription, billeting, taxing, and general strikes (Hutt 2004; Pettigrew 2004; South
Asia Terrorism Portal 2006). A variety of political events also characterized this
conflict, including states of emergency, ceasefires, depositions of the prime minister,
and multiple nationwide strikes and protests that severely affected the day-to-day
life of the general population and spread considerable unrest and fear nationwide.
Evidence suggests that both violent and political events had significant influences on
residents’ marriage, contraception, and migration behaviors (Williams et al. 2012).

Figure 6.2 shows a timeline of the conflict and the violent and political events in
the Chitwan Valley and surrounding districts. As you can see, there were relatively
low levels of violence and political upheaval until 2002. This increased in 2003
through mid-2005, which was the height of the conflict. During this time, there were
some gun battles, with up to 4 in 1 month, and even more bomb blasts reaching a
high of 12 in 1 month.

6.3.2 Data

Data that were used to inform the ABM come from several sources. Survey data,
which were used to create the initial population of the model and to operationalize
the behavioral equations that define the probabilities of marriage, childbearing,
death, migration, and other behaviors, come from the Chitwan Valley Family Study
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Fig. 6.2 Timeline of violent and political events in Chitwan and surrounding districts

(CVES). The CVES is a large-scale multidisciplinary study of about 5,000 people
in western Chitwan (Axinn et al. 1997, 1999; Barber et al. 1997). It features a
representative sample of neighborhoods in the western Chitwan Valley and all
individuals between the ages of 15 and 59 living in those neighborhoods in 1996.
The CVES includes a variety of linked data sets, including an individual interview
and life history calendar that were collected in 1996, a prospective demographic
event registry that has been collected monthly since 1997, household agriculture and
consumption surveys in 1996, 2001, and 2006, and neighborhood history calendars
collected in 1995 and 2006. The CVES prospective demographic event registry
is integral to this model, through the collection of precise records of migration,
marriage, birth, and death on a monthly basis that allow for precise specification of
the demographic behaviors throughout the conflict period.

Data on the conflict process comes from records of violent events compiled by
the South Asia Terrorism Portal (SATP), an Indian NGO that compiles records of all
violent events in Nepal and other South Asian countries. These data are confirmed
by information from Informal Service Sector (INSEC), a Nepal-based human rights
NGO that also collected records of these same violent events. Further, records of
important conflict-related political events, such as states of emergency, ceasefires,
strikes and protests, and major events of government instability, were compiled from
news sources, United Nations agencies, and non-governmental sources.

Several types of necessary information were not available from existing CVES,
SATP, INSEC or other data sources. In these cases, we used ethnographic fieldwork
in the study area to explicitly collect the information needed. Our fieldwork
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consisted of multiple focus groups, informal and formal in-depth interviews, and
observation in the study area. We collected this data from a variety of people that
generally represented the gender, caste, and wealth distribution of the study area.
The information we collected with this fieldwork includes household behaviors,
such as splitting, and inheritance. Norms for and patterns of household splitting
are notoriously difficult to measure and examine with existing survey data due to
difficulties in defining and tracking households through time. Inheritance norms
(such as when inheritances are given, to whom, and how much) are rarely collected
by surveys. As such, our ABM rules for household inheritance and splitting are
based on the ethnographic information we collected, instead of survey data. We also
determined purchase prices of durable goods, livestock, and land, and selling prices
of agricultural and livestock goods (such as meat and eggs) by creating price lists
for multiple vendors of these items in the study site, as well as from government and
NGO reports available on the internet.

6.3.3 Overview of the Agent-Based Model

In this section we provide a basic description of the ABM. Because the model is
detailed and employs many different behaviors, full equations, decision-making
processes and a full list of variables are provided online at www.bitly.com/
NepalABM. Also online is a description following the ODD (Overview, Design
concepts, Details) protocol that was designed explicitly to guide description of
ABMs so that clear and comparable information could be provided for different
models (Grimm et al. 2006, 2010). Additionally, we have included online a link to
information about the software used to develop this model, Repast Simphony.

The model is organized through modules at the individual, household, and
neighborhood levels. Each module contains a series of probabilistic decisions
and deterministic processes that each individual, household, and neighborhood go
through. Some modules take place on a monthly basis, and some on an annual basis.
Figure 6.3 shows the overall structure of the ABM and the timing of each module.

We initialize the model based on data from the CVFS described in the previous
section above. The agents in year 0 of the model have the characteristics of
respondents in the data. Some new agents are created at the onset, because the CVFS
did not interview the entire population, leaving out children and migrants who were
away during the baseline survey. We discuss this detail later. The primary agents are
individuals, who live in households, situated in 151 villages in the Chitwan Valley.
Each agent undertakes behaviors based on probabilistic or deterministic equations
that are described in more detail below.

Decision-making occurs on the individual level. Household and village charac-
teristics affect individual decision-making, but are by and large aggregated from the
individual characteristics, with few exceptions discussed below. Decisions occur
at monthly and annual time points. At the beginning of each simulated time
period (month or year), an individual or household module begins, moving agents
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along a decision pathway. Agents and their collectives can undertake any of sev-
eral demographic, social, and economic behaviors, including marriage, childbirth,
out-migration, return-migration, death, and the accumulation of resources. Some
modules simply add time onto a process, such as receiving one more month of
pregnancy, or receiving one more year of education. Other modules are more
complex and involve probabilistic decision-making, such as migration and marriage.

6.3.4 Decision-Making and Deterministic Processes

Processes in the model can be categorized as either probabilistic decisions or
deterministic processes. Probabilistic decisions are based on regression equations
estimated on the CVFES survey data. Each equation consists of multiple weighted
factors, such as age, sex, and household assets, where the weights are determined by
the coefficients from the regression equation. Figure 6.4 shows an example of such a
probabilistic equation, which calculates the probability of out-migration for eligible
men in the model. This equation results in a calculated probability of undertaking
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Eligibility: At least 16 years old.
Probability of Out-Migration Men
Log (P/(1-P)) = (-7.9827)
+ (Number of gun battles this month * (0.1225))
+ (Number of bomb blasts this month * (-0.0101))
+ (State of Emergency this month * ¢0.1349))
+ (Major government instability this month * (0.668))
+ (Major strikes and protests this month * (-0.2558))
+ (Number of gun battles this month * Had a salaried job * (-0.1904))
+ (Number of gun battles this month * Natural log of amount of land owned by household * (0.0664))
+ (Number of bomb blasts this month * Married and living with spouse * (0.0386))
+ (Number of bomb blasts this month * Married and living apart * (0.00749))
+ (State of Emergency this month * High caste * (-0.109))
+ (State of Emergency this month * Married and living with spouse * (0.0526))
+ (State of Emergency this month * Number of children * (0.0294))
+ (State of Emergency this month * Had a salaried job * (- 0.0169))
+ (Major government instability this month * High caste * (-0.175))
+ (Major government instability this month * Married and living with spouse * (-0.4733))
+ (Major government instability this month * Number of children * (0.0762))
+ (Major government instability this month * Had a salaried job * (-0.0425))
+ (Major government instability this month * Distance to nearest urban area * (-0.0386))
+ (Major strikes and protests this month * Number of organization in neighborhood * (0.1088))
+ (Age * (-0.0359))
+ (High caste * (-0.2088))
+ (Education * (0.0253))
+ (Married and living with spouse * (0.0655))
+ (Married and living apart * (-1.3785))
+ (Widowed * (0.257))
+ (Number of children * (-0.0125))
+ (Had a salaried job * (0.3053))
+ (Natural log of amount of land owned by household * (0.0252))
+ (If household in bottom third of assets distribution * (-0.1133))
+ (If household in bottom third of income distribution * (0.2791))
+ (If household in middle third of income distribution * (0.2006))
+ (Distance to nearest urban area* (0.0257))
+ (Number of organizations in neighborhood * (-0.0566))
+ (Natural log of percent migrants in neighborhood * (1.1578))
+ (Ever migrated before start of model * (0.2093))
+ (Number of migrations since start of model * (0.3514))
+ (Number of months back from most recent migration trip * (0.00206))
+ (Number of months away on most recent migration trip * (0.0299))
+ (July * (-0.028))
+ (August * (0.2451))
+ (September * (0.0615))
+ (October * (-0.4897))

Fig. 6.4 Migration equation in the ABM

migration during that month. The probability is compared to a random number
between 0 and 1. If the probability is greater than the random number, the agent
takes the action.

Deterministic processes do not involve a probability schema, but are calculated
monthly or annually in the model. For example, at birth individuals are assigned
an educational attainment level of 2 years greater than their parents. When the
individual reaches the attainment level, he or she cannot accrue any more education.
Income is also deterministic, where a household accrues a specified amount of
income, depending on household members’ migration, salaried employment, and
land and livestock holdings.
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6.3.5 Individual Module

At the beginning of each simulated month, the individual module, shown in Fig. 6.5,
begins. Each individual experiences the possibility of death, based on his or her age.
If the individual dies, they are removed from population and model. If the agent
lives, then the model checks if he or she is married. If the agent is not married, then
he or she experiences the possibility of marriage. All marriage is exogamous to the
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Fig. 6.5 Individual monthly module (Part I) in the ABM, for death, marriage, and birth behaviors
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model.” If a woman marries, she “moves out” of the model, to a hypothetical spouse
who is not amongst the agents in the model. In being removed from the model, she
no longer contributes to the population. If a man marries, a spouse is created and
enters the model, from a hypothetical natal family that is not amongst the agents in
the model. This new spouse is assigned characteristics based on her new husband:
she is 2 years younger, has the same migration experience and caste, and comes
from the same economic background.

If an agent is married and female, she may get pregnant, and if pregnant, she will
give birth in the ninth month of the pregnancy. Children born this month are added
to the household roster and will run through the individual module during the next
month.

If an individual does not get married or give birth, he or she can migrate. If
the agent migrates, the model chooses a destination region from Nepal/India, other
Asian countries, the Middle East, or Europe/North America, Australia, or New
Zealand.

If an agent is a migrant this month, they cannot marry, and female agents cannot
get pregnant. Migrants can experience the possibility of remitting money to their
origin households and return migrating. A migrant who returns moves back into the
origin household.

Other behaviors occur on an annual basis. At the beginning of each year, agents’
ages are updated. Each individual in the household who was enrolled in school
last year either reaches their educational attainment (which is assigned at birth) or
receives an additional year of education. If the agent reaches attainment, he or she
experiences the possibility of working a salaried job for the year.

6.3.6 Household Module

At the end of each year, each household goes through the household module.
Households can split into separate households, die (when all household members
move out or die), and accrue assets. Sub-families, which are comprised of married
sons and their spouses and children, can split from the primary household and create
their own separate household within the same neighborhood. When they initially

2Exogamous marriage allows for a less computationally burdensome model and in this case,
reflects the common marital patterns of the context. Here we consider marriage patterns for Nepal,
wherein women most often leave their childhood homes to reside with their new husband’s natal
family. In this context where women leave their villages at marriage, it is reasonable to program
our model for exogamous marriage, where our female agents leave their model villages (and thus
entirely leave the model). At the same time, new wives (female agents) enter the model for every
male agent who gets married. It would be possible to program the model to allow endogamous
marriage (where a female agent from one model village marries a male agent from another model
village), but this would create an unwieldy model and increase computational time immensely.
Further, endogamous and exogamous marriage patterns create almost exactly the same gender
ratios in the model. When utilizing the simpler process of exogamous marriage, modelers should
populate the life history of the new agent with characteristics as appropriate to the social context
of the study area and requirements of the particular model.
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split from a parent household, new households can purchase land and livestock. The
amount of these items that they purchase is randomly selected from a distribution
of the ownership of these items, with separate distributions for high- and low-caste
groups. The cost of these items is subtracted from the new household’s assets.

If the last remaining parent dies, the household is considered dead and household
inheritance rules are applied. Land and assets are split among the sons. If there are
no sons, the assets are split among the daughters.

Finally, household income from all sources is calculated for the year and added
to the accrued assets. Sources of income include salaried work, remittances from
migrants, and agricultural and livestock products. Costs of household sustenance,
migration, and purchasing land and livestock are subtracted from income. We use
a basic (additive) accounting system that is based on actual prices of goods in
Chitwan, priced on site in 2013. This is more manageable than a regression based
income system that allows assets to grow geometrically and in turn inordinately
influence many other behavioral processes in the model. We then calculate the
distribution of assets each year, and use a household’s position in one of the three
terciles of the distribution as the key household economic indicator in probabilistic
decision-making equations. We do this to adjust for the fact that tracking assets over
a long period of time is implausible, and to stress the importance of relative income
to other households, instead of real asset accumulation, which may be inflated over
long periods of time. We discuss the use of assets in more detail in the Challenges
and Solutions section below.

6.3.7 Neighborhood Module

Neighborhoods are not static, although their data are aggregated from households
and individuals. At the end of each year, neighborhoods are updated with the number
and percent of migrants. The log of the number of migrants in a neighborhood is one
factor in the outmigration decision.

6.3.8 Interactions and Interdependence

Interactions between agents are a key defining feature of ABMs. The ability for
agents to interact differentiates ABMs from other types of micro-simulation models
and is responsible for many of the unique results that ABMs are capable of finding.
In fact, intra- and inter-agent interactions are likely the reason that we find very
different results from our ABM compared to the regression-based predictions that
we present in Figs. 6.7 and 6.8 and discuss further below.

There are multiple inter-agent interactions in our model, between individuals
within the same households, as well as individuals within the same neighborhoods.
Many of these interactions can be identified through the characteristics (or variables)
in the equations that govern each behavior. For example, in the equation that
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calculates the probability of men’s migration, shown in Fig. 6.4, the variables for
married and living with spouse and married and living apart from spouse create
an interaction between the agent and his spouse: the residential location of a man’s
spouse affects his likelihood of migration. In addition, the number of children ever
born to the man (which is entirely dependent on his wife’s characteristics) affects
his likelihood of migration. Another example of an influential characteristic that
generates interactions between individuals is the indicator for household assets. The
level of household assets affects a number of processes, including the probability
of men’s migration, as well as the destination of migrants, and the likelihood of
giving birth and return migration. Because household assets are influenced by the
work history (of both salaried jobs and migration) of every household member, this
is one major way in which individuals influence the behaviors of others in the same
household. In a similar way, the variable for the natural log of the percentage of
migrants in the neighborhood tracks all people who are or were living in a particular
neighborhood and records the percentage of them who are currently migrants
living elsewhere. This creates interdependence between individuals from the same
neighborhood. An individual who migrates out of a neighborhood contributes to the
percent of migrants in that neighborhood, which in turn affects the probability of
migration for other individuals in that neighborhood. The eligibility rules for some
behaviors also create inter-agent interactions. For example, in order to be eligible
for a salaried job, an individuals’ spouse cannot already be working a salaried job.

Another form of interaction in our ABM is intra-individual. In this case — what an
individual does in one time period influences their likelihood of undertaking many
other behaviors in subsequent time periods. As an example, look again at the men’s
migration equation, shown in Fig. 6.4. A man’s marital status, number of children,
work status, migration history, and household assets together have large influences
on his likelihood of migration. In other words, his previous marriage, childbearing,
work, and migration behaviors influence his future migration behavior. Intra-agent
interactions are also present in the eligibility rules that govern many behaviors. For
example, in order to get pregnant, a woman must be married, currently living with
her spouse, not already be pregnant, and not have given birth in the last 4 months.
The interactions and interdependencies in our ABM between individuals and their
past behavioral history, their households, and their neighborhoods are numerous.
We can mention only some of them here, but also refer the reader to the detailed
model diagrams and behavioral rules online at www.bitly.com/Nepal ABM.

6.3.9 Armed Conflict in the ABM

One of the benefits of an ABM based on survey data is our ability to include
exogenous shocks in the model, while continuing to use regression-based methods
for decision making. Because the CVFS data were collected throughout the conflict
between the Government of Nepal and the Maoists, we can include conflict events
in regression analysis of demographic processes. Likewise, we simulate armed
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conflict through event-based effects on the probability of marriage, pregnancy, out-
migration, and return-migration. We employ an event-centered approach (Williams
et al. 2012), using specific events—gun battles, bomb blasts, states of emergency,
government instability, ceasefires, and strikes and protests, which influence the
likelihood of the demographic behaviors each month. In this way, different conflict
scenarios can be simulated by changing the number of each of these events each
month.

6.4 Challenges and Solutions to ABM Design
with Survey Data

As described above, we use empirical survey data to inform all aspects of our ABM,
including initialization of the population of agents, parameterization of behavioral
rules, and verification and validation. At each of these stages, there are multiple
challenges in using survey data. In the remainder of this chapter, we describe some
of these challenges and how we addressed them, with the aim to streamline the
design and modeling processes for other demographic researchers.

6.4.1 Initializing the Model

The primary challenge of initializing an ABM with survey data is that there are
almost no surveys that include every person in a population. In the CVFS case,
the survey included only people between 15 and 59 years old who were resident
in sampled neighborhoods. It thus excluded younger people, older people, and
migrants who were temporarily away when the baseline survey was taken. These
groups are commonly excluded from most surveys. A full population for ABM
simulation requires that all these types of people be included in the initialization.
We used the CVFS survey data to create these missing agents. The CVFS, as with
many other surveys, included a complete household roster, providing information on
all people living in the household, regardless of age or current residence. In addition,
surveyed adults were asked how many children they had and their sex and age. Using
the parent report, we created agents for all children ever born up to the age of 15 and
placed them in the parents’ household and assumed that older children would have
moved away by that age.> The CVFS household roster information also allowed

3Household rosters also allow for the creation of older agents. However, for some models of
demographic processes it will not be necessary to create older people if they cannot undertake birth,
marriage, or migration. The necessity of creating older people entirely depends on the behaviors
they can undertake and to what extent their presence influences the behaviors of other agents.
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us to create migrants who were living away at the beginning of the model. They
were accorded age and sex based on the household roster and other characteristics
to match those of household members.

6.4.2 Parameterizing the Model

Probabilistic decisions in the model, such as the outmigration example we provided,
can be based on analyses of survey data. The process is fairly simple, where
regression equations on survey data are used to predict a certain behavior in
the ABM. However, regression techniques are designed to examine the influence
of factors on a behavior and are not meant to predict that behavior. As such,
there are certain limitations and challenges to using them in generating ABM
rules.

One challenge is in determining which variables to use in a regression equation.
First, we identified parameters that would allow an individual to interact with her
changing status (such as being married or having ever migrated) as well as her
household and neighborhood environment. Second, we used variables that were
statistically significant to at least the p <0.10 level. Third, we used variables that
produced theoretically sound results. For example, we would expect increased assets
to decrease the likelihood of migration.

A second challenge is to determine when regression equations are appropriate.
Ordinary least squares equations can result in geometric growth or decrease in
an outcome overtime. When simulated over long periods, this type of growth can
create unrealistic and drastic outcomes on an entire model and simulated results.
For example, after many trials with a regression based equation to determine income
in our model, we found that this resulted in almost exponentially increasing assets,
which unduly influenced almost all other parts of the model. An additive model,
where income was added and a series of expenses were subtracted annually, created
a much more realistic, and stable, change in household assets over time. However,
even the additive model of assets created dramatic increases in wealth, beyond
what we believe is reasonable. Because we are not concerned with the amount of
assets, but rather the effect of assets on decision-making, such as migration, we
changed our regression equations for behaviors to rely on the relative distribution
of assets per year to inform decisions. This is accomplished by using terms for
the top, middle, and lowest third of the asset distribution, instead of absolute
assets, to predict migration, return migration, and pregnancy. With this focus on
the relative household income versus other households in Chitwan, we were able to
model the relationship between assets and demographic processes consistently over
time.
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6.4.3 Adjusting the Model to Create an Experimental Situation

As discussed above, the ideal ABM for studying the influence of macro-level
change over time would create an experiment-like situation where key processes
are generally stable. Because demographic processes, such as population growth,
number of households, and age and sex structure, likely affect almost any behavior
under study, it is necessary to create generally stable population processes. Unstable
population processes (such as extremely rapid population growth or decline in
household size) could create large changes in any behavior under study. If this
is not recognized, then the change in one behavior could be attributed to the
macro process of interest, instead of the unstable process that actually created it.
In short, the necessity of creating generally stable population processes cannot be
understated.

Population stabilization can be easily assessed with population pyramids, house-
hold size, number of households, and birth, death, and migration rates. The
processes we examined, and found to be useful, are listed in Fig. 6.6. Based on
Stable Population Theory (Preston et al. 2001), we can expect population pyramids
to stabilize in shape after about 80-100 years if a population is generally stable. If
population pyramids do not stabilize after this time, then the population processes
are likely not stable and must be adjusted to create an analytically useful ABM. For
other processes, such as household size and birth, death, and migration rates, we also
recommend examining at least 100 years of simulated data. Although analysis of
the final model might not extend past one generation (about 30 years), irregularities
in population processes can geometrically increase or decrease starting small but
becoming much bigger after several decades. Thus much longer simulations are
required to make some problems visible.

In the case of our model, preliminary simulation results without conflict or
other disturbances showed that the population grew rapidly and household sizes
grew from an average of five to an average of 11 individuals per household. This
could have been overlooked as an interesting (if possibly theoretically significant)
finding. However, our verification process allowed us to pinpoint irregularities such
as: significantly decreasing marriage and fertility rates and increasing death rates,
many fewer boys were born than girls, households were not splitting properly when
a married couple moved out to form their own household, and assets were increasing
exponentially with a consequent exponential decrease in migration.

Some of these problems were mistakes in the model programming and were thus
easily fixed. Other problems, such as decreasing marriage rates, were based in the
regression equations derived from empirical survey data. The root of the problem
appears not to be biased survey data, but the fact that the data were collected during a
period when marriage and fertility rates were changing dramatically. Such changes
in demographic behaviors are common, but are most often period effects and are
seldom sustained for long periods of time. To address these problems, we adjusted
the constants in the marriage and fertility equations and the age coefficient in the
death equation. All adjustments were within the 95 % confidence intervals for the
constants and coefficients and are thus statistically appropriate.
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Cumulative composition and rates
Population composition

Population size
Population age-sex structure (population pyramids)
Number of households
Mean household size
Median household size
Deaths per capita

Fertility and marriage
Proportion of women/men ages 25-40 who are married
Proportion of married women over 40 who have ever had a birth
Mean number of children ever born per married woman over 40
Mean age at first birth for women over 40

Migration
Proportion of women/men over age 16 who have ever migrated
Mean number of times migrated for female/male migrants over age 16
Number of months away during last migration spell for female/male migrants

Education and salaried work
Mean years of education

Income and assets
Mean and median assets per household
Median assets per household in the bottom, middle, and top terciles of asset distribution
Mean poultry, livestock, and land owned per household

Annual Rates
Fertility and marriage
Proportion of unmarried men over age 14 who got married this year
Proportion of unmarried women over age 14 who got married this year
Proportion of married women ages 14-45 who had a birth this year
Proportion of women over age 14 with first child born this year
Proportion of women over age 14 with second child born this year

Migration
Proportion of households with at least one migrant out this year
Mean number of migrants out this year per household with 1+ migrants out
Proportion of eligible men who migrated this year
Proportion of eligible women who migrated this year

Education and salaried work
Proportion of population over age 16 with salaried job this year

Income and assets
Mean and median income per household

Fig. 6.6 Demographic processes that can be used for assessment and analysis of ABMs
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6.4.4 Burning-in the Model to Allow for New Selection
Processes

In seeking to create stable population processes, burning-in the model for an
appropriate amount of time is also necessary. This is particularly the case when
survey data are used to initially populate the model, but simulated agents replace
them over time. The issue here is that no matter how well the data based behavioral
rules (such as our regression equations for marriage, pregnancy, and migration)
are specified, they are each models. And models are always simplified versions of
reality and subject to unobserved heterogeneity in numerous ways. For example,
it is likely that beauty is a key factor in the likelihood of marriage in Nepal,
but our marriage regression equations do not and cannot take this into account.
Consequently, the selection processes programmed in the model are different from
the selection processes that affected the behaviors of the surveyed population. The
result of these different selection processes is initial instability in model results. This
happens when the model selection processes replace the real population selection
processes and simulated agents (those born during the model) replace agents who
are based on real survey data.

Fortunately, there is a simple process to address this concern: model burn-in.
Burning-in is defined as allowing the ABM to run for several time steps, to allow
the simulated processes and simulated agents to populate the model as the survey-
based agents who were subject to real behavioral processes and selection age out
of the model population or age out of a behavioral process. A model should be
entirely burned-in before experimental scenarios are enacted. In some cases, the
length of burn-in is evident, when initially wildly unstable results stabilize within
a few years. In other cases, as with the marriage rates calculated by our ABM (as
shown in Fig. 6.7 and discussed more below), results are not wildly unstable in the
first years of the simulation. Instead, rates for men and women increase steadily for
about 14 years, after which they level off, until our conflict scenarios begin in year
17. Notably, 14 years is the age at which simulated agents in our model are eligible
for marriage. In other words, marriage rates stabilize after 14 years because this is
when the entirely simulated population (those “born” during the model) and their
simulated marriage processes overwhelm the survey-based population and their
differently selective marriage processes from before the model simulation began.
Thus, we defined our burn-in period as the length of time after which entirely
simulated agents are eligible to undertake all key behaviors. This happens at year 16
of the simulation, as it is age 16 at which all agents are eligible to marry, migrate,
and give birth. We begin the simulation of conflict scenarios just after, at year 17 of
the simulation.
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Fig. 6.7 ABM-based results showing male and female marriage rates (proportion of unmarried
who married this year) in three different conflict scenarios for 30 years of simulation (Note: The
conflict simulation is years 17-20 of the simulation)

6.5 Implications of ABM Compared to Regression Based
Analysis

As discussed earlier in this chapter, ABMs are relatively new to the social sciences,
particularly when compared to the more common and widely understood tool of
regression analysis. Although we have identified several applications for which
ABMs are more useful or appropriate than regression based analysis, it is often
difficult to fully understand these differences without an explicit example. This
is the purpose of this section. We show results from our ABM, of men’s and
women’s marriage rates, in the scenarios of no conflict, the conflict as it actually
happened in Nepal, and a hypothetical conflict scenario. These scenarios are the
virtual experiments which we mention above. In the scenario with no conflict, we
did not simulate any conflict events. In the scenario with the conflict as it actually
happened, we simulate the actual number of each type of conflict related event
that happened each month. The events include gun battles, bomb blasts, strikes
and protests, government instability and states of emergency. In the scenario with a
hypothetical conflict, we simulate a conflict in which there was one bomb blast per
month for the duration of the conflict period. For each of these scenarios we allow a
17-year period before the conflict (in order for the model to stabilize, or “burn-in” as
described above in 6.4.4), followed by a 48-month conflict. After the conflict ends,
we continue to run the model simulation for a total of 30 years.

We also show results from a calculation of predicted men’s and women’s
probability of marriage for each of these scenarios, based only on the regression
equations for men’s and women’s marriage. These calculations were undertaken
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by using the characteristics (values for each variable in the regression equation)
of an “average” 25 year old male and female in the population—in other words,
the mean population value for each variable. These values were input into the
regression equation, along with the monthly number of conflict-related events
in each scenario, to calculate a monthly predicted probability of marriage. The
monthly probabilities were then converted into annual probabilities, which we
present here. The comparison of these results provides a more clear understanding
of the differences between these two analytical tools (ABM and regression) for
prediction of population processes.

Figure 6.7 shows the results from our ABM simulated annual marriage rates for
men and women. Specifically, the graphs show the proportion of unmarried men and
women over the age of 14 who got married during each year of the simulations. As
you can see, marriage rates start very low, then progressively increase throughout
all scenarios, for both men and women. Further, marriage rates change each year
throughout the 30 years. Amongst the most notable pattern in these graphs is that
marriage rates for men in the actual conflict scenario are much higher than in the no
conflict and bomb blast scenarios. Alternately, bomb blasts produce a similar men’s
marriage rates to the no conflict scenario. A second particularly notable result is that
men’s marriage rates after the conflict period remain quite different in the actual
conflict scenario until about 10 years after the conflict. In other words, we find long-
term effects of the conflict on men’s marriage rates, well after the conflict ends. We
do not find long-term effects for women’s marriage rates.

Figure 6.8 shows the results from our regression based annual predicted probabil-
ities of marriage. Note that these are probabilities instead of rates. This is of course
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Fig. 6.8 Annual predicted probabilities of marriage for men and women, based on regression
equation alone
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the first major difference between regression and ABMs. ABMs are designed to
simulate population processes and results can easily be calculated as rates (such as
the number of people who got married in a year divided by the number of people
who were eligible to get married at the beginning of that year). Regression on the
other hand is designed to calculate the effect of any particular characteristic (or
variable) on an outcome and is not suited to calculating rates within a population.
Indeed, predicted probabilities, which are shown here, are the closest possible
calculation to a rate that can be achieved with a regression equation. The only way
that regression equations can reasonably yield a rate calculation at population level
is through including the equations in an ABM.

A second notable outcome of this comparison is the stability of the regression-
based probabilities. As Fig. 6.8 shows, the probability of marriage is exactly
the same in every year of the no conflict scenario, and is stable throughout the
conflict (as well as before and after the conflict) in the bomb blast scenario.
This is because the “average” hypothetical person who is used to calculate these
probabilities is the same each year of the calculation. The actual conflict scenario
yields varying probabilities during the conflict, entirely due to the changing number
of conflict-related events each month of the actual conflict. Note however that
the probability of marriage in the actual conflict scenario returns to the exact
same level as that of the no conflict scenario after the conflict ceases. In contrast,
remember that the marriage rates in the ABM-based results (in Fig. 6.7) constantly
changed, before, during, and after the conflict simulations. This is because the
ABM simulates a population that constantly changes and interacts. In fact, the
ABM platform allowed us to find long-term effects of the conflict on men’s
marriage rates, while such a result is clearly not possible with the regression-based
calculations.

A third notable result of our comparison here is that the regression based
probability of marriage for women is lower in the bomb blast scenario and higher
in the actual conflict scenario, compared to the no conflict scenario. Alternately,
with the ABM we find generally similar rates of women’s marriage in all three
scenarios, with slightly higher rates in the bomb blast scenario compared to the no
conflict scenario. In the case of men’s marriage, the ABM and regression predict
similar comparative differences between the actual and no conflict and bomb blasts
scenarios, with actual conflict producing much higher rates of marriage in the ABM,
just as it does in the regression.

6.6 Conclusion

This chapter focuses on a particular type of agent-based model, one that leverages
survey data to initialize a population and operationalize behavioral rules. Although
this type of model is reasonably common in the geographic and land use sciences
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(An et al. 2001, 2014; Manson 2005; Parker et al. 2008; An 2012; Zvoleff and An
2014), it is rarely used in demography. This situation is unfortunate, given the many
possibilities for this methodology to contribute to demography and particularly
to our understanding of how macro-level events, such as armed conflict, natural
disaster, climate change, economic crises, and policy changes, influence population
growth and change.

While the ability to address outstanding questions in these areas is an immense
benefit to survey data based ABMs, there is one key limitation. As they use a case
study approach, this type of ABM is comparatively weaker in providing broad
insights that are relevant regardless of geographic setting. Broader conclusions
can only be developed when multiple studies in different areas reach similar
conclusions. For example, if a case study of armed conflict and population change
in Nepal finds similar outcomes to studies of the same subject in Colombia, Sudan,
and Afghanistan, then we can begin to develop broader conclusions about the nature
of armed conflict and population change. As demography and other social science
disciplines are moving more towards the case study approach, as compared to cross-
country models, regardless of the methodological tools used, this situation with
ABMs is not unusual.

In this context, our broad aim is to encourage the use of survey data based ABMs
in the demographic sciences. In addition to not being widely known in demography,
this type of model is extremely time consuming to design, test, and analyze. In this
chapter, we presented the design of our ABM, which uses detailed survey data to
simulate population dynamics during armed conflict in the Chitwan Valley of Nepal.
The combination of this chapter and more detailed description of our model online
at www.bitly.com/Nepal ABM should provide key guidance for the development of
future survey data based ABMs. To further streamline the long and difficult design
and testing process, we also discuss several challenges we faced and how they can be
addressed. The primary method we used to find and address problems in our model
is careful examination of simulated outcomes of several demographic processes, as
listed in Fig. 6.6. In this way, not only can ABMs contribute to demography, but
demography can also contribute to ABM methodology.

One of the key points we hope to instill here is that survey data based ABMs
should not be thought of as attempts to model reality. They are simply models, just as
other ABMs and statistical procedures are models that are not replications of reality
but can nonetheless be useful. We argue that the most useful way to design survey
data based ABMs is as experimental laboratories and we describe methods for doing
so. Because we can almost never ethically experiment on real human populations
(and certainly not with armed conflicts!) experimental designs using survey data
based ABMs have immense promise for contributing to the demographic sciences.
We hope to find more of this type of model in the literature in coming years.
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Chapter 7
Regression Metamodels for Sensitivity Analysis
in Agent-Based Computational Demography

André Grow

7.1 Introduction

Over the last years, an increasing number of scholars advocate the use of
agent-based computational (ABC) modelling for the study of demographic
phenomena (e.g. Billari et al. 2003, 2007; Silverman et al. 2013; Todd et al. 2013).
One reason for this is the recognition that population-level outcomes can often
not be reduced to a simple aggregate of individual decisions. Instead, human
populations are complex systems in which individuals’ demographic choices
are constrained by the social environment and feed back into this environment
(Smaldino and Schank 2011). ABC modelling makes it possible to explicate such
feedback mechanisms and enables us to study their implications by means of
computational simulation (Bonabeau 2002; Epstein 1999; Macy and Flache 2009;
Macy and Willer 2002).

While it is true that agent-based models can greatly facilitate the study of social
complexity, it is also true that simulation models themselves can be complex and this
can make it “[difficult] to know which relationships and processes are driving model
behavior” (Coutts and Yokomizo 2014, p. 7). Sensitivity analysis is an important
tool for dealing with this problem. In sensitivity analysis, we seek to understand how
one or more model parameters affect model outputs through simulation experiments
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(Kleijnen 2008; Law and Kelton 2000). A simple approach to sensitivity analysis is
to study model outputs over an exhaustive set of parameter combinations. This is
feasible for small simulation models with few parameters, but the larger the number
of parameters, the less feasible it becomes. To illustrate this, consider a simulation
model with three parameters that each has five different levels. In this case, there are
53 = 125 possible parameter combinations. However, if there are ten parameters, the
number of possible combinations increases to 510 =9,765,625. Thus, depending on
the computational expensiveness of the model (i.e. the time it takes to conduct one
simulation run), an increase in the number of parameters can quickly make this
approach infeasible. Furthermore, the large amount of data it tends to create can be
very difficult to interpret (Coutts and Yokomizo 2014; McCarthy et al. 1995).

A more efficient approach to sensitivity analysis of complex simulation models
is the use of metamodels. Metamodels, also called emulators or surrogate models
(Kleijnen 2005, 2008), are simplified statistical representations of simulation
models that aim at quantifying the relation between model parameters and model
outputs. One major advantage of metamodels is that they can drastically reduce
the computational effort that is needed to gain comprehensive insights into the
behaviour of a simulation model. Despite this advantage, metamodels have so far
largely been neglected in agent-based computational demography. An exception
from this is a recent series of papers by Bijak and colleagues (e.g. Bijak et al.
2013; Silverman et al. 2013; see also the chapter by Hilton and Bijak in this
volume), who illustrated the use of metamodels by applying Gaussian process
emulators to their re-implementation of Billari et al.’s (2007) model of entry into
first marriage. Similarly, De Mulder et al. (2015) recently illustrated how Gaussian
process emulators can be used for calibrating demographic agent-based models.

Gaussian process emulators are just one of a number of statistical approaches
to metamodelling that all have their specific advantages and disadvantages (for an
overview of different approaches see Simpson et al. 2001). The purpose of this
chapter is to introduce the reader to regression metamodels and to illustrate how
they can be used for sensitivity analysis of complex simulation models. Regression
metamodels have a long and successful track record in simulation research (Kleijnen
2005) and I argue that this type of metamodel is particularly attractive for sensitivity
analysis of agent-based models in demographic research. The reason is that most
demographers have at least a basic understanding of regression analysis and this
makes regression metamodels highly accessible and easy to communicate.

In what follows, I first present regression metamodels and discuss experimental
designs that can be used to collect the data that is necessary for estimating such
models. Subsequently, I illustrate the use of regression metamodels by applying this
method to Grow and Van Bavel’s (2015) model of educational assortative mating in
the context of Belgian marriage markets. I close the chapter with a discussion of the
benefits and limitations of regression metamodels and point the reader to additional
topics in the literature on metamodelling. Throughout the chapter, I assume that
the reader has a basic understanding of agent-based computational modelling and
ordinary least squares regression analysis. I therefore restrict my mathematical
expositions to those aspects of regression metamodels that deviate from standard
multiple regression.
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7.2 Regression Metamodels

A metamodel treats a simulation model as a black box and only describes the
observed relations between simulation parameters and outputs, without any refer-
ence to the inner workings of the simulation model (Kleijnen and Sargent 2000;
Kleijnen et al. 2005). A black box representation of a simulation model can be
given by

2=f(Xiy.... %5, 7), (7.1)

where z are the observed simulation outputs, x; with i =1, ... k refers to a set of k
parameters of the simulation model, r are the pseudo random number seeds used in
the different simulation runs, and f(.) represents the mathematical function that is
implicitly defined in the simulation model and connects model parameters to model
outputs (Kleijnen 2008). The goal is to find a statistical function that approximates
f(.) well and therefore can be used as a surrogate of f(.). Once we have found such a
function, we can use it to answer questions such as: which parameters affect model
outcome z? Does a change in x; lead to an increase or a decrease in z? Does the
effect of x; depend on the value of x,? We can also use it to predict z for hitherto
unobserved parameter combinations without needing to actually run the simulation
model for these combinations.

Finding a statistical function that approximates f(.) well always requires experi-
mentation with the simulation model (Kleijnen 2005, 2008). That is, we always need
to run the simulation model several times, while systematically varying the values of
its parameters between the different runs. Yet, different types of metamodels have
different data requirements and the selection of the type of metamodel therefore
guides the data collection effort (Kleijnen 2005). Hence, in this section, I first
discuss the statistical approach that is used to estimate regression metamodels and
discuss how we can assess whether a given regression model approximates f(.)
sufficiently well. Subsequently, I discuss experimental designs that are suitable for
estimating regression metamodels.

7.2.1 Statistical Approach

In regression metamodels, the function that is used to approximate f(.) is a
polynomial, typically of the first or second order (Kleijnen 2008). A standard first-
order polynomial (i.e. a simple additive model with linear effects) is given by

z2=Bo+ Z;lﬂlxi s (7.2)

where B is the intercept, B; is the effect of model parameter x;, and ¢ is the
approximation error (i.e. residual). Equation 7.2 focuses only on the main effect
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of each parameter and assumes that the k parameters do not interact with each other
in affecting z. Furthermore, it assumes that the effects of all parameters are linear.
If we expect that some of the k£ model parameters interact with each other, we can
augment Eq. 7.2 with multiplicative terms, so that the polynomial takes the form

k k—1 k
e=Pot ) Bt D ., Pte (7.3)

where B is the estimated effect of the interaction between x; and x;. If we
additionally expect that the relation between some parameters and z is subject to
curvature, we can estimate a full second-order model of the form

2= Ppo+ Z;ﬁixi + Z:ll Z]I;l,_’_lﬂijxixj + Zleﬁiixiz + & (7.4)

where f;; is the estimated effect of the quadratic term of parameter x;.

The functions defined in Eqs. 7.2, 7.3, and 7.4 are identical to multiple regression
models and can therefore be estimated with the ordinary least squares method
(Kleijnen 2008). Polynomials of an even higher order have been used in some
applications, but interpreting the estimated regression coefficients can be difficult
and the estimated effects of higher-order terms are often small (Kleijnen 2005). I
therefore limit my discussion to first- and second-order polynomials as defined in
Egs. 7.2,7.3, and 7.4.

Once the regression metamodel has been estimated, its coefficients can be used
to assess the significance and relative importance of the different parameters in
affecting the output. To assess the significance of the effect of a given parameter
x;, we can use a standard #-test for the magnitude of 8; (Myers and Montgomery
1995). To assess the relative importance of the different parameters, we can compare
the magnitudes of their respective coefficients. However, such a comparison is
complicated by the fact that different parameters might have different scales. It
is therefore common practice to standardize each model parameter relatively to
its minimal and maximal value in the experiment for estimating the metamodel.
In this case, the values of the different 8, indicate the relative importance of the
different x;, given their ranges in the experiment (Kleijnen 1992). The minimal and
maximal values of a parameter are typically represented by —1 and + 1, respectively.
Given these boundaries, the standardized value (also called coded unit) of x; can be
calculated by

_ Pi = P;
(pi.max - pi,min) /2 7

(7.5)

Xi

where p; refers to the value of the parameter x; on its original scale, p; max and p; min
refer to the maximal and minimal values of x; used in the experiment, and p; is
defined as (0;.max + Pimin) /2 (Kleijnen 2005, p. 290).
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Fig. 7.1 Example of
predicted output of simulation
model with two parameters in _j
coded units. The surface 1.6
shows predicted values based
on the metamodel (2), and the 148
points show the outcomes of
the simulation model (z);
greylblack colouring of the
points indicates that the
observed outcome is
lower/higher than the
predicted outcome

We can also use the coefficients to predict the output of the simulation model.
Figure 7.1 illustrates this for the following second-order polynomial, which was
estimated from the output of a fictive simulation model with two parameters:

7= 1.09 — .18x; + .10x; + .05x;x; + .16x7 — .01x3. (7.6)

The figure shows as points the observed output (z) that was used to estimate the
metamodel and as a surface the predicted output (z) over the ranges of x; and x, used
in the experiment (in coded units). Figure 7.1 suggests that the metamodel given
in Eq. 7.6 is a valid approximation of the behaviour of the underlying simulation
model, given that the predictions are close to the observed values. In the next section,
I describe how we can assess the validity of metamodels more formally.

7.2.2 Validation

The discussion up to this point suggests that there is some degree of freedom
in selecting the precise form of the polynomial and different forms will perform
differently in approximating f(.). Finding the appropriate form is crucial for drawing
valid conclusions about the simulation model. For example, if we estimate f(.)
with a first-order polynomial under the assumption that there are no interactions
between model parameters, we might draw invalid conclusions from the resulting
function if the parameters actually interact with each other in affecting the output.
Given this freedom, Kleijnen and Sargent (2000) and Kleijnen (1992) highlighted
that specifying a regression metamodel is often an iterative process. Before we
run experiments with the simulation model, we typically have acquired some prior
knowledge (e.g. based on knowledge about the real social system, experiences
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during debugging the model, etc.) that enables us to specify a “tentative regression
model” (Kleijnen 1992, p. 299). If it turns out that this model describes the observed
relations poorly, we can augment the metamodel (e.g. by adding or removing
quadratic effects) and assess the fit of the new model. This procedure stops when
we have found a function that accurately describes the observed relations.

There are three criteria that are commonly used for assessing the validity of a
regression metamodel. First, the estimated model should not violate the assumptions
of ordinary least squares regression (Myers and Montgomery 1995, p. 41ff). That is,
(1) the distribution of the approximation errors should be normal, (2) the variance of
the approximation errors should be constant for all parameter combinations, (3) the
average of the approximation errors should be zero for all parameter combinations,
and (4) the expected correlation between the approximation errors of any two
observations should be zero. The first three assumptions can be assessed with
standard methods for assessing the distribution of residuals described in text books
on multiple regression; the third assumption can additionally be assessed with a
formal lack of fit test (Rao 1959, see details below). The fourth assumption is
typically satisfied when each simulation run is initialized with a different random
number seed (Kleijnen 2008). A metamodel that violates one or more of these
assumptions might lead to incorrect conclusions and therefore needs to be modified.
For example, if there is evidence that the assumption of constant error variance is
violated, this might be due to an interaction between some model parameters that
has not been included in the metamodel yet. Alternatively, the simulation model
might generate outcomes that are inherently heteroscedastic (i.e. the variance in the
outcomes systematically in-/decreases as certain parameters increase). In this case,
we might consider transforming the output (e.g. by a logarithmic transformation)
or using the method of weighted least squares instead of ordinary least squares
(Kleijnen 2008; Tunali and Batzman 2000).

Second, the metamodel should fit the observed data and should explain a large
and significant part of the variance in the observed output. That is, the value of
the coefficient of determination (R* and R? djustea) Should be high and the associated
F-test should be significant (Kleijnen 2008). Furthermore, the fit of a regression
metamodel can be assessed with a formal lack of fit test. Such tests assess whether
predictions of the metamodel systematically deviate from the observed simulation
outcomes. To illustrate this, consider Fig. 7.2. The points in the figure show the
outcome of a fictive simulation model that was observed at five levels of the
parameter x;. The black line shows the predictions of a first-order polynomial,
which was estimated from this data. Intuitively speaking, the metamodel lacks fit
given that it neglects the nonlinearity in the relation between x; and z and therefore
systematically under-estimates z at high and low levels of x;, but over-estimates it
at intermediate levels of x;. More formally (cf. Myers and Montgomery 1995), we
can assess whether there is evidence for such lack of fit by partitioning the total
approximation error (SSg) in the regression model into pure error (SSpg) that can be
attributed to variation in the simulation outcomes (e.g. due to stochastic processes
in the simulation model) and into error that can be attributed to a lack of fit of the
regression model (SS;or), so that
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Fig. 7.2 Example of lack of 1.3

fit of regression metamodel. $
The line shows predicted (]
values based on a first-order 1.2+

polynomial (2), and the black
points show the outcomes of
the simulation model (z) that
underlie this metamodel
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For calculating SSpg, the outcome of the simulation model needs to be observed
several times for at least some parameter values (see Sect. 7.2.3 for details on
how/where to collect multiple observations). This is illustrated in Fig. 7.2, given that
the model outcome was observed three times for each of the five parameter levels.
Intuitively speaking, the variation in the outcome at each parameter level provides
information for calculating the approximation error that can be attributed to random
variation in model outcomes. More formally, SSpg and SS;or are calculated as

follows. Assume that there is a simulation model with k parameters. Let[=1,...,v
be the unique parameter combinations that have been observed. Furthermore, let n
be the total number of simulation runs that we have conducted and let g =1, ... ,1;

be the number of simulation runs that havve been conducted at each of the different
parameter combinations, so that n = Zl_lnl. Based on this, the value of SSpr is

calculated by

v ny _\2
SSee= 2. _ (@ =7)" (7.8)

where 7; is the average of the observed output over all observations for the I
parameter combination. Thus, Eq. 7.8 holds that SSpg is based on the squared
deviations of the individual outputs for a given parameter combination from the
average output for this combination, summed over all unique combinations. The
value of SS;or is calculated by

SSror = Zl=1nl(21 -2)°. (7.9
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This means that SS;oF is based on the squared deviations of the predicted output
from the observed average output for a given parameter combination, weighted
by the number of observations for the combination, summed over all unique
combinations. Based on this, the test statistic for the formal lack of fit test is
calculated by

SSror/ (v —p)
F = —", 7.10
LOF = oo =) (7.10)

in which p is the number of regression coefficients in the metamodel (including
the intercept) and which follows an F-distribution with v—p degrees of freedom for
SSror and n—v degrees of freedom for SSpr. When FoF is significant, we cannot
reject the null hypothesis that there is lack of fit.

Third, and finally, the regression metamodel should be able to accurately predict
the outcome of the simulation model for parameter combinations that fall within the
boundaries of the parameter space that was used in the experiment for estimating
the metamodel. That is, the model should have a high level of predictive adequacy
(Kleijnen 2008). This adequacy can be assessed by collecting data for additional
parameter combinations that were not included in the original experiment and
comparing the observed outputs with the predictions from the metamodel that
was estimated from the original data. If the observed outcomes are close to the
predictions, the metamodel has high predictive adequacy.

7.2.3 Experimental Designs

The choice of the type and form of the metamodel determines the design of
experiments (DOE) for collecting output data. DOE is the process of planning
experiments so that the metamodel can be estimated effectively and efficiently
(Antony 2003, p. 7). Effectively means that we collect the data necessary to draw
valid conclusions about the behaviour of the simulation model from the selected
metamodel; efficiently means that we collect this data with as little computational
effort as possible (Kleijnen et al. 1992; Lorscheid et al. 2012). In the literature on
DOE, the output of the simulation model is commonly referred to as response and
the parameters of the simulation model are referred to as factors; the levels of a
given parameter are referred to as factor levels. In the remainder of this chapter, I
use these terms (i.e. output/response, parameter/factor, and parameter level/factor
level) interchangeably. Furthermore, the schedule of the combinations of different
factor levels that are included in a simulation experiment is called experimental
design; the different factor combinations at which the simulation model needs to be
run are called design points. Finally, the highest and lowest values chosen for each
factor determine the experimental region that the design covers.

Any regression metamodel can only be valid for the experimental region for
which it has been estimated, and smaller the experimental region, the more accurate
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the model is likely to be (Myers and Montgomery 1995). The goals of the analysis
should therefore guide the selection of the experimental region. To illustrate this,
consider a simulation model with the two parameters x; and x, that both can vary
from O to 100. If we choose 0 and 100 as the lower and upper boundaries for
both x; and X, in our simulation experiment, the experimental region coincides
with the operational boundaries of the simulation model. The resulting least
squares estimators will therefore provide insights into the general behaviour of the
simulation output over the entire parameter space, while smoothing out deviations
from this general behaviour that might exist in some parts of the parameter space.
If we want to learn in more detail about the behaviour of the simulation model in a
smaller portion of the parameter space (say between x; € [20;40] and x, € [70; 90]),
we might benefit from reducing the experimental region to this area. The resulting
metamodel is potentially more precise, at the cost of being valid only for a smaller
region of the parameter space.

Once the experimental region has been defined, it needs to be determined what
data need to be collected within this region. In general, the more complex the
polynomial, the more points we need to include in the experimental design (Kleijnen
2005; Kleijnen et al. 2005; Simpson et al. 2001). One of the most commonly used
designs for estimating first-order polynomials is the full two-level factorial design
(Kleijnen et al. 2005). In this design, each factor has two levels and there is one
design point for each possible combination of these levels across the factors so that
there are 2* design points. This design makes it possible to estimate the main effect
of each parameter and of all possible two-way interactions. To be able to conduct a
formal lack of fit test, it is common practice to augment this design with a number of
n. centre runs (n. > 1), which are located at the O-coordinates of each factor in terms
of coded units. For illustration, Table 7.1 shows the design points of a full two-level
factorial design based on two factors, which has been augmented with two centre
runs; panel (a) of Fig. 7.3 shows the experimental region that this design covers.

One of the most commonly used designs for estimating second-order polynomi-
als is the central composite design. A standard central composite design consists
of a full two-level factorial design which is augmented with 2 k axial points and
n. centre runs. The axial points are located at distance o from the centre of the
design, which is typically determined by V2K, locating the axial points outside
the —1 and 1 borders of the original experimental region (see Table 7.1 and panel
(b) of Fig. 7.3 for an illustration). This makes the estimation of quadratic effects
within the experimental region maximally efficient, but can be problematic when the
boundaries of the experimental region correspond with the operational boundaries
of the simulation parameters. We can solve this problem by using a standard
central composite design and scaling it down, so that the original boundaries
of the design move closer to the centre and the axial points are located at the
original —1/1 boundaries. Alternatively, we can set « = 1, so that the original
factorial design remains unchanged and the axial points are located at the —1/1
boundaries of the original experimental region. In the first case, the design becomes
an inscribed central composite; in the second case it becomes a face centred central
composite (see Table 7.1 and panels (c) and (d) of Fig. 7.3 for illustrations). In direct
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Table 7.1 Examples of different types of experimental design in coded units

Design point
1

2

3

4

58

Full two-level
factorial

X1 X2
—1
—1 1

1 —1
1

Inscribed central

1

0 0
6" 0 0
7° - -
8° - -
9b - -
10° - -

2Centre run
® Axial point

Fig. 7.3 Examples of (a) full
two-level factorial design,
(b) standard central
composite design, (c)
inscribed central composite
design, and (d) face centred
central composite design in
coded units. The grey area
illustrates the experimental
region that the original full
two-level factorial design
covers, which underlies the
designs shown in panels (a),
(b), and (d).

® factorial point, [J centre
run, O axial point

Standard central composite Face centred central
composite (@ = 1.414) | (@ =1.414) composite (o = 1)
X1 X2 X X2 X1 X2
—1 -1 —0.707 | —0.707 | —1 —1
—1 1 —0.707 | 0.707 | —1 1
1 -1 0.707 | —0.707 | 1 —1
1 1 0.707| 0.707| 1 1
0 0 0 0 0 0
0 0 0 0 0 0
—1.414 0 —1 0 —1 0
1.414 0 1 0 1 0
0 —1.414 0 -1 0 —1
0 1.414 0 1 0 1
a b
©)
11 11
x 01 x 04 O O
1 - 1
(@)
4 0 1 40 1
X1 X1
c d
1 O 1
x 01 O O <0
-1 O -1 1

comparison, an inscribed central composite design is more effective for estimating
quadratic effects, but a face centred design is more accurate in describing the
observed relations at the corners of the experimental region (for details see Myers

and Montgomery 1995).!

"For a discussion of additional popular designs see the chapter by Hilton and Bijak in this volume.
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Finally, agent-based computational models are typically stochastic, so that the
observed response for a given parameter combination tends to vary over repeated
simulation runs. To deal with this variation, it is common practice to repeat the
simulation multiple times at a given design point and to use the average of the
simulation outputs for estimating the metamodel (Lorscheid et al. 2012; Thiele et al.
2014), so that the metamodel is fitted to the mean simulation outcome. In this case
each average represents one observation. To illustrate this, consider the full two-
level factorial design shown in Table 7.1. If we conduct ten simulation runs for
each of the six design points and use the average of these runs for estimating the
metamodel, we still have only six observations of the output.

7.3 Applied Example

In this section, I illustrate how metamodels can be used to learn about the behaviour
of a simulation model and what decisions need to be taken in this process. I first
outline the simulation model and subsequently present the details of the analysis. I
have conducted all analyses in the statistical programming environment R (R Core
Team 2014) and have estimated the regression metamodels with the package rsm
(Lenth 2009). In the supplementary material that accompanies this chapter, I provide
all files necessary to reproduce the results that I present below, including the code
of the simulation model.

7.3.1 Simulation Model

Grow and Van Bavel (2015) present an agent-based computational model that
explicates some of the social mechanisms that might have linked the recent reversal
of gender inequality in education with changes in educational assortative mating
(EAM) across Europe. The notion of assortative mating refers to any pattern of
relationship formation based on personal attributes that deviates from the pattern
that we might expect if relations were formed purely at random (Schwartz 2013).
Across twentieth century Europe, EAM has been mostly homogamic (i.e. partners
were similarly educated) but if there was a difference in educational attainment
within couples, the man tended to be more educated than the woman. Until the
1970s, this pattern was compatible with the surplus of highly educated men on the
marriage market. However, since then the relative educational attainment of men
and women has changed drastically: over the years, the number of highly educated
women has increased relatively to that of men and this has made the traditional
pattern of EAM infeasible (Van Bavel 2012). As a consequence, the number of
couples in which the man is more educated than the woman (hypergamic couples)
has decreased and the number of couples in which the woman is more educated
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than the man (hypogamic couples) has increased, whereas the share of homogamic
couples remained largely unchanged (De Hauw et al. 2015; Esteve et al. 2012).

To better understand the mechanisms that have linked changes in educational
attainment among men and women with changes in patterns of EAM across Europe,
Grow and Van Bavel (2015) developed a model that builds on earlier research on the
interplay between the composition of marriage markets and patterns of assortative
mating (e.g. Oppenheimer 1988) and on earlier simulation work that has centred
on human mate search (e.g. Simdo and Todd 2002). At the core of the model are
the preferences that underlie individual mating decisions. More specifically, the
model focuses on individuals’ preferences for the educational attainment, earnings
prospects, and age of prospective partners. It assumes that both men and women
look for spouses who are similar to them in educational attainment and who have
high earnings prospects (e.g. Kalmijn 1994). Additionally, it assumes that women
tend to look for spouses who are somewhat older than themselves, whereas men
tend to look for spouses who are in their mid-twenties (e.g. England and McClintock
2009).

A detailed description of the model is provided in Grow and Van Bavel (2015).
Here, I provide a brief outline of the model and highlight the elements that are
relevant for illustrating the use of regression metamodels. The model consists of
male (m) and female (f) agents who try to find a heterosexual partner for a long-
term relation in the form of marriage. The search for a spouse takes place on a
marriage market in which meeting opportunities are structured by the educational
system. That is, a given male agent and female agent are more likely to meet each
other when they are in the same stage of their educational career (e.g. both are
attending high school, both have left school already, etc.) than when they are in
different stages.

Whenever two agents meet, they need to decide whether they want to start
dating. Once they are dating, they can decide whether they would like to marry.
The importance that agents attach to the education, earnings prospects, and age of
prospective partners when making dating and marriage decision is governed by six
parameters. The parameters w," and w govern the importance that male and female
agents attach to similarity in education (s) with prospective partners; w,™ and w’
govern the importance that they attach to earnings prospects (y); w,™ and w,;/ govern
the importance that they attach to age (a). For each parameter, a larger value implies
higher importance of the respective characteristic, but this increase in importance
has a decreasing marginal effect. For example, increases in w," initially lead to
strong decreases in the willingness of male agents to date/marry female agents who
do not have the same educational attainment as themselves. This decrease continues
as w," increases, but the marginal effect becomes lower at higher levels of w,™.
At some point, male agents become so unwilling to date/marry female agents who
are not a perfect educational match that increasing w,"™ any further has virtually no
additional effect on their mating decisions.

The model simulates individual mate search over individuals’ entire life course
and includes simple assumptions about mortality and reproduction. This makes
it possible to model mate search over successive cohorts. To generate plausible
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agent cohorts in terms of educational attainment and earnings prospects, Grow and
Van Bavel (2015) used data provided by the International Institute for Applied
Systems Analysis/Vienna Institute for Demography (KC et al. 2010; Lutz et al.
2007) and data from the European Community Household Panel.> For validating
model outputs, they used data from rounds 5 and 6 of the European Social Survey,
collected in 2010 and 2012. The combination of these data sources enabled them to
simulate mate search behaviour under realistic marriage market conditions among
individuals born between 1921 and 2012, and to study patterns of EAM in 12
Western European countries.

In this chapter, I use the same input data and simulation settings as Grow and
Van Bavel (2015) and focus on the pattern of EAM based on the input data for
Belgium. My goal is to show how regression metamodels can be used to study the
effects that the six focal model parameters w, , w/, wil, w’;, w™, and w/ have on the
percentages of hypergamic, homogamic, and hypogamic couples (dating or married)
among agents who are old enough to have attained their highest educational degree
(i.e. in the ages between 24 and 79 years) at the end of a simulation run (i.e. in
simulation years 2010 and 2012). I estimated one metamodel for each of the three
outcomes. Note that all other parameters are based on the calibrated model described
by Grow and Van Bavel (2015).

7.3.2 Sensitivity Analysis
7.3.2.1 Experimental Region

In the model of Grow and Van Bavel (2015), selecting the experimental region is
complicated by the fact that each of the six parameters has a lower operational
boundary at O, but none of the parameters has an upper operational boundary. In
their search for a parameter combination that could recreate observed patterns of
EAM across Europe, Grow and Van Bavel (2015) considered values between 0
and 2 for wi, w{., wi', and w’;, and between 0 and 20 for w/} and w’; The reason
was that based on their experience with the simulation model, they expected that
within this region there might be a parameter combination that generates outputs
that fit well with the observed patterns of EAM. In this chapter, I focus on a larger
experimental region. More specifically, I focus on the region between the values 0
and 4 for wy', w{ ,wi', and w/;, and between 0 and 40 for w!' and w’;, to be able to
study the model’s behaviour between parameter boundaries that could be considered
‘extreme’ from a substantive point of view. These boundaries can be considered

extreme for the following reasons:

Eurostat, European Commission and the national statistical offices collecting the data have no
responsibility for the results and conclusions which were drawn in this paper on the basis of the
European Community Household Panel data.
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e When w" = w/ = 0, agents do not care about the educational attainment

of prospective partners. By contrast, when w” = w/ = 4, the attraction that
agents who belong to the lowest and the highest possible educational attainment
category feel for each other approximates zero, regardless of all of other mating
relevant characteristics.

* When w{' = w’; = 0, agents do not care about the earnings prospects of

prospective partners. By contrast, when w{' = w§. = 4, the attraction that agents
feel for somebody who has the lowest possible earnings prospects approximates
zero, regardless of all of other mating relevant characteristics.

¢ When w" = w/ = 0, agents do not care about the age of prospective partners.
By contrast, when w” = w/ = 40, the attraction that agents feel for somebody
who is 10 or more years older or younger than the ideal age that they prefer

approximates zero, regardless of all other mating relevant characteristics.

7.3.2.2 Tentative Regression Model

I expected that at least some of the parameters would interact in affecting the
simulation output. Consider, for example, the possible interplay between female
agents’ preferences for education (w/) and age (W£)~ When female agents attach
high importance to similarity in education (i.e. the value of w’; is high) but do not
care much about the age of prospective partners (i.e. the value w’; is low), it might be
relatively easy for them to find similarly educated mates, given that they can draw on
all male members of the marriage market regardless of their age. Thus, an increase
in w/ might lead to a strong increase in homogamy when the value of w/, is low.
Yet, if female agents also have strong preference for partners who are slightly older
than themselves (i.e. the value of w/, is high), the pool of potential partners shrinks
drastically and might offer them fewer opportunities to find similarly educated men.
Thus, an increase in w/ might lead to a weaker increase in homogamy when the
value of w’; is high.

Second, as discussed Sect. 7.3.1, each of the six model parameters has a
decreasing marginal effect on agents’ willingness to date/marry somebody who is
less than an ideal match in terms of their own preferences. I thus expected that these
parameters might also have decreasing marginal effects on model outputs. If this is
the case, we might expect some curvature in the observed relations.

Based on the foregoing considerations, I decided to use full second-order
polynomials that included all possible two-factor interactions.

7.3.2.3 Experimental Design
Because of my choice of full second-order polynomials, I decided to use a central

composite design in the simulation experiments. Yet, given that the lower boundary
of the experimental region was constrained by the lower operational boundaries
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Table 7.2 Parameter values in original and coded units for central composite design used in
simulation experiment (o = 2.828)

Parameter Original units Coded units

wit 0 1.293 2 2.707 4 —1 —0.354 0 0354 1
w§ 0 1.293 2 2.707 4 —1 —0.354 0 0354 1
wy! 0 1.293 2 2.707 4 -1 —0.354 0 0354 1
w/; 0 1.293 2 2.707 4 —1 —0.354 0 0354 1
wit 0 12.93 20 1 27.07 40 —1 —0.354 0 0354 1
WZ 0 12.93 20 1 27.07 40 —1 —0.354 0 0354 1

of the simulation parameters, I opted for an inscribed central composite design,
to avoid that the axial points would be located outside these boundaries. Thus, I
chose o as v/26 = 2.828 and scaled the resulting design down to stay within the
experimental region. Table 7.2 shows the different parameter values in both original
and coded units. The complete design consisted of 84 design points and contained
n. =8 centre runs for conducting a formal lack of fit test (i.e. only the runs at
the centre of the design were repeated; see the supplementary material for the full
experimental schedule). Given the stochastic nature of the simulation model, I used
the average of 50 simulation runs per design point for the analyses, leading to a total
of 4,200 simulation runs.

Conducting one simulation run took on average 36 s on an Intel Core i7-3770
processor with 3.40 GHz and eight cores, leading to a total computation time of
about 42 h (i.e. about 5.25 h per core). To illustrate the efficiency of the approach
selected here, it is helpful to note that a sensitivity analysis with the simple approach
discussed in the introduction would have consisted of 5° x 50 = 781,250 runs, if
there had been five levels per parameter as in the inscribed central composite design.
Given an average computation time of 36 s, it would have taken more than 7,800 h of
computation time to conduct these runs. Even if we had focused on only three levels
per parameter, the experiment would have consisted of 3¢ x 50 = 36,450 runs which
would have taken about 364 h of computation time. Furthermore, it is helpful to note
that the parameter estimates that I present below can be used to instantaneously gain
information about the model outcome for new parameter combinations within the
experimental region, without having to invest the 30 min of computation time that
it would take to run the model 50 times for the new parameter combination.

7.3.2.4 Model Validation

Table 7.3 shows the coefficients of the three regression metamodels. Before I
could interpret these results, I needed to check whether the metamodels are valid
representations of the observed relations between the parameters and outputs.
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Table 7.3 Results of

e Hypergamic | Homogamic | Hypogamic
sensitivity analyses

Parameters B p B P B P

Intercept 583 |™ | 8491 |* 9.25 | ™

Main effects

wit —327 | ™ 7.50 | | —424 |

w’; —2.82 | ™ 804 |7 | =522 |™

wy! —1.55 | ™ 0.87 | 0.68 |

w’; 0.14 0.49 | —0.64 |

wit —0.98 | ™ 253 | | =155 |
/ —0.53 | ™ 0.66 | |—0.12

Interaction effects

W X wl 091 —229 | ™ 1.38 |~

wi X W 132 |7 —1.07 —0.25

WX W —0.45 1.14 —0.69

WX Wi —0.37 —0.12 0.49

wh X wh —0.08 0.29 —-0.21

wl x wy! 1.59 | |—0.58 —1.02

wl x w{ —0.05 —0.92 0.97

wl X wt 0.53 —-1.73 |” 1.20 |*

wl X wh 0.10 0.03 —0.13

wy X w§ —0.11 0.35 —0.23

Wi X Wi —0.80 177 |© =097

wi X wh —0.42 —0.04 0.46

w{, X wit —0.42 0.69 —0.28

wl x w/, —0.26 2,19 | | =193 | ™

w X wh —0.82 0.90 —0.08

Quadratic effects

wit X wit .19 | ™ | —-170 | 0.52

wh x wl —0.05 —1.86 | 1.91 | ™

wy' X wi 0.14 0.65 —0.79

wl X wl 0.02 —0.14 0.12

WX Wi 130 | ™ | =215 |* 0.85

wh X wh —0.70 0.61 0.08

Estimates are based on coded parameter units, *p<0.05,
“p<0.01

To assess whether the models fitted the data well and to assess whether the
average of the approximation errors was zero for all parameter combinations, I
conducted three formal lack of fit tests, one for each metamodel. Table 7.4 shows the
results of these tests and indicates that none of them was significant. Additionally, I
assessed whether each model explained a large and significant share of the variance
in the respective output. Table 7.5 shows that the three coefficients of determination
(R?) and their adjusted versions (Ri djuste ) were high and significant in all three cases.
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Table 7.4 Lack of fit tests

k Source of error | DF | Value | F )4
for main analyses

Hypergamic

SSE 56 | 13.85
SSLor 49 1240 [1.22
SSpE 7 1.45
Homogamic

SSE 56 |30.62
SSror 49 |27.89 |1.46
SSpE 7 2.73
Hypogamic

SSE 56 |18.96
SSror 49 |15.60 | 0.66
SSpE 7 3.36

DF degrees of freedom
*p<0.05, "p<0.01

Table 7.5 Coefficients of 2 p2
Model DFI,DF2 | R*(RZ . F
determination for main - Radusrea) I:
analyses Hypergamic | 27, 56 0.94 (0.92) 35.50 “'
Homogamic | 27, 56 0.98 (0.97) 90.06 | **
Hypogamic |27, 56 0.96 (0.95) |5529 | *

DF degrees of freedom
*p<0.05, "p<0.01

To assess whether the distribution of the approximation errors was normal
and whether their variance was constant for all parameter combinations, Fig. 7.4
shows quantile-quantile plots of the approximation errors and shows the relation
between the model predictions and approximation errors. The figure suggests that
the distribution of the residuals followed a normal distribution and that the spread
was similar across all parameter combinations in all three regression metamodels.

I assessed the predictive adequacy of the three metamodels by randomly selecting
20 new parameter combinations from the experimental region and comparing the
observed outcomes for each combination with the predictions of the metamodels.
Table 7.6 shows the selected parameter combinations and shows the results for
the case of hypergamic couples. Figure 7.5 plots the predicted values against the
observed values for all three outcomes and the results suggest that the predictive
adequacy of the three metamodels was high.

Finally, each simulation run used a different seed for initializing random
numbers. This implies that the assumption of non-correlated residuals was also
satisfied.

Taken together, the results suggest that each of the three metamodels was a valid
representation of the observed associations.
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Fig. 7.4 Inspection of distribution of approximation errors and variance of approximation errors
for main analyses, (a) hypergamic, (b) homogamic, and (¢) hypogamic couples. The first row shows
quantile-quantile plots and dashed lines show a 95 % confidence envelope (Fox 2008). The second
row plots predicted values against the residuals

7.3.2.5 Simulation Results

The results shown in Table 7.3 suggest that many of the simulation parameters had
significant main effects and that some of them affected simulation outputs in a
nonlinear manner. Additionally, there were some significant two-way interactions
between parameters. To aid the interpretation of the main effects and nonlinear
effects, I plotted for each preference dimension (i.e. education, earnings prospects,
and age) the male and female versions of the respective parameters against each
other and inspected the predicted outputs for each of the three models (Figs. 7.6, 7.7,
and 7.8); the contours at the bottom of each figure aim to facilitate the interpretation
of the results. Subsequently, for illustrative purposes, I inspected some of the
interaction effects that were not covered by these illustrations (Fig. 7.9). In all
figures, all of the model parameters that are not shown are fixed at O in terms of
coded units. Note that the three outcome measures are correlated with each other.
For example, if the metamodels suggest that a given preference leads to an increase
in hypergamy, this increase necessarily leads to a decrease in at least one of the two
other outcomes.
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Table 7.6 Excerpt of results of validation experiment

Parameter values in coded units Hypergamic

Design

point | w w{ wy' w{ wit wg z z -7
1 —0.412 | —0.344 0.896 0.428 | —0.807 | —0.526 | 8.88 | 8.71 0.17
2 —0.042 0.192 0.327 | —0.266 | —0.714 0989 | 6.12 | 5.69 0.43
3 —0.084 0.343 | —0.382 | —0.574 | —0.644 | —0.184 | 6.16 | 6.05 0.11
4 0.164 0.319 | —0.512 | —0.224 | —0.555 0.616 | 5.15 | 538 |—0.22
5 —0.702 | —0.170 | —0.149 0.680 | —0.228 0.313 | 9.23 |10.14 | —0.91
6 0.175 | —0.172 0.494 0.964 | —0.056 0.307 | 4.86 | 4.78 0.08
7 0.538 0.893 0.855 | —0.486 | —0.022 0.018 | 227 | 3.04 |—-0.77
8 —0.732 | —0.586 0.308 0.529 0.051 | —0.969 |10.83 | 10.19 0.65
9 0.983 | —0.888 | —0.231 0.813 0.168 0.026 | 535 | 5.35 0.00
10 0.325 0.680 | —0.156 | —0.775 0.441 0.157 | 356 | 3.22 0.34
11 —0.137 | —0.235 0.154 | —0.239 0.456 0.026 | 641 | 6.38 0.03
12 0.523 | —0.553 0.118 | —0.345 0.664 | —0.504 | 528 | 5.59 |—-0.31
13 0.813 | —0.106 | —0.774 0.225 0.683 0.078 | 527 | 4.72 0.55
14 —0.062 | —0.357 | —0.740 | —0.114 0.724 | —0.838 | 9.46 9.25 0.21
15 0.100 0.024 | —0.467 0.151 0.726 0451 | 545 | 5.75 |—=0.30
16 0.967 0.243 0.358 | —0.276 0.733 0.344 | 238 | 2.64 |—0.26
17 —0.235 0.113 | —0.733 0.090 0.768 | —0.286 | 8.50 | 8.39 0.11
18 0.036 0.302 0.811 0.130 0.896 | —0.491 | 4.06 | 444 |—-0.38
19 0.035 | —0.617 0.564 0.473 0.955 | —0.150 | 5.70 | 5.67 0.03
20 0.118 | —0.008 | —0.035 | —0.403 0.982 0.006 | 503 | 593 |—0.90
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Fig. 7.5 Predicted and observed outputs based on validation simulation experiment

Consider first the effects of agents’ preferences for similarly educated partners
(Fig. 7.6). The results suggest that increasing both male and female agents’ prefer-
ences for similarly educated partners (i.e. w" and w/, respectively) led to a decrease
in the shares of hypergamic and hypogamic couples, and to an increase in the
share of homogamic couples. Yet, these effects were subject to two-way interactions
and nonlinearity. Figure 7.6 facilitates the understanding of these complex effects.
Consider, for example, the case of homogamic couples. Increasing w” or w/ each
led to an increase in homogamy, but this increase became weaker if the respective
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Fig. 7.6 Predicted outputs based on the interplay between preferences for similarly educated

partners among male and female agents (w}' and w';). All parameters that are not shown are fixed
at the value 0 in terms of coded units
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Fig. 7.7 Predicted outputs based on the interplay between preferences for high earnings prospects

among male and female agents (w;.” and w';). All parameters that are not shown are fixed at the
value 0 in terms of coded units
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Fig. 7.8 Predicted outputs based on the interplay between preferences for age among male and

female agents (W)} and w{;). All parameters that are not shown are fixed at the value O in terms of
coded units

other parameter was at a high level. Substantively this means, for example, that
even when female (male) agents are willing to date/marry someone who differs
from them in educational attainment, heterogamy will still be low if male (female)
agents are not also willing to do so. Furthermore, the decreasing marginal effect of
each parameter can be attributed to the facts (1) that the parameters have decreasing
marginal effects on agents’ willingness to date/marry somebody who deviates from
their ideals and (2) that there is a limit to the level of homogamy/heterogamy that
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Fig. 7.9 Predicted outputs based on the interplay between preferences for age among male agents

(w") and preferences for education among female agents (M/Z). All parameters that are not shown
are fixed at the value 0 in terms of coded units

can exist in an agent population (e.g. once all similarly educated individuals are
partnered with each other, homogamy cannot increase anymore). The closer the
agent population is already to these limits, the less a change in a given parameter
might contribute to homogamy/heterogamy.

Consider next the effects of preferences for high earnings prospects (Fig. 7.7).
The results suggest that an increase in the preferences for high earnings prospects
among male agents (i.e. an increase in wy') led to an increase in homogamic
and hypogamic couples, and to a decrease in hypergamic couples. An increase in
preferences for earnings prospects among female agents (i.e. an increase in w’;)
also tended to increase homogamy, but tended to decrease hypogamy. Substantively
this means that the correlation between education and earnings prospects leads
preferences for earnings prospects to have an indirect effect on EAM. That is, the
more importance male and female agents attach to the earnings prospects of their
partners, the more likely they are to date/marry somebody who is equally or more
educated, given that such agents tend to be more attractive in terms of earnings
prospects than lower educated agents.

Consider now the effects of preferences for age (Fig. 7.8). The results suggest
that the stronger male agents preferred partners who are in their mid-twenties (i.e.
if w’ is high), the more likely they were to date/marry somebody who had a similar
educational background, and the less likely they were to date/marry somebody with
different (particularly with a higher) educational background. The preference of
female agents for slightly older partners (i.e. the value of w/) mattered much less
for these outcomes, but also led to an increase in homogamy and a decrease in
hypergamy. For interpreting these results it is important to remember that in older
cohorts men tend to be more educated than women, whereas in younger cohorts
women tend to be more educated than men. Thus, when male agents prefer partners
who are in their mid-twenties, this implies that especially older and highly educated
males look for partners in cohorts in which they are more likely to find somebody
who is similarly educated. At the same time, young and highly educated female
agents have better chances to find a similarly educated partner in older cohorts.
These processes together lead to an increase in the share of homogamic couples and
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lead to a decrease in the shares of heterogamic couples, in particular hypogamic
couples.

Consider finally the interaction effects that existed between the importance that
male agents attach to the age of prospective partners (w') and the importance
that female agents attach to similarity in education (w)) (Fig. 7.9). The results
suggest that when male agents did not care much about the age of their partners
(i.e. when w/' was low), an increase in female preferences for similarly educated
partners (i.e. an increase in w/) had a stronger positive effect on homogamy than
when male agents cared strongly about age (i.e. when w/' was high). The opposite
was the case for hypogamy. That is, the less male agents cared about the age of
prospective partners, the more strongly an increase in female agents’ preferences
for similarly educated partners led to a decrease in hypogamy. From a substantive
point of view, this underlines the role that age preferences play in combination with
the composition of the marriage market in terms of educational attainment. When
male agents prefer women who are in their mid-twenties, especially older, highly
educated males are looking for partners in a segment of the mating market that is
conducive to homogamy. This leads to a higher level of homogamy that decreases
the effect of female agent’s preferences for similarly educated partners. The reason
for this latter effect is that there is a limit to the level of hypergamy, homogamy, and
hypogamy that can exist in a given population, as explained earlier.

7.4 Discussion and Conclusion

In this chapter, I have demonstrated the use of regression metamodels for sensitivity
analysis of computational simulation models. I hope that the applied example has
illustrated the potential benefits for understanding the behaviour of complex agent-
based models in computational demography. As indicated above, I believe that
regression metamodels are an attractive tool for sensitivity analysis in the field
of demography, because they are powerful and easily accessible for both model
developers and audiences with a background in demography.

These advantages notwithstanding, regression metamodels also have their lim-
itations. First, regression metamodels that are estimated with the ordinary least
squares method are best suited for response surfaces that are smooth and ‘well
behaved’, as was the case in the example shown here. For surfaces that cannot easily
be represented by low-order polynomials, regression metamodels might be able to
accurately describe the behaviour of the output over a small, local experimental
region, but they might not be able to describe the behaviour of the output over the
full ranges of all simulation parameters. For an example of such a situation see the
chapter by Hilton and Bijak in this volume. In this case, we might benefit from
choosing more complex metamodels, which make fewer assumptions about the
data than regression metamodels (Kleijnen 2005). For example, Gaussian process
emulators (Oakley and O’Hagan 2002) can deal with less regular surfaces, but
require more statistical background knowledge to implement, which makes them
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less accessible to wider audiences. Another approach to sensitivity analysis that
has gained momentum in recent years is model output variance decomposition (e.g.
Ligmann-Zielinska et al. 2014), in which the importance of the parameters of a
simulation model is expressed in the amount of variation in the outcome that it
accounts for. Compared to regression metamodels, this approach can more easily
deal with nonlinearity in model behaviour, but it does not provide information about
the direction of influence, given that variance indices range from 0 to 1.3

Furthermore, some of the social systems that have been studied with agent-
based models are subject to discontinuous behaviour, in which changes in a given
parameter up to a certain level might not have any noticeable effect on model
outcomes, but increases beyond this level lead to drastic changes in the outcome.
The seminal work of Schelling (1971) provides an example of such ‘tipping’ points
in the case of residential segregation. Regression metamodels will have problems
with describing such discontinuities, yet, the fact that a regression metamodel fits
the data poorly might at least point to the existence of such discontinuity and might
aid in finding the location of the discontinuity in the parameter space.*

Finally, when interpreting the coefficients of a regression metamodel based on
coded data, it is important to keep the original scaling of the variables in mind, in
particular when we investigate an experimental region that is smaller than the full
parameter space. For example, the same linear effect for a given parameter might
appear smaller if the coded values —1 and 1 represent the values 250 and 350 in
original scaling, than when they represent 100 and 500 (Kleijnen 2008).

I aimed to acquaint the reader with some of the basic concepts of regression
metamodels. There are a number of additional topics that I could not address here.
For example, I have illustrated how regression metamodels can be used to predict
the output for parameter combinations that are located within the experimental
region. These predictions, in turn, can be used for optimization. In optimization, we
search for a parameter combination that generates output values that are particularly
high, low, or close to some predefined target. Grow and Van Bavel (2015) used this
possibility for calibrating their simulation model with empirical data. That is, they
determined a parameter combination that was most likely to generate outputs that
were close to real-life patterns of EAM across Europe. The issue of optimization
with regression metamodels is closely related to the response surface methodology,
which is a set of tools that can be used to iteratively find optimal parameter
combinations and is extensively described in Myers and Montgomery (1995).

Furthermore, I have shown how the predictive adequacy of a metamodel can
be assessed by collecting simulation outputs for parameter combinations that
were not included in the experimental design used for estimating the metamodel.
This approach might not be feasible if the simulation model is computationally
expensive; Kleijnen (2008) therefore describes a cross-validation approach that does
not require additional simulation runs. With this approach, some of observations that

31 thank an anonymous reviewer for pointing this out.
4T thank an anonymous reviewer for pointing this out.
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were used to estimate the metamodel are dropped and the model is re-estimated. The
metamodel is valid if the parameter estimates are not sensitive to such omissions.

To conclude, I believe that regression metamodels have merit for use in agent-
based computational demography. Given their simplicity, they are potentially a
good first choice for learning about the behaviour of complex simulation models.
If the simulation model turns out to produce irregular outcome behaviour, analysts
might consider employing more complex metamodels. However, given the long and
successful track record that regression metamodels have in the area of computational
simulation at large, I expect that in many cases they will provide detailed and
accurate insights into the behaviour of complex agent-based models in demographic
research.
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Chapter 8
Design and Analysis of Demographic
Simulations

Jason Hilton and Jakub Bijak

8.1 Introduction

As the many novel contributions to this volume show, Agent-Based Models
(ABMs) offer exciting possibilities for including explanatory mechanisms, such as
behavioural rules governing individual behaviour, in the analysis of demographic
phenomena. Knowledge about the abstract statistical individual (Courgeau 2012)
derived from empirical data can in this way be augmented by rule-based explana-
tions, giving demography much-needed theoretical foundations (Billari et al. 2003).

As ABMs gain more traction in demography, they will inevitably become more
sophisticated, and, as a consequence, more complicated (Grazzini and Richiardi
2013). As demographers explore the possibilities of the methodology, they may
attempt to make their agent-based simulations match reality more closely; to model
more fields of social life; to pay attention to the effect of institutions and policy; and
to enrich their models with more data to attempt to bring them in line with what is
observed (Silverman et al. 2011; Squazzoni 2012).

This progress towards greater sophistication in agent-based approaches intro-
duces additional sources of uncertainty to the modelling process, which need
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to be acknowledged (Kennedy and O’Hagan 2001). Furthermore, it creates a
need for a more considered approach to the design and analysis of agent-based
computer experiments. This chapter discusses how existing techniques from the
computational experiment literature might be fruitfully applied to overcome some of
these difficulties, and specifically focuses on the work of the Managing Uncertainty
in Complex Models community (MUCM 2011) and how it might be applied to
demographic models. In particular, three specific questions are addressed:

1. At what input values should the simulation be run?
2. How does the simulation respond to variations in inputs?
3. How can the simulation be calibrated so that it matches observed quantities?

This chapter will discuss each of these points in turn. It is argued that the first
question can be considered one of experimental design, and the use of space-filling
Latin hyper-cube sampling provides an efficient default response to this problem.
Next, the use of Gaussian Process Emulators is proposed as a way of analysing
the behaviour of ABMs. The emulation approach also provides a framework for
the calibration of such simulations. Finally some of the limitations of the approach
proposed are discussed, and a brief pointer is given to some potential extensions
to the basic approach described here that may benefit the analysis of demographic
ABMs. This chapter tackles similar issues to those discussed by Grow elsewhere in
this volume, although the presented methods are different. Our approach is rooted in
the Bayesian statistical tradition, and thus combines the analysis of different sources
of uncertainty in a joint probabilistic model, making inferences about the underlying
complex population dynamics on that basis.

8.2 Design of Computer Experiments

Epstein and Axtell’s seminal book on ‘Growing Aurtificial Societies’ (1996)
famously considered ABMs as an analogue of physical experiments for social
scientists. Modellers, they state, could grow experimental scenarios in silico,
enabling them to examine the effects of manipulating various inputs. To take
this claim seriously, and to maximise what we learn from our quasi-experiments,
borrowing from the literature on the design of experiments can be instructive.

Computational experiments differ from physical experiments in several impor-
tant respects (Santner et al. 2003). Firstly, computational experiments tend to be
cheaper, and so can be run more times and at more points. Secondly, the modeller
has complete control of the experimental conditions, and results are therefore not
subject to unobserved nuisance factors that may cloud inference. Thirdly, greater
freedom is possible in the specification of the experiments to be run. For instance,
in a simulated environment, one could re-run Galileo’s famous experiment regarding
the speed of falling objects under different gravitational conditions, which would be
extremely difficult to do in earth-bound physical experiments (Epstein and Axtell
1996).

One consequence of this freedom, however, is that simulations tend to
have a greater number of free parameters than their physical equivalents
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(Santner et al. 2003). For a given simulation run, values of each of these parameters
(inputs) must be set in order to get an output value from the simulation, and each
parameter can thus be considered as a dimension across which individual simulation
runs differ (Montgomery 2013). For two parameters, we have a two-dimensional
input space, and a single simulation run is a point in this space, with a location
defined by the values of its two parameters. Our problem is to place points (that is,
select combinations of parameters) in this space at which to run our simulation in
order to get as much information as possible about the output variable of interest,
acknowledging that for continuous inputs we can never run the simulation at all
points.

The choice of input points, or more correctly, our experimental design, depends
very much on both the number of experiments we are able to conduct, and our
assumptions about how the simulation is expected to behave (Kleijnen 2008).
Consider a one-dimensional simulation where the response of the output to changes
in the input is consistently linear. For deterministic simulations, only two points
are required to work out the slope of this linear response, and thus to have a good
estimate of the simulation for any value of the input (ibid).

ABMs, however, cannot be assumed to have simple relationships between inputs
and outputs. Because such simulations are by definition caused by the interaction
of many autonomous units, the system as a whole can be defined as complex. In
this context the word has a technical meaning, and complex systems tend to be
characterised by tipping points, non-linearities, and other such features (Mitchell
2009). This suggests we must be agnostic about the behaviour of the simulation in
question when choosing our design (see Santner et al. 2003, section 5), and often
means that a large number of runs are required to get a handle on the behaviour of
the simulation over the entire parameter space (Grimm and Railsback 2005).

An important consideration is that ABMs are almost always stochastic, in the
sense that repetitions of a simulation run at the same parameter values will give
a different outcome due to the use of pseudo-random numbers in driving various
elements of the model (Grimm and Railsback 2005). This may mean that multiple
simulation runs will need to be conducted at a single parameter combination in order
to understand the distribution of outcomes at that point (Law 2007).!

8.2.1 Factorial Designs

Let us consider an experiment, whether simulated or physical, as a mapping of some
input x to output y. We denote this mapping as a function f(.). Generally x will be
multidimensional, in that there are k parameters to the model x = {x{,x,, ... ,x;}

'In some cases, for instance, when the frequency of rare events are of interest, very large numbers
of repetitions may be required to infer about the quantities of interest. Different approaches from
those advocated here would likely be required for such problems, one of which might be to apply
the analysis and calibration methods discussed in later sections to understand the behaviour of a
different, more frequently observed output measure first, simplifying the problem of analysing the
rare event.
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and we restrict attention here to real inputs, so that X € R*. The design problem is
to choose a vector of input points D so that we can learn as much as possible about
how f(.) responds to x.

The larger the number of dimensions, the harder this problem becomes. The
instinctive response is simply to pick a set of values (levels) for each parameter,
and run the model at all combinations of these parameters. This sort of grid-based
approach is commonly used in agent-based modelling (e.g. Aparicio Diaz et al.
2011; Fent et al. 2013; Klabunde 2014), and it is a sensible default response for
simple models. However, even for relatively small numbers of levels and parameters,
this can quickly become prohibitively time consuming, unless the simulation in
question is extremely fast. For a simulation with 6 input parameters, k = 6, each
of which we want to run at 5 levels, we need a total of 5°, or 15,625 runs. If our
simulation takes only 1 min to run, this would require a total of 260 h of runtime,
or some multiple of this number if we wish to repeat observations at each point.
Of course, computing power is relatively cheap at present, and multi-processor
clusters or cloud computing resources can easily reduce this time to a few hours,
or even less. However, as ABMs begin to simulate more agents and involve more
complicated decision making, run-times are likely to increase. As a result, it is
prudent to consider more efficient experimental designs.

A grid is a particular case of a more general set of designs known as factorial
designs, which are commonly used for physical experiments (Montgomery 2013),
and have also been heavily used in conducting experiments with Operational
Research simulations such as queueing models (amongst many other types) (Klei-
jnen 2008). The nature of the factorial design chosen generally depends upon
the expected nature of the response of the simulation outputs to inputs; the most
common factorial designs assume that the relationship can be approximated by low
order polynomials and possibly two-way interactions. A full factorial design is an
analogue of the grid design discussed above; for a two-level full factorial design,
each factor (input) is considered to have two levels (values), and design points are
obtained for every possible combination of levels of the distinct factors, giving
2% points (Montgomery 2013). A two-level full factorial design assumes linear
relationship between variables, and allows for two-way interactions to be identified.
If quadratic effects are suspected, central composite designs add additional points
in the centre and at the extremities of the design space, while fractional factorial
designs can be used to reduce the number of runs required, effectively by assuming
some two-way interactions are equal to zero (ibid). The chapter by Grow elsewhere
in this volume describes the use of such designs in the context of demographic
ABMs.

8.2.2 Latin Hyper-Cube Sample Designs

The key limitation with grid designs is that when projected or ‘collapsed’ onto one
dimension, many design points are replicated, and thus wasted (Urban and Fricker
2010). To put it another way, factorial designs enforce a strong relationship between
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the number of dimensions k and the number of runs required 7, for a fixed number of
levels (Kleijnen 2008). Latin hyper-cube samples avoid these problems by ensuring
no two design points share values of any parameter, thus reducing the dependence of
n on k (Urban and Fricker 2010). The principle is simple — to create a Latin hyper-
cube sample, divide the input space equally into g sections along each axis, so that
there are gf cells in total. Then, choose g of these cells such that there is only one
cell in each section (or column) for every axis. To complete the process pick a point
randomly within each chosen cell, resulting in a sample of size n = g (Santner et al.
2003).

Latin hyper-cube samples are not guaranteed to fill the entire parameter space,
so some further criteria are needed to ensure that all parameter combinations are
explored adequately (Santner et al. 2003). Generating several candidate samples,
and picking the one with the highest minimum distance between points will in
general suffice (O’Hagan 2006). The R package 1hs has a number of functions
for producing such samples for arbitrary dimensions very easily.> These will then
need to be scaled up from the existing [0, 1] range to reflect the input ranges required
by any particular simulation.

The key advantage of Latin hyper-cube sample designs is the scaling in high
dimensions. For the example above, rather than requiring thousands of simulations
to explore a six-dimensional space, samples of around 60 points may be sufficient.
Loeppky et al. (2009), for example, investigate the relationship between sample size
and meta-model predictive adequacy, and find that the established rule of thumb
of n = 10k is generally reasonable, but that this number will vary dependent on
whether all or only some of the inputs strongly affect the output. Repetition of
simulations at individual design points may also be desirable in order to account for
stochasticity in simulation outputs. These issues are discussed in Kleijnen (2008),
Ankenman et al. (2010), and Boukouvalas (2010). Other advantages of the Latin
hyper-cube sample are discussed in Santner et al. (2003).

8.3 Analysis of Computer Experiments

Once a design has been settled on, and the simulation has been run at the design
points, the next step is the analysis of the simulation results. In high dimensions,
understanding the relationships between inputs and outputs simply from the raw
results is often difficult. The method of analysis chosen to analyse the simulation
should reflect prior expectations about its behaviour, and is closely related to the
choice of design; some methods require particular designs, and work better for
simulators with certain properties.

2Other methods of obtaining Latin hyper-cube samples are available. For instance, @Risk (www.
palisade.com/risk) is an add-on for Excel which provides this functionality, as does the statistics
and machine learning tool-kit (uk.mathworks.com/help/stats/lhsdesign.html) of the Matlab math-
ematical programming software. However, both of these are proprietary packages and not freely
available.
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ABMs, as suggested above, are generally complex, and thus may be highly non-
linear. Furthermore, given that ABMs are often built in order to explain or explore
some particular poorly-understood phenomena, we may not have any clear idea
about how we expect the simulation to behave. This suggests that analysis methods
(and designs) that make fewer assumptions and are able to capture many different
types of relationships between inputs and outputs are preferable (Santner et al.
2003).

From a statistical point of view, modellers must also ensure that they account for
the various sources of uncertainty inherent in the analysis of simulations (Kennedy
and O’Hagan 2001). Sources of such uncertainty include:

¢ Uncertainty due to simulation stochasticity. This occurs when running the
code twice at the same parameters gives different results, because of the use of
random number generation in the simulator itself. This means even if we have the
result of one trial at a point, we cannot predict with certainty the value of another
such trial. Random number generators are used to represent aleatory uncertainty
in the real world phenomena; that is, uncertainty due to inherent randomness
(O’Hagan 2006).

¢ Uncertainty about the output at new points. In a continuous parameter space,
we can never run the simulation at every conceivable point. Instead, we must
estimate at points we have yet to run, which we do with some error.

* Input uncertainty. In many cases, we do not know what the ‘correct’ value of
any given parameter is. We may, however, have a reasonable range or probability
distribution that characterises our beliefs as to where the ‘true’ value lies. This
uncertainty about inputs clouds our knowledge about outputs.

* Model discrepancy. The model is unlikely to be a perfect representation of
reality. The mechanisms simulated will differ from what takes place in the world
in appreciable but uncertain ways. Thus, our lack of knowledge about the ways
and extent to which our model is wrong is another source of uncertainty.

¢ Measurement error. Comparing simulated results to real results may add an
additional source of uncertainty, as real world quantities are subject to errors in
measurements (Kennedy and O’Hagan 2001).

The last four sources of uncertainty are largely epistemic, in that the uncertainty
is the result of our lack of knowledge about the quantities of interest (although the
last one is also partly aleatory) (O’Hagan and Oakley 2004). Failing to take these
sources of uncertainty, whether aleatory or epistemic, into account can lead to faulty
inferences (O’Hagan 2006). This can be particularly problematic if policy advice is
the goal of the simulation; representing uncertainty about the phenomena in question
is vital if potential risks are to be mitigated (Bijak 2011).

There are a number of ways in which the analysis of simulation outputs can
be approached. Firstly, a ‘brute-force’ Monte-Carlo approach can be considered.
Sampling from distributions representing the above sources of uncertainty many
times and obtaining simulation results for each sample would allow for a coherent
accounting. However, this requires a large number of replications (O’Hagan 2006),
and so has computation time implications, and thus other approaches are preferred.
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Several other approaches to the problem have been proposed. Bayesian melding
(Poole and Raftery 2000) involves reconciling prior knowledge about outputs and
inputs with observations and simulation outputs. This technique is robust in its
accounting for most sources of uncertainty, and incorporating prior knowledge, but
also requires many replications to build up posterior distributions. Sev&ikovi et al.
(2007) used this approach in a stochastic urban simulation that modelled household
behaviour with interesting results.

Finally, our preferred approach is the use statistical emulators to approximate
the simulation, so called because they emulate the behaviour of the simulation:
they are meta-models of the underlying models. Meta-models can take a variety of
forms, from regression models involving low-order polynomials, to more complex
regression tree approaches, to neural networks (Santner et al. 2003; Kleijnen 2008).
The chapter by Grow elsewhere in this volume adopts a second-order polynomial
meta-model in order to examine the sensitivity of an ABM of marriage markets to
changes in parameters. However, given our desire to make few assumptions about
the functional form of the relationship between simulator inputs and outputs, Gaus-
sian Process Emulators (often called kriging models) are our preferred approach
(Kennedy and O’Hagan 2001). The need to incorporate the many different sources
of uncertainty discussed above suggests a Bayesian framework, in which both
epistemic and aleatory uncertainties can naturally be represented as distributions,
and included in output predictions through Bayes’ rule (O’Hagan and Oakley 2004;
Oakley and O’Hagan 2004). Equivalent frequentist approaches do exist; see, for
example Kleijnen (2008), Forrester et al. (2008), and Ankenman et al. (2010).

Gaussian Process Emulators (and meta-models in general) introduce another
layer of uncertainty as they only provide an approximation of the simulator output,
but are flexible and less computationally expensive than obtaining results at all
points of interest, and also provide other benefits in terms of ease of analysis, as dis-
cussed below. However, they do require the modeller to make two main assumptions
about the simulator. Firstly, it is assumed that the relationship between inputs and
output is smooth to some degree, although the extent of this smoothness is estimated
from the data (O’Hagan 2006). Secondly, the process is assumed to be second-
order stationary over the parameter space, effectively meaning that the degree of
smoothness remains constant across the parameter space (Santner et al. 2003). These
assumptions may not always hold for ABMs, but it is argued that they are less
restrictive assumptions than are required for many other meta-models, and further,
when they fail, Gaussian Process Emulators can still give useful information about
the general behaviour of the simulation. An introduction to Gaussian Process Emu-
lators is provided below, and detailed information can be found on the website of the
research community Managing Uncertainty in Complex Models (MUCM 2011).

8.4 Gaussian Process Emulators: A Primer

Gaussian processes are extremely flexible statistical tools as they make few
assumptions about the form of the function they are used to represent. Given what
we have said about the complex and non-linear nature of agent-based simulations,
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this makes them well suited to our purpose. The underlying premise is that outputs
near to each other in the parameter space are also nearby in the output space. A
Gaussian process represents this idea by insisting that outputs at any collection of
input points are joint multivariate normal (Kennedy and O’Hagan 2001). A more
formal treatment follows.

8.4.1 General Premises

Let f(.) be the base computational model of interest. We focus on a vector of k
inputs to this simulation, x € X C RF, and a single output, y € ¥ C R, such
that y = f(x). X does not have to exhaust the whole parameter space, but rather
relate to those inputs which are considered important from the point of view of the
output studied. Following Oakley and O’Hagan (2002, p. 771) and Kennedy (2004,
p- 2), we define a Gaussian Process Emulator, conditionally on its parameters, as
a multivariate Normal distribution for N realisations of f, y; = f(x1), ... ,yv =
f(xy), denoted jointly as f (ibid):

fO)|B,0,0 ~ N[m(.), Uzc(. , )] 8.1)

A number of options are possible for the mean of the process. Often, it is chosen
to be a constant so that m(.) = By. In other contexts, it is modelled through a vector
linear regression function of x, i(x), with coefficients B, such that for every output
f(x), m(.) = h(.)T B. Throughout this chapter, we use the latter, and choose /(x) to
be a simple function of the inputs, so that m(x) = Bo + B1x1 + --- + Bixk, with k
the number of input dimensions.* The number of basis functions (in this context, the
number of additive terms) in the mean function is denoted by g, equalling one in the
case of a constant mean function and k + 1 in the simple linear regression case. The
covariance matrix is determined by correlation function c¢(.,.), which determines
how quickly nearby points become uncorrelated, and the variance parameter o,
which determines the extent of deviation from the mean function. Several forms
are possible for the function c(.,.), the most common of which is the squared
exponential or Gaussian function (Rasmussen and Williams 2006):

k
c(xi, X;) = exp { - Z w;(xip — le)z} (8.2)
I=1

The §2 parameter vector £2 = {w;, ... ,wi} is composed of roughness
parameters (or ‘correlation lengths’), which indicate how strongly the emulator

3Setting the mean function to a constant is often called ‘Ordinary Kriging’, while using a regression
model is referred to as ‘Universal Kriging” (Kleijnen 2008).
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responds to particular inputs (Kennedy and O’Hagan 2001, pp. 432-433; O’Hagan
2006). In order to incorporate any inherent simulator stochasticity into the emulator,
an additional variance term > (referred to as a nugget) can be added to the
covariance function v(X; , X;) = 0 c(x;,X;) when i = j, so that (MUCM 2011):

k
v(x;, X;) = o”exp { - Z wi(xy — xp)* ¢ + Iz T? (8.3)
=1

where I;—; is an indicator variable that equals 1 if i = j and 0 otherwise.

8.4.2 Estimation

In order to estimate the parameters of the emulator, a set of simulation data
f(D) = [f(x1), ... .f(x,)] (the training set) is required for n experimental points
D = x;, ... ,Xx,, where x € D C X (Kennedy 2004, p. 2). Conditional on this
training data and the values of the Gaussian process parameters 8,02, and £2,
the distribution of simulator outputs at new points x’ is joint multivariate normal.
Taking non-informative priors on B and o2 such that p(8, 0%) o 02, it is possible
to marginalise B and o2, obtaining a multivariate t-distribution for outputs at new
points, and the following likelihood for the roughness parameters (Andrianakis and
Challenor 2011):

p(f(D)|2) o |A|"V2HTAT HI7 (6% (8.4)

where H is the matrix of basis function generated by 4(D) and A is the correlation
matrix for the training set, defined by ¢(D, D). The values that maximise this
likelihood can then be found and can be used as ‘plug-in’ posterior mode estimates
of the values for §2 (Kennedy and O’Hagan 2001; Oakley 1999).

Given 2, conditional expressions follow for estimates of 8 and o2 (Andrianakis
and Challenor 2011):

B = HAT'H)'HTA'f(D) (8.5)
02 = ;_ZG(D) — HP)TAT\(f(D) — HP) (8.6)

n—q

Although this approach neglects the uncertainty around values of £2, it is sug-
gested that this uncertainty is not significant compared to that for other quantities.
Full details and examples can be found in Andrianakis and Challenor (2011) and on
the MUCM website (MUCM 2011).

Alternatively, full MCMC sampling approaches can be used to estimate the
posterior distributions of the unknown hyper-parameters (Gramacy 2005). Direct
maximisation of the multivariate normal likelihood for all parameters is also often
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used, particularly in machine learning contexts (Rasmussen and Williams 2006;
Boukouvalas 2010). To estimate the nugget parameter 72, following Roustant et al.
(2012, Appendix A2) we introduce an additional parameter « which determines the
proportion of the total variance v> = ¢ + 2 that is explained by the inputs. The
covariance function thus becomes (ibid):

k
v(x;, X;) = v? {a exp { — Z w; (x; — xﬂ)2
=1

+(1— a)1i=j§ (8.7)

where, as before, /;—; is an indicator variable that equals 1 if i = j and 0 otherwise.
Note that now av? = o2, while (1 — a)v? = 72. The proportion & can be estimated
by including it in the set of parameters estimated by maximising the distribution in
Eq. 8.4.

Repeated runs at each design point can help gain better estimates of «, although
the potential for doing so is limited by a desire to minimise the size of the correlation
matrix A, and thus computation time. Repeated points are treated in exactly the
same way as any others in the design; correlations between repeats will take the
maximum possible value of 1 — o (with a solitary run’s correlation with itself being
1 by definition). Using only single points can lead to difficulty in disentangling
the stochastic variance and input-related variance, and multi-modal likelihoods
can ensue (Andrianakis and Challenor 2012). However, the validation procedures
described below can help choose between competing modes. Alternatively, the
approaches of Ankenman et al. (2010) and Boukouvalas (2010) provide a more
robust method for including stochastic variance in emulators by fitting Gaussian
processes to the mean and variance separately, estimating these moments at each
point from a repeated sample.

8.4.3 Predicting New Quantities

One immediate advantage of the Gaussian process approach is that once the
parameters are estimated and the posterior distribution of the function f is obtained,
new estimates of simulator outputs are very easy to obtain, a particular advantage
if the simulation is slow to run. As discussed, the marginalisation of the o2 and
B parameters mean that the predictive distribution at any collection of points is a
multivariate T distribution with n—gq degrees of freedom. Conditional on the training
sample and the hyper-parameter estimates, the posterior mean of this distribution
for simulator outputs at the new point X is just the result of matrix multiplication
(Oakley 1999):

m*(x) = h(x)B + t(x)TA e (8.8)
where m* (x) denotes the posterior mean function; #(x) the correlation between the

new point x and the elements of the training set D; and e is the difference between
simulator outputs f(D) and the mean prediction 4(x)” 8. This allows the analyst or
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modeller to get a complete picture of the parameter space very easily. Furthermore,
the uncertainty induced by using the emulator as an estimate of the simulator is
readily evaluated as well, so this source of uncertainty is not lost (Oakley 1999):

v* (% X)) = 02c(xi. X)) — 1(x) AT 1(x;) (8.9)
+(h(x;)" — t(x) AT HYHTAT H) T (h(x)" — #(x;)"AT H) "}

where v*(x;, X;) is the posterior covariance between points Xx; and X; and H is the
matrix of basis function generated by 4(D). Whilst the variance function above is a
complicated-looking function, it is simple to evaluate as again it only requires linear
algebra.

8.4.4 Uncertainty Analysis

The emulator, once built, can also be used for an uncertainty analysis, which looks at
how much uncertainty in the output is being induced by the set of inputs X (Oakley
1999). This is particularly important in predictive, real world applications of ABMs
where we might wish our simulation to inform decision making. Some model inputs
might be based on noisy estimates from real world data, others may be given priors
that reflect our subjective assessment of their probable values (Werker and Brenner
2004). In either case, we would like to quantify this lack of knowledge by treating
these inputs as random variables with some assumed probability distributions. The
uncertainty analysis propagates this uncertainty through the emulator, and takes it
into account in providing estimates of the simulator’s mean and variance (Oakley
1999).

An orthodox Monte Carlo approach to this problem would be to repeatedly
sample from the input distributions, run the simulator at each point, and examine
the resulting distribution on the output (Saltelli et al. 2004). However, this is
computationally expensive, as many simulation runs are required to get a good
approximation of the output distribution (O’Hagan 2006). An alternative approach is
to use the fitted emulator to conduct the Monte Carlo analysis instead, as it is many
orders of magnitude faster in generating predictions (MUCM 2011). Even better,
however, is that for inputs with normally distributed priors and squared exponential
covariance functions, the work of Haylock (1997) and Oakley and O’Hagan (2004)
provides analytical expressions for the relevant integrals of the emulator output over
the input uncertainty, allowing easy computation of the posterior expectation of the
simulation output, the variance of this estimate, and the expectation of the simulator
variance.*

“Barton et al. (2014) and Xie et al. (2014) also suggest approaches whereby input uncertainty can
be propagated using meta-models in order to obtain output distributions.
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To summarise, assuming that G(.) is the distribution function of the random input
variables X, then the mean E[f(X)] and variance V = Var[f(X)] of the distribution
of output f(x) taking into account the input uncertainty are (MUCM 2011):

EIf (X)) = /X F®AG)
Varlf (X)) = EIf(X)2] — (EF ()]}
EIf (X)) = /X F®)2dG(x) (8.10)

The analytical expressions for these integrals are given in MUCM (2011).

8.4.5 Sensitivity Analysis

The purpose of a sensitivity analysis is to understand how the model output responds
to changes in inputs. Historically, these have been conducted by assessing the
change in output for small changes in input at some specified point of interest (a
local sensitivity analysis) (Saltelli et al. 2004). The partial derivatives of the function
in question approximated at this point are often used for this purpose (ibid). This
is problematic in the case where the whole input space is potentially of interest,
particularly if the model is non-linear, in which case the derivatives at one point are
not representative of the rest of the input space (Saltelli et al. 2008). Thus global
measures of model sensitivity that summarise the behaviour of the outputs across
the input space are to be preferred (ibid).

Although there are various methods for conducting a sensitivity analysis (Saltelli
et al. 2004, 2008), variance-based methods provide a way to utilise emulators to
maximise efficiency (Oakley and O’Hagan 2004). Sensitivity analysis is defined by
Saltelli et al. (2004, p. 45) as “the study of how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty
within the model input”. This definition provides a link to the uncertainty analysis
described in the previous section: a method for finding the expectation of the total
uncertainty due to inputs in our model — the variance Var{f(x)}. The sensitivity
analysis methods described below aim to partition this uncertainty between inputs
(Oakley and O’Hagan 2004).

The principal variance-based measure used in this chapter is the sensitivity
variance V,,, where w here identifies the input or collection of inputs which we are
interested in apportioning variance to MUCM (2011). This measures the reduction
in overall variance that would result from knowing the value(s) of x,, (ibid):

V, = Var{f(x)} — E{Var(f(x)|x,,)}
= Var{E(f(x)|x,)}
= E{E(f(x)|x,)*} — E{f (%)} (8.11)
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Dividing by the total variance induced by the inputs V = Var{f(x)}, obtained
from the uncertainty analysis, we get a scale-invariant sensitivity index S,, = V,,/V
(Oakley and O’Hagan 2004). When the set of inputs w contains only one input,
we obtain the main effect for that input. Reductions obtained for combinations
of inputs reflect the joint (interaction) effects (Oakley and O’Hagan 2004). All of
these sensitivity measures can be estimated through Monte-Carlo or Quasi-Monte-
Carlo sampling of the output (Sobol 2001), but the job is made considerably easier
by the use of emulators. The expectations of the conditional variances for input
subsets are given in closed form given the emulator parameters in MUCM (2011),
again assuming normal priors on the inputs and squared exponential correlation
functions.

Sensitivity analysis can be an extremely useful tool in analysing ABMs and
assessing their robustness. Firstly, just knowing which inputs are important in a
simulation and which are not is helpful in understanding the processes involved —
if a simulation is not sensitive to a given parameter, then that parameter can safely
be ignored (Grimm and Railsback 2005). Secondly, given that ABMs may require
assumptions regarding the values of some parameters due to lack of data, finding
that outputs are not that sensitive to changes in such parameters helps justify these
modelling choices (ibid). Thirdly, understanding which inputs are contributing most
to uncertainty helps target where to gather more information in order to increase
the precision with which we can estimate outputs of interest (Oakley and O’Hagan
2004).

8.5 Worked Example

Building on the work conducted in Bijak et al. (2013), we now present a brief
example of the use of emulators to examine the behaviour of a simple ABM of
partnership formation. The model in question is a re-implementation of the Wedding
Ring model of Billari et al. (2007), with the addition of demographic data for
the UK. In particular, we introduce fertility and mortality data from 1950-2011,
together with a starting population taken from UK census data (see Bijak et al. 2013,
for data sources). The model itself aims to show how aggregate age-at-marriage
patterns can be built up from the effect of social pressure on individual partner
search intensities (Billari et al. 2007).

8.5.1 Model Description

The focus of this section is on explaining the use of the emulator, but a brief
description of the model follows in order to aid understanding. A fuller exposition
can be found in Bijak et al. (2013), as well as in the original paper by Billari
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et al. (2007), and the model code is available at https://www.openabm.org/model/
3549/version/2/view. Individuals within the simulation reside on a ring and have a
number of ‘relevant others’ who form their social network. The proportion of these
others who are married enters a function that determines the radius within which an
individual searches for partners. The sigmoid shape of this function is controlled by
two parameters a and b.°> An additional parameter ‘spatial distance’, or sd controls
the distance from within which individuals can draw social network members.

We analyse here a single output quantity, the average proportion of agents
married over the course of the simulation. The results presented here differ slightly
from those presented in previous work, as a larger starting population is used,
and a Latin hyper-cube sample rather than a grid sampling design defined the set
of input points. As the output data is a proportion, transformations might have
been considered to ensure the predicted values remain bounded between [0, 1].
However, given that the output data does not approach either bound, the data was
left untransformed (Gelman et al. 2014).

8.5.2 Input Design

Firstly, a training set was obtained by generating a Latin hyper-cube sample of 200
design points, each consisting of three values, one for each simulation input. Design
points were not repeated in this case, although doing so may improve the estimation
of the o parameter. An additional 50 points were obtained for the purposes of
validating the emulator. Following the recommendations in MUCM (2011) and the
discussion in Challenor (2013), these consisted of 25 additional space filling points,
chosen to maximise distance from the existing points, and 25 points relatively
close to the original sample. Such choices increase the information gained from the
validation sample, as they better test the estimated values of both the correlation and
variance parameters (Challenor 2013). The simulation was then run at all of these
points, obtaining 200 training set input and output pairs, and a further 50 validation
pairs. Note that the Latin hyper-cube sample is generated to lie between [0, 1], and
so must be scaled for purposes of input to the simulation. First, a range of possible
input values must be specified for each parameter, representing our best guess (prior
knowledge) of what the most extreme reasonable values for these parameter might
be. Then the following transformation is applied to each Latin hyper-cube sample
point to get to the required scale:

b; = x;(high; — low;) + low; (8.12)

SIn Bijak et al. (2013) and Billari et al. (2007), the respective parameters were & and 8, however, to
avoid confusion with the emulator mean coefficients and correlation parameters, a and b are used
here.
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Table 8.1 Parameter estimates

Parameter Estimates

B = (Bo, Bas Br» Bsa) (0.707 —0.322 —0.231 0.005)
2 = (w4, Wp, Wsq) (31.090 46.153 0.368)

o? 0.00436

72 0.00018

where b; is the ith simulation input; x; the corresponding Latin hyper-cube sample
input in the range [0, 1]; and high; and low; represent the relevant range endpoints
for that input.

8.5.3 Emulator Fit

A Gaussian Process Emulator was subsequently fitted to the training data. Note
that the original [0, 1] scale input design was used in fitting the emulator, in order
to ensure the roughness parameters could be estimated accurately and compared
easily. The difference in scale must be taken into account later when interpreting
the parameters. The R Statistical Computing Language was used for all estimation
(R Development Core Team 2015), and the code used is also provided on the
website of this book.® To estimate the emulator hyper-parameters, the mode of the
joint marginal likelihood of the roughness parameters and the hyper-parameter o
(Eq. 8.4) was first found numerically using the built-in R function optim. Several
starting points were trialled to avoid a local maximum being chosen. Values of j, o2
and 72 follow given these hyper-parameters, and the full emulator is obtained. The
values of the fitted parameters are given in Table 8.1. The four B parameters refer
respectively to the intercept and the coefficients of the mean function for each of
the input dimensions. The three w parameters refer to the roughness of the Gaussian
process across each dimension; the high values for the a and b parameters indicate
that the output becomes uncorrelated (changes) quickly for small changes in the
inputs for those parameters.

8.5.4 Validation

Before we can be confident that our emulator accurately represents our simulator,
we should attempt to check its predictions against the validation dataset. Bastos
and O’Hagan (2009) propose several metrics to assess emulator validity, two of

SHankin (2005) and Roustant et al. (2012) have produced R-based toolkits to fit Gaussian processes
that have influenced the code produced for this chapter. The former only deals with deterministic
simulations, however.
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Residuals at validation points

Standardised Residual

Validation Run Number

Fig. 8.1 Plot of standardised residuals at validation points

which are reported below. Emulator predictions and variances are obtained for
the validation input points, and standardised residuals calculated by dividing the
difference between the mean emulator prediction and the observed simulation value
by the standard deviation predicted by the emulator: these are displayed in Fig. 8.1.

The standardised residuals appear to be relatively reasonable; most lie within the
range [—2,2]. The two that perform less well lie on the ‘phase transition’, which
is often difficult to accurately represent. Metrics such as standardised residuals that
consider each error independently do not take into account the correlation between
residuals implied by the Gaussian covariance structure. This can be problematic if
two output points which the emulator considers to be highly correlated have errors
in opposite directions; individually the errors may appear OK, but when considered
together they represent a mismatch between the emulator and the simulator. The
Mahalanobis distance can better represent emulator validity taking this into account,
and is calculated through the formula (Bastos and O’Hagan 2009):

MD = (yoo — EF X)) (VX)) ™' Gew — E(F(Xe))) (8.13)

where y,, indicates the outputs for the m validation points, and E(f(X,,)) and
V(f(X.y)) represent the emulator mean and variance estimates at these points,
calculated from Eqgs. 8.8 and 8.9 respectively. This value, multiplied by (n —
q)/(m(n — g — 2)), can be compared to the quantiles of an F-distribution with
m = 50 and n—q = 200—4 = 196 degrees of freedom (Bastos and O’Hagan 2009).
Small values indicate under-confident predictions, in that the predictive distributions
are too wide given the actual differences between simulator and emulator, while
high values indicate the opposite. For this emulator, the 95 % interval for the
relevant scaled F-distribution are [30.9, 74.9], and the calculated Mahalanobis
distance is 38.6, suggesting the emulator is reasonably accurate in quantifying its
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Fig. 8.2 Plot of output by a with 90 % predictive interval. Parameters b and sd held constant at
the centre of their ranges

uncertainty about unknown points. In practice, high values for Mahalanobis distance
are sometimes seen, suggesting a poorly fitting emulator that is overconfident about
its ability to represent the simulator. In such cases, outputs at more design points
could be collected in order to attempt to obtain a better fit (Bastos and O’Hagan
2009).

8.5.5 Predictions, Uncertainty, and Sensitivity Analyses

Using the fitted emulator, predictions are obtained for a range of values for the
first two parameters, using the formulas in Eqs. 8.8 and 8.9. These predictions
are displayed in Figs. 8.2 and 8.3 with the corresponding 90 % predictive intervals
resulting from uncertainty due to simulation stochasticity and emulator uncertainty.
The bivariate predictions are displayed in Fig.8.4 — the fitted emulator allows
many predictions to be generated easily for such plots. Looking at the shape of
the function, it is suspected that quite high-order polynomials would be needed to
approximate it to a reasonable degree of accuracy, in part justifying the decision to
use Gaussian Process Emulators rather than simpler meta-models.

To conduct uncertainty and sensitivity analyses, assumptions about the distribu-
tion of the inputs must be made. For convenience, we assume normal distributions
around the midpoint of the input ranges, with variances chosen to assign positive
probability over the input range but only small probabilities beyond this, so that
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Table 8.2 Sensitivity analysis

a b sd
Main effect 0.357 0.461 0.001
Interaction with a 0.176 0.001
Interaction with b 0.176 0.002
Interaction with sd 0.001 0.002

x; ~ N(0.5,0.02). In other applications, these distributions could reflect substantive
prior knowledge. In such a case, the uncertainty analysis allows us to infer how
input uncertainty feeds through to uncertainty about outputs. Given the chosen
distributions, then, the predicted mean simulator output was 0.33508, and the
variance of this estimator was close to 0. The expectation of the overall simulator
variance was 0.00874. Similarly, a sensitivity analysis is conducted using the
methods discussed in Sect.8.4.5, to examine how sensitive the simulator is to
changes in the various inputs, given the probability distributions of these inputs.
The findings are summarised in Table 8.2.

As previously reported in Bijak et al. (2013), the parameters a and b controlling
the way marriage search intensity responds to social pressure are most significant
in causing changes in outputs. The numbers in the table can be interpreted as
proportions of total output variance (excluding the stochastic variance associated
with the nugget) explained by each input or combination of inputs. The first row
refers to variance associated with each input in isolation, while the subsequent rows
refer to interactions. The figures above the diagonal may not sum to one, as a small
amount of residual variance is found in the three way interaction, and not reported.

8.6 Extensions

Emulators are most useful in more complicated situations than the simple example
described above. Most notably, emulators can assist with problems with higher-
dimensional input spaces, and when simulations take a long time to run. Further-
more, the basic framework sketched above can be extended in a number of ways.

8.6.1 Multidimensional Output

Only single-output emulators have been discussed above, but it is possible to extend
emulation output into multiple dimensions as well (Kleijnen and Mehdad 2014).
One option is simply to assume independence between simulator outputs, and
construct separate emulators for different outputs (Vernon et al. 2010), but it is
also possible to include correlation structures between different outputs (MUCM
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2011). However, an experiment by Kleijnen and Mehdad (2014) suggests that the
extra difficulty of constructing multivariate emulators does not have a pay-off in
terms of better output predictions. On the contrary, in fact, they find that multivariate
emulators tend to perform less well than multiple univariate equivalents.
Alternatively, it is possible to collapse a series of output values of the same type
into one single output with an additional input dimension. For instance, multiple
population size outputs over time can be reduced to one output by considering time
as an additional input dimension. However, this can be problematic, as by doing
so assumptions are made about the correlation structure across time that may be
inappropriate (MUCM 2011, page labelled AltMultipleOutputsApproach).

8.6.2 Probabilistic Calibration

Another promising application of emulators for demographic ABM is in the area of
calibration of simulation parameters. Two techniques for doing this are described
below, although it should be noted that calibrating a model does not guarantee that
it is correct or accurate (Oreskes et al. 1994). Rather, it merely makes statements
about likely values of inputs given the structure of the simulation. The structure of
the simulation itself still needs to be justified, either by recourse to theory or by
micro-level validation (or, if possible, both) (Rossiter et al. 2010). Full details on
the estimation are rather involved, and are not described here. Instead, the aim of
the following is to make the reader aware of what can be achieved and the possible
utility of such methods for demographic ABMs.

The idea behind calibration is that we can learn about ‘true’ values of unobserved
inputs by examining what values of these inputs result in simulation outputs that
match observations (Kennedy and O’Hagan 2001). This requires several additional
steps. Firstly, input parameters must be divided into two groups. The first are termed
‘control” or ‘location’ parameters, and these are known for every empirical data
point we collect. Examples of such parameters are physical coordinates, which are
generally known for every empirical measurement taken. In a demographic context,
age and time might be considered location parameters, but care must be taken
when modelling time in this way, as the Gaussian correlation structure may not
be appropriate in this context (MUCM 2011; Rasmussen and Williams 2006).

The other set of parameters are those to be calibrated. These are not observed
in reality, but are assumed to have true values for which we would like obtain a
probability distribution. For ABMs in demography, such parameters might govern
agents’ decision-making processes: for example, one parameter might control
aversion to risk.

Calibration proceeds by relating simulation outputs, as approximated by the
emulator, to empirical values by means of a calibration equation (Kennedy and
O’Hagan 2001):

Z(Xloc) zf(xlam 9) + d(xlac) + g(xloc) (814)
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where X, represents a point in the location parameter space, z(x) denotes the
observation of the process being simulated at x, f(x) indicates the simulator output,
¢ the observation error, and 6 the ‘true values’ of the calibration parameters. The
other element of the calibration equation is the model discrepancy term d(x;,.). This
represents the mismatch between the simulator and reality given that the simulator is
run at the ‘true’ values of the calibration parameters. This captures the idea that the
simulator is a simplification of reality and may not match observed values exactly
even if it were fully calibrated. This discrepancy function over the location inputs
is often modelled as another Gaussian process, priors for the parameters of which
must be elicited from the relevant modellers and domain specialists (Oakley 2002).

Given the above framework, the vector of simulation outputs and observations
can be modelled as a function of the emulator and discrepancy function, and MCMC
methods can be employed to obtain a probability distribution for the ‘true values’
of the calibration parameters (Kennedy and O’Hagan 2001; Qian and Wu 2008;
MUCM 2011). This further allows calibrated prediction of reality at new points,
taking into account the estimated distribution for the calibration inputs (Kennedy
and O’Hagan 2001).

8.6.3 History Matching

A related and slightly simpler approach to restricting the range of input param-
eters is history matching (Vernon et al. 2010). This technique makes use of an
‘implausibility’ metric that gives values to input points that reflects how likely these
points are to have generated the observed empirical output, given our uncertainty
about simulation outputs, model discrepancy, and measurement error (ibid). A fitted
emulator is used to calculate this quantity for a large range of possible calibration
parameter values. Formally, the implausibility is defined (ibid) as

(8.15)

) (2x) = ()
- Var(f (x)) + Var(d(x)) + Var(e(x))

Next, any values that fall beyond a reasonable cut-off point (Vernon et al. (2010)
suggest values of /(x) > 3), are rejected as implausible. This generally greatly
reduces the ‘non-implausible’ area of the input space. An additional ‘wave’ of
simulation runs from the reduced space can then be taken, and a new emulator
built. These steps can be repeated until a plausible subset of the input space is
identified. This process of iterative refocusing can act to calibrate the simulation,
although unlike in the previous step, a distribution over the calibration parameters is
not obtained. This approach seems well suited to demographic ABM applications,
as it is relatively intuitive, and it has been used to good effect in stochastic traffic
simulations (Boukouvalas et al. 2014).
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8.7 Discussion

This chapter has discussed both the design and analysis of agent-based demographic
models. By treating ABMs as computational experiments and therefore choosing
efficient designs appropriate to the complex nature of ABMs, an understanding
of the simulator’s behaviour can be obtained with relatively few runs (Urban
and Fricker 2010). The adoption of relatively simple and easily generated Latin
hyper-cube samples is recommended as a default, as is standard in much of the
numerical computation literature (Santner et al. 2003). Gaussian Process Emulators
may assist with the process of examining an agent-based demographic model,
and with assessing sensitivity to various parameters as a check of robustness,
as well as an aid to understanding. Input uncertainty can be propagated through
the emulator to understand its effect on outputs through uncertainty analysis.
Various calibration techniques enabling the provision of probability distributions
for unknown parameters may be used to perform calibrated prediction, taking into
account all possible sources of model uncertainty.

Gaussian Process Emulators have some restrictions that must be borne in mind.
Firstly, they assume that both stochastic simulation uncertainty and uncertainty
about untried inputs can be represented by Gaussian distributions, conditional on
the data and hyper-parameters (MUCM 2011). Transformations may help to address
these problems, but these make interpreting the output distribution more problematic
(ibid). Secondly, a related implication of this assumption is that the output is
smooth and not discontinuous. If a model features a very sharp discontinuity
in the parameter space, it may struggle to be fully captured by the Gaussian
Process Emulator (Gramacy 2005). As touched upon, the complex nature of ABMs
means that discontinuities may occur. However, because Gaussian processes are
constrained to lie close to the observations, they will at least show the location
of sharp changes in outputs, as can be observed from the predictive plots in
Figs. 8.2 and 8.3, even if these may be over-smoothed. Analytical expressions
for the derivatives of Gaussian processes, given in Oakley (1999), may help to
quickly identify the location of discontinuities and phase transitions, as these
will be characterised by high gradients (cf. Luke 2007). Sequential Experimental
Designs may also help understand behaviour around discontinuities. Improvement
in predictive performance in these areas may be sought by rebuilding an emulator
using an additional round of runs at locations chosen by some criteria that favour
areas with high gradients.

Another limitation is that the emulators described above assume that stochastic
variance inherent to the model is homoskedastic. This may not be a suitable
assumption for some ABMs. By following the framework set out by Kersting et al.
(2007), Boukouvalas (2010), and Ankenman et al. (2010) it is possible to relax this
assumption by using paired emulators, one representing the simulator mean and
the second the simulator variance. Additionally, Rasmussen and Williams (2006)
describe the use of different link functions that generalise the Gaussian Process
Emulator approach used in this paper in the spirit of the Generalised Linear Models
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framework (Nelder and McCullagh 1972). Use of these extensions to the base model
can further advance the utility of the emulation approach described above.

Despite the limitations discussed above, Gaussian Process Emulators allow
modellers to understand the behaviour of their simulator and the uncertainties
relating to it in an efficient and coherent manner, and provide tools for sensitivity
analysis and calibration. The balance of flexibility, uncertainty quantification and
interpretability give Gaussian processes advantages over both more flexible but
opaque models such as neural networks, as well simpler but more rigid polynomial
based meta-models — although much depends on the nature of the simulation under
study.
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Chapter 9
How to Describe Agent-Based Models
in Population Studies?

Jiirgen Groeneveld, Anna Klabunde, Michelle L. O’Brien, and André Grow

9.1 Introduction

Agent-based modelling is a powerful method to investigate fundamental research
questions that would be very hard to address by more established frameworks
such as statistical models, equation-based models or reduced-form microsimulations
(Epstein 2006). Whenever local interactions, adaptation or individual variability are
considered to be important, agent-based simulation models seem to be a very useful
addition to the methodological toolbox (Grimm 1999). Over the last years, such
factors have increasingly moved into focus of population and migration research (cf.
Courgeau et al., Chap. 2, in this volume). As a consequence, agent-based models are
increasingly employed in these areas (Aparicio Diaz et al. 2011; Billari et al. 2007;
Biondo et al. 2013; Espindola et al. 2006; Fent et al. 2013; Filho et al. 2011; Garcfia-
Diaz and Moreno-Monroy 2012; Grow and Van Bavel 2015; Hassani-Mahmooei
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and Parris 2012; Hills and Todd 2008; Klabunde 2016; Kniveton et al. 2011, 2012;
Rehm 2012; Reichlova 2005; Silveira et al. 2006; Smith 2014; Todd et al. 2005;
Walsh et al. 2013).

Despite the advantages of the method, it has been discussed in the literature that
progress and theory building in agent-based modelling has been hampered by the
ad hoc nature of many agent-based simulations and incomplete and intransparent
model descriptions (Miiller et al. 2014; Richiardi et al. 2006; Waldherr and
Wijermans 2013). Reproducibility is frequently not granted based on the published
model description, which precludes the efficient build-up of a pool of baseline
models about topics such as migration, fertility, or marriage.

To address these issues, guidelines, techniques and protocols have been
suggested to describe agent-based and individual-based models (Grimm et al.
2006, 2010; Miiller et al. 2013; Richiardi et al. 2006). The ODD (Overview,
Design, and Details) protocol is an example for such a prescriptive verbal model
description which originated in ecology (Grimm et al. 2006, 2010). Prescriptive
verbal model descriptions fulfil a range of purposes such as understanding,
communication and model comparison. The choice of the kind of model description
is purpose dependent (Miiller et al. 2014), that is, the purposes of communication
to stakeholders on the one hand and to researchers aiming at quantitative model
replication on the other hand require different kinds of model descriptions. For
policy makers, agent-based models are a promising addition to their toolkit because
of the possibility to perform policy experiments within the model. However, for the
model results to seem trustworthy to a non-modeller, it is not as much provision of
the code that matters, but a comprehensible and clear verbal model description.

It is important to understand what the current standard in model description is
and which means of communicating the model structure and processes are currently
being used in demography. This can yield best practice for future model description,
which will eventually improve acceptance and usage of agent-based models, and
possibly even the models themselves. In this chapter, we contribute to this aim
by summarizing how agent-based models for human migration and population
studies are currently described. Subsequently, we introduce the reader to the ODD
+ D protocol as suggested by Miiller et al. (2013) and illustrate its usefulness
for addressing some of the shortcomings of existing model descriptions by using
an example of one agent-based model on circular migration (Klabunde 2016). We
highlight that the use of such standardized descriptions can aid the understanding
and increase reproducibility of agent-based models by readers. We have chosen the
ODD + D (Overview, Design, Details + Decisions) protocol because the original
ODD protocol became a standard in the description of agent-based ecological
models and the ODD 4 D seemed to be a suitable extension for agent-based
models where human decisions are explicitly modelled. Both the model developer
and the first author of this paper prepared an ODD + D description based solely
on the published natural language description of the model. This exercise helped
us identify common pitfalls in model description and revealed how the published
model description could have been improved upon had the ODD + D been used in
the first place.
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The remainder of this chapter is structured as follows: in Sect. 9.2 we reflect on
the particularities of ABMs in population studies as compared to other disciplines
and the requirements concerning the model description which arise from these. In
Sect. 9.3 we review the descriptions of all agent-based models on human migration
which have been published until 2014, as well as other prominent examples of
agent-based demography models in order to identify whether a common standard
has emerged. Section 9.4 contains a description of the main features of the ODD
+ D protocol and our experiment using this protocol. We discuss our findings in
Sect. 9.5.

9.2 Requirements Concerning the Model Description for
Demographic ABMs

To make models most useful for the target audience, it is important that model
developers are specific and transparent about their modelling aims, the modelling
approach, and the efforts taken to verify and validate the simulation model
(Waldherr and Wijermans 2013). While this is true in general, we want to discuss
the requirements for the model description in population studies in more detail.
Population studies take a special place within the social sciences. Much more than
other fields of social inquiry (e.g., sociology or social psychology), population
research is data-driven and inherently empirical (Bijak et al. 2014; Morgan and
Lynch 2001; Courgeau et al., Chap. 2, in this volume). This is also reflected in the
use of agent-based modelling in this area. That is, in many areas of social research
agent-based models are mostly used for conducting abstract thought experiments
and researchers often rely on ‘stylized facts’, given a paucity of relevant data for
initializing and validating simulation models (Boreo and Squazzoni 2005). Models
in population studies, by contrast, increasingly draw on existing, large scale datasets
(e.g., census data and social surveys) to create semi-artificial populations and use
this data also for validating outcomes (e.g., Bijak et al. 2013; Grow and Van
Bavel 2015; Williams et al., Chap. 6, in this volume). The question of how much
data should be used in calibrating and validating a simulation model is therefore
often of greater importance in population studies than it is in other areas of social
inquiry (Klabunde and Willekens 2016; Silverman et al. 2011). A model description
should thus make it transparent where and which data have been used in model
development, calibration and validation.

The three main subject matters of demography are fertility, mortality and
migration because they together determine the size and composition of a population
(Courgeau and Franck 2007). However, fertility at the population level as well as
migration flows and stocks of migrants are the result of decisions at the individual
level, namely the decisions to migrate and to have a child. Mortality is indirectly
influenced by individual behaviour through decisions that have an impact on health.
Examples are the decisions to smoke or to exercise. These individual decisions are
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often difficult to model with more traditional methods than agent-based modelling,
in particular when decisions involve thresholds, if-then rules, and path-dependence
(Bonabeau 2002). The flexibility of agent-based models allows implementing
different types of decision making which have been shown to be empirically good
predictors of behaviour. Here an important distinction between demographic ABMs
and those in economics becomes evident: whereas the behavioural assumption in
economic ABMs is usually utility maximization, in line with the current paradigm
of the discipline, the variety of different decision rules in demographic ABMs is
far greater (for a recent review, see Klabunde and Willekens 2016). Because of
this variety in options to choose for modelling decision-making it is important to
dedicate sufficient attention to describing the decision-making rules and to provide
reasons why a particular rule was chosen.

Another important property of modern population studies is the recognition that
demographic phenomena are highly interdependent (Courgeau and Franck 2007;
Courgeau et al., Chap. 2, in this volume). One reason for this interdependence is
that an individual takes demographically relevant decisions not independently from
other decisions taken previously or from those planned for the future. Moreover,
individuals are influenced by other individuals, such as the members of their
own cohort or the members of the social networks they are part of. Migration
and childbearing are very prominent examples of decisions which are regularly
influenced strongly by the behaviour of others in the social network. Information
as well as social and financial capital is transmitted through migrant networks.
Migrants help new migrants and potential migrants during job search and provide
assistance when first settling in. The prospect of this financial and emotional
support decreases the perceived cost of migration and can thus convince a person
that migration is a feasible option (see e.g., Haug 2008; Munshi 2003). Many
demographic ABMs are built with the explicit aim of understanding the nature of
such social influence processes (e.g., Aparicio Diaz et al. 2011; Billari et al. 2007;
Gonzélez-Bailén and Murphy 2013). Thus, demographic ABMs must be described
in such a way that the kind of social influence modelled, e.g. whether and what kind
of social network was used, becomes clear.

9.3 Model Descriptions in Agent-Based Simulation Models
of Population Studies

As indicated above, modelling decision-making in demographic contexts with
agent-based models is a relatively new emerging field. To assess the current practice
in describing agent-based models in this context, we selected models which (i)
have been published, (ii) are located in the field of population studies and/or
migration and (iii) are clearly agent-based. We employ the concept of “agent” as
defined by Macal and North (2010): agents are discrete entities which are capable
of making autonomous decisions. They have goals, at least implicitly, and their
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behaviour is rule-based. There is some kind of explicit interaction. There are
no equations which govern the overall social structure on the macro level. This
definition is in line with many other definitions in the literature (e.g., Epstein 2006;
Tesfatsion 2006). Our focus on population studies encompasses models that centre
on demographic outcomes such as births, deaths, marriages, and migration (cf.
Demopadia 2015). Furthermore, we define migration as relocations which involve a
change of residence beyond an administrative boundary. Thus, models of residential
mobility are excluded, i.e. mobility initiated by a desire for better housing.

For a large subset of models fulfilling all three inclusion criteria in the area
of migration research (Filho et al. 2011; Biondo et al. 2013; Espindola et al.
2006; Garcia-Diaz and Moreno-Monroy 2012; Hassani-Mahmooei and Parris 2012;
Ichinose et al. 2013; Klabunde 2016; Kniveton et al. 2011, 2012; Rehm 2012;
Reichlova 2005; Silveira et al. 2006; Smith 2014; Walsh et al. 2013; Williams
et al., Chap. 6, in this volume) we review the model description (Table 9.1). To
our knowledge this selection comprises all agent-based migration models published
until 2014 and two more recent papers by two authors of this chapter. In addition,
we have included some prominent examples of agent-based population models
(Aparicio Diaz et al. 2011; Bijak et al. 2013; Billari et al. 2007; Fent et al. 2013;
Gonzélez-Bailén and Murphy 2013; Hills and Todd 2008; Noble et al. 2012; Todd
et al. 2005) that are widely cited (Table 9.2). Especially, we checked whether the
authors have provided a graphical overview of their model, whether they have
followed a specific protocol for model description, whether they have provided a
table of the used reference parameter values and/or equations to describe decision
rules, whether they have provided pseudo code or even published the complete
source code and/or additional information in (online) appendices. Graphical model
overviews, for example Unified Modelling Language (UML) charts (Rumbaugh
et al. 1999), are often helpful for illustrating the scheduling of simulation runs
and thereby can facilitate the re-implementation of a simulation model. However,
especially when the scheduling deviates from a linear flow, providing pseudo
code that details the exact order in which different procedures are executed can
facilitate understanding of the exact modelling processes. Furthermore, providing
a list with parameter values and/or equations facilitates understanding the models’
basic processes (Grimm et al. 2006).

Our survey revealed that some authors use graphical model representations
which differ strongly in style, ranging from technical UML class diagrams to
illustrative simulation snapshots. Simple diagrams are used to illustrate behavioural
assumptions, as in Kniveton et al. (2011) or Filho et al. (2011). More complicated
UML diagrams are mostly used to illustrate processes as in Hassani-Mahmooei and
Parris (2012) and Walsh et al. (2013), or as class diagrams for an overview of the
model structure as in Kniveton et al. (2011). Examples for illustrative snapshots are
found frequently, such as in Reichlova (2005), Noble et al. (2012) or Rehm (2012).
They are usually used in spatially explicit models. Snapshots can be supplemented
by illustrative components to show, for example, possible agent movements on a
grid, as illustrated in Ichinose et al. (2013). An example of an animated simulation
run can be found in Fent et al. (2013).
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In only one paper authors followed a particular protocol, namely Hassani-
Mahmoeei and Parris (2012) following the ODD protocol. Some authors provide
additional information on the web, especially the ODD (+ D) protocol, including
Klabunde (2016)! and Williams et al. (Chap. 6, in this volume).? In all other studies
authors came up with a case specific tailored model description structure. In one
paper algorithms were introduced by pseudo code (Filho et al. 2011), and four
papers (Bijak et al. 2013; Biondo et al. 2013; Klabunde 2016'; Noble et al. 2012)
provided the model code online.? One study provided an overview of decision rules
in a table together with the main reference, which worked very well in aiding the
understanding of the model (Hassani-Mahmooei and Parris 2012). Some authors
(e.g., Biondo et al. 2013; Garcia-Diaz and Moreno-Monroy 2012) provided tables
with the parameter values or ranges used as baseline for the model. Ideally, this
should be supplemented by the data sources used (if any) for determining those
parameter values or ranges. Smith (2014) does this.

However, apart from very simple models usually not all parameter values are
provided but only those considered important or meaningful by the author(s). This
becomes evident when reading the verbal description carefully, and at the latest
when trying to replicate a model. This can be problematic because the workings of
the model can depend crucially on parameters which do not carry a lot of meaning
in terms of model content, but which can alter the results dramatically. A sensitivity
analysis (for examples see Aparicio Diaz et al. 2011; Billari et al. 2007 and also
the chapters by Grow (Chap. 7) and by Hilton and Bijak (Chap. 8) in this volume)
should be performed to determine the parameters that do have a large impact on
model results (Thiele et al. 2014). If such an analysis was performed and the
reported parameters chosen based on such an analysis, the author should say so.
There may be cases where the large number of parameters does not allow for a
systematic representation and sensitivity analyses. This problem can be mitigated
if the code and all necessary files to run the model are provided in e.g. an online
appendix or on a website or repository such as OpenABM.*

We found it very helpful when equations were used to describe the decision rules,
as in Rehm (2012) or Bijak et al. (2013). Developers may find this superfluous, but in
fact they are the only unambiguous way to communicate what the agents actually do.
This can be supplemented by graphs of important functions. Smith (2014) illustrates
the nonlinear way that the migration probability is assumed to depend on rainfalls
by plotting the function.

Sometimes narratives might be helpful additions to better understand the model,
for example to narrate the actions of a specific agent in the model similar to
commenting actions of a specific actor in a sport event (Millington et al. 2012).

! At https://www.openabm.org/model/3893/version/3/view
2 At www.bit.ly/Nepal ABM

3We have not approached any of the authors for provision of the source code, which they might

provide upon request.

4www.openabm.org
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http://dx.doi.org/10.1007/978-3-319-32283-4_7
http://dx.doi.org/10.1007/978-3-319-32283-4_8
https://www.openabm.org/model/3893/version/3/view
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This allows authors to switch between the micro and the macro level of the model
and helps to better understand the origins of the model dynamics. Biondo et al.
(2013), Fent et al. (2013), Noble et al. (2012) and partly also Ichinose et al. (2013)
are examples of such a narrative approach.

From this collection of ABM models it becomes clear that inclusion of graphical
summaries of the model increases readability (see also Schwabish 2014). Further-
more comparability of models would be significantly increased if authors applied
the same or at least a similar structure of model description, which would enable the
reader to find relevant information in an efficient manner and to allow for replication.
In the next section, we discuss the ODD + D protocol as one way of describing
agent-based models in a standardized manner.

9.4 Example Application of the ODD + D Protocol

9.4.1 The ODD + D Protocol

The ODD + D is a protocol for prescriptive verbal model descriptions (full details
can be found in Miiller et al. 2013). ODD + D starts with the overview section,
which should inform the reader about the purpose (e.g., what is the main research
question that the modellers want to address with their model?), the entities (e.g.,
what types of agents are in the model?), the temporal and spatial scales (e.g., how do
simulation steps map onto real-life time?), the process overview and the scheduling
of the model (e.g., in the form of pseudo code or UML charts) in a concise manner.
The overview section is followed by the design concepts sections where the author
should report on the following ten design concepts that are ordered from general to
more detailed information:

1. ‘Theoretical and empirical background’: The aim here is to put the work into
context with existing theories, concepts and data.

2. ‘Individual decision making’: Here the author should provide details on the
decision making submodel such as the object of decision making, whether
agents are able to adapt their behaviour, or whether social norms or cultural
values play a role in the decision making process.

3. ‘Learning’: Here it should be reported whether learning is considered in the
model and briefly described.

4. ‘Sensing’: Includes the information that the agents can sense and therefore
have available for their decision making. Also information whether the sensing
process is erroneous and what costs are associated with sensing should be
provided here.

5. ‘Prediction’: In the prediction design concept the authors should briefly
describe if and what an agent can predict and in addition whether these
predictions are systematically biased.
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*

‘Interactions’: This concept reports on the kind of interactions between agents.

7. ‘Collectives’: The collectives concept reports on the potential formation of
collectives in the model.

8. ‘Heterogeneity’: Heterogeneity reports on the variability of agents, e.g. if there
are several types of agents that behave in different ways.

9. ‘Stochasticity’: Mechanistic simulation models often contain stochastic pro-
cesses. In this concept it should be reported which processes are affected by
stochastic processes.

10. ‘Observation’: Finally the author should summarize what kind of information
is collected and stored during the simulations that are used for the analysis.

Not all ten design concepts will be applicable for all models and therefore non-
applicable concepts do not have to be addressed in the individual ODD + Ds.
The main contribution of the more recent ODD + D protocol, above and beyond
the older and perhaps better-known ODD (Grimm et al. 2006), is the addition of
the ‘individual decision making’ design concept and the corresponding specific
guiding questions that help describe the assumptions underlying decisions that the
agents make. These questions are: On what assumptions is/are the agents’ decision
model(s) based? Why is/are certain decision model(s) chosen? If the decision
model is based on empirical data, where do the data come from? At which level
of aggregation were the data available? What are the subjects and objects of the
decision-making? Are multiple levels of decision making included? Do agents
pursue an explicit objective or have other success criteria? How do agents make
their decisions? Do the agents adapt their behaviour to changing endogenous and
exogenous state variables? Do social norms or cultural values play a role in the
decision-making process? Do spatial aspects play a role in the decision process? Do
temporal aspects play a role in the decision process? To which extent and how is
uncertainty included in the agents’ decision rules? As outlined above, one of the
major aspects that distinguishes demographic agent-based models from models in,
e.g., ecology or even economics is that researchers have a large pool of decision-
making theories to choose from (see Klabunde and Willekens 2016 for a discussion).
Moreover, temporal aspects are likely to play a part, since demography is often
concerned with the timing of events, such as birth or marriage. Spatial aspects may
also be important, especially in models of social influence. The results of models
often crucially depend on the assumptions made with respect to decision-making.
Therefore, in our applied example in the next section we use the ODD + D instead
of the ODD.

The ODD + D finishes with the “Details” section where information on the
initialisation of the model, the input data and submodels should be provided. The
submodels should be described in such detail that allows replication. Since the
details sections can be very long it is often feasible to include only the overview and
design concepts part in the main text and provide the details in an online appendix.
Guiding questions are provided for each entry in the ODD + D to support the user
to compile the model description (see Table 1 in Miiller et al. 2013).
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9.4.2 Applied Example

To illustrate the usefulness of protocols of prescribed verbal language descriptions
of agent-based simulation models, we have described a simulation model of circular
human migration (Klabunde 2016) following the ODD + D protocol. In particular,
we have described the model from two perspectives: from the modeller perspective
who, of course, knows her intentions, and the reader’s perspective who only had the
published material at hand (without consulting the source code). The modeller’s
version of the ODD + D can be found on the platform OpenABM at https:/
www.openabm.org/model/3893/version/3/view, along with the model code and all
files necessary to run the model.> Klabunde (2016) is a model of circular labour
migration of Mexican migrants to the US. Migration flows are largely determined
by the structure of a network evolving over time. The model can replicate the
distribution of migrants across cities in the US and the distribution of numbers of
trips of migrants and thus offers an explanation for the observed patterns.

We compared the two ODD + Ds to investigate how the non-modeller com-
prehended the model based solely on the narrative (non-ODD + D) description
provided in Klabunde (2016). We aimed to explain why the differences in com-
prehension between the modeller and reader arose. The experiment also served to
identify some pitfalls in model description in general, and with the ODD + D in
particular.

The experiment suggested that letting someone who has not originally imple-
mented the model write the model description in a formal way helps to identify
redundancies, or details that the programmer forgot to report since she may have the
perception that these details are obvious and self-explanatory. For an independent
reviewer it is sometimes easier to write a clear model description since she is not
burdened with the history of the project and the technical difficulties. Thus, in joint
projects, it might be sensible to have a person different from the programmer write
the model description. In this particular case, the modeller sometimes did not stick
to a consistent terminology in her non-ODD + D description (e.g. salary and wage).
In verbal descriptions in scientific papers it is tempting to vary the wording in order
to not have a lot of repetitions and make the text sound better. This should be
avoided, because it comes at the cost of comprehensibility of the model description
and confused the first author of this paper. Furthermore, some of the essential
procedures were not explicitly mentioned in the ODD + D of the programmer,
because technically they were subroutines of other procedures.

While using the ODD + D instead of a non-formal verbal description did
improve completeness and clarity of model description considerably, it is important
to mentally separate the meaning of different procedures and their implementation
in the code. Seemingly simple processes may require many lines of code, whereas
on the other hand there are smart algorithms and existing libraries which can render

SA working paper version of the verbal description is available at http://www.rwi-essen.de/
publikationen/ruhr-economic-papers/603/
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seemingly complicated processes lean and short. This should not influence model
description, which should be guided by logically separable processes only. In a
similar vein, in the ODD + D attributes should be assigned to the entities that they
logically belong to, which is not necessarily implemented in exactly the same way
in the code. In our example, “wage” was an attribute of firms in the code, not of
workers. However, the ODD + D description became clearer when “wage” became
an attribute of workers as well to better explain what happens in the model. This
problem can be avoided if the ODD + D is not written after the model has been
implemented, but before, as a starting point after conceptual model development and
just before implementation. Protocols such as the ODD + D serve as a check list
and the structured documentation of the model may help to organize the architecture
of the entities and the whole implementation. This is still helpful when the model
has to be adjusted after the first implementation. Updating the ODD + D will be
simple and this process will not outweigh the benefits from having the ODD + D
prior to the first implementation as a checklist and blueprint.

9.5 Discussion

We think that the ODD and the ODD + D are good starting points, however the
structure of these protocols will be part of the scientific discourse and additions
will be suggested. The current form of the ODD + D protocol will likely benefit
from some rearrangements regarding the order in which things are reported. For
example, sensing should be reported before decision making to be in line with the
order how these processes are usually implemented. Furthermore, there should be
more room given to networks; so far there is only one minor point on collective
networks. Instead, there could be more specific guiding questions about the role and
structure of the network, which would greatly improve the usability of the ODD
+ D for demographic applications. Finally, resources of the empirical information
used in the model should not exclusively be asked for in respect to decision making,
but for all empirical information used. Also, the filling in of the different sections
should not be mechanical, but should always occur with the reader in mind. The
reader cannot be expected to read the description several times, so one should make
sure that every section is entirely clear given only the previous sections. Therefore,
specific information might go into the overview section to enable the reader to fully
understand the subsequent paragraphs.

In Sect. 9.2 we identified requirements that a model description should fulfil
in particular for demographic ABMs: the description should be clear with respect
to the usage of data, the implementation of decision-making, social influence and
networks, and it should be written keeping in mind that non-modellers are not
readily able to read source code. The ODD + D is helpful in addressing most of
these special needs.

The subsection “Input Data” in the “Details” section provides room for empirical
underpinnings of the model. Additionally, we find it very helpful when authors
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provide data sources for parameters and time series in the form of overview tables.
Regarding the description of decision-making, the ODD + D protocol provides
clear and extensive guiding questions about the way decision-making was modelled
and thus fulfils this requirement. As we already pointed out above, the ODD + D
could be improved if more specific guiding questions regarding the type of network
used were included. As long as this is not the case the modeller has to remember
to do so, since “linked lives” and social influence are a feature of almost all ABMs
in population studies and their exact implementation is a crucial prerequisite for
model replication (see also Bijak et al. 2013). If a network is used, graphical
representations of the network or of stylized parts of it can aid understanding
considerably.

Finally, the ODD + D is a verbal description which nevertheless follows a
rigorous structure and is thus a good middle path for researchers who need more
information than just a quick verbal overview, but who do not want to or are not
able to read source code.

The ODD and ODD + D protocols have been criticized as being ‘overdone’
for simple ABMs (Grimm et al. 2010) and our own experience from discussions
at workshops and presentations is that researchers are often concerned that such
descriptions are too long for standard publication in journals. However, we agree
with Grimm et al. (2010) that the benefits of standardized descriptions also hold
for simple models and there is always the possibility to publish the ODD + D as
an online supplement, either on a personal webpage, or, preferably, on a platform
such as OpenABM. This way of using the ODD + D is particularly useful in the
case when several publications make use of the same model. The researcher can
then refer to the same online location of the code description, and can keep the
description in the actual paper concise. Changes to previous model versions can be
pointed out in the paper and in updated versions of the ODD + D. We suggest this
will facilitate to realize that the same model was used in several publications, which
is much more efficient than having to go through a lengthy model description in
each paper, only to realize that the model is already known. Many journals offer the
possibility to provide an online appendix as well, which allows including the ODD
+ D as an appendix to each publication associated with one particular model. Of
course the researcher should also be explicit about whether or not she is using the
same model in different publications. Additionally, authors of increasingly complex
models can use these online repositories, such as OpenABM or Github®, in order to
streamline manuscripts for publication. Online repositories may hold all equations,
graphical representations, code, and protocol for a model, while the manuscript
may discuss a few examples and highlight general processes. This allows for a
more flexible and legible text, while also providing all the information necessary
for replication.

However, detailed prescriptive verbal model description results in additional
workload. Whether this additional workload will be beneficial in contrast to well-

Shttps://github.com
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documented source code will strongly depend on the audience and their willingness
to consult source code. For example, the ODD + D protocol, especially the
overview part together with a graphical representation such as activity diagrams,
may offer an attractive tool for regulatory purposes which are not in place yet. For
formal regulation processes, such as the authorisation process of new plant protec-
tion products, the responsible panel at the European Food Safety Authority (EFSA)
published an opinion paper were they demand sufficient model documentation for
mechanistic effect models and suggest but do not prescribe the use of standard
protocols (EFSA PPR Panel 2014). For researchers, an online appendix with the
ODD + D, UML diagrams and pseudo code greatly facilitates reproducibility.
Furthermore, all parameter values used and their sources should be provided. In
essence, if models should be used by other researchers or stakeholders they have to
be trusted and made easily available. In general, the details provided in the “Details”
section of the ODD 4 D protocol cannot be too detailed. Whatever can be expressed
in a formal way should be, to ease reimplementation and to avoid confusion. Of
course the source code should be published whenever this is possible as part of
good modelling practice. We recommend writing the ODD + D description before
starting to program because it helps separate the logical model structure from the
structure of the code.

A further criticism that might be raised is that standardized descriptions are not
flexible enough and might require the addition of new sections specific to the model
at hand.” The necessity of adding such sections reduces the level of standardization
of the description but we do not think that this negates the benefits from the
standardized description of the remaining model parts. In fact, the occurrence of
such modifications in the context of demographic research might help to further
improve the standard and to tailor it to the requirements of demographic simulation
models. The explicit inclusion of decision processes in the original ODD protocol
(leading to the ODD 4 D standard) is an example of such an extension based on
existing research experience. Above, we have indicted similar extensions that might
be necessary to further enhance the usefulness of the ODD + D protocol in the
context of agent-based computational demography.

In this chapter, we have discussed the current practice in describing demographic
agent-based models and have argued that standardized descriptions — in particular
the ODD + D protocol — have the potential to help making model descriptions
more transparent and to facilitate their reimplementation. Yet, model description is
just one part of the modelling process or cycle (Schmolke et al. 2010). There are
also promising initiatives (Grimm et al. 2014; Richiardi et al. 2006) to account for
that and to provide frameworks to guide modellers beyond pure model description
through the whole modelling process including model building, implementation,
testing, simulation experiments, analysis, and validation. Discussing such compre-
hensive guidelines is out of the scope of this chapter, but we hope that our work

7We thank an anonymous reviewer for pointing this out.
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contributes to furthering the development of common standards in the description
of demographic agent-based models.
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Chapter 10
The Decision to Emigrate: A Simulation Model
Based on the Theory of Planned Behaviour

Frans Willekens

10.1 Introduction

Many people desire to emigrate but few do leave their country, resulting in relatively
low levels of international migration (e.g. Esipova et al. 2011; Bilsborrow 2012; van
Dalen and Henkens 2012; Abel and Sander 2014; Moses 2015). That observation
motivated this paper. I present a decision model that reproduces the observation. A
combination of the theory of planned behaviour (Ajzen 1985; Fishbein and Ajzen
2010) and the process character of the emigration decision offers an explanation
for the discrepancy between the desire to emigrate and emigration. To show that,
the theory of planned behaviour (TPB) is extended to a process theory of planned
behaviour and the process theory is applied to model the emigration decision. The
model is validated by assessing its ability to predict stylized facts of international
migration.

The theory of planned behaviour states that intentions predict behaviour. Inten-
tions are shaped by the subjective evaluation of the outcomes of the behaviour
(behavioural belief), the individual’s perception of normative pressures (normative
beliefs), and the individual’s perception of facilitators and obstacles that influence
the performance of the behaviour (control beliefs). Actual access to resources
moderates the effect of intention on behaviour. Fishbein developed the theory in
the 1970s as the theory of reasoned action and Ajzen extended the theory and called

F. Willekens (0<)
Netherlands Interdisciplinary Demographic Institute (NIDI), The Hague, The Netherlands
e-mail: Willekens @nidi.nl

© Springer International Publishing Switzerland 2017 257
A. Grow, J. Van Bavel (eds.), Agent-Based Modelling in Population Studies,

The Springer Series on Demographic Methods and Population Analysis 41,

DOI 10.1007/978-3-319-32283-4_10


mailto:Willekens@nidi.nl

258 F. Willekens

it the theory of planned behaviour." The theory has inspired migration researchers
for decades (e.g. de Jong and Fawcett 1981). Today one observes a growing interest
in computational models of decision making that implement the theory of planned
behaviour (see e.g. Kniveton et al. 2011, 2012; Orr et al. 2013; Willekens 2013;
Klabunde 2014; Klabunde and Willekens 2016).

The focus of the paper is on the decision to emigrate. Emigration is a relocation
of the usual residence to another country. Two features of the decision-making are
highlighted: the sequential nature of decision-making and the uncertainties involved.
The sequential nature of the decision process has two implications. First, the
decision should be modelled as a process consisting of several stages. Second, the
theory of planned behaviour should incorporate time in order to account for the
time it takes to form behavioural, normative and control beliefs. That calls for an
extension to a process theory of planned behaviour. Uncertainty is an important
factor in the decision to emigrate because many events and conditions that affect
the decision process and its outcome cannot be predicted with certainty. To properly
account for the uncertainties, the decision process should be modelled as a stochastic
process.

The model proposed in this paper is a multistage stochastic process model. In
each stage, an individual has two options. He or she may continue to the next stage
or may decide to drop out of the decision process, which implies a decision to stay
in the country. Dropout is an important part of the model and a necessary condition
to reproduce empirical regularities in emigration. Both systematic factors (e.g.
personal attributes and context) and random factors affect the decision process and
its outcome. Discrete (binary) choice models are used to account for the uncertainty.
The duration in a stage at time of continuation or dropout is random too. Possible
values of the duration are given by a probability distribution, known as waiting time
distribution. A common waiting time distribution is the exponential distribution,
which follows from the assumption that the rate of leaving a stage is constant. The
exponential distribution is used in this paper, but the normal distribution and the beta
distribution are used too. The parameters of the waiting time distribution depend on
systematic factors that may vary. In the model presented in this paper, parameters do
not vary with age as in most models of migration. The age profile of emigration is
an outcome of the model instead. The age at which an individual emigrates depends
on how long an individual stays in each of the stages of the decision process.

The proposed model is referred to as a simulation model and not an agent-based
model. The strength of the model is the operationalization of the theory of planned
behaviour into a stochastic process model of action. The emphasis is on the stages
of the process, the time in each stage, and the random factors involved. Individuals
have the capacity to act independently and make their own choices. The influence of
others on the action is through social norms and support. The social interactions that
generate norms and support are not considered explicitly. Hence, the model is not

ISee Fishbein and Ajzen (2010, p. 18 ff) for a historical perspective on the theory of reasoned
action and theory of planned behaviour.
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an agent-based model. An extension of the model to an agent-based model requires
that social norms and support emerge as outcomes of interactions between agents.
Viewing the model as a simulation model is also pragmatic. A discussion of whether
the model meets the criteria of an agent-based model would shift the attention
away from the strength of the model. The contribution of this paper to agent-based
modelling is the operationalization of an established theory of action into a model
of action that goes beyond earlier models that have used the same theory of action.
The model proposed in this paper extends earlier work by recognizing that actions
are outcomes of random (decision) processes.

In this paper, a single systematic factor is considered for illustrative purposes:
skill level. An individual has one of two skill levels: low/medium or high. The
precise definition of each skill level is not important to illustrate the model. The
cut-off point could be at completed secondary education. Individuals with not more
than completed secondary education have a low/medium skill level. A high skill
level requires a completed tertiary education. The simulation starts with a cohort of
15-year olds. The skill level at age 15 is the skill level an individual ever develops.

Some parameters of the model are derived directly from data on international
migration, more particularly from the Gallup World Poll 2005 on the desire
to emigrate. Most parameters are however plausible guesstimates; they are not
estimated from data because data do not exist. The validity of the model is
determined by its ability to reproduce stylized facts on international migration.
Three facts are singled out, two relate to the level of emigration and one to the age
pattern. The first stylized fact is the annual emigration rate, recently estimated by
Abel and Sander (2014). The second is the proportion of the world population that is
living in a country different from the country of birth. That figure is published in the
World Migration Report issued by the International Organization for Migration. The
third is the typical age profile of migration. That profile was documented extensively
in the literature (see e.g. Rogers and Castro 1981; Raymer and Rogers 2008). If the
model is a plausible description of the emigration decision process and reproduces
these facts, the model passes the test of validation.

The structure of the paper is as follows. The TPB is reviewed in Sect. 10.2.
The theory is extended into a process theory of decision-making in Sect. 10.3.
The process theory of planned behaviour has much in common with other theories
that view decision making as a process with stages. To place the process TPB in
context, Sect. 10.3 includes brief descriptions of other process theories of decision-
making. The main part of Sect. 10.3 is the multistage process model that implements
the TPB. The model is a multistate event history model. States are stages and
events are transitions between stages. In each stage of the decision process, an
individual may decide to continue to the next stage or decide to stay in the
country and hence abandon the decision process. Continuation and drop-out are
competing transitions to which the theory of competing risks apply (Marley and
Colonius 1992). The parameters of the model are based on the few observations on
international migration available, augmented by guesstimates. The data used in the
paper are presented in Sect. 10.4. The parameters of the process model are presented
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in Sect. 10.5. Section 10.6 presents the outcomes of the model and compares the
outcomes with observations on emigration. A discussion of model development and
findings is presented in Sect. 10.7.

10.2 The Theory of Planned Behaviour

The TPB was developed by Ajzen as an extension of Fishbein’s theory of reasoned
action (Fishbein and Ajzen 2010). The theory of reasoned action states that the best
predictor of behaviour is the individual’s attitude toward the behaviour along with
the social norms that influence the likelihood of performing the behaviour. The key
determinants of attitudes are the individual’s subjective expectations about salient
consequences of the behaviour. In this section, the theory is reviewed, with a focus
on emigration as the relevant behaviour.

Ajzen (1985) added perceived and actual control to the theory of reasoned action,
in order to capture the influence of perceived obstacles and constraints that might
prevent behaviour from occurring. The theory of planned behaviour is summarized
in Fig. 10.1. Three beliefs determine an intention to act, i.e. emigrate. The first is
the subjective belief that emigration is beneficial to one’s future well-being. It is the
basis for a positive attitude (ATT) towards emigration. The subjective belief may be
an outcome of a conscious calculus, but may also be a result of limited and biased
information received from others (emigrants and non-migrants). The second is the
subjective belief that significant others approve of the emigration. That normative
belief determines the subjective norm (SN). The third is the subjective belief that
one has the capabilities to remove obstacles and to make emigration a success. That
control belief determines the perceived behavioural control (PBC). ATT, SN and
PBC are predictors of the intention to perform a behaviour. The stronger ATT, SN
and PBC, the stronger the intention.

Many individuals who intend to emigrate do not leave their country because they
lack the actual capability to remove barriers and take advantage of opportunities. In
the remainder of this section, the beliefs are discussed in more detail. The discussion
is more in-depth than is required for the modelling in the next section of the paper. In
the last section of the paper, I will draw on the discussion to recommend directions
of research aimed at a theory-driven simulation model of emigration. In the theory
of planned behaviour, attitudes, subjective norms and perceived behavioural control
act independently on intentions. They do not interact.

Background factors influence the formation of beliefs, and, indirectly, intentions
and behaviour. They include personal characteristics and societal factors (Fig. 10.1).
They determine differences in behavioural, normative and control beliefs.

For illustrative purposes, one background factor is included in the model
presented in this paper: skill level. The skill level is an outcome of education and
training.

Attitudes towards emigration, subjective norms and perceived and actual
behavioural control are now discussed in more detail.
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Fig. 10.1 Schematic presentation of the theory of planned behaviour (Source: Adapted from
Fishbein and Ajzen (2010, p. 22))

(a) Attitude towards emigration

Emigration may produce several outcomes. Let i denote an outcome of emigra-
tion. Individuals associate various qualities or characteristics with an outcome, some
are good and some are bad. By associating qualities with outcomes, individuals form
a belief about the likely consequences of emigration and these beliefs determine the
attitude towards emigration. The belief that emigration results in outcome i is the
subjective probability that emigration produces outcome i. It is denoted by p;. The
strength of a belief in outcome i is expressed as a likelihood: the probability that,
according to the individual, emigration produces outcome i. The subjective value of
outcome i to an individual is denoted by e;. Beliefs and subjective values determine
the attitude towards emigration. The behavioural attitude (BA) is the sum of beliefs
that emigration produces specific benefits and costs, weighted by the subjective
values the individual attaches to these benefits and costs. It is the expected value
of emigration:

BA = leiei

The belief that emigration produces outcome i may depend on the time frame an
individual considers. In the short term, costs are likely to exceed benefits, but in
the long run, perceived benefits may outweigh costs. Townsend and Oomen (2015)
found that emigrants take short-term risks to secure long-term benefits.
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The evaluation of an outcome i depends on inborn needs and on values persons
hold, i.e. what they consider important in life. De Jong and Fawcett (1981)
distinguish eight values that influence the decision to migrate.

Behavioural beliefs are related to reasons or motives for or against emigration.
Reasons against emigration received considerably less attention than reasons in
favour of emigration (push and pull factors). Beliefs are formed as a result of
direct observation, education, word of mouth, media attention, and other factors.
Personality and emotions are background factors that influence how people go
about to form beliefs in the likelihood of particular outcomes and the valuation of
outcomes. Van Dalen et al. (2005) found that the intentions to emigrate out of Africa
are largely driven by optimism surrounding the net benefits of emigration.

In the process model presented in this paper, the effects of the factors that
determine BA are summarized in a binary score. The score summarizes effects
of many factors that influence the benefits and costs of emigration. If the value
is one, the individual develops a positive attitude towards emigration. If the value is
zero, the individual does not consider emigration to be beneficial. The model can be
extended easily if data on these factors are available. The factors may be included
in a binary logit model or a binomial logistic regression model, which produces a
BA score between 0 and 1. The rationale for using a binary score in this paper is to
specify a model that is as simple as possible and as complicated as necessary.

(b) Subjective norm with respect to emigration

A positive attitude towards emigration, i.e. a belief that emigration is beneficial,
is a necessary condition for developing an intention to emigrate. It is not a sufficient
condition, however. Many people expect to benefit from emigration but few intend
to emigrate. Individuals who consider emigration may be sensitive to group norms,
social pressure and social approval. Let i denote an important referent (individual or
institution). Important normative referent individuals for the decision to emigrate are
one’s partner, family members, and friends. A partner who supports the emigration
decision can act as an important stimulus (Van Dalen and Henkens 2012). Opinion
leaders may be important too. Ajzen (2006) provides guidelines for eliciting salient
normative referent individuals.

The influence of referent i on the individual depends on the individual’s
perception of what i wants, e.g. the normative belief, and on the individual’s
motivation to comply. The subjective norm (SN) with respect to emigration is the
sum of the subjective evaluations of different social norms regarding how to behave,
weighted by the individual’s motivation to comply:

SN = Zicini

where n; is the belief of what referent i wants and ¢; is the motivation to comply.
Subjective norms change over time. As people grow older, referents change and
individuals are more likely to comply with some social norms and reject other
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norms. Subjective norms also change because of the diffusion of values, ideas and
norms in society.

The formation of normative beliefs is a learning process and different forms of
learning contribute to it. Following Montgomery and Casterline (1996) normative
beliefs are acquired by learning from others and the influence through which some
individuals exert control over others, by virtue of their power or authority. Ajzen
and Klobas (2013) distinguish between normative beliefs based on what others say
and those based on what others do. Some societies develop a culture of emigration
(see e.g. Cohen and Sirkeci 2011; Kou and Bailey 2014). In these societies,
individual normative beliefs evolve to shared (collective) normative beliefs and
become institutionalized. The Philippines, Mongolia and Ireland developed a culture
of emigration. Some agricultural societies developed a culture of migration to
maintain farm size. Stark et al. (2009) propose the idea that a culture of migration
(programmed migration) has an evolutionary edge, i.e. that some populations might
develop a genetic disposition to migrate.

In this paper, the effects of the factors that determine SN are summarized in an SN
score between 0 and 1. If data on the determinants of SN are available, a binary logit
model or logistic regression can be used to produce an SN score between 0 and 1.

(c) Perceived control over emigration

Individuals who consider emigration beneficial and who experience the social
pressure to emigrate will not develop an intention to emigrate unless they believe
that they have the resources to remove the obstacles to emigration and to make
emigration a success. The perceived behavioural control (PBC) is the extent to
which people believe that they are capable of performing a given action. It takes into
account the availability of skills, opportunities, constraints and resources required
to perform the action. The concept is closely related to Bandura’s (1977) concept
of self-efficacy and the sociological concept of agency. Ajzen (2002) indicates
that PBC can be viewed as the combined influence of two components: self-
efficacy (a person’s judgment about being able to perform a particular action) and
controllability (the extent to which the performance of the action is up to the
actor) (see also Fishbein and Ajzen 2010, pp. 165 ff). Self-efficacy depends on
available resources and the belief that barriers can be removed, while controllability
depends on the presence of obstacles. Resources include financial means, but
also human capital, social capital and cultural capital. Obstacles include distance
(physical and cultural distance), institutional barriers (visa requirements, lack of
portability of pensions and health insurance, lack of recognition of professional
qualifications, etc.) and cultural barriers (differences in language, religion, etc.).
Belot and Ederveen (2012) consider cultural barriers and their effect on migration
between OECD countries. They find that cultural barriers do a much better job
in explaining the pattern of migration flows between developed countries than
traditional economic variables such as income and unemployment differentials.
Adsera and Pytlikoa (2012) study the role of language differences and language
diversity in shaping international migration. They develop an indicator of language
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distance and find that migration rates increase with linguistic proximity. People who
lack the necessary language skills are less likely to emigrate. Isphording and Otten
(2014) develop measures of linguistic distance to study the impact of linguistic
distance on language acquisition of immigrants. The lower the distance, the easier
it is for immigrants to acquire the language of the destination country.

Let i represent a control factor that facilitates or inhibits emigration and let o;
denote the power of control factor i to facilitate or inhibit emigration. The control
belief ¢g; is the subjective probability or belief that control factor i is present. The
perceived behavioural control (PBC) is the sum of control beliefs, weighted by their
perceived power:

PBC = Ziq,‘O,‘

Consider an example. To an individual who considers emigration beneficial, visa
and residence permit are control factors. If an individual does not want to emigrate
unless he or she has a valid visa and does not want to emigrate to a country unless he
or she has a valid residence permit, then o; is large. If an individual intends to enter
a country illegally (without a visa) or intends to overstay a tourist visa (without a
residence permit), the factor is not important, i.e. o; is low. The perceived control
over visa requirement and residence permit depends on the individual’s subjective
belief that he/she will get it, which is denoted by g;.

In this paper, the perceived behavioural control is summarized in a PBC score
that can be negative or positive. A logit model is used to convert the score to a value
between 0 and 1.

(d) Actual control over emigration

Emigration intentions are good predictors of emigration if perceived behavioural
control is matched by actual behavioural control (ABC). Whether intentions predict
behaviour depends in part on factors beyond the individual’s control (Ajzen 2011).
People who overstate their capabilities to overcome barriers and to take advantage
of opportunities and facilitators of migration are likely to remain in the intention
stage. A necessary condition for intentions to predict actions is that individuals have
actual control over their behaviour, i.e. they are able to behave as intended. Using
longitudinal data on individuals in the Netherlands who expressed an intention
to emigrate, Van Dalen and Henkens (2013) found that emigration intention is a
good predictor of emigration. About one third (34 %) of respondents who stated
an intention to emigrate actually emigrated within a 5-year follow-up period. De
Groot et al. (2011) found, in a study of residential mobility, that people with a
strong intention to move are almost four times as likely to move than people with a
less strong intention to move. De Jong (1994) reviewed several studies on internal
migration in different countries and found that people who intend to migrate are
three to four times as likely to migrate in a specified time frame than people
who intend to stay. If intentions predict behaviour, we have an effective prediction
method. Intentions are often not good predictors, however. De Jong (1994) gives
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several reasons for the inconsistencies between intentions and behaviour. The
difference between perceived and actual control is one factor. Another is the
insufficient detail in measuring intentions in a survey, a reason for inconsistency
also stressed by Ajzen (2011). A third reason is changing intentions. If the interval
between measurement of intentions and recording of behaviour is large, intentions
may have changed. Intentions and behaviour should therefore be measured in a
relatively narrow period of time (see also Ajzen 2011).

The theory of planned behaviour indicates that the reason for a weak performance
of intentions as predictors of behaviour is the discrepancy between perceived
behavioural control and actual behavioural control. The difference is expected to be
smaller when PBC is measured closer to emigration. The closer to the emigration,
the more accurate an individual’s perception of self-efficacy, barriers, resources and
support is likely to be (Sheeran et al. 2003). Ajzen uses PBC as a proxy measure
for actual behavioural control, and notes that it can substitute for control when an
individual’s perceptions are realistic (for a discussion, see Darnton 2008).

In this paper, the ABC score is the PBC score plus a random factor. The random
factor measures the uncertainty individuals with a given PBC score have about the
actual resources they need to be able to emigrate.

10.3 The Process Theory of Planned Behaviour

In this section the theory of planned behaviour is extended to a process theory of
decision making. A process theory of decision making emphasizes the temporal
dimension and stresses that decision making involves a progression through a
number of stages. A number of process theories of human decision making exist.
Two theories are briefly reviewed. The process theory of planned behaviour is
presented next. In the process theory of planned behaviour, attitudes, intentions and
behaviour are treated as stages of a decision process. The theory is operationalized
in a stochastic process model with several stages and transitions between the stages.
Stages do not need to follow a fixed sequence. For instance, if an individual
considers emigration because significant others expect him or her to emigrate (e.g.
to follow an education, to get a job, or to join a partner for marriage), then SN
triggers the interest in emigration. In this paper, I consider a fixed sequence.

10.3.1 Process Theories of Decision Making: A Brief Review

The two process theories reviewed are the Rubicon model and the ‘horse race’
model. Process theories not covered include Janis and Mann (1977), the transtheo-
retical model of action (Prochaska et al. 1992) and the dynamic model of job search
(McCall 1970).
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Heckhausen (1991) presents a phase model of action, known as the Rubicon
model. It originated in developmental psychology. The model postulates that
individuals pursue development goals to produce the life course they want and
mobilize cognitive and other resources to achieve the goals. Developmental goals
are anticipated end states. They motivate an individual to act in a particular way. The
process of action consists of several stages. It begins with the awakening of a wish to
achieve a goal and ends after the goal has been accomplished. The initial Rubicon
model (Heckhausen 1991) distinguishes four phases: the predecisional phase, the
postdecisional but pro-actional phase, the actional phase and the postactional phase.
Transitions between the phases are discrete shifts rather than gradual changes (hence
the reference to Rubicon). Later the Rubicon model was extended to a theory of
motivation that covers the entire life span (Heckhausen et al. 2010; Heckhausen
and Heckhausen 2010). Kley (2011) adopted the Rubicon model to study the
migration decision process. Coulter (2013) used Kley’s process model to study the
abandonment of desires to relocate in the context of residential mobility. He is one
of the few authors who stress the need to study the decision to stay, which is the
abandonment of the desire to relocate. Abandonment is as much an expression of
agency as the decision to move. Kéu and Bailey (2014), in a study of the emigration
of highly skilled Indians to the Netherlands and the UK, embed the phase model of
action in the life course and show how individuals and families mobilize different
types of resources and access different networks to assure that emigration produces
the desired outcome.

The ‘horse race’ model is an offspring of random utility theory. Random utility
models account for the stochastic variability underlying choices due to differences
between individuals, between the object of choice, and changes in choice situation.
The random utility discrete choice model predicts the probability of a choice
between a limited number of alternatives. It does not consider the time it takes to
reach a decision and it gives no insight into the cognitive process that underlies
decision making. Marley and Colonius (1992) extended the random utility model
by including the time individuals take to accumulate and process evidence in favour
of an alternative. The time, known as response time, deliberation time and decision
time, is random and follows a response time distribution, which is a waiting time
distribution. The factors that influence the choice affect the choice probability as
well as the time it takes to make a decision. The evidence accumulation model
is a simple description of the cognitive process that underlies decision-making. In
psychology, there is considerable support for the thesis that evidence accumulation
drives decision making (see e.g. Rodriguez et al. 2014; Usher et al. 2013). A
particularly useful observation, made by Marley and Colonius (1992) is the relation
between the evidence accumulation model and the theory of competing risks. The
challenge is to determine the joint likelihood of a decision (deliberation choice)
and the time it takes to make a decision (deliberation time) (see also Colonius
2001; Hawkins et al. 2014). Some decisions are taken quickly, while other decisions
take a lot of deliberation, which requires time (Kahneman 2011). For a brief and
general overview of models that account for effects of deliberation times on choice
probabilities, see Busemeyer and Rieskamp (2014). Early attempts to extend the
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discrete choice model to integrate choice probabilities and waiting times to the
decision/action include Pudney (1989) in economics. The model Pudney proposed is
a competing risk model too. The competing risk model and the theory of competing
risks have untapped potential in choice modelling.

Hybrid choice models (Ben-Akiva et al. 2002, 2012) are extensions of discrete
choice models. They introduce elements of social psychology in economic choice
models.

The above process theories distinguish several stages or phases in the process
of decision making. They originated in different disciplines and therefore seem to
differ considerably. They have important elements in common, however. First, time
is explicit and time matters. Second, stages are similar. Successive stages imply an
increased commitment to the intended action. Third, the benefit or utility of the
action is uncertain. Hence decisions are made under uncertainty. Fourth, valuations
of alternatives are subjective. They depend on inborn characteristics and one’s
values, preferences and goals. They also depend on the incomplete information
available to the individual at a point in time. Fifth, process theories seem to be
converging to a transdisciplinary theory of action; they increasingly incorporate
elements of other theories and disciplines. Several of the elements are also included
in the process model of planned behaviour, presented in the next section.

10.3.2 Process Model of Planned Behaviour

The process model originates from the theory of planned behaviour and has features
in common with process models reviewed in Sect. 10.3.1, in particular the ‘horse
race’ random utility model, the rubicon model and the transtheoretical model
of action. To be consistent with the theory of planned behaviour, the process
model should distinguish at least four stages. A person in the first stage never
considered emigration. The person leaves the state when he/she develops an interest
in emigration as a viable option or decides that emigration is not a viable option.
In the second stage, the person develops behavioural beliefs, normative beliefs
and control beliefs. These beliefs determine ATT, SN and PBC. ATT, SN and
PBC determine the intention to emigrate. Attitude (ATT) is a latent disposition
or tendency to favour or disfavour an action (Fishbein and Ajzen 2010, p. 76).
Fishbein and Ajzen use the term attitude to refer to the evaluation of a behaviour
along a dimension of favour or disfavour, good or bad, like or dislike, approval
or disapproval, advantageous or disadvantageous. A person who has developed an
intention to emigrate moves to the next stage and starts planning and preparation.
During this stage, the person needs to mobilize resources, to overcome barriers and
to take advantage of opportunities that may arise. Planning and preparation will be
successful if the person is capable of dealing adequately with control factors. In case
the actual behavioural control is deficient, the person is likely to stay. Persons who
leave the country enter the fourth and final stage of the decision process. The first
stage is denoted by ‘n’; the second stage by ‘a’, the third stage by ‘i’ and the fourth
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Fig. 10.2 Stages of the emigration decision: the process theory of planned behaviour

stage by ‘e’. The model is shown in Fig. 10.2. The model is programmed in R. The
source code is available from the author.

In the second stage, ATT, SN and PBC may act independently on intention
or they may interact. In the theory of planned behaviour, ATT, SN and PBC are
independent. Ajzen recognizes the possibility that PBC moderates the effect of ATT
and SN on intention, but that interaction effect is not a formal part of the TPB
(Ajzen 2002; Fishbein and Ajzen 2010, p. 181). The reason Ajzen has given is that
being capable of performing an action does not imply an intention to perform that
action. In the literature, PBC interactions did not receive much attention because,
in statistical models, the interaction is often not significant. Yser (2012) argues that
the limited attention to PBC interactions is a missed opportunity for advancing our
understanding of intention formation (for a discussion, see Boudewyns 2013). Fife-
Schaw et al. (2007) study the moderating effect of SN on the effect of ATT on
intention. In the process model proposed in this paper, SN and PBC are intervening
factors in the transition from attitude to intention. They moderate the effects of
attitude on intention, i.e. a positive attitude leads to an intention only if the SN
and the PBC are supportive (positive). An individual who considers emigration
beneficial may or may not develop an intention to emigrate depending on (1)
the perceptions of what significant others want and (2) the perceived available
resources.

Individuals in a given stage may be thought of as collecting information and
accumulating evidence to make a decision whether to continue the emigration
decision process or to drop out and to stay in the country (at least for the foreseeable
future). The time it takes to reach a decision depends on (a) the stage in the
decision process, and (b) individual attributes including personality traits, and
contextual (societal) factors. Continuation and discontinuation (dropout, attrition)
are competing risks. They compete to be the reason for exit from the current stage.
Simple rules govern the choice. Exceeding a threshold, as in the ‘horse race’ model
is one such rule. A similar rule is used in the process model of the TPB (see below).

The decision process depends on personal attributes. In this paper, I consider a
single attribute: skill level. As stated in the introduction, the precise definition of
each skill level is not important to illustrate the model. Skill levels are assigned to
individuals. Since we have no data on skill levels, a random draw from a theoretical
probability distribution determines the skill level of an individual.
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Skill level is a binary variable, because it has two possible values: low/medium
and high. A low or medium skill level is coded O and a high skill level is 1.
The theoretical probability distribution with two possible values is the Bernoulli
distribution. For each individual in the virtual population, a random number is drawn
from a Bernoulli distribution. The distribution has a single parameter p (usually
denoted as probability of success). Random draws from a Bernoulli distribution
produce 0’s and 1’s. If the number is 0, the individual is allocated a low/medium
skill level. If it is 1, the skill level is high. When the virtual population is sufficiently
large, the proportion of highly skilled is equal to the theoretical value p.

In the process model of the TPB presented in this paper, the probability that
an individual develops an interest in emigration, i.e. considers emigration, is a
parameter of the model. The age at which an individual considers emigration as
a viable option and effectively starts the emigration decision process is the age at
which he or she starts assessing the benefits and costs of emigration. The age at
which an individual enters the assessment stage is a random variable denoted by
X,, the age at transition from stage n to stage a. The possible values of X, and the
likelihood of each of the possible values are described by a probability distribution.
If data are available on ages at which individuals start reflecting on the advantages
and disadvantages of emigration, the distribution can be determined empirically
and the data should be used. In the absence of empirical evidence, the ages
may be inferred from a theoretical distribution. The distribution of ages at which
individuals consider emigration is essentially a waiting time distribution. Waiting
time distributions are common in survival analysis and event history analysis (see
e.g. Steele 2005; Aalen et al. 2008). They play a central role in the process model
of planned behaviour.

The waiting time distribution is a probability distribution and, as any other
probability distribution, it has three related specifications. The probability density
function gives the probability that a transition occurs at a given exact age. The
distribution function gives the probability that a transition occurs before a given
age. The survival function gives the probability that a transition does not occur
before a given age. Several waiting time distributions are documented in the
literature. The normal distribution and the logistic distribution are among them. The
probability densities of these distributions are symmetric. The normal distribution
is often justified as a limit of sums, including sums of waiting times (Central Limit
Theorem). For instance, if an individual accumulates several pieces of evidence
to determine the costs and benefits of emigration, and the accumulation of each
piece of evidence takes time, then the sum of the distributions of the durations
approximates a normal distribution. In the stochastic process model presented in
this paper, it is assumed that the age (X,,) at which individuals consider emigration,
i.e. develop an interest in emigration, and effectively start the emigration decision
process follows a truncated normal distribution (Burkardt 2014; Pudney 1989,
pp. 302 ff). A truncated distribution is used to prevent that individuals at very young
age or even negative age are selected. The age distribution implies that the rate of
exit from the first stage (never considered emigration — n) and entry into the second
stage (assessment — a) increases with age.
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Individuals in the second stage develop beliefs leading to ATT, SN and PBC.
First, consider the development of behavioural beliefs and an attitude towards
emigration. It takes time to accumulate evidence to determine whether emigration
is beneficial. That time, which will be denoted by 7,4+ is a random variable
with possible values described by a waiting time distribution. I assume a simple
exponential waiting time distribution, which implies a constant exit rate (by skill
level). A constant rate for individuals with similar skill levels does not mean that
the rate at which individuals complete the assessment of the benefits and costs of
emigration is constant. The rate may decline because of selection. If individuals with
skill level A accumulate evidence faster or need less evidence than individuals with
skill level B, then the share of people with skill level B increases in the population
at risk and the average rate of completing the assessment declines with time. In
the process model presented in this paper, the time a given individual k takes to
determine whether emigration has a net benefit is obtained by a random draw from
an exponential waiting time distribution with constant rate.

The direction of exit (continuation or abandonment of decision process) depends
on the probability that the benefits of emigration exceeds the costs. In the model
presented in this paper, the probability is fixed exogenously. The benefit of
emigration does not depend on cost-benefit calculations. Klabunde (2014) presents
a model in which the benefit of emigration depends on the expected future income
and the benefit derived from family reunification.

If emigration is perceived as beneficial, beliefs are developed about social
pressure to emigrate or stay and about the availability of resources. The age at which
the formation of these beliefs starts is the sum of the age at which the individual
first considers emigration and the time it takes to determine whether emigration is
beneficial. The likelihood that an individual continues to the intention stage depends
on the outcome of that belief formation and the strength of the perceived behavioural
control (PBC) and the subjective norm (SN).> The time it takes to proceed to the
intention stage depends on PBC and SN too. Individuals with a strong belief in
their resources, strong normative belief and a strong motivation to comply, and
individuals with a strong belief in the absence of resources and with a strong
normative belief that he/she should not emigrate need less time to determine whether
they intend to emigrate or stay than individuals with moderate levels of resources
and normative beliefs. An individual with a high degree of self-efficacy, i.e. who
believes that he or she is able to mobilize resources and remove barriers, is more
likely to develop an intention sooner than individuals who doubt about their ability
to mobilize resources and support. Individuals with a strong SN to stay or a weak
SN to emigrate, and individuals with low PBC are not likely to develop an intention
to emigrate. They are more likely to abandon the decision process, and to abandon
it sooner the weaker the SN and the lower the PBC. Similarly to the ‘horse race’

2Recall that this perspective differs from that in the theory of planned behaviour. In the TPB,
attitude (considering emigration beneficial), SN and PBC act independently on intentions; the
effect of attitude on intention is not moderated by SN and PBC.
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model, the process model of planned behaviour distinguishes between likelihood of
ever developing an intention to emigrate and the timing of that intention.

Suppose we record, for each individual considering emigration beneficial, the
skill level and whether and when that individual develops an intention or decides
to discontinue the decision process. Suppose we also have SN and PBC scores. In
empirical studies, SN is usually measured on a 7-point scale from I should not to 1
should. PBC is usually measured on a 7-point scale from no control and full control.
For this paper on international migration, I have no data on skill level and SN and
PBC values. The distribution of skill level in the population and the distribution of
SN and PBC scores by skill level are generated by random draws from theoretical
distributions. In other words, each individual is given a skill level and a SN and
PBC value by drawing a random number from probability distributions. I assume
that SN is a continuous random variable with few people having a very low SN,
the majority having a relatively low to medium SN and a sizable minority having
a high SN. The beta distribution is used because it is a flexible distribution, which
can produce different shapes. The distribution is defined on the interval from O to 1,
with O representing the complete absence of a subjective norm and 1 a very strong
subjective norm and a high willingness to comply. The beta distribution has two
positive shape parameters and is able to describe different shapes. The distribution of
PBC scores in the population follows a normal distribution, with mean and variance
that vary by skill level. PBC scores can be large positive and negative values. These
values are transformed to values between 0 and 1 using the cumulative distribution
of PBC values.

In principle, the distributions of SN and PBC in the population depend on several
factors. The SN score may depend on the presence of emigrants in one’s social
network and on the level of remittances received from these emigrants. The PBC
score may depend on the presence of opportunities (e.g. job offer; admission to
college) and barriers (e.g. border enforcement, cost of emigration), and on one’s
assessment of his or her access to resources to take advantage of opportunities
and remove barriers. These factors are not explicit in this paper. For a model that
incorporates these factors explicitly, see Klabunde (2014).

Individuals with very high SN and PBC are likely to develop an intention to
emigrate soon after they consider emigration beneficial. Individuals with a desire to
emigrate but with very low SN and PBC scores are likely to drop out of the decision
process and to drop out soon after developing a desire to emigrate. Individuals with
low (high) SN and low (high) PBC or with average values of SN and PBC take
more (less) time to decide whether to intend to emigrate or to abandon the decision
process. These are the persons who doubt about social support and financial and
other resources. SN and PBC scores determine the probability of choice and the
time it takes to make a choice, as in the accumulation model.

The effects of SN and PBC are combined into a single score to determine their
effect on the intention to emigrate. The effects are assumed to be multiplicative,
not additive as in the original theory of planned behaviour. A very low level of
either SN or PBC results in a low score. To obtain a high score, both SN and PBC
should be high. The score is a value between 0 and 1. SN and PBC may be weighted
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differently in computing the score. In a society where self-reliance is valued highly,
PBC receives a high weight. In societies where conformity is valued highly, SN
receives a high weight. A Cobb-Douglas utility function incorporates these desired
features (Pindyck and Rubinfeld 2013). The function is

V (SN, PBC) = ySN*PBC* (10.1)

where V is the score and o, § and y are parameters to be fixed in simulation. V is
arandom variable because SN and PBC are random variables. The parameter y is a
scaling factor. The score an individual receives depends on his or her SN and PBC
levels. The parameters o and § are elasticities, with « the percentage increase in
score V resulting from a 1 % increase in SN and § is the percentage increase in V
resulting from a 1 % increase in PBC. The model Kniveton et al. (2012) developed is
a special case of the Cobb-Douglas score model. If =f=1 and y is the proportion
of individuals that believe they can mobilize resources and remove barriers, then the
model is that of Kniveton et al. (2012).

The effect of skill level (and other covariates) on V is indirect. The skill level of
an individual influences the SN and PBC scores. Some latent characteristics may
influence the score directly. To accommodate that effect, a random effect is added
to V. Addition of a random factor results in a model similar to the random utility
model, used in discrete choice models (see e.g. Hess and Daly 2014). I do not
use discrete choice theory in the model, although one could approach the choice
between developing an intention to emigrate and discontinuation of the decision
process as a binary choice with a random utility affecting V. In the current version of
the model, an individual develops an intention to emigrate if his/her score V is equal
to or exceeds a threshold value to be estimated from data or fixed in the simulation.
Let Vy denote the threshold value and V; the score of individual k. If V is less
than the threshold value, individual k drops out of the decision process. Hence,
individual k’s intention to emigrate is 1 if V; > Vi and 0 if V; < V. The threshold
value determines the proportion of people with a desire to emigrate that develops
an intention to emigrate. Because the distribution of V in the sample population is
known, the proportion developing an intention changes when Vg changes. If the
threshold value is not known, but the proportion of people with a desire to emigrate
that develops an intention (Pg) is observed empirically or fixed in simulation, then
Vy is the value of V for which P (V > Vi) = Py. It is a quantile of the distribution
of V.

In the model, an individual develops an intention to emigrate if his/her V score is
equal to or exceeds a threshold value Vy. The threshold value is determined by the
exogenously given proportion developing an intention. Klabunde (2014) follows a
different approach. Instead of V, she uses an intention score that varies from minus
infinity to infinity. A linear model relates a person’s migration intention score to
SN and PBC scores. The intention score is transformed to a probability, using the
logistic distribution (logit model). A random draw from U[0,1] determines whether
an individual moves to the next decision stage.
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The time it takes to develop normative and control beliefs and SN and PBC is a
random variable, which will be denoted by 7. The possible values are given by a
waiting time distribution. The value of 7, depends on V and, indirectly on SN and
PBC. Small and large values of V result in small waiting times and values of V close
to the median value produce large waiting times. The following function is used to
derive the waiting time from the value of V:

T,+ = —01n[abs (V — median(V))] (10.2)

where median(V) is the median of all values of V in the population, abs() denotes
the absolute value and 6 is a scaling factor to be estimated from data or fixed
in simulation. The factor determines the location of the waiting time distribution
on the time axis. The time an individual needs to develop normative and control
beliefs and SN and PBC is a realization of 7,+. In the model presented in this
paper, the distribution of 7, does not follow a theoretical distribution. Hence,
the ‘empirical’ distribution, which is the distribution in the virtual population,
is used. The waiting time is equal to 6 if 1 = —In[abs(V — median(V))] or
exp (—1) = abs[V — median(V)]. In Klabunde (2014), the distribution of T, is
an exponential distribution, with the rate of transition from the attitude stage to the
intention stage depending on the intention score.

The waiting time between developing an interest in emigration and developing
an intention or drop-out is the time it takes to develop normative and control beliefs
(T,,) plus the time it takes to develop an intention (7).

Ty =Ty + 1Ty,

The probability that an individual develops an intention to emigrate is determined
by the probability of considering emigration, the probability that an individual who
considers emigration considers emigration beneficial, and the probability that an
individual who considers emigration beneficial has sufficiently high levels of SN and
PBC. The age at which an individual develops an intention to emigrate is determined
by the age at considering emigration and the time it takes to assess the benefits and
costs of emigration and to develop normative and control beliefs and SN and PBC.
It is equal to: X; = X, + T,, + T,;, with X; the age at developing an intention
to emigrate (transition from v to 7). The age X; in the (virtual) population is the
sum of three random variables, X,, T,, and T,;. The distribution of that sum is a
convolution of three distributions. The distribution of X,, is a normal distribution and
the distribution of 7, is an exponential distribution. The distribution of 7,; does not
follow a theoretical distribution. The probability that an individual of a given age did
not yet develop an intention to emigrate is the empirical survival function of X;. The
non-parametric method (Kaplan-Meier estimator) is used to estimate the empirical
survival function. The probability density of X; gives the distribution of ages at
which individuals develop an intention to emigrate. The (cumulative) distribution
function of X; gives the probability of having developed an intention at a given age,
i.e. the probability of being in the intention stage.
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The rate of transition from the assessment stage to the intention stage is derived
from the empirical survival function and its Kaplan-Meier estimator. The rate may
also be estimated using the Cox model. In this paper, the Cox model with skill level
as stratification variable is used to estimate the cumulative hazard rate of transition
into the intention stage, by age. Using skill level as a stratification variable results in
two baseline hazard curves, one for the low/medium-skilled and one for the highly
skilled. Note that the transition rates vary with age as a consequence of the effects
of SN and PBC.

An individual with an interest in emigration but who drops out of an emigration
decision process may develop an interest later again. That implies a transition from
a later stage in the decision process to an earlier stage. In this paper, I disregard
such transitions. Those who abandon the process are removed from the population
at risk of emigration. A transition to an earlier stage may be incorporated easily in a
multistate model of the decision process, of which the Markov decision process is a
well known example (e.g. Guo and Hernandez-Lerma 2009).?

Individuals who develop an intention to emigrate move to the next stage of the
decision process: planning and preparation. During the planning and preparation
stage, some individuals abandon the decision process and stay. Others complete the
planning and preparation, and emigrate. Emigration and drop-out of the decision
process (stay) are competing risks. The outcome of the decision depends on the
actual behavioural control (ABC). Individuals with adequate ABC are likely to
leave. Those without adequate financial, human, social and cultural resources and
those who do not get the necessary permits are likely to stay. In the model, ABC is
PBC plus a random factor. If the random factor is negative, the actual behavioural
control is less than the perceived behavioural control. Some individuals may also
have an ABC score that exceeds the PBC score. The random factor is drawn
from a uniform distribution. The minimum and maximum values of the uniform
distribution determine the largest differences between ABC and PBC. The ABC
score is expressed as a figure between 0 and 1, with 0 a complete absence of any
actual control over resources and support and 1 unlimited supply of resources.
Individuals with high ABC will almost certainly emigrate and individuals with
low ABC are highly unlikely to perform the intended behaviour. They end the
decision process. The duration in the intention stage at time of exit (emigration
or dropout) is a random variable. The possible values follow an exponential waiting
time distribution with a single parameter; namely, the exit rate from the intention

3The Markov decision process is an analytical tool for sequential decision making under
uncertainty. A Markov decision process generalizes a continuous-time Markov process in that a
decision process is embedded in a Markov model and the process involves a sequence of actions
(Alagoz et al. 2010). A model of the Markov decision process distinguishes states and actions.
The probability that an individual continues to the next stage depends on the current state and the
action. An action results in a reward. The value of the reward is unknown in advance. An individual
knows the expected value, however. Markov decision processes are used to determine the times of
transitions to the next stage that maximize lifetime rewards. In the model presented in this paper,
an individual gets a reward if he/she emigrates. The reward is the net benefit of emigration.
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stage. Exit rates vary between individuals because of differences in ABC scores.
ABC scores are assumed to remain constant in time. An individual gets a score
when he/she enters the intention stage and keeps that score until he/she leaves. For
the cohort that enters the intention stage, exit rates will decrease in time because
individuals with high emigration rates or dropout rates leave soon and the ‘survivors’
have lower rates. In the process model, emigration rates increase exponentially with
ABC level. The emigration rate at a given value of ABC is

Wie(ABC) = a, exp [b, * ABC] (10.3)

where a, and b, are nonnegative parameters to be estimated from data or to be fixed
in simulation.
Dropout rates decrease exponentially with ABC:

1ic(ABC) = a,exp [be * (1 — ABC)] (10.4)

where ¢ represents drop-out (censoring) and a. and b, are nonnegative parameters
to be estimated or fixed. The rate of leaving the intention stage is the sum of the two
transition rates:

Wi+ (ABC) = pie(ABC) + pic(ABC) (10.5)

The exit rate u;+ (ABC) is a bathtub shaped hazard function. It is high at low values
of ABC, because of dropout; it decreases when ABC increases but is still too low
to affect emigration significantly; it increases when higher ABC levels push the
emigration rate up; and it is high when ABC levels near their maximum value
of one. Xie and Lai (1995) used a similar bathtub hazard rate function. Instead
of using two Gompertz-like distributions, they used two Weibull distributions.
The model was used later by Bebbington et al. (2006), among others. Bathtub
distributions receive considerable interest in reliability engineering (see e.g. Almalki
2013).

Emigration and drop-out, i.e. stay, are competing risks. The probability that an
individual who leaves the intention stage emigrates is “'“ (ABC) and the probability

+(ABO)
Ric(ABC)
that the individual stays is it (ABO)

The length of time an individual stays in the intention stage is a random variable.
It depends on the rate of leaving the intention stage (exit rate), which depends
on the ABC score. The probability that individual k£ exits the intention stage ¢
years after entering the intention stage is the survival function S; (¢, ABCy)
exp [—pi+ (ABCy) 1], where ABC; is k’s level of actual behavioural control. The
probability that individual k in the intention stage exits precisely after ¢ years
is the density function fi1 (t, ABCy) = i+ (ABCy) S; (¢, ABCy). The probability
that an individual, who intends to emigrate, emigrates at time ¢ is f;, (1, ABCy) =

/7 i(&lzcc"k)) fi+ (t,ABCy) and the probability that he or she drops out of the decision
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process at £ is fi. (f, ABCy) = %ﬁ (t, ABCy). The probability that individual

k who intends to emigrate, emigrates within ¢ years, is the cumulative incidence
t t

function I, (l,ABCk) = /ﬁe (‘L’,ABCk) dt = /,u,,‘e (ABCk) S; (‘L’,ABCk) dr.

0 0
The probability that individual k, who intends to emigrate, drops out of the

decision process within ¢ years is the cumulative incidence C;. (t,ABCy) =
t

t
/fic (t,ABCy) dt == / Wic (ABCy) S; (t,ABCy) dr.

‘ The transition rates /L;:)(ABCk) and p;.(ABCy) determine the timing of exit from
the intention stage and the reason for exit (emigration or dropout). Individuals with
the same ABC score exit at different times because of random factors (chance).
The time at which individual k exits from the intention stage is obtained by a
random draw from the exponential waiting time distribution with constant exit rate
Wi+ (ABCy). Let u denote a random draw from a standard uniform distribution
U(0,1). Individual & with ABC score ABC; exits the intention stage at time
«Tiy (ABCy) = —%. Note that large exit rates lead to small exit times.
The exit time depends on the random value u. When u is close to zero, the exit
time is large; when u is close to one, the exit time is small. The reason for exit
is determined by a random draw from a Bernoulli distribution with parameter
Die (ABCy) = %. Individual k emigrates if the value of the random number
drawn is less than p;,(ABCy), otherwise k stays.

The age at emigration is the sum of four random variables: the age at considering
emigration, the time it takes for an individual who considers emigration to determine
whether emigration is beneficial or not, the time it takes for an individual who
considers emigration beneficial to develop an intention to emigrate, and the time
an individual with an intention to emigrate needs to plan and prepare the departure.
The age at emigration is:

Xe =Xy + T4y + T (106)

The distribution of X, depends on the distributions of X,, T,; and Tj,. It is not a
theoretical probability distribution unless X,,, 7,; and T}, follow theoretical distri-
butions. For instance, if X, is normally distributed and T,; and T}, are exponential
waiting time distributions, then X, follows a double exponential distribution (Coale
and McNeil 1972).

10.4 Data

Although the model is not designed for a particular data set, it should reproduce at
least stylised facts about emigration. The facts are: (1) observations on proportions
of the world population that desire to emigrate, that intend to emigrate and that
actually emigrate, (2) observations on levels of international migration, expressed
as the emigration rate, (3) observations on lifetime international migrations in the
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world, and (4) the typical age profile of migration, known in the literature as the
Rogers-Castro migration age profile because the pattern was first documented exten-
sively by Rogers and Castro (1981). The typical pattern is used widely in migration
studies, in particular projections. The United Nations use a simplified version of the
Rogers-Castro migration age profile in the World Population Projections 2010 (for a
discussion, see Abel et al. 2014). Since the age at emigration is not an input variable
in the process model of the TPB, but an output, the validity of the model is larger
if it reproduces the typical migration age profile. The model should also allow for
migrant selection. To that end, two skill levels are distinguished: low/medium and
high.

A worldwide Gallup survey in 2005 among 750 thousand adults found that
14 % of the world’s adults (154) population (630 million) say they would like to
emigrate if they could. Only 8 % of them are planning to do so within 12 months
and less than half (39 %) of those planning to move say they have already started
making preparations (Esipova et al. 2011). That is less than 1% of the world
population. Most individuals stay in what Esipova et al. call the dream stage and
do not continue to the planning stage and preparation stage. The Gallup World
Poll also found that emigration is selective. Adults with at least some secondary
education tend to be more likely to want to go than those with less education.
Employment status and job prospects also matter. Personal circumstances (finance,
family situation) are important too. Most adults are discouraged because of policies
that create roadblocks to leaving or entering a country. While age and education
strongly relate to people’s desire to migrate, they do not matter as much in whether
potential migrants are planning to move in the next 12 months. However, education
and employment status are important factors in the transition from planning to
preparation. The most educated are twice as likely to start preparation than those
in other education groups. Employed persons planning to migrate are much more
likely to start preparation than those not employed. The Gallup study reveals that the
majority (54 %) of people with professional skills planning to migrate also prepare
to leave. This may be a consequence of employer-generated international migration.

The Gallup study is the first major study that provides empirical support for the
process character of the migration decision. The study distinguishes stages that are
close to the stages distinguished in the process model of the TPB. Therefore the
Gallup survey is used to generate parameters of the process model.

A major finding of the Gallup study is the low level of emigration. Other studies
found similar low values of emigration. Abel and Sander (2014) estimated that the
volume of global international migration flows declined from 7.5 per thousand of the
world population in the 5-year period 1990-1995 to 5.7 per thousand of the world
population during 1995-2000. Since the year 2000, the global 5-year emigration rate
remained stable around 6 per thousand. The estimates are based on data on lifetime
migrants, which are persons living in a county different from their country of birth
(foreign-born population). That means that annually a little over 1 per thousand
of the population emigrates (between 1.1 and 1.5 per thousand). That figure is an
average. The emigration rate is larger in some countries. For instance, in Europe
in 2012, 5 per thousand of the population emigrated (Eurostat 2014). Most went
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to another country of Europe. Using data from the Migration between Africa and
Europe (MAFE) project, Lessault and Flahaux (2013) found that the emigration
rate of Senegal is 0.7 % (see also Beauchemin et al. 2014, p. 6). To be valid, the
process model of the TPB should be able to produce an overall (global) emigration
rate that is below 0.15 % per year.

A comparison of the emigration produced by the process model and the rate
obtained by Abel and Sander (2014) is not straightforward because the definitions
of the emigration rate differ. In the process model, the average emigration rate is
the ratio of the total number of emigrations and the total person-years of exposure
to the risk of emigration for all cohort members combined. It is an occurrence-
exposure rate. Exposure starts at age 15 and ends when an individual emigrates,
drops out of the decision process or reaches age 50. Abel and Sander (2014) define
the emigration rate as the number of emigrants during a period of 5 years divided
by the total population in the country of origin, irrespective of the risk status. In
the process model, their definition is approximated by the ratio of the number of
emigrants between ages 15 and 50 and the person-years lived in the country of
origin between 15 and 50, irrespective of the risk status (at risk, i.e. involved in
the decision process, or not at risk, i.e. having dropped out). If the population is a
stationary population, then the person-years lived between ages 15 and 50 is equal
to the population aged 15-50 (Preston 1982). The comparison of the emigration rate
produced by the simulation model and the emigration rate Abel and Sander estimate
holds if the emigration rate of those 15-50 does not differ much from the emigration
rate of the entire population.

The United Nations published data on population by country of residence and
country of birth. The data show that 3 % of the world population is foreign-born
(IOM 2010). That percentage remains remarkably stable in time. In the model, the
foreign-born population is approximated by the proportion of 50-year olds in the
world that is born in a country other than their country of residence. The model
starts with a cohort of 15-year olds. To pass the test of validity, the model should be
able to produce the outcome that about 3 % of the cohort of 15-year olds emigrates
before age 50.

The typical age profile of migration is a skewed distribution with migration
rates increasing rapidly at young ages, a peak at an age between 25 and 30,
and declining more slowly than they increased. The shape has been described by
a double exponential distribution (Rogers and Castro 1981; Raymer and Rogers
2008). The process model should produce an age profile of emigration that is close
to the shape of a double exponential distribution. If a process model of the theory of
planned behaviour results naturally in a shape that resembles a double exponential
distribution, then the Rogers-Castro model age profile of migration can be given a
behavioural interpretation. That would be an important bonus of the process model
of emigration. It would replicate for migration what Coale and McNeil (1972)
found for first marriage: a process model of first marriage gives a behavioural
interpretation to the age profile of first marriage (see also Billari et al. 2007).

The distribution of ages at emigration is compared to the mathematical represen-
tation of the migration age profile, developed by Rogers and Castro (1981). In this
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paper, the model schedule is limited to ages from 15 to 50. In this age category, the
age profile of migration may be described by a double exponential distribution:

m(x) = ¢ exp[—a (x — p) —exp (—A (x — p)]

where x denotes age, m(x) is the proportion of emigrants that is aged x, and c, «,
A and p are parameters to be estimated from data. The parameter ¢ is a scaling
factor, w controls the location of the peak of the migration age profile, A reflects
the steepness of the ascending side and « represents the steepness of the descending
side. If A > «, the location of the peak (mode) is larger than p; it is smaller if A < «.

The parameters ¢, «, A and p are estimated from the realizations of X,, i.e. from
the ages at emigration in the virtual population. The parameters then enter the above
equation to determine the model age profile. To be valid, the process model of the
TPB should produce an age profile of emigration that is close to the model age
profile and exhibits the typical pattern observed in migration age profiles around the
world.

10.5 Parameters of the Process Model of Planned Behaviour

The aim of the process model of the theory of planned behaviour is to describe
an emigration decision process that produces a realistic macroscopic (population-
level) pattern of emigration. In this section, the parameters of the process model
are presented. The parameters are guesstimates. No statistical technique is used
to estimate the parameters from data because the necessary data are missing. The
validity of the model and the guesstimates are determined by how well the model
reproduces the stylised facts presented in Sect. 10.4. In order to produce the stylized
facts, the range of most parameter values is limited.

Consider a virtual cohort of 100,000 15-year olds. The cohort is followed until
its members reach age 50. The focus is on the emigration decision. Emigration is
the endpoint. Individuals differ in skill level: 80 % have a low/medium skill level
and 20 % are highly skilled. Skill level has an important effect on the susceptibility
to considering emigration and the outcome of the assessment of benefits and costs
of emigration (deliberation). In order to reproduce the proportion of persons aged
15+ that desires to emigrate, observed in the Gallup study (14 %) and the selection
effect of education, we must determine what a desire to emigrate means in the
process model of the TPB. I assume that an individual has a desire to emigrate if
emigration is considered beneficial, which means that the individual has completed
the formation of behavioural beliefs and developed a positive attitude towards
emigration.

Assume that 25 % of all individuals with low/medium skills develop an interest
in emigration, i.e. consider emigration. Of these, 48 % believe that the benefits of
emigration exceed the costs. Hence 12 % of the individuals with low/medium skills
consider emigration beneficial; they develop a positive attitude towards emigration.
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Among highly skilled individuals, 48 % develop an interest in emigration and,
of those, 50 % believe that benefits exceed costs. Hence, 24 % of the highly
skilled develop a positive attitude towards emigration. The difference reflects the
observation in the Gallup study. The proportion of cohort members that develop
an interest in emigration is 14.4%. It results from 12 % for individuals with
low/medium skills and 24 % for highly skilled individuals (80*0.12 4 20%0.24).

The age at which an individual develops an interest in emigration is the de facto
onset of the emigration decision. The minimum age is fixed at 15. I assume that
the range of ages at which individuals with low/medium skill level develop an
interest in emigration is larger than that of the highly skilled. The ages at onset
of the emigration decision follow a one-sided truncated normal distribution (see
Sect. 10.3). For individuals with low/medium skill level, the mean of the original,
untruncated normal distribution is 19 years and the standard deviation is 4 years.
I assume that it takes on average 2 years to determine a belief in the benefits and
costs of emigration and to develop a positive attitude (desire) or negative attitude
towards emigration, irrespective of the skill level. The formation of that belief shifts
the distribution 2 years to the right. The mean age of the truncated distribution that
results is 21.6 years. The age at which highly skilled individuals consider emigration
is 20 years, on average, with a standard deviation of 2 years. The mean age at which
individuals develop an attitude towards emigration is 22 years. The mean of the
truncated distribution is also 22 years. The difference in standard deviation of the
normal distributions implies that highly skilled individuals develop an interest in
emigration in a narrower age range than individuals with low/medium skill level.

The distributions of age at developing an attitude towards emigration (desire or
no desire) are shown in Fig. 10.3. Individuals who do not consider emigration stay
in the country of birth. We need to consider the age at which the decision not to
consider emigration is made because, at the time individuals decide to stay, they are
no longer at risk of considering emigration.

Many individuals who consider emigration beneficial do not intent to emigrate.
They drop out of the decision process because of low levels of SN and PBC. SN and
PBC determine the probability of continuation or dropout, and the timing of these
transitions. A beta distribution describes the distribution of SN in the population.
The distribution is defined on the interval [0,1]. It has two positive shape parameters,
« and B. The distribution is symmetric if =p>1, has a positive skewness if ¢>>1
and a negative skewness if 1<a<f. In this paper, it is assumed that individuals with
low/medium skill level are more likely to have a lower SN score than individuals
with high skills, which means that the skilled individuals have a stronger social
pressure to emigrate and are more willing to comply. Among the people with
low/medium skill level, few individuals have very low SN scores, most have a low
to moderate SN score and the prevalence of SN scores in the population declines
with increasing SN score. That shape is described by a beta distribution with shape
parameters «=3 and f=5. Highly skilled have a higher SN score but not much
higher. The shape is described by a beta distribution with «=4 and f=5. The mean
SN score is 0.37 for individuals with low/medium skill level and 0.44 for individuals
with high skill. Figure 10.4 shows the distribution of SN scores, by skill level.
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Fig. 10.3 Age at developing a desire to emigrate, by skill level

The PBC score differs by skill level, with highly skilled individuals having a
higher score. Instead of using a unipolar 7-points scale, I use a bipolar scoring
from —50 to 4-50 such that large negative values represent low scores of PBC and
large positive values high scores of PBC. Using bipolar scoring has implications
for the value-expectancy model (Ajzen 2006), but they are beyond the scope of this
paper. Bipolar scores are converted to values between zero and one using a logistic
distribution (logit model). Individuals with low/medium skill level are assumed to
have a PBC score that is normally distributed around —10, with a standard deviation
of 8, which implies a considerable spread in the population with low/medium skill
level. Van Dalen et al. (2005) provide evidence for the effect of education on PBC
score. No literature could be found that addresses differences in spread. The PBC
score of highly skilled is normally distributed with mean 10, and standard deviation
5. Figure 10.5 shows the cumulative distribution of the PBC scores for each of
the skill levels and for the total population (tick line). With each PBC score is
associated a probability, which transforms the original score to a value between
0 and 1. That value is used in further calculations. The figure may also be used
to derive the original score from the score on the 0-1 scale. For each skill level,
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Fig. 10.4 Distribution of subjective norm (SN) in population, by skill level

the original score associated with a score on the 0—1 scale (empirical distribution)
can be retrieved using the quantile function. Figure 10.6 shows the distribution of
the PBC score in the population, by skill level. The two shades of grey show the
number of individuals with a given PBC score, by skill level. The dark shade is a
result of combining two shades of grey. The solid line shows the total number or
individuals in the population with a given PBC score. It represents the sum of the
number with low/medium skill and the number with high skill. The distribution of
PBC scores in the population is a mixture of two normal distributions.

The effects of SN and PBC are combined into a single score, using a Cobb-
Douglas utility function. The parameters are: y=1, «=0.6 and f=1—«=0.4. The
composite score is denoted by V. The distribution of SN and PBC scores in the
population and the parameters «, B and y produce an average composite score of
0.33 for the individuals with low/medium skill level (median 0.32), 0.56 for the
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Fig. 10.5 Cumulative distribution of PBC scores, by skill level

highly skilled (median 0.56), and 0.40 for the two skill levels combined (median
0.40). Twenty five percent of the virtual population has a score less than 0.27 and
25 % has a score of 0.53 or larger. The highly skilled are much more likely to have
a high composite score than those with low/medium skill level. The distribution of
the composite score by skill level and for the total population is shown in Fig. 10.7.

The composite score V determines whether an individual who considers emigra-
tion beneficial develops an intention to emigrate or drops out of the decision process.
An intention is developed if the composite score V exceeds a threshold value. We
have no data on the threshold value of V, but we have information on the proportion
of individuals with a desire to emigrate that plan to emigrate. The Gallup survey
of 2005 revealed that 8 % of those who desire to emigrate also plan to emigrate.
That figure may be used as a proxy of the proportion developing an intention to
emigrate. When that figure is used, the overall emigration rate and the proportion of
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Fig. 10.6 Distribution of PBC scores in the population, by skill level

lifetime migrants (proportion of foreign-born population in the world) are greatly
underestimated, however. The estimates improve substantially if 3040 % of those
who desire to emigrate develop an intention to emigrate. Therefore, 40 % is used.
The Gallup study reports the proportion planning to emigrate. That is likely to
be a fraction of those intending to emigrate. The threshold value is derived from
that proxy of the proportion of individuals with a desire to emigrate that intends to
emigrate. Note that the proportion is the share of the total population. The proportion
is not distinguished by skill level. For the proportion developing an intention to be
40 %, the threshold value of V needs to be 0.45, given the distribution of V in the
population.* Forty percent of the population has a threshold value of V that is 0.45 or
higher. The threshold is 0.67 if only 8 % develop an intention. In the simulation, it is

4The median value of V is 0.40.
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Fig. 10.7 Distribution of composite score V in the population, by skill level

assumed that individuals who consider emigration beneficial and have a composite
score V of at least 0.45 develop an intention to emigrate. Individuals with a lower
score drop out. The threshold value is the same for everyone. Figure 10.7, which
shows the distribution of V scores in the population, also shows the threshold value
of V.

The time people need to determine SN and PBC scores is given by Eq. 10.2,
with 6 equal to 1. The waiting time is equal to 6 if the scores are V =0.03 or
V =0.77. If all individuals would have a score of 0.77, then they would need not
more than 1 year to determine that SN and PBC scores are sufficiently high to
produce an intention to emigrate. If all have a score of 0.03, they need an average
of 1 year to determine that the SN and PBC scores are low and that the only
reasonable option is to abandon the decision process and stay in the country of
birth. Individuals who need 1 year or less to determine the SN and PBC scores
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have either a very low or a very high V score. They have very limited support
and lack self-efficacy or they combine strong self-efficacy with full support. The
ultimate emigration rate is sensitive to the 6 value. A higher value of 8 suppresses
the emigration rate without affecting the number of individuals emigrating in a
lifetime (before age 50). The reason is the increase in the person-years at risk of
emigration with an increase in the waiting time in the assessment stage (a). Some
individuals move on to develop an intention to emigrate, but most drop out of the
decision process. Given the distribution of V in the virtual population, the average
time people need to determine SN and PBC scores can be obtained directly from
the distribution without first running the simulation (using Eq. 10.2). The average
duration is 2.32 years (2.45 years for individuals with low/medium skill level and
2.07 years for highly skilled). Forty percent develop and intention to emigrate and
60 % drop out. Recall that this proportion is not an outcome of the model, but
an input parameter. The average durations and the exit rate reported in the results
section are slightly different because of random factors.

Individuals intending to emigrate, i.e. who are in the planning and preparation
stage, emigrate or decide to stay. Actual behavioural control moderates the effect
of intention on behaviour. Sheeran et al. (2003) assert that the performance
of intentions as predictors of behaviour depends on the difference between the
perceived (PBC) and the actual behavioural control (ABC). In the model, the ABC is
the PBC plus a random factor. If we assume that most people overestimate their self-
efficacy and the support they will get, and underestimate the barriers to emigration,
then the random factor is negative for most individuals. Some individuals have an
ABC score that exceeds their PBC score. The ABC score is a value between 0
and 1. In order to assure that the addition of a random factor does not violate that
condition, a random factor is added to the logit of PBC, resulting in the logit of
ABC. The random factor is a draw from the uniform distribution U[-7.0,1.0]. A
decrease in the value of the logit of ABC reduces the value of ABC. The rate
of leaving the planning and preparation stage, i+ (ABC) depends on the level of
actual behavioural control (ABC). People complete the planning and preparation,
and emigrate, or they abandon the process and stay. The proportion that emigrates
depends on the emigration rate p;(ABC) and the drop-out rate u;.(ABC), which
depends on ABC too. The rates of emigration increase exponentially with ABC
level (Eq. 10.3). The parameter a. is 0.1 and b, is 2. The following parameter
values are used in the equation that determines the rate of dropout (Eq. 10.4):
a. = 0.01 and b, = 2. These values are selected because they give a plausible
bathtub shaped hazard function relating the hazard rate (emigration or drop-out)
to ABC levels. The time at exit from the intention stage and the direction of exit
(emigration or stay) depend on these parameter values. The time at exit from the
intention stage is a random duration drawn from an exponential distribution with
parameter i, (ABC). The probability that an exit from the intention stage results in
emigration is p;=/;.(ABC)/;+ (ABC). The probability that an exit results in a drop-
out is 1—p;. An individual emigrates if a random draw from a Bernoulli distribution
with parameter p; gives a 1. If the draw results in a 0, the individual drops out.
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10.6 Results

The population consists of a virtual cohort of 100,000 individuals aged 15, 80,204
with a low/medium skill level and 19,796 highly skilled. Highly skilled means
having a potential to develop high skills.

(a) Considering emigration

Among the 100,000 individuals, 14,396 consider emigration beneficial, which
is 14.4 %. It is the percentage that develop an interest in emigration AND develop
positive attitude towards emigration.

Figure 10.3 shows the ages at which individuals end the assessment and develop
a desire to emigrate or drop out of the decision process. The age distribution is fixed
by the assumption of normal distributions with given parameter values.

On average an individual considers emigration at age 21.5 if he/she has a
low/medium skill level and at age 22.0 if he/she is highly skilled. One of eight cohort
members, who ever consider emigration, consider emigration before age 18. It is
higher among those with low/medium skill level: 1 in 6 versus 1 in 44 among highly
skilled. Of the 18-year olds, who consider emigration, 94 % has a low/medium skill
level and 6 % belongs to the category of highly skilled, i.e. follows a trajectory that
results in high skills.

(b) Assessment of pros and cons of emigration

The proportion of individuals with an interest in emigration that considers
emigration beneficial is fixed at 50 %. Hence, half continue to the assessment stage
and half abandon the decision process. Among the 100,000 individuals, 14,396
desire to emigrate. It is the percentage reported in the Gallup study. The small
difference between the sample value and the theoretical value (14.4; see Sect. 10.5)
is an outcome of the random mechanism. Among individuals with low/medium skill
level, 9595 consider emigration beneficial. Among the highly skilled, it is 4801.

The time individuals take to assess the pros and cons of emigration follows an
exponential waiting time distribution with rate 0.5. On average an individual takes
2 years to determine whether emigration is beneficial.

(c) Intention to emigrate

The 14,396 individuals who consider emigration beneficial develop an intention
to emigrate if their subjective norm (SN) and perceived behavioural control (PBC)
are sufficiently high. If the scores are insufficient, they decide to stay and drop
out of the emigration decision process. Individuals with low/medium skill have an
SN score of 0.37, on average, and highly skilled 0.44. The average bipolar PBC
score is —3.34. It is —10.04 for those with a low/medium skill level and 10.07 for
highly skilled. The PBC scores on the (0,1)-scale are 0.34 and 0.82, respectively.
The population average is 0.50. The SN score and the PBC score are combined
in the composite V score. The average V score is 0.40. It is 0.33 for individuals
with low/medium skill level and 0.56 for highly skilled individuals. An individual
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develops an intention to emigrate if the V score is at least equal to 0.45, which is the
threshold value. The threshold value is the value of V at which 40 % of the people
with a positive attitude towards emigration develop an intention to emigrate. The
number of individuals with a V score of at least the threshold value is 5759, 1952
with a low/medium skill level and 3807 highly skilled. The majority of the 14,396
individuals with a desire to emigrate drop out of the decision process (8637), 7643
with low/medium skill level and 994 highly skilled.

Of the 14,396 individuals who consider emigration beneficial, 5759 individuals
develop an intention to emigrate and 8637 drop out during the assessment stage.
Hence, 5.8 % of the initial cohort develops an intention to emigrate. The majority
of those who believe that they will benefit from emigration abandon the emigration
decision because of inadequate SN and PBC scores. The duration in the Assessment
stage at exit is 2.31 years. It is slightly larger for individuals with low/medium skill
level (2.4 years) than for highly skilled (2.1 years). In other words, an individual
with low/medium skill level and with a desire to emigrate takes a little longer, on
average, to decide between emigration (intention) and stay than an individual with
high skill level. The effect of skill level on the time it takes to reach a decision is due
to its effect on SN and PBC scores. The difference has an effect on the age at which
an individual develops an intention to emigrate or decides to stay. The mean age is
24.0 and is the same for individuals with low/medium skill level and highly skilled
individuals. The average duration of stay in the attitude stage determines the rate of
exit from that stage. The average exit rate is 0.432. It is equal to 1/2.31. The rate
of developing an intention to emigrate is much lower. It is 0.173. In its estimation,
dropout is treated as censored observations. The distribution of ages at developing
intentions to emigrate or to drop out is shown in Fig. 10.8.

(d) Emigration

Of the 5759 individuals who develop an intention to emigrate, 4338 do emigrate,
1336 with low/medium skill level and 3002 highly skilled. That is 75 % of those
who intend to emigrate and 4.4 % of the initial cohort. The remaining individuals
(1421) drop out during the intention stage, 616 with low/medium skill level and
805 highly skilled. Individuals who do emigrate have a high self-efficacy and have
the resources to remove barriers and take advantage of opportunities. Their ABC
score does not differ much from their PBC score. The model therefore accurately
captures the theory, which states that a weak performance of intentions as predictors
of behaviour is the discrepancy between perceived behavioural control and actual
behavioural control. Table 10.1 shows the average PBC and ABC scores, by skill
level, for emigrants and individuals who drop out during the intention stage. The
ABC score of emigrants is close to the PBC score, which means that they were able
to accurately predict the actual behavioural control. This applies to all emigrants
irrespective of their skill level. Individuals intending to migrate but deciding to stay
have a ABC score that is much lower than their PBC score. They have lower self-
efficacy than they expected initially, they cannot mobilize the resources and support
needed for emigration, or the barriers are much larger than expected.
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Fig. 10.8 Age distribution of developing intention to emigrate or to drop out of the assessment
stage, by skill level

Table 10.1 PBC and ABC Skill level

! Migrant status | PBC | ABC
scores, by skill level and

migrant status Low/medium | Emigrant 0.531 |0.222
Stayer 0.307 |0.086

High Emigrant 0.837 |0.448

Stayer 0.799 |0.137

Overall 0.500 |0.313

What is the probability that an individual who intends to emigrate and who has
an ABC score of 0.313 (average ABC score) emigrates? Emigration and dropout are
competing risks. If the individual leaves the intentions stage before age 50, then the
probability that the exit is because of emigration rather than dropout is computed
using Egs. 10.3 to 10.5. It is 100 * m; (ABC) / (m;, (ABC) + m;. (ABC)) =
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100 * 0.187/ (0.187 + 0.040) = 82.4 percent. The probability that the individual
drops out of the decision process is 17.6 %. We may also obtain the probability of
emigration for an individual with a desire to emigrate and a given SN score and
bipolar PBC score. Suppose the individual has SN score of 0.5 and PBC score
of —5. The PBC score on the probability (0,1) scale is 0.491. The composite
score V is 0.496, which is larger than the threshold value of 0.446. Hence the
individual intends to emigrate. The ABC score is the PBC score with a random
factor. The ABC score is 0.116. The emigration rate is given by Eq. 10.3 and
the probability of emigration is 100 * m;, (ABC) / (m;, (ABC) + m;. (ABC)) =
0.126/ (0.126 + 0.059) = 68.3 percent. The probability of dropout is 31.7 %.

The proportion of the initial cohort that emigrates between ages 15 and 50 is
4.4 %. That figure is higher than the 3 % of the world population that is living in a
country other than the county of birth.

The average emigration rate is 3.6 per thousand if the emigration rate is defined
as the ratio of the number of emigrations during a period and the person-years
exposed during that period to the risk of emigration. The average number of years
a cohort member is at risk of emigration between ages 15 and 50 is 12.0 years. It is
the number of years between age 15 and emigration or dropout of the emigration
decision. Individuals who leave the country or drop out are no longer at risk
of emigration. The emigration rate is therefore 0.044/12.0 =0.0036 or 3.6 per
thousand. It is higher for the highly skilled population (11.7 per thousand) than
for those with low/medium skill level (1.4 per thousand). This rate is an occurrence-
exposure rate; it relates the number of occurrences to the duration of exposure. The
occurrence-exposure emigration rate is larger than the emigration rate estimated by
Abel and Sander (2014) (1.2 per thousand). Abel and Sander use a different type
of rate and a different unit interval. They define the emigration rate as the ratio
of the volume of migrations during a period of 5 years and the size of the world
population. Their estimate of a 5-year emigration rate is 6 per thousand, which is
1.2 per thousand per year. The population they consider is the total population in
the country of origin, irrespective of the risk status. To obtain the equivalent of the
emigration rate defined by Abel and Sander, the probability of emigration should be
divided by the average number of years an individual spends in the country of origin
between ages 15 and 50 (before emigration or reaching age 50). The average number
of years spent in the country between 15 and 50 is 34.0 years. The emigration rate is
0.044/34.0 = 0.00127 or 1.27 per thousand. Using the definition of emigration rate
adopted by Abel and Sander, the emigration rate produced by the process model is
very close to Abel and Sander’s estimate. The comparison is not without problem.
Abel and Sander considered the total population of the world, including children
and persons over 50. The comparison holds if the rate at which individuals aged
15-50 emigrate is close to the average emigration rate of the entire population, an
assumption that is not implausible.
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Fig. 10.9 Age distribution of emigration and drop out of intention stage, by skill level

(e) Age profile of emigration

The age profile of emigration and dropout of the intention stage, by skill level, is
shown in Fig. 10.9. In the intention stage, more individuals emigrate than drop out.
The difference between the two exits is higher for the highly skilled than for those
with low/medium skill level.

Figure 10.10 shows the distribution of ages at emigration by skill level, produced
by the simulation model and the model emigration schedules estimated from these
ages at emigration. The dark line presents the outcome of the process model.
The light line shows the model migration schedule estimated using the double
exponential distribution, estimated from the simulated ages at emigration. The
process model yields a description of the emigration age profile that is very similar
to that described by the double exponential distribution. The emigration profile
peaks between ages 25 and 30, which is realistic, and the shape resembles the
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Fig. 10.10 Emigration age profile: simulated data and model migration schedule

shape of migration age profiles reported in empirical studies. Note that the age
pattern is not determined by age-specific migration rates but is determined entirely
by the parameters that govern the waiting time distributions of the transitions
between the stages of the emigration decision process. The double exponential
distribution is known to emerge as a convolution of a normal distribution and a set
of exponential distributions (Coale-McNeil 1972). In the process model, the waiting
time distributions are more complex than the exponential distribution, although the
exponential distribution serves as a basis. The fact that the model produces the
typical age profile of migration is important for the validity of the model.

The mean age at emigration is 27.7 years, 27.3 years for individuals with
low/medium skill level and 28.4 years for highly skilled. The mean age of
individuals who drop out during the intention stage is higher: 29.3 for those with
low/medium skill level. 29.4 years for highly skilled and 29.3 for the two skill levels
combined.

Figure 10.11 shows the ages at transition between stages of the process model of
the TPB, by skill level. Many people develop an interest in emigration and a desire
to emigrate. Many individuals with low/medium skill level drop out in the first stage
of the decision process. Many highly skilled individuals with a desire to emigrate
develop an intention to emigrate and start planning and preparation. Many of them
drop out while planning and preparing, however, because the actual behavioural
control (ABC) is lower than the perceived behavioural control (PBC).
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Fig. 10.11 Ages at transition between stages of the process model of the TPB, by skill level

10.7 Conclusion

The theory of planned behaviour states that intention is the best predictor of
behaviour. The theory is widely used to explain and predict behaviour. Many people
who consider emigration beneficial never intend to emigrate because they believe
that others do not want them to leave the country or they believe that they do not
have sufficient resources and cannot generate the necessary social support. The
simulation model presented in this paper describes the stages of the emigration
decision process an individual goes through when considering emigration. The
model operationalizes the process theory of planned behaviour. The process model
of the TPB is consistent with the ‘horse race’ random utility model. The two models
are competing risks models. The information processing and evidence accumulation
mechanism is implicit in the process model. Some individuals need more time to
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make a decision than other individuals. Individuals who have access to information
because of the composition of their social network or because they learned how
to access and process useful information efficiently and effectively (and have high
levels of self-efficacy) have more extreme PBC or ABC scores than individuals
without these networks or capabilities. In the process model, these individuals need
less time to choose whether to continue the decision process or to abandon it. The
outcome is also easy to predict. The action of individuals with scores close to
average values (most individuals) is difficult to predict because small changes in
scores may have significant effects.

The model, although simple, reproduces stylized facts remarkably well. It
reproduces the typical age profile of emigration. It also reproduces the global
international migration rate recently estimated by Abel and Sander (2014). The
model slightly overpredicts the proportion of the world population not living in their
country of birth, estimated by the United Nations. The reason is return migration,
which is not considered in the model. It is remarkable that a simple simulation
model of the emigration decision process is able to reproduce these facts of
international migration. It makes the model a potentially powerful instrument to help
explain and predict international migration. The models in use today for forecasting
international migration derive future levels of migration from past levels, statistical
associations between levels of migration and characteristics of the population, and
expert judgments about changes in reasons for migration and effects of opportunities
and restrictions (see e.g. de Beer 2008; Bijak 2011; Raymer et al. 2013; Azose and
Raftery 2015). The predictive performance of these models is acceptable most of the
time, when conditions do not change abruptly. In the presence of shocks, predictions
are poor, probably because more people develop an interest in emigration and
fewer people drop out of the emigration decision process. To determine under
what conditions people leave their country, predictive models should incorporate
individual decision processes.

The model has several limitations that may be removed in future research. It is
limited to ages 15 to 50 and excludes child migration and retirement migration. The
model considers a single endpoint (emigration) and does not produce a migration
history. As a consequence, the emigration intensity cannot depend on migration
experience. Return migration and onward migration are not considered either. The
main subject of the model is the emigration decision process, not the migration
history. The subjective norm (SN) is a characteristic of the individual and is
not an outcome of interactions between the individual and significant others and
institutions. For instance, the SN score does not depend on the migration experience
in one’s social network, which is important in most agent-based models of migration
(see e.g. Klabunde 2014). SN, PBC and ABC scores are not updated after the
occurrence of life events, such as marriage, divorce, job loss, and major health
conditions have no direct effects on the emigration decision. Contextual (exogenous)
factors, such as political conflict and environmental degradation, are not included in
the model. Opportunities and barriers are not modelled explicitly and individuals
do not respond to opportunities (e.g. job offers). Individuals do not anticipate
events and conditions; they do not predict. They do not learn from experience
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either. The model does not consider reasons for emigration and does not distinguish
between employment migration, marriage migration, family reunion, and other
forms of migration. Including these factors would change the way interests and
attitudes develop and SN, PBC and ABC scores are generated, but they would not
significantly change the process model. For these reasons, the model is referred to
as a simulation model and not an agent-based model. The strength of the model
presented in this paper is the operationalization of the theory of planned behaviour
in a stochastic decision process model. A process model of the theory of planned
behaviour can accommodate all factors and actors that have a significant effect on
the emigration decision, but a comprehensive model that includes all these factors
is beyond the scope of this paper.
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Annex A. Parameters of the Microsimulation Model

Parameters
Sample size 100000
Proportion highly skilled 0.20
Probability of developing an interest in emigration,
by skill level 0.25 0.48
Age at developing an interest in emigration: truncated
normal distribution
Mean of untruncated normal distribution, by skill
level 19 20
Standard deviation of untruncated normal
distribution, by skill level 4 2
Average years it takes to develop an attitude towards
emigration, by skill level 2.00 2.00
Age at decision not to develop a desire but to stay,
by skill level
Mean of untruncated normal distribution, by skill
level 27 28
Standard deviation of untruncated normal
distribution, by skill level 5 3
Truncated normal: lower bound 15.00 15.00
Truncated normal: upper bound 1000.00 1000.00
Subjective norm (SN): beta distribution
Shape parameter 1 (alpha) 3.00 4.00

Shape parameter 2 (beta) 5.00 5.00
Perceived behavioural control (PBC): normal
distribution

Mean -10.00 10.00

Standard deviation 8.00 5.00
Composite score V based on SN and PBC
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gamma 1.000
alpha 0.600
beta 0.400
Waiting time in attitude stage: scaling factor theta 1
Proportion of persons in attitude stage that develop
intention to emigrate 0.4
Actual behavioural control (ABC):
Uniformly distributed random factor
Lower bound -7.00
Upper bound 1.00
Transition rate as function of ABC
Emigration rate:

a 0.10
b 2.00
Dropout rate:
a 0.01
b 2.00
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Chapter 11
Deciding to Disclose: A Decision Theoretic
Agent Model of Pregnancy and Alcohol Misuse

Jonathan Gray, Jakub Bijak, and Seth Bullock

11.1 Introduction

The case in favour of Agent Based Modelling (ABM) as a general analytical
approach has been made numerously and elegantly (e.g. Epstein and Axtell 1994;
Resnick 1994; Axelrod 1997; Gilbert 1999; Macy and Willer 2002; Epstein 2014;
Silverman et al. 2011, 2013, amongst others). As such we will not belabour
the point, and instead turn to addressing some of the concerns expressed about
the approach. In this instance we focus on the perception of ABM as ad hoc in
nature, reflecting the assumptions of the modeller rather than being empirically or
theoretically grounded (Waldherr and Wijermans 2013). To ameliorate this concern,
we draw on decision theory to produce simple rule based and learning decision
making agents and show that they are able to play a form of signalling game'
(Kreps and Cho 1987) with a basic form of intragroup social learning. Four decision
models of varying complexity and behavioural plausibility are contrasted, by way of
demonstrating the significance of the operationalisation of decision making in ABM.

'In a signalling game, one player (the signaller), has some piece of information that is known only
to them which affects the outcome of the game for both players. The signaller has a choice as to
what they tell the other player about this hidden information, and the responding player as to what
they believe the information to be.
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This exercise is framed in the context of disclosure decisions, taking drinking
patterns in pregnant women as a motivating example. Alcohol consumption in the
antenatal period is a significant issue in itself, although there is not a clear consensus
on the associated risk. In terms of official guidance in the UK, the National Institute
for Health and Care Excellence (NICE) acknowledge that evidence of harm to the
fetus is less than conclusive, but advise not drinking at all, or significant moderation
(National Institute for Health and Care Excellence 2010a), with similar advice from
the UK Department of Health (2008).

Turning more specifically to disclosure of alcohol use by women to healthcare
professionals during their pregnancy, research is relatively sparse, although qualita-
tive trends are reported by Phillips et al. (2007) and Alvik et al. (2006). The former
explored factors impacting disclosure through a small case study, highlighting the
need to build up rapport between woman and midwife over several appointments;
the latter compared post partum reports of consumption with contemporaneous
accounts, finding apparent under reporting during pregnancy which was amplified
by increased drinking. The simulation model described in this chapter is able to
replicate both qualitative trends, i.e. an increase in disclosure over appointments,
and more honest behaviour by moderate as compared to heavier drinkers.

The resulting scenario is of substantial independent interest, and shows the
potential utility of a simulation approach in domains where the process is obscured,
here both because of the interest in concealment and obvious ethical concerns.
With this said, the lack of a strong quantitative evidence base against which to
validate the behaviour of the model augurs for caution in interpreting the results,
and is a necessary reminder that in this instance the model is primarily a tool
for formalisation of the thought process (Epstein 2008), rather than a machine for
predicting.

A game theoretic approach to generating an abstract form of the problem gives
a convenient and well known framework to reason about the processes involved
in the scenario. While scenarios may map to a number of games, exploring one
candidate game still allows for a principled comparison between interpretations,
and enforces explicit assumptions. But equilibrium is the sine qua non of game
theory, which is concerned with the stable outcome of an infinite contest of second
guesses. We wish to see the system in motion rather than just at rest, even if it does
eventually settle to some stable point. Instead, we choose to focus on the behavioural
processes driving a system in motion, a system out of equilibrium, to understand
how these processes interact with the movement. Introducing decision theory takes
a step down the ladder of abstraction from the mental chess of game theory. Dealing
instead in the mechanics of decision making, and the calculus of choice, allows us
to explore not only paths that arrive at the destinations we might consider in game
theory, but also avenues not accessible where we constrain ourselves to a sometimes
implausible degree of rationality.

This does not preclude a strategic dimension, since decision rules are to a great
extent modular, and as demonstrated in this chapter can be exchanged without
altering the decision problem. In addition, rules are agnostic as to the source of
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information, suggesting room for multi-stage processes — for example, a game
theoretic, “model of the opponent’s mind”, approach could act as an information
source for a decision rule. As a corollary, the decision problem agents attempt to
answer can change, allowing behaviour in novel problems to be informed by beliefs
derived under other conditions. This is also indicative of the broader benefits to
ABM as an approach. Embedding these abstract rules in a simulated environment
allows for mechanics which cannot be readily explored using purely analytic or
predictive approaches, for example, the social learning dynamic of the disclosure
game model.

While there is no universal theory of human behaviour to sit at the centre of ABM
as a method, a key motivation for decision rules is their claim to provide an account
of decision making that is behaviourally and cognitively plausible. Their mooted
capability in this regard is to some extent supported by work from neuroeconomics,
which aims to empirically test theories of decision making (Rustichini 2009).
Many key aspects common to decision rules, for example the idea that a common
currency is used by the brain to compare outcomes (Padoa-Schioppa and Assad
2006, 2008), are supported by neurological findings. In addition, a single decision
rule represents a parsimonious alternative to numerous case specific production
rules.

Given these features, the application of decision and game theory to ABM is
an attractive approach to computational social science, where the locus of interest
is process and decision making. Taking a balance between models focused on
replication of low level neurological mechanics, and those with a higher level
emphasis where individual behaviours are abstracted away, yields a computationally
tractable approach. Despite the relative simplicity, it nonetheless captures some of
the nuance and sophistication of human decisions.

The remainder of this chapter proceeds to outline the proposed approach to
model development (Sect. 11.2), and experiments (Sect. 11.3), with selected results
(Sect. 11.4), followed by a discussion contrasting the decision models (Sect. 11.5),
and conclusions (Sect. 11.6).

11.2 Disclosure Game Model

In this section we sketch? the process of moving from a real world scenario to a
minimal game which sufficiently captures reality, expressing the result as a decision
problem representation, and translating this to a simulation model. We then outline
four possible decision rules and, as an example of additional flexibility of process
models and simulation in contrast to purely predictive or analytical approaches,
extend the model to allow a simple form of social learning.

2A complete example of this for the alcohol misuse in pregnancy model is given in Sect. A.1, with
a schedule of simulation provided in Sect. A.2.
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11.2.1 Modelling Approach

To model a scenario, we take the approach of first creating a formal game to
represent it, capturing the key features as far as possible in the structure of that
game. This game is in essence a conjecture about the real data generating process,
which can be played out in simulation.

The appropriate game representative of the scenario of interest, which captures
the desired strategic dynamics, may not be immediately obvious. We suggest that
an iterative process is beneficial, beginning from the simplest possible game, and
progressively augmenting it.

Transitioning from the resulting game, to a set of decision problems is a relatively
simple task. We treat the n player game as n one-player games (Insua et al. 2009),
where the moves of other players are drawn from a probability distribution — nature,
in game theoretic parlance. As with the game, the decision problem representation
admits a degree of variation, and may need to be adjusted to reflect the decision
rules that will be used.

These decision problems may then form the basis of an agent model, where
agents use learning and decision rules to play out the game. Simulation can then
support features which are not readily representable within an analytic framework,
for example, populations of heterogeneous players, individual and social learning,
or network effects. In addition, the ability to observe the system in a state of flux
rather than at equilibrium is desirable, since even where a social system reaches a
stable state, the process by which we arrive at it is significant.

11.2.2 Scenario

Typically in the UK, women have 12 appointments with a midwife during the
antenatal period, and in the majority of cases will encounter several different
midwives (Redshaw and Henderson 2014) in the course of their care. In the UK,
and unlike most healthcare contexts, maternity notes are held by the patient, so
midwives do not have extensive information prior to an appointment unless they
have encountered the woman previously. Maternity notes are not generally linked to
extra-departmental records, meaning that a history of alcohol related admissions to
another service may remain unknown unless revealed by the woman.

According to NICE guidance (National Institute for Health and Care Excellence
2010a, 2010b) the issue of substance misuse should be raised at the initial booking
appointment, followed by subsequent action if a concern is raised at the discretion
of the midwife. This may take the form of specific guidance to reduce intake, or if
deemed necessary a referral to a specialist midwife and relevant interdisciplinary
team. On alcohol consumption, policy regarding how to determine the level of
consumption is at the time of writing generally at the level of the local health
authority, hospital trust, or according to the best judgement of the individual
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midwife, with no guidance provided by NICE. This commonly takes the form of
average units per week, but may include Tolerance, Annoyance, Cut down, Eye-
opener (T-ACE)? (Sokol et al. 1989) and similar measures.

Beyond the “booking” appointment, the onus is on women to raise concerns
about their drinking behaviour, or the midwife to probe further if they feel it is
warranted. In either case, once a concern has been raised the midwife must respond
clinically, and inevitably personally, to the information.

In an ideal world, all interactions with healthcare providers would be immedi-
ately and fully disclosive, with no repercussions for the patient. However, alcohol
misuse by women is known to attract stigma (Gomberg 1988), and is a recognised
barrier to appropriate treatment in the maternity context (National Institute for
Health and Care Excellence 2010b; Radcliffe 2011).

11.2.3 Disclosure Game

In order to translate the scenario sketched above into a more abstract, tractable form,
we cast it as a signalling game, and assume that women’s disclosures (or not), are
signals. We also impose a discretisation on the continuum of alcohol use, and use
three types of behaviour — light,* moderate, or heavy. Correspondingly, they are
limited in what signals they may send when claiming to be one of these three types.

Midwives are treated in a similar fashion, where their type corresponds to
how negatively they regard a drinking pattern — non-judgemental, moderately
judgemental, and harshly judgemental. The expression of this judgement is not a
matter of choice on their part, and is assumed to have no impact on their clinical
response, which is to either refer the woman for specialist treatment, or do nothing.

At the end of a game, each player receives a payoff dependent on the actions
and types of both players. Because both women and midwives have an interest in
the outcome of the pregnancy, and would prefer a healthy baby, the payoff has a
common interest component. Hence, both players receive a payoff based on the
outcome of pregnancy, but women bear a social cost dependent on the signal they
sent and the midwife’s reaction to it. Similarly, midwives pay a cost if they refer to
a specialist, mirroring the organisational cost of non-routine care. Table 11.1 shows
the three payoff matrices which together describe the game.

As an example, consider the challenge faced by an agent of the heavy drinking
type. In order to get the best health outcome, they must be referred and would ideally
achieve this without paying any social cost at all. The best move depends on the type
and beliefs of the midwife. For example, a particularly unlucky scenario might be

3The T-ACE is a four question screening test for alcohol misuse intended specifically for use with
pregnant women.

40r abstinent, the extent of alcohol consumption being such that it would generally be felt to pose
essentially no risk.
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Table 11.1 Payoff matrices

‘Woman ‘Woman
Midwife | Heavy |Moderate | Light Midwife Heavy | Moderate |Light
Harsh -2 —1 0 Refer 10 10 10
Moderate | —1 0 0 Don’t refer | —2 —1 10
Non 0 0 0 b Health outcome, X;, for women
a Social cost, X,, for women, given and midwives, given the midwife’s
their signal, and the midwife’s type action, and woman’s type

‘Woman

Midwife Heavy | Moderate |Light
Refer -9 -9 -9
Don’t refer 0 0 0

¢ Referral cost, X., for midwives,
given their action and the woman’s

type

for the midwife to not only be of a harshly judgemental disposition, but to believe
that no women really need to be referred (i.e. that all women are light drinkers).
Even a relatively weak belief in this possibility can make the honest signal look like
an unwarranted risk.

To formally define the game, let N = {m, w} be the set of players each with a
private type 6; € ©, and a set of types ® = {/, m, h}, with pure strategies A,, =
{r,n} and A,, = {l,m, h}. Here, {l, m, h} correspond to light, moderate, and heavy
alcohol consumption for women, and non-judgemental, moderately judgemental,
and harshly judgemental for midwives. Midwives’ pure strategies {r, n} are to refer,
or do nothing, and those for women are to signal that they have one of the possible
drinking patterns. Additionally, we define two utility functions:

uw(sww Sm Owa em) = Xs,swﬂm + Xhﬂw,sm (1 11)
Um (svw Sm> Ow) = Xhﬂw,sm + Xc,@w.sm’ (11.2)

with X, X, and X, being the payoff matrices as in Table 11.1, s,, and s,, denoting a
specific signal by a woman and referral response by a midwife. Lastly let p,,(, m, h),
pm(l, m, h) be distributions over types of women, and midwives respectively.

As noted, rather than solve the game, we allow populations of agents to play
it, and hence stipulate further that women are drawn in order from a queue of n,,
women (where n,, = 1000 in all simulations), and play against a midwife chosen
at random from a population of n,, (1, = 100). They play for a maximum of r,
rounds (r,, = 12 following the routine number of ante-natal appointments in the
UK (National Institute for Health and Care Excellence 2010a)) or until they are
referred, and a new player is drawn from the same distribution that produced the
original players to replace them. If they are not referred, they rejoin the back of the
queue after their appointment. In either case, they are informed of their payoff after
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each round and update their beliefs accordingly using one of the rules described in
Sect. 11.2.5.

Midwives play for r, rounds (r,, = 1000 in all experiments), and conduct
appointments in parallel, i.e. if there are five midwives, then five women are drawn
from the queue and assigned at random to the midwives. Unlike women, midwives
are only informed of their payoff if they choose to make a referral. Both groups of
agents have perfect recall, and midwives are assumed to retrospectively update their
observations if they make a referral after a number of appointments.

11.2.4 Social Learning

In reality, learning is not exclusively from personal experience, and social learning
plays an important role. This social dynamic fits naturally into an agent framework,
but is difficult to address without using an approach concerned with process, so we
take advantage of this to show a naive take on it here.

In the disclosure game model, this takes the form of having each midwife
recount their play history to their colleagues with some probability g. Individuals
then incorporate shared information into their beliefs using weighted updates,
e.g. for a midwife a shared observation of a low type signal contributes to their
beliefs by w, and 0 < w < 1 (i.e. n; = n; + w). Women share only when they
have finished play, and provide their complete history of games, because they
have accurate information about the outcomes. By the same rationale, midwives
share only their history with the most recent woman they referred. Sharing occurs
simultaneously for all players at the end of each round, and all memories are either
shared immediately or discarded.’ Accounts are shared with some probability to all
fellow players. For example, a heavy drinker finishes play having claimed to be a
light drinker, without ever being referred, and their account is selected to be shared
with some probability ¢,, with all other women.

Because of their differing problem representations, the simple payoff reasoners
and their more complex counterparts incorporate this exogenous information dif-
ferently. The simple payoff based rule relies on a belief structure relating actions
directly to rewards which is essentially model free. Because payoffs differ by the
agent’s private type, the information shared may not correspond to the experience
of the listening agent in the same scenario. As a result, payoff reasoners have a belief
bias towards the most common player type, and can believe in outcomes that are,
for them, impossible.

A payoff based agent, who is a light drinker, hears the account of the heavy
drinker. They take the account as literally happening to them, and update their
beliefs to include the possibility that there is a negative outcome attached to claiming
to be a light drinker.

SMore precisely, memories of games remain, but it is assumed that only the most current
information is relevant enough to be shared.
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By contrast, representing the problem in terms of the probabilities of the individ-
ual lotteries imposes a model that abstracts the new information from payoffs, and
allows the agent to discard implausible outcomes. This stronger assumption as to
the static and known qualities of payoffs does however reduce the flexibility of the
decision rule.

Returning to our example, a light drinker using this decision rule would follow
the account through from their position in the game tree, correctly inferring that the
outcome in their case would be positive.

11.2.5 Agent Models

While in principle a wide variety of agent models are possible, given that decision
rules operate on essentially the same information, and produce the same output
(a decision), we limit ourselves here to four. The simplest is a lexicographic rule
(1), in the spirit of a Fast and Frugal Heuristic (Gigerenzer 2004) which uses
only information about payoffs given actions; this is followed by a Bayesian risk
minimisation rule (2) using the same information; a second Bayesian risk rule (3)
which uses information about the underlying lottery; and a two-stage Cumulative
Prospect Theory (CPT) (Hau et al. 2008) agent (4) which is identical to 3, but uses the
CPT decision rule (Tversky and Kahneman 1992). Hence, each successive decision
model adds a layer of sophistication to the problem representation while retaining
the same input-output characteristics.

Agents have perfect recall and midwives recognise women if they repeatedly
encounter them, making use of new information for retrospective updates. However,
all four agent models make decisions ‘as-if’ they were always facing a new
“opponent”.

A simplifying assumption is made that all midwives have just qualified after
receiving identical training. As a result, they have homogeneous beliefs about
women and assume to some extent that they are honest. Women have heterogeneous
beliefs, which correspond to experiencing k& randomly chosen paths through the
game, and following each path at least once.

11.2.5.1 Lexicographic Heuristic

The lexicographic heuristic (Algorithm 1) follows the form of that used in Hau
et al. (2008), and assumes a simplified problem representation, where an action is
a choice between combined lotteries. Functionally, the heuristic maintains a count
of the number of times that each action was followed by a payoff, and chooses the
action which most commonly has the best payoff, i.e. one reason decision making.
Where there is no clear best action, but one or more is evidently worse, a choice must
be made as to whether to discard the poorer action; in this case we have elected to
retain it. This approach requires minimal computation, and does not assume that u;
is static, or known.
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Women resolve this by approximating the utility function, as a function f(s,,, o)
on their choice of signal and an unknown distribution o, which maps to u,, — i.e.
sy 1s a choice between simple lotteries. The algorithm maintains a count, n, of the
number of occurrences of each outcome given the choice from s,,.

Midwives solve a slightly different problem with more information, where s,, is
known, and s, is the lottery choice — f (s, S, 0). This is resolved by maintaining
a separate count for each signal (i.e. n;,s,), and otherwise following the same
Algorithm 1.

Sm

Algorithm 1 Lexicographic heuristic

n <— 1, action <— none
while action = none do
Calculate the nth most common outcome following each action.
Sort actions by the value of the nth most common outcome.
if clear winner then
action <— best
end if
n<n+1
end while
return action

11.2.5.2 Bayesian Payoff

The Bayesian payoff agent uses the same subset of information as the lexicographic
method, but updates beliefs on the link between actions and payoffs using the Bayes
rule, and attempts to choose the action which minimises risk.

Given the discrete nature of actions and payoffs, coupled with a desire for
tractability of the simulation, the Dirichlet distribution is employed as a prior to
represent these beliefs. The distribution is particularly convenient, in that to infer
the probability of a signal implying a payoff is simply:

o + 1

— > 11.3
Zj(aj + nj) ( )

px=jlID,a) =

where n; is simply the count of occurrences of signal-payoff pair j, and «; is the
pseudo-count of prior observations® for a pair j. Hence, the belief that a signal will
lead to a payoff is the number of times that pairing has been observed (including
the pseudo-count), over the total number of observations thus far. This makes
computation of beliefs fast and simple, since all that must be maintained is a count

6Pseudo-counts are related to, but distinct from prior beliefs. Here, the pseudo-count is a parameter
to the prior belief distribution and is nothing more than a hypothetical count of prior observations.
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of observations. As before, midwives follow a similar pattern but maintain n;,
independent counts of pairings between referral choice and payoff, updating their
beliefs about the relationship between the choice to refer and payoff given the signal
they have received.

Agents then choose the strategy s; to minimise risk R;, which is simply defined

as:
Ru(sw) = ) —xp(xlsy) (11.4)
xeX
Riu(sy, 5m) = Z —xp(x|sy A S, (11.5)
x€X

where X is the set of payoffs the agent has observed to follow s;.

11.2.5.3 Bayesian Risk Minimisation

The second Bayesian agent augments the reasoning of the simple payoff model,
making the stronger assumption that the utility function is static and known. Women
maintain two sets of beliefs, corresponding respectively to p,, and the probability of
referral given signal choice. This leads to the risk function, minimised with respect
to sy,:

Ry(5.00) = D Y =ty (s i. 6. JP()p(ilsi). (11.6)

i€A, jEO

so that the risk of a signal is the sum of the products of all payoffs with the
probabilities of their entailed midwife types and responses.

“Midwives” reasoning centres on determining the meaning of signals, since given
the knowledge of what some signal s,, conveys about the true type of the sender, the
payoff for an action is known. As such, their inference process is the same as for the
simple Bayesian agent but over signal-type pairs, and they attempt to minimise the
following risk function, minimised with respect to s,,:

RS 5m) = Y =t (S5 S, DP(ils)- (11.7)
i€®

11.2.5.4 Descriptive Decision Theory

The most complex decision rule used is CPT, which attempts to reproduce a number
of systematic deviations from rationality observed in humans. Rather than risk,
‘prospects’ (i.e. the sequence of payoff-probability pairings in ascending order of
payoff associated with an action) are used as decision criteria. While CPT has
primarily been applied in the context of decisions from description, it has been
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modified to deal with decisions from experience by incorporating a first stage
where probabilities are estimates from observations (Fox and Tversky 1998). In
this instance the Bayesian inference process fills the first stage role.

CPT uses transformed probabilities underweighting small probabilities and over-
weighting large ones. This is intended to reflect the observed behaviour of humans,
where sufficiently high likelihoods are treated as certain, and contrastingly low
probabilities as impossible. The correct weighting function is subject to some
debate, but here we have used that of Tversky and Kahneman (1992), which treats
probabilities differently for gains (Eq. 11.8) and losses (Eq. 11.9):

_ r
@+ =p)
p8

T A

wt(p) (11.8)

(11.9)

where p is the unweighted probability, and y and § are the weights for gain and loss
probabilities respectively. Along similar lines, the values of losses and gains are
transformed to reflect a tendency to regard a loss as more significant than a gain —

f(ui)v lful >0
v(u;) = 10, ifu; =0, (11.10)
Ag(u;), ifu; <0

where

ue, ifa >0

fui) = {1n(w;), ifa =0 (11.11)
1— (1 +uw)?, ife<0

—(—u;)P, iff >0
g(u;) = § —In(—u,), if=0. (11.12)
(1—u)? -1, ifp<0

and o, and B are respectively the power of a gain, and a loss, and A is a multiplier
giving the aversion to loss.
Finally, the transformed probabilities are used to construct decision weights,

T, w~ for gains and losses, where,

at =wt(p,) (11.13)

n

T, =W (pem) (11.14)
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ni+ =wr@pi+...4+p)—w@ip1+...+p),0<i<n—1 (11.15)
=W P+ Fp) =W P+ ...+ pi), 1 =m<i<0. (11.16)

The CPT value of a single outcome prospect f = (u;; p;), is v(u;)7w ™ (p;) if u; > 0,
and v(u;)7w~ (p;) otherwise. For any given action the CPT value V is the sum of the
value of the prospects of that action, as in the Bayesian risk model, and the agent
chooses the option which maximises this quantity.

11.3 Method

This section provides details of experiments conducted to examine the ability of the
model to reproduce qualitative trends reported in the midwifery literature by Alvik
et al. (2006) and Phillips et al. (2007); as well as a global sensitivity analysis and
construction of statistical emulators to explore and contrast the response surfaces of
the four decision rules.

11.3.1 Qualitative Trends

Throughout this chapter, parameters for the CPT model were the same as those used
in Tversky and Kahneman (1992) (Table 11.2). While there has been significant
work on determining appropriate parametrisation for the model (e.g. Neilson and
Stowe 2002; Nilsson et al. 2011; Glockner and Pachur 2012; and particularly
Byrnes et al. (1999) and Booij et al. (2009) addressing risk aversion and gender), a
full exploration of the impact of these parameters, or heterogeneous values within
populations is beyond the scope of this work. For simplicity, it was assumed that
all three drinking types are equally prevalent within the population, although results
derived from the Avon Longitudinal Study of Parents and Children suggest that
the reality is far more positive’” (Humphriss et al. 2013). The scenario was biased
towards disclosure as the better option by presuming a distribution of midwives
strongly skewed towards non-judgemental types, with beliefs initially favouring
honesty. Payoffs were as in Table 11.1, which ensure that it is always strictly
preferable to refer drinkers and, together with the initial belief that signals will be
honest, not to refer those claiming otherwise.

Two key measures were used: the fraction of the subpopulation who had ever
signalled honestly and the proportion of the population who were referred. Both
measures were taken after every round of play, and were taken relative to the agent’s

795.5% of women in the sample reported consumption at, or below, NICE recommended safe
levels.
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Table 11.2 Model parameters

Name Description Value
n, Number of women 1000
Ny Number of midwives 100
Tm Number of appointments per midwife 1000
Ty Maximum number of appointments per woman 12
Runs Simulation runs 1000
pw(h) Proportion of heavy drinkers 1/3
P (m) Proportion of moderate drinkers 1/3
pw(D) Proportion of light drinkers 1/3
Pm(h) Proportion of harsh midwives 5/100
Pm(m) Proportion of moderate midwives 10/100
Pm(D) Proportion of non-judgemental midwives 85/100
G Probability of women sharing 0

Wy, Weight of shared information for women 0

Gm Probability of midwives sharing 0

Wi Weight of shared information for midwives 0
sila;] = sila—i] Pseudo-count favouring honesty 10:1
y Probability weighting for gains 0.61

8 Probability weighting for losses 0.69
o Power for gains 0.88
B Power for losses 0.88
A Loss aversion 2.25

position in their sequence of appointments giving the probability of signalling
honestly, or being referred having had a given number of appointments.

In addition to assessing the adequacy of the rules in capturing qualitative trends,
we also examined the impact of simple social learning within the population of
women (Sect. 11.2.4) on the robustness of these trends. The original experiment
was repeated at ¢,,, w,, € {0.25,0.5,0.75, 1|g,, = w,,}, with 100 runs under each
condition.

11.3.2 Global Sensitivity Analysis

In general, we have followed the example of Bijak et al. (2013) for global sensitivity
analysis of stochastic agent based models, although see Thiele et al. (2014) for a
review of alternative techniques. For this purpose the Gaussian Emulation Machine
for Sensitivity Analysis (GEM-SA) software (Kennedy 2004) was used, which
implements the Bayesian Analysis of Computer Code Outputs (BACCO) method
developed by Oakley and O’Hagan (2002, 2004), Oakley et al. (2006). This is a
form of variance-based sensitivity analysis, which assumes that the model output
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Table 11.3 Parameter ranges

Name Description Min Max
P (m) Proportion of moderate drinkers 0 1
pw(D) Proportion of light drinkers 0 1
Pm(m) Proportion of moderate midwives 0 1
pm(D) Proportion of non-judgemental midwives 0 1

Gw Probability of women sharing 0 1
Wy Weight of shared information for women 0 1

qm Probability of midwives sharing 0 1
Wi Weight of shared information for midwives 0 1

Xp Health payoff for healthy delivery 1 100
Xy Cost for referral —(xp—1)
silai] = sila—i] Pseudo-count favouring honesty 1:1 100:1

is an unknown, smooth function of the inputs. The unknown function can then be
approximated as a Gaussian Process, which is fitted to the training data using Bayes’
Theorem and then serves as an emulator for the simulator. The emulator is then
able to provide an indication about the extent to which uncertainty in a parameter
propagates to uncertainty in the output, and how sharply the output responds to
change in each parameter.

Parameters for training were generated in R (R Core Team 2014) using an
appropriately transformed Latin Hypercube Sample (Carnell 2012) over the space
of parameters given in Table 11.3, giving eleven free parameters which were treated
as uniformly distributed in the range given. Given the limitation of 400 design points
for the GEM-SA software, we produced exactly that many parameter combinations
and collected results for 100 runs of each, with emulator quality assessed by leave-
one-out cross validation. A fixed set of 100 random seeds was used,® such that each
parameter set was run once with each seed, for every decision rule.

To capture the response characteristics for the model, we measured four outcome
variables: (1) the interquartile range (IQR) of the average signal sent by each type
of agent in a run, (2) the average signal of moderate drinking agents in a run, and
(3, 4) the IQR of 1 & 2 between simulation runs. Together these four metrics give
an indication of how far women are separable by their signalling behaviour (1), the
behaviour of the at risk drinking groups® (2), and finally the variability of the system
in response to changes to the parameters (3 & 4).

Measurements were taken at the end of 1000 rounds of play, and emulators were
built against 400 sample points from the full set of simulation results (1 & 2), and

8Fixed random seeds were used to allow simulation results to be reproducible, since the
combination of a parameter set and a random seed yields a deterministic process.

“Under most conditions, the behaviour of heavy drinkers tracks closely with their moderate
counterparts.
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the IQR at each point (3 & 4) to assess both the overall trend, and the extent to which
the parameters contribute to variance between runs.

Sixteen emulators were built, covering each of the four outputs on all decision
models and used to conduct a probabilistic sensitivity analysis to assess the impact
of parameters and interactions.

In addition to the sensitivity analysis, we also employed the resulting emulators
to rapidly'® explore the parameter space. While emulated results are subject to
inaccuracy, they do provide an indication which regions of the parameter space are
plausible, and yield interesting results. Results for the outcomes of the interactions
of s;[a;] : s;[a—;] with x;, and ¢g,, with w,, are given in Sect. 11.4.3.

11.4 Results

11.4.1 Qualitative Trends

As shown in Fig. 11.1, all four decision rules were able to reproduce both qualitative
trends towards more disclosure as women experience more appointments (Phillips
et al. 2007), and a greater tendency towards underreporting of consumption by
heavier drinkers (Alvik et al. 2006). Trends for all four rules are broadly similar,
exhibiting a gradual increase across appointments which subsequently levels off.
This levelling can in part be explained by the referral results (see Fig.11.9
in Sect. A.4), which show that the majority of drinkers are referred, even with
substantial concealment. Referrals continue to occur, in the absence of honest
signals, because drinkers are able to achieve a referral by masquerading as higher
or lower types, dependent on how their initial beliefs are biased. Despite this the
results suggest that a minority of risky drinkers will evade detection altogether, with
no notable distinction between heavy and moderate types. Under these parameters,
light drinkers always signal honestly and are never referred since there is no
perceived advantage in doing so, and the evidence of deceptive signalling is
insufficient to outweigh the biased priors of the midwives.

11.4.2 Social Learning

Introducing social learning amongst women leads the behaviour of the decision rules
to diverge markedly, which we explore possible reasons for in Sect. 11.5. Figure 11.2
shows the proportion of women who have signalled honestly at least once by their
final appointment, under four sharing conditions.

190nce constructed, the emulator has an analytical solution conditional on the roughness parame-
ters, which obviates the need to use MCMC.
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Bayesian Bayesian Payoff
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Fig. 11.1 Average fraction of population ever signalled honestly by each appointment, after 1000
rounds, mean with 95 % confidence limit over 1000 runs. Note that the large number of runs leads
to very tight confidence intervals

Aside from the lexicographic decision rule, the general tendency is towards less
honest signalling by heavy drinkers, which is accompanied by a slight increase in
referrals for the Bayesian, and CPT rules. For these decision models, this is because
social learning exacerbates the existing tendency of heavy drinkers to impersonate
moderate drinkers, who behave more honestly as heavy drinkers become less so.
This arises because both classes of agent learn that the moderate signal is the lower
risk option as it is both a reliable indicator of need, and does not attract strongly
negative judgement. The reliability of the signal is self reinforcing, since the more
the agents use it and get referred, the more confident midwives become that it
indicates need.

Particularly notable, is the decline in honest signalling by light drinkers visible
in both heuristic type rules at the 0.25 level of ¢,, & w,,, which is associated with
an increase in false positives. This arises because of the lack of homophily in social
learning, as light drinkers become informed about negative outcomes associated
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Fig. 11.2 Impact of social learning on trends in the average fraction of population ever signalled
honestly by their final appointment, after 1000 rounds, mean with 95 % confidence interval over
100 runs

with concealment, despite having nothing to conceal. The relatively high referral
rates of drinkers heighten the effect further, because shared information becomes
dominated by their experiences.

The relationship is not, however, entirely straightforward, in that increasing
social learning leads to greater variance between runs. A linear model was used
to predict the between-runs interquartile range of the average signal sent by
moderate drinkers. The predictors used were decision rule and level of social
learning, together with the interaction between the two. The regression results
were significant (F7.;, = 25,p < 2.9 x 107%) with R = 94 %, and intercept
0.07. The only significant coefficients were for the interaction terms, which were
0.44 (p < 0.05) for the Bayesian payoff rule and 0.69 (p < 0.005) for the
lexicographic rule. This suggests that social learning for the heuristic style decision
rules introduces considerable uncertainty to the model, which is explored further in
the sensitivity analysis below.
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11.4.3 Sensitivity Analysis

In this section we present a brief overview of the sensitivity analysis, followed by
selected results highlighting the global effect of changes to perceived payoffs and
degree of bias towards honesty, as well as social learning within women. The full
results for the sensitivity analysis covering all sixteen emulators are available in
Sect. A.S.

For the median signal choice of moderate drinkers, the results of the sensitivity
analysis suggest that the proportion of light drinkers has a significant effect for all
decision rules, accounting for 10, 38, 24, and 5 % of the variance in output for
the Lexicographic, Bayesian Payoff, Bayesian, and CPT rules respectively. For the
Lexicographic rule, the overwhelming majority of variance in signalling behaviour
is reflective of the prevalence of stigmatisation by midwives (44 % p,,(m), 7%
pi(m), and a further 15 % for their interaction). The proportions of midwives are
also key drivers in group separation and the between run IQR of both measures for
this rule.

Perhaps surprisingly, variance attributable to social learning between midwives
is relatively low, with neither the weight nor probability accounting for more than
5 % of variance in any measure. While there are small contributions to variance in
interaction with other parameters (e.g. 4 % to between groups IQR for the interaction
with the proportion of light drinkers under the Bayesian rule), this may suggest that
the model is lacking in this area, which we touch on in Sect. 11.6.

Figure 11.3 gives a qualitative picture of both emulator quality, and the divergent
response surfaces of the decision rules in response to variations in social learning
parameters. Emulator fit is clearly imperfect, but overall behaviour is qualitatively
similar, with both emulated and simulated plots demonstrating separation in out-
come space for the decision rules.

Following from the suggestive results for social learning introducing uncertainty
(Sect. 11.4.2), Fig. 11.4 shows emulated points covering the parameter space in high
resolution. These plots reflect the increase in uncertainty of outcome shown for the
heuristic type rules, which is especially severe for the Bayesian payoff rule. They
also suggest that the Bayesian decision rule is less stable under conditions where the
weight of shared information is substantially higher than the probability of sharing.
This indicates that placing a high weight on information from limited sources leads
to greater variability, i.e. what information is shared matters.

For the CPT and Bayesian decision models, the interaction of bias towards
honesty and distinction between payoffs has a significant and non-linear effect
on instability and separability of groups. Figure 11.5 shows the effects, and also
highlights the tendency towards poor separability of groups for both the heuristic
type decision rules. The response surface of the Bayesian payoff rule is slightly more
nuanced than the simple Lexicographic rule. Figure 11.5 shows better separation,
close to partial pooling!! at high payoff distinction, with relatively modest honesty

Pooling occurs when signallers of different types ‘pool’ their signals, and one adopts the signals
of another.
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Fig. 11.3 Median moderate drinker signal vs median between drinking type IQR for all decision
rules, with signals coded as 0 = light, 1 = moderate, and 2 = heavy

bias, which is reflected by the variance contributions of 11 and 8 % respectively.
For the more complex rules, the general tendency is towards less pooling for higher
values of both, but with pockets where full pooling!? occurs. The plots also suggest
that the sensitivity of the CPT rule is marginally greater, which is supported by the
significant contribution to variance of close to 15 % for all measures of x;,.

11.5 Discussion

From a pragmatic perspective, the differing response characteristics of the classes
decision rules are substantial and significant, particularly when social learning is
considered. There is a high level of uncertainty in the overall dynamics with the
model free rules. This does not arise with the more complex rules, because they

Indicating that all signaller types are using a the same signal.
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Fig. 11.4 Emulated moderate drinker signal IQR in response to varying g,, and w,,

reframe information from others in the context of their own experiences, as what
would happen to them in that situation. By contrast, the simpler rules treat the
experiences as having literally happened to them, and since there is no mechanism
of homophily, no way to listen only to accounts of agents similar to themselves, they
can come to believe unreasonable things. Naturally, incorporating homophily, by, for
example weighting shared information by the type of the sharer, would represent a
trivial modification to the heuristic models. While to some extent this highlights the
flexibility of the decision rule approach, it would of course sacrifice the parsimony
of the model. This is an important consideration, given that part of the argument in
favour of a decision theoretic approach lies in the minimal nature of the behavioural
rules.

One of the notable features of the results is that the behaviour of rules within
a class is very similar. To some extent this reflects poorly on the most complex
rule, CPT, which diverges only minimally in behaviour from the Bayesian model.
This might be to a degree anticipated since we have not elicited payoffs for obvious
practical and ethical reasons, and they may be unrealistic, which limits the utility
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of the CPT approach. Additionally, work by Glockner and Pachur (2012) has shown
that there is considerable variation in individual parameters for the decision model,
whereas we have let them remain homogeneous here. In the same vein, utility
functions should arguably vary between individual agents, which could potentially
be addressed by replacing the fixed payoffs used here with a distribution. With
this said, the significant increase in complexity, which entails both additional
parameters and increases to simulation time may necessitate a middle ground,
particularly where elicitation of payoffs is impractical. This, together with the
variability associated with the heuristic type decision rules speaks to a trade off
between capturing reality and replicating it.

Continuing the discussion of the issues raised by the representation of payoffs,
the temporal aspect is significant, in that there is a timing difference in payoffs,
since while the potential social pain of disclosure is immediate, the health outcome
comes only later. In light of this, that there is a known impact of time on perceived
utility Thaler (1981) suggests that incorporating some form of temporal discounting
(e.g. exponential (Samuelson 1937), or hyperbolic (Ainslie 1991)), or a decision
model which explicitly treats intertemporal choice, such as the CPT-like model of
Loewenstein and Prelec (1992), is warranted.
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As noted in Sect. 11.3.2, the impact of social learning in midwives is surprisingly
minimal, where it might be expected to play a more significant role in reality.
A possible explanation for this lies in the implementation, which may place an
excessive constraint on how much information midwives can share. The restriction
to sharing only after a referral, together with the disparity in population sizes and
random allocation of appointments, leads to midwives rarely having more than a
single interaction with woman to pass on to their colleagues. Furthermore, because
midwives are only informed of the true type if a referral occurs, they have an
inherent myopia since until they have evidence of deception they will not refer,
with said evidence difficult to obtain without a referral.

In reality it might be anticipated that midwives would not withhold judge-
ment, and would pass on concerns about specific women to their colleagues,
or that particularly dramatic stories would persist and be passed. This might
be addressed by incorporating noisy type information (Feltovich et al. 2002),
capturing the unintentional information transmitted during appointments, together
with a relaxation of the assumptions about when information may be shared and
a more sophisticated model of information flow in general. This also highlights an
advantage of the BACCO approach (which we describe in Sect. 11.3.2), in diagnosing
issues with model design by giving insight into parameters which are contributing
inappropriately to variance in output. Coupled with the ability of emulators to
rapidly explore parameter space, this clearly suggests that statistical emulation is
a powerful tool to support simulation based approaches. As noted in Sect. 11.4.3 the
emulators here are indicative, but not definitive. Amongst the reasons discrepancy
arises here are heteroskedasticity associated with social learning, the stochastic
nature of the simulation, and a lack of precision given the large parameter range. The
former issues could be addressed by a more comprehensive approach to setting the
nugget, which explicitly incorporates point variance. The latter could be improved
through iterative fitting procedures, where the simulation is sampled more heavily in
plausible regions of parameter space, a procedure not possible here given the dearth
of data to evaluate plausibility. That the discrepancy exists is not prohibitive in this
instance, since we are not using the emulator for prediction, only to achieve a broad
strokes picture of the behaviour of the simulator.

11.6 Conclusion

The conclusions that can be drawn about the behaviours of real life women, and their
midwives, are necessarily limited by the paucity of data available to validate the
model. While qualitative trends offer some indication, they are limited in scope, and
do not permit strong claims about the drivers of disclosure. As such, further work
will focus on applying the model to domains where validation data is more available,
which will support a more comprehensive evaluation of the model discrepancy. With
this said, the trends reported by Alvik et al. (2006), and Phillips et al. (2007) are
borne out by the model, and predictions from the two more complex rules suggest
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that encouraging information sharing between women may encourage disclosure,
but at the expense of reducing accuracy. By contrast, if one takes the view that a
Lexicographic model is a better approximation of real behaviour, then outcomes can
best be influenced by controlling how far midwives punish their women socially. We
would however suggest that there are better reasons than the outputs of a simulation
for doing so.

More broadly, the results demonstrate the logistical feasibility, and its utility as
a ‘tool for thinking’, of an agent model grounded in decision theory. The results
also make clear that deciding the operationalisation of the decision making is of key
significance.
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Appendix
A.1 Disclosure Game Model Development

This appendix provides a more in depth exploration of the model development
process, beginning by deriving a game to serve as the basis for the model and
decision problems.

A game, in the game theoretic sense, can be any interaction where the result for
one person is dependent on the actions of another. In this scenario, the result for
the woman would seem dependent on whether the midwife chooses to refer her for
specialist support (although naturally the reality can only be thought of in terms
of risk mitigation), and conversely, the right choice for the midwife is somewhat
contingent on what the woman is willing to tell them.

A very simple way to represent this would be a game with two players, who both
have two possible moves — ask for help, or not; and refer, or not (Fig. 11.6). Since
both parties are invested in the outcome of the pregnancy, we might allow them to
share the same payoff if everything ends well.

The first complication, is that there should be differentiation between referring,
and doing nothing because specialist treatment incurs a cost. We can modify the
payoffs to reflect this, by reducing the midwife’s payoffs when they refer. If the cost
of referring is less than the value of a good outcome, then the effect of this is to
make the only rational choice when not asked for help is to do nothing.

This simple game is however not very informative, and clearly neglects much
of the nuance of the scenario. The wider difficulty here is that the real outcome
depends on an attribute of one of the players, rather than their moves. In this case,
we would expect the right choices to depend on the alcohol consumption of the
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Woman

R?,ést h&Do nothing

Midwife Midwife
elp|Do nothing Help\ Do nothing

1,1 0,0 1,1 1,1

Fig. 11.6 A very simple two player game. The only time things in this very restricted world
obviously end poorly is if the woman asks for help but does not get any. This implies that a rational
player would always refer if asked for help, and is indifferent otherwise — in other words, there are
three possible Nash equilibriums (a Nash equilibrium is a solution to a game between two or more
players, where no player can gain from changing their move)

woman, rather than entirely on what she has claimed about it. To reflect this, we
would need different variations on the same game to reflect this attribute.

To resolve this, we can do exactly that and cast it as a signalling game (Fig. 11.7),
with three types of player corresponding to categories of drinking behaviour (light,
moderate, and heavy). Each of these types of player, will play a different game. This
also introduces a third player, who we will call nature. Nature takes the first move,
and decides the type of the woman according to some probability distribution; in this
case we will allow the probability of types to be uniform. This changes the dynamics
of play substantially, since the midwife can no longer be certain of which game they
are playing, and hence which move yields the best outcome. We must also amend
the moves, and payoffs slightly. The woman now claims to be one of the types, and
may send a signal to say, for example, that she a heavy drinker. We will also modify
the common payoffs to allow light drinkers to get the best outcome no matter what,
and moderate and heavy types to get the best outcome only if referred. We can also
differentiate between the consequences of not getting help for these types by letting
heavy drinkers have a very negative outcome, and moderate drinkers a slight one.

At this point, the game becomes challenging to analyse from a Nash equilibrium
perspective (there are several hundred). But, having raised to issue of stigma, we
would also like to incorporate this in the game. A possible approach to this is
similar to the drinking behaviour of the women, and lets midwives have a type
as well, corresponding to how judgemental they are when receiving signals: non-
judgemental, moderately judgemental, and harshly judgemental. The expression of
this judgement is not a matter of choice on their part, and is assumed to have no
impact on their clinical response. Nature now has an additional move, to choose the
type of the midwife, and we add costs for sending moderate and heavy signals. A
heavy signal to a harshly judgemental midwife adds a heavy cost, and a moderate
cost from a moderate midwife. The resulting game might reasonably be said to be
intractable.
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Fig. 11.7 A less simple two player signalling game
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Harsh judgement

Women (heavy drinkers)

b Heavy drinker

Moderate drinker Healthy baby and referral cost

Light drinker

Not-refer

Heavy drinker No baby

Moderate drinker

Unhealthy baby
Light drinker

Healthy baby

Midwives

Fig. 11.8 Influence diagrams, showing the game broken into two decision problems. Squares
indicate a decision node, while circles are (from the perspective of the agent) chance nodes (a)
Women (heavy drinkers). (b) Midwives

At this juncture, we do not gain much further from the game representation, and
instead separate it into multiple decision problems.

Breaking the game down into separate decision problems can be achieved by
treating the moves of the other players as a chance node, and omitting moves by
nature that are known to them. For women, there are two such nodes, corresponding
to the move by nature determining the type of midwife they play against, and the
midwife’s action. Midwives have a simpler problem with only a single chance node,
because the woman’s move is known to them. Figure 11.8 shows the structure of
the resulting decision problems. Note that there are in fact three distinct decision
problems for the three types of woman, since the move by nature determining their
type is known to them.

The precise structure of the decision problem is to some extent dependent on
the decision rule in use, for example the Lexicographic heuristic rule is concerned
only with a direct relationship between action and consequence. However, the literal
translation from game to decision problem for women yields two chance nodes.
As a result, solving this using the heuristic approach requires that the nodes be
combined. By the same token, an arbitrarily complex problem could be resolved by
rules without this limitation. This is significant, in that the decision problem is an
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individual agent’s model of the situation, which might not be expected to correspond
perfectly with the true sequence of events.

From this position, simulating play and augmenting the basic conjecture is easily
achievable, since together the game and the decision rules specify the basis for a
simulation model. In the disclosure game case, we make additional stipulations on
how many games agents play, order of play, the circumstances under which agents
observe true types, and the structure of agent populations amongst others.

A.2 Simulation Schedule

In this section we give the step by step process for a single run of the disclosure
game simulation.

1. Generate 1000 women, and place them in a queue
2. Generate 100 midwives.
3. For each round of the game

a. Take 100 women from the queue
b. Pair each one with a random midwife
c. For each pair

i. The woman sends a signal
ii. The midwife refers or not based on the signal
iii. The woman is informed of her payoff, the midwife’s type, and whether she
is referred
iv. The woman updates her beliefs
v. The midwife stores the game in their memory
vi. If the woman is referred

A. The midwife is informed of the woman’s true type

B. The midwife retrospectively updates their beliefs using the true
type, and memories of any games with this woman

C. The midwife is now eligible to share their memories of the games
played with this woman

d. Women who have not been referred or had their baby, join the back of the
queue

e. New women are generated to replace those referred or delivered

. The new women are added to the back of the queue

g. For each referred or birthed woman

—

i. With probability p, her memory of games is shared with the active women
ii. She is removed from simulation

h. The active women update their beliefs
i. For each midwife with information to share
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i. With probability p, their memory of games with the referred woman is
shared
ii. The memory is no longer eligible to be shared

j- The midwives update their beliefs

A.3 Agent Examples

This section provides a worked example for the learning and decision process of
each agent model, focusing on the behaviour of the signalling agent.

A.3.1 Lexicographic Heuristic

As an example, take a light drinker who has played three rounds with a succession
of particularly judgemental midwives, signalling honestly in two and claiming to be
a moderate drinker in one. The most common outcome of the honest signal was a
payoff of 10, which is clearly preferable to the 9 gained by claiming to be moderate.
On that basis, they choose to signal honestly.

A.3.2 Bayesian Payoff

We take our light drinker from the lexicographic case and assume that they
began with an uninformative prior. The 6 possible signal-payoffs pairings are then
[(,10), (m, 10), (h, 10), (m, 9), (h, 9), (h, 8)], with a; = 1 for all i. After playing the
three rounds, n; 10 = 2, and n,, 9 = 1.

The agent then evaluates R,, for each signal, e.g. for the light signal:

X = {10}
Ry(D) =) —xp(x|l) = —10p(10]])
x€X
10 + 110 142
R,() = -10(=—/———) = —-10(—=
® (Zj(aj—i-nj)) (1 +2)
3
R,() = —10(3) =-10
and by the same method, R, (m) = —9%, and R,(h) = -9, concluding that

signalling honestly is the best move.



11 Deciding to Disclose: A Decision Theoretic Agent Model of Pregnancy. . . 329

A.3.3 Bayesian Risk Minimisation

Returning to our example agent, under this model the type of the midwife becomes
salient, hence n, = 3, and n;, = 2, n,, = 1. Their prior beliefs remain
uninformative, i.e. oy = 1,j € {{,m, h}, a;; = 1,i € {r,n},j € {I,m, h}. As before,
the agent evaluates R, for the three signals, and the process for the light signal is
given below:

Ru(l.D) =) Y —un(lisLj)p()pCill)
i€A,, JEO
Ru(l,)) = —uy(l,r, 1, )p(Dp(r|l) — u (L, n, 1, Dp(Dp(n|l)
- MW(L r, l’ m)p(m)p(r”) - uw(l’ n, l» m)p(m)p(n|l)
- MW(L r, l’ h)p(h)p(rll) - Mw(l7 n, l’ h)p(h)p(n”)
uy(l,i,1,7) = 10
Ry(1,1) = =10p(D)p(r|l) — 10p(Dp(n|l) — 10p(m)p(r|l) — 10p(m)p(n|l)
— 10p(h)p(r|l) — 10p(R)p(n|l)

o 1Fo 1
PO =T T¥1+3 6
= L0
P = T F1+3 6
143 2
h— —
P =179 3753 73
140 1
l— — —
PrD =327 1
+2 3
l) = =2
Pl =975 =
11 13 1 3 21
Ro(lLD)=—=10-2-~—10- =2 =102~ —10-~->—10-= .~
6 4 4 6 4 4 34
2 3
—10-2.2
34
—_10

and similarly for moderate (R,,(m, [) = —9%), and heavy (R, (h,]) = —8%) signals,
once again concluding that honesty is the better option.



330 J. Gray et al.

Table 11.4 CPT parameters

Name | Description Value
y Probability weighting for gains | 0.61
) Probability weighting for losses | 0.69
o Power for gains 0.88
B Power for losses 0.88
A Loss aversion 2.25

A.3.4 Descriptive Decision Theory

Once again, we return to the light drinker example. The inferential aspects are
identical with the more complex Bayesian risk minimisation algorithm, hence
p(p|l), and u,(l,i,1,j) remain the same, but the agent additionally calculates
v(u, (1, i, 1j))wT (p(j))w™ (p(i|])). For the CPT parameters, the values are those orig-
inally given by Tversky and Kahneman (1992) and used in the actual simulations
which are given in Table 11.4.

o = 0.88

y = 0.61

1

==
p() c
1
P(m)—g
2

h) ==
p(h) 3
1

= -
p(r|D) 1
3

==
p(n|) 1
u(1,i,1,j) = 10

1 1 1 1 1 1
24 8 24 8 6 2

f=rr=0
n=>5
U(uw) :f(uw) = uft‘;
v(u,) = 10°% = 7.59
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And as before, following the same process for moderate and heavy signals, which
yields respectively 7.14, and 6.22, the agent chooses the higher valued action and
sends an honest signal.
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A.4 Supplementary Figures
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Fig. 11.9 Average fraction of population referred by each appointment, after 1000 rounds, mean
with 95 % confidence limit over 1000 runs. Note that the large number of runs leads to very tight
confidence intervals

A.5 Sensitivity Analysis

This section provides complete variance based sensitivity analysis results for the
disclosure game model. Each subsection gives results for one simulation output
under all four decision rules, with tables providing the percentage of overall variance
attributable to the individual parameters, emulator quality statistics, and the five
most significant interaction contributions to variance in the output.
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A.5.1 Median Moderate Drinker Signalling

Table 11.5 Median moderate drinker signalling parameter sensitivity

Parameter Description Lexicographic | Bayesian payoff | Bayesian | CPT

Py (m) Proportion of moderate | 0.367 1.145 0.801 0.614
drinkers

pw(D) Proportion  of light| 10.080 37.750 23.968 5.137
drinkers

Pm(m) Proportion of moderate| 6.715 13.017 0.894 1.485
midwives

pm(D) Proportion of non-|43.942 1.655 1.602 2.618
judgemental midwives

Qw Probability of women| 0.198 5.527 4.460 1.159
sharing

Wy Weight of shared infor-| 0.355 13.025 2.716 0.888
mation for women

qm Probability of  0.145 0.667 0.368 0.157
midwives sharing

Wi Weight of shared infor-| 0.118 0.376 0.176 0.200
mation for midwives

Xn Health  payoff for| 0.457 9.618 1.912 | 15.355
healthy delivery

silai] : sila—] | Pseudo-count 0.140 7.537 10.427 7.795
favouring honesty

Total All parameters and two | 86.777 96.527 85.529 | 74.123

way interactions

Table 11.6 Median moderate drinker signalling emulator statistics

Total output

Rule o? Nugget 02 | Mean output | variance Code uncertainty | RMSSE
Lexicographic | 0.8340.131 0.817 0.012 0.252 1.746
Bayesian payoff | 1.667 | 0.475 0.662 0.003 0.181 3.12
Bayesian 3.35210.534 1.160 0.001 0.068 2.423
CPT 1.503|0.331 1.241 0.002 0.101 1.842
Table 11.7 Top 5 interaction Parameter Variance

terms for CPT decision rule ortsilar] : silam] 20814

pw(D*sila] : sila=i] 5.698
Pw()*x 2.895
silai] © sila=il*wy 2.799
silai] : sila=il*gm 1.686
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Table 11.8 Top 5 interaction

- . Parameter Variance
terms for Bayesian decision -
rule pw(D*sila] : sila—i] | 17.270
Pw(D)*Gm 6.054
q”l *WW 3.814

silai] @ sila=i*gm 3.538
silai] @ sila=i]*w,, 3.084

Table 11.9 Top 5 interaction

terms for lexicographic :
decision rule Pm(D*pm(m) | 15.331

Pn(m)*p,(l) | 3.682
Pm(D*pu(D 3.581

Parameter Variance

D (m)*qy, 0.349
P (D*Gm 0.279
Table 11.10 Top 5 Parameter Variance
interaction terms for Bayesian
payoff decision rule Pu(l)*wy 4.045
Xh*S,'[(l,'] : Si[a—.i] 1.856
Pw(D)*gm 1.231
sila;] : sila=i)*qm | 0.997
Gm ™ Wy 0.929
A.5.2 Median Between Groups IQR
Table 11.11 Median between groups IQR parameter sensitivity
Bayesian
Parameter Description Lexicographic | payoff Bayesian | CPT
P (m) Proportion of moderate drinkers 0.327 0.688 0.457 0.586
pw(D) Proportion of light drinkers 11.223 20.123 11.046 4.081
Pm(m) Proportion of moderate midwives | 36.630 1.160 0.364 1.945
Pm(D) Proportion of non-judgemental | 6.228 4.487 0.0964 | 2.627
midwives
Gy Probability of women sharing 0.498 0.235 2.537 1.812
Wy Weight of shared information for| 1.018 2.307 1.889 0.740
women
Gm Probability of midwives sharing 0.158 0.343 0.387 0.156
Win Weight of shared information for| 0.076 0.973 0.125 0.213
midwives
Xp Health payoff for healthy delivery | 0.317 10.960 3305 | 16.493
silai] : sila—;] | Pseudo-count favouring honesty 1.107 8.411 2.890 6.729
Total All parameters and two way inter- | 81.702 83.693 47.449 | 71.032

actions
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Table 11.12 Median between groups IQR emulator statistics
Total output
Rule 0% | Nugget 6% | Mean output | variance Code uncertainty | RMSSE
Lexicographic | 0.930 | 0.240 0.249 0.002 0.040 1.832
Bayesian payoff | 1.242 | 0.417 0.232 0.001 0.0034 2.308
Bayesian 1.254 1 0.131 0.644 0.000 0.019 1.167
CPT 1.190 1 0.313 0.659 0.000 0.024 1.701
Table 1.1'13 Top 5 Parameter Variance
interaction terms for CPT "
decision rule xpsilai] ¢ sila—i] 19.551
pw(D*silai] : sila—~] | 3.838
S,'[ai] . si[a_.i]*ww 2.450
pw(D)*xp 2.337
silai] @ sila=i*qm 2.046
T&:ble :1’1? TopfS B . Parameter Variance
interaction terms for Bayesian
decision rule silai] @ sila—il*gm 4.284
Pu(D)¥qm 3.866
pw(D*silai] @ sila—] | 2.943
xh*s,«[ai] . si[a_.i] 2.680
G W,y 2.282
T&:ble tl.l’lf TopfS Parameter Variance
interaction terms for
lexicographic decision rule Pun(D)*p(m) | 12.046
pu(m)*py, () | 5.054
pnD*pu(l) | 3.005
Pn(D)*w,, 0.819
P (m)*wy, 0.757
Table tl.l'lf TOpfS B . Parameter Variance
interaction terms for Bayesian
payoff decision rule pu(D)*silai] : sila~i] | 12.883
Pw(D*wy 5.667
Pw(D)*xy 2.447
xp¥silai] ¢ sila—i] 2.360
Pu(m)*py (1) 1.919
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A.5.3 Median Moderate Drinker Signalling IQR
Table 11.17 IQR of median moderate drinker signalling parameter sensitivity
Bayesian
Parameter Description Lexicographic | payoff Bayesian | CPT
D (m) Proportion of moderate drinkers 0.428 9.828 3.816 | 2.068
pw(l) Proportion of light drinkers 8.369 13.791 4.045 |2.400
P () Proportion of moderate midwives | 13.416 0.712 0.676 | 0.583
Pum(D) Proportion of non-judgemental | 21.079 0.648 0.659 10.373
midwives
Gw Probability of women sharing 2.307 3.481 0.891 | 0.600
Wy Weight of shared information for| 6.021 6.009 0.562 |0.937
women
qm Probability of midwives sharing 0.315 1.829 0.114 |0.117
Wi Weight of shared information for| 1.652 1.354 0.260 |0.0.139
midwives
Xp Health payoft for healthy delivery | 0.253 0.612 4.889 | 15.146
sila;] : sila—;]| Pseudo-count favouring honesty 0.504 3.096 |19.863 |25.999
Total All parameters and two way inter- | 84.9968 77413 | 57.125 |83.322
actions
Table 11.18 IQR of median between groups IQR emulator statistics
Total output
Rule 0% | Nugget 62 | Mean output | variance Code uncertainty | RMSSE
Lexicographic | 1.425|0.436 0.549 0.008 0.114 2.719
Bayesian payoff | 1.223 | 0.496 0.747 0.012 0.207 2.034
Bayesian 1.065 | 0.000 0.230 0.002 0.088 1.015
CPT 0.874 | 0.213 0.233 0.001 0.066 1.806
Table 11.19 Top 5 Parameter Variance
interaction terms for CPT " -
decision rule xp*silai] ¢ sila—i] 17.377
pw(m)*sila;] : sila—~;] | 3.356
silai] @ sila=i]*wy, 3.036
silai] @ sila=i)*qm 2.067
pw(l)*silai] « sifa—i] 1721
Table 1.1'20 Topf5 B . Parameter Variance
doctaion e s pulm)*silai] : silai] | 4.188
xp*silai] ¢ sila—i] 3.120
sila;] @ sila=i)*qm 2.423
pw(DEsilai] @ sila=i] | 2.279
Pw(D*qm 1.489
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Table 11.21 Top 5 Parameter Variance
interaction terms for
lexicographic decision rule Pu(m)*py (1) | 12.068
PuD)*pu(D) | 6.794
pn(D*pm(m) | 5.567
Pm(m)*q, 0.886
Pin(D)*Gm 0.692
Table 11.22 Top 5 Parameter Variance
interaction terms for Bayesian -
payoff decision rule Puw(D)*pu(m) 8.357
pw(D)*w,, 7.431
pw(D*silai] © sifla—] | 4.882
Pw(D*qm 2.346
Pw(DFwy, 2.025
A.5.4 1IQR of Between Groups IQR
Table 11.23 IQR of median between groups IQR parameter sensitivity
Bayesian
Parameter Description Lexicographic | payoff Bayesian | CPT
Py (m) Proportion of moderate drinkers 0.691 5.926 1.053 1.265
pw() Proportion of light drinkers 3.664 17.047 4.877 3.656
Pm(m) Proportion of moderate midwives | 41.369 1.124 0.814 0.591
Pum(D) Proportion of non-judgemental | 7.109 0.739 0.496 0.378
midwives
Gw Probability of women sharing 1.963 2.038 0.733 0.589
Wy Weight of shared information for| 7.932 11.193 2.289 1.960
women
Gm Probability of midwives sharing 0.413 1.972 0.267 0.069
Win Weight of shared information for| 0.120 2.902 0.150 0.123
midwives
Xp Health payoff for healthy delivery | 0.228 3.190 6.308 | 14.777
sila;] : sila=;]| Pseudo-count favouring honesty 0.673 10411 22901 |26.340
Total All parameters and two way inter- | 85.740 88.611 68.640 |84.210
actions
Table 11.24 IQR of median between groups IQR emulator statistics
Total output
Rule 0% | Nugget 62 | Mean output | variance Code uncertainty | RMSSE
Lexicographic | 0.826 | 0.409 0.259 0.002 0.034 2.364
Bayesian payoff | 3.202 | 0.520 0.328 0.002 0.032 2452
Bayesian 1.177 1 0.041 0.133 0.000 0.018 1.152
CPT 0.874 1 0.118 0.126 0.000 0.017 1.570
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Table 11.25 Top 5
interaction terms for CPT
decision rule

Parameter Variance
xp¥silai] ¢ sila—i] 18.626
pw(D*silai] @ sifla—] | 3.312
silai] @ sila—i]*w,, 2.823
silai] @ sila=i*gm 2.694

XnFqm 1.022
Table 1,1'2’6 Top 5 . Parameter Variance
interaction terms for Bayesian "
decision rule pw(D*silai] @ sila—i] | 7.947
xp¥silai] ¢ sila—i] 4.048
silai] * sila—il*gm 3.134
pw(l)*q;n 2.307

pm(m)*sila;] @ sila—;] |2.232

Table 11.27 Top 5
interaction terms for
lexicographic decision rule

Parameter Variance
Pu(D)*pn(m) | 8.659
Pu(m)*p, (1) |3.726
pn(D*py(l) | 3.237
Pm(l)*Ww 1.564
Pn(m)*wy, 1.558

Table 11.28 Top 5

. . . Parameter Variance

interaction terms for Bayesian " 3830

payoff decision rule Gm” W :
Pw)*py(m) 3.808
pwD*silai] : sila—i] | 3.401
Pw(D)*qm 2.385

xpsilai] ¢ sila—i] 2.294
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